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Abstract
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Chapter 1

Introduction

Although some tools exist to assist phonologists using older representational frameworks such as
that presented in Chomsky and Halle's The Sound Pattern of English (Chomsky and Halle 1968,
hereafter SPE), until recently there have been few options for linguists wishing to employ computa-
tional methods for the more recent autosegmental phonology. This thesis attempts to �ll the gap by
presenting a system|the Automated Model of Autosegmental Rules (AMAR)|embodying autoseg-
mental representation and mechanics, together with an interface designed to shorten learning time
for linguists already familiar with the autosegmental notation �rst proposed by Pulleyblank (1986).
The goal for AMAR is to provide an abstraction barrier such that a linguist may describe natural
languages in autosegmental notation|thus allowing him or her to model almost any language|and
the system will take care of all computational details. As such, AMAR rules are expressed in a
notation that is as close as possible to Pulleyblank's while remaining capable of being written within
a text-only system.

Autosegmental theory di�ers from linear theories such as the SPE theory in that phonemes are
not assumed to be atomic, but are hypothesized rather to be composed of autonomous segments such
as tones or features, interconnected by association lines and situated on independent tiers within a
chart. For example, in one version of the theory, one might partially represent a tonal phoneme as
in �gure 1-1, with V on the skeletal tier representing a vowel, and T on the tonal tier representing
a tone connecting to it.

Autosegmental phonology has its roots in attempts to explain the mechanics of tonal languages
(Goldsmith 1976a, Goldsmith 1976b, Goldsmith 1976c). Thus, the system was designed particularly
to allow the formulation and testing of tonal rules. For example, one might wish to model the tone
shortening rule of Mandarin Chinese. Mandarin has four tones: a high, level tone (\�a"); a rising
tone (\�a"); a low tone that falls slightly, then rises (\�a") fairly high; and a falling tone (\�a"). Of
these tones, all are of the same length except for the low tone, which is long. Thus, when a low

tone precedes another low tone, as in the phrase W�o h�en k�un (\I am very sleepy"), Chinese avoids
an awkward concatenation of two long tones by shortening the �rst one. This process is, however,
rather di�cult to describe in terms of linear phonology, since what apparently happens is that the
middle part of the tone (the part that \falls") drops out, thus leaving a rising tone. In autosegmental
theory, the Mandarin low tone is modeled as three atomic tones (3, 5, and 1) from a scale of �ve tones
(from the highest, 1, to the lowest, 5) attached to a single vowel. When two such vowels adjoin, the
5 tone is simply disconnected from the �rst vowel, leaving a rising tone. In autosegmental notation,
this rule would appear as in Figure 1-2. To model this aspect of Mandarin using the system to be

V

T

Figure 1-1: Autosegmental Representation of a Tone
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C0 V

3 5 1

V

3 5 1

Figure 1-2: Mandarin Tone Shortening Rule

discussed here, one would �rst provide a �le specifying the phonemes and tones, plus the shortening
rule, and then specify (either in a �le or at run-time) an input to be transformed. Thus, one might
provide the input W�o h�en k�un, as above, and receive the output W�o h�en k�un after the system
has transformed the input into a tier structure, applied the rule, and transformed it back into a
human-readable string.

As stated above, the system was originally designed simply to handle tonal systems such as the
one discussed for Chinese. However, it was subsequently determined that by simple additions further
aspects of autosegmental theory could be supported, and consequently the system supports feature
trees, syllable structures, word and morpheme boundaries, and feature matrices (as in Chomsky
and Halle (1968)). Supported rule operations include: deletion of segments; insertion of segments;
segment connection; breaking of connections; metathesis, in which a segment is moved somewhere

else on its tier (e.g., \atr" might become \art"); spreading, in which a segment connected to another
segment on a di�erent tier becomes connected to the latter segment's neighbors1; and segment
replacement. Both word-internal and sandhi2 rules are supported, and the system allows (if feature

trees or matrices are used) phonemes to be underspeci�ed, with trees or matrices being built up
before, during, and after rule application. Some language-speci�c parameters relating to tones may
be speci�ed (Goldsmith 1990, page 18{19), and the system automatically observes the association
convention (Goldsmith 1990, pages 11{19), conditions against line crossing (Goldsmith 1990, page
47), and conjunctions against connecting segments which do not freely associate (Goldsmith 1990,
pages 45{46) (The user speci�es freely associating segments.)

In order to utilize the system, the user must �rst specify the language to be modeled. One
�rst provides a name for the language, and then a list of phonemes. AMAR is not limited to any
given system of orthographic characters3 , so the user could, for example, specify the phonemes of
a language using Multi-Lingual Emacs (MULE) or some other such editor which allows non-ASCII
characters. Next, the user decides upon the speci�cation method to follow, choosing from CV,
CV/Matrix, X/Matrix, CV/Tree, and X/Tree. In this section only the simplest method, CV, will
be discussed. This method allows only three tiers|skeletal (the \skeleton," containing C's and
V's to which other segments are attached), tonal (containing tones), and phonemic (containing the
simplest possible representation of phonemes|their names)|thus basically permitting only rules
pertaining to tones, without reference to phonemic features.

In CV, the user would, after having listed the phonemes, specify which are consonants and which
are vowels. Tones would next be speci�ed, starting with whether they should automatically be
connected to a place on the skeletal tier before rule application. Other tonal speci�cations include
language speci�c parameters such as the number of tones in the language, the maximum number of
tones per vowel and vice versa, the names of the tones, a speci�cation of freely associating segments
(e.g., in most tonal languages, tones freely associate with vowels), and representations for characters
with tones (for example, in Chinese �a might represent the vowel \a" associated with the tones 2 and
4.)

The Mandarin example above would be speci�ed by �rst describing the language, starting with
the name:

Language Mandarin:

1See section 3.3.5 for a more complete description of this process.
2rules which concern the interface between words|for example, a rule that moves the �nal tone of a word into the

following word
3although anything not composed of a standard alphabetical character followed by either digits or standard alpha-

betical characters will need to be enclosed in quotation marks

12



Mandarin has the following phonemes (expressed basically as in Pinyin, the orthographic system
used in mainland China):

Phonemes: a, b, c, ch, d, e, f, g, h, i, j, k, l, m, n, o, p, q,

r, s, sh, t, u, "�u", w, x, y, z, zh.

The speci�cation method is CV:

SpecMethod: CV.

Of the phonemes, some are consonants, and some are vowels:

Vowels: a, e, i, o, u, "�u".

Consonants: b, p, m, f, g, k, l, n, r, s, zh, ch, sh, j, q, x, d,

t, w, y.

We wish tones to be initially connected:

ConnectTones

Mandarin has �ve tone levels:

ToneLevels: 5.

In Mandarin there is a maximum of three tones per vowel and no maximum number of vowels per
tone.

MaxTonesperVowel: 3.

MaxVowelsperTone: INFINITE.4

We must specify how to represent tones in the input:

ToneReps:

�a: a / 1 1,

�a: a / 3 1,

�a: a / 3 5 1,

�a: a / 2 4,

and so forth. Finally, we must specify which segments associate with others. In Chinese, as in most
(probably all) tone languages, tones associate freely with vowels, and skeletal segments associate
with phonemes:

Associates: fsegmentfTg, segmentfVgg, fsegmentfXg, segmentfPgg5.

After the language has been speci�ed, the user must then specify a set of rules, in the order
in which they will be applied. For example, the tone shortening rule referred to above would be
expressed as follows:

Rule "Long Tone Shortening":

NoWordBounds

NoMorphBounds

Tiers:

skeletal: V C0 V,

tonal: 3 (5) 1 3 5 1.

Connections:

3[1] -- V[1],

5[1] -- V[1],

4or leave this �eld blank
5this structure will be explained later

13



1[1] -- V[1],

3[2] -- V[2],

5[2] -- V[2],

1[2] -- V[2].

Effects:

5[1] -> 0.

Note that individual segments may be referred to in any of the following methods, as long as no
ambiguity is introduced: the name of the segment alone (if there is only one such segment in the
chart), the name of the segment followed by a number in brackets indicating which occurrence of
the segment is to be selected (counting starting at one, from left top to right bottom), or the name
of the segment followed by, in brackets, a number indicating which occurrence it is on a given tier
and the name of that tier. For example, in the previous rule, C0 could have been referred to as C0
(since it is unique), C0[1] (since it is the �rst instance of C0 in the chart), or C0[1, skeletal]

(since it is the �rst instance of C0 on the skeletal tier.)
Inputs may be provided directly from the keyboard (standard input), or from a �le. Outputs

will be sent to standard output, where they may be redirected to a �le, if desired. For example, if
in the example above the language was speci�ed in the �le chinese, the inputs were speci�ed in the
�le chinese.ipt, and the user wishes to redirect output to the �le chinese.opt, then the command

amar chinese chinese.ipt > chinese.opt

would be used. This would allow, for example, the comparison of program outputs with some �le
of expected outputs. Since inputs may be taken from standard input and outputs are directed to
standard output, the system could be used in a language processing system|for example, input
could be redirected to come from a dictionary of some kind, and the system would be set up to
produce an output form needed by a parser, to which the output could be redirected.

14



Chapter 2

Background

There exist two widely-used systems for computational phonology: KIMMO|a morphologically-
oriented system based in an SPE-in
uenced two-level model of phonology, and the Delta Pro-
gramming Language|a phonetically-oriented system based loosely on metrical and autosegmental
phonology; in addition there may be other systems unknown to the author.

2.1 KIMMO

The KIMMO system is based on a two-level model of phonology devised by the Finnish compu-
tational linguist Kimmo Koskenniemi and described by him in a series of publications starting in
1983 (Koskenniemi (1983a, 1983b, 1984, 1985), Karlsson and Koskenniemi (1985)). In this model,
all phonological rules operate in parallel, with no intermediate representations|that is, all rules di-
rectly relate the surface form to the input form. KIMMO represents phonological and morphological
rules as �nite state transducers; the rules, operating in parallel, move over an input string in one

direction only and generate an output form for each character (including \null" characters for which
there is an output form and no input form.) Implementations of KIMMO exist in LISP (KIMMO,
Lauri Karttunen 1983), Xerox INTERLISP/D (DKIMMO/TWOL, Dalrymple et al. 1987)1, Prolog
(Pro-KIMMO, Sean Boisen 1988), and C (PC-KIMMO, Antworth et al. 1990.)

Due to its �nite transducer representation of rules and its two-level model, KIMMO runs ex-
tremely quickly for most applications. Barton, Berwick, and Ristad (1987) shows that KIMMO uses
an exponential algorithm, rather than an algorithm linearly proportional to the length of the input,
as Koskenniemi had originally claimed, but the speed is nevertheless higher than that of competing

phonological systems. Because of its morphological bent, KIMMO handles morphological rules quite
well. For example, there might be a rule adding the ending -oj to signify the plural in Esperanto.
This rule could be speci�ed by:

PLURAL:oj , +:0

Thus, KIMMO could receive a lexical representation such as libr+PLURAL and return a surface
form libroj , or it could just as easily take libroj and return libr+PLURAL. In a system like AMAR,
one would have to represent \PLURAL" as some sort of phoneme or tone (cf the Arabic example in
section 4.4), and with one rule system in AMAR, one can only go in one direction, so AMAR would
only support something like libr+PLURAL to libroj .

KIMMO is indeed fast and adequate for many rule systems. However, it has weaknesses in
the areas of notation, rule ordering, nonlinear representations, and nonconcatenative morphology
(Antworth 1990, Anderson 1988, pages 11{12 and 530{534, respectively). Many implementations
require the user, for each rule, to translate by hand from two-level notation to a table of state tran-
sitions. In addition, the two-level notation itself is rather foreign to traditional (non-computational)

1This implementation accepts two-level rules written in linguistic notation and automatically compiles them into
�nite state transducers

15



[+high]

V Vφ

morph morph

Figure 2-1: Turkish High Vowel Deletion Rule

A H y o r

morph
V CV V C

morph

φ

Figure 2-2: Hyor Vowel Deletion Rule

linguists, who tend to be most familiar with replacement rules, i.e., rules of the form \a becomes b
in the environment c." Aside from notation, the two-level model (which, as it roughly corresponds,
under certain conditions, to a Turing machine, should be able to handle any computation) greatly
complicates development of complex rule systems. For example, in the Turkish language there is
a rule (O
azer 1993, see �gure 2-1) that deletes a high vowel if it is immediately preceded by a
morpheme ending in a vowel. However, this rule does not apply if the high vowel is part of the
morpheme \Hyor" (where \H" refers to a high vowel unspeci�ed for roundness and backness.) In-
stead, the preceding vowel is deleted. In KIMMO, this behavior is represented by �nite transducers
corresponding to the three rules:

H:0 ) V (':') +:0

which translates to \H only but not always corresponds to NULL when preceded by a vowel before
a morpheme boundary, which corresponds to a surface NULL,"

H:0 =( V:0 +:0 y o r

which translates to \H never corresponds to NULL when preceded by a vowel and morpheme bound-
ary, both to be deleted, and followed by `yor' " and

A:0 , +:0 H:@ y o r

which translates to \A (a low, non-round vowel unspeci�ed for backness) always and only corresponds
to NULL when followed by a morpheme boundary and Hyor, regardless of the surface representation
of H." Of these rules, the second acts simply to tell the �rst rule not to apply whenever the third rule
applies. In an ordered rule system, such as that modeled by AMAR, only two rules would be needed,
since the application of a rule deleting the vowel preceding \Hyor" would modify the environment
before the \H," and preclude it from being deleted. In contrast, AMAR might represent such a rule:

Rule "Hyor Deletion":

Tiers:

root: A "]m" "m[" H y o r,

skeletal: V "]m" "m[" V C V C.

Connections:

A -- V[1],

H -- V[2],

y -- C[1],

o -- V[3],

r -- C[2].

Effects:

A -> 0,

V[1] -> 0.
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Figure 2-3: Representation of High and Rising Tones in Autosegmental Notation
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VV

Figure 2-4: Mende High Tone Assimilation Rule

(Figure 2-2 shows the conventional autosegmental representation of this rule.) This rule would then
be followed by the rule of high vowel deletion (shown in conventional notation in �gure 2-1):

Rule "High Vowel Deletion":

Tiers:

high: "]m" "m[" +high,

skeletal: V "]m" "m[" V.

Connections:

V[2] -- +high.

Effects:

V[2] -> 0.

In addition to the complications brought about by the lack of rule ordering, KIMMO's unilinear
representation (all phonological elements must be represented as a single linear string of symbols)
disallows any sort of rule relying on a multi-tiered representation (e.g., any rule of autosegmental
or non-linear phonology.) To handle systems best described by such rules, KIMMO must rely on
brute-force methods by simply listing all alternatives. For example, in the West African language
Mende (Antworth 1990, Halle and Clements 1983), a lexical low-tone corresponds to a surface high
tone after a lexical high or rising tone. In an autosegmental representation, a high tone would
be represented as in �gure 2-3a, whereas a rising tone would be represented as in �gure 2-3b. As
seen from the right, therefore, a high tone is exactly the same thing as a rising tone. That is,
autosegmental theory would posit that any rule that matches both a high and a rising tone actually
is matching a vowel whose rightmost tone is high. Thus, an autosegmental system could represent
the rule simply as in �gure 2-4, whereas KIMMO has to clumsily mention both high and rising tones:

�:� , [�j�]: V +:0 (C)

If there were any other type of tone structure in Mende ending with a high tone, for example a
falling and rising tone such as the low tone of Mandarin, the autosegmental rule would correctly
match that as well, whereas KIMMO would have to mention every possible tone contour ending
with a high tone. In addition to the previous correspondence, the data for Mende also show that a
lexical rising tone before a surface high tone becomes a surface low tone. This requires two more
rules in KIMMO:

�:� ( V +:0 (C) :�
�:� ) V +:0 (C) :�

L

VV

H

Figure 2-5: Mende Rising Tone Shortening Rule
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Figure 2-7: Reduplication Rule of Tagalog

In AMAR, this requires a single rule (shown in conventional notation in �gure 2-5):

Rule "Rising to Low":

Tiers:

skeletal: V V,

tonal: L H.

Connections:

V[1] -- L,

V[1] -- H,

V[2] -- H.

Effects:

V[1] -Z- H.

Finally, KIMMO experiences some di�culties with nonconcatenative morphology. That is, KIMMO
has no facilities for moving or copying segments, so a language such as Tagalog, where morphemes
may require the �rst syllable of a word to be copied, or where morphemes need to be placed inside of
a word, requires awkward maneuvers with large �nite automata. In other words, KIMMO is not fast
for languages such as Tagalog, and its representation simply does not adequately describe the non-

[+nasal]

C C

place

φ
φ

φ

morph morph

Figure 2-8: Nasal Co�alescence Rule of Tagalog
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concatenative morphology of that language. Instead, it must rely on clumsy, brute-force methods to
try to simulate nonconcatenative morphologies in a concatenative way. For example, three processes
found in Tagalog are \in" in�xation, CV reduplication, and nasal co�alescence (Antworth 1990). If
a word in Tagalog begins with a consonant, the in�x \in" is placed between the �rst consonant and
vowel|thus the surface form CinV would correspond to a lexical form in+CV . In KIMMO, this
would be represented as:

X:0 ) +:0 C 0:i 0:n V

where the in�x has to be represented lexically as \X+". In other words, KIMMO pretends that
the in�x is somehow mysteriously already present in the proper position, and its presence is merely
signaled by some arti�cial in�x. In AMAR the rule would be more complicated, but correspond to
the more natural \in+", and would move the in�x instead of deleting and re��nserting it2:

Rule Infixation:

Tiers:

vroot: i "]m" "m[" vroot,

skeletal: V C "]m" "m[" C V,

croot: n "]m" "m[" croot.

Connections:

V[1] -- i,

C[1] -- n,

C[2] -- croot,

V[2] -- vroot.

Effects:

i -> "m[" _ vroot,

n -> croot _,

C[1] -> C[2] _,

V[1] -> C[2] _,

"]m"[1,skeletal] -> 0,

"m["[1,skeletal] -> 0.

Next, CV reduplication copies the �rst CV of a root. In both KIMMO and AMAR CV reduplicative
in�xes are represented lexically by RE+. However, KIMMO treats \RE" as two actual letters,
and simply has a rule for every single letter in the language. Thus, the statement \copy the �rst
consonant and vowel of the root" becomes:

If the �rst letter of the root is \p," replace \R" with \p." If the �rst letter is \t," replace
\R" with \t," and so forth for every consonant in the language. Next, if the second letter
of the root is \a," replace \E" with \a." If the second letter of the root is \e," replace
\E" with \e," and so forth for every vowel in the language.

The rules would be stated as follows (where \: : :" should be replaced by a list of all consonants or
vowels in Tagalog):

R:fp,t,k,: : :g ) E:V +:0 fp,t,k,: : :g
E:fa,i,u,: : :g ) R:C +:0 C fa,i,u,: : :g

The process in AMAR proceeds regardless of whatever consonants and vowels there are in Tagalog.
It in fact does not even need to copy the vowels and consonants at all, but simply creates a new C
slot and a new V slot in the skeletal tier and connects them to the original representations of the
consonants and vowels in a manner consistent with what most linguists believe actually occurs3:

Rule Reduplication:

2Illustrated in conventional notation in �gure 2-6.
3Illustrated in conventional notation in �gure 2-7.
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Tiers:

vroot: vroot,

skeletal: C "]m" "m[" C V,

croot: RE "]m" "m[ croot.

Connections:

C[1] -- RE,

C[2] -- croot,

V -- vroot.

Effects:

croot ::-> C / _ C[2],

vroot ::-> V / _ C[2],

C[1] -> 0,

"]m" -> 0,

"m[" -> 0.

The �nal Tagalog process under discussion here is nasal co�alescence, in which a consonant following
\N" (which represents a nasal unspeci�ed for point of articulation) picks up the N's nasality while

keeping its own point of articulation. The \N" then disappears (or, it could be said that the \N"
co�alesces with the following consonant.) For example, maN+pili would yield \mamili," maN+tahi
would yield \manahi," and maN+kuha \ma8uha." KIMMO represents this by declaring subsets for
labial obstruant stops (\P"), coronal obstruant stops (\T"), velar obstruant stops (\K"), and nasals
(\NAS") and declaring deletion correspondences:

p b t d k g @
0 0 0 0 0 0 @

1: 1 1 1 1 1 1 1

then using the rules (nasal deletion and nasal assimilation, respectively):

N:0 ) (+:0) (R:C E:V +:0) :NAS
fP,T,Kg:fm,n,8g , N: (+:0) (R:C E:V +:0)

AMAR represents this rule as4:

Rule Coalescence:

Tiers:

nasal: +nasal "]m" "m[",

place: "]m" "m[" place,

croot: croot "]m" "m[" croot,

skeletal: (C) "]m" "m[" C.

Connections:

C[1] -- croot[1],

croot[1] -- +nasal,

C[2] -- croot[2],

croot[2] -- place.

Effects:

"]m"[1,skeletal] -> 0,

"m["[1,skeletal] -> 0,

croot[2] :: +nasal,

croot[1] -Z- +nasal,

C[1] -> 0,

croot[1] -> 0.

Up till now, AMAR has not shown too great of an advantage over KIMMO in terms of number of
rules: simply two fewer. However, in Tagalog more than one of these processes may apply in a single

4Illustrated in conventional notation in �gure 2-8.
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word. When they do, CV reduplication precedes \in" in�xation and nasal co�alescence (the last two
do not apply in the same words.) AMAR takes care of this automatically, simply by ordering the
rules. In KIMMO, however, all the rules have to be rewritten such that they take each other into
account and the ordering is correct. Thus, for example, the full version of the consonant half of CV
reduplication becomes:

R:fp,m,t,n,k,8,: : :g , (0:i 0:n) E:V +:0 fp,p,t,t,k,k,: : :g:fp,m,t,n,k,8,: : :g

The actual rule used by KIMMO5, which the user would have to enter in many implementations,
would be the following:

R R R R R R 0 0 E + p p t t k k @
p m t n k 8 i n V 0 p m t n k 8 @

1: 2 5 8 11 14 17 1 1 1 1 1 1 1 1 1 1 1
2. 0 0 0 0 0 0 2 2 3 0 0 0 0 0 0 0 0
3. 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
4. 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
5. 0 0 0 0 0 0 5 5 6 0 0 0 0 0 0 0 0
6. 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0
7. 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

8. 0 0 0 0 0 0 8 8 9 0 0 0 0 0 0 0 0
9. 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0
10. 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
11. 0 0 0 0 0 0 11 11 12 0 0 0 0 0 0 0 0
12. 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0
13. 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

14. 0 0 0 0 0 0 14 14 15 0 0 0 0 0 0 0 0
15. 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0
16. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
17. 0 0 0 0 0 0 17 17 18 0 0 0 0 0 0 0 0
18. 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0
19. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

2.2 The Delta Programming Language

The Delta programming language (Hertz 1990) is a stream-based implementation of nonlinear
phonology and phonetics, descended from the linear (SPE-based) rule development system SRS
(Hertz 1982.) The Delta system takes a metrical approach to nonlinear phonology, as opposed to
AMAR's primarily autosegmental approach. That is, the data used by the system takes the form
of \Deltas," or groups of synchronized streams corresponding loosely to AMAR's charts made up of
tiers. Thus, the Bambara phrase \m�us�o ! j�a:b��" might be represented as:

word: | noun | verb |

morph: | root | root |

phoneme: | m | u | s | o | | j | a | b | i |

CV: | C | V | C | V | | C | V | V | C | V |

nucleus: | |nuc| |nuc| | | nuc | |nuc|

syllable:| syl | syl | | syl | syl |

tone: | L | H | L | H |

1 2 3 4 5 6 7 8 9 10 11

Nothing is explicitly connected to anything else, but rather simply ordered with respect to one
another by means of synchronization lines. In AMAR, as in autosegmental phonology, this might

5Condensed with the false assumption that Tagalog only contains the underlying consonants \p," \t," and \k."
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Figure 2-9: Autosegmental Representation of \m�us�o ! j�a:b��"

be represented as in �gure 2-96. In order to modify data, the user of Delta writes a program in
the Delta programming language (Hertz 1990), which might typically read in some portion of input,
transform it into a Delta of appropriate values and then modify synchronization lines and stream
tokens (the equivalent of segments in AMAR) in order to simulate the application of rules.

The Delta programming language has great advantages in power and 
exibility. The user may
program almost any desired behavior (within the limits of synchronized streams), using the general
purpose computer language C (Kernighan and Ritchie 1988) whenever the Delta programming lan-
guage lacks some feature. Moreover, any stream (or \tier," in autosegmental terms) may contain
numbers or tokens with a name and any number of features (in Delta, objects that may be either
binary- or multi-valued, thus corresponding loosely to AMAR features and class nodes). This prop-
erty allows the user to specify phonetic information such as duration and frequency in addition to
the phonological information allowed by the current version of AMAR.

Along with Delta's advantages, and in some cases because of them, there are a few disadvantages
that will be felt more or less depending upon the intended application. Because Delta does not
assume as much as AMAR about the theoretical underpinnings of a user's work, the user has more

exibility. However, it may well be said that much of the reason for developing autosegmental
phonology was to reduce the 
exibility allowed by previous theories. That is, too much 
exibility
allows the user to easily make mistakes and describe languages incorrectly or even impossibly|the
attempt of autosegmental theory is to describe possible human languages and only possible human
languages. In addition, Delta possesses this 
exibility because it is a programming language. Thus,
the user must learn a computer language and a way of thinking signi�cantly di�erent from that of
the typical linguist. The Delta user must write all the code for matching and application of rules,
dealing with line crossing, application of the association convention, enforcement of conformance
with language parameters, the behavior of freely associating segments, etc., whereas AMAR handles
all of these automatically. Thus, Delta enforces a procedural view of phonology, where the linguist
must specify in detail what is to happen at each step for any given language, as opposed to the
more descriptive model of AMAR, in which the user speci�es only how a given language is di�erent
from other languages, and the program attempts to take care of the mechanics common to all
languages7. Aside from the Delta System's procedural nature, the major di�erence between it and
AMAR is that it is limited to a somewhat two-dimensional structure. Segments may \connect" or be
synchronized with segments above or below them, but a structure such as that in �gure 2-10, where
each segment associates with three other segments, would be impossible. This limitation is quite
signi�cant, as this sort of structure is fairly common in theories of feature geometry, for example.
Due to this two-dimensional nature, Delta cannot handle trees such as those postulated by Mohanan
(1983) (Mohanon 1983), Clements (1985b) (Clements 1985), and Sagey (1986) (Sagey 1986), thus

6In AMAR the user would not directly manipulate a textual representation of a phrase as would a user of Delta.
7However, the user of AMAR must still specify the features and tree structure for each language, although these

are considered universal. This requirement follows because linguists have not come up with any more or less agreed
upon universal structure.
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Figure 2-11: Autosegmental Representation of Some Rules of Bambara

excluding much of current autosegmental theory.
The di�erent ways in which linguistic problems are modeled in Delta and AMAR can be shown

in the African tonal language Bambara. In Bambara there are two tone levels, and 
oating tones
are used as morphemes, e.g. to indicate what in English would be expressed by a de�nite article.
Thus, an inde�nite noun is distinguished from a de�nite noun by the addition of a 
oating low tone.
When a morpheme has additionally a 
oating high tone, there is an interaction between the two
tones. Normally, a 
oating high tone moves forward into the next morpheme. If it is blocked by a
low tone, however, it moves into the preceding morpheme. The rightmost tone of each morpheme

is then connected to the rightmost vowel, and tones pair up with vowels from right to left, with
the leftmost vowel spreading to any extra tones if there are more tones than vowels or the leftmost
tone spreading to extra vowels if there are more vowels. Autosegmentally, these processes might be
represented by the four rules shown in �gure 2-11. In Delta, the e�ects would be carried out by the
following code (in addition to the code required to specify the language and set things up, read in
the inputs, etc):

:: Forall rule for floating High tone assignment:

:: Forall floating H tones (^bh = "before H", ^ah = "after H")...

forall ([%tone _^bh H !^ah] & [%morph _^bh ^ah]) ->

do

if

:: If the floating H occurs before a floating L,

:: move the H tone into the end of the preceding

:: morph. Otherwise, insert the H tone at the

:: beginning of the following morph. Moving the H

:: tone is accomplished by inserting a new H tone
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:: and deleting the floating one.

([%tone _^ah L !^al] & [%morph _^ah ^al]) ->

insert [%tone H] ...^bh;

else -> insert [%tone H] ^ah...;

fi;

:: Delete original floating H & following sync mark:

delete %tone ^bh...^ah;

delete %tone ^ah;

od;

:: Forall rule for sync mark merging:

:: For each morph (^bm = "begin morph", ^am = "after

:: morph")...

forall [%morph _^bm <> !^am] ->

do

:: Set ^bs (begin syllable) and ^bt (begin tone)

:: to ^am (after morph):

^bs = ^am;

^bt = ^am;

repeat ->

do

:: Set ^bt before the next tone token to the

:: left. If there are no more tone tokens in

:: the morph (i.e., ^bt has reached ^bm), exit

:: the loop.

[%tone !^bt <> _^bt];

(^bt == ^bm) -> exit;

:: Set ^bs before the next syllable token to

:: the left. If there are no more syllable

:: tokens in the morph, exit the loop.

[%syllable !^bs <> _^bs];

(^bs == ^bm) -> exit;

:: Merge the sync mark before the tone and the

:: sync mark before the syllable:

merge ^bt ^bs;

od;

od;

In AMAR, the user would de�ne the following rules:

Rule "Floating High Tone Metathesis":

Tiers:

tonal: "]m" H "m[".

Effects:

H -> "m[" _.

Rule "Floating High Tone Metathesis (part 2)":

24



Tiers:

tonal: "]m" H.

Effects:

H -> _ "]m".

Rule "Initially Connect Tones":

Tiers:

skeletal: (V) C0 "]m",

tonal: (T) "]m".

Effects:

V :: T.

Rule "Spread Left":

Tiers:

skeletal: (V) C0 V,

tonal: T.

Connections:

V[2] -- T.

Effects:

<< T skeletal.

The rest is taken care of automatically. Note that the Delta representation looks much like any
programming language, and would be almost completely unreadable to a linguist untrained in com-
puter languages, whereas the AMAR representation corresponds exactly to the autosegmental rules
depicted in �gure 2-11.
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Chapter 3

Design and Overview

The AMAR system consists of two major parts: (1) an interface, where the user speci�es languages,
rules, and inputs; and (2) internals that store the speci�cations, apply rules to the inputs, and
so forth. Thus, the system may be viewed from three points of view: the viewpoint of general

linguistics, that of the user, and the point of view of the program itself.

3.1 Linguistic Overview

The design of AMAR involved certain decisions with regard to what sort of linguistic theories
to model, exact formalisms, and how to deal with situations in which the literature known to the
designer does not specify details about the mechanisms of autosegmental phonology. These decisions
include the following: the exact behavior of the association convention, spreading, inclusion versus
exclusion of pointers, and behavior with regard to redundant features.

With regard to the association convention, Goldsmith (1990, page 14) states:

When unassociated vowels and tones appear on the same side of an association line,
they will be automatically associated in a one-to-one fashion, radiating outward from
the association line.

