
Synthesizing Regularity Exposing Attributes in

Large Protein Databases

by

Michael de la Maza

mdlm@ai.mit.edu

B.S., Massachusetts Institute of Technology (1992)

Submitted to the Department of Electrical Engineering and

Computer Science

in partial ful�llment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1993

c
 Massachusetts Institute of Technology 1993

Signature of Author :

Department of Electrical Engineering and Computer Science

May 7, 1993

Certi�ed by :

Patrick Henry Winston

Director, MIT Arti�cial Intelligence Laboratory

Thesis Supervisor

Accepted by :

Campbell L. Searle

Chairman, Department Committee on Graduate Students

Synthesizing Regularity Exposing Attributes in Large

Protein Databases

by

Michael de la Maza

mdlm@ai.mit.edu

Submitted to the Department of Electrical Engineering and Computer Science

on May 7, 1993, in partial ful�llment of the

requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis describes a system that synthesizes regularity exposing attributes from

large protein databases. After processing primary and secondary structure data, this
system discovers an amino acid representation that captures what are thought to
be the three most important amino acid characteristics (size, charge, and hydropho-

bicity) for tertiary structure prediction. A neural network trained using this 16 bit
representation achieves a performance accuracy on the secondary structure prediction
problem that is comparable to the one achieved by a neural network trained using the
standard 24 bit amino acid representation. In addition, the thesis describes bounds on
secondary structure prediction accuracy, derived using an optimal learning algorithm

and the probably approximately correct (PAC) model.

Thesis Supervisor: Patrick Henry Winston
Title: Director, MIT Arti�cial Intelligence Laboratory

2

Acknowledgments

Thanks to Patrick Winston, Michael Bolotski, Lawrence Hunter, Michael Jones,

Kimberle Koile, Rick Lathrop, Oded Maron, Ken Rice, Bruce Tidor, David Wetherall,

Tau-Mu Yi, and Xiru Zhang.

Thanks to Patrick Winston and Rick Lathrop. The author is an NSF Graduate

Fellow. This work was supported by generous grants from the Pittsburgh and Illi-

nois National Centers for Supercomputing. This report describes research done at

the Arti�cial Intelligence Laboratory of the Massachusetts Institute of Technology.

Support for the laboratory's arti�cial intelligence research is provided in part by the

Advanced Research Projects Agency of the Department of Defense under O�ce of

Naval Research contract N00014-91-J-4038.

3

Contents

1 Introduction 15

1.1 Background : 15

1.2 The problem and a possible solution : : : : : : : : : : : : : : : : : : 16

1.3 A clear criteria for success : 17

1.4 The result : 17

1.5 Related work : 19

1.5.1 Computational learning theory : : : : : : : : : : : : : : : : : 19

1.5.2 Database mining : 19

1.5.3 Secondary structure prediction : : : : : : : : : : : : : : : : : : 21

1.6 What this thesis is not about : 22

1.7 Summary of thesis : 22

1.7.1 How many instances does a secondary structure prediction al-

gorithm need? : 22

1.7.2 Searching for representations that facilitate secondary structure

prediction : 24

1.8 Outline of thesis : 25

2 How many instances does a secondary structure prediction algo-

rithm need? 26

2.1 Optimal learning algorithm : 26

2.2 PAC results : 32

2.2.1 The PAC model : 32

2.2.2 No assumptions: The thirding algorithm : : : : : : : : : : : : 33

4

2.2.3 Restricting the set of hypotheses : : : : : : : : : : : : : : : : 35

3 Searching for representations that facilitate secondary structure pre-

diction 40

3.1 Overview : 40

3.2 System description : 46

3.2.1 Generating amino acid representations : : : : : : : : : : : : : 46

3.2.2 Explaining amino acid representations : : : : : : : : : : : : : 54

3.3 Results : 57

3.3.1 How many bits should a representation have? : : : : : : : : : 58

3.3.2 The best 16-bit representation : : : : : : : : : : : : : : : : : : 59

3.3.3 Understanding the 16-bit representation : : : : : : : : : : : : 61

3.4 Control experiments : 67

3.4.1 Does the genetic algorithm converge to representations that can

be explained by similar decision trees? : : : : : : : : : : : : : 67

3.4.2 What e�ect does changing the number of hidden units have? : 68

3.4.3 What e�ect does changing the learning rate have? : : : : : : : 68

3.4.4 What e�ect does changing the initial neural net weights have? 69

3.5 Extending the learning algorithm : 69

4 Summary and Future work 72

A Appendix 75

A.1 Genetic algorithm: GENEsYs : 75

A.2 Neural network: ASPIRIN : 76

A.3 Clustering algorithm: COBWEB : 79

A.4 Decision tree system: C4 : 79

5

List of Figures

1-1 A bird's eye view of the system that is fully explained in Chapter 3. : 18

1-2 Upper bound on the training set performance accuracy as a function

of the number of instances in the training set. The function, which

is derived in Chapter 2, asymptotically approaches 1. As a point of

comparison, the best published algorithm [Zhang et al., 1992] achieves

a performance accuracy of 66.4% using a training set of approximately

17,500 instances. : 23

2-1 The neighborhood concept. The instance X belongs to the coil class.

If X is in the training set, then the optimal algorithm knows what

the boundaries of this coil neighborhood are and where they are lo-

cated. It knows, for example, that the western boundary is formed by

lines and that the northern boundary is formed by curves. Thus, the

optimal algorithm can correctly classify all of the instances that are

in the same neighborhood as X. No existing learning algorithm would

be able to infer the boundaries of the neighborhood from a single in-

stance. Although this �gure is two-dimensional, in general the space

of neighborhoods is multi-dimensional. : : : : : : : : : : : : : : : : : 28

3-1 The traditional orthogonal representation. Twenty four bits are used

to represent the twenty three characters that appear in the primary

structure of proteins (the 24th character is the wrap-around charac-

ter which is an anomaly produced by the way in which the primary

structure is preprocessed; see the text). : : : : : : : : : : : : : : : : : 42

6

3-2 A 12-bit representation generated by the system. : : : : : : : : : : : 43

3-3 Clustering of the 12-bit representation shown in Figure 3-2. All of the

branches below depth 2 have been folded into their parents. : : : : : 44

3-4 A decision tree created from the clustering shown in Figure 3-3 and

the data shown in Figure 3.1. : 46

3-5 The essential structure of the system and the particular choices made

for the work described in this chapter. : : : : : : : : : : : : : : : : : 47

3-6 Genetic algorithm pseudocode. In this work, each individual in P(t) is

a bitstring. This bitstring is of size 24*l, where l is the number of bits

used to represent a single amino acid. The traditional representation

uses 24 bits per amino acids. GENERATION is a parameter that is

set by the user. : 48

3-7 The genetic algorithm crossover operator. Two individuals are chosen

from the population, a crossover point is randomly selected (indicated

by the \:"), and two o�spring are produced. The �rst o�spring is the

result of concatenating the bitstring to the left of the crossover point

in individual 1 with the bitstring to the right of the crossover point

in individual 2. The second individual is created by concatenating the

bitstring to the right of the crossover point in individual 2 with the

bitstring to the right of the crossover point in individual 1. : : : : : : 49

3-8 The genetic algorithm mutation operator. The bit to the left of the

\:" is changed from a \0" to a \1". The bit that is mutated is chosen

randomly. : 49

3-9 Characteristics of amino acid database. The percentages of residues

in the coil, beta sheet, and alpha helix classes do not sum to 100%

because of roundo� errors. : 52

7

3-10 Neural network structure. The primary sequence of a protein is divided

into windows and each amino acid is then encoded using the bitstrings

in the amino acid representation. The bitstring representation is the

input into the neural network which has no hidden layers. The three

outputs correspond to the three types of secondary structure. : : : : : 53

3-11 Neural network training scheme. The genetic algorithm uses the per-

formance accuracy on the training set as a measure of the quality of

the representation. The cross-validation set is used to eliminate rep-

resentations that have over�tted to the training set. The performance

accuracy on the testing set is used to compare the representations gen-

erated by this system to the traditional orthogonal representation. : : 53

3-12 Performance accuracy as a function of the number of bits used to rep-

resent an amino acid. The performance accuracy is the percentage

of secondary structure instances that the neural network predicts cor-

rectly. So, for example, the neural net trained using the best 12 bit

representation found to date correctly identi�es 60.1% of the secondary

structure. Since the graph peaks at 16 bits, most of my e�orts have

been concentrated on generating good 16-bit representations. : : : : : 58

3-13 The best amino acid representation found to date. Each row is the

representation for an amino acid. The entire 16x20 matrix is the amino

acid representation. The genetic algorithm searches over the space of

these representations to �nd the best one. Only the twenty bitstrings

that correspond to the twenty amino acids are shown. : : : : : : : : : 59

3-14 Clustering of amino acids based on the best 16 bit amino acid repre-

sentation. The amino acids have been grouped into six clusters. The

decision tree system explains these clusters by �nding the biochemical

properties that are shared by the amino acids in each cluster. The

amino acid representation contains bitstrings for twenty four elements,

but the clustering is done only over the twenty amino acids. : : : : : 60

8

3-15 Decision tree. The decision tree shows that bulk, hydrophobicity, and

charge(pI) are the biochemical features captured by the 16 bit amino

acid representation. The combinations of these attributes produced by

the decision tree system can be viewed as pseudo-attributes derived

from the amino acid representation and the database of amino acid

biochemical properties. : 61

3-16 Decision tree after the discrete hydrophobicity attribute has been elim-

inated from the database. The structure of the tree is very similar to

the one in Figure 3-15. The top level test is identical and the decision

tree uses bulk, hydrophobicity, and charge (pI). : : : : : : : : : : : : 64

3-17 Decision tree after the continuous hydrophobicity attribute has been

eliminated from the database. The top level test still uses the bulk

attribute, although the cuto� point has changed from -0.34 to 0.16.

In addition bulk, hydrophobicity, and charge (pI) are still the only

attributes used. : 64

3-18 Decision tree after the charge (pI) attribute has been eliminated from

the database. The decision tree uses only the bulk and hydrophobicity

attributes. : 65

3-19 Decision tree after the bulk attribute has been eliminated from the

database. : 65

3-20 Performance accuracy of a neural network as a function of the inertia

for a neural network with three hidden units. The performance is

extremely brittle with respect to the inertia: a 1% change from 0.98 to

0.99 improved the performance accuracy by more than 7%. The neural

networks with inertias between 0.91 and 0.97 always predict coil. : : : 69

3-21 Test set performance accuracy as a function of inertia for a perceptron.

The performance accuracy of the perceptron is robust over a wide range

of inertias, unlike the performance accuracy of the neural network with

three hidden units. : 70

9

3-22 Input to the memory-based learning algorithm. A memory-based learn-

ing algorithm was added as a post-processor to the neural network.

The neural network produces three numbers, ranging from 0 to 1, cor-

responding to the three secondary structure prediction classes (alpha

helix, beta sheet, and coil). The memory-based learning algorithm

takes as input these three numbers and predicts the secondary structure. 71

A-1 Example GENEsYs call. The \-f" option speci�es the function to be

optimized. The \-P" and \-U" options set the number of individuals

in a population to ten. The \-L" option speci�es the number of bits

per variable. As explained in chapter 3, there are 24 variables, one for

each amino acid and four additional variables. The \-t" option sets

the total number of function evaluations. The \-s", \-d", \-o", and

\-v" specify the format of the �nal report �le. The \-r" option sets the

initial random number seed. : 76

A-2 Example GENEsYs function. This function returns the �tness of an

individual. : 77

A-3 ASPIRIN neural network speci�cation. This neural network has 312

input units which are fully connected to 3 output units. The output

units are sigmoidal units (speci�ed by the key word \PdpNode"). The

input units are fully connected to the output units. The N HIDDEN

declaration is not used by the program, but it serves to document the

code. : 78

A-4 Example COBWEB input �le. Each list is an instance. The �rst

element of each list is a descriptor that is ignored by the system. The

other elements in the list are used to cluster the instances. : : : : : : 79

10

A-5 Example C4 instance �le. This �le contains twenty instances that

correspond to the twenty amino acids. The �rst eleven columns are at-

tributes and the twelfth column is the cluster that the instance belongs

to. C4 generates a decision tree that uses the attributes to predict the

cluster. Each instance is followed by the name of the amino acid that

it corresponds to (\j" is the comment character). : : : : : : : : : : : 80

A-6 Example C4 attributes �le. This �le indicates whether each attribute is

discrete or continuous. If the attribute is discrete then it is annotated

with the values that it can have. The �rst uncommented line of the �le

(\j" is the comment character) is a list of the classes that the instances

can belong to. In this system the classes correspond to the clusters

produced by the clustering algorithm. : : : : : : : : : : : : : : : : : : 81

11

List of Tables

1.1 Minimal and maximal number of instances required to achieve 90%

prediction accuracy with 99% con�dence for three di�erent representa-

tions. The largest secondary structure databases have approximately

20,000 instances. : 24

2.1 Prediction accuracy as a function ofM , the number of instances in the

training set. The fourth line is the case which is described in the text.

Using current databases it may be possible to have 20,000 instances in

the training set. In this case the upper bound increases to .8643. In

the �rst line the prediction accuracy of .54 is entirely due to guesses. 30

2.2 Prediction accuracy as a function of Pguess, the probability that a guess

will be correct. The analysis in the text corresponds to the �fth line.

The �rst line shows that if guesses were always wrong then the per-

formance accuracy would be .4569. Thus, the contribution of guesses

to the total prediction accuracy is the di�erence between the total

prediction accuracy and .4569. So, for the parameter set in the �fth

line, the contribution of guesses to the total prediction accuracy is:

:7502 � :4569 = :2933. : 30

2.3 Prediction accuracy as a function of jN j, the number of neighborhoods.

The �fth line corresponds to the analysis in the text. As the number

of neighborhoods increases, the prediction accuracy converges to Pguess. 31

12

3.1 Database of biochemical properties of amino acids. The decision tree

system uses this database to explain the clustering of amino acids.

