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Abstract

The MIT-Scheme program development environment includes a general-purpose

text editor, Edwin. Edwin provides an integrated platform for a number of tools

useful to a software engineer. Such tools are easily written in Edwin's extension

language, Edwin Scheme | Scheme augmented with editor data types.

Edwin is very similar in appearance and behavior to another general-purpose

text editor, GNU Emacs. Like Edwin, GNU Emacs provides a number of useful

tools, written in its extension language, Emacs Lisp. The popularity of GNU

Emacs, combined with its easy extensibility, has lead to a large and growing library

of tools and enhancements written by GNU Emacs users worldwide. The goal of

this thesis is to allow Edwin users to take advantage of this enormous library of

Emacs Lisp code.

The size and complexity of the Emacs and Edwin systems makes realization of

this goal impossible given the resources available to this project. Instead, a useful

compromise was sought. From the beginning, this project took as a concrete goal

the emulation of a particularly valuable GNU Emacs tool, the GNUS news reading

program (written by Masanobu UMEDA [umerin@mse.kyutech.ac.jp]).

To achieve this goal, an Emacs Lisp interpreter was written in Edwin Scheme.

This interpreter implements approximately 70% of the 734 primitives of the Emacs

Lisp language. It also integrates the Emacs and Edwin user interfaces and envi-

ronments to such an extent that the casual user will not notice the di�erences

between the emulated Emacs Lisp windows, bu�ers, and commands, and those of

a normal Edwin Scheme program. The result is that the unmodi�ed source code

for the GNUS news reading program can be loaded into Edwin, and the program's

commands for marking, reading and �ling news articles can be used as though

they were normal Edwin commands.
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1 Introduction

The MIT-Scheme[3] program development environment includes a general-purpose

text editor, Edwin. Edwin provides language-speci�c support for editing Scheme

source code, plus convenient interfaces to other tools in the MIT-Scheme envi-

ronment, e.g. the debugger and the interpreter. In addition to these software

development functions, Edwin provides tools for manipulating directories of �les,

running Unix programs as subprocesses, reading Unix mail messages, and editing

source �les written in other languages. Consequently, Edwin �lls the same role

as the general-purpose editor GNU Emacs[9], providing an integrated platform for

many of the tools used by a software engineer.

GNU Emacs is a general-purpose text editor in widespread use. It is easily

extended via its powerful extension language, Emacs Lisp[5]. This ease of extensi-

bility has encouraged the development of a large library of tools and enhancements

written by GNU Emacs users worldwide. This library continues to grow as users

experiment with new tools for a variety of tasks. The goal of this thesis is to show

that Edwin can be extended so that it can take advantage of this enormous library

of Emacs Lisp code.

While Edwin is very similar in appearance and behavior to GNU Emacs, it is

nonetheless very di�erent internally. Edwin's extension language is Edwin Scheme

| Scheme[2] augmented with editor data types. Thus, Edwin Scheme inherits

Scheme's lexical scoping of variables, whereas Emacs Lisp uses dynamic scoping.

Edwin Scheme's internal data structures also di�er from those of Emacs Lisp in

many details. As a result, there is no straightforward translation from Emacs Lisp

code to Edwin Scheme code.

A few valuable GNU Emacs tools have been translated by hand into Edwin

Scheme code, and the non-trivial translation has o�ered opportunities to improve

on the behavior of the Emacs tools. However, the signi�cant translation e�ort

discourages experimenting with interesting new Emacs tools. Also, the translated

source code is radically di�erent from the original Emacs Lisp making it di�cult

to track later improvements to the Emacs tools and make corresponding improve-

ments to the Edwin tools. To avoid both problems, Emacs Lisp programs need to

be loaded and evaluated directly, without modi�cations to the Emacs Lisp source

code.

To solve this problem, an Emacs Lisp interpreter was written in Edwin Scheme.

This interpreter does its best to faithfully implement the behavior of the original

Emacs Lisp interpreter and runtime system as provided by GNU Emacs version

18.59, while also integrating this runtime system with the existing Edwin runtime

system. Both of these systems are fairly large and complex. It is beyond the scope

of this thesis to describe the many data structures and routines used in both Emacs

Lisp and Edwin Scheme. Instead, it is assumed that the reader is well acquainted

with both systems, or at least is familiar with Lisp environments and equipped
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with the Emacs User Manual[9], the Emacs Lisp Reference Manual[5], and the

MIT-Scheme Reference Manual[4].

The rest of this introduction will orient the well-equipped reader in the direc-

tion used to approach the problem. It describes the motivation for choosing to

implement an Emacs Lisp interpreter and to emulate its runtime environment. It

also describes the advantages sought when attempting to integrate the emulated

environment's state with Edwin's, and notes the issues that arise when melding

the two.

The problem of using unmodi�ed Emacs Lisp programs could be solved by au-

tomatic translation into Edwin Scheme by an Emacs Lisp compiler. The compiler

would take over the job currently done by hand. However, the compiler would

have to be rather sophisticated in order to produce the non-trivial translation. It

would have to do extensive global analysis in order to determine the actual scope

of the indeterminately scoped Emacs Lisp variables. This is necessary if they

are to be implemented by Edwin Scheme's e�cient local variables. The compiler

would also have to do extensive type inference when operations on Emacs Lisp

data types have to be translated into operations on dissimilar Edwin Scheme data

types. These analyses would be particularly di�cult because of the widespread use

in Emacs Lisp programs of data structures storing arbitrary functions. Without

extensive analysis, the compiler will have to produce code that does little more

than mimic the original Emacs Lisp interpreter. Finally, Emacs Lisp includes an

eval primitive that gives programmatic access to the Emacs Lisp interpreter. It

is used frequently, even in some of the more desirable Emacs Lisp programs. All

of these things argue strongly for the implementation of an interpreter.

The Emacs Lisp interpreter and runtime system could be emulated in the MIT-

Scheme environment by a program entirely separate from Edwin. The emulator

could manage its own windows and bu�ers, use its own variables and keymaps, and

dispatch on its own command key input to execute Emacs Lisp commands. The

program could emulate Emacs with complete accuracy, but it would o�er few ad-

vantages over running Emacs itself as a separate process. The program would run

Emacs Lisp programs in MIT-Scheme environment, making them more accessible

for integration with Edwin, but the separate emulator alone would not actually

provide any integration. For example, there would still be both Emacs Lisp and

Edwin Scheme variables named fill-column, each one having the same meaning

to the user. Text would still have to be explicitly extracted from Emacs bu�ers

and inserted into Edwin bu�ers before Edwin Scheme programs could manipulate

it.

Emulating Emacs Lisp in the MIT-Scheme environment will be most advanta-

geous when the Emacs Lisp emulation can re
ect its state in Edwin's state and

vice versa. This will integrate multiple representations of what are conceptually

the same things. When Emacs Lisp code sets its fill-column variable, the in-
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formation will be re
ected in the value of the Edwin Scheme variable; and, when

Edwin Scheme code sets its fill-column variable, the new value will be re
ected

in the Emacs Lisp variable. Whether Edwin's state and the emulator's state are

automatically kept consistent or actually shared, the result is the same: the user

does not have to remember to set both versions of the default right margin.

Integration of the two runtime systems will also allow either kind of program

to cooperate with the other. When an Emacs Lisp program like GNUS displays a

bu�er containing the text of a Usenet article, the Emacs bu�er will be re
ected by

an Edwin bu�er with the same content. Normal Edwin commands can then ma-

nipulate the article text. The GNUS program could even be extended with Edwin

commands written using the powerful facilities of the MIT-Scheme environment.

Integration of the user interfaces will have especially compelling advantages.

The user will only have to interact with one interface and will not have to distin-

guish and switch between two, slightly di�erent interfaces. To do this, the Emacs

Lisp emulator will have to re
ect Emacs windows as Edwin windows, and Emacs

key bindings as Edwin key bindings. If the command key dispatching mechanisms

of Emacs and Edwin are signi�cantly di�erent, the necessary re
ections may be

di�cult to implement.

Accurately re
ecting each system's state in the other's state can present a

number of problems. Conceptually identical information may be represented in

very di�erent ways. An atomic value could simply be translated from one format

to another depending on how it is accessed. An aggregate value, however, would

have to be translated into an analogous data structure in the other runtime system,

and the two copies would have to be kept consistent. Consistency is particularly

di�cult to implement and expensive to maintain when side-e�ects to the data

structures are possible.

Fortunately, a completely accurate re
ection is not necessary. Side-e�ects to

some Emacs Lisp runtime data structures may not be found in the majority of

interesting programs, while others might simply be ignored. Some data structures

are not typically modi�ed by Emacs Lisp programs because they are reserved to

the user. Others are modi�ed only to form new values which are then re-installed

in the runtime system. The re
ection in the other runtime system could simply be

a new copy translated from the value that was re-installed. Side-e�ects to these

data structures would not have to be detected in order to make many programs

work. While side-e�ects to other types of runtime system data structures might

be important enough to warrant their detection and re
ection, so far this has not

been necessary.

Some operations of Emacs Lisp can make accurate re
ection more di�cult than

if they were not allowed. If these operations are rarely used, the emulator may

be able to restrict such usage so as to simplify the translation or sharing of state

information. A good example is the use of vector operations to access and modify
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bindings in some Emacs Lisp keymaps. This is possible because some Emacs Lisp

keymaps are represented by vectors. However, most Emacs Lisp programs only use

the more abstract operations for accessing and modifying keymap bindings (e.g.

lookup-key and define-key). Restricting the emulation of Emacs Lisp keymaps

so that only the abstract operations are supported allows Emacs Lisp keymaps

to be represented by Edwin command tables. By sharing this representation,

Emacs Lisp's command dispatch mechanism is muchmore easily re
ected in Edwin

Scheme's.

While restrictions on Emacs Lisp programs can ease the di�culty of accurate

emulation, so can generalizations of Edwin Scheme. Edwin already allows arbi-

trary procedures to be speci�ed to perform certain tasks. The interface to Edwin's

minibu�er completion commands can be so speci�ed, allowing the emulator to

provide special procedures that compute completions from Emacs Lisp data struc-

tures. In contrast, the Emacs minibu�er completion commands only work with a

couple speci�c data structures and have very few escapes into procedural code.

However, there are still areas where Edwin could be further generalized. Ed-

win could even be changed to directly support Emacs Lisp data structures. For

example, Edwin's command dispatch mechanism could be generalized to recognize

and handle Emacs Lisp keymaps.

This project did not pursue most of these opportunities, preferring to limit

modi�cations to Edwin and to avoid adding Emacs Lisp speci�c code to it. This

has made some parts of the emulator more di�cult to implement or imposed re-

strictions on its accuracy or completeness. Future work may abandon the complete

separation of the Emacs Lisp emulator from Edwin. The advantages of doing this

are considered in later sections.

It is worthwhile to note that complete emulation and integration of the standard

Emacs Lisp runtime system is di�cult simply because of the system's size. The

standard Emacs Lisp runtime system is based on 587 primitive functions manipu-

lating 147 global variables and 11 data types, all implemented in C. It also includes

the functions and variables declared in 22 essential Emacs Lisp �les pre-loaded into

every Emacs, 50 packages and modes autoloaded by the standard con�guration,

and some 70 additional �les.

Complete integration would unify all the redundant functionality, such as the

Emacs Lisp and Edwin Scheme interfaces to sendmail, but integrating all of the

functionality provided by Emacs with all of the functionality provided by Edwin

would take more time than this project allows. Less than complete integration

would still accrue bene�ts where it is pursued, as described above. Where it is

not, there may continue to be redundancies such as the separate fill-column

variables. There may also continue to be gaps in cooperation such as Edwin

Scheme commands that do not have their intended e�ect because Emacs Lisp

data was not available in an analogous Edwin Scheme form. However, these are
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just inconveniences. It is the accuracy of the emulation that allows Emacs Lisp

programs to run.

A complete emulation would only have to implement the Emacs Lisp primitives.

Unfortunately, some of these primitives require functionality not supported by

Edwin. Implementing them would have been very time-consuming and would have

enabled few additional programs to run. This project focuses instead on emulating

the essential primitives that are required for the operation of the majority of Emacs

Lisp programs.

The essential Emacs Lisp primitives and the essential integration of Emacs and

Edwin were hard to de�ne at the beginning of this project. The large number of

tradeo�s between accurate emulation, tight integration, and cost of implementation

would have also made it hard to determine whether the resulting emulation was

a success. Instead, a concrete goal was chosen that would demonstrate a useful

emulation of Emacs Lisp and a usable integration with Edwin's user interface.

That goal was the rudimentary operation of a sophisticated and valuable Emacs

Lisp program, the GNUS news reader.

1.1 Related Work

The techniques used in this thesis project were largely inspired by generic inter-

preter implementation techniques. The Edwin Scheme code for the Emacs Lisp

interpreter is a straightforward interpreter implementation similar to the meta-

circular evaluator described in [1] and closely follows the implementation in C that

is distributed with GNU Emacs. The emulation of the Emacs Lisp data types and

functions had to conform to the detailed behavior of GNUEmacs's implementation,

and were written to take advantage of the most abstract functionality of Edwin

Scheme. Thus, the source code and documentation of these two implementations

have had the largest impact on the nature of this work.

It is a peculiarity of this project that programs written in two di�erent lan-

guages to manipulate two di�erent runtime environments must nevertheless oper-

ate in one shared environment. A similar situation is often addressed by compat-

ibility libraries. For example, C applications written for BSD Unix can be run in

a DOS environment provided all the required functionality is implemented by an

available BSD-compatible C library.

Compatibility libraries may address the same goal as this project | emulating

a di�erent runtime environment within the native one. However, they commu-

nicate information to their client programs through very simple data structures

and without sharing. This sharing is a ubiquitous feature of both Emacs Lisp and

Edwin Scheme. Procedures written in both languages interface via call by sharing

where the information passed between procedures, e.g. from a runtime procedure

exposing information about the runtime environment to an application program, is

identi�ed by its implementation in memory, and where modi�cations to this mem-
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ory can communicate information back to the runtime environment. The issues

raised by data structures that are shared between the runtime environment and

an application program are not typically addressed by compatibility libraries.

Related work on heterogeneous systems also avoids these issues. Most of the

work in heterogeneous systems involves the implementation of distributed services

made up of cooperating applications residing on di�erent machines with only a net-

work for communication. Applications pass information via a Remote Procedure

Call abstraction that only provides call by copying behavior.[7] Thus, the issues of

shared data structures never arise.

In mixed-language programming systems, the di�erent modules of an applica-

tion can be written in di�erent languages and can use shared memory to share data

structures. In some of these systems, information is still passed between modules

using call by copying[8][6]. Other systems agree in advance on the implementa-

tion of any data structures that will be shared between languages (e.g. the VAX

calling standard). Finally, many modern Lisp systems provide a bridge between

their native data types and those of other languages via foreign function interfaces.

These interfaces either use call by copying semantics for data structures that are

transparently converted between native data types, or they provide operations for

declaring and manipulating alien data structures as new types. This project must

support shared data that can be manipulated as though native data structures in

two languages.

1.2 Summary

The motivation for this work was the desire to run Emacs Lisp programs as if

they were Edwin Scheme programs, without having to translate them into Ed-

win Scheme by hand. The approach that was taken was to emulate the Emacs

Lisp interpreter and runtime environment and to integrate the emulated environ-

ment with Edwin's. In particular, the emulated Emacs user interface (including its

windows and command key dispatch mechanism) were to be integrated with Ed-

win's, so that Edwin users could continue to use one, familiar interface. Complete

and accurate emulation and integration was impractical for a variety of reasons.

However, there seemed to be acceptable compromises in both accuracy and com-

pleteness that would allow a minimally useful system be built with the available

resources. As a concrete goal, the minimally useful system was expected to be

able to execute the GNUS news reading program well enough that articles could

be retrieved and read using the normal Edwin user interface.