This statement does not, however, de�ne the extent of this radiation, the behavior at boundaries, or
the exact time of application of the convention. The current AMAR system applies the association
convention about each association line produced as a result of the application of a rule. The process
occurs after each application of every rule, if the application generated one or more association
lines. In AMAR, the association convention is bounded by all directly supported boundary types

(morpheme, word, and phrase.) When the pairing process reaches a boundary in one tier but not
in another, an automatic spreading process will occur, linking all unconnected freely associating
segments to the �nal segment anent to the boundary reached. This spreading process has been
assumed by Goldsmith, but other phonologists have discovered systems in which the process does
not occur (Pulleyblank 1986). Therefore the next version of AMAR will most likely not perform
this spreading automatically. The �nal interpretation of Goldsmith's statement made by AMAR is
that, in addition to vowels and tones, the association convention is assumed to apply to all freely
associating segments.

In some theories (such as that described in Kenstowicz (1994, page 335)), spreading extends until
it violates the line crossing condition. Thus, a spreading high tone would be predicted to create a
contour tone (here, a falling tone) with the next low tone, since there would be no prohibition against
it spreading onto the vowel connected to the low tone. In the current version of AMAR, however,
spreading was implemented such that it only extends to unconnected segments. The next version of
AMAR may rede�ned spreading to correspond to the former, less restrictive theory, however.

When AMAR was designed, the author was under the impression that articulatory pointers, as
introduced by Sagey (1986), were not commonly used. Therefore, no facility currently exists to
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support this feature. However, it appears that such pointers are coming into increasing use, and the
next version of AMAR will include some such facility.

Occasionally a system will occur in which a class node will be linked to a feature such that the
class node has two of the same feature. In this case there are three things that could happen (all three
are relied upon by di�erent linguists espousing various theories about autosegmental phonology):
the old feature could be deleted, both features could be kept, or the old feature could be deleted
only if the two features have the same value. AMAR takes the �rst course, although if one uses the
\-ks" option the second will be chosen.

3.2 User Interface

From the viewpoint of the user, AMAR acts much like a programming language. One �rst uses a
semi-programmatic format1 to specify a language with a system of rules, and one may then �lter
inputs through these rules. Within this speci�cation �le, the user provides the name of the language,
a speci�cation of the language's phonemes, a description of the tonal system, a list of free associates,
a set of de�nitions (essentially macros used to simplify rule de�nitions), and the rules of the language.

The format is as follows:
The �rst line of an AMAR speci�cation �le must be

Language identi�er:

where identi�er may be an alphabetical character (upper or lower case \a" through \z" with no
diacritics) followed by a sequence of such characters, possibly interspersed with digits. If enclosed
with quotation marks, however, an identi�er may contain any characters other than tabs, spaces,
periods, new lines, sharp signs (\#"), pluses, or quotation marks. For example, in the Mandarin
example this line was \Language Mandarin:".

3.2.1 Phoneme Speci�cation

Following the language name speci�cation is the phoneme speci�cation. This begins with a speci�-
cation of the names of all the phonemes, in the form:

Phonemes: identi�er, ..., identi�er.

that is, the word \phonemes" followed by a colon, a list of identi�ers (as above), separated by com-
mas, and a period. Note that statements in the AMAR language follow the general form of a keyword
followed by a colon, then a speci�cation of some sort|possibly an identi�er, a comma-separated list,
or some more complicated speci�cation|and �nally ending with a period. Capitalization does not
matter in the case of keywords such as \language," \phoneme," etc. Note also that, throughout the
language speci�cation �le, no two identi�ers may refer to the same thing, so, for example, the lan-
guage name may not be the same as one of the phonemes of the language. After the speci�cation of
phoneme names, the user must decide among the possible methods of phoneme representation: CV
(based on the notation generally used to describe simple tone languages), CV/Matrix or X/Matrix
(similar to the notation used in SPE), and CV/Tree or X/Tree (based on the notation of feature
geometry developed in Mohanan (1983), Clements (1985), and Sagey (1986).) The method chosen
would be speci�ed by:

SpecMethod: method.

where method can be any one of CV, CV/Matrix, X/Matrix, etc.
CV is the simplest method, allowing only three tiers (tonal, skeletal, and phonemic). In this

method, the skeletal tier is occupied by C's (consonants) and V's (vowels), as well as the various
boundaries (word and morpheme). The phonemic tier simply stores the representation of the various
phonemes (e.g., the representation for \a" would be \a," as opposed to some indication that \a" is a

1See Appendix for full grammar.
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Figure 3-1: Feature Matrix Representation of \a"

low back unrounded vowel, etc.) This representational system is su�cient for tonal languages whose
properties are una�ected by features other than syllabicity. If CV is chosen, the next line must be:

Vowels: identi�er, ..., identi�er.

and then:

Consonants: identi�er, ..., identi�er.

where each identi�er must be identical to one of the phonemes speci�ed earlier. Note that either
line may be left out or simply consist of the keyword followed by a colon and a period, in which case
there are assumed to be none of that list. The list of vowels must precede the list of consonants for
this reason, as, if the consonant list is �rst, the program will assume that the user is attempting to
say that there are no vowels. Any phoneme not de�ned to be a consonant or vowel is assumed to
be an X.

CV/Matrix di�ers from CV only in that its phonemic tier contains, instead of simple featureless
representations, matrices of features corresponding to the notations of the SPE theory. Thus, \a"
might be represented as in �gure 3-1. This system is primarily useful for writing rule systems in which
autosegmental notation is only relevant for the tonal and skeletal tiers. If CV/Matrix is chosen, the
user must specify the consonants and vowels as for CV above and then the features, in three sections:
\Features," \Defaults," and \FullSpecs." One speci�es features �rst by listing all the features used
in the language. This speci�cation is accomplished in the \Features" section, with the same syntax
as for the \Phonemes" section (following the keyword \Features.") The default section builds sets of
features that correspond to all the speci�ed phonemes|when phonemes are encountered in the input
(that to which the rules are to apply), they will be replaced with a matrix of features as speci�ed in
this section. The matrices speci�ed in the default section can be ambiguous. That is, the program

will work �ne if two phonemes end up having the same default representation, but something must
happen to disambiguate them. The rules can add additional features to various matrices in the
chart, and after rules have applied, the program checks matrices in the chart (produced by applying
the rules to the input) against those built up for each phoneme in the default and full speci�cation
sections to determine which phoneme to output. Ideally, the matrices built up from both the default
and full speci�cation sections should not be ambiguous. Default matrices are speci�ed as follows:

Defaults: matrixspec, ..., matrixspec.

where matrixspec refers to one of the following:

identi�er -> matrix

identi�er -> identi�er

identi�er -> identi�er matrix

any -> matrix

any -> identi�er

29



matrix -> matrix

vowel -> matrix

consonant -> matrix

These speci�cations are applied in order from top to bottom { the programmatches phonemes against
the left hand side of the speci�cations (identi�ermatches a particular phoneme, any matches every
phoneme,matrix matches all phonemes with the features listed in the matrix2, and consonant and
vowel match all consonants or vowels, respectively) and then, if the right hand side is a matrix,
copies the features from the right hand side into the phonemes matched. If the right hand side is
an identi�er, the program will copy the features from the phoneme the identi�er speci�es into the
phoneme matched by the left hand side, and if the right hand side contains both an identi�er and
a matrix, features will be copied from �rst the identi�er and then the matrix. If a phoneme already
has some feature being copied into it, the original feature will be replaced. One speci�es a matrix

as follows:

[ feature, ..., feature ]

where feature is a phonological feature (such as �voice), speci�ed by \+", \-", or nothing followed
by an identi�er naming the feature, which must already have been speci�ed in the \Features" section.
For example, a voiceless obstruant (such as \p," \t," \ch," etc.) might be speci�ed by means of the
matrix [-voice, -sonorant].

The \FullSpecs" section is speci�ed in exactly the same manner as the \Defaults" section, except
that it is preceded by the keyword FullSpecs.

X/Matrix is exactly the same as CV/Matrix except that syllabicity must be speci�ed as a feature
in the phonemic tier rather than as an element of the skeletal tier. Instead of C's and V's, the
skeletal tier contains X's. This system is useful for writing rule systems similar to those for which
CV/Matrix is appropriate, but in which the rule author wishes to treat syllabicity as a feature. To
specify phonemes under X/Matrix, one proceeds as described above for CV/Matrix, except that one
may not specify lists of consonants and vowels, and the \Defaults" and \FullSpecs" sections may
not use the keywords consonant and vowel to match phonemes.

CV/Tree allows the user to employ any number of tiers, and represents phonemes as trees of
features linked by class nodes, as �rst proposed in Mohanan (1983), Clements (1985), and Sagey
(1986). The CV/Tree speci�cation method allows the full range of features available within AMAR.

After one has chosen SpecMethod: CV/Tree, one must specify the consonants and vowels as
described above, and for each phoneme the phonemic tree. This involves specifying the general tree
and then defaults and full speci�cations, similarly to the matrix speci�cations. When specifying the
general tree, the skeletal tier and the tonal tier will already have been speci�ed by default. Unless
otherwise speci�ed, the skeletal tier acts as the topmost node of the tree (the root), and the tonal
tier is the immediate inferior of the skeletal tier. While specifying the tree, either of these tiers may
be freely referred to and placed anywhere within the tree structure. The following syntax must be
used in order to specify the general phonemic tree:

Tree f node, node, ..., node g

where node may be any one of:

f identi�er g
f identi�er : identi�er g

or

f identi�er : identi�er : [identi�er], ... , [identi�er] g

Of these, the �rst creates a topmost class node3. As mentioned previously, this is by default the
skeletal tier, but this method may be used, for example, to create a syllable structure dominating

2more on this later
3A class node names both a tier and a segment. That is, there will be a tier with the name of the class node, and

this tier will contain only segments of that class node type.
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rhyme

σ

coda

X X X

onset

nucleus

Figure 3-2: Typical Syllable Structure

the skeletal tier, or perhaps even morphemic and word-level structures. The second type of node
speci�cation states that the class node referred to by the �rst identi�er is an immediate inferior of
(i.e., is directly dominated by) the class node referred to by the second identi�er. It is an error if the
second identi�er has not already been de�ned to refer to some class node, but if the �rst identi�er
has not been previously used, the program will create an empty class node and place it as an inferior
of the class node referred to by the second identi�er. Note that this process of de�ning a class node
as inferior to another also de�nes elements of the tier de�ned along with the class node as freely
associating with the elements of the tier de�ned along with the other node. Finally, the third type
of node speci�cation builds a class node referred to by the �rst identi�er (which must be unique and
previously unused), de�ned to be inferior to (and freely associating with) the class node referred to
by the second identi�er. The class node thus built is also de�ned to dominate (and freely associate
with) the features speci�ed as a list following the second identi�er. Each feature is there speci�ed
as a previously unused identi�er surrounded by square brackets.

As an example, one would de�ne a syllable structure like the one illustrated in �gure 3-2 as
follows:

Tree f
fsigmag,
fonset: sigmag,
frhyme: sigmag,
fnucleus: rhymeg,
fcoda: rhymeg,
fskeletal: onsetg,
fskeletal: nucleusg,
fskeletal: codag
g

After the general tree speci�cation, the user will specify defaults and full speci�cations in a fairly

similar manner to that used for the matrix methods above. The defaults section consists of:

Defaults: default, ... , default.

where default may be any one of:

identi�er -> segmentspec

identi�er -> identi�er

identi�er -> identi�er matrix

any -> segmentspec

any -> identi�er

featureless identi�er -> segmentspec

vowel -> segmentspec

consonant -> segmentspec

matrix -> segmentspec

identi�er -> matrix
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any -> matrix

vowel -> matrix

consonant -> matrix

or

matrix -> matrix

where matrix is as de�ned above, and segmentspec may be any one of:

segment f segspec g
segment f segspec identi�er g
segment f segspec : segmentspec, ... , segmentspec g

or

segment f segspec identi�er : segmentspec, ... , segmentspec g

where segspec should be an identi�er (referring to a phoneme or class node)4, which may either
have been de�ned by the user or be one of a few prede�ned identi�ers referring to general classes of
segments and prede�ned segments, as illustrated in table 3.1. Thus, a segmentspec is a structure
built around a segspec. This structure may simply be the segment referred to by a segspec, or it
may have a speci�ed tier (if the segspec is followed by an identi�er naming the tier) and inferiors, if
the segspec is followed by a colon and a comma-separated list of segmentspecs.

The defaults section matches individual phonemes (by identi�er), any phoneme (by any), conso-
nants or vowels, phonemes with the features speci�ed in a matrix, or phonemes with some particular
empty class node (by featureless identi�er, where identi�er refers to a particular class node).
After a phoneme has been matched, four changes could be made to it, depending on the right hand
side. If the right hand side contains an identi�er, the phoneme's de�nition is replaced by that of
the identi�er. If there is a segmentspec, the segmentspec is added to the phoneme de�nition. If
there is a matrix, the features in the matrix are copied (similarly to matrix copying for the Matrix
methods) into the phoneme de�nition. Finally, if the right hand side contains both an identi�er
and a matrix, the phoneme's de�nition is replaced by that of the identi�er, and the features in the
matrix are subsequently copied in. The full speci�cation section is like the defaults section except
that it is preceded by the keyword \FullSpecs."

X/Tree is identical to CV/Tree except that syllabicity must be speci�ed as a feature instead of
by listing consonants and vowels. By extension, the defaults and full speci�cation sections may not
match using the keywords \consonant" or \vowel."

3.2.2 Tone Speci�cation

After phonemes have been speci�ed, the user must next specify the tones of a language, or note that
it has none. The �rst piece of information the user may supply is whether tones speci�ed in the
input should begin connected or unconnected to the rest of the input structure5 . Tones will begin
connected if the user includes

ConnectTones

at the beginning of the tone speci�cation section.
Next, the user must specify the number of tones in the language:

NumberofTones: number.

4A segspec may also be a matrix (referring to one or more features), a number (referring to a tone, as will be

explained later), or a segspec in parentheses, which is used when segspecs are used in rule de�nitions, to state that
exact matching must be used with the segment.

5According to most autosegmental theories today, tones begin unconnected to anything else, and are connected by
means of rules. The user may not wish to deal with this, however.
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Prede�ned Identi�er Meaning

P Phoneme - refers to any phoneme,
class node, feature, or feature matrix.

T Tone - refers to any tone regardless of pitch.

V Vowel - refers not to a vowel phoneme but
rather to a V segment on the skeletal tier
(used to identify vowels in CV modes)

C Consonant - like V above
X X - refers to an X on the skeletal tier, or to a C or V.

\m[" Morpheme begin
\]m" Morpheme end
\w[" Word begin
\]w" Word end

V0 Zero or more vowels
C0 Zero or more consonants
X0 Zero or more X's, vowels, or consonants

Table 3.1: Prede�ned Identi�ers

If the language has no tones, this is the only essential part of the tone speci�cation. After the
number of tones, the user speci�es the maximum number of tones that can be connected to a vowel
at any one time (e.g., in Chinese no more than three tones at a time can be connected to a vowel,) by
following MaxTonesPerVowel: with a number or the keyword infinite. The user may then specify
the maximum number of vowels that can be connected to a tone at any one time, in a manner
analogous to the previous (with MaxVowelsPerTone). If this is greater than one, then a single tone
may spread over many vowels, as commonly occurs.

By default, AMAR refers to tones by their level. For example, if there are �ve tones, the

individual tones will be referred to by the numbers one through �ve. If the user wishes otherwise,
for example, if the language has a two tone system and the names \L" and \H" would be convenient,
this may be speci�ed as follows:

ToneNames: identi�er, identi�er, ..., identi�er.

where the identi�ers must be previously unused, in order from level one to the highest level, and of
the same number as the number of tones.

In order to facilitate input and output, the user may de�ne representations for various phonemes
connected to tones. If representations have not been de�ned, only 
oating tones (tones not initially
connected to anything) may appear in the input, and the program will not know how to print tones

in the output, so any phonemes connected to tones will not be printed. These representations are
placed in a section preceded by the keyword ToneReps:, are separated by commas and terminated
by a period. There are two types of tone representations. The �rst type consists of a phoneme
connected to one or more tones, which is represented:

identi�er : identi�er / segspec segspec ... segspec

where the �rst identi�er must not have been previously used (this will be the representation), the
second identi�er must refer to a phoneme, and the segspecs must refer to tones. For example,
the Mandarin low tone over \a" might be represented as "�a" : a / 3 5 1. The second type of
tone representation is that of a 
oating tone. This type is completely unnecessary from a practical
standpoint, since AMAR treats instances of the tone names in the input as 
oating tones, but
many orthographies treat 
oating tones di�erently from connected. At any rate, the user supplies a
representation for a 
oating tone as follows:

identi�er : / segspec

where identi�er is the new representation and segspec refers to the tone.
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3.2.3 Free Associates

The next possible part of a language speci�cation �le consists of a list of freely associating segments
(Goldsmith 1990, page 45). In general, only freely associating segments may connect in a given
language. Moreover, freely associating segments in some way have a propensity toward connecting,
and so, for example, whenever two segments connect, pairs of unconnected but freely associating
segments connect to one another in a pattern radiating outward from the initial connection and
halting at \blocking" connections (connections whose existence would cause line crossing to occur if
a pair of segments were to connect). Freely associating segments may be speci�ed thus:

Associates: assoc, assoc, ..., assoc.

where assoc is a set of two segment speci�cations:

fsegmentspec,segmentspecg

as de�ned above in the section on defaults. When two segments match the segmentspecs, they
are free associates. As previously noted, when de�ning a tree structure, as in CV/Tree or X/Tree,
AMAR automatically de�nes immediate superiors and inferiors in the tree to be freely associating.
Sometimes the user does not wish this to occur in some particular case. Therefore, one may place
a list of non-associating segments before the list of associating segments:

NonAssociates: assoc, assoc, ..., assoc.

For example, if the user had de�ned a class node \croot" that only associates with skeletal C nodes
and a class node \vroot" that only associates with skeletal V nodes, these class nodes would be
initially de�ned to associate with any skeletal nodes (i.e., X nodes), and the user would have to
provide the lists:

NonAssociates: fsegmentfXg,segmentfcrootgg, fsegmentfXg,segmentfvrootgg.
Associates: fsegmentfCg,segmentfcrootgg, fsegmentfVg,segmentfvrootgg.

3.2.4 De�nitions

The user may �nd that while de�ning a rule long segment speci�cations quickly become unwieldy.
Thus, AMAR provides a de�nitions section (preceded by Definitions:), wherein one may de�ne
a short identi�er to refer to a segspec or segmentspec. De�nitions are separated by commas and
concluded with a period, and take the following form:

Define identi�er segspec

or

Define identi�er segmentspec

3.2.5 Rule Speci�cation

A phonological rule consists primarily of a situation to match against in the input (for example, an
unconnected vowel and tone at the beginning of a word) and an action to take when this match
takes place (for example, connecting the vowel to the tone.) In general, the system will match and
apply the �rst rule speci�ed wherever possible, then the second, and so forth.

The rules section consists of the keyword Rules: followed by a comma-separated, period-
terminated list of rules. A rule is speci�ed as follows:

Rule identi�er:

[ RtoL ]

[ NoWordBounds ]

[ NoMorphBounds ]

Tiers: tier, tier, ..., tier.

Connections: connection, connections, ..., connection.

Effects: e�ect, e�ect, ..., e�ect.
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The identi�er names the rule, and must be unique. If the keyword RtoL is included, the rule will
apply right to left. Furthermore, including the keywords NoWordBounds or NoMorphBounds indicates
that the rule will ignore word or morpheme boundaries in matching and application. For example,
the tone shortening rule of Mandarin speci�ed NoWordBounds and NoMorphBounds because two low
tones do not have to be in the same word or morpheme for the rule to apply.

The tiers and connections sections of a rule de�ne the situation against which the rule matches.
A tier is speci�ed as follows:

identi�er : segspec segspec ... segspec

where identi�er names the tier and the segspecs can be identi�ers naming segments or de�nitions,
matrices, features (identi�ers optionally preceded by \+," \-," or \@"6), numbers referring to tones,
segspecs in parentheses7 , or sets of segspecs (speci�ed by f segspec, segspec, ..., segspecg.)
Note that one may use as segspecs the prede�ned identi�ers listed in table 3.1. For example, one
could use \P" to match any phoneme, class node, feature or feature matrix, or \T" to match any
tone. Thus, the skeletal tier containing a vowel, zero or more consonants, and the word boundary
would be represented:

skeletal: V C0 "]w"

In the connections section, the user speci�es which of the segments must be connected to which
other segments. A connection consists of two segrefs separated by the symbol --, where a segref
is one of the symbols used to specify a segment in the tiers above. If there is more than one such
symbol in the tiers, the symbol must be followed by a number in square brackets indicating which
one it is (starting from the top left of the chart and counting down to the bottom right), or a number
indicating which one it is on a given tier, followed by the name of that tier, all in square brackets.

The e�ects section describes what changes are to be made in the input when the rule has been
matched. The various di�erent e�ects are explained in table 3.2 and illustrated in �gure 3-3.

3.2.6 Specifying Inputs

AMAR attempts to follow a model of input and output in which a phrase �ts onto one text line and
appears as similar as possible to standard text. Thus, phrase boundaries are marked by periods or
new lines, word boundaries can be marked by spaces, etc. Most characters that can appear in the
input or output are de�ned by the user in the Phonemes, ToneNames, and ToneRepresentations

sections. Regardless of whether quotation marks are used in the speci�cation �le, they should not
be used in the input. For example, a phoneme de�ned in the speci�cation �le as "~n" should appear
in the input as ~n. All strings other than those speci�ed by the user that would be recognized in
inputs and outputs are summarized in table 3.3. Any unrecognized string appearing in the input
will be ignored. Thus, one could, for example, use tabs to break up lines and make input �les more
readable.

Input may be entered from standard input (directly at the keyboard or through a pipe), or it
may be read in from a �le. For the Chinese example, the �le might be the following:

w�o h�en k�un.

% I very tired

% 'I am very tired'

saved under the name \chinese.ipt." In this case, assuming that the language speci�cation �le was
named \chinese," the user would type

amar chinese chinese.ipt

6@ represents �, which matches either plus or minus.
7The parentheses indicate that any segment in the input which is to match the segspec must have no more

connections to segments on tiers listed in the rule than the segspec has in the rule (in any case, segments must have at
least as many connections as speci�ed in the rule, so segspecs in parentheses mean that the matching segment must
have exactly the same connections as in the rule)
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C0V

T word

Connect an unconnected vowel separated from the word 
boundary only by zero or more consonants to the closest
unconnected tone to the word boundary.

Rule "Shorten High":
Tiers:
  skeletal:  V,
     tonal: H H.
Connections:
  V −− H[1],
  V −− H[2].
Effects:
  V −Z− H[1].

V

H H

Disconnect the first of two high tones
connected to a vowel.

Rule "Spread Left":
Tiers:
  skeletal: (V) C0 V,
     tonal:        T.
Connections:
  V[2] −− T.
Effects:
  << T skeletal.

V

T

C0V

In the environment of an unconnected 
vowel, followed by zero or more
consonants and a vowel connected to a
tones, spread that connection left along the
skeletal tier.

Rule "Spread Right":
Tiers:
  skeletal: V C0 (V),
     tonal: T.
Connections:
  V[1] −− T.
Effects:
  T >> skeletal.

V

T

C0 V

In the environment of a tone connected to a
vowel that is followed by zero or more
consonants, then an unconnected vowel,
spread the tonal connection right along the
skeletal tier.

Replace (or mutate) the second of two high tones
connected to a vowel with a low tone.

Rule "Mutate Double High":
Tiers:
  skeletal:  V,
     tonal: H H.
Connections:
  V −− H[1],
  V −− H[2].
Effects:
  H[2] −> L.

V

H
L

H

Rule "Insert High":
Tiers:
  skeletal: "w[" (V),
     tonal: "w[".
Effects:
  V ::−> H / "w["[2] _ .

V

Hword

Insert and connect a high tone to an unconnected
vowel immediately at the beginning of a word.

Rule "Epenthesis":
Tiers:
  skeletal: C C.
Effects:
  0 −> A / C[1] _ C[2].

Define A segment{V skeletal: segment{a phonemic}}

C V C

a

Insert a vowel and an "a" between two consonants, and
connect them.

Rule InitiallyConnectTones:
Tiers:
  skeletal: (V) C0 "]w",
     tonal: (T)    "]w".
Effects:
  V :: T.

Rule "High Tone Metathesis":
Tiers:
  tonal: "]m" H "m[".
Effects:
  H −> "m[" _. morph

H
morph

When a high tone is directly between two morpheme
boundaries, move the tone into the right−hand morpheme.

Rule "High Tone Metathesis (2)":
Tiers:
  tonal: "]m" H.
Effects:
  H −> _ "m[".

H
morph

When a high tone is directly to the
right of a morpheme end, move the
tone into the left−hand morpheme.

Figure 3-3: Rule Types Allowed by AMAR, with Conventional Equivalents
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E�ect Description

segref :: segref Connect two segments

segref -Z- segref Disconnect two segments

segref >> identi�er Apply spreading right from
segment along the tier
speci�ed by the identi�er

<< segref identi�er Apply spreading left from
segment along the tier
speci�ed by the identi�er

segref -> segref segref Metathesis: insert segref
between the two segments

segref -> segref Metathesis: insert after
the segment indicated

segref -> segref Metathesis: insert before
the segment indicated

segref -> segref replace the �rst segref
with the second

segref -> 0 delete the segref

segref :: -> segspec / segref insert segspec before the
second segref and join it to
the �rst

segref :: -> segspec / segref insert segspec after the
second segref and join it
to the �rst

segref :: -> segspec / segref segref insert segspec between the
second and third segrefs and
join it to the �rst

0 -> segspec / segref insert segspec before segref
0 -> segspec / segref insert segspec after segref
0 -> segspec / segref segref insert segspec between

the segrefs

Table 3.2: Usable E�ects under AMAR

Character Purpose

m[ Beginning of morpheme
]m End of morpheme
+ Morpheme boundary (same as ]mm[)

w[ Beginning of word
]w End of word

<space> Word boundary (same as ]ww[)
# Word boundary (same as ]ww[)

% Comment (ignores rest of line)

. End of phrase
<newline> End of phrase

Table 3.3: Special Input/Output Characters
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to see the result. amar -d will display internal phoneme and tone representations as rule applications
progress. Any error messages produced normally or output produced as a result of \-d" will be sent
to standard error output. Normal output (i.e., the results of rule application) will be sent to standard
output, where it can be sent to a �le, the screen, or wherever the user wishes. To send the output
to a �le, the user would type (for the Chinese example, assuming output �lename \chinese.opt")

amar chinese chinese.ipt > chinese.opt

By saving the output in a �le, the user could compare actual outputs to expected outputs by using
a utility such as di� . For example, if the expected outputs for Chinese were stored in \chinese.ept,"
the user could compare by means of the command:

diff chinese.opt chinese.ept

If there is no output from this command, the expected outputs were the same as the actual outputs.

3.3 Program Design

The Automated Model of Autosegmental Rules was written in C++ , an object-oriented programming
language, as described in Bjarne Stroustrup's The C++ Programming Language: Second Edition

(Stroustrup 1991). This language was chosen for its relative speed and portability. The program
can be divided into four major modules: the language speci�cation parser, the input/output system,
the matching module, and the application module. Central to all of these are the objects themselves.

3.3.1 Objects

The primary objects of the system are Rules, Tiers, Charts, StrTables and Segments. A Rule
consists primarily of a name and two sets of tiers. The �rst set, called \original" is used to match
against the Chart built as a result of reading the input. When the \original" tiers have been matched,
the application module modi�es the matching section of the Chart such that it matches the other
set of tiers held in the rule, the \replacement" tiers. In addition to the name and the tiers, a rule
also holds boolean variables specifying whether it is a sandhi rule and whether it ignores word or
morpheme boundaries. A Tier is primarily a holder for segments, and as such consists of a name, a
list of segments, and a current position within that list. The Chart and StrTable (\String Table")
together hold almost all of the data used by AMAR. The chart holds the tiers into which the input
is placed after it has been converted into autosegmental form, the name of the language, the rules
in the order they are to be applied, a map de�ning which segments freely associate, and language-
speci�c parameters such as the maximumnumber of tones per vowel, whether sandhi rules exist, the
number of tones, the tree structure, and whether tones should be initially connected. The other half
of AMAR's data is held in an StrTable. This structure maps strings to tiers, segments, etc., and

contains de�nitions for anything to which the user refers by means of an identi�er in the language
speci�cation �le.

If the chart and string table are the main containers of data in AMAR, the Segment is the main
form of that data. A Segment could actually be any of a number of object-oriented classes, all
of which inherit, directly or indirectly, from the parent class Segment, as shown in �gure 3-4. As
a consequence of this inheritance scheme, if a rule refers to some segment type from which other
segment types inherit, the reference will match anything of that type or of any of the inheriting
types. All segments contain a unique identi�cation number, a pointer to the tier they are on, and
some indication of type. In addition, connectable segments (all those which inherit from Connecta-
bleSegment) contain pointers to all superior and inferior segments, indications of whether matching
is exact or not, and information relating to spreading (whether the segment spreads right or left,
and along which connection). When segments are connected to one another, one segment is always
inferior and one superior. This relationship is determined by the user's de�nition of tree structure
for the Tree speci�cation methods, and in the other methods skeletal segments are superior to tones
and phonemes. As will become apparent, most routines operating on a given segment can only a�ect
the segment itself and any segments connected inferior to it.
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Segment

C_0

V_0

X_0

WordBegin

ConnectableSegment

WordEnd

MorphemeBegin

MorphemeEnd

X

SegmentSet

Consonant

GenericTone

GenericPhoneme
VowelTone

Phonemic

ClassNodeFeature

FeatureMatrix

"w["

"]w"

"m["

"]m"

C0

V0

X0

T

P

C V

X

Figure 3-4: Inheritance Structure of Segments within AMAR, with Corresponding Prede�ned Iden-
ti�ers
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3.3.2 Language Speci�cation Parser

The language speci�cation parser acts mainly to build the objects needed by the other modules
and to provide information about how other modules should behave. The parser consists of a C
program generated automatically from a grammar �le written in yacc and a C++ module containing
procedures to be called upon receiving various instructions in the language speci�cation �le. This
program receives input from a lexical analyzer, another C program generated automatically from a
speci�cation written in lex . The lexical analyzer takes the input from the language speci�cation �le
and breaks it up into tokens. If the token happens to be an identi�er (token \ID"), the procedure
install id builds a string table entry which contains the original string entered by the user. String
table entries may additionally contain pointers to tiers, segments, full speci�cations, and \matches,"
which will be explained later. These entries may be used for four di�erent processes: they may de�ne
a \phoneme" (here used to refer to anything that can appear in the input or output other than a
boundary or comment); they might de�ne a tier, a class node, or a feature; they could be used for
a \match" referencing some segment8; or they could simply be used to give a name to something.

For a \phoneme," the entry will contain the corresponding segment, and perhaps a full speci�ca-
tion (as generated in the \FullSpecs" section, and used for matching after rules have applied.) The
form of a phoneme's segment varies greatly depending on the speci�cation method and the type of
phoneme. There are three phoneme types: phonemic segments (de�ned in the \Phonemes" section),


oating tones (de�ned automatically based on the number of tones and optionally by the \Tone-
Names" and \ToneRepresentations" sections), and phonemic segments attached to tones (de�ned in
the \ToneRepresentations" section.) A phonemic segment will be an object of type \Phonemic" (a
connectable segment which also contains a string representation) in CV mode, a \FeatureMatrix" (a
connectable segment which also contains a list of features) in the Matrix modes, or a \ClassNode"
(a connectable segment which also contains a name) heading a tree of class nodes and features in
the Tree modes. This segment, in whatever mode, will have a \C," \V," or \X" as a superior. A

oating tone segment will simply be an unconnected \Tone" object, a connectable segment which
also contains an integer level. Finally, a phonemic segment attached to tones will be a \V," \X,"
or \C," depending on the original phonemic segment. Whichever skeletal segment it is, it will have
the tones as inferiors, along with a copy of the original phonemic segment.

