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Abstract

This thesis addresses two questions related to language. First, how do children learn the language-
speci�c components of their native language? Second, how is language grounded in perception? These
two questions are intimately related. One piece of language-speci�c information which children must
learn is word meanings. Knowledge of the meanings of utterances containing unknown words presumably
aids children in the process of determining the meanings of those words. A complete account of such
a process must ultimately explain how children extract utterance meanings from their non-linguistic
context. In the �rst part of this thesis I present precisely formulated algorithms which attempt to
answer the �rst question. These algorithms utilize a cross-situational learning strategy whereby the
learner �nds a language model which is consistent across several utterances paired with their non-
linguistic context. This allows the learner to acquire partial knowledge from ambiguous situations and

combine such partial knowledge across situations to infer a unique language model despite the ambiguity
in the individual isolated situations. These algorithms have been implemented in a series of computer
programs which test this cross-situational learning strategy on linguistic theories of successively greater

sophistication. In accord with current hypotheses about child language acquisition, these systems use
only positive examples to drive their acquisition of a language model. Maimra, the �rst program
described, learns word-to-meaning and word-to-category mappings from a corpus pairing utterances
with sets of expressions representing the potential meanings of those utterances hypothesized by the
learner from the non-linguistic context. Maimra's syntactic theory is embodied in a �xed context-
free grammar. Davra, the second program described, extends Maimra by replacing the context-free
grammar with a parameterized variant of X theory. Given the same corpus as Maimra, Davra learns
the parameter settings for X theory in addition to a lexicon mapping words to their syntactic category
and meaning. Davra has been successfully applied, without change, to tiny corpora in both English
and Japanese, learning the requisite lexica and parameter settings despite di�erences in word order
between the two languages. Kenunia, the third program described, incorporates a more comprehensive
model of universal grammar supporting movement, adjunction, and empty categories, as well as more
extensive parameterization of its X theory component. This model of universal grammar is based on
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recent linguistic theory and includes such notions as the DP hypothesis, VP-internal subjects, and V-to-I
movement. Kenunia is able to learn the parameter settings of this model, as well as word-to-category
mappings, in the presence of movement and empty categories. The algorithms underlying Maimra,
Davra, and Kenunia are presented in detail along with annotated examples depicting their operation
on sample learning tasks.

In the second part of this thesis I present a novel approach to event perception, the processes of de-
termining when events described by simple spatial motion verbs such throw, pick up, put, and walk occur
in visual input. This approach is motivated by recent experimental studies of adult visual perception
and infant knowledge of object permanence. In formulating this approach I advance three claims about
event perception and the process of grounding language in visual perception. First, I claim that the no-
tions of support, contact, and attachment play a central role in de�ning the meanings of simple spatial
motion verbs in a way that delineates prototypical occurrences of events described by those verbs from
non-occurrences. Prior approaches to lexical semantic representation focussed primarily on movement
and lacked the ability to incorporate these crucial notions into the de�nitions of simple spatial motion
verbs. Second, I claim that support, contact, and attachment relations between objects are recovered
from images by a process of counterfactual simulation. For instance, one object supports another object
if the latter does not fall when the short-term future of the image is predicted, but does fall if the former
is removed. Such counterfactual simulations are performed by a modular imagination capacity. Third,
I claim that this imagination capacity, while super�cially similar in intent to traditional kinematic sim-
ulation, is actually based on a drastically di�erent foundation. This foundation takes the process of
enforcing naive physical constraints such as substantiality, continuity, and attachment relations between
objects to be primary. In doing so it sacri�ces physical accuracy and coverage. This is in contrast to the
traditional approach which achieves physical accuracy and coverage by numerical integration, relegating
the maintenance of constraints to a process of secondary importance built around the numerical inte-
gration core. A simpli�ed version of this theory of event perception has been implemented in a program
called Abigail which watches a computer-generated animated movie and produces a description of the
objects and events which occur in that movie. Abigail's event perception processes rely on counter-
factual simulation to recover changing support, contact, and attachment relations between objects in
the movie. Prior approaches to this task were based solely on determining the spatial relations between
objects in the image sequence, grounding verb meanings in static geometric predicates used to compute
those spatial relations without counterfactual analysis. The detailed algorithms underlying the novel
implementation are presented along with annotated examples depicting its analysis of sample movies.

Thesis Supervisor: Robert C. Berwick
Title: Associate Professor of Computer Science and Engineering
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Chapter 1

Overview

This thesis addresses two questions related to language. First: How do children learn the language-

speci�c components of their native language? Second: How is language grounded in perception? These
two questions are intimately related. One piece of language-speci�c information which children must
learn is word meanings. Knowledge of the meanings of utterances containing unknown words presumably
aids children in the process of determining the meanings of those words. A complete account of such
a process must ultimately explain how children extract utterance meanings from their non-linguistic
context. Thus the study of child language acquisition has motivated the study of event perception as a
means of grounding language in perception.

The long-term goal of this research is a comprehensive theory of language acquisition grounded in vi-
sual perception. This thesis however, presents more modest short-term accomplishments. Currently, the
language acquisition and perception components are the subjects of independent investigation. Part I
of this thesis discusses language acquisition while part II discusses event perception. These two parts,
however, �t into a common language processing architecture, which this thesis takes to be re
ective of
the actual human language faculty. Figure 1.1 depicts this architecture. In its entirety, the architecture
constitutes a relation between linguistic utterances, the non-linguistic observations to which those utter-
ances refer, and a language model which mediates that mapping. The architecture itself is presumed to
be innate and universal. Any language-speci�c information is encoded in the language model. Language
acquisition can be seen as the task of learning that language model from utterances paired with obser-
vations derived from the non-linguistic context of those utterances. The language model to be acquired
is the one which successfully maps those utterances heard by a child to the observed events.

The language processing architecture divides into three processing modules which relate seven rep-
resentations. The language model contains two parts, a grammar encoding language-speci�c syntactic

knowledge, and a lexicon. The lexicon in turn contains two parts, one mapping words to their syntactic
categories and the other mapping words to their meanings. A parser relates utterances to their syn-
tactic structure. While the parser itself encodes universal syntactic knowledge, presumed to be innate,
the mapping between utterances and their syntactic structure is also governed by the language-speci�c
grammar and the syntactic categories of words. A linker relates the meaning of an entire utterance,
represented as a semantic structure, to the meanings of the words comprising that utterance, taken from
the lexicon. This mapping is presumably mediated by the syntactic structure of the utterance. Finally, a
perception module relates semantic structures denoting the meanings of utterances to the non-linguistic
observations referred to by those utterances.

This architecture can be though of as an undirected declarative relation. By specifying the direction
of information 
ow, the architecture can by applied to di�erent tasks. Taking an utterance and language
model as input and producing predicted observations as output constitutes using the architecture as

11
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Figure 1.1: A generic language processing architecture. It contains three processing modules: a

parser, a linker, and a perceptual component, that mutually constrain �ve representations: the

input utterance, the syntax of that utterance, the meaning of that utterance, the visual perception
of events in the world, and a language model comprising a grammar and a lexicon. The lexicon

in turn maps words to their syntactic category and meaning. Given input comprising utterances

paired with observations of their use, this architecture can produce as output, a language model
which allows the utterances to explain those observations. The bulk of this thesis is an elaboration

on this process.

a language comprehension device. Taking an observation and language model as input and producing
as output utterances that describe that observation constitutes using the architecture as a language
generation device. Taking an utterance paired with an observation as input and producing as output
a language model which allows the utterance to have an interpretation consistent with the observation
constitutes using the architecture as a language acquisition device. The �rst two applications of this
architecture are conventional and well-known. The third application, language acquisition, is the novel
application considered by this thesis.

Part I of this thesis addresses the two leftmost modules of the architecture from �gure 1.1, namely

the parser and linker. It presents a theory, implemented in three di�erent computer programs, for
deriving a language model from utterances paired with semantic structures denoting their meaning.
Part II of this thesis address the third module from �gure 1.1, namely perception. It presents a theory,
again implemented as a computer program, for deriving semantic structures which describe the events
observed in visual input. As stated before, the long-term goal of this research is to tie these two
components together. Currently however, the two halves of this thesis are formulated using incompatible
representations of semantic structure. This is due primarily to the preliminary nature of this work. The
work on language acquisition predates the work on event perception and was formulated around a
semantic representation which later proved inadequate for grounding language in perception. While in
its details, the techniques presented in part I of this thesis depend on the old representation, preventing
the joint operation of the two programs, at a more general level the techniques transcend the particular
representations used. This, combined with the fact that the semantic representation used in part I of
this thesis is still widely accepted in the linguistic community, precludes obsolescence of the material
presented in part I.

As part of learning their native language, children must learn at least three types of information:
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word-to-category mappings, word-to-meaning mappings, and language-speci�c syntactic information.
Collectively, this information is taken to constitute a language model. Part I of this thesis discusses
techniques for learning a language model given utterances paired with semantic structures denoting
their meaning. The language model can be seen a set of propositions, each denoting some linguistic fact
particular to the language being learned. For example, the language model for English might contain
the propositions `table is a noun', `table means table', and `prepositions precede their complements'.1

Acquisition of the language model might proceed in stages. The process of learning new propositions
might be aided by propositions already acquired in previous stages. To avoid in�nite regress, however, the
process must ultimately start with an empty language model containing no language-speci�c information.
The task of learning a language model with no prior language-speci�c information has become known a
language bootstrapping. The models explored in part I of this thesis address language bootstrapping.

The language bootstrapping task is illustrated by the following small example. Let us assume
that the learner hears the utterance John walked to school. In addition, let us assume that the

learner can discern the meaning of that utterance from its non-linguistic context. Furthermore, let
us take WALK(John;TO(school)) to be the representation of that meaning. The learner would at-
tempt to form an analysis of this input which was consistent with her model of universal grammar. For
instance, the learner might postulate the following analysis.
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��
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P
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NP
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school

N
school

If the learner could determine that this analysis was correct, she could add a number of propositions
to her language model, including `John is a noun', `John means John', and `prepositions precede their
complements'. Unfortunately, the following analysis might also be consistent with the learner's model
of universal grammar.

1Throughout this thesis, words in italics denote linguistic tokens while words in boldface or UPPER CASE denote
semantic representations of word meanings. Furthermore, there is no prior correspondence between a linguistic token such
as table and a semantic token such as table, even though they share the same spelling. They are treated as uninterpreted
tokens. The task faced by the learner is to acquire the appropriate correspondences as word-to-meaning mappings.
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If the learner adopted this analysis, she would incorrectly augment her language model with the propo-
sitions `John is a verb', `John means WALK(x; y)', and `prepositions follow their complements'. During
later stages of language acquisition, the partial language model might aid the learner in �ltering out
incorrect analyses. Such assistance in not available during language bootstrapping however.

Many competing theories of language acquisition (cf. Pinker 1984 and Lightfoot 1991) address this
problem by suggesting that the learner employs a conservative trigger-based strategy whereby she aug-
ments her language model with only those propositions that are uniquely determined given her current
language model and the current input utterance taken in isolation. In the above situation, trigger-based
strategies would not make any inferences about the language being learned since such inferences could
not uniquely determine any language-speci�c facts. Trigger-based strategies have di�culty explaining
language bootstrapping due to the rarity of situations where an input utterance has a single analysis
given a sparse language model.

This thesis adopts an alternative cross-situational learning strategy to account for language boot-
strapping. Under this strategy, the learner attempts to �nd a language model which is consistent across
multiple utterances. Each utterance taken in isolation might admit multiple analyses while the collection
of several utterances might allow only a single consistent analysis. This allows the learner to acquire
partial knowledge from ambiguous situations and combine such partial knowledge across situations to
infer a unique language model despite the ambiguity in the individual isolated situations. For example,
the learner could rule out the second analysis given above upon hearing the utterance Mary walked to

school paired with WALK(Mary;TO(school)) since this utterance does not admit an analysis which
takes school to mean John. This cross-situational approach thus also alleviates the need to assume prior
knowledge, since all such knowledge can be acquired simultaneously by the same mechanism. A naive
implementation of cross-situational learning would require the learner to remember prior utterances to
make a collection of utterances available to cross-situational analysis. Such an approach would not be
cognitively plausible. Part I of this thesis explores a number of techniques for performing cross-situational
learning without keeping track of prior utterances.

Let me elaborate a bit on my use of the term cross-situational. While learning language, children are
exposed to a continual stream of situations where they hear utterances in their non-linguistic context.
Intuitively, the term cross-situational describes a strategy whereby the learner acquires language by
analyzing multiple situations. Clearly, a child cannot learn her entire native language from a single pair
of linguistic and non-linguistic observations. Thus in a trivial sense, all learning strategies are cross-
situational. This thesis however, uses the term to describe a very particular strategy, one whereby the
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learner �nds a single language model which can consistently account for all of the observed situations.
A language model must meet two criteria to account for an observed situation. First, it must allow
the utterances heard in that situation to be syntactically well-formed. Second, it must allow those
utterances to be semantically true and relevant to their non-linguistic context. Thus using this strategy,
the learner applies all possible syntactic and semantic constraints across all of the observed situations
to the language acquisition task. This strategy is described in greater detail in chapter 3 where it is
called strong cross-situational learning. This strategy dates back at least to Chomsky (1965). This thesis
renders more precision to this strategy and tests it on several concrete linguistic theories.

It is instructive to contrast this strategy with a number of alternatives. Gold (1967) describes a
strategy whereby the learner enumerates the possible language models fL1; L2; : : :g, �rst adopting the
language model L1 and subsequently switching to the next language model in the sequence when the
current language model cannot account for the current observation. Hamburger and Wexler (1975)
describe a variant of this strategy where learner does not try the alternative language models in any
particular enumerated order but rather switches to a new language model at random when the current

language model fails to account for the observation. The new language model is restricted to be related
to the previous language model by a small number of change operators. These strategies are weaker
than strong cross-situational learning since when the learner switches to a new language model that
is consistent with the current observation, she does not check that it is also consistent with all prior
observations.

The strategy adopted by Gold does not impart any structure on the language model. It is often
natural, however, to view the language model as comprising attribute-value pairs. Such pairs may repre-
sent word-to-category mappings, word-to-meaningmappings, or values of syntactic parameters. Another
common learning strategy is to form the set of alternate values for each attribute that are consistent with
each utterance as it is processed and intersect those sets. The value of an attribute is determined when a
singleton set remains. Pinker (1987a) adopts this strategy to describe the acquisition of word-to-meaning
mappings. More generally it can be used to learn any information represented as attribute-value pairs,
including word-to-category mappings and syntactic parameter settings. Chapter 3 refers to this strategy
as weak cross-situational learning and demonstrates that it is weaker than strong cross-situational learn-
ing. This reduction in power can be explained simply as follows. Consider a language model with two
attributes a1 and a2 each having two possible values v1 and v2. Nominally, this would allow four distinct
language models. It may be the case that setting a1 to v1 is mutually inconsistent with setting a2 to v2,
even though all three remaining possible language models are consistent. It is impossible to represent
such information using only sets of possible attribute values since in this case, there exists some language
model consistent with each attribute-value pair in isolation. Thus weak cross-situational learning may
fail to rule out some inconsistent language models which would be ruled out by strong cross-situational
learning.

Strong cross-situational learning is a powerful but computationally expensive technique. Some of
the implementations discussed in chapter 4 do use full strong cross-situational learning. For reasons of
computational e�ciency, however, some of the implementations, use weaker strategies. These weaker
strategies di�er from both weak cross-situational learning and the enumeration strategies described
above. They will be described in detail in chapter 4.

The actual language learning task faced by children is somewhat more complex than the task por-
trayed by the example described earlier. That example assumed that the learner could determine the
correct meaning of an utterance from context and simply needed to associate parts of that meaning with
the appropriate words in the utterance. It is likely however, that children face referential uncertainty
during language learning, situations where the meaning of an utterance is uncertain. They might be
able to postulate several possible meanings consistent with the non-linguistic context of an utterance
but might not be sure which of these possible meanings is the correct meaning of the utterance. Un-
like trigger-based strategies, cross-situational learning techniques can learn in the presence of referential
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uncertainty.

Part I of this thesis applies a cross-situational learning strategy to the task of learning a language
model comprising word-to-category mappings, word-to-meaning mappings, and language-speci�c com-
ponents of grammar, without access to prior language-speci�c knowledge, given utterance-meaning pairs
which exhibit referential uncertainty. This strategy has been implemented in a series of computer pro-
grams which test this strategy on linguistic theories of successively greater sophistication. In accord
with current hypotheses about child language acquisition, these systems use only positive examples to
drive their acquisition of a language model. The operation of Davra is typical of these programs.
Figure 1.2 illustrates a sample corpus presented as input to Davra. Note that this corpus exhibits
referential uncertainty in that each utterance is paired with several possible meanings for that utter-
ance. Given this corpus, Davra can derive the language model illustrated in �gure 1.3. Davra learns
that English is head-initial and SPEC-initial. Furthermore, Davra learns unique word-to-category and
word-to-meaning mappings for most of the words in the corpus.

Part I of this thesis discusses three language acquisition programs which incorporate cross-situational
learning techniques. Maimra, the �rst program developed, learns word-to-meaning and word-to-
category mappings from a corpus pairing utterances with sets of expressions representing the potential
meanings of those utterances hypothesized by the learner from the non-linguistic context. Maimra's
syntactic theory is embodied in a �xed context-free grammar. Davra, the second program developed,
extendsMaimra by replacing the context-free grammarwith a parameterized variant of X theory. Given
the same corpus as Maimra, Davra learns the parameter settings for X theory in addition to a lexicon
mapping words to their syntactic category and meaning. Davra has been successfully applied, without
change, to tiny corpora in both English and Japanese, learning the requisite lexica and parameter settings
despite di�erences in word order between the two languages. Kenunia, the third program developed,
incorporates a more comprehensive model of universal grammar supporting movement, adjunction, and
empty categories, as well as more extensive parameterization of its X theory component. This model of
universal grammar is based on recent linguistic theory and includes such notions as the DP hypothesis,
VP-internal subjects, and V-to-I movement. Kenunia is able to learn the parameter settings of this
model, as well as word-to-category mappings, in the presence of movement and empty categories. All of
these programs strive to model language bootstrapping, with little or no access to prior language-speci�c
knowledge, in the presence of referential uncertainty. Chapter 4 will present, in detail, the algorithms
underlying Maimra, Davra, and Kenunia along with annotated examples depicting their operation
on sample learning tasks.

Part II of this thesis addresses the task of grounding semantic representations in visual perception.
In doing so it asks three questions, o�ering novel answers to each. The �rst question is: What is an

appropriate semantic representation that can allow language to be grounded in perception? Chapter 7

advances the claim that an appropriate semantic representation for the meanings of simple spatial
motion verbs such as throw, pick up, put, and walk must incorporate the notions of support, contact, and
attachment as these notions play a central role in di�erentiating occurrences of events described by those
words from non-occurrences. Prior representations of verb meaning focussed on the aspects of motion
depicted by the verb. For example, Miller (1972), Schank (1973), Jackendo� (1983), and Pinker (1989)
all gloss throw roughly as `to cause an object to move'. This misses two crucial components of throwing|
the requirement that the motion be caused by moving one's hand while grasping the object (contact and
attachment) and the requirement that the resulting motion be unsupported. Chapter 7 presents a novel
lexical semantic representation based on the notions of support, contact, and attachment, and uses that
representation to characterized the prototypical events described by numerous spatial motion verbs.

Given that support, contact, and attachment relations play a central role in de�ning verb meanings,
a natural second question arises: How are support, contact, and attachment relations between objects

perceived? Chapter 8 o�ers an answer to that question: counterfactual simulation|imagining the short-
term future of a potentially modi�ed image under the e�ects of gravity and other physical forces. For
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BE(person1;AT(person3)) _ BE(person1;AT(person2))_
GO(person1; [Path ]) _GO(person1;FROM(person3))_

GO(person1;TO(person2)) _GO(person1; [Path FROM(person3);TO(person2)])
John rolled.

BE(person2;AT(person3)) _ BE(person2;AT(person1))_
GO(person2; [Path ]) _GO(person2;FROM(person3))_

GO(person2;TO(person1)) _GO(person2; [Path FROM(person3);TO(person1)])
Mary rolled.

BE(person3;AT(person1)) _ BE(person3;AT(person2))_
GO(person3; [Path ]) _GO(person3;FROM(person1))_

GO(person3;TO(person2)) _GO(person3; [Path FROM(person1);TO(person2)])
Bill rolled.

BE(object1;AT(person1)) _ BE(object1;AT(person2))_
GO(object1; [Path ]) _GO(object1;FROM(person1))_

GO(object1;TO(person2)) _GO(object1; [Path FROM(person1);TO(person2)])
The cup rolled.

BE(person3;AT(person1)) _ BE(person3;AT(person2))_
GO(person3; [Path ]) _GO(person3;FROM(person1))_

GO(person3;TO(person2)) _GO(person3; [Path FROM(person1);TO(person2)])
Bill ran to Mary.

BE(person3;AT(person1)) _ BE(person3;AT(person2))_
GO(person3; [Path ]) _GO(person3;FROM(person1))_

GO(person3;TO(person2)) _GO(person3; [Path FROM(person1);TO(person2)])
Bill ran from John.

BE(person3;AT(person1)) _ BE(person3;AT(object1))_
GO(person3; [Path ]) _GO(person3;FROM(person1))_

GO(person3;TO(object1)) _GO(person3; [Path FROM(person1);TO(object1)])
Bill ran to the cup.

BE(object1;AT(person1)) _ BE(object1;AT(person2))_
GO(object1; [Path ]) _GO(object1;FROM(person1))_

GO(object1;TO(person2)) _GO(object1; [Path FROM(person1);TO(person2)])
The cup slid from John to Mary.

ORIENT(person1;TO(person2))_
ORIENT(person2;TO(person3))_
ORIENT(person3;TO(person1))

John faced Mary.

Figure 1.2: A sample corpus presented to Davra. The corpus exhibits referential uncertainty in

that each utterance is paired with several possible meaning expressions. Davra is not told which is

the correct meaning, only that one of the meanings is correct.
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Head Initial, SPEC Initial.

John: [N] person1
Mary: [N] person2
Bill: [N] person3
cup: [N] object1
the: [NSPEC] ?
rolled: [V] GO(x; [Path ])
ran: [V] GO(x; y)
slid: [V] GO(x; [Path y; z])
faced: [V] ORIENT(x;TO(y))
from: [N,V,P] FROM(x)
to: [N,V,P] TO(x)

Figure 1.3: The language model inferred by Davra for the corpus from �gure 1.2. Note that Davra

has converged to a unique word-to-meaning mapping for each word in the corpus, as well as a unique

word-to-category mapping for all but two words.

instance, one determines that an object is unsupported if one imagines it falling. Likewise, one determines
that an object A supports an object B if B is supported but falls when one imagines a world without A.
An object A is attached to another object B if one must hypothesize such an attachment to explain the
fact that one object supports the other. Likewise, two objects must be in contact if one supports the
other.

Counterfactual simulation relies on a modular imagination capacity. This capacity takes the rep-
resentation of a possibly modi�ed image as input and predicts the short-term consequences of such
modi�cations, determining whether some predicate P holds in any of the series of images depicting the
short-term future. The imagination capacity is modular in the sense that the same unaltered mechanism
is used for a variety of purposes, varying only the predicate P and the initial image model between
calls. This leads to the third question: How does the imagination capacity operate? Nominally, the
imagination capacity can be though of as a kinematic simulator. To predict the future, this simulator
would embody physical knowledge of how objects behave under the in
uence of physical forces such
as gravity. Traditional approaches to kinematic simulation take physical accuracy and the ability to
simulate mechanisms of arbitrary complexity to be primary. They typically operate by integrating the
aggregate forces on objects, relegating collision detection to a process of secondary importance.

Human perception appears to be based on di�erent principles however. These include the following.

substantiality: Solid objects don't pass through one another.

continuity: Objects follow continuous paths when moving from one location to another. They don't
disappear and reappear elsewhere later.

gravity: Unsupported objects fall.

ground plane: The ground acts as universal support for all objects.

These principles are pervasive. It is hard to imagine situations that violate these principles. Traditional
kinematic simulation, however, violates some of these principles as a matter of course. Numerical
integration violates continuity. Performing collision detection exogenous to numerical integration will
admit substantiality violations up to the tolerance allowed by the integration step size. Thus traditional
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approaches to kinematic simulation do not appear to be appropriate foundations for a model of the
human imagination capacity.

Chapter 9 advances the claim that the imagination capacity used for counterfactual simulation and
event perception is organized along very di�erent lines than traditional kinematic simulators. It directly
encodes the principles of substantiality, continuity, gravity, and ground plane. It takes collision detection
to be primary and physical accuracy to be secondary. In doing so it must forego the ability to simulate
mechanisms of arbitrary complexity. The reason for this shift in priorities is that collision detection is
more important than physical accuracy in determining support, contact, and attachment relations.

Chapters 8 and 9 review some experiments reported by Freyd et al. (1988), Baillargeon et al. (1985),
Baillargeon (1986, 1987) and Spelke (1988) which support the claims made in part II of this thesis. As
additional evidence, a simpli�ed version of this theory has been implemented as a working computer
program called Abigail. Abigail watches a computer-generated animated movie depicting objects
participating in various events. Figure 1.4 illustrates selected frames from a sample movie shown to
Abigail. The images in this movie are constructed out of line segments and circles. The input to
Abigail consists solely of the positions, orientations, shapes, and sizes of these line segments and
circles during each frame of the movie. Abigail is not told which collections of line segments and circles
constitute objects. By applying the techniques described above, she must segment the image into objects
and determine the support, contact, and attachment relations between these objects as a foundation for
producing semantic descriptions of the events in which these objects participate. For example, Abigail
can determine that the man is unsupported in frame 11 of the movie by imagining him falling, as depicted
in �gure 1.5.

The remainder of this thesis is divided into two parts comprising nine chapters. Chapters 2 through 5
constitute part I which discusses language acquisition. Chapter 2 introduces part I by de�ning the
bootstrapping problem and giving an overview of the cross-situational techniques used to address that
problem. Chapter 3 illustrates the power cross-situational learning has over trigger-based approaches by
demonstrating several small examples, completely worked through by hand, where cross-situational tech-
niques allow the learner to converge on a unique language model for a set of utterances even though each
utterance in isolation admits multiple analyses. Chapter 4 presents a detailed discussion of Maimra,
Davra, and Kenunia|three implemented computer models of language acquisition which incorporate
cross-situational techniques. Chapter 5 concludes part I by reviewing related work on language acqui-
sition and suggesting continued work for the future. Chapters 6 through 10 constitute part II which
addresses the grounding of language in perception. Chapter 6 introduces part II by describing the event
perception task faced by Abigail. Chapter 7 presents a novel lexical semantic representation centered
around the notions of support, contact, and attachment, giving de�nitions in this representation for

numerous simple spatial motion verbs. Chapter 8 discusses the event perception mechanisms used by
Abigail to segment images into objects and to recover the changing support, contact, and attachment
relations between those objects. Chapter 9 discusses Abigail's imagination capacity in detail, showing
how the imagination capacity explicitly encodes the naive physical constraints of substantiality, con-
tinuity, gravity, and ground plane. Chapter 10 concludes part II by reviewing related work on event
perception and suggesting continued work for the future.
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Frame 0 Frame 299

Frame 29 Frame 356

Frame 64 Frame 403

Frame 69 Frame 509

Frame 71 Frame 662

Frame 112 Frame 730

Frame 144 Frame 750

Frame 200 Frame 780

Figure 1.4: Several key frames depicting the general sequence of events from the movie used to drive
the development of Abigail.
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Frame 11, Observed Image

Frame 11, Imagination Step 1

Frame 11, Imagination Step 2

Frame 11, Imagination Step 3

Frame 11, Imagination Step 4

Frame 11, Imagination Step 5

Frame 11, Imagination Step 6

Figure 1.5: The sequence of images produced by Abigail while imagining the short-term future of
frame 11 from the movie described in �gure 1.4.
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Chapter 2

Introduction

We can all agree that as part of the process of acquiring their native language, children must learn at
least three things: the syntactic categories of words, their meanings, and the language-speci�c compo-
nents of syntax. Such knowledge constitutes, at least in part, the language-speci�c linguistic knowledge
which children must acquire to become 
uent speakers of their native language. Initially, children lack
any such language-speci�c knowledge. Yet they come to acquire that knowledge through the language
acquisition process. Part I of this thesis attempts to answer the following question: What procedure might

children employ to learn their native language, without any access to previously acquired language-speci�c

knowledge?

This question is not new nor is this the �rst attempt at providing an answer. The account o�ered in
this thesis, however, di�ers from prior accounts in a number of ways. These di�erences are summarized
by three issues highlighted in the question's formulation.

procedure: This thesis seeks a procedural description of the language acquisition process. To be an
adequate description, the procedure must be be shown to work. Ideally, one must demonstrate that
it is capable of acquiring language given the same input that is available to children. Pinker (1979)
calls this the �delity criterion. Such demonstration requires that the procedure be precisely spec-
i�ed. Imprecise procedural speci�cations, typical of much prior work on language acquisition in
cognitive science,1 admit only speculative evidence that such procedures do actually work and
are therefore an inadequate account of the language acquisition process. Ultimately, the most
satisfying account would be a procedural speci�cation which is precise enough so that, at least in
principle, it could be implemented as a computer program. This thesis presents three di�erent pre-
cise procedures, each implemented as a working computer program which successfully solves very

small language acquisition tasks. The input to these programs approximates the input available
to children.

might: An ultimate account of child language acquisition would demonstrate not only a working lan-
guage acquisition procedure but also evidence that that procedure was the one actually used by
children. This thesis demonstrates only that certain procedures work. It makes no claim that
children utilize these procedures. Clearly, it makes sense to suggest that children employ a given
procedure only once one knows that the procedure works. Doing otherwise would be putting the
cart before the horse. This thesis views the task of proposing working procedures, irrespective of
whether children employ these procedures, as the �rst step toward the ultimate goal of determining
the procedures utilized by children.

1Notable exceptions to imprecise procedural speci�cations include the work of Hamburger and Wexler (1975) and

Berwick (1979, 1982).
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without any prior access to previously acquired language-speci�c knowledge: To be a com-
plete account, a language acquisition procedure must not rely on previously acquired language-
speci�c knowledge. Doing so only reduces one problem to another unsolved problem. The problem
of how children begin the task of language acquisition, without any prior language-speci�c knowl-
edge, has become known as the bootstrapping problem. Most previous accounts assume that
children possess some language-speci�c knowledge, such as the meanings or syntactic categories
of nouns, before beginning to acquire the remaining language-speci�c information. Since these
accounts do not present methods for acquiring such preliminary language-speci�c knowledge, they
at worst su�er from problems of in�nite regress. At best they describe only part of the language
acquisition process. While it may be the case that the language acquisition procedure employed
by children is indeed a staged process, to date no one has given a complete account of that en-
tire process. In contrast, the goal of this research program is to propose algorithms which do
not rely on any prior language-speci�c knowledge. Signi�cant progress has been made toward
this goal. Chapter 4 presents three implemented language acquisition models. In accord with
current hypotheses about child language acquisition, these systems use only positive examples to
drive their acquisition of a language model. The �rst learns both word-to-category and word-to-
meaning mappings given prior access only to grammar. The second learns both word-to-category
and word-to-meaning mappings, as well as the grammar. The third learns word-to-category map-
pings along with the grammar, given prior access only to word-to-meaning mappings. All of these
models, however, assume prior access to the phonological and morphological knowledge needed to
acoustically segment an utterance into words and recognize those words.

Part I of this thesis focuses solely on language bootstrapping. The remainder of this chapter
describes the bootstrapping problem in greater detail. It makes precise some assumptions this thesis
makes about the nature of the input to the language acquisition device, as well as the language-speci�c
knowledge to be learned. Some competing theories about language acquisition share a common learning
strategy: they attempt to glean linguistic facts from isolated observations. I call this strategy trigger-
based learning. This thesis advocates an alternative strategy, cross-situational learning, and suggests
that it may o�er a better account of child language acquisition.

2.1 The Bootstrapping Problem

The task of modeling child language acquisition is overwhelmingly complex. Given our current lack of

understanding, along with the immensity of the task, any proposed procedure will necessarily address
only an idealization of the task actually faced by children. Any idealization will make assumptions about
the nature of the input to the language acquisition device. Furthermore, any idealization will address
only a portion of the complete language acquisition task, and consider the remainder to be external
to that task. Before presenting the language acquisition procedures that I have developed, I will �rst
delineate the idealized problem which they attempt to solve.

I assume that the input to the language acquisition device contains both linguistic and non-linguistic
information. It seems clear that the input must contain linguistic information. Assuming that the input
contains non-linguistic information deserves some further discussion. Practically everyone will agree
that non-linguistic information is required for learning the meaning of words. As Fisher et al. (1991)
aptly state: \You can't learn a language simply by listening to the radio". It is not clear however,
that non-linguistic information is required for learning syntax. The tacit assumption behind the en-
tire �eld of formal learning theory (cf. Gold 1967 and Blum and Blum 1975) is that a learner can
learn syntax, or at least the ability to make grammaticality judgments, by observing linguistic infor-
mation alone. It might be the case that this is feasible. Furthermore, both Gleitman (1990) and
Fisher et al. (1991) suggest that, at least in part, verb meanings are constrained by their subcategoriza-
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tion frames. Brent (1989, 1990, 1991a, 1991b, 1991c) shows how verb subcategorization frames can be
derived from an untagged corpus of utterances without any non-linguistic information.2 Though neither
Gleitman, Fisher et al., nor Brent suggest this, it is conceivable that a learner could potentially learn
all of syntax, and some semantics, through exposure to linguistic information alone. Whether or not
children do so is an open question. Nonetheless, the procedures presented in this thesis utilize both lin-
guistic and non-linguistic information in the process of inferring both syntactic and semantic knowledge,
as is in fact typical of most other work in the �eld.

In the model considered here, the linguistic input to the language acquisition device is a symbolic
token stream consisting of a list of grammatical utterances, each utterance being a string of words.
Since, the actual linguistic evidence available to children consists of an acoustic signal, this assumes
that children have the capacity for segmenting the acoustic stream into utterances and words, as well
as classifying di�erent occurrences of a given word as the same symbolic token despite di�erences in
their acoustic waveform. These segmentation and classi�cations procedures, however, are likely to rely
at least in part on language-speci�c information. An ultimate account of language acquisition would
have to explain how children acquire such word segmentation and classi�cation knowledge along with
other language-speci�c knowledge. For pragmatic reasons, the language acquisition procedures proposed
in this thesis, like most other proposed procedures, ignore this problem and assume that the learner
has the ability to preprocess the acoustic input to provide a symbolic token stream as input to the
language acquisition device. Also, like most other proposed procedures, this thesis assumes that the
symbolic information recovered from the acoustic input comprises only word and utterance boundary
information and word identity. Gleitman (1990) and Fisher et al. (1991) argue that children can also
recover information about syntactic structure from the prosodic portion of the acoustic signal and that
they utilize such information to aid the language acquisition process. It may be possible to extend the
strategies discussed in this thesis to use such prosodic information in a way that would improve their
performance. Such exploration remains for future work.

The general learning strategy put forth in this thesis is one of cross-situational learning. This strategy
is depicted in �gures 2.1 and 2.2. It is incorporated, with minor variation, in all three of the implemented
systems discussed in chapter 4. Figure 2.1 illustrates a general language processing architecture. This
architecture is a portion of the more complete architecture depicted in �gure 1.1. The perception
component has been omitted as that will be the focus of part II of this thesis. Part I of this thesis instead
focuses on the remaining two processing modules, namely the parser and linker. These two processing
modules relate six representations. The parser takes an utterance as input and produces syntactic
structures as output. The parsing process uses language-speci�c syntactic knowledge, in the form of a
grammar, along with the syntactic categories of words derived from the lexicon. Taken together, the

grammar and lexicon form a language model. The linker implements compositional semantics, combining
the meanings of individual words in the utterance, taken from the lexicon, and producing a semantic
structure representing the meaning of the entire utterance. This linking process is mediated by the
syntactic structure produced by the parser.

Traditionally, the architecture in �gure 2.1 is conceived of as being a directed computing device.
As a language comprehension device, it receives an utterance, a grammar, and a lexicon as input,
and produces (perhaps several ambiguous) semantic structures as output. These semantic structures
constitute a representation of the meaning of the input utterance. As a language production device,
it receives a communicative goal as input, in the form of a semantic structure, along with a grammar
and a lexicon, and produces (perhaps several possible) utterances as output, each of which conveys the
semantic content of the desired communicative goal. These two uses of this architecture are conventional
and well-known. This thesis explores a novel third possibility. The architecture from �gure 2.1 can be
viewed instead as a declarative relation that must hold between an utterance u, a semantic structure s, a

2His technique requires a small amount of prior language-speci�c knowledge in the form of a lexicon of closed-class

words and a small regular (�nite state) covering grammar for English.
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parser linker

syntactic
structures

semantic
structuresutterance

syntactic
categories

word
meanings

lexicongrammar

language
model

Figure 2.1: A generic language processing architecture. The parser takes an input utterance, along
with a grammar and syntactic category information from the lexicon, and produces syntactic struc-

tures as output. The linker then forms the meaning of the utterance, i.e. its semantic structure, out

of the meanings of its constituent words. Word meanings are taken from the lexicon. The linking

process is mediated by the syntactic structure produced by the parser for the utterance.
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semantic
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semantic
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Figure 2.2: This �gures illustrates how the generic language processing architecture from �gure 2.1

can be used to support cross-situational learning. A copy of the architecture from �gure 2.1 is made

for each utterance-meaning pair in the corpus. All of these copies are constrained to use the same
language model, i.e. the same grammar and lexicon. The learner must �nd a language model which

is consistent across the corpus.

grammarG, and a lexicon L. I will denote this declarative relation via the predicate U (G;L; u; s). Here,
U indicates whatever universal linguistic knowledge is presumed to be innate while G and L indicate
language-speci�c grammatical and lexical knowledge that must be acquired. This architecture can be
presented with an input utterance u, paired with a semantic structure s representing its meaning. The
semantic structure s corresponding to u could be derived by observing the non-linguistic context of the
utterance u. The predicate U (G;L; u; s) then constrains the set of possible grammars G and lexica L
that are consistent with the assumption that the input utterance u has the given meaning s. Thus U
can be used in this fashion as a language acquisition device.
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A single utterance paired with a single semantic structure is usually not su�cient to uniquely deter-
mine the grammar and lexicon. The grammar and lexicon can, however, be uniquely determined through
cross-situational learning. The idea behind cross-situational learning is depicted in �gure 2.2. Here, the
learner is presented with a sequence of utterances, each paired with a representation of its meaning.
The architecture from �gure 2.1 is replicated, with each utterance-meaning pair being applied to its own
copy of the architecture. The di�erent copies however, are constrained to share the same grammar and
lexicon. This amounts to the following learning strategy.

Find G and L such that:

U (G;L; u1; s1)^
U (G;L; u2; s2)^

...
U (G;L; un; sn).

The above learning strategy has a limitation however. It requires that the learner unambiguously know
the complete and correct meaning of each input utterance. If the learner was mistaken and associated
the wrong meaning with but a single utterance, this architecture either will produce the wrong grammar
and lexicon as output, or will not be able to �nd any grammar and lexicon consistent with the input
data. This limitation can be alleviated somewhat by relaxing the input requirement. We could instead
allow the learner to hypothesize a set of possible meanings for each utterance, most of which will be
incorrect. So long as the correct meaning is included with the set of meanings hypothesized for each
input utterance, the learner could still determine a grammar and lexicon using the following extended
strategy.

Find G and L such that:

[U (G;L; u1; s11) _ � � � _ U (G;L; u1; s1m1
)]^

[U (G;L; u2; s21) _ � � � _ U (G;L; u2; s2m2
)]^

...
[U (G;L; un; sn1) _ � � � _ U (G;L; un; snmn

)].

Here the learner simply knows that one of the meanings si1; : : : ; simi
is the correct meaning for utter-

ance ui, yet need not know which is actually the correct one. For example, a child hearing the utterance
John threw the ball to Mary in a situation where John threw the ball to Mary while walking home from

school might conjecture that the utterance meant that John and Mary were playing, that Mary wanted
the ball, that John and Mary were walking, or a myriad of other possible meanings in addition to the
correct one. This type of ambiguity in the mapping of input utterances to their correct meaning will be
referred to as referential uncertainty. The process of determining G and L will, in retrospect, eliminate
the referential uncertainty and allow the learner to determine the correct meanings to associate with
each input utterance.

The above strategy still makes some residual assumptions about the input to learner. It requires
that each of the input utterances be grammatical in the language to be learned. This is a standard
assumption in the �eld of language acquisition modeling. It also requires that the learner postulate
the correct meaning for each utterance as one of the hypothesized meanings for that utterance. The
learner would fail to converge to the correct grammar and lexicon if either of these requirements are
not met. Furthermore, the strategy becomes intractable if the set of hypothesized meanings paired with
each input utterance grows very large. Thus, this strategy is feasible only if the learner possesses some
way of narrowing the set of hypothesized meanings using some criteria of salience. Potential solutions
to these issues are discussed in section 5.2.
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The key claim made in this thesis is that an appropriately constraining theory of universal linguis-
tic knowledge, combined with a large corpus of utterances paired with possible meanings, is su�cient
to uniquely determine a language-speci�c grammar and lexicon, using cross-situational learning. Using
cross-situational learning, there is no problem of regress. Unlike other recent proposals (cf. Pinker 1984),
this strategy makes no assumption that some language-speci�c knowledge must be acquired by unspec-
i�ed means before acquiring other language-speci�c knowledge.3

Let me point out how the above strategy di�ers from the traditional folklore account of language
acquisition. The traditional account claims that children learn a word's meaning by observing situations
depicting its use. Presumably, a child hears the word ball while being shown a ball and learns to pair
the word ball with the concept ball. For the traditional approach to work, the child must be able
to unambiguously pair a word with its concept. This requires that there be at least one situation to
which the child is exposed where (a) no other words are uttered along with ball while in the presence
of balls, and (b) no other objects are present which are potential referents of the word ball. Otherwise,
a child hearing Pick up the ball in the presence of a ball and a truck, could pair pick with ball, ball
with truck, or even worse, pick with truck. While undoubtedly, most children are exposed to some

situations where a single word is uttered in the context of a single salient referent, it seems unlikely that
the language acquisition device, robust as it is, could be relying on this strategy given the 
eetingly
rare possibilities for its use. The cross-situational strategy outlined in this thesis does not make such
restrictive assumptions about the nature of the input to the language acquisition device.

2.2 Outline

The remainder of part I of this thesis is divided into three chapters, Chapter 3 motivates the need for
cross-situational learning by demonstrating two small examples, fully worked through by hand, which
illustrate how cross-situational techniques work and how they can be more powerful than alternate
approaches. Before presenting the details of cross-situational learning, chapter 3 �rst covers some pre-
liminary background material. It discusses a particular semantic linking rule, namely composition by
substitution, and how to apply that rule in reverse. Inverse linking, which I call fracturing, plays a central
role in cross-situational semantic learning. Chapter 4 then presents three implemented systems which
apply cross-situational strategies to successively more sophisticated linguistic theories which make fewer
and fewer assumptions about the nature of the linguistic input and the child's prior language-speci�c
knowledge. Chapter 5 compares the cross-situational approach to several competing language acquisition
theories which do not use cross-situational techniques. It also summarizes the claims made and results
reported in part I of this thesis, discussing current limitations and areas for future work.

3Except perhaps the language-speci�c knowledge needed to acoustically segment utterances and recognize words. It
may be possible to extend the cross-situational learning techniques presented in this thesis to simultaneously acquire such
knowledge as well.
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Chapter 3

Cross-Situational Learning

Section 5.1 will review a number of competing approaches to language bootstrapping. Many of the

approaches reviewed use trigger-based strategies. Trigger-based strategies attempt to learn linguistic
facts by observing isolated utterances. There is an alternative to trigger-based learning. Rather than
attempting to glean a linguistic fact from a single utterance or utterance-observation pair, it is possible to
try to �nd those linguistic facts that are consistent across multiple utterances and utterance-observation
pairs. I will call such techniques cross-situational learning. These techniques allows the learner to acquire
partial knowledge from ambiguous situations and combine such partial knowledge across situations to
infer a unique language model despite the ambiguity in the individual isolated situations.

There are a number of di�erent techniques, some stronger and some weaker, that all fall within the
general framework of cross-situational learning. The similarities and di�erences between these tech-
niques, as well as the power of the general approach, are best illustrated by way of several small exam-
ples. This chapter presents two examples of cross-situational learning. They are designed for expository
purposes, to characterize in a simple way the techniques used by more complex implementations. Ac-
cordingly they utilize simple linguistic theories and make use of some prior language-speci�c knowledge
in the form of a �xed context-free grammar for the language being learned. In chapter 4, I present
three implemented systems that incorporate more substantive linguistic theories. Some of these systems
require less prior language-speci�c knowledge then the simple pedagogical examples discussed in this
chapter.

Before presenting the examples, I will �rst discuss fracturing, a key technique used in both the
examples and the implemented systems to be described. Fracturing is a way of running the linking rules
in reverse. Linking rules are normally conceived of as a means for combining the meanings of words into

the meanings of utterances comprising those words. During language acquisition, the learner is faced
with the opposite task. After pairing utterances with potential meanings derived from the non-linguistic
context of those utterances, the learner must pull apart an utterance meaning to map fragments of that
meaning to individual words in the utterance. The next section will present a technique for running a
particular linking rule in reverse, namely the linking rule proposed by Jackendo� (1983). Sections 3.2
and 3.3 will then present two fully worked-out examples of cross-situational learning in action.

3.1 Linking and Fracturing

Throughout much of part I of this thesis, I will represent meanings as terms, i.e. expressions com-
posed of primitive constant and function symbols. For expository purposes, I will use primitives
taken primarily from Jackendo�'s (1983) conceptual structure notation, though I will extend this
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set arbitrarily as needed.1 Thus typical meaning expressions will include GO(cup;FROM(John))
and SEE(John;Mary). None of the techniques in part I of this thesis attribute any interpretation
to the primitives. In every way, the meaning expression GO(cup;FROM(John)) is treated the same
as f(a; g(b)).2

Variable-free meaning expressions such as those given above will denote the meanings of whole utter-
ances. The meanings of utterance fragments in general, and words in particular, will be represented as
meaning expression fragments that may contain variables as place holders for un�lled portions of that
fragment. Thus, the word from might have the meaning FROM(x) while the word John might have the
meaning John.3 Crucial to many of the techniques discussed in part I of this thesis is a particular link-
ing rule used to combine the meanings of words to form the meanings of phrases and whole utterances.
This linking rule is adopted by numerous authors including Jackendo� (1983, 1990), Pinker (1989),
and Dorr (1990a, 1990b). Informally, the linking rule forms the meaning of the prepositional phrase
from John by combining FROM(x) with John to form FROM(John).

This linking rule can be stated more formally as follows. Each node in a parse tree is assigned an
expression to represent its meaning. The meaning of a terminal node is taken from the lexical entry
for the word constituting that node. The meaning of a non-terminal node is derived from the meanings
of its children. Every non-terminal node u has exactly one distinguished child called its head. The
remaining children are called the complements of the head. The meaning of u is formed by substituting
the meanings of each of the complements for all occurrences of some variable in the meaning of the
head. To avoid the possibility of variable capture, without adding the complexity of a variable renaming
process, we require that the meaning expression fragments associated with complements be variable-
free. Notice that this rule does not stipulate which complements substitute for which variables. Thus
if GO(x;TO(y)) is the meaning of the head of some phrase, and John is the meaning of its complement,
the linking rule can produce either GO(x;TO(John)) or GO(John;TO(y)) as the meaning of the phrase.
The only restriction on linking is that the head meaning must contain at least as many distinct variables
as there are complements.

Some authors propose variants of the above linking rule that further speci�es which variables are
linked with which argument positions. For example, Pinker (1989) stipulates that the x in GO(x; y)
is always linked to the direct internal argument. Irrespective of whether this is true, either for En-
glish speci�cally, or cross-linguistically in general, I refrain from adopting such restrictions here for
two reasons. First, the algorithms presented in part I of this thesis apply generally to any expressions
denoting meaning. They transcend a particular representation such as Jackendovian conceptual struc-
tures. Linking restrictions such as those adopted by Pinker apply only to expressions constructed out
of Jackendovian primitives. Since, for reasons to be discussed in part II of this thesis, the Jackendovian
representation is inadequate, it does not make sense to base a learning theory on restrictions which are
particular to that representation. Second, the learning algorithms presented here are capable of learning
without making such restrictions. In fact, such restrictions could be learned if they were indeed true.

The standard motivation for assuming a faculty to be innate is the poverty of stimulus argument. This

1In part II of this thesis, I will discuss the inadequacies of both Jackendovian conceptual structure representations as

well as substitution-based linking rules. Since much of the work in part I predates the work described in part II, it was
formulated using the Jackendovian representation and associate linking rule as a matter of expedience, since that is what
was prominent in the literature at the time. In more recent work, such as that described in section 4.3, I abandon the
Jackendovian representation in favor of simple thematic role assignments, a much weaker form of semantic representation.
This also entails abandoning substitution-based linking in favor of �-marking. In the future I hope to incorporate the more

comprehensive semantic representations discussed in part II of this thesis into the techniques described in part I.
2This mitigates to some extent, the inadequacies of the Jackendovian representation. Nothing in part I of this thesis

relies on the semantic content of a particular set of primitives. The techniques described here apply equally well to any
representation provided that the representation adheres to a substitution-based linking rule. The inadequacies of such a

linking rule still limit the applicability of these techniques, however.
3Throughout this chapter and the next I will use the somewhat pretentious phrase `the meaning of x' to mean `the

meaning expression associated with x'.
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John slid the cup from Mary to Bill.
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Figure 3.1: A derivation of the meaning of the utterance John slid the cup from Mary to Bill from
the meanings of its constituent words using the linking rule proposed by Jackendo�.

argument is falsi�ed most strongly with a demonstration that something is learnable. It is important
not to get carried away with our rationalist tendencies making unwarranted innateness assumptions in
light of the rare observation of something that is indeed learnable by empiricist methods.

Some words, such as determiners and auxiliaries, appear not to have a meaning that can be easily
characterized as meaning expressions to be combined by the above linking rule. To provide an escape
hatch for semantic notions that fall outside the system described above, we provide the distinguished
meaning symbol ?. Typically, words such as the will bear ? as their meaning. The linking rule is
extended so that any complements that have ? as their meaning are not substituted into the meaning of
the head. This allows forming cup as the meaning of the cup when the has ? and cup has cup as their
respective meanings. Using this linking rule, the meaning of phrases, and ultimately entire utterances
can be derived from the meanings of their constituent words, given a parse tree annotated as to which
children are heads and which are complements. A sample derivation is shown in �gure 3.1. Note that
the linking rule is ambiguous and can produce multiple meanings, even in the absence of lexical and

structural ambiguity, since it does not specify which variables are linked to which complements. Also
note that the aforementioned linking rule addresses only issues of argument structure. No attempt is
made to support other aspects of compositional semantics such as quanti�cation.

Substitution-based linking rules are not new. They are widely discussed in the literature (cf. Jack-
endo� 1983, 1990, Pinker 1989, and Dorr 1990a, 1990b). The techniques in this thesis explore a novel
application of such linking rules: the ability to use them in reverse. Traditionally, compositional seman-
tics is viewed as a process for deriving utterance meanings from word meanings. This thesis will explore
the opposite possibility: deriving the meanings of individual words from the meanings of utterances
containing those words. I will refer to this inverse linking process as fracturing.

Fracturing is best described by way of an example. Assume some node in some parse tree has the
meaning GO(cup;TO(John)). Furthermore, assume that the node has two children. In this case there
are four possibilities for assigning meanings to the children.
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Head Complement

GO(x;TO(John)) cup

GO(cup; x) TO(John)
GO(cup;TO(x)) John

GO(cup;TO(John)) ?

Note speci�cally the last possibility of assigning ? as the meaning of the complement. This option will
always be present when fracturing any node. The above fracturing process can be applied recursively,
starting at the root node of a tree, proceeding toward its leaves, to derive possible word meanings from
the meaning of a whole utterance. More formally, fracturing a node u is accomplished by the following
algorithm.

Algorithm To fracture the meaning expression associated with a node u into meaning expression
fragments associated with the head of u and its complements:

Let e be the meaning of u. For each complement, either assign ? as the meaning of that
complement or perform the following two steps.

1. Select some subexpression s of e and assign it as the meaning of that complement. The
subexpression s must not contain any variables introduced in step 2.

2. Replace one or more occurrences of s in e with a new variable.

After all complements have been assigned meanings, assign e as the meaning of the head. 2

As stated above, the fracturing process is mediated by a parse tree annotated with head-child mark-
ings. Given a meaning expression e, one can enumerate all meaning expression fragments which can possi-
bly link together to form e, irrespective of any parse tree for deriving e. Such a meaning fragment is called
a submeaning of e. For example, the following are all of the submeanings of GO(cup;FROM(John)).

GO(cup;FROM(John))
cup

GO(x;FROM(John))
GO(x;FROM(y))

GO(x; y)
GO(cup;FROM(x))

GO(cup; x)
FROM(John)
FROM(x)
John

?

If an utterance has e as its meaning, then every word in that utterance must have a submeaning of e
as its meaning. The set of submeanings for a meaning expression e can be derived by the following
algorithm.

Algorithm To enumerate all submeanings of a meaning expression e:

Let s be some subexpression of e. Repeat the following two steps an arbitrary number of
times.

1. Select some subexpression t of s not containing any variables introduced in step 2.

2. Replace one or more occurrences of t in s with a new variable.

Upon completion, s is a possible submeaning of e. Furthermore, ? is a possible submeaning
of every expression. 2

Both the fracturing algorithm, as well as the algorithm for enumerating all submeanings of a given
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meaning expression, will play a prominent role throughout the remainder of part I of this thesis.

3.2 Learning Syntactic Categories

Consider the following problem. Suppose that a learner was given a �xed context-free grammar along
with a corpus of utterances generated by that grammar.4 Given such information, the learner must derive
a lexicon mapping the words in the corpus to their syntactic category. No non-linguistic information is
given to the learner.

This problem is typi�ed by the following example. Suppose that the learner is given the following
context-free grammar.

S ! NP VP

NP ! fDg N

VP ! V fNP fNPgg

I will refer to this grammar as G1. Now suppose that the learner hears the utterance John saw Mary.

Since G1 generates only two three-word terminal strings, namely N V N and D N V, the learner can
conclude that John must be either a noun or a determiner, saw a verb or a noun, andMary either a noun
or a verb, given their respective positions in the input string. If the learner later hears the utterance
Mary ate breakfast, she can perform a similar analysis and conclude that Mary must be a noun since
only nouns can appear as both the �rst and third words of a three word utterance.

This analysis is based on one crucial assumption: that each word bear only one syntactic category. I
will call this assumption the monosemy constraint. Clearly language contains polysemous words. I will
discuss potential ways of relaxing the monosemy constraint in section 5.2.

I will refer to the above technique as weak cross-situational learning. In the above example, weak
cross-situational learning constrains only the syntactic category of Mary, and not any of the remaining
words, since only Mary appears in multiple utterances. The learner can nonetheless perform more
aggressive inference given the above information. Once the learner infers that Mary is a noun, she can
rule out D N V as a possible analysis for Mary ate breakfast, leaving only the N V N analysis. Thus the
learner can also infer that ate is a verb and breakfast is a noun. Furthermore, if the learner was able to
reanalyze previous utterances, she could perform a similar analysis on John saw Mary and determine
that John is a noun and saw is a verb. The given grammar and corpus permit only one consistent
analysis and thus entail a unique lexicon. I will call the process of �nding such a consistent analysis,
strong cross-situational learning. In the above example, weak cross-situational learning could never
converge to a unique lexicon since a noun can appear anywhere a determiner can appear. Thus strong
cross-situational learning is strictly more powerful than weak cross-situational learning.

As formulated above, cross-situational learning requires the learner to remember prior utterances.
This may not be cognitively plausible. An alternative formulation, however, alleviates this drawback. A
lexical entry can be viewed as a proposition, for example

category(John) = N:

A lexicon is normally thought of as a set of lexical entries. This can be viewed as a conjunction of
propositions, for example

category(John) = N ^ category(saw) = V ^ category(Mary) = N:

4Clearly children do not have prior access to such language-speci�c information. This is example is simpli�ed for
expository purposes. The Davra and Kenunia systems discussed in chapter 4 do not assume prior access to a language-
speci�c grammar.
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The concept of a lexicon formula can be extended to include disjunctions of propositions. Such disjunctive
lexicon formulae can represent intermediate states of partial information about the lexicon being learned.
Thus after hearing the utterance John saw Mary, the learner can form the following disjunctive lexicon
formula.

(category(John) = N ^ category(saw) = V ^ category(Mary) = N)_
(category(John) = D ^ category(saw) = N ^ category(Mary) = V)

The learner can discard the utterance and retain only the derived lexicon formula. Upon hearing each
new utterance, the learner can form a new lexicon formula for that utterance and conjoin it with the
previous lexicon formula. In this case, the entire lexicon formula would be a conjunction of disjunctions
of conjunctions of lexical entry propositions. Further formulae representing the monosemy constraint
can be conjoined with the lexicon formula. Such monosemy formulae take the following form

category(saw) = N ^ category(saw) = V

which states that no word can bear two di�erent categories. Strong cross-situational learning can then
be seen as �nding truth assignments to the lexical entry propositions which satisfy the resulting lexicon
formula. Though determining propositional satis�ability is NP-complete, well-known heuristics, such as
boolean constraint propagation, can usually solve such problems e�ciently in practice (cf. McAllester un-
published, 1978, 1980, 1982, and Zabih and McAllester 1988).

The di�erence between weak and strong cross-situational learning can be seen as generating di�erent
forms of lexicon formulae. Given the utterance John saw Mary, weak cross-situational learning can be
viewed as constructing the following lexicon formula

(category(John) = N _ category(John) = D)^
(category(saw) = V _ category(saw) = N)^
(category(Mary) = N _ category(Mary) = V)

instead of the formula described previously. It is easy to see that the lexicon formula created for weak
cross-situational learning is linear in the size of the input utterance. The naive approach for generating
the lexicon formula corresponding to strong cross-situational learning would generate a disjunct for each
possible parse. Since there could be an exponential number of parses, this would appear intractable.