Many compromises were made in the accuracy of the Emacs Lisp emulation,

and many aspects of Emacs and Edwin have not been integrated. The follow-

ing sections document the implementation of the Emacs Lisp emulator and these

de�ciencies, in anticipation of further work. Section 2 describes the implementa-

tion of the Emacs Lisp interpreter. In particular, the implementation of Emacs
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Lisp's symbols and subrs is discussed, showing how they support the re
ection

of the emulated Emacs Lisp runtime environment in the Edwin Scheme environ-

ment. Section 3 tackles the details of implementing that re
ection. First, some of

the guiding principles and useful techniques are presented. Then, the emulation

of speci�c Emacs Lisp data structures and functionality is described. Section 4

discusses the speci�c compatibility issues raised by the less than complete and

accurate Emacs Lisp emulation. The conclusion summarizes the quali�ed success

of the project and the work left to be done.
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2 The Interpreter

An Emacs Lisp program starts out as a text �le describing a sequence of Emacs

Lisp expressions, which the load primitive can read and evaluate. The evaluation

of these expressions typically installs the commands, hooks, and command key

bindings of the Emacs Lisp program in the runtime system. The program can

then be invoked by the user directly via command key input, or indirectly through

commands that run its hooks.

This section describes the process of reading an Emacs Lisp program { con-

verting the text describing Emacs Lisp expressions into data structures that can

be evaluated by the interpreter. It also describes the operation of the interpreter

proper { how the eval primitive interprets expressions as instructions for installing

and later executing the Emacs Lisp program. In this discussion, it is assumed that

the reader is familiar with the general organization and operation of Lisp inter-

preters and runtime environments. This section will focus on the peculiarities

of reading and evaluating Emacs Lisp programs. In so doing, it will describe in

detail the representation and interpretation of two important Emacs Lisp data

types. These data types provide the hooks that lead the interpreter into the Ed-

win Scheme code that will emulate the Emacs Lisp runtime system and re
ect its

state in Edwin.

The �rst stage of interpreting Emacs Lisp code is to read it, to produce a

representation of the Emacs Lisp data structures denoted by the input text. The

syntax of Emacs Lisp code is similar to that of Edwin Scheme, but there are

di�erences in the syntax of character, string, and vector literals that required that

a new reader be written. The new reader could have produced instances of special

Emacs Lisp types distinct from the Scheme data types, but few of the Emacs Lisp

types di�ered from an analogous Scheme data type. The implementation actually

started out making this distinction, using distinct operators to manipulate the

Emacs Lisp data types. There was no performance penalty because the operators

were substituted for equivalent Scheme operators at compile-time. However, the

constant conversions, particularly from literal Scheme constants to their Emacs

Lisp equivalents, caused the clarity of the resulting code to su�er. Eventually,

the reader was revised to produce native Scheme data types, and the rest of the

source code was changed to manipulate them using the normal Scheme operators.

The reader now produces Scheme integers to represent Emacs Lisp numbers and

characters. Scheme strings and vectors represent Emacs Lisp strings and vectors.

A Scheme symbol is not used to represent an Emacs Lisp symbol because the

two objects are so di�erent. When interned into the global Scheme obarray, a

Scheme symbol is unique to a case-insensitive name, but has no inherent state

other than its name. In contrast, an Emacs Lisp symbol is interned into one

of many, possibly user-de�ned obarrays. (In Emacs, obarrays are vectors whose

elements are initially zero. The emulator uses the same representation so that
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Emacs Lisp code that creates such a vector and uses it as an obarray will be

emulated correctly.) An interned Emacs Lisp symbol is unique to a case-sensitive

name and an obarray, and it has additional inherent state: a value, a function, a

property list. A Scheme structure 1 is used to represent an Emacs Lisp symbol

and hold this state, just as a C struct is used in Emacs. This maximizes the

performance of the interpreter, which must access a symbol's function and current

value quickly. The Scheme structure is also useful to hold information about how

the Emacs Lisp symbol is being re
ected into Edwin. (This is described in more

detail in Section 2.2.)

Like Emacs Lisp strings and vectors, Emacs Lisp lists are represented by native

Scheme lists, implying that Emacs Lisp conses are represented by Scheme pairs and

Emacs Lisp's empty list is represented by Scheme's empty list. This takes some

care because Emacs Lisp represents its empty list with a symbol named nil. Like

any other symbol, this symbol can have a function and property list, and so ought

to be represented by a symbol object. In fact, the emulator does create a symbol

object to emulate the Emacs Lisp symbol nil. It never appears at the ends of lists

or anywhere else in Emacs Lisp data structures, but it is substituted for Scheme's

empty list whenever a symbol operation is being applied. The �elds of this symbol

structure hold the name, function, property list, and any other information about

nil.

These are all of the Emacs Lisp data structures that can be denoted by input

text. Instances of the other Emacs Lisp data types, such as windows, bu�ers,

and markers, are parts of the Emacs Lisp runtime system and are represented

according to how they are re
ected in Edwin's runtime system. This is discussed

in Section 3.

Once Emacs Lisp code has been read, it can be evaluated by the eval primi-

tive. As in the meta-circular evaluator of [1], this primitive, along with the funcall

primitive, forms the core of the interpreter. The eval primitive is applied to an

expression to start the process of computing the expression's value. The nature

of this process depends on the type of the expression. If the expression is a sim-

ple symbol, the value of the symbol is returned. The value is computed by the

%symbol-value procedure, which is described in Section 2.2. Any other type of

object is either a list representing a function call (of which special forms are a

special case) or a self-evaluating object.

Normal function call expressions are evaluated by applying a function, de-

scribed by the �rst element of the expression, to the values of the argument ex-

pressions (the rest of the elements of the expression). However, Emacs Lisp, like

all Lisps, uses the same list syntax to represent special forms and macro calls.

1A Scheme structure is an object that contains a number of named �elds. The type of a Scheme

structure is declared by a define-structure expression whose syntax and semantics are similar

to Common Lisp defstruct expressions. define-structure is an MIT-Scheme extension to

standard Scheme and is described in [4].
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These other kinds of expressions must be handled di�erently; so, when applied to

a function call expression, a Lisp evaluator must �rst determine, based on the �rst

element of the expression, whether it is a normal function call, a macro call, or a

special form.

In Emacs Lisp, the �rst element of a function call expression can be a symbol.

The symbol can be thought of as the name of a function, and the function it names

is the value of the function �eld of the symbol structure (mentioned above, and

described in more detail in Section 2.2). This �eld can be empty, causing the eval

primitive to signal void-function. The �eld can also refer to another symbol.

This is function aliasing. The function named by the �rst symbol is de�ned to

be the same function named by the other symbol. An arbitrarily long chain of

function aliasing is possible, with the function �eld of each symbol pointing to the

next symbol in the chain. To �nd the ultimate function named by a symbol or chain

of symbols, the eval primitive uses the %function* procedure. This procedure

is actually applied to the �rst element of a function call expression regardless of

its type. If the �rst element was a symbol, any function aliasing is resolved and

the named function is returned. If the function aliasing is circular, %function*

will end up in an in�nite loop trying to �nd the end of the chain. A circular

chain could be detected and an error raised without much added expense, but the

implementation was left as it is since this is exactly how the original Emacs Lisp

interpreter works.

Once the %function* procedure has found the function described by the �rst

element of a function call expression, the eval primitive can determine how to

evaluate the expression. The function can be any of several things: a primitive

subroutine (a subr), a lambda expression, a macro expression, or an autoload

description. If it is not one of these things, eval signals an invalid-function

error. Otherwise, eval proceeds as follows.

If the function is a subr and the subr is marked as a special form, then the

evaluator applies the subr to the argument expressions. The subr can then evaluate

the appropriate expressions, depending on the required behavior of the special

form. For example, the �rst argument expression to the if subr is evaluated. If

the value of the expression is not nil, the second expression is evaluated and its

value is returned by the if subr. If the value of the �rst expression was nil, the

progn subr is applied to the expressions following the second expression (if any).

The value returned by the progn subr (or nil) is returned by the if subr.

If the function is a subr that is not marked as a special form, the argument

expressions are evaluated and the subr is applied to the results. When applying

either type of subr, the Scheme predicate procedure-arity-valid? is used to

detect subrs applied to the wrong number of arguments. This allows the emulator

to signal the appropriate Emacs Lisp error immediately, rather than wait to catch

the Scheme wrong-number-of-arguments condition and then signal the Emacs
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Lisp error.

If the function is a lambda expression (a list starting with a particular Emacs

Lisp symbol named lambda), the argument expressions are each evaluated, produc-

ing a list of argument values. The funcall-lambda procedure takes the lambda

expression and the argument values and executes the function. The funcall-

lambda procedure �rst examines the lambda expression's parameter list (its sec-

ond element) for any &optional or &rest keywords indicating optional or rest

parameters. During this examination, it rewrites the list of argument values to

include a value of nil for any optional parameters that would otherwise not have

a value, and to collect multiple arguments into a list as the value of a rest param-

eter. The parameter list is also rewritten to produce a new list of the parameter

symbols (without &optional or &rest keywords). If the rewrites are not success-

ful, an Emacs Lisp wrong-number-of-arguments error is signaled. Otherwise, the

%specbind procedure is applied to the parameters, the arguments, and the thunk

during which the bindings should be active. The thunk applies the progn primitive

to the body of the lambda expression (the elements following the second element).

The %specbind procedure is a straightforward implementation of Emacs's shal-

low binding mechanism. When a symbol is bound to a value, %specbind �rst saves

the symbol's old value (if any) and then sets the symbol to the new value. This

is accomplished using the normal symbol operations %symbol-bound?, %symbol-

value, and %set-symbol-value!. As control passes out of the dynamic extent

of the call to %specbind, the symbol's original state is restored, again using

the normal symbol operations %set-symbol-unbound! or %set-symbol-value!.

%specbind was originally implemented by a call to Scheme's dynamic-wind proce-

dure, which ensured that the code restoring the symbol to its original state would

be run before control passed out of the dynamic extent of the call to %specbind,

whether because of a normal return or a non-local exit.

Unfortunately, Scheme's dynamic-wind mechanism was too expensive to use

every time a symbol was lambda-bound. Instead, %specbind just pushes a record

onto the list assigned to the Scheme variable *specpdl*. The record includes the

symbols that were bound and the states they had before they were bound. If

control exits through %specbind via a normal return, %specbind pops the record

o� *specpdl* and uses its information to restore the parameter symbols to their

previous states. Handling non-local exits, however, requires the cooperation of all

Emacs Lisp primitives to which a non-local exit could return. These primitives

must remember the value *specpdl* had when control �rst passed through them,

and restore that value if control returns to them via a non-local exit. These

primitives must restore *specpdl*'s value by popping records and using their

information to restore symbols to the states they had before they were bound.

When enough records have been popped, *specpdl* will regain its former value

and all symbols that had been subsequently bound will be restored to their original



2.1 Subrs 19

states.

If the function is a macro expression (a list whose �rst element is a particular

Emacs Lisp symbol named macro), then the rest of the list should be a lambda

expression. The lambda expression is applied to the unevaluated argument expres-

sions using funcall-lambda. The value returned by funcall-lambda should be

another expression that eval can evaluate. The value of this other expression is

�nally returned as the value of the original function call expression.

If the function is an autoload description, the do-autoloadprocedure is applied

to it. This procedure loads the Emacs Lisp �le named in the description, and then

checks that the function of the function call expression is no longer an autoload

description. If it is still an autoload description, an Emacs Lisp error is signaled.

All of this has to be done inside a thunk passed to protect-with-autoload-

queue, which ensures that some of the modi�cations made during the thunk will

be undone if an error is signaled. This is one of the de�ned behaviors of autoloading

or requiring (loading a �le as a result of calling the require subr) in Emacs. The

e�ects to be undone are collected as a list, the value of the Emacs Lisp autoload-

queue variable. When no autoload is in progress, the value of this variable is

nil and no e�ects are recorded. During autoloading, the value of the variable

is set to a non-nil value (initially, the symbol t). Any Emacs Lisp primitives

that change the function values of Emacs Lisp symbols, or add features to the

feature list, will notice this and record the original function value or feature list.

protect-with-autoload-queue uses Scheme's dynamic-wind procedure to ensure

that the recorded e�ects are undone if an error is signaled. Once the speci�ed �le is

successfully loaded and the function of the function call expression is no longer an

autoload description, the eval primitive can again try to evaluate the expression.

2.1 Subrs

In Emacs Lisp, subrs are the primitive funcallable objects. In the emulator, subrs

are application hooks 2 and thus Scheme funcallable objects. The application hook

data for each subr is a Scheme structure whose �elds are assigned to most of the

information associated with Emacs Lisp subrs: a name, a documentation string,

an interactive speci�cation, and a 
ag indicating whether the subr is a special

form. The arity of the Emacs Lisp subr is represented by the arity of the apply

hook procedure.

As described above, the interpreter takes care to pass the unevaluated argument

expressions from the function call of a subr which is a special form. This allows

the subr's procedure to interpret the syntax of the special form as required and to

call the interpreter to evaluate the appropriate subforms in the appropriate order.

2An application hook is an object that can contain arbitrary user data and also be applied

like a procedure. Application hooks are an MIT-Scheme extension to standard Scheme and are

described in [4].
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A few subrs have to implement non-local control 
ow, which they do using

MIT-Scheme's condition system and call-with-current-continuation. The

catch subr captures its continuation and establishes a handler for a special type

of Scheme condition only signaled by the throw subr. This type of condition has

�elds assigned to the throw tag and value. The handler is active while the body

of the catch special form is evaluated. If the handler is invoked and the signaled

condition's tag matches the one to be caught, then the thrown value is passed

to the captured continuation, which returns that value from the catch subr call.

Otherwise, the value of the catch special form's body is returned normally. The

throw subr just needs to make the special type of Scheme condition using its tag

and value arguments, and signal it. If the condition is not caught, the default

handler for the condition tries signaling an Emacs Lisp no-catch error, just as

would happen in Emacs. If the error condition is not caught, its default condition

handler will call Edwin's editor-error procedure with message strings like the

ones displayed by Emacs.

Similar to catch, the condition-case subr captures its continuation and es-

tablishes a handler for a second special type of Scheme condition representing an

Emacs Lisp error. This type of condition has �elds assigned to the Emacs Lisp

error's name and associated data. The handler is active while the body of the

condition-case special form is evaluated. If the handler is invoked and the sig-

naled condition matches one of the special form's handlers, then that handler's

body is evaluated and its value is passed to the captured continuation, which re-

turns that value from the condition-case subr call. Otherwise, the value of the

condition-case special form's body is returned normally. The signal subr just

needs to make the special type of Scheme condition using the error name and data,

and signal it. If the error condition is not caught, its default condition handler will

call Edwin's editor-error procedure with message strings like the ones displayed

by Emacs.

The bulk of the remaining implementation details have less to do with the

behavior of the interpreter and more to do with the behavior of speci�c editor

data structures. These details are discussed in the context of re
ecting the Emacs

Lisp runtime system into the Edwin Scheme runtime system. There are a few

general observations about the implementation that can be made here and that

should be useful to keep in mind when reading or modifying the source code.

The DEFUN syntax turns an Emacs-style subr declaration into a subr object

bound as the function of a symbol object. Both the symbol and subr objects are

assigned to Scheme variables according to a naming convention. The subr object is

assigned to a Scheme variable with the same name except that el: is prepended.

The pre�x avoids shadowing useful Edwin variables with the same names as some

of the Emacs primitives. The symbol object is assigned to a Scheme variable with

the same name except that Q is prepended. This convention is reminiscent of a
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naming convention followed in Emacs's C code. A number of other symbol objects

are used as constants by the emulation code, and are also assigned to variables

according to the same convention. An example is the constant symbol named t,

which is bound to the Scheme variable Qt.

The arguments to subrs are typically the values of Emacs Lisp expressions,

and must be type-checked and coerced to Scheme equivalents. Again, following a

convention in the Emacs C code, a number of procedures are provided named, e.g.