The �rst eight properties are qualitative, binary properties, while the

last three properties are quantitative, numerical properties: Hyd =

hydrophobic, Cha = charged, Pol = polar, Ali = aliphatic, Aro =

aromatic, Sul = sulfur, Bas = basic, Aci = acidic, pI = pI value, Hyd2

= hydrophobicity scale, Bul = measure of bulk, and Abbr = three letter

amino acid abbreviation. The Hyd, Cha, and Pol attributes are from

[Branden and Tooze, 1991]; the Ali, Aro, Sul, Bas, and Aci attributes

are from [Stryer, 1988]; the pI attribute is from [Mahler, 1971]; and

the Hyd2 and Bulk attributes are from [Kidera et al., 1985]. : : : : : 45

3.2 Genetic algorithm parameter settings. : : : : : : : : : : : : : : : : : : 51

3.3 Neural network parameters settings. : : : : : : : : : : : : : : : : : : : 54

3.4 A node that summarizes two instances. The two instances are \0 0 0 1

1 0 0 0 1 1 1 1" and \1 0 0 1 1 0 1 0 1 0 1 1" and are taken from the 12-

bit representation shown above. The �rst instance is the bitstring for

trytophan and the second instance is the bitstring for tyrosine. These

two instances are grouped together by the clustering algorithm and so

it is not surprising that nine of the twelve attributes are identical. The

attribute names refer to the bit positions. So, for example, the eighth

position of both of the instances is \0" so the probability that the value

of the eighth attribute is \0" given that the instance is described by

this node is 1.0. : 56

3.5 Hamming distances between pairs of amino acids in the same clus-

tering. (A) First cluster: W=tryptophan, Y=tyrosine, Q=glutamine,

C=cysteine, L=leucine, E=glutamic acid. (B) Second cluster: V=valine,

P=proline, K=lysine. (C) Third cluster: T=threonine, N=asparagine,

G=glycine. (D) Fourth cluster: S=serine, R=arginine, M=methionine.

(E) Fifth cluster: I=isoleucine, H=histidine, F=phenylalanine. (F)

Sixth cluster: D=aspartic acid, A=alanine. : : : : : : : : : : : : : : : 63

13

3.6 Results of training a neural net with di�erent initial weights. This

table shows that the e�ect of the initial weights on the �nal prediction

accuracy is small. The range of the training set prediction accuracies

is less than .004 and the range of the test set prediction accuracies is

less than .005. : 70

A.1 Availability information for the public domain software used in this

thesis. : 75

14

Chapter 1

Introduction

1.1 Background

The structure of a protein can be described at four levels: primary

structure, secondary structure, tertiary structure, and quaternary structure

[Branden and Tooze, 1991]. The primary structure of a protein is the sequential list

of amino acids that comprise the protein. Interacting amino acids form units of sec-

ondary structure, called alpha helices and beta sheets. Alpha helices and beta sheets

are repeating structures that can be identi�ed in the tertiary structure, which is a

three-dimensional model of the protein that assigns Cartesian coordinates to each

atom in the protein. The relationship among tertiary structure units in a protein is

called quaternary structure.

Finding the tertiary structure of a protein is an important step in elucidating

its function. Currently, the two methods used for �nding tertiary structure, X-ray

crystallography and nuclear magnetic resonance are expensive and time-consuming.

Although there are thousands of primary structures known, only a few hundred ter-

tiary structures have been determined and only about 50 new ones are determined

each year [Lander et al., 1991]. The determination of each structure is still considered

a major event.

Predicting secondary structure is thought to be an important step in determining

tertiary structure from primary structure. Since 1988, researchers have used machine

15

learning techniques, primarily neural networks, to predict secondary structure. The

best programs have accuracies of 60% to 70%. This thesis continues this line of

research. To be precise, the secondary structure prediction problem is:

Produce an algorithm that given as input the primary sequence of a pro-

tein and a distinguished amino acid in that protein produces as output

the secondary structure assignment (alpha helix, beta sheet, or coil) of the

distinguished amino acid in the protein.

This thesis has two parts. The �rst part suggests that secondary structure predic-

tion algorithms that use unannotated data require a prohibitive number of instances

to achieve a high performance accuracy. The second part describes a database mining

system that rediscovers important biochemical properties of amino acids in secondary

structure data.

1.2 The problem and a possible solution

Consider a straightforward classi�cation problem. A set of proteins is canvassed for

proteins that exhibit a particular function and the question is asked: \Is it possi-

ble to separate the functional proteins from the non-functional ones?" Certainly, a

su�ciently powerful learning algorithm will be able to take as input the Cartesian

coordinates of each of the atoms in a protein and produce a procedure that separates

the functional and non-functional proteins. Unfortunately, no such algorithms exist.

In addition, this algorithm may produce a procedure that provides no insight into the

underlying mechanism.

Consider the following alternative. Instead of asking the learning algorithm to pro-

duce a solution in one pass, ask the algorithm to create new synthesized attributes,

composed of the input attributes, that have explanatory or predictive power. The

search for synthesized attributes may be driven by heuristics[Lenat, 1976, Langley, 1980]

or by some task-dependent metric, as it is in this thesis.

More generally, the problem of discovering hidden attributes in data is a funda-

mental one. As in the above example, objects in databases are not always annotated

16

with features that facilitate understanding. Only through a process of feature com-

bination can the regularities in the data be made explicit.

1.3 A clear criteria for success

How should a system that claims to synthesize regularity exposing attributes be

judged?

We suggest two criteria for success:

� The synthesized attributes should capture interesting properties that can be

explained by other means.

� The synthesized attributes should be superior, along some signi�cant dimension,

to the original input attributes.

1.4 The result

A system that meets both of these criteria is shown in Figure 1-1.

The goal of this system is to use the primary and secondary structure of proteins

to create amino acids representations that facilitate secondary structure prediction.

Each amino acid is represented as a bit string. So, a representation for all of the

amino acids consists of twenty bit strings.

In the �rst step, a genetic algorithm searches the space of amino acid representa-

tions. The quality of each representation is quanti�ed by training a neural network

to predict secondary structure using that representation. The genetic algorithm then

uses the performance accuracy of the representation to guide its search and to create

amino acid representations that improve the performance accuracy.

In the second step, the best amino acid representation produced by the genetic

algorithm during one run is divided into bit strings (one for each amino acid) and these

bit strings are clustered using Hamming distance. These clusters capture similarities

among the representations for each of the amino acids.

17

...MDLM... A

...PHW... B

...CRAY... B

...ELVIS.. A

...PITT.. A

...

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Secondary
structure
data

Instance Classification

Search with
genetic
algorithm.
Use neural
network as the
fitness function

01010101....
10101010....
11111000....
10011111....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Amino acid representation

ALA
CYS
ASP
GLU
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
TYR010000101...

Cluster

SER
ARG
MET

Biochemical
properties

Decision
tree

Bulk

Hydrophobicity

pI

Figure 1-1: A bird's eye view of the system that is fully explained in Chapter 3.

In the third step, a decision tree system uses the clustering and a database of

biochemical properties to produce a decision tree that classi�es the amino acids using

biochemical properties. This decision tree explains why the amino acid representation

is a good one. Unlike current work in secondary structure prediction, the end result

of this system is not just a technique for predicting secondary structure, but rather

a technique that predicts secondary structure and provides an account of why it can

do so. Because this system makes explicit what the representation is capturing, it

provides more information about protein structure than other algorithms.

The end result of this procedure is an amino representation that, as shown in

Chapter 3, represents, in part, bulk, hydrophobicity, and charge (pI) and their inter-

dependencies. This representation achieves a performance accuracy on the secondary

structure prediction problem that is comparable to the one achieved by the standard

amino acid representation, thus meeting both of the criteria discussed in the previous

18

section.

1.5 Related work

The �rst part of this thesis applies results from computational learning theory to

the secondary structure prediction problem and the second part combines four learn-

ing algorithms (a neural network, a genetic algorithm, a clustering algorithm, and

a decision tree procedure) into a database mining system that synthesizes regularity

exposing attributes in secondary structure data. This system is used to �nd regulari-

ties that facilitate secondary structure prediction. This related work section considers

each of these three topics in turn.

1.5.1 Computational learning theory

The primary theoretical tool for the analysis of learning from examples is the proba-

bly approximately correct (PAC) model [Valiant, 1984]. One of the primary features

of the PAC model is that it permits analysis of hypotheses that only approximate

the correct solution. The PAC model has been extended in many fruitful ways (e.g.,

[Amsterdam, 1988, Schapire, 1991]) and speci�c results are available for neural net-

works [Haussler, 1989], which are the most widely used classi�cation algorithms in

secondary structure prediction.

1.5.2 Database mining

Genetic algorithms

In this thesis a genetic algorithm [Holland, 1975, Goldberg, 1989] is used to search

the space of possible amino acid representations. As discussed in Chapter 3, other

global optimization algorithms may be used instead.

Given the choice of genetic algorithms, there are two questions that are of partic-

ular importance. First, how good are the solutions produced by genetic algorithms?

Second, how long does it take to produce the solutions?

19

There are few theoretical results that support genetic algorithms, al-

though the situation is improving (see, e.g., [Thomas and Principe, 1991,

de la Maza and Tidor, 1993]), so the justi�cation for using genetic algorithms comes

from a twenty year history of producing good empirical results.

Genetic algorithms have produced better than best known traveling salesman solu-

tions [Grefenstette et al., 1985, Whitley et al., 1989], outperformed standard nonlin-

ear programming algorithms [Michalewicz, 1992], and improved searches for criminal

suspects [Caldwell and Johnston, 1991]. Of course, genetic algorithms do not always

�nd better solutions than other algorithms (see, e.g., [Quinlan, 1988]).

Neural networks

Neural networks have played a dominant role in secondary structure prediction re-

search since 1988 and, therefore, to facilitate comparisons, they are used in this work.

Theoretical results in neural networks are mixed. Large neural networks have been

shown to be Turing equivalent [Sun et al., 1991, Jones, 1992], but training a simple

threshold neural network is NP-complete [Blum and Rivest, 1992]. Fast algorithms

are known for �nding good neural network topologies [Roy and Mukhopadhyay, 1992],

but the number of instances needed to train them is typically large

[Baum and Haussler, 1989].

Clustering algorithm

Clustering algorithms group objects in such a way that intragroup similarities are

maximized while intergroup similarities are minimized. These groups partition the

set of all objects so that previously unseen objects may be placed into a group. Thus,

the result of running a clustering algorithm on a set of data is not just a grouping of

the objects initially available to the program but also a function that maps objects

to groups.

A wide range of clustering algorithms have been described and analyzed. Au-

toClass, a Bayesian clustering algorithm [Cheeseman et al., 1988], assigns to each

object a probability that it is in a particular group, unlike most clustering algorithms

20

which make �xed assignments. COBWEB [Fisher, 1987], the clustering algorithm

used in this thesis, is an incremental clustering algorithm that produces hierarchical

clusterings. Several other algorithms are statistical in nature. Michalski and Stepp

[Michalski and Stepp, 1992] review clustering algorithms.

Decision tree system

Decision tree systems generate trees which, in their simplest form, have single at-

tribute tests on their nodes and classes on their leaves. As with clustering algo-

rithms, there are many decision tree systems, of which the best known are CART

[Breiman et al., 1984] and C4.5 [Quinlan, 1993].

C4.5, the decision tree system used in this thesis, has been developed over an

extended period of time and includes techniques for reducing the e�ect of noise and

generating production rules from trees.

1.5.3 Secondary structure prediction

Chou and Fasman [Chou and Fasman, 1974] and Lim [Lim, 1974] proposed the

secondary structure prediction problem almost twenty years ago. Recently,

researchers have used arti�cial intelligence techniques to attack the problem

[Qian and Sejnowski, 1988, Holley and Karplus, 1989].

Zhang et al.[Zhang et al., 1992] describe a system that uses a neural network,

called Combiner, to combine the predictions of three experts, a neural network, a

memory based reasoning system, and a Bayesian statistical module. Each of the three

experts examines a thirteen residue \window" in the protein sequence and predicts

the secondary structure of the middle residue. The predictions of these three experts

are then fed into the Combiner which produces the �nal prediction of the algorithm.

Individually, the neural net had a performance accuracy of 63.1%, the memory based

reasoning system had a performance accuracy of 64.5%, and the statistical module

had a performance accuracy of 63.5%. The Combiner increased the performance

accuracy to 66.4%.

21

1.6 What this thesis is not about

This thesis does not describe a secondary structure prediction algorithm that has

a higher performance accuracy than other algorithms, nor does it claim to do so.

Although the database mining system discussed in this thesis was motivated by the

secondary structure prediction problem, it has not been �ne-tuned to achieve high

performance on this task and, as such, the systemmay be applicable to other domains.

Furthermore, we do not claim that the synthesized attributes created by the sys-

tem described in this thesis are in any way optimal nor do we claim that they will be

useful in other domains in which amino acid representations are important.

1.7 Summary of thesis

This section summarizes the key ideas and main results in this thesis. Chapter 2

addresses the question \How many instances does a secondary structure prediction

algorithm need to predict with high accuracy?" and Chapter 3 describes a database

mining system that rediscovers important amino acid properties.

1.7.1 How many instances does a secondary structure pre-

diction algorithm need?

Theoretical results from machine learning can be applied to the secondary structure

prediction problem to discover how many instances need to be processed in order

to achieve a certain performance accuracy. Why is this helpful? These theoretical

results can:

� Highlight shortcomings in current approaches that otherwise would not be un-

covered.

� Suggest fruitful avenues for new investigation.

In the �rst part of chapter 2, the question of how many instances are required

to achieve a certain performance accuracy is �rst explored by creating an optimal

22

0.65

0.7

0.75

0.8

0.85

0.9

6000 8000 10000 12000 14000 16000 18000 20000

T
e
s
t
i
n
g

s
e
t

p
e
r
f
o
r
m
a
n
c
e

a
c
c
u
r
a
c
y

Number of instances in training set

Testing set performance accuracy as a function of the number of instances in the training set

Figure 1-2: Upper bound on the training set performance accuracy as a function of the

number of instances in the training set. The function, which is derived in Chapter 2,
asymptotically approaches 1. As a point of comparison, the best published algorithm
[Zhang et al., 1992] achieves a performance accuracy of 66.4% using a training set of
approximately 17,500 instances.

learning algorithm and running it on the secondary structure prediction problem.

This end result of this analysis is an equation that is a function of three variables:

the number of instances in the training set, the probability that a guess is correct,

and the number of neighborhoods. Figure 1-2 shows how the accuracy changes as a

function of the number of instances in the training set. The probability that a guess

is correct is set at .54 and the number of neighborhoods is set at 16384. These choices

are explained in chapter 2.

The second part of chapter 3 applies PAC results to the secondary structure pre-

diction problem. In particular, the section gives bounds on the number of instances

required to learn monomials, 13-DNF formulae, and perceptrons. Table 1.1 summa-

rizes these results which, in support of the conclusion of the �rst part of Chapter 2,

suggest that the task of learning secondary structure to high accuracy from unanno-

tated primary structures is not possible with current databases.