When de�ning a tier, class node, or feature, string table entries will contain both a tier and a
segment, because in autosegmental phonology tiers may only contain speci�c types of segments; any
segment to be stored in the tier must match the segment stored along with that tier. Thus, the
skeletal tier contains an \X," the tonal tier contains a \T," and the phonemic tier9 contains a \P."
Class nodes and features may only appear on their own tier in the Tree modes, so when they are
de�ned (in the \Tree" section), a tier with the same name is de�ned and placed in the string table
entry along with the segment. In contexts where a tier is expected, the entry will be treated as a
tier, and in contexts where a segment is expected, the entry will be treated as such.

When the user de�nes a rule, the parser creates the \original" and \replacement" tiers, which

are initially identical (although the segments in the replacement tiers are copies of the segments in
the original tiers and not the actual segments themselves). In addition, it creates a map containing
\matches." Each \match" contains a copy of some segment from the rule tiers, along with the
position of that segment within the original and replacement tiers. In the \E�ects" section, the
parser will take the user's segrefs and �nd the \match" segment corresponding to the reference.
In the parser, almost all global data must be transferred in string table entries, so this \match" is
stored in such an entry. The parser then uses the \matches," the map, and the rule to modify the
\replacement" tier (and the map, so that later e�ects do not get confused) in accordance with the
desired e�ect.

The �nal, and simplest, process in which the string table is involved is simply that of giving names
to objects. Thus, charts, rules, class nodes, phonemes, features, tones, and tone representations have
names corresponding to some string table entry. In order to save memory and limit expensive string

8This corresponds to a segref in the speci�cation �le
9These three tiers are prede�ned before parsing begins.
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copying operations, the only strings stored within AMAR are those found in the string table, and
all other objects simply contain references to them.

The only operation in which the parser is involved, other than building objects and storing them
in the string table, is building objects and storing them in the chart. Thus, the parser generates the
tiers held by the chart (except for the three tiers already stated to have been prede�ned), the rules
to be applied to the chart (also stored in it), the map of free associates (Free associates are de�ned
\manually" in the \Associates" section and automatically when class nodes are de�ned in the \Tree"
section|class nodes automatically freely associate with their direct superiors and inferiors), and all
of the parameters: the maximum number of tones per vowel and vowels per tone, the number of
tones, whether tones connect, and whether sandhi rules and sandhi rules that apply from right to
left exist.

3.3.3 Input and Output

The input/output system of AMAR relies primarily on the string table and the matching system,
although it provides a surprising amount of complexity on its own. The overall input/output system
begins by going through the string table and �nding the maximum length of a phoneme, where a
phoneme is specially de�ned to mean a string that may legitimately appear in the input. It then
attempts to read in one word at a time from the input. If there are sandhi rules, AMAR reads in a
phrase, then applies the rules in order and outputs the phrase, deleting it from the chart. Otherwise,
the system reads in one word at a time, applies rule to it, then prints and deletes it, thus saving
memory and minimizing delay between outputs.

The Input System

The input system can be divided into a section that reads one word at a time and one that reads
a segment at a time. The former simply places a word begin at the beginning of each tier in the
chart, then calls the other section to return one segment at a time until a word end is returned,
at which time a word end is placed at the end of each tier. Each tier's current position is set to
the beginning of the word read in, and the section returns control to the main loop that called it.
As each segment is read in, the \read word" procedure checks to see whether it is a boundary, a

oating tone, a phoneme connected to a tone, or a simple phoneme. Boundaries are copied and
added to every tier of the chart. Floating tones are added to the tonal tier. Phonemes, connected
or unconnected to tones are sent to the procedure \add skeletal segment," which searches through
all the connections and adds each segment to the appropriate tier (when a segment is de�ned in the
parser, it is associated with its tier.)

The section that reads in one segment at a time10 takes one character at a time from the
input. These characters are built up into a string whose maximum length equals the maximum
length of a phoneme. If the �rst character read by the function represents a boundary or comment
(<space>, <return>, \#", \.", \+", or \%"), the program will go through the input and eliminate
redundant boundaries and comment lines, and �nally return a morpheme begin or end (for morpheme
boundaries) or a word end (for other boundaries), and set the 
ag \eophrase" (\end of phrase"), if
appropriate. Otherwise, \read segment" will attempt to �nd the longest string matching a phoneme
in the string table. This is accomplished by looking up the string as it is built|if the table contains a
phoneme corresponding to the string, this phoneme is stored as the tentative segment to be returned
and the length of the string at that point is stored as well. When this string matches the maximum
length, the program checks to see if a segment was found. If not, the �rst character of the string is
discarded (in this way, \read segment" ignores unrecognized characters) and the rest are put back
to be read later. The procedure will then return a 
ag denoting that no segment was found. If a
segment was found, any characters which were read after the match are put back into the input11.

10accessed via the function \read segment"
11Actually, for safety the program maintains a stack of characters, into which characters to be reprocessed are

placed. When \read segment" wishes to read a character, it �rst checks to see if there are any in the stack, and, if
so, pops o� the top character.
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Finally, the segment is returned.

The Output System

AMAR produces two types of output: \process" output used to show what is going on or report
errors, and the actual output produced when rules are applied to the input. \Process" output is
sent to standard error, and actual output to standard output.

Error reporting is fairly straightforward; when an error occurs, a message is output, and pro-
cessing halts. The other type of \process" output only appears when AMAR is run with the \-d"
(\debug" or \demo") option. This option displays the contents of the chart before rules have ap-
plied, states which rules are applying and whether any change was made, and, if a change was
made, displays the chart contents after rule applications. The \-d" output is produced by \print()"
members of the ClassNode, Feature, FeatureMatrix, Tone, and Phonemic classes, which simply print
the information stored in the class object other than that stored in any connectable segment (thus,
names, values (plus, minus, alpha, or unde�ned), features, levels, and representations, respectively),
along with a unique identi�er for ClassNodes and Features so that e�ects such as shared nodes
become evident.

To produce actual output, AMAR goes through the skeletal tier of the chart, one segment at
a time, and calls the \print()" member for each segment encountered. Since the skeletal tier only
contains boundaries and X's12, there are only �ve such members, corresponding to morpheme begins,
morpheme ends, word begins, word ends, and X's. When a morpheme begin immediately follows a
morpheme end, the program prints a \+". Similarly, when a word begin immediately follows a word
end, the program prints a space. Otherwise, the boundary print functions do not output anything.

The print member for X's must match the segment against the full speci�cations stored in the
string table, if any, or the segment speci�cations found there. To do this, the X is marked for exact
matching, and is then matched against every phoneme in the string table, using the matching system
to be described later. If there is no match, nothing is printed. If there is only one match, AMAR
prints the string stored in the table entry containing the matching phoneme. Otherwise, AMAR will
print all of the matching strings in parentheses and separated by slashes.

3.3.4 Matching

Before a rule may be applied, it must be matched. That is, the program must search through the
chart and �nd a position corresponding to the situation described in the rule. In fact, the program
must �nd such a position for each tier mentioned in the rule, and all of these positions must be
consistent. That is, if the rule mentions that some segment in one tier is connected to some other
segment in another tier, the matching chart segments for the two tiers must connect to one another.

In order to achieve this goal, the matching section, moving from the most superior tier of the
rule13 to the least superior tier, attempts to �nd a match position for each tier. To ensure consistency
and e�ciency, for a given tier the program only begins matching with the �rst rule segment that does
not connect to previously matched tiers. When all match positions have been found, the program
adjusts them so that each match position actually refers to the �rst item on that tier that was
mentioned in the rule, by checking for each tier to see whether a matched item on a previous tier
connects to some segment previous to the current match position for the tier.

The matching process for a tier occurs as follows: the procedure keeps track of a position within
the tier, starting from the recorded tier current position (either one position after the last position
at which the current rule was applied on the tier or at the beginning of the word,) and starts o� by
�nding the �rst rule segment both in the proper tier and unconnected to a previously matched tier.
This segment is matched against the segment at the current tier position, moving the tier position
forward until either the segment matches or there are no more segments in the tier, in which case
the rule does not match. If the segment did match, the position is saved as a tentative match

12and C's and V's, which are here treated the same as X's
13In matching, only the \original" tiers of a rule make a di�erence. Therefore, any reference to a rule tier in a

discussion of matching refers to one of the \original" tiers of that rule.

42



position, and the procedure attempts to match the rest of the rule. If the rest matches, the saved
position is returned. Otherwise, the matching process begins again from the next position after the
saved position, until the tier either matches or conclusively does not match (by not having enough
segments after the current position to match.)

Matching occurs rather di�erently for connectable and non-connectable segments. Any given non-
connectable segment may either be a boundary or a \zero," which is merely a notation matching zero
or more connectable skeletal segments. Boundary matching is fairly simple: any boundary matches
another of the same type. A zero always successfully matches; its function is to move the current
tier position forward to the �rst position in which there is not a segment of the type of the zero. For
example, after matching against a C 0, the current tier position will be on the next segment which
is not a C.

For matching two individual connectable segments, there are three levels of matching: eq , equal ,
and eqv . That is, one ascertains whether two segments match by calling the function eq. This
function checks whether the two segments are equal , then checks for each of the rule segment's14

inferiors whether it is equal to some other of the chart segment's inferiors. eq also makes sure that
the rule segment's inferiors are, within their tiers, in the same order as the chart segment's.

The equal procedure checks �rst to see if the rule segment is eqv to the chart segment. If this
is so, the tiers must have the same name. Finally, if the tiers have the same name, the segments
must match exactly or roughly , depending on whether the rule segment has been marked exact (by
surrounding it in parentheses.)15 To match exactly, the chart segment may have fewer or more
connections than the rule segment, but within the tiers accessible from the rule segment (the tiers
to which the rule segment is connected), the chart must have the same number of connections. To
match roughly, the chart segment must have the same number of inferiors as, or more inferiors than,
the rule segment, within the tiers accessible from the rule segment.

For a rule segment to be eqv to a chart segment, the chart segment must generally be of the same
type as the rule segment, or of a type which inherits from the rule segment type (see �gure 3-4.)
However, a feature matrix may be eqv to a feature, a feature matrix, or a class node. In addition, a
segment set may be eqv to a segment or a segment set. For a feature matrix to be eqv to a feature,
every feature in the matrix must either be eqv to the feature or eqv to some feature connected to
the feature. To be eqv to another feature matrix, a feature matrix must be such that every feature
in it is eqv to a feature in the other matrix. Finally, to be eqv to a class node, every feature in
the matrix must be eqv to an inferior of the node. For a segment set to be eqv to a segment, some
element of the set must be eqv to the segment. For the set to be eqv to another set, every segment
in the set must be eqv to some segment in the other set. For a tone to be eqv to another tone, the
tones' levels must be the same. For phonemes (of the CV mode type), the representations must be
the same. For class nodes, the names must be the same. Finally, for features the names must be the

same, and the rule feature's value must be \�" (speci�ed by \@", since there is no � key on most
keyboards) or the values must be equal (both pluses, minuses, or unspeci�ed.)

3.3.5 Application

After consistent matching positions have been established for every tier, the application section
begins by making a correspondence map between the rule and the chart. This map takes essentially
the same form as the map used in the parsing section, containing \matches" consisting of a copy of
each segment in the \original" tiers paired with the chart location of the matching segment16. The
section next loops through the rule tiers, in the tier looping through the \replacement" tier and the
map corresponding to it. If the current rule element is the same as the current map element (if they

have the same identi�cation number), it will check whether the segments have the same number

14The equality operations under AMAR are not re
exive, so for any operation of the type A = B, the segment A
will be referred to as the rule segment, and B as the chart segment, since that is the usual order in which the equality
operations are called.

15Note that by the Conjunctivity Condition (Goldsmith 1990, page 39), segments to be deleted or replaced should
be marked exact. Segments that are explicitly supposed to be unconnected should also be marked exact.

16For more insight into the construction of this map, see the function Rule::application in appendix C.
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of connections, and if they do not or the connection spreads, connections will be adjusted. If the
segments are not the same, segments will be adjusted.

Connection Adjustment

The connection adjustment subsection breaks any connections that exist in the map, but not in the
replacement chart, and adds those that are in the replacement chart but not the map. Connection
adjustment occurs in the map, which is fairly simple, and in the chart, which, as will be seen, is not
quite so simple.

The map and the rule charts do not always re
ect the actual chart very exactly. If a rule shows
two segments connected, they need not be directly connected in the chart. Thus, when breaking
a connection in the chart, the procedure (break connection) responsible for disassociation �rst
checks to see if the segments are directly connected. If so, they are disconnected. Otherwise, it will
check to see which of the superiors of the inferior of the two segments is connected to the superior
of the two, and will then disconnect the inferior segment from the connecting superior.

To add a connection, the procedure (add connection) begins with two segments to be connected:
a superior and an inferior. Next, the actual two segments to connect must be determined. The

general principle used for this is to disturb tree structure as little as possible. Therefore, the
connection will be made as close as possible to the inferior segment, and the procedure searches for
a new superior segment to connect to the inferior. If the superior segment provided freely associates
with the inferior, the new superior will be the same as the old. Otherwise, the procedure looks
at all the segments dominated by the superior segment and chooses the segment having the fewest
inferiors (to be as far as possible from the top of the tree) amongst those that freely associate with
the inferior segment. At this point, the procedure will search through the chart and see whether the
new connection will cross any existing connections. If it will, the crossed connections will be broken.
Finally, the connection will be made.

If a connection spreads (if, during rule construction, a segment was marked spread left or
spread right), the segment marked to spread will connect to every segment that meets the following
criteria: it is on the same tier as the connection along which the segment spreads, it is in the direction
of spreading, it freely associates with the spreading segment, it is not separated from the spreading
segment by any sort of boundary or crossing connection, and connecting to it will not cause a
violation of the tones per vowel and vowels per tone parameters.

Segment Adjustment

If the current map segment is not the same as the current replacement chart segment, then the rule
involved segment deletion, metathesis, insertion, or replacement. If the current rule segment is found
in the map somewhere, and the map segment is not found in the replacement chart, then the chart
segment pointed to by the current map segment must be deleted. If the rule segment is in the map
and the map segment is in the replacement chart, then the chart segment must undergo metathesis.
If the rule segment is not in the map, and the current map segment is in the replacement chart, then
a new segment must be inserted in the chart. Finally, if the rule segment is not in the map, and the
map segment is not in the replacement chart, then the chart segment must be replaced.

To delete a segment from the chart, it is �rst detached from all its connections, then simply
removed from the tier. The same process then occurs to the corresponding map segment.

Metathesis essentially deletes the chart segment, then re��nserts it at the proper position, which
it �nds by looking for the chart segment corresponding to the map segment that precedes the proper
position. This process is then repeated on the map segment that corresponded to the chart segment
moved.

Inserting a segment �rst involves making two surface copies (i.e., copies which do not have
connections) of the rule segment to be inserted, and then insert one copy into the chart and one into
the map. Next, the insertion process duplicates the rule segment's connections in the map and chart.
If the rule segment is connected to something that does not appear in the map, the connection is
not duplicated, as it will be taken care of when the other segment is inserted.
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The �nal process, replacement, is generally identical to insertion of the new segment followed by
deletion of the old segment except in the case where the segment involved is a feature matrix. For
a feature matrix, replacement is just a feature change, so this type of replacement is accomplished
by copying the new features into the chart matrix and replacing the map matrix as would happen
in a normal replacement.

Association Convention

If any new connections are made during application of a rule, the program will attempt to apply the
association convention at every modi�ed point of connection (any connection made as the result of
a rule) in the chart.

To apply the association convention at a given connection, the procedure17 begins just left of
the connection and connects pairs of unconnected (in terms of the two tiers concerned) but freely
associating segments until it reaches either a boundary or a connection between the two tiers. If a
boundary is reached, the procedure will keep attaching segments from the tier in which a boundary
was not reached until either there are no more freely associating segments in that tier, a boundary is
reached in that tier, a connection between the tiers is reached, or further connections would violate
restrictions on numbers of tones per vowel or vice versa. After the association convention has been
applied in one direction, the procedure then attempts to apply it in the other.

Back to Output

After the association convention has been applied, the application section returns and either the
next rule is applied, or the modi�ed chart is printed and emptied.

17Chart::apply assoc convention|see appendix C
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Chapter 4

Examples

To give the reader a feel for the workings of AMAR, this chapter will begin with a very simple exam-
ple based on an arti�cial tone language with only three phonemes and proceed through increasingly
complicated examples based on Bambara, Spanish, and �nally Arabic. A listing of previously in-
completely speci�ed examples can be found in Appendix B.

4.1 Simple Example

This section will model the imaginary language \Abc." In Abc, there are three phonemes: \a," \b,"
and \c." The �rst of these is a vowel, and the rest are consonants. Abc has two tone levels|low
(L) and high (H). It allows any number of tones to be connected to a vowel, but only three vowels
may be connected to a single tone. Finally, Abc associates tones to vowels from right to left, and
connected tones spread to connect to toneless vowels to their left.

Thus, the language would be represented:

Language Abc:

Phonemes: a, b, c.

SpecMethod: CV.

Vowels: a.

Consonants: b, c.

ToneLevels: 2.

MaxTonesperVowel: INFINITE.

MaxVowelsperTone: 3.

ToneNames: L, H.

ToneReps: "�a": a / L, "�a": a / H, "â": a / H L, "�a": a / L H, "�a": a

/ H H.

Associates: fsegmentfTg, segmentfVgg, fsegmentfXg, segmentfPgg.

Rules:

Rule "Initially Connect Tones":

Tiers:

skeletal: (V) C0 "]w",

tonal: (T) "]w".
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Effects:

V :: T.

Rule "Spread Left":

Tiers:

skeletal: (V) C0 V,

tonal: T.

Connections:

V[2] -- T.

Effects:

<< T skeletal.

The parsing process would proceed as follows: The parser would �rst create a Chart object with the
name \Abc." Next, it would create three objects of the class \phoneme," with the representations
\a," \b," and \c," respectively. These would be stored in the string table. Then, the parsing mode
would be set to \CV," and the phonemes would be connected to a \C" or a \V" depending on
whether they were listed as \Consonants" or \Vowels." The system will then note in the chart
that there are two tone levels and that there is no limit on the number of tones per vowel, but
that one may only associate up to three vowels to a single tone. After this, the system will re�act

to the \ToneNames" �eld by entering \L" and \H" into the string table referring to low and high
tone levels. As the last part of the tone de�nition section, the system will then create string table
entries corresponding to the vowel \a" connected to a low tone, a high tone, a falling tone, a rising
tone, and a long high tone. In the \Associates" section, the parser enters the pairs \Tone"/\Vowel"
and \X"/\Phoneme" into an internal list of freely associating segments, signifying that tones freely
associate with vowels and that phonemes freely associate with X's, consonants, and vowels. At the
�rst rule, the parser will create a Rule object with the name \Initially Connect Tones." It will
then create three tiers called \skeletal": a mapping tier, an \original" tier (for matching), and a
\replacement" tier for application. Into these tiers will go a V segment marked for exact matching, a
C0 segment, and a word-end segment. Next, three tonal tiers will be created, into which will go a T
segment (which matches any tone) marked for exact matching and a word-end segment. Finally, in
the \replacement" chart and the map (but not the chart used for matching), the V will be connected
to the T. At the second rule, the parser will create the same tiers as before, putting a V marked for
exact matching, a C0 segment, and a V into the skeletal tier and a T into the tonal. Next, in the
\original" chart, the \replacement" chart, and the map, the second V will be connected to the T.
Finally, the T in the \replacement" chart will be annotated to indicate that it spreads left along its
connection to the skeletal tier.

If, after parsing, the system were to receive the input \abcaaaaacL", the input and output section
would put a word begin on the phonemic, skeletal and tonal tiers. It would then put the segments
\abcaaaaac" on the phonemic tier, \VCCVVVVVC" on the skeletal tier, and \L" on the tonal tier.

The segments on the phonemic tier would each be connected to a segment on the skeletal tier, but
the \L" would be a 
oating tone, unconnected to any other tier1. Each tier would then receive a
word-end segment.

The �rst rule would then look throughout the chart for an unconnected V followed by zero or more
consonants and the word end on the skeletal tier and, on the tonal tier, an unconnected T followed
immediately by the word end. This matches against the last vowel in the word (surprisingly enough,
\a") and the low tone. These two segments are joined, and the association convention attempts to
apply. However, there are no adjoining pairs of unconnected tones and vowels, so the association
convention does not apply. The second rule then matches against the vowel/tone pair just connected

and connects the low tone to the second to last vowel on the skeletal tier. It then continues to spread,
attaching the low tone to the third to last vowel. However, any further attachments would cause
there to be more than three vowels attached to the tone, so spreading ceases.

1This would be the case also if the low tone were introduced as, e.g., �a , in the input. If the user wished tones to
start out connected, he or she would put the keyword \ConnectTones" before the \ToneLevels" line.
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Thus, the input \abcaaaaacL" produces the output \abcaa�a�a�ac." This output is produced by
going through the skeletal tier and matching each X (consonant or vowel) in it against elements
in the string table. When an X matches exactly one of the \phonemes" in the string table, the
output section prints that phoneme's string representation. Thus, \a" is the string representation
of a skeletal C connected to a phonemic Phonemic with the representation \a," etc.

If the input were \b�aaHcL," the \L" would be connected to the last \a," and the association
convention would connect both high tones (represented by \�a" and \H") to the �rst \a." The
spreading rule would not apply (since there would be no unconnected V elements), and the output
would be \b�a�ac."

4.2 Bambara

After having described the imaginary language Abc, this section will turn to a small subset of
the phonology of Bambara, a Mande tone language spoken in Mali (Hertz 1990). Bambara has
a twelve-vowel system, containing the standard �ve vowels of Spanish, Japanese, and many other
languages (\a," \e," \i," \o," and \u") paired with nasalized equivalents. Completing Bambara's
vowel inventory are the vowels \I" and \E." Hertz (1990) lists the following consonants: \p," \b,"
\m," \t," \c," \d," \s," \n," \r," \j," \k," \g," and \8." There are two tone levels, and high, low,

rising and falling tones appear on the surface. In Bambara, tones do not begin connected to speci�c
consonants, but are rather grouped with entire morphemes and attached via the two rules discussed
earlier for language Abc. Before these rules apply, however, there are two rules that apply to tones
found outside of normal morphemes (here termed \
oating tones.") In general, 
oating tones may
be found underlyingly in the pattern \H" or \HL." The rules are as follows: when a high tone (\H")
immediately precedes a morpheme begin, it is moved into the following morpheme. If, however, this
rule does not apply (typically because the high tone was blocked by a 
oating low tone (\L")) the
high tone is moved into the previous morpheme.

The subset of Bambara phonology described above might be speci�ed by the following:

Language Bambara:

Phonemes: m, n, "8", b, d, j, g, p, r, t, c, k, s, i, in, I, e, en, E, a,

an, u, un, o, on.

SpecMethod: CV.

Vowels: i, in, I, e, en, E, a, an, u, un, o, on.

Consonants: m, n, "8", b, d, j, g, p, r, t, c, k, s.

ToneLevels: 2.

ToneNames: L, H.

ToneReps: "�a" : a / H, "�a" : a / L, "â" : a / H L, "�a" : a / L H, "�an"

: an / H, "�an" : an / L, "ân" : an / H L, "�an" : an / L H, "��" : i

/ H, "��" : i / L, "�̂" : i / H L, "��" : i / L H, "��n" : in / H, "��n"

: in / L, "�̂n" : in / H L, "��n" : in / L H, "�e" : e / H, "�e" : e /

L, "ê" : e / H L, "�e" : e / L H, "�en" : en / H, "�en" : en / L, "ên"

: en / H L, "�en" : en / L H, "�o" : o / H, "�o" : o / L, "ô" : o / H

L, "�o" : o / L H, "�on" : on / H, "�on" : on / L, "ôn" : on / H L, "�on"

: on / L H, "�u" : u / H, "�u" : u / L, "û" : u / H L, "�u" : u / L H,

"�un" : un / H, "�un" : un / L, "ûn" : un / H L, "�un" : un / L H, "�I"

: I / H, "�I" : I / L, "Î" : I / H L, "�I" : I / L H, "�E" : E / H, "�E"

: E / L, "Ê" : E / H L, "�E" : E / L H.

Associates: fsegmentfTg, segmentfVgg, fsegmentfXg, segmentfPgg.
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Figure 4-1: Internal representation of m�us�o+dôn

Rules:

Rule "Floating High Tone Metathesis":

Tiers:

tonal: "]m" H "m[".

Effects:

H -> "m[" _.

Rule "Floating High Tone Metathesis (part 2)":

Tiers:

tonal: "]m" H.

Effects:

H -> _ "]m".

Rule "Initially Connect Tones":

Tiers:

skeletal: (V) C0 "]m",

tonal: (T) "]m".

Effects:

V :: T.

Rule "Spread Left":

Tiers:

skeletal: (V) C0 V,

tonal: T.

Connections:

V[2] -- T.

Effects:

<< T skeletal.

The parser, upon receiving the above speci�cation, would act in a manner almost identical to the
parsing of Abc above, except that the �rst two rules involve metathesis. Thus, for the �rst of these
rules the replacement chart di�ers from the original chart in that the \H" moves to the right side of
the morpheme begin, and the second in that the \H" moves to the left side of the morpheme end.

Upon receiving the input:

w[ m[ musoL ]m H m[ donL ]m ]w

(\It is a woman")2, the input system enters a word begin into each tier, followed by a morpheme
begin. Next, the segments \muso" are entered into the phonemic tier, corresponding to the skeletal
\CVCV." \L" is simultaneously added to the tonal tier. Input continues in this manner until the
word end is reached.

The �rst rule matches against the \H" between morpheme boundaries, and moves it into the
morpheme \don." Because of this movement, the second rule does not match. The third rule matches

2Note that the spaces between characters are actually tabs|AMAR reads spaces as word breaks.
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the �nal \o" in \muso," attaching it to \L." The association convention attempts to apply, but there
are no further tone/vowel pairs. Next, the third rule matches the vowel \on" in \don," attaching it
to \L." The association convention then attaches the moved \H" to the \on" as well. Finally, the
fourth rule applies, spreading the connection from the �rst low tone to the \u" in \muso," and the
output system produces \m�us�o+dôn" from the internal representation depicted in �gure 4-1.

From the input:

w[ m[ musoL ]m HL m[ donL ]m ]w

(\It is the woman") the system behaves much as before, except that the 
oating \L" blocks the �rst
rule from applying. The second rule thus matches and applies, moving the \H" into the morpheme
\muso." Thus, when the third rule applies, \H" is connected to the last vowel in \muso." The
association convention now connects the \L" to the \u" in muso. In the morpheme \don," only \L"
is connected to the vowel. Thus, no vowels are left unconnected, and the spreading rule does not
apply. The output is \m�us�o+d�on."

4.3 Spanish

The aspects of Spanish phonology modeled here are continuancy speci�cation in voiced obstruants
and nasal/lateral assimilation. In contrast to the previous examples, this section will examine two
models for Spanish. In addition, it will be noted that both of these models are incomplete, and a third
model will be proposed, but not fully speci�ed. All of these models attempt to explain the following
feature of Spanish: voiceless obstruants in Spanish (written \b," \v," \d," and \g") are underlyingly
unspeci�ed for the feature [continuant] (Lozano 1978, Goldsmith 1981, Clements 1987). The voice-
less obstruants receive a value of [+continuant] in most environments, except for the phrase-initial
environment ([-continuant] is preferred, but [+continuant] is optional), the environment following a
nasal, and the environment following a lateral, if the obstruant is a coronal.

4.3.1 Matrix Model

The �rst, and most incomplete, model uses a feature-matrix based, non-autosegmental approach.
In this model, a consonant unspeci�ed for [continuant] and preceded by a nasal3 will become [-
continuant]. Otherwise, consonants unspeci�ed for [continuant] will become [+continuant].

This model is speci�ed as follows:

Language Spanish:

Phonemes: a, b, B, "	", "�c", d, D, "�", e, f, g, G, " ", i, x, k, l, "2",

m, n, "~n", o, p, r, rr, s, t, u, w, y.

SpecMethod: CV/Matrix.

Vowels: a, e, i, o, u.

Consonants: b, B, "	", "�c", d, D, "�", f, g, G, " ", x, k, l, "2", m, n,

"~n", p, r, rr, s, t, w, y.

Features: high, low, back, round, cont, son, ant, cons, nasal, cor, delrel,

stri, voice, asp, lat.

Defaults:

any -> [-nasal, -low, -back, -high, -stri, -delrel, -asp, -lat,

-round, -voice],

3Here represented as a skeletal \C" segment connected to a feature matrix containing the feature [+nasal].
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vowel -> [-cons, +cont, +son, -round, -ant, -cor],

a -> [+low, +back],

i -> [+high],

o -> e [+back],

u -> i [+back],

[+back, -low] -> [+round],

consonant -> [+cor, -son, +cons, +ant, -cont],

p -> [-cor],

b -> p [+voice],

f -> p [+cont],

m -> p [+son, +nasal],

B -> b [cont],

"	" -> b [+cont],

w -> u,

y -> i,

d -> [+voice],

n -> [+son],

s -> [+cont],

"�c" -> [-ant, +delrel, +stri],

D -> d [cont],

"�" -> d [+cont],

[+cont, -voice] -> [+stri],

r -> n [+cont],

n -> [+nasal],

l -> r [+lat],

rr -> r [+stri],

"~n" -> n [-ant],

"2" -> l [-ant],

[+son] -> [+voice],

k -> [-ant, -cor],

g -> k [+voice],

x -> k [+cont],

G -> g [cont],

" " -> g [+cont].

ToneLevels: 0.

Rules:

Rule "Continuancy 1":

NoWordBounds

Tiers:

phonemic: [+nasal] ([cont]),

skeletal: C C.
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Connections:

[+nasal] -- C[1],

[cont] -- C[2].

Effects:

[cont] -> [-cont].

Rule "Continuancy 2":

Tiers:

phonemic: ([cont]),

skeletal: C.

Connections:

[cont] -- C.

Effects:

[cont] -> [+cont].

The parsing process for this speci�cation occurs similarly to that of the previous examples until
the keyword Features is reached. When the parser reaches this section, each identi�er will be
assigned to a feature and stored in the string table. The parser will then, in the string table, go
through every phoneme de�ned above and represent it as an empty feature matrix. At the defaults
section, the parser will �rst go through every phoneme and copy into its matrix the features [-nasal],
[-low], [-back], [-high], [-stri], [-delrel], [-asp], [-lat], [-round], and [-voice]. Then, it will go through
only the vowels in the string table and copy into the matrices the features [-cons], [+cont], etc. At
the line \a -> ...," the parser will copy the speci�ed features into the matrix for the phoneme
\a," as it will do for all other lines of this type. At the line \[+back, -low] -> [+round]," the
parser will search through the table, and for every phoneme speci�ed [+back, -low], it will copy in
[+round]. At the line \b -> p [+voice]," the parser will copy the speci�cation of \p" into \b,"
adding the feature [+voice]. The parser will then proceed similarly until it reaches the keyword
\ToneLevels," at which point it will note in the chart that there are no tones and go on to de�ne
rules. The �rst rule will be de�ned to ignore word boundaries (as is typical for postlexical rules),
and will be represented as three phonemic and three skeletal tiers. In the \original" phonemic tier
there will be a feature matrix containing the feature [+nasal] and a feature matrix marked for exact
matching containing the feature [cont] (i.e., the rule will match a segment speci�ed [+nasal] followed
by a segment unspeci�ed for [continuant]). The \replacement" and map phonemic tiers will contain

[-cont] instead of [cont], and all three skeletal tiers will contain two C segments. Thus, this rule
will replace an unspeci�ed [continuant] feature will [-continuant] in the environment described. The
last rule, which does not need to ignore word boundaries, is simply de�ned to replace unspeci�ed
[continuant] features with [+continuant].