CHECK-NUMBER, CHECK-CHAR, CHECK-MARKER-COERCE-INT, etc. These procedures

implement the same type-checking done by Emacs's C code and signal the same

Emacs Lisp errors when necessary. They also help ensure that the correct con-

versions are performed. For example, CHECK-CHAR checks that its argument is an

Emacs character (an integer) and converts it to the corresponding Scheme char-

acter object. CHECK-POSITION-COERCE-MARKER accepts a position expressed as an

Emacs bu�er position (using 1-based indexing) or a marker (an Edwin mark) and

converts the given position to a Scheme bu�er position (0-based index), signaling

the appropriate Emacs Lisp error if a marker was given that points nowhere.

2.2 Symbols

As mentioned at the beginning of this section, an Emacs Lisp symbol is repre-

sented by a Scheme structure whose �elds contain the symbol's value, function,

and property list. The symbol structure also holds hooks (procedures) called by

some operations on the symbol. These specialized procedures implement the oper-

ations and arrange to re
ect the state of the symbol in the Edwin runtime system,

or to access the Edwin runtime state in order to re
ect it in the value of the sym-

bol. The hooks are assigned to the following �elds of the symbol structure and are

used to implement the corresponding symbol operations described here:

bound? (%symbol-bound? symbol)

Returns #t if symbol currently has a value; else, it returns #f.

unbound! (%set-symbol-unbound! symbol)

Causes symbol to have no current value.

get-value (%symbol-value symbol)

Returns the current value of symbol. If symbol does not have a value,

a void-variable error is signaled.

set-value! (%set-symbol-value! symbol value)

Sets the current value of symbol to value.

get-default (%symbol-default symbol)

Returns the default value of symbol.
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set-default! (%set-symbol-default! symbol value)

Sets the default value of symbol to value.

make-local! (%make-variable-buffer-local! symbol)

Makes the symbol have a local value in the current bu�er.

make-all-local! (%make-local-variable! symbol)

Makes the symbol have local values in all bu�ers.

kill-local! (%kill-local-variable! symbol)

Makes the symbol have no local values.

set-docstring! (%put! symbol property value)

The procedure assigned to the set-docstring! �eld is called when-

ever the %put! operation adds a variable-documentation property

to symbol. This allows the documentation string for an Emacs Lisp

variable to be re
ected in the corresponding Edwin editor variable, if

any.

There are a few other �elds of the symbol structure. The name, value, func-

tion, and plist slots should be familiar as the normal attributes of Lisp symbols.

(Why there is a value slot while there are also get-value and set-value! hooks

is explained below.) The next �eld is used to chain interned symbols that have

hashed to the same bucket in the Emacs Lisp obarray. The command �eld points

to an Edwin command created to re
ect the Emacs Lisp command named by the

symbol.

There are a number of other operations on symbols too. The %symbol-name,

%symbol-function, and %symbol-plist operations are straightforward, accessing

the corresponding �elds of a symbol structure. These operations are peculiar to

Emacs Lisp and are not re
ected in Edwin, so they do not need any hooks.

2.2.1 Simple Symbols

Most Emacs Lisp symbols are used as local variables | i.e. they are bound for the

duration of a function call. They have one global value, not multiple, bu�er-local

values, and their values do not have to be re
ected in the Edwin runtime system.

The operations on these simple symbols are straightforward, and do not require

individual hooks that escape into arbitrary re
ection code. In this common case,

the overhead of calling hooks (closures) can be avoided. The symbol operations

listed above �rst access the value �eld of a symbol, since this �eld will typically

contain the current global value of the simple symbol, or a special constant that

indicates that the symbol is an unbound simple symbol. However, the value �eld

may contain a second special constant that indicates that the symbol is not a simple
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symbol. In that case, the �elds named above will contain hooks implementing the

corresponding operations on the symbol.

2.2.2 Variable Symbols

Some Emacs Lisp symbols have bu�er-local values | values that are current only

when a certain bu�er is current. The Emacs Lisp emulator implements such a

symbol by �nding or creating an Edwin editor variable with the same name. The

editor variable can have bu�er-local values, and already implements the behavior

required of the Emacs Lisp symbol. The Emacs Lisp symbol is labeled as a non-

simple symbol and provided with hooks that implement each of the operations

listed above in terms of analogous operations on the Edwin editor variable. By

default, the editor variable is maintained with identical state | its values are

always identical to the emulated Emacs Lisp symbol's values. The only data

type conversion is from an Emacs Lisp value of Qt (the symbol named t) to the

analogous Edwin Scheme constant #t. (This satis�es pre-existing editor variables

that insist on having only boolean values.)

2.2.3 Generic Symbols

Some Emacs Lisp symbols need to run specialized code to access or modify their

values. This may be because the value of the symbol is intended to re
ect (and

be re
ected in) the state of the Edwin Scheme runtime system. Emacs has similar

types of symbols, whose values re
ect values in C data structures. These kinds of

symbols cannot be made to have bu�er-local values, using the make-variable-

buffer-local or make-local-variable subrs (though some of these symbols are

de�ned to have bu�er-speci�c values). Similarly, the %make-local! and %make-

all-local! operations on generic symbols have no e�ect.

The details of how variable and generic symbols are used to integrate the em-

ulated Emacs Lisp runtime system and the Edwin Scheme runtime system are

addressed in Section 3.
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3 Re
ecting Emacs's State in Edwin

Many of Emacs's data structures are represented by Edwin data structures, e.g.

Emacs bu�ers are represented by Edwin bu�ers. This reduces the implementation

e�ort by taking advantage of existing Edwin functionality, and also helps integrate

the runtime systems by allowing them to share state. To implement this sharing,

the emulated Emacs Lisp primitives must be able to realize new states of the

emulated Emacs Lisp runtime system by modifying the shared data structures,

and also must be able to infer the state of the Emacs Lisp runtime system from

the state of the Edwin data structures. For example, an Emacs primitive that

sets an Emacs marker to a particular point in an Emacs bu�er is implemented

by a procedure that sets the corresponding Edwin mark to the same point in the

corresponding Edwin bu�er. An Emacs primitive that returns the position of an

Emacs marker will infer the correct number from the index of the corresponding

Edwin mark.

A number of techniques are used to share as much state between Emacs Lisp

and Edwin Scheme as possible. Sometimes this sharing is assisted by additional

information in separate data structures maintained by the emulation code. Some-

times it is made possible by hacking Edwin data structures below their abstract

interfaces. However, there are some aspects of the emulated Emacs Lisp runtime

state that cannot be easily or e�ciently realized in terms of Edwin's runtime state.

In these cases, the Emacs Lisp emulation has to implement this state separately.

The rest of this section discusses the techniques used to emulate the signi�cant

aspects of Emacs Lisp's runtime state, and to re
ect this state in Edwin Scheme.

3.1 User Variables

An Emacs Lisp program is often parameterized by a number of user variables

{ symbols whose values are intended to be modi�ed by users to customize the

behavior of the program. These symbols have a variable-documentation prop-

erty whose value is a string starting with an asterisk. Only these symbols satisfy

the user-variable-p predicate and can be modi�ed using the set-variable or

edit-options commands. Edwin editor variables can play a similar role, and are

modi�ed by the Edwin set-variable command. The Edwin command is more

general, allowing any editor variable to be modi�ed, but it is typically used in the

same way as the Emacs command.

To re
ect Emacs's user variables as Edwin editor variables, all symbols declared

by the defvar and defconst subrs to have documentation strings starting with

an asterisk are made into variable symbols (using the %make-symbol-variable!

procedure). The variable symbols store their values as the values of Edwin editor

variables with the same names. They also re
ect their variable-documentation

properties in the documentation strings of the editor variables. Thus, the user can
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get the variable documentation, and inspect and set the values of these symbols

using Edwin's normal variable commands.

3.2 The Current Bu�er

Emacs has the notion of a current bu�er | the bu�er acted upon by most of its

primitives either implicitly, or by default. The current bu�er is set to the bu�er

associated with the selected window before each interactive command is invoked.

It can be temporarily changed (until the next interactive command is invoked) by

the set-buffer subr. This primitive just changes the notion of the current bu�er;

it does not change the selected window or the bu�er associated with the selected

window.

Edwin also has a notion of a current bu�er, which serves the same role as

Emacs's. Edwin's current bu�er is de�ned as the bu�er of the selected window.

It cannot be changed without changing either the selected window or the bu�er

associated with the selected window.

Edwin's notion of the current bu�er, therefore, is incompatible with Emacs's.

The Emacs Lisp emulation must maintain and use a separate notion of the cur-

rent bu�er. This state variable is initialized by the code that emulates Emacs's

command dispatch mechanism, and it is set by the set-buffer subr. Fortunately,

most Edwin procedures take an explicit bu�er or mark argument, so the emulator

can easily specify the bu�er on which Edwin procedures should operate.

3.3 Markers

Edwin's permanent marks move as characters are inserted or deleted behind them

in their bu�er so that they continue to point to the same character, just as Emacs

markers do. However, Edwin actually has two 
avors of marks: left inserting

and right inserting. The right inserting marks do not move when characters are

inserted at the position of the mark. Thus, permanent right inserting marks are

used to represent Emacs markers. They implement the correct behavior except

for two minor di�erences. The �rst di�erence is between a mark's index and a

marker's position. A permanent mark's index is the zero-based index of the bu�er

character following the mark. A marker's position is the one-based index of the

bu�er character following the marker. The second di�erence is that a marker can

point nowhere, so that it does not slow down inserts and deletes in a bu�er.

The �rst di�erence is relatively easy to reconcile. The marker-position subr

must return an integer one greater than the index of the Edwin mark that is

representing the Emacs mark. If the marker is pointing nowhere, marker-position

signals the appropriate Emacs Lisp error.

The second di�erence is accommodated by violating the mark abstraction

slightly. There is normally no way to make an Edwin mark point nowhere. How-
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ever, the emulation code uses low-level structure modi�ers to set a mark's index

and group �elds to #f. This is not a legal value for these �elds, but Emacs mark-

ers should not be �nding their way into Edwin code. Before setting the mark's

�elds to #f, the emulator turns the mark into a temporary mark, using the Edwin

procedure mark-temporary!. A temporary mark does not appear on a bu�er's list

of marks to move because of insertions or deletions. Thus, the strange values of

the mark's �elds will not be observed by a bu�er while moving its marks, and the

mark will no longer slow down a bu�er's inserts and deletes, just like a real Emacs

marker. Once a marker is given a bu�er and position again, it can be turned into

a permanent mark using Edwin's mark-permanent! procedure.

Some care must be taken to distinguish between marker positions, which are

one-based indexes, and mark indexes, which are zero-based indexes. Arguments to

Emacs Lisp subr's may specify positions using integers (positions) or markers, and

these are usually converted to the Edwin equivalents required by Edwin procedures

| bu�er positions (indexes) or marks. Other arguments to subr's may specify

numbers using integers or markers (e.g. the arguments to the + subr), with the

markers being converted to their one-based positions. The emulator uses three

coercion procedure to help make the correct distinctions and implement the correct

conversions:

CHECK-MARKER-COERCE-INT

Returns an Edwin mark when given an Emacs marker or integer. Oth-

erwise, signals a wrong-type-argument error.

CHECK-NUMBER-COERCE-MARKER

Returns an integer when given an Emacs integer or marker. The integer

is to be used as a number, and so is a one-based position. Otherwise,

signals a wrong-type-argument error.

CHECK-POSITION-COERCE-MARKER

Returns an integer when given an Emacs integer or marker. The in-

teger is to be used as a bu�er position, and so is a zero-based index.

Otherwise, signals a wrong-type-argument error.

3.4 Window Points

In both Emacs and Edwin, a window keeps track of its own point into its bu�er.

This allows multiple windows to view and edit di�erent locations in the same

bu�er. In Emacs, a window's marker is right-inserting | insertions at the marker's

position do not advance the marker. In Edwin, a window's mark is left-inserting

| insertions at the mark position do advance the marker. If a bu�er displayed in

a window is erased and new text inserted, the point in an Edwin window will be
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left at the end of the bu�er, whereas the point in an Emacs window will be left at

the start of the bu�er.

This is a drastic change in the way a program like GNUS behaves. To elim-

inate this incompatibility, all bu�er insertions done by the emulated Emacs Lisp

subrs are performed inside the dynamic extent of a call to %fixup-window-point-

movement. This procedure arranges to �nd all window points that may be pointing

at the place of insertion. After the insertions, it restores the window points to their

original position.

3.5 Named Commands

A typical Emacs Lisp program will de�ne a number of commands using a defun

expression with a top-level interactive expression in its body. The interactive

expression may provide code or a string specifying how to prompt the user for the

arguments to the command. The program may also declare a command using an

autoload expression with a non-nil fourth argument (from kbd). Although there

are many ways to create functions that can be called interactively, these are the two

most common techniques. These two techniques intern symbols that can be bound

to command key sequences and executed by the command dispatch mechanism.

The commands can also be executed by giving their names to the M-x command

(execute-extended-command). Although there are other ways to invoke Emacs

Lisp programs, these are the two most common techniques | especially the latter.

For example, the RMAIL program is run by typing M-x rmail; the GNUS program

is run by typing M-x gnus.

A typical Edwin program will de�ne a number of commands using define-com-

mand syntax. This syntax builds a command object that includes an interactive

speci�cation | a procedure or string specifying how to prompt the user for the

arguments to the command. Edwin commands can be bound to command key

sequences or executed by Edwin's M-x command (execute-extended-command).

As in Emacs, the latter is the usual way to run an Edwin program.

To allow Edwin to run Emacs programs as though they were native Edwin pro-

grams, Edwin commands must be created to re
ect the Emacs commands. Since

the interactive speci�cation of an Edwin command can be an arbitrary procedure,

that procedure can get the interactive speci�cation of the Emacs command and

interpret it, returning the command arguments. The procedure that actually ex-

ecutes the Edwin command would accept the command arguments and apply the

Emacs command to them using the %apply-interactivelyprocedure, which does

necessary initializations (e.g. setting Emacs's current bu�er and this-command

variable).
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3.6 Keymaps

Edwin's command key dispatching mechanism is controlled by comtabs. A comtab

associates a command key with various types of data: a command to be executed, a

secondary comtab (used by the prefix-key command to dispatch additional com-

mand keys), a pair providing both a comtab for dispatching additional command

keys and a command to do the dispatching; a comtab alias (a pair of a comtab

and a command key, which is interpreted as equivalent to the datum associated

with that command key in that comtab), and #f (indicating that the command

key sequence is not bound).

Emacs's command key dispatching mechanism is similar and is controlled by

keymaps. A keymap associates a command key with a number of di�erent types of

data: an interactive function, a keyboard macro (string), a keymap alias (a pair of

a keymap and a command key), a secondary keymap, or a symbol whose function

is any of these.

An Edwin comtab can be used to implement the same association as does an

Emacs keymap, assuming that Emacs keymap data can be converted to Edwin

comtab data. This is trivial for secondary keymaps and keymap aliases, which

are already valid comtab data. The other types of keymap data will have to be

converted to Edwin commands. However, Edwin commands are uniquely named,

while most of the keymap data (the keyboard macros and interactive functions)

are anonymous.

The solution used in this emulation is to create anonymous commands using

Edwin's internal procedure %make-command. %make-command creates a command

structure, but does not register it in Edwin's table of named commands. The

name of an anonymous command, which must be a string, is a particular string

constant that serves to identify it as an anonymous command. The interactive

speci�cation of an anonymous command is a procedure that returns the original

Emacs Lisp keymap datum that was converted into this anonymous command.

This serves two purposes. First, the lookup-key subr, recognizing an anonymous

command by its name, can convert the command back into the original keymap

datum simply by invoking the interactive speci�cation procedure. Second, Edwin's

command dispatch mechanism will invoke the interactive speci�cation procedure

and apply the command's procedure to the returned value | the keymap datum.

The anonymous command's procedure will be %keymap-dispatch, a procedure

which, when applied to a keymap datum, emulates Emacs's dispatching behavior.