23

Representation Minimum Maximum

Monomials 2590 �
13-DNF formulae > 1030 � 1035

Perceptrons 2730 218,214

Table 1.1: Minimal and maximal number of instances required to achieve 90% pre-
diction accuracy with 99% con�dence for three di�erent representations. The largest

secondary structure databases have approximately 20,000 instances.

1.7.2 Searching for representations that facilitate secondary

structure prediction

Chapter 3 describes a database mining system that generates amino acid repre-

sentations that facilitate secondary structure prediction. The main result of the

chapter is a representation that captures the three properties (bulk, hydrophobic-

ity, and charge (pI)) thought to be most important for tertiary structure predic-

tion [Franke, 1984, Martin et al., 1989]. Although this representation is 33% shorter

than the traditional representation, a neural network trained with this representation

achieves the same performance accuracy as a neural network trained using the tra-

ditional representation. The representation consists of a set of 24 bitstrings each of

length 16.

This database mining system is motivated by the understanding that objects in

databases are not always described by features that make regularities apparent. The

goal of the system described in Chapter 3 is to generate such attributes and explain

why they capture patterns in the data.

The system is composed of four learning algorithms: a genetic algorithm, a neu-

ral network, a clustering algorithm, and a decision tree system. The �rst part of

the system, composed of the genetic algorithm and the neural network, generates

amino acid representations. The search for these representations is guided by the

performance accuracy achieved by a neural network trained using the representa-

tions. Good representations are those that improve performance accuracy on the

secondary structure prediction problem. The second part of the system, consisting of

24

the clustering algorithm and the decision tree system, uses a database of amino acid

biochemical properties to explain why the representations generated by the �rst part

of the system are good. This explanation is in the form of a decision tree.

Thus, the end result of running the system on secondary structure data is not

only a parsimonious representation that achieves a performance accuracy equal to

the traditional representation. This new representation comes with an explanation,

grounded in biochemical properties, of why the representation is well suited for sec-

ondary structure prediction.

1.8 Outline of thesis

Chapter 2 develops a learning algorithm that is used to �nd an upper bound on the

prediction accuracy of secondary structure prediction algorithms and applies results

from PAC learning to the secondary structure prediction problem. Chapter 3 de-

scribes a system that takes as input the primary sequences of proteins annotated

with secondary structure and produces as output an amino acid representation that

facilitates secondary structure prediction. Chapter 4 summarizes the thesis and dis-

cusses future work.

25

Chapter 2

How many instances does a

secondary structure prediction

algorithm need?

The main question addressed in this chapter is: How many instances does a secondary

structure prediction algorithm need to predict with high accuracy? The �rst section

approaches this question by constructing an optimal learning algorithm and asking

how well it would do on the secondary structure prediction problem. The second

section applies PAC results to the secondary structure prediction problem.

2.1 Optimal learning algorithm

I give an upper bound on the performance accuracy that can be achieved on the

secondary structure prediction problem by constructing an optimal learning algorithm

and running it on the secondary structure prediction problem. This upper bound is

a function of three parameters: the number of instances in the training set, the

probability that a guess is correct, and the number of neighborhoods. When these

parameters are set to reasonable values the upper bound is calculated to be .7502.

This optimal model is very similar to one described by Quinlan [Quinlan, 1983].

The operation of the optimal learning algorithm can be understood in two parts.

26

When presented with an instance in the test set, the optimal algorithm can:

� Determine that the test set instance is in the same neighborhood as an instance

in the training set. In this case, the optimal algorithm will assign the correct

secondary structure to the test set instance.

� Determine that no training set instance belongs to the same neighborhood as

the test set instance. In this case, the optimal algorithm guesses a secondary

structure assignment.

A neighborhood is a set of instances that have similar primary sequences and that

have the same secondary structure.

Why is this algorithm optimal? The �rst case described above sets it apart from

actual algorithms. The optimal algorithm is able to determine the boundaries of

a neighborhood after it has seen only one instance in that neighborhood. Actual

algorithms can only crudely approximate the neighborhood boundary after seeing

one instance and require many instances both inside and outside of the neighborhood

to accurately approximate the boundary. Figure 2-1 illustrates the di�erence between

the optimal algorithm and actual algorithms.

In addition, unlike current secondary structure prediction algorithms, the optimal

algorithm is not forced to consider only local interactions in making its predictions.

Thus, it is not constrained by bounds on the amount of information available to

algorithms that only analyze local interactions [Gibrat et al., 1991].

Given this description of the optimal algorithm, it is possible to calculate its

performance accuracy. Let Pknow be the probability that a test set instance falls into

the �rst category described above and let Pguess be the probability that a test set

instance is correctly assigned secondary structure given that it falls into the second

category. The performance accuracy, Ptotal, of the optimal algorithm is:

Ptotal = Pknow + (1 � Pknow) � Pguess (2:1)

Pknow is the probability that the test instance is in the same neighborhood as one

of the training instances:

27

Alpha

Beta
Alpha Beta

Alpha

Beta
Alpha

Beta

Coil
X

Figure 2-1: The neighborhood concept. The instance X belongs to the coil class. If

X is in the training set, then the optimal algorithm knows what the boundaries of
this coil neighborhood are and where they are located. It knows, for example, that
the western boundary is formed by lines and that the northern boundary is formed
by curves. Thus, the optimal algorithm can correctly classify all of the instances that
are in the same neighborhood as X. No existing learning algorithm would be able to

infer the boundaries of the neighborhood from a single instance. Although this �gure
is two-dimensional, in general the space of neighborhoods is multi-dimensional.

Pknow = 1 �
X
i

p(Ni) � (1 � p(Ni))
M (2:2)

where M is the number of instances in the training set, p(Ni) is the probability that

an instance is in neighborhood i, and i ranges over all of the neighborhoods.

We assume that Pguess is equal to the probability that the instance is in the coil

class, the most frequent secondary structure class:

Pguess = p(ccoil) (2:3)

where p(ccoil) is the probability that an instance belongs to the coil class.

Substituting into 2.1:

Ptotal = (1�
X
i

p(Ni) � (1� p(Ni))
M) + (

X
i

p(Ni) � (1 � p(Ni))
M) � p(ccoil) (2:4)

28

To extract a number from equation 2.4 we need to assign numerical values to:

M , p(Ni), and p(ccoil). M , the number of instances in the training set, is ap-

proximately 10,000 [Zhang et al., 1992]. Approximately 54% of the residues are coil

[Holley and Karplus, 1989, Kneller et al., 1990], so p(ccoil) = :54.

Estimating p(Ni), the probability that an instance is in neighborhood i, is more

di�cult. I assume that instances are evenly distributed, so p(Ni) = 1=jN j, where jN j

is the number of neighborhoods. Using this approximation, 2.4 reduces to:

Ptotal = 1� (1� 1=jN j)M + (1 � 1=jN j)M � p(ccoil) (2:5)

Now all that is needed to calculate a numerical value for Ptotal is to estimate

jN j. Branden and Tooze [Branden and Tooze, 1991] group amino acids into four

categories. Database scans have shown that there are identical pentapeptides that

have di�erent secondary structures assigned to the middle residue, but that there are

no identical heptapeptides that have the same property [Kabsch and Sander, 1984,

Argos, 1990]. So, an estimate for the number of neighborhoods is: 47 = 16384. Of

the three estimates, this one has the least support.

Substituting these choices for the three parameters into 2.5:

Ptotal = 1� (1� 1=16384)10000 + (1 � 1=16384)10000 � :54 = :7502 (2:6)

Thus, the upper bound on secondary structure prediction accuracy, given these

parameter settings, is .7502.

How sensitive is this upper bound to changes in the three parameters? Table 2.1

shows how the upper bound changes as a function of the number of instances in the

training set, M ; table 2.2 shows how the upper bound changes as a function of the

probability that a guess will be correct, Pguess; and table 2.3 shows how the upper

bound changes as a function of the number of neighborhoods, N .

The tables demonstrate that the upper bound on secondary structure prediction

accuracy is very sensitive to the numbers assigned to the three parameters in 2.5.

What does this mean? Assuming that there are no egregious errors in this analysis,

29

M Pguess jN j prediction accuracy

0 .54 16384 .5400

1000 .54 16384 .5672

5000 .54 16384 .6610

10000 .54 16384 .7502

20000 .54 16384 .8643

30000 .54 16384 .9263

50000 .54 16384 .9783

100000 .54 16384 .9990

Table 2.1: Prediction accuracy as a function of M , the number of instances in the

training set. The fourth line is the case which is described in the text. Using current

databases it may be possible to have 20,000 instances in the training set. In this case
the upper bound increases to .8643. In the �rst line the prediction accuracy of .54 is

entirely due to guesses.

Pguess M jN j prediction accuracy

0.00 10000 16384 0.4569

0.25 10000 16384 0.5926

0.45 10000 16384 0.7013

0.50 10000 16384 0.7284

0.54 10000 16384 0.7502

0.55 10000 16384 0.7556

0.60 10000 16384 0.7827

0.75 10000 16384 0.8642

1.00 10000 16384 1.0000

Table 2.2: Prediction accuracy as a function of Pguess, the probability that a guess
will be correct. The analysis in the text corresponds to the �fth line. The �rst

line shows that if guesses were always wrong then the performance accuracy would
be .4569. Thus, the contribution of guesses to the total prediction accuracy is the

di�erence between the total prediction accuracy and .4569. So, for the parameter

set in the �fth line, the contribution of guesses to the total prediction accuracy is:
:7502 � :4569 = :2933.

30

jN j M Pguess prediction accuracy

1 10000 .54 1.0000

5000 10000 .54 0.9378

10000 10000 .54 0.8308

15000 10000 .54 0.7638

16384 10000 .54 0.7502

18000 10000 .54 0.7361

20000 10000 .54 0.7210

40000 10000 .54 0.6418

80000 10000 .54 0.5941

200000 10000 .54 0.5624

1000000 10000 .54 0.5446

Table 2.3: Prediction accuracy as a function of jN j, the number of neighborhoods.
The �fth line corresponds to the analysis in the text. As the number of neighborhoods
increases, the prediction accuracy converges to Pguess.

two conclusions suggest themselves. First, the optimal learning algorithmmodel is not

accurate. Either it fails to capture the essence of learning algorithms or the essence

of the secondary structure prediction problem (or both). Second, the performance

of algorithms on the secondary structure prediction problem actually does depend

critically on the number of training instances, the probability of guessing correctly,

and the number of neighborhoods.

Which of these two conclusions is correct? Some evidence indicates that the per-

formance of learning algorithms varies with the number of instances in the training

set [Qian and Sejnowski, 1988]. This data can be checked against Table 2.1 to see

if the optimal learning model accurately describes the behavior of actual learning

algorithms. The performance accuracy's dependence on the probability of guessing

correctly can be examined in the same way. Dependence on the number of neighbor-

hoods can be determined by �rst testing the performance of actual learning algorithms

on an array of arti�cial problems that �x the number of neighborhoods and then com-

paring this performance to the optimal model's performance. If the optimal model

passes all of these tests, then the second conclusion would be more likely to be correct

than the �rst.

31

2.2 PAC results

This section applies PAC results to the secondary structure prediction problem.

We consider several restrictions on the answer to the secondary structure pre-

diction problem and on the nature of the learning algorithms used to address the

problem. For example, if the assumption is made that the set of all alpha helices can

be di�erentiated from all other secondary structure classes using monomials1, then

learning a monomial representation for alpha helices that separates it from other

secondary structure classes is shown to require a small number of instances.

This section does not present new algorithms or new analytical results. Rather,

it applies existing results in theoretical machine learning to the secondary structure

prediction problem.

Part 1 informally introduces the probably approximately correct (PAC) model

which will be the general theoretical framework used in this section to give upper and

lower bounds on the number of instances required to learn secondary structure. Part

2 discusses the \thirding" algorithm which makes no assumptions about the solution

to the secondary structure problem and, therefore, gives very weak results. In light

of these weak results, Part 3 restricts the solution to the secondary structure problem

and describes stronger results.

2.2.1 The PAC model

This section uses a general theoretical framework, called the probably approximately

correct (PAC) model, for analyzing algorithms that learn concepts from examples

[Valiant, 1984]. The main idea of this framework is that a learning algorithm, after

processing a certain number of instances, should produce with high probability, a

hypothesis that makes predictions that, with high probability, are the same as those

made by the the correct hypothesis.

Valiant [Valiant, 1984] and Kearns and Varizani [Kearns and Vazirani, 1992] both

1A monomial is a �nite conjunction of literals. For example, x1 ^ x2 ^ x3 is a monomial with

three literals.

32

give formal descriptions of PAC learning. Here I give an informal description. Let

H1, H2, ... be a countable set of subsets of a countable instance space. The task is

to identify one of these subsets, H
�
. The learning algorithm outputs a hypothesis,

Hanswer, that is close to H� with high probability:

Pr[d(H�;Hanswer) � �] � �

where d is a function that returns the probability that an instance chosen from the

instance space according to an unknown probability distribution is in one but not the

other of H� and Hanswer .

Intuitively, this formula says that with probability at least 1 � � the di�erence

between H� and Hanswer will be less than �. For example, if we want to be 99% sure

that Hanswer is 90% accurate (i.e. it is within 10% of the correct concept, H
�
) then

� = :1 and � = :01.

2.2.2 No assumptions: The thirding algorithm

The thirding algorithm makes no assumptions about the nature of the solution to

the secondary structure prediction problem and assumes virtually unlimited compu-

tational power. This algorithm serves to highlight the advantages of the algorithms

that will be described in the next section.

The thirding algorithm maintains a set of hypothesized solutions all of which are

consistent with all of the training instances it has processed. When it processes a

new training instance, the algorithm uses its current set of hypotheses to classify the

instance into the alpha, beta, or coil class. If the classi�cation is incorrect, then at

least one third of the hypothesis are eliminated, hence the algorithm's name. If the

classi�cation is correct, then all of the hypotheses that incorrectly classi�ed the new

instance are eliminated.

Speci�cally, a hypothesis is a set of three lists that correspond to the alpha, beta,

and coil classes. Each element in a list is simply an instance and each possible instance

appears in exactly one list. Thus, the union of the three lists contains all possible

33

instances. A training set instance is classi�ed by the list in which it appears. For

example, if the element EGDAAKGE is in the coil list then the instance EGDAAKGE

is classi�ed into the coil class.