It is possible however, to use a variant of the CKY algorithm (Kasami 1965, Younger 1967) to share
common subformulae and generate, in polynomial time, a lexicon formula whose size is polynomial in
the length of the input utterance. This is done as follows. Lexical entry propositions of the form lwc

are created for each word w and syntactic category c. Next, for each utterance, propositions of the
form pijc are created for each syntactic category c and each 0 � i � j � n where n is the length of the
utterance. Intuitively, the proposition pijc is true if the subphrase from position i through position j in
the utterance can be parsed as category c. For each binary branching rule A ! B C in the grammar,5

and for each 0 � i � j � n, propositional formulae of the form

pijA!

j_
k=i

pikB ^ pkjC

are conjoined to form a large formula. To this one conjoins all formulae of the form

piiC! lwC

where C is a category, 0 � i � n, and w is the word at position i, as well as asserting the single

proposition p0nS where S is the root category of the grammar. Formulae such as these are created

5Any context-free grammar can be converted into a weakly equivalent grammar containing only binary branching rules.

This conversion process, known as conversion to Chomsky Normal Form, does not a�ect the category learning process.
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for each utterance in the corpus and conjoined together. Finally, monosemy formulae over the lwc
propositions are added to enforce the monosemy constraint. This whole formula can be converted
to conjunctive normal form yielding a formula whose size is polynomial in the length of the corpus.6

Satisfying assignments to this formula constitute word-to-category mappings that are consistent with
both the corpus and the grammar.

3.3 Learning Syntactic Categories and Word Meanings To-

gether

The previous example illustrated the use of weak and strong cross-situational techniques for learning
syntactic categories from linguistic information alone without any reference to semantics. It is possible
to extend these techniques to learn both syntactic and semantic information when given both linguistic
and non-linguistic input. As the next example will illustrate, non-linguistic input can help not only in the

acquisition of word meanings but can also assist in learning syntactic categories as well. Furthermore,
syntactic knowledge can aid the acquisition of word meanings. The example will demonstrate how strong
cross-situational learning, applied to a combined syntactic and semantic theory, is more powerful than
either weak or strong cross-situational learning applied to either syntax or semantics alone.

Consider a learner who possess the following context-free grammar.

S ! NP VP

NP ! fDg N

VP ! V fNP fNPgg PP�

PP ! P NP

I will refer to this grammar as G2. Now suppose that the learner hears the following �ve utterances.78

s1: John 
ed from the dog. FLEE(John;FROM(dog))
s2: John walked from a corner. WALK(John;FROM(corner))
s3: Mary walked to the corner. WALK(Mary;TO(corner))
s4: Mary ran to a cat. RUN(Mary;TO(cat))
s5: John slid from Bill to Mary. SLIDE(John; [Path FROM(Bill);TO(Mary)])

Each utterance is paired with its correct meaning as derived by the learner from observation of

its non-linguistic context.9 Furthermore, I will assume that the learner knows that each of the input
utterances is generated by G2 and that the meanings associated with each utterance are derived from the
meanings of the words in that utterance via the syntax-mediated linking rule described in section 3.1.
In this example however, I assume that the learner does not know which syntactic categories constitute
the heads of the rules in G2. Thus the learner must consider all possibilities. The task faced by the

6The size of the formula constructed for each utterance is cubic in the length of that utterance. Assuming a bound
on utterance length, the size of the formula constructed is thus linear in the number of utterances and quadratic in the
number of distinct words appearing in the corpus, due to the monosemy formulae.

7To reiterate, words in italics denote linguistic tokens while words in boldface or UPPER CASE denote semantic
representations of word meanings. There is no prior correspondence between a linguistic token such as John and a

semantic token such as John, even though they share the same spelling. They are treated as uninterpreted tokens. The
task faced by the learner is to acquire the appropriate correspondences as word-to-meaning mappings.

8For the purposes of this thesis, the notation [Path x; y] can be viewed as a two argument function which combines two
paths to yield an aggregate path with the combined properties of the path arguments x and y.

9To simplify this example I will assume that the learner unambiguously knows the meaning of each utterance in the
corpus. Techniques described section 2.1 can be used to relax this assumption and allow referential uncertainty. Such

techniques are incorporated in all of the implementations described in chapter 4.
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1 2 3 4 5

(a) D N V D N
(b) D N V N N
(c) D N V P N
(d) N V D N N
(e) N V N D N
(f) N V N P N
(g) N V P D N

fN;Dg fN;Vg fN;V;P;Dg fN;P;Dg fNg

1 2 3 4 5 6

(a) D N V N D N
(b) D N V D N N

(c) D N V N P N
(d) D N V P D N
(e) N V D N D N
(f) N V D N P N
(g) N V N P D N
(h) N V N N P N
(i) N V P N P N

fN;Dg fN;Vg fN;V;P;Dg fN;P;Dg fN;P;Dg fNg

Figure 3.2: All possible terminal category strings for �ve and six word utterances generated by
grammar G2.

learner is to discern a lexicon that maps words both to their syntactic categories, as well their meanings,
so that the derived lexicon consistently allows the utterances to be generated by G2 and their associated
meanings to be derived by the linking rule.

Consider �rst what the learner can glean by applying weak cross-situational techniques to the lin-
guistic information alone. Each of the input utterances is �ve words long, except for the last utterance
which is six words long. There are seven possible terminal strings of length �ve, and nine of length six.
These are illustrated in �gure 3.2.

The syntactic category assignments produced by weak cross-situational learning are illustrated in
�gure 3.3. Note that weak cross-situational learning can uniquely determine only the syntactic categories
of Mary, corner, cat, and dog. These are uniquely determined because they occur in utterance �nal
positions and G2 allows only nouns to appear as the last word of utterances of length greater than three.
Furthermore, notice that in the above corpus, most of the words appear cross-situationally in the same
position of an utterance of the same length. Thus the set intersection techniques of weak cross-situational
learning o�er little help here in reducing the possible category mappings. In fact, only the words Mary

and to engender the intersection of two distinct category sets. Even here though, one set is a subset of
the other. Thus for this example, weak cross-situational learning provides no information.

Strong cross-situational learning can improve upon this somewhat but not signi�cantly. The fact
that Mary is a noun rules out the �rst three analyses for both s3 and s4 since they require the �rst
word to be a determiner. This implies that both walked and ran must be verbs since the remaining four
analyses all have verbs in second position. Discovering that walked is a verb can allow the learner to rule
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John: [N,D] fN;Dg \ fN;Dg \ fN;Dg

ed: [N,V] fN;Vg
from: [N,V,P,D] fN;V;P;Dg \ fN;V;P;Dg \ fN;V;P;Dg
the: [N,P,D] fN;P;Dg \ fN;P;Dg
dog: [N] fNg
walked: [N,V] fN;Vg \ fN;Vg
a: [N,P,D] fN;P;Dg \ fN;P;Dg
corner: [N] fNg
Mary: [N] fN;Dg \ fN;Dg \ fNg
to: [N,P,D] fN;V;P;Dg \ fN;V;P;Dg \ fN;P;Dg
ran: [N,V] fN;Vg
cat: [N] fNg
slid: [N,V] fN;Vg
Bill: [N,P,D] fN;P;Dg

Figure 3.3: An illustration of the syntactic category assignments that weak cross-situational learning

can infer for the sample corpus using linguistic information alone.

out the �rst three analyses for s2 since they require a noun in second position. This allows the learner
to infer that John must be a noun and from cannot be a verb. Since John is a noun, s1 cannot have the
�rst three analyses and s5 cannot have the �rst four. Thus 
ed and slid must be verbs and Bill cannot
be a determiner.

At this point the learner knows the syntactic categories of all of the words in the corpus except
for from, to, the, a, and Bill. The words from, to, the, and a might still be either nouns, preposi-

tions, or determiners, and Bill might be either a noun or a preposition. There are however, additional
cross-situational constraints between the possible category assignments of these words. Not all possible
combinations are consistent with G2. One can construct a constraint satisfaction problem (CSP) whose
solutions correspond to the allowable combinations. The variables of this CSP are the words from, to,
the, and a. Each of these variables range over the categories N, D, and P. De�ne P (x; y) to be the con-
straint which is true if one of the last four analyses for �ve word utterances allows category x to appear
in third position at the same time that category y can appear in fourth position. Thus P (x; y) is true
only for the pairs (D;N), (N;D), (N;P), and (P;D). Furthermore, de�ne Q(x; y) to be the constraint

which is true if one of the last �ve analyses for six word utterances allows category x to appear in third
position at the same time that category y can appear in �fth position. Thus Q(x; y) is true only for
the pairs (D;D), (D;P), (N;D), (N;P), and (P;P). The allowed category mappings must satisfy the
following constraint.

P (from; a) ^ P (from; the) ^ P (to; a) ^ P (to; the) ^Q(from; to)

This constraint admits only three solutions. The following table outlines these possible simultaneous
category mappings along with the analyses they entail for each of the �ve utterances in the corpus.

from to the a s1 s2 s3 s4 s5

N P D D (e) (e) (g) (g) (h)
P P D D (g) (g) (g) (g) (i)

D D N N (d) (d) (d) (d) (e)

Thus the and a cannot be prepositions and to cannot be a noun. Furthermore, this analysis has shown
that Bill must be a noun. In this example, strong cross-situational learning cannot, however, narrow
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from can be a N

John 
ed from the dog.

N V N D N
John walked from a corner.

N V N D N
Mary walked to the corner.

N V P D N
Mary ran to a cat.

N V P D N
John slid from Bill to Mary.

N V N N P N

from can be a D
to can be a D
the can be a N
a can be a N

John 
ed from the dog.

N V D N N
John walked from a corner.

N V D N N
Mary walked to the corner.

N V D N N
Mary ran to a cat.

N V D N N
John slid from Bill to Mary.

N V D N D N

Figure 3.4: Analyses of the corpus which are consistent with the language model after strong cross-

situational techniques have been applied to syntax, but which are nonetheless incorrect.

down the possible syntactic categories for from, to, the, and a any further. Figure 3.4 shows consistent

analyses where the and a can be a noun, to can be a determiner, and from can be either a noun or a
determiner.

Cross-situational learning can be applied to semantics much in the same way as syntax. Using the
fracturing technique described in section 3.1, it is possible to enumerate all of the submeanings of the
meaning expressions associated with each utterance in the corpus. These are illustrated in �gure 3.5

Applying weak cross-situational learning techniques, the learner can constrain the possible meanings
of Mary to the intersection of the sets of submeanings for each of the utterances s3, s4, and s5, since
Mary appears in each of these three utterances. Thus Mary must take on one of the meanings ?,
Mary, or TO(x) to be consistent with these utterances. A similar analysis can narrow the possible
meanings of the words a, the, John, walked, from, to, and corner since each of these words appears in
more than one utterance. Figure 3.6 gives the restricted sets of possible meanings derived for these seven
words. Weak cross-situational learning cannot constrain the meaning of the remaining words since they
each appear only in a single utterance in the corpus. Note that for this example, weak cross-situational
learning applied to semantics has succeeded in uniquely determining the meaning of only two words,
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John 
ed from the dog. John walked from a corner. Mary walked to the corner.

FLEE(John;FROM(dog)) WALK(John;FROM(corner)) WALK(Mary;TO(corner))
John John Mary

FLEE(x;FROM(dog)) WALK(x;FROM(corner)) WALK(x;TO(corner))
FLEE(x;FROM(y)) WALK(x;FROM(y)) WALK(x;TO(y))
FLEE(x; y) WALK(x; y) WALK(x; y)
FLEE(John;FROM(x)) WALK(John;FROM(x)) WALK(Mary;TO(x))
FLEE(John; x) WALK(John; x) WALK(Mary; x)
FROM(dog) FROM(corner) TO(corner)
FROM(x) FROM(x) TO(x)
dog corner corner

? ? ?

Mary ran to a cat. John slid from Bill to Mary.

RUN(Mary;TO(cat)) SLIDE(John; [Path FROM(Bill);TO(Mary)]) [Path FROM(Bill);TO(x)]
Mary SLIDE(x; [Path FROM(Bill);TO(Mary)]) [Path x;TO(Mary)]
RUN(x;TO(cat)) SLIDE(John; [Path FROM(x);TO(Mary)]) [Path FROM(Bill); x]
RUN(x;TO(y)) SLIDE(John; [Path FROM(Bill);TO(x)]) [Path FROM(x);TO(y)]
RUN(x; y) SLIDE(John; [Path x;TO(Mary)]) [Path x;TO(y)]

RUN(Mary;TO(x)) SLIDE(John; [Path FROM(Bill); x]) [Path FROM(x); y]
RUN(Mary; x) SLIDE(x; [Path FROM(y);TO(Mary)]) [Path x; y]
TO(cat) SLIDE(x; [Path FROM(Bill);TO(y)]) FROM(Bill)
TO(x) SLIDE(x; [Path y;TO(Mary)]) FROM(x)
cat SLIDE(x; [Path FROM(Bill); y]) Bill

? SLIDE(John; [Path FROM(x);TO(y)]) TO(Mary)
SLIDE(John; [Path x;TO(y)]) TO(x)
SLIDE(John; [Path FROM(x); y]) Mary

SLIDE(John; [Path x; y]) John

SLIDE(x; [Path FROM(y);TO(z)]) SLIDE(x; y)
SLIDE(x; [Path y;TO(z)]) SLIDE(John; x)
SLIDE(x; [Path FROM(y); z])
SLIDE(x; [Path y; z])
[Path FROM(Bill);TO(Mary)]
[Path FROM(x);TO(Mary)]

Figure 3.5: An enumeration of all possible submeanings of the meaning expressions associated with

each utterance in the sample corpus. The meaning of a word must be one of the submeanings of
each meaning expression associated with an utterance containing that word.
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a = ? s2 \ s4
the = ? s1 \ s3
John 2 f?;John;FROM(x)g s1 \ s2 \ s5
Mary 2 f?;Mary;TO(x)g s3 \ s4 \ s5
walked 2 f?;WALK(x; y); cornerg s2 \ s3
from 2 f?;John;FROM(x)g s1 \ s2 \ s5
to 2 f?;Mary;TO(x)g s3 \ s4 \ s5
corner 2 f?;WALK(x; y); cornerg s2 \ s3

Figure 3.6: Weak cross-situational techniques can form these narrowed sets of possible meanings for

the words which appear in more than one utterance in the sample corpus.

namely that a and the both mean ?.

Neither strong cross-situational learning applied to syntax alone, nor weak cross-situational learning

applied to semantics alone, are su�cient to uniquely determine the syntactic categories or meanings
of all of the words in this example. It is possible however, to apply strong cross-situational learning
techniques to this problem, incorporating both syntactic and semantic constraints. This will force a
unique determination of the lexicon. To see this, �rst remember that strong cross-situational syntax
learning has determined that s3 must have either analysis (d) or analysis (g). If s3 took on analysis (d)
then it would have the following structure.

WALK(Mary;TO(corner))

�
�
�
�
�

H
H
H
H
H

Mary

Mary

WALK(x;TO(corner))

�
�
�
�
��

H
H
H
H

HH

walked TO(x)
�� HH

to

TO(x)
the

?

corner

We know that the root node must mean WALK(Mary;TO(corner)) since that is given by observation.
Furthermore, we know that the must mean ?. Since the root meaning contains the symbol TO, which
cannot be contributed by the possible meanings for walk and corner, either the word Mary or the word
to must take on TO(x) as its meaning. Analysis (d) will not allow Mary to mean TO(x) since the
linking rule could not then produce the desired root meaning. Thus to must mean TO(x). Furthermore,
Mary must mean Mary since the root meaning contains the symbol Mary which no other word can
contribute. At this point, since the meanings of both to and the have been determined, the linking rule
then �xes the meaning of the phrase to the to be TO(x). The linking rule can also operate in reverse,
using the known meanings of both Mary and the root utterance to determine that the phrase walked to

the corner must mean WALK(x;TO(corner)). At this point however, the learner can determine that
the linking rule has no way of forming the meaning of walked to the corner out of the known meaning for
to the and the potential meanings for walked and corner. Thus the learner can infer that utterance s3
cannot have analysis (d), and must therefore have analysis (g).

Analysis (g) has the following structure.
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WALK(Mary;TO(corner))

�
�
�
��

H
H
H
HH

Mary

Mary

WALK(x;TO(corner))

�
�
�
�

H
H

H
H

walked

WALK(x; y)
TO(corner)

�
��

H
HH

to

TO(x)
corner

�
�
H
H

the

?
corner

corner

The learner can annotate this structure with the known meaning for the as well as the root meaning. As
before, either the word Mary or the word to must mean TO(x) since no other word can contribute the
symbol TO to the root meaning. Furthermore,Mary cannot mean TO(x) since the linking rule would not
then be able to derive the root meaning. Thus to must mean TO(x). Likewise, Mary must meanMary

since at this point no other word can contribute the necessary symbol Mary to the root meaning.
Inverse linking can then determine that walked to the corner must mean WALK(x;TO(corner)). Under
analysis (g), the only way to derive this meaning, given the possible meanings for its constituent words,
is for walked to mean WALK(x; y) and corner to mean corner.

This type of reasoning has allowed the learner to uniquely determine not only the meanings of the
words Mary, walked, to, the, and corner, but also that to must be a preposition and the must be a
determiner. This rules out the third possible solution to the CSP problem presented earlier implying
that a must be determiner and from cannot be a determiner. Furthermore, s4 must have analysis (g),
s5 cannot have analysis (e), and neither s1 nor s2 can have analysis (d).

Since s4 must have analysis (g), it must have the following structure.

RUN(Mary;TO(cat))

�
�
�
��

H
H

H
HH

Mary

Mary

RUN(x;TO(cat))

�
�
��

H
H
HH

ran

RUN(x; y)
TO(cat)

�
��

H
HH

to

TO(x)
cat

��HH

a

?
cat

cat

Knowing the meaning of the root node, as well as the meanings of the words Mary, to, and a, allows the
learner to uniquely determine that ran must mean RUN(x; y) and cat must mean cat since these are
the only meanings with which the linking rule can produce the desired root meaning.

At this point the learner can analyze s2 in a fashion similar to s3. By an argument analogous to the
one used for s3, the learner can rule out analysis (d), determining that only analysis (g) is consistent.
In doing so, the learner will assign the meanings John to John and FROM(x) to from. Thus from must
be a preposition, s1 must have analysis (g), and s5 must have analysis (i). At this point, FLEE(x; y) is
the only possible meaning for 
ed which will allow s1 to take on the desired root meaning consistent
with analysis (g). Finally, by a similar argument, slid must mean SLIDE(x; [Path x; y]) and Bill must
mean Bill since only these meanings can let the linking rule produce the desired meaning of s5 under
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analysis (i). With this, the learner has completely determined a unique lexicon that is consistent with
the corpus.

While this example is somewhat contrived, it nonetheless illustrates a situation in which the com-
bination of syntactic and semantic reasoning is strictly stronger than either applied in isolation. It is
particularly important to highlight the fact that syntactic reasoning can help constrain semantic choices
and vice versa. The above example demonstrated a continual interplay between syntax and semantics.
The central claim of part I this thesis is that such interplay is crucial to language learning. It is the key
that can unlock the quagmire of the various bootstrapping hypotheses reviewed in section 5.1, showing
that it is not necessary to assume prior language-speci�c knowledge before the onset of the primary phase
of language acquisition. The problem of in�nite regress is thus avoided. While actual child language
acquisition could not proceed according to the overly simplistic linguistic theory utilized in this example,
I conjecture that the process actually performed by children does nonetheless incorporate an interplay
between syntax and semantics using cross-situational techniques interwoven with whatever turns out to
be the correct linguistic theory. The claim that children learn by an interplay of syntactic and semantic
knowledge is fairly uncontroversial. The claim that they utilize a cross-situational strategy to do so
is, however, a controversial conjecture. The next chapter attempts to explore the consequences of this
conjecture for more substantial linguistic theories.



Chapter 4

Three Implementations

To test the ideas discussed in the previous chapter, I have constructed three systems that incorporate
these ideas into working implementations. Each of these systems applies cross-situational learning tech-
niques to a combination of both linguistic and non-linguistic input. In accord with current hypotheses
about child language acquisition, these systems use only positive examples to drive their acquisition of a
language model. These systems di�er from one another in the syntactic and semantic theory which they
use. Maimra,1 the �rst system constructed, incorporates a �xed context-free grammar as its syntactic
theory, and represents word and utterance meanings using Jackendovian conceptual structures. Maimra
learns both the syntactic categories and meanings of words, given a corpus of utterances paired with
sets of possible meanings. Davra,2 the second system constructed, extends the results obtained with
Maimra by replacing the �xed context-free grammar with a parameterized version of X theory. This
grammar contains two binary-valued parameters which determine whether the language is head-initial
or head-�nal, and SPEC-initial or SPEC-�nal. Given a corpus much like that given toMaimra, Davra
learns not only a lexicon similar to that learned by Maimra, but the syntactic parameter settings as
well. Davra has been successfully applied to very small corpora in both English and Japanese, learning
that English is head-initial while Japanese is head-�nal. Kenunia,3 the third system constructed, incor-
porates the most substantial linguistic theory of the three systems. This theory closely follows current
linguistic theory and is based on the DP hypothesis, base generation of VP-internal subjects, and V-to-I
movement. Kenunia incorporates a version of X theory with sixteen binary-valued parameters that
supports both adjunction as well as head-complement structures. More importantly,Kenunia supports
movement and empty categories. Two types of empty categories are supported: traces of movement, and
non-overt words and morphemes. Kenunia incorporates several other linguistic subsystems in addition
to X theory. These include �-theory, the empty category principle (ECP), and the case �lter. The current

version of Kenunia has learned both the parameter settings of this theory, as well as the syntactic cate-
gories of words, given an initial lexicon pairing words to their �-grids. Future work will extend Kenunia
to learn these �-grids from the corpus, along with the syntactic categories and parameters, instead of
giving them to Kenunia as prior input. In the longer term, I also plan to integrate the language learning
strategies fromMaimra, Davra, and Kenunia with the visual perception mechanisms incorporated in
Abigail

4 and discussed in part II of this thesis. The remainder of this chapter will discuss Maimra,
Davra, and Kenunia in greater detail.

1
Maimra, or `xnin, is an Aramaic word which means word.

2
Davra, or `xac, is an Aramaic word which does not mean word.

3
Kenunia, or `ipepw, is an Aramaic word which means conspiracy. In Kenunia, the linguistic principles conspire to

enable the learner to acquire language.
4
Abigail is not an Aramaic word.

47
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S ! NP VP

S ! fCOMPg S

NP ! fDETg N fSjNPjVPjPPg�

VP ! fAUXg V fSjNPjVPjPPg�

PP ! P fSjNPjVPjPPg�

AUX ! fDOjBEjfMODALjTOjffMODALjTOgg HAVEg fBEgg

Figure 4.1: The context-free grammar used by Maimra. The categories enclosed in boxes indicate
the heads of each phrase type. The distinction between head and complement children is used by

the linking rule to form the meaning of a phrase out of the meaning of its constituents.

4.1 Maimra

Maimra (Siskind 1990) was constructed as an initial test of the feasibility of applying cross-situational
learning techniques to a combination of linguistic and non-linguistic input in an attempt to simul-
taneously learn both syntactic and semantic information about language. Maimra is given a �xed
context-free grammar as input; grammar acquisition is not part of the task faced by Maimra. Though
the grammar is not hardwired into Maimra, and could be changed to attempt acquisition experiments
with di�erent input grammars, all of the experiments discussed in this chapter utilize the grammar given
in �gure 4.1. This grammar was derived from a variant of X theory by �xing the head-initial and SPEC-
initial parameters, and adding rules for S, S, and AUX. Note that this grammar severely overgenerates
due to the lack of subcategorization restrictions. The grammar allows nouns, verbs, and prepositions to
take an arbitrary number of complements of any type. Maimra is nonetheless able to learn despite the
ensuing ambiguity.

Maimra incorporates a semantic theory based on Jackendovian conceptual structures. Words,
phrases, and complete utterances are assigned fragments of conceptual structure as their meaning. The
meaning of a phrase is derived from the meanings of its constituents by the linking rule discussed in
section 3.1. To reiterate brie
y, the linking rule operates as follows. The linking rule is mediated by a
parse tree. Lexical entries provide the meanings of terminal nodes. Each non-terminal node has a distin-

guished child called its head. The remaining children are called the complements of the head. Unlike the

puzzle given in section 3.3, the grammar given toMaimra indicates the head child for every phrase type.
Figure 4.1 depicts this information by enclosing the head of each phrase with a box. The meaning of a
non-terminal is derived from the meaning of its head by substituting the meaning of the complements
for the variables in the meaning of the head. Complements whose meaning is the distinguished symbol ?
are ignored and not linked to a variable in the head. Maimra restricts all complement meanings to be
variable-free so that no variable renaming is required.

In addition to the grammar, Maimra is given a corpus of linguistic and non-linguistic input. Fig-
ure 4.2 depicts one such corpus given toMaimra. This corpus consists of a sequence of nine multi-word
utterances, ranging in length from two to seven words. Each utterance is paired with a set of between
three and six possible meanings.5 Maimra is not told which of the meanings is the correct one for each

5As described in Siskind (1990), Maimra is not given this set of meanings directly but instead derives this set from
more primitive information using perceptual rules. These rules state, for instance, that seeing an object at one location
followed by seeing it later at a di�erent location implies that the object moved from the �rst location to the second. The
corpus actually given to Maimra pairs utterances with sequences of states rather than potential utterance meanings. Thus
Maimra would derive GO(x; [Path FROM(y);TO(z)]) as a potential meaning for an utterance if the state sequence paired
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utterance, only that the set contains the correct meaning as one of its members. Thus the corpus given
to Maimra can exhibit referential uncertainty in mapping the linguistic to the non-linguistic input.

Maimra processes the corpus, utterance by utterance, producing a disjunctive lexicon formula for
each utterance meaning-set pair. No information other than this lexicon formula is retained after pro-
cessing an utterance. This processing occurs in two phases, corresponding to the parser and linker from
the architecture given in �gure 2.1. In the �rst phase, Maimra constructs a disjunctive parse tree
representing the set of all possible ways of parsing the input utterance according to the given context-
free grammar. Appendix A illustrates sample disjunctive parse trees which are produced by Maimra
when processing the corpus from �gure 4.2. Structural ambiguity can result both from the fact that
the grammar is ambiguous, as well as the fact that Maimra does not yet have unique mappings from
words to their syntactic categories. Initially,Maimra assumes that each word can assume any terminal
category. This introduces substantial lexical ambiguity and results in corresponding structural ambigu-
ity. As Maimra further constrains the lexicon, she can rule out some word-to-category mappings and
thus reduce the lexical ambiguity when processing subsequent utterances. Thus parse trees tend to have
less ambiguity as Maimra processes more utterances. This is evident in the parse trees depicted on
pages 210 and 213 which are also illustrated below. WhenMaimra �rst parses the utterance Bill ran to

Mary, the syntactic category of ran is not yet fully determined. Thus Maimra produces the following
disjunctive parse tree for this utterance.

(OR (S (OR (NP (N BILL) (NP (N RAN)))

(NP (N BILL) (VP (V RAN)))

(NP (N BILL) (PP (P RAN))))

(VP (V TO) (NP (N MARY))))

(S (NP (N BILL))

(OR (VP (V RAN) (PP (P TO)) (NP (N MARY)))

(VP (V RAN) (VP (V TO)) (NP (N MARY)))

(VP (V RAN) (NP (N TO)) (NP (N MARY)))

(VP (OR (AUX (DO RAN))

(AUX (BE RAN))

(AUX (MODAL RAN))

(AUX (TO RAN))

(AUX (HAVE RAN)))

(V TO)

(NP (N MARY)))

(VP (V RAN)

(OR (NP (DET TO) (N MARY))

(NP (N TO) (NP (N MARY)))))

(VP (V RAN) (VP (V TO) (NP (N MARY))))

(VP (V RAN) (PP (P TO) (NP (N MARY)))))))

As a result of processing that utterance, in conjunction with the constraint provided by prior utterances,
Maimra can determine that ran must be a verb. Thus when parsing the subsequent utterance Bill ran
from Mary, which nominally has the same structure, Maimra can nonetheless produce the following
smaller disjunctive parse tree by taking into account partial information acquired so far.

with that utterance contained a state in which BE(x;AT(y)) was true, followed later by a state where BE(x;AT(z)) was
true. This primitive theory of event perception is grossly inadequate and largely irrelevant to the remainder of the learning
strategy. For the purposes of this chapter, Maimra's perceptual rules can be ignored and the input to Maimra viewed
as comprising a set of potential meanings associated with each utterance. The ultimate goal is to base future language
acquisition models on the theory of event perception put forth in part II of this thesis, instead of the simplistic rules used
by Maimra.
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BE(person1;AT(person3)) _ BE(person1;AT(person2))_
GO(person1; [Path ]) _GO(person1;FROM(person3))_

GO(person1;TO(person2)) _GO(person1; [Path FROM(person3);TO(person2)])
John rolled.

BE(person2;AT(person3)) _ BE(person2;AT(person1))_
GO(person2; [Path ]) _GO(person2;FROM(person3))_

GO(person2;TO(person1)) _GO(person2; [Path FROM(person3);TO(person1)])
Mary rolled.

BE(person3;AT(person1)) _ BE(person3;AT(person2))_
GO(person3; [Path ]) _GO(person3;FROM(person1))_

GO(person3;TO(person2)) _GO(person3; [Path FROM(person1);TO(person2)])
Bill rolled.

BE(object1;AT(person1)) _ BE(object1;AT(person2))_
GO(object1; [Path ]) _GO(object1;FROM(person1))_

GO(object1;TO(person2)) _GO(object1; [Path FROM(person1);TO(person2)])
The cup rolled.

BE(person3;AT(person1)) _ BE(person3;AT(person2))_
GO(person3; [Path ]) _GO(person3;FROM(person1))_

GO(person3;TO(person2)) _GO(person3; [Path FROM(person1);TO(person2)])
Bill ran to Mary.

BE(person3;AT(person1)) _ BE(person3;AT(person2))_
GO(person3; [Path ]) _GO(person3;FROM(person1))_

GO(person3;TO(person2)) _GO(person3; [Path FROM(person1);TO(person2)])
Bill ran from John.

BE(person3;AT(person1)) _ BE(person3;AT(object1))_
GO(person3; [Path ]) _GO(person3;FROM(person1))_

GO(person3;TO(object1)) _GO(person3; [Path FROM(person1);TO(object1)])
Bill ran to the cup.

BE(object1;AT(person1)) _ BE(object1;AT(person2))_
GO(object1; [Path ]) _GO(object1;FROM(person1))_

GO(object1;TO(person2)) _GO(object1; [Path FROM(person1);TO(person2)])
The cup slid from John to Mary.

ORIENT(person1;TO(person2))_
ORIENT(person2;TO(person3))_
ORIENT(person3;TO(person1))

John faced Mary.

Figure 4.2: A sample corpus presented to bothMaimra and Davra. The corpus exhibits referential

uncertainty in that each utterance is paired with several possible meanings. Neither Maimra nor

Davra are told which is the correct meaning, only that one of the meanings is correct.
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(OR (S (NP (N BILL) (VP (V RAN))) (VP (V FROM) (NP (N JOHN))))

(S (NP (N BILL))

(OR (VP (V RAN) (PP (P FROM)) (NP (N JOHN)))

(VP (V RAN) (VP (V FROM)) (NP (N JOHN)))

(VP (V RAN) (NP (N FROM)) (NP (N JOHN)))

(VP (OR (AUX (DO RAN))

(AUX (BE RAN))

(AUX (MODAL RAN))

(AUX (TO RAN))

(AUX (HAVE RAN)))

(V FROM)

(NP (N JOHN)))

(VP (V RAN)

(OR (NP (DET FROM) (N JOHN))

(NP (N FROM) (NP (N JOHN)))))

(VP (V RAN) (VP (V FROM) (NP (N JOHN))))

(VP (V RAN) (PP (P FROM) (NP (N JOHN)))))))

Maimra uses a derivative of the CKY parsing algorithm (Kasami 1965, Younger 1967) to produce
the disjunctive parse tree. Thus the size of disjunctive parse tree will always be polynomial in the length
of the input. The resulting tree may appear larger when printed since a given entry from the well-
formed substring table may be a constituent of several other entries and thus may be printed multiple
times. Nonetheless, the internal representation of the parse tree is factored to retain its polynomial
size. This factored representation stores only a single copy of each subtree in the disjunctive parse tree,
even though that subtree may be referenced multiple times. Furthermore, the fracturing process, to be
described shortly, preserves the factored representation so that the resulting disjunctive lexicon formulae
are kept to a manageable size.

After constructing the disjunctive parse tree for an input utterance, Maimra applies the linking rule
in reverse to produce a disjunctive lexicon formula. This second phase is a variant of the fracturing
procedure described in section 3.1. Recall that the fracturing procedure recursively applies to two ar-
guments: a parse tree fragment and a meaning expression fragment. For the base case, when the parse
tree fragment consists of a terminal node, a lexical entry proposition is formed, pairing the word asso-
ciated with that node with the syntactic category labeling that node and the input meaning expression
fragment. For example, fracturing the parse tree fragment (p to) with the meaning expression frag-
ment (from ?0) would produce the lexical entry proposition (definition to p (from ?0)). For the
inductive case, Maimra forms all possible ways of assigning subexpressions of the meaning expression
fragment as the meaning of each complement constituent of the parse tree fragment. Maimra then
replaces those subexpressions in the original meaning expression fragment with variables, and assigns
the resulting meaning expression fragment to the head constituent of the parse tree fragment. Each con-
stituent of the parse tree fragment is then recursively fractured with its associated meaning expression
fragment to yield a disjunctive lexicon formula. For each possible subexpression assignment, Maimra
forms a conjunction of the lexicon formulae returned for each constituent. Maimra then forms a disjunc-
tion of these conjunctions. Thus the recursive fracturing process produces a formula with alternating
layers of disjunction and conjunction.

This process of constructing a disjunctive lexicon formula is best illustrated by way of an example.
Consider fracturing the following parse tree:
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S

�
��

H
HH

NP
John

VP

�
�
H
H

V
faced

NP
Mary

along with the meaning expression ORIENT(John;TOWARD(Mary)). This meaning expression has
four subexpressions, namely ?, John, Mary, and TOWARD(Mary). Each of these can be assigned
as a potential meaning for John. Thus, the following reduction illustrates the �rst step in producing a
disjunctive lexicon formula.6

fracture(John faced Mary;ORIENT(John;TOWARD(Mary)))
+

(i) (John = ?^ fracture(faced Mary;ORIENT(John;TOWARD(Mary))))_
(ii) (John = John^ fracture(faced Mary;ORIENT(x;TOWARD(Mary))))_
(iii) (John =Mary ^ fracture(faced Mary;ORIENT(John;TOWARD(x))))_
(iv) (John = TOWARD(Mary) ^ fracture(faced Mary;ORIENT(John; x)))

In case (i), when John is assigned ? as its meaning, Mary can then obviously take on as its meaning
any of the four subexpressions of ORIENT(John;TOWARD(Mary)).

fracture(faced Mary;ORIENT(John;TOWARD(Mary)))
+

(Mary = ?^ faced = ORIENT(John;TOWARD(Mary)))_
(Mary = John^ faced = ORIENT(x;TOWARD(Mary)))_
(Mary =Mary ^ faced = ORIENT(John;TOWARD(x)))_
(Mary = TOWARD(Mary) ^ faced = ORIENT(John; x))

In case (ii), when John is assigned John as its meaning,Mary can take on three possible meanings.

fracture(faced Mary;ORIENT(x;TOWARD(Mary)))
+

(Mary = ?^ faced = ORIENT(x;TOWARD(Mary)))_
(Mary =Mary ^ faced = ORIENT(x;TOWARD(y)))_
(Mary = TOWARD(Mary) ^ faced = ORIENT(x; y))

In case (iii), when John is assigned Mary as its meaning, Mary can take on two possible meanings.

fracture(faced Mary;ORIENT(John;TOWARD(x)))
+

(Mary = ?^ faced = ORIENT(John;TOWARD(x)))_
(Mary = John^ faced = ORIENT(x;TOWARD(y)))

6The astute reader may wonder why a �fth possibility is not considered where the entire expres-

sion ORIENT(John;TOWARD(Mary)) is associated with John and the meaning of faced Mary is taken to be simply
the variable x. Maimra adopts an additional restriction that does not allow a head to take on a meaning that is simply a

variable, thus ruling out this �fth possibility. This restriction can be interpreted as stating that every head must contribute
some semantic content to the meaning of its parent phrase. The motivation for this restriction is simply computational
e�ciency. Adopting this restriction reduces the ambiguity introduced during the fracturing process. The downside of this
restriction is that it rules out the standard analysis of the preposition of. In this analysis, of it is treated simply as a case
marker such that the meaning of the phrase of NP would be taken to be the same as the meaning of the NP. This requires
taking the meaning of of to be simply the variable x, in contradiction to the above restriction.
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In case (iv), when John is assigned TOWARD(Mary) as its meaning,Mary can also take on two possible
meanings.

fracture(faced Mary;ORIENT(John; x))
+

(Mary = ?^ faced = ORIENT(John; x))_
(Mary = John^ faced = ORIENT(x; y))

Putting this all together yields the following disjunctive lexicon formula.

(or (and John = ?
(or (and Mary = ?

faced = ORIENT(John;TOWARD(Mary)))
(and Mary = John

faced = ORIENT(x;TOWARD(Mary)))
(and Mary =Mary

faced = ORIENT(John;TOWARD(x)))
(and Mary = TOWARD(Mary)

faced = ORIENT(John; x))))
(and John = John

(or (and Mary = ?
faced = ORIENT(x;TOWARD(Mary)))

(and Mary =Mary

faced = ORIENT(x;TOWARD(y)))
(and Mary = TOWARD(Mary)

faced = ORIENT(x; y))))
(and John =Mary

(or (and Mary = ?
faced = ORIENT(John;TOWARD(x)))

(and Mary = John

faced = ORIENT(x;TOWARD(y)))))
(and John = TOWARD(Mary)

(or (and Mary = ?
faced = ORIENT(John; x))

(and Mary = John

faced = ORIENT(x; y)))))

The fracturing procedure actually used by Maimra is slightly more complex than the above pro-
cedure, in two ways. First, it is extended to accept disjunctive parse trees. Fracturing a disjunctive
parse tree fragment with a meaning expression fragment is simply the disjunction of the result of frac-
turing each disjunct in the disjunctive parse tree fragment with the same meaning expression fragment.
Maimra memoizes recursive calls to fracture to mirror the factored nature of the disjunctive parse
tree in the resulting disjunctive lexicon formula.7 Second, recall that to handle referential uncertainty,
each input utterance is associated with a set of meaning expressions. Maimra fractures each meaning
expression for the current utterance with the same disjunctive parse tree for this utterance to produce a
disjunctive lexicon formula. A disjunction is formed from these formulae to yield the aggregate lexicon
formula for the input utterance.

7Memoizationeliminatesmultiple evaluations of a function called with the same arguments. The �rst time f(x1; : : : ; xn)
is called, the function is evaluated and the result stored in a table. Subsequent calls to f with with the same argu-
ments x1; : : : ; xn retrieve this result from the table instead of reevaluating f(x1; : : : ; xn). An additional bene�t of memo-
ization is that multiple evaluations of a function called with the same arguments return pointers to the same copy of the
result thus creating a factored representation.
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John: [N] person1
Mary: [N] person2
Bill: [N] person3
cup: [N] object1
the: [NSPEC] ?
rolled: [V] GO(x; [Path ])
ran: [V] GO(x; y)
slid: [V] GO(x; [Path y; z])
faced: [V] ORIENT(x;TO(y))
from: [N,V,P] FROM(x)
to: [N,V,P] TO(x)

Figure 4.3: The lexicon inferred by Maimra for the corpus from �gure 4.2. Note that Maimra has
converged to a unique word-to-meaning mapping for each word in the corpus, as well as a unique

word-to-category mapping for all but two words.

Appendix A illustrates the series of disjunctive parse trees and disjunctive lexicon formulae produced
by Maimra when processing the corpus from �gure 4.2. Each lexicon formula produced corresponds
to a single input utterance. Maimra determines the lexicon corresponding to the corpus by forming a
conjunction of these lexicon formulae, conjoining this with a conjunction of monosemy formulae to imple-
ment the monosemy constraint, and �nding satisfying truth assignments to the lexical entry propositions
in the entire resulting formula. Maimra actually performs this process repeatedly as each new utterance
arrives. Even though there may be multiple consistent lexica during intermediate stages when only part
of the corpus has been processed, nonetheless it may be possible to rule out some word-to-category or
word-to-meaning mappings. Maimra can use this partial information to reduce the size of structures
produced when processing subsequent input utterances. I have already discussed how reduced lexical
ambiguity can result in smaller disjunctive parse trees. Furthermore, reduced structural ambiguity,
combined with ruling out impossible word-to-meaning mappings, can result in the production of smaller
disjunctive lexicon formulae. This is evident when comparing the lexicon formula corresponding to Bill

ran to Mary on page 211 with the lexicon formula corresponding to Bill ran from John on page 214.
Though the input utterances are similar, and are paired with analogous meaning expressions, the latter
utterance yields a smaller disjunctive lexicon formula due to the knowledge gleaned from prior input.

Using the above techniques, Maimra can successfully derive the lexicon shown in �gure 4.3 from
the corpus given in �gure 4.2. Inferring this lexicon requires several minutes of elapsed time on a
Symbolics XL1200TM computer. Thus Maimra converges to a unique and correct meaning for every
word in the corpus as well as a unique and correct syntactic category for all but two of the words in the
corpus.

From a theoretical perspective, the lexicon produced by Maimra is independent of the order in
which the corpus is processed. This is because each utterance in the corpus is processed to yield a
lexicon formula which characterizes those lexica that are consistent with that utterance. Maimra

simply conjoins those formulae to �nd a lexicon consistent with the entire corpus. As a practical matter,
however, the computational complexity of the learning algorithm is a�ected by the processing order,
since Maimra uses previously acquired knowledge to reduce the size of subsequently generated lexicon
formulae. Maimra works best if the corpus is ordered so that shorter utterances and utterances with
fewer unknown words appear �rst.
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4.2 Davra

DespiteMaimra's success in inferring a lexicon from semantically annotated input utterances, the theory
underlying Maimra su�ers from two severe limitations that preclude it from being a complete account
of child language acquisition. First,Maimra relies on a �xed context-free grammar being available prior
to the lexicon acquisition process. It appears unreasonable to assume that children know the grammar
of their native language before they learn the syntactic categories or meanings of any words. More likely,
they must learn the grammar either along with, or subsequent to, the lexicon. Second, Maimra has
been tested only on an English corpus. A satisfying theory of language acquisition must be capable of
acquiring any human language, not just English.

In attempt to rectify the above two shortcomings, a second system called Davra (Siskind 1991)
was constructed. Davra is very similar to Maimra in many ways. Both represent word, phrase, and
utterance meanings using the same form of Jackendovian conceptual structure meaning expressions.
Furthermore, both receive input in the same form: a corpus of utterances, each paired with a set of
potential meanings for that utterance. Thus Davra, like Maimra, learns in the presence of referential
uncertainty. Davra di�ers from Maimra however, in basing its syntactic theory on a parameterized

version of X theory rather than on a �xed context-free grammar given as input to the learner. Davra's
innate endowment includes the formulation of X theory, embodied in the acquisition model, but does not
include the parameter settings particular to the language being learned. Davra acquires the parameter
settings from the corpus, simultaneously with the lexicon, using the cross-situational learning architec-
ture described in section 2.1. Thus Davra learns three things|parameter settings, word-to-category
mappings, and word-to-meaning mappings|without any prior knowledge of such parameter settings or
mappings.

The variant of X theory incorporated into Davra can be summarized as follows.

1. The syntactic structures constructed by Davra are binary branching. Each node has zero, one,
or two children. Nodes with no children are terminals. Nodes with one or two children are
head-complement structures. One child of a head-complement structure is always the head. The
remaining child, if present, is its complement.

2. Davra labels each node with one of the category labels X, XSPEC,
8 X, or XP, where X is one of

the base categories N, V, P, or I.

3. Terminals must labeled with either XSPEC or X for some base category X.

4. Non-terminal nodes take on one of the following �ve con�gurations

X

X

XP
�� HH

XSPEC X

XP
�� HH

X XSPEC

X
�� HH

X YP

X
�� HH

YP X

(a) (b) (c) (d) (e)

where X and Y freely range over the base categories. The nodes enclosed in boxes indicate which
child is taken to be the head of a head-complement structure as far as the linking rule is concerned.

8The linguistic literature has wa�ed somewhat over the term SPEC, sometimes considering it to be a category label,

or class of category labels such as determiner, and other times taking it to be the name of a position, where determiners,
among other things, can appear. Davra takes XSPEC to be a class of category labels|NSPEC, for instance, being a
synonym for DET. This is a somewhat outdated approach to X theory. In contrast,Kenunia takes SPEC to be a position,
namely the non-adjunct sister to a node of bar-level one. This approach is more in line with the variant of X theory
presented in Chomsky (1985). Davra should not be considered a priori incorrect because of this. Many current authors

still adopt the former position (cf. Lightfoot 1991 pp. 186{187).
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A given language will allow only a subset of the above �ve structures however. One binary-valued
parameter determines whether the language is SPEC-initial or SPEC-�nal. Structure (c) is not
allowed if the language is SPEC-initial, while structure (b) is not allowed if the language is SPEC-
�nal. A second binary-valued parameter determines whether the language is head-initial or head-
�nal. Structure (e) is not allowed if the language is head-initial, while structure (d) is not allowed
if the language is head-�nal.

5. The top-level node corresponding to an input utterance must be labeled IP.

6. The category label ISPEC is taken to be a synonym for the category label NP.

7. The category label I is taken to be a synonym for the category label VP.

In addition to the above variant of X theory, Davra incorporates the linking rule given in section 3.1.
This linking rule is simpli�ed in Davra since, unlikeMaimra's syntactic theory, Davra's syntactic the-
ory allows only binary branching structures.9 Furthermore, likeMaimra, Davra adopts two additional
restrictions First, the meaning expressions associated with complements must be variable-free. This
eliminates the need to rename variables during the linking process. Second, the meaning expression as-

sociated with a head must not be simply a variable. With these restrictions, the linking rule incorporated
into Davra can be summarized by the following �ve cases
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�
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�( )
�� HH

 
�(x)

�

��HH
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?
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where the nodes enclosed in boxes indicate the heads of head-complement structures. Case (i) is used for
unary branching structures of type (a). Both cases (ii) and (iv) apply to SPEC-�nal structures like (c)
and head-initial structures like (d), while both cases (iii) and (v) apply to SPEC-initial structures like (b)
and head-�nal structures like (e). For example, in English, a head-initial language, case (ii) would be used
to derive the meaning of from John, namely FROM(John), from FROM(x) and John, the meanings
of from and John respectively. Likewise, case (v) would be used to derive the meaning of the book,
namely book, from ? and book, the meanings of the and book respectively. In Japanese, a head-�nal
language, case (ii) would be used to derive the meaning of Taro kara, namely FROM(Taro), from Taro

and FROM(x), the meanings of Taro and kara respectively.

The nodes in the syntactic tree constructed by Davra correspond to substrings of the input utter-
ance in the standard fashion that disallows crossovers. Davra allows non-overt nodes, i.e. nodes that
correspond to empty substrings. Both terminal and non-terminals nodes may be non-overt. Davra

enforces the constraint that overt terminal nodes correspond to a single word of the input utterance.
Furthermore, Davra enforces several additional constraints designed to reduce the size of the search
space in the underlying language acquisition task. First, nodes labeled X must be overt. Second, non-
overt nodes must be assigned ? as their meaning. Stated informally, this means that non-overt phrases
cannot contribute substantive semantic content to an utterance. Finally, any node labeled XP cannot
be assigned ? as its meaning.

For reasons of simplicity, Davra does not generate disjunctive lexicon formulae the way Maimra
does. Instead, the design of Davra directly follows the architecture from �gure 2.2. Davra retains the
entire corpus in memory and tries to �nd a lexicon and a set of parameter settings that are consistent
across this corpus. Davra employs straightforward blind search to �nd this lexicon and set of parameter

9Restricting the linking rule to binary branching structures is not a severe limitation. Most current variants of X theory
adopt the binary branching restriction as it appears to be su�cient to describe the requisite syntactic phenomena.
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settings. The motivation behind the design of Davra was not the construction of an accurate process
model of child language acquisition. Davra's use of blind search over a corpus retained in memory is not
a plausible process model. It does, however, allow one to determine whether a linguistic theory of the
form described above, namely parameterized X theory, o�ers enough constraint to uniquely determine
the lexicon and parameter settings when supplied with a very small corpus. Only once it has been
determined that the theory is su�ciently constraining does it make sense to explore more e�cient and
plausible search algorithms.

The linguistic theory incorporated in Davra can be phrased as a simple nondeterministic program
that describes the search space for possible lexica and parameter settings. This program, which I will
call fracture, operates in a top-down divide-and-conquer fashion where nondeterministic choices are
made at each divide-and-conquer step. Backtracking through these nondeterministic choices allows
straightforward though ine�cient search for possible solutions. The divide-and-conquer steps interleave
a top-down parsing strategy with the fracturing procedure discussed in section 3.1.

One such nondeterministic path through the divide-and-conquer sequence is illustrated in �gure 4.4.
For each divide-and-conquer step, fracture is called with three arguments: a phrase, a meaning expres-
sion to be associated with that phrase, and a category label for that phrase. At the top level, fracture

is called with an input utterance paired nondeterministically with one of its possible meanings. The
input utterance is labeled with the category IP.

Several nondeterministic choices are made at each recursive call to fracture. First, the phrase is
split into two subphrases. For example, the input phrase The cup slid from John to Mary might be
split into the subphrases The cup and slid from John to Mary. The split point is chosen nondeter-
ministically. Second, the SPEC-initial parameter is nondeterministically set to true. This allows the
�rst subphrase to be assigned the category ISPEC, which is treated as NP, and the second subphrase
to be assigned the category I, which is treated as VP. Since I is the head of IP, some subexpression
of GO(cup; [Path FROM(John);TO(Mary)]) is nondeterministically selected, namely cup, and asso-
ciated with the �rst subphrase, as this subphrase is the complement. The subexpression cup is then
extracted from GO(cup; [Path FROM(John);TO(Mary)]), leaving a variable behind, to yield the ex-
pression GO(x; [Path FROM(John);TO(Mary)]). This meaning expression fragment is then assigned to
the head subphrase. The fracture routine is then recursively called on each of the two subphrases with
their associated meaning expression fragments and category labels. This recursive process terminates
when fracture is called on a singleton word. In this case, a lexical entry is created mapping the word
to the given meaning expression and syntactic category label. Figure 4.4 illustrates two such mappings:
one from the word the to the category label NSPEC and meaning expression ?, and one from the word
cup to the category label N and meaning expression cup.

The fracture routine makes many nondeterministic choices at each step. For pedagogical purposes,
�gure 4.4 illustrates a path containing the correct choices, though many alternative paths contain incor-
rect choices that are �ltered out by backtracking. Backtracking is initiated by two types of failure. One
type occurs when an attempt is made to set a parameter to a di�erent setting than has already been
made. The linguistic theory incorporated into Davra states that a given language is either head-initial
or head-�nal but not both. The second type occurs when an attempt is made to create a lexical entry
for a word which assigns it a di�erent meaning or syntactic category than it has already been assigned.
This is an embodiment of the monosemy constraint.

The nondeterministic search process just described can be written as a program in nondeterministic
Lisp(Siskind and McAllester 1992). This program is really quite small and modular. An annotated
description of the essential routines in this program is given below. It can be seen that this program
straightforwardly embodies the linguistic theory stated above.

(defun fracture (words category meaning)

(declare (special categories head-initial? spec-initial? lexicon))
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The cup slid from John to Mary.

GO(cup; [Path FROM(John);TO(Mary)])
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Figure 4.4: Davra incorporates a divide-and-conquer search strategy illustrated by this �gure. This
process is embodied in a recursive routine called fracture which takes three arguments: a phrase,

a meaning expression fragment, and a category label. First, the phrase is nondeterministically split

into two subphrases. Next, the meaning expression fragment is nondeterministically split into two
submeanings, one to be assigned to each subphrase. Finally, X theory determines the category

labels to assign to each subphrase given the input category label. Each subphrase is then recursively

fractured with its associated submeaning and category label. The recursion terminates when a single
word is assigned a category and meaning. There may be many possible divide-and-conquer paths due

to nondeterminism. This �gure illustrates just a portion of one such path, the correct one. Davra

enumerates all possible divide-and-conquer paths to �nd those that contain consistent parameter
settings, as well as consistent word-to-category and word-to-meaning mappings, across the entire

corpus.
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The essence of Davra is the routine fracture. Fracture attempts to assign a syntactic category label
and meaning expression fragment to a list of words. The basic strategy is top down: nondeterminis-
tically split words into two phrases, a head and a complement; nondeterministically assign part of the
parent meaning to the head and part to the complement according to the linking rule; and recursively
call fracture on both the head and complement. This routine uses four pieces of information global
to the language acquisition process: the base categories that project into the X system, a 
ag indi-
cating whether the language is head-initial? or �nal, another 
ag indicating whether the language is
spec-initial? or �nal, and the lexicon, a map from words to their syntactic categories and meanings.

(if (and (consp category) (eq (second category) 'p) (eq meaning '?)) (fail))

The above statement implements the third additional restriction, namely that a node labeled XP cannot
have ? as its meaning.

(if (and (null words) (not (eq meaning '?))) (fail))

The above statement implements the second additional restriction, namely that non-overt nodes must
be assigned ? as their meaning.

(cond

((equal category '(i spec)) (fracture words '(n p) meaning))

((equal category '(i bar)) (fracture words '(v p) meaning))

There are �ve cases in the fracture routine. The above two cases implement principles 6 and 7 of the
variant of X theory presented on page 55 (that ISPEC is processed as NP and that I is processed as VP).

((and (consp category) (eq (second category) 'bar))

(either

(fracture words (first category) meaning)

The third case handles phrases of type X. A node of category X can be either unary or binary branching.
A nondeterministic choice is made between the two by the either clause. The above statement handles
the case of unary branching.

(let* ((split (split words))

(head (if head-initial? (first split) (second split)))

(complement (if head-initial? (second split) (first split))))

(if (null head) (fail))

(if (null complement) (fail))

(let ((complement-meaning (possible-complement-meaning meaning)))

(fracture complement `(,(member-of categories) p) complement-meaning)

(fracture

head category (possible-head-meaning complement-meaning meaning))))))

The above statement implements the second alternative for phrases of type X. It nondeterministically
splits the phrase into two halves, one to become the head, the other to become the complement. The
choice of which half becomes the head, and which the complement, is determined by the head-initial?
parameter. Note that the head must not be null, since the �rst additional restriction states that nodes
labeled X must be overt. Furthermore, the complement must not be null, since complements are la-
beled XP, nodes labeled XP cannot have ? as their meaning, and non-overt nodes must mean ?. The
routines possible-complement-meaning and possible-head-meaning implement the linking process
in reverse. Given a parent meaning, they nondeterministically return all possible head meanings and
complement-meanings that can combine to form the parent meaning. They will be described in greater
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detail later. Two recursive calls are made to fracture, one to fracture the complement as a phrase
of the category YP, nondeterministically for some base category Y, and one to fracture the head as a
phrase of category X.

((and (consp category) (eq (second category) 'p))

(let* ((split (split words))

(head (if spec-initial? (second split) (first split)))

(complement (if spec-initial? (first split) (second split))))

(if (null head) (fail))

(let ((complement-meaning (possible-complement-meaning meaning)))

(fracture complement `(,(first category) spec) complement-meaning)

(fracture

head

`(,(first category) bar)

(possible-head-meaning complement-meaning meaning)))))

The fourth case handles phrases of type XP. Like before, it nondeterministically splits the phrase into
two halves, one to become the head, the other to become the complement (in this case actually the
speci�er). The choice of which half becomes the head, and which the complement, is determined by the
spec-initial? parameter. Again, note that the head must not be null, since the �rst additional restric-
tion states that nodes labeled X must be overt. Like before, the parent meaning is nondeterministically
divided into a head meaning and an complement-meaning. Two recursive calls are made to fracture,
one to fracture the complement as a phrase of category XSPEC and one to fracture the head as a phrase
of category X.

((or (and (consp category) (eq (second category) 'spec)) (symbolp category))

(unless (null words)

(unless (null (rest words)) (fail))

(let* ((new-definition (list category (canonicalize-meaning meaning)))

(old-definition (gethash (first words) lexicon)))

(if old-definition

(unless (equal new-definition old-definition) (fail))

(locally-setf (gethash (first words) lexicon) new-definition)))))))

The �nal case handles terminals. According to principle 3 of the variant of X theory presented on
page 55, categories XSPEC and base categories X are terminal. A lexical entry comprising a syntactic
category and meaning is created. If this word already has a di�erent lexical entry then enforce the
monosemy constraint by failing. If a terminal is non-overt no lexical entry is added to the lexicon.

(defun subexpression (expression)

(if (consp expression)

(either expression (subexpression (member-of (rest expression))))

expression))

(defun possible-complement-meaning (parent-meaning)

(either '?
(let ((complement-meaning (subexpression parent-meaning)))

(unless (variable-free? complement-meaning) (fail))

(if (equal complement-meaning parent-meaning) (fail))

complement-meaning)))
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The function subexpression nondeterministically returns some subexpression of an expression. The
function possible-complement-meaning implements half of the inverse linking rule. It returns possible
complement-meanings that can link with an appropriate head meaning to yield the parent-meaning.
Such a complement-meaning can be either ?, or some subexpression of the parent-meaning. Remember
that the linking rule carries two stipulations. First, meanings of complementsmust be variable-free. Thus
complement-meanings containing variables are �ltered out. Second, a head cannot have a meaning which
is just a variable. If the complement-meaning were to be the same as the parent-meaning, then the
head meaning would have to be just a variable. Thus, complement-meanings which are the same as the
parent-meaning are �ltered out.