3.7 Modes

In Emacs, a bu�er's mode is de�ned implicitly by mode-related state variables |

the bu�er-local keymap and the bu�er-local values of symbols like major-mode

and mode-name. In Edwin, a bu�er has an explicit major mode | a structure that
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includes �elds called comtabs, name, and display-name. Edwin uses the values of

these �elds in much the same way as Emacs uses its mode-related state. Therefore,

the mode-related state of an Emacs bu�er needs to be re
ected in the major mode

of the corresponding Edwin bu�er.

All procedures that emulate Emacs's manipulation of mode-related state �rst

apply guarantee-elisp-mode! to the current bu�er. This procedure ensures that

the bu�er's major mode is an Emacs Lisp mode | a major mode re
ecting Emacs

Lisp's notion of the bu�er's mode. These major mode objects are only used by one

bu�er, so that the �elds of the structure are bu�er-speci�c. guarantee-elisp-

mode! can tell that a bu�er's major mode is an Emacs Lisp mode by looking for

a particular property in the major mode's alist �eld. If the property is missing,

the major mode is a normal Edwin major mode and must be replaced by a new

Emacs Lisp mode.

The �elds of a new Emacs Lisp mode are initialized to re
ect a bu�er in

Emacs's fundamental-mode with no local keymap. The comtabs �eld of the ma-

jor mode structure is initialized to a list of one comtab | the comtab of Edwin's

Fundamentalmode. This comtab is used to represent Emacs's global keymap since

it is inherited by most of Edwin's major modes and has many of the same bindings.

Edwin major modes are normally uniquely named, making them easy to refer-

ence. However, Emacs Lisp modes are never referenced except implicitly through

their associated bu�er, and inventing unique names for them would be di�cult.

Like the anonymous commands wrapping Emacs keymap data, Emacs Lisp modes

are anonymous major modes; they are not entered into Edwin's table of major

modes.

The major-mode and mode-name variables are implemented by generic sym-

bols whose set-value hooks apply guarantee-elisp-mode! to the current bu�er

and then modify the �elds of the Emacs Lisp mode. Similarly, the procedures im-

plementing Emacs's use-local-map and kill-all-local-variables subrs apply

guarantee-elisp-mode! to the current bu�er and then modify the list of comtabs

of the Emacs Lisp mode. Thus, these procedures force the current bu�er to become

an Emacs-style bu�er with an Emacs Lisp mode. This seems reasonable because

most Emacs Lisp programs do not take these actions outside of functions intended

to initialize the mode of a bu�er created by the programs.

The get-value hooks of the major-mode and mode-name symbols can handle a

current bu�er that is either a normal Edwin bu�er or an Emacs-style bu�er. They

simply access the appropriate �elds of the current bu�er's major mode regardless

of its type. The current-local-map primitive just returns nil for Edwin bu�ers.

Thus, Emacs Lisp code can inspect the modes of normal Edwin bu�ers without

forcing them to become Emacs-style bu�ers.

It is interesting to note that Edwin minor modes can still be used in Emacs-

style bu�ers. The comtabs of the minor modes are still prepended to the list of the
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bu�er's applicable comtabs. Newly enabled Edwin minor modes will still override

all other command key bindings, even those of Emacs's local keymap. Whether

this feature will prove useful remains to be seen.

3.8 Prompting and Completion

The basis for Emacs's minibu�er input and completing behavior is a function and

the values of a few symbols. The C function read minibuf is used by all of the

prompting subrs to implement the kernel functionality, such as saving the window

con�guration, activating the minibu�er window with a prompt and keymap, and

starting the recursive edit loop. Completion is provided by command key dispatch

in the minibu�er, which uses the minibu�er's keymap to map certain command

keys to completion functions. The completion functions get the information they

need from the values of three symbols:

� The value of minibuffer-completion-table should be an obarray (which

associates strings with symbols) or an alist (speci�cally, an alist that asso-

ciates strings with arbitrary objects). The keys of either kind of association

include the possible completions of the minibu�er input.

� The value of minibuffer-completion-predicate should be a predicate

used to �lter the keys of minibuffer-completion-table. Together, the

values of these two symbols determine the possible completions.

� The value of minibuffer-completion-confirm should indicate whether

completions must be displayed and con�rmed before being accepted. If the

value of this symbol is nil, the unique pre�x of a possible completion will be

accepted without displaying the entire string and asking for con�rmation.

Edwin's minibu�er input and completion behavior is implemented in a similar

fashion. Its internal procedure, %prompt-for-string, does essentially the same

work as read minibuf, activating the minibu�er with a specialized major mode.

The comtabs of the major mode provide the normal editing commands plus a few

completion commands. The completion commands get the information they need

from the values of three Scheme variables:

� The value of completion-procedure/complete-string should be a proce-

dure that can complete a string.

� The value of completion-procedure/list-completions should be a pro-

cedure that can list the completions of a string.

� The value of completion-procedure/verify-final-value? should be a

predicate indicating whether a string is an acceptable �nal value even if it is

not unique.
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� The value of *completion-confirm?* indicates whether completions should

be displayed and con�rmed before being accepted.

The emulator can easily �nd the appropriate values to 
uid-bind to the Scheme

variables. The values of the completion procedure variables can be simple proce-

dures that use the try-completion or all-completions subrs together with the

values of the Emacs Lisp symbols to complete the input string or to �nd a list of all

its completions. The value of the *completion-confirm?* variable is also easily

computed, using the value of the Emacs Lisp symbol minibuffer-completion-

confirm.

The mode to be used by %prompt-for-string is a little more di�cult to pro-

duce. Most of the minibu�er input subrs call read minibuf with the values of

certain Emacs Lisp symbols, which are typically standard keymaps. However,

the symbols' values could be set to anything by the user, or even temporarily

lambda-bound by Emacs Lisp code. Also, the read-from-minibuffer subr calls

read minibuf with a keymap provided as an argument. The minibu�er input

subrs, therefore, must be emulated by procedures calling %prompt-for-string

with a mode whose comtabs are: an arbitrary comtab representing a keymap that

was a symbol value or direct argument, and the comtab representing Emacs's

global keymap.

The required mode is easy to construct on the 
y and, like the anonymous ma-

jor modes of Emacs-style bu�ers, will not be registered as a named mode, allowing

it to be garbage collected after its brief use during the call to %prompt-for-string.

However, the required mode is often already represented by existing Edwin major

modes. The values of the Emacs Lisp symbols used by the minibu�er input subrs

are typically standard keymaps. These standard keymaps are represented by the

comtabs of standard Edwin minibu�er modes. Rather than construct an anony-

mous mode on the 
y, these comtabs are recognized and the standard modes are

used. The keymap->mode procedure implements this mapping, returning either a

standard Edwin minibu�er mode or a newly constructed anonymous mode.
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4 Compatibility Issues

The techniques described in Section 3 address the two goals of accurately emulating

the Emacs Lisp primitives, and tightly integrating the Emacs Lisp and Edwin

Scheme environments. However, complete and accurate emulation and integration

were not possible given the available resources. The size and complexity of the

Emacs Lisp runtime system required that a number of Emacs Lisp primitives be

left unimplemented. Of the primitives that have been implemented, many have

capabilities that are rarely used and would not have been worth the e�ort to

accurately implement. Some capabilities are simply not implemented, but others

were replaced with useful approximations.

Complete and accurate integration is also di�cult to achieve, both because

of the size of the Emacs Lisp runtime system and because some aspects of the

runtime system's state are di�cult to re
ect in analogous Edwin Scheme state.

In any case, tight integration is more a convenience than a necessity; it does not

increase the number of Emacs Lisp programs that can be emulated.

Users who expect all of the functionality of Emacs Lisp to be available or all

analogous aspects of Emacs Lisp and Edwin Scheme state to be integrated will be

disappointed. To set realistic expectations, this section describes the limitations of

the Emacs Lisp emulator. It discusses both the general principles that guided the

selection of compromises, and speci�c de�ciencies that can lead to errors during

emulation. This will help users understand why an Emacs Lisp program may be

encountering errors, and will also point out the areas where the current system

could be improved.

4.1 Signaling Errors

A couple caveats about the Emacs Lisp emulator concern how error situations are

handled. Edwin Scheme code uses the MIT-Scheme condition system to signal

error conditions, whereas Emacs Lisp uses its own mechanism. The emulated

subrs endeavor to indicate error situations by signaling the same Emacs Lisp errors

that would have been signaled by the original Emacs Lisp subrs in an analogous

situation. This allows for the correct operation of Emacs Lisp programs that were

designed to catch and handle these errors.

The emulated subrs accomplish this signaling behavior in a variety of ways.

They can usually adequately detect error situations via the same type checking

as that found in the original subrs. The type checking code can then signal the

correct Emacs error. Adequate type checking often eliminates the possibility of

Scheme errors being signaled by the Edwin Scheme procedures used to implement

the subrs. In other cases, the emulated subrs may use Scheme condition handlers to

catch Scheme conditions signaled by the Edwin Scheme procedures. The handlers

can then signal the appropriate Emacs errors instead. However, it is di�cult to
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anticipate all of the conditions that could be signaled by Edwin Scheme procedures,

so it is still possible for Scheme conditions to be signaled during the emulation of

an Emacs Lisp program. The obvious cases that correspond directly to the Emacs

errors signaled by the original Emacs Lisp subrs should be handled correctly.

One obvious case that currently is not handled is the quit error that is signaled

by Emacs when it gets the interrupt character (?\C-g). This character is bound to

the keyboard-quit command in the global keymap, but Emacs's handling of ?\C-g

is more complicated than simple command key dispatch, and involves at least the

values of two symbols. Edwin's own handling of ?\C-g is no less complicated, using

a mechanism entirely separate from the normal Scheme condition system. While

it is probably possible to more accurately emulate the interruption of Emacs Lisp

code by ?\C-g, this has not been done. There are likely to be few Emacs Lisp

programs that rely on this behavior anyway.

The emulator will correctly implement the error signaling and handling behav-

ior of Emacs Lisp in most situations. However, there are a few situations in which

Emacs Lisp errors will be signaled by the emulator though they would not have

been signaled in Emacs. These errors reveal de�ciencies in the emulator. A sim-

ple example is an Emacs Lisp program that attempts to call a subr that has not

been implemented. The attempt will cause a void-function Emacs error to be

signaled. This error will indicate to the user what went wrong in a fairly straight-

forward fashion. A less straightforward error is generated when an Emacs Lisp

program violates one of the restrictions imposed by the emulator. For example, an

Emacs Lisp program might attempt to cdr down a sparse keymap (i.e. traverse the

keymap using cdr). This violates the restriction that only the abstract keymap

operations be applied to keymaps. The result is that the cdr subr will signal an

Emacs Lisp wrong-type-argument error because the sparse keymap is not a cons,

but actually an Edwin comtab.

An Emacs Lisp program can also violate restrictions of the emulator and cause

a Scheme error condition to be signaled. This may be a consequence of using Edwin

editor variables to store the values of certain Emacs Lisp symbols. In Emacs Lisp,

the values of most symbols can be any object. This includes symbols for whom only

a few values make sense, such as symbols that are conceptually boolean valued.

An Emacs Lisp program is free to set the value of such a symbol to be nil or any

non-nil value. For example, an Emacs Lisp program could set the bu�er-local

value of buffer-read-only to a string describing why the bu�er should not be

modi�ed.

Setting some Emacs Lisp symbols to unusual values can cause Scheme errors

to be signaled. Symbols with bu�er-local values are emulated by variable symbols

which store their values as the values of similarly named Edwin editor variables.

Edwin editor variables can restrict the values to which they can be set and will

signal a Scheme condition if a given value is outside their expected range. Thus,
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an Emacs Lisp program that uses a bu�er-local symbol in an unusual way may

cause an editor variable to signal a Scheme condition. This should be rare because

only a few standard Edwin editor variables have restrictions on their values, and

these standard names are unlikely to be used in unusual ways by Emacs Lisp

programs. However, a few cases already exist among the standard Emacs Lisp

symbols that were implemented. Any restrictions imposed on these symbols by the

emulator have been documented in the standard symbols' documentation strings.

Section A.0.7 includes all documentation strings that were augmented with these

kinds of notes.

4.2 Ignoring De�ciencies

The Emacs Lisp emulator can signal errors whenever it is unable to correctly

emulate Emacs Lisp code, but this is often not what is desired. There are many

cases where a de�ciency of the emulator can be ignored without grossly a�ecting

the behavior of an Emacs Lisp program.

For example, there is no analogue for Emacs's help-form symbol in Edwin, so

the emulator does not provide equivalent functionality. The emulator could signal

an error any time the symbol's value is referenced or set. This would help the user

understand why an Emacs Lisp program is not behaving exactly as expected, but

also makes it impossible to run the program even if it would run correctly in all

other respects. Instead, the emulator gives help-form an initial value and ignores

any attempt to change it. As a result, the program may be a little less helpful

than it could have been, but it won't halt with an error just because it references

or sets the value of help-form.

The same strategy applies when implementing subrs. The Emacs Lisp subr in-

teractive-p is supposed to return t only if it is called from the initial, interactive

invocation of an Emacs Lisp command. This is easy to implement in Emacs

because the subr can examine the interpreter stack. Doing the same thing in

Edwin Scheme is probably possible, but probably di�cult. However, in the entire

GNU Emacs distribution, interactive-p is invoked in only 5 function calls, all

of which produce acceptable behavior if they always return t. Rather than leave

this subr unde�ned and halt any programs using it, the interactive-p subr is

emulated by always returning t.

When de�ciencies in the emulation are not signaled, it becomes harder to track

down the source of discrepancies between a program running in Emacs and the

same program being emulated in Edwin. An error resulting from a de�ciency may

be far removed from the point where the de�ciency �rst appeared. Backtracking

from the error to that point is likely to be di�cult. Therefore, the emulator will

only attempt to proceed with partially correct behavior where it is not likely to

cause further trouble. Otherwise, an error will be signaled. In either case, the

known de�ciencies of the emulated symbols and subrs are noted in their documen-
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tation strings. This will at least make the user aware of the possible sources of

discrepancies.

4.3 Being Innocuous

Another general principle followed by the Emacs Lisp emulator is to be conservative

when re
ecting the emulated Emacs Lisp system's state into Edwin. A re
ection

that breaks Edwin is considered worse than the lack of a re
ection that defeats

integration or even introduces a discrepancy in the emulation. It is di�cult to

guarantee that Edwin cannot be broken, but the following techniques have been

used to eliminate obvious problems.

This project emulates a large number of the Emacs Lisp primitives, but it does

not attempt to emulate the many functions provided in essential Emacs Lisp �les.

These �les de�ne functions (e.g. not) needed by nearly all Emacs Lisp programs.

The �les also de�ne the global command key bindings. Since these essential �les

are necessary to make most Emacs Lisp programs work, they must be loaded into

the emulation. However, if they were loaded in as they are, without modi�cation,

they would override most of Edwin's global command key bindings. Many of its

editor variable values would be overridden too. To avoid the problem of overriding

the global command key bindings without patching (and maintaining patches to)

the essential Emacs Lisp �les, a switch is provided that controls whether any

comtab bindings can be overridden. This switch, the Scheme variable allow-

elisp-define-key-overrides?, is 
uid-bound to #f while the essential �les are

loaded.

The defvar primitive by de�nition will not override existing variable values,

but the defconst primitive is de�ned to do just that. However, if defconst ex-

pressions in the essential Emacs Lisp �les override existing Edwin editor variable

values, many of them will break Edwin. Fortunately, the de�ned behavior can

be compromised so as not to break Edwin. Variable symbols (symbols re
ected

by Edwin editor variables) remember whether their corresponding editor variable

existed before they were created. If it did, the variable symbol assumes that the

editor variable is being used by Edwin and that its value should not be overridden

by defconst. defconst detects this situation when the %symbol-bound? opera-

tion returns the edwin symbol. If %symbol-bound? returns any other value, then

the symbol's value can be set; the symbol was either unbound or its editor variable

was created by the emulation code.