The thirding algorithm classi�es a new training set instance by using the classi-

�cations of the hypotheses. A simple pigeonhole argument shows that if all of the

classi�cations are tallied at least one of the three secondary structure classes will have

been predicted by at least one third of the hypotheses. This consensus classi�cation

is the prediction of the thirding algorithm. If the prediction is incorrect, then at

least one third of the hypotheses are inconsistent with the training data and can be

eliminated. If the prediction is correct, all of the hypotheses that did not agree with

the consensus prediction can be eliminated.

The thirding algorithm makes the most guaranteed progress when it fails to cor-

rectly classify a training set instance. If there are n hypotheses in the original set then

it needs to process log
3=2
n = (log

2
n)=(log

2
3=2) instances that it classi�es incorrectly

to guarantee that the set of hypotheses is narrowed down to just a single consistent

hypothesis.

How large is log
3=2
n? If the initial hypothesis set consists of all possible hypothe-

ses and each instance processed by the algorithm is unique, then log
3=2
n is equal

to the total number of instances. Of course, this is not a helpful practical result.

However, if the original hypothesis set is restricted, then the number of training set

instances may be substantially decreased. The hypotheses should be restricted in a

way that captures some underlying property of the solution to the secondary struc-

ture prediction problem. So, for example, reducing the set of hypotheses by forcing

each hypothesis to consider tryptophan and glycine to be equivalent is not satisfac-

tory. The next section considers di�erent ways of restricting the set of hypotheses

and gives bounds on the number of training instances required to �nd hypotheses

that with high con�dence are close to the correct concept description.

34

2.2.3 Restricting the set of hypotheses

This section considers three restrictions on the set of hypotheses. The �rst two parts

assume that the hypotheses can be represented as particular kinds of boolean formu-

lae, and the third part assumes that the hypotheses can be captured by perceptrons

with step thresholds.

Monomials

First we restrict each hypothesis to consist of three monomials, one each for the

alpha, beta, and coil class. There are twenty variables for each position, each one

corresponding to one of the amino acids. Variable xi is true when the amino acid at

position i is x and false otherwise.

How might these three monomials be used to describe a solution to the secondary

structure prediction problem? Suppose that the monomial that corresponds to the

alpha class is: G1 ^ R2 ^ F5. This monomial is true exactly when the instance has

glycine as the �rst amino acid, arginine as the second amino acid, and does not have

phenylalanine as the �fth amino acid. Notice that there are many concepts that

cannot be expressed by these monomials. For example, it is impossible to assign all

instances that have leucine or isoleucine as the �rst amino acid to the alpha class.

Ehrenfeucht et al.[Ehrenfeucht et al., 1988] show that the minimal number of in-

stances needed to learn a monomial is

max

�
1

2�
ln
1

�

;

n� 1

�

�

where n is the number of variables, 0 < � � 1

8
, and 0 < � � 1

100
.

To extract a number from this equation we need to assign numbers to �, �, and

n. Let � = :1 and � = :01. This parameter setting means that we want to be at least

99% con�dent that the algorithm has a performance accuracy of at least 90%.

The number of literals is simply 20 � l where l is the length of an instance. If

l = 13 there are 260 literals, and the minimum number of instances needed to learn

the monomial is max(1
:2
ln(1

:01
); 259

:1
) = 2590. This lower bound is tight to within a

35

constant since Valiant [Valiant, 1984] describes an O(1
�
ln(1

�
)+ n

�
) algorithm for learn-

ing monomials. The largest databases used in secondary structure prediction to date

have approximately 20,000 instances [Zhang et al., 1992] and so learning monomials

of this form is well within the realm of possibility. Unfortunately, the class of concepts

that can be represented by these monomials is very restricted.

So to increase the number of concepts that can be described, suppose that we

increase the number of variables by allowing them to represent not just individual

amino acids but pairs of amino acids. This allows the monomial to, for example,

represent the class of all instances that have a leucine or isoleucine as the �rst amino

acid. There are l � 20 � 19=2 = 190 � l of these literals where l is again the length of

the instance. For l = 13 there are 2470 literals of this type in addition to the original

260 literals, for a total of 2470 + 260 = 2730 literals. Using the same parameter

settings as before, the number of instances needed to learn the monomial is at least

max(1
:2
ln(1

:01
); 2729

:1
) = 27290. Thus, what appears to be a small increase in the

representational power of the monomial leads to an order of magnitude increase in

the number of instances required to learn it.

Disjunctive normal form

Now we restrict each hypothesis to consist of three boolean formulae in disjunctive

normal form. A formula in disjunctive normal form is a �nite disjunction of conjunc-

tions: T1_T2_ :::_Tn where Ti is a monomial. Any boolean formula can be expressed

in disjunctive normal form (DNF). We use this fact to derive an upper bound on the

number of instances needed to solve the secondary structure prediction problem.

A kDNF formula is a DNF formula in which the monomials are of length at

most k. We �x the number of variables to be 260 and interpret them as described

above. Given this set of variables any monomial with more than l unique literals

would be contradictory, where l is the length of instance. If l = 13 then k can

be set to 13 without restricting the power of the boolean formulae. Thus, for this

choice of variables, every DNF formula can be represented as some 13-DNF formula.

Furthermore, every possible subset of instances of length 13 can be represented using

36

a 13-DNF formula.

Combining the results in Blumer et al.[Blumer et al., 1986] and in Ehrenfeucht et

al.[Ehrenfeucht et al., 1988] the upper bound on the number of instances needed to

learn a 13-DNF formula with 260 variables is:

max

4

�

ln
2

�

;

8 � (26013 � 1)

�

ln
8 � (26013 � 1)

�

!

where the notation is de�ned as above.

Setting � = :1 and � = :01 as before, the maximum number of instances needed is

approximately 1:5 � 1035. To learn such a 13-DNF formula for each of the three types

of secondary structures would require at most 4:5�1035 instances. Several researchers

(e.g., [Qian and Sejnowski, 1988, Holley and Karplus, 1989, Zhang et al., 1992]) have

informally suggested that there is an upper bound between 60% and 80% on the

performance accuracy that can be achieved using local information. Assuming that

alpha helices, beta sheets, and coils can each be represented by using a 13-DNF

formula such that there is no instance for which more than one of the formulas is true,

then this result shows that these informal arguments are incorrect. In particular, this

result shows that at most approximately 4:5 � 1035 instances need to be processed to

be at least 99% con�dent that the hypothesis is at least 90% accurate.

The 13-DNF representation can also be used to give lower bounds on the number

of instances. As with monomials, the best algorithm, described in [Valiant, 1984], is

within a constant factor of this lower bound which is in turn only a log factor less

than the upper bound given above. Thus, the lower bound on the number of instances

needed to learn a 13-DNF formula is, for all practical purposes, prohibitive.

However, the number of instances can be reduced by decreasing the number of

literals in a monomial. What is the justi�cation for doing so? Database searches

show that there are identical pentapeptides that have di�erent secondary structures

assigned to the middle residue, but that there are no identical heptapeptides that have

the same property [Kabsch and Sander, 1984, Argos, 1990]. If this property holds for

all proteins and not just those that exist in current databases, then 7-DNF formulae

37

can be used to describe secondary structures. Although this reduces the number of

instances needed to about 1020, far too many instances are still required.

The lower bound for PAC learning k-Decision lists [Rivest, 1987] is identical to the

one for learning k-DNF formulas. A decision list is a �nite sequence (T1, b1),...,(Tl,bl)

where Ti is a monomial of at most k literals and bi is a boolean value. The value of the

decision list is bi where Ti is the �rst monomial that is true of the instance. Although

the lower bound is the same, k-Decision lists can describe a set of concepts that is a

proper superset of the set of concepts that can be expressed by k-DNF formulae.

Perceptrons

Perceptron learning algorithms with sigmoid threshold functions are the most

widely used programs for secondary structure prediction [Qian and Sejnowski, 1988,

Holley and Karplus, 1989, Zhang et al., 1992], although other techniques, such as

nearest neighbor approaches [Salzberg and Cost, 1992], are now becoming popular.

In this section we brie
y explore the number of instances needed to train a perceptron

with stair-step thresholds.

Once again we consider a hypothesis to be a set of three perceptrons, one for each

of the three types of secondary structure. To train a single perceptron with n units

requires at least

max

�
1

2�
ln
1

�

;

n

�

�

instances and at most

max

4

�

ln
2

�

;

(8 � n)

�

ln
(8 � n)

�

!

instances.

When perceptrons are used to learn secondary structure each amino acid is typ-

ically represented by a bit string of length 21 (one bit for each amino acid and an

additional wrap-around bit that is used to pad instances that are near the ends of a

38

protein). Thus, if the instances are of length 13, then the number of input units is

13 � 21 = 273. For � = :1 and � = :01, this gives a lower bound of 2730 instances and

an upper bound of 218,214 instances. If � is increased to .2 then the upper bound

on the number of instances falls to 101,538 which is only a factor of �ve greater than

the number of instances available from current databases. To train three perceptrons

would require at most 3 � 101; 538 = 304; 614 instances.

39

Chapter 3

Searching for representations that

facilitate secondary structure

prediction

This chapter describes a system that generates good amino acid representations and

that explains why they are good. First, the best 12-bit representation discovered

by the system is used to demonstrate the functions and capabilities of the system.

Second, the four subsystems that constitute the system are described in detail. Third,

the best 16-bit representation, which is the best representation found to date, is

discussed. Finally, results of several control experiments are presented.

3.1 Overview

The goal of the system shown in Figure 1-1 is to produce amino acid representa-

tions that facilitate secondary structure prediction. The system is divided into four

subsystems:

� A search algorithm that searches over the space of representations. I use a

genetic algorithm that searches over the space of bit strings.

40

� A learning algorithm that quanti�es the quality of a representation. In this

work, the quality of a representation is the performance accuracy of a neural

network trained using that representation.

� A clustering algorithm that groups amino acids using their representations. I

use a clustering algorithm that uses Hamming distance to group amino acids.

� A learning algorithm that explains these clusterings using biochemical data. I

use a decision tree system that predicts the cluster of an amino acid given its

biochemical properties.

These four subsystems are grouped into two parts. The �rst part, which consists

of the genetic algorithm and the neural network, produces amino acid representa-

tions that are designed to improve secondary structure prediction. These amino acid

representations are composed of 24 bitstrings. There is one bitstring for each amino

acid and an additional four bitstrings to represent three characters that appear in the

primary sequence database (B for asparagine or aspartic acid, X for unknown, and

Z for glutamine or glutamic acid) and the wrap-around character. The traditional

orthogonal amino acid representation, which has 24 bits per bitstring1, is shown in

Figure 3-1. A 12-bit representation generated by the system is shown in Figure 3-2.

The second part, composed of the clustering algorithm and the decision tree sys-

tem, explains the representations generated by the �rst part in terms of biochemical

properties of amino acids. Figure 3-3 shows a clustering of the 12-bit representation

presented in Figure 3-2. Figure 3-4 is a decision tree created from this clustering and

the biochemical properties database shown in Table 3.1.

The particular choice of a neural network and genetic algorithm for the �rst com-

ponent of the system and the choice of a clustering algorithm and a decision tree

system for the second part is not essential. What is important is that the �rst part

produces amino acid representations that attempt to optimize some metric (such as

prediction accuracy) and that the second part explains why these representations

1Heretofore called a 24-bit representation.

41

1 0 Wrap-around

0 1 0 Alanine

0 0 1 0 Asparagine or aspartic acid

0 0 0 1 0 Cysteine

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Aspartic acid

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Glutamic acid

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Phenylalanine

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Glycine

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Histidine

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Isoleucine

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Lysine

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Leucine

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Methionine

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Asparagine

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Proline

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Glutamine

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Arginine

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Serine

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Threonine

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Valine

0 1 0 0 0 Tryptophan

0 1 0 0 Unknown

0 1 0 Tyrosine

0 1 Glutamine or glutamic acid

Figure 3-1: The traditional orthogonal representation. Twenty four bits are used to

represent the twenty three characters that appear in the primary structure of proteins

(the 24th character is the wrap-around character which is an anomaly produced by
the way in which the primary structure is preprocessed; see the text).

42

0 1 1 1 1 0 0 1 1 1 0 0 Wrap-around

0 1 0 0 0 0 1 0 1 0 1 1 Alanine

0 0 0 0 1 0 1 1 0 0 1 0 Asparagine or aspartic aci

0 0 0 0 0 1 0 1 0 1 0 0 Cysteine

1 0 1 0 1 0 0 0 0 0 0 0 Aspartic acid

0 1 0 0 0 0 1 0 1 1 1 1 Glutamic acid

1 1 0 0 1 1 1 0 0 1 1 0 Phenylalanine

1 1 1 0 0 0 0 0 1 1 1 0 Glycine

0 0 1 0 1 1 1 1 0 1 0 0 Histidine

0 0 1 1 1 1 1 1 1 0 0 1 Isoleucine

1 1 1 0 1 1 0 1 1 1 0 1 Lysine

0 1 1 0 1 0 1 0 0 1 1 0 Leucine

1 0 0 1 1 1 1 0 0 1 0 0 Methionine

0 1 1 1 1 0 1 1 1 1 0 0 Asparagine

1 1 0 1 0 0 0 1 0 0 0 0 Proline

1 1 1 0 0 0 1 1 1 1 1 1 Glutamine

0 1 1 1 0 0 1 1 1 1 0 0 Arginine

0 0 1 1 1 0 1 1 1 1 1 0 Serine

0 0 1 1 1 0 0 0 0 0 1 0 Threonine

1 1 1 1 0 1 1 0 1 0 0 0 Valine

0 0 0 1 1 0 0 0 1 1 1 1 Tryptophan

1 0 0 0 1 1 0 0 1 1 0 0 Unknown

1 0 0 1 1 0 1 0 1 0 1 1 Tyrosine

0 0 1 0 0 0 0 0 0 0 1 0 Glutamine or glutamic acid

Figure 3-2: A 12-bit representation generated by the system.

43

Concept hierarchy is:

N2

N32

TYROSINE

TRYPTOPHAN

LYSINE

N23

SERINE

ARGININE

ASPARAGINE

N28

VALINE

ISOLEUCINE

N18

PROLINE

METHIONINE

THREONINE

ASPARTIC-ACID

HISTIDINE

CYSTEINE

N9

LEUCINE

GLYCINE

PHENYLALANINE

N5

GLUTAMINE

GLUTAMIC-ACID

ALANINE

Figure 3-3: Clustering of the 12-bit representation shown in Figure 3-2. All of the
branches below depth 2 have been folded into their parents.