(defun variable-substitute (subexpression expression variable)

(cond ((equal expression subexpression) (either variable expression))

((consp expression)

(cons (variable-substitute subexpression (car expression) variable)

(variable-substitute subexpression (cdr expression) variable)))

(t expression)))

(defun possible-head-meaning (complement-meaning parent-meaning)

(if (eq complement-meaning '?)
parent-meaning

(let ((head-meaning

(variable-substitute

complement-meaning

parent-meaning

(make-variable (1+ (highest-variable parent-meaning))))))

(if (equal head-meaning parent-meaning) (fail))

head-meaning)))

The function variable-substitute takes a meaning expression and returns a similar expression
where subexpressions of that expression which are equal to subexpression are nondeterministically
either replaced, or not replaced, by a variable. The function possible-head-meaning implements
the other half of the inverse linking rule. It returns possible head-meanings that can link with a
given complement-meaning to yield the parent-meaning. If the complement-meaning is ? then the
head-meaning is the same as the parent-meaning. Otherwise, we nondeterministically substitute a

new variable for occurrences of the complement-meaning within the parent-meaning. Note that since
the linking rule requires that the complement meaning be substituted for some variable in the head
meaning, when doing the nondeterministic inverse substitution of a variable for occurrences of the
complement-meaning in the parent-meaning, we must guarantee that at least one such substitution
has occurred. We must �lter out a head-meaning that is equal to the parent-meaning since a substi-
tution has not occurred.

Davra was presented with the same corpus that was given to Maimra. This corpus is illustrated
in �gure 4.2. This corpus consists of nine multi-word utterances ranging in length from two to seven
words. Each utterance is paired with between three and six possible meaning expressions. Given this
corpus, Davra is able to learn the lexicon and parameter settings given in �gure 4.5. Inferring this
information requires about an hour of elapsed time on a Symbolics XL1200TM computer. Note that
Davra determines that the linguistic theory allows the corpus to have only one consistent analysis
where the language is head-initial and SPEC-initial. Furthermore, the theory and corpus together fully
determine most of the lexicon. Davra �nds unique mappings for all words to their associated meaning
expressions and for all but two words to their associated syntactic categories. For example, the linguistic
theory generates the corpus only under the assumption that cup is a noun which means object1 and slid
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Head Initial, SPEC Initial.

John: [N] person1
Mary: [N] person2
Bill: [N] person3
cup: [N] object1
the: [NSPEC] ?
rolled: [V] GO(x; [Path ])
ran: [V] GO(x; y)
slid: [V] GO(x; [Path y; z])
faced: [V] ORIENT(x;TO(y))
from: [N,V,P] FROM(x)
to: [N,V,P] TO(x)

Figure 4.5: The lexicon and parameter settings inferred by Davra for the corpus from �gure 4.2.

Note that Davra has uniquely determined that English is head-initial and SPEC-initial. Further-

more, Davra has converged to a unique word-to-meaning mapping for each word in the corpus, as
well as a unique word-to-category mapping for all but two words.

is a verb which means GO(x; [Path y; z]). The only language-speci�c informationwhich Davra is not able
to converge on is the syntactic category of the words from and to. It is easy to see that Davra can never
uniquely determine that prepositions like from and to should be labeled with category P since according
to the linguistic theory incorporated into Davra, words labeled N and V can co-occur anywhere words
labeled with category P can appear. This is a shortcoming of Davra that can be addressed by the
addition of case theory and c-selection principles. Case theory includes a case �lter which states that
overt noun phrases must receive case, an abstract property assigned by certain lexical items to certain
complement positions. The case �lter would not allow from to be labeled with category N since nouns
do not assign case to their complement and thus the noun phrase John in Bill ran from John would
not be assigned case. C-selection principles state that certain categories must appear as complements
of other speci�c categories. For example, a verb phrase must appear as the complement of an in
ection.
This principle would not allow from to be labeled with category V since from John does not appear as
the complement of an in
ectional element in Bill ran from John. The next section will discuss Kenunia,
a system built subsequent to Davra, that incorporates such additional linguistic constraints.

As discussed previously, one of the main objectives for Davra was to construct a single linguistic
theory that could acquire lexica and parameter settings for di�erent languages. To test the cross-
linguistic applicability of Davra, the corpus in �gure 4.2 was translated from English to Japanese,
retaining the same non-linguistic annotation.10 The resulting linguistic component of the Japanese
corpus is illustrated in �gure 4.6. Note that the syntax of Japanese di�ers from English in a number of
key ways. First, Japanese is a head-�nal language; prepositions follow their complements (and are thus
really postpositions) and the underlying word order is subject-object-verb. Second, Japanese subjects
are generally marked with the word ga. Third, the Japanese word tachimukau takes a prepositional
phrase complement (i.e. Eriko ni) while the corresponding English word faced takes a direct object
(i.e. faced Mary).

When presented with this Japanese corpus, Davra produced the lexicon and parameter settings given
in �gure 4.7. Processing this corpus took about twelve hours of elapsed time on a Symbolics XL1200TM

computer. Note that Davra produced essentially the same result for the Japanese corpus as for the

10I would like to thank Linda Hershenson, Michael Caine, and Yasuo Kagawa, who graciously performed this translation

for me.
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Taro ga korogashimashita.

Eriko ga korogashimashita.

Yasu ga korogashimashita.

Chawan ga korogashimashita.

Yasu ga Eriko ni hashirimashita.

Yasu ga Taro kara hashirimashita.

Yasu ga chawan ni hashirimashita.

Chawan ga Taro kara Eriko ni suberimashita.

Taro ga Eriko ni tachimukau.

Figure 4.6: The linguistic component of a sample Japanese corpus presented to Davra. This corpus

is a translation of the English corpus given in �gure 4.2. The non-linguistic component of the
Japanese corpus is identical to that of the English corpus.

English corpus despite the syntactic di�erences between the two languages. ThusDavra determined that
Japanese was head-�nal but SPEC-initial, accounting for the postpositional and verb-�nal properties.
Davra was not hindered by the presence of ga, and by assigning it the meaning expression ?, determined
that its meaning was outside the realm of the Jackendovian semantic representation used.11 Just as for
the English corpus, Davra determines unique word-to-meaning mappings for all words in the Japanese
corpus, as well as unique word-to-category mappings for all but two words in that corpus. Davra

exhibits the same limitations in Japanese as in English and is unable to narrow the possible syntactic
categories assigned to prepositions like kara and ni. Notice however, that Davra does determine that
tachimukau does not incorporate a path in its meaning representation (i.e. ORIENT(x; y)), while faced
does (i.e. ORIENT(x;TO(y))), accounting for the di�erent argument structure of these two words.

Thus Davra has been successful as an initial attempt to demonstrate cross-linguistic language ac-
quisition. Davra has simultaneously learned syntactic parameter settings, and a lexicon mapping words
to their syntactic categories and meanings, with no prior information of that type, for very small corpora
in two di�erent languages.

As was the case forMaimra, the language model produced by Davra does not depend on the order
of the utterances in the corpus since Davra simply �nds all language models consistent with the entire
corpus. Again however, the complexity of the search task can heavily depend on the order in which the
utterances are presented to Davra. The search space grows intractably large if the corpus is ordered

so that earlier utterances have many consistent language models that are �ltered out only by latter
utterances.

4.2.1 Alternate Search Strategy for Davra

As discussed previously, one of the unsatisfying aspects of Davra is its use of blind search across the
entire corpus retained in memory. For just this reason, this is not a plausible process model for child
language acquisition. An initial experiment was undertaken to explore more plausible alternative learning
strategies within the same linguistic theory used by Davra. A di�erent top-level search strategy was
built for Davra that retained the same underlying parsing mechanism. This experiment was attempted
only for the English corpus. Furthermore, for this experiment, Davra was given the correct parameter
settings as input and asked to learn only the lexicon.

11Davra assigns the category VSPEC to ga. This is probably not linguistically accurate but nonetheless is consistent

with the limited variant of X theory incorporated into Davra.
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Head Final, SPEC Initial.

Taro: [N] person1
Eriko: [N] person2
Yasu: [N] person3
chawan: [N] object1
ga: [VSPEC] ?
korogashimashita: [V] GO(x; [Path ])
hashirimashita: [V] GO(x; y)
suberimashita: [V] GO(x; [Path y; z])
tachimukau: [V] ORIENT(x; y)
kara: [N,V,P] FROM(x)
ni: [N,V,P] TO(x)

Figure 4.7: Davra inferred this lexicon and set of parameter settings when processing the Japanese

utterances from �gure 4.6 when paired with the non-linguistic input from �gure 4.2. Davra has

correctly determined that Japanese is a head-�nal language. Furthermore, as in �gure 4.5, Davra has
converged on a single correct meaning for all words in the corpus as well as a single correct category

label for all but two words. Note that Davra has determined that the word ga has meaning outside
the realm of Jackendovian conceptual structures and that tachimukau does not incorporate a path,

in contrast to faced which does.

The alternate search strategy employed is weaker than strong cross-situational learning. In this
strategy, Davra processes the input utterances one by one, retaining only two types of information
between utterances: the current hypothesized lexicon and sets of previously tried inconsistent hypotheses.
Once Davra processes an utterance, all information about that utterance is discarded, save the above
two types of information. Davra starts out with the empty lexicon. When processing each input
utterance, Davra searches for an extension to that lexicon that allows the current utterance to meet
the constraints imposed by the linguistic theory and non-linguistic input. The extension must obey the
monosemy constraint, i.e. new words can be assigned an arbitrary lexical entry but words encountered
in previous utterances must be interpreted according to the lexical entries already in the lexicon. There
may be several di�erent extensions, i.e. several di�erent assignments of lexical entries to novel words,
which are consistent with the current utterance. In this case, Davra arbitrarily picks only one consistent
extension. IfDavra is successful in extending the lexicon to account for the new utterance, the extension
is adopted, the utterance discarded, and processing continues with the next utterance. (The extended

lexicon might be the same as the previous lexicon if the input utterance does not contain novel words
and can be parsed with the existing lexicon.)

More often, Davra is unsuccessful in �nding a consistent extension, as would happen if Davra
previously selected the wrong extension, thus making incorrect hypotheses about lexical entries. In this
case, Davra attempts to �nd a small subset of the lexicon that is inconsistent with the current utterance.
Such a subset of the lexicon is termed a nogood because it rules out any superset of that subset as a
potential hypothesized lexicon. In particular, Davra �nds a nogood N such that no extension of N
allows the current utterance to be parsed, yet removing any single lexical entry fromN yields an N 0 which
can be extended to parse the current utterance. A nogood that has this property is called a minimal

nogood. Davra constructs minimal nogoods by a simple linear process when the current lexicon cannot
be extended to parse the input utterance. Davra starts out taking the entire current lexicon as the
initial nogood. Lexical entries are removed from this initial nogood one by one and the resulting nogood
tested to see whether it can be extended to parse the input utterance. If it can, the lexical entry just
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dropped is put back in the initial nogood. Otherwise, it is discarded. It is easy to see that this linear
process will produce a minimal nogood with the two aforementioned properties.

Two things are then done with the nogood just constructed. First, it is saved on a list of discovered
nogoods. Whenever, Davra later extends the lexicon, the extended lexicon is checked to see that it is
not a superset of any previously created nogood. Extensions that are supersets of some nogood are not
considered. In this way Davra is guaranteed not to make the same mistake twice. Second, one lexical
entry is selected arbitrarily from the current nogood. This lexical entry is removed from the current
lexicon and a new attempt is made to extend the resulting lexicon to parse the current input utterance.

The revised search strategy used by Davra is similar in many ways to Mitchell's (1977) version space
learning algorithm. Mitchell's algorithm was originally formulated for the concept learning problem, a
more general task than language acquisition. In concept learning, the learner is presented with a stream
of instances from some instance space. Each input instance is labeled as either an positive or negative
instance of the concept to be learned. A concept is a total predicate C such that C(x) returns true if x
is an instance of the concept and false otherwise. Concepts are chosen from a �nite set C called the
concept space. The task faced by the concept learner is to select those C 2 C such that C(x) is true
for each positive instance in the training set and false for each negative instance in the training set.
Such a concept is said to cover the training set. Though general concept learning allows both positive
and negative instances to appear in the input, I consider here only the restricted problem which utilizes
positive input instances, since only that portion is relevant to the comparison with the search strategy
used byDavra. Mitchell's version space algorithm operates as follows. First, a concept C0 is called more
general than a concept C if for all x in the instance space, C(x)! C

0(x). Likewise, a concept C0 is called
more speci�c than a concept C if for all x in the instance space, C0(x)! C(x). As Mitchell's algorithm
processes the instance one by one, it maintains a set S of concepts that satis�es two properties. First,
each concept C 2 S must cover the set of instances processed so far. Second, for each concept C 2 S
there cannot be a more speci�c concept C0 2 C that also covers the set of instances processed so far.
These properties are met by initializing S to contain the most speci�c concepts in C and updating S
after processing each instance x by replacing those C 2 S for which C(x) returns false with the most
speci�c generalizations C0 of C where C0(x) returns true.

During the operation of Mitchell's algorithm, the target concept must always be more general than
every element of S. Furthermore, any concept that is strictly less general than some element of S can
be ruled out as a potential target concept. The set S can be seen as a border, dividing the concept
space C into two regions, one containing potential target concepts, the other containing those concepts
ruled out as potential target concepts. The ability for S to rule out potential concepts is analogous

to the set of nogoods used by Davra's revised search strategy. The analogy can be made explicit as
follows. Each utterance paired with its non-linguistic input is an instance of the concept to be learned,
where concepts are language models. A language model returns true for an instance if some extension
of that model allows the instance to be parsed. One language model is more general than another if
the former is a subset of the latter. The set of nogoods maintained by Davra corresponds to S with
one minor variation: S contains the most speci�c concepts which cover the input while a nogood is a
most general concept which does not cover the input. The set of nogoods maintained by Davra thus
constitutes one side of the border of the region bounding potential target concepts while S constitutes
the other side. Modulo these di�erences, this border can be considered a frontier, which we can take
to be on the same side of the border as in Mitchell's algorithm. Mitchell's algorithm uses the frontier
to constrain the region of potential target concepts. Davra however, uses the frontier only to rule out
potential target concepts. For reasons of e�ciency, Davra maintains a less tight frontier than does
Mitchell's algorithm, ruling out fewer potential target concepts. This less tight frontier is the result of
the following di�erences between Davra and Mitchell's algorithm. First, Mitchell's algorithm initializes
the frontier to contain all of the most speci�c concepts in C. Davra's initial frontier consists of a single
concept, the current language model. Second, Mitchell's algorithm replaces all elements of the frontier
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with their generalizations when those elements do not cover an input instance. Davra replaces only
one element of the frontier, namely the current language model, with its generalizations, when it does
not cover an input instance. Finally, when an element of the frontier does not cover an input instance,
Mitchell's algorithm replaces it with all of the most speci�c generalizations which do cover the input
instance. Davra replaces such an element with only one most speci�c generalization which covers the
input instance.

The aforementioned strategy was applied to the English corpus from �gure 4.2. Since this strategy
is weaker than strong cross-situational learning, the corpus is too short to allow Davra to converge to
a correct lexicon. In the absence of a larger corpus, the existing corpus was repeatedly applied as input
to the alternate strategy until Davra was able to make a complete pass through the corpus without
needing to retract any lexical entries. Davra required two passes through the corpus in �gure 4.2 for
convergence and produced the same lexicon as shown in �gure 4.5 as output. This strategy required
only a few minutes of elapsed time on a Symbolics XL1200TM computer.

Note that, as formulated above, this strategy simply �nds a single consistent lexicon. It does not
determine that the linguistic theory and corpus imply a unique solution. One could extend this technique
to determine all solutions by temporarily ruling out each solution as it was found and continuing the
search for further solutions. This is done by considering each solution to be a nogood. No further
solutions can be found when the empty nogood is produced. While it may be expensive to determine all
solutions, a variant of this technique can be used to determine whether or not the learner has converged
to a unique solution by simply checking whether a single additional solution exists. Also note that
unlike the original implementation of Davra, the rate of convergence of this revised search strategy is
dependent on the order in which utterances are processed. Future work will attempt to quantify the
sensitivity of this search strategy to corpus ordering.

4.3 Kenunia

Like Maimra, Davra also su�ers from a number of shortcomings that limit its viability as a complete
theory of child language acquisition. Accordingly, I have constructed a third system, Kenunia that
attempts to address some of these shortcomings.

4.3.1 Overview of Kenunia

The following summarizes the limitations in Davra addressed by Kenunia.

� Davra's syntactic theory is speci�ed by setting two binary-valued parameters: head-initial/�nal

and SPEC-initial/�nal. Thus except for lexical di�erences, Davra can support only four distinct
language types. InKenunia, the analog of the head-initial/�nal and SPEC-initial/�nal parameters
vary on a category by category basis, increasing the possible parametric diversity of languages to be
learned. Furthermore, since Kenunia supports base adjunction, additional parameters specify the
adjunction order, again on a category by category basis. The Kenunia syntactic theory is speci�ed
by setting sixteen binary-valued parameters, supporting 65,536 distinct possible languages types
to be learned, independent of lexical variation.

� The syntactic theory incorporated into Davra is little more than X theory. Kenunia instead
incorporates a much more substantial linguistic theory including X theory, movement, �-theory,
case theory, and the empty category principle (ECP). While the variant of X theory incorporated
into Davra supports only head-complement structures over the categories N, V, P, and I, the
variant incorporated into Kenunia supports both head-complement structures, as well as free
base adjunction, over the categories N, V, P, D, I, and C. Furthermore, the syntactic theory used
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by Kenunia incorporates a number of current linguistic notions, such as VP-internal subjects, the
DP hypothesis, and V-to-I movement.

� Davra supports only a weak notion of empty category. Davra allows a terminal node to be non-
overt so long as it does not contribute any semantic content to the resulting utterance. Kenunia
extends this capacity to provide for both non-overt words, as well as movement and its ensuing

traces. Kenunia incorporates the general notion of an empty terminal, a terminal with no overt
phonological content. Kenunia supports two types of empty terminals: traces which are bound by
an antecedent arising frommovement, and zeros, words or morphemes which are not phonologically
overt but nonetheless contain the same full range of linguistic information as other overt elements.
Thus unlike inDavra, inKenunia a language has an inventory of zeros, each of which has a speci�c
syntactic category and contributes speci�c semantic content to utterances in which it appears. A
severe problem facing any theory of language acquisition is the need to explain how children can
learn the inventory of non-overt elements and their linguistic features. Furthermore, one must also
explain how children learn in the presence of movement. This clearly holds for uncontroversial
forms of movement such as Wh-movement. It is exacerbated by the current trend in linguistics to
postulate radical forms of movement and numerous non-overt elements. VP-internal subjects and
V-to-I movement are two examples of such radical forms of movement, while the Larson/Pesetsky
analysis of the ditransitive is an example that requires the child to learn non-overt prepositions
that bear speci�c lexical features. While Kenunia cannot currently handle all such phenomena,
the long-term objective is to tackle this problem head on and develop a theory that can explain
language learning in the presence of movement and non-overt elements.

� Davra, like Maimra, represents word and utterance meanings using Jackendovian conceptual
structures. The semantic theory used byMaimra and Davra relates the meaning of an utterance
to the meanings of its constituent words via a linking rule based on substitution. Part II of
this thesis will discuss many of the shortcomings of both the Jackendovian representation and its
associated linking rule. Basing a theory of language acquisition on such a questionable semantic
theory renders the language acquisition theory suspect. The ultimate goal of this research is to
develop a comprehensive theory of language acquisition using the semantic representation to be
discussed in part II of this thesis as its basis. Since that representation is not yet fully formulated,
Kenunia adopts a temporary stopgap measure. It uses �-theory as its semantic representation.
The rationale behind this move is simple. Basing the theory of language acquisition on the weakest
possible, least controversial, semantic theory can yield a more robust theory of language acquisition.
The fewer assumptions one makes about the semantic theory, the less likely the possibility that
the theory need be retracted as a result of falsifying some semantic assumption.

Maimra and Davra represented word and utterance meanings as conceptual structure fragments.
The meaning of John might be person1, while the meaning of walked might be GO(x; [Path ]). The link-
ing rule would combine these two fragments to yield GO(person1; [Path ]) as the meaning of John walked.
Kenunia instead represents word meanings via two components: a referent and a �-grid. The referent
of a word is simply a token denoting the object to which that word refers. For example, the referent of
the word John might be person1 while the referent of the word cup might be object1. Words such as
the, walk, and slide which do not refer to anything are assigned ? as their referent.

A �-grid denotes the argument taking properties of a word. Conceptually, a word assigns a distinct �-
role to each of its arguments. The �-grid speci�es which �-role is assigned to which argument. Formally,
a �-grid consists of a set of �-assignments, each �-assignment being a �-role paired with a complement

index, an integer denoting the argument to which that �-role is to be assigned. Words such as the,
John, and cup which do not take any arguments would have an empty �-grid. An intransitive verb
such as walk would have fTheme : 1g as its �-grid. This indicates that walk assigns one �-role, namely
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Theme, to its external argument. More formally, the notation Theme : 1 speci�es that the complement
of the bar-level \1" projection of the terminal node associated with the word walk is assigned the �-
role Theme. Likewise, the �-grid for a transitive verb such as slide might be fTheme : 0;Agent : 1g
indicating that the �-role Theme is assigned to the internal argument while Agent is assigned to the
external argument. An internal argument is the complement of a bar-level \0" projection while an
external argument is the complement of a bar-level \1" projection. Using complement indices to denote
argument positions, instead of the terms `internal' and `external', keeps �-theory independent of the
decision as to the number of bar-levels used by X theory.

The referent and �-grid components of a word are orthogonal. A given word may have just a referent,
just a �-grid, both, or neither. Typically however, all words other than nouns will have ? as their referent,
and only verbs and prepositions will have non-empty �-grids.

Kenunia represents utterance meanings via a �-map that is itself a set of �-mappings. A �-mapping
is similar to a �-assignment except that a referent replaces the complement index. Thus the meaning
of John walked would be represented in Kenunia as the �-map fTheme : person1g. This �-map is
derived from the �-grid for walked and the referent of John by a process called �-marking. Intuitively,
the �-marking rule combines fTheme : 1g, the �-grid for walked, with person1, the referent for John to
form the �-map fTheme : person1g for John walked. A more formal speci�cation of this process will be
given later. In Kenunia, �-marking plays the role previously played by the linking rule used inMaimra
and Davra. Thus in Kenunia, the corpus consists of utterances paired with a �-map instead of a set
of meaning expressions. Furthermore, the lexicon maps words to their referents and �-grids instead of
meaning expression fragments.

Figure 4.8 illustrates a corpus that has been presented as input to Kenunia. This corpus contains
the same nine utterances that were presented to Maimra and Davra except that �-maps replace the
meaning expressions as the non-linguistic input paired with each input utterance. Each utterance in the
corpus is paired with a single �-map. Like the corpora presented to both Maimra and Davra, this
corpus also exhibits referential uncertainty. The mechanism used by Kenunia to represent referential
uncertainty di�ers from that used byMaimra and Davra. InMaimra and Davra, each utterance was
paired with a set of meaning expressions, only one of which constituted the actual meaning. The same
uncertainty mechanism could have been incorporated into Kenunia. This would have entailed pairing
each utterance with a set of �-maps, only one of which corresponded to the �-map generated by �-theory
for the utterance. Kenunia however, supports uncertainty in pairing linguistic with non-linguistic input
by an even more general mechanism. Kenunia requires only that the actual �-map produced by applying
�-theory to the input utterance be a subset of the �-map given as the non-linguistic input paired with
that utterance. The referential uncertainty implied by a set of distinct �-maps can be emulated by this
more general mechanism by simply forming a single �-map that is the union of the individual distinct
�-maps.

4.3.2 Linguistic Theory Incorporated in Kenunia

The linguistic theory incorporated into Kenunia can be speci�ed more precisely via the following prin-
ciples.

1. X theory

tree structure: The linguistic input to Kenunia consists of a sequence of utterances, each utter-
ance being a string of words. Kenunia associates a set of nodes with each utterance. Nodes
are organized in a parent-child relationship. Each node except for one has a distinguished
node called its parent. The one node without a parent is called the root. Each node also has
a (possibly empty) ordered set of nodes called its children. A node with no children is called
terminal. Every node is associated with a (possibly empty) substring of the input utterance.
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fAgent : person1;Theme : person1g
John rolled.

fAgent : person2;Theme : person2g
Mary rolled.

fAgent : person3;Theme : person3g
Bill rolled.

fTheme : object1g
The cup rolled.

fAgent : person3;Theme : person3;Goal : person2g
Bill ran to Mary.

fAgent : person3;Theme : person3;Source : person1g
Bill ran from John.

fAgent : person3;Theme : person3;Goal : object1g
Bill ran to the cup.

fTheme : object1;Source : person1;Goal : person2g
The cup slid from John to Mary.

fAgent : person1;Patient : person1;Goal : person2g
John faced Mary.

Figure 4.8: A sample corpus presented to Kenunia.

Nodes associated with empty substrings are called empty.12 The substrings associated with
nodes obey the following two constraints. First, the substring associated with a non-terminal
node must equal the concatenation of the substrings of its children, taken in order. Second,
the substring associated with the root must equal the input utterance.

binary branching: Each node has at most two children.

categories: Each node is labeled with a category, which is one of the symbols N, V, P, D, I, or C.
Kenunia is written so that the set of possible categories is a parameter of the linguistic theory.
Currently, the value of this parameter is given as input toKenunia|it is not acquired. Future
work may explore the feasibility of acquiring the set of possible category labels, i.e. treating
category labels as integers and trying sets of ever increasing cardinality until one is found
that is consistent with the input.

bar-level: Each node is labeled with a bar-level, an integer between 0 and M . A node labeled
with bar-level 0 is called a minimal node, while a node labeled with bar-level M is called a
maximal node. Here again, Kenunia is written so that M is a parameter of the linguistic
theory. Currently however, the value of M is �xed at 2 and not acquired. As for categories,
future work may explore the feasibility of acquiring the value for M , instead of taking it as a
�xed input value.

head-complement and adjunction structures: Each node is either a head-complement struc-
ture or an adjunction structure. In head-complement structures, one distinguished child is
designated the head while the remaining children (if any) are the complements of the head.13

12Empty terminal nodes are typically called empty categories in linguistic parlance. This introduces an ambiguity in
the term category, sometimes referring to a label for a node, for instance N, V, or P, and sometimes referring to a node
bearing a particular label. In this formulation, I use the distinct terms category and node for these two di�erent uses and

thus what are typically called empty categories are here referred to as empty (terminal) nodes.
13The terminology used here di�ers somewhat from current linguistic parlance. According to my use of the term head,

the head of an X2 node is its X1 child, while in standard usage it is the X0 child of the X1 node. Furthermore, I use
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The category of a head-complement structure must be the same as the category of its head,
while the bar-level of a head-complement structure must be one greater than the bar-level of
its head. For an adjunction structure, one distinguished child is designated the head while the
remaining children are the adjuncts of the head. An adjunction structure must have at least
one adjunct. Both the category and bar-level of an adjunction structure must be the same
as its head. Complements must be maximal nodes, while adjuncts must be either minimal
or maximal nodes. This principle, combined with the principle of binary branching, implies
that all non-terminal nodes have one of the following �ve con�gurations.

Xi+1

Xi

Xi+1

��HH

Xi YM

Xi+1

��HH

YM Xi

Xi

�� HH

Xi Y0=M

Xi

�� HH

Y0=M Xi

(a) (b) (c) (d) (e)

phrase order parameters: For each category X, and each 0 � i < M , the language sets the
binary-valued parameter [Xi initial/�nal] to either initial or �nal. In languages which
set [Xi initial], a head labeled Xi must be the �rst child of a head-complement structure, while
in languages which set [Xi �nal], it must be the last child. Furthermore, for each category X
and each 0 � i � M the language sets the binary-valued parameter [adjoin Xi left/right]
to either left or right. In languages which set [adjoin Xi right], a head labeled Xi must
be the �rst child of an adjunction structure, while in languages which set [adjoin Xi left], it
must be the last child.14 Note that head-complement and adjunction order are speci�ed on a
per category and per bar-level basis.15

C-selection: Any language speci�es a �nite set C of pairs of the form hX;Yi where X and Y are
categories. If hX;Yi 2 C we say that X c-selects Y. If X c-selects Y then two restrictions apply.
First, any node labeled X0 must have a single complement labeled Y. This restriction is called
c-selection. Second, any node labeled YM must be the complement of a node labeled X0. This
restriction is called inverse c-selection. Kenunia is written so that the set C of c-selection
relations is a parameter of the linguistic theory. Currently, the value of this parameter is given
as input to Kenunia|it is not acquired. All of the work described in this chapter assumes
a speci�c set C of c-selections, namely that D c-selects N,16 I c-selects V, and C c-selects I.
Future work may explore more basic principles which govern the acquisition of C.

terminals: Terminals must be either minimal or maximal nodes.

roots: Root nodes must be maximal.

2. Move-�

Kenunia does not construct an explicit D-structure representation and thus does not represent
movement as a correspondence between such a representation and S-structure. Instead, Kenunia
operates in a fashion similar to Fong's (1991) parser and constructs only an S-structure represen-
tation that is annotated with co-indexing relations between antecedents and their bound traces.
Kenunia associates a set M of movement relations with the set of nodes constructed for each in-
put utterance. Each movement relation is an ordered pair of nodes. IfM contains the pair h�; �i,

a generalization of the term complement to refer to the siblings of heads bearing any bar-level. Standard usage applies
the term complement only to siblings of X0 heads, and instead applies the term SPEC to siblings of X1 heads. My
non-standard use of terminology a�ords greater uniformity in stating the theory described here.
14Note that this formulation of parameter settings is independent of the binary branching principle.
15With six categories andM = 2 there are nominally 30 binary-valued parameters. Additional principles and restrictions

reduce this to 16 non-degenerate parameters.
16This is in accord with the DP hypothesis.
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we say that � is the antecedent of � and that � is bound by �.17 Movement relations are subject
to the following constraints.

(a) Bound nodes must be empty terminals. Bound empty terminals are called traces.

(b) Nodes can bind only one trace.18

(c) Traces must have only one antecedent.

(d) Antecedents must be either minimal or maximal nodes. This means that only minimal and
maximal nodes move.

(e) The head of an adjunction structure cannot be a trace. This means that a base generated
adjunction structure cannot move without its adjuncts.

(f) The head of an adjunction structure cannot be an antecedent. This means that no node can
adjoin to a moved node.

(g) Nodes cannot bind themselves. This is part of what is known as the i-within-i constraint.

(h) Antecedents must have the same category and bar-level as their bound traces.

(i) Antecedents must m-command their bound traces. This is a variant of ECP, the empty
category principle.

(j) Antecedents and their bound traces cannot be siblings.

(k) Antecedents must not be �-marked. The concept of �-marking will be de�ned below. This
means that a node cannot move to a �-marked (argument) position.

3. �-theory
Kenunia incorporates the following variant of �-theory. As discussed previously, each word has
an associated referent and �-grid. A �-marking rule is used to construct a �-map corresponding
to an entire utterance from the referents and �-grids associated with its constituent words. More
precisely, a lexicon maps (possibly empty) strings of words to their associated referent and �-grid.
Each terminal is associated with some (possibly empty) substring of the input utterance. Every
terminal, except for traces, is assigned both a referent and a �-grid, in addition to a category
and bar-level. This includes both overt as well as empty terminals. The referent and �-grid for
a terminal is taken from the lexical entry for the (possibly empty) substring of words associated
with that terminal.

Intuitively, the �-marking rule combines a �-assignment such as Theme : 1, with a referent such
as person1 to form the �-mapping Theme : person1. The �-map for an utterance will contain a
number of such �-mappings, one for each �-assignment in the �-grid of each word in the utterance.
A word or node with a non-empty �-grid is called a �-assigner. �-theory stipulates that each �-

assigner must discharge its �-grid. Discharging a �-grid involves discharging each of its constituent
�-assignments. Discharging a �-assignment (i.e. assigning a �-role) is done by �-marking the ap-
propriate complement of the �-assigner involved. This involves pairing the referent of a particular
word in that complement with the �-role speci�ed by that �-assignment and adding the resulting
�-mapping to the �-map for the utterance. The complement of the �-assigner thus �-marked is
called a �-recipient. �-recipients are said to receive the given �-role.

The �-marking rule incorporates the following constraints.

17I use the terms antecedent and bound here is a much more restricted way than is common in the linguistic literature.
Kenunia does not incorporate any binding theory. The terms are used solely to denote the relation between a moved node

and a trace created by that movement.
18Kenunia currently supports only one type of trace. Kenunia does not currently support parasitic gaps, PRO, pure

variables, or operator-variable structures.
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(a) �-marking is performed at D-structure. This standard assumption has two implications.
First, �-assigners which have moved must discharge their �-grids from their position at D-
structure.19 In other words, antecedents don't discharge their �-grids in situ. Instead they
discharge their �-grids from the location of their bound traces. Second, since �-recipients
receive their �-role in their D-structure position, traces which are �-marked pass on that
�-role to their antecedent.

(b) �-assigners must discharge their �-grids. In other words, if a node assigns a �-role to its
internal argument, for example, then there must be an internal argument to receive that
�-role.

(c) Complements of nodes labeled with non-functional categories must be �-marked. This con-
straint is commonly called the �-criterion. In Kenunia, functional categories are taken to be
those which c-select, namely D, I, and C.

(d) The �-map constructed for an utterance must contain at least one �-mapping.

The �-marking rule can be stated more formally as follows. The ultimate antecedent of a node �
is

� � itself if � is not a trace or

� the ultimate antecedent of the antecedent of � if � is a trace.

The ultimate referent of a node � is

� the ultimate referent of the antecedent of � if � is a trace,

� the ultimate referent of the complement of � if � is a head-complement structure and the
category of � is a c-selecting category,

� the ultimate referent of the head of � if � is either an adjunction structure or a head-
complement structure where the category of � is not a c-selecting category, or

� the referent of � if � is a terminal and not a trace.

Every non-antecedent node � whose ultimate antecedent is a terminal must discharge the �-grid
associated with that ultimate antecedent. If the �-grid for the ultimate antecedent of � contains
the �-assignment � : i then �nd the node � such that

� � dominates �,

� the bar-level of � is i,

� � is not the head of an adjunction structure, and

� no node which dominates � and is dominated by � is a complement or adjunct,

and form the �-mapping � : � where � is the ultimate referent of the complement of �.

4. Case theory
Kenunia incorporates a variant of the case �lter which states that overt maximal D nodes can
only appear in one of three places: the complement of an I1 node, the complement of a P0 node
and the complement of a V0 node if the V0 node assigns a �-role to its external argument. This
latter restriction is a formulation of Burzio's generalization. The above formulation of the case
�lter assumes that M = 2.

19As stated previously, Kenunia does not create an explicit D-structure representation. Kenunia's implementation
of �-marking, however, operates as if such a representation existed by utilizing movement relations in the S-structure
representation to guide the �-marking process.
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5. Monosemy constraint
A lexicon maps word strings to a unique category, bar-level, referent, and �-grid. The category,
bar-level, referent, and �-grid of terminal nodes (except for traces) must be the those projected by
the lexicon for the substring associated with the terminal node.

4.3.3 Search Strategy

Kenunia uses a variant of the weaker, revised search strategy used by Davra. In this strategy, all
language-speci�c knowledge is maintained as part of a single language model. This language model
contains information both about the lexicon as well as syntactic parameter settings. The language
model consists of a set of propositions. There are six types of proposition, illustrated by the following
examples.

1. category(slide) = V

2. bar-level(slide) = 0

3. referent(slide) = ?

4. �-grid(slide) = fTheme : 1g

5. [I0 initial]

6. [adjoin I0 left]

The �rst four propositions indicate components of the lexical entry for the word slide. Note that the
category, bar-level, referent, and �-grid for a word are represented as four independent propositions in
the language model. The last two propositions indicate parameter settings; in this case the statement
that the language is head-initial for in
ection nodes and that adjuncts adjoin to the left of I0 nodes.

At all times, Kenunia maintains a single set of such propositions that represent the current cumu-
lative hypothesis about the language being learned. The eventual goal is for the initial language model
to consist of the empty set of propositions and to have Kenunia acquire all six types of propositions
representing both parameter settings and the syntactic and semantic properties of words. The current
implementation, however, learns only parameter settings and syntactic categories. Thus, Kenunia is
provided with an initial language model containing propositions detailing the referents and �-grids for
all words, both overt and empty, that appear in the corpus. Kenunia then extends this language

model with propositions detailing the categories and bar-levels of those words, as well as the syntactic
parameter settings.

Kenunia extends the language model by processing the corpus on an utterance by utterance basis.

Each utterance is processed and then discarded. No information, except for the cumulative language
model, is retained after processing an input utterance, other than a set of nogoods to be described
shortly. When processing an input utterance, Kenunia simply tries to �nd a superset of the current
language model that allows the input utterance to be parsed. This superset must be consistent in that
it cannot assign a parameter two di�erent settings, nor can it assign a word two di�erent categories,
bar-levels, referents, or �-grids. This latter restriction is an embodiment of the monosemy constraint.
If Kenunia is successful in �nding a consistent superset of the language model capable of parsing the
input utterance, this superset is adopted as the new language model, and processing continues with the
next utterance in the corpus.

So far, the strategy employed by Kenunia is identical to the revised strategy used by Davra. The
strategies diverge however, when Kenunia is unable to �nd a consistent extension of the language model.
In this situation,Davra would compute a minimal nogood. A nogood is a subset of the current language
model that is inconsistent, i.e. one that cannot be extended to parse the current input. A nogood is
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minimal if it has no proper subset which is a nogood. It turns out that the process used by Davra for
computing a minimal nogood is intractable. Davra repeatedly tries to remove individual propositions
from the nogood, one by one, testing the resulting set for consistency. Although only a linear number
of such consistency tests are performed, they are performed on successively smaller sets of propositions.
The smaller the language model, the more freedom the parser has in making choices to try to extend
that language model to see if it is consistent with the current input. Experience has shown that a
parser can work e�ciently with either an empty language model, or one which is almost fully speci�ed.
In the former case, an empty language model places little restriction on �nding a consistent extension
and thus one will almost always be found. In the latter case, a highly constrained language model will
focus the search and yield very few intermediate analyses. A small but non-empty language model,
however, produces a larger number of analyses that must be checked for consistency. For this reason,
the strategy used by Davra for computing minimal nogoods turns out to be intractable in practice.
Therefore, Kenunia uses nogoods that are not necessarily minimal. When the current language model
cannot be extended to parse the input utterance, Kenunia forms a nogood that contains the following
propositions.

� all of the syntactic parameters

� all category and bar-level propositions for words appearing in the current input utterance

� all category and bar-level propositions for zeros in the current language model

This nogood, while not minimal, is nonetheless a subset of the current language model and is easy to
compute.

Kenunia uses nogoods thus constructed in two ways. First, the nogood is saved to prevent repeatedly
hypothesizing the same language model. Whenever Kenunia attempts to extend a language model, the
extension is checked to ensure that it is not a superset of some previously constructed nogood. Extensions
that are supersets of some nogood are discarded since they are inconsistent with prior input. Note that
Kenunia does not retain the prior input itself to perform this check of consistency. Only the nogood,
the inconsistent language model, is retained to prevent looping. Second, one proposition is selected
arbitrarily from the newly constructed nogood. This proposition is removed from the current language
model and a new attempt is made to extend the resulting language model to parse the current input
utterance.

4.3.4 The Parser

A key step of the above learning strategy is determining whether the current language model is consistent

with the next input utterance. This requires determining whether the language model, either as it stands,
or possibly extended, can parse the input utterance. Kenunia uses a parser whose architecture is similar
to that described by Fong. The parser consists of a cascade of modules. The �rst module generates
potential S-structure representations corresponding to the input utterance. Each subsequent module
can either �lter out structures which violate some principle, or can adorn a structure with additional
information such as �-markings or movement relations. Since such augmentation of structure can be
nondeterministic, the number of structures passed from module to module can both grow as a result
of structure augmentation, and shrink as a result of �ltering. The particular cascade of modules used
in Kenunia is illustrated in �gure 4.9. Note that X theory must come �rst since it is the initial
generator. �-theory must come after Move-� since �-marking is performed at D-structure. �-theory uses
the movement relations produced by Move-� to reconstruct the D-structure representation. The case
�lter depends on Burzio's generalization which requires determining the �-grid of a head. Since a head
trace inherits its �-grid from its antecedent, the case �lter must come after Move-� as well. Since the
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Figure 4.9: The cascade of modules used in Kenunia's parser.

case �lter only rejects structures and doesn't nondeterministically adorn them, it is more e�cient to
place it before �-theory. Thus the cascade order for the parsing modules is �xed.

The variant of X theory incorporated into Kenunia generates in�nitely many potential X structures
corresponding to any given input string. This is because such X structures can repeatedly cascade empty
terminals. Kenunia might therefore never terminate trying to parse an utterance which could not be
parsed with a given language model. Solving this problem in general requires induction. Lacking the
ability to inductively prove that no element of such an in�nite set of S-structures meets the subsequent
constraints, or some meta-level knowledge which would bound the size of the S-structure representation
by a known function of the length of the underlying utterance, Kenunia instead sets a limit k on the
number of empty terminals that can be included in a generated S-structure. This single limit k applies
collectively to both traces and zeros. The implementation allows the limit k to be adjusted. Preliminary
experimentation with di�erent values for k indicate that performance degrades severely when k > 3.
All results reported in this chapter, therefore assume that k = 3. Kenunia uses an iterative deepening
strategy when searching for S-structures which meet the constraints, �rst enumerating those structures
which do not contain any empty terminals, then those which contain one empty terminal, and so forth,
terminating after enumerating structures which contain k empty terminals. Thus while several alternate
analyses for an utterance may meet the constraints imposed by the linguistic theory, Kenunia always
adopts the analysis with the minimal number of empty terminals. It is this analysis which contributes
the necessary extensions to the language model in the search process described previously. There may
however, be several alternate minimal analyses. In this case, an arbitrary one is chosen to extend the
language model.

The X theory module operates essentially as a context-free parser. Kenunia generates a context-free
grammar corresponding to an instantiation of the aforementioned variant of X theory with the parameter
settings in the current language model. For example, the grammar would contain the rule

D1 ! D0 NM

if the language model contained the parameter [D0 initial].20 Alternatively, it would contain the rule

D1 ! NM D0

if the language model contained the parameter [D0 �nal]. Given such a context-free grammar, the
X theory module uses a variant of the CKY algorithm to generate S-structures. The particular memo-
ization strategy used allows each variant structure to be retrieved in constant time once the well-formed
substring table has been constructed in O(n3) time.

One feature which distinguishes this parser from the parser described by Fong is that it can operate
with an incomplete language model. The learning algorithm in which it is embedded must determine
whether a given language model can be extended to parse a given utterance, and if so, what the necessary
extension is. If, for example, the language model does not set either the [D0 initial] or the [D0 �nal]
parameter, then the grammar can simply contain both of the above rules. Since however, any given
language must set the parameter one way or the other, a hypothetical analysis for an utterance could
never be correct if one subphrase was generated by one setting, and another by the opposite setting.

20Kenunia doesn't actually generate a context-free grammar; rather the parser directly uses the parameter settings. The

operation of the parser is most easily explained, however, as if it utilized an intermediate grammar.
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This requires that the X theory module check the output of the CKY parser to guarantee that each
structure produced is generated by a consistent set of parameter settings. The necessary extensions
to the language model can be recovered by examining a structure output by the �nal module in the
cascade. The language model might also contain incomplete word-to-category and word-to-bar-level
mappings. These are handled by treating such words as lexically ambiguous in the CKY algorithm.
Here again, since Kenunia must ultimately enforce the monosemy constraint, a hypothetical analysis
for an utterance could never be correct if some word appeared more than once in that utterance with
di�erent category or bar-level assignments. The X theory module must check the structures produced
for such inconsistencies as well.

The cascaded parser architecture has the property that the X theory module produces numerous
structures that are ultimately �ltered out by later modules in the cascade. Since asymptotically, the
processing time is proportional to the number of intermediate structures generated, it is useful to fold
as much of the constraint imposed by the later modules into the CKY-based structure generator. There
is a limit to how much can be done along these lines however. Much of the constraint o�ered by the
latter modules depends on non-local structural information. By its very nature, a context-free parser
can enforce only local constraints on the structures it generates. There are however, two components

of �-theory which are essentially local and thus can be folded into the context-free structure generator.
These are the �-criterion and the requirement that all nodes discharge their �-grid. Coupled with the
c-selection requirements, these two components can be reformulated as the following pair of constraints.
A node Xi must have a complement if both i = 0 and X c-selects, or if the �-grid of the ultimate
head of the node contains a �-assignment with complement index i. Likewise, a node Xi must not
have a complement if the �-grid of the ultimate head of the node does not contain a �-assignment with
complement index i and X does not c-select. These constraints can be encoded by adding features ��i
to the categories Xi in the context-free grammar. For example, the grammar would contain the rules

V1[+�0]! V0[+�0] D
M

V1[��0]! V0[��0]

but not the rules

V1[��0]! V0[��0] D
M

V1[+�0]! V0[+�0]:

Ground context-free rules can be generated by enumerating instances of such rule schemas, for all possible
unspeci�ed feature assignments, subject to the constraint that the feature assignments of a node must
match those of its head.

So far, only the above constraints have been folded into the context-free CKY-based structure gener-
ator. There would be substantial algorithmic bene�t if all of the remaining modules could be folded in
as well. If this could be accomplished then there would never be any need to enumerate the structures
generated by the context-free grammar, since the parser as a whole is used only as a recognizer, to
determine whether an utterance is consistent with a given language model. Such recognition could be
performed in polynomial time, irrespective of whether the language model was complete or incomplete,
notwithstanding the need for consistency checks on the generated structures as discussed previously. This
would allow e�cient computation of minimal nogoods since with a CKY-based recognizer there would
be no performance penalty for smaller language models over larger ones. Even if some per-structure
�ltering was required, as is the case for consistency checks, folding more into the generator, enabling it
to producing fewer structures which violate subsequent �lters, makes the process of computing smaller
nogoods more feasible.
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4.3.5 Additional Restrictions

Even after folding parts of �-theory into the context-free S-structure generator, the resulting generator
can still produce a large number of intermediate structures. A manageable number of structures is
produced when the language model is complete. In such cases, the linguistic theory overgenerates only
slightly, with subsequent modules �ltering out practically all of the structures generated. Smaller lan-
guage models however, generate an astronomical number of intermediate structures. While the linguistic
theory may, in principle, be able to �lter out all such intermediate structures, it has never succeeded in
doing so in practice. Thus for pragmatic reasons, some additional restrictions are adopted that further
constrain the structures generated. Both X theory and Move-� are restricted. Most of the restrictions
on X theory apply to adjunction. These include the following.

1. The bar-level of the head of an adjunction structure must be the same as the bar-level of its
adjunct. In other words, a node can adjoin only to a node of the same bar-level.

2. Minimal nodes that are the head of an adjunction structure must bear the category label I. In
other words, the only minimal node that can be adjoined to is I0.

3. Minimal adjunct nodes must bear the category label V. In other words, the only minimal node
that can be an adjunct is V0.

4. Maximal nodes that are the head of an adjunction structure must be labeled either N or V. In
other words, the only maximal nodes that can be adjoined to are NP and VP.

5. Maximal adjunct nodes must be labeled either P or C. In other words, the only maximal nodes
that can be adjuncts are PP and CP.

Two further restrictions apply to X theory that do not relate to adjunction.

1. Complements of nodes bearing bar-level 1 must bear the category label D. In other words, speci�ers
must be DPs.

2. The root must bear the category label C. In other words, utterances must be CPs and not other
maximal nodes such as DPs or PPs.

3. Terminals must be either empty or singleton word strings. Kenunia cannot currently handle
idioms, or terminals that correspond to more that one word.

All of these restrictions are folded into the context-free grammar used by the X structure generator. With
these restrictions, the number of intermediate structures generated is far more manageable. Additionally,
several restrictions are imposed on Move-�.

1. Minimal antecedents must bear the category label V. In other words, the only minimal node that
can move is V0.

2. Maximal antecedents must not bear a c-selected category label. In other words, c-selected nodes
such as NP, VP, and IP don't move.

Fong's parser implicitly adopts these very same restrictions, with the exception that adjunction to IP
is allowed.21 None of these restrictions seem very principled. Furthermore, some of them appear to be
downright wrong. They were chosen since they are the tightest such restrictions which still allow the
corpus in �gure 4.8 to be parsed. The need for these restrictions is a severe weak link in the current
theory. Incorporating these restrictions was dictated by pragmatic expedience, the advantage of getting
the system to work at all, before getting it to work cleanly. Replacing these ad hoc restrictions with
more principled ones remains a prime area for future work.

21These restrictions only hold for that portion of Fong's parser which is comparable to Kenunia. In Fong's parser these

restrictions do hold of LF movement, adjectives, adverbs, and I-lowering.
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cup: object1fg
-ed: ?fg
john: person1fg
slide: ?fTheme : 1g
that: ?fg
;: ?fg
face: ?fPatient : 1;Goal : 0g
from: ?fSource : 0g
bill: person3fg
the: ?fg
mary: person2fg
to: ?fGoal : 0g
run: ?fTheme : 1g
roll: ?fTheme : 1g

Figure 4.10: Kenunia is given these mappings from words and zeros to their referents and �-grids

as prior language-speci�c knowledge before processing the corpus from �gure 4.8.

4.3.6 Kenunia in Operation

Appendix B illustrates Kenunia's application of the above strategy in processing the corpus from
�gure 4.8. For this run, Kenunia was also given an initial lexicon mapping the words in the corpus,
as well as the inventory of zeros, to their referents and �-grids. This initial lexicon is illustrated in
�gure 4.10. The initial lexicon did not include any category or bar-level information, nor was Kenunia
given any syntactic parameter settings.

Like the revised Davra strategy, Kenunia processes a corpus repeatedly to make up for the lack
of a larger corpus. Kenunia makes two passes over the corpus from �gure 4.8 before converging on a
language model that survives the third pass without need for revision.

This process can be summarized as follows.22 Starting with an empty language model, Kenunia
succeeds in processing the utterance John rolled forming the incorrect though nonetheless valid structure
illustrated on page 235 in appendix B. In doing so, Kenunia assumes that John is a DP, roll is an I0,
the -ed morpheme is a VP, and the zero lexeme is a C0. Kenunia also assumes that the language is

I0 initial, I1 �nal, and C0 �nal. Kenunia continues processing further input utterances through page 242,
successfully extending the language model for each utterance. Though many of the assumptions made
are incorrect, they are consistent with both the linguistic theory and the portion of the corpus seen so

far. When processing the utterance John faced Mary, however, Kenunia is not able to �nd a consistent
extension of the language model capable of parsing this utterance. This is illustrated on page 243. At
this point no single proposition can be retracted from the language model to make it consistent with
the current utterance. It is possible however, to derive a consistent language model by retracting both
the assumption that the category of the -ed morpheme is V, as well as the assumption that its bar-level
is 2. After retracting these assumptions, Kenunia is able to process this utterance by assuming that
-ed is an I0. This analysis is illustrated on page 244. Note that in order to make this analysis, Kenunia
had to posit a structure that included both V-to-I movement as well as subject raising from SPEC of V
to SPEC of I. Analysis of previous input did not include such movement. There is nothing magical
about this transition. Kenunia did not discover the concept of movement. The potential for movement

22Note that in appendix B, the symbol ; denotes a zero, t denotes a trace, X denotes an undetermined category, and

n denotes an undetermined bar-level.
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was latent all the time in the linguistic theory with which she was innately endowed. She simply did
not have to invoke that potential until the current utterance, for simpler analyses (i.e. ones with fewer
empty terminals) su�ced to explain the prior utterances of the corpus.

After successfully processing the previous utterance with the revised language model, Kenunia
begins processing the corpus again, since the corpus has been exhausted. Kenunia now encounters
problems trying to process the utterance John rolled (page 245). This time however, a single retraction
su�ces to allow Kenunia to continue. She retracts the assumption that roll is labeled I, replacing it
with the assumption that it is labeled V (page 246). Kenunia is then able to successfully parse a few
more utterances until she encounters the utterance Bill ran to Mary on page 250. This requires her to
retract the assumption that run is labeled I and decide instead that run is labeled V (page 251). After
one more retraction, labeling slide as V instead of I on pages 254 and 255, Kenunia is able to make
one complete pass through the corpus without further revision, and thus converges on the lexicon and
parameter settings illustrated in �gure 4.11. This language model is consistent with both the corpus
and the linguistic theory. Processing the corpus to produce this language model requires about an hour
of elapsed time on a Sun SPARCstation 2TM computer.

As with the revised version of Davra, the method described above can determine only that this is
one possible consistent language model, not that it is the only such language model. These methods
can be extended to determine whether the solution is unique by using the same techniques that were
described for Davra. Furthermore, like the revised version of Davra, the rate of convergence of the
search strategy used by Kenunia is dependent on the order in which utterances are processed. Future
work will attempt to quantify the sensitivity of the search strategy to corpus ordering.

From �gure 4.11 one can see that Kenunia has arrived at the correct category and bar-level assign-
ments for all of the words in the corpus except cup. Kenunia assigns cup the correct category N, but
incorrectly assigns it bar-level 2 instead of 0. One can easily see that the linguistic theory incorporated
into Kenunia is not able to force a word to be labeled X0 instead of X2 without seeing that word appear
with either a complement or speci�er. Since cup has an empty �-grid, it cannot take a complement or
speci�er, for that would violate the �-criterion. Thus Kenunia could never uniquely determine the
bar-level of nouns like cup. This is a shortcoming of the Kenunia linguistic theory for which I do not
yet have a viable solution.

Kenunia likewise makes a number of incorrect parameter setting decisions. She sets [V0 �nal]
and [C0 �nal]. The former occurs because in the current corpus verbs always raise to adjoin to I.23

There is thus no evidence in S-structure as to the original position of the verb. I do not yet have
a viable solution to this problem. The latter occurs because the corpus does not contain any overt
complementizers. With only zero complementizers, it is equally plausible to postulate that the zero

complementizer follows an utterance as it is to postulate that it precedes the utterance. Encountering
utterances with overt complementizers should remedy this problem.

Kenunia is still very much work in progress. Three areas need further work. First, as mentioned
before, a number of ad hoc restrictions were adopted as part of the linguistic theory to reduce the
number of intermediate structures generated. Kenunia does not work without such restrictions. A
goal of prime importance is replacing those restrictions with ones which are more soundly motivated, or
perhaps eliminating them entirely by using alternative parsing algorithms. Second, one of the original
goals behind Kenunia was to extend Davra to account for learning in the presence of movement and
empty categories. This goal has been partially achieved since Kenunia analyzes the corpus in �gure 4.8
in terms of V-to-I movement and raising of VP-internal subjects to SPEC of IP. Nonetheless, this success
is partially gratuitous since such movement is theory-internal. An immediate goal is to exhibit learning in
the presence of less controversial forms of movement, such as Wh- and NP-movement. Doing so would be
a major advance since no current theory can explain how children learn word meanings in the presence

23The methods suggested in Lightfoot (1991) work only when the corpus contains some utterances with verbs in their

original position.
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Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

Figure 4.11: The parameter settings and lexicon derived by Kenunia for the corpus in �gure 4.8.

Kenunia derived only the category and bar-level information in the lexicon. The referent and �-grid

information was given to Kenunia as prior language-speci�c input.
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of such movement. Wh-movement, in particular, is prevalent in parental input to children. Longer-
term goals along these lines would be to explain the acquisition of numerous phenomena associated
with the interaction between the verbal and in
ectional systems. These include verb-second/verb-�nal
phenomena, subject-aux-inversion, diathesis alternations (in particular the passive alternation), and the
unergative/unaccusative distinction. Finally,Kenunia does not yet achieve the level of performance that
has been demonstrated with Davra. Davra learns three things|parameter settings, word-to-category
mappings, and word-to-meaning mappings|with no such prior information. Furthermore, Davra does
so for very small corpora in both English and Japanese. Kenunia on the other hand, learns only two
things: parameter settings and word-to-category mappings. Kenunia must be given word-to-meaning
mappings as prior language-speci�c input. Furthermore, Kenunia has been demonstrated only on a
very small English corpus. A goal of prime importance is to fully replicate the capabilities of Davra
within the more comprehensive linguistic framework of Kenunia.
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Chapter 5

Conclusion

Part I of this thesis has addressed the question: What procedure might children employ to learn their

native language without any access to previously acquired language-speci�c knowledge? I have advo-
cated cross-situational learning as a general framework for answering this question. In chapter 3, I have
demonstrated how cross-situational learning can be more powerful than trigger-based learning and can
bootstrap from an empty language model. Furthermore, in chapter 4, I have demonstrated three imple-
mented systems based on this framework that are capable of acquiring very small language fragments.
Maimra learns both word-to-category and word-to-meaning mappings, for a very small fragment of
English, given prior access only to grammar. Davra learns both word-to-category and word-to-meaning
mappings, as well as the grammar, for very small fragments of both English and Japanese. Kenunia
learns word-to-category mappings along with the grammar, for a very small fragment of English, given
prior access only to word-to-meaning mappings. Each of these systems learns from a corpus, containing
positive-only examples, pairing linguistic information with a representation of its non-linguistic context.
InMaimra and Davra, both word and utterance meanings are represented as Jackendovian conceptual
structures. In Kenunia, �-theory replaces these conceptual structures as the framework for representing
semantic information. All three systems are capable of learning despite referential uncertainty in the
mapping of utterances to their associated meaning.

5.1 Related Work

A number of other researchers have attempted to give procedural accounts of how children might ac-
quire language. These accounts di�er from the one given here in a number of ways. Some advance
trigger-based learning|unambiguously augmenting one's language model with information gleaned from
isolated utterances|rather than the cross-situational approach presented here. Most explain only part
of the acquisition process, for instance, acquiring word-to-meaning mappings but not word-to-category
mappings and grammar, or vice versa, assuming that the learner possesses some prior language-speci�c
knowledge. Furthermore, most do not deal with the problem of referential uncertainty. I will discuss
some related work in detail below. Other important related work which I will not have the opportunity
to discuss includes Granger (1977), Anderson (1981), Selfridge (1981), Berwick (1979, 1982, 1983), and
Suppes et al. (1991).

5.1.1 Semantic Bootstrapping

Grimshaw (1979, 1981) and Pinker (1984) have proposed an approach which has been termed the se-
mantic bootstrapping hypothesis. According to this approach, the child is assumed to �rst learn the
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meanings of individual words by an unspeci�ed prior process. Thus at the onset of semantic bootstrap-
ping, a child can already map, for instance, John to John, see to SEE, andMary toMary. Furthermore,
the semantic bootstrapping hypothesis assumes that the child's innate linguistic knowledge contains a
universal default mapping between semantic concept classes and their syntactic realization. This knowl-
edge includes, for instance, the fact that THINGS are realized as nouns and EVENTS are realized as
verbs. Such language-universal default mappings are termed canonical structure realizations. Using such
knowledge, the child can infer that John and Mary are nouns, and saw is a verb, from the observation
that John and Mary are THINGS, and SEE is an EVENT. Furthermore, upon hearing an utterance
such as John saw Mary, a child can infer that the language she is hearing admits utterances of the form
noun-verb-noun.