4.4 Handling Side-E�ects

The Emacs Lisp emulator currently does not go to great lengths to handle side-

e�ects to Emacs Lisp data structures. These side-e�ects need to be handled spe-

cially when they cause changes in state of an Emacs Lisp data structure and that
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state is being re
ected in the state of an Edwin Scheme data structure. To a large

extent, detecting and re
ecting these state changes has been unnecessary because

of the large amount of data that is actually shared between the two systems. Any

change in the state of shared data structures already a�ects both systems.

However, there are a number of Emacs Lisp data structures that are re
ected

in Edwin Scheme via translation into a corresponding Edwin Scheme data struc-

ture. The translation is only applied when a data structure is registered with the

Emacs Lisp runtime system by calling a subr or setting the value of a symbol.

The translation, a newly constructed Edwin Scheme data structure, is similarly

registered with the Edwin Scheme runtime system. Side-e�ects to the Emacs Lisp

data structure will not invoke this translation process and register a new re
ection

in the Edwin Scheme runtime system.

An example of this is the value of the exec-path symbol. The value of this

symbol should be a list of pathnames (strings) or nil. It is analogous to the

value of the Edwin editor variable exec-path, which is a list of pathname objects,

strings, or #f. The get-value method for the Emacs variable can easily coerce

the value of the Edwin variable to the correct type, mapping pathnames to strings

and #f to nil. However, the resulting list will be distinct (unless we want to force

the Edwin variable to share the new value). Any side-e�ects to it will not change

the state of the editor variable.

So far, this de�ciency in the emulation has not been a problem. Side-e�ects to

many data structures, while possible, are unusual in Emacs Lisp programs. For

example, most programs will change a symbol's variable-documentation prop-

erty via the put subr, rather than via direct modi�cation of the symbol's property

list. The put subr will detect the change and can re
ect it as a new documenta-

tion string for a corresponding Edwin editor variable. The direct modi�cation of

the property list will not be detected and the documentation string of the editor

variable will not re
ect the new state.

As a possible source of bugs, unhandled side-e�ects are noted in appropriate

documentation strings. In the future, Emacs Lisp lists might be built out of special

cons cells that accept noti�cation hooks. Then, any side-e�ects to an Emacs Lisp

list could trigger code that re
ects the new state of the list into a corresponding

Edwin Scheme data structure. Practical experience with the current emulator

can focus such e�orts to handle side-e�ects that are crucial to useful Emacs Lisp

programs.

4.5 Naming Commands and Variables

The Emacs Lisp emulator does its best to re
ect the commands de�ned by Emacs

Lisp programs in corresponding Edwin commands with the same name. Users can

then easily invoke an Emacs Lisp command simply by invoking the corresponding

Edwin command. The Emacs Lisp command name can be used to bind command
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keys to the corresponding Edwin command, and the same name can be provided

to the M-x command (execute-extended-command). The Emacs Lisp commands

will even appear in the completion lists displayed by execute-extended-command.

The same close integration is intended for Emacs Lisp variables, the symbols

whose global or bu�er-local values parameterize the behavior of Emacs Lisp pro-

grams. The names of corresponding Edwin editor variables should be the same so

that users can easily inspect and set the values of the Emacs Lisp variables via

operations on the Edwin editor variables.

Unfortunately, Emacs Lisp symbol names are case-sensitive and they are unique

to a particular symbol only among symbols in the same obarray. An uninterned

symbol, or a symbol interned in another obarray could have the exact same name

as another symbol. The names of Edwin commands and editor variables, how-

ever, are case-insensitive and must be unique among all commands or variables

(respectively).

A straightforward mapping of Emacs command names to Edwin command

names would just lowercase the Emacs command names, but this can cause con-


icts when distinct symbols naming di�erent commands are mapped to the same

Edwin command name. The same problem exists when mapping Emacs variable

names to Edwin editor variables names. Two distinct symbols may end up trying

to store their global or bu�er-local values as the values of the same editor variable.

A more complex mapping of distinct symbols to unique Edwin command or

variables names is not likely to be easy to use. Luckily, the practice of naming

Emacs commands and variables with uppercase letters is rare, and the name con-


icts that would be caused by the straightforward mapping are even rarer. For

now, the emulator uses the straightforward mapping and risks con
icts between

Emacs variables. Name con
icts between distinct Emacs commands are arbitrarily

decided in favor of the command �rst de�ned | the Emacs symbol naming the

command will be associated with an Edwin command that invokes that symbol as

an Emacs command. The decision in favor of the �rst command de�ned is actu-

ally a consequence of being innocuous. The emulator will not re-de�ne an existing

Edwin command to invoke an Emacs command.

The mapping between Emacs commands and Edwin commands is not one-

to-one for another reason. Function aliasing makes it hard to �nd new named

commands that aught to be re
ected as an Edwin command. If the function of

an Emacs symbol is set to be another symbol, then the �rst symbol serves an an

alias for the function named by the second symbol. If the second symbol becomes

the name of a command, then the �rst symbol becomes an alias for the named

command, but there is currently no way to �nd that �rst symbol again and to

re
ect it as an Edwin command. As with the name con
icts described above, the

named command aliases that would be lost by this particular sequence of de�nitions

are thought to be rare in practice, and no e�ort has been made to eliminate the
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problem.

4.6 Using Comtabs For Keymaps

As described in Section 3.6, Emacs Lisp keymaps are represented by Edwin Scheme

comtabs. At an abstract level, this representation is a good �t because the behav-

iors of keymaps and comtabs are very similar. Implementing the abstract keymap

operations like define-key and lookup-key in terms of operations on comtabs was

fairly straightforward, and integrating keymaps and comtabs helped to integrate

Emacs's and Edwin's command key dispatching mechanisms.

At a more concrete level, a full keymap is supposed to be represented by a

vector, and a sparse keymap by a pair whose car is the symbol keymap and whose

cdr is an association list. Emacs Lisp programs are supposed to be able to apply

vector operations to full keymaps and list operations to sparse keymaps. How-

ever, emulating these operations, when applied to an Edwin comtab representing

a keymap, would be di�cult. Instead, the emulator imposes the restriction that

only the abstract keymap operations be applied to the emulated keymaps. This

restriction was thought to be acceptable to many useful Emacs Lisp programs, and

has proven acceptable to the benchmark GNUS news reader.

One notable exception to the restriction is the standard Emacs Lisp function

suppress-keymap, which uses aset to modify a full keymap (vector). This func-

tion is widely used, so to accommodate it, the aset subr is implemented so that

it can be applied to a comtab to produce the same key binding as it would have

produced when applied to a full keymap in Emacs.

4.6.1 special keys

Even when restricted to the supported, abstract operation on keymaps, there are

some fundamental di�erences between Edwin comtabs and Emacs's keymaps that

can cause errors in Emacs Lisp code. Edwin command keys are lists of arbitrary

objects, which are usually Scheme characters and sometimes other objects rep-

resenting special keys (e.g. function keys). Emacs command keys are strings of

ascii characters. Special keys are encoded as escape sequences via a mapping that

is terminal-dependent. Emacs Lisp code that tries to manipulate command key

bindings involving function keys (e.g. by using the escape sequence produced by a

commonly used terminal) will not work.

This di�erence between comtabs and keymaps also a�ects the emulation of the

this-command-keys subr. In the simple case, this-command-keys uses Edwin's

current-command-key procedure to get the command key sequence that most

recently invoked a command. The Edwin command key sequence (a list of char-

acters) is easily converted into an Emacs command key sequence (a string) which

is returned. If the command key sequence includes a special key, the special key
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is be converted to a string containing the name of the special key with a pre�x of

\e[ and su�x of ~. This will be meaningless to a program that really understands

escape sequences, but will work with programs that just compare them. If the

command key sequence includes anything else, the emulation gives up and signals

an error.

4.6.2 esc-map

Another di�erence between comtabs and keymaps concerns how they handle com-

mand keys with the meta-bit set. Emacs converts a commandkey with the meta-bit

set into two command keys | the ESC key and the original command key with the

meta-bit clear. Edwin does just the opposite. The ESC command key is bound to

a command that sets the meta-bit on the next command key. The result is that

Edwin does not have a comtab that corresponds to Emacs's esc-map. Emacs Lisp

code that tries to modify the esc-map or build a keymap to bind to ESC will not

work.

4.7 Integrating Essential Emacs Lisp Facilities

This project has implemented a number of Emacs Lisp subrs and variables, con-

centrating on those required by the benchmark GNUS program. This program

also requires a number of standard Emacs Lisp functions and variables de�ned in

the essential Emacs Lisp �les that are pre-loaded into every Emacs. These �les are

loaded into the emulated Emacs Lisp environment, but the functions and variables

they de�ne have not been integrated with the Edwin Scheme environment.

This can be a problem when Emacs Lisp variables have the same name as

existing Edwin editor variables. By default, the values of the Emacs Lisp vari-

ables are re
ected as the values of the Edwin editor variables and vice versa. No

translation is currently done between Emacs Lisp and Edwin Scheme data types.

When the values expected of the Emacs Lisp variables are not compatible with

the values expected of the Edwin editor variables, errors can result. For example,

find-file-hooks is both an Emacs Lisp variable and an Edwin editor variable,

but its value is a list in Emacs Lisp and an event distributor in Edwin Scheme.

Emacs Lisp code that tries to examine the value of find-file-hooks using the

car subr will halt with an error.

Eventually, the Emacs Lisp variables like find-file-hooks can be emulated

by generic symbols, just as other primitive Emacs Lisp variables are emulated now.

Alternatively, Edwin data types like event distributors might be manipulated (in

limited ways) by Emacs Lisp subrs as though they were native data types, just as

comtabs are manipulated in limited ways as though keymaps.
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4.8 Miscellaneous Other Discrepancies

The preceding sections describe a number of caveats about the emulated Emacs

Lisp runtime system, and general issues about the compatibility of the emulated

environment with the original environment provided by Emacs. The compatibility

issues have been illustrated by a few examples of the speci�c incompatibilities can

arise, but these examples were not exhaustive. There are additional incompatibil-

ities that may be instances of the general issues, special-purpose compromises, or

combinations of both. For completeness, the appendix lists all of the primitives,

indicating their implementation status. It also includes all documentation strings

that note any restrictions or other unusual behaviors anticipated in speci�c Emacs

Lisp primitives. This section deals with the special-purpose compromises in the

implementation of speci�c Emacs Lisp primitives.

4.8.1 mode-line-format

Edwin's mode-line-format editor variable can be bound to values that will be

interpreted in almost exactly the same way that Emacs interprets the values of its

own mode-line-format symbol. The e�ect of setting the Emacs symbol to certain

values can therefore be emulated by setting the Edwin editor variable to similar

values. The translation from an Emacs value to a similar Edwin value would have

to take into account not only a few minor di�erences in the meanings of the %-

constructs, but also a more troublesome di�erence | the fact that Emacs symbols

can appear in the Emacs value where Edwin editor variables would be expected in

the Edwin value. This di�erence is troublesome because the values of the editor

variables or Emacs symbols are in turn interpreted as though values of mode-line-

format (with an egregious exception). Thus, a faithful emulation must not only

translate Emacs Lisp values of mode-line-format substituting editor variables for

Emacs symbols or vice versa, it must also arrange that the values of any of the

referenced editor variables or Emacs symbols be similarly translated. Even if this

is accomplished, there is the additional problem of side-e�ects to the values of any

of the symbols or editor variables involved.

A partially correct emulation was found to be su�cient to get GNUS working,

and should be acceptable to many other Emacs Lisp programs. Emacs's mode-

line-format symbol is emulated by a generic symbol. The get-value hook of

the generic symbol returns a copy of the value of the Edwin editor variable mode-

line-format. The copy substitutes Edwin editor variables with freshly interned

Emacs symbols. The set-value hook of the variable symbol is similar. It sets the

Edwin editor variable to a copy of the given value in which any Emacs symbols

were replaced with corresponding Edwin editor variables. Also, the Emacs symbols

are made into variable symbols so that changes in their values will be re
ected in

changes to the values of the corresponding editor variables, though no special
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translations are done on the values of these symbols.

This is a good example of a situation in which a small change to Edwin could

eliminate a compatibility issue. If Edwin allowed a bu�er's mode line to be com-

puted by an arbitrary procedure, the emulator could specify a procedure that cor-

rectly interprets the value of the Emacs Lisp mode-line-format symbol. Whether

or not the Edwin Scheme mode-line-format editor variable was eliminated, there

would be no need to re
ect the value of the Emacs Lisp mode-line-format symbol

in Edwin.

4.8.2 this-command and last-command

The Emacs Lisp symbol this-command is represented by a generic symbol whose

operation hooks use Edwin's command message facility. If an appropriate message

was not left by the set-value hook since the current command was dispatched,

then the get-value hook returns Edwin's (current-command) (an Edwin com-

mand object) as a last resort. However, the emulation arranges to set the value

of this-command whenever an Emacs command is called interactively. Thus, the

unusual value of this-command will only be observable outside the dynamic scope

of an Emacs command invocation, e.g. while a hook is being run, such as a process

�lter function or a find-file-hook.

The Emacs Lisp symbol last-command is emulated in a similar fashion. Using

Edwin's command message facility, the get-value hook will return the value to

which this-command was set during the previous command, or else an Edwin

command object. This is su�cient to allow Emacs commands to recognize that

a related command was invoked just previously, or that they have been invoked

multiple times in succession. Thus, commands that work like Emacs's yank and

yank-pop commands are supported.

4.8.3 local-set-key

The Emacs primitive local-set-key is supposed to �nd or create a local keymap

for the current bu�er and add a command key binding to it. However, an Ed-

win bu�er does not have a local keymap unless it is an Emacs-style bu�er. For

simplicity, the emulation of local-set-key changes the current bu�er into an

Emacs-style bu�er (if necessary), creates a local keymap for the bu�er (if neces-

sary), and creates a comtab binding that re
ects the intended keymap binding.

This is a rather drastic action. Changing an Edwin bu�er into an Emacs-style

bu�er leaves it in a mode comparable to Emacs's Fundamentalmode. The Emacs

Lisp code may not have intended to make any major change in the current bu�er's

mode, but simply to enhance the existing mode with a convenient binding.
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4.8.4 process-status-message

Edwin's process-status-message is a reasonable facsimile of the Emacs subr

with the same name. However, to describe a signal that interrupted or killed a

subprocess, Emacs uses the corresponding string from the C array sys siglist.

This is a descriptive string like "bus error". The Edwin procedure just gives the

signal number (e.g. 10 for a bus error) and notes when core has been dumped.

4.8.5 substitute-command-keys

When Emacs commands are de�ned, they are often given documentation strings

intended to be displayed to the user only after the substitute-command-keys

subr has been applied to them. This subr will recognize certain substrings of the

documentation string as directives that need to be replaced. The most common

directive names a related command and is replaced by the command key sequence

that invokes that command. The resulting string shows the user how to invoke

related commands using the short command key sequences instead of the much

longer command names.

The same feature is implemented in Edwin, which applies its own substi-

tute-command-keys procedure to substitute command names with command key

sequences. Unfortunately, the Edwin procedure is not compatible with the Emacs

subr. Not all of the directives recognized by the Emacs subr are recognized by

the Edwin procedure. The peculiarities of the comtabs constructed by Emacs Lisp

code also make it likely that command key sequences that invoke some of the

related commands will not be found. When this happens, the directives that could

not be replaced by command key sequences will be replaced instead by a default

string indicating that the execute-extended-command (M-x) command can be

used instead. This is only true when the Emacs command is accurately re
ected

in an Edwin command with the same name.

The emulated substitute-command-keys subr will interpret all of the direc-

tives found in the documentation strings of Emacs commands, and will return a

string with the intended substitutions. Unfortunately, there is no hook in Ed-

win that would allow the emulated subr to be used instead of the Edwin proce-

dure. Thus, the Edwin commands that are created to re
ect Emacs commands are

given the documentation strings that result from applying the subr to the original

Emacs documentation string. The command key sequences described in the re-

sulting string may become out-of-date, but they are still more likely to be correct.