44

Hyd Cha Pol Ali Aro Sul Bas Aci pI Hyd2 Bulk Abbr

yes no no yes no no no no 6.02 0.32 -1.44 ALA

no yes no no no no yes no 10.76 -1.07 1.16 ARG

no no yes no no no no yes 5.41 -.96 -.34 ASN

no yes no no no no no yes 2.97 -1.07 -.54 ASP

no no yes no no yes no no 5.02 1.5 -0.75 CYS

no yes no no no no no yes 3.22 -1.03 .17 GLU

no no yes no no no no yes 5.65 -1.05 0.22 GLN

no no no yes no no no no 5.97 -.03 -2.16 GLY

no no yes no no no yes no 7.58 -.13 .52 HIS

yes no no yes no no no no 5.98 1.52 .21 ILE

yes no no yes no no no no 5.98 1.14 .25 LEU

no yes no no no no yes no 9.74 -1.76 .68 LYS

yes no no no no yes no no 5.75 1 .44 MET

yes no no no yes no no no 5.98 1.16 1.09 PHE

yes no no no no no no no 6.1 -.72 -.71 PRO

no no yes no no no no no 5.68 -.46 -1.21 SER

no no yes no no no no no 6.53 -.36 -.67 THR

no no yes no yes no no no 5.88 0.67 2.08 TRP

no no yes no yes no no no 5.65 -.07 1.34 TYR

yes no no yes no no no no 5.97 1.38 -.34 VAL

Table 3.1: Database of biochemical properties of amino acids. The decision tree

system uses this database to explain the clustering of amino acids. The �rst eight
properties are qualitative, binary properties, while the last three properties are quan-

titative, numerical properties: Hyd = hydrophobic, Cha = charged, Pol = polar, Ali =
aliphatic, Aro = aromatic, Sul = sulfur, Bas = basic, Aci = acidic, pI = pI value, Hyd2

= hydrophobicity scale, Bul = measure of bulk, and Abbr = three letter amino acid

abbreviation. The Hyd, Cha, and Pol attributes are from [Branden and Tooze, 1991];

the Ali, Aro, Sul, Bas, and Aci attributes are from [Stryer, 1988]; the pI attribute is
from [Mahler, 1971]; and the Hyd2 and Bulk attributes are from [Kidera et al., 1985].

45

pi > 7.58

pi <= 7.58

| bulk > 1.16

| bulk <= 1.16

| | aliphatic = yes

| | aliphatic = no

| | | hydrophobic2 <= -1.03

| | | hydrophobic2 > -1.03

Figure 3-4: A decision tree created from the clustering shown in Figure 3-3 and the

data shown in Figure 3.1.

are good in terms of some independent qualities (such as amino acid biochemical

properties).

For example, the neural network could be replaced by any classi�cation scheme,

such as a nearest-neighbor method [Aha et al., 1991], and the genetic algorithm

could be replaced by any search algorithm, such as a simulated annealing procedure

[Kirkpatrick et al., 1983], and the essential structure of the system would remain the

same. This essential structure and the particular choices made for this system are

shown in Figure 3-5.

We now turn to a detailed description of the system.

3.2 System description

The structure of this description mirrors the structure of the system itself. This

section is divided into two parts. The �rst describes how the system generates amino

acid representations that facilitate secondary structure prediction, and the second

describes how the system explains these representations in terms of the biochemical

properties of amino acids.

3.2.1 Generating amino acid representations

The �rst part of the system is composed of a genetic algorithm and a neural network.

46

Generate
representations

Explain
representations

Search for
representations

Evaluate representations

Genetic algorithm

Neural network

Group representations

Describe groups

Clustering algorithm

Decision tree system

Figure 3-5: The essential structure of the system and the particular choices made for
the work described in this chapter.

47

t = 0

Initialize P(t)

While t < GENERATION

Assign �tnesses to the individuals in P(t)
Select P(t+1) from P(t)

Apply mutation and crossover operators to P(t+1)

t = t + 1

Figure 3-6: Genetic algorithm pseudocode. In this work, each individual in P(t) is a

bitstring. This bitstring is of size 24*l, where l is the number of bits used to represent
a single amino acid. The traditional representation uses 24 bits per amino acids.

GENERATION is a parameter that is set by the user.

Genetic algorithm

Genetic algorithms are patterned after biological systems. They maintain a popula-

tion of individuals that undergo crossover and mutation (recombination). Individuals

that are signi�cantly less �t than the rest of the population are gradually eliminated,

while stronger individuals are propagated (selection). One round of selection and

recombination is called a generation. In this way, the genetic algorithm evolves a

population of individuals of increasingly higher �tness. Pseudocode for a genetic

algorithm is shown in Figure 3-6.

In this system individuals are amino acid representations (24 bitstrings). The sys-

tem begins with a set of randomly generated representations and uses the crossover

and mutation operators to improve them. To evaluate the quality of each represen-

tation a neural network is trained to predict secondary structure using the represen-

tation. The �tness of the representation is simply the performance accuracy of the

neural network on a set of test instances.

The crossover operator selects two individuals in the population and exchanges

their genetic material to produce two new individuals. A diagram of this operator is

shown in Figure 3-7.

The mutation operator randomly selects a bit in an individual and changes it

(from a \0" to a \1" or from a \1" to a \0"). A diagram of this operator is shown in

Figure 3-8.

Genetic algorithms have several parameters that can be set:

48

Individual 1 = 010100010101:000101000111

Individual 2 = 101010010101:010101000101

O�spring 1 = 010100010101:010101000101

O�spring 2 = 101010010101:000101000111

Figure 3-7: The genetic algorithm crossover operator. Two individuals are chosen
from the population, a crossover point is randomly selected (indicated by the \:"),

and two o�spring are produced. The �rst o�spring is the result of concatenating
the bitstring to the left of the crossover point in individual 1 with the bitstring to
the right of the crossover point in individual 2. The second individual is created by
concatenating the bitstring to the right of the crossover point in individual 2 with the
bitstring to the right of the crossover point in individual 1.

Individual = 0101010101000110100:0110

New individual = 0101010101000110101:0110

Figure 3-8: The genetic algorithm mutation operator. The bit to the left of the \:"

is changed from a \0" to a \1". The bit that is mutated is chosen randomly.

49

� The expected number of crossovers for each individual.

� The expected number of mutations for each bit.

� The number of individuals in a population.

� The number of generations.

� The selection procedure.

In this work, the expected number of crossovers for each individual was set to .7,

and the expected number of mutations per bit was set to .00042. These numbers are

similar to the ones typically used by researchers in the �eld. Both of them are the

default settings of one of the public domain genetic algorithm packages I used. The

mutation rate is quite low. The number of bits in the orthogonal representation is

24 � 24 = 576, so, on average, 576 � :00042 � :24 bits will be mutated per individual

per generation. In some experiments the mutation rate was increased to .1. This

change did not a�ect the performance accuracy, thus con�rming other experiments

with genetic algorithms which show that their performance is robust with respect to

these parameters.

The number of individuals in a population and the number of generations was,

unfortunately, constrained by the available computational resources. A typical genetic

algorithm has �fty individuals and runs for two hundred generations. In most of the

experiments I describe, a genetic algorithm with ten individuals was run for ten

generations. The 16-bit representation described below was produced by a genetic

algorithm with twenty individuals that ran for twenty-�ve generations. Over the

course of these genetic algorithm runs, the performance accuracy of the best individual

improves by approximately 2%.

The selection procedure uses the �tnesses of the individuals to compute the ex-

pected number of copies of each individual that will participate in the next round

of recombination. The standard selection procedure, called proportional selection,

divides the �tness of an individual by the average �tness of the individuals in the

population to arrive at the expected number of copies of that individual that will

50

Crossover rate 0.7

Mutation rate 0.00042

Individuals 10

Generations 10

Selection procedure Proportional

Table 3.2: Genetic algorithm parameter settings.

participate in the next round of recombination. So, for example, if the average �tness

of a population is 8 and the �tness of a particular individual is 16, two copies of this

individual will, on average, participate in the next recombination step which leads to

the creation of the next population.

All of the genetic algorithms described here used proportional selection. The

setting for the �ve parameters are summarized in Table 3.2.

Two public domain genetic algorithm packages, GAucsd 1.4 [Schraudolph and Grefenstette, 1992]

and GENEsYs 1.0 [B�ack and Ho�meister, 1992], were used in this work. Appendix

A discusses GENEsYs in detail.

Neural network

Neural networks have been widely used for function approximation and classi�cation.

Here, a perceptron (a neural network with no hidden units) with sigmoid units is used

to learn a function that maps primary structure to secondary structure.

The neural network is trained using a database of proteins identical to the one de-

scribed by Zhang et al.[Zhang et al., 1992]. Table 3-9 lists some of the characteristics

of this database.

The neural network does not process an entire protein at one time. Instead, each

protein is divided into pieces, called \windows", each of which has thirteen residues.

At the ends of the protein these windows are padded with the wrap-around character

mentioned above. The neural network has three outputs, one for each of the three

possible secondary structure classes (alpha helix, beta sheet, and coil). The neural

network is trained to predict the secondary structure class of the middle amino acid

51

Number of proteins 113

Number of residues 19,861

Average number of residues per protein 176

Percentage of residues that are in the coil class 52.3

Percentage of residues that are in the beta sheet class 20.8

Percentage of residues that are in the alpha helix class 27.0

Figure 3-9: Characteristics of amino acid database. The percentages of residues in

the coil, beta sheet, and alpha helix classes do not sum to 100% because of roundo�

errors.

in the window. The structure of the neural network is depicted in Figure 3-10.

Furthermore, each amino acid is encoded using a bitstring. The traditional orthog-

onal representation represents each amino acid with 24 bits, so the typical perceptron

has 13 � 24 = 312 input units. Since each unit is connected to three output units,

there are a total of 312 � 3 = 936 weights that needed to be updated at each epoch.

The neural network is trained using a database of 48 proteins and tested us-

ing a database of 65 proteins.2 The training set is divided into two parts, one of

which is used to prevent over�tting. The neural network is trained for 200 epochs.

This training period was chosen because it has been used successfully by Zhang et

al.[Zhang et al., 1992]. The training scheme is depicted in Figure 3-11.

Training a neural network of this size on such a large database takes approximately

twenty minutes on a SparcStation 10. The 16-bit representation discussed below was

generated by a run that took approximately 25 Cray C90 CPU hours.

Three neural network parameters, the learning rate, the inertia, and the number

of hidden units, were set using coarse-grained searches.

The learning rate is a multiplicative factor that helps determine how much the

weights change. A high learning rate causes the neural network to take large jumps

in weight space. Neural networks with learning rates of 5, 1, 0.005, 0.001, and 0.0001

were trained using the traditional orthogonal representation. The neural networks

with learning rates of 0.001 had the highest accuracies, so the learning rate was set

2These numbers were chosen because 48 is evenly divisible by 3 and 4 and 65 is evenly divisible

by 5.

52

G V A

1010100 1101010 0001110

NEGDAAKGEKEFNGVANKCKACHMTDIKGGTKG primary sequence

primary sequence
window

encoding of amino acids
input into neural network

neural network
output layer

Figure 3-10: Neural network structure. The primary sequence of a protein is divided

into windows and each amino acid is then encoded using the bitstrings in the amino
acid representation. The bitstring representation is the input into the neural network
which has no hidden layers. The three outputs correspond to the three types of

secondary structure.

Training set

36 proteins

Cross−validation
set

12 proteins

Testing set

65 proteins

The representation
that has the best
performance accuracy
on the cross−validation set
is tested on the testing set.

The performance of the representation
on the testing set is compared to
the performance of the orthogonal
representation on the testing set.

The ten representations
that have the best
performance accuracy
on the training set are
tested on the
cross−validation set.

Figure 3-11: Neural network training scheme. The genetic algorithm uses the perfor-

mance accuracy on the training set as a measure of the quality of the representation.
The cross-validation set is used to eliminate representations that have over�tted to

the training set. The performance accuracy on the testing set is used to compare the

representations generated by this system to the traditional orthogonal representation.

53

Learning rate 0.001

Inertia 0.05

Hidden units 0

Table 3.3: Neural network parameters settings.

at 0.001 for the rest of the experiments.

The inertia is a parameter that determines how the last weight update a�ects the

current weight update. If the inertia is high then most of the change in the weight is

determined by the last weight update. This parameter prevents the neural network

from changing direction drastically in weight space. Neural networks with inertias

of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 were trained, and a network with an

inertia of 0.5, which equally weights the last update and the current weight update,

was found to have the best accuracy.

This coarse-grained parameter scanning also was performed to determine the num-

ber of hidden units. Not all possible combinations of learning rate, inertia, and num-

ber of hidden units were tried. Instead, a few points in this space were chosen and

the results from these experiments were used to determine the next settings. I do not

know of another way to set these parameters. The neural network parameters are

summarized in Table 3.3.

The neural network used in this systemwas implemented in ASPIRIN [Leighton, 1992],

a public domain program.

3.2.2 Explaining amino acid representations

The second part of the system is composed of a clustering algorithm and a decision

tree system.

Clustering algorithm

The clustering algorithm used in this thesis is COBWEB [Fisher, 1987] as imple-

mented by a public domain package written byMcKusick and Thompson [McKusick and Thompson, 19

54

COBWEB is an incremental clustering algorithm that produces a concept hierarchy.

When processing a new instance COBWEB employs an information theoretic met-

ric to decide whether to split a node in the concept hierarchy, merge two nodes in

the concept hierarchy, create a new node in the concept hierarchy, or add the new

instance to a current node in the concept hierarchy.

Here COBWEB clusters amino acids using the bitstrings generated by the �rst

part of the system. The �rst instance is placed at the root node of the concept

hierarchy. Each node summarizes a set of instances. The root node summarizes all

of the instances while nodes at the bottom of the tree summarize a relatively small

number of instances. Each node contains two parts:

� The probability that an instance is described by that node. This is computed

by dividing the number of instances by the total number of instances described

by that node. Thus, the root node always has a probability of 1.00 because it

summarizes all of the instances.

� A list of attribute/value pairs annotated with the probability that an instance

that is described by that node has that particular attribute/value pair. For

continuous attributes, the mean and standard deviation are kept instead of this

probability.

A node that summarizes two of the bitstrings in the 12-bit representation described

above (Figure 3-2) is shown in Table 3.4.

When incorporating a new instance into a concept hierarchy, COBWEB either

merges it into an already existing node or creates a new node just for that instance.

In addition, COBWEB can merge two nodes or split a node. Two nodes are merged

when they become too similar, and a node is split into two nodes when a node becomes

too general.