Upon receiving the input su DeDo (\his/her/your/their �nger"), the system will build the rep-
resentation depicted in �gure 4-2. Since there are no nasals in this input, the �rst rule will not
apply, and the second rule will apply to the two \D" 's, since both are unspeci�ed for the feature
[continuant]. Thus, the chart will now contain the representation depicted in �gure 4-3, and the
output will be su �e�o.

From the input un DeDo (\a �nger"), the system will build the representation depicted in �gure 4-
4. The �rst rule will match the \D" after \n," specifying it [-continuant]. Next, the second rule will
match the other \D" and specify it [+continuant]. The chart will now contain the representation
depicted in �gure 4-5, and the output will be su de�o.

4.3.2 Tree Model

The second model uses an autosegmental approach to represent the relevant features of Spanish
phonology more completely, and more elegantly. The model makes use of two rules unmodeled by
the previous example. The �rst is that a nasal consonant in syllable-�nal position will receive its
point of articulation from the consonant to its right (Harris 1984). This process is here modeled by
assimilation of the following consonant's place node. The second rule states that a lateral segment
assimilates the point of articulation of a following coronal consonant (Harris 1969). Using these two
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Figure 4-2: Internal Representation of \su DeDo"
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Figure 4-3: Internal Representation of Output from \su DeDo"
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Figure 4-4: Internal Representation of \un DeDo"
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Figure 4-5: Internal Representation of Output from \un DeDo"
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rules, the current model postulates (Goldsmith 1990, pages 70{71) that a consonant unspeci�ed for
[continuant] assimilates the value of [continuant] of the previous consonant, if the two consonants
share the same place node. Just as in the previous example, consonants unspeci�ed for [continuant]
default to [+continuant].

The model would be speci�ed as follows:

Language Spanish:

Phonemes: a, b, B, "	", "�c", d, D, "�", e, f, g, G, " ", i, x, k, l, "2",

m, n, "~n", "8", o, p, r, rr, s, t, u, w, y.

SpecMethod: CV/Tree.

Vowels: a, e, i, o, u.

Consonants: b, B, "	", "�c", d, D, "�", f, g, G, " ", x, k, l, "2", m, n,

"~n", "8", p, r, rr, s, t, w, y.

Tree f

froot : skeletalg,
fstricture : root : [cons], [son], [cont], [stri], [lat]g,
flaryngeal : root : [voice], [delrel]g,
fsupralaryngeal : rootg,
fsoftpalate : supralaryngeal : [nasal]g,
fplace : supralaryngealg,
flabial : place : [round]g,
fcoronal : place : [ant]g,
fdorsal : place : [high], [low], [back]g

g

Defaults:

any -> segment{root : segment{stricture : segment{cons},

segment{son},

segment{cont},

segment{stri},

segment{lat}},

segment{laryngeal : segment{voice},

segment{delrel}},

segment{supralaryngeal :

segment{softpalate : segment{nasal}},

segment{place}}},

vowel -> segment{place : segment{labial : segment{-round}},

segment{dorsal : segment{-high},

segment{-low},

segment{-back}}},

vowel -> [+cont, +son, -nasal, -cons, -stri, -lat, +voice, -delrel],

a -> [+low, +back],

i -> [+high],

o -> [+back],

u -> [+high, +back],
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[+back, -low] -> [+round],

consonant -> [-cont, -son, -nasal, +cons, -stri, -lat, -voice,

-delrel],

p -> segmentfplace : segmentflabial : segmentf-roundggg,
b -> p [+voice],

f -> p [+cont],

m -> p [+son, +nasal],

B -> b [cont],

"	" -> b [+cont],

w -> u,

y -> i,

t -> segmentfplace : segmentfcoronal : segmentf+antggg,
d -> t [+voice],

n -> t [+son],

s -> t [+cont],

"�c" -> t [-ant, +delrel, +stri],

D -> d [cont],

"�" -> d [+cont],

[+cont, -voice] -> [+stri],

r -> n [+cont],

l -> n [+lat],

n -> [+nasal],

rr -> r [+stri],

"~n" -> n [-ant],

"2" -> l [-ant],

k -> segmentfplace : segmentfdorsal : segmentf+highg, segmentf-lowg,
segmentf+backggg,
"8" -> k [+son, +nasal],

g -> k [+voice],

x -> k [+cont],

G -> g [cont],

" " -> g [+cont],

[+son] -> [+voice].

ToneLevels: 0.

Rules:

Rule "Nasal Assimilation":

NoWordBounds

Tiers:

place:(place) place,

skeletal: C C,

nasal: +nasal .

Connections:
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place[1] -- C[1],

place[2] -- C[2],

C[1] -- +nasal.

Effects:

place[1] -Z- C[1],

C[1] :: place[2].

Rule "Lateral Assimilation":

NoWordBounds

Tiers:

coronal: coronal,

place: place place,

skeletal: C C,

lat: +lat.

Connections:

place[1] -- C[1],

C[1] -- +lat,

coronal -- place[2],

place[2] -- C[2].

Effects:

place[1] -Z- C[1],

C[1] :: place[2].

Rule "Continuancy 1":

NoWordBounds

Tiers:

place: (place),

skeletal: C C,

cont: -cont cont.

Connections:

place -- C[1],

place -- C[2],

C[1] -- -cont,

C[2] -- cont.

Effects:

C[2] :: -cont,

C[2] -Z- cont.

Rule "Continuancy 2":

Tiers:

cont:(cont),

skeletal: C.

Connections:

cont -- C.

Effects:

cont -> +cont.

In the previous examples, there have automatically been three tiers: the skeletal tier, the phone-
mic, and the tonal. In this example, however, the parser will indeed create those three tiers auto-
matically, but, upon reading the Tree section on the speci�cation �le, it will create tiers for each
class node and feature de�ned there. In addition, it will create and place in the chart the tree
structure depicted in �gure 4-6. In the default section most lines behave similarly to those in the
matrix example, and those that contain segmentspecs build tree structures. Thus, every phoneme
�rst receives a generic tree structure, then vowels add a dorsal and labial node, and the various
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Figure 4-6: Tree Structure

consonants add the appropriate place nodes. The rules are as discussed above, and are build in the
same manner as in the previous examples.

Upon receiving the input \un Beso," the system will build the structure depicted in �gure 4-7.
The rule of nasal assimilation will match \n B" and produce the structure shown in �gure 4-8.
Because the \n" (now an \m," sharing the \B" 's labial point of articulation) shares a place node
with \B," the �rst continuancy rule will apply, and \B" will become [-continuant]. Thus, the chart
will contain the structure shown in �gure 4-9, and the system will produce the output \um beso."
Given the input \su Beso," the nasal assimilation rule will not apply, so the second continuancy
rule will apply instead of the �rst, and the output will be \su 	eso." Similarly, \al Gato" produces
\al  ato" (since \G" is not coronal, and therefore the lateral assimilation rule does not apply, thus
disallowing the �rst continuancy rule), \al DeDo" produces \al de�o" (since \D" is coronal and the

lateral assimilation applies, with similar results to the case of \un Beso"), and \al 2ano" produces
\a2 2ano" (since \2" is a palatal, and thus its place node contains the feature [-anterior], which
becomes shared by the previous consonant.)

4.3.3 Hypothetical Model

As it turns out, the data for Spanish suggest that the previous model is incorrect (Personal Commu-
nication, Harris). There are cases in which the nasal assimilation rule is blocked, but the following
voiced obstruant still becomes a [-continuant]. Thus, another model might postulate that voiceless
obstruants assimilate the continuancy of the previous sonorant, with a default value of [-continuant].
Thus, phrase-initial obstruants would be [-continuant], as predicted by none of the previous models
but supported by the data. Voiceless obstruants preceded by vowels would become [+continuant],
and when preceded by [-continuant] sonorants (such as \l" and \n," but not \r") they would become
[-continuant]. The rules for this model would be as follows:

Rules:
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Figure 4-7: Partial Representation of \un Beso"
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Figure 4-8: \un Beso" after Application of Nasal Assimilation
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Figure 4-9: \un Beso" after Application of Continuancy Rule One
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Rule "Nasal Assimilation":

NoWordBounds

Tiers:

place:(place) place,

skeletal: C C,

nasal: +nasal .

Connections:

place[1] -- C[1],

place[2] -- C[2],

C[1] -- +nasal.

Effects:

place[1] -Z- C[1],

C[1] :: place[2].

Rule "Lateral Assimilation":

NoWordBounds

Tiers:

coronal: coronal,

place: place place,

skeletal: C C,

lat: +lat.

Connections:

place[1] -- C[1],

C[1] -- +lat,

coronal -- place[2],

place[2] -- C[2].

Effects:

place[1] -Z- C[1],

C[1] :: place[2].

Rule "Continuancy 1":

NoWordBounds

Tiers:

son: +son,

skeletal: X C0 C,

cont: @cont cont.

Connections:

+son -- C[1],

C[1] -- @cont,

C[2] -- cont[2].

Effects:

C[2] :: @cont,

C[2] -Z- cont[2].

Rule "Continuancy 2":

Tiers:

cont:(cont),

skeletal: C.

Connections:

cont -- C.

Effects:

cont -> -cont.
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Conjugation Output Form

I katab
II kattab
III kaatab
IV ?aktab
V takattab
VI takaatab
VII nkatab
VIII ktatab
IX ktabab
X staktab
XI ktaabab
XII ktawbab
XIII ktawwab
XIV ktanbab
XV ktanbay

Table 4.1: Conjugation of ktb in Classical Arabic

Note that the segment reference for [cont] in the �rst continuancy rule has the index \[2]." This
index is necessary because both @cont and contmatch the speci�cation cont (since features speci�ed
with @ match any other feature of the same name, regardless of value), so the \[2]" signi�es that
the second feature matching cont is desired. Note also that this hypothetical rule cannot actually
be implemented in the current system, because one needs to specify where the skeletal contains C0
that the matching system should skip over all obstruant consonants following the sonorant that are
speci�ed for continuant. The notation for this does not yet exist in AMAR, but will be implemented
in the next version.

4.4 Arabic

The �nal example will deal with verbal conjugation in Classical Arabic, following to some extent
McCarthy (1975) and Goldsmith (1990). There are �fteen basic \conjugations" in Classical Arabic,
each one consisting of a pattern of consonant and vowel positions. The actual vowels making up a
conjugated verb depend on the tense and voice, and the consonants are determined lexically. Thus,

the morpheme ktb would be \conjugated" as in table 4.1.
In the case modeled here, and shown in the table, the verb is conjugated in the active perfective,

so there is only one vowel, \a," that spreads across all vowel slots. Thus, for any given conjugation,
a rule would apply to build the proper consonantal and vowel positions on the skeletal tier, the
consonants would be connected to the C slots by means of a connective rule and the association
convention, and the vowel \a" would be connected to the vowel slots. In addition, some of the
conjugations include pre�xes or in�xes, which would be added afterwards.

The (somewhat incomplete) AMAR speci�cation for Arabic is as follows:

Language Arabic:

Phonemes: b, f, "S", "�", m, t, d, s, z, n, l, r, k, "��", "�s", q, x, " ",

"#", "b", "c", h, y, w.

SpecMethod: CV/Tree.

Vowels: i, a, u.
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Consonants: b, f, "S", "�", m, t, d, s, z, n, l, r, k, "��", "�s", q, x, " ",

"#", "b", "c", h, y, w.

Tree f

fvroot : skeletalg,
fcroot : skeletal : [son]g,
fcons : croot : [cont], [lat], [stri]g,
f"soft palate" : croot : [nasal]g,
fguttural : crootg,
f"tongue root" : guttural : [RTR]g,
flarynx : guttural : [stiff], [slack], [constr], [spread]g,
fplace : crootg,
fplace : vrootg,
fcoronal : place : [ant], [dist]g,
fperipheral : placeg,
fdorsal : peripheral : [back], [high], [low]g,
flabial : peripheral : [rounded]g

g

Defaults:

vowel -> segment{vroot : segment{place :

segment{peripheral :

segment{dorsal :

segment{+back},

segment{+low}}}}},

i -> [-back, -low], u -> [-low],

consonant -> segment{croot : segment{-son},

segment{cons : segment{-cont},

segment{-lat},

segment{-stri}},

segment{"soft palate" : segment{-nasal}},

segment{guttural :

segment{"tongue root":

segment{-RTR}},

segment{larynx :

segment{-stiff},

segment{+slack},

segment{-constr},

segment{-spread}}},

segment{place}},

b -> segmentfplace : segmentfperipheral : segmentflabialggg,
b -> [+stiff],

f -> b [+cont, -stiff],

m -> b [+son, +nasal],

y -> segmentfcroot : segmentf+song, segmentfplacegg,
y -> segmentfplace : segmentfcoronal : segmentf-antg, segmentf+distggg,
w -> y,

w -> segmentfplace : segmentfperipheral : segmentflabialggg,
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t -> segmentfplace : segmentfcoronal : segmentf+antg, segmentf+distggg,
d -> t [+stiff],

"S" -> t [+cont],

"�" -> d [+cont],

s -> "S" [+stri],

z -> "�" [+stri],

n -> d [+son, +nasal],

l -> d [+son, +lat],

r -> d [+son, -dist, +cont],

"�s" -> s [-ant],

"��" -> z [-ant],

k -> segmentfplace : segmentfperipheral : segmentfdorsalggg,

q -> k [+RTR],

x -> q [+cont],

" " -> x [+stiff],

"#" -> [+constr],

"c" -> "#" [+stiff],

"b" -> [+constr, +stiff, -slack],

h -> [+spread].

ToneLevels: 15.

NonAssociates: fsegmentfXg, segmentfcrootgg, fsegmentfXg, segmentfvrootgg.
Associates: fsegmentfVg, segmentfvrootgg, fsegmentfCg, segmentfcrootgg.

Rules:

Rule "Skeletal Cleansing 1":

Tiers:

skeletal: C,

croot: croot.

Connections:

C -- croot.

Effects:

C -Z- croot,

C -> 0.

Rule "Skeletal Cleansing 2":

Tiers:

skeletal: V,

vroot: vroot.

Connections:

V -- vroot.

Effects:

V -Z- vroot,

V -> 0.

Rule "Conjugation 1":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 1 "]w".
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Effects:

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 2":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 2 "]w".

Effects:

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> /C/ / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 3":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 3 "]w".

Effects:

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 4":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 4 "]w".

Effects:

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 5":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 5 "]w".

Effects:

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> /C/ / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].
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Rule "Conjugation 6":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 6 "]w".

Effects:

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 7":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 7 "]w".

Effects:

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 8":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 8 "]w".

Effects:

0 -> C / _ "]w"[1],

0 -> /C/ / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 9":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 9 "]w".

Effects:

0 -> C / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 10":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 10 "]w".

Effects:
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0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 11":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 11 "]w".

Effects:

0 -> C / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 12":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 12 "]w".

Effects:

0 -> C / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> /C/ / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 13":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 13 "]w".

Effects:

0 -> C / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> /C/ / _ "]w"[1],

0 -> /C/ / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 14":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 14 "]w".

Effects:

0 -> C / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> /C/ / _ "]w"[1],
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0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> C / _ "]w"[1].

Rule "Conjugation 15":

Tiers:

skeletal:"w[" "]w",

tonal:"w[" 15 "]w".

Effects:

0 -> C / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> /C/ / _ "]w"[1],

0 -> C / _ "]w"[1],

0 -> V / _ "]w"[1],

0 -> /C/ / _ "]w"[1].

Rule InitiallyConnect:

Tiers:

croot: "w[" (croot),

skeletal: "w[" V0 (C).

Effects:

C :: croot.

Rule "Conjugation 4":

Tiers:

croot: "w[",

skeletal: "w[",

tonal: "w[" 4.

Effects:

0 -> "?" / "w["[1,croot] _,

"?" ::-> C / "w["[1,skeletal] _.

Rule "Conjugation 5":

Tiers:

croot: "w[",

skeletal: "w[",

tonal: "w[" 5.

Effects:

0 -> t / "w["[1,croot] _,

t ::-> C / "w["[1,skeletal] _.

Rule "Conjugation 6":

Tiers:

croot: "w[",

skeletal: "w[",

tonal: "w[" 6.

Effects:

0 -> t / "w["[1,croot] _,

t ::-> C / "w["[1,skeletal] _.

Rule "Conjugation 7":

Tiers:

croot: "w[",
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skeletal: "w[",

tonal: "w[" 7.

Effects:

0 -> n / "w["[1,croot] _,

n ::-> C / "w["[1,skeletal] _.

Rule "Conjugation 8":

Tiers:

croot: "w["croot,

skeletal: "w[" C (C),

tonal: "w[" 8.

Effects:

C[2] ::-> t / croot _.

Rule "Conjugation 10":

Tiers:

croot: "w[",

skeletal: "w[",

tonal: "w[" 10.

Effects:

0 -> t / "w["[1,croot] _,

0 -> s / "w["[1,croot] _,

croot[2] ::-> C / "w["[1,skeletal] _,

croot[1] ::-> C / "w["[1,skeletal] _.

Rule "Conjugation 12":

Tiers:

croot: croot,

skeletal: (C) V0 C,

tonal: 12.

Connections:

C[2] -- croot.

Effects:

C[1] ::-> w / _ croot.

Rule "Conjugation 13":

Tiers:

croot: croot,

skeletal: (C) V0 C,

tonal: 13.

Connections:

C[2] -- croot.

Effects:

C[1] ::-> w / _ croot.

Rule "Conjugation 14":

Tiers:

croot: croot,

skeletal: (C) C,

tonal: 14.

Connections:

C[2] -- croot.

Effects:

C[1] ::-> n / _ croot.
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Rule "Conjugation 15":

Tiers:

croot: croot,

skeletal: (C) C,

tonal: 15.

Connections:

C[2] -- croot.

Effects:

C[1] ::-> n / _ croot.

Rule "Conjugation 15":

Tiers:

croot: "]w",

skeletal: (C) "]w",

tonal: 15 "]w".

Effects:

C ::-> j / _ "]w"[1].

Rule InsertA:

Tiers:

vroot: "w[" "]w",

skeletal: "w[" C0 (V).

Effects:

V ::-> a / _ "]w".

Rule "SpreadRight":

Tiers:

vroot: vroot,

skeletal: V C0 (V).

Connections:

vroot -- V[1].

Effects:

vroot >> skeletal.

Rule Geminate:

Tiers:

croot: croot,

skeletal: (C) C.

Connections:

croot -- C[2].

Effects:

croot :: C[1].

Rule SpreadCRight:

Tiers:

croot: croot,

skeletal: C V0 (C).

Connections:

croot -- C[1].

Effects:

croot >> skeletal.
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Despite the large number of rules and the complicated consonants4, most of the example is dealt
with in exactly the same manner as the Spanish example. The only major features utilized here and
not anywhere else are controls for associativity. The model used here states that consonants and
vowels are found on di�erent tiers (croot and vroot , respectively), and therefore it is not appropriate
for C segments to freely associate with vroots or V segments with croots. However, when the
tree is de�ned, AMAR automatically assumes that croot and vroot , as inferiors of the skeletal tier,
freely associate with all skeletal segments. Thus, the NonAssociates section is used to state that
X segments (i.e., any skeletal segments) do not associate freely with croot and vroot , and the
Associates section states that C associates freely with croot , and V with vroot . In addition, use
is made of inert segments, segments de�ned to be ignored during the association convention. For
example, the second conjugation builds the skeletal segments:

C V /C/ C V C

where the second C segment is marked as inert. Given the input ktb, when the \k" is connected
to the �rst C , the association convention will not see the second consonant position, and will thus
connect the \t" to the third C segment. This allows a later gemination rule to spread the \t" to the
second C as well. For input, this model expects simply a consonant morpheme (such as ktb `write'
or f bl `do') along with a number (represented as a 
oating tone) indicating the desired conjugation.

From this, it will build an appropriate skeletal tier, connect things appropriately, connect the vowel
\a," and output the conjugated form. Thus, upon receiving the input \fbl2," the system will build
the skeletal segments above, connect the consonants appropriately and add \a" to produce the
output \fabbal." Similarly, if the input had been \ktb2," the output would be \kattab." If the
system were to receive a \sentence" (i.e., a number of words separated by spaces and ended with a
period) such as \ktb3 fbl4 ktb14 fbl10.", the output would be \kaatab bafbal ktanbab stafbal."

4Note that the tree used here is a slightly modi�ed rendition of that presented in Halle (1993).
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Chapter 5

Discussion

The current system, while powerful and fairly useful, has nonetheless many possibilities that have not
yet been fully explored. A number of improvements are envisioned, to be carried out by the author
and perhaps later users. However, there remains a multitude of uses for this version of AMAR, and
for future versions, in the �elds of phonology, morphology, phonetics, and speech generation.

5.1 Improvements and Extensions

In the future, improvements might be sought in the areas of interface, linguistic accuracy and
generality, and reversibility. As one can see from the many diagrammatic representations of various
aspects of this thesis, autosegmental phonology lends itself rather poorly to a text-based interface
and most likely rather well to a graphical one. The user might, for example, wish to specify rules
in the exact conventional notation rather than a text-based representation. Thus, a user-interface
could allow the user to enter the segments in a tier and draw various lines to connect them. The
general tree structure of a language might be speci�ed simply by drawing it. It would be fairly
straightforward to implement such an interface as the one described here. The user could then
choose to edit whichever representation best suits his or her present purpose.

Currently, many aspects and mechanics of autosegmental theory remain unsupported. For ex-
ample, several recent papers (Halle 1993, Keyser and Stevens 1993) make use of \pointers," which
are directed from one class node to another in order to indicate by which articulator various features
such as continuancy are implemented1. The system contains some internal support for pointers, but
the mechanics of pointers has not been fully 
eshed out within the system, and no speci�cation mech-
anism yet exists for the user. In addition to pointers, the system does not support headed trees (as
used in stress assignment), feature-containing class nodes (Halle 1993), the notion of \markedness"
(there are some rules that do not \see" unmarked features, and some that do (Halle, personal com-
munication)), and a number of other theoretical and mechanical aspects of autosegmental phonology.
Many of these problems could be solved simply by allowing the user to specify the contents of newly
de�ned tiers. For example, if a class tier were allowed to contain binary valued segments, headed
trees would be possible with the current system. In addition, class tiers containing feature matrices
would be equivalent to feature-containing class nodes. Finally, markedness could be implemented
simply by providing a 
ag in feature segments specifying whether or not they are marked, as well
as one for rules to specify whether or not they ignore unmarked features.

Leaving aside the problem of unsupported aspects of autosegmental theory, there still exists a
number of inadequacies in the features supported by AMAR. For example, word and morpheme
boundaries are treated as individual segments. For a given word boundary, the system inserts one
segment for every tier in the chart. If the user wishes to delete a boundary, each tier's segment
must be individually deleted. This program would be fairly simple to �x, by linking all segments

1The concept of pointers originates in Sagey (1986).
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corresponding to a given boundary and deleting the entire group when the user indicates that the
boundary should be deleted. Another 
aw of the current system lies in matching. In Digo, a Bantu
language of northeastern Tanzania, there is a rule of End Run (Kisseberth 1984), in which a high
tone re�associates to the �nal vowel of a word (see �gure 5-1.) This rule requires the system to
match \X0 V ]w," interpreted as \zero or more skeletal segments, followed by a vowel at the end
of a word." However, actually implementing this matching behavior is fairly di�cult (since \X0"
matches the �nal \V" as well), and the current system, upon encountering C0, V0, or X0, simply
moves forward up to the �rst non-matching segment|for example, the current system could handle
\X0 ]w", but not \X0 V ]w", or \C0 V", but not \C0 C." Presumably numerous other problems
of this nature will be discovered and, it is to be hoped, eliminated during the use of the system.
It may be tentatively hypothesized, however, that any example using this sort of matching might
better be recast to avoid it. For example, the rule of end run could be restated as in �gure 5-2.
This restatement would further hypothesize|most likely reasonably|that end run is blocked before
vowels already connected to tones.

As of now, AMAR handles generation but not recognition. That is, the user may provide an

underlying representation and be returned the surface representation for a given utterance, but
the reverse is not possible. Since rules in AMAR are symmetrical (each rule stores a \before"
and \after" representation of the chart, and application changes the chart from a \before" state
to an \after" state), any rule whose application does not cause information loss could be reversed
simply by switching the \original" and \replacement" charts. In addition, one could provide rules
speci�cally marked only to apply during generation, or only during recognition. Thus, it would not
be too di�cult to provide a system which could take its own surface output and recover the lexical
form. However, converting from the autosegmental notation to the type of notation in which AMAR
receives its input involves a great deal of information loss. For example, given a simple string of
the type AMAR outputs, the system would have to somehow guess whether two adjoining symbols
that are similar in some way are such accidentally or as a result of some assimilation process. This
problem could perhaps, however, be addressed by strict compliance with well-formedness conditions
such as the obligatory contour principle, which states, more or less, that \At the melodic level (i.e.,
on non-skeletal tiers), adjacent identical elements are prohibited" (McCarthy 1986). Thus, in the
example given before, the system would always assume that what appears in the output as two
segments with some similarity would actually be represented as two skeletal positions sharing some
portion of their information|for example, the output form \mb" would be presumed to share a
place node, since both are labial.
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5.2 Possible Uses for the System

Regardless of the imperfections of the current system, AMAR presents a number of possibilities
for applications in phonology, morphology, phonetics, and computerized speech. As stated in the
introduction, AMAR was designed to allow phonologists to model linguistic systems and check their
hypotheses against large bodies of data. Within this general framework, a phonologist attempting,
for example, to work out aspects of Universal Phonology might try to model as many languages as
possible with a single set of basic mechanics and a single tree structure. Using AMAR it becomes
easy to check whether a theoretical change motivated by some particular language still makes the
right predictions for the languages previously studied|one simply updates the old speci�cations
and checks against the inputs and expected outputs already generated. Another use for the system
is in the areas of computational morphology. Since, as we have seen, AMAR can perform most,
if not all, of the computations of which the leading computational morphology system, KIMMO,
is capable, it could be used for the applications in which KIMMO is currently employed, adding
simplicity, elegance, and an advanced capability for describing complex structures. Work in pho-
netics, another �eld touching closely upon phonology, often begins from an underlying phonological
representation. Thus, computational phoneticians could use AMAR as a back end to provide such
representations. Furthermore, with only minor modi�cations (such as allowing 
oating point values
in various tiers), AMAR could become a powerful mechanism for phonetics in its own right. For
example, the user might be able to specify and modify in some way tone frequencies, segment dura-
tions, or any number of similar values. Additionally, many phonetic facts may be described in the
current version of AMAR (e.g., the Spanish example of section 4.3 is generally said to be phonetic
rather than phonological.) Finally, since AMAR converts simple unilinear strings into complex tree
representations|representations containing detailed articulatory instructions|it might be possible
to set up speech generation systems in which one begins with simple text and uses AMAR to con-
vert the text into articulatory instructions, which would be fed into an articulation-based speech
generator such as that developed by Stevens (1992).
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Appendix A

Full Grammar for Speci�cation

File

The following is a complete description of the grammar for an AMAR language speci�cation �le.
Words in bold face represent non-terminal symbols. Any symbol in non-bold courier font represents
a terminal symbol, any of which would be entered by the user in the form it appears here, except that
letters do not have to be in any particular case. The symbol ! represents a regular expression, in
which expressions in square brackets represent a choice (e.g., [A-Za-z] matches a single alphabetical
character, regardless of case.) An expression in square brackets in which the �rst symbol is a caret
matches any character except for the characters found after the caret. An asterisk indicates that
there may be zero or more of the previous expression. The symbol �! represents a grammar rule.
In both grammar rules and regular expressions, the symbol j represents \or." Finally, in grammar
rules, and not in regular expressions, large square brackets around an expression indicate that it
is optional, and a comma-separated list with ellipses periods (e.g., \thing, thing, ..., thing")
represents a list with one or more items, as would be represented in more standard grammar as:

list �! list , item j
item

The grammar as shown here attempts to be readable to a human, rather than to a computer, and
is not an immediately parsable Backus-Naur Form grammar. However, with a minimum of labor it
could be converted into such. For a parsable grammar, the start symbol would be language.

identi�er ! ([A-Za-z] ([A-Za-z] j digit)*) j " [^"\t.+#\n]* "

number ! digit [0-9]*

digit ! [1-9]

language �! Language1 identi�er: langspec

langspec �! phonemespec tonespec [ associates ] [ de�nitions ]

[ rulespec ]

phonemespec �! phonemelist method spec

phonemelist �! Phonemes: [ identi�er, identi�er, ..., identi�er ] .

method �! SpecMethod: CV j CV/Matrix j X/Matrix j CV/Tree j X/Tree .

spec �! cvspec j cvmatrixspec j xmatrixspec j cvtreespec j xtreespec

1Note that capitalization does not matter for terminal symbols.
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cvspec �! [ vowels ] [ consonants ]

cvmatrixspec �! [ vowels ] [ consonants ] [ features ]

[ cvmatrixdefaults ] [ cvmatrixfullspecs ]

xmatrixspec �! [ features ] [ xmatrixdefaults ] [ xmatrixfullspecs ]

cvtreespec �! [ vowels ] [ consonants ] [ tree ] [ cvtreedefaults ]

[ cvtreefullspecs ]

xtreespec �! [ tree ] [ xtreedefaults ] [ xtreefullspecs ]

vowels �! Vowels: [ identi�er, identi�er, ..., identi�er ] .

consonants �! Consonants: [ identi�er, identi�er, ..., identi�er ] .

features �! Features: [ identi�er, identi�er, ..., identi�er ] .

cvmatrixdefaults �! Defaults: [ cvmatrixdefault, cvmatrixdefault,

..., cvmatrixdefault ] .

xmatrixdefaults �! Defaults: [ xmatrixdefault, xmatrixdefault, ...,

xmatrixdefault ] .

cvtreedefaults �! Defaults: [ cvtreedefault, cvtreedefault, ...,

cvtreedefault ] .

xtreedefaults �! Defaults: [ xtreedefault, xtreedefault, ...,

xtreedefault ] .

cvmatrixfullspecs �! FullSpecs: [ cvmatrixdefault, cvmatrixdefault,

..., cvmatrixdefault ] .

xmatrixfullspecs �! FullSpecs: [ xmatrixdefault, xmatrixdefault, ...,

xmatrixdefault ] .

cvtreefullspecs �! FullSpecs: [ cvtreedefault, cvtreedefault, ...,

cvtreedefault ] .

xtreefullspecs �! FullSpecs: [ xtreedefault, xtreedefault, ...,

xtreedefault ] .

cvmatrixdefault �! vowel -> matrix j consonant -> matrix j
xmatrixdefault

xmatrixdefault �! identi�er -> matrix j matrix -> matrix j
identi�er -> identi�er j identi�er -> identi�er matrix j
any -> matrix j any -> identi�er

cvtreedefault �! vowel -> matrix j vowel -> segmentspec j
consonant -> matrix j consonant -> segmentspec j
xtreedefault

xtreedefault �! identi�er -> segmentspec j identi�er -> identi�er j
identi�er -> identi�er matrix j any -> segmentspec j
any -> identi�er j featureless identi�er -> segmentspec j
vowel -> segmentspec j consonant -> segmentspec j
matrix -> segmentspec j identi�er -> matrix j
any -> matrix j matrix -> matrix

matrix �! [feature, feature, ... feature]
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segmentspec �! segmentfsegspecg j segmentfsegspec identi�erg j
segmentfsegspec : segmentspec, segmentspec, ..., segmentspecg j
segmentfsegspec : identi�er : segmentspec, segmentspec, ...,

segmentspecg

segspec �! identi�er j matrix j feature j number j (segspec) j
fsegspec, segspec, ..., segspecg

tree �! Tree fnode, node, ..., nodeg

node �! fidenti�erg j fidenti�er : identi�erg j
fidenti�er : identi�er : featuredef, featuredef, ..., featuredefg

featuredef �! [identi�er]

tonespec �! [ ConnectTones ] numtones maxspec [ tonenames ]

[ tonereps ]

numtones �! NumberofTones: ( number j 0 ).

maxspec �! [ maxtvspec ] [ maxvtspec ]

maxtvspec �! MaxTonesperVowel: [ number j infinite ] .

maxvtspec �! MaxVowelsperTone: [ number j infinite ] .

tonenames �! ToneNames: [ identi�er, identi�er, ..., identi�er ] .

tonereps �! ToneRepresentations: [ tonerep, tonerep, ..., tonerep ] .

tonerep �! identi�er : identi�er / segspec segspec ... segspec j
identi�er : / segspec

associates �! [ Associates: [ assoc, assoc, assoc ] . ]

assoc �! f segmentspec, segmentspec g

de�nitions �! Definitions: [ de�nition, de�nition, ..., de�nition ] .

de�nition �! Define identi�er segmentspec j
Define identi�er segmentspec

rulespec �! Rules: [ rule, rule, ..., rule ]

rule �! Rule identi�er : [ RtoL ] [ NoWordBounds ] [ NoMorphBounds ]

[ tierspec ] [ conspec ] [ e�ectspec ]

tierspec �! Tiers: [ tier, tier, ..., tier ].

conspec �! Connections: [ connection, connection, ..., connection ].

e�ectspec �! Effects: [ e�ect, e�ect, ..., e�ect ].

tier �! identi�er: segspec segspec ... segspec

connection �! segref -- segref

segref �! segspec j segspec[number] j segspec[number identi�er]

e�ect �! segref -Z- segref j segref :: segref j segref � identi�er j
� segref identi�er j segref -> [ segref ] [ segref ] j segref -> 0 j
segref -> segspec j segref ::-> segspec / [ segref ] [ segref ] j
0 -> segspec / [ segref ] [ segref ]
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Appendix B

Examples Incompletely Speci�ed

in the Text

This appendix lists, without explanation, all working examples incompletely speci�ed in the text.