Pinker (p. 38) illustrates the above strategy via the following example. For simplicity, suppose that
universal grammar was described by the following grammar schema.

S ! fNP;VPg

NP ! f(DET);Ng

VP ! fNP;Vg

This is a grammar schema in the sense that the order of the constituents in the right hand sides of
the rules is not speci�ed|the learner must �gure out the correct order for the language being learned.
Furthermore, suppose that the above grammar schema was innate. Upon hearing the utterance The boy
threw rocks, the learner could form the following analysis

S

�
�
��

H
H
HH

VP
��HH

NP

N

the

V

boy

NP

�
�
H
H

N

threw

DET

rocks

and in doing so determine incorrect constituent order parameters and word-to-category mappings for
English. If however, the learner knew that boy and rocks were nouns, threw was a verb, and the was a
determiner, presumably by applying canonical structure realization rules to their known meanings, she

could determine that only the following structure is possible

S

�
�
��

H
H
HH

NP
�� HH

DET

the

N

boy

VP

�
�
H
H

V

threw

NP

N

rocks

allowing her to infer the correct constituent order parameters for English.
The above example works however, only with the oversimpli�ed grammar schema. If one adopts a

more comprehensive theory of universal grammar, the learner might not be able to uniquely determine
the constituent order parameter settings, even given complete word-to-category mappings for every word
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in the input. Take for instance, the linguistic theory which was described in section 4.3. Under this
theory, the above utterance allows eight di�erent analyses, where the three parameters [V0 initial/�nal],
[V1 initial/�nal], and [C0 initial/�nal] each vary independently. One such analysis is shown below.

C2

C1

�
�
�
�
�
��

H
H
H

H
H
HH

I2

�
�
�
�
�

H
H
H
H
H

D2
2

D1

��HH

D0

the

N2

N1

N0

boy

I1

�
�
�
�

H
H

H
H

I0

�� HH

V0
1

throw

I0

-ed

V2

�
�
H
H

V1

�� HH

D2

rocks

V0
1

t

D2
1

t

C0

;

Whether semantic bootstrapping is a viable acquisition theory is a question which must be asked indepen-
dently for each linguistic theory proposed. The ability for semantic bootstrapping to uniquely constrain
potential analyses and determine parameter settings decreases as the linguistic theory becomes richer
and allows more variance between languages. Thus it is unclear whether semantic bootstrapping will
explain acquisition under the correct linguistic theory, whenever that is discovered.

The semantic bootstrapping hypothesis makes two crucial assumptions. First, word meanings are

acquired by an unspeci�ed process prior to the acquisition of syntax. This implies that the process used to
acquire word meanings, whatever it is, cannot make use of syntactic information, since such information
is acquired only later. Furthermore, semantic bootstrapping is not a complete account of language
acquisition, since it does not o�er an explanation of how that prior task is accomplished. It explains
only how language-speci�c syntax is acquired, not how word-to-meaningmappings are acquired. Second,
semantic bootstrapping assumes that the learner uses a trigger-based strategy to acquire language-
speci�c information from isolated situations. Only those situations that uniquely determine language-
speci�c choices drive the language acquisition process. The above example was a failed attempt at
showing how semantic bootstrapping made such situations more predominant, constraining otherwise
ambiguous situations to be determinate. Furthermore, the assumption that word meanings are acquired
prior to syntax was motivated speci�cally as a method for constraining ambiguous situations. This
thesis suggests a di�erent approach whereby the learner can acquire partial knowledge from ambiguous
situations and combine such partial knowledge across situations to infer unique solutions that could not
be determined from individual situations alone. This cross-situational approach thus also alleviates the
need to assume prior knowledge, since all such knowledge can be acquired simultaneously by the same
mechanism.
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5.1.2 Syntactic Bootstrapping

In a series of papers (Gleitman 1990, Fisher et al. 1991), Gleitman and her colleagues have proposed
an alternate learning strategy that has become known as syntactic bootstrapping. In contrast to se-
mantic bootstrapping, where knowledge of word meanings guides the acquisition of syntax, syntactic
bootstrapping assumes essentially the reverse, that knowledge of the syntactic structures within which
words appear guides the search for possible meanings. This alternate strategy is best illustrated by the
following example. Suppose a child heard the utterance John threw the ball to Mary in the context
where she observed John throwing a ball to Mary. Furthermore, suppose that the child already knew
that John, ball, and Mary were nouns meaning John, ball, andMary respectively, that to was a prepo-
sition meaning TO(x), and that the was a determiner denoting a de�nite reference operator. In this
circumstance, the child lacks only the category and meaning of threw. Finally, suppose that the child
can form a parse tree for the utterance. Gleitman (1990) and Fisher et al. (1991) suggest that such a
parse tree can be constructed using prosodic information available in parental speech to children.1 In
this situation, the child can infer that throw must mean `throw' since that is the only meaning consistent
with both the non-linguistic observation, as well as the utterance, given the partial information already
known about the meaning and syntax of that utterance.

The key idea here is that the syntactic information in the utterance acts as a �lter on potential word-
to-meaning mappings for the unknown verb threw. At the time the utterance was heard, other things
may have been happening or true in the world. John may have been wearing a red shirt and Mary could
have been walking home from school. Either of these could be the meaning of some potential utterance
in that situation. Thus a priori, a novel verb heard in this context could mean `wear' or `walk'. Yet the
learner could infer that threw could not mean `wear' or `walk' since neither of these could consistently �t
into the utterance template John x the ball to Mary, given both the known meanings of the remaining
words in the utterance, as well as its structure.

As stated above, this strategy di�ers little from that proposed by Granger (1977) where the meaning
of a single novel word can be determined from context. Gleitman however, takes the above strategy a step
further. She claims that the structure of an utterance alone can narrow the possible word-to-meaning
mappings for a verb in that utterance, even without knowledge of the meanings of the remaining words.
Suppose that a child observed John pushing a cup o� the table causing it to fall. In this situation, an
utterance can potentially refer to either the pushing event or the falling event. She claims that a child
hearing John pushed the cup would be able to infer that pushed refers to the pushing event and not the
falling event since structurally, the utterance contains two noun phrases, and the argument structure
of PUSH(x; y), but not FALL(x), is compatible with that structure. Similarly, a child hearing The cup

fell could determine that fell refers to the falling event, and not the pushing event, since its syntactic
structure is compatible with FALL(x), but not PUSH(x; y). A child could make such inferences even
without knowing the meaning of John and cup, so long as she could determine the structure of the

utterance, using say prosodic information, and determine that John and the cup were noun phrases,
using other syntactic principles.

Gleitman carries this argument even further. In the above examples, structural information was
used only as a �lter, to select the correct interpretation from several possible interpretations of a given
non-linguistic observation. She suggests however, that a verb's subcategorization frame gives substantial
clues as to its meaning, independent of non-linguistic context. For example, the fact that the verb explain
can take a sentential complement, as in John explained that he was late for school, indicates that it is a

1While they suggest that prosodic information alone can be used to construct the parse, they also assume that the child
knows the syntactic category of the nouns and prepositions in the utterance. Since such category information can clearly
aid the parsing process, I see no reason why they adopt the stronger claim of parsing using only prosodic information, given
that they in any case assume the availability of further information. It would seem more felicitous to assume that the child
can construct a parse tree using whatever information she has available, whether that be syntactic category information,
prosodic information, or both.
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verb of cognition-perception. A given verb may admit several di�erent subcategorization frames, each
further limiting its potential meaning. For example, the verb explain can also appear with a direct object
and a destination, as in John explained the facts to Mary, indicating that it is also a verb of transfer.
Taken together, these two utterances strongly limit the possible meaning for explain.

As outlined above, syntactic bootstrapping actually comprises two distinct strategies. They can be
summarized by the following two hypotheses.

1. Children can determine the meaning of an unknown verb in an utterance by �rst determining the
structure of that utterance using prosodic information alone, and then selecting as the correct
verb meaning the one that allows that structure to have an interpretation consistent with non-
linguistic context, given prior knowledge of the categories and meanings of the remaining words in
the utterance.

2. Children can constrain the possible meanings of an unknown verb by �nding those meanings that
are compatible with each of the di�erent subcategorization frames heard for that verb.

These two hypotheses may be combined to yield a single more comprehensive strategy. Both of these
hypotheses, however, make two crucial assumptions. First, they assume the availability of prior language-
speci�c information in the form of the word-to-meaningmappings, or at least word-to-category mappings,
for the nouns and prepositions that appear as arguments to the unknown verb. Second, though not
explicitly stated in their work, their methods appear to rely on the ability for prosodic parsing to
determine a unique structure for each utterance. This thesis describes techniques for learning even
without making the limiting assumptions of unambiguous parsing and prior language-speci�c knowledge.

The techniques described in this thesis could be extended to take prosodic information as input
along with word strings. This would in essence form a synthesis of the ideas presented in this thesis with
those advocated by Gleitman and her colleagues. One must be careful to include only those prosodic
distinctions which are demonstrated to exist in the input, and which can be detected by children. This
would include less information than say, a full syntactic analysis of the type performed by Kenunia.
Even though such prosodic information might be ambiguous and partial, the strategies described in this
thesis could be used to �nd a language model which could consistently map the word strings to their
meanings, subject to the constraints implied by the prosodic information. Such prosodic information
would only ease the learning task when compared with the results presented in this thesis. If prosodic
information was only partially available, or even totally absent, performance of this extended technique
would degrade gracefully to the performance of the techniques discussed in this thesis. In order to
experimentally verify this claim, one must formulate a representation for prosodic information, along
with an appropriate linguistic theory constraining the possible syntactic analyses consistent with prosodic

information speci�ed in that representation. Such an experiment awaits future research.

5.1.3 Degree 0+ Learning

Lightfoot (1991) proposes a theory of how children determine parameter settings within a framework of
universal grammar. His central claim is that children use primarily unembedded material as evidence
for the parameter setting process. If this claim is true, a child must have access to su�cient structural
information about the input utterances in order to di�erentiate embedded from unembedded material.
Deriving such structural information requires that the learner determine constituent order prior to other
parameter settings. Realizing this, Lightfoot suggests that children have access to syntactic category
information before the onset of parameter setting and utilize a strategy whereby they wait for input
utterances which are simple enough to uniquely determine the setting of some parameter.
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(3) a. NP! Speci�er N0

N0 ! (Adj)[N or N0] PP
(7) a. XP! fSpeci�er;X0g

b. X0 ! fX or X0; (YP)g
(8) a. the house

b. students of linguistics, belief that Susan left

Under (7), the linear order of constituents constitutes a parameter that is set on exposure to
some trigger. The English-speaking child hears phrases like (8a) and, after some development,
analyzes them as consisting of two words, one of a closed-class (the) and the other of an open
class (house); in light of this and in light of the parameter in (7a), the child adopts the �rst
rule of (3a). Likewise, exposure to phrases like (8b) su�ces to set the parameter in (7b),
such that the second rule of (3a) emerges. [: : :]

Consider, for a moment, the development that must take place before these parameters can
be set. children acquire the sounds of their languages and come to use men as a word and a
noun with the meaning roughly of the plural of `man'. This is a nontrivial process, and many
people have explained how it happens. Having established that men is a noun, children
later acquire the constituent structure of men from the city , if I am right, by setting the
parameters in (7) and projecting to NP accordingly via N0, yielding

[NP Spec [N0 [N0 [N men]][PP from the city]]]:

Lebeaux (1988) discusses this aspect of language acquisition very interestingly. In setting
these particular parameters, children operate with partially formed representations that in-
clude [N men], [P from], [Spec the], and [N city]. They are operating not with \raw data" or
mere words but with partially analyzed structures.

Men from the city and similar expressions occur in the child's environment with an appro-
priate frequency, and, given a partially formed grammar whereby men and city are classi�ed
as nouns, a child can assign a projection conforming to (7).

[pp. 6{7]

Lightfoot's proposal is thus very similar to Pinker's in this regard. It tacitly assumes that children
determine constituent order from isolated utterances which uniquely determine that order. It uses a
trigger-based approach in contrast to the cross-situational strategy advocated in this thesis. It is unclear
whether Lightfoot's central claims about degree 0+ learnability are compatible with a cross-situational
learning strategy. Such investigation merits future work.

5.1.4 Salveter

Salveter (1979, 1982) describes a system called Moran, which like Maimra and Davra, learns word
meanings from correlated linguistic and non-linguistic input. Moran is presented with a sequence of
utterances. Each utterance is paired with a sequence of two scenes described by a conjunction of atomic
formula. Each utterance describes the state change occurring between the two scenes with which it
is paired. The utterances are presented to Moran in a preprocessed case frame format, not as word
strings. From each utterance/scene-description pair in isolation, Moran infers what Salveter calls a
conceptual meaning structure (CMS) which attempts to capture the essence of the meaning of the verb
in that utterance. This CMS is a subset of the two scenes that identi�es the portion of the scenes referred
to by the utterance. In this CMS the arguments of the atomic formula that are linked to noun phrases
are replaced by variables labeled with the syntactic positions those noun phrases �ll in the utterance.
The process of inferring CMSs is reminiscent of the fracturing operation performed by Maimra and
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Davra, whereby verb meanings are constructed by extracting out arguments from whole utterance
meanings. Moran's variant of this operation is much simpler than the analogous operation performed
byMaimra and Davra since the linguistic input comes toMoran preparsed. This preprocessed input
implicitly relies on prior language-speci�c knowledge of both the grammar and the syntactic categories
of the words in the utterance. Moran does not model the acquisition of grammar or syntactic category
information, and furthermore does not deal with any ambiguity that might arise from the parsing process.
Additionally,Moran does not deal with referential uncertainty in the corpus. Furthermore, the corpus
presented toMoran relies on a subtle implicit link between the objects in the world and linguistic tokens
used to refer to these objects. Part of the di�culty faced by Maimra and Davra is discerning that a
linguistic token such as John refers to a conceptual structure fragment such as John. Moran is given
that information a priori due to the lack of a formal distinction between the notion of a linguistic token
and a conceptual structure expression. Given this information, the fracturing process becomes trivial.
Moran therefore, does not exhibit the cross-situational behavior attributed to Maimra and Davra,
and in fact, learns every verb meaning from just a single utterance. This seems very implausible as a
model of child language acquisition. In contrast to Maimra and Davra, however, Moran is able to
learn polysemous senses for verbs; one for each utterance provided for a given verb. Moran focuses on
extracting out the common substructure for polysemous meanings attempting to maximize commonality
between di�erent word senses and build a catalog of higher-level conceptual building blocks, a task not
attempted by the techniques discussed in this thesis.

5.1.5 Pustejovsky

Pustejovsky (1987, 1988) describes a system called Tully, which also operates in a fashion similar to
Maimra, Davra, andMoran, learning word meanings from pairs of linguistic and non-linguistic input.
Like Moran, Tully is given parsed utterances as input. Each utterance is associated with a predicate
calculus description of three parts of a single event described by that utterance: its beginning, middle,
and end. From this input, Tully derives a thematic mapping index, a data structure representing
the �-roles borne by each of the arguments to the main predicate. Tully is thus similar to Kenunia
except that Tully derives the �-grids which Kenunia currently must be given as prior language-speci�c
knowledge. LikeMoran, the task faced by Tully is much simpler than that faced byMaimra, Davra,
or Kenunia, since Tully is presented with unambiguous parsed input, is given the correspondence
between nouns and their referents, and does not have to deal with referential uncertainty since it is given
the correspondence between a single utterance and the semantic representation of the event described
by that utterance. Tully does not learn language-speci�c syntactic information or word-to-category
mappings. Furthermore, Tully implausibly learns verb meanings from isolated utterances without any
cross-situational processing. Multiple utterances for the same verb cause Tully to generalize to the

least common generalization of the individual utterances. Tully however, goes beyond Kenunia in
trying to account for the acquisition of a variety of markedness features for �-roles including [�motion],
[�abstract], [�direct], [�partitive], and [�animate].

5.1.6 Rayner et al.

Rayner et al. (1988) describe a system that uses cross-situational techniques to determine the syntactic
category of each word in a corpus of utterances. They observe that while in the original formula-
tion, a de�nite clause grammar (Pereira and Warren 1980) normally de�nes a two-argument predicate
parser(Utterance,Tree) with the lexicon represented directly in the clauses of the grammar, an al-
ternate formulation would allow the lexicon to be represented explicitly as an additional argument to
the parser relation, yielding a three argument predicate parser(Utterance,Tree,Lexicon). This three
argument relation can be used to learn syntactic category information by a technique summarized in
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?- Lexicon = [entry(the,_),

entry(cup,_),

entry(slid,_),

entry(from,_),

entry(john,_),

entry(to,_),

entry(mary,_),

entry(bill,_)],

parser([the,cup,slid,from,john,to,mary],_,Lexicon),

parser([the,cup,slid,from,mary,to,bill],_,Lexicon),

parser([the,cup,slid,from,bill,to,john],_,Lexicon).

)

Lexicon = [entry(the,det),

entry(cup,n),

entry(slid,v),

entry(from,p),

entry(john,n),

entry(to,p),

entry(mary,n),

entry(bill,n)].

Figure 5.1: The technique used by Rayner et al. (1988) to acquire syntactic category information

from a corpus of utterances.

�gure 5.1. Here, a query is formed containing a conjunction of calls to the parser, one for each utterance
in the corpus. All of the calls share a common Lexicon, while in each call, the Tree is left unbound. The
Lexicon is initialized with an entry for each word appearing in the corpus where the syntactic category
of each such initial entry is left unbound. The purpose of this initial lexicon is to enforce the monosemy
constraint that each word in the corpus be assigned a unique syntactic category. The result of issuing
the query in the above example is a lexicon, with instantiated syntactic categories for each lexical entry,
such that with that lexicon, all of the words in the corpus can be parsed. Note that there could be
several such lexicons, each produced by backtracking.

Rayner et al. use a strong cross-situational strategy which is equivalent to the strategy used in
section 3.2. The Prolog program from �gure 5.1 is a direct embodiment of the architecture depicted
in �gure 2.2. Part I extends the work of Rayner et al. in a number of important ways. First, the system
described by Rayner et al. learns only word-to-category mappings from a corpus consisting only of
linguistic input. Maimra and Davra learn word-to-meaning mappings in addition to word-to-category
mappings by correlating the non-linguistic context with the linguistic input. Second, like Maimra, the
system described by Rayner et al. is given a �xed language-speci�c grammar as input. Davra and
Kenunia learn language-speci�c grammatical information along with the lexicon. Third, like the �rst
implementation of Davra, the system described by Rayner et al. keeps the whole corpus in memory
throughout the learning process, using a simple chronological backtracking scheme to search for a lexicon
consistent with the entire corpus. Maimra explores ways of representing the consistent language models
using disjunctive lexicon formulae so that the corpus need not be retained in memory to support strong
cross-situational learning. The revised implementation of Davra, along with Kenunia, explore weaker
learning strategies which also do not retain the corpus in memory. Nonetheless, the work of Rayner et al.
was strong early motivation for the work described in this thesis.

5.1.7 Feldman

Feldman et al. (1990) have proposed a miniature language acquisition task as a touchstone problem for
cognitive science. This task is similar in many ways to the language learning task described in part I of
this thesis, combined with the visual perception task described in part II of this thesis. The proposed
task is to construct a computer system with the following capacity.

The system is given examples of pictures paired with true statements about those pictures
in an arbitrary language.
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The system is to learn the relevant portion of the language well enough so that given a new
sentence of that language, it can tell whether or not the sentence is true of the accompanying
picture.

Feldman et al. go on to specify an instance of this general task, called the L0 problem, where the
pictures are constrained to contain only geometric �gures of limited variation and the language fragment
is constrained to describe only a limited number of spatial relations between those �gures.

Feldman and his colleagues have explored a number of approaches to solving the L0 problem. Weber
and Stolcke (1990) describe a traditional symbolic approach where syntactic knowledge is represented as
a uni�cation grammar and semantic information is represented in �rst-order logic. This system however,
does not learn. It is simply a query processor for L0 as restricted to English. Stolcke (1990) describes a
system which does learn to solve the L0 task. This system is based on simple recurrent neural networks.
The linguistic input to their system consists of a sequence of sentences such as A light circle touches

a small square. These sentences are composed out of a vocabulary containing nineteen words. The
words are presented one-by-one to the network, being represented as orthogonal 19-bit feature vectors.
The non-linguistic input paired with each sentence consists of a semantic representation of a picture

associated with that sentence. This semantic representation is encoded as a 22-bit feature vector of the
following form.

Predicatez }| {
T L R A B| {z }
relation

F|{z}
mod

Argument 1z }| {
C S T| {z }
shape

S M L| {z }
size

D L|{z}
shade

Argument 2z }| {
C S T| {z }
shape

S M L| {z }
size

D L|{z}
shade

Once trained, the network acts as a map between a sentence and its semantic representation. The words
of the sentence are presented to the network one-by-one. The semantic representation appears at the
output of the network after the �nal word has been presented as input. The network thus includes
some feedback to model the stored state during sentence processing. The network is trained using back-
propagation while being presented with positive-only instances of sentences paired with their correct
semantic representation. Thus their system does not admit referential uncertainty. The fragment of L0
that Stolcke considers allows a total of 5052 distinct sentences. Of these, 353 were used as training
sentences and the remainder as test sentences. Stolcke does not report the percentage of test sentences
which his system is correctly able to process, except for stating that the training set contained 61 out
of all 81 possible `simple NP sentences' and that the system generalized correctly to the remaining 20
simple NP sentences. Weber (1991) and Stolcke (1991) describe more recent continuation of this work.

5.2 Discussion

An ultimate process account of child language acquisition must meet two criteria. It must be able to
acquire any language which children can acquire, and it must be able to do so for any corpus on which a
child would be successful. It would be very hard to prove that any given algorithmmet these two universal
criteria since we lack information which would allow us to perform such universal quanti�cation. We
have little information that circumscribes the child-learnable languages, or the situations which support
that learnability. Rather than a formal proof of adequacy, a more reasonable approach would be to
amass quantitative evidence that a given algorithm can acquire many di�erent languages given a variety
of corpora in those languages. This thesis takes only a �rst, exceedingly modest, step in that direction,
with the demonstration that Davra can process very small fragments of both English and Japanese. The
longer-term goal of this research is to extend this ability to process larger corpora in di�erent languages.
Larger corpora are needed to guarantee that the algorithms scale. Ideally, such corpora should consist
of transcripts of actual parental speech to children, instead of the synthetic text currently used.
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Successfully processing large natural corpora requires surmounting a number of hurdles in addition
to the problem of developing a syntactic theory capable of accounting for the linguistic phenomena in
the corpus. One technical di�culty is that the learning strategy proposed here requires non-linguistic
annotation for the linguistic input. (Remember, \You can't learn a language simply by listening to
the radio.") Available transcriptions do not come with such annotations, at least not annotations in
the correct form or which contain the information needed to put it in the correct form. There is a
way around this problem. One could use an available dictionary to parse the corpus under a �xed
set of parameter settings. Pseudo-semantic information can then be derived from the resulting parse
trees. The parse trees themselves can be taken as meaning expressions in aMaimra/Davra framework.
Alternatively, one could construct a Kenunia style �-map by applying �-theory in reverse. Each noun
could be given a random token as its referent. Other terminals would be given ? as their referent. The �-
criterion requires that complements of non-functional categories be �-marked. For each such complement
con�guration, a �-mapping is constructed matching a randomly chosen �-role to the ultimate referent
of the complement. In both of these cases, noise would then be added to model referential uncertainty.
For the Maimra/Davra framework, the correct meaning expression would be added to a set of random
alternate expressions, possibly derived as perturbations of the correct meaning. For the Kenunia
framework, several other random �-mappings could be added to the �-map. The learning algorithm
would then be applied to this corpus, without access to the dictionary and parameter settings used
in its construction. The algorithm would be deemed successful if it could accurately reconstruct the
dictionary and parameter settings. This technique for pseudo-semantic annotation has an added bene�t.
By varying the amount of noise added to the non-linguistic input one could analytically determine the
sensitivity of the learning algorithms to such noise. Such sensitivity predictions could be compared with
actual sensitivity measurements performed on children as an experimental test of predictions made by
the theory.

A much more serious hurdle remains, however, before the above experiment could be attempted. The
cross-situational learning strategy advocated in this thesis requires that the learner �nd a single grammar
and lexicon that can consistently explain an entire corpus. This would be virtually impossible for natural
corpora for three reasons. First, natural corpora contain ungrammatical input. Even ignoring input that
is truly ungrammatical, the current state of the art in linguistic theory is not capable of accounting for
many phenomena occurring in natural text. While such text is grammatical in principle, it must be
treated as ungrammatical relative to our meager linguistic theories. Any strict cross-situational learning
strategy would fail to �nd a language model consistent with a corpus that contained ungrammatical input.
Children however, can learn from input a substantial fraction of which is ungrammatical. Second, a key
assumption made by each of the systems discussed in part I of this thesis was the monosemy constraint,
the requirement that each word map to a unique category and meaning. This assumption is clearly
false. Polysemy runs rampant in human language. Here again, a strict cross-situational strategy would

fail to �nd a consistent language model when presented with a corpus that could only be explained by
a polysemous lexicon. Children however, have no di�culty learning polysemous words. A �nal hurdle
involves referential uncertainty. What if the set of meanings conjectured by the learner as a possible
meaning of some observed utterance does not contain the correct meaning? This could happen if the
correct meaning of some utterance is not readily apparent from its non-linguistic context, or if the
learner incorrectly discards the correct meaning, by some measure of salience, to reduce the referential
uncertainty and make cross-situational learning more tractable. In this situation again, the learner, not
knowing that no possible meaning was hypothesized for the utterance, would fail to �nd a consistent
language model.

Each of these three problems is symptomatic of a single more general problem: noise in the input.
Such noise can be dealt with using a variety of techniques. One way would be to assign weights to
di�erent lexical entries and parameter settings, making the decision between alternative lexical entries
and parameter settings a graded one, rather than an absolute one. A scheme could be adopted for



5.2. DISCUSSION 93

increasing the weights of those alternatives that correctly explain some input while decreasing the weights
of those alternatives that fail to explain some input, ultimately choosing those alternatives with the higher
weight. In the language acquisition literature, such weights are often confused with probabilities. While
weights might have a probabilistic interpretation, they need not have one.

There are alternatives to weights. One could instead �nd a language model that minimized violations
of the linguistic theory. This o�ers a spectrum of alternative ways of counting violations. At one end of
the spectrum, the linguistic theory can be treated as a black box, either capable or incapable of parsing
an utterance given a language model. With such a theory, the learner would simply minimize the number
of utterances which could not be parsed. This might not work if the linguistic theory was so poor that it
could parse relatively few utterances in the corpus. A more general approach, still using an encapsulated
linguistic theory, would be to allow utterances to be parsed with minor perturbations of the language
model and choose the language model which allowed the corpus to be parsed with the minimal total
associated cost. An even more general approach would be to have the parser produce a quality measure
as output. Successful parses would have a high quality measure while unsuccessful parses would still
have a non-zero quality measure if they could `almost' be parsed. The quality measure could be based
on which components of a modular grammatical theory were violated. In this case, the learner would
choose the model which maximized the total quality of the parsed corpus.

While these approaches can deal with all forms of noise, it seems unreasonable to consider polysemy
as noise. A similar but more plausible strategy could be used to support polysemy. The language model
could be extended to allow polysemous lexical entries. The cost of a language model could be de�ned
so that it measured the amount of polysemy in the lexicon. The learner could then �nd the lowest cost
language model, i.e. the one with least polysemy, that could still consistently account for the corpus.
While all of the above approaches are conceptually straightforward, substantial details remain to be
worked out. This is left for future research.
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Grounding Language in Perception
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Chapter 6

Introduction

Part II of this thesis advances a theory of event perception. When people observe the world they
can generally determine whether certain events have happened. Furthermore, they can describe those
events using language. For instance, after seeing John throw a ball to Mary, the observer can say that
the event described by the utterance John threw the ball to Mary has happened, along with perhaps
events described by other utterances. Part II of this thesis suggests a mechanism to describe how
event perception may work. This mechanism has been partially implemented in a computer program
called Abigail. Abigail watches a computer-generated animated stick-�gure movie and constructs
descriptions of the events that occur in that movie. The input to Abigail consists solely of the positions,
orientations, shapes, and sizes of the line segments and circles which constitute the image at each frame
during the movie. Figure 6.1 illustrates one frame of a movie presented to Abigail. From this input,
Abigail segments the image into objects, each object comprised of several line segments and circles,
and delineates the events in which those objects participate.

At the highest level, Abigail can be described as a program that takes an utterance and a movie
segment as input, and determines whether that utterance describes an event that occurred during that
movie segment.

Abigail(u;m)! ftrue; falseg

Alternatively,Abigail can be thought of as a program that takes a movie segment as input, and produces
utterances that describe the events which occurred during that segment.

Abigail(m) ! fug

Abigail does not, however, directly relate utterances to movies. An intermediate semantic represen-
tation mediates between an utterance and a movie. For example, the semantic representation for the
utterance John threw the ball to Mary might be CAUSE(John;GO(ball;TO(Mary))). The intermedi-
ate semantic representation connects two halves ofAbigail. One half relates the semantic representation
to the movie while the other half relates it to an utterance. The general architecture is depicted in �g-
ure 6.2. In this architecture, the box labeled `perception' relates semantic descriptions to movies. It can
be thought of either as a predicate

perception(s;m) ! ftrue; falseg

that determines whether the event described by some semantic expression s occurred during the movie
segment m, or alternatively as a function

perception(m)! fsg

97
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Figure 6.1: A typical frame from a movie which is shown to Abigail. The objects in the frame,

such as tables and chairs, are constructed solely from line segments and circles.
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Figure 6.2: A depiction of the architecture ofAbigail's language faculty. It contains three processing

modules: a parser, a linker, and a perceptual component, that mutually constrain �ve representa-

tions: the input utterance, the syntax of that utterance, the meaning of that utterance, the visual
perception of events in the world, and a language model comprising a grammar and a lexicon. The

lexicon in turn maps words to their syntactic category and meaning. Given observations and a

lexicon as input, this architecture can produce as output, utterances which explain those observa-
tions. The long-term objective is to combine Abigail's perceptual component with the language

learning techniques described in part I of this thesis to provide a comprehensive model of language

acquisition. As a language acquisition device, when given pairs of observations and utterances which
explain those observations as input, this architecture will produce as output, a language model for

the language in which those utterances were phrased. Part I of this thesis elaborates on this language

acquisition process.

that produces a set of semantic expressions describing those events which occurred during the movie
segment. The two remaining boxes in �gure 6.2 relate the semantic representation to an utterance.

The architecture depicted in �gure 6.2 is a very general mechanism for grounding language in percep-
tion. As discussed on page 27, it can support the comprehension, generation, and acquisition of language.
Part I of this thesis focussed on using this architecture to support language acquisition. It described
the parser and linker modules in detail as they related to the language acquisition task. Part II of this

thesis will focus solely on the perception module, i.e. mechanisms for producing semantic descriptions
of events from (simulated) visual input. The two halves of this thesis discuss the two halves of this
architecture independently. The reason for this is that the two halves have not yet been integrated into
a single implementation. This integration awaits further research.

After displaying the architecture in �gure 6.2, a natural �rst question that arises is: What is an ap-

propriate intermediate semantic representation? Semantic representations are normally taken to encode
the meaning of an utterance. Chapter 7 argues that the notions of support, contact, and attachment are
central to de�ning the meanings of simple spatial motion verbs such as throw, pick up, put, and walk.
For instance, throwing involves moving one's hand while grasping an object (attachment), resulting in
the unsupported motion of that object. Chapter 7 further motivates the need for including the notions
of support, contact, and attachment as part of a semantic representation scheme by demonstrating the
central role these notions play in numerous spatial motion verbs. De�nitions for these verbs are presented
in a novel representation scheme that incorporates these notions. These de�nitions are compared with
those proposed by other researchers which do not incorporate such notions. I claim that incorporating
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the notions of support, contact, and attachment allows formulating more precise de�nitions of these
verbs.

If one accepts the argument that the semantic representation should incorporate the notions of
support, contact, and attachment, a second question arises: How does one perceive support, contact, and

attachment relationships? An answer to this question is necessary in order to construct the perception
box from �gure 6.2. Chapter 8 o�ers a uni�ed answer to that question: counterfactual simulation. An
object is supported if it does not fall when one imagines the short-term future. Likewise, one object
supports another object if the latter is supported but loses that support when one imagines the short-
term future of a world without the former object. When one object supports another they must be in
contact with each other. Furthermore, two objects are assumed to be attached to each other if such
an attachment must be hypothesized to explain the fact that one object supports the other. Chapter 8
elaborates on these ideas. A simpli�ed version of these ideas has been implemented inAbigail. Abigail
uses counterfactual simulation to determine the attachment relations between the line segments and
circles which constitute each frame of the movie she watches. This allows her to aggregate the line
segments and circle into objects. She then uses counterfactual simulation to determine support, contact,
and attachment relations between those objects. Chapter 8 also discusses some experiments performed
by Freyd et al. (1988) which give evidence that human visual perception operates in an analogous fashion.

If one accepts the claim that support, contact, and attachment relations are recovered by counter-
factual simulation, a third question then arises: What is the nature of the mechanism used to perform

counterfactual simulation? Nominally, the simulator predicts the behavior of machine-like mechanisms,
parts connected by joints, under the in
uence of forces such as gravity. Chapter 9 argues however,
that traditional approaches to kinematic simulation, namely those based on numerical integration, are
inappropriate as cognitive models of the human imagination capacity since the traditional approaches
take physical accuracy to be primary and collision detection to be secondary. In contrast, human visual
perception appears to take certain naive physical notions such as substantiality, the constraint that solid
objects can't pass through one another, and continuity, the constraint that objects must follow continu-
ous paths during motion, to be primary. Chapter 9 presents a kinematic simulator for the micro-world
of line segments and circles which takes substantiality and continuity, along with gravity, to be primary.
This simulator directly encodes such principles allowing it to quickly predict in a single step, for instance,
that an object will fall precisely the distance required for it to come in contact with the object beneath
it. Traditional simulators based on numerical integration would require many small perturbations to
make such a prediction. While such simulators are more accurate than the simulator described here, and
can simulate a larger class of mechanisms, the simulator described in chapter 9 is much faster and better
suited to the task of discerning support, contact, and attachment relations. Chapter 9 also discusses

some experiments performed by Baillargeon et al. (1985), Baillargeon (1986, 1987), and Spelke (1988)
which give evidence that young infants are sensitive to violations of naive physical constraints such as

substantiality and continuity. The remainder of this chapter describes the event perception task faced
by Abigail since this task motivates the formulation of the algorithms discussed later in part II of this
thesis.

6.1 The Event Perception Task

Abigail is shown a computer-generated animation depicting objects such as tables, chairs, boxes, balls,
and people. During the movie, the objects participate in events. The people walk, pick up, and put down
objects, and so forth. The task faced by Abigail is to determine which events occur and when they
happened. For instance, after a movie segment depicting John walking to the table, she is to produce
a representation of the utterance John walked to the table. For simplicity, the movie shown to Abigail
is a stick �gure animation, constructed solely from line segments and circles. These line segments and
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circles, collectively called �gures, constitute the lowest level structure of the image. Higher-level objects,
such as tables, chairs, and people, are constructed out of collections of �gures. Figure 6.1 shows a typical
frame from one of the movies which is shown to Abigail.

The movie shown to Abigail consists of a sequence of such frames containing objects built out of
�gures. As the movie progresses, the objects move about and participate in various events. Abigail
is not given any explicit information about the non-atomic entities in the movie. She is not told which
collections of �gures constitute objects nor is she told which events they participate in. Furthermore,
she is not even told what types of objects exists in the world or what types of events can occur. The
only input that Abigail receives is the position, orientation, shape, and size of the �gures in each movie
frame.

Abigail faces a two-stage task. First, she must recover a description of the objects and events
occurring in the movie, solely from information about the constituent �gures. Second, she must form
a mapping between the recovered object and event representations, and the linguistic utterances which
describe those events. To date, only part of the �rst task has been accomplished. The second task
has not been attempted. Part II of this thesis therefore, addresses only the �rst task. It proposes a
novel approach to the task of event perception and presents, in detail, the mechanisms underlying this
approach. As discussed in chapter 1, the long-term goal of this research is to use the object and event
representations recovered by Abigail as the non-linguistic input to language acquisition models such
as those described in part I of this thesis. Linking models of language acquisition to models of event
perception would allow a comprehensive study of the acquisition of word meanings in a way which is not
possible without perceptual grounding of those word meanings.

The perceptual mechanisms used by Abigail to recover object and event descriptions are very
general. Unlike some prior approaches, they do not incorporate any knowledge that is speci�c to any
class of objects or events. Thus, they do not contain models of particular objects such as tables or
particular events such as walking. The intention is that the same unaltered perceptual mechanism be
capable of recovering reasonable object and event descriptions from any movie constructed out of line
segments and circles.

In order to verify whetherAbigail's unaltered perceptual mechanisms are indeed capable of analyzing
any movie, a simple movie construction tool was created to facilitate the generation of numerous movies
with which to test Abigail. This tool takes a script and generates the positions, orientations, shapes,
and sizes of the �gures at each frame during the movie. While the script itself delineates objects and
events, the perceptual mechanisms of Abigail have no access to the representation of objects and events
in the script and must recover the object and event information solely from the positions, orientations,
shapes, and sizes of the �gures in the movie generated from the script.

A sample movie script is shown in �gure 6.3. This script generates a movie consisting of 1063 frames,
the �rst of which is depicted in �gure 6.1. Each frame is constructed from 43 �gures: 5 circles and
38 line segments. These �gures form caricatures of 7 objects: a table, two chairs, a box, a ball, a man,
and a woman. The script of this movie is simple and fairly boring. The man, John, walks over to the
table and picks up the ball. He turns around and walks back to his original position. He then turns
around again, walks back to the table, puts the ball down on the table, turns around, and walks back
to his original position. The woman, Mary, then performs a similar task. Finally, John walks toward
the table, picks up the ball, carries it over to Mary, and gives it to her. He then turns around and walks
back to his place, after which Mary walks toward the table, puts the ball on the table, and returns to her
place. Figure 6.4 depicts the general sequence of events in this movie by showing a selection of several
key frames from the movie.

The original expectation was that Abigail would be able to successfully process numerous movies.
That goal was overly ambitious. Most of the development of Abigail was driven by only one movie, the
one generated by the script in �gure 6.3 and depicted in �gure 6.4. In fact, due to computer processing
limitations and to the current incomplete state of Abigail's implementation, only a portion of that
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(define-movie movie1 ((table (make-instance

'table :name 'table :x 16.0 :y 0.0 :world world))

(chair1 (make-instance

'chair :name 'chair1 :x 12.0 :y 0.0 :world world))

(chair2 (make-instance

'chair

:name 'chair2 :x 20.0 :y 0.0 :direction -1.0 :world world))

(box (make-instance 'box :name 'box :x 18.0 :y 2.525 :world world))

(ball (make-instance

'ball :name 'ball :x 14.0 :y 3.0 :world world))

(john (make-instance

'man :name 'john :x 3.0 :y 0.0 :world world))

(mary (make-instance

'woman

:name 'mary :x 30.0 :y 0.0 :direction -1.0 :world world)))

(walk-to john (x (center ball)))

(pick-up (left-hand john) ball)

(about-face john)

(walk-n-steps john 4)

(walk-to john (x (center table)))

(put-down (left-hand john)

(x (center table))

(+ (y (point1 (top table))) (size (circle ball))))

(about-face john)

(walk-n-steps john 4)

(about-face john)

(walk-to mary (x (center ball)))

(pick-up (left-hand mary) ball)

(about-face mary)

(walk-n-steps mary 5)

(walk-to mary (x (center table)))

(put-down (left-hand mary)

(x (center table))

(+ (y (point1 (top table))) (size (circle ball))))

(about-face mary)

(walk-n-steps mary 5)

(about-face mary)

(walk-to john (x (center ball)))

(pick-up (right-hand john) ball)

(walk-to john (x (center mary)))

(give (right-hand john) (left-hand mary))

(about-face john)

(walk-n-steps john 9)

(walk-to mary (x (center table)))

(put-down (left-hand mary)

(x (center table))

(+ (y (point1 (top table))) (size (circle ball))))

(about-face mary)

(walk-n-steps mary 5)

(about-face mary))

Figure 6.3: A script used to generate a movie to be watched by Abigail. The �rst frame of this
movie is shown in �gure 6.1. The general sequence of events in this movie is depicted by the selection

of frames in �gure 6.4.
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Frame 0 Frame 299

Frame 29 Frame 356

Frame 64 Frame 403

Frame 69 Frame 509

Frame 71 Frame 662

Frame 112 Frame 730

Frame 144 Frame 750

Frame 200 Frame 780

Figure 6.4: Several key frames depicting the general sequence of events from the movie used to drive

the development of Abigail. The script used to generate this movie is given in �gure 6.3. Frame 0

is shown in greater detail in �gure 6.1.
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movie has been successfully processed and analyzed by Abigail. Future work will attempt to extend
the results described in this thesis by running Abigail on other movies.

6.2 Outline

The remainder of part II of this thesis contains four chapters. Chapter 7 advances that claim that the
notions of support, contact, and attachment play a pivotal role in de�ning the prototypical meanings
of simple spatial motion verbs. It surveys past attempts at de�ning the meanings of many such verbs,
�nding these attempts inadequate. An alternative representation scheme is put forth which highlights
the notions of support, contact and attachment. Chapter 8 proposes a computational mechanism,
implemented in Abigail, for perceiving support, contact, and attachment relations. It advances the
claim that such relations are not recovered by static analysis of images but rather require counterfactual
simulation. Chapter 9 suggests that the simulation performed as part of event perception di�ers from
traditional kinematic simulation in that it takes the naive physical notions of substantiality, continuity,
gravity, and ground plane to be primary, and physical accuracy and coverage to be secondary. It describes
in detail, the novel kinematic simulator that acts asAbigail's imagination capacity. Chapter 10 discusses
related work and concludes with an outline of potential future work.



Chapter 7

Lexical Semantics

Part II of this thesis advances a theory of event perception. It proposes a mechanism for how people

visually recognize the occurrence of events described by simple spatial motion verbs such as throw, walk,
pick up, and put. The proposed recognition process is decompositional. Each event type is successively
broken down into more basic notions that ultimately can be grounded in perception. For instance, a
throwing event comprises two constituent events: moving one's hand while grasping an object, followed
by the unsupported motion of that object. The words grasping and unsupported play a pivotal role in
this description of throwing. An event would not typically be described as throwing if it did not involve
the grasping and releasing of an object along with the resulting unsupported motion. Many prior
approaches to de�ning the meaning of the word throw (e.g. Miller 1972, Schank 1973, Jackendo� 1983,
and Pinker 1989), however, do not highlight this pivotal role. In this chapter, I advance the claim that
the notions of support, contact, and attachment are central to describing many common spatial motion
events. Accurately delineating the occurrence of such events from non-occurrences hinges on the ability
of perceiving support, contact, and attachment relationships between objects in the world. In chapters 8
and 9, I o�er a theory of how to ground the perception of these relations.

A central assumption of this work is that perception is intimately tied to language. We use words
and utterances to describe events that we perceive. The meaning of a word is typically thought of
as conditions on its appropriate use. It thus seems natural to relate the meaning of a word such as
throw to a procedure for detecting throwing events. Many schemes have been proposed for representing
the meanings of words and utterances (cf. Miller, Schank, Jackendo�, and Pinker). I will show that
these schemes cannot be taken as procedures for recognizing the events that they attempt to describe
because they lack the notions of support, contact, and attachment. Accordingly, I propose a di�erent
representation scheme that incorporates these notions into de�nitions of word meanings. The central
focus of this work is the ability for recognizing events by grounding the notions of support, contact, and
attachment. Therefore, the representation scheme developed here exaggerates the role played by these
notions.

For the remainder of this chapter, I will discuss the meanings of a number of spatial motion verbs. I
will show how prior de�nitions proposed for these verbs cannot be used as event recognition procedures.
For each verb I will then propose an alternate de�nition that highlights the role played by the notions
of support, contact, and attachment in characterizing the events described by that verb.

Consider the word throw. The Random House dictionary (Stein et al. 1975) o�ers the following
de�nition for throw.

throw v.t. 1. to propel or cast in any way esp. to project or propel from the hand by a
sudden forward motion or straightening of the arm and wrist

105
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This de�nition comprises two parts: a general condition and a more prototypical situation. Both of
these, however, admit events which one would not normally consider to be throwing events, for instance,
rolling a bowling ball down a bowling lane. A sign at a bowling alley that said `Please do not throw balls
down the alley' does not consider rolling a bowling ball to be throwing. The di�erence lies in whether
or not the resulting motion is unsupported.

Miller (p. 355) o�ers the following de�nition for throw.

to apply force by hand to cause to begin to travel through air

At �rst glance, it appears that Miller is attempting to capture the notion of support through the
statement through air. We might take the statement through air not as literallymeaning `through air',
which would admit supported motion through the air, but as a gloss for unsupported motion. But
elsewhere Miller groups through air along with through water and on land as the medium of
motion. Miller de�nes swim as to travel through water (p. 351) and walk as to travel on land by

foot (p. 345). Furthermore, as we shall see, the glosses given by Miller for other words whose de�nitions
require the notion of support do not incorporate the through air primitive.

Schank o�ers the following two de�nitions for throw.

(i) X throw Z at Y: X()PROPEL
o
 �Z<

<

>

X

Y
D

(ii) X throw Z to Y: X()PTRANS
o
 �Z<

<

>

X

Y
D I

 �

X
m

PROPEL
"o
Z

^

^

_
X Y

D

The �rst describes throwing as propelling an object Z on a path from the agent X to the destination Y .
The second appears to add the statement that Z must actually reach Y to be thrown to its destination.

Neither of these de�nitions mention the unsupported nature of the resulting motion.

Jackendo� (p. 175) o�ers the following gloss for the statement Beth threw the ball out the window.

CAUSE(Beth;GO(ball;OUT(window)))

While in this example, the unsupported nature of the resulting motion is implied by the fact that the
ball is being thrown out the window, nothing in the representation conveys this information. If one
takes CAUSE(x;GO(y; z)) as the meaning of throw, this de�nition admits many non-throwing events.

Pinker (p. 218) o�ers the following de�nition for the word throw via the gloss for the statement Bob
threw the box to Bill.1

1For typographical reasons, I have omitted the time-line component of Pinker's representations. It is not relevant
to the current discussion. The method for annotating e�ect and for/to branches is altered somewhat as well, again for
typographical reasons.
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throw:
EVENT
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ACT THING
[(Bob)]

THING
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MANNER
\throwing"

e�ect
EVENT
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PATH
[ ]

�
�
H
H

TO THING
(Bill)

This gloss encapsulates the distinction between throwing and non-throwing events in the manner at-
tribute \throwing". Since this is an uninterpreted symbol, it o�ers little help in building a procedure

for recognizing throwing events.

In short, none of the representation schemes proposed by Miller, Schank, Jackendo� and Pinker
contain a primitive for describing support. Thus in these schemes, one could not reformulate better
de�nitions around the notion of support without adding such a primitive. Pinker (p. 201) gives the
following de�nition for the word support

support:
STATE

�
��
��
�
��

�

��

@

@@

P
PP

PP
P
PP

ACT THING
[ ]

THING
[Y]

prevent
EVENT

�
�
�
��

H
H
H
HH

GO THING
Y

PATH

down

but does not recognize the need to incorporate this structure as part of the de�nitions of other words

which depend on support.

The de�nitions for throw given by Schank, Jackendo�, and Pinker also do not mention the role played
by one's hand in throwing an object. Numerous non-throwing events such as kicking, or bumping into
an object causing it to fall, would satisfy the above de�nitions even though they are not prototypical
throwing events. Random House and Miller attempt to capture this requirement via the statements
`from the hand' or by hand. Even these do not express the notion that prototypical throwing involves
grasping an object and subsequently releasing it. Combined with not specifying unsupported motion,
not specifying this grasping-releasing transition allows all of the de�nitions for throw given by Miller,
Schank, Jackendo�, and Pinker to admit many non-throwing events such as pushings, pullings, and
carryings. In fact, even the Random House de�nition would su�er from this problem were it not for the
words `or cast' appended to `propel' in its de�nition for throw.

In contrast, I propose the following alternative de�nition for throw.
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(define throw (x y)

(exists (i j)

(and (during i (move (hand x)))

(during i (move y))

(during i (contacts (hand x) y))

(during i (attached (hand x) y))

(during j (not (contacts (hand x) y)))

(during j (not (attached (hand x) y)))

(during j (move y))

(during j (not (supported y)))

(= (end i) (beginning j)))))

Informally, this states that a throwing event comprises two consecutive time intervals i and j, where
during i, both x's hand and y are moving, and x's hand is in contact with and attached to y, while
during j, x's hand is no longer in contact with and attached to y, and y is in unsupported motion.
Note that this de�nition incorporates the grasping and releasing action of the agent followed by the
unsupported motion motion of the patient, aspects of throwing not captured by the de�nitions advanced
by Miller, Schank, Jackendo�, and Pinker. I will not formally de�ne the notation used for de�ning
words. In fact, I have taken some liberty with the notation, sacri�cing precision in favor of expository
simplicity. What I hope to convey, however, is the belief that if one could ground the notions of support,
contact, and attachment, in addition to movement, one could use the above de�nition as a procedure
for perceiving throwing events.

I should stress that I do not advance such a de�nition as embodying the necessary and su�cient
conditions for the use of the word throw. Even ignoring metaphorical and idiomatic uses, the word throw

can be extended to a variety of situations. The above de�nition attempts to describe only prototypical
throwing events. It is a well-known philosophical quagmire to attempt to formally circumscribe the
meaning of a word or even to characterize prototypical events and their extensions. To avoid such
di�culties, I will simply say that the de�nitions presented here try to capture our intuitive notions of
the events they describe, better than prior representations. I o�er no way to substantiate this claim
except for the projected eventual success in using these de�nitions as part of an implemented computer
program to accurately di�erentiate occurrences from non-occurrences of the events they describe in
animated movies. Since the implementation of that program is still underway, I can only hope to
convince the reader that the mechanisms I propose in part II of this thesis show some actual promise
of achieving these aims. One should note that neither Miller, Schank, Jackendo�, nor Pinker o�er any

better substantiation of their respective representation schemes.
I also want to point out a number of issues pertaining to the above de�nition and others like it. First,

it does not specify precisely when the throwing event occurred. For most verbs like throw, it is unclear
whether the actual event described spanned both i and j, just i or j, some portion of either i or j, or just
the transition between i and j. The notation intentionally leaves this question unanswered in the absence
of suitable criteria for determining the appropriate solution. The intention is to interpret the notation
as stating that the event occurred sometime during the interval spanning i and j given that the criteria
for i and j are met. Second, the de�nition does not express certain other notions that we intuitively
believe to be part of throwing events. For instance, x's hand imparting force to y during i, or that force
causing the unsupported motion during j. Clearly notions such as force application and causality play an
important role in the meaning of most spatial motion verbs. I leave such notions out of de�nitions simply
because I do not yet know how to perceptually ground them. Section 10.2 will o�er some speculation
on how the methods described in part II of this thesis can be extended to support perception of force
application and causality, allowing such notions to be included in revised de�nitions for verbs like throw.
Finally, the above de�nition contains redundant information. Stating that x's hand is attached to y
during i implies that it contacts y during that interval as well. Likewise, stating that x's hand is moving
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during i, while it is attached to y, implies that y must also be moving during that interval. Furthermore,
stating that y is unsupported during j implies that x's hand is neither in contact with, nor attached to,
y during that interval. I include such redundant information for two reasons. First, it may allow more
robust detection of events given unreliable primitives. Second, the redundant prototypical de�nition is
more suitable for extension to non-prototypical situations. For example, throwing that does not involve
unsupported motion of an object still involves the release of that object at some point during its motion.
Perhaps some variant of structure mapping (Gentner 1983, Falkenhainer et al. 1989) applied to such
redundant de�nitions can form a basis for generalizing prototype de�nitions to idiomatic, metaphorical,
and other extended uses (cf. Lako� 1987).

Putting these and many other subtleties aside then, let us examine some other verbs for which
support, contact, and attachment play an important role. Consider the verbs fall, drop, bounce, and
jump. Miller (p. 357) gives the following de�nitions for these words.

fall: to travel downward

drop: to cause to travel downward

bounce: to travel up and down

jump: to travel over

These de�nitions seem not to accurately capture the meanings of these words since they lack the notion
of support, contact, and attachment. Falling is unsupported motion. One is not falling when one is
walking down stairs. Dropping must result in falling. One is not dropping a tea cup when one is gently
placing it onto its saucer. Furthermore, not just any causation of falling counts as dropping. Pushing
or knocking an object o� a ledge is not dropping that object. Dropping an object requires that the
agent previously grasp, or at least support, that object prior to its falling. Bouncing seems to involve
temporary contact more than up-and-down motion. One can bounce a ball horizontally against a wall.
Furthermore, not all up-and-down motion is bouncing. A book is not bouncing when one picks it up
and puts it down somewhere else. Jumping too, seems to involve support, in particular a self-induced
state change from being supported to being unsupported, typically incorporating upward motion. One
need not travel over something to successfully jump.

Schank gives the following de�nitions for fall and drop.

X fall: nf()PROPEL
o
 �Z<

<

>ground
D

X drop Z:

X
tF()GRASP

o
 �Z

bjjjr

nf()PROPEL
o
 �Z<

<

>ground
D

These require only that `nf', the natural force of gravity, propel an object toward the ground, and do
not require the object to be unsupported. They admit a situation where one is lowering a bucket into a
well as a case where one dropped the bucket and it is falling.

In contrast, I propose the following de�nitions for the verbs fall, drop, bounce, and jump.

(define fall (x)

(exists (i)

(and (during i (not (supported x)))

(during i (move-down x)))))
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(define drop (x y)

(exists (i j)

(and (during i (contacts (hand x) y))

(during i (attached (hand x) y))

(during i (supports x y))

(during i (supported y))

(during j (not (contacts (hand x) y)))

(during j (not (attached (hand x) y)))

(during j (not (supports x y)))

(during j (not (supported y)))

(during j (move-down y))

(= (end i) (beginning j)))))

(define bounce (x)

(exists (i j k y)

(and (during i (not (contacts x y)))

(during j (contacts x y))

(during k (not (contacts x y)))

(= (end i) (beginning j))

(= (end j) (beginning k))

(short j))))

(define jump (x)

(exists (i j)

(and (during i (supported x))

(during j (not (supported x)))

(during j (moving-up x))

(= (end i) (beginning j)))))

Intuitively, these de�nitions state that falling involves unsupported downward motion, that dropping
involves releasing a previously grasped object allowing it to fall, that bouncing involves temporary
contact and that jumping involves the transition from being supported to unsupported upward motion.
Again, they are not meant as necessary and su�cient conditions on the use of these words, only as
descriptions of prototypical events. More importantly, they can be used as procedures for recognizing

occurrences of the events they describe.
There seems to be no single uni�ed notion of support. The intuitive concept of support breaks down

into at least three variant notions, each corresponding to a di�erent way an object can fall. An object
can fall straight downward, fall over pivoting about a point beneath its center-of-mass, or slide down
an inclined plane. Whether or not an object is supported in one way, preventing one type of falling,
may be independent of whether it is supported in a di�erent way. Figure 7.1 illustrates several di�erent
potential support situations for an object. In �gure 7.1(a), the object is totally unsupported and will fall
down. In �gure 7.1(b), the object is prevented from falling down but will fall over. In �gure 7.1(c), the
object is prevented from falling down but can either fall over or slide. In �gure 7.1(d), the object will
neither fall down nor fall over but will slide. In �gure 7.1(e), the object is totally supported and will not
fall down, fall over, or slide. Di�erence in type of support appears to play a role in verb meaning. For
instance, throwing seems to require that an object be able to fall down, or at least fall over, as in The

wrestler threw his opponent to the 
oor. An event is not throwing if it results in unsupported sliding
motion. Similarly, falling, dropping, and jumping most prototypically involve the ability to fall down
but may be extended to cases of falling over and perhaps even to sliding. Other verbs are sensitive to
this distinction in di�erent ways. For instance, the verb lean on can be used only to describe situations
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(a) (b) (c) (d) (e)

Figure 7.1: The di�erent varieties of support relationships. In (a), the object is totally unsupported

and will fall down. In (b), the object is prevented from falling down but will fall over. In (c), the

object is prevented from falling down but can either fall over or slide. In (d), the object will neither
fall down nor fall over but will slide. In (e), the object is totally supported and will not fall down,

fall over, or slide.

where one object prevents another from falling over, and not when one object prevents another from
falling down. One is not leaning on the 
oor when one is standing on it.

Consider now the verb put. Miller (p. 359) de�nes put as to cause to travel. Jackendo� (p. 179)
o�ers

CAUSE(man;GO(book;TO ON(table)))

as the meaning of The man put the book on the table. Pinker (p. 180) gives the following fragment of a
de�nition for put.

put:
: : :

EVENT

�
�
�
�
��

H
H
H
H
HH

GO THING
[ ]

PATH
[ ]

�� HH

to PLACE

All of these de�nitions involve causing an object to move to a destination. Such a de�nition is overly
general. Jackendo�'s expression would be true of an event where the man knocked the book o� the
shelf onto the table, yet one would not say that he put the book there. Put seems to require the ability
to control the precise �nal destination of an object. One does not usually have such control when one
throws or kicks an object, so one doesn't use the word put to describe such situations. One way to
achieve greater positional control is by grasping or otherwise supporting an object while moving it.
Furthermore, positional control is achieved only if the object is supported at the end of the put event.
This support must come from something other than the hand which moved it. Otherwise, it has not
yet reached its �nal destination. These aspects of put, at least, can be captured using the machinery
described here with the following de�nition.
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(define put (x y)

(exists (i j z)

(and (during i (move (hand x)))

(during i (contacts (hand x) y))

(during i (attached (hand x) y))

(during i (supports x y))

(during i (move y))

(during j (not (move y)))

(during j (supported y))

(during j (supports z y))

(not (equal z (hand x)))

(= (end i) (beginning j)))))

Similarly, the prototypical event described by pick up can expressed as essentially the inverse operation.