COBWEB chooses among these four node operations by using an evaluation func-

tion called category utility [Gluck and Corter, 1985]. The option which has the high-

est category utility is performed. This corresponds to �nding a set of nodes which

maximizes the di�erence between the probability that an instance has a certain at-

55

P (C) = 1:00 P (V jC)

First 0 0.5
1 0.5

Second 0 1.0
1 0.0

Third 0 1.0
1 0.0

Fourth 0 0.0

1 1.0

Fifth 0 0.0

1 1.0

Sixth 0 1.0

1 0.0

Seventh 0 0.5
1 0.5

Eighth 0 1.0
1 0.0

Ninth 0 0.0

1 1.0

Tenth 0 0.5

1 0.5

Eleventh 0 0.0

1 1.0

Twelfth 0 0.0

1 1.0

Table 3.4: A node that summarizes two instances. The two instances are \0 0 0
1 1 0 0 0 1 1 1 1" and \1 0 0 1 1 0 1 0 1 0 1 1" and are taken from the 12-bit

representation shown above. The �rst instance is the bitstring for trytophan and the

second instance is the bitstring for tyrosine. These two instances are grouped together
by the clustering algorithm and so it is not surprising that nine of the twelve attributes

are identical. The attribute names refer to the bit positions. So, for example, the

eighth position of both of the instances is \0" so the probability that the value of the

eighth attribute is \0" given that the instance is described by this node is 1.0.

56

tribute/value pair given its class and the probability that an instance has a certain

attribute/value pair given no class information. The �rst value is stored in the node.

The second value is taken to be the probability that the instances summarized by

the parent node have that attribute/value pair. Thus, category utility favors forming

nodes that are di�erent from their parents.

Decision tree system

A public domain version of Quinlan's C4 decision tree classi�er was used in this thesis.

This decision tree system takes as input the clustering provided by COBWEB and the

database of biochemical properties shown in Table 3.1 and produces a decision tree

that explains the clustering in terms of the biochemical properties. This decision tree

is used to classify instances. Each node of the tree contains a test on an attribute.

The branches that exit from a node correspond to the outcomes of the test. The

leaves of the tree contain classes.

The tests at a node depend on whether the attribute is continuous or discrete.

If the attribute is continuous then the test is of the form value > N where N is a

constant. The two branches that exit these nodes correspond to the test being true

or false. If the attribute is discrete, then there is a branch for each value that the

attribute can have.

The C4 algorithm creates a decision tree by cycling through all of the possible

tests and choosing the one that maximizes an information theoretic metric. Each test

splits the set of instances into subsets. The procedure is applied recursively on these

subsets until all of the instances in a subset belong to one class. At that point a leaf

node annotated with that class is created, and no further subdivision is performed.

3.3 Results

After the genetic algorithm and neural network parameters discussed above have been

set, the primary parameter that controls the prediction accuracy of the representa-

tions is the number of bits used to encode each amino acid. The �rst part of this

57

57

58

59

60

61

62

0 4 8 12 16 20 24

P
e
r
f
o
r
m
a
n
c
e

a
c
c
u
r
a
c
y

Number of bits in representation

Performance accuracy as a function of the number of bits in representation

Figure 3-12: Performance accuracy as a function of the number of bits used to rep-

resent an amino acid. The performance accuracy is the percentage of secondary
structure instances that the neural network predicts correctly. So, for example, the
neural net trained using the best 12 bit representation found to date correctly iden-
ti�es 60.1% of the secondary structure. Since the graph peaks at 16 bits, most of my
e�orts have been concentrated on generating good 16-bit representations.

section describes a set of experiments that led us to further explore 16-bit repre-

sentations. The second part describes the best 16-bit representation that we have

found.

3.3.1 How many bits should a representation have?

There are two opposing forces that determine the number of bits that should be used

in a representation.

On the one hand, the number of bits should be high because this increases the

expressive power of the representation. On the other hand, the number of bits should

be low so that the space can be searched thoroughly. We have searched the space of

representations that have 4, 8, 12, 16, 20, and 24 bits per amino acid. The results

are summarized in Figure 3-12. The graph peaks at 16 bits, and therefore we have

concentrated most of our e�orts on generating good 16-bit representations.

58

1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 Alanine

1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 Cysteine

1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 Aspartic acid

0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 Glutamic acid

0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 Phenylalanine

1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 Glycine

1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 Histidine

0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 Isoleucine

1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 Lysine

1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 Leucine

1 1 1 0 1 1 0 1 0 0 1 0 0 0 1 0 Methionine

1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 Asparagine

0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 Proline

0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 Glutamine

0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 Arginine

0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 Serine

1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 Threonine

1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 Valine

0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 Tryptophan

1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 Tyrosine

Figure 3-13: The best amino acid representation found to date. Each row is the
representation for an amino acid. The entire 16x20 matrix is the amino acid repre-
sentation. The genetic algorithm searches over the space of these representations to

�nd the best one. Only the twenty bitstrings that correspond to the twenty amino
acids are shown.

3.3.2 The best 16-bit representation

The best 16 bit amino acid representation we have found is shown in Figure 3-13 and

the results of clustering this representation are shown in Figure 3-14.

The decision tree system uses a table of biochemical properties of amino acids,

shown in Table 3.1, to explain the clustering of the amino acids. The decision tree

is shown in Figure 3-15. The decision tree system uses the three attributes thought

to be the most important for tertiary structure prediction (bulk, hydrophobicity, and

charge (pI)) to explain the clustering.

59

Concept hierarchy is:

N2

N22

TRYPTOPHAN-W

TYROSINE-Y

GLUTAMINE-Q

CYSTEINE-C

LEUCINE-L

GLUTAMIC-ACID-E

N20

VALINE-V

PROLINE-P

LYSINE-K

N18

THREONINE-T

ASPARAGINE-N

GLYCINE-G

N24

SERINE-S

ARGININE-R

METHIONINE-M

N11

ISOLEUCINE-I

HISTIDINE-H

PHENYLALANINE-F

N4

ASPARTIC-ACID-D

ALANINE-A

Figure 3-14: Clustering of amino acids based on the best 16 bit amino acid repre-

sentation. The amino acids have been grouped into six clusters. The decision tree
system explains these clusters by �nding the biochemical properties that are shared

by the amino acids in each cluster. The amino acid representation contains bitstrings
for twenty four elements, but the clustering is done only over the twenty amino acids.

60

Decision Tree:

Bul <= -0.34

| Hyd = yes

| Hyd = no

| | pI <= 5.02

| | pI > 5.02

Bul > -0.34

| pI > 7.58

| pI <= 7.58

| | Hyd2 <= 1.14

| | Hyd2 > 1.14

Figure 3-15: Decision tree. The decision tree shows that bulk, hydrophobicity, and

charge(pI) are the biochemical features captured by the 16 bit amino acid represen-

tation. The combinations of these attributes produced by the decision tree system
can be viewed as pseudo-attributes derived from the amino acid representation and
the database of amino acid biochemical properties.

3.3.3 Understanding the 16-bit representation

The 16-bit representation shown in Figure 3-13 and the clustering formed from this

representation (Figure 3-14) and the decision tree formed from this clustering (Fig-

ure 3-15) bear closer examination.

Pair-wise Hamming distances of the amino acids in the clusters

COBWEB creates the clustering shown in Figure 3-14 by maximizing the intra-group

similarity in Hamming distance space and minimizing the inter-group similarity. Fig-

ure 3.5 shows the intra-group Hamming distances for each pair of amino acid repre-

sentations in the six clusters. The average pair-wise Hamming distances for the six

clusters (in the order given in Figure 3.5) is: 7.3, 6, 4.7, 6.7, 4, 3.

The expected Hamming distance between two random bitstrings of length 16 is 8.

Thus, all six clusters have average Hamming distances that are less than this distance,

as expected. In addition, the largest cluster has the highest average Hamming distance

and the smallest cluster has the lowest average Hamming distance, also as expected.

In the �rst cluster, the lowest Hamming distance is between glutamine and glu-

61

tamic acid. Glutamine is the uncharged derivative of glutamic acid. However, not

all of the low Hamming distances can be explained so easily. In the third cluster,

asparagine and glycine have the lowest pair-wise Hamming distance, but there ap-

pears to be no obvious relationship between them. It is for these more complicated

cases that the interdependencies highlighted by the decision tree in Figure 3-15 are

required. Both glycine and asparagine have bulk values less than or equal to -.34,

both are not hydrophobic, and both have pI values greater than 5.02.

Perturbing the database

If one of the attributes that the decision tree uses to classify the clusters is eliminated

from the database, then the decision tree will be forced to use other attributes. The

way in which the tree changes illuminates how the attributes interact.

Figure 3-16 shows how the decision tree compensates for the elimination of the

discrete hydrophobicity attribute. The tree is quite similar to the original tree. In

particular, it does not use any additional attributes. Figure 3-17 shows the decision

tree after the continuous hydrophobicity attribute has been deleted from the database.

Again, the tree uses only bulk, hydrophobicity, and charge (pI). Figure 3-18 shows the

decision tree after the charge (pI) attribute has been removed from the database. The

top level test remains \Bul � -0.34" and the only two attributes used are bulk and

hydrophobicity. Finally, Figure 3-19 shows the decision tree after the bulk attribute

has been removed from the database. This decision tree uses only the charge (pI)

and continuous hydrophicity attributes. Thus, none of the decision trees ever use any

other attributes in addition to the ones used by the original decision tree.

These results suggest that the tree is quite robust with respect to changes in the

database. Bulk, hydrophobicity, and charge (pI) and their interdependencies do in

fact seem to give a good explanation of the clustering shown in Figure 3-14.

These decision trees can also be used to understand how attributes compensate

for one another. The second branch (\Bul > -0.34") of Figure 3-16, the decision

tree that does not have access to the discrete hydrophobicity attribute, is identical

to the second branch of Figure 3-15. The �rst branch (\Bul � -0.34") contains some

62

(A)

W Y Q C L E

W - 9 7 9 9 5

Y - - 6 8 6 6

Q - - - 8 10 4

C - - - - 6 8

L - - - - - 8

E - - - - - -

(B)
V P K

V - 6 7

P - - 5

K - - -

(C)
T N G

T - 6 5

N - - 3

G - - -

(D)
S R M

S - 6 7
R - - 7
M - - -

(E)
I H F

I - 4 3

H - - 5
F - - -

(F)
D A

D - 3

A - -

Table 3.5: Hamming distances between pairs of amino acids in the same cluster-
ing. (A) First cluster: W=tryptophan, Y=tyrosine, Q=glutamine, C=cysteine,

L=leucine, E=glutamic acid. (B) Second cluster: V=valine, P=proline, K=lysine.

(C) Third cluster: T=threonine, N=asparagine, G=glycine. (D) Fourth cluster:

S=serine, R=arginine, M=methionine. (E) Fifth cluster: I=isoleucine, H=histidine,

F=phenylalanine. (F) Sixth cluster: D=aspartic acid, A=alanine.

63

Bul <= -0.34

| pI <= 5.02

| pI > 5.02

| | Hyd2 <= -0.03

| | Hyd2 > -0.03

Bul > -0.34

| pI > 7.58

| pI <= 7.58

| | Hyd2 <= 1.14

| | Hyd2 > 1.14

Figure 3-16: Decision tree after the discrete hydrophobicity attribute has been elim-
inated from the database. The structure of the tree is very similar to the one in
Figure 3-15. The top level test is identical and the decision tree uses bulk, hydropho-

bicity, and charge (pI).

Bul <= 0.16

| Hyd = yes

| Hyd = no

| | pI <= 5.02

| | pI > 5.02

Bul > 0.16

| pI > 7.58

| pI <= 7.58

| | pI <= 5.88

| | pI > 5.88

Figure 3-17: Decision tree after the continuous hydrophobicity attribute has been

eliminated from the database. The top level test still uses the bulk attribute, although

the cuto� point has changed from -0.34 to 0.16. In addition bulk, hydrophobicity,

and charge (pI) are still the only attributes used.

64

Bul <= -0.34

| Hyd = yes

| Hyd = no

Bul > -0.34

| Hyd2 <= -1.07

| Hyd2 > -1.07

| | Hyd2 <= 1.14

| | Hyd2 > 1.14

Figure 3-18: Decision tree after the charge (pI) attribute has been eliminated from
the database. The decision tree uses only the bulk and hydrophobicity attributes.

pI <= 5.88

pI > 5.88

| Hyd2 <= -0.72

| Hyd2 > -0.72

| | pI <= 5.97

| | pI > 5.97

Figure 3-19: Decision tree after the bulk attribute has been eliminated from the

database.

65

interesting di�erences. In Figure 3-15 the second test in the �rst branch of the tree

uses the discrete hydrophobicity attribute (\Hyd = yes") and the third test uses the

charge (pI) attribute (\pI � 5.02"). The decision tree in Figure 3-16 does not have

access to the discrete hydrophobicity attribute so it raises the test on the charge

(pI) attribute to the second level (\pI � 5.02") and uses a test on the continuous

hydrophobicity attribute at the third level (\Hyd2 � -0.03").

These attribute substitutions should split the amino acids in similar ways. As an

illustration, compare Figure 3-15 and Figure 3-18. The �rst branch (\Bul � -0.34")

of Figure 3-18, the decision tree that does not have access to the charge (pI) attribute,

is identical to the �rst branch of Figure 3-15 with the exception that it does not use

the charge (pI) attribute. The second branch (\Bul > -0.34") is also similar. The

test of the continuous hydrophobic attribute is the same (\Hyd2 � 1.14"), but the

pI test (pI > 7.58) has been replaced by another test on the continuous hydrophobic

attribute (\Hyd2 � -1.07"). Thus, these two decision trees indicate that the set of

instances that have a bulk value greater than -0.34 and a hydrophobicity value less

than or equal to -1.07 is similar to the set of instances that have a bulk value greater

than -0.34 and a pI value greater than 7.58. In fact, the two sets are identical.

Using the decision tree system alone

The decision tree system can be used to learn the mapping from primary to secondary

structure in much the same way that the neural network is used in the current system.

In order to allow direct comparison to the decision tree shown in Figure 3-15, the

amino acids are described using the biochemical properties in Figure 3.1, instead of

using the bitstring representation in Figure 3-13. As with the neural networks, a

window size of 13 is used. This experiment has been tried using neural networks

[Qian and Sejnowski, 1988], but to the best of my knowledge it has not been tried

with decision trees.

Unfortunately, the results are not interesting. The unpruned decision tree has

a depth greater than one hundred and has over 2500 nodes. The pruned decision

tree has just one leaf node that is annotated with coil, the most prevalent form of

66

secondary structure.

3.4 Control experiments

In order to further understand how the �rst part of this system generates good amino

acid representations we have run several control experiments.