B.1 Mende

Speci�cation File:

Language Mende:

Phonemes: n, a, v, m, b, o.

SpecMethod: CV.

Vowels: a, o.

Consonants: n, v, m, b.

ConnectTones

ToneLevels: 2.

ToneReps: "�a" : a / 2, "�a" : a / 1, "�a" : a / 1 2, "�o" : o / 2, "�o" :

o / 1, "�o" : o / 1 2.

Associates: {segment{T}, segment{V}}, {segment{X}, segment{P}}.

Rules:

Rule "Tone Assimilation":

NoMorphBounds

Tiers:

tonal: 2 1,

skeletal: V C0 V.

Connections:

V[1] -- 2,

V[2] -- 1.

Effects:

V[2] :: 2,

V[2] -Z- 1.
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Rule "Rising to Low":

NoMorphBounds

Tiers:

tonal: 1 2,

skeletal: V C0 V.

Connections:

V[1] -- 1,

V[1] -- 2,

V[2] -- 2.

Effects:

V[1] -Z- 2.

Sample Inputs and Outputs:
Input Output

n�av�o+m�a n�av�o+m�a
mb�a+m�a mb�a+m�a

B.2 Tagalog

Speci�cation File:

Language Tagalog:

Phonemes: p, i, l, n, t, a, h, k, u, m, N, "8", RE.

SpecMethod: CV/Tree.

Vowels: a, i, u.

Consonants: h, k, l, m, n, "8", N, p, t, RE.

Tree f

fvroot : skeletalg,
fcroot : skeletalg,
fstricture : croot : [lat]g,
fsupralaryngeal1 : crootg,
fsupralaryngeal2 : vrootg,
fsoftpalate : supralaryngeal1 : [nasal]g,
fplace1 : supralaryngeal1g,
fplace2 : supralaryngeal2g,
flabial1 : place1g,
flabial2 : place2g,
fcoronal : place1g,
fdorsal2 : place2 : [high], [back]g,
fdorsal1 : place1g

g

Defaults:

vowel -> segment {vroot : segment{supralaryngeal2 :

segment{place2}}},

consonant -> segment {croot : segment{stricture : segment{-lat}},

segment{supralaryngeal1}},
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vowel -> segment{place2 :segment{labial2},

segment{dorsal2 :segment{-high},

segment{+back}}},

i -> [+high, -back],

u -> [+high],

t -> segment{supralaryngeal1 : segment{place1 : segment{coronal}},

segment{softpalate : segment{-nasal}}},

l -> t [+lat],

n -> t [+nasal],

RE -> segment{supralaryngeal1 : segment{softpalate : segment{+nasal}}},

RE -> [+lat],

% just to distinguish it from h...

k -> segment{supralaryngeal1 : segment{place1 : segment{dorsal1}},

segment{softpalate : segment{-nasal}}},

"8" -> k [+nasal],

p -> segment{supralaryngeal1 : segment{place1 : segment{labial1}},

segment{softpalate : segment{-nasal}}},

m -> p [+nasal],

N -> RE [-lat].

ToneLevels: 0.

Rules:

Rule "Reduplication":

Tiers:

lat: +lat,

nasal: +nasal,

vroot: vroot,

skeletal: C "]m" "m[" C V C0,

croot: croot.

Connections:

C[1] -- +nasal,

C[1] -- +lat,

C[2] -- croot,

V -- vroot.

Effects:

"]m" -> 0,

"m[" -> 0,

C[1] -> 0,

croot ::-> C / V _,

vroot ::-> V / _ C0.

Rule "Coalescence":

Tiers:

nasal:+nasal "]m" "m[",

place1: "]m" "m[" place1,
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skeletal: (C) "]m" "m[" C,

croot:croot "]m" "m[" croot.

Connections:

C[1] -- +nasal,

C[1] -- croot[1],

C[2] -- place1,

C[2] -- croot[2].

Effects:

"]m"[1, skeletal] -> 0,

"m["[1, skeletal] -> 0,

C[2] :: +nasal,

C[1] -Z- +nasal,

C[1] -> 0.

Rule "Infixation":

Tiers:

back: -back "]m" "m[",

high: +high "]m" "m[",

nasal: +nasal "]m" "m[",

vroot: vroot "]m" "m[" vroot,

skeletal: V C "]m" "m[" C V,

croot: croot "]m" "m[" croot.

Connections:

-back -- V[1],

+high -- V[1],

vroot[1] -- V[1],

croot[1] -- C[1],

+nasal -- C[1],

croot[2] -- C[2],

vroot[2] -- V[2].

Effects:

0 -> i / vroot[2] _,

0 -> n / croot[2] _,

n ::-> C / C[2] _,

i ::-> V / C[2] _,

"]m"[1, skeletal] -> 0,

"m["[1, skeletal] -> 0,

V[1] -> 0,

C[1] -> 0.

Sample Inputs:

pili RE+pili maN+pili maN+RE+pili in+pili in+RE+pili

% 'choose'

tahi RE+tahi maN+tahi maN+RE+tahi in+tahi in+RE+tahi

% 'take'

kuha RE+kuha maN+kuha maN+RE+kuha in+kuha in+RE+kuha

% 'sew'

Corresponding Outputs:

pili pipili mamili mamimili pinili pinipili
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tahi tatahi manahi mananahi tinahi tinatahi

kuha kukuha ma8uha ma8u8uha kinuha kinukuha

B.3 Turkish

Language Turkish:

Phonemes: A, I, a, e, i, o, u, "�u", "�o", "�", p, b, m, f, v, t, d, s, z, n,

l, r, "�c", c, "�s", j, y, k, g, h.

SpecMethod: CV/Tree.

Vowels: A, I, a, e, i, o, u, "�u", "�o", "�".

Consonants: p, b, m, f, v, t, d, s, z, n, l, r, "�c", c, "�s", j, y, k, g, h.

Tree {

{root : skeletal},

{stricture : root : [cont], [lat], [son], [stri]},

{laryngeal : root : [voice]},

{supralaryngeal : root},

{softpalate : supralaryngeal : [nasal]},

{place : supralaryngeal},

{labial : place : [round]},

{coronal : place : [ant]},

{dorsal : place : [high], [back]}

}

Defaults:

any -> segment{root : segment{stricture : segment{+son},

segment{+cont},

segment{-stri},

segment{-lat}},

segment{laryngeal : segment{voice}},

segment{supralaryngeal :

segment{softpalate : segment{-nasal}},

segment{place}}},

vowel -> segment{place : segment{labial : segment{-round}},

segment{coronal : segment{-ant}},

segment{dorsal : segment{-back},

segment{-high}}},

a -> [+back],

A -> [back],

I -> [+high, back, round],

i -> [+high],

"�o" -> [+round],

o -> a [+round],

"�u" -> i [+round],

"�" -> i [+back],

u -> "�u" [+back],

consonant -> [-son, -cont, -voice],
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p -> segmentfplace : segmentflabialgg,
f -> p [+cont],

m -> p [+nasal, +son],

b -> p [+voice],

v -> b [+cont],

t -> segmentfplace : segmentfcoronal : segmentf+antggg,
d -> t [+voice],

"�c" -> t [-ant, +stri],

c -> d [-ant, +stri],

n -> t [+nasal, +son],

z -> d [+cont],

s -> t [+cont],

"�s" -> s [-ant],

l -> d [+lat, +son, +cont],

r -> d [+son, +cont],

y -> i,

k -> segmentfplace : segmentfdorsalgg,
g -> k [+voice],

[+son] -> [+voice],

[-voice, +cont] -> [+stri].

ToneLevels: 0.

Rules:

Rule "Iyor Deletion":

Tiers:

root: A "]m" "m[" I y o r,

skeletal: V "]m" "m[" V C V C.

Connections:

A[1] -- V[1],

I[2] -- V[2],

y[3] -- C[1],

o[4] -- V[3],

r[5] -- C[2].

Effects:

A[1] -> 0,

V[1] -> 0.

Rule "High Vowel Deletion":

Tiers:

high: "]m" "m["+high,

skeletal: V "]m" "m[" V.

Connections:

V[2] -- +high.

Effects:

V[2] -> 0.

Rule "Back spreading":

NoMorphBounds

Tiers:
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back: @back back,

skeletal: V C0 V.

Connections:

V[1] -- @back[1],

V[2] -- back[2].

Effects:

V[2] :: @back[1].

Rule "Round spreading":

NoMorphBounds

Tiers:

round: @round round,

high: +high,

skeletal: V C0 V.

Connections:

V[1] -- @round[1],

V[2] -- round[2],

V[2] -- +high.

Effects:

V[2] :: @round.

Rule "Morpheme Deletion 1":

Tiers:

skeletal: "]m".

Effects:

"]m" -> 0.

Rule "Morpheme Deletion 2":

Tiers:

skeletal: "m[".

Effects:

"m[" -> 0.

Sample Inputs:

% Sing. Plural. Genetive 1psg. Genetive 1ppl.

%------------------------------------------------------------

di�s..........di�s+lAr..........di�s+Im...........di�s+lAr+Im

% 'tooth' 'teeth' 'my tooth' 'my teeth'

ev...........ev+lAr...........ev+Im............ev+lAr+Im

% 'house' 'houses' 'my house' 'houses'

g�un..........g�un+lAr..........g�un+Im...........g�un+lAr+Im

% 'day' 'days' 'my day' 'my days'

g�oz..........g�oz+lAr..........g�oz+Im...........g�oz+lAr+Im

% 'eye' 'eyes' 'my eye' 'my eyes'

ba�s..........ba�s+lAr..........ba�s+Im...........ba�s+lAr+Im

89



% 'head' 'heads' 'my head' 'my heads'

k�z..........k�z+lAr..........k�z+Im...........k�z+lAr+Im

% 'girl' 'girls' 'my girl' 'my girls'

kol..........kol+lAr..........kol+Im...........kol+lAr+Im

% 'arm' 'arms' 'my arm' 'my arms'

mum..........mum+lAr..........mum+Im...........mum+lAr+Im

% 'candle' 'candles' 'my candle' 'my candles'

masa+Im

ila�c+lA+Iyor

Corresponding Outputs:

di�s

di�sler

di�sim

di�slerim

ev

evler

evim

evlerim

g�un

g�unler

g�un�um

g�unlerim

g�oz

g�ozler

g�oz�um

g�ozlerim

ba�s

ba�slar

ba�s�m

ba�slar�m

k�z

k�zlar

k�z�m

k�zlar�m

kol

kollar

kolum

kollar�m

mum

mumlar

mumum

mumlar�m

masam

ila�cl�yor
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Appendix C

Selected Code

The following represents the subset of AMAR code most clearly implementing autosegmental phonol-
ogy. All procedures explicitly referred to in the text may be found here.

C.1 Objects

=� TONES.H �=

#ifndef tones

#define tones 1

#include <fstream.h>
#include <libc.h>
#include "strings.h"

#include "Pix.h"

#include <stdio.h>

#define TRUE (1)

#define FALSE (0)

#define STE StrTableEntry

class Rule;

class Tier;

class Chart;

class WordBoundary;

class SegmentSet;

class FeatureMatrix;

class X;

class SegList;

class RuleList;

class CSMap;

class ConnectableSegment;

class Segment;

extern class StrTableEntry;

extern class StrStack;

extern class Map;

extern void make tier(char�);

extern StrTableEntry� create topmost classnode(StrTableEntry�);

extern StrTableEntry� create empty classnode(StrTableEntry�, StrTableEntry�);

extern STE� create �lled classnode(STE�, STE�, STE�);

extern void enter free associates(STE�, STE�);

extern void remove free associates(STE�, STE�);
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extern void create rule(STE�);

extern void sort tiers();

extern void make rule tier(STE�);

extern void enter seg in tier(STE�);

extern main(int, char��);

extern void check sandhi();

extern void maybe add tonal and phonemic tiers();

extern void enter tone rep(STE�, STE�, STE�);

extern StrTableEntry� next vowel(Pix&);

extern StrTableEntry� next consonant(Pix&);

extern void xify phonemes();

extern void �ll empty classnode(StrTableEntry�, StrTableEntry�);

extern void enter seg in tier(StrTableEntry�);

extern void break connection(STE�, STE�);

extern Segment� fewest inferiors(SegList�);

extern int apply(Rule&, Chart&);

extern int ste matches(STE�, X�);

extern void error(const char� s1, const char� s2 = "");

extern ConnectableSegment� convert(SegList�, Pix);

extern Pix in map(Segment�, Map�, int, int&);

extern void spread right(StrTableEntry� segref, StrTableEntry� tr);

extern void spread left(StrTableEntry� segref, StrTableEntry� tr);

extern void duplicate connections(Segment�, Segment�, Segment�, Segment�);

int wordend;

int morphend;

int demo;

int ks;

class Rule f

Tier ��original, ��replacement;

int num tiers;

int no worddivs;

int no morphdivs;

int rtol;

void init() f name = 0; no morphdivs=no worddivs=is sandhi=rtol = FALSE; g

int sz;

public:

Rule(int size);

�Rule() f free((char �)original); free((char �)replacement); g

inline void operator delete(void� vd);

inline void� operator new(size t);

char� name;

int is sandhi;

inline void set name(char� nm);

void set no worddivs() f no worddivs = TRUE; is sandhi = TRUE; g

void set no morphdivs() f no morphdivs = TRUE; g

void set rtol() f rtol = TRUE; g

int sandhi();

int rtol sandhi();

void application(Chart&, Pix�, int�);

int adjust connections(ConnectableSegment�, ConnectableSegment�,

Map�, Pix, Chart&, int, int�);

Pix match(Tier&, Tier��, int, int);

int unconnected(int);

void connect map(Map� map);
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void �nd closest usable rule segment(int);

void sort tiers();

friend int apply(Rule& rule, Chart& chart);

friend void create rule(STE�);

friend void sort tiers();

friend void make rule tier(STE�);

friend void enter seg in tier(STE�);

friend void break connection(StrTableEntry�, StrTableEntry�);

friend void spread right(StrTableEntry� segref, StrTableEntry� tr);

friend void spread left(StrTableEntry� segref, StrTableEntry� tr);

void make connection(STE�, STE�);

void join(STE�, STE�);

void metathesize(STE�, STE�, STE�);

void metathesize after(STE�, STE�);

void metathesize before(STE�, STE�);

void replace(STE�, STE�);

void del(STE�);

void insert joined before(STE�, STE�, STE�);

void insert joined after(STE�, STE�, STE�);

void insert before(STE�, STE�);

void insert after(STE�, STE�);

void print(int);

g;

class RuleLink f

friend class RuleList;

private:

Rule� rule;

RuleLink� pre;

RuleLink� suc;

RuleLink(Rule& r) f rule = new Rule(r); g

�RuleLink() f if (suc) suc!protect(); delete suc; g == delete links rcsively

void protect() f rule = NULL; g

inline void operator delete(void� vd);

inline void� operator new(size t);

g;

class RuleList f

RuleLink� head;

RuleLink� tail;

int sz;

void init() f sz = 0; head = 0; tail = 0;g

public:

RuleList() f init(); g

RuleList(const RuleList&);

�RuleList() f if (head) head!protect(); delete head; g

void operator delete(void� vd) f ::free((char �)vd); g

inline void� operator new(size t);

RuleList& operator= (const RuleList&);
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Pix �rst() const f return (Pix)(head); g

void next(Pix& p) const f p = (p == 0) ? 0 : (Pix)(((RuleLink �)p)!suc); g

void prev(Pix& p) const f p = (p == 0) ? 0 : (Pix)(((RuleLink �)p)!pre); g

Rule& operator[](const Pix p) const f return �((RuleLink �)p)!rule; g

int length() const f return sz; g

int empty() const f return (head == 0); g

void prepend(Rule&);

void append(Rule&);

void del(Pix&);

Pix ins before(Pix, Rule&);

Pix ins after(Pix, Rule&);

g;

== ���������������������������������������������������
== Map for dealing with Freely Associating Segments

== ���������������������������������������������������

class CSMap;

class CSLink f

friend class CSMap;

private:

ConnectableSegment� key;

ConnectableSegment� value;

CSLink� pre;

CSLink� suc;

CSLink(ConnectableSegment� k, ConnectableSegment� v) f key = k; value = v; g

�CSLink() f delete suc; g == delete all links recursively

void operator delete(void� vd) f ::free((char �)vd); g

void protect() f key = NULL; value = NULL; g

inline void� operator new(size t);

g;

class CSMap f

CSLink� head;

CSLink� tail;

int sz;

void init() f sz = 0; head = 0; tail = 0; g

public:

CSMap() f init(); g

CSMap(const CSMap&);

�CSMap() f delete head; g == delete all links recursively

void operator delete(void� vd) f ::free((char �)vd); g

inline void� operator new(size t);

CSMap& operator= (const CSMap&);

void enter(ConnectableSegment� k, ConnectableSegment� v);

void remove(ConnectableSegment� k, ConnectableSegment� v);

void enter aux(ConnectableSegment� k, ConnectableSegment� v);

void remove aux(ConnectableSegment� k, ConnectableSegment� v);

SegmentSet� associates(ConnectableSegment� k);

int freely assoc(Segment� k, Segment� v);

int size() const f return sz; g

g;
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=�����������=
=� End Map �=
=�����������=

class Chart f

Tier ��tier; == Initially null, then an array of tiers.

int num tiers;

RuleList rules;

CSMap free associates;

ConnectableSegment �tree;

int sz;

inline void init();

public:

Chart() f init(); g

�Chart() f g

void operator delete(void� vd) f ::free((char �)vd); g

inline void� operator new(size t);

int max tones per vowel;

int max vowels per tone;

int sandhi rules exist;

int rtol sandhi rules exist;

int num tones;

int no connect;

char� name;

inline void set name(char� nm);

void apply assoc convention(Pix, Tier&, Tier&);

void assoc convention(int� tier index, int num tiers);

Tier& operator[](const int i) const f return �tier[i]; g

int empty();

Tier& skeletal() f return �tier[0]; g

void add tier(Tier& tier);

void add skeletal seg(ConnectableSegment�);

void read word(istream&, StrStack�);

void print and delete word();

void print and delete phrase();

void main loop(istream&);

ConnectableSegment� tier in tree(Tier&);

inline int freely associate(Segment� s1, Segment� s2);

int is tier superior(Tier&, Tier&);

int is superior(ConnectableSegment�, ConnectableSegment�);

friend int apply(Rule& rule, Chart& chart);

friend StrTableEntry� create topmost classnode(StrTableEntry�);

friend STE� create empty classnode(STE�, STE�);

friend STE� create �lled classnode(STE�, STE�, STE�);

friend void enter free associates(STE�, STE�);

friend void remove free associates(STE�, STE�);

friend main(int, char��);

friend int ste matches(STE�, X�);

friend void check sandhi();

friend void maybe add tonal and phonemic tiers();

friend void enter tone rep(STE�, STE�, STE�);

g;
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class Segment f

static int class unique num;

int id num;

void init() f typ = S; id num = class unique num++; tier = 0; modi�ed = 0; g

public:

enum f S=0, CS=1, SS=2, XX=3, WE=4, WB=5, MB=6, ME=7, FM=8, C=9, V=10,

GT=11, TN=12, GP=13, P=14, C0=15, V0=16, X0=17, CN=18, F=19 g typ;

Tier �tier;

int modi�ed;

Segment() f init(); g

Segment(Segment� seg) f init(); tier = seg!tier; g

virtual �Segment() f g

inline void operator delete(void� vd);

inline void� operator new(size t);

== Equality Tests:

virtual Pix matches(Pix, Tier&, Tier��, int) f return (Pix)(-1); g

int operator==(Segment& segment) f return (segment.id num == id num); g

int operator6=(Segment& segment) f return (segment.id num 6= id num); g

virtual int is zero() f return FALSE; g == Is a C 0 type thing.

virtual Pix zeromatches(Pix, Tier&, Tier&) f abort(); return NULL; g

int is in tier(Tier&);

int is actually in tier(Tier&);

== Connection related

virtual int is connectable() f return FALSE; g

virtual int inert() f return TRUE; g

virtual int connects directly to tier(Tier&) f return FALSE; g

virtual int connects directly to(Segment�) f return FALSE; g

virtual int connects to tier(Tier&) f return FALSE; g

virtual int unconnected(int�, int) f return TRUE; g

virtual void detach() f g

virtual void safe detach() f g

int connect(Segment�) f abort(); g

== Spreading:

virtual int spreads() f return FALSE; g

== Copying:

virtual Segment� copy() f return (new Segment(this)); g

virtual Segment� surface copy() f return (new Segment(this)); g

virtual void csub(Segment� seg) f seg!tier = tier; g

void make identical to(Segment� seg) f id num = seg!id num; g

friend void enter seg in tier(StrTableEntry�);

friend main(int, char��);

virtual void print(int pos = 0) f g

void print id() f cerr � id num; g

virtual void print aux(int pos = 0) f g

virtual int type eq(Segment�) f return FALSE; g

virtual int eqv(Segment�) f return FALSE; g
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int is a morphemeboundary() f return (typ == MB jj typ == ME); g

int is a wordboundary() f return (typ == WB jj typ == WE); g

int is a boundary() f return(is a wordboundary()jjis a morphemeboundary()); g

int is end() f return (typ == ME jj typ == WE); g

int is begin() f return (typ == MB jj typ == WB); g

g;

class ConnectableSegment : public Segment f

ConnectableSegment ��inferior;

int infsz; == Size of ��inferior - starts out as �ve.

int num inferiors;

ConnectableSegment ��superior;

int supsz; == Size of ��superior - starts out as 1.

int num superiors;

int spreads left;

int spreads right;

int �inferior to spread along; == �rst el is the number of items.

int �superior to spread along; == �rst el is the number of items.

inline void init(int inf, int sup);

public:

ConnectableSegment() f init(5,1); g

ConnectableSegment(const ConnectableSegment& cs) f

init(cs.infsz, cs.supsz);

num inferiors = cs.num inferiors;

num superiors = cs.num superiors;

g

inline virtual �ConnectableSegment();

int is exact; == Only applies to segments in rules -- if true, the segment

== needs to be matched exactly.

int is inert; == If true, the segment is ignored by the Association Conv.

int inert() f return is inert; g

== Equality Tests:

Pix matches(Pix, Tier&, Tier��, int);

int eq(ConnectableSegment�, Tier��, int);

int eq(Segment�, Tier��, int) f return FALSE; g

int equal(ConnectableSegment�, Tier��, int);

int delete best match(SegList�, Tier��, int);

virtual int type eq(Segment� s);

virtual int eqv(Segment� s);

== Copying

void copy aux(ConnectableSegment�, Map�, int, int�, Chart&, Tier��);

virtual Segment� copy();

virtual Segment� surface copy();

void copy sub(ConnectableSegment� seg);

void csub(Segment� seg);

== Relate to connections:

SegList �topmost superiors();

int is connectable() f return TRUE; g

int connects directly to tier(Tier&);

int connects to tier(Tier&);

int unconnected(Tier��,int);

int connect(ConnectableSegment� cs);

void disconnect(ConnectableSegment� cs); == if seg & cs are def. connected.

void safe detach(); == use to completely disconnect a seg, but leave usable.

void detach(); == use before destroying a segment.
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void delete fully(Map�, int, Chart&, int�);

void break connection(ConnectableSegment�); == call this one.

SegList �connects to(ConnectableSegment�); == Note - tests by eqv.

int connects directly to(Segment� seg);

int not too many vowels();

int not too many tones();

friend void

Rule::adjust connections(ConnectableSegment�, ConnectableSegment�,

Map�, Pix, Chart&, int, int�);

void no duplicate features(ConnectableSegment�, Map�, int, Chart&, int�);

friend void Tier::metathesize(Pix&, Pix, Pix, int, Tier��, Map�);

SegList� inferiors();

SegList� superiors();

SegList� direct superiors();

void sort();

Tier ��tiers in(int& num tiers);

Tier ��add tiers(Tier�� tlist, int& num tiers, int& sz);

== Relates to spreading:

int spreads() f return (spreads left jj spreads right); g

void spread(Pix, Tier&, Chart&);

friend void Chart::apply assoc convention(Pix, Tier&, Tier&);

friend Segment� fewest inferiors(SegList�);

== Parsing friends!

friend StrTableEntry� next vowel(Pix&);

friend StrTableEntry� next consonant(Pix&);

friend void �ll empty classnode(StrTableEntry�, StrTableEntry�);

friend void break connection(StrTableEntry�, StrTableEntry�);

friend void Rule::replace(StrTableEntry�, StrTableEntry�);

friend void enter tone rep(STE�, STE�, STE�);

friend void Chart::read word(istream& in�le, StrStack�);

friend int ste matches(STE�, X�);

friend void Rule::connect map(Map� map);

friend void duplicate connections(Segment�, Segment�, Segment�, Segment�);

friend void xify phonemes();

int make spread(Tier�);

void set right spread();

void set left spread();

virtual void print(int pos = 0) f g;

void print aux(int);

g;

class SegList;

class SegLink f

friend class SegList;

private:

Segment� seg;

SegLink� pre;

SegLink� suc;
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SegLink(Segment� s) f seg = s; g

�SegLink() f if (suc) suc!protect(); delete suc; g == delete links rcsively

void protect() f seg = NULL; g

inline void operator delete(void �vd);

inline void� operator new(size t);

g;

class SegList f

SegLink� head;

SegLink� tail;

int sz;

void init() f sz = 0; head = 0; tail = 0;g

public:

SegList() f init(); g

�SegList() f if (head) head!protect(); delete head; g

SegList(const SegList&);

SegList& operator= (const SegList&);

void operator delete(void� vd) f ::free((char �)vd); g

inline void� operator new(size t);

Pix �rst() const f return (Pix)(head); g

Pix last() const f return (Pix)(tail); g

void next(Pix& p) const f p = (p == 0) ? 0 : (Pix)(((SegLink �)p)!suc); g

void prev(Pix& p) const f p = (p == 0) ? 0 : (Pix)(((SegLink �)p)!pre); g

inline Segment� operator[](const Pix p) const;

void insert at(const Pix p, Segment� seg) f ((SegLink �)p)!seg = seg; g

int length() const f return sz; g

int empty() const f return (head == 0); g

void prepend(Segment�);

Pix append(Segment�);

void join(SegList� sl);

void del(Pix&);

Pix ins before(Pix, Segment�);

Pix ins after(Pix, Segment�);

g;

class Tier f

SegList segments;

static int class unique num;

int id num;

void init() f name = NULL; current = NULL; id num = class unique num++; g

public:

Tier() f init(); g

Tier(char� nm) f init(); set name(nm); g

Tier(const Tier& t);

�Tier() f g

void operator delete(void� vd) f ::free((char �)vd); g

inline void� operator new(size t);

char� name;

Pix current;

inline void set name(char� nm);

void make identical to(Tier �tr) f id num = tr!id num; g
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Tier& operator= (const Tier& t) f segments = t.segments; return �this; g

int operator==(const Tier& tier) const f return (tier.id num == id num); g

int operator6=(const Tier& tier) const f return (tier.id num 6= id num); g

int name eq(const Tier& tier) const f return (tier.id num == id num); g

Pix �rst() const f return (segments.�rst()); g

Pix last() const f return (segments.last()); g

void next(Pix& p) const f segments.next(p); g

void prev(Pix& p) const f segments.prev(p); g

void del(Pix& loc);

Pix insert(Pix loc, Segment� seg);

Pix ins after(Pix loc, Segment� seg);

Pix append(Segment� seg);

void prepend(Segment� seg) f seg!tier = this; segments.prepend(seg); g

Segment� operator[] (Pix p) const f return segments[p]; g

void insert at(const Pix p, Segment� seg);

int length() const f return (segments.length()); g

int is applicable(Tier��, int);

Pix preceding(Segment� s1, Segment� s2);

int precedes(Segment� s1, Segment� s2);

Pix �rst to tier(Tier&, Pix, Pix, Tier&, ConnectableSegment�, Tier��,

int, int, int);

void metathesize(Pix&, Pix, Pix, int, Tier��, Map�);

Pix �nd(Segment�);

friend void make tier(char�);

friend void enter seg in tier(STE�);

friend int Segment::is in tier(Tier&);

friend main(int, char��);

g;

class SegmentSet : public ConnectableSegment f

SegList segments;

public:

SegmentSet() f typ = SS; g

SegmentSet(const SegmentSet& ss) : segments(ss.segments) f typ = SS; g

�SegmentSet() f g

void operator delete(void �vd);

void insert(Segment�);

void remove(Segment�);

Pix �rst() f return segments.�rst(); g

void next(Pix& i) f segments.next(i); g

int empty() f return segments.empty(); g

int length() f return segments.length(); g

Segment� operator[] (Pix p) f return segments[p]; g

Segment� copy();

Segment� surface copy();

int eqv(Segment� s);

int type eq(Segment� s) f return (s!typ == SS); g

g;

class X : public ConnectableSegment f

public:

X() f typ = XX; g
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X(const X&) f typ = XX; g

virtual int eqv(Segment� s);

virtual int type eq(Segment� s);

virtual Segment� copy() f X �x = new X; copy sub(x); return x; g

virtual Segment� surface copy() f X� x = new X; csub(x); return x; g

void print(int);

g;

class Consonant: public X f

public:

Consonant() f typ = C; g

Consonant(const Consonant&) f typ = C; g

int eqv(Segment� p) f return (p!typ == C); g

int type eq(Segment� p) f return (p!typ == C); g

Segment� copy() f Consonant �c = new Consonant; copy sub(c); return c; g

Segment� surface copy() f Consonant �c = new Consonant; csub(c); return c; g

g;

class Vowel: public X f

public:

Vowel() f typ = V; g

Vowel(const Vowel&) f typ = V; g

int eqv(Segment� p) f return (p!typ == V); g

int type eq(Segment� p) f return (p!typ == V); g

Segment� copy() f Vowel �v = new Vowel; copy sub(v); return v; g

Segment� surface copy() f Vowel �v = new Vowel; csub(v); return v; g

g;

class GenericTone : public ConnectableSegment f

public:

GenericTone() f typ = GT; g

GenericTone(const GenericTone&) f typ = GT; g

virtual �GenericTone() f g

virtual int eqv(Segment� p) f return (p!typ == GT jj p!typ == TN); g

virtual int type eq(Segment� p) f return (p!typ == GT jj p!typ == TN); g

virtual Segment� copy();

virtual Segment� surface copy();

virtual void print(int pos =0) f g

g;

class Tone: public GenericTone f

public:

Tone(int l) : level(l) f typ = TN; g

Tone(const Tone& t) : level(t.level) f typ = TN; g

virtual �Tone() f g

int level;

int eqv(Segment� t) f return (t!typ == TN && ((Tone �)t)!level == level); g

int type eq(Segment� p) f return (p!typ == TN); g

Segment� copy() f Tone �t = new Tone(level); copy sub(t); return t; g

Segment� surface copy() f Tone �t = new Tone(level); csub(t); return t; g

void print(int pos =0) f cerr � level � "nn"; print aux(pos); g

g;
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class GenericPhoneme : public ConnectableSegment f

public:

GenericPhoneme() f typ = GP; g

virtual �GenericPhoneme() f typ = GP; g

virtual int eqv(Segment� gp);

virtual int type eq(Segment� gp);

virtual Segment� copy();

virtual Segment� surface copy();

virtual void print(int pos=0) f g

g;

class Phonemic : public GenericPhoneme f

char �representation;

void init() f representation = NULL; typ = P; g

public:

Phonemic() f init(); g

Phonemic(char �c) f init(); set rep(c); g

Phonemic(const Phonemic& p) f init(); set rep(p.representation); g

virtual �Phonemic() f g

inline void set rep(char� rep);

int eqv(Segment� p);

int type eq(Segment� p) f return (p!typ == P); g

virtual Segment� copy();

virtual Segment� surface copy();

void print(int pos=0) f cerr � representation � "nn"; print aux(pos); g

g;

class WordBegin : public Segment f == w[

public:

WordBegin() f typ = WB; g

WordBegin(const WordBegin& wb) f tier = wb.tier; typ = WB; g

Pix matches(Pix seg, Tier& tier, Tier ��applicable tier, int n);

int type eq(Segment� wb) f return (wb!typ == WB); g

Segment� copy() f return (new WordBegin(�this)); g

Segment� surface copy() f return (new WordBegin(�this)); g

void print(int pos=0) f if (wordend) cout � " "; wordend = FALSE; g

g;

class WordEnd : public Segment f == ]w

public:

WordEnd() f typ = WE; g

WordEnd(const WordEnd& we) f tier = we.tier; typ = WE; g

Pix matches(Pix seg, Tier& tier, Tier ��applicable tier, int n);

int type eq(Segment� we) f return (we!typ == WE); g

Segment� copy() f return (new WordEnd(�this)); g

Segment� surface copy() f return (new WordEnd(�this)); g

void print(int pos=0) f wordend = TRUE; morphend = FALSE; g

g;

class MorphemeBegin : public Segment f == m[

public:

MorphemeBegin() f typ = MB; g

MorphemeBegin(const MorphemeBegin& mb) f tier = mb.tier; typ = MB; g

Pix matches(Pix seg, Tier& tier, Tier ��applicable tier, int n);

int type eq(Segment� mb) f return (mb!typ == MB); g

Segment� copy() f return (new MorphemeBegin(�this)); g

Segment� surface copy() f return (new MorphemeBegin(�this)); g
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void print(int pos=0) f if (morphend) cout � "+"; morphend = FALSE; g

g;

class MorphemeEnd : public Segment f == ]m

public:

MorphemeEnd() f typ = ME; g

MorphemeEnd(const MorphemeEnd& me) f tier = me.tier; typ = ME; g

Pix matches(Pix seg, Tier& tier, Tier ��applicable tier, int n);

int type eq(Segment� s) f return (s!typ == ME); g

Segment� copy() f return (new MorphemeEnd(�this)); g

Segment� surface copy() f return (new MorphemeEnd(�this)); g

void print(int pos=0) f morphend = TRUE; g

g;

class C 0 : public Segment f

Consonant cons;

public:

C 0() f typ = C0; g

C 0(const C 0& c0) : cons(c0.cons) f tier = c0.tier; typ = C0; g

int is zero() f return TRUE; g

Pix matches(Pix, Tier&, Tier��, int) f abort(); return NULL; g

Pix zeromatches(Pix, Tier&, Tier&);

Segment� copy() f return (new C 0(�this)); g

Segment� surface copy() f return (new C 0(�this)); g

int type eq(Segment� s) f return (s!typ == C0); g

g;

class V 0 : public Segment f

Vowel vow;

public:

V 0() f typ = V0; g

V 0(const V 0& v0) : vow(v0.vow) f tier = v0.tier; typ = V0; g

int is zero() f return TRUE; g

Pix matches(Pix, Tier&, Tier��, int) f abort(); return NULL; g

Pix zeromatches(Pix, Tier&, Tier&);

Segment �copy() f return (new V 0(�this)); g

Segment �surface copy() f return (new V 0(�this)); g

int type eq(Segment� s) f return (s!typ == V0); g

g;

class X 0 : public Segment f

X x;

public:

X 0() f typ = X0; g

X 0(const X 0& x0) : x(x0.x) f tier = x0.tier; typ = X0; g

int is zero() f return TRUE; g

Pix matches(Pix, Tier&, Tier��, int) f abort(); return NULL; g

Pix zeromatches(Pix, Tier&, Tier&);

Segment� copy() f return (new X 0(�this)); g

Segment� surface copy() f return (new X 0(�this)); g

int type eq(Segment� s) f return (s!typ == X0); g

g;

== The program should replace occurances of C +, etc. with C C 0, etc.

=�����������������������������������������=
=� �=
=� Features! �=
=� �=
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class ClassNode : public GenericPhoneme f

char� name;

void init() f name = NULL; typ = CN; major articulator = NULL; g

ClassNode� major articulator; == Major articulator for ks mode.

public:

ClassNode() f init(); g

ClassNode(const ClassNode& cn) f init(); set name(cn.name); tier = cn.tier; g

ClassNode(char� n) f init(); set name(n); g

�ClassNode() f g

inline void set name(char� nm);

int eqv(Segment� cn);

int type eq(Segment� cn) f return (cn!typ == CN); g

Segment� copy();

Segment� surface copy();

void print(int);

g;

class Feature;

class FeatureMatrix : public GenericPhoneme f

Feature ��feature;

int num features;

int sz;

public:

FeatureMatrix();

FeatureMatrix(const FeatureMatrix& fm);

�FeatureMatrix() f free((char �)feature); g

inline void operator delete(void� vd);

void add feature(Feature� f);

int eqv(Segment� s);

int type eq(Segment� fm) f return (fm!typ == FM); g

Segment� copy();

Segment� surface copy();

void add features to tree seg(Segment�);

void copy features(FeatureMatrix�);

friend STE� create �lled classnode(STE�, STE�, STE�);

void print(int);

g;

class Feature : public GenericPhoneme f

friend class FeatureMatrix;

char� name;

void init() f name = NULL; typ = F; g

int value; == -1 = -, 0 = unspeci�ed, +1 = +, 2 = alpha

public:

Feature(char� nm, int val=0) f init(); set name(nm); value = val; g

Feature(const Feature& f);

virtual �Feature() f g

inline void set name(char� nm);

int eqv(Segment� f);

int type eq(Segment� f) f return (f!typ == F); g

int name eq(Feature� f) f return (strcmp(name, f!name) == 0); g

Segment� copy();
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Segment� surface copy();

void print(int);

g;

== Inlines:

== Delete operators:

inline void Segment::operator delete(void� vd) f

Segment �s = (Segment �)vd;

s!tier = 0;

::free((char �)vd);

g

inline void SegLink::operator delete(void �vd) f

SegLink �s = (SegLink �)vd;

s!seg = 0;

::free((char �)vd);

g

inline void RuleLink::operator delete(void� vd) f

RuleLink �r = (RuleLink �)vd;

r!rule = 0;

::free((char �)vd);

g

inline void FeatureMatrix::operator delete(void� vd) f

FeatureMatrix �fm = (FeatureMatrix �)vd;

::free((char �)fm!feature);

::free((char �)vd);

g

== new operators:

inline void� Rule::operator new(size t size) f

void� ptr = ::malloc(size);

return ptr;

g

inline void� RuleLink::operator new(size t size) f

void� ptr = ::malloc(size);

return ptr;

g

inline void� RuleList::operator new(size t size) f

void� ptr = ::malloc(size);

return ptr;

g

inline void� CSLink::operator new(size t size) f

void� ptr = ::malloc(size);

return ptr;

g

inline void� CSMap::operator new(size t size) f

void� ptr = ::malloc(size);

return ptr;

g

105



inline void� Chart::operator new(size t size) f

void� ptr = ::malloc(size);

return ptr;

g

inline void� Segment::operator new(size t size) f

void� ptr = ::malloc(size);

return ptr;

g

inline void� SegLink::operator new(size t size) f

void� ptr = ::malloc(size);

return ptr;

g

inline void� SegList::operator new(size t size) f

void� ptr = ::malloc(size);

return ptr;

g

inline void� Tier::operator new(size t size) f

void� ptr = ::malloc(size);

return ptr;

g

== Constructors:

inline Rule::Rule(int size=10)

f

init();

sz = size;

original = (Tier ��)malloc(sz � sizeof(Tier �));

replacement = (Tier ��)malloc(sz � sizeof(Tier �));

num tiers = 0;

g

inline Tier::Tier(const Tier& t) : segments(t.segments) f

init(); set name(t.name); id num = class unique num++;

g

inline Feature::Feature(const Feature& f) f

init(); set name(f.name); value = f.value; tier = f.tier;

g

inline FeatureMatrix::FeatureMatrix() f

sz = 10; num features = 0;

feature = (Feature ��)malloc(sz�sizeof(Feature �)); typ = FM;

g

inline FeatureMatrix::FeatureMatrix(const FeatureMatrix& fm) f

int sz = fm.num features;

feature = (Feature ��)malloc(sz�sizeof(Feature �));

for (int i = 0; i<sz; i++)
feature[i] = fm.feature[i];

num features = sz;

typ = FM;

g

== destructors
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inline ConnectableSegment::�ConnectableSegment() f

free((char �)inferior);

free((char �)superior);

free((char �)inferior to spread along);

free((char �)superior to spread along);

g

== Set name

inline void Tier::set name(char� nm) f

name = nm;

g

inline void Rule::set name(char� nm) f

name = nm;

g

inline void Chart::set name(char� nm) f

name = nm;

g

inline void ClassNode::set name(char� nm) f

name = nm;

g

inline void Feature::set name(char� nm) f

name = nm;

g

== copy

inline Segment� ConnectableSegment::copy() f

ConnectableSegment �copy = new ConnectableSegment;

copy sub(copy);

return copy;

g

inline Segment� ConnectableSegment::surface copy() f

ConnectableSegment �copy = new ConnectableSegment;

csub(copy);

return copy;

g

inline Segment� SegmentSet::copy() f

SegmentSet �ss = new SegmentSet;

for (Pix p = �rst(); p 6= NULL; next(p))

ss!insert(operator[](p));

copy sub(ss);

return ss;

g

inline Segment� SegmentSet::surface copy() f

SegmentSet �ss = new SegmentSet;

for (Pix p = �rst(); p 6= NULL; next(p))

ss!insert(operator[](p));

csub(ss);

return ss;

g
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inline Segment� GenericTone::copy() f

GenericTone �gt = new GenericTone; copy sub(gt); return gt;

g

inline Segment� GenericPhoneme::copy() f

GenericPhoneme �gp = new GenericPhoneme; copy sub(gp); return gp;

g

inline Segment� Phonemic::copy() f

Phonemic �p = new Phonemic(representation); copy sub(p); return p;

g

inline Segment� ClassNode::copy() f

ClassNode �c = new ClassNode(name); copy sub(c); return c;

g

inline Segment� Feature::copy() f

Feature �f = new Feature(name, value); copy sub(f); return f;

g

inline Segment� GenericTone::surface copy() f

GenericTone �gt = new GenericTone; csub(gt); return gt;

g

inline Segment� GenericPhoneme::surface copy() f

GenericPhoneme �gp = new GenericPhoneme; csub(gp); return gp;

g

inline Segment� Phonemic::surface copy() f

Phonemic �p = new Phonemic(representation); csub(p); return p;

g

inline Segment� ClassNode::surface copy() f

ClassNode �c = new ClassNode(name); csub(c); return c;

g

inline Segment� Feature::surface copy() f

Feature �f = new Feature(name, value); csub(f); return f;

g

== eqv

inline int ConnectableSegment::eqv(Segment� s) f

return (s!typ == CS jj s!typ == C jj s!typ == V jj s!typ == SS jj

s!typ == GT jj s!typ == TN jj s!typ == GP jj s!typ == P jj

s!typ == CN jj s!typ == FM jj s!typ == F jj s!typ == XX);

g

inline int X::eqv(Segment� s) f

return (s!typ == XX jj s!typ == C jj s!typ == V);

g

inline int GenericPhoneme::eqv(Segment� gp) f

return (gp!typ == GP jj gp!typ == P jj gp!typ == CN jj gp!typ == F jj

gp!typ == FM);

g

inline int Phonemic::eqv(Segment� p) f
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return (p!typ == P &&

!strcmp(((Phonemic �)p)!representation,representation));

g

inline int ClassNode::eqv(Segment� cn) f

return (cn!typ == CN &&

(strcmp(name, ((ClassNode �)cn)!name) == 0) &&

((!major articulator && !((ClassNode �)cn)!major articulator) jj

(major articulator && ((ClassNode �)cn)!major articulator &&

major articulator!eqv(((ClassNode �)cn)!major articulator))));

g

== type eq

inline int ConnectableSegment::type eq(Segment� s) f

return (s!typ == CS jj s!typ == C jj s!typ == V jj s!typ == SS jj

s!typ == GT jj s!typ == TN jj s!typ == GP jj s!typ == P jj

s!typ == CN jj s!typ == FM jj s!typ == F jj s!typ == XX);

g

inline int X::type eq(Segment� s) f

return (s!typ == XX jj s!typ == C jj s!typ == V);

g

inline int GenericPhoneme::type eq(Segment� gp) f

return (gp!typ == GP jj gp!typ == P jj gp!typ == CN jj gp!typ == F jj

gp!typ == FM);

g

== matches

inline Pix

WordBegin::matches(Pix seg, Tier& tier, Tier��, int) f

Pix currpos = seg;

tier.next(currpos);

return ((type eq(tier[seg])) ? currpos : (Pix)(-1));

g

inline Pix

WordEnd::matches(Pix seg, Tier& tier, Tier ��, int) f

Pix currpos = seg;

tier.next(currpos);

return ((type eq(tier[seg])) ? currpos : (Pix)(-1));

g

inline Pix

MorphemeBegin::matches(Pix seg, Tier& tier, Tier ��, int) f

Pix currpos = seg;

tier.next(currpos);

return ((type eq(tier[seg])) ? currpos : (Pix)(-1));

g

inline Pix

MorphemeEnd::matches(Pix seg, Tier& tier, Tier ��, int) f

Pix currpos = seg;

tier.next(currpos);

return ((type eq(tier[seg])) ? currpos : (Pix)(-1));

g
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== inits

inline void ConnectableSegment::init(int inf, int sup) f

typ = CS;

infsz = inf; supsz = sup;

inferior=(ConnectableSegment ��)malloc(infsz�sizeof(ConnectableSegment �));

superior=(ConnectableSegment ��)malloc(supsz�sizeof(ConnectableSegment �));

inferior to spread along = NULL;

superior to spread along = NULL;

num inferiors = 0;

num superiors = 0;

is exact = is inert = FALSE;

spreads left = FALSE;

spreads right = FALSE;

g

inline void Chart::init() f

name = NULL;

sz = 10;

tier = (Tier ��)malloc(sz�sizeof(Tier �));

num tiers = 0;

tree = NULL;

max tones per vowel = -1;

max vowels per tone = -1;

sandhi rules exist = FALSE;

rtol sandhi rules exist = FALSE;

num tones = 0;

no connect = TRUE;

g

== misc

inline void Phonemic::set rep(char� rep) f

representation = rep;

g

inline Segment� SegList::operator[](const Pix p) const f

SegLink� sl = (SegLink �)p;

return sl!seg;

g

inline Pix Tier::insert(Pix loc, Segment� seg) f

seg!tier = this;

return (segments.ins before(loc, seg));

g

inline Pix Tier::ins after(Pix loc, Segment� seg) f

seg!tier = this;

return (segments.ins after(loc, seg));

g

inline Pix Tier::append(Segment� seg) f

seg!tier = this; segments.append(seg); return segments.last();

g

inline void Tier::insert at(const Pix p, Segment� seg) f

seg!tier = this; segments.insert at(p, seg);

g
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inline int Chart::freely associate(Segment� s1, Segment� s2) f

return free associates.freely assoc(s1, s2);

g

#endif =� tones �=

C.2 Application

== Apply.cc

#include "Map.h"

extern Chart chart;

void make set of segs in tier(Segment� seg, SegmentSet� segs, Tier& intier,

ConnectableSegment� rseg, Tier�� ap tier,

int num tiers)

== Insert into the set segs all segments that are:

== 1. Connected to seg

== 2. equal to rseg

== 3. In the tier intier

f

if (seg!is connectable()) f

ConnectableSegment �cs = (ConnectableSegment �)seg;

SegList� infs = cs!inferiors();

for (Pix p = infs!�rst(); p 6= NULL; infs!next(p))

if ((�infs)[p]!is in tier(intier) &&

rseg!equal(convert(infs, p), ap tier, num tiers))

segs!insert((�infs)[p]);

delete infs;

g

g

Pix Tier::preceding(Segment� s1, Segment� s2)

== Returns position of the �rst of

== the two segments, or NULL if neither is in the tier.

f

Pix currpos = segments.�rst();

while (currpos && �segments[currpos] 6= �s1 && �segments[currpos] 6= �s2)

segments.next(currpos);

return (currpos);

g

int Tier::precedes(Segment� s1, Segment� s2)

== Is s1 found on Tier before or at the same time as s2?

f

Pix currpos = segments.�rst();

while (currpos) f

if (�segments[currpos] == �s1)

return TRUE;

if (�segments[currpos] == �s2)

return FALSE;

segments.next(currpos);

g
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return FALSE;

g

SegList� matching segs(Tier& tr, Tier& intier, Tier& ot, Pix tierpos,

int no worddivs, int no morphdivs)

== Returns a list of the segments in tr starting at

== tierpos that match segments

== in the rule tier ot that connect to intier

f

SegList� segs = new SegList;

Pix curc = tierpos;

Pix oldc;

Pix curr;

for (curr = ot.�rst(); curr 6= NULL; ot.next(curr)) f

if (ot[curr]!is connectable())

if (((ConnectableSegment �)ot[curr])!connects to tier(intier))

segs!append(tr[curc]);

if (ot[curr]!is zero())

do f

oldc = curc;

curc = ot[curr]!zeromatches(curc, tr, ot);

while ((no worddivs && tr[curc]!is a wordboundary()) jj

(no morphdivs && tr[curc]!is a morphemeboundary()))

tr.next(curc);

g while (curc 6= oldc);

else f

tr.next(curc);

while ((no worddivs && tr[curc]!is a wordboundary()) jj

(no morphdivs && tr[curc]!is a morphemeboundary()))

tr.next(curc);

g

g

return segs;

g

Pix Tier::�rst to tier(Tier& tr, Pix tier1pos, Pix tier2pos, Tier& ot,

ConnectableSegment� rseg, Tier ��ap tier,

int ntiers, int no wdivs, int no mdivs)

== Finds the �rst position in tr that connects to a

== previously matched segment in this tier and equals

== rseg. If this position precedes tier2pos, returns it.

== Otherwise returns tier2pos. If no position is found, returns

== tier2pos.

f

SegmentSet �testsegs = new SegmentSet;

Pix currpos = tier1pos;

Pix i;

SegList� msegs = matching segs(�this, tr, ot, tier1pos, no wdivs, no mdivs);

if (currpos == NULL) f

delete testsegs;

return tier2pos;

g

for (i = msegs!�rst(); i 6= NULL; msegs!next(i))

make set of segs in tier((�msegs)[i], testsegs, tr, rseg, ap tier, ntiers);

currpos = NULL;

if (tier2pos == NULL) f
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if (!testsegs!empty()) f

i = testsegs!�rst();

currpos = tr.�nd((�testsegs)[i]);

testsegs!next(i);

while (i 6= NULL) f

currpos = tr.preceding(tr.segments[currpos], (�testsegs)[i]);

testsegs!next(i);

g

g

g else f

currpos = tier2pos;

for (i = testsegs!�rst(); i 6= NULL; testsegs!next(i))

currpos = tr.preceding(tr.segments[currpos], (�testsegs)[i]);

g

delete testsegs;

return currpos;

g

int apply(Rule& rule, Chart& chart)

== Matches rule against chart. If matched, applies

== rule to chart, and continues to match and apply in the

== order speci�ed in rule until it no longer matches.

f

int �tier idx;

int applied = FALSE;

Tier ��ap tier;

int num ap tiers = 0;

int di�erent;

int i, j;

int someleft = TRUE;

Pix �origpos = (Pix �)malloc(rule.num tiers � sizeof(Pix));

ap tier = (Tier ��)malloc(rule.num tiers�sizeof(Tier �));

tier idx = new int[rule.num tiers];

for (i=0; i<rule.num tiers; i++)

for (j=0; j<chart.num tiers; j++)

if (chart[j].name eq(�rule.original[i])) f

ap tier[num ap tiers++] = &chart[j];

tier idx[num ap tiers-1] = j;

break;

g

if (num ap tiers 6= rule.num tiers)

abort();

if (rule.is sandhi) == Start at the beginning, so as to get word boundaries.

for (i=0; i<rule.num tiers; i++) f

origpos[i] = chart[tier idx[i]].current;

chart[tier idx[i]].current = chart[tier idx[i]].�rst();

g

if (rule.rtol) == Start at end, for rtol rule.

for (i=0; i<rule.num tiers; i++) f

origpos[i] = chart[tier idx[i]].current;

chart[tier idx[i]].current = chart[tier idx[i]].last();

g
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Pix �match idx = (Pix �)malloc(rule.num tiers � sizeof(Pix));

Pix �old match = (Pix �)malloc(rule.num tiers � sizeof(Pix));

Pix �start pos = (Pix �)malloc(rule.num tiers � sizeof(Pix));

for (i=0; i<rule.num tiers; i++) f

start pos[i] = chart[tier idx[i]].current;

old match[i] = NULL;

g

someleft = TRUE;

while (someleft) f

for (i=0; i<rule.num tiers; i++)

do f

match idx[i]=rule.match(chart[tier idx[i]],ap tier, rule.num tiers, i);

if (rule.rtol && match idx[i] == (Pix)(-1))

chart[tier idx[i]].prev(chart[tier idx[i]].current);

g while (rule.rtol && match idx[i] == (Pix)(-1) &&

chart[tier idx[i]].current 6= NULL);

== Did it actually match?

for (i=0; i<rule.num tiers; i++)

if (match idx[i] == (Pix)(-1)) f == It didn't match, so can't apply.

if (rule.is sandhi jj rule.rtol) == Reset so other rules won't break

for (j=0; j<rule.num tiers; j++)

chart[tier idx[j]].current = origpos[j];

else if (!rule.rtol)

for (j=0; j<rule.num tiers; j++)

chart[tier idx[j]].current = start pos[j];

free((char �)origpos);

free((char �)old match);

free((char �)match idx);

free((char �)start pos);

return applied;

g

for (i=1; i<rule.num tiers; i++)

for (j=0; j<i; j++) f
Tier� tr = rule.original[i];

ConnectableSegment� cs = (ConnectableSegment �)(�tr)[tr!�rst()];

match idx[i] = chart[tier idx[j]].�rst to tier(chart[tier idx[i]],

match idx[j],

match idx[i],

�rule.original[j],

cs, ap tier,

rule.num tiers,

rule.no worddivs,

rule.no morphdivs);

g

di�erent = FALSE;

for (i=0; i<rule.num tiers; i++)

if (match idx[i] 6= old match[i])

di�erent = TRUE;

if (di�erent) f

== Now apply it!

rule.application(chart, match idx, tier idx);

applied = TRUE;

114



for (i=0; i<rule.num tiers; i++)

old match[i] = match idx[i];

g

someleft = TRUE;

for (i=0; i<rule.num tiers; i++) f

if (di�erent)

if (match idx[i]) == Will change if segment was deleted

chart[tier idx[i]].current = match idx[i];

else

chart[tier idx[i]].current = start pos[i];

if (rule.rtol)

chart[tier idx[i]].prev(chart[tier idx[i]].current);

else

chart[tier idx[i]].next(chart[tier idx[i]].current);

if (chart[tier idx[i]].current == NULL)

someleft = FALSE;

g

g

if (rule.is sandhi jj rule.rtol) == Reset so other rules won't break

for (j=0; j<rule.num tiers; j++)

chart[tier idx[j]].current = origpos[j];

else if (!rule.rtol)

for (j=0; j<rule.num tiers; j++)

chart[tier idx[j]].current = start pos[j];

free((char �)origpos);

free((char �)old match);

free((char �)match idx);

free((char �)start pos);

return applied;

g

Pix matches any map el(Segment� seg, Map �map, int i)

== Does seg match any element in map tier number i?

== Returns the position in map if so, or NULL.

f

for (Pix c = map[i].�rst(); c 6= NULL; map[i].next(c))

if (�seg == �(map[i][c]!rule seg))

return c;

return NULL;

g

Pix matches any replacement el(Segment� seg, Tier ��replacement, int i)

== Does seg match any element in replacement, tier number

== i? Returns the position in replacement if so, or NULL.

f

for (Pix c = replacement[i]!�rst(); c 6= NULL; replacement[i]!next(c))

if (�seg == �(�replacement[i])[c])

return c;

return NULL;

g

Pix in map(Segment� seg, Map �map, int map size, int& i)

== Finds rule segment seg in map (which has map size

== tiers). Sets i to the tier on which seg is found, and

== returns the location on the tier (or NULL if not found)

f

for (i=0; i<map size; i++)

for (Pix j=map[i].�rst(); j 6= NULL; map[i].next(j))
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if (�(map[i][j]!rule seg) == �seg)

return j;

return NULL;

g

Pix skeletal in map(Segment� seg, Map� map, int map size, int �tier idx,

Chart& chart, int& i)

== Finds chart segment seg in map (which has map size

== tiers). Sets i to the tier on which seg is found, and

== returns the location on the tier (or NULL if not found)

f

Segment� mseg;

for (i=0; i<map size; i++)

for (Pix p = map[i].�rst(); p 6= NULL; map[i].next(p)) f

mseg = chart[tier idx[i]][map[i][p]!chart pos];

if (�mseg == �seg)

return p;

g

return NULL;

g

Pix in replacement chart(Segment� seg, Tier ��replacement, int num tiers,

int& i)

== Finds rule segment seg in replacement (which has

== num tiers tiers). Sets i to the tier on which seg

== is found, and returns the location on the tier (or NULL if not found)

f

for (i=0; i<num tiers; i++)

for (Pix j=replacement[i]!�rst(); j 6= NULL; replacement[i]!next(j))

if (�(�replacement[i])[j] == �seg)

return j;

return NULL;

g

void ConnectableSegment::sort()

== Puts inferiors and superiors in the order they are found on their tiers.

f

int i, j;

int swapped = TRUE;

ConnectableSegment� tmp;

while (swapped) f

swapped = FALSE;

for (i=0; i<num inferiors; i++)

for (j=i+1; j<num inferiors; j++)

if (inferior[i]!tier && inferior[j]!tier &&

inferior[i]!is actually in tier(�inferior[i]!tier) &&

inferior[j]!is actually in tier(�inferior[j]!tier) &&

�inferior[i]!tier == �inferior[j]!tier &&

inferior[j]!tier!precedes(inferior[j], inferior[i])) f

tmp = inferior[i];

inferior[i] = inferior[j];

inferior[j] = tmp;

swapped = TRUE;

g

for (i=0; i<num superiors; i++)

for (j=i+1; j<num superiors; j++)

if (superior[i]!tier && superior[j]!tier &&

superior[i]!is actually in tier(�superior[i]!tier) &&
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superior[j]!is actually in tier(�superior[j]!tier) &&

�superior[i]!tier == �superior[j]!tier &&

superior[j]!tier!precedes(superior[j], superior[i])) f

tmp = superior[i];

superior[i] = superior[j];

superior[j] = tmp;

swapped = TRUE;

g

g

g

int ConnectableSegment::not too many tones()

== Returns FALSE if this is a Vowel connected to a number of tones

== greater than or equal to the maximum allowable. Otherwise, returns TRUE.

f

if (typ 6= V)

return TRUE;

int num tones = 0;

for (int i=0; i<num inferiors; i++)

if (inferior[i]!typ == TN)

num tones++;

if (chart.max tones per vowel == -1 jj num tones < chart.max tones per vowel)

return TRUE;

return FALSE;

g

int ConnectableSegment::not too many vowels()

== Returns FALSE if this is a tone connected to a number of vowels

== greater than or equal to the maximum allowable. Otherwise, returns TRUE.

f

if (typ 6= TN)

return TRUE;

int num vowels = 0;

for (int i=0; i<num superiors; i++)

if (superior[i]!typ == V)

num vowels++;

if (chart.max vowels per tone == -1 jj num vowels<chart.max vowels per tone)

return TRUE;

return FALSE;

g

int ConnectableSegment::connect(ConnectableSegment� seg)

== Requires -- this segment is assumed to be the SUPERIOR, and seg is

== assumed to be the INFERIOR.

== E�ects: Modi�es this and seg such that they are connected,

== dealing with the case where the connection would exceed the

== tone=vowel connection limit.

f

int i, j, delete num;

int connected properly = TRUE;

for (i=0; i<num inferiors; i++) == Make sure is not already connected.

if (�this == �seg)

return TRUE;

ConnectableSegment ��inf;

Vowel� vow = new Vowel;

Tone� t = new Tone(1);

if (!t!type eq(seg) jj not too many tones())

if (num inferiors < infsz)
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inferior[num inferiors++] = seg;

else f

infsz = 2�infsz; == Double the number of connections possible!

inf = (ConnectableSegment ��)malloc(infsz�sizeof(ConnectableSegment �));

for (i=0; i<num inferiors; i++)

inf[i] = inferior[i];

inf[num inferiors++] = seg;

free((char �)inferior);

inferior = inf;

g

else f

connected properly = FALSE;

for (i=0; i<num inferiors; i++)

if (t!type eq(inferior[i])) f

for (j=0; j<inferior[i]!num superiors; j++)

if (�inferior[i]!superior[j] == �this) f

delete num = j;

break;

g

for (j=delete num; j<(inferior[i]!num superiors-1); j++)

inferior[i]!superior[j] = inferior[i]!superior[j+1];

inferior[i]!num superiors--;

inferior[i] = seg;

break;

g

g

sort();

== Connect seg to this segment.