(define pick-up (x y)

(exists (i j z)

(and (during i (supported y))

(during i (supports z y))

(during i (contacts z y))

(during j (move (hand x)))

(during j (contacts (hand x) y))

(during j (attached (hand x) y))

(during j (supports x y))

(during j (move y))

(not (equal z (hand x)))

(= (end i) (beginning j)))))

Many other simple spatial motion verbs also apparently involve support. Consider carry and raise.
Miller (p. 355) de�nes these words as follows.

carry: to cause to travel with self

raise: to cause to travel up

Jackendo� (p. 184) de�nes raise as

CAUSE(x;GO(y; [Path UPWARD; z])):

One would say Larry Bird raised the ball into the basket to describe a layup but not a jump shot even
though he has caused upward motion of the basketball in either case. One must be continually supporting
an object, perhaps indirectly, to be raising it. This holds true even more so for the verb lift. Likewise,
one is not carrying a baby stroller when one is pushing or pulling it, even though one is causing it to
travel with oneself.2 The statement Don't drag that box, carry it! would be infelicitous if the prototypical
carrying event admitted dragging. Accordingly, I o�er the following alternate de�nitions for carry and
raise.

(define carry (x y)

(exists (i)

(and (during i (move x))

(during i (move y))

(during i (supports x y)))))

2The Halakhic concept of d`ved not withstanding.
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(define raise (x y)

(exists (i)

(and (during i (supports x y))

(during i (move-up y)))))

The verbs described so far highlight the need for support in their de�nition. Support is not the only
crucial component of verb meaning. Contact and attachment also play a pivotal role. This is illustrated
in the simple verbs slide and roll. Pinker (p. 182) o�ers the following representations for the intransitive
use of roll.

roll:
EVENT

�
�
�
�
��

H
H

H
H

HH

GO THING
[ ]

MANNER
\rolling"

roll:
EVENT

��
��
��
��

�

�
�

@

@
@

PP
PP

PP
PP

GO THING

[ ]

PATH

[ ]

MANNER

\rolling"

The uninterpreted manner attribute o�ers no guidance as to the perceptual mechanisms needed to detect
rolling and thus to de�ne the meaning of the word roll. A proper de�nition of rolling can be based on a
de�nition of sliding since rolling occurs when sliding doesn't. One object slides against another object
if they are in continual contact and one point of one object contacts di�erent points of the other object
at di�erent instants. Although the notion of one object sliding against another can be represented in
the notation used here, by reducing it to primitives that return the points of contact between objects, I
prefer instead to treat slide-against as a primitive notion much like support, contact, and attachment.
I conjecture that the human visual apparatus contains innate machinery for detecting sliding motion
and suggest that experiments like those performed by Freyd and Spelke, to be described in sections 8.3
and 9.5, could be used to determine the validity of this claim. Given the primitive notion slide-against,
one could then de�ne the intransitive verb slide as follows.

(define slide (x) (exists (i y) (during i (slide-against x y))))

Rolling motion can then be described as occurring in any situation where an object is rotating while it
is in contact with another object without sliding against that object.

(define roll (x)

(exists (i y)

(and (during i (not (slide-against x y)))

(during i (rotate x))

(during i (contacts x y)))))

Accurately representing the transitive uses of slide and roll, however, requires the notion of causality.
Since this thesis does not o�er a theory for grounding the perception of causality, I will not attempt
to formulate de�nitions for these transitive uses. It is interesting to note, however, that despite this
inability for describing causality, many verbs described so far are nonetheless causal verbs. They can
be described fairly accurately without recourse to causality due to the availability of other cues such as
support, contact, and attachment.

So far, the primary use of the notion of attachment has been to describe grasping. Levin (1985, 1987)
suggests that there is an entire class of verbs of attachment including attach, fasten, bolt, glue, nail,
staple, : : : . I want to suggest another potential role attachment might play in verb meaning beyond
the class of these kind of attachment verbs. Two other verb classes suggested by Levin include verbs
of creation and verbs of destruction. The typical way of representing such verbs is via a change in the
state of existence of some object. Thus Schank proposes the following de�nitions for make and break.



114 CHAPTER 7. LEXICAL SEMANTICS

X make Z:

X()DO
bjjjr

Z
tS()BE

X break:

X()DO
bjjjr

Z()broken

To the same end, Jackendo� proposes the existential �eld and primitives like GOExist and [EX]. Similarly,
Pinker o�ers the following de�nitions for make (p. 223)3

make:
EVENT

�
��
��
��
��
��

�

�

�
�

@

@

@
@

P
PP

PP
PP

PP
PP

ACT THING

[X]

THING

[Y]

e�ect

EVENT: existential

�
�
�
�
��

H
H
H
H
HH

GO THING
Y

PLACE

�
��

H
HH

at EXISTENCE

and break (p. 206).

break:
EVENT

��
��
��
�
��
�

�

�

��

@

@

@@

PP
PP

PP
P
PP

P

ACT THING
[ ]

THING
[Y]

e�ect
EVENT: ident

�
�
�
�
�
�

H
H
H

H
H
H

GO THING
Y

PROPERTY
\broken"

Like uninterpreted manner attributes, a symbol like [EX] o�ers little guidance in grounding the concepts

of creation and destruction. While I do not suggest that we are anywhere close to being able to fully
ground these concepts, the notion of attachment may allow a modest start in the right direction. Objects
are constructed from components that are typically attached to each other to form the aggregate parent
object. One can make an object by forming attachments between appropriate components. One can
break an object by severing those attachments. Chapter 8 describes how Abigail models objects as
collections of attached line segments and circles. Attachments between line segments and circles can be
made and broken during the course of the movie. Abigail can track the formation and dissolution of
attachment relationships dynamically during event perception. This is howAbigail can detect graspings

and releasings. This same mechanism can be used to determine that a new object has been constructed

3I have omitted the benefactive component of Pinker's original de�nition as it is tangential to the current discussion.
Pinker also phrased the original de�nition as a gloss for the utterance Bob made a hat. I have replaced the tokens (Bob)
and (hat) from the original gloss with the variables X and Y.
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out of some components, or that an object has been broken into its pieces. Such low-level notions may
form the basis of more complete explanations for creation and destruction by way of a long chain of
analogical reasoning. Whether such speculation leads anywhere remains for future research.

As a �nal example, I will present the de�nition of a verb that is seemingly perceptually much more
complex. Schank gives the following de�nition for walk.

X walk to Z: X()PTRANS
o
 �X<

<

>

D I
 �

X
m

MOVE
"o

feet of X

^

^

_
Z

D

This de�nition, however, admits running, hopping, skipping, jumping, skating, and bicycling events.
We can consider walking to involve a sequence of steps. Each step involves lifting up some foot o� the
ground and placing it back on the ground.

(define step (x)

(exists (i j k y)

(and (during i (contacts y ground))

(during j (not (contacts y ground)))

(during k (contacts y ground))

(equal y (foot x))

(= (end i) (beginning j))

(= (end j) (beginning k)))))

In addition to stepping, walking involves motion. Furthermore, two conditions can be added to distin-
guish walking from running, hopping, skipping, and jumping on one hand, and skating on the other.
One stipulates that at all times during walking, at least one foot must be on the ground. The second
stipulates that no sliding takes place.

(define walk (x)

(exists (i)

(and (during i (repeat (step x)))

(during i (move x))

(during i

(exists (y)

(and (equal y (foot x))

(contacts y ground))))

(during i

(not (exists (y)

(and (equal y (foot x))

(slide-against y ground))))))))

Taken together, this is a fairly accurate description of walking.
All of the discussion so far has focussed on using semantic representations for event perception. The

ultimate goal of this research, however, is to link language with perception using the architecture from
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�gure 6.2. For a semantic representation to act as an appropriate bridge between the linguistic and
non-linguistic halves of this architecture, it must simultaneously meet criteria imposed by both halves.
Linguistic processing imposes a strong constraint not addressed so far. It must be possible to specify a
way for combining representations of the meanings of words to form the representation of the meaning
of an utterance comprising those words. Such a process in called a linking rule. The choice of linking
rule depends on the representation used. A linking rule appropriate for one representation might not
be suitable for another. Jackendo�, Pinker, and Dorr (1990a, 1990b) adopt a substitution-based linking
rule. With this rule, word meanings are taken to be expressions with variables acting as place holders
for a word's arguments. The meaning of a phrase is composed by taking some constituent in that phrase
as the head and substituting the meanings of the remaining constituents for variables in the head's
meaning. Figure 7.2, illustrates an example application of this linking rule. This rule can be thought
of simply as �-substitution, one of the rewrite rules introduced as part of the �-calculus. While such
a linking rule is suitable for Jackendovian representations and its derivatives used by Pinker and Dorr,
it is unsuitable for the representation proposed here. This can be illustrated by the following example.
Consider the utterance John dropped the book on the 
oor. For simplicity, let's take the meanings of
John, the book, and the 
oor to be john, book, and floor respectively. Earlier, I took the meaning of
drop to be as follows.

(define drop (x y)

(exists (i j)

(and (during i (contacts (hand x) y))

(during i (attached (hand x) y))

(during i (supports x y))

(during i (supported y))

(during j (not (contacts (hand x) y)))

(during j (not (attached (hand x) y)))

(during j (not (supports x y)))

(during j (not (supported y)))

(during j (move-down y))

(= (end i) (beginning j)))))

While one could apply simple substitution to link john with x and book with y, that technique will
not work with the prepositional phrase on the 
oor in the above utterance. The desired expression to
represent the meaning of the entire utterance would look something like the following.

(exists (i j K)

(and (during i (contacts (hand john) book))

(during i (attached (hand john) book))

(during i (supports john book))

(during i (supported book))

(during j (not (contacts (hand john) book)))

(during j (not (attached (hand john) book)))

(during j (not (supports john book)))

(during j (not (supported book)))

(during j (move-down book))

(DURING K (CONTACTS BOOK FLOOR))

(DURING K (SUPPORTS FLOOR BOOK))

(DURING K (SUPPORTED BOOK))

(= (end i) (beginning j))

(= (END J) (BEGINNING K))))
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John slid the cup from Mary to Bill.

CAUSE(John;GO(cup; [Path FROM(Mary);TO(Mary)]))

�
�
�
�
�
�
��

H
H
H
H

H
H
HH

John

John

slid the cup from Mary to Bill

CAUSE(x;GO(cup; [Path FROM(Mary);TO(Mary)]))

��
��
�
��
��
��
��
��

�

�

�

�
�

@

@

@

@
@

PP
PP

P
PP

PP
PP

PP
PP

slid

CAUSE(x;GO(y; [Path u; v]))
the cup

cup

�� HH

the

?
cup

cup

from Mary

FROM(Mary)

�
��

H
HH

from

FROM(x)
Mary

Mary

to Bill

TO(Bill)

�
�
H
H

to

TO(x)
Bill

Bill

Figure 7.2: A derivation of the meaning of the utterance John slid the cup from Mary to Bill from
the meanings of its constituent words using the linking rule proposed by Jackendo�.

While it is unclear what to take precisely as the meaning of the preposition on, what it does structurally
in the above example is contribute a new interval k to the existential quanti�er, some added conjuncts
describing support and contact relationships between the book and the 
oor, and an added conjunct
to temporally constrain the new interval relative to prior intervals. These additions appear in upper
case in the above semantic representation. Whatever we take as the meaning of on the 
oor, it is not
a piece of structure that is substituted for a single variable in some other structure. Furthermore, the
new structure contributed by on the 
oor must itself have variables which are linked to elements such
as book from the structure to which it is linked. Thus substitution-based linking rules are not suitable
for the type of representation discussed here.

There is much talk in the linguistic literature about linking rules which are claimed to be innate and
universal (cf. Pinker 1989). Such claims can be valid only if the actual semantic representation used by
the brain is of the form that allows such linking rules to apply. These claimsmust be revised if it turns out
that the semantic representation must be more like that discussed here. Consider the following example.
A common claim is that a universal linking rule stipulates that agents are subjects. An additional
claim is that the �rst argument to the CAUSE primitive is an agent (cf. Jackendo� 1990). Using
extensions that will be described in section 10.2, the primitive notion (supports x y) can be viewed
as something like (cause x (supported y)). In this case, x would be an agent and thus would be a
subject. Consider however, the utterance John leaned on the pole. In the representation considered here,
this would correspond to (supports pole john), or equivalently (cause pole (supported john)).
This would require pole to be an agent and thus a subject, contrary to English usage. Thus the claimed
universal linking rule and the semantic representation considered here are incompatible. The universal
linking rule can be valid only if we �nd a compatible representation which also allows grounding meaning
in perception.

Borchardt (1984) recognizes the need to incorporate the notions of support, contact, and attachment
into procedures for recognizing simple spatial motion events. He describes a system that recognizes such
events in a simulated micro-world containing a robot hand and several objects. That system receives the
changing coordinates of those objects as input. Figure 7.3 illustrates several event recognition procedures
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suggested by Borchardt for that micro-world. While his de�nitions and notation di�er in speci�c details
from the de�nitions and notation suggested here, we share the same intent of describing spatial motion
events using the notions of support, contact, and attachment. The major di�erence is that Borchardt's
system receives the changing support, contact, and attachment relationships between objects as input,
while Abigail infers such relationships from lower-level perceptual input.

To summarize, this chapter has advanced the claim that the notions of support, contact, and attach-
ment play a central role in de�ning the meanings of numerous simple spatial motion verbs. These notions
are necessary to construct procedures which can di�erentiate between occurrences and non-occurrences
of prototypical events which these verbs describe. I have shown how prior lexical semantic represen-
tations lack the ability for representing these notions, and are thus incapable of making the requisite
distinctions. Furthermore, I have proposed an alternate representation which not only incorporates these
notions into verb de�nitions, but does so in a prominent fashion. This new representation is useful only
if one can show how to ground the notions of support, contact, and attachment in visual perception.
The next two chapters will propose a theory of how such grounding may work.
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(defun slide (a b) p. 99

(and (dsupport table a)

(translate a)

(not (roll a))))

(defun roll (a b) p. 99

(and (dsupport a)

(dsupport a)

(translate a)

(or (isa a ball)

(and (isa a cylinder)

(perpendicular i (heading a i) (orientation a p i))))))

(defun fall (a) p. 99

(and (< (ddt (position a z)) -10)

(not (exists i hand (control i a)))))

(defun bounce (a b) p. 105

(and (moveaway a b)

(hit a b justbefore (start (moveaway a b)))

(< (abs (ddt (velocity b))) 3)))

(defun control (a b) p. 108

(and (not (dsupport table b))

(or (hold a b)

(support a b)

(exists i object (and (hold a i) (support i b))))))

(defun raise (a b) p. 108

(and (control a b) (< (ddt (position b z)) -0.5)))

(defun pickup (a b) p. 110

(and (movefingers a)

(not (control a b))

(at (ever (control a b)

(start (and (movefingers a) (not (control a b)))))

(next (stop (movefingers a))))))

(defun setdown (a b) p. 110

(and (movefingers a)

(control a b)

(at (ever (not (control a b))

(start (and (movefingers a) (control a b))))

(next (stop (movefingers a))))))

(defun drop (a b) p. 110

(and (fall b) (justbefore (control a b) (start (fall b)))))

Figure 7.3: A selection of representations of verbs used by Borchardt to detect occurrences of events

described by those verbs in a simulated blocks world with a robot arm. The page numbers indicate

where the representation appeared in Borchardt (1984).
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Chapter 8

Event Perception

In chapter 7, I argued that the notions of support, contact, and attachment play a central role in de�ning
the meanings of numerous spatial motion verbs. If this is true, the ability to perceive occurrences of
events described by those verbs rests on the ability to perceive these support, contact, and attachment
relations. In this chapter I advance a theory of how this might be accomplished. The central claim of
this chapter is that support, contact, and attachment relations can be recovered using counterfactual

simulation, imagining the short-term future of a potentially modi�ed image under the e�ects of gravity
and other physical forces. For instance, one determines that an object is unsupported if one imagines
it falling. Likewise, one determines that an object A supports an object B if B is supported, but
falls when one imagines a world without A. An object A is attached to another object B if one must
hypothesize such an attachment to explain the fact that one object supports the other. A similar, though
slightly more complex, mechanism is used to detect contact relationships. All of the mechanisms rely
on a modular imagination capacity. This capacity takes the representation of a possibly modi�ed image
as input, and predicts the short-term consequences of such modi�cations, determining whether some
predicate P holds in any of the series of images depicting the short-term future. The imagination capacity
is modular in the sense that the same unaltered mechanism is used for a variety of purposes, varying
only the predicate P and the initial image model between calls. To predict the future, the imagination
capacity embodies physical knowledge of how objects behave under the in
uence of physical forces such
as gravity. For reasons to be discussed in chapter 9, such knowledge is naive and yields predictions that
di�er substantially from those that accurate physical modeling would produce. Section 10.2 speculates

about how the imagination capacity might also contain naive psychological knowledge modeling the
mental state of agents in the world, and how such knowledge might form the basis of the perception
of causality. Chapter 9 discusses the details of the mechanism behind the imagination capacity. This
chapter �rst presents a computational model of how such a capacity can be used to perceive support,
contact, and attachment relations, as well as experimental evidence that suggests that such mechanisms
might form the basis of human perception of these notions.

Certain notions seem to pervade human perception of the world. We know that solid objects cannot
pass through one another. This has been termed the substantiality constraint. We know that objects do
not disappear and then later reappear elsewhere. When an object moves from one location to another, it
follows a continuous path between those two locations. This has been termed the continuity constraint.
We know that unsupported objects fall and that the ground acts as universal support for all objects. I
will refer to these latter two facets of human perception as gravity and ground plane. Section 9.5 will
review experiments performed by Spelke (1988) and her colleagues that give evidence that at least two of
the above notions are present in humans from very early infancy, namely substantiality and continuity.
This chapter, along with chapter 9, argues that substantiality, continuity, gravity, and ground plane are

121
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central notions that govern the operation of an imagination capacity which is used to recover support,
contact, and attachment relations from visual input. Recovery of these relations in turn, forms the basis
of event perception and the grounding of language in perception.

8.1 The Ontology of Abigail's Micro-World

Before presenting the details of a computational model of event perception, it is necessary to describe
the ontology which Abigail uses to interpret the images she is given as input.

The real world behaves according to the laws of physics. Beyond these laws, people project an
ontology onto the world. It may be a matter of debate as to which facets of our perceived world should
be attributed to physics, and which to our conceptualization of it, but such philosophical questions
do not concern us here. In either case, our world contains, among other things, solid objects. These
objects have mass. They are located and oriented in three-dimensional cartesian space. Solid objects
obey the principles of substantiality, continuity, gravity, and ground plane, that is, solid objects do
not pass through one another, they follow a continuous path through space when moving between two
points, they fall unless they are supported, and they are universally supported by the ground. Subject
to these constraints (and perhaps others), solid objects can change their position and orientation, they
can touch one another, they can be fastened to one another, they can be broken into pieces, and those
pieces eventually refastened to form either the same object, or di�erent objects. Complex objects can
be constructed out of parts which have been fastened together. The relative motion of such parts can
be constrained to greater or lesser degrees.

The aforementioned story is a small but important fragment of human world ontology. On this view,
we all share roughly the same conceptual framework, around which much of language is structured. The
non-metaphoric meanings of many simple spatial motion verbs depend on this shared ontology. For
example, the verb sit incorporates, among other things, the notion of support, which in turn is built
on the notions of gravity and substantiality. But this alone does not su�ce. Sit also incorporates the
notion that our body has limbs as parts, that these limbs are joined to our torso, that these joints impose
certain constraints on the relative motion of our body parts, and these constraints allow us to assume
certain postures which facilitate the support of our body. Furthermore, many nouns such as chair derive
at least part of their meaning from the role they play in events referred to by words like sit. So a chair
must facilitate support of the body in the sitting posture. A little introspection will reveal that the
aforementioned fragment is a necessary, and perhaps almost su�cient, ontology for describing numerous
word meanings, including those discussed in chapter 7.

Like the real world, Abigail's micro-world has an ontology, though this ontology is derived mostly
via projection of Abigail's perceptual processes onto a world governed by very few physical laws. This
ontology is analogous to that of the real world though it di�ers in some of the details. Abigail's micro-
world contains objects that have mass, and are located and oriented in a 21

2
-dimensional cartesian space.

These objects obey substantiality, continuity, gravity, and ground plane. They can move, touch, support,
and be fastened to one another. They can break into pieces and those pieces refastened. The relative
motion of pieces fastened together can be constrained so that an object constructed out of parts can
have a posture which can potentially change over time. Most of the words discussed in chapter 7 can be
interpreted relative to the alternate ontology of Abigail's micro-world, rather than the real world. Such
a re-interpretation maintains the general conceptual organization of the lexicon in that a person would
use the same word sit to describe analogous events in the movie and the real word. Furthermore, the
ontological analysis projected by Abigail onto a sitting event in the movie is identical to the analysis
projected by a person watching a sitting event in the real world, even though the low-level primitives out
of which those analyses are constructed di�er. This allows Abigail's micro-world to act as a simpli�ed
though non-trivial testbed for exploring the relationship between language and perception.
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The aforementioned ontology is not implemented in Abigail as explicit declarative knowledge. In-
stead, it is embedded procedurally in an imagination capacity to be described in chapter 9. The event
perception mechanisms described in this chapter, and ultimately any language processing component
which these mechanisms drive, rely on this ontology through the imagination capacity. Although the on-
tology possessed by humans di�ers from this arti�cial ontology in its details, if the general framework for
event perception incorporated into Abigail is re
ective of actual human event perception, then human
event perception too must ultimately rely on a world ontology. I should stress that I remain agnostic on
the issue of whether such an ontology|and the mechanisms for its use|are innate or acquired. Nothing
in this thesis depends on the outcome of that debate. All that is assumed is that the ontology and
mechanisms for its use are in place prior to the onset of any linguistic ability based on the link between
linguistic and perceptual processes. A particular consequence of this assumption is the requirement
that the ontology and mechanisms for its use be in place prior to the onset of language acquisition,
since the models described in part I of this thesis rely on associating each input utterance with semantic
information denoting the potential meanings of that utterance recovered from the non-linguistic context.

This ontology may be represented redundantly, and di�erently, at multiple cognitive levels. I �nd
no reason to assume that this ontology is represented uniformly in the brain at a single cognitive level.
The representation used for imagination, a low-level process, might di�er from representations at higher
levels. The ontology used for low-level imagination during visual perception may di�er both in its
implementation, as well as its predictive force, from any other ontology we possess, in particular that
which we discover through introspection. Di�erent ontologies may be acquired via di�erent means at
di�erent times. Furthermore, it is plausible for some to be innate while others are acquired. To me, in
fact, this seems to be the most likely scenario.

8.1.1 Figures

At the lowest level, the world that Abigail perceives is constructed from �gures. I will denote �gures
with the (possibly subscripted) symbols f and g. In the current implementation, �gures have one of two
shapes, namely line segments and circles. Conceivably,Abigail could be extended to support additional
shapes, such as conic section arcs and polynomial arcs, though the complexity of the implementation

would grow substantially without increasing the conceptual coverage of the theory.1

At each movie frame Abigail is provided with the position, orientation, shape, and size of every
�gure. Positions are points in the cartesian plane of the movie screen. I assume that the camera does
not move. Thus an object is stationary if and only if the coordinates of the positions of its �gures
do not change. The (possibly subscripted) symbols p and q will denote points. Each point p has two
coordinates, x(p) and y(p).

The position of a �gure f is speci�ed by two points, p(f) and q(f). For line segments, these are its
two endpoints. For circles, p(f) is its center while q(f) is a point on its perimeter. The orientation and

size of �gures are derived from these points. Given two points, p and q, the orientation of the line from p

to q in given by2

�(p; q)
4
= tan�1

y(q) � y(p)

x(q) � x(p)
:

The orientation of a �gure, whether it be a line segment or a circle, is an angle �(f)
4

= �(f).3 Throughout
the implementation of Abigail, all angles �, including the orientations of �gures, are normalized so

1In retrospect, even allowing circles unduly complicated the implementation e�ort. Little would be lost by allowing

only line segments, and modeling circles as polygons.
2Actually, the Common Lisp function (atan (- (y q) (y p)) (- (x q) (x p))) is used to handle orientation in all

four quadrants and the case where � is �

2
.

3This implies the somewhat unrealistic assumption that circles have a perceivable orientation. The reason for this
simpli�cation will be discussed on page 127.
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that �� < � � �. Note that the leftward orientation is normalized to +� and not ��. The reason
for this will be discussed on page 165. Axes of translation will be speci�ed as orientations. Given the
orientation � of an axis of translation, translation along the axis in the opposite direction is accomplished
via a translation with the orientation �+�, suitably normalized. In a similar fashion, amounts of rotation
about pivot points will be speci�ed via angles. If � denotes an amount of rotation in one direction then ��
denotes the amount of rotation in the opposite direction.

I will denote the distance between two points p and q as �(p; q).

�(p; q)
4
=
p
(x(p)� x(q))2 + (y(p) � y(q))2

The size of a line segment is its length, the distance �(p(f); q(f)) between its two endpoints. The size
of a circle is its perimeter: ��(p(f); q(f))2. Figures also have a mass, denoted m(f), which is taken to
be equal to their size. Figures have a center-of-mass. The values x(f) and y(f) denote the coordinates

of the center-of-mass of a �gure f . The center-of-mass of a line segment is its midpoint.

x(f) =
x(p(f)) + x(q(f))

2

y(f) =
y(p(f)) + y(q(f))

2

The center-of-mass of a circle is its center: x(f) = x(p(f)), y(f) = y(p(f)).
I also de�ne the notion of the displacement between a point and a �gure, denoted �(p; f). This will

play a role in de�ning joint parameters in the next section. If f is a line segment, then

�(p; f)
4

=
�(p; p(f))

�(p(f); q(f))
:

Such a displacement is called a translational displacement. Since displacements are used only for points
forming joints between �gures, the point p will always lie on f and the displacement will always be

between zero and one inclusively. If f is a circle, then �(p; f)
4
= �(p(f); p) � �(f). Such a displacement

is called an rotational displacement and will always be normalized so that �� < �(p; f) � �.

8.1.2 Limitations and Simplifying Assumptions

At every movie frame, Abigail is presented with a set Fi of �gures that appear in frame i. Several
simplifying assumptions are made with respect to the sets Fi.

1. Each �gure in every frame corresponds to exactly one �gure in both the preceding and following
frame.

2. Abigail is given this correspondence.

3. The shape of each corresponding �gure does not change from frame to frame.

4. Abigail is given the correspondence between the endpoints of corresponding line segments in suc-
cessive frames. In other words, Abigail is given the distinction between a line segment whose
endpoints are (p; q) and one whose endpoints are (q; p). This allows Abigail to assign an unam-
biguous orientation to every line segment.

5. Abigail can perceive two concentric equiradial circles as separate �gures even though they overlap.
Abigail can also perceive two collinear intersecting line segments as separate �gures. This means,
for instance, that when a knee is straightened so that the thigh and calf are collinear, they are still
perceived by Abigail as distinct line segments even though they may be depicted graphically as
a single line segment.
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Collectively, these simplifying assumptions4 imply that Abigail need only maintain a single set F of
�gures invariant over time. Only the coordinates of the points of the �gures can change from frame
to frame. These assumptions also imply several restrictions on Abigail's ontology. First, individual
�gures are never created, destroyed, split, fused, or bent. This is not a severe restriction since �gures
are only the atomic elements out of which objects are constructed. Objects, being sets of �gures, can
nonetheless be created, destroyed, split, fused, or bent by changing the attachment relationships between
the �gures constituting those objects. Second, �gures cannot appear or disappear. They can never enter
or leave the �eld of view and are never occluded. Since objects are composed of �gures, this implies that
objects, as well, never enter or leave the �eld of view. While from a very early age, infants possess the
notion of object permanence, such a notion has not yet been incorporated into Abigail. This severe
restriction will not be addressed in this thesis. Finally, these assumptions imply that Abigail is given
the continued identity of objects over time.

Object perception can be broken down into three distinct tasks: segmentation, classi�cation, and
identi�cation. Segmentation is the process of grouping �gures together into objects. Classi�cation is
the process of assigning a type to an object based on its relation to similar objects. Identi�cation is
the process of tracking the identity of an object|determining that some object is the same as one
previously seen. This thesis currently addresses only segmentation. The per-frame analysis discussed in
section 8.2.1 is a novel approach to image segmentation based on naive physical knowledge. Extending
this approach to address object classi�cation and identi�cation is an area left for future research.

It is possible to relax the assumptions that Abigail be provided with the �gure and endpoint
correspondences (assumptions 2 and 4 from above), and have her recover such correspondences herself,
provided that such correspondences do exist to be recovered and the remaining assumptions still hold.
One way to extend Abigail to recover the �gure and endpoint correspondences would be to choose a
matching that paired only objects of the same shape, and choose the matching that minimized the sum
of the distances between the points of the paired �gures. If the frame rate is high enough relative to
object velocities, a simple greedy optimization algorithm, perhaps with some hillclimbing, should su�ce.
This approach would be a simple �rst step at addressing object identi�cation. It has not been attempted
since it is tangential to the main focus of this work.

Many of Abigail's perceptual mechanisms are phrased in terms of the notions intersect, touch, and
overlap. Two �gures intersect if they share a common point. Two line segments touch if they intersect
at a single point and that intersection point is coincident with an endpoint of one of the line segments.
Two circles touch if they intersect at a single point. A line segment and circle touch either if the line
segment is tangent to the circle, or one of the two possible intersection points is coincident with an
endpoint of the line segment. Two �gures overlap if they intersect but do not touch, except that a
line segment and a circle can both overlap and touch if one intersection point is coincident with an
endpoint of the line segment while the other is not. Figure 8.1 gives a pictorial depiction of these notions
and enumerates the di�erent possible relations between two �gures. The left hand column depicts the
possible relations between two line segments. The center column depicts the possible relations between
a line segment and a circle. The right hand column depicts the possible relations between two circles.
Cases (a) through (h) depict touching relations. Cases (i) through (k) depict overlap relations. Case (l)
depicts the only instance where two �gures can both touch and overlap simultaneously.

For reasons which will be discussed is section 9.3.4, these notions of intersect, touch, and overlap
must be made `fuzzy'. In this fuzzy de�nition of intersection, two �gures intersect if the closest distance
between a point on one and a point on the other is within some tolerance. The midpoint between those
two closest points is taken to be the intersection point for determining the touch and overlap relations
if the two �gures do not actually intersect. Finally, two points are taken to be coincident if the distance
between them is within some tolerance.

4For e�ciency reasons, the current implementation of Abigail adds the additional assumption that the size of corre-

sponding �gures is invariant across frames though this assumption is not fundamental and easily lifted.



126 CHAPTER 8. EVENT PERCEPTION

(a) (b) (c)

(d) (e) (f)

(g)

(h)

(i) (j) (k)

(l)

Figure 8.1: The possible ways in which two �gures can touch or overlap. Cases (a) through (h)
depict instances of touching. Cases (i) through (k) depict instances of overlapping. Case (l) depicts

the one instance which can involve both touching and overlapping between the same two �gures.
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These are not meant to be taken as de�nitions of the words intersect, touch, and overlap. Rather
they are low-level perceptual notions out of which higher-level de�nitions of these words, and others,
can be constructed.

8.1.3 Joints

Part of Abigail's ontology is the knowledge that �gures can be joined, fastened, or attached together.
A joint is a constraint that two �gures intersect. I will denote a joint with the (possibly subscripted)
symbol j. The two �gures joined by a joint j are denoted f(j) and g(j).

Joints can optionally further constrain the relative motion between two �gures. Since each �gure has
three degrees of freedom (the (x; y) position of one endpoint and its orientation), a joint can potentially
constraint each of these three degrees of freedom of one �gure relative to another it is joined to. Thus
a joint may specify three parameters, each of which independently constrains one of the degrees of
freedom. Each of these parameters may be either real-valued or nil. A nil value for a parameter

signi�es that a joint is 
exible along that degree of freedom, while a real value speci�es that it is
rigid. Joints can be independently rigid or 
exible along each degree of freedom. A rigid rotation

parameter �(j) constrains the angle between the orientations of the two joined �gures to be equal to the
parameter setting: �(j) = �(g(j)) � �(f(j)). The remaining two joint parameters are the displacement

parameters �f (j) and �g(j) which partially constrain the displacement of the intersection point relative
to each �gure. Since the two �gures of a joint must intersect, one can denote their intersection point
as p(j). If �f (j) is rigid then the constraint �f (j) = �(p(j); f(j)) is enforced. Likewise, if �g(j) is
rigid then the constraint �g(j) = �(p(j); g(j)) is enforced.5 Note that giving circles orientations allows
de�ning the concept of rotational displacement. Without such a concept, �xing the relative positions of
two joints, each joining a di�erent line segment to the same circle, would require a complex constraint
speci�cation between all three �gures. With the notion of rotational displacement, the displacement of
each line segment relative to the circle can be �xed independently as a constraint between two �gures.

Since two �gures may have more than one intersection point, I add an additional simplifying as-
sumption about joints to allow unambiguous determination of the intersection point p(j). I require
that at least one of the displacement parameters of each joint be rigid. Subject to this constraint, the
intersection point can be found by using whichever of the following formulas is applicable. If �f (j) is
rigid and f(j) is a line segment then

x(p(j))
4

= x(p(f(j))) + �f (j) � (x(q(f(j))) � x(p(f(j))))

y(p(j))
4

= y(p(f(j))) + �f (j) � (y(q(f(j))) � y(p(f(j)))):

If �f (j) is rigid and f(j) is a circle then

x(p(j))
4
= x(p(f(j))) + �(p(f(j)); q(f(j))) cos(�f (j) + �(f(j)))

y(p(j))
4
= y(p(f(j))) + �(p(f(j)); q(f(j))) sin(�f (j) + �(f(j))):

If �g(j) is rigid and g(j) is a line segment then

x(p(j))
4

= x(p(g(j))) + �g(j) � (x(q(g(j))) � x(p(g(j))))

y(p(j))
4

= y(p(g(j))) + �g(j) � (y(q(g(j))) � y(p(g(j)))):

5Due to roundo� problems, a fuzzy notion of equality must be used to enforce joint parameters. The fuzzy comparison

of angles must take normalization into account. This requires equating �� + � to � � �.
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If �g(j) is rigid and g(j) is a circle then

x(p(j))
4

= x(p(g(j))) + �(p(g(j)); q(g(j))) cos(�g(j) + �(g(j)))

y(p(j))
4

= y(p(g(j))) + �(p(g(j)); q(g(j))) sin(�g(j) + �(g(j))):

As part of her pre-linguistic endowment Abigail knows that �gures can be fastened by joints and
that joints have the aforementioned properties. Furthermore, she knows how these properties a�ect
the motion of joined �gures under the e�ects of gravity and related naive physical constraints. This
knowledge is embodied in an imagination capacity which will be discussed in chapter 9. However, her
perceptual processes do not allow her to directly perceive the existence of joints in the movie she is
watching. As perceptual input, she is given only the positions, orientations, shapes, and sizes of �gures
in each movie frame. She is not told which �gures are joined and how they are joined. She must infer this
information from the image �gure data alone. Furthermore, which �gures are joined and the parameters
of those joints may change over time. Joints may be broken, as happens when a leg is removed from
the table. New joints may be formed, as would happen if a table was built by attaching its legs to the
table top. Rigid joint parameters may become 
exible and 
exible joint parameters may become rigid.

At all times Abigail maintains a joint model, a set of joints J and their parameters, that she currently
believes to re
ect what is happening in the movie. The process by which she updates this joint model
will be described in section 8.2.1.

8.1.4 Layers

Abigail's micro-world is nominally two-dimensional. The movie input has only x and y coordinates. A
two-dimensional world, however, is very constraining. If one wants to model the substantiality constraint
in such a world, the movement of objects world be severely restricted. For instance, in the movie described
in section 6.1, John would not be able to walk, as he does, from one side of the table to the other, for
in doing so, he would violate substantiality. People, have no di�culty understanding that movie even
though they too, perceive only a two-dimensional image. That is because human world ontology is three-
dimensional and human perception understands two-dimensional depictions of a three-dimensional world.
So a human watching the movie described in section 6.1 would assume that John walked either in front
of the table, or behind it, as he passed from one side to the other.

I want to be able to model such a capacity in Abigail as well. Thus part of Abigail's pre-linguistic
endowment is the knowledge that each �gure in the world resides on some layer. Two �gures may either

be on the same layer or on di�erent layers. I will denote the fact that two �gures f and g are on the
same layer by the assertion f ./ g, and the fact that they are on di�erent layers by the assertion f 6./ g.
These layer assertions a�ect whether the substantiality constraint holds between a pair of �gures. Two

�gures which are on the same layer must not overlap. The substantiality constraint does not apply to
�gures on di�erent layers.

Just like for joints, Abigail is not given layer assertions as direct input. She must infer which
�gures are on the same layer, and which are on di�erent layers, solely from image �gure data. Again,
much in the same way that joint parameters change during the course of a movie, �gures can move
from layer to layer as the movie progresses. Thus which layer assertions are true may change over time.
Abigail maintains a layer model which consists of a set L of layer assertions that re
ects her current
understanding of the movie. The process by which she updates this layer model will be discussed in
section 8.2.1.

Abigail treats layer assertions as an equivalence relation. The ./ relation embodied in L is thus
re
exive, symmetric, and transitive. The layer model must also be consistent. It cannot imply that
two �gures be both on the same layer, and on di�erent layers, simultaneously. Furthermore, if the
layer model neither implies that two �gures are on the same layer nor that they are on di�erent layers,
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Abigail will assume that they are on di�erent layers by default. Layer assertions are a weak form of
information about the third dimension. In particular, there is no notion of one �gure being in front
of or behind another �gure, nor is there a notion of two �gures being on adjacent layers. No further
knowledge implied by our intuitive notion of `layer' is modeled beyond layer equivalence.

8.2 Perceptual Processes

Having presented the ontology which Abigail projects onto the world, it is now possible to describe the
process by which she perceives support, contact, and attachment relations between objects in the movie.
Recall that Abigail has no prior knowledge about the types or delineation of objects in the world. She
interprets any set of �gures connected by joints as an object. To do so, she must know which �gures
are joined. Not being given that information as input, her �rst task is to form a model of the image
that describes which �gures are joined. Since the attachment status of �gures may change from frame
to frame as the movie unfolds, she must repeat the analysis which derives the joint model as part of the

processing for each new frame. The ontology which Abigail projects onto an image includes a layer
model in addition to a joint model. Since Abigail is given only two-dimensional information as input,
she must infer information about the third dimension in the form of layer assertions in the layer model.
Again, since �gures can move from layer to layer during the course of the movie, Abigail must update
both the layer and joint models on a per-frame basis. Thus Abigail performs two stages of processing
for each frame. In the �rst stage she updates the joint and layer models for the image. The derived joint
model delineates the objects which appear in the image. In the second stage she uses the derived joint
and layer models to recover support, contact, and attachment relations between the perceived objects.
The architecture used by Abigail to process each movie frame is depicted in �gure 8.2. The architecture
takes as input, the positions, orientations, shapes, and sizes of the �gures constituting the image, along
with a joint and layer model for the image. The architecture updates this joint and layer model, groups
the �gures into objects, and recovers support, contact, and attachment relations between those objects.
Central to the event perception architecture is an imagination capacity which encodes naive physical
knowledge such as the substantiality, continuity, gravity, and ground plane constraints.

8.2.1 Deriving the Joint and Layer Models

As Abigail watches the movie, she continually maintains both a joint model J and a layer model L.
At the start of the movie, these models are empty, containing no joints and no layer assertions. After
each frame of the movie, Abigail looks for evidence in the most recent frame that the joint and layer
models should be changed. Most of the evidence requires that Abigail hypothesize potential changes
and then imagine the e�ect of these changes on the world. Abigail assumes that the world is for the
most part stable. Objects are typically supported. She considers an unstable world with unsupported
objects to be less likely than a stable one. If the world is unstable when imagined without making the
hypothesized changes, then these hypothesized changes are adopted as permanent changes to the joint
and layer models. This facet of Abigail's perceptual mechanism is not justi�ed by any experimental
evidence from human perception but simply appears to work well in practice.

Abigail's preference for a stable world requires that, to the extent possible, all objects be supported.
There are two ways to prevent an object from falling. One is for it to be joined to some other supported
�gure. The other is for it to be supported by another �gure. One �gure can support another �gure only
if they are on the same layer, since support happens as a consequence of the need to avoid substantiality
violations and substantiality holds only between two �gures on the same layer.

Abigail's imagination capacity is embodied in a kinematic simulator. This simulator can predict
how a set of �gures will behave under the e�ect of gravity, given particular joint and layer models, such
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• substantiality
• continuity
• gravity
• ground plane

Imagination
Capacity

figures

layer assertions

joints

objects

support
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Figure 8.2: The event perception architecture incorporated into Abigail. The architecture takes as

input, the positions, orientations, shapes, and sizes of the �gures constituting the image, along with a

joint and layer model for the image. The architecture updates this joint and layer model, groups the

�gures into objects, and recovers support, contact, and attachment relations between those objects.
Central to the event perception architecture is an imagination capacity which encodes naive physical

knowledge such as the substantiality, continuity, gravity, and ground plane constraints.
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that naive physical constraints such as substantiality are upheld. This imagination capacity, denoted
as I(F ; J; L) will be described in detail in chapter 9. The processes described here treat this capacity
as modular. Any simulation mechanism that accurately models gravity and substantiality will do. The
event perception processes simply call I(F ; J; L) with di�erent values of F , J , and L, asking di�erent
questions of the predicted future, in the process of updating the joint and layer models and recovering
support relations.6

Abigail can change the joint and layers models in six di�erent ways to keep those models synchro-
nized with the world. She can

� add a layer assertion to L,

� remove a layer assertion from L,

� add a joint to J ,

� remove a joint from J ,

� promote a parameter of some joint j 2 J from 
exible to rigid,

� demote a parameter of some joint j 2 J from rigid to 
exible,

or perform any simultaneous combination of the above changes. Each type of change is motivated by
particular evidence in the most recent movie frame, potentially mediated by the imagination process.

Abigail makes three types of changes to the layer model on the basis of evidence gained from
watching each movie frame. The process can be stated informally as follows. She will add an assertion
that two �gures are on di�erent layers whenever they overlap, since if they were not on di�erent layers,
substantiality would be violated. She will add an assertion that two �gures are on the same layer
whenever one of the �gures must support the other in order to preserve the stability of the image.
Finally, whenever newer layer assertions contradict older layer assertions, the older ones are removed
from the layer model giving preference to newer evidence. For example, when presented with the image
from �gure 6.1, Abigail will infer that the ball and the table top are on the same layer since the ball
would fall if it was not supported by the table top.

The process of updating the layer model can be stated more precisely as follows. A layer model
consists of an ordered set L of layer assertions. Initially, at the start of the movie, this set is empty. The
closure of a layer model is the layer model augmented with all of the layer assertions entailed by the
equality axioms. A layer model is consistent if its closure does not simultaneously imply that two �gures
are on the same, as well as di�erent, layers. Abigail never replaces the layer model with its closure.

She always maintains the distinction between layer assertions that have been added to the model as a
result of direct evidence, in contrast to those which have been derived by closure. A maximal consistent

subset of a layer model L is a consistent subset L0 of L such that any other subset L00 of L that is a
superset of L0 is inconsistent. The lexicographic maximal consistent subset of a layer model L is the
particular maximal consistent subset of L returned by the following procedure.

1 procedure Maximal Consistent Subset(L)
2 L

0 fg;
3 for a 2 L
4 do if L0 [ fag is consistent
5 then L

0 L0 [ fag � od;
6 return L0 end

6As discussed in chapter 9, the imagination capacity I(F; J; L; P ) takes a predicate P as its fourth parameter. In
informal presentations, it is simpler to omit this parameter and use the English gloss `P occurs during I(F ; J; L)' in place
of I(F; J; L; P ).
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The above procedure may not �nd the largest possible maximal consistent subset. That problem has
been shown to be NP-hard by Wolfram(1986). Using the above heuristic has proven adequate in practice.

Given the above procedure we can now de�ne the process used to update the layer model. We
de�ne L6./ to be the set of all di�erent-layer assertions f 6./ g, where f and g overlap in the most recent
movie frame. These are layer assertions which must be added to the layer model in order not to violate
substantiality. We de�ne L./ to be the set of all same-layer assertions f ./ g, where f and g touch in
the most recent movie frame. These are hypothesized layer assertions which could potentially account
for support relationships needed to preserve stability. L./ contains assertions only between �gures which
touch since only such assertions could potentially contribute to support relationships. The layer model
updating procedure makes permanent only those hypothesized same-layer assertions that actually do
prevent �gures from falling under imagination. The layer model updating procedure is as follows.7

1 procedure Update Layer Model

2 for f ./ g 2 L./
3 do if neither f̂ nor ĝ move during
4 I(F ; J;Maximal Consistent Subset(L6./ [ (L./ � ff ./ gg) [ L))
5 then L./ L./ � ff ./ gg � od;
6 L Maximal Consistent Subset(L6./ [ L./ [ L) end

The process of updating the joint model is conceptually very similar to updating the layer model. The
algorithm is illustrated in �gure 8.3. First, remove all joints j from J where f(j) does not intersect g(j)
in the most recent frame (lines 2 and 3). Second, demote any rigid parameter of any joint j 2 J when the
constraint implied by that parameter is violated (lines 4 through 9). Third, remove all joints j from J

where both �f (j) and �g(j) are 
exible (lines 10 and 11). This is to enforce the constraint from page 127
that every joint have at least one rigid displacement parameter. Fourth, �nd a minimal set of parameter
promotions and new joints that preserve the stability of the image (lines 12 through 33). To do this
we form the set J 0 of all joints j0 where f(j0) intersects g(j0) in the most recent movie frame (lines 12
through 20). Those joints in J 0 which appear in J have their parameters initialized to the same values
as their counterparts in J , while any new joints have their parameters initialized to be 
exible. We then
promote all of the 
exible parameters in J 0 to have the rigid values that they have in the most recent
movie frame. One by one we temporarily demote each of the parameters just promoted and imagine
the world (lines 21 through 33). If when demoting a parameter of a joint j0, the constraint speci�ed
by the original rigid parameter is not violated during the imagined outcome of that demotion, then
that demotion is preserved. Otherwise, the parameter is promoted back to the rigid value it has in the
most recent movie frame. After trying to demote each of the newly promoted joint parameters, remove
all joints j0 from J

0 where both �f (j
0) and �g(j

0) are 
exible (lines 34 and 35) and replace J with J 0

(line 36).8

Recall that an object can be supported in two ways, either by being joined to another object or by
resting on top of another object on the same layer. Abigail gives preference to the latter explanation.
Whenever the stability of an image can be explained by hypothesizing either a joint between two �gures
or a same-layer assertion between those two �gures, the same-layer assertion will be preferred. Thus for
the image in �gure 6.1, Abigail infers that the ball is resting on top of the table, by virtue of the fact
that they are on the same layer, and not attached to the side of the table. If Abigail did not maintain

7The notation f̂ used here and in �gure 8.3 is described on page 160.
8Only a simpli�ed version of this algorithm is currently implemented. First, the implemented version does not consider

promoting existing 
exible joints to explain the stability of an image. Only newly created rigid joints can o�er such
support. Second, newly added joints are always rigid. They are demoted to be 
exible only when they move. Thus rather
than �nding a minimal set of promotions which make the image stable, the current implementation �nds a minimal set of
new rigid joints to stabilize the image.
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1 procedure Update Joint Model

2 for j 2 J
3 do if f(j) does not intersect g(j) then J J � fjg � od;
4 for j 2 J
5 do if �(j) 6= nil^ �(j) 6= �(g(j)) � �(f(j)) then �(j) nil � od;
6 for j 2 J
7 do if �f (j) 6= nil^ �f (j) 6= �(p(j); f(j)) then �f (j) nil � od;
8 for j 2 J
9 do if �g(j) 6= nil^ �g(j) 6= �(p(j); g(j)) then �g(j) nil � od;
10 for j 2 J
11 do if �f (j) = nil^ �g(j) = nil then J J � fjg � od;
12 J

0 fg;
13 for f 2 F
14 do for g 2 F
15 do if f intersects g at p
16 then j

0 = f $ g;
17 �(j0) �(g) � �(f);
18 �f (j

0) �(p; f);
19 �g(j

0) �(p; g);
20 J

0 J 0 [ fj0g � od od;
21 for j0 2 J 0

22 do j nil;
23 for j00 2 J
24 do if f(j00) = f(j0) ^ g(j00) = g(j0) then j j00 � od;
25 � �(j0); �(j0) nil;

26 if (j 6= nil^ �(j) 6= nil) _ �̂(g(j0))� �̂(f(j0)) 6= � during I(F ; J 0; L)
27 then �(j0) � �;
28 �f �f (j

0); �f (j
0) nil; p p(j0);

29 if (j 6= nil^ �f (j) 6= nil) _ �̂f (p; f(j
0)) 6= �f during I(F ; J

0
; L)

30 then �f (j
0) �f �;

31 �g �g(j
0); �g(j

0) nil;

32 if (j 6= nil^ �g(j) 6= nil) _ �̂g(p; g(j
0)) 6= �g during I(F ; J

0
; L)

33 then �g(j
0) �g � od;

34 for j0 2 J 0

35 do if �f (j
0) = nil^ �g(j

0) = nil then J
0 J 0 � fj0g � od;

36 J J 0 end

Figure 8.3: The algorithm for updating the joint model. Abigail performs this procedure as part

of her processing of each frame in the movie she watches.
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this preference she would never form same-layer judgments, since any time a same-layer assertion can
be used to provide support, a joint can be used as well. The fact that the converse is not true allows her
to hypothesize joints when an object would slide o� another object even if they were on the same layer.

The joint and layers models must be updated simultaneously by a tandem process rather than
independently. If the joint model was updated before the layer model there would be no way to enforce
the aforementioned preference for same-layer support over joint support. On the other hand, the layer
model cannot be created before the joint model. When processing the �rst image, starting out with
an empty joint model, Abigail could not infer any layer information, since a layer model alone is
insu�cient to explain support. Without any joints, no set of layer assertions can improve the stability of
an image. Thus the processes of updating the joint and layers models are interleaved, �nding the least
cost combination of same-layer assertions and joint promotions which improve the stability of the image.
When computing the cost of such a combination, same-layer assertions have lower cost than promotions
of existing joints, which in turn have lower cost than creation of new joints.

The method used by Abigail to construct and update the joint and layer models is best illustrated
by way of an example. The following example depicts the actual results generated by Abigail when
processing the �rst twelve frames of the movie described in section 6.1. Figure 8.4 shows these �rst twelve
frames in greater detail. Since frame 0 is the �rst frame of the movie, Abigail starts out processing
this frame with empty joint and layer models. With empty models, the world is completely unstable
and collapses into a pile of rubble when the short-term future is imagined. This is depicted by the
imagination sequence given in �gure 8.5. Accordingly, Abigail hypothesizes the set of joints depicted
in �gure 8.6 and layer assertions depicted in �gure 8.7. A joint is hypothesized between every pair of
intersecting �gures. A same-layer assertion is hypothesized between every pair of �gures that touch. A
di�erent-layer assertion is hypothesized between every pair of overlapping �gures. Not all of these joints
and layer assertions are necessary to explain the stability of the image. By the process described above,
Abigail chooses to retain only the starred joints and layer assertions. With this new joint and layer
model, the image is stable.9

Several things about the derived joint and layers models are worthy of discussion. First, note that
the �nal layer model includes the following assertions10

(circle ball) ./ (top table)

(bottom box) ./ (top table)

indicating that Abigail has determined that the ball and the bottom of the box are resting on the
table rather than being joined to the table top. Second, the hem of Mary's dress need only be joined
to one side of her dress, since one rigid joint is su�cient to support the line segment constituting the

hem. Third, the image contains a number of locations where the endpoints of multiple line segments are
coincident on the same point. Such a situation arises, for example, where John's legs meet his torso. In
this situation, three joints are possible.

(torso john)$ (right-thigh john)

(torso john)$ (left-thigh john)

(right-thigh john)$ (left-thigh john)

All three of these joints are not necessary to achieve a stable image however. Any two of these joints are
su�cient, since relative rigidity is transitive. Abigail arbitrarily chooses the last two joints as the ones

9Except for the fact that John's and Mary's eyes fall out, since they appear unsupported. This highlights a de�ciency
in the ontology incorporated into Abigail's perceptual mechanisms. I will not address this anomaly, and methods for
dealing with it, in this thesis.
10In this and all further discussion, expressions such as (circle ball) denote particular �gures. These �gures are given

names to aid in the interpretation of the results produced by Abigail. Abigail does not have access to these names
during processing, so that fact that the names of several �gures, i.e. (circle ball), (line-segment1 ball), etc. share the
component ball in common, in no way assists Abigail in her perceptual processing.
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Frame 0 Frame 6

Frame 1 Frame 7

Frame 2 Frame 8

Frame 3 Frame 9

Frame 4 Frame 10

Frame 5 Frame 11

Figure 8.4: The �rst twelve frames of the movie depicted in �gure 6.4. The script used to generate

this movie is given in �gure 6.3.



136 CHAPTER 8. EVENT PERCEPTION

Frame 0, Observed Image Frame 0, Imagination Step 36

Frame 0, Imagination Step 6 Frame 0, Imagination Step 42

Frame 0, Imagination Step 12 Frame 0, Imagination Step 48

Frame 0, Imagination Step 18 Frame 0, Imagination Step 54

Frame 0, Imagination Step 24 Frame 0, Imagination Step 60

Frame 0, Imagination Step 30 Frame 0, Imagination Step 64

Figure 8.5: A subsequence of images produced by Abigail while imagining the short-term future of

frame 0 from the movie described in section 6.1 with empty joint and layer models.
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(hem mary)$ (dress2 mary)

� (hem mary)$ (dress1 mary)

(dress2 mary)$ (dress1 mary)

(dress2 mary)$ (torso mary)

(dress2 mary)$ (right-upper-arm mary)

� (dress2 mary)$ (left-upper-arm mary)

(dress1 mary)$ (torso mary)

(dress1 mary)$ (right-upper-arm mary)

� (dress1 mary)$ (left-upper-arm mary)

� (mouth mary)$ (head mary)

� (head mary)$ (torso mary)

(torso mary)$ (right-thigh mary)

� (torso mary)$ (left-thigh mary)

(torso mary)$ (right-upper-arm mary)

� (torso mary)$ (left-upper-arm mary)

� (right-thigh mary)$ (left-thigh mary)

� (right-thigh mary)$ (right-calf mary)

� (left-thigh mary)$ (left-calf mary)

� (right-upper-arm mary)$ (left-upper-arm mary)

� (right-upper-arm mary)$ (right-fore-arm mary)

� (left-upper-arm mary)$ (left-fore-arm mary)

� (mouth john)$ (head john)

� (head john)$ (torso john)

(torso john)$ (right-thigh john)

� (torso john)$ (left-thigh john)

(torso john)$ (right-upper-arm john)

� (torso john)$ (left-upper-arm john)

� (right-thigh john)$ (left-thigh john)

� (right-thigh john)$ (right-calf john)

� (left-thigh john)$ (left-calf john)

� (right-upper-arm john)$ (left-upper-arm john)

� (right-upper-arm john)$ (right-fore-arm john)

� (left-upper-arm john)$ (left-fore-arm john)

(circle ball)$ (line-segment3 ball)

(circle ball)$ (line-segment3 ball)

� (circle ball)$ (line-segment2 ball)

(circle ball)$ (line-segment2 ball)

� (circle ball)$ (line-segment1 ball)

(circle ball)$ (line-segment1 ball)

(circle ball)$ (left-leg table)

(circle ball)$ (top table)

(circle ball)$ (top table)

(bottom box)$ (right-wall box)

(bottom box)$ (left-wall box)

(bottom box)$ (right-leg table)

� (right-wall box)$ (top table)

� (left-wall box)$ (top table)

� (seat chair2)$ (back chair2)

� (seat chair2)$ (front chair2)

� (seat chair1)$ (back chair1)

� (seat chair1)$ (front chair1)

� (right-leg table)$ (top table)

� (left-leg table)$ (top table)

Figure 8.6: Abigail hypothesizes these joints when processing frame 0 of the movie depicted in

�gure 8.4. Since not all of these joints are necessary to explain the stability of the image, Abigail

retains only the starred joints.
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(hem mary) ./ (dress2 mary)

(hem mary) ./ (dress1 mary)

(dress2 mary) ./ (dress1 mary)

(dress2 mary) ./ (torso mary)

(dress2 mary) ./ (right-upper-arm mary)

(dress2 mary) ./ (left-upper-arm mary)

(dress1 mary) ./ (torso mary)

(dress1 mary) ./ (right-upper-arm mary)

(dress1 mary) ./ (left-upper-arm mary)

(mouth mary) ./ (head mary)

(head mary) ./ (torso mary)

(torso mary) ./ (right-thigh mary)

(torso mary) ./ (left-thigh mary)

(torso mary) ./ (right-upper-arm mary)

(torso mary) ./ (left-upper-arm mary)

(right-thigh mary) ./ (left-thigh mary)

(right-upper-arm mary) ./ (left-upper-arm mary)

(right-upper-arm mary) ./ (right-fore-arm mary)

(mouth john) ./ (head john)

(head john) ./ (torso john)

(torso john) ./ (right-thigh john)

(torso john) ./ (left-thigh john)

(torso john) ./ (right-upper-arm john)

(torso john) ./ (left-upper-arm john)

(right-thigh john) ./ (left-thigh john)

(right-thigh john) ./ (right-calf john)

(left-thigh john) ./ (left-calf john)

(right-upper-arm john) ./ (left-upper-arm john)

(right-upper-arm john) ./ (right-fore-arm john)

� (circle ball) ./ (line-segment3 ball)

(circle ball) ./ (left-leg table)

� (circle ball) ./ (top table)

(bottom box) ./ (right-wall box)

(bottom box) ./ (left-wall box)

(bottom box) ./ (right-leg table)

� (bottom box) ./ (top table)

(right-wall box) ./ (top table)

(left-wall box) ./ (top table)

(seat chair2) ./ (back chair2)

(seat chair2) ./ (front chair2)

(seat chair1) ./ (back chair1)

(seat chair1) ./ (front chair1)

(right-leg table) ./ (top table)

(left-leg table) ./ (top table)

� (hem mary) 6./ (right-calf mary)

� (hem mary) 6./ (left-calf mary)

� (dress1 mary) 6./ (left-fore-arm mary)

� (torso mary) 6./ (left-fore-arm mary)

� (torso john) 6./ (left-fore-arm john)

� (line-segment3 ball) 6./ (line-segment2 ball)

� (line-segment3 ball) 6./ (line-segment1 ball)

� (line-segment2 ball) 6./ (line-segment1 ball)

Figure 8.7: Abigail hypothesizes these layer assertions when processing frame 0 of the movie de-

picted in �gure 8.4. Since not all of these layer assertions are necessary to explain the stability of

the image, Abigail retains only the starred layer assertions.
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to make part of her joint model.
The joint and layer models constructed by Abigail contain a number of anomalies that point out

de�ciencies in the perceptual theory. First, note that (line-segment3 ball) is not connected to the
remaining components of the ball. The intention was that the ball would be composed of four �g-
ures, a circle and three line segments. Abigail perceives (line-segment3 ball) to be a separate
object inside the ball. This is a possible interpretation given her ontology since, being inside the ball,
(line-segment3 ball) is supported by resting on the interior perimeter of the circle, and thus there is
no need to postulate a joint to achieve stability. In fact, given Abigail's preference for support relations
over joints, she must come to this analysis. Why then are the remaining two line segments not supported
in an equivalent fashion without joints? The answer is simple. For a line segment to be so supported
it must be on the same layer as the circle. Since layer equivalence is a transitive relation, all three line
segments would have to be on the same layer. They cannot be however, as their intersection would then
constitute a substantiality violation. Thus only one line segment can be explained by support. Abigail
arbitrarily chooses (line-segment3 ball) as that line segment.