These experiments are designed to answer, in part, the following questions:

� Does the genetic algorithm converge to representations that can be explained

by similar decision trees?

� What e�ect does changing the number of hidden units have on the prediction

accuracy of the neural network?

� What e�ect does changing the inertia have on the prediction accuracy of the

neural network?

� What e�ect do the initial weights of the neural net have on prediction accuracy?

3.4.1 Does the genetic algorithm converge to representa-

tions that can be explained by similar decision trees?

The best representation found so far is the 16-bit representation that is described

above. This 16-bit representation is explained by a decision tree that uses bulk, hy-

drophobicity, and charge(pI). Ideally, the genetic algorithm should regularly converge

to representations that can be explained by these three attributes. If this is not

the case, then the 16-bit representation described above risks being dismissed as a

fortuitous accident.

Fortunately, the genetic algorithm does converge to representations that are sim-

ilar. The 12-bit representation shown above (Figure 3-2) leads to a decision tree that

uses four attributes, including the three used to explain the 16-bit representation. In

addition, the second best 16-bit representation is explained by a decision tree that uses

67

three attributes: hydrophobicity, charge(pI), and aromaticity. Thus, hydrophobicity

and charge(pI) are used in the decision trees for all three representations.

3.4.2 What e�ect does changing the number of hidden units

have?

Neural networks with three hidden units were compared to perceptrons (neural net-

works with no hidden units). Other researchers have found that increasing the

number of hidden units does not improve prediction accuracy and often decreases

it [Qian and Sejnowski, 1988, Holley and Karplus, 1989]. My results are in agree-

ment with these �ndings. Neural networks with three hidden units were trained

using the orthogonal amino acid representation and were found to give prediction

accuracies 1% lower than perceptrons trained with the same representation. This dif-

ference is considered to be signi�cant by researchers in the �eld: Holley and Karplus

[Holley and Karplus, 1989], for example, choose a window of size 17 instead of one

of size 15 because the neural network with the window size of 17 has a performance

accuracy that is .3% higher.

In addition to having a higher performance accuracy, less time is required to

train perceptrons since they have fewer weights. Also, the neural networks with

hidden units su�er from over�tting, while the perceptrons appear to be less a�ected

by this problem. For these reasons, we used neural networks with no hidden units

(perceptrons) throughout this work.

3.4.3 What e�ect does changing the learning rate have?

Figure 3-20 shows how performance accuracy changes as a function of inertia for

a neural network trained for 200 epochs with a learning rate of 0.00001 and three

hidden units. The �gure shows that the performance accuracy changes drastically as

a function of this parameter. As mentioned immediately above perceptrons seem to

be less sensitive to changes in these parameters and, partly for this reason, they were

chosen for this system.

68

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

t
e
s
t

s
e
t

p
e
r
f
o
r
m
a
n
c
e

a
c
c
u
r
a
c
y

inertia

Test set performance accuracy as a function of inertia

Figure 3-20: Performance accuracy of a neural network as a function of the inertia

for a neural network with three hidden units. The performance is extremely brittle
with respect to the inertia: a 1% change from 0.98 to 0.99 improved the performance
accuracy by more than 7%. The neural networks with inertias between 0.91 and 0.97
always predict coil.

Figure 3-21 shows that the performance accuracy of the perceptron is much more

robust with respect to inertia.

3.4.4 What e�ect does changing the initial neural net weights

have?

The initial weights of the neural network are randomly set to small values. To in-

vestigate whether or not the initial weights a�ect prediction accuracy, we trained a

neural network on a single representation ten times, each time with a di�erent set of

initial weights. The results are shown in Table 3.6. The table shows that the e�ect

of the initial weights on the �nal prediction accuracy is small.

3.5 Extending the learning algorithm

As explained above the components of the system can be modi�ed in various ways.

Here we describe one such extension.

69

0.596

0.598

0.6

0.602

0.604

0.606

0.608

0.61

0.612

0.614

0.616

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
e
s
t
i
n
g

s
e
t

p
e
r
f
o
r
m
a
n
c
e

a
c
c
u
r
a
c
y

inertia

Test set performance accuracy as a function of inertia

Figure 3-21: Test set performance accuracy as a function of inertia for a perceptron.
The performance accuracy of the perceptron is robust over a wide range of inertias,
unlike the performance accuracy of the neural network with three hidden units.

Training set prediction accuracy Testing set prediction accuracy

0.665702 0.599564

0.665702 0.599564

0.666006 0.599865

0.666311 0.598436

0.666616 0.599865

0.666616 0.599865

0.669359 0.602722

0.669359 0.602722

0.669359 0.602722

0.669359 0.602722

Table 3.6: Results of training a neural net with di�erent initial weights. This table

shows that the e�ect of the initial weights on the �nal prediction accuracy is small.
The range of the training set prediction accuracies is less than .004 and the range of

the test set prediction accuracies is less than .005.

70

0.759225 0.128525 0.045692 b

0.854885 0.090735 0.047074 b

0.663669 0.121686 0.135690 b

0.229535 0.416797 0.312370 c

0.198064 0.295840 0.394201 c

0.299105 0.299105 0.302391 c

0.383064 0.094678 0.459076 c

0.649579 0.061424 0.305697 c

0.738669 0.069038 0.221351 c

0.700895 0.079782 0.325950 a

0.616936 0.107437 0.243642 a

0.564098 0.116764 0.282988 a

Figure 3-22: Input to the memory-based learning algorithm. A memory-based learn-

ing algorithm was added as a post-processor to the neural network. The neural

network produces three numbers, ranging from 0 to 1, corresponding to the three sec-
ondary structure prediction classes (alpha helix, beta sheet, and coil). The memory-
based learning algorithm takes as input these three numbers and predicts the sec-
ondary structure.

Maron and Moore [Maron and Moore, 1993] discuss a technique for selecting a

good memory-based learning algorithm from a set of learning algorithms. We added

this technique as a post-processor to the predictions produced by the neural net-

work. This re�nement improved the secondary structure prediction by 1.8% �

0.9%. The idea behind this post-processing is similar to one employed by Zhang

et al.[Zhang et al., 1992] who use a neural network to decide amongst the predictions

made by three experts (a neural network, a memory-based system, and a statistical

algorithm).

A subset of the data used by this system is shown in Figure 3-22. The �rst three

columns are the outputs of the neural network and the fourth column is the class (a

for alpha helix, b for beta sheet, and c for coil).

Maron [Maron, 1993] describes a technique that partitions instances into easily

learnable regions and shows that partitioned algorithms outperform non-partitioned

algorithms by 10-30% on a set of problems taken from the UC-Irvine machine learning

depository. This method may further improve the accuracy of the system.

71

Chapter 4

Summary and Future work

This thesis has described a system that synthesizes regularity exposing attributes in

large protein databases. In addition, it shows that given certain assumptions, learning

a mapping from unannotated primary structure sequences to secondary structure

requires a prohibitive number of instances.

The best representation discovered by the system is 33% shorter than the tradi-

tional orthogonal representation, and yet, a neural network trained with that repre-

sentation achieves a performance accuracy that is equal to that of a neural network

trained with the traditional representation. If the output of the neural network is pro-

cessed by a memory-based reasoning system, then the performance accuracy is 1.8%

higher than that of a neural network trained with the traditional representation.

The system that produces this representation is divided into four subsystems:

� A search algorithm. In this thesis, a genetic algorithm is used.

� An algorithm that quantitatively evaluates the quality of a representation. Here

the performance accuracy of a neural network trained with the representation

is this measure of quality.

� A clustering algorithm. The clustering algorithm in this thesis uses the bitstring

representation of each amino acid to group the amino acids whose bitstrings are

similar in Hamming distance space.

72

� A learning algorithm that uses a database of amino acid biochemical properties

to predict the cluster of an amino acid.

The �rst two subsystems are used in tandem to produce a representation that

facilitates secondary structure prediction. The second two subsystems explain this

representation in terms of amino acid biochemical properties. The best representation

produced by this system can be explained in terms of bulk, hydrophobicity, and

charge(pI), three of the attributes thought to be most important for predicting tertiary

structure.

There are several ways in which this thesis might be extended. These extensions

fall into two categories: �ne-tuning of the current system and application of the

methods embodied by the system to other problems.

There are at least three ways to �ne-tune the system:

� First, the representations found by the genetic algorithmmight be �ne-tuned for

superior performance. Although, as shown in Chapter 3, there is some evidence

that the genetic algorithm is converging, the number of generations is too low

to do a �ne-grained search around the �nal representation.

� Second, as mentioned in the text, other algorithms can be substituted for one

of the four learning algorithms used in the system as long as they have the same

function. In particular, the neural network, which is currently the slowest part

of the system, might be fruitfully replaced by a faster learning algorithm.

� Third, the clustering algorithm could be adjusted to identify the bit positions

that are most important for the clustering. This might allow the bits to be

given a biochemical interpretation. For example, bits one through three might

be found to encode the hydrophobicity of the amino acid.

Finally, the ideas embodied by the system might be applied to other problems in

computational biology. For example, many of the current approaches to the tertiary

structure prediction problem explicitly represent the coordinates of the atoms in the

73

protein. A system like the one described in this thesis might be able to �nd higher-

order features in proteins and therefore simplify the problem.

74

Appendix A

Appendix

This appendix contains operational details about the software used in this thesis.

Examples of the �les manipulated by these programs are provided and explained for

the four main subsystems used in the thesis. Information about how to acquire the

software is given in Table A.1. The appendix is divided into four parts, one for each

of the four subsystems.

A.1 Genetic algorithm: GENEsYs

The GENEsYs genetic algorithm package allows the user to specify a wide range of

genetic algorithms through command line options. The �ve parameters discussed

in Chapter 3 (crossover rate, mutation rate, number of individuals, number of gen-

erations, and the selection procedure) can all be set. Furthermore, several other

parameters, including the number of experiments to perform, the number of bits per

individual, and the format of report �les, can also be set using command line options.

Name Description Language Source

GAucsd genetic algorithm C cs.ucsd.edu (ftp)

GENEsYs genetic algorithm C lumpi.informatik.uni-dortmund.de (ftp)

COBWEB clustering algorithm Lisp cobweb@ptolemy.arc.nasa.gov (request)

ASPIRIN neural network package C pt.cs.cmu.edu (ftp)

C4 decision tree system C quinlan@cluster.cs.su.oz.au (request)

Table A.1: Availability information for the public domain software used in this thesis.

75

ga -f 28 -P10 -U 10 -L 16 -t 100 -s 10 -g 100 -d 1 -r 9289 -o p -v 1

Figure A-1: Example GENEsYs call. The \-f" option speci�es the function to be
optimized. The \-P" and \-U" options set the number of individuals in a population
to ten. The \-L" option speci�es the number of bits per variable. As explained in

chapter 3, there are 24 variables, one for each amino acid and four additional variables.

The \-t" option sets the total number of function evaluations. The \-s", \-d", \-o",
and \-v" specify the format of the �nal report �le. The \-r" option sets the initial

random number seed.

An example command line call is shown in Figure A-1.

In addition to these parameters, the user needs to provide C code that implements

the function to be optimized. Figure A-2 shows the C code that implements the

function that is used to search for 16-bit representations. This function takes as

input an individual and returns the �tness of this individual. The function calls a

neural network (described below) via a shell script.

A.2 Neural network: ASPIRIN

ASPIRIN is a language that allows a wide variety of neural network to be speci�ed

easily. In addition, the ASPIRIN package contains analysis tools that help the user

understand the structure of the neural network. An ASPIRIN speci�cation for a

neural network with 312 input units, 0 hidden units, and 3 output units is shown in

Figure A-3.

This neural network speci�cation is compiled by the command \bpmake" which

creates an executable program that can be called from a user procedure. In this

system it is called from a shell script which is in turned called by the genetic algorithm

procedure described above. The executable program saves the weights of the neural

network at the end of training so that the same neural network can be used to classify

instances in the cross-validation set and testing set.

76

#include "../extern.h"

double

f_28(x, n)

register char x[];

register int n;

{

int i,j;

double fitness;

int BITS_PER_AA = 16;

int NUM_AA = 24;

/* write individual out to individual file. This will overwrite */

/* previous individual. */

FILE *fp;

fp = fopen("individual2", "w");

for(i=0; i<BITS_PER_AA; i++)

{

for(j=0; j<NUM_AA; j++)

fprintf(fp, "%c", x[i*NUM_AA + j]+48);

fprintf(fp, "\n");

}

fclose(fp);

/* call to quick_decode_ga.o */

system("quick_decode_ga_16.o prot.train individual2 > ASPIRIN/prot_train_ga.data");

/* call shell file - writes out to file answer */

system("run_nn16.sh");

/* read file answer */

fp = fopen("answer", "r");

fscanf(fp, "%lf", &fitness);

fclose(fp);

return(-fitness);

}

Figure A-2: Example GENEsYs function. This function returns the �tness of an

individual.

77

#define N_OUTPUT 3

#define N_HIDDEN 0

#define N_INPUT 312

DefineBlackBox encoder

{

OutputLayer-> Output_Layer

InputSize-> N_INPUT

Components->

{

PdpNode Output_Layer [N_OUTPUT]

{

InputsFrom-> $INPUTS

}

}

}

Figure A-3: ASPIRIN neural network speci�cation. This neural network has 312 in-

put units which are fully connected to 3 output units. The output units are sigmoidal
units (speci�ed by the key word \PdpNode"). The input units are fully connected

to the output units. The N HIDDEN declaration is not used by the program, but it

serves to document the code.

78

(Alanine-A 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1)

(Cysteine-C 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1)

(Aspartic-Acid-D 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1)

(Glutamic-acid-E 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0)

(Phenylalanine-F 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1)

(Glycine-G 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0)

(Histidine-H 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0)

(Isoleucine-I 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1)

(Lysine-K 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0)

(Leucine-L 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0)

(Methionine-M 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 0)

(Asparagine-N 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1)

(Proline-P 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1)

(Glutamine-Q 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1)

(Arginine-R 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1)

(Serine-S 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1)

(Threonine-T 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0)

(Valine-V 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0)

(Tryptophan-W 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 1)

(Tyrosine-Y 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0)

Figure A-4: Example COBWEB input �le. Each list is an instance. The �rst element
of each list is a descriptor that is ignored by the system. The other elements in the

list are used to cluster the instances.

A.3 Clustering algorithm: COBWEB

COBWEB is a Lisp package (unlike the rest of the systems which are all implemented

in C) that clusters a set of instances. A sample input �le is shown in Figure A-4.

Examples of the output produced by COBWEB are given in chapter 3.