Again, this is a case where an appropriate hook added to Edwin could eliminate a

compatibility issue.
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5 Conclusion

This project was intended as a small step towards the ultimate goal of running

any Emacs Lisp program in the Edwin Scheme environment. This ultimate goal

requires that all of the hundreds of functions and variables provided by the Emacs

Lisp runtime environment be emulated and integrated with the analogous facilities

of the Edwin Scheme environment. It was obvious that the ultimate goal could

not be realized given the limited resources of this project, but a useful step toward

this goal could be made.

To ensure that the actual goal of this project would be useful, a valuable Emacs

Lisp program, the GNUS news reader, was chosen as a benchmark. The actual goal

of the project would be to emulate enough of the Emacs Lisp runtime system, and

to integrate enough of Edwin Scheme with the emulated system, that the basic

facilities of the GNUS news reader could be used as though the program were

a native Edwin program. By focusing on this speci�c program, only a fraction

of the Emacs Lisp runtime facilities would have to be implemented. By choosing

such a sophisticated program, enough of the essential runtime facilities would need

to be implemented that it would then be likely that other Emacs Lisp programs

could be made to work given small, incremental improvements to the emulated

environment.

In spite of the ultimate goal, and the e�orts made to integrate the emulated

Emacs Lisp runtime environment with the Edwin Scheme environment, these are

still really two separate worlds. The bu�ers being used by Emacs Lisp code are un-

usual in a number of ways. The major modes of these bu�ers are anonymous. The

comtabs of these major modes contain anonymous commands. Because of this,

the normal Edwin commands for examining a bu�er's state may yield strange re-

sults. For example: the Edwin command describe-bindings, when invoked in

an Emacs-style bu�er, may show many command key sequences bound to com-

mands named ?? | the anonymous commands of the Emacs Lisp emulator. This

kind of output is less informative than it could be. In the Emacs Lisp world,

the describe-bindings subr would recognize the anonymous commands of the

Emacs Lisp emulator and know how to �nd the original name of the Emacs Lisp

command. Its output would reveal the names of the bound commands as they are

known in the emulated Emacs Lisp environment, and these names could be used

when creating bindings in Emacs Lisp keymaps or when using execute-extended-

elisp-command, the Emacs Lisp version of Edwin's execute-extended-command

command.

Integration of the Emacs Lisp and Edwin Scheme environments is really just a

convenience. By integrating variables like fill-column, the user is saved the chore

of maintaining the consistency of two representations of what are conceptually the

same thing. By integrating the user interfaces (the windows, mode lines, and

command dispatch mechanisms) of the emulated Emacs Lisp and native Edwin
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Scheme systems, the user is saved from the disruption of switching between two

slightly di�erent interfaces. Where integration breaks down, the user will have to

recognize that there are really two worlds, and will have to operate on the emulated

Emacs Lisp world using the commands and functions native to that world.

Some of the incremental improvements that may be necessary in order to run

other Emacs Lisp programs have already been demonstrated by the current system.

There are many aspects of the Emacs Lisp runtime system that have not been

integrated into Edwin. In particular, the functions and variables de�ned by the

essential Emacs Lisp �les (see Section 4.7) have not been addressed by this project.

By default, Emacs Lisp user variables will share state with a similarly named Edwin

editor variable. Where this default behavior causes problems, the user may be able

to integrate incompatible representations of similar state following the example of

the current emulator code. Generic symbols have been a powerful tool for arranging

arbitrary translations between representations, and Edwin often supports equally

powerful hooks.

Many of the incompatibilities discussed in Section 4 are reasonable restrictions

for the Emacs Lisp system. A program that sets fill-column to a negative or non-

integer is probably in error anyway. Other incompatibilities may be eliminated by

more sophisticated use of the existing techniques. Such e�orts may simply have

been deemed impractical given the resources of this project. Some incompatibili-

ties may require new techniques, including those anticipated by the discussion in

Section 4. Emacs Lisp data types might be replaced by data structures that react

to side-e�ects by invoking hooks. Edwin Scheme data structures might also be

extended so that they react to side-e�ects. An Edwin Scheme process, such as

the displaying of a command's documentation string, might also support hooks

that customize that process. Finally, there are a number of features of Emacs

Lisp that Edwin does not currently support. Eliminating these incompatibilities

might involve implementing mode abbrev, horizontal scrolling, selective display,

and perhaps others.

Despite its limitations, this project has succeeded in emulating a large fraction

of Emacs Lisp's primitive functions and variables. Of the 587 primitive functions,

430 have been implemented. Of the 147 primitive variables, 88 have been imple-

mented. The actual goal of running the GNUS news reader has been accomplished

to the extent that articles can be fetched from the news server, displayed in an

Edwin window, and saved in �les. The database recording the articles that have

been read is correctly maintained and can be edited with the usual GNUS com-

mands. All of this can be done by an average Edwin user who knows little more

than how to load the Emacs Lisp emulator into the Edwin Scheme system. The

same Emacs Lisp code used to load and con�gure the GNUS program in Emacs

can be used to load and con�gure it in Edwin. In terms of its basic functionality

(i.e. except for the more sophisticated commands such as those calling the Emacs
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Lisp sendmail program), the GNUS news reader, its windows, bu�ers, and simple

commands, can be used as though GNUS were a native Edwin Scheme program.

The performance of the emulator has received only scant attention. However, the

GNUS program is currently only about 5 times slower than it is when run in its

native GNU Emacs environment. Chris Hanson, the author of Edwin, believes

that further performance testing and enhancement could allow the Emacs Lisp

emulator to rival the speed of the original GNU Emacs implementation.

The purpose of this document was to describe the techniques used to emulated

the Emacs Lisp world, and to integrate it with the Edwin Scheme world. The

purpose was also to enumerate the limitations of the current emulator, and by so

doing indicate opportunities for future improvement. Hopefully, it has served to

set the expectations of users of the Emacs Lisp emulator. When they try loading

and executing Emacs Lisp programs, they should have the information they need

to recognize errors or other unusual behavior resulting from the limitations of

the current system. Such experiments can then focus e�orts to eliminate these

limitations and move even closer to the ultimate goal.
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A The Primitives

This appendix contains an index of the Emacs Lisp primitive functions and vari-

ables. Each entry in the list starts with a letter indicating:

I The primitive has been implemented.

R The primitive has been implemented, but its behavior is restricted,

or even unsupported. Section A.0.7 shows the documentation strings

of these primitives, which include a note describing how (and if) the

primitive is supported by Edwin.

U The primitive is unimplemented.

The rest of the entry gives the name and type of the primitive, and the name

of the �le in which it was implemented in the GNU Emacs distribution.

A.0.6 Index

I % (function in data.c)

I * (function in data.c)

I + (function in data.c)

I - (function in data.c)

I / (function in data.c)

I /= (function in data.c)

I 1+ (function in data.c)

I 1- (function in data.c)

I < (function in data.c)

I <= (function in data.c)

I = (function in data.c)

I > (function in data.c)

I >= (function in data.c)

U Control-X-prefix (function in keymap.c)

I abbrev-all-caps (variable in abbrev.c)

I abbrev-expansion (function in abbrev.c)

R abbrev-mode (variable in bu�er.c)

I abbrev-start-location (variable in abbrev.c)

I abbrev-start-location-buffer (variable in abbrev.c)

I abbrev-symbol (function in abbrev.c)

I abbrev-table-name-list (variable in abbrev.c)

I abbrevs-changed (variable in abbrev.c)

U abort-recursive-edit (function in keyboard.c)

I accept-process-output (function in process.c)
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I accessible-keymaps (function in keymap.c)

I add-name-to-file (function in �leio.c)

I all-completions (function in minibuf.c)

I and (function in eval.c)

I append (function in fns.c)

I apply (function in eval.c)

U apropos (function in keymap.c)

I aref (function in data.c)

I arrayp (function in data.c)

I aset (function in data.c)

I ash (function in data.c)

I assoc (function in fns.c)

I assq (function in fns.c)

I atom (function in data.c)

R auto-fill-hook (variable in bu�er.c)

U auto-save-interval (variable in keyboard.c)

I autoload (function in eval.c)

U backtrace (function in eval.c)

U backtrace-debug (function in eval.c)

I backward-char (function in cmds.c)

I backward-prefix-chars (function in syntax.c)

I barf-if-buffer-read-only (function in bu�er.c)

U baud-rate (function in dispnew.c)

I beginning-of-line (function in cmds.c)

R blink-paren-hook (variable in cmds.c)

I bobp (function in editfns.c)

I bolp (function in editfns.c)

I boundp (function in data.c)

R buffer-auto-save-file-name (variable in bu�er.c)

R buffer-backed-up (variable in bu�er.c)

I buffer-enable-undo (function in bu�er.c)

I buffer-file-name (variable in bu�er.c)

R buffer-file-name (function in bu�er.c)

I buffer-flush-undo (function in bu�er.c)

I buffer-list (function in bu�er.c)

I buffer-local-variables (function in bu�er.c)

I buffer-modified-p (function in bu�er.c)

I buffer-name (function in bu�er.c)

R buffer-read-only (variable in bu�er.c)

I buffer-saved-size (variable in bu�er.c)

I buffer-size (function in editfns.c)
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I buffer-string (function in editfns.c)

I buffer-substring (function in editfns.c)

R buffer-undo-list (variable in bu�er.c)

I bufferp (function in data.c)

I bury-buffer (function in bu�er.c)

I byte-code (function in bytecode.c)

I call-interactively (function in callint.c)

U call-last-kbd-macro (function in macros.c)

U call-process (function in callproc.c)

U call-process-region (function in callproc.c)

U capitalize (function in case�ddle.c)

U capitalize-region (function in case�ddle.c)

U capitalize-word (function in case�ddle.c)

I car (function in data.c)

I car-safe (function in data.c)

R case-fold-search (variable in bu�er.c)

I catch (function in eval.c)

I cdr (function in data.c)

I cdr-safe (function in data.c)

I char-after (function in editfns.c)

I char-equal (function in editfns.c)

I char-or-string-p (function in data.c)

I char-syntax (function in syntax.c)

I char-to-string (function in editfns.c)

I clear-abbrev-table (function in abbrev.c)

I clear-visited-file-modtime (function in �leio.c)

U command-execute (function in keyboard.c)

U command-history (variable in callint.c)

U command-line-args (variable in emacs.c)

I commandp (function in eval.c)

I completing-read (function in minibuf.c)

R completion-auto-help (variable in minibuf.c)

I completion-ignore-case (variable in minibuf.c)

I completion-ignored-extensions (variable in dired.c)

I concat (function in fns.c)

I cond (function in eval.c)

I condition-case (function in eval.c)

I cons (function in alloc.c)

I consp (function in data.c)

I continue-process (function in process.c)

U coordinates-in-window-p (function in x11fns.c)
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U coordinates-in-window-p (function in xfns.c)

I copy-alist (function in fns.c)

I copy-file (function in �leio.c)

I copy-keymap (function in keymap.c)

I copy-marker (function in marker.c)

I copy-sequence (function in fns.c)

I copy-syntax-table (function in syntax.c)

R ctl-arrow (variable in bu�er.c)

U ctl-x-map (variable in keymap.c)

I current-buffer (function in bu�er.c)

I current-column (function in indent.c)

I current-global-map (function in keymap.c)

I current-indentation (function in indent.c)

I current-local-map (function in keymap.c)

I current-prefix-arg (variable in callint.c)

I current-time-string (function in editfns.c)

I current-window-configuration (function in window.c)

U cursor-in-echo-area (variable in dispnew.c)

U debug-end-pos (variable in xdisp.c)

U debug-on-error (variable in eval.c)

U debug-on-next-call (variable in eval.c)

U debug-on-quit (variable in eval.c)

U debugger (variable in eval.c)

U default-abbrev-mode (variable in bu�er.c)

R default-case-fold-search (variable in bu�er.c)

R default-ctl-arrow (variable in bu�er.c)

R default-directory (variable in bu�er.c)

R default-fill-column (variable in bu�er.c)

R default-left-margin (variable in bu�er.c)

R default-major-mode (variable in bu�er.c)

I default-mode-line-format (variable in bu�er.c)

R default-tab-width (variable in bu�er.c)

R default-truncate-lines (variable in bu�er.c)

I default-value (function in data.c)

I defconst (function in eval.c)

I define-abbrev (function in abbrev.c)

I define-abbrev-table (function in abbrev.c)

I define-global-abbrev (function in abbrev.c)

I define-key (function in keymap.c)

I define-mode-abbrev (function in abbrev.c)

I define-prefix-command (function in keymap.c)
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U defining-kbd-macro (variable in macros.c)

I defmacro (function in eval.c)

I defun (function in eval.c)

I defvar (function in eval.c)

I delete-backward-char (function in cmds.c)

I delete-char (function in cmds.c)

R delete-exited-processes (variable in process.c)

I delete-file (function in �leio.c)

I delete-other-windows (function in window.c)

I delete-process (function in process.c)

I delete-region (function in editfns.c)

I delete-window (function in window.c)

I delete-windows-on (function in window.c)

I delq (function in fns.c)

I describe-bindings (function in keymap.c)

I describe-syntax (function in syntax.c)

I ding (function in dispnew.c)

I directory-file-name (function in �leio.c)

U directory-files (function in dired.c)

U disabled-command-hook (variable in keyboard.c)

U discard-input (function in keyboard.c)

I display-buffer (function in window.c)

I display-completion-list (function in minibuf.c)

R do-auto-save (function in �leio.c)

U documentation (function in doc.c)

U documentation-property (function in doc.c)

U downcase (function in case�ddle.c)

U downcase-region (function in case�ddle.c)

U downcase-word (function in case�ddle.c)

U dump-emacs (function in emacs.c)

U dump-emacs-data (function in emacs.c)

U echo-keystrokes (variable in keyboard.c)

I elt (function in fns.c)

R enable-recursive-minibuffers (variable in minibuf.c)

U end-kbd-macro (function in macros.c)

I end-of-line (function in cmds.c)

I enlarge-window (function in window.c)

I eobp (function in editfns.c)

I eolp (function in editfns.c)

I eq (function in data.c)

I equal (function in fns.c)
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I erase-buffer (function in bu�er.c)

U esc-map (variable in keymap.c)

I eval (function in eval.c)

I eval-current-buffer (function in lread.c)

I eval-minibuffer (function in minibuf.c)

I eval-region (function in lread.c)

U exec-directory (variable in callproc.c)

R exec-path (variable in callproc.c)

U execute-extended-command (function in keyboard.c)

U execute-kbd-macro (function in macros.c)

U executing-kbd-macro (variable in macros.c)

U executing-macro (variable in macros.c)

I exit-minibuffer (function in minibuf.c)

U exit-recursive-edit (function in keyboard.c)

U expand-abbrev (function in abbrev.c)

I expand-file-name (function in �leio.c)

I fboundp (function in data.c)

I featurep (function in fns.c)

I features (variable in fns.c)

I file-attributes (function in dired.c)

I file-directory-p (function in �leio.c)

I file-exists-p (function in �leio.c)

U file-locked-p (function in �lelock.c)

I file-modes (function in �leio.c)

I file-name-absolute-p (function in �leio.c)

I file-name-all-completions (function in dired.c)

I file-name-as-directory (function in �leio.c)

U file-name-completion (function in dired.c)

I file-name-directory (function in �leio.c)

I file-name-nondirectory (function in �leio.c)

I file-newer-than-file-p (function in �leio.c)

I file-readable-p (function in �leio.c)

I file-symlink-p (function in �leio.c)

I file-writable-p (function in �leio.c)

R fill-column (variable in bu�er.c)

I fillarray (function in fns.c)

I fmakunbound (function in data.c)

I following-char (function in editfns.c)

I format (function in editfns.c)