ConnectableSegment ��sup;

if (!vow!type eq(this) jj seg!not too many vowels())

if (seg!num superiors < seg!supsz)

seg!superior[seg!num superiors++] = this;

else f

seg!supsz = 2 � seg!supsz; == Double the number of connections possible

sup = (ConnectableSegment ��)malloc(seg!supsz �

sizeof(ConnectableSegment �));

for (i=0; i<seg!num superiors; i++)

sup[i] = seg!superior[i];

sup[seg!num superiors++] = this;

free((char �)seg!superior);

seg!superior = sup;

g

else f

connected properly = FALSE;

for (i=0; i<num superiors; i++)

if (vow!type eq(superior[i])) f

for (j=0; j<superior[i]!num inferiors; j++)

if (�superior[i]!inferior[j] == �this) f

delete num = j;

break;

g

for (j=delete num; j<(superior[i]!num inferiors-1); j++)

superior[i]!inferior[j] = superior[i]!inferior[j+1];

superior[i]!num inferiors--;

superior[i] = seg;

break;

g

g
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seg!sort();

delete t;

delete vow;

return connected properly;

g

void ConnectableSegment::disconnect(ConnectableSegment� seg)

== Requires: this is the superior, seg is the inferior

== E�ect: disconnects the segments.

f

int delete num = num inferiors+1, i;

for (i=0; i<num inferiors; i++)

if (�(inferior[i]) == �seg) f

delete num = i;

break;

g

if (delete num > num inferiors)

return; == Not connected.

for (i=delete num; i<(num inferiors-1); i++)

inferior[i] = inferior[i+1];

num inferiors--;

delete num = seg!num superiors+1;

for (i=0; i<seg!num superiors; i++)

if (�(seg!superior[i]) == �this) f

delete num = i;

break;

g

if (delete num > seg!num superiors)

return; == Not connected.

for (i=delete num; i<(seg!num superiors-1); i++)

seg!superior[i] = seg!superior[i+1];

seg!num superiors--;

g

void break crossings(ConnectableSegment� seg1, ConnectableSegment� seg2)

== Breaks any association lines crossed by the connection of seg1

== and seg2. Requires that seg1 and seg2 are not

== yet connected.

f

Pix s1pos = seg1!tier!�nd(seg1);

Pix s2pos = seg2!tier!�nd(seg2);

Pix i, j;

ConnectableSegment �s1, �s2;

i = s1pos;

j = s2pos;

seg1!tier!prev(i);

seg2!tier!next(j);

while (i 6= NULL && j 6= NULL) f

if((�seg1!tier)[i]!connects directly to((�seg2!tier)[j]))

f

s1 = (ConnectableSegment �)((�seg1!tier)[i]);

s2 = (ConnectableSegment �)((�seg2!tier)[j]);

s1!disconnect(s2);

g

seg1!tier!prev(i);

seg2!tier!next(j);

g
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i = s1pos;

j = s2pos;

seg1!tier!next(i);

seg2!tier!prev(j);

while (i 6= NULL && j 6= NULL) f

if((�seg1!tier)[i]!connects directly to((�seg2!tier)[j]))

f

s1 = (ConnectableSegment �)((�seg1!tier)[i]);

s2 = (ConnectableSegment �)((�seg2!tier)[j]);

s1!disconnect(s2);

g

seg1!tier!next(i);

seg2!tier!prev(j);

g

g

SegList ��nd free associates(SegList� choices, ConnectableSegment� seg,

Chart& chart)

== Return all the elements of choices that freely associate with

== seg.

f

SegList �list = new SegList;

for (Pix p=choices!�rst(); p 6= NULL; choices!next(p))

if (chart.freely associate((�choices)[p], seg))

list!append((�choices)[p]);

return list;

g

void ConnectableSegment::no duplicate features(ConnectableSegment� seg,

Map� map, int ntiers,

Chart& chart, int� tier idx)

== Requires - this has not yet been connected to seg, and

== this is not connected to more than one feature with

== the same name.

== E�ects - If this is a classnode and seg is a feature,

== disconnects this from any features with the same name as

== seg.

f

ClassNode� cn = new ClassNode;

Feature� f = new Feature("blah");

int loc;

Pix match;

if (cn!type eq(this) && f!type eq(seg))

for (int i=0; i<num inferiors; i++)

if (f!type eq(inferior[i]) &&

((Feature �)inferior[i])!name eq((Feature �)seg)) f

match = skeletal in map(inferior[i], map, ntiers, tier idx, chart,loc);

if (match) f

ConnectableSegment �minf, �msup;

minf = (ConnectableSegment �)map[loc][match]!rule seg;

match = skeletal in map(this, map, ntiers, tier idx, chart, loc);

if (match) f

msup = (ConnectableSegment �)map[loc][match]!rule seg;

msup!disconnect(minf);

g

g

disconnect(inferior[i]);

break;
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g

delete cn;

delete f;

g

void add connection(ConnectableSegment� sup, ConnectableSegment� inf,

Chart& chart, Map� map, int ntiers, int� tier idx,

int remove dups =0)

== Make a connection between sup and inf, accounting for things like

== freely associating segments, line crossing, and language-speci�c

== tonal parameters.

== Note - assumes sup is superior to inf.

f

ConnectableSegment� seg;

if (chart.freely associate(sup, inf))

seg = sup;

else f

SegList �infs = sup!inferiors();

SegList �fass = �nd free associates(infs, inf, chart);

if (fass!empty())

error("Unable to make connection.");

seg = (ConnectableSegment �)fewest inferiors(fass);

g

break crossings(seg, inf);

if (remove dups && !ks)

seg!no duplicate features(inf, map, ntiers, chart, tier idx);

seg!modi�ed = TRUE;

inf!modi�ed = TRUE;

seg!connect(inf);

g

void ConnectableSegment::copy aux(ConnectableSegment� seg,

Map �map, int num tiers,

int �tier index, Chart& chart,

Tier�� replacement)

== Modi�es this to have approximately the same connections as

== seg, and modi�es the map appropriately.

f

int i;

== Note -- don't need to add any connections not already in the map --

== they'll be added later.

== Later Note -- unless, of course, they aren't in the replacement

== chart either (except as inferiors or superiors, of course)

ConnectableSegment �sup, �inf;

Segment �mel;

Pix match;

int maplevel;

int was replace;

was replace = FALSE;

== Connect in the chart, for replacement.

match = in map(this, map, num tiers, maplevel);

map[maplevel].next(match);

if (match) f

mel = map[maplevel][match]!rule seg;
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was replace = !matches any replacement el(mel, replacement, maplevel);

if (was replace) f

match = map[maplevel][match]!chart pos;

inf = (ConnectableSegment �)chart[tier index[maplevel]][match];

for (i=0; i<inf!num superiors; i++)

add connection(inf!superior[i], seg, chart, map,num tiers,tier index);

for (i=0; i<inf!num inferiors; i++)

add connection(seg, inf!inferior[i], chart, map,num tiers,tier index);

g

g

== Connect based on the map.

if (num superiors) f

match = in map(this, map, num tiers, maplevel);

inf = (ConnectableSegment �)map[maplevel][match]!rule seg;

g

for (i = 0; i<num superiors; i++) f

match = in map(superior[i], map, num tiers, maplevel);

if (match) f

sup = (ConnectableSegment �)map[maplevel][match]!rule seg;

sup!connect(inf);

if (!was replace) f

match = map[maplevel][match]!chart pos;

sup = (ConnectableSegment �)(chart[tier index[maplevel]][match]);

add connection(sup, seg, chart, map, num tiers, tier index);

g

g else f

match=in replacement chart(superior[i],replacement, num tiers, maplevel);

if (match == NULL) f

ConnectableSegment� tmp = superior[i];

superior[i]!disconnect(this);

sup = (ConnectableSegment �)tmp!copy();

add connection(sup, seg, chart, map, num tiers, tier index);

tmp!connect(this);

g

g

g

if (num inferiors) f

match = in map(this, map, num tiers, maplevel);

sup = (ConnectableSegment �)map[maplevel][match]!rule seg;

g

for (i = 0; i<num inferiors; i++) f

match = in map(inferior[i], map, num tiers, maplevel);

if (match) f

inf = (ConnectableSegment �)map[maplevel][match]!rule seg;

sup!connect(inf);

if (!was replace) f

match = map[maplevel][match]!chart pos;

inf = (ConnectableSegment �)(chart[tier index[maplevel]][match]);

add connection(seg, inf, chart, map, num tiers, tier index);

g

g else f

match=in replacement chart(inferior[i],replacement, num tiers, maplevel);

if (match == NULL) f

inf = (ConnectableSegment �)inferior[i]!copy();

add connection(seg, inf, chart, map, num tiers, tier index);

g
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g

g

g

void ConnectableSegment::detach()

== Detach from all connections prior to deletion of this.

f

while (num superiors)

superior[0]!disconnect(this);

while (num inferiors)

disconnect(inferior[0]);

free((char �)superior);

free((char �)inferior);

superior = NULL;

inferior = NULL;

g

void Tier::del(Pix& loc)

== Delete segment at loc, and remove it from the tier.

f

Segment� seg to be deleted = segments[loc];

seg to be deleted!detach(); == Make sure nothing else connects to it.

segments.del(loc);

delete seg to be deleted;

g

void Tier::metathesize(Pix& map index, Pix match loc, Pix curr, int i,

Tier ��replacement, Map �map)

== Move segment at map index to the next position after

== match loc, in both the chart and map. Note that the locations

== mentioned are in the map, which should contain the chart locations as

== well.

f

Pix match index, index, oldidx, �nd index, precede index;

Segment� seg = segments[map[i][map index]!chart pos];

== Update the chart:

== Remove segment from original position:

match index = map[i][map index]!chart pos;

segments.del(match index);

== Find the place to put the segment:

index = curr;

�nd index = match loc;

do f

while (index 6= �nd index) f

oldidx = index;

replacement[i]!next(index);

g

precede index = matches any map el((�replacement[i])[oldidx], map, i);

if (precede index == NULL)

�nd index = oldidx;

g while (precede index == NULL);

== Put it there:

index = segments.ins after(map[i][precede index]!chart pos, seg);

== Update the map:
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match data� md = new match data;

md!rule seg = map[i][map index]!rule seg!surface copy();

if (map[i][map index]!rule seg!is connectable()) f

ConnectableSegment �copyee, �copy;

copyee = (ConnectableSegment �)map[i][map index]!rule seg;

copy = (ConnectableSegment �)md!rule seg;

int i;

while (copyee!num inferiors > 0) f

copy!connect(copyee!inferior[0]);

copyee!disconnect(copyee!inferior[0]);

g

while (copyee!num superiors > 0) f

copyee!superior[0]!connect(copy);

copyee!superior[0]!disconnect(copyee);

g

g

md!chart pos = index;

map[i].del(map index);

map[i].ins after(precede index, md);

g

int min(int �d, int num)

== Return the minimum element of d[]

f

int min = 99999999;

int i;

for (i=0; i<num; i++)

if (d[i] 6= -1 && d[i]<min)

min = d[i];

if (min == 99999999)

min = -1;

return min;

g

ConnectableSegment� generalized eqv(ConnectableSegment� a)

== Return closest segment matching a that would be found in the

== chart tree.

f

Vowel �vow = new Vowel;

Consonant �cons = new Consonant;

Tone �t = new Tone(1);

Phonemic �p = new Phonemic;

ConnectableSegment �astandin;

if (a!type eq(vow) jj a!type eq(cons)) f

astandin = new X;

delete vow; delete cons; delete t; delete p;

return (astandin);

g

if (a!type eq(t)) f

astandin = new GenericTone;

delete vow; delete cons; delete t; delete p;

return (astandin);

g

if (a!type eq(p)) f

astandin = new GenericPhoneme;
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delete vow; delete cons; delete t; delete p;

return (astandin);

g

return (a);

g

int contains(SegList� list, Segment� seg)

== Does list contain something like seg?

f

Pix p;

for (p = list!�rst(); p 6= NULL; list!next(p))

if (seg!eqv((�list)[p]))

return TRUE;

return FALSE;

g

SegList �ConnectableSegment::inferiors()

== Return the recursive inferiors of this

f

SegList �list = new SegList;

for (int i=0; i<num inferiors; i++) f

list!append(inferior[i]);

list!join(inferior[i]!inferiors());

g

return list;

g

SegList �ConnectableSegment::superiors()

== Return the recursive superiors of this

f

SegList �list = new SegList;

for (int i=0; i<num superiors; i++) f

list!append(superior[i]);

list!join(superior[i]!superiors());

g

return list;

g

SegList �ConnectableSegment::direct superiors()

== Return the direct superiors of this

f

SegList �list = new SegList;

for (int i=0; i<num superiors; i++) f

list!append(superior[i]);

g

return list;

g

int Chart::is superior(ConnectableSegment� a, ConnectableSegment� b)

f

if (tree!eqv(a))

return TRUE;

else if (tree!eqv(b))

return FALSE;

else f

SegList �list = tree!connects to(generalized eqv(a));

ConnectableSegment� aaa = convert(list, list!�rst());

if (contains(aaa!inferiors(), generalized eqv(b)))
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return TRUE;

return FALSE;

g

g

Segment �fewest inferiors(SegList� choices)

== Friend to ConnectableSegment

f

int min = 99999999;

Segment� fewest = NULL;

for (Pix p=choices!�rst(); p 6= NULL; choices!next(p))

if (convert(choices, p)!num inferiors < min) f

min = convert(choices, p)!num inferiors;

fewest = (�choices)[p];

g

return fewest;

g

Pix Tier::�nd(Segment� seg)

== Return the location of seg in tier, or NULL if not found.

f

for (Pix i = segments.�rst(); i 6= NULL; segments.next(i))

if (�segments[i] == �seg)

return i;

return NULL;

g

int ConnectableSegment::connects directly to(Segment� seg)

== Does this connect directly to seg?

f

if (seg!is connectable()) f

ConnectableSegment �cs = (ConnectableSegment �)seg;

int i;

for (i=0; i<num inferiors; i++)

if ((�inferior[i]) == �cs)

return TRUE;

for (i=0; i<num superiors; i++)

if ((�superior[i]) == �cs)

return TRUE;

return FALSE;

g else

return FALSE;

g

int exactly contains(SegList� list, Segment� seg)

== Tests by ==

== Is seg in list?

f

for (Pix p = list!�rst(); p 6= NULL; list!next(p))

if (�seg == �(�list)[p])

return TRUE;

return FALSE;

g

void ConnectableSegment::break connection(ConnectableSegment� seg)

== Assumes this is superior to seg.

f

int i;
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if (connects directly to(seg)) f

disconnect(seg);

return;

g

for (i=0; i<seg!num superiors; i++)

if (exactly contains(seg!superior[i]!superiors(), this))

seg!superior[i]!disconnect(seg);

g

void ConnectableSegment::spread(Pix spreadpos, Tier& ctier, Chart& chart)

== spreads along ctier starting from spreadpos, in chart.

f

Pix i;

ConnectableSegment �seg;

int num;

int is sup = FALSE;

Vowel �vow = new Vowel;

Tone �t = new Tone(1);

if (contains(inferiors(), ctier[spreadpos])) f == this is superior to csp

num = num inferiors;

is sup = TRUE;

g else f

num = num superiors;

g

if (spreads right) f

i = spreadpos;

ctier.next(i);

while (i 6= NULL &&

(is sup ? !t!type eq(ctier[i]) jj not too many tones() :

!vow!type eq(ctier[i]) jj not too many vowels()) &&

!ctier[i]!connects to tier(�tier) && !ctier[i]!is a boundary())

f

if (ctier[i]!is connectable()) f

seg = (ConnectableSegment �)ctier[i];

if (chart.freely associate(this, seg))

if (is sup)

connect(seg);

else

seg!connect(this);

g

ctier.next(i);

g

g

if (spreads left) f

i = spreadpos;

ctier.prev(i);

while (i 6= NULL &&

(is sup ? !t!type eq(ctier[i]) jj not too many tones() :

!vow!type eq(ctier[i]) jj not too many vowels()) &&

!ctier[i]!connects to tier(�tier) && !ctier[i]!is a boundary())

f

if (ctier[i]!is connectable()) f

seg = (ConnectableSegment �)ctier[i];

if (chart.freely associate(this, seg))

if (is sup)
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connect(seg);

else

seg!connect(this);

g

ctier.prev(i);

g

g

delete t;

delete vow;

g

int Rule::adjust connections(ConnectableSegment� crel,

ConnectableSegment� cmel,

Map �map, Pix mpos,

Chart& chart, int i, int �tier index)

== Returns true if made a connection.

== Adjust chart and map connections of the segment pointed to by cmel

== such that they match the connections of crel, and apply spreading

== if necessary.
f

Tier& tier = chart[tier index[i]];

Pix match loc;

int loc;

int made connection = FALSE;

ConnectableSegment �sup, �inf;

if (crel!num inferiors 6= cmel!num inferiors jj

crel!num superiors 6= cmel!num superiors) f

int ii, jj;

for (ii=0; ii<crel!num inferiors; ii++) f

int has that one = FALSE;

for (jj=0; jj<cmel!num inferiors; jj++)

if (�(crel!inferior[ii]) == �(cmel!inferior[jj]))

has that one = TRUE;

if (!has that one) f

match loc = in map(crel!inferior[ii], map, num tiers, loc);

if (match loc 6= NULL) f

Tier& tier2 = chart[tier index[loc]];

inf=(ConnectableSegment �)(tier2[map[loc][match loc]!chart pos]);

sup=(ConnectableSegment �)(tier[map[i][mpos]!chart pos]);

add connection(sup, inf, chart, map, num tiers, tier index, TRUE);

inf = (ConnectableSegment �)map[loc][match loc]!rule seg;

sup = (ConnectableSegment �)map[i][mpos]!rule seg;

sup!connect(inf);

made connection = TRUE;

g == Otherwise, wait, and it'll all work out: : :
g

g == end for

for (ii=0; ii<crel!num superiors; ii++) f

int has that one = FALSE;

for (jj=0; jj<cmel!num superiors; jj++)

if (�(crel!superior[ii]) == �(cmel!superior[jj]))

has that one = TRUE;

if (!has that one) f

match loc = in map(crel!superior[ii], map, num tiers, loc);

if (match loc 6= NULL) f

Tier& tier2 = chart[tier index[loc]];

inf=(ConnectableSegment �)(tier2[map[loc][match loc]!chart pos]);

sup=(ConnectableSegment �)(tier[map[i][mpos]!chart pos]);
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add connection(inf, sup, chart, map, num tiers, tier index, TRUE);

sup = (ConnectableSegment �)map[i][mpos]!rule seg;

inf = (ConnectableSegment �)map[loc][match loc]!rule seg;

sup!connect(inf);

made connection = TRUE;

g == Otherwise, wait, and it'll all work out: : :
g

g == end for

for (ii=0; ii<cmel!num inferiors; ii++) f

int has that one = FALSE;

for (jj=0; jj<crel!num inferiors; jj++)

if (�(cmel!inferior[ii]) == �(crel!inferior[jj]))

has that one = TRUE;

if (!has that one) f

match loc = in replacement chart(cmel!inferior[ii],

replacement, num tiers, loc);

if (match loc 6= NULL) f

match loc = in map(cmel!inferior[ii], map, num tiers, loc);

Tier& tier2 = chart[tier index[loc]];

inf=(ConnectableSegment �)(tier2[map[loc][match loc]!chart pos]);

sup=(ConnectableSegment �)(tier[map[i][mpos]!chart pos]);

sup!break connection(inf);

inf = (ConnectableSegment �)map[loc][match loc]!rule seg;

sup = (ConnectableSegment �)map[i][mpos]!rule seg;

sup!disconnect(inf);

g == Otherwise, wait, and it'll all work out: : :
g == end if

g == end for

for (ii=0; ii<cmel!num superiors; ii++) f

int has that one = FALSE;

for (jj=0; jj<crel!num superiors; jj++)

if (�(cmel!superior[ii]) == �(crel!superior[jj]))

has that one = TRUE;

if (!has that one) f

match loc = in replacement chart(cmel!superior[ii],

replacement, num tiers, loc);

if (match loc 6= NULL) f

match loc = in map(cmel!superior[ii], map, num tiers, loc);

Tier& tier2 = chart[tier index[loc]];

sup=(ConnectableSegment �)(tier2[map[loc][match loc]!chart pos]);

inf=(ConnectableSegment �)(tier[map[i][mpos]!chart pos]);

sup!break connection(inf);

sup = (ConnectableSegment �)map[loc][match loc]!rule seg;

inf = (ConnectableSegment �)map[i][mpos]!rule seg;

sup!disconnect(inf);

g == Otherwise, wait, and it'll all work out: : :
g == end if

g == end for

g == end if (same number connections?)

else f

if (crel!spreads()) f

int ii, num;

Pix chartpos;

ConnectableSegment �cseg;

if (crel!inferior to spread along 6= NULL)

for (ii=1; ii�crel!inferior to spread along[0]; ii++) f

num = crel!inferior to spread along[ii];

cseg = (ConnectableSegment �)tier[map[i][mpos]!chart pos];

cseg!spreads right = crel!spreads right;
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cseg!spreads left = crel!spreads left;

match loc = in map(crel!inferior[num], map, num tiers, loc);

chartpos = map[loc][match loc]!chart pos;

cseg!spread(chartpos, chart[tier index[loc]], chart);

made connection = TRUE;

g

if (crel!superior to spread along 6= NULL)

for (ii=1; ii�crel!superior to spread along[0]; ii++) f

num = crel!superior to spread along[ii];

cseg = (ConnectableSegment �)tier[map[i][mpos]!chart pos];

cseg!spreads right = crel!spreads right;

cseg!spreads left = crel!spreads left;

match loc = in map(crel!superior[num], map, num tiers, loc);

chartpos = map[loc][match loc]!chart pos;

cseg!spread(chartpos, chart[tier index[loc]], chart);

made connection = TRUE;

g

g

g

return made connection;

g

void Chart::apply assoc convention(Pix con1pos, Tier& tier1, Tier& tier2)

== needs to be a friend of connectable segment: : :
== Applies the association convention to tiers 1 and 2.

f

ConnectableSegment �seg = (ConnectableSegment �)(tier1[con1pos]);

ConnectableSegment �conseg, �inf, �sup;

Pix con2pos, p, p1, oldp1, q;

int i;

ConnectableSegment ��segconnection;

int segnc;

int superior = FALSE;

Vowel �vow = new Vowel;

Tone �t = new Tone(1);

if (is tier superior(tier1, tier2)) f

segconnection = seg!inferior;

segnc = seg!num inferiors;

superior = TRUE;

g else f

segconnection = seg!superior;

segnc = seg!num superiors;

g

for (i=0; i<segnc; i++)
if (segconnection[i]!is in tier(tier2)) f

con2pos = tier2.�nd(segconnection[i]);

== Associate from right to left:

p = con1pos; q = con2pos;

tier2.prev(q);

oldp1 = p;

while (p 6= NULL && !tier1[p]!is a boundary() &&

q 6= NULL && !tier2[q]!is a boundary() &&

!tier2[q]!connects directly to tier(tier1)) f

p1 = p;

tier1.prev(p1);

while (p1 6= NULL && !tier1[p1]!is a boundary() &&

!tier1[p1]!connects directly to tier(tier2) &&
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(tier1[p1]!inert() jj tier2[q]!inert() jj

!freely associate(tier1[p1], tier2[q])))

tier1.prev(p1);

if (p1 6= NULL && !tier1[p1]!is a boundary() &&

!tier1[p1]!connects directly to tier(tier2)) f

oldp1 = p1;

if (superior) f

sup = (ConnectableSegment �)tier1[p1];

inf = (ConnectableSegment �)tier2[q];

g else f

inf = (ConnectableSegment �)tier1[p1];

sup = (ConnectableSegment �)tier2[q];

g

sup!connect(inf);

p = p1;

tier2.prev(q); g

else == pileup?

if ((p1 == NULL jj tier1[p1]!is begin()) &&

(oldp1 6= NULL && !tier1[oldp1]!inert() && !tier2[q]!inert() &&

freely associate(tier1[oldp1], tier2[q]))) f

conseg = (ConnectableSegment �)(tier1[oldp1]);

if (superior) f

if (!t!type eq(tier2[q]) jj conseg!not too many tones()) f

conseg!connect((ConnectableSegment �)tier2[q]);

tier2.prev(q);

g else

break;

g else f

if (!vow!type eq(tier2[q]) jj conseg!not too many vowels()) f

((ConnectableSegment �)tier2[q])!connect(conseg);

tier2.prev(q);

g else

break;

g

g

else

tier2.prev(q);

g

== Associate from Left to Right

p = con1pos; q = con2pos;

tier2.next(q);

oldp1 = p;

while (p 6= NULL && !tier1[p]!is a boundary() &&

q 6= NULL && !tier2[q]!is a boundary() &&

!tier2[q]!connects directly to tier(tier1)) f

p1 = p;

tier1.next(p1);

while (p1 6= NULL && !tier1[p1]!is a boundary() &&

!tier1[p1]!connects directly to tier(tier2) &&

(tier1[p1]!inert() jj tier2[q]!inert() jj

!freely associate(tier1[p1], tier2[q])))

tier1.next(p1);

if (p1 6= NULL && !tier1[p1]!is a boundary() &&

!tier1[p1]!connects directly to tier(tier2)) f

oldp1 = p1;

if (superior) f

sup = (ConnectableSegment �)tier1[p1];

inf = (ConnectableSegment �)tier2[q];

g else f
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inf = (ConnectableSegment �)tier1[p1];

sup = (ConnectableSegment �)tier2[q];

g

sup!connect(inf);

p = p1;

tier2.next(q); g

else == pileup?

if ((p1 == NULL jj tier1[p1]!is end()) &&

(oldp1 6= NULL && !tier1[oldp1]!inert() && !tier2[q]!inert()

&& freely associate(tier1[oldp1], tier2[q]))) f

conseg = (ConnectableSegment �)(tier1[oldp1]);

if (superior) f

if (!t!type eq(tier2[q]) jj conseg!not too many tones()) f

conseg!connect((ConnectableSegment �)tier2[q]);

tier2.next(q);

g else

break;

g else f

if (!vow!type eq(tier2[q]) jj conseg!not too many vowels()) f

((ConnectableSegment �)tier2[q])!connect(conseg);

tier2.next(q);

g else

break;

g

g

else

tier2.next(q);

g

g

delete vow;

delete t;

g

== Note that we must guarantee that anything on a given tier A must be

== uniformly superior or inferior to anything on any given tier B.

ConnectableSegment� Chart::tier in tree(Tier& tr) f

if (tree!tier!name eq(tr))

return tree;

SegList� infs = tree!inferiors();

ConnectableSegment� cs;

for (Pix p = infs!�rst(); p 6= NULL; infs!next(p))

if ((�infs)[p]!tier!name eq(tr)) f

cs = (ConnectableSegment �)(�infs)[p];

delete infs;

return cs;

g

delete infs;

return (ConnectableSegment �)0;

g

int Chart::is tier superior(Tier& tier1, Tier& tier2)

f

ConnectableSegment �t1, �t2;

t1 = tier in tree(tier1);

t2 = tier in tree(tier2);

if (t1 && t2) f

if (contains(t1!inferiors(), t2))

return TRUE;
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g

return FALSE;

g

void Chart::assoc convention(int �tier index, int num tiers)

== Finds places to apply the association convention, and applies it.

f

int i, j;

Pix p;

for (i=0; i<num tiers; i++)

for (j=i+1; j<num tiers; j++) f

Tier& tier1 = �tier[tier index[i]];

Tier& tier2 = �tier[tier index[j]];

for (p = tier1.�rst(); p 6= NULL; tier1.next(p))

if (tier1[p]!modi�ed && tier1[p]!connects directly to tier(tier2))

apply assoc convention(p, tier1, tier2);

g

g

void Rule::connect map(Map� map)

== Connects the map segments to match the connections in rule.

f

int i, ii, jj, loc;

Pix p, q;

int has that one;

Pix match loc;

ConnectableSegment �sup, �inf;

for (i = 0; i<num tiers; i++)

for (p = original[i]!�rst(), q = map[i].�rst(); p 6= NULL && q 6= NULL;

original[i]!next(p), map[i].next(q))

if ((�original[i])[p]!is connectable()) f

ConnectableSegment� rseg = (ConnectableSegment �)(�original[i])[p];

ConnectableSegment� mseg = (ConnectableSegment �)map[i][q]!rule seg;

int& rinfs = rseg!num inferiors;

int& rsups = rseg!num superiors;

int& minfs = mseg!num inferiors;

int& msups = mseg!num superiors;

if (rinfs > minfs)

for (ii=0; ii<rinfs; ii++) f
has that one = FALSE;

for (jj=0; jj<minfs; jj++)

if (�(rseg!inferior[ii]) == �(mseg!inferior[jj]))

has that one = TRUE;

if (!has that one) f

match loc = in map(rseg!inferior[ii], map, num tiers, loc);

if (match loc 6= NULL) f

inf = (ConnectableSegment �)map[loc][match loc]!rule seg;

sup = (ConnectableSegment �)map[i][q]!rule seg;

sup!connect(inf);

g

g

g

if (rsups > msups)

for (ii=0; ii<rsups; ii++) f
has that one = FALSE;

for (jj=0; jj<msups; jj++)

if (�(rseg!superior[ii]) == �(mseg!superior[jj]))

has that one = TRUE;
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if (!has that one) f

match loc = in map(rseg!superior[ii], map, num tiers, loc);

if (match loc 6= NULL) f

sup = (ConnectableSegment �)map[i][q]!rule seg;

inf = (ConnectableSegment �)map[loc][match loc]!rule seg;

sup!connect(inf);

g

g

g

g

g

void ConnectableSegment::delete fully(Map� map, int num tiers, Chart& chart,

int �tier idx)

== Delete a segment and all its inferiors not found in the map.

f

ConnectableSegment� tmp;

Pix match;

int loc;

while (num superiors)

superior[0]!disconnect(this);

while (num inferiors) f

tmp = inferior[0];

if (tmp!num superiors < 2) f

if (!(skeletal in map(tmp, map, num tiers, tier idx, chart, loc))) f

tmp!delete fully(map, num tiers, chart, tier idx);

if (tmp!tier) f

match = tmp!tier!�nd(tmp);

if (match)

tmp!tier!del(match);

g

g else

disconnect(tmp);

g else

disconnect(tmp);

g

g

void delete segment(Tier& tier, Map� map, int tier num, Pix& mpos, int ntiers,

Chart& chart, int �tidx)

== Delete a segment found in the map and chart but not in the replacement

== chart.

f

Pix loc = map[tier num][mpos]!chart pos;

if (tier[loc]!is connectable())

((ConnectableSegment �)tier[loc])!delete fully(map, ntiers, chart, tidx);

tier.del(loc);

map[tier num][mpos]!rule seg!detach();

delete map[tier num][mpos]!rule seg;

map[tier num][mpos]!rule seg = NULL;

delete map[tier num][mpos];

map[tier num].insert at(mpos, NULL);

map[tier num].del(mpos);

g

void Rule::application(Chart& chart, Pix� match index, int �tier index) f

== Requires:

== (1) Each Pix match index[i] in match index points to the �rst

== segment of a portion of tier chart[tier index[i]], a portion
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== that matches the tier replacement[i] of the rule of which this is

== a member function. The match must be appropriate to the type of

== this rule (That is, each segment marked for exact matching must

== match exactly, by having the same number of connections to

== tiers mentioned in the rule.) Furthermore, there must be the same

== number of elements in the arrays original, replacement,

== match index, and tier index.