A.4 Decision tree system: C4

The C4 package takes as input a text �le containing instances and a text �le that

contains descriptions of the attributes used to describe those instances. It produces as

output a decision tree. An example �le that contains instances is shown in Figure A-5

and a �le that contains attribute descriptions is shown in Figure A-6. Examples of

the decision trees produced by the C4 package are given in Chapter 3.

79

yes, no, no, yes, no, no, no, no, 6.02, 0.32, -1.44, 6 | alaninea

no, yes, no, no, no, no, yes, no, 10.76, -1.07, 1.16, 4 | argininer

no, no, yes, no, no, no, no, yes, 5.41, -.96, -0.34, 3 | asparaginen

no, yes, no, no, no, no, no, yes, 2.97, -1.07, -0.54, 6 | asparticacidd

no, no, yes, no, no, yes, no, no, 5.02, 1.5, -0.75, 1 | cysteinec

no, yes, no, no, no, no, no, yes, 3.22, -1.03, 0.17, 1 | glutamicacide

no, no, yes, no, no, no, no, yes, 5.65, -1.05, 0.22, 1 | glutamineq

no, no, no, yes, no, no, no, no, 5.97, -.03, -2.16, 3 | glycineg

no, no, yes, no, no, no, yes, no, 7.58, -.13, 0.52, 5 | histidineh

yes, no, no, yes, no, no, no, no, 5.98, 1.52, 0.21, 5 | isoleucinei

yes, no, no, yes, no, no, no, no, 5.98, 1.14, 0.25, 1 | leucinel

no, yes, no, no, no, no, yes, no, 9.74, -1.76, 0.68, 2 | lysinek

yes, no, no, no, no, yes, no, no, 5.75, 1, 0.44, 4 | methioninem

yes, no, no, no, yes, no, no, no, 5.98, 1.16, 1.09, 5 | phenylalaninef

yes, no, no, no, no, no, no, no, 6.1, -.72, -0.71, 2 | prolinep

no, no, yes, no, no, no, no, no, 5.68, -.46, -1.21, 4 | serines

no, no, yes, no, no, no, no, no, 6.53, -.36, -0.67, 3 | threoninet

no, no, yes, no, yes, no, no, no, 5.88, 0.67, 2.08, 1 | tryptophanw

no, no, yes, no, yes, no, no, no, 5.65, -.07, 1.34, 1 | tyrosiney

yes, no, no, yes, no, no, no, no, 5.97, 1.38, -0.34, 2 | valinev

Figure A-5: Example C4 instance �le. This �le contains twenty instances that cor-

respond to the twenty amino acids. The �rst eleven columns are attributes and the
twelfth column is the cluster that the instance belongs to. C4 generates a decision

tree that uses the attributes to predict the cluster. Each instance is followed by the
name of the amino acid that it corresponds to (\j" is the comment character).

80

| Hydrophobic, charged, polar from Intro. to protein

| structure. Aliphatic, aromatic, sulfur, basic, acidic from Stryer

| Biochemistry. pi from Mahler Biological Chemistry

1, 2, 3, 4, 5, 6, 7 | Classes

|name: tryptophanw, tyrosiney, glutamineq, cysteinec, leucinel,

| glutamicacide, valinev, prolinep, lysinek, threoninet,

| asparaginen, glycineg, serines, argininer, methioninem,

| isoleucinei, histidineh, phenylalaninef, asparticacidd, alaninea

hydrophobic: yes, no

charged : yes, no

polar : yes, no

aliphatic : yes, no

aromatic : yes, no

sulfur : yes, no

basic : yes, no

acidic : yes, no

pi : continuous | from Mahler Biological Chemistry

hydrophobic2: continuous | from Kidera, Scheraga (prot. chem. '85 - type 3)

bulk : continuous | from Kidera, Scheraga (prot. chem. '85 - type 3)

Figure A-6: Example C4 attributes �le. This �le indicates whether each attribute
is discrete or continuous. If the attribute is discrete then it is annotated with the

values that it can have. The �rst uncommented line of the �le (\j" is the comment
character) is a list of the classes that the instances can belong to. In this system the

classes correspond to the clusters produced by the clustering algorithm.

81

Bibliography

[Aha et al., 1991] Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning

algorithms. Machine Learning, 6:37{66.

[Amsterdam, 1988] Amsterdam, J. (1988). Extending the Valiant learning model.

In Proceedings of the Fifth International Conference on Machine Learning, pages

381{394.

[Argos, 1990] Argos, P. (1990). Analysis of sequence-similar pentapeptides in un-

related protein tertiary structures: Strategies for protein folding and a guide for

site-directed mutagenesis. Journal of Molecular Biology, 197:331{348.

[B�ack and Ho�meister, 1992] B�ack, T. and Ho�meister, F. (1992). A user's guide to

GENEsYs 1.0. Software package documentation.

[Baum and Haussler, 1989] Baum, E. and Haussler, D. (1989). What size net gives

valid generalization? In Touretzky, D., editor, Advances in Neural Information

Processing Systems I, pages 81{90. Morgan Kaufmann, San Mateo, CA.

[Blum and Rivest, 1992] Blum, A. and Rivest, R. (1992). Training a 3-node neural

network is NP-complete. Neural Networks, 5:117{127.

[Blumer et al., 1986] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.

(1986). Classifying learnable geometric concepts with the Vapnik-Chervonenkis

dimension. In Proceedings of the Eighteenth Annual ACM Symposium on Theory

of Computing, pages 273{282.

82

[Branden and Tooze, 1991] Branden, C. and Tooze, J. (1991). Introduction to Protein

Structure. Garland Publishing, Inc., New York.

[Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984).

Classi�cation and Regression Trees. Wadsworth, Belmont, CA.

[Caldwell and Johnston, 1991] Caldwell, C. and Johnston, V. (1991). Tracking a

criminal suspect through `face-space' with a genetic algorithm. In Proceedings of

the Fourth International Conference on Genetic Algorithms, pages 416{421.

[Cheeseman et al., 1988] Cheeseman, P., Kelly, J., Self, M., Stutz, J., W., T., and

Freeman, D. (1988). Autoclass: A Bayesian classi�cation system. In Proceedings

of the Fifth International Conference on Machine Learning, pages 54{64.

[Chou and Fasman, 1974] Chou, P. and Fasman, G. (1974). Prediction of protein

conformation. Biochemistry, 13:222{244.

[de la Maza and Tidor, 1993] de la Maza, M. and Tidor, B. (1993). An analysis of

selection procedures with particular attention paid to proportional and Boltzmann

selection. In Forrest, S., editor, Genetic Algorithms: Proceedings of the Fifth In-

ternational Conference (GA93), San Mateo, CA. Morgan Kaufmann.

[Ehrenfeucht et al., 1988] Ehrenfeucht, A., Haussler, D., Kearns, M., and Valiant, L.

(1988). A general lower bound on the number of examples needed for learning.

In Proceedings of the 1988 Workshop on Computational Learning Theory, pages

139{154.

[Fisher, 1987] Fisher, D. (1987). Knowledge acquisition via incremental conceptual

clustering. Machine Learning, 2:139{172.

[Franke, 1984] Franke, R. (1984). Theoretical Drug Design Methods. Elsevier, New

York.

[Gibrat et al., 1991] Gibrat, J.-F., Robson, B., and Garnier, G. (1991). In
uence

of the local amino acid sequence upon the zones of the torsional angles ' and

adopted by residues in proteins. Biochemistry, 30:1578{1586.

83

[Gluck and Corter, 1985] Gluck, M. and Corter, J. (1985). Information, uncertainty

and the utility of categories. In Proceedings of the Seventh Annual Conference of

the Cognitive Science Society, pages 283{287.

[Goldberg, 1989] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization

and Machine Learning. Addison-Wesley, Reading, MA.

[Grefenstette et al., 1985] Grefenstette, J., Gopal, R., Rosmaita, B., and van Gucht,

D. (1985). Genetic algorithms for the traveling salesman problem. In Proceedings of

an International Conference on Genetic Algorithms and their Applications, pages

160{165.

[Haussler, 1989] Haussler, D. (1989). Generalizing the PAC model for neural net and

other learning applications. Technical report, University of California, Santa Cruz,

CA.

[Holland, 1975] Holland, J. (1975). Adaptation in Natural and Arti�cial Systems.

University of Michigan Press, Ann Arbor.

[Holley and Karplus, 1989] Holley, L. and Karplus, M. (1989). Protein secondary

structure prediction with a neural network. Proceedings of the National Academy

of Science, 86:152{156.

[Jones, 1992] Jones, M. (1992). Using recurrent networks for dimensionality reduc-

tion. AI Tech Report 1396, Massachusetts Institute of Technology.

[Kabsch and Sander, 1984] Kabsch, W. and Sander, C. (1984). On the use of se-

quence homologies to predict protein structure: Identical pentapeptides have com-

pletely di�erent conformations. Proceedings of the National Academy of Science,

81:1075{1078.

[Kearns and Vazirani, 1992] Kearns, M. and Vazirani, U. (1992). The PAC model

and Occam's Razor. Preliminary draft of forthcoming book.

84

[Kidera et al., 1985] Kidera, A., Konishi, Y., Oka, M., Ooi, T., and Scheraga, H.

(1985). Statistical analysis of the physical properties of the 20 naturally occurring

amino acids. Journal of Protein Chemistry, 4(1):23{55.

[Kirkpatrick et al., 1983] Kirkpatrick, S., Gelatt, Jr., C., and Vecchi, M. (1983). Op-

timization by simulated annealing. Science, 220:671{680.

[Kneller et al., 1990] Kneller, D., Cohen, F., and Langridge, R. (1990). Improvements

in protein secondary structure prediction by an enhanced neural network. Journal

of Molecular Biology, 214:171{182.

[Lander et al., 1991] Lander, E., Langridge, R., and Saccocio, D. (1991). Mapping

and interpreting biological information. Communications of the ACM, 34(11):33{

39.

[Langley, 1980] Langley, P. (1980). Descriptive discovery processes: Experiments in

Baconian science. Rep. No. CS-80-121, Carnegie-Mellon University.

[Leighton, 1992] Leighton, R. (1992). The Aspirin/MIGRAINES neural network soft-

ware. Software package documentation.

[Lenat, 1976] Lenat, D. (1976). AM: An arti�cial approach to discovery in mathe-

matics as heuristic search. Rep. No. STAN-CS-76-570, Stanford University.

[Lim, 1974] Lim, V. (1974). Algorithms for prediction of �-helical and �-structural

regions in globular proteins. Journal of Molecular Biology, 88:873{894.

[Mahler, 1971] Mahler, H. R. (1971). Biological Chemistry. Harper & Row, New

York, second edition.

[Maron, 1993] Maron, O. (1993). E�cient use of erro<r for creating piecewise learnable

partitions. Unpublished draft.

[Maron and Moore, 1993] Maron, O. and Moore, A. (1993). Fast model selection

using Hoe�ding races. In Advances in Neural Information Processing Systems,

volume 6.

85

[Martin et al., 1989] Martin, Y., Kutter, E., and Austel, V., editors (1989). Modern

Drug Research. Marcel Dekker, Inc., New York.

[McKusick and Thompson, 1990] McKusick, K. and Thompson, K. (1990). Cob-

web/3: A portable implementation. Technical Report FIA-90-6-18-2, NASA Ames

Research Center, Arti�cial Intelligence Research Branch, Mo�et Field, CA.

[Michalewicz, 1992] Michalewicz, Z. (1992). Genetic Algorithms + Data Structures

= Evolution Programs. Springer-Verlag, Berlin.

[Michalski and Stepp, 1992] Michalski, R. and Stepp, R. (1992). Clustering. In

Shapiro, S., editor, Encyclopedia of Arti�cial Intelligence (Vol. 1), pages 168{176.

John Wiley & Sons, Inc.

[Qian and Sejnowski, 1988] Qian, N. and Sejnowski, T. (1988). Predicting the sec-

ondary structure of globular proteins using neural network models. Journal of

Molecular Biology, 202:865{884.

[Quinlan, 1983] Quinlan, J. (1983). Learning e�cient classi�cation procedures and

their application to chess end games. In Michalski, R., Carbonell, J., and Mitchell,

T., editors, Machine Learning: An Arti�cial Intelligence Approach. Morgan Kauf-

mann.

[Quinlan, 1988] Quinlan, J. (1988). An empirical comparison of genetic and decision-

tree classi�ers. In Proceedings of the Fifth International Conference on Machine

Learning, pages 135{141.

[Quinlan, 1993] Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers, Inc., San Mateo, CA.

[Rivest, 1987] Rivest, R. (1987). Learning decision lists. Machine Learning, 2(3):229{

246.

[Roy and Mukhopadhyay, 1992] Roy, A. and Mukhopadhyay, S. (1992). A polyno-

mial time algorithm for generating neural networks for classi�cation problems. In

86

Proceedings of the International Joint Conference on Neural Networks, pages I:147{

I:152.

[Salzberg and Cost, 1992] Salzberg, S. and Cost, S. (1992). Predicting protein sec-

ondary structure with a nearest-neighbor algorithm. Journal of Molecular Biology,

227:371{374.

[Schapire, 1991] Schapire, R. (1991). The Design and Analysis of E�cient Learning

Algorithms. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.

[Schraudolph and Grefenstette, 1992] Schraudolph, N. and Grefenstette, J. (1992).

A user's guide to GAucsd 1.4. Software package documentation.

[Stryer, 1988] Stryer, L. (1988). Biochemistry. W.H. Freeman and Company, New

York, third edition.

[Sun et al., 1991] Sun, G.-Z., Chen, H.-H., Lee, Y.-C., and Giles, C. (1991). Turing

equivalence of neural network<s with second order connection weights. In Proceed-

ings of the International Joint Conference on Neural Networks, pages II:357{II:362.

[Thomas and Principe, 1991] Thomas, E. and Principe, J. (1991). A simulated an-

nealing like convergence theory for the simple genetic algorithm. In Proceedings of

the Fourth International Conference on Genetic Algorithms, pages 174{181.

[Valiant, 1984] Valiant, L. (1984). A theory of the learnable. Communications of the

ACM, 27(11):1134{1142.

[Whitley et al., 1989] Whitley, D., Starkweather, T., and Fuquay, D. (1989). Schedul-

ing problems and traveling salesmen: The genetic edge recombination operator. In

Proceedings of the Third International Conference on Genetic Algorithms, pages

133{140.

[Zhang et al., 1992] Zhang, X., Mesirov, J., and Waltz, D. (1992). Hybrid system for

protein secondary structure prediction. Journal of Molecular Biology, 225:1049{

1063.

87