The joint and layer models exhibit a second, more serious, anomaly. While Abigail correctly deter-
mines that the bottom of the box rests on the table top, she incorrectly decides that the vertical walls
of the box are joined to the table top rather than the box bottom. This is a plausible but unintended
interpretation. Both interpretations require the same number of joints, thus neither is preferable to the
other. One way of driving Abigail to the intended interpretation would be to add an additional level
to the preference relation between joint and layer models to prefer one model over another if its joints
connected smaller �gures rather than larger ones, given that two models otherwise had the same number
of joints. I have not tried this heuristic to see if it would work.

At this point Abigail begins processing frame 1. Between frame 0 and frame 1, John lifted his right
foot. In doing so he rotated his right knee and thigh joints. Thus the �rst thing Abigail does is demote
the rotation parameters for the joints

(right-thigh john)$ (left-thigh john)

(right-thigh john)$ (right-calf john)

from being rigid to being 
exible. The resulting image is not stable however. Since John appears to
stand on one foot, he falls over when the future is imagined.11 In the process of falling his right thigh
can rotate relative to his torso since that joint is now 
exible. Abigail hypothesizes the existence of a
new rigid joint, (torso john) $ (right-thigh john). While this joint does not prevent John from
falling, it does prevent the rotation of his right thigh relative to his torso during that fall. Abigail
adopts that joint as part of the updated model since she adopts any joint which prevents the relative
rotation of the two �gures it would connect.

At this point Abigail begins processing frame 2. Between frame 1 and frame 2, John started moving
forward. In doing so he rotated his left knee and thigh joints, causing Abigail to demote the rotation
parameters for the joints

(torso john)$ (left-thigh john)

(left-thigh john)$ (left-calf john)

from being rigid to being 
exible. Between frame 2 and frame 3, John begins moving his right foot
forward as well, pivoting his right thigh relative to his torso. This causes Abigail to demote the
rotation parameter for the joint (torso john) $ (right-thigh john), just created while processing
frame 1, from being rigid to being 
exible. The model now constructed remains unchanged until frame 7.

11I will not show the resulting imagined image since John falls backward out of the �eld of view due to the fact that
his center-of-mass is behind his left foot. Later in the text, I will illustrate the imagined future of frame 11, where John's
center-of-mass has shifted so that he falls forward in a visible fashion.



140 CHAPTER 8. EVENT PERCEPTION

In frame 7, John's knees appear close together as his right leg passes his left leg. This causes
Abigail to postulate a spurious joint, (right-calf john)$ (left-calf john), between John's two
knees. Again, while this joint does not prevent John from falling, it does reduce the movement of his legs
during that fall. This reduction in leg movement prompts Abigail to adopt the joint as part of her joint
model. This spurious joint is then dropped from the joint model after frame 8, since (right-calf john)

and (left-calf john) no longer intersect. Furthermore, as a result of observing the right leg pass the
left leg during its forward motion, Abigail adds the following two assertions to the layer model

(left-thigh john) 6./ (right-calf john)

(right-calf john) 6./ (left-calf john)

knowing that otherwise, a substantiality violation would have occurred. At this point, the model remains
unchanged through frame 11.

Figure 8.8 depicts the sequence of images produced by Abigailwhile imagining the short-term future
of frame 11. For reasons discussed previously, John's and Mary's eyes fall out in steps 1 and 2. In step 3,
John pivots about his left leg until his right foot reaches the 
oor. In step 4, he pivots about his right
foot until his right knee reaches the 
oor. In step 5, he then pivots about his right knee until both his

hand and head reach the 
oor. This is possible since his right knee has a 
exible rotation parameter.
Note that his head can appear to pass through the chair since Abigail assumes that objects are on
di�erent layers unless she has explicit reason to believe that they are on the same layer. Finally, in
step 6, his left calf pivots about his left knee until his left foot reaches the 
oor. Again, this is possible
since his left knee has a 
exible rotation parameter.

One can imagine other sources of evidence which can be used to update the joint and layer models.
Collisions can be used to determine that two objects are on the same layer, since two objects must be on
the same layer in order to collide. A sequence of frames where one object moves toward another object but
upon contact (or approximate contact given the �nite frame rate) begins moving away from that object,
can be interpreted as a collision event, giving evidence that the contacting �gures of each object are
on the same layer. Such inference could provide information not derivable by the procedure previously
described. It is not currently implemented, as determining collisions requires tracking momentum of
objects across frames. Abigail currently processes each frame individually.

The continuity constraint o�ers another source of evidence which can be used to infer that objects
are on di�erent layers. Seeing an object totally enclosed by another object in one frame, and then
outside that object in the following frame, gives evidence that the two objects are on di�erent layers,
even without a directly observed substantiality violation, since there would be no way for that transition
to occur, given continuous movement and the substantiality constraint, unless the two objects were on
di�erent layers. In contrast to collisions, this would o�er little additional inferential power since given
a su�ciently high frame rate relative to object velocities, the observer would see an intermediate frame

with a direct substantiality violation.

8.2.2 Deriving Support, Contact, and Attachment Relations

Abigail maintains a joint and layer model to re
ect her understanding of the movie. These models
are continually updated, on a frame-by-frame basis, by the processes described in the previous section.
The models form the basis of mechanisms used to derive changing support, contact, and attachment
relationships between objects in the movie. It is necessary, however, to �rst delineate those collections
of �gures which constitute objects. To this end, Abigail forms the connected components in a graph
whose vertices are �gures and edges are joints. Each connected component is taken as an object. Not
all connected sets of �gures constitute objects. Only those which form complete connected components
are taken as objects. Once a set of �gures is determined to be an object, however, that set retains
its status as an independent object, even though it may later be joined to another object. When that
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Frame 11, Observed Image

Frame 11, Imagination Step 1

Frame 11, Imagination Step 2

Frame 11, Imagination Step 3

Frame 11, Imagination Step 4

Frame 11, Imagination Step 5

Frame 11, Imagination Step 6

Figure 8.8: The sequence of images produced by Abigail while imagining the short-term future of
frame 11 from the movie described in section 6.1.
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happens, a part-whole hierarchy is created which represents both the individual parts, as well as the
combined whole, as objects. This is needed to model grasping as the formation of a joint between one's
hand and the grasped object. The independent identity of both the person grasping an object, as well
as the object being grasped, must be maintained, despite the creation of a spurious combined object.
Likewise, when a joint is removed from the joint model, an object is broken into parts which are taken
as objects. The identity of the original object is retained however. The new parts are thought of both
as objects in their own right, as well as parts of an object no longer in existence. Abigail considers
an object to exist if the set of �gures constituting that object are currently connected. In this way,
Abigail can form a primitive model of the words make and break as the transition of an object from
non-existence to existence and vice versa. Furthermore, since Abigail retains the identity of objects no
longer in existence, it is possible to model the word �x as the transition of an object from existence to
non-existence and then back again to existence.

Given the segmentation of an image into objects, the joint and layer models form the basis for
detecting contact and attachment relations between those objects. Two objects are attached if the
current joint model contains a joint between some �gure of one object and some �gure of the other
object. Two objects are in contact if some �gure of one object both touches (in the sense described in

�gure 8.1), and is on the same layer as, some �gure of the other object. Detecting support relations,
however, requires further use of the imagination capacity. The lexical semantic representation presented
in chapter 7 uses two di�erent support primitives, one to determine whether an object is supported, the
other to determine if one object supports another. An object is considered supported if it does not move
when the short-term future of the world is imagined. A single call to I(F ; J; L) will su�ce to determine
those objects which are unsupported.12 To determine whether an object A supports another object B,

Abigail imagines whether B would fall ifA were removed. This is done by calling I(F��gures(A); J; L)
and seeing if B moves. An object A supports another object B only if B is indeed supported. The fact
that B falls when A is removed is insu�cient to infer that A supports B since B may have fallen even
with A still in the image. Here again, a single call to I(F � �gures(A); J; L) can be used to determine
all of the di�erent objects B which are supported by A. Thus for n objects, n+1 calls to the imagination
capacity I must be performed per frame to determine all support relationships.13

The recovery of support, contact, and attachment relations from image sequences is best illustrated
by way of several examples. Since the full movie from section 6.1 is fairly complex, I will �rst illustrate the
results produced by Abigail while processing a much shorter and simpler movie. This movie depicts
a single object, John, taking two steps forward, turning around, and taking two steps in the other
direction. It contains 68 frames, each containing 10 line segments and 2 circles. Figures 8.9 depicts the
pivotal frames of this short movie.

Abigail is able to fully process this movie in several minutes of elapsed time on a Symbolics XL1200TM

computer, taking several seconds per frame. This is within two orders of magnitude of the processing
speed necessary to analyze such a movie in real time. The result of Abigail's analysis is depicted by
the event graph illustrated in �gure 8.10. Each edge in this graph denotes some collection of perceptual
primitives which hold during the interval spanned by that edge. Figures 8.11 and 8.12 enumerate the
perceptual primitives associated with each edge in this graph.14

12Ine�cient design of the structure of the current implementation requires I(F ; J; L) to be called independently for each
object. Remedying that ine�ciency should dramatically improve the performance of the system.
13For the same reasons as mentioned before, the current implementation must call I for each pair of objects, thus

requiring n2 + n calls. To mitigate this ine�ciency somewhat, the current implementation only discerns direct support,
i.e. support relations between objects in contact with each other. Indirect support can be derived by taking the transitive
closure of the direct support relation. This e�ciency improvement could be combined with the strategy suggested in the
text whereby I(F � �gures(A); J; L) would be called only if A was in contact with some other object.
14The perceptual primitives are predicates which hold of objects. As far as Abigail is concerned, objects are simply

collections of �gures. To make the output more readable, however, objects are printed using notation like [JOHN]. This
printed notation for objects is derived from the names of the �gures comprising the object. Recall that �gures are given
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Frame 0 Frame 34

Frame 1 Frame 35

Frame 2 Frame 36

Frame 15 Frame 49

Frame 16 Frame 50

Frame 17 Frame 51

Frame 18 Frame 52

Frame 32 Frame 66

Frame 33 Frame 67

Figure 8.9: Several key frames depicting the general sequence of events from a shorter movie used
to test Abigail.
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0
0 1
1 67

2
2 15
2 67

16
16 17

18
18 32

33
33 34

34
35
36

36 49
50

50 51
52

52 66

Figure 8.10: The event graph depicting the temporal structure of the perceptual primitives recovered

by Abigail after processing the short movie from �gure 8.9. Each edge denotes some collection of

perceptual primitives which hold during the interval spanning that edge. Figures 8.11 and 8.12

enumerate the perceptual primitives associated with each edge in this graph. The edges from 2

to 15, from 18 to 32, from 36 to 49, and from 52 to 66 each correspond to a step taken by John while
walking.

In addition to support, contact, and attachment relations, the set of perceptual primitives includes
expressions for depicting various kinds of motion, as well as the location of objects and the paths followed
by objects during their motion. I will not discuss these primitives in depth as they are tangential to the
main focus of this thesis.

At a high level, the correspondence between this event graph and the events in the movie are in-
tuitively obvious. In the movie, John takes four steps while continuously moving. The event graph
also depicts four sub-event clusters of the overall motion event. Each cluster further breaks down into
a transition between standing on both feet, to moving forward, to again standing on both feet. Note
particularly, that John is supported in those situations where he is standing on both feet, namely
frames 0, 16, 33, 34, and 50, and not otherwise.15

While this event graph bears a global resemblance to the movie, it is not adequate to detect walking

names of the form (f x) where x is an `intuitive' object name given to the �gure by the person creating the movie script,

and f is an analogous `intuitive' part name. The printed representation [c1 ; : : : ; cn] delineates the �gures which comprise
an object by grouping those �gures into components ci based on the intuitive �gure name assigned by the script writer.
If ci is a symbol x then it denotes the set of all �gures in the image named (f x) for some f . If ci is a pair (f x) then
it denotes the single �gure bearing that name. If ci is of the form x-part then it denotes a set of �gures in the image
named (f x) for any f , where the set contains more than one �gure but not all such �gures. I should stress that Abigail

does not use such annotations for anything but printing.
15An astute reader may wonder why John doesn't fall even when both feet are on the ground, given that his knee and

thigh joints are 
exible. The reason for this will be explained in section 9.4.
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[0,0](PLACE [JOHN-part] PLACE-0)

[0,0](SUPPORTED [JOHN-part])

[0,1](PLACE [(EYE JOHN)] PLACE-1)

[1,67](MOVING [JOHN-part])

[2,2](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[2,2](ROTATING [JOHN-part])

[2,15](MOVING-ROOT [JOHN-part])

[2,15](TRANSLATING [(EYE JOHN)] PLACE-2)

[2,15](MOVING-ROOT [(EYE JOHN)])

[2,15](MOVING [(EYE JOHN)])

[2,67](TRANSLATING [JOHN-part] PLACE-11)

[16,16](SUPPORTED [JOHN-part])

[16,17](PLACE [(EYE JOHN)] PLACE-3)

[18,18](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[18,18](ROTATING [JOHN-part])

[18,32](MOVING-ROOT [JOHN-part])

[18,32](TRANSLATING [(EYE JOHN)] PLACE-4)

[18,32](MOVING-ROOT [(EYE JOHN)])

[18,32](MOVING [(EYE JOHN)])

[33,33](PLACE [(EYE JOHN)] PLACE-5)

[33,34](SUPPORTED [JOHN-part])

Figure 8.11: Part I of the perceptual primitives recovered by Abigail after processing the short

movie from �gure 8.9.
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[34,34](FLIPPING [JOHN-part])

[34,34](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[34,34](ROTATING-CLOCKWISE [JOHN-part])

[34,34](ROTATING [JOHN-part])

[34,34](MOVING-ROOT [JOHN-part])

[34,34](TRANSLATING [(EYE JOHN)] PLACE-6)

[34,34](ROTATING-COUNTER-CLOCKWISE [(EYE JOHN)])

[34,34](ROTATING [(EYE JOHN)])

[34,34](MOVING-ROOT [(EYE JOHN)])

[34,34](MOVING [(EYE JOHN)])

[35,35](PLACE [(EYE JOHN)] PLACE-7)

[36,36](ROTATING-CLOCKWISE [JOHN-part])

[36,36](ROTATING [JOHN-part])

[36,49](MOVING-ROOT [JOHN-part])

[36,49](TRANSLATING [(EYE JOHN)] PLACE-8)

[36,49](MOVING-ROOT [(EYE JOHN)])

[36,49](MOVING [(EYE JOHN)])

[50,50](SUPPORTED [JOHN-part])

[50,51](PLACE [(EYE JOHN)] PLACE-9)

[52,52](ROTATING-CLOCKWISE [JOHN-part])

[52,52](ROTATING [JOHN-part])

[52,66](MOVING-ROOT [JOHN-part])

[52,66](TRANSLATING [(EYE JOHN)] PLACE-10)

[52,66](MOVING-ROOT [(EYE JOHN)])

[52,66](MOVING [(EYE JOHN)])

Figure 8.12: Part II of the perceptual primitives recovered by Abigail after processing the short

movie from �gure 8.9.
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using the de�nition given in chapter 7.

(define step (x)

(exists (i j k y)

(and (during i (contacts y ground))

(during j (not (contacts y ground)))

(during k (contacts y ground))

(equal y (foot x))

(= (end i) (beginning j))

(= (end j) (beginning k)))))

(define walk (x)

(exists (i)

(and (during i (repeat (step x)))

(during i (move x))

(during i

(exists (y)

(and (equal y (foot x))

(contacts y ground))))

(during i

(not (exists (y)

(and (equal y (foot x))

(slide-against y ground))))))))

Two major things are missing. First, the ground must be rei�ed as an object so that Abigail can
detect the changing contact relations between John's feet and the ground. Second, the slide-against
primitive must be implemented. Future work will address these two issues in the hope that Abigail
can detect the occurrence of walking events.

Abigail has processed a sizable portion of the larger movie described in section 6.1. While she cannot
yet process the entire movie due to processing time limitations, �gure 8.13 depicts an event graph
produced for the �rst 172 frames of that movie. Appendix C enumerates the perceptual primitives
associated with the edges in that graph. Producing this event graph required about twelve hours of
elapsed time on a Symbolics XL1200TM computer. Comparing this with the time required to process
the shorter movie indicates that in practice, the complexity of the event perception procedure depends
heavily on the number of �gures and objects in the image.16

I will not discuss Abigail's analysis of the longer movie in depth except to point out two things.
First, one major event that takes place during the �rst 172 frames is John picking up the ball o� the
table. The perceptual primitives recovered by Abigail form a solid foundation for recognizing this
event. Recall the de�nition given for pick up in chapter 7.

16The unreasonable amount of time required to process the longer movie signi�cantly hindered the progress of this

research.
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Figure 8.13: The event graph depicting the temporal structure of the perceptual primitives recovered

by Abigail after processing the �rst 172 frames of the movie discussed in section 6.1. Appendix C

enumerates the perceptual primitives associated with each edge in this graph.
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(define pick-up (x y)

(exists (i j z)

(and (during i (supported y))

(during i (supports z y))

(during i (contacts z y))

(during j (move (hand x)))

(during j (contacts (hand x) y))

(during j (attached (hand x) y))

(during j (supports x y))

(during j (move y))

(not (equal z (hand x)))

(= (end i) (beginning j)))))

If we take i to be the interval [0; 65] and j to be the interval [66; 71], the following perceptual primitives
taken from appendix C correspond very closely to the above de�nition.

(during i (supported y))

[0,71](SUPPORTED [BALL-part])

[0,71](SUPPORTED [(LINE-SEGMENT3 BALL)])

(during i (supports z y))

[0,65](SUPPORTS [TABLE BOX-part] [BALL-part])

[0,71](SUPPORTS [BALL-part] [(LINE-SEGMENT3 BALL)])

(during i (contacts z y))

[0,65](CONTACTS [TABLE BOX-part] [BALL-part])

(during j (supports x y))

[66,71](SUPPORTS [JOHN-part] [BALL-part])

[66,71](SUPPORTS [(LINE-SEGMENT3 BALL)] [BALL-part])

[66,71](SUPPORTS [BALL-part JOHN-part] [(LINE-SEGMENT3 BALL)])

(during j (move y))

[66,71](TRANSLATING [BALL-part] PLACE-19)

[66,71](MOVING-ROOT [BALL-part])

[66,71](MOVING [BALL-part])

[66,71](TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-17)

[66,71](MOVING-ROOT [(LINE-SEGMENT3 BALL)])

[66,71](MOVING [(LINE-SEGMENT3 BALL)])

Note that if an object is supported (by another object) for an interval, say [0; 71], then it is supported
for every subinterval of that interval, in particular [0; 65]. Given this, Abigail has detected almost all
of the prerequisites to recognize a pick up event. The only primitives not recognized are the following.

(during j (move (hand x)))

(during j (contacts (hand x) y))

(during j (attached (hand x) y))

Abigail has in fact detected these prerequisites as well. They just don't appear in the event graph from
�gure 8.13 as that graph depicts only those primitives which no longer hold after frame 172. John's hand
continues to move while grasping the ball well beyond frame 172. The above primitives will become part
of the event graph when these actions terminate.
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A puzzling thing happens in Abigail's analysis of this movie. Abigail decides that the table is
unsupported in frame 172. This is indicated by the fact that event graph contains an edge from frame 0
through frame 171 with the following perceptual primitives.

[0,171](SUPPORTED [TABLE BOX-part])

[0,171](SUPPORTED [(BOTTOM BOX)])

[0,171](SUPPORTS [TABLE BOX-part] [(BOTTOM BOX)])

Inspection of the movie, however, reveals that the table remains supported throughout the entire movie.
What causes Abigail to suddenly decide that the table is unsupported in frame 172? Figure 8.14 depicts
the sequence of images that are part of Abigail's imagination of the short-term future for frame 172.
In this sequence, John falls over as he is unsupported. In doing so, the ball he is holding knocks against
the table. While Abigail knows that John is on a di�erent layer from the table, to allow him to walk
across the table without a substantiality violation, she also knows that the ball is on the same layer as
the table, since in the past, the table supported the ball. This allows John to raise the table up on one

leg by leaning on its edge with the ball. Since Abigail determines that something is unsupported if it
moves during imagination, she decides that the table is unsupported. This points out a de�ciency in the
method used to determine support. An object may be supported even though an unrelated object could
knock it over during imagination. Methods to alleviate this problem are beyond the scope of this thesis.

I will discuss one further de�ciency in Abigail's mechanism for perceiving support. Recall that

Abigail determines that an object A supports an object B if B is supported but loses that support
when A is removed. Figure 8.15 depicts a board supported by three tables. Since removing each table
individually will not cause the board to fall,Abigail would erroneously conclude that none of the tables
support the board. This 
aw is easily remedied by having Abigail consider all sets of objects A to see
if B falls when the entire set is removed. If so, then either the set can be taken as collectively supporting
the object, or support can be attributed to each member of the set individually.

8.3 Experimental Evidence

As discussed previously, a major assumption underlying the design of Abigail is that people continually
imagine the short-term future, extrapolating perhaps a second or two into the future, as an ordinary
component of visual perception. Freyd and her colleagues have conducted a long series of experiments
(Freyd 1983, Freyd and Finke 1984, Finke and Freyd 1985, Freyd and Finke 1985, Finke et al. 1986,

Freyd 1987, Freyd and Johnson 1987, Kelly and Freyd 1987) that support this view. These experiments
share a common paradigm designed to demonstrate memory shift. Subjects are shown a sequence of
images which depict one or more objects in motion. They are then shown a test image and asked
whether the objects in the test image are in the same position as they were in the �nal image in the
pre-test sequence. Sometimes the objects are indeed in the same position and the correct response is
`same'. Other times however, the objects are displaced along the direction of motion implied by the
pre-test image sequence, in either a forward or reverse direction. In this case the correct response is
`di�erent'. Subjects uniformly give more incorrect responses for test images where the objects were
displaced further along the path of implied motion than for test images where the objects were displaced
in the reverse direction. In fact, for some experiments, subjects were more likely to give a `same' response
for a slight forward displacement than for an image without any displacement. These experiments were
repeated, varying a number of parameters. These included the number of pre-test images, the number
of moving objects in the image sequence, the length of time each pre-test or test image was displayed,
the length of time between the display of each pre-test image or between the display of the �nal pre-test
image and the test image, and whether the images were taken from real photographs or were computer-
generated abstractions such as rotating rectangles or moving dots. It appears that subjects' memory of an
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Frame 172, Observed Image Frame 172, Imagination Step 6

Frame 172, Imagination Step 1 Frame 172, Imagination Step 7

Frame 172, Imagination Step 2 Frame 172, Imagination Step 8

Frame 172, Imagination Step 3 Frame 172, Imagination Step 9

Frame 172, Imagination Step 4 Frame 172, Imagination Step 10

Frame 172, Imagination Step 5 Frame 172, Imagination Step 11

Figure 8.14: The sequence of images produced by Abigail while imagining the short-term future of
frame 172 from the movie described in section 6.1. Abigail imagines that John will fall and knock

over the table. Due to a 
aw in the method for determining support, Abigail concludes that the

table is unsupported.
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Figure 8.15: Three tables collectively supporting a board. Abigail will currently fail to determine
that the tables support the board since the board will not fall when each is removed individually.

object's position is shifted reliably as a result of an object's suggested motion. Freyd and her colleagues
attribute this memory shift to what they call a mental extrapolation of object movement. Through
statistical analysis of the error rates and reaction times for the various experimental tasks, they claim to
have demonstrated, among other things, that objects move progressively during extrapolation, that an
object's velocity during extrapolation is roughly equivalent to its �nal velocity implied by the pre-test
image sequence, that it takes some time to stop the extrapolation process and the amount of time needed
to stop the extrapolation process is proportional to an object's �nal velocity during the pre-test image
sequence. They call this latter phenomenon representational momentum due to its similarity to physical
momentum.

In many of its details, the extrapolation process uncovered by Freyd and her colleagues di�ers from
the arti�cial imagination capacity incorporated into Abigail. As I will describe in chapter 9, Abigail's
imagination capacity has no notion of velocity or momentum. Nonetheless, I take the results of Freyd
and her colleagues as strong encouragement that the approach taken in this thesis is on the right track.

In more recent work, Freyd et al. (1988) report evidence that the human extrapolation process
represents forces, such as gravity, in addition to velocities. Furthermore, they report evidence for the
representation of forces in equilibrium, even for static images. In particular, their experiments show that
subjects who perceive essentially static images with forces in equilibrium, such as one object supporting
another, extrapolate motion on the part of the objects in those images when the equilibrium is disturbed,
as when the source of support is removed. This is more in line with Abigail's imagination capacity.

The experimental paradigm they used is similar to that used for the memory shift experiments. It is
depicted in �gure 8.16. Subjects were shown a pre-test sequence of two images followed by a test image.
The �rst image in the pre-test sequence depicted a plant supported either by a stand or by a hook. The
plant appeared next to a window to allow subjects to gauge its vertical position. The second image
depicted the plant unsupported, with the stand or hook having disappeared. The test image was similar
to the second image except that in some instances, the plant was displaced upward or downward from
its position in the second image. Subjects viewed each image in the sequence for 250ms, with a 250ms
interval between images. They were asked to determine whether the test image depicted the plant in the
same position as the second image or whether the test image depicted the plant in a di�erent position.
Subjects made more errors determining that the test image di�ered from the second image when the
test image depicted the plant in a lower position than the second image in contrast to when the test
image depicted the plant in a higher position. This result can be interpreted as indicating that subjects
imagined that the plant fell when its source of support was removed.

Abigail performs an analogous extrapolation when determining support relationships. She contin-
ually performs counterfactual analyses determining that an object is supported if it does not fall during
extrapolation. A second experiment reported by Freyd et al. (1988) indicates that humans do not per-
form such analyses in all situations. This experiment is similar to the �rst experiment except that the
plant was also unsupported in the �rst image, i.e. it was unsupported throughout the image sequence.
The image sequence is depicted in �gure 8.17. In this experiment, subjects demonstrated no memory
shift and thus no tendency to imagine the unsupported plant falling. It appears that a change in support
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250 msec 250 msec 250 msec 250 msec On until subject responds

Time

1 2 TEST

Stand
Condition

Hook
Condition

1:  Plant with
support

2:  Unsupported
Plant in same position
as 1.

TEST:  Plant
above, below or in
same position as 2.

Figure 8.16: The image sequences shown to subjects as part of an experiment to demonstrate that

people represent forces in equilibrium when viewing static images. Reprinted from Freyd et al. (1988).
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250 msec 250 msec 250 msec 250 msec On until subject responds

Time

1 2 TEST

1:  Plant shown
without support

2:  Plant shown without
support in same position
as 1.

TEST:  Plant above, below
or in same position as 2.

Figure 8.17: The image sequences shown to subjects as part of an experiment to demonstrate that

people don't always represent forces in equilibrium when viewing static images. Reprinted from

Freyd et al. (1988).

status is necessary to induce the imagined falling. Abigail's imagination capacity does not accurately
re
ect this last result.

To summarize, experiments reported by Freyd and her colleagues depict an active perceptual system,
forming the basis of our conceptual system, which has as its foundation an imagination capacity which
encodes naive physical knowledge. This capacity appears to be in place from very early infancy. This
view is most eloquently captured by the following excerpts from Freyd et al. (1988).

Much of what people encounter in everyday life is static from their point of reference: Cups
rest on desks, chairs sit on 
oors, and books stand on shelves. Perhaps it is the very perva-
siveness of static objects and still scenes that has been responsible for psychology's historical
focus on the perception of static qualities of the world: shape and form perception, pattern
recognition, picture perception, and object recognition. In apparent contrast to this focus,
there has been an increasingly popular emphasis on the perception of events, or patterns
of change in the world. There is a sense, however, in which the study of event perception
(e.g., J. J. Gibson, 1979) has shared some assumptions with the more traditional focus on
the perception of static stimuli. In both approaches event and dynamic stimuli have been
de�ned in terms of changes taking place in real time, whereas scenes that are not changing
in real time (or are being viewed by an observer who is not moving in real time) have been
considered simply static, that is, speci�cally not dynamic.

This view of static objects and scenes suggests that the perception of a static scene is devoid of
information about dynamic qualities of the world (which led J. J. Gibson, 1970, for instance,
to consider the perception of static scenes to be a mere laboratory curiosity). But if we take
dynamic to mean relating to physical force acting on objects with mass, then this view is
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incorrect.

[p. 395, emphasis in the original]

Having some sort of access to likely transformations by representing physical forces may help
solve a slightly di�erent problem in object recognition: the problem of correctly identifying
a particular instantiation, or \token," as a member of a larger class, or type, or object. If
part of what one stores in memory about an object type is aspects of its likely behavior when
embedded in events, then representing physical forces operating on objects in a particular
perceptual situation may help in the process of identi�cation of a particular object token.

[p. 405]

Of course, to go correctly from visual input to a representation of forces, the underlying
representation system has to \know" something about physical forces and how they interact

with objects for a particular environment, such as the environment encountered on the surface
of the planet Earth. Such knowledge may be a function of the inherited or experientially

modi�ed representational structure serving perception.

[p. 406]

Indeed, our view suggests that when people are viewing a static scene, lurking behind the
surface of consciousness is an inherently dynamic tension resulting from the representation
of forces in equilibrium. We see this dynamic tension as contributing to the conscious expe-
rience of concreteness in perception and to the memory asymmetries we measure when the
equilibrium is disrupted.

[p. 407]

Perhaps we might also be able to determine whether the present �ndings generalize to phys-
ical situations beyond gravity, such as those where pressure (or even electromagnetic force)
dominates. However, we suspect that gravity is a better candidate for mental \internaliza-
tion" than other forces. Shepard (1981, 1984) has argued that the mind has internalized
characteristics of the world that have been most pervasive and enduring throughout evolu-
tion. Although Shepard's (1981, 1984) list has emphasized kinematic, as opposed to dynamic,
transformations, the dynamic aspects of gravity are indeed pervasive and enduring charac-
teristics of the world.

[p. 405]

Although some might accept that the force of gravity and its simple opposing forces (Ex-
periments 1{3) could be represented within the perceptual system, many might argue that
the representation of forces active in springs (Experiment 4) implicates real-world learning
and thus suggests that the basis of the e�ect is more central than perceptual. We suggest
two responses to this argument: First, perceptual knowledge of springlike behavior may be
innately given and not dependent on learning; second, evidence of perceptual learning is
not necessarily evidence against modularity. For both of these responses, we question the
assumption that the e�ect in Experiment 4 stems from knowledge of springs per se. It
might instead re
ect perceptual knowledge of compressible and elastic substances, of which
springs are an example. DiSessa (1983) suggested that springiness is a phenomenological
primitive. E. J. Gibson, Owsley, Walker, and Megaw-Nyce (1979) found that 3-month-old
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infants extract object rigidity or nonrigidity from motion, suggesting that people distinguish
compressible from noncompressible substances at a very early age.

[p. 406]17

This thesis adopts that above view and takes it as motivation for the design of Abigail's perceptual
system.

8.4 Summary

In chapter 7, I argued that the notions of support, contact, and attachment play a central role in the
de�nitions of simple spatial motion verbs such as throw, pick up, put, and walk. In this chapter, I
presented a theory of how these notions can be grounded in perception via counterfactual simulation.
An object is supported if it doesn't fall when the short-term future is imagined. One object supports
another object if the second is supported, but loses that support in a world imagined without the �rst
object. Two objects are attached if such attachment is needed to explain the fact that one supports the
other. Likewise, two objects must be in contact if one supports the other. A simple formulation of this
theory has been implemented as a computer program called Abigail that watches movies constructed
out of line segments and circles and produces descriptions of the objects and events depicted in those
movies. The events are characterized by the changing status of support, contact, and attachment
relations between objects. This chapter has illustrated how such relations could be recovered by using a
modular imagination capacity to perform the counterfactual simulations. The next chapter will discuss
the inner workings of this imagination capacity in greater detail.

17Experiments 1 and 2 correspond to �gures 8.16 and 8.17 respectively. Experiment 3 extends experiments 1 and 2
in testing for representation of gravitational forces. Experiment 4 uses a similar experimental setup to test for the
representation of forces in a compressed spring as weights are placed on top of the spring and removed from it.



Chapter 9

Naive Physics

Much of Abigail's event perception mechanism, and ultimately the lexical semantic representation she

uses to support language acquisition, relies on her capacity for imagining what will happen next in the
movie. This imagination capacity is used as part of a continual counterfactual `what if' analysis to
support most of event perception. For example, Abigail infers that two �gures are joined if one would
fall away from the other were they not joined. Knowing which �gures are joined allows her to segment
the image into objects comprising sets of �gures that are joined together. This ultimately allows the
grounding of the lexical semantic primitives (attached x y) and (in-existence x). Furthermore,
imagination plays a role in determining support relationships. Abigail infers that two �gures are on
the same layer if one would fall through the other were they not on the same layer. This is required
to ground the lexical semantic primitive (contacts x y). Knowing that two �gures are on the same
layer allows her to determine that one object supports another if the second would fall were the �rst
object removed. This ultimately allows the grounding of the lexical semantic primitives (supports x y)

and (supported x).

Abigail's imagination capacity is embodied in a simulator which predicts how a set of �gures will
behave under the in
uence of gravity. Gravity will cause the �gures to move subject to several constraints.

joint constraints: Figures that are joined must remain joined. The values of rigid joint parameters
must be preserved.

substantiality: Two �gures which are on the same layer must not overlap.

ground plane: No �gure can overlap the line y = 0.

Furthermore, each of these constraints is subject to the notion of continuity. Not only must all �gures
uphold the joint, substantiality, and ground plane constraints in their �nal resting position, they must
uphold these constraints continuously at all points along their path of motion. Figure 8.8 on page 141,
gives an example of Abigail's imagination capacity in operation.

The problem of simulating the behavior of a set of components under the in
uence of forces subject to
constraints is not new. Much work on this problem has been done in the �eld of mechanical engineering
and robotics where this problem is called kinematic simulation of mechanisms. The classical approach
to kinematic simulation uses numerical integration.1 Essentially, it is treated as an n-body problem
subject to constraints. Since the constraints are typically complex, it is di�cult to derive an analytic,
closed-form method of preserving constraints during integration. Accordingly, the common approach

1Two notable exceptions to this are the work of Kramer (1990a, 1990b) and Funt (1980). I will discuss this work in

section 10.1

157
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is to integrate using a small step size and repeatedly check for constraint violations. Preventing con-
straint violations is often accomplished by modeling them as additional forces acting on the components.
Cremer's thesis (1989) is an example of recent work in kinematic simulation using numerical integration.

The classical approach to kinematic simulation has certain merits. Up to the limits of numerical
accuracy, it faithfully models the Newtonian physics of a mechanism. This includes the velocity, mo-
mentum, and kinetic energy of its components as well as the magnitude of forces collectively acting
on each component. It can handle arbitrary forces as well as arbitrary motion constraints. Except
where numerical methods break down at singularities, it accurately predicts the precise motion that
components undergo, the paths they follow, and their �nal resting place when the mechanism reaches
equilibrium.

While this classical approach to kinematic simulation is useful in mechanical engineering, it is less
suitable as a cognitive model of an innate imagination capacity, if one exists. The approach is both too
powerful and at the same time too weak. On one hand, people are not able to accurately predict the
precise paths taken by components of complex mechanisms. On the other hand, people do not appear to
be performing numerical integration with a small step size. Consider the mechanism shown in �gure 9.1.
The mechanism consists of a ball attached to a rod which is joined to a stand. The joint is 
exible,
allowing the rod to pivot and the ball to fall until it hits the table. The classical approach will simulate
such a mechanism by small repeated perturbations of the joint angle �. After each perturbation, a
constraint check is performed to verify that the ball does not overlap the table. There is something
unsatisfying about this approach. People seem to be able to predict that the rod will pivot precisely the
amount needed to bring the ball into contact with the table.

Using a small but nonzero step size has other consequences that con
ict with the needs entailed by
using a kinematic simulator as part of a model of event perception. One one hand, smaller step sizes slow
the numerical integration process. Current kinematic simulators typically operate two to three orders of
magnitude slower than real time. Event perception however, must perform numerous simulations per
frame to support counterfactual analysis. As discussed in chapter 8, to determine support relationships
alone, a simulation must be performed for each pair of objects in the image to determine whether one
object falls when the other object is removed. To be cognitively plausible, or at least computationally
useful for event perception, the simulator incorporated into the imagination capacity must operate two
to three orders of magnitude faster than real time, not slower. Admittedly, the current implementation
is nowhere near that fast. Nonetheless, it does perform hundreds if not thousands of simulations during
the �ve to ten minutes it takes to process each movie frame.

Using a large step size to speed up the classical approach is likewise cognitively implausible. Large
step sizes raise the possibility of continuity violations. The con�gurations before and after an integration
step may both satisfy all of the constraints yet there may be no continuous path for the components to
take to achieve that perturbation which does not violate some constraint. For example, if the ball in
�gure 9.1 was smaller and the step size was larger than the diameter of the ball, a classical simulator
could err and predict that the ball would fall through the table. While in normal mechanical engineering
practice, judicious choice of step size prevents such errors from occurring, there is something unsatisfying
about using the classical approach as a cognitive model. Irrespective of their size, people seem able to
uniformly predict that objects move along continuous paths until obstructed by obstacles.

The kinematic simulator incorporated into Abigail uses very di�erent methods than classical sim-
ulation with the objective of being both more faithful as a cognitive model and fast enough to support
event perception. It is motivated by the desire to simulate mechanisms like the one shown in 9.1 in a
single step (which it in fact does). To do so, it takes the cognitive notions of substantiality, continuity,
gravity, and ground plane to be primary, and Newtonian physical accuracy to be secondary. To simplify
the task of enforcing the cognitive constraints, Abigail's imagination capacity ignores many aspects of
physical reality and restricts the class of mechanisms it can simulate. First, the simulator ignores the
velocity of objects. This implies ignoring the e�ects of momentum and kinetic energy on object motion.
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(a) (b)

(c)

joint with flexible rotation

θ

Figure 9.1: The simulator incorporated into Abigail's imagination capacity can predict in a single

step that the joint will pivot exactly the amount needed until the ball lands on the table. Classical
kinematic simulators based on numerical integration repeatedly vary the angle � by a small step

size until the ball collides with the table. If the step size is too small the simulation is slow. If the

step size is too large the collision might not be detected, resulting in a simulation which violates the
substantiality and continuity constraints. Abigail never produces such an anomalous prediction.
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Rather than integrating accelerations into velocities and positions, the simulator operates as an opti-
mizer, simply moving objects along paths which reduce their potential energy. Second, for the most part,
the simulator ignores the magnitude of forces acting on objects when computing their potential energy.
Objects simply move when forces are applied to them, in a direction which decreases their potential
energy. They don't move any faster when the force is greater nor do objects necessarily move in a direc-
tion which o�ers the greatest decrease in potential energy. Third, the simulator considers moving only
rigid objects, or rigid parts of objects, along linear or circular paths, one at a time, when attempting to
reduce their potential energy. Any mechanism which involves either motion along a more complex path
or simultaneous motion of multiple objects along di�erent paths cannot be correctly simulated. This
precludes simulating mechanisms with closed-loop kinematic chains.2 While these limitations make this
simulator inappropriate for traditional mechanical engineering tasks, at least the �rst two limitations
are inconsequential for the task of modeling the use of imagination to support event perception. The
third limitation does, however, cause some problems. These will be discussed in section 9.4.

9.1 Simulation Framework

Abigail simulates the imagined future of an image by moving sets of �gures from that image along linear
and circular paths which reduce the potential energy of the set of moved �gures. The potential energy
of a set of �gures is simply the sum of the potential energies of each �gure in that set. The potential
energy of a �gure f is taken to be the product of its mass m(f) and the height of its center-of-mass y(f).

Abigail's kinematic simulator is a function I(F ; J; L; P ) which takes as input, a set of �gures F ,
along with a joint model J , a layer model L, and a predicate P .3 Each �gure f 2 F has an ob-

served position, orientation, shape, and size as derived from the current movie frame. From this input,
I(F ; J; L; P ) calculates a series of imagined positions and orientations for each f 2 F .4 This series of po-
sitions and orientations constitutes the motion predicted byAbigail for the �gures under the in
uence of
gravity. I will denote the imagined positions and orientations of a �gure f as x̂(p(f)), ŷ(p(f)), and �̂(f)
in contrast to the observed positions x(p(f)), y(p(f)), and �(f). I similarly extend such notation to

distances �̂(p; q), displacements �̂(p; f), and any other notion ultimately based on coordinates of �gure
points. During imagination,Abigail applies the predicate P to the imagined positions and orientation
of the �gures after moving each group of �gures. If P (F̂) ever returns true then the simulation is halted
and I(F ; J; L; P ) returns true. If P (F̂) never returns true and the simulation reaches a state where
no further movement is possible, I(F ; J; L; P ) returns false. Thus I(F ; J; L; P ) can be interpreted as
asking whether P will happen imminently in the current situation.

During simulation,Abigail will move one set of �gures, while leaving the remaining �gures station-
ary. The set of moved �gures will be called the foreground while the stationary �gures will be called the
background. I will denote the set of foreground �gures as F and the set of background �gures as G. The

sets F and G are disjoint. Their union constitutes the entire set of �gures F being imagined. This might
not be equivalent to the entire set of �gures in the current movie frame, since Abigail often imagines
what would happen if certain �gures were missing, as is the case when she tries to determine whether
one object supports another by imagining a world without the �rst object. Two kinds of foreground

2A closed-loop kinematic chain is a set of components fc1; : : : ; cng where each ci except cn is joined to ci+1 and cn is
joined back to c1.

3This may appear to be circular since I(F; J; L; P ) takes joint and layer models as input, and in turn, is used to compute
joint and layer models according to the process described in section 8.2.1. This circularity is broken by calling I(F; J; L; P )
with empty joint and layer models initially to compute the �rst joint and layer models, and using the previous models at
each frame to compute the updated models. Surprisingly, it usually takes Abigail only a single frame to converge to the

correct models.
4Independent of the simplifying assumption discussed in section 8.1.2, during imagination the shapes and sizes of �gures

must remain invariant to avoid producing degenerate predictions.
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motion are considered: translating F along a linear axis whose orientation is �, and rotating F about a
pivot point p. The pivot point need not lie on any �gure in F . In fact it can be either inside or outside
the bounding area of F .

The simulator operates by repeatedly choosing some foreground F , and either translating F along
an appropriate axis �, or rotating F about an appropriate pivot point p, as far as it can, so long as the
potential energy of F is continually decreased and the substantiality, ground plane, and joint constraints
are not violated. It terminates when it cannot �nd some foreground it can move to decrease its potential
energy. At each step of the simulation there may be several potential motions which could each reduce
the potential energy. For the most part, the choice of which one to take is somewhat arbitrary, though
there is a partial ordering bias which will be described shortly.

The key facet of this simulation algorithm is that at each step, the foreground is translated or rotated
as far as possible subject to the requirements that potential energy continually decrease and constraints
be maintained. Limiting all motion to be linear or circular, and limiting �gure shapes to be line segments
and circles, allows closed-form analytic determination of the maximum movement possible during that
step. Later in this section, I will discuss this fairly complex closed-form solution.

At each simulation step, Abigail must choose an appropriate foreground F , decide whether to
translate or rotate F , and choose an appropriate axis � for the translation or pivot point p for the
rotation. Having made these choices, the maximum movement � is analytically determined. Choosing
the type of movement (F , and � or p), however, involves search. Abigail considers the following six
possibilities in order.

Translating an object downwards. In this case F consists of a set of �gures connected by joints
and � = ��

2
. There must by no joint between any foreground and background �gures. Thus F

must be a connected component in the connection graph whose vertices are �gures and edges are
joints between pairs of �gures.

Sliding an object along an inclined surface. In this case F consists of a connected component in
the connection graph and � is either the orientation �(f), or the opposite orientation �(f) + �,
whichever is negative when normalized, of some line segment f such that either

1. f is in the foreground and is coincident with a line segment g in the background,

2. f is in the background and touches a line segment g in the foreground at an endpoint of g,

3. f is in the background and is tangent to a circle g in the foreground,

4. f is in the foreground and touches a line segment g in the background at an endpoint of g, or

5. f is in the foreground and is tangent to a circle g in the background

as long as f ./ g. No other translations axes need be considered for this case. Furthermore,
neither vertical nor horizontal translation axes need be considered since vertical translation axes
fall under the previous case, and horizontal motion will never reduce the potential energy of an
object. Figures 9.2(a) through 9.2(e) depict cases 1 through 5 respectively. These cases may at
times yield multiple potential sliding axes for a given foreground as demonstrated in �gures 9.2(f)
through 9.2(h). In �gure 9.2(f) these degenerate to the same axis. In both �gures 9.2(g) and 9.2(h)
only one of the two axes allows unblocked movement. In general, when multiple sliding axes are
predicted, they will either be degenerate, or all but one will be blocked.

An object falling over. In this case F consists of a connected component in the connection graph
and p is either

1. an endpoint of a line segment from F if the endpoint lies on the ground,

2. an endpoint of a line segment f from F if the endpoint lies on a �gure g from G and f ./ g,



162 CHAPTER 9. NAIVE PHYSICS

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9.2: Determining the potential axes � of sliding. A foreground might slide relative to a

background along any line segment from the foreground which either is coincident with some line

segment, touches the endpoint of some line segment, or is tangent to some circle, in the background,
or along any line segment from the background with an analogous relationship to a �gure in the

foreground. Other axes, including the orientations of unrelated line segments, line segments which

touch other �gures in ways other than those speci�ed above, or line segments which don't touch
across the foreground and background boundary need not be considered.
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3. an endpoint of a line segment g from G if the endpoint lies on a �gure f from F and f ./ g,

4. the center of a circle from F if the circle touches the ground,

5. the center of a circle f from F if the circle touches a �gure g from G and f ./ g, or

6. the center of a circle g from G if the circle touches a �gure f from F and f ./ g.

No other pivot points need be considered for this case. Figures 9.3(a) through 9.3(f) depict cases 1
through 6 respectively.

Varying a 
exible rotation parameter of a joint. If j is a joint with a 
exible rotation parameter
that connects two parts of an object that are otherwise unconnected then it is possible to rotate
either part about the joint pivot. In this case F can be any connected component in the connection
graph computed without j such that F contains either f(j) or g(j). The only pivot point which
need be considered is p(j), the point where the two �gures are joined. If j is not part of a closed-
loop kinematic chain then there will always be exactly two such foregrounds F , one for each subpart
connected by j. One subpart will contain f(j) while the other will contain g(j). If j is part of

a closed-loop kinematic chain then there will be a single such foreground F containing both f(j)
and g(j). Abigail detects this case and simply does not consider rotating about 
exible joints in
closed-loop kinematic chains. This amounts to treating all closed-loop kinematic chains as rigid
bodies.

Varying a 
exible translational displacement parameter of a joint. If j is a joint such that �f (j)
is 
exible and f(j) is a line segment then it is possible to translate either part connected by j

along f(j). In this case only the orientation �(f(j)), or the opposite orientation �(f(j)) + �,
need be considered as possible translation axes, whichever is negative when normalized. Likewise,
if �g(j) is 
exible and g(j) is a line segment then it is possible to translate either part connected
by j along g(j). In this case only the orientation �(g(j)), or the opposite orientation �(g(j)) + �,
need be considered as possible translation axes, whichever is negative when normalized. In both
cases, the translation is limited to the distance between p(j) and the appropriate endpoint of the
line segment along which the translation is taken. The limits imposed by this constraint are com-
puted analytically and combined with the limits implied by the substantiality and ground plane
constraints. The foreground F is computed in the same way as for the aforementioned case of
varying a 
exible rotation parameter and is limited to varying joints which do not participate in
closed-loop kinematic chains.

Varying a 
exible rotational displacement parameter of a joint. If j is a joint such that �f (j)
is 
exible and f(j) is a circle then it is possible to rotate either part connected by j about the center
of f(j). In this case the only pivot point that need be considered is p(f(j)). Likewise, if �g(j) is

exible and g(j) is a circle then it is possible to rotate either part connected by j about the center
of g(j). In this case the only pivot point that need be considered is p(g(j)). The foreground F is
computed in the same way as for the case of varying a rotation parameter and is limited to varying
joints which do not participate in closed-loop kinematic chains.

Currently, only the �rst four cases are implemented. Varying displacement parameters of joints is not
implemented though it is not conceptually di�cult to do so.

Having chosen a foreground F , and whether to translate F along a chosen axis �, or to rotate F
about a chosen pivot point p, the simulator must now determine �, the amount of the translation or
rotation. As mentioned previously, the simulator will always translate or rotate the foreground as far
as it will go, in a single analytic step, until one of two conditions occur: either further translation or
rotation will no longer decrease the potential energy or a barrier prevents further movement. There are
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(a) (b) (c)

(d) (e) (f)

Figure 9.3: Determining the potential pivot points p about which an object may rotate when falling
over. When falling over, an object can pivot only about a point touching the ground or another

object. No other pivot points need be considered.
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two kinds of barriers: the ground, via the ground plane constraint, and another �gure on the same layer,
via the substantiality constraint.

Determining when further translation or rotation will no longer decrease the potential energy is easy.
For translation along an axis �, there is no limit. So long as the axis of translation � is negative when
normalized, further downward translation of F will always decrease the potential energy of F . Upward
translations where � is positive need never be considered since they can only increase the potential
energy. Likewise, horizontal translations, where � = 0 or � = � need not be considered since they will
not a�ect the potential energy.5 For rotation about a pivot point p, the appropriate limit is the rotation
which would bring the center-of-mass of F directly below p. This rotation can be calculated as follows.
First compute the center-of-mass of F which I will denote as p(F ).

x(p(F )) =

P
f2F

m(f)x(f)P
f2F

m(f)

y(p(F )) =

P
f2F

m(f)y(f)P
f2F

m(f)

Then compute the orientation of the line from the pivot point p to this center-of-mass p(F ). This
is �(p; p(F )). The desired rotation limit is ��

2
� �(p; p(F )). If this value is zero when normalized then

no rotation of F about the pivot point p will reduce the potential energy of F , so such a rotation is
not considered. If the value is negative when normalized then only a clockwise rotation can reduce
the potential energy of F . If the value is positive but not equal to � when normalized then only a
counterclockwise rotation can reduce the potential energy of F . If the value is � when normalized then
the choice of rotation direction is indeterminate since either a clockwise or counterclockwise rotation will
reduce the potential energy. In this case a counterclockwise rotation is chosen arbitrarily. Furthermore,
if the pivot point p is coincident with the center-of-mass p(F ) then no rotation of F about the pivot
point p will reduce the potential energy of F , so again, such a rotation is not considered. Since the
magnitude of a rotation need never be greater than � we can represent clockwise rotations as negative
normalized rotations and counterclockwise rotations as positive normalized rotations.

9.2 Translation and Rotation Limits

Determining the translation and rotation limits that result from barriers is more complex. In essence,
the following procedures are needed.

� (aggregate-translation-limit F G �)

� (aggregate-clockwise-rotation-limit F G p)

� (aggregate-counterclockwise-rotation-limit F G p)

These determine the maximum translation or rotation � that can be applied to a foreground F until
it collides with either the ground or with the background G. Translating or rotating a foreground F

will translate or rotate each �gure f 2 F along the same axis � or about the same pivot point p. A
foreground F can be translated or rotated until any one of its �gures f 2 F is either blocked by the
ground or by some �gure g 2 G such that f and g are on the same layer.6 Being blocked by the

5The reason angles are normalized so that a leftward orientation is +� and not �� is so that only downward translation

axes are negative.
6Recall that Abigail assumes that two �gures are on di�erent layers unless she has explicit reason to believe that they

are on the same layer.
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ground, i.e. the ground plane constraint, can be handled as a variation of the substantiality constraint
by temporarily treating the ground as a su�ciently long line segment that is on the same layer as
every �gure in the foreground. Thus the above procedures which compute movement limits for a whole
foreground can be implemented in terms of procedures which compute limits for individual �gures via
the following template.7

(defun aggregate-type-limit (F G �)

(iterate outer

(for f in F)

(minimize (type-limit f *ground* �))

(iterate (for g in G)

(when (same-layer? f g)

(in outer (minimize (type-limit f g �)))))))

where type is either translation, clockwise-rotation or counterclockwise-rotation. To imple-
ment the functions

� translation-limit,

� clockwise-rotation-limit, and

� counterclockwise-rotation-limit

which compute movement limits for individual �gures, eight major cases must be considered.

1. Translating a line segment f until blocked by a another line segment g.

2. Translating a circle f until blocked by a line segment g.

3. Translating a line segment f until blocked by a circle g.

4. Translating a circle f until blocked by another circle g.

5. Rotating a line segment f until blocked by a another line segment g.

6. Rotating a circle f until blocked by a line segment g.

7. Rotating a line segment f until blocked by a circle g.

8. Rotating a circle f until blocked by another circle g.

Each of these eight cases contains a number of subcases. Many of these cases and subcases compute the
amount that f may move until blocked by g by instead computing the amount that g may move in the
opposite direction until blocked by f . Translations in the opposite direction involve a translation axis
whose orientation is � + � instead of �. Rotations in the opposite direction return clockwise limits as
counterclockwise ones and vice versa. I will now consider each of these eight major cases individually,
along with their subcases.

Translating a line segment f until blocked by another line segment g.

This case contains four subcases, all of which must be considered. The tightest limit returned by
any of the subcases is the limit returned by this case.

7This code fragment uses the iteratemacro introduced by Amsterdam (1990).
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Figure 9.4: Translating a line segment f until its endpoint p(f) touches another line segment g.

Translating f until its endpoint p(f) touches g.
This subcase is depicted in �gure 9.4. Project a ray r from p(f) along the axis �. This ray
will be called a translation ray. If r does not intersect g then this subcase does not limit
the translation of F along the axis �. However, if r does intersects g at p1 then the distance
from p(f) to p1 is a limit on the translation of F along the axis �. The position of f after the
translation is depicted as f1 in �gure 9.4.

This case has a boundary case to consider when the translation ray r intersects g at one of
its endpoints. If r intersects p(g) then g limits the translation of f only when j�(f)� �(g)j <
�

2
when normalized. Likewise, if r intersects q(g) then g limits the translation of f only

when j�(f) � �(q(g); p(g))j < �

2
when normalized. These boundary cases are illustrated in

�gure 9.5. In �gure 9.5, the endpoint p(g) of line segment g limits the translation of f but
not the translation of f 0.

Translating f until its endpoint q(f) touches g.
This case is analogous to the �rst subcase except that the translation ray is projected from q(f)

instead of p(f).

Translating f until it touches the endpoint p(g).
This case reduces to the �rst subcase by translating g in the opposite direction �+� until p(g)
touches f .

Translating f until it touches the endpoint q(g).
This case reduces to the second subcase by translating g in the opposite direction � + �

until q(g) touches f .

Translating a circle f until blocked by a line segment g.

This case contains three subcases, all of which must be considered. The tightest limit returned by
any of the subcases is the limit returned by this case.

Translating f until it is tangent to g.

This subcase is depicted in �gure 9.6. Construct two lines segments, g1 and g2, parallel to
and on either side of the line segment g, separated from g by a distance equal to the radius
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Figure 9.5: A boundary case of the case depicted in �gure 9.4 occurs when the translation ray r

intersects an endpoint of g. In this case, the endpoint p(g) of g limits the translation of f but not

the translation of f 0.
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Figure 9.6: Translating a circle f until it is tangent to a line segment g.

of the circle f . The endpoints of g1 and g2 are those that result from moving the endpoints
of g a distance equal to the radius of f along axes which are perpendicular to g. The line
segments g1 and g2 are the potential loci of the center of the circle f if it were tangent to g.
Project a translation ray r from the center p(f) of the circle along the axis �. If r does
not intersect either g1 or g2 then this subcase does not limit the translation of F along the
axis �. However, if r does intersect g1 at p1 then the distance from p(f) to p1 is a limit on the
translation of F along the axis �. Likewise, if r intersects g2 at p2 then the distance from p(f)
to p2 is a limit on the translation of F along the axis �. The position of f after the translation
is depicted as f1 in �gure 9.6.

Translating f until it touches the endpoint p(g).
This subcase reduces to the second subcase of the next case by translating the line segment g
in the opposite direction � + � until its endpoint p(g) touches the circle f .

Translating f until it touches the endpoint q(g).
This subcase reduces to the third subcase of the next case by translating the line segment g
in the opposite direction � + � until its endpoint q(g) touches the circle f .

Translating a line segment f until blocked by a circle g.

This case contains three subcases, all of which must be considered. The tightest limit returned by
any of the subcases is the limit returned by this case.

Translating f until it is tangent to g.

This subcase reduces to the �rst subcase of the previous case by translating the circle g in
the opposite direction � + � until it is tangent to the line segment f .
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Figure 9.7: Translating a line segment f until its endpoint p(f) touches a circle g.

Translating f until its endpoint p(f) touches g.
This subcase is depicted in �gures 9.7 and 9.8. Project a translation ray r from the end-
point p(f) along the axis �. If r does not intersect the circle g then this subcase does not
limit the translation of F along the axis �. However, if r does intersect g at one point p1, as
it does in �gure 9.7, then the distance from p(f) to p1 is a limit on the translation of F along
the axis �. If r intersects g at two points p1 and p2, as it does in �gure 9.8, then the shorter
of the distances from p(f) to p1 and from p(f) to p2 is a limit on the translation of F along
the axis �. The position of f after the translation is depicted as f1 in �gures 9.7 and 9.8.