I forward-char (function in cmds.c)

I forward-line (function in cmds.c)
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I forward-word (function in syntax.c)

I fset (function in data.c)

I funcall (function in eval.c)

I function (function in eval.c)

I fundamental-mode-abbrev-table (variable in abbrev.c)

R garbage-collect (function in alloc.c)

R gc-cons-threshold (variable in alloc.c)

I generate-new-buffer (function in bu�er.c)

I get (function in fns.c)

I get-buffer (function in bu�er.c)

I get-buffer-create (function in bu�er.c)

I get-buffer-process (function in process.c)

I get-buffer-window (function in window.c)

I get-file-buffer (function in bu�er.c)

I get-largest-window (function in window.c)

I get-lru-window (function in window.c)

I get-process (function in process.c)

U getenv (function in environ.c)

I getenv (function in editfns.c)

I global-abbrev-table (variable in abbrev.c)

I global-key-binding (function in keymap.c)

U global-map (variable in keymap.c)

U global-mode-string (variable in xdisp.c)

I global-set-key (function in keymap.c)

I global-unset-key (function in keymap.c)

I goto-char (function in editfns.c)

U help-char (variable in keyboard.c)

R help-form (variable in keyboard.c)

I identity (function in fns.c)

I if (function in eval.c)

R indent-tabs-mode (variable in indent.c)

I indent-to (function in indent.c)

U inhibit-quit (variable in eval.c)

I input-pending-p (function in keyboard.c)

I insert (function in editfns.c)

U insert-abbrev-table-description (function in abbrev.c)

I insert-before-markers (function in editfns.c)

I insert-buffer-substring (function in editfns.c)

I insert-char (function in editfns.c)

I insert-default-directory (variable in �leio.c)

I insert-file-contents (function in �leio.c)
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U insert-string (function in mocklisp.c)

I int-to-string (function in data.c)

I integer-or-marker-p (function in data.c)

I integerp (function in data.c)

I interactive (function in callint.c)

R interactive-p (function in eval.c)

I intern (function in lread.c)

I intern-soft (function in lread.c)

I interrupt-process (function in process.c)

U inverse-video (variable in dispnew.c)

I key-binding (function in keymap.c)

I key-description (function in keymap.c)

U keyboard-translate-table (variable in keyboard.c)

I keymapp (function in keymap.c)

I kill-all-local-variables (function in bu�er.c)

I kill-buffer (function in bu�er.c)

U kill-emacs (function in emacs.c)

U kill-emacs-hook (variable in emacs.c)

I kill-local-variable (function in data.c)

I kill-process (function in process.c)

I last-abbrev (variable in abbrev.c)

I last-abbrev-location (variable in abbrev.c)

I last-abbrev-text (variable in abbrev.c)

R last-command (variable in keyboard.c)

U last-command-char (variable in keyboard.c)

U last-input-char (variable in keyboard.c)

U last-kbd-macro (variable in macros.c)

R left-margin (variable in bu�er.c)

I length (function in fns.c)

I let (function in eval.c)

I let* (function in eval.c)

I list (function in alloc.c)

I list-buffers (function in bu�er.c)

I list-processes (function in process.c)

I listp (function in data.c)

I load (function in lread.c)

U load-average (function in fns.c)

I load-in-progress (variable in lread.c)

I load-path (variable in lread.c)

I local-abbrev-table (variable in abbrev.c)

I local-key-binding (function in keymap.c)
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I local-set-key (function in keymap.c)

I local-unset-key (function in keymap.c)

U lock-buffer (function in �lelock.c)

I logand (function in data.c)

I logior (function in data.c)

I lognot (function in data.c)

I logxor (function in data.c)

I looking-at (function in search.c)

I lookup-key (function in keymap.c)

I lsh (function in data.c)

I macroexpand (function in eval.c)

R major-mode (variable in bu�er.c)

I make-abbrev-table (function in abbrev.c)

R make-keymap (function in keymap.c)

I make-list (function in alloc.c)

I make-local-variable (function in data.c)

I make-marker (function in alloc.c)

R make-sparse-keymap (function in keymap.c)

I make-string (function in alloc.c)

I make-symbol (function in alloc.c)

I make-symbolic-link (function in �leio.c)

I make-temp-name (function in �leio.c)

I make-variable-buffer-local (function in data.c)

I make-vector (function in alloc.c)

I makunbound (function in data.c)

I mapatoms (function in lread.c)

I mapcar (function in fns.c)

I mapconcat (function in fns.c)

I mark-marker (function in editfns.c)

I marker-buffer (function in marker.c)

I marker-position (function in marker.c)

I markerp (function in data.c)

I match-beginning (function in search.c)

I match-data (function in search.c)

I match-end (function in search.c)

I max (function in data.c)

U max-lisp-eval-depth (variable in eval.c)

U max-specpdl-size (variable in eval.c)

I memq (function in fns.c)

I message (function in editfns.c)

U meta-flag (variable in keyboard.c)
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U meta-prefix-char (variable in keyboard.c)

I min (function in data.c)

I minibuffer-complete (function in minibuf.c)

I minibuffer-complete-and-exit (function in minibuf.c)

I minibuffer-complete-word (function in minibuf.c)

I minibuffer-completion-confirm (variable in minibuf.c)

I minibuffer-completion-help (function in minibuf.c)

I minibuffer-completion-predicate (variable in minibuf.c)

I minibuffer-completion-table (variable in minibuf.c)

I minibuffer-depth (function in minibuf.c)

R minibuffer-help-form (variable in minibuf.c)

I minibuffer-local-completion-map (variable in keymap.c)

I minibuffer-local-map (variable in keymap.c)

I minibuffer-local-must-match-map (variable in keymap.c)

I minibuffer-local-ns-map (variable in keymap.c)

U minibuffer-prompt-width (variable in window.c)

I minibuffer-scroll-window (variable in window.c)

I minibuffer-window (function in window.c)

U ml-arg (function in mocklisp.c)

U ml-if (function in mocklisp.c)

U ml-interactive (function in mocklisp.c)

U ml-nargs (function in mocklisp.c)

U ml-prefix-argument-loop (function in mocklisp.c)

U ml-provide-prefix-argument (function in mocklisp.c)

U mocklisp-arguments (variable in eval.c)

R mode-line-format (variable in bu�er.c)

U mode-line-inverse-video (variable in xdisp.c)

R mode-name (variable in bu�er.c)

I modify-syntax-entry (function in syntax.c)

I move-to-column (function in indent.c)

I move-to-window-line (function in window.c)

I narrow-to-region (function in editfns.c)

I natnump (function in data.c)

I nconc (function in fns.c)

R newline (function in cmds.c)

R next-screen-context-lines (variable in window.c)

I next-window (function in window.c)

I nlistp (function in data.c)

U no-redraw-on-reenter (variable in dispnew.c)

I noninteractive (variable in emacs.c)

I nreverse (function in fns.c)
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I nth (function in fns.c)

I nthcdr (function in fns.c)

I null (function in data.c)

I obarray (variable in lread.c)

U open-dribble-file (function in keyboard.c)

U open-network-stream (function in process.c)

U open-termscript (function in dispnew.c)

I or (function in eval.c)

I other-buffer (function in bu�er.c)

I other-window (function in window.c)

U overlay-arrow-position (variable in xdisp.c)

U overlay-arrow-string (variable in xdisp.c)

R overwrite-mode (variable in bu�er.c)

I parse-partial-sexp (function in syntax.c)

I parse-sexp-ignore-comments (variable in syntax.c)

I point (function in editfns.c)

I point-marker (function in editfns.c)

I point-max (function in editfns.c)

I point-max-marker (function in editfns.c)

I point-min (function in editfns.c)

I point-min-marker (function in editfns.c)

U polling-period (variable in keyboard.c)

I pop-to-buffer (function in bu�er.c)

R pop-up-windows (variable in window.c)

I pos-visible-in-window-p (function in window.c)

I preceding-char (function in editfns.c)

I prefix-arg (variable in callint.c)

I prefix-numeric-value (function in callint.c)

I previous-window (function in window.c)

U primitive-undo (function in undo.c)

I prin1 (function in print.c)

I prin1-to-string (function in print.c)

I princ (function in print.c)

I print (function in print.c)

I print-escape-newlines (variable in print.c)

I print-length (variable in print.c)

I process-buffer (function in process.c)

I process-command (function in process.c)

R process-connection-type (variable in process.c)

U process-environment (variable in callproc.c)

I process-exit-status (function in process.c)
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I process-filter (function in process.c)

I process-id (function in process.c)

I process-kill-without-query (function in process.c)

I process-list (function in process.c)

I process-mark (function in process.c)

I process-name (function in process.c)

I process-send-eof (function in process.c)

I process-send-region (function in process.c)

I process-send-string (function in process.c)

I process-sentinel (function in process.c)

I process-status (function in process.c)

I processp (function in process.c)

I prog1 (function in eval.c)

I prog2 (function in eval.c)

I progn (function in eval.c)

I provide (function in fns.c)

R pure-bytes-used (variable in alloc.c)

R purecopy (function in alloc.c)

R purify-flag (variable in alloc.c)

I put (function in fns.c)

U quit-flag (variable in eval.c)

I quit-process (function in process.c)

I quote (function in eval.c)

R random (function in fns.c)

I rassq (function in fns.c)

I re-search-backward (function in search.c)

I re-search-forward (function in search.c)

I read (function in lread.c)

I read-buffer (function in minibuf.c)

I read-char (function in lread.c)

I read-command (function in minibuf.c)

I read-file-name (function in �leio.c)

I read-from-minibuffer (function in minibuf.c)

I read-from-string (function in lread.c)

U read-key-sequence (function in keyboard.c)

I read-minibuffer (function in minibuf.c)

I read-no-blanks-input (function in minibuf.c)

I read-string (function in minibuf.c)

I read-variable (function in minibuf.c)

I recent-auto-save-p (function in �leio.c)

U recent-keys (function in keyboard.c)
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I recenter (function in window.c)

U recursion-depth (function in keyboard.c)

U recursive-edit (function in keyboard.c)

U redraw-display (function in xdisp.c)

I regexp-quote (function in search.c)

I region-beginning (function in editfns.c)

I region-end (function in editfns.c)

I rename-buffer (function in bu�er.c)

I rename-file (function in �leio.c)

I replace-buffer-in-windows (function in window.c)

I replace-match (function in search.c)

I require (function in fns.c)

U reset-terminal-on-clear (variable in xdisp.c)

I reverse (function in fns.c)

I save-excursion (function in editfns.c)

I save-restriction (function in editfns.c)

I save-window-excursion (function in window.c)

I scan-lists (function in syntax.c)

I scan-sexps (function in syntax.c)

U screen-height (function in dispnew.c)

U screen-width (function in dispnew.c)

I scroll-down (function in window.c)

U scroll-left (function in window.c)

I scroll-other-window (function in window.c)

U scroll-right (function in window.c)

U scroll-step (variable in xdisp.c)

I scroll-up (function in window.c)

I search-backward (function in search.c)

I search-forward (function in search.c)

I select-window (function in window.c)

I selected-window (function in window.c)

R selective-display (variable in bu�er.c)

R selective-display-ellipses (variable in bu�er.c)

I self-insert-and-exit (function in minibuf.c)

I self-insert-command (function in cmds.c)

U send-string-to-terminal (function in dispnew.c)

I sequencep (function in data.c)

I set (function in data.c)

I set-buffer (function in bu�er.c)

I set-buffer-auto-saved (function in �leio.c)

I set-buffer-modified-p (function in bu�er.c)
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I set-default (function in data.c)

I set-file-modes (function in �leio.c)

U set-input-mode (function in keyboard.c)

I set-marker (function in marker.c)

I set-process-buffer (function in process.c)

I set-process-filter (function in process.c)

I set-process-sentinel (function in process.c)

U set-screen-height (function in dispnew.c)

U set-screen-width (function in dispnew.c)

I set-syntax-table (function in syntax.c)

I set-window-buffer (function in window.c)

I set-window-configuration (function in window.c)

U set-window-hscroll (function in window.c)

I set-window-point (function in window.c)

I set-window-start (function in window.c)

I setcar (function in data.c)

I setcdr (function in data.c)

U setenv (function in environ.c)

I setplist (function in data.c)

I setq (function in eval.c)

I setq-default (function in data.c)

U shell-file-name (variable in callproc.c)

I shrink-window (function in window.c)

I signal (function in eval.c)

I single-key-description (function in keymap.c)

I sit-for (function in dispnew.c)

U sit-for-millisecs (function in sunfns.c)

I skip-chars-backward (function in search.c)

I skip-chars-forward (function in search.c)

I sleep-for (function in dispnew.c)

U sleep-for-millisecs (function in sunfns.c)

I sort (function in fns.c)

R split-height-threshold (variable in window.c)

I split-window (function in window.c)

U stack-trace-on-error (variable in eval.c)

I standard-input (variable in lread.c)

I standard-output (variable in print.c)

I standard-syntax-table (function in syntax.c)

U start-kbd-macro (function in macros.c)

I start-process (function in process.c)

I stop-process (function in process.c)
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I store-match-data (function in search.c)

I string-equal (function in fns.c)

I string-lessp (function in fns.c)

I string-match (function in search.c)

I string-to-char (function in editfns.c)

I string-to-int (function in data.c)

I stringp (function in data.c)

I subrp (function in data.c)

I subst-char-in-region (function in editfns.c)

I substitute-command-keys (function in doc.c)

I substitute-in-file-name (function in �leio.c)

I substring (function in fns.c)

U sun-change-cursor-icon (function in sunfns.c)

U sun-get-selection (function in sunfns.c)

U sun-menu-internal (function in sunfns.c)

U sun-set-selection (function in sunfns.c)

U sun-window-init (function in sunfns.c)

U suspend-emacs (function in keyboard.c)

I switch-to-buffer (function in bu�er.c)

I symbol-function (function in data.c)

I symbol-name (function in data.c)

I symbol-plist (function in data.c)

I symbol-value (function in data.c)

I symbolp (function in data.c)

I syntax-table (function in syntax.c)

I syntax-table-p (function in syntax.c)

I system-name (function in editfns.c)

I system-type (variable in emacs.c)

R tab-width (variable in bu�er.c)

I temp-buffer-show-hook (variable in window.c)

I terpri (function in print.c)

I text-char-description (function in keymap.c)

R this-command (variable in keyboard.c)

R this-command-keys (function in keyboard.c)

I throw (function in eval.c)

U top-level (variable in keyboard.c)

U top-level (function in keyboard.c)

R truncate-lines (variable in bu�er.c)

U truncate-partial-width-windows (variable in xdisp.c)

I try-completion (function in minibuf.c)

U undo-boundary (function in undo.c)
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R undo-high-threshold (variable in alloc.c)

R undo-threshold (variable in alloc.c)

U unexpand-abbrev (function in abbrev.c)

U unlock-buffer (function in �lelock.c)

U unread-command-char (variable in keyboard.c)

I unwind-protect (function in eval.c)

U upcase (function in case�ddle.c)

U upcase-region (function in case�ddle.c)

U upcase-word (function in case�ddle.c)

U update-display (function in sunfns.c)

I use-global-map (function in keymap.c)

I use-local-map (function in keymap.c)

R user-full-name (function in editfns.c)

I user-login-name (function in editfns.c)

I user-real-login-name (function in editfns.c)

I user-real-uid (function in editfns.c)

I user-uid (function in editfns.c)

I user-variable-p (function in eval.c)

I values (variable in lread.c)

I vconcat (function in fns.c)

I vector (function in alloc.c)

I vectorp (function in data.c)

I verify-visited-file-modtime (function in �leio.c)

U vertical-motion (function in indent.c)

U visible-bell (variable in dispnew.c)

I vms-stmlf-recfm (variable in �leio.c)

I waiting-for-user-input-p (function in process.c)

I where-is (function in keymap.c)

I where-is-internal (function in keymap.c)

I while (function in eval.c)

I widen (function in editfns.c)