== (2) Any non-connectable segment in �original must also be found in

== �replacement. Furthermore, it must be in the same element (tier)

== in �original as in �replacement, and within a given element, the

== �order� of non-connectable segments must be the same between the

== element of �original and the corresponding element in �replacement.

== (3) The arrays original, replacement, match index, and tier index must

== be set up such that, for any given i greater than or equal to zero

== and less than num tiers (a slot in the rule), the tiers referred to

== by original[i], replacement[i], match index[i], and

== chart[tier index[i]] all correspond (They must be name eq,

== etc.)

== Modi�es: chart, and conceivably any tier or segment referred to directly

== or indirectly by it.

== E�ects: applies rule to chart, and applies the association convention

== afterwards, if possible.

Map �map = new Map[num tiers];

match data �curr el;

Pix curr, curc, oldc, mpos, match loc, oldmpos;

int i;

int mc = FALSE; == Made connection

int made connection = FALSE;

FeatureMatrix �fm = new FeatureMatrix;

== Make map.

for (i = 0; i<num tiers; i++) f

Tier� map tier = new Tier;

map tier!set name(original[i]!name);

map tier!make identical to(original[i]);

curc = match index[i];

for (curr = original[i]!�rst(); (curr 6= NULL) && (curc 6= NULL);

original[i]!next(curr))

f

while ((no worddivs &&

chart[tier index[i]][curc]!is a wordboundary())

jj (no morphdivs &&

chart[tier index[i]][curc]!is a morphemeboundary()))

chart[tier index[i]].next(curc);

curr el = new match data;

curr el!rule seg = (�original[i])[curr]!surface copy();

curr el!rule seg!make identical to((�original[i])[curr]);

curr el!rule seg!tier = map tier;

curr el!chart pos = curc;

map[i].append(curr el);

if (curr el!rule seg!is zero()) == Skip zero things.

do f

oldc = curc;

curc = curr el!rule seg!zeromatches(curc, chart[tier index[i]],

�original[i]);

while ((no worddivs &&

chart[tier index[i]][curc]!is a wordboundary())

jj (no morphdivs &&

chart[tier index[i]][curc]!is a morphemeboundary()))
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chart[tier index[i]].next(curc);

g while (curc 6= oldc);

else

chart[tier index[i]].next(curc);

g

g

connect map(map);

for (i=0; i<num tiers; i++) f

Tier& tier = chart[tier index[i]];

curr = replacement[i]!�rst();

mpos = map[i].�rst();

oldmpos = NULL;

while (curr 6= NULL jj mpos 6= NULL) f

Segment� rel = NULL;

Segment� mel = NULL;

if (curr == NULL) f == Delete segment.

if (map[i][mpos]!chart pos == match index[i])

match index[i] = 0;

delete segment(tier, map, i, mpos, num tiers, chart, tier index);

continue;

g

if (mpos == NULL) f == Insert segment.

rel = (�replacement[i])[curr];

Segment� seg = rel!surface copy();

match data �md = new match data;

md!rule seg = rel!surface copy();

md!rule seg!make identical to(rel);

md!rule seg!tier = map[i][oldmpos]!rule seg!tier;

md!chart pos = tier.ins after(map[i][oldmpos]!chart pos, seg);

mpos = map[i].append(md);

if (rel!is connectable()) f

ConnectableSegment� cs = (ConnectableSegment �)rel;

ConnectableSegment� cseg = (ConnectableSegment �)seg;

cs!copy aux(cseg, map, num tiers, tier index, chart, replacement);

g

g

rel = (�replacement[i])[curr];

mel = map[i][mpos]!rule seg;

if (�rel 6= �mel) f

if (matches any map el(rel, map, i)) f

match loc = matches any replacement el(mel, replacement, i);

if (match loc 6= NULL) == Metathesize segment.

tier.metathesize(mpos, match loc, curr, i, replacement, map);

else f == Delete segment

oldmpos = mpos;

if (map[i][mpos]!chart pos == match index[i])

match index[i] = 0;

delete segment(tier, map, i, mpos, num tiers, chart, tier index);

g

g else f == Insert segment

if (!matches any replacement el(mel, replacement, i) &&

fm!type eq(rel)) f

FeatureMatrix �chartfm, �relfm;

chartfm = (FeatureMatrix �)tier[map[i][mpos]!chart pos];

relfm = (FeatureMatrix �)rel;

relfm!copy features(chartfm);

map[i][mpos]!rule seg!make identical to(rel);
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== ^ is a cheap hack to make identical without messing with cons.

g else f

Segment� seg = rel!surface copy();

match data �md = new match data;

md!rule seg = rel!surface copy();

md!rule seg!make identical to(rel);

md!rule seg!tier = map[i][mpos]!rule seg!tier;

md!chart pos = tier.insert(map[i][mpos]!chart pos, seg);

oldmpos = mpos;

mpos = map[i].ins before(mpos, md);

if (rel!is connectable()) f

ConnectableSegment� cs = (ConnectableSegment �)rel;

ConnectableSegment� cseg = (ConnectableSegment �)seg;

cs!copy aux(cseg,map,num tiers, tier index, chart, replacement);

g

g

g == end if (matches: : :)
g == if (rel 6= mel)

else f == Adjust connections:

if (rel!is connectable()) f

ConnectableSegment� crel = (ConnectableSegment �)rel;

ConnectableSegment� cmel = (ConnectableSegment �)mel;

mc = adjust connections(crel, cmel, map, mpos, chart, i, tier index);

made connection = (mc jj made connection);

g == if (rel.is connectable())
replacement[i]!next(curr);

oldmpos = mpos;

map[i].next(mpos);

g == end if (rel 6= mel)

g == end while

g == end for

delete[] map;

delete fm;

== Association convention.

if (made connection)

chart.assoc convention(tier index, num tiers);

g

C.3 Matching

== matching.cc

#include "tones.h"

extern ConnectableSegment� convert(SegList�, Pix);

int Tier::is applicable(Tier ��applicable tier, int num tiers)

== Is this an applicable tier (is it mentioned in the rule?)

f

for (int i=0; i<num tiers; i++)

if (id num == applicable tier[i]!id num)

return TRUE;

return FALSE;

g

int matches exactly(ConnectableSegment� rseg, ConnectableSegment� seg,

Tier�� ap tier, int num)

== Does seg match rseg exactly?
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f

int num applicable connections =0;

int num connections =0;

SegList� sups = rseg!superiors();

SegList� infs = rseg!inferiors();

Pix p;

for (p = sups!�rst(); p 6= NULL; sups!next(p))

if (!(�sups)[p]!tier jj (�sups)[p]!tier!is applicable(ap tier, num))

num connections++;

for (p = infs!�rst(); p 6= NULL; infs!next(p))

if (!(�infs)[p]!tier jj (�infs)[p]!tier!is applicable(ap tier, num))

num connections++;

delete sups;

delete infs;

sups = seg!superiors();

infs = seg!inferiors();

for (p = sups!�rst(); p 6= NULL; sups!next(p))

if (!(�sups)[p]!tier jj (�sups)[p]!tier!is applicable(ap tier, num))

num applicable connections++;

for (p = infs!�rst(); p 6= NULL; infs!next(p))

if (!(�infs)[p]!tier jj (�infs)[p]!tier!is applicable(ap tier, num))

num applicable connections++;

delete sups;

delete infs;

if (num applicable connections 6= num connections)

return FALSE;

return TRUE;

g

int matches roughly(ConnectableSegment� rseg, ConnectableSegment� seg,

Tier�� ap tier, int num)

== Does seg match rseg roughly?

f

int num applicable connections = 0;

int num connections = 0;

Pix p;

SegList� infs = rseg!inferiors();

for (p = infs!�rst(); p 6= NULL; infs!next(p))

if (!(�infs)[p]!tier jj (�infs)[p]!tier!is applicable(ap tier, num))

num connections++;

delete infs;

infs = seg!inferiors();

for (p = infs!�rst(); p 6= NULL; infs!next(p))

if (!(�infs)[p]!tier jj (�infs)[p]!tier!is applicable(ap tier, num))

num applicable connections++;

delete infs;

if (num applicable connections < num connections)

return FALSE;

return TRUE;

g

Pix ConnectableSegment::matches(Pix seg, Tier& tier,

Tier ��applicable tier,

int num tiers)

== Does the segment at location seg match this? If so

== return the next position. If not, return NULL.

f
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Segment� segment = tier[seg];

Pix currpos = seg;

tier.next(currpos);

if (segment!is connectable()) f

ConnectableSegment� cs = (ConnectableSegment �)segment;

return ((eq(cs, applicable tier, num tiers)) ? currpos : (Pix)(-1));

g else

return ((eq(segment, applicable tier, num tiers)) ? currpos : (Pix)(-1));

g

int ConnectableSegment::equal(ConnectableSegment� seg, Tier�� ap tier,

int num tiers)

== Is seg equal to this?

f

return (eqv(seg) && (!tier jj !seg!tier jj tier!name eq(�seg!tier)) &&

(is exact jj matches roughly(this, seg, ap tier, num tiers)) &&

(!is exact jj matches exactly(this, seg, ap tier, num tiers)));

g

void sort list(SegList� sl)

== Sort list of segments based on tier position.

f

if (sl!empty())

return;

Pix p, q;

int swapped = TRUE;

Segment� tmp;

while (swapped) f

swapped = FALSE;

for (p = sl!�rst(); p 6= NULL; sl!next(p))

for (q = p, sl!next(q); q 6= NULL; sl!next(q))

if ((�sl)[p]!tier && (�sl)[q]!tier &&

(�sl)[p]!is actually in tier(�(�sl)[p]!tier) &&

(�sl)[q]!is actually in tier(�(�sl)[q]!tier) &&

�(�sl)[p]!tier == �(�sl)[q]!tier &&

(�sl)[q]!tier!precedes((�sl)[q], (�sl)[p])) f

tmp = (�sl)[p];

sl!insert at(p, (�sl)[q]);

sl!insert at(q, tmp);

swapped = TRUE;

g

g

g

int in order(ConnectableSegment� seg, SegList� choices,

Tier ��ap tier, int num)

== Is seg the �rst thing on its tier within choices?

== Requires - the segs in choices are connectable.

f

for (Pix p = choices!�rst(); p 6= NULL; choices!next(p)) f

ConnectableSegment� cseg = (ConnectableSegment �)(�choices)[p];

if (seg!equal(cseg, ap tier, num))

return TRUE;

if (seg!tier &&

(!(�choices)[p]!tier jj
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seg!tier!name eq(�(�choices)[p]!tier)))

return FALSE;

g

return TRUE;

g

int ConnectableSegment::delete best match(SegList� choices, Tier ��ap tier,

int num) f

int min = 9999999;

Pix minloc;

for (Pix p = choices!�rst(); p 6= NULL; choices!next(p))

if ((�choices)[p]!is connectable()) f

ConnectableSegment �cs = (ConnectableSegment �)(�choices)[p];

if (equal(cs, ap tier, num) && in order(cs, choices, ap tier, num)

&& (cs!num superiors + cs!num inferiors < min)) f

min = cs!num superiors + cs!num inferiors;

minloc = p;

g

g

if (min == 9999999)

return FALSE;

else f

choices!del(minloc);

return TRUE;

g

g

int ConnectableSegment::eq(ConnectableSegment� seg, Tier�� ap tier, int numtrs)

f

if (!equal(seg, ap tier, numtrs))

return FALSE;

SegList� rin
ist = inferiors();

SegList� cin
ist = seg!inferiors();

ConnectableSegment� cs;

int matches;

int not exact = TRUE;

Pix p, q;

for (p = rin
ist!�rst(); p 6= NULL; rin
ist!next(p))

if (convert(rin
ist, p)!is exact) f

not exact = FALSE;

break;

g

p = cin
ist!�rst();

while (p 6= NULL)

if (not exact && !is exact && (�cin
ist)[p]!tier &&

!(�cin
ist)[p]!tier!is applicable(ap tier, numtrs))

cin
ist!del(p);

else f

matches = FALSE;

for (q = rin
ist!�rst(); q 6= NULL; rin
ist!next(q))

if (convert(rin
ist, q)!equal(convert(cin
ist, p), ap tier, numtrs))

f

matches = TRUE;

break;
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g

if (matches)

cin
ist!next(p);

else

cin
ist!del(p);

g

sort list(rin
ist);

sort list(cin
ist);

for (p = rin
ist!�rst(); p 6= NULL; rin
ist!next(p)) f

cs = convert(rin
ist, p);

if (!cs!delete best match(cin
ist, ap tier, numtrs))

f

delete rin
ist;

delete cin
ist;

return FALSE;

g

g

delete rin
ist;

delete cin
ist;

return TRUE;

g

Pix C 0::zeromatches(Pix seg, Tier& ctier, Tier& rtier)

f

Pix c;

int i, count1=0, count2=0;

c = rtier.current;

rtier.next(c);

while (c 6= NULL && cons.type eq(rtier[c])) f == num matching in rule tier.

count1++;

rtier.next(c);

g

c = seg;

while (c 6= NULL && cons.type eq(ctier[c])) f == num matching in chart tier.

count2++;

ctier.next(c);

g

if (count2 < count1) == The rule can't possibly match.

return ((Pix)(-1));

else f

for (i = 0; i<count1; i++)
ctier.prev(c);

return c;

g

g

Pix V 0::zeromatches(Pix seg, Tier& ctier, Tier& rtier)

f

Pix c;

int i, count1=0, count2=0;

c = rtier.current;

rtier.next(c);

while (c 6= NULL && vow.type eq(rtier[c])) f == num matching in rule tier.

count1++;
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rtier.next(c);

g

c = seg;

while (c 6= NULL && vow.type eq(ctier[c])) f == num matching in chart tier.

count2++;

ctier.next(c);

g

if (count2 < count1) == The rule can't possibly match.

return ((Pix)(-1));

else f

for (i = 0; i<count1; i++)
ctier.prev(c);

return c;

g

g

Pix X 0::zeromatches(Pix seg, Tier& ctier, Tier& rtier)

f

Pix c;

int i, count1=0, count2=0;

c = rtier.current;

rtier.next(c);

while (c 6= NULL && x.type eq(rtier[c])) f == num matching in rule tier.

count1++;

rtier.next(c);

g

c = seg;

while (c 6= NULL && x.type eq(ctier[c])) f == num matching in chart tier.

count2++;

ctier.next(c);

g

if (count2 < count1) == The rule can't possibly match.

return ((Pix)(-1));

else f

for (i = 0; i<count1; i++)
ctier.prev(c);

return c;

g

g

int ConnectableSegment::connects directly to tier(Tier& ctier) f

int i;

for(i=0; i<num superiors; i++)

if (superior[i]!is in tier(ctier))

return TRUE;

for(i=0; i<num inferiors; i++)

if (inferior[i]!is in tier(ctier))

return TRUE;

return FALSE;

g

int Segment::is in tier(Tier& intier) f

return (tier!name eq(intier));

g

int Segment::is actually in tier(Tier& intier) f

if (!tier jj �tier 6= intier)
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return FALSE;

for (Pix p = intier.�rst(); p 6= NULL; intier.next(p))

if (�intier[p] == �this)

return TRUE;

return FALSE;

g

int ConnectableSegment::connects to tier(Tier& ctier) f

SegList �sups = topmost superiors();

SegList �infs = new SegList;

Pix p;

for (p = sups!�rst(); p 6= NULL; sups!next(p)) f

if ((�sups)[p]!is in tier(ctier)) f

delete sups;

delete infs;

return TRUE;

g

infs!join(convert(sups, p)!inferiors());

g

for (p = infs!�rst(); p 6= NULL; infs!next(p))

if ((�infs)[p]!is in tier(ctier)) f

delete sups;

delete infs;

return TRUE;

g

delete sups;

delete infs;

return FALSE;

g

void Rule::�nd closest usable rule segment(int this tier) f

Tier& ot = �original[this tier];

if (this tier) == If there are done tiers, get the �rst unconnected instead.

while (ot.current 6= NULL && !unconnected(this tier))

ot.next(ot.current);

g

int Rule::unconnected(int this tier) f

Tier& ot = �original[this tier];

if (ot[ot.current]!is connectable()) f

SegList� sups = ((ConnectableSegment �)ot[ot.current])!superiors();

int unconnected = TRUE;

for (int i=0; i<this tier; i++)
for (Pix p = sups!�rst(); p 6= NULL; sups!next(p))

if ((�sups)[p]!is in tier(�original[i])) f

delete sups;

return FALSE;

g

delete sups;

g

return TRUE;

g

Pix Rule::match(Tier& tier, Tier ��applicable tier, int num tiers,
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int this tier)

== If the rule matches tier at any point including or after tier.current,

== returns the index (Pix) of the match. Otherwise, returns (Pix)(-1).

== Does NOT modify tier.current.

f

Tier& ot = �original[this tier];

Pix currpos, oldpos, matchpos;

int matched;

currpos = tier.current;

matched = FALSE;

matchpos = NULL;

ot.current = ot.�rst();

�nd closest usable rule segment(this tier);

if (ot.current == NULL) f

matched = TRUE;

return matchpos;

g

Segment� �rst seg = ot[ot.current];

while (!matched) f

do f

oldpos = currpos;

if (�rst seg!is zero())

currpos = �rst seg!zeromatches(currpos, tier, ot);

else

currpos =�rst seg!matches(currpos, tier, applicable tier, num tiers);

if (currpos == (Pix)(-1)) f

matched = FALSE;

currpos = oldpos;

tier.next(currpos); g

else

matched = TRUE;

g while (!matched && currpos 6= NULL && currpos 6= (Pix)(-1));

if (!matched)

return ((Pix)(-1));

== The �rst position has matched -- save the position and check the rest.

matchpos = oldpos;

while (matched && ot.current 6= NULL) f

ot.next(ot.current);

if (ot.current == NULL)

break; == The tier matches.

while ((no worddivs && tier[currpos]!is a wordboundary()) jj

(no morphdivs && tier[currpos]!is a morphemeboundary()))

tier.next(currpos);

if (currpos == NULL) f

matched = FALSE;

break;

g

Segment� test seg = ot[ot.current];

if (test seg!is zero())

do f

oldpos = currpos;

currpos = test seg!zeromatches(currpos, tier, ot);
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while ((no worddivs && tier[currpos]!is a wordboundary()) jj

(no morphdivs && tier[currpos]!is a morphemeboundary()))

tier.next(currpos);

g while (currpos 6= oldpos);

else

currpos = test seg!matches(currpos, tier, applicable tier, num tiers);

if ((currpos == (Pix)(-1)))

matched = FALSE;

g

if (!matched) f

ot.current = ot.�rst();

�nd closest usable rule segment(this tier);

currpos = matchpos;

tier.next(currpos);

g

g

return (matchpos);

g

C.4 Input/Output

== io.cc

#include "StrTable.h"

#include "StrStack.h"

int longest phoneme;

int eof;

int eophrase;

int duple;

extern Chart chart;

extern StrTable tbl;

int is valid ste(StrTableEntry� ste) f

return(ste!segment && (ste!is phoneme jj !ste!segment!is connectable()));

g

void determine longest phoneme()

f

longest phoneme = 0;

for (Pix p = tbl.�rst(); p 6= NULL; tbl.next(p))

if (is valid ste(tbl[p]) && strlen(tbl[p]!name) > longest phoneme)

longest phoneme = strlen(tbl[p]!name);

g

int is word div(char ch) f

return (ch == ' ' jj ch == '#');

g

int is phrase div(char ch) f

return (ch == '\n' jj ch == '.' jj ch == '%');
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g

void error(const char� s1, const char� s2 = "") f

cerr � s1 � s2 � '\n';

exit(1);

g

char get char(istream& in�le, StrStack� stk) f

char c;

if (c = stk!pop())

return c;

else f

if (!in�le.get(c)) f

eof = TRUE;

return '\0';

g else

return c;

g

g

void eat word divs(istream& in�le, StrStack� stk) f

char ch = get char(in�le, stk);

while (ch && is word div(ch))

ch = get char(in�le, stk);

if (in�le.eof())

eof = TRUE;

else

stk!push(ch);

g

void eat line(istream& in�le, StrStack� stk) f

char ch = get char(in�le, stk);

while (ch && ch 6= '\n')

ch = get char(in�le, stk);

if (in�le.eof())

eof = TRUE;

g

void eat word and phrase divs(istream& in�le, StrStack� stk) f

char ch = get char(in�le, stk);

while (ch && (is word div(ch) jj is phrase div(ch))) f

if (ch == '%')

eat line(in�le, stk);

ch = get char(in�le, stk);

g

if (in�le.eof())

eof = TRUE;

else

stk!push(ch);

g

void StrStack::push(char c)

f

if ((top - rep + 1) > sz) f

sz = 2 � sz;

char� newrep = (char �)malloc(sz);

strcpy(newrep, rep);

top = newrep + (top-rep);

free(rep);
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rep = newrep;

g

�top++ = c;

g

char StrStack::pop()

f

if (top == rep)

return '\0';

else

return �--top;

g

Segment� read segment(istream& in�le, StrStack� stk) f

StrTableEntry �seg = NULL;

StrTableEntry �trial;

char �reading = (char �)malloc(longest phoneme);

int length = 0;

int goodlength = 0;

char ch;

while (length < longest phoneme) f

if (!(ch = get char(in�le, stk))) f

eof = TRUE;

break;

g

if ((is word div(ch) jj ch == '+' jj is phrase div(ch)) && length > 0) f

stk!push(ch);

break;

g

if (is phrase div(ch)) f

eophrase = TRUE;

eat word and phrase divs(in�le, stk);

seg = tbl.�nd("]w");

break;

g

if (is word div(ch)) f

eat word divs(in�le, stk);

seg = tbl.�nd("]w");

break;

g

if (ch == '+' && length == 0) f

seg = tbl.�nd("]m");

duple = TRUE;

break;

g

if (ch == '%' && length == 0) f

eat line(in�le, stk);

eophrase = TRUE;

eat word and phrase divs(in�le, stk);

seg = tbl.�nd("]w");

break;

g

reading[length++] = ch;

reading[length] = '\0';

if (strcmp(reading, "]w") == 0)

eat word divs(in�le, stk);

if ((trial = tbl.�nd(reading)) && is valid ste(trial)) f

goodlength = length;
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seg = trial;

g

g

if (seg && seg == tbl.�nd("w[")) f

while (goodlength < length)

stk!push(reading[--length]);

free(reading);

eat word divs(in�le, stk);

return (read segment(in�le, stk));

g

if (seg && goodlength < length)

while (goodlength < length)

stk!push(reading[--length]);

if (seg) f

free(reading);

return seg!segment;

g else f == Only ignore ONE bad character at a time.

while (length > 1)

stk!push(reading[--length]);

free(reading);

return (Segment �)0;

g

g

void ConnectableSegment::safe detach() f

while (num superiors)

superior[0]!disconnect(this);

while (num inferiors)

disconnect(inferior[0]);

g

void disconnect tones(ConnectableSegment� cs)

f

SegList� infs = cs!inferiors();

GenericTone �tn = new GenericTone;

for (Pix p = infs!�rst(); p 6= NULL; infs!next(p))

if (tn!type eq((�infs)[p])) f

convert(infs, p)!safe detach();

break;

g

delete tn;

delete infs;

g

void Chart::add skeletal seg(ConnectableSegment� cs)

f

SegList� infs;

cs!tier = tier[0];

tier[0]!append(cs);

infs = cs!inferiors();

for (Pix p = infs!�rst(); p 6= NULL; infs!next(p))

for (int i=0; i<num tiers; i++)

if (tier[i]!name eq(�(�infs)[p]!tier)) f

tier[i]!append((�infs)[p]);

break;

g

delete infs;

if (no connect)

disconnect tones(cs);

148



g

void Chart::read word(istream& in�le, StrStack� stk)

== friend of ConnectableSegment

f

WordBegin �wbegin = new WordBegin;

WordEnd �wend = new WordEnd;

MorphemeEnd �mend = new MorphemeEnd;

Segment �seg = NULL;

int i;

Pix p;

for (i = 0; i<num tiers; i++) f

p = tier[i]!append(wbegin!copy());

tier[i]!current = p;

g

GenericPhoneme �gp = new GenericPhoneme;

X �x = new X;

GenericTone �tn = new GenericTone;

ConnectableSegment� cs;

while (!eof && seg == NULL)

seg = read segment(in�le, stk);

while (!eof && !wend!type eq(seg)) f

if (seg!is connectable()) f

if (x!type eq(seg)) f

cs = (ConnectableSegment �)seg!copy();

add skeletal seg(cs);

g else if (tn!type eq(seg) jj gp!type eq(seg)) f

cs = (ConnectableSegment �)seg;

if (cs!num superiors == 1) f

cs = (ConnectableSegment �)cs!superior[0]!copy();

add skeletal seg(cs);

g else if (cs!num superiors == 0) f

for (i = 0; i<num tiers; i++)

if (tier[i]!name eq(�cs!tier)) f

tier[i]!append(cs!copy());

break;

g

g else

error("Uncaught parse error.");

g else

error("Uncaught parse error.");

g else f

if (mend!type eq(seg) && duple) f

duple = FALSE;

for (i = 0; i<num tiers; i++)

tier[i]!append(seg!copy());

seg = new MorphemeBegin;

g

for (i = 0; i<num tiers; i++)

tier[i]!append(seg!copy());

g

seg = NULL;

while (!eof && seg == NULL)

seg = read segment(in�le, stk);

g

for (i=0; i<num tiers; i++)

tier[i]!append(wend!copy());

delete tn;
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delete gp;

delete x;

delete wbegin;

delete wend;

delete mend;

g

void Chart::print and delete word()

f

Pix p;

WordEnd �we = new WordEnd;

for (p = tier[0]!�rst(); p 6= NULL && !we!type eq((�tier[0])[p]);

tier[0]!next(p))

(�tier[0])[p]!print();

if (p 6= NULL)

(�tier[0])[p]!print();

if (eophrase) f

cout � "nn";

wordend = FALSE;

eophrase = FALSE;

g

cout.
ush();

== Delete the word.

for (int i = 0; i<num tiers; i++) f

p = tier[i]!�rst();

while (p 6= NULL && !we!type eq((�tier[i])[p]))

tier[i]!del(p);

if (p 6= NULL)

tier[i]!del(p);

g

delete we;

g

void Chart::print and delete phrase()

f

Pix p;

for (p = tier[0]!�rst(); p 6= NULL; tier[0]!next(p))

(�tier[0])[p]!print();

cout � "nn";

cout.
ush();

== Delete phrase.

for (int i = 0; i<num tiers; i++)

for (p = tier[i]!�rst(); p 6= NULL; tier[i]!del(p));

wordend = FALSE;

eophrase = FALSE;

g

int ste matches(StrTableEntry� ste, X� x)

== Friend of chart & connectableSegment.

f

Tier�� ap tier = (Tier ��)malloc(chart.num tiers � sizeof(Tier �));

int i;

for (i=0; i<chart.num tiers; i++)

ap tier[i] = chart.tier[i];

ConnectableSegment �cs;
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if (ste!fullspec)

if (ste!fullspec!num superiors == 1)

cs = ste!fullspec!superior[0];

else if (ste!fullspec!num superiors == 0)

cs = ste!fullspec;

else

error("Uncaught parse error.");

else f

cs = (ConnectableSegment �)ste!segment;

if (cs!num superiors == 1)

cs = cs!superior[0];

else if (cs!num superiors > 1)

error("Uncaught parse error.");

g

x!is exact = TRUE;

return (x!eq(cs, ap tier, chart.num tiers));

g

void X::print(int pos=0)

f

char� output = 0;

Pix p;

int times matched = 0;

for (p = tbl.�rst(); p 6= NULL; tbl.next(p))

if (tbl[p]!is phoneme && ste matches(tbl[p], this))

if (!times matched++) f

if (output) free(output);

output = (char �)malloc(strlen(tbl[p]!name)+1);

strcpy(output, tbl[p]!name);

g

else if (times matched == 2)

cout � "(" � output � "/" � tbl[p]!name;

else

cout � "/" � tbl[p]!name;

if (times matched > 1)

cout � ")";

else if (times matched == 1)

cout � output;

g

void Feature::print(int pos=0)

f

char c;

switch (value) f

case -1:

c = '-'; break;

case 1:

c = '+'; break;

case 2:

c = '@'; break;

default:

c = '\0';

g

if (modi�ed)

cerr � "� ";

cerr � "[";

if (c 6= '\0')

cerr � c;

cerr � name � "] (";
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print id();

cerr � ")nn";

print aux(pos);

g

void FeatureMatrix::print(int pos=0)

f

if (modi�ed)

cerr � "� ";

cerr � "[";

char c;

for (int i=0; i<num features-1; i++) f

switch (feature[i]!value) f

case -1:

c = '-'; break;

case 1:

c = '+'; break;

case 2:

c = '@'; break;

default:

c = '\0';

g

if (c 6= '\0')

cerr � c;

cerr � feature[i]!name � ", ";

g

if (num features) f

switch (feature[num features-1]!value) f

case -1:

c = '-'; break;

case 1:

c = '+'; break;

case 2:

c = '@'; break;

default:

c = '\0';

g

if (c 6= '\0')

cerr � c;

cerr � feature[num features-1]!name � "]nn";

g

g

void ClassNode::print(int pos=0) f

if (modi�ed)

cerr � "� ";

cerr � name � " (";

print id();

cerr � ")nn";

print aux(pos);

g

void Rule::print(int applied)

f

cerr � "nnApplying " � name � "... ";

if (applied)

cerr � "Applied.nnnn";

else

cerr � "No match.nnnn";
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g

void Nspaces(int n) f

for (int i=0; i<n; i++)
cerr � " ";

g

void ConnectableSegment::print aux(int pos=0) f

for (int i = 0; i<num inferiors; i++) f

Nspaces(pos);

inferior[i]!print(pos+2);

g

g

void demo print tier(Tier& tr) f

if (demo)

for (Pix p = tr.current; p 6= NULL; tr.next(p)) f

tr[p]!print aux();

if (tr[p]!is connectable())

getchar();

g

g

int Chart::empty() f

for (int i=0; i<num tiers; i++)

if (tier[i]!length() > 2)

return FALSE;

return TRUE;

g

void Chart::main loop(istream& in�le)

f

Pix p, q;

int i, applied;

eof = FALSE;

eophrase = FALSE;

duple = FALSE;

in�le.clear();

determine longest phoneme();

StrStack �stk = new StrStack;

if (!sandhi rules exist) f

do f

read word(in�le, stk);

if (!empty()) f

demo print tier(chart[0]);

for (p = rules.�rst(); p 6= NULL; rules.next(p)) f

applied = apply(rules[p], �this);

if (demo) rules[p].print(applied);

if (applied) demo print tier(chart[0]);

g

g

print and delete word();

g while (!eof);

g else f

while (!eof) f

while (!eof && !eophrase) read word(in�le, stk);

if (!empty()) f

for (i=0; i<num tiers; i++)

tier[i]!current = tier[i]!�rst();
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demo print tier(chart[0]);

for (p = rules.�rst(); p 6= NULL; rules.next(p)) f

applied = apply(rules[p], �this);

if (demo) rules[p].print(applied);

if (applied) demo print tier(chart[0]);

g

g

print and delete phrase();

g

g

delete stk;

g
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