Translating f until its endpoint q(f) touches g.
This subcase is analogous to the second subcase except that the translation ray is projected
from q(f) instead of p(f).

Translating a circle f until blocked by another circle g.

This case contains three disjoint subcases. The applicable subcase can be determined analytically
by examining the centers and radii of the circles f and g.8

8In the anomalous situation where f and g are equiradial and concentric either the second or the third case can be

used.
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Figure 9.8: Translating a line segment f until its endpoint p(f) touches a circle g.
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Figure 9.9: Translating a circle f until blocked by another circle g when f and g are outside each

other.

The circles are outside each other.

This subcase is depicted in �gure 9.9. In this subcase the circle f is translated until it is

tangent to and outside the circle g. Construct a circle g1, concentric with g, whose radius is
the sum of the radii of f and g. Project a translation ray r from the center p(f) of f along
the axis �. If r does not intersect g1 then this subcase does not limit the translation of F
along the axis �. However, if r does intersect g1 then it will do so at two points, p1 and p2,
which may degenerate to the same point. The shorter of the distances from p(f) to p1 and
from p(f) to p2 is a limit on the translation of F along the axis �. The position of f after the
translation is depicted as f1 in �gure 9.9.

The circle f is inside g.

This subcase is depicted in �gure 9.10. In this subcase the circle f is translated until it is
tangent to and inside the circle g. Construct a circle g1, concentric with g, whose radius is the
radius of g minus the radius of f . Project a translation ray r from the center p(f) of f along
the axis �. Note that r must intersect g1 at a single point p1. The distance from p(f) to p1
is a limit on the translation of F along the axis �. The position of f after the translation is
depicted as f1 in �gure 9.10.

The circle g is inside f .

This subcase reduces to the second subcase by translating g in the opposite direction � + �

until blocked by f .

Rotating a line segment f until blocked by another line segment g.

This case contains four subcases, all of which must be considered. The tightest limit returned by
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Figure 9.10: Translating a circle f until blocked by another circle g when f is inside g.
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Figure 9.11: Rotating a line segment f until its endpoint p(f) touches another line segment g.

any of the subcases is the limit returned by this case.

Rotating f until its endpoint p(f) touches g.
This subcase is depicted in �gure 9.11. Construct a circle c whose center is the pivot point p
and whose radius is the distance from p to the endpoint p(f) of line segment f . This circle
will be called a pivot circle. If c does not intersect line segment g then this subcase does

not limit the rotation of F about the pivot point p. However, if c does intersect g at a
single point p1 then �(p; p(f)) � �(p; p1) is a limit on the clockwise rotation of F about the
pivot point p while �(p; p1) � �(p; p(f)) is the corresponding limit in the counterclockwise
direction. If c intersects g at two points p1 and p2 then the larger of �(p; p(f)) � �(p; p1)
and �(p; p(f))��(p; p2) is a limit on clockwise rotation while the larger of �(p; p1)��(p; p(f))
and �(p; p2) � �(p; p(f)) is the corresponding limit in the counterclockwise direction. The
position of f after the maximal clockwise rotation is depicted as f1 in �gure 9.11. Ignoring
limits introduced by other subcases, the position of f after the maximal counterclockwise
rotation is depicted as f2 in �gure 9.11.

This case has a boundary case to consider when the pivot circle c intersects g at one of its
endpoints. If either p1 or p2 in the above discussion is an endpoint of g then that point is
considered as an intersection of c with g, for the purposes of limiting the rotation of f only
if j�(f)��(p(f); p)j < �

2
when normalized. This boundary case is illustrated in �gure 9.12. In

�gure 9.12, the endpoint p(g) of line segment g limits the rotation of f but not the rotation
of f 0.
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Figure 9.12: A boundary case of the case depicted in �gure 9.11 occurs when the pivot circle c

intersects an endpoint of g. In this case, the endpoint p(g) of g limits the rotation of f but not the
rotation of f 0.
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Rotating f until its endpoint q(f) touches g.
This subcase is analogous to the �rst subcase except that the pivot circle is constructed with
a radius equal to the distance from p to q(f) instead of the distance from p to p(f).

Rotating f until it touches the endpoint p(g).
This subcase reduces to the �rst subcase by rotating g in the opposite direction until p(g)
touches f . Clockwise limits become counterclockwise limits and vice versa.

Rotating f until it touches the endpoint q(g).
This subcase reduces to the second subcase by rotating g in the opposite direction until q(g)
touches f . Clockwise limits become counterclockwise limits and vice versa.

Rotating a circle f until blocked by a line segment g.

This case contains three subcases, all of which must be considered. The tightest limit returned by
any of the subcases is the limit returned by this case.

Rotating f until it is tangent to g.

This subcase is depicted in �gure 9.13. Construct two lines segments, g1 and g2, parallel
to and on either side of the line segment g, separated from g by a distance equal to the
radius of the circle f . The endpoints of g1 and g2 are those that result from moving the
endpoints of g a distance equal to the radius of f along axes which are perpendicular to g.
The line segments g1 and g2 are the potential loci of the center of f if it were tangent
to g. Construct a pivot circle c whose center is the pivot point p and whose radius is the
distance from p to the center p(f) of the circle. If c does not intersect either g1 or g2
then this subcase does not limit the rotation of F about the pivot point p. However, if c
does intersect g1 at a single point p1 then �(p; p(f)) � �(p; p1) is a limit on the clockwise
rotation of F about the pivot point p while �(p; p1) � �(p; p(f)) is the corresponding limit
in the counterclockwise direction. If c intersects g1 at two points p1 and p2 then the larger
of �(p; p(f))��(p; p1) and �(p; p(f))��(p; p2) is a limit on clockwise rotation while the larger
of �(p; p1)��(p; p(f)) and �(p; p2)��(p; p(f)) is the corresponding limit in the counterclockwise
direction. Likewise, if c intersects g2 at a single point q1 then �(p; p(f))� �(p; q1) is a limit on
clockwise rotation while �(p; q1)��(p; p(f)) is the corresponding limit in the counterclockwise
direction. If c intersects g2 at two points q1 and q2 then the larger of �(p; p(f)) � �(p; q1)
and �(p; p(f))� �(p; q2) is a limit on clockwise rotation while the larger of �(p; q1)� �(p; p(f))
and �(p; q2) � �(p; p(f)) is the corresponding limit in the counterclockwise direction. The
position of f after the maximal clockwise rotation is depicted as f1 in �gure 9.13 while the

position of f after the maximal counterclockwise rotation is depicted as f2.

Rotating f until it touches the endpoint p(g).
This subcase reduces to the second subcase of the next case by rotating the line segment g in
the opposite direction until its endpoint p(g) touches the circle f . Clockwise limits become
counterclockwise limits and vice versa.

Rotating f until it touches the endpoint q(g).
This subcase reduces to the third subcase of the next case by rotating the line segment g in
the opposite direction until its endpoint p(g) touches the circle f . Clockwise limits become
counterclockwise limits and vice versa.

Rotating a line segment f until blocked by a circle g.

This case contains three subcases, all of which must be considered. The tightest limit returned by
any of the subcases is the limit returned by this case.

Rotating f until it is tangent to g.

This subcase reduces to the �rst subcase of the previous case by rotating the circle f in
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Figure 9.13: Rotating a circle f until it is tangent to a line segment g.
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Figure 9.14: Rotating a line segment f until its endpoint p(f) touches a circle g.

the opposite direction until it is tangent to the line segment g. Clockwise limits become
counterclockwise limits and vice versa.

Rotating f until its endpoint p(f) touches g.
This subcase is depicted in �gure 9.14. Construct a pivot circle c whose center is the pivot
point p and whose radius is the distance from p to the endpoint p(f) of the line segment. If c
does not intersect the circle g then this subcase does not limit the rotation of F about the
pivot point p. However, if c does intersect g then it will do so at the two points, p1 and p2,
which may degenerate to the same point. The larger of �(p; p(f)) � �(p; p1) and �(p; p(f)) �
�(p; p2) is a limit on the clockwise rotation of F about the pivot point p while the larger
of �(p; p1)��(p; p(f)) and �(p; p2)��(p; p(f)) is the corresponding limit in the counterclockwise
direction. Ignoring limits introduced by other subcases, the position of f after the maximal
clockwise rotation is depicted as f1 in �gure 9.14 while the position of f after the maximal
counterclockwise rotation is depicted as f2.
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Figure 9.15: Rotating a circle f until blocked by another circle g when f and g are outside each

other.

Rotating f until its endpoint q(f) touches g.
This subcase is analogous to the second subcase except that the pivot circle is constructed
with a radius equal to the distance from p to q(f) instead of the distance from p to p(f).

Rotating a circle f until blocked by another circle g.

This case contains three disjoint subcases. The applicable subcase can be determined analytically
by examining the centers and radii of the circles f and g.

The circles are outside each other.

This subcase is depicted in �gure 9.15. In this subcase the circle f is rotated until it is tangent
to and outside the circle g. Construct a circle g1, concentric with g, whose radius is the sum

of the radii of f and g. Construct a pivot circle c whose center is the pivot point p and
whose radius is the distance from p to the center p(f) of f . If c does not intersect g1 then this
subcase does not limit the rotation of F about the pivot point p. However, if c does intersect g1
then it will do so at two points, p1 and p2, which may degenerate to the same point. The
larger of �(p; p(f))� �(p; p1) and �(p; p(f))� �(p; p2) is a limit on the clockwise rotation of F
about the pivot point p while the larger of �(p; p1)� �(p; p(f)) and �(p; p2)� �(p; p(f)) is the
corresponding limit in the counterclockwise direction. The position of f after the maximal
clockwise rotation is depicted as f1 in �gure 9.15 while the position of f after the maximal
counterclockwise rotation is depicted as f2.

The circle f is inside g.

This subcase is depicted in �gure 9.16. In this subcase the circle f is rotated until it is tangent
to and inside the circle g. Construct a circle g1, concentric with g, whose radius is the radius
of g minus the radius of f . Construct a pivot circle c whose center is the pivot point p and
whose radius is the distance from p to the center p(f) of f . If c does not intersect g1 then this
subcase does not limit the rotation of F about the pivot point p. However, if c does intersect g1



180 CHAPTER 9. NAIVE PHYSICS

f

p(f)

g

c

p

f1
p1

f2

p2

g1

Figure 9.16: Rotating a circle f until blocked by another circle g when f is inside g.

then it will do so at two points, p1 and p2, which may degenerate to the same point. The
larger of �(p; p(f))� �(p; p1) and �(p; p(f))� �(p; p2) is a limit on the clockwise rotation of F
about the pivot point p while the larger of �(p; p1)� �(p; p(f)) and �(p; p2)� �(p; p(f)) is the
corresponding limit in the counterclockwise direction. The position of f after the maximal
clockwise rotation is depicted as f1 in �gure 9.16 while the position of f after the maximal
counterclockwise rotation is depicted as f2.

The circle g is inside f .

This subcase reduces to the second subcase by rotating g in the opposite direction until
blocked by f . Clockwise limits become counterclockwise limits and vice versa.

9.3 Complications

The algorithm presented in the previous two sections is only a framework for kinematic simulation. It
handles only the general cases, not the complications caused by the many anomalous special cases that
arise during actual use of the simulator to support analysis of animated stick �gure movies like the one
described in section 6.1. This section discusses some of these complications and how to deal with them.
During the development of Abigail the process of discovering that these anomalous cases existed, and
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then determining how to correctly deal with them, was substantially more di�cult and took signi�cantly
more time and e�ort than implementing the general case. One may ask whether it is necessary to handle
all of these special cases. Many of these special cases were discovered because the event perception
mechanism built on top of the imagination capacity would produce the wrong results due to incorrect
handling of these anomalous cases. For example, prior to dealing with roundo� errors, objects would
mysteriously and unpredictably fall through the 
oor for reasons which will be discussed in section 9.3.4.

9.3.1 Clusters

As described in section 9.1, at each step during imagination, the kinematic simulator will attempt to
translate or rotate a single set of �gures, the foreground, leaving the remaining �gures, the background,
stationary. Foregrounds were chosen as connected components in the connection graph of the image,
i.e. sets of �gures connected by joints. Figure 9.17(a) depicts problems that arise with this simple choice

of foregrounds. The �gure shows two interlocking yet distinct objects, A and B. Since they are not joined
together they constitute separate connected components and will be considered as separate foregrounds
for translation and rotation. However, when attempting to translate A downward alone, B blocks any
downward motion of A. Likewise, when attempting to translate B downward alone, A blocks any
downward motion of B. Thus neither A nor B will fall when simulated. They will remain suspended in
mid-air. This same situation happens not only for the case of falling; it can happen for all of the types
of movement considered in section 9.1. This includes falling down, falling over, sliding along a linear
or circular surface, and varying a joint's 
exible rotation and translational or rotational displacement
parameters. Figure 9.17(b) depicts two objects jointly sliding down an inclined plane. Figure 9.17(c)
depicts two objects jointly falling over. Figure 9.17(d) shows how the problem can arise when varying

the 
exible rotation parameter of a joint which would jointly pivot two interlocking objects about that
joint. It occurs even without interlocking objects. The heavy ball in �gure 9.17(e) will not push the
see-saw down since the ball and see-saw are distinct connected components and thus they will not rotate
together around the pivot. The see-saw prevents downward movement of the ball. Yet the see-saw alone
will not rotate since rotating it alone will increase its potential energy.

The solution to this problem is conceptually simple. Treat A and B together as a single foreground
called a cluster. More generally, the solution can be stated as follows. Form all connected compo-
nents F1; : : : ; Fn in the connection graph of the image. Two connected components are said to touch
if some �gure from one touches some �gure from the other. Consider as a foreground, all clusters F
that are union sets of a collection of connected components, i.e. Fi1 [ � � � [ Fim , where the collection of

connected components is itself connected by the component touching relation. When varying a 
exible
parameter of a joint j, only clusters which do not contain both f(j) and g(j) are considered.

The above solution has a drawback, however. It becomes intractable when there is a large set of
connected components that are connected by the touching relation since every subset of that set which
is still connected by the touching relation must be considered as a cluster. This situation does arise in
practice in at least one case. Abigail begins watching a movie with an empty joint model. Objects
containing many �gures which will later be treated as a single connected component due to joints not
yet hypothesized will initially be treated as clusters. While two joined �gures will always be considered
as part of the same foreground, two touching but unjoined �gures are only optionally considered as part
of the same cluster. Such nondeterminism in the choice of clustered foregrounds with an empty joint
model leads to intractability in the kinematic simulator. This intractability is eliminated in the current
implementation by forming clusters only once an initial joint model has been formulated.
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Figure 9.17: These situations require cluster movement. When attempting to move either object A
or B alone, one will block any motion of the other yielding anomalous simulation results where

objects A and B remain suspended but unsupported. The solution is to treat A and B as a single

clustered foreground and attempt to translate or rotate them together.
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9.3.2 Tangential Movement

Section 9.2 presented analytic methods for calculating the maximal amount that one �gure can translate
or rotate until blocked by another �gure. The methods presented dealt only with the non-degenerate
cases. Some of the computations required �nding the intersection between a translation ray and a line
segment. What happens if the ray is coincident with the line segment? In this case, they intersect at
in�nitely many points. This degenerate case can arise when one line segment slides along another. Other
computations require �nding the intersection between a pivot circle and another circle. What happens if
the two circles are concentric and equiradial? In this case again, they intersect at in�nitely many points.
This degenerate case can arise when pivoting a line segment that lies inside a circle about the center of
the circle, so that its endpoint slides along the interior wall of the circle.

In general, all such degenerate cases involve movement tangent to some surface. Though the above
cases of tangential movement resulted in degenerate computation of intersection points, tangential move-
ment need not produce such degeneracies. One example of such a situation would be the translation
of a line segment until its endpoint was blocked by a circle. If the translation ray is tangent to the

circle, it intersects the circle at one point instead of two. Sometimes, a surface that is tangent to the
direction of motion does not block motion of the foreground. The �rst two examples are illustrations
of such situations. In other situations, a surface that is tangent to the direction of motion can block
motion of the foreground. The third example depicts such a situation. Each of the eight cases discussed
in section 9.2, and all of their subcases, must be analyzed in detail to determine when the background
blocks tangential movement of the foreground, and when it does not. Detailed analysis of each of these
cases has demonstrated that in all cases where f does not touch g, if g would limit tangential move-
ment f then that movement would be even further limited by some other non-tangential case. Thus the
limits introduced by tangential movement can be ignored when f does not touch g. When f touches g,
however, g may or may not totally limit any tangential movement of f depending on the situation.
This analysis for each of the ten irreducible subcases is summarized below and depicted in �gures 9.18
and 9.19.

Translating a line segment f until its endpoint p(f) touches another line segment g.

Tangential movement arises in this subcase when the translation ray r is coincident with g. A line
segment g never limits tangential movement of another line segment f . This case is depicted in
�gure 9.18(a).

Translating a circle f until it is tangent to a line segment g.

Tangential movement arises in this subcase when the translation ray r is coincident with either g1
or g2. This subcase never limits tangential movement. This subcase is depicted in �gure 9.18(b).

Translating a line segment f until its endpoint p(f) touches a circle g.
Tangential movement arises in this subcase when the translation ray r is tangent to circle g. This
subcase limits tangential movement only when f is inside g. This is the case only when j�(f) �
�(p1; p(g))j <

�

2
when normalized. The subcase where g blocks f is depicted in �gure 9.18(e), while

the subcase where g does not block f is depicted in �gure 9.18(c).

Translating a circle f until blocked by a circle g when f and g are outside each other.

Tangential movement arises in this subcase when the translation ray r is tangent to g1. This
subcase never blocks tangential movement. This subcase is depicted in �gure 9.18(d).

Translating a circle f until blocked by another circle g when f is inside g.

Tangential movement arises in this subcase when the translation ray r is tangent to g1. This
subcase always blocks tangential movement. This subcase is depicted in �gure 9.18(f).



184 CHAPTER 9. NAIVE PHYSICS

(a) (b) (c) (d)

(e) (f)

g

f

g g g

f

f f

g g

ff

θ θ

θ
θ

θ
θ

Figure 9.18: An analysis of all cases where the translation of the foreground �gure f is tangential to
the background �gure g. In cases (e) and (f) g blocks movement of f while in the remaining cases

it does not.
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Figure 9.19: An analysis of all cases where the rotation of the foreground �gure f is tangential to

the background �gure g. In cases (b), (d), (e), (i), (j), (k), (m), and (o) g blocks movement of f

while in the remaining cases it does not.
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Rotating a line segment f until its endpoint p(f) touches another line segment g.

Tangential movement arises in this subcase when the pivot circle c is tangent to g. This subcase
limits tangential movement only when j�(f) � �(p(f); p)j > �

2
when normalized. A boundary case

arises when j�(f) � �(p(f); p)j = �

2
. This boundary case will be discussed in section 9.3.3. The

subcase where g blocks f is depicted in �gure 9.19(b), while the subcase where g does not block f
is depicted in �gure 9.19(a).

Rotating a circle f until it is tangent to a line segment g.

Tangential movement arises in this subcase when the pivot circle c is tangent to either g1 or g2.
This subcase limits tangential movement only when p and p(f) are on opposite sides of g or
when p is closer to g than p(f). These two subcases where g blocks f are depicted in �gure 9.19(d)
and 9.19(e) respectively, while the subcase where g does not block f is depicted in �gure 9.19(c).

Rotating a line segment f until its endpoint p(f) touches a circle g.
Tangential movement arises in this subcase when the pivot circle c is tangent to g. There are three

subcases to consider.

c is inside g.

This subcase limits tangential movement only when f is outside g. This is the case only
when j�(p(f); p(g)) � �(f)j > �

2
when normalized. The subcase where g blocks f is depicted

in �gure 9.19(k), while the subcase where g does not block f is depicted in �gure 9.19(h).

g is inside c.

This subcase limits tangential movement only when f is inside g. This is the case only
when j�(p(f); p(g)) � �(f)j < �

2
when normalized. The subcase where g blocks f is depicted

in �gure 9.19(j), while the subcase where g does not block f is depicted in �gure 9.19(g).

g and c are outside each other.

This subcase limits tangential movement only when f is inside g. This is the case only
when j�(p(f); p(g)) � �(f)j < �

2
when normalized. The subcase where g blocks f is depicted

in �gure 9.19(i), while the subcase where g does not block f is depicted in �gure 9.19(f).

Rotating a circle f until blocked by a circle g when f and g are outside each other.

Tangential movement arises in this subcase when the pivot circle c is tangent to g1. This subcase
limits tangential movement only when c is inside g1. This is the case only when �(p(g); p) <
�(p(g); q(g)) + �(p(f); q(f)). The subcase where g blocks f is depicted in �gure 9.19(m), while
the subcase where g does not block f is depicted in �gure 9.19(l).

Rotating a circle f until blocked by another circle g when f is inside g.

Tangential movement arises in this subcase when the pivot circle c is tangent to g1. This subcase
limits tangential movement only when c is outside g1. This is the case only when �(p(g); p) >
�(p(g); q(g))��(p(f); q(f)). The subcase where g blocks f is depicted in �gure 9.19(o), while the
subcase where g does not block f is depicted in �gure 9.19(n).

9.3.3 Touching Barriers

Section 9.2 presented analytic methods for calculating the maximal translation or rotation of one �gure
until blocked by another �gure. The methods presented dealt only with the non-degenerate case of
movement by some nonzero �. When however, a �gure f to be moved touches a �gure g, g may prevent
any movement of f along a given axis or in a given direction about a given pivot. In such cases, the
analytic methods from section 9.2 will yield � = 0. If movement of f is indeed blocked by g then this
is the correct solution. But there are cases where the analytic methods incorrectly yield � = 0 even
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Figure 9.20: The analytic methods for determining maximum translation and rotation yield � = 0
when two �gures touch. Sometimes movement is indeed blocked in this situation, as in (a), while

other times, movement is not blocked, as in (b).

though f is not blocked by g. This happens when f touches g but is on the other side of g given its
direction of movement. Figure 9.20 shows how this can arise when translating one line segment relative
to another line segment. In �gure 9.20(a), g blocks translation of f while in �gure 9.20(b), g does not
block translation of f . Analogous situations occur when translating or rotating any �gure type relative
to any other �gure type.

To deal with this problem, the analytic methods must be augmented to determine whether g is or is
not a barrier to the movement of f when they would otherwise yield � = 0. All of the cases and subcases
can be handled by the same general technique which operates as follows. The maximal movement � will
be limited to zero only when f and g touch. Denote their point of contact by q. Form a line l through q
as follows. If g is a line segment then it is extended to form l. If g is a circle then l is the line tangent to g
at point q. This barrier line divides the plane into two half-planes. The �gure f will lie in at most one of
these half-planes. Let � be the direction of the movement of f . A ray projected from q in the direction �
will also lie in at most one half-plane. The �gure g blocks the movement of f only when f does not lie in
the same half-plane as that ray. Applying this technique to each case and subcase requires determining
both the half-plane in which f lies as well as the direction of movement �. The former depends on the

shape of f . If f is a line segment, one endpoint lies on l at the point of contact q. The other endpoint
occupies the same half-plane as all of f . If f is a circle, its center p(f) occupies the same half-plane as all
of f . Thus determining the half-plane occupied by a �gure f can be determined by examining a single

point which I will denote as q0. When translating f along an axis �, the direction of movement � is the
same as �. When rotating f about a pivot point p, the direction of movement is given by the direction
of a ray projected from the contact point q tangent to a circle c whose center is p and whose radius is
the distance from p to q. For clockwise rotation this is �(p; q) � �

2
while for counterclockwise rotation

this is �(p; q) + �

2
.

Given a barrier line l, a direction of movement �, and a point q0, g blocks the movement of f only
when a ray projected from q

0, along the axis �, intersects l. When applying this check to each of the cases
and subcases one must remember that some of the cases determine whether g blocks the movement of f
by determining whether f blocks the movement of g is the opposite direction. Each case and subcase
must take this into account when computing the parameters l, �, and q0 for this check procedure.

The above check whether g blocks the movement of f can be viewed as a boundary case of the more
general case of movement discussed in section 9.2. This boundary case itself has two boundary cases.
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One occurs when the direction of movement � is parallel to the barrier line l. In this case, neither
half-plane is in front of or behind the �gure f . This case is covered by the tangential movement cases
discussed is section 9.3.2. The other occurs when q0 lies on the barrier line l. In this case, f does not lie in
either half-plane. An ambiguity arises as to which side of l �gure f lies on. This can only happen when f
is a line segment. When g is a circle, f can only move in a direction that will keep it outside g. Analytic
methods similar to those discussed above can determine the allowed direction of movement. When g is
a line segment, however, a genuine ambiguity arises. This can only happen when f is coincident with g
as is depicted in �gure 9.21(a). In this case it is genuinely ambiguous as to which side of g the �gure f
lies on. This situation therefore admits only two consistent interpretations. Either g blocks or doesn't
block f uniformly for any type of movement. Adopting the latter interpretation would lead to problems
since objects then could fall through the 
oor. Adopting the former interpretation, however, leads to
the anomalous situation depicted in �gure 9.21(b) where John falls on his knee, but doesn't fall any
further, since his calf, being coincident to the ground, cannot rotate or translate. Abigail adopts the
latter alternative, thus exhibiting this anomaly. A solution to this problem would require modifying the
procedures described in section 9.3.2 to examine the context of two �gures, i.e. other �gures connected
to either the foreground f or the background g, when determining whether g blocks movement of f .

9.3.4 Tolerance

All of the procedures described in sections 9.2, 9.3.2, and 9.3.3 must be modi�ed to deal with roundo�
error. Roundo� error can introduce gross substantiality violations in the resulting simulation as depicted
in �gure 9.22. Figure 9.22(a) depicts a line segment f falling toward a line segment g. If the limit
calculation has roundo� error, it can produce a situation, depicted in �gure 9.22(b), where f is translated
slightly too far. In the next step of the simulation, however, the endpoint of f is now past g and thus a
translation ray projected from that endpoint will not intersect g. Thus g limits the translation of f only
to the position indicated in �gure 9.22(c). At this point, f can fall away from g, as in �gure 9.22(d), since
in �gure 9.22(c), g does not block f in its direction of movement. Thus due to slight roundo� error in the
transition from �gure 9.22(a) to �gure 9.22(b), f is able to pass through g. As �gure 9.22 shows, roundo�
error can introduce gross deviations from the desired simulation, not just minor di�erences. Accordingly,
Abigail incorporates a notion of tolerance whenever determining whether two �gures touch, so that
�gure 9.22(b) is interpreted as an instance of touching barriers to be handled via the methods described
in section 9.3.3. Furthermore, the methods described in section 9.2 must be modi�ed in this case to
return � = 0 even though the translation ray does not intersect g.

9.4 Limitations

The kinematic simulator just presented su�ers from a severe limitation. It can only collectively translate
or rotate one group of �gures at a time. Such collective movement can correctly simulate either rigid
body motion, or the motion of a non-rigid mechanism where only a single joint parameter changes. It
is not able to correctly simulate the behavior of mechanisms which require that di�erent collections of
�gures simultaneously move along di�erent paths. Several such mechanisms are shown in �gures 9.23
and 9.24.

The mechanism in �gure 9.23 contains two line segments f1 and f2, fastened at the endpoints p(f1)
and p(f2) by a joint j with 
exible rotation and rigid displacement parameters. The endpoints q(f1)
and q(f2) are supported on the ground. Since the micro-world ontology lacks any notion of friction,
the endpoints q(f1) and q(f2) should slide apart along the ground while the 
exible joint rotation �(j)
increases until both f1 and f2 lie 
at on the ground. Abigail, however, is not able to predict this motion
since it requires simultaneously rotating the line segments f1 and f2 in opposite directions, as well as
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Figure 9.21: An ambiguous situation occurs when the foreground f and background g are two

coincident line segments. In this situation it is not possible to determine on which side of the

background the foreground lies. Because of this ambiguity, Abigail will neither translate nor rotate f
relative to g for fear of violating substantiality as depicted in (a). A case where this arises in practice

is depicted in (b). Once John falls on his knee he will not fall any further, since his calf, being

coincident with the ground, cannot rotate or translate.
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Figure 9.22: Roundo� errors during simulation can cause substantiality violations and result in gross

deviations from the desired simulation. Here an object f falls toward an object g. Ordinarily g should

block the fall of f . Roundo� error during step (b), however, causes a substantiality violation. Since

the endpoint of f is now past g, a translation ray projected from that endpoint will not intersect g

and thus g will limit the movement of f only until the position indicated in (c). Since in (c), g does

not block f in its direction of movement, f can fall from g as in (d). Thus due to the roundo� error

in (b), f falls through g.

f1 f2

j

q f2q f1

Figure 9.23: A mechanism whose behavior Abigail cannot predict. This mechanism has two line

segments f1 and f2, and a single joint j, where f(f) = f1, g(j) = f2, �(j) is 
exible, �f (j) =

0 and �g(j) = 0. The endpoints q(f1) and q(f2) should slide along the ground while �(j) increases

until f1 and f2 lie 
at on the ground. Abigail is not able to predict such motion since it requires

the simultaneous rotation and translation of f1 and f2 along di�erent paths.
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Figure 9.24: A four bar linkage. Using the terminology of this thesis, this linkage can be described

as four line segments f0; : : : ; f3 and four joints j0; : : : ; j3 where for i = 0; : : : ; 3, f(ji) = fi, g(ji) =

fi+1mod4, �f (ji) = 0, �g(ji) = 1, and �(ji) is 
exible. Abigail cannot predict the behavior of such
linkages since changing the rotation parameter of any joint would require the simultaneous motion

of at least three line segments along di�erent paths.

translating them collectively downward, in order to decrease the potential energy of the mechanism.
Any one of these movements alone will increase the potential energy so no movement will be attempted.

The mechanism in �gure 9.24 is a classic four bar linkage. It contains four line segments f0; : : : ; f3
joined at their endpoints by four joints j0; : : : ; j3 with 
exible rotation and rigid displacement parameters.
Assuming that one of the line segments has a �xed position and orientation, changing the rotation
parameter of any one of the joints will cause all of the joint rotation parameters to change and the
remaining line segments to translate and rotate along di�erent paths.

Both of these mechanisms share a common property. They have a cycle in their connection graph.9

The cycle in �gure 9.24 is apparent. The cycle in �gure 9.23 results from the fact that due to the
ground plane constraint, the mechanism behaves as if the ground was a line segment g and �gures f1
and f2 were joined to g by joints with 
exible rotations, rigid displacements along f1 and f2, and 
exible
displacements along g.

Abigail can only accurately predict the behavior of mechanisms whose connection graphs do not
contain cycles.10 This includes both explicit cycles due to joints as well as implicit cycles due to the
ground plane and substantiality constraints. This means that the kinematic simulator used to implement
Abigail's imagination capacity is not cognitively plausible since people can understand the behavior
of such mechanisms. While a person might not be able to accurately calculate the exact quantitative
relationship between the motion of parts A and B in mechanism shown in �gure 9.25, she nonetheless
could at least predict that pushing A will cause B to move and perhaps even predict the direction of
motion.

9.5 Experimental Evidence

Spelke (1988) reports a number of experiments that illuminate the nature of infant visual perception.
Most of these experiments use the paradigms of habituation/dishabituation and preferential looking

9The connection graph of a mechanism is a graph where the �gures constitute the vertices and there is an undirected

edge between two vertices if their corresponding �gures are joined.
10She can still watch movies that depict such mechanisms without breaking. She will just treat a cyclic mechanism as a

rigid body.
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B

A

Figure 9.25: Abigail's imagination capacity is impoverished with respect to human imagination

capacity. While humans can predict that pushing A will cause B to move, Abigail cannot make

such a prediction since the connection graph of this mechanism contains cycles and the kinematic
simulator used to implement Abigail's imagination capacity cannot handle cycles.
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as windows on infant perception. A general property of the nervous system is that it habituates to
repeated stimuli. The level of response elicited from repeated applications of similar stimuli decreases
when compared with the initial application of the stimulus. After habituation however, application of
a novel stimulus will again elicit a greater level of response. Since this dishabituation happens only for
novel stimuli it can be used as a probe to determine whether two stimuli are characterized as similar
or di�erent. The experimental framework is as follows. Subjects are �rst habituated to stimulus A and
then exposed to stimulus B. Alternatively, they are habituated to A and then exposed to C. A greater
level of dishabituation for C than for B is taken as evidence that B is classi�ed as more similar to A
than C is. In the case of infants, the response level is often measured by preferential looking, measuring
the amount of time they look at a presented stimulus, or at one stimulus versus another.

Spelke reports two experiments which give evidence that by age �ve months, children are aware of the
substantiality constraint. The �rst experiment was originally reported by Baillargeon et al. (1985). This
experiment is illustrated in �gure 9.26. Infants were habituated to a scenario depicting a screen. Initially
the screen lay 
at on its front. Subsequently, it lifted upwards and rotated backwards until it lay 
at on

its back. Finally, its motion was reversed until it again lay 
at on its front. To make this motion clear,
both front and side views are depicted in �gure 9.26(a), though the actual stimulus in the experiment
contained only the front view. The two dishabituation stimuli are shown in �gures 9.26(b) and 9.26(c).
In both, a block is situated behind the screen such that it is occluded as the screen is raised. The �rst
depicts a possible event: the screen only rotates as far back as it can without penetrating the occluded
block. The second depicts an impossible event: the screen continues to rotate 180�. Unless the block
disappears, this would constitute a substantiality violation. Five-month-old infants dishabituate more to
the latter scenario than the former. This is interpreted as evidence that they interpret both scenarios (a)
and (b) as normal but scenario (c) as abnormal. Baillargeon (1987) reports continued experiments along
these lines which show that children are attentive to substantiality violations by age 41

2
-months and

perhaps even by age 31
2
-months. Baillargeon (1986) reports additional experiments which show that

children take the location of hidden objects into account in their desire to uphold the substantiality
constraint.

Spelke reports a similar experiment performed jointly with Macomber and Keil on four-month-old
infants. This experiment is depicted in �gure 9.27. Here, the infants were habituated to the following
scenario. An object was dropped behind a screen. The screen was then lifted to reveal the object lying
on the ground as shown in �gure 9.27(a). The two dishabituation stimuli are shown in �gure 9.27(b)
and 9.27(c). In both, a table appears in the path of the falling object when the screen is removed.
The �rst depicts the object lying on the table|a di�erent position than in the habituation scenario.
The second depicts the object lying underneath the table|in the same position as in the habituation
scenario|yet one which cannot be reached without a substantiality violation. Four-month-old infants
dishabituate more to the latter scenario than the former, again giving evidence that they are cognizant

of the substantiality constraint by age four months.

Spelke reports that Macomber performed a variation of the previous experiment in attempt to de-
termine the age at which infants know about gravity. This variation is depicted in �gure 9.28. Infants
were habituated to an object falling behind a screen with the screen being removed to reveal the object
lying on a table. In both dishabituation stimuli, the table top was removed. In the �rst dishabituation
stimulus, removing the screen revealed the object at rest on the 
oor, beneath its original position on
the table top, while in the second, removing the screen revealed the object at the same position as it
was in the habituation scenario. This time however, the object was suspended unsupported in mid-air
due to the disappearance of the table top. Spelke reports that four-month-old infants dishabituate more
to the former scenario than the latter, implying that they do not yet form correct judgments based on
gravity and support.

At some point however, children do come to possess knowledge of gravity and support. The only
question is at what point they do so. I conjecture that such development happens early. If the analysis
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side view

front view

(a)  Habituation stimulus

(b)  Dishabituation stimulus depicting possible event

(c)  Dishabituation stimulus depicting impossible event

Figure 9.26: Displays for an experiment demonstrating infant knowledge of substantiality. (Fig-
ure 7.7 from Spelke (1988).) Infants habituated to sequence (a) dishabituate more to sequence (c)

than to sequence (b). Since sequence (c) depicts a substantiality violation, this is interpreted as

evidence that �ve-month-old children have knowledge of substantiality.
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(a)

Habituation
stimulus

(b)

Dishabituation
stimulus depicting

possible event

(c)

Dishabituation
stimulus depicting
impossible event

Figure 9.27: Displays for an experiment demonstrating infant knowledge of substantiality. (Fig-

ure 7.8 from Spelke (1988).) Infants habituated to sequence (a) dishabituate more to sequence (c)

than to sequence (b). Since sequence (c) depicts a substantiality violation this is interpreted as

evidence that four-month-old children have knowledge of substantiality.

(a)

Habituation
stimulus

(b)

Dishabituation
stimulus depicting

possible event

(c)

Dishabituation
stimulus depicting
impossible event

Figure 9.28: Displays for an experiment testing infant knowledge of gravity. (Figure 7.9 from

Spelke (1988).) The conjecture was that infants habituated to sequence (a) would dishabituate

more to sequence (c) than to sequence (b), since sequence (c) depicts an unsupported object. This
expected result was not exhibited by four-month-old infants.
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from chapter 7 is correct, and the meanings of so many everyday simple spatial motion verbs depend on
the concepts of gravity and support, then the knowledge of gravity and support must precede the onset
of language acquisition.

Spelke reports a fourth experiment, done jointly with Kestenbaum, that gives evidence that by
age four months, children know that objects must obey continuity. This experiment is depicted in
�gure 9.29. Two groups of subjects participated in this experiment. The �rst group was habituated
to the scenario depicted in �gure 9.29(a). In this scenario, an object passed behind one screen, as
it moved from left to right, emerged from behind that screen, and then passed behind and emerged
from a second screen. The second group was habituated to a similar scenario except that no object
appeared in the gap between the screens. An object passed behind one screen and then emerged from
the second, as depicted in �gure 9.29(b). Both groups received the same two dishabituation stimuli shown
in �gures 9.29(c) and 9.29(d). One simply showed a single object without the screens while the other
showed two objects without the screens. The group habituated to (a) dishabituated more to (d) while
the group habituated to (b) dishabituated more to (c). The subjects appear to attribute scenario (a) to
a single object while attributing scenario (b) to two objects. This is interpreted as evidence that by age
four months, children know that objects must move along continuous paths, and furthermore, a single
object cannot follow a continuous path without being visible in between the screens.

These experiments reported by Spelke demonstrate that infants at a very early age possess knowledge
of substantiality and continuity. Furthermore, they use this knowledge as part of object and event
perception. She o�ers the following claim.

The principles of cohesion, boundedness, substance and spatio-temporal continuity appear to
stand at the centre of adults' intuitive conceptions of the physical world and its behaviour:
our deepest conceptions of objects appear to be the notions that they are internally con-
nected and distinct from one another, that they occupy space, and that they exist and
move continuously (for further discussion, see Spelke 1983, 1987). These conceptions are so
central to human thinking about the physical world that their uniformity sometimes goes
unremarked. In studies of intuitive physical thought, for example, much attention is paid
to the idiosyncratic and error-ridden predictions adults sometimes make about the motions
of objects (e.g. McCloskey 1983). It is rarely noted, however, that adults predict with near
uniformity that objects will move as cohesive wholes on connected paths through unoccupied
space. This conception, at least, is clear and central to our thinking; it appears to have
guided our thinking since early infancy.

[p. 181]

She then goes on to suggest that the physical knowledge which underlies object and event perception
precedes linguistic development.

In this context, one may consider the possible role of language in the development of physical
knowledge. Our research provides evidence, counter to the views of Quine (1960) and others,
that the organization of the world into objects precedes the development of language and
thus does not depend upon it. I suspect, moreover, that language plays no important role in
the spontaneous elaboration of physical knowledge. To learn that objects tend to move at
smooth speeds, for example, one need only observe objects and their motions; one need not
articulate the principles of one's theory or communicate with others about it.

[p. 181]

Spelke's work attempts to refute the claim that linguistic ability is needed to formulate physical knowl-
edge. This thesis carries Spelke's argument one step further. It suggests that physical knowledge is
needed to formulate linguistic concepts.
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(a)  Continuous habituation stimulus (b)  Discontinuous habituation stimulus

(c)  One-object dishabituation stimulus (d)  Two-object dishabituation stimulus

Figure 9.29: Displays for an experiment demonstrating infant knowledge of continuity. (Figure 7.10
from Spelke (1988).) Infants habituated to sequence (a) dishabituate more to sequence (d) than

to sequence (c), while infants habituated to sequence (b) dishabituate more to sequence (c) than

to sequence (d). This is interpreted as evidence that �ve-month-old children have knowledge that
sequence (a) involves the continuous motion of one object, while sequence (b) must involve two

objects.
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9.6 Summary

In chapter 7, I argued that the notions of support, contact, and attachment play a central role in the
de�nitions of simple spatial motion verbs such as throw, pick up, put, and walk. In chapter 8, I presented
a theory of how these notions can be grounded in perception via counterfactual simulation. A simple
formulation of this theory has been implemented as a computer program called Abigail that watches
movies constructed out of line segments and circles and uses counterfactual simulation to produce de-
scriptions of the objects depicted in those movies, along with the changing status of support, contact,
and attachment relations between those objects. In this chapter I have argued that counterfactual simu-
lation is performed by a modular imagination capacity which directly encodes naive physical knowledge
such as the substantiality, continuity, gravity, and ground plane constraints. I have argued that by
being based on these principles, the human imagination capacity, operates in a very di�erent fashion
from conventional kinematic simulators. The incremental stepwise behavior of traditional kinematic
simulators is both slow and cognitively implausible since it does not faithfully re
ect the substantiality
and continuity constraints. This chapter has presented an alternate simulation mechanism, which for
a limited class of mechanisms, can directly predict in a single step that objects fall along continuous

paths until they collide with obstacles in their path of motion. This mechanism appears better suited
to the task of recovering support, contact, and attachment relations since the recovery of these relations
appears to be based more on collision detection than on physical accuracy. Perhaps that is why hu-
man visual perception is more sensitive to the notions of substantiality and continuity than to velocity,
momentum, and acceleration. While these mechanisms have to date been implemented only for the
drastically simpli�ed ontology of Abigail's micro-world, it appears that similar, though probably much
more complex variants of these mechanisms form the basis of the imagination capacity which drives
human visual perception. Extending the mechanisms explored with Abigail to deal with more complex
world ontologies remains for future work.



Chapter 10

Conclusion

10.1 Related Work

Computer models of event perception are not new. A number of previous attempts at producing event
descriptions from animated movies have been described in the literature. Thibadeau (1986) describes
a system that processes the movie created by Heider and Simmel (1944) and determines when events
occur. The Heider and Simmel movie depicts two-dimensional geometric objects moving in a plane.
When viewing that movie, most people project an elaborate story onto the motion of abstract objects.
Thibadeau's system does not classify event types. It just produces a single binary function over time
delineating when an `event' is said to have occurred. Badler (1975) describes an unimplemented strat-
egy for processing computer-generated animated line drawings to recover event descriptions. Badler's
proposed system hierarchically recognizes predicates which are true over successively longer segments
of the movie. His proposed system does not incorporate counterfactual simulation. The lowest level
predicates are computed geometrically on �gures in a single frame of the movie. He thus does not have
accurate methods for deriving support, contact, and attachment relations between objects. Adler (1977),
Tsotsos (1977), Tsotsos and Mylopoulos (1979), Tsuji et al. (1977), Tsuji et al. (1979), Okada (1979),
and Abe et al. (1981) describe systems similar to Badler's. Again these systems do not incorporate
counterfactual simulation and do not derive support, contact, and attachment relations between objects.
Novak and Bulko (1990) describe a system for interpreting drawings depicting physics problems. Their
system uses the linguistic description of the problem as an aid to the process of understanding the im-
age. It cannot correctly interpret the image without the help of the linguistic description and thus unlike

Abigail, cannot be used as a model of the event perception mechanism that provides the non-linguistic
input to the language acquisition device.

Kinematic simulation is also widely discussed in the literature, though it has never been applied to
the task of event perception. While most of the work falls within the classic approach of numerical
integration, two notable exceptions are the work of Kramer and Funt.

10.1.1 Kramer

Kramer (1990a, 1990b) discusses a kinematic simulator called tla. Like this thesis, Kramer eschews
the classic approach based on numerical integration in favor of a more closed-form solution. He does so,

however, for reasons of e�ciency. Kramer is not concerned with cognitive modeling and plausibility. Like
Abigail, tla ignores dynamics. This includes velocity, momentum, kinetic energy, and the magnitude
of forces acting on components.

On one hand, tla is substantially more powerful thanAbigail. Besides simulating three-dimensional
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movement constrained by a wide variety of joint types, tla is able to handle closed-loop kinematic chains.
Kramer presents tla simulating a number of complex mechanisms including a sofabed. It does so by
constructing what Kramer calls an assembly plan, a procedure for incrementally satisfying the joint
constraints of a mechanism, one by one, in a fashion which is analogous to assembling the mechanism in
a given con�guration. When a mechanism contains a closed-loop kinematic chain, there are constraints
between the values of its joint parameters. Some independent set of joint parameters is taken as the
driving inputs so that the values of the remaining dependent joint parameters is uniquely determined
given particular values for those inputs. An assembly plan is thus a procedure for computing the values
of dependent joint parameters from these driving inputs.1 tla operates by repeatedly assembling a
mechanism for di�erent values of the driving inputs. When a mechanism does not contain any closed-
loop kinematic chains, its assembly plan is trivial. All of its 
exible joint parameters are driving inputs
and none are computed as dependent results. In essence Abigail handles just this simple case. The
novel contribution of tla is an algorithm for deriving assembly plans for mechanisms with closed-loop
kinematic chains.

On the other hand, Abigail addresses issues that do not concern Kramer. Even ignoring dynamics,
the motion of objects must obey a number of constraints in addition to those imposed by joints. These

include substantiality, continuity, gravity, and ground plane, none of which are handled by tla. In
essence, tla is an extremely sophisticated and competent analog of the inner loop ofAbigail's simulator
which moves the foreground relative to the background. In Abigail this inner loop is trivial since she
does not deal with closed-loop kinematic chains. The focus inAbigail however, is on what is built on top
of this inner loop|the mechanism for repeatedly choosing a foreground, deciding whether to translate
of rotate this foreground, determining an appropriate translation axis � or pivot point p, and most
importantly analytically determining how far to translate or rotate the foreground along that translation

axis or pivot point until potential energy would increase or substantiality would be violated. This is one
novel contribution of the kinematic simulator incorporated into Abigail, apart from all of the higher-
level mechanisms which use that simulator to support event perception and the grounding of language
in perception.

One may consider merging the two ideas together in an attempt to allow Abigail to understand
images that contain closed-loop kinematic chains. This is actually much more complicated than it
would seem at �rst glance. In Abigail's ontology, all motion follows either linear or circular paths.
Furthermore, all objects are constructed from line segments and circles. Thus all motion limits can be
found by computing the intersection of lines and circles. This is conceptually straightforward despite
the myriad of cases, subcases, and boundary cases which must be considered to make it work. As the
driving inputs of a mechanism with closed-loop kinematic chains are varied, however, their components
follow paths which are substantially more complex as they move. Merging tla and Abigail would �rst
require that tla compute a representation of the path a point on an object would follow as a result
of varying a driving input. Currently, tla does not compute such representations. It only computes
individual positions along the path given particular values for the driving inputs. Even if an explicit
representation of paths were produced, two further capabilities are needed to incorporate such a capacity
into the simulation framework discussed in section 9.1. First, a method is needed to compute how far
one can vary a driving input while still decreasing potential energy. Second, a method is needed for
intersecting arbitrary paths. My guess is that this would be a substantial endeavor.

It is not clear that such an e�ort would be worthwhile. People might not have the ability to accurately
simulate complex mechanisms as part of the hypothesized imagination capacity. While they clearly
can predict, at least at a gross level, the behavior of mechanisms such as the ones in �gures 9.23,
9.24, and 9.25, they might do so by some approximationmethod which removes the closed-loop kinematic

1A given set of joint parameters may be su�cient for uniquely determining a mechanism's con�guration for some values
of the parameters but not others. Thus an assembly plan must be 
exible about which joint parameters it takes as driving
inputs and which parameters it returns as computed results.
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chains. How this may be done is a topic for future research.

10.1.2 Funt

Funt (1980) describes a system called Whisper that shares many of the same goals as Abigail's
imagination capacity. Like Abigail,Whisper can determine the support relationships between objects
in a static image. Whisper can also predict the sequence of events that will occur during the collapse
of a pile of objects depicted in a static image. Whisper di�ers fromAbigail in one key detail however.
While Abigail represents images as collections of line segments and circles,Whisper instead represents
images as bitmaps. Thus, unlike Abigail, Whisper can represent and operate on images containing
arbitrarily shaped objects.

Whisper maintains two distinct bitmap representations of each image. One uses a conventional
rectilinear layout of pixels. Funt calls this representation the diagram. The other uses a concentric
layout of pixels which Funt calls the retina. Various transformation operations can be performed on
an image in each representation. For example, objects in the diagram may be translated or rotated,
a process which Funt calls redrawing the diagram. The concentric layout of the retina representation
supports a number of e�cient transformations, in particular rotation about the center of the retina. Funt
allows the diagram representation to be converted to the retina representation but not vice versa. This
process, called �xation, can specify a point in the diagram to be aligned with the center of the retina.
Higher-level processes request sequences of �xation and transformation operations. These processes
can also perform a number of query operations on the retina representation. Direct queries on the
diagram are not supported. In addition to rotation about its center, the concentric layout of the retina
representation supports several other e�cient query operations. These include computing the center-
of-area of an object, �nding the points of contact between two objects, examining curves to �nd points
of abrupt change in slope, determining whether an object is symmetric, and determining whether two
objects have the same shape.

The higher-level supervisory processes determine support relationships and perform the simulation by
issuing a sequence of transformations, �xations, and queries on the diagram and retina representations.
In this respect Whisper is very similar to Abigail. Both Abigail andWhisper ignore dynamic e�ects
of velocity, acceleration, momentum, moment of inertia, and kinetic energy during the simulation. Both
assume that objects have a uniform density which allows equating center-of-mass with center-of-area.
More importantly, both perform simulation by a sequence of single object translations and rotations,
ignoring the possibility for simultaneous movement of multiple objects. Besides the inherent physical
inaccuracy caused by this approach to simulation,Whisper, likeAbigail, is unable to simulate scenarios
with closed-loop kinematic chains.

Though Whisper is similar in intent to Abigail, and shares many of the same underlying assump-

tions and problems,Whisper also di�ers from Abigail in a number of key respects. First, as discussed
previously, Whisper uses a bitmap representation while Abigail uses an edge-based representation.
Second, Whisper only performs simulations and determines support relationships. It does not perform
the higher-level tasks of event perception which in Abigail are built around the ability to perform
such simulations by the methods described in chapter 8. Third, Whisper's ontology is strictly two-
dimensional. It lacks any notion of a third dimension, even a restricted one such as the concept of
`layer' incorporated into Abigail. Furthermore, Whisper's ontology does not include the capability
for objects to be fastened together by joints. Since its ontology lacks joints and layers, it has no need to
infer such information from the image and thus has no analog to the model updating process described
in section 8.2.1. A fourth and more signi�cant di�erence between Abigail and Whisper is that while
Abigail can determine analytically in a single step, the maximal rotation or translation an object can
undergo subject to substantiality constraints, Whisper operates more like a conventional simulator,
repeatedly performing small transformations and checking for collisions after each transformation.
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It is interesting to note that Whisper incorporates a number of the same heuristics as Abigail
that limit the choice of pivot points and translation axes. Furthermore, Whisper utilizes a notion of
conglomeration|amalgamating several objects together for collective analysis of support relations|a
concept which is analogous to that of clusters. Unlike Abigail,Whisper determines whether an object
is supported without actually imagining it falling, by examining the relative positions of an object's
center-of-mass and its support points. This method allowsWhisper to determine support relationships
for some, but not all, situations where Abigail would fail due to implied closed-loop kinematic chains.

10.2 Discussion

For pedagogical purposes, part II of this thesis has taken an extreme position on the representation
of verb meanings. Chapter 7 has exaggerated the role played by the notions of support, contact, and
attachment in order to motivate the event perception mechanisms presented in chapter 8 and 9. In
doing so, it downplayed the notions of causality and force application which most prior approaches
to lexical semantic representation (e.g. Miller 1972, Schank 1973, Jackendo� 1983, and Pinker 1989)
have taken to be central to verb de�nitions. This thesis does not claim that the notions of support,
contact, and attachment are su�cient to de�ne verb meanings. Causality and force application, as
well as numerous other notions, are needed to characterize word meanings in general, let alone the
meanings of simple spatial motion verbs. Most of the words de�ned in chapter 7 (e.g throw, fall, drop,
bounce, jump, put, pick up, carry, raise, make, break, �x, step, and walk) have clear causal components
even though the de�nitions given there were able to circumvent the need for describing this causal
component by su�ciently characterizing the non-causal aspects of the meanings of these verbs, namely
the support, contact, and attachment relations they engender between objects participating in events
that they describe. This ability for ignoring the causal component of verb meanings broke down for
verbs like roll and slide in their transitive uses. Thus ultimately it will be necessary to incorporate
causality into a comprehensive lexical semantic representation. Doing so will require an explanation of
how to ground the notion of causality in perception.

It may be possible to extend the techniques described in chapters 8 and 9, namely counterfactual
simulation, to support the perception of causality and force application. In essence, an object A can
be said to cause an event e if e does actually happen in the observed world but does not happen in an
imagined world where A either does not exist or moves di�erently than in the observed world. Imagining
an alternate world without A can be accomplished using existing mechanisms in Abigail. The notion

of `moving di�erently', however, requires extending Abigail's ontology to support animate objects.
Animate (or at least motile) objects are those which appear to move on their own initiative. Such
motion occurs because parts of animate objects exert forces relative to other parts. Within the limited

ontology of Abigail's micro-world, such relative motion of animate object parts could be modeled
completely using joints which exert forces to change their parameters. Currently, gravity is the only
force incorporated into Abigail. Abigail could be extended to model joint forces in addition to
gravity. This would require several changes. First, the joint model maintained by Abigail must be
extended to contain a representation of the changing forces exerted by each joint as a function of
time. The changing force pro�le of the joints comprising an object A can be said to be the motor

program executed by A. To model grasping and releasing, the motor program must have the capacity
for representing the creation and dissolution of joints in addition to changing force pro�les. Second,
the imagination capacity must be extended to take a motor program as input in addition to a set of
�gures, a joint model, and a layer model. Such an extended imagination capacity would model the
short-term future of the world under the e�ects of gravity assuming that each animate object executed
the motor program given as input. Modeling the execution of motor programs would require a kinematic
simulator that was more faithful to the time course of simulation than the simulator currently used by
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Abigail. Third, since the motor programs executed by animate objects in the world are not directly
observable, Abigail must be provided with mechanisms for hypothesizing these motor programs. Such
mechanisms would be analogous to those currently used by Abigail for updating her joint and layer
models. Motor programs could be recovered by counterfactual simulation. Informally, Abigail would
incorporate into the hypothesized motor programs only those force applications which were needed to
have the imagined world match the observed world. Finally, a primitive (cause x e) could be added
to the lexical semantic representation described in chapter 7. Actually, there seem to be at least three
distinct notions of causality. The �rst expresses the fact that the existence of an object x caused an
event e. Such a causal relation is true if e occurs in the observed world but does not occur in a world
imagined without x. Given this notion of causality, the two argument primitive (supports x y) can
be reformulated as (cause x (supported y)). The second expresses the fact that the motion of an
animate object x, namely the motion caused by the execution of its motor program, caused an event e.
Such a causal relation is true if e occurs in the observed world but does not occur in a world imagined
where x does not execute its motor program. During such counterfactual simulation, x would keep rigid
all of the joints which it would have moved according to the motor program recovered from the observed
world. The third variant of causality expresses the fact that the involuntary motion of an object x caused
an event e. Such involuntary motion occurs not because of a motor program executed by x but rather
as a result of either gravity, a motor program executed by some other object, or a combination of the
two.