I window-buffer (function in window.c)

I window-edges (function in window.c)

I window-height (function in window.c)

I window-hscroll (function in window.c)

R window-min-height (variable in window.c)

R window-min-width (variable in window.c)

I window-point (function in window.c)

I window-start (function in window.c)

U window-system (variable in dispnew.c)

U window-system-version (variable in dispnew.c)
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I window-width (function in window.c)

I windowp (function in window.c)

I with-output-to-temp-buffer (function in print.c)

I word-search-backward (function in search.c)

I word-search-forward (function in search.c)

I write-char (function in print.c)

I write-region (function in �leio.c)

U x-change-display (function in xfns.c)

U x-color-p (function in xfns.c)

U x-color-p (function in x11fns.c)

U x-create-x-window (function in xfns.c)

U x-debug (function in x11fns.c)

U x-debug (function in xfns.c)

U x-flip-color (function in x11fns.c)

U x-flip-color (function in xfns.c)

U x-get-background-color (function in xfns.c)

U x-get-background-color (function in x11fns.c)

U x-get-border-color (function in xfns.c)

U x-get-border-color (function in x11fns.c)

U x-get-cursor-color (function in xfns.c)

U x-get-cursor-color (function in x11fns.c)

U x-get-cut-buffer (function in xfns.c)

U x-get-cut-buffer (function in x11fns.c)

U x-get-default (function in xfns.c)

U x-get-default (function in x11fns.c)

U x-get-foreground-color (function in xfns.c)

U x-get-foreground-color (function in x11fns.c)

U x-get-mouse-color (function in x11fns.c)

U x-get-mouse-color (function in xfns.c)

U x-get-mouse-event (function in xfns.c)

U x-get-mouse-event (function in x11fns.c)

U x-mouse-abs-pos (variable in xfns.c)

U x-mouse-abs-pos (variable in x11fns.c)

U x-mouse-events (function in x11fns.c)

U x-mouse-events (function in xfns.c)

U x-mouse-item (variable in xfns.c)

U x-mouse-item (variable in x11fns.c)

U x-mouse-pos (variable in xfns.c)

U x-mouse-pos (variable in x11fns.c)

U x-pop-up-window (function in xfns.c)

U x-popup-menu (function in xmenu.c)
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U x-proc-mouse-event (function in x11fns.c)

U x-proc-mouse-event (function in xfns.c)

U x-rebind-key (function in xfns.c)

U x-rebind-key (function in x11fns.c)

U x-rebind-keys (function in xfns.c)

U x-rebind-keys (function in x11fns.c)

U x-rubber-band (function in xfns.c)

U x-set-background-color (function in xfns.c)

U x-set-background-color (function in x11fns.c)

U x-set-bell (function in xfns.c)

U x-set-bell (function in x11fns.c)

U x-set-border-color (function in x11fns.c)

U x-set-border-color (function in xfns.c)

U x-set-border-width (function in x11fns.c)

U x-set-border-width (function in xfns.c)

U x-set-cursor-color (function in xfns.c)

U x-set-cursor-color (function in x11fns.c)

U x-set-font (function in xfns.c)

U x-set-font (function in x11fns.c)

U x-set-foreground-color (function in x11fns.c)

U x-set-foreground-color (function in xfns.c)

U x-set-icon (function in xfns.c)

U x-set-internal-border-width (function in xfns.c)

U x-set-internal-border-width (function in x11fns.c)

U x-set-keyboard-enable (function in xfns.c)

U x-set-mouse-color (function in x11fns.c)

U x-set-mouse-color (function in xfns.c)

U x-set-mouse-inform-flag (function in xfns.c)

U x-set-window-edges (function in xfns.c)

U x-store-cut-buffer (function in x11fns.c)

U x-store-cut-buffer (function in xfns.c)

I y-or-n-p (function in fns.c)

I yes-or-no-p (function in fns.c)

I zerop (function in data.c)
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A.0.7 Documentation

This section lists the documentation strings of all Emacs Lisp primitiveswhich were

implemented, but whose behavior is not completely emulated. The documentation

strings include notes explaining any restrictions or other unusual behaviors.

this-command

The command now being executed.

The command can set this variable; whatever is put here

will be in last-command during the following command.

NOTE: In Edwin, this-command is sometimes an Edwin command object.

last-command

The last command executed. Normally a symbol with a function definition,

but can be whatever was found in the keymap, or whatever the variable

`this-command' was set to by that command.

NOTE: In Edwin, last-command is often an Edwin command object.

this-command-keys

Return string of the keystrokes that invoked this command.

NOTE: Commands invoked by function keys will not get the usual

terminal-specific escape sequences.

help-form

Form to execute when character help-char is read.

If the form returns a string, that string is displayed.

If help-form is nil, the help char is not recognized.

NOTE: This variable is not supported by Edwin.
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exec-path

*List of directories to search programs to run in subprocesses.

Each element is a string (directory name) or nil (try default directory).

NOTE: In Edwin, each element is a pathname or false. The get/set-value

methods of exec-path will translate from/to the Edwin exec-path. The

exec-path should not be side-effected without re-setting the symbol value

afterwards.

purecopy

Make a copy of OBJECT in pure storage.

Recursively copies contents of vectors and cons cells.

Does not copy symbols.

NOTE: In Edwin, this just does a deep copy of lists, strings, and vectors.

garbage-collect

Reclaim storage for Lisp objects no longer needed.

Returns info on amount of space in use:

((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)

(USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS)

Garbage collection happens automatically if you cons more than

gc-cons-threshold bytes of Lisp data since previous garbage collection.

NOTE: In Edwin, returns the number of free words in the heap. This

number is incompatible with the expected association list, so Emacs

programs examining the return value will signal an error.

gc-cons-threshold

*Number of bytes of consing between garbage collections.

NOTE: This variable is meaningless in Edwin.
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pure-bytes-used

Number of bytes of sharable Lisp data allocated so far.

NOTE: This variable is meaningless in Edwin.

purify-flag

Non-nil means loading Lisp code in order to dump an executable.

NOTE: This variable is meaningless in Edwin.

undo-threshold

Keep no more undo information once it exceeds this size.

This threshold is applied when garbage collection happens.

The size is counted as the number of bytes occupied,

which includes both saved text and other data.

NOTE: This variable cannot be set in Edwin.

undo-high-threshold

Don't keep more than this much size of undo information.

A command which pushes past this size is itself forgotten.

This threshold is applied when garbage collection happens.

The size is counted as the number of bytes occupied,

which includes both saved text and other data.

NOTE: This variable cannot be set in Edwin.

default-ctl-arrow

Default ctl-arrow for buffers that do not override it.

This is the same as (default-value 'ctl-arrow).

NOTE: This variable can only be t in Edwin.
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default-truncate-lines

Default truncate-lines for buffers that do not override it.

This is the same as (default-value 'truncate-lines).

NOTE: This variable can only be a boolean in Edwin.

default-fill-column

Default fill-column for buffers that do not override it.

This is the same as (default-value 'fill-column).

NOTE: This variable can only be an exact nonnegative integer in Edwin.

default-left-margin

Default left-margin for buffers that do not override it.

This is the same as (default-value 'left-margin).

NOTE: This variable can only be an exact nonnegative integer in Edwin.

default-tab-width

Default tab-width for buffers that do not override it.

This is the same as (default-value 'tab-width).

NOTE: This variable can only be an exact nonnegative integer in Edwin.

default-case-fold-search

Default case-fold-search for buffers that do not override it.

This is the same as (default-value 'case-fold-search).

NOTE: This variable can only be a boolean in Edwin.
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mode-line-format

Template for displaying mode line for current buffer.

Each buffer has its own value of this variable.

Value may be a string, a symbol or a list or cons cell.

For a symbol, its value is used (but it is ignored if t or nil).

A string appearing directly as the value of a symbol is processed verbatim

in that the %-constructs below are not recognized.

For a list whose car is a symbol, the symbol's value is taken,

and if that is non-nil, the cadr of the list is processed recursively.

Otherwise, the caddr of the list (if there is one) is processed.

For a list whose car is a string or list, each element is processed

recursively and the results are effectively concatenated.

For a list whose car is an integer, the cdr of the list is processed

and padded (if the number is positive) or truncated (if negative)

to the width specified by that number.

A string is printed verbatim in the mode line except for %-constructs:

(%-constructs are allowed when the string is the entire mode-line-format

or when it is found in a cons-cell or a list)

%b -- print buffer name. %f -- print visited file name.

%* -- print *, % or hyphen. %m -- print value of mode-name (obsolete).

%s -- print process status. %M -- print value of global-mode-string. (obs)

%p -- print percent of buffer above top of window, or top, bot or all.

%n -- print Narrow if appropriate.

%[ -- print one [ for each recursive editing level. %] similar.

%% -- print %. %- -- print infinitely many dashes.

Decimal digits after the % specify field width to which to pad.

NOTE: The set-value method for mode-line-format sets the Edwin

variable mode-line-format to a _copy_ of the new value. Thus, you

can't modify the buffer's mode-line by side-effecting the new value.

Also, the Emacs symbols in the new value are replaced with Edwin

variables. Setting the Emacs symbols to new values will cause the

Edwin variables to be updated, but the new values cannot contain Emacs

symbols. Edwin variables won't be substituted for the symbols and

Edwin will signal an error.

default-major-mode
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*Major mode for new buffers. Defaults to fundamental-mode.

nil here means use current buffer's major mode.

NOTE: This variable can only be 'fundamental-mode in Edwin.

major-mode

Symbol for current buffer's major mode.

NOTE: This variable can only be a symbol in Edwin.

abbrev-mode

Non-nil turns on automatic expansion of abbrevs when inserted.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be nil in Edwin.

case-fold-search

*Non-nil if searches should ignore case.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be a boolean in Edwin.

mode-name

Pretty name of current buffer's major mode (a string).

NOTE: This variable can only be a string in Edwin.

fill-column

*Column beyond which automatic line-wrapping should happen.

Automatically becomes local when set in any fashion.
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NOTE: This variable can only be an exact nonnegative integer in Edwin.

left-margin

*Column for the default indent-line-function to indent to.

Linefeed indents to this column in Fundamental mode.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be an exact nonnegative integer in Edwin.

tab-width

*Distance between tab stops (for display of tab characters), in columns.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be an exact nonnegative integer in Edwin.

ctl-arrow

*Non-nil means display control chars with uparrow.

Nil means use backslash and octal digits.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be t in Edwin.

truncate-lines

*Non-nil means do not display continuation lines;

give each line of text one screen line.

Automatically becomes local when set in any fashion.

Note that this is overridden by the variable

truncate-partial-width-windows if that variable is non-nil

and this buffer is not full-screen width.

NOTE: This variable can only be a boolean in Edwin.
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default-directory

Name of default directory of current buffer. Should end with slash.

NOTE: This variable can only be a string in Edwin.

auto-fill-hook

Function called (if non-nil) after self-inserting a space at column

beyond fill-column

NOTE: This variable can only be nil in Edwin.

buffer-file-name

Name of file visited in current buffer, or nil if not visiting a file.

NOTE: This variable can only be a string or nil in Edwin.

buffer-auto-save-file-name

Name of file for auto-saving current buffer,

or nil if buffer should not be auto-saved.

NOTE: This variable can only be a string or nil in Edwin.

buffer-read-only

Non-nil if this buffer is read-only.

NOTE: This variable will only evaluate to a boolean in Edwin.

buffer-backed-up

Non-nil if this buffer's file has been backed up.
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Backing up is done before the first time the file is saved.

NOTE: This variable can only be a boolean in Edwin.

selective-display

t enables selective display:

after a ^M, all the rest of the line is invisible.

^M's in the file are written into files as newlines.

Integer n as value means display only lines

that start with less than n columns of space.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be nil in Edwin.

selective-display-ellipses

t means display ... on previous line when a line is invisible.

Automatically becomes local when set in any fashion.

NOTE: This variable can only by nil in Edwin.

overwrite-mode

Non-nil if self-insertion should replace existing text.

Automatically becomes local when set in any fashion.

NOTE: This variable can only be nil in Edwin.

buffer-undo-list

List of undo entries in current buffer.

NOTE: This variable is not supported by Edwin.

newline
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Insert a newline. With arg, insert that many newlines.

In Auto Fill mode, can break the preceding line if no numeric arg.

NOTE: Doesn't do anything special in Auto Fill mode in Edwin.

blink-paren-hook

Function called, if non-nil, whenever a char with closeparen syntax is self-

inserted.

NOTE: This variable is not supported in Edwin.

user-full-name

Return the full name of the user logged in, as a string.

NOTE: In Edwin, this is the current login name as given in utmp, NOT

the pw_gecos field from the /etc/passwd entry.

interactive-p

Return t if function in which this appears was called interactively.

This means that the function was called with call-interactively (which

includes being called as the binding of a key)

and input is currently coming from the keyboard (not in keyboard macro).

NOTE: This function always returns t in Edwin.

do-auto-save

Auto-save all buffers that need it.

This is all buffers that have auto-saving enabled

and are changed since last auto-saved.

Auto-saving writes the buffer into a file

so that your editing is not lost if the system crashes.

This file is not the file you visited; that changes only when you save.
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Non-nil argument means do not print any message if successful.

NOTE: The nomsg argument is not supported by Edwin.

random

Return a pseudo-random number.

On most systems all integers representable in Lisp are equally likely.

This is 24 bits' worth.

On some systems, absolute value of result never exceeds 2 to the 14.

If optional argument is supplied as t,

the random number seed is set based on the current time and pid.

NOTE: The random number seed is set based on the current real and

process times only.

indent-tabs-mode

*Indentation can insert tabs if this is non-nil.

Setting this variable automatically makes it local to the current buffer.

NOTE: This variable can only be a boolean in Edwin.

make-keymap

Construct and return a new keymap, a vector of length 128.

All entries in it are nil, meaning "command undefined".

NOTE: Edwin requires that this be a comtab.

make-sparse-keymap

Construct and return a new sparse-keymap list.

Its car is 'keymap and its cdr is an alist of (CHAR . DEFINITION).

Initially the alist is nil.
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NOTE: Edwin requires that this be a comtab.

esc-map

Default keymap for ESC (meta) commands.

The normal global definition of the character ESC indirects to this keymap.

NOTE: This variable is not supported by Edwin.

ctl-x-map

Default keymap for C-x commands.

The normal global definition of the character C-x indirects to this keymap.

NOTE: This variable can only be a comtab in Edwin.

completion-auto-help

*Non-nil means automatically provide help for invalid completion input.

NOTE: This variable can only be a boolean in Edwin.

enable-recursive-minibuffers

*Non-nil means to allow minibuffers to invoke commands which use

recursive minibuffers.

NOTE: This variable can only be a boolean in Edwin.

minibuffer-help-form

Value that help-form takes on inside the minibuffer.

NOTE: help-form is not supported by Edwin.
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delete-exited-processes

*Non-nil means delete processes immediately when they exit.

nil means don't delete them until `list-processes' is run.

NOTE: This variable can only be a boolean in Edwin.

process-connection-type

Control type of device used to communicate with subprocesses.

Values are nil to use a pipe, t for a pty (or pipe if ptys not supported).

Value takes effect when `start-process' is called.

NOTE: This variable can only be a boolean in Edwin.

pop-up-windows

*Non-nil means display-buffer should make new windows.

NOTE: This variable can only be a boolean in Edwin.

next-screen-context-lines

*Number of lines of continuity when scrolling by screenfuls.

NOTE: This variable can only be an exact nonnegative integer in Edwin.

split-height-threshold

*display-buffer would prefer to split the largest window if this large.

If there is only one window, it is split regardless of this value.

NOTE: This variable can only be an exact nonnegative integer in Edwin.

window-min-height
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*Delete any window less than this tall (including its mode line).

NOTE: This variable can only be an exact integer greater than 1 in Edwin.

window-min-width

*Delete any window less than this wide.

NOTE: This variable can only be an exact integer greater than 2 in Edwin.
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