Putting these speculative ideas aside, there are several important areas of continued work along
the main themes advanced in part II of this thesis. First, to date Abigail has only processed a por-
tion of a single movie. Additional work is needed to improve the robustness and performance of the
imagination capacity and event perception mechanisms to allow Abigail to successfully process many
movies. Second, Abigail currently does not produce complete semantic descriptions of event such as
those presented in chapter 7. While she does recover perceptual primitives, including the notions of
support, contact, and attachment, she does not aggregate these primitives into event expressions. It
would be fairly straightforward to incorporate a lexicon of event expressions into Abigail and have her
continually assess which of these known event types were currently happening in the movie. A number
of prior approaches to event perception (e.g. Badler 1975) utilized such a lexicon of event types. A more
satisfying approach would not rely on a prede�ned set of event types but instead would be able to learn
the appropriate event lexicon. The event lexicon might be acquired by noticing recurring sequences of
perceptual primitives in the movie. Alternatively, there may be universal and perhaps innate principles
that govern the aggregation of perceptual primitives into discrete events. Discerning the nature of such
principles and testing their validity by building computational models awaits further research. Finally,

Abigail is currently not integrated with any language processing facility. The original goal that mo-
tivated the work on event perception described in part II of this thesis was the desire to ground the
language acquisition task advanced in part I in a realistic lexical semantic representation which could
be shown to be recoverable from visual input. In order to attempt the integration of the two halves of
this thesis it is �rst necessary to successfully accomplish the �rst two tasks outlined above. Additionally,
one must formulate a suitable linking rule for the semantic representation produced by the aggregation
process described above. This linking rule must then be inverted in a fashion similar to the way the
Jackendovian liking rule was inverted in section 3.1. This inverted linking rule could then be combined
with a hybrid language acquisition model based on the syntactic theory of Kenunia but utilizing a
more elaborate semantic representation with a fracturing rule along the lines of Maimra and Davra.
The substantial e�ort of building such a comprehensive computational model of language acquisition
remains for future work. Nonetheless, this thesis has taken a modest �rst in this direction by elaborating
a framework for approaching this task and demonstrating detailed working implementations of a number
of crucial components that will ultimately be needed to construct such language acquisition models.
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Appendix A

Maimra in Operation

This appendix contains a trace of Maimra processing the corpus from �gure 1.2 using the grammar
from �gure 4.1. The �nal lexicon produced for this run is illustrated in �gure 4.3. This trace depicts
Maimra processing the corpus, utterance by utterance, producing �rst a disjunctive parse tree for each
utterance and then a disjunctive lexicon formula for that utterance.

lcs: (OR (BE PERSON1 (AT PERSON3))

(GO PERSON1 (PATH (FROM PERSON3) (TO PERSON2)))

(GO PERSON1 (FROM PERSON3))

(GO PERSON1 (TO PERSON2))

(GO PERSON1 (PATH))

(BE PERSON1 (AT PERSON2)))

sentence: (JOHN ROLLED)

parse: (S (NP (N JOHN)) (VP (V ROLLED)))

fracture:

(OR (AND (DEFINITION JOHN N PERSON3)

(DEFINITION ROLLED V (BE PERSON1 (AT ?0))))

(AND (DEFINITION JOHN N (AT PERSON3))

(DEFINITION ROLLED V (BE PERSON1 ?0)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION ROLLED V (BE ?0 (AT PERSON3))))

(AND (DEFINITION JOHN N PERSON2)

(DEFINITION ROLLED V (GO PERSON1 (PATH (FROM PERSON3) (TO ?0)))))

(AND (DEFINITION JOHN N (TO PERSON2))

(DEFINITION ROLLED V (GO PERSON1 (PATH ?0 (FROM PERSON3)))))

(AND (DEFINITION JOHN N PERSON3)

(DEFINITION ROLLED V (GO PERSON1 (PATH (FROM ?0) (TO PERSON2)))))

(AND (DEFINITION JOHN N (FROM PERSON3))

(DEFINITION ROLLED V (GO PERSON1 (PATH ?0 (TO PERSON2)))))

(AND (DEFINITION JOHN N (PATH (FROM PERSON3) (TO PERSON2)))

(DEFINITION ROLLED V (GO PERSON1 ?0)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION ROLLED V (GO ?0 (PATH (FROM PERSON3) (TO PERSON2)))))

(AND (DEFINITION JOHN N PERSON3)

(DEFINITION ROLLED V (GO PERSON1 (FROM ?0))))

(AND (DEFINITION JOHN N (FROM PERSON3))

205
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(DEFINITION ROLLED V (GO PERSON1 ?0)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION ROLLED V (GO ?0 (FROM PERSON3))))

(AND (DEFINITION JOHN N PERSON2)

(DEFINITION ROLLED V (GO PERSON1 (TO ?0))))

(AND (DEFINITION JOHN N (TO PERSON2))

(DEFINITION ROLLED V (GO PERSON1 ?0)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION ROLLED V (GO ?0 (TO PERSON2))))

(AND (DEFINITION JOHN N (PATH))

(DEFINITION ROLLED V (GO PERSON1 ?0)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION ROLLED V (GO ?0 (PATH))))

(AND (DEFINITION JOHN N PERSON2)

(DEFINITION ROLLED V (BE PERSON1 (AT ?0))))

(AND (DEFINITION JOHN N (AT PERSON2))

(DEFINITION ROLLED V (BE PERSON1 ?0)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION ROLLED V (BE ?0 (AT PERSON2)))))
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lcs: (OR (BE PERSON2 (AT PERSON3))

(GO PERSON2 (PATH (FROM PERSON3) (TO PERSON1)))

(GO PERSON2 (FROM PERSON3))

(GO PERSON2 (TO PERSON1))

(GO PERSON2 (PATH))

(BE PERSON2 (AT PERSON1)))

sentence: (MARY ROLLED)

parse: (S (NP (N MARY)) (VP (V ROLLED)))

fracture: (OR (AND (DEFINITION MARY N PERSON2)

(DEFINITION ROLLED V (BE ?0 (AT PERSON3))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION ROLLED V (GO ?0 (FROM PERSON3))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION ROLLED V (GO ?0 (PATH)))))
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lcs: (OR (BE PERSON3 (AT PERSON1))

(GO PERSON3 (PATH (FROM PERSON1) (TO PERSON2)))

(GO PERSON3 (FROM PERSON1))

(GO PERSON3 (TO PERSON2))

(GO PERSON3 (PATH))

(BE PERSON3 (AT PERSON2)))

sentence: (BILL ROLLED)

parse: (S (NP (N BILL)) (VP (V ROLLED)))

fracture: (AND (DEFINITION BILL N PERSON3)

(DEFINITION ROLLED V (GO ?0 (PATH))))



209

lcs: (OR (BE OBJECT1 (AT PERSON1))

(GO OBJECT1 (PATH (FROM PERSON1) (TO PERSON2)))

(GO OBJECT1 (FROM PERSON1))

(GO OBJECT1 (TO PERSON2))

(GO OBJECT1 (PATH))

(BE OBJECT1 (AT PERSON2)))

sentence: (THE CUP ROLLED)

parse: (OR (S (OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))

(NP (N THE) (VP (V CUP)))

(NP (N THE) (PP (P CUP))))

(VP (V ROLLED)))

(S (NP (N THE))

(OR (VP (OR (AUX (DO CUP))

(AUX (BE CUP))

(AUX (MODAL CUP))

(AUX (TO CUP))

(AUX (HAVE CUP)))

(V ROLLED))

(VP (V CUP) (VP (V ROLLED))))))

fracture: (OR (AND (DEFINITION THE N OBJECT1)

(OR (DEFINITION CUP HAVE SEMANTICLESS)

(DEFINITION CUP TO SEMANTICLESS)

(DEFINITION CUP MODAL SEMANTICLESS)

(DEFINITION CUP BE SEMANTICLESS)

(DEFINITION CUP DO SEMANTICLESS))

(DEFINITION ROLLED V (GO ?0 (PATH))))

(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION ROLLED V (GO ?0 (PATH)))))
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lcs: (OR (BE PERSON3 (AT PERSON1))

(GO PERSON3 (PATH (FROM PERSON1) (TO PERSON2)))

(GO PERSON3 (FROM PERSON1))

(GO PERSON3 (TO PERSON2))

(GO PERSON3 (PATH))

(BE PERSON3 (AT PERSON2)))

sentence: (BILL RAN TO MARY)

parse: (OR (S (OR (NP (N BILL) (NP (N RAN)))

(NP (N BILL) (VP (V RAN)))

(NP (N BILL) (PP (P RAN))))

(VP (V TO) (NP (N MARY))))

(S (NP (N BILL))

(OR (VP (V RAN) (PP (P TO)) (NP (N MARY)))

(VP (V RAN) (VP (V TO)) (NP (N MARY)))

(VP (V RAN) (NP (N TO)) (NP (N MARY)))

(VP (OR (AUX (DO RAN))

(AUX (BE RAN))

(AUX (MODAL RAN))

(AUX (TO RAN))

(AUX (HAVE RAN)))

(V TO)

(NP (N MARY)))

(VP (V RAN)

(OR (NP (DET TO) (N MARY))

(NP (N TO) (NP (N MARY)))))

(VP (V RAN) (VP (V TO) (NP (N MARY))))

(VP (V RAN) (PP (P TO) (NP (N MARY)))))))
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fracture:

(OR (AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION MARY N PERSON2)

(DEFINITION TO P (TO ?0))

(DEFINITION RAN V (GO ?0 (PATH ?1 (FROM PERSON1)))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO P (PATH (FROM PERSON1) (TO ?0)))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO V (TO ?0))

(DEFINITION RAN V (GO ?0 (PATH ?1 (FROM PERSON1)))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO V (PATH (FROM PERSON1) (TO ?0)))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION TO DET SEMANTICLESS)

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH (FROM PERSON1) (TO ?1)))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO N (TO ?0))

(DEFINITION RAN V (GO ?0 (PATH ?1 (FROM PERSON1)))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO N (PATH (FROM PERSON1) (TO ?0)))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)

(DEFINITION RAN BE SEMANTICLESS)

(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION MARY N PERSON2)

(DEFINITION TO V (GO ?0 (PATH (FROM PERSON1) (TO ?1)))))

(AND (DEFINITION TO N PERSON1)

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION TO N (FROM PERSON1))

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH ?1 (TO ?2)))))

(AND (DEFINITION TO V PERSON1)

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION TO V (FROM PERSON1))

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH ?1 (TO ?2)))))

(AND (DEFINITION TO P PERSON1)

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION TO P (FROM PERSON1))

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (PATH ?1 (TO ?2)))))))
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(AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION MARY N PERSON2)

(DEFINITION TO P (TO ?0))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO V (TO ?0))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION TO DET SEMANTICLESS)

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (GO ?0 (TO ?1))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO N (TO ?0))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)

(DEFINITION RAN BE SEMANTICLESS)

(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION MARY N PERSON2)

(DEFINITION TO V (GO ?0 (TO ?1))))))

(AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION MARY N PERSON2)

(DEFINITION TO P (AT ?0))

(DEFINITION RAN V (BE ?0 ?1)))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO V (AT ?0))

(DEFINITION RAN V (BE ?0 ?1)))

(AND (DEFINITION TO DET SEMANTICLESS)

(DEFINITION MARY N PERSON2)

(DEFINITION RAN V (BE ?0 (AT ?1))))

(AND (DEFINITION MARY N PERSON2)

(DEFINITION TO N (AT ?0))

(DEFINITION RAN V (BE ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)

(DEFINITION RAN BE SEMANTICLESS)

(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION MARY N PERSON2)

(DEFINITION TO V (BE ?0 (AT ?1)))))))
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lcs: (OR (BE PERSON3 (AT PERSON1))

(GO PERSON3 (PATH (FROM PERSON1) (TO PERSON2)))

(GO PERSON3 (FROM PERSON1))

(GO PERSON3 (TO PERSON2))

(GO PERSON3 (PATH))

(BE PERSON3 (AT PERSON2)))

sentence: (BILL RAN FROM JOHN)

parse: (OR (S (NP (N BILL) (VP (V RAN))) (VP (V FROM) (NP (N JOHN))))

(S (NP (N BILL))

(OR (VP (V RAN) (PP (P FROM)) (NP (N JOHN)))

(VP (V RAN) (VP (V FROM)) (NP (N JOHN)))

(VP (V RAN) (NP (N FROM)) (NP (N JOHN)))

(VP (OR (AUX (DO RAN))

(AUX (BE RAN))

(AUX (MODAL RAN))

(AUX (TO RAN))

(AUX (HAVE RAN)))

(V FROM)

(NP (N JOHN)))

(VP (V RAN)

(OR (NP (DET FROM) (N JOHN))

(NP (N FROM) (NP (N JOHN)))))

(VP (V RAN) (VP (V FROM) (NP (N JOHN))))

(VP (V RAN) (PP (P FROM) (NP (N JOHN)))))))
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fracture:

(OR (AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM P (AT ?0))

(DEFINITION RAN V (BE ?0 ?1)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM V (AT ?0))

(DEFINITION RAN V (BE ?0 ?1)))

(AND (DEFINITION FROM DET SEMANTICLESS)

(DEFINITION JOHN N PERSON1)

(DEFINITION RAN V (BE ?0 (AT ?1))))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM N (AT ?0))

(DEFINITION RAN V (BE ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)

(DEFINITION RAN BE SEMANTICLESS)

(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION JOHN N PERSON1)

(DEFINITION FROM V (BE ?0 (AT ?1))))))

(AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM P (PATH (FROM ?0) (TO PERSON2)))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM V (PATH (FROM ?0) (TO PERSON2)))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM N (PATH (FROM ?0) (TO PERSON2)))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)

(DEFINITION RAN BE SEMANTICLESS)

(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION JOHN N PERSON1)

(DEFINITION FROM V (GO ?0 (PATH (FROM ?1) (TO PERSON2)))))

(AND (DEFINITION FROM N PERSON2)

(DEFINITION JOHN N PERSON1)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION FROM V PERSON2)

(DEFINITION JOHN N PERSON1)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION FROM P PERSON2)

(DEFINITION JOHN N PERSON1)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))))
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(AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM P (FROM ?0))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM V (FROM ?0))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM N (FROM ?0))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)

(DEFINITION RAN BE SEMANTICLESS)

(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION JOHN N PERSON1)

(DEFINITION FROM V (GO ?0 (FROM ?1)))))))
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lcs: (OR (BE PERSON3 (AT PERSON1))

(GO PERSON3 (PATH (FROM PERSON1) (TO OBJECT1)))

(GO PERSON3 (FROM PERSON1))

(GO PERSON3 (TO OBJECT1))

(GO PERSON3 (PATH))

(BE PERSON3 (AT OBJECT1)))

sentence: (BILL RAN TO THE CUP)
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parse: (OR (S (NP (N BILL) (VP (V RAN)))

(OR (VP (V TO) (NP (N THE)) (NP (N CUP)))

(VP (V TO)

(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))))

(S (NP (N BILL))

(OR (VP (V RAN) (PP (P TO) (NP (N THE))) (NP (N CUP)))

(VP (V RAN) (VP (V TO) (NP (N THE))) (NP (N CUP)))

(VP (V RAN)

(OR (NP (DET TO) (N THE))

(NP (N TO) (NP (N THE))))

(NP (N CUP)))

(VP (OR (AUX (DO RAN))

(AUX (BE RAN))

(AUX (MODAL RAN))

(AUX (TO RAN))

(AUX (HAVE RAN)))

(V TO)

(NP (N THE))

(NP (N CUP)))

(VP (V RAN) (NP (N TO)) (NP (N THE)) (NP (N CUP)))

(VP (V RAN) (VP (V TO)) (NP (N THE)) (NP (N CUP)))

(VP (V RAN) (PP (P TO)) (NP (N THE)) (NP (N CUP)))

(VP (V RAN) (PP (P TO))

(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))

(VP (V RAN) (VP (V TO))

(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))

(VP (V RAN) (NP (N TO))

(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))

(VP (OR (AUX (DO RAN))

(AUX (BE RAN))

(AUX (MODAL RAN))

(AUX (TO RAN))

(AUX (HAVE RAN)))

(V TO)

(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))
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(VP (V RAN)

(OR (NP (N TO) (NP (N THE)) (NP (N CUP)))

(NP (DET TO) (N THE) (NP (N CUP)))

(NP (N TO)

(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))))

(VP (V RAN)

(OR (VP (V TO) (NP (N THE)) (NP (N CUP)))

(VP (V TO)

(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP)))))))

(VP (V RAN)

(OR (PP (P TO) (NP (N THE)) (NP (N CUP)))

(PP (P TO)

(OR (NP (DET THE) (N CUP))

(NP (N THE) (NP (N CUP))))))))))
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fracture:

(OR (AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO P (PATH (FROM PERSON1) (TO ?0)))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO V (PATH (FROM PERSON1) (TO ?0)))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO N (PATH (FROM PERSON1) (TO ?0)))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)

(DEFINITION RAN BE SEMANTICLESS)

(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO V (GO ?0 (PATH (FROM PERSON1) (TO ?1)))))

(AND (DEFINITION TO N PERSON1)

(DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION TO V PERSON1)

(DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))

(AND (DEFINITION TO P PERSON1)

(DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION RAN V (GO ?0 (PATH (FROM ?1) (TO ?2)))))))
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(AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO P (TO ?0))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO V (TO ?0))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO N (TO ?0))

(DEFINITION RAN V (GO ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)

(DEFINITION RAN BE SEMANTICLESS)

(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO V (GO ?0 (TO ?1))))))

(AND (DEFINITION BILL N PERSON3)

(OR (AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO P (AT ?0))

(DEFINITION RAN V (BE ?0 ?1)))

(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO V (AT ?0))

(DEFINITION RAN V (BE ?0 ?1)))

(AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO N (AT ?0))

(DEFINITION RAN V (BE ?0 ?1)))

(AND (OR (DEFINITION RAN HAVE SEMANTICLESS)

(DEFINITION RAN TO SEMANTICLESS)

(DEFINITION RAN MODAL SEMANTICLESS)

(DEFINITION RAN BE SEMANTICLESS)

(DEFINITION RAN DO SEMANTICLESS))

(DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(DEFINITION TO V (BE ?0 (AT ?1)))))))
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lcs: (OR (BE OBJECT1 (AT PERSON1))

(GO OBJECT1 (PATH (FROM PERSON1) (TO PERSON2)))

(GO OBJECT1 (FROM PERSON1))

(GO OBJECT1 (TO PERSON2))

(GO OBJECT1 (PATH))

(BE OBJECT1 (AT PERSON2)))

sentence: (THE CUP SLID FROM JOHN TO MARY)
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parse:

(OR (S (OR (NP (DET THE)

(N CUP)

(SBAR (S (NP (N SLID)) (VP (V FROM) (NP (N JOHN))))))

(NP (DET THE)

(N CUP)

(OR (PP (P SLID) (NP (N FROM)))

(PP (P SLID) (VP (V FROM)))

(PP (P SLID) (PP (P FROM))))

(NP (N JOHN)))

(NP (DET THE) (N CUP) (NP (N SLID)) (PP (P FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (VP (V SLID)) (PP (P FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (PP (P SLID)) (PP (P FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP)

(OR (VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM))

(VP (V SLID) (NP (N FROM)))

(VP (V SLID) (VP (V FROM)))

(VP (V SLID) (PP (P FROM))))

(NP (N JOHN)))

(NP (DET THE) (N CUP) (NP (N SLID)) (VP (V FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (VP (V SLID)) (VP (V FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (PP (P SLID)) (VP (V FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP)

(OR (NP (DET SLID) (N FROM))

(NP (N SLID) (NP (N FROM)))

(NP (N SLID) (VP (V FROM)))

(NP (N SLID) (PP (P FROM))))

(NP (N JOHN)))

(NP (DET THE) (N CUP) (NP (N SLID)) (NP (N FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (VP (V SLID)) (NP (N FROM)) (NP (N JOHN)))

(NP (DET THE) (N CUP) (PP (P SLID)) (NP (N FROM)) (NP (N JOHN)))

(NP (DET THE)

(N CUP)

(SBAR (S (NP (N SLID)) (VP (V FROM))))

(NP (N JOHN)))

(NP (DET THE) (N CUP) (PP (P SLID)) (NP (N FROM) (NP (N JOHN))))

(NP (DET THE) (N CUP) (VP (V SLID)) (NP (N FROM) (NP (N JOHN))))

(NP (DET THE) (N CUP) (NP (N SLID)) (NP (N FROM) (NP (N JOHN))))
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(NP (DET THE)

(N CUP)

(OR (NP (N SLID) (PP (P FROM)) (NP (N JOHN)))

(NP (N SLID) (VP (V FROM)) (NP (N JOHN)))

(NP (N SLID) (NP (N FROM)) (NP (N JOHN)))

(NP (DET SLID) (N FROM) (NP (N JOHN)))

(NP (N SLID) (NP (N FROM) (NP (N JOHN))))

(NP (N SLID) (VP (V FROM) (NP (N JOHN))))

(NP (N SLID) (PP (P FROM) (NP (N JOHN))))))

(NP (DET THE) (N CUP) (PP (P SLID)) (VP (V FROM) (NP (N JOHN))))

(NP (DET THE) (N CUP) (VP (V SLID)) (VP (V FROM) (NP (N JOHN))))

(NP (DET THE) (N CUP) (NP (N SLID)) (VP (V FROM) (NP (N JOHN))))

(NP (DET THE)

(N CUP)

(OR (VP (V SLID) (PP (P FROM)) (NP (N JOHN)))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM)

(NP (N JOHN)))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))))

(VP (V SLID) (VP (V FROM) (NP (N JOHN))))

(VP (V SLID) (PP (P FROM) (NP (N JOHN))))))

(NP (DET THE) (N CUP) (PP (P SLID)) (PP (P FROM) (NP (N JOHN))))

(NP (DET THE) (N CUP) (VP (V SLID)) (PP (P FROM) (NP (N JOHN))))

(NP (DET THE) (N CUP) (NP (N SLID)) (PP (P FROM) (NP (N JOHN))))

(NP (DET THE)

(N CUP)

(OR (PP (P SLID) (PP (P FROM)) (NP (N JOHN)))

(PP (P SLID) (VP (V FROM)) (NP (N JOHN)))

(PP (P SLID) (NP (N FROM)) (NP (N JOHN)))

(PP (P SLID) (NP (N FROM) (NP (N JOHN))))

(PP (P SLID) (VP (V FROM) (NP (N JOHN))))

(PP (P SLID) (PP (P FROM) (NP (N JOHN)))))))

(VP (V TO) (NP (N MARY))))
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(S (OR (NP (DET THE) (N CUP) (NP (N SLID)))

(NP (DET THE) (N CUP) (VP (V SLID)))

(NP (DET THE) (N CUP) (PP (P SLID))))

(OR (VP (V FROM) (SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(VP (V FROM) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))

(VP (V FROM) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))

(VP (V FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))

(VP (V FROM) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))

(VP (V FROM) (SBAR (S (NP (N JOHN)) (VP (V TO)))) (NP (N MARY)))

(VP (V FROM) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(VP (V FROM)

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(VP (V FROM) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))

(VP (V FROM) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))))

(S (NP (DET THE) (N CUP))

(OR (VP (V SLID)

(PP (P FROM))

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(VP (V SLID)

(VP (V FROM))

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(VP (V SLID)

(NP (N FROM))

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(VP (V SLID)

(SBAR (S (NP (N FROM) (NP (N JOHN)))

(VP (V TO) (NP (N MARY))))))
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(VP (V SLID)

(OR (PP (P FROM) (SBAR (S (NP (N JOHN)) (VP (V TO)))))

(PP (P FROM) (NP (N JOHN)) (NP (N TO)))

(PP (P FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO)))))

(PP (P FROM) (NP (N JOHN)) (VP (V TO)))

(PP (P FROM) (NP (N JOHN)) (PP (P TO))))

(NP (N MARY)))

(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM)

(NP (N JOHN))

(PP (P TO))

(NP (N MARY)))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (PP (P TO)) (NP (N MARY)))

(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (PP (P TO)) (NP (N MARY)))

(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (PP (P TO)) (NP (N MARY)))

(VP (V SLID)

(OR (VP (V FROM) (SBAR (S (NP (N JOHN)) (VP (V TO)))))

(VP (V FROM) (NP (N JOHN)) (NP (N TO)))

(VP (V FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO)))))

(VP (V FROM) (NP (N JOHN)) (VP (V TO)))

(VP (V FROM) (NP (N JOHN)) (PP (P TO))))

(NP (N MARY)))

(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))



226 APPENDIX A. MAIMRA IN OPERATION

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM)

(NP (N JOHN))

(VP (V TO))

(NP (N MARY)))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (VP (V TO)) (NP (N MARY)))

(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (VP (V TO)) (NP (N MARY)))

(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (VP (V TO)) (NP (N MARY)))

(VP (V SLID)

(OR (NP (N FROM) (SBAR (S (NP (N JOHN)) (VP (V TO)))))

(NP (N FROM) (NP (N JOHN)) (NP (N TO)))

(NP (N FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO)))))

(NP (N FROM) (NP (N JOHN)) (VP (V TO)))

(NP (N FROM) (NP (N JOHN)) (PP (P TO))))

(NP (N MARY)))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))

(VP (V SLID)

(NP (N FROM))

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))

(VP (V SLID)

(VP (V FROM))

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))
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(VP (V SLID)

(PP (P FROM))

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))

(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM)

(NP (N JOHN))

(NP (N TO))

(NP (N MARY)))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (NP (N TO)) (NP (N MARY)))

(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (NP (N TO)) (NP (N MARY)))

(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (NP (N TO)) (NP (N MARY)))

(VP (V SLID)

(SBAR (S (NP (N FROM) (NP (N JOHN))) (VP (V TO))))

(NP (N MARY)))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO))))

(NP (N MARY)))

(VP (V SLID)

(NP (N FROM))

(SBAR (S (NP (N JOHN)) (VP (V TO))))

(NP (N MARY)))

(VP (V SLID)

(VP (V FROM))

(SBAR (S (NP (N JOHN)) (VP (V TO))))

(NP (N MARY)))

(VP (V SLID)

(PP (P FROM))

(SBAR (S (NP (N JOHN)) (VP (V TO))))

(NP (N MARY)))
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(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (NP (N TO) (NP (N MARY))))

(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (NP (N TO) (NP (N MARY))))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (NP (N TO) (NP (N MARY))))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(VP (V SLID)

(PP (P FROM))

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(VP (V SLID)

(VP (V FROM))

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(VP (V SLID)

(NP (N FROM))

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM)

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))
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(VP (V SLID)

(OR (NP (N FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(NP (N FROM) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))

(NP (N FROM) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))

(NP (N FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))

(NP (N FROM) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))

(NP (N FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO))))

(NP (N MARY)))

(NP (N FROM) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(NP (N FROM)

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(NP (N FROM) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))

(NP (N FROM) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))))

(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (VP (V TO) (NP (N MARY))))

(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (VP (V TO) (NP (N MARY))))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (VP (V TO) (NP (N MARY))))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM)

(NP (N JOHN))

(VP (V TO) (NP (N MARY))))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))

(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))
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(VP (V SLID)

(OR (VP (V FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(VP (V FROM) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))

(VP (V FROM) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))

(VP (V FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))

(VP (V FROM) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))

(VP (V FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO))))

(NP (N MARY)))

(VP (V FROM) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(VP (V FROM)

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(VP (V FROM) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))

(VP (V FROM) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))))

(VP (V SLID) (PP (P FROM) (NP (N JOHN))) (PP (P TO) (NP (N MARY))))

(VP (V SLID) (VP (V FROM) (NP (N JOHN))) (PP (P TO) (NP (N MARY))))

(VP (V SLID) (NP (N FROM) (NP (N JOHN))) (PP (P TO) (NP (N MARY))))

(VP (OR (AUX (DO SLID))

(AUX (BE SLID))

(AUX (MODAL SLID))

(AUX (TO SLID))

(AUX (HAVE SLID)))

(V FROM)

(NP (N JOHN))

(PP (P TO) (NP (N MARY))))

(VP (V SLID) (NP (N FROM)) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))

(VP (V SLID) (VP (V FROM)) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))

(VP (V SLID) (PP (P FROM)) (NP (N JOHN)) (PP (P TO) (NP (N MARY))))
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(VP (V SLID)

(OR (PP (P FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO) (NP (N MARY))))))

(PP (P FROM) (NP (N JOHN)) (PP (P TO)) (NP (N MARY)))

(PP (P FROM) (NP (N JOHN)) (VP (V TO)) (NP (N MARY)))

(PP (P FROM)

(OR (NP (N JOHN) (NP (N TO)))

(NP (N JOHN) (VP (V TO)))

(NP (N JOHN) (PP (P TO))))

(NP (N MARY)))

(PP (P FROM) (NP (N JOHN)) (NP (N TO)) (NP (N MARY)))

(PP (P FROM)

(SBAR (S (NP (N JOHN)) (VP (V TO))))

(NP (N MARY)))

(PP (P FROM) (NP (N JOHN)) (NP (N TO) (NP (N MARY))))

(PP (P FROM)

(OR (NP (N JOHN) (PP (P TO)) (NP (N MARY)))

(NP (N JOHN) (VP (V TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO)) (NP (N MARY)))

(NP (N JOHN) (NP (N TO) (NP (N MARY))))

(NP (N JOHN) (VP (V TO) (NP (N MARY))))

(NP (N JOHN) (PP (P TO) (NP (N MARY))))))

(PP (P FROM) (NP (N JOHN)) (VP (V TO) (NP (N MARY))))

(PP (P FROM) (NP (N JOHN)) (PP (P TO) (NP (N MARY)))))))))
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fracture: (AND (DEFINITION THE DET SEMANTICLESS)

(DEFINITION CUP N OBJECT1)

(OR (AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM N (FROM ?0))

(DEFINITION MARY N PERSON2)

(DEFINITION TO P (TO ?0))

(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM V (FROM ?0))

(DEFINITION MARY N PERSON2)

(DEFINITION TO P (TO ?0))

(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM P (FROM ?0))

(DEFINITION MARY N PERSON2)

(DEFINITION TO P (TO ?0))

(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM N (FROM ?0))

(DEFINITION MARY N PERSON2)

(DEFINITION TO V (TO ?0))

(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM V (FROM ?0))

(DEFINITION MARY N PERSON2)

(DEFINITION TO V (TO ?0))

(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM P (FROM ?0))

(DEFINITION MARY N PERSON2)

(DEFINITION TO V (TO ?0))

(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM N (FROM ?0))

(DEFINITION MARY N PERSON2)

(DEFINITION TO N (TO ?0))

(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM V (FROM ?0))

(DEFINITION MARY N PERSON2)

(DEFINITION TO N (TO ?0))

(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))

(AND (DEFINITION JOHN N PERSON1)

(DEFINITION FROM P (FROM ?0))

(DEFINITION MARY N PERSON2)

(DEFINITION TO N (TO ?0))

(DEFINITION SLID V (GO ?0 (PATH ?1 ?2))))))
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lcs: (OR (ORIENT PERSON1 (TO PERSON2))

(ORIENT PERSON2 (TO PERSON3))

(ORIENT PERSON3 (TO PERSON1)))

sentence: (JOHN FACED MARY)

parse: (S (NP (N JOHN)) (VP (V FACED) (NP (N MARY))))

fracture: (AND (DEFINITION JOHN N PERSON1)

(DEFINITION MARY N PERSON2)

(DEFINITION FACED V (ORIENT ?0 (TO ?1))))
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FACED: [V] (ORIENT ?0 (TO ?1))

SLID: [V] (GO ?0 (PATH ?1 ?2))

FROM: *[P] (FROM ?0)

TO: *[N] (TO ?0)

RAN: [V] (GO ?0 ?1)

THE: [DET] SEMANTICLESS

CUP: [N] OBJECT1

BILL: [N] PERSON3

MARY: [N] PERSON2

JOHN: [N] PERSON1

ROLLED: [V] (GO ?0 (PATH))



Appendix B

Kenunia in Operation

This appendix contains a trace ofKenunia processing the corpus from �gure 4.8 using the prior semantic
knowledge from �gure 4.10. Given this information,Kenunia can derive the syntactic parameter settings
and word-to-category mappings illustrated in �gure 4.11. This trace depicts Kenunia processing the
corpus, utterance by utterance, showing the interim language model after each utterance, as well as the
hypothesized analysis for each utterance. When no analysis is possible, the propositions to be retracted
from the language model are highlighted as culprits.

John roll -ed.

fAgent : person1;Theme : person1g

Syntactic Parameters:

[I0 initial]

[I1 �nal]

[C0 �nal]

Lexicon:

cup: [Xn] object1fg
-ed: [V2] ?fg

John: [D2] person1fg
slide: [Xn] ?fTheme : 1g
that: [Xn] ?fg
;: [C0] ?fg
face: [Xn] ?fPatient : 1;Goal : 0g
from: [Xn] ?fSource : 0g
Bill: [Xn] person3fg
the: [Xn] ?fg
Mary: [Xn] person2fg
to: [Xn] ?fGoal : 0g
run: [Xn] ?fTheme : 1g

roll: [I0] ?fTheme : 1g

C2

C1

�
�
�

H
H
H

I2

�
��

H
HH

D2

John

I1

��HH

I0

roll

V2

-ed

C0

;
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Mary roll -ed.

fAgent : person2;Theme : person2g

Syntactic Parameters:

[I0 initial]

[I1 �nal]

[C0 �nal]

Lexicon:

cup: [Xn] object1fg

-ed: [V2] ?fg

John: [D2] person1fg
slide: [Xn] ?fTheme : 1g
that: [Xn] ?fg
;: [C0] ?fg
face: [Xn] ?fPatient : 1;Goal : 0g
from: [Xn] ?fSource : 0g
Bill: [Xn] person3fg
the: [Xn] ?fg
Mary: [D2] person2fg
to: [Xn] ?fGoal : 0g
run: [Xn] ?fTheme : 1g

roll: [I0] ?fTheme : 1g

C2

C1

�
�
�

H
H
H

I2

�
��

H
HH

D2

Mary

I1

��HH

I0

roll

V2

-ed

C0

;
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Bill roll -ed.

fAgent : person3;Theme : person3g

Syntactic Parameters:

[I0 initial]

[I1 �nal]

[C0 �nal]

Lexicon:

cup: [Xn] object1fg

-ed: [V2] ?fg

John: [D2] person1fg
slide: [Xn] ?fTheme : 1g
that: [Xn] ?fg
;: [C0] ?fg
face: [Xn] ?fPatient : 1;Goal : 0g
from: [Xn] ?fSource : 0g

Bill: [D2] person3fg
the: [Xn] ?fg
Mary: [D2] person2fg
to: [Xn] ?fGoal : 0g
run: [Xn] ?fTheme : 1g

roll: [I0] ?fTheme : 1g

C2

C1

�
�
�

H
H
H

I2

�
�
H
H

D2

Bill

I1

��HH

I0

roll

V2

-ed

C0

;
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The cup roll -ed.

fTheme : object1g

Syntactic Parameters:

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

Lexicon:

cup: [N2] object1fg

-ed: [V2] ?fg

John: [D2] person1fg
slide: [Xn] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg
face: [Xn] ?fPatient : 1;Goal : 0g
from: [Xn] ?fSource : 0g
Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg
to: [Xn] ?fGoal : 0g
run: [Xn] ?fTheme : 1g
roll: [I0] ?fTheme : 1g

C2

C1

�
�
��

H
H

HH

I2

�
�
�

H
H
H

D2

D1

�� HH
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N2

cup
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��HH

I0

roll

V2

-ed

C0

;
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Bill run -ed to Mary.

fAgent : person3;Theme : person3;Goal : person2g

Syntactic Parameters:

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

Lexicon:

cup: [N2] object1fg
-ed: [V2] ?fg

John: [D2] person1fg
slide: [Xn] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg
face: [Xn] ?fPatient : 1;Goal : 0g
from: [Xn] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg
to: [P0] ?fGoal : 0g

run: [I0] ?fTheme : 1g

roll: [I0] ?fTheme : 1g

C2

C1

�
�
�
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H
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H
H

HH

I2
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HH

D2

Bill
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-ed
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D2

Mary

C0

;



240 APPENDIX B. KENUNIA IN OPERATION

Bill run -ed from John.

fAgent : person3;Theme : person3;Source : person1g

Syntactic Parameters:

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

Lexicon:

cup: [N2] object1fg
-ed: [V2] ?fg

John: [D2] person1fg
slide: [Xn] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg
face: [Xn] ?fPatient : 1;Goal : 0g

from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg
to: [P0] ?fGoal : 0g

run: [I0] ?fTheme : 1g

roll: [I0] ?fTheme : 1g

C2

C1
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C0

;
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Bill run -ed to the cup.

fAgent : person3;Theme : person3;Goal : object1g

Syntactic Parameters:

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

Lexicon:

cup: [N2] object1fg
-ed: [V2] ?fg

John: [D2] person1fg
slide: [Xn] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg
face: [Xn] ?fPatient : 1;Goal : 0g

from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg
to: [P0] ?fGoal : 0g

run: [I0] ?fTheme : 1g

roll: [I0] ?fTheme : 1g

C2

C1
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;
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The cup slide -ed from John to Mary.

fTheme : object1;Source : person1;Goal : person2g

Syntactic Parameters:

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

Lexicon:

cup: [N2] object1fg
-ed: [V2] ?fg

John: [D2] person1fg

slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg
face: [Xn] ?fPatient : 1;Goal : 0g

from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg
to: [P0] ?fGoal : 0g

run: [I0] ?fTheme : 1g

roll: [I0] ?fTheme : 1g

C2
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Mary
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;
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John face -ed Mary.

fAgent : person1;Patient : person1;Goal : person2g

Culprits:

category(-ed) = V
bar-level(-ed) = 2

Syntactic Parameters:

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

Lexicon:

cup: [N2] object1fg
-ed: [Xn] ?fg
John: [D2] person1fg

slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg
face: [Xn] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg
to: [P0] ?fGoal : 0g

run: [I0] ?fTheme : 1g

roll: [I0] ?fTheme : 1g
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John face -ed Mary.

fAgent : person1;Patient : person1;Goal : person2g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [I0] ?fTheme : 1g

roll: [I0] ?fTheme : 1g

C2

C1
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John roll -ed.

fAgent : person1;Theme : person1g

Culprits:

category(roll) = I

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg

slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g

from: [P0] ?fSource : 0g

Bill: [D2] person3fg
the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g

run: [I0] ?fTheme : 1g
roll: [X0] ?fTheme : 1g
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John roll -ed.

fAgent : person1;Theme : person1g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [I0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1
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Mary roll -ed.

fAgent : person2;Theme : person2g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [I0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1
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Bill roll -ed.

fAgent : person3;Theme : person3g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [I0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1
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The cup roll -ed.

fTheme : object1g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [I0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2
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Bill run -ed to Mary.

fAgent : person3;Theme : person3;Goal : person2g

Culprits:

category(run) = I

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg

slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g

from: [P0] ?fSource : 0g

Bill: [D2] person3fg
the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g

run: [X0] ?fTheme : 1g
roll: [V0] ?fTheme : 1g
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Bill run -ed to Mary.

fAgent : person3;Theme : person3;Goal : person2g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g
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Bill run -ed from John.

fAgent : person3;Theme : person3;Source : person1g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g
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Bill run -ed to the cup.

fAgent : person3;Theme : person3;Goal : object1g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [I0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�
�
�
�
��

H
H
H
H
H
H
H
HH

I2

�
�
�
�

H
H
H
H

D2
1

Bill

I1

�
�
�
�

H
H
H
H

I0

��HH

V0
2

run

I0

-ed

V2

�
�
�

H
H
H

V2

��HH

D2
1

t

V1

V0
2

t

P2

P1

�
�
H
H

P0

to

D2

D1

��HH

D0

the

N2

cup

C0

;
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The cup slide -ed from John to Mary.

fTheme : object1;Source : person1;Goal : person2g

Culprits:

category(slide) = I

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg

slide: [X0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g

from: [P0] ?fSource : 0g

Bill: [D2] person3fg
the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g

run: [V0] ?fTheme : 1g
roll: [V0] ?fTheme : 1g
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The cup slide -ed from John to Mary.

fTheme : object1;Source : person1;Goal : person2g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�

H
H

H
H

I2

�
�
�
�
�

H
H

H
H
H

D2
1

D1

�� HH

D0

The

N2

cup

I1

�
�
�
�

H
H
H
H

I0

�� HH

V0
2

slide

I0

-ed

V2

�
�
�
��

H
H

H
HH

V2

�
�
�

H
H
H

V2

��HH

D2
1

t

V1

V0
2

t

P2

P1

�� HH

P0

from

D2

John

P2

P1

�� HH

P0

to

D2

Mary

C0

;
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John face -ed Mary.

fAgent : person1;Patient : person1;Goal : person2g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�
�
��

H
H

H
H
H
HH

I2

�
�
�
�

H
H
H
H

D2
1

John

I1

�
�
��

H
H
HH

I0

�� HH

V0
2

face

I0

-ed

V2

�
��

H
HH

D2
1

t

V1

�� HH

D2

Mary

V0
2

t

C0

;
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John roll -ed.

fAgent : person1;Theme : person1g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�
�

H
H

H
H
H

I2

�
�
��

H
H
HH

D2
1

John

I1

�
��

H
HH

I0

��HH

V0
2

roll

I0

-ed

V2

��HH

D2
1

t

V1

V0
2

t

C0

;
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Mary roll -ed.

fAgent : person2;Theme : person2g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�
�

H
H
H
H
H

I2

�
�
��

H
H
HH

D2
1

Mary

I1

�
��

H
HH

I0

��HH

V0
2

roll

I0

-ed

V2

��HH

D2
1

t

V1

V0
2

t

C0

;
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Bill roll -ed.

fAgent : person3;Theme : person3g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
��

H
H
H
HH

I2

�
�
��

H
H
HH

D2
1

Bill

I1

�
��

H
HH

I0

��HH

V0
2

roll

I0

-ed

V2

��HH

D2
1

t

V1

V0
2

t

C0

;
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The cup roll -ed.

fTheme : object1g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�
�

H
H
H
H
H

I2

�
�
�
�

H
H
H
H

D2
1

D1

�� HH

D0

The

N2

cup

I1

�
��

H
HH

I0

��HH

V0
2

roll

I0

-ed

V2

��HH

D2
1

t

V1

V0
2

t

C0

;
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Bill run -ed to Mary.

fAgent : person3;Theme : person3;Goal : person2g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�
�
�
��

H
H
H

H
H
H
HH

I2

�
�
�
�

H
H
H
H

D2
1

Bill

I1

�
�
�
�

H
H
H
H

I0

��HH

V0
2

run

I0

-ed

V2

�
��

H
HH

V2

��HH

D2
1

t

V1

V0
2

t

P2

P1

�� HH

P0

to

D2

Mary

C0

;
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Bill run -ed from John.

fAgent : person3;Theme : person3;Source : person1g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�
�
�
��

H
H
H
H
H
H
HH

I2

�
�
�
�

H
H
H
H

D2
1

Bill

I1

�
�
�
�

H
H
H
H

I0

��HH

V0
2

run

I0

-ed

V2

�
�
�

H
H
H

V2

��HH

D2
1

t

V1

V0
2

t

P2

P1

�� HH

P0

from

D2

John

C0

;
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Bill run -ed to the cup.

fAgent : person3;Theme : person3;Goal : object1g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�
�
�
�
��

H
H
H
H
H
H
H
HH

I2

�
�
�
�

H
H
H
H

D2
1

Bill

I1

�
�
�
�

H
H
H
H

I0

��HH

V0
2

run

I0

-ed

V2

�
�
�

H
H
H

V2

��HH

D2
1

t

V1

V0
2

t

P2

P1

�
�
H
H

P0

to

D2

D1

��HH

D0

the

N2

cup

C0

;



264 APPENDIX B. KENUNIA IN OPERATION

The cup slide -ed from John to Mary.

fTheme : object1;Source : person1;Goal : person2g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�

H
H

H
H

I2

�
�
�
�
�

H
H

H
H
H

D2
1

D1

�� HH

D0

The

N2

cup

I1

�
�
�
�

H
H
H
H

I0

�� HH

V0
2

slide

I0

-ed

V2

�
�
�
��

H
H

H
HH

V2

�
�
�

H
H
H

V2

��HH

D2
1

t

V1

V0
2

t

P2

P1

�� HH

P0

from

D2

John

P2

P1

�� HH

P0

to

D2

Mary

C0

;
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John face -ed Mary.

fAgent : person1;Patient : person1;Goal : person2g

Syntactic Parameters:

[V0 �nal]

[V1 �nal]

[P0 initial]

[D0 initial]

[I0 initial]

[I1 �nal]

[C0 �nal]

[adjoin V2 right]

[adjoin I0 left]

Lexicon:

cup: [N2] object1fg

-ed: [I0] ?fg

John: [D2] person1fg
slide: [V0] ?fTheme : 1g
that: [Xn] ?fg

;: [C0] ?fg

face: [V0] ?fPatient : 1;Goal : 0g
from: [P0] ?fSource : 0g

Bill: [D2] person3fg

the: [D0] ?fg

Mary: [D2] person2fg

to: [P0] ?fGoal : 0g
run: [V0] ?fTheme : 1g

roll: [V0] ?fTheme : 1g

C2

C1

�
�
�
�
�
��

H
H

H
H
H
HH

I2

�
�
�
�

H
H
H
H

D2
1

John

I1

�
�
��

H
H
HH

I0

�� HH

V0
2

face

I0

-ed

V2

�
��

H
HH

D2
1

t

V1

�� HH

D2

Mary

V0
2

t

C0

;
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Appendix C

Abigail in Operation

This appendix enumerates the perceptual primitives recovered by Abigail after processing the �rst
172 frames of the movie discussed in section 6.1. Figure 8.13 contains an event graph depicting the
temporal structure of these primitives.

[0,0](PLACE [JOHN-part] PLACE-0)

[0,0](SUPPORTED [JOHN-part])

[0,1](PLACE [(EYE JOHN)] PLACE-1)

[0,65](PLACE [BALL-part] PLACE-13)

[0,65](CONTACTS [TABLE BOX-part] [BALL-part])

[0,65](SUPPORTS [TABLE BOX-part] [BALL-part])

[0,65](PLACE [(LINE-SEGMENT3 BALL)] PLACE-11)

[0,71](SUPPORTED [BALL-part])

[0,71](SUPPORTED [(LINE-SEGMENT3 BALL)])

[0,71](SUPPORTS [BALL-part] [(LINE-SEGMENT3 BALL)])

[0,171](SUPPORTED [TABLE BOX-part])

[0,171](SUPPORTED [(BOTTOM BOX)])

[0,171](SUPPORTS [TABLE BOX-part] [(BOTTOM BOX)])

[1,64](MOVING [JOHN-part])

[2,2](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[2,2](ROTATING [JOHN-part])

[2,15](MOVING-ROOT [JOHN-part])

[2,15](TRANSLATING [(EYE JOHN)] PLACE-2)

[2,15](MOVING-ROOT [(EYE JOHN)])

[2,15](MOVING [(EYE JOHN)])

[2,60](TRANSLATING [JOHN-part] PLACE-9)

[16,16](SUPPORTED [JOHN-part])

267
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[16,17](PLACE [(EYE JOHN)] PLACE-3)

[18,18](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[18,18](ROTATING [JOHN-part])

[18,32](MOVING-ROOT [JOHN-part])

[18,32](TRANSLATING [(EYE JOHN)] PLACE-4)

[18,32](MOVING-ROOT [(EYE JOHN)])

[18,32](MOVING [(EYE JOHN)])

[33,33](SUPPORTED [JOHN-part])

[33,34](PLACE [(EYE JOHN)] PLACE-5)

[35,35](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[35,35](ROTATING [JOHN-part])
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[35,48](MOVING-ROOT [JOHN-part])

[35,48](TRANSLATING [(EYE JOHN)] PLACE-6)

[35,48](MOVING-ROOT [(EYE JOHN)])

[35,48](MOVING [(EYE JOHN)])

[49,49](SUPPORTED [JOHN-part])

[49,50](PLACE [(EYE JOHN)] PLACE-7)

[51,51](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[51,51](ROTATING [JOHN-part])

[51,58](MOVING-ROOT [JOHN-part])

[51,58](TRANSLATING [(EYE JOHN)] PLACE-8)

[51,58](MOVING-ROOT [(EYE JOHN)])

[51,58](MOVING [(EYE JOHN)])

[59,64](SUPPORTED [JOHN-part])

[59,70](PLACE [(EYE JOHN)] PLACE-16)

[64,64](TRANSLATING [JOHN-part] PLACE-10)

[65,65](PLACE [JOHN-part] PLACE-12)

[66,71](TRANSLATING [BALL-part] PLACE-19)

[66,71](MOVING-ROOT [BALL-part])

[66,71](MOVING [BALL-part])

[66,71](SUPPORTED [JOHN-part])

[66,71](SUPPORTS [JOHN-part] [BALL-part])

[66,71](TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-17)

[66,71](MOVING-ROOT [(LINE-SEGMENT3 BALL)])

[66,71](MOVING [(LINE-SEGMENT3 BALL)])

[66,71](SUPPORTS [(LINE-SEGMENT3 BALL)] [BALL-part])

[66,71](SUPPORTED [BALL-part JOHN-part])

[66,71](SUPPORTS [BALL-part JOHN-part] [(LINE-SEGMENT3 BALL)])

[67,67](TRANSLATING [JOHN-part] PLACE-15)

[67,67](TRANSLATING [BALL-part JOHN-part] PLACE-14)
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[71,71](FLIPPING [BALL-part])

[71,71](ROTATING-COUNTER-CLOCKWISE [BALL-part])

[71,71](ROTATING [BALL-part])

[71,71](FLIPPING [JOHN-part])

[71,71](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[71,71](ROTATING-CLOCKWISE [JOHN-part])

[71,71](ROTATING [JOHN-part])

[71,71](MOVING-ROOT [JOHN-part])

[71,71](SUPPORTS [BALL-part] [JOHN-part])

[71,71](TRANSLATING [(EYE JOHN)] PLACE-18)

[71,71](ROTATING-COUNTER-CLOCKWISE [(EYE JOHN)])

[71,71](ROTATING [(EYE JOHN)])

[71,71](MOVING-ROOT [(EYE JOHN)])

[71,71](MOVING [(EYE JOHN)])

[71,71](ROTATING-CLOCKWISE [(LINE-SEGMENT3 BALL)])

[71,71](ROTATING [(LINE-SEGMENT3 BALL)])

[71,71](FLIPPING [BALL-part JOHN-part])

[71,71](ROTATING-COUNTER-CLOCKWISE [BALL-part JOHN-part])

[71,71](ROTATING-CLOCKWISE [BALL-part JOHN-part])

[71,71](ROTATING [BALL-part JOHN-part])

[71,71](MOVING-ROOT [BALL-part JOHN-part])

[71,71](SUPPORTS [(LINE-SEGMENT3 BALL)] [BALL-part JOHN-part])

[72,72](PLACE [BALL-part] PLACE-22)

[72,72](PLACE [(EYE JOHN)] PLACE-21)

[72,72](PLACE [(LINE-SEGMENT3 BALL)] PLACE-20)

[73,80](TRANSLATING [BALL-part] PLACE-25)

[73,80](MOVING-ROOT [BALL-part])

[73,80](MOVING [BALL-part])

[73,80](MOVING-ROOT [JOHN-part])

[73,80](TRANSLATING [(EYE JOHN)] PLACE-24)

[73,80](MOVING-ROOT [(EYE JOHN)])

[73,80](MOVING [(EYE JOHN)])

[73,80](TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-23)

[73,80](MOVING-ROOT [(LINE-SEGMENT3 BALL)])

[73,80](MOVING [(LINE-SEGMENT3 BALL)])

[73,80](MOVING-ROOT [BALL-part JOHN-part])

[73,80](MOVING-ROOT [BALL JOHN-part])

[81,82](PLACE [BALL-part] PLACE-28)

[81,82](PLACE [(EYE JOHN)] PLACE-27)

[81,82](PLACE [(LINE-SEGMENT3 BALL)] PLACE-26)
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[83,83](ROTATING-CLOCKWISE [JOHN-part])

[83,83](ROTATING [JOHN-part])

[83,83](ROTATING-CLOCKWISE [BALL-part JOHN-part])

[83,83](ROTATING [BALL-part JOHN-part])

[83,83](ROTATING-CLOCKWISE [BALL JOHN-part])

[83,83](ROTATING [BALL JOHN-part])

[83,97](TRANSLATING [BALL-part] PLACE-31)

[83,97](MOVING-ROOT [BALL-part])

[83,97](MOVING [BALL-part])

[83,97](MOVING-ROOT [JOHN-part])

[83,97](TRANSLATING [(EYE JOHN)] PLACE-30)

[83,97](MOVING-ROOT [(EYE JOHN)])

[83,97](MOVING [(EYE JOHN)])

[83,97](TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-29)

[83,97](MOVING-ROOT [(LINE-SEGMENT3 BALL)])

[83,97](MOVING [(LINE-SEGMENT3 BALL)])

[83,97](MOVING-ROOT [BALL-part JOHN-part])

[83,97](MOVING-ROOT [BALL JOHN-part])

[98,99](PLACE [BALL-part] PLACE-34)

[98,99](PLACE [(EYE JOHN)] PLACE-33)

[98,99](PLACE [(LINE-SEGMENT3 BALL)] PLACE-32)

[100,100](ROTATING-CLOCKWISE [JOHN-part])

[100,100](ROTATING [JOHN-part])

[100,100](ROTATING-CLOCKWISE [BALL-part JOHN-part])

[100,100](ROTATING [BALL-part JOHN-part])

[100,100](ROTATING-CLOCKWISE [BALL JOHN-part])

[100,100](ROTATING [BALL JOHN-part])

[100,113](TRANSLATING [BALL-part] PLACE-37)

[100,113](MOVING-ROOT [BALL-part])

[100,113](MOVING [BALL-part])

[100,113](MOVING-ROOT [JOHN-part])

[100,113](TRANSLATING [(EYE JOHN)] PLACE-36)

[100,113](MOVING-ROOT [(EYE JOHN)])

[100,113](MOVING [(EYE JOHN)])

[100,113](TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-35)

[100,113](MOVING-ROOT [(LINE-SEGMENT3 BALL)])

[100,113](MOVING [(LINE-SEGMENT3 BALL)])

[100,113](MOVING-ROOT [BALL-part JOHN-part])

[100,113](MOVING-ROOT [BALL JOHN-part])

[114,115](PLACE [BALL-part] PLACE-40)

[114,115](PLACE [(EYE JOHN)] PLACE-39)

[114,115](PLACE [(LINE-SEGMENT3 BALL)] PLACE-38)
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[116,116](ROTATING-CLOCKWISE [JOHN-part])

[116,116](ROTATING [JOHN-part])

[116,116](ROTATING-CLOCKWISE [BALL-part JOHN-part])

[116,116](ROTATING [BALL-part JOHN-part])

[116,116](ROTATING-CLOCKWISE [BALL JOHN-part])

[116,116](ROTATING [BALL JOHN-part])

[116,130](TRANSLATING [BALL-part] PLACE-43)

[116,130](MOVING-ROOT [BALL-part])

[116,130](MOVING [BALL-part])

[116,130](MOVING-ROOT [JOHN-part])

[116,130](TRANSLATING [(EYE JOHN)] PLACE-42)

[116,130](MOVING-ROOT [(EYE JOHN)])

[116,130](MOVING [(EYE JOHN)])

[116,130](TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-41)

[116,130](MOVING-ROOT [(LINE-SEGMENT3 BALL)])

[116,130](MOVING [(LINE-SEGMENT3 BALL)])

[116,130](MOVING-ROOT [BALL-part JOHN-part])

[116,130](MOVING-ROOT [BALL JOHN-part])

[131,131](PLACE [BALL-part] PLACE-46)

[131,131](PLACE [(EYE JOHN)] PLACE-45)

[131,131](PLACE [(LINE-SEGMENT3 BALL)] PLACE-44)
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[132,132](FLIPPING [BALL-part])

[132,132](TRANSLATING [BALL-part] PLACE-49)

[132,132](ROTATING-COUNTER-CLOCKWISE [BALL-part])

[132,132](ROTATING-CLOCKWISE [BALL-part])

[132,132](ROTATING [BALL-part])

[132,132](MOVING-ROOT [BALL-part])

[132,132](MOVING [BALL-part])

[132,132](FLIPPING [JOHN-part])

[132,132](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[132,132](ROTATING-CLOCKWISE [JOHN-part])

[132,132](ROTATING [JOHN-part])

[132,132](MOVING-ROOT [JOHN-part])

[132,132](TRANSLATING [(EYE JOHN)] PLACE-48)

[132,132](ROTATING-CLOCKWISE [(EYE JOHN)])

[132,132](ROTATING [(EYE JOHN)])

[132,132](MOVING-ROOT [(EYE JOHN)])

[132,132](MOVING [(EYE JOHN)])

[132,132](TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-47)

[132,132](ROTATING-COUNTER-CLOCKWISE [(LINE-SEGMENT3 BALL)])

[132,132](ROTATING [(LINE-SEGMENT3 BALL)])

[132,132](MOVING-ROOT [(LINE-SEGMENT3 BALL)])

[132,132](MOVING [(LINE-SEGMENT3 BALL)])

[132,132](FLIPPING [BALL-part JOHN-part])

[132,132](ROTATING-COUNTER-CLOCKWISE [BALL-part JOHN-part])

[132,132](ROTATING-CLOCKWISE [BALL-part JOHN-part])

[132,132](ROTATING [BALL-part JOHN-part])

[132,132](MOVING-ROOT [BALL-part JOHN-part])

[132,132](FLIPPING [BALL JOHN-part])

[132,132](ROTATING-COUNTER-CLOCKWISE [BALL JOHN-part])

[132,132](ROTATING-CLOCKWISE [BALL JOHN-part])

[132,132](ROTATING [BALL JOHN-part])

[132,132](MOVING-ROOT [BALL JOHN-part])

[133,133](PLACE [BALL-part] PLACE-52)

[133,133](PLACE [(EYE JOHN)] PLACE-51)

[133,133](PLACE [(LINE-SEGMENT3 BALL)] PLACE-50)

[134,134](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[134,134](ROTATING [JOHN-part])

[134,134](ROTATING-COUNTER-CLOCKWISE [BALL-part JOHN-part])

[134,134](ROTATING [BALL-part JOHN-part])

[134,134](ROTATING-COUNTER-CLOCKWISE [BALL JOHN-part])

[134,134](ROTATING [BALL JOHN-part])
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[134,147](TRANSLATING [BALL-part] PLACE-55)

[134,147](MOVING-ROOT [BALL-part])

[134,147](MOVING [BALL-part])

[134,147](MOVING-ROOT [JOHN-part])

[134,147](TRANSLATING [(EYE JOHN)] PLACE-54)

[134,147](MOVING-ROOT [(EYE JOHN)])

[134,147](MOVING [(EYE JOHN)])

[134,147](TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-53)

[134,147](MOVING-ROOT [(LINE-SEGMENT3 BALL)])

[134,147](MOVING [(LINE-SEGMENT3 BALL)])

[134,147](MOVING-ROOT [BALL-part JOHN-part])

[134,147](MOVING-ROOT [BALL JOHN-part])

[148,149](PLACE [BALL-part] PLACE-58)

[148,149](PLACE [(EYE JOHN)] PLACE-57)

[148,149](PLACE [(LINE-SEGMENT3 BALL)] PLACE-56)

[150,150](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[150,150](ROTATING [JOHN-part])

[150,150](ROTATING-COUNTER-CLOCKWISE [BALL-part JOHN-part])

[150,150](ROTATING [BALL-part JOHN-part])

[150,150](ROTATING-COUNTER-CLOCKWISE [BALL JOHN-part])

[150,150](ROTATING [BALL JOHN-part])

[150,163](TRANSLATING [BALL-part] PLACE-61)

[150,163](MOVING-ROOT [BALL-part])

[150,163](MOVING [BALL-part])

[150,163](MOVING-ROOT [JOHN-part])

[150,163](TRANSLATING [(EYE JOHN)] PLACE-60)

[150,163](MOVING-ROOT [(EYE JOHN)])

[150,163](MOVING [(EYE JOHN)])

[150,163](TRANSLATING [(LINE-SEGMENT3 BALL)] PLACE-59)

[150,163](MOVING-ROOT [(LINE-SEGMENT3 BALL)])

[150,163](MOVING [(LINE-SEGMENT3 BALL)])

[150,163](MOVING-ROOT [BALL-part JOHN-part])

[150,163](MOVING-ROOT [BALL JOHN-part])

[164,165](PLACE [BALL-part] PLACE-64)

[164,165](PLACE [(EYE JOHN)] PLACE-63)

[164,165](PLACE [(LINE-SEGMENT3 BALL)] PLACE-62)

[166,166](ROTATING-COUNTER-CLOCKWISE [JOHN-part])

[166,166](ROTATING [JOHN-part])

[166,166](ROTATING-COUNTER-CLOCKWISE [BALL-part JOHN-part])

[166,166](ROTATING [BALL-part JOHN-part])

[166,166](ROTATING-COUNTER-CLOCKWISE [BALL JOHN-part])

[166,166](ROTATING [BALL JOHN-part])
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