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Abstract

Billions of dollars 
ow through the world's �nancial markets every day, and market

participants are understandably eager to accurately price �nancial instruments and

understand relationships involving them. Nonlinear multivariate statistical modeling

on fast computers o�ers the potential to capture more of the underlying dynamics

of these high dimensional, noisy systems than traditional models while at the same

time making fewer restrictive assumptions about them. For this style of exploratory,

nonparametric modeling to be useful, however, care must be taken in fundamental

estimation and con�dence issues, especially concerns deriving from limited sample

sizes. This thesis presents a collection of practical techniques to address these issues

for a modeling methodology, Radial Basis Function networks. These techniques in-

clude e�cient methods for parameter estimation and pruning, including a heuristic

for setting good initial parameter values, a pointwise prediction error estimator for

kernel type RBF networks, and a methodology for controlling the \data mining" prob-

lem. Novel applications in the �nance area are described, including the derivation

of customized, adaptive option pricing formulas that can distill information about

the associated time varying systems that may not be readily captured by theoretical

models. A second application area is stock price prediction, where models are found

with lower out-of-sample error and better \paper trading" pro�tability than that of

simpler linear and/or univariate models, although their true economic signi�cance

for real life trading is questionable. Finally, a case is made for fast computer imple-

mentations of these ideas to facilitate the necessary model searching and con�dence

testing, and related implementation issues are discussed.

Thesis Committee: Prof. Tomaso Poggio Prof. Andrew Lo

Prof. Patrick Winston Prof. Tomas Lozano-Perez
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Chapter 1

Introduction

Financial markets are incredible systems. Thousands of instruments are traded by

millions of participants every day, around the world, in a never ending battle to make

money. Is it possible to capture the workings of the the markets in a mathematical

model? Is it possible to �nd neglected areas of the markets where a careful application

of statistics might reveal persistent systematic price discrepancies? Is it possible to

predict the stock market?

???IBM                   96.5
DJIA              3412.42
S&P500           446.23
3 mo T−bills         2.92%
$/DM                  0.6028

IBM                   52.75
DJIA              3429.78
S&P500           451.07
3 mo T−bills         2.95%
$/DM                   0.6050

Public Information Digest

TODAY

Public Information Digest

TOMORROW

Figure 1-1: Can historical market data be used to predict tomorrow's stock market

prices?
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16 CHAPTER 1. INTRODUCTION

This thesis is an attempt to apply a new nonlinear statistical modeling technique,

Radial Basis Functions, to the rather bold task of stock market prediction and anal-

ysis. The success of our approach will ultimately depend on whether or not there are

signi�cant nonlinear relationships in the markets that can be discovered empirically.

However, before we even get to that stage, it will be imperative for us to develop new

algorithms for selecting, estimating, and diagnosing these models, and for harness-

ing powerful computers to assist in our search. This necessity is partly due to the

complex, noisy nature of stock market data we are modeling, and partly due to our

own ignorance about the type of relationships we are looking for. Regardless of our

success on the stock market prediction problem, these new algorithms promise to be

valuable tools for modeling many real world systems.

Before jumping in and exploring new technology for its own sake, though, lets

take a moment to see why our particular choice of technology may be a good one

for �nancial modeling problems in general, and stock market prediction problems

speci�cally.

1.1 Financial Modeling

Finance is the science of the relationship between business and money:

fi.nance \f*-'nan(t)s, 'fi--., fi--'\ n [ME, payment, ransom, fr. MF,

fr. finer to end, pay, fr. fin end m more at FINE pl 1: money or

other liquid resources esp. of a government or business 2: the

system that includes the circulation of money, the granting of

credit, the making of investments, and the provision of banking

facilities 3: the obtaining of funds or capital : FINANCING

Financial modeling, then, is the attempt to capture mechanisms and relationships

in �nance. What tools do we need to capture and understand the workings of the
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�nancial markets, the playing �eld for this game of money? A distinction frequently

made in �nancial analysis is between quantitative and fundamental or qualitative

methods.

Certainly numbers and quantitative analysis are invaluable for the accounting side

of the �nancial markets, to \keep score" of how participants are doing. But in the

last 30 years the �nancial world has embraced a decidedly quantitative orientation

for many parts of the decision making processes as well, widely adopting quantitative

theories such as modern portfolio theory, the Capital Asset Pricing Model, and option

pricing theory. Why have these techniques been so widely adopted?

Modern Portfolio Theory (MPT) developed from the work of Markowitz (1959)

on selecting a good mix of stocks to hold in a portfolio. Markowitz emphasized that

investors ought to maximize the expected returns of their investments for a given

level of risk. He proposed the variance of returns of a portfolio as the measure of

its risk, and covariance of a stock's return with respect to the portfolio as a measure

of how diversifying that stock would be for the given portfolio. His formulation led

to a solution of the portfolio selection problem in terms of a quadratic optimization

problem, yielding one of the �rst systematic approaches to the problem available to

investors, and consequently this approach is at the core of a large fraction of the

portfolio management systems today.

The Capital Asset Pricing Model (CAPM), due primarily to the work of William

Sharpe (1964), John Lintner (1965), and Jan Mossin (1966), is one of a number of

models that grew out of Modern Portfolio Theory. It further quanti�es the relation-

ship between risk and expected return of an asset by modeling the return of an asset

as a linear function of the return of the \market" as a whole. The strength of this

linear relationship, beta, is now a standard statistic reported for assets.

Seminal work in option pricing theory by Fischer Black and Myron Scholes (1973)

quanti�ed the relationship between a now standard �nancial instrument called an

\option" and the stock or other asset underlying it, based on assumptions about the
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statistical properties of the underlying asset. The understanding promoted by the

strong theoretical derivation and explicit assumptions of the Black-Scholes model and

its variants has fueled its wide acceptance and use in this rapidly growing segment

of the �nancial markets, and the theory has also found wide use in other areas of

�nance.

Although these theories have become widely accepted, it would be a mistake to

think that even the investment arena of �nance is driven entirely by quantitative anal-

ysis. On the contrary, many of investing's most successful players have adhered to a

\fundamental" approach involving careful hand-tailored qualitative assessments and

decisions (take for instance Peter Lynch (1989)). However, I believe that much more

�nancial analysis and decision making would be done quantitatively if it were possi-

ble to accurately and comprehensively quantify the relevant factors and interactions

between factors. Ever increasing amounts of raw data about the �nancial markets

and world economies are becoming available to facilitate this. The real limitation

here is our ability to create quantitative models that work and that we can believe.

1.2 Statistics / Time Series

Statistics is at the core of much of �nancial modeling. It is used to circumvent the

unfortunate fact that we don't know how to capture the complexity of the markets.

Financial markets involve thousands or millions of participants, whose rules and rea-

sons for doing things are hidden from us. Furthermore, the businesses implicit in the

securities traded in the markets are themselves another level of complexity we can't

hope to fully capture. Thus we must content ourselves with gross characterizations

of market forces, and attribute a large part of the events we see to non-deterministic

random \noise". In modern portfolio theory, for instance, we abandon hope of know-

ing the exact future course of security prices, and instead characterize the behavior

of their returns as following a normal distribution, where the interaction between se-
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curities is summarized by covariance. CAPM simpli�es this even further by asserting

that the interaction between securities can be captured by their relationship to one

variable, the \market". In general, many quantitative �nancial models involve char-

acterizing market forces as random variables with certain statistical distributions, and

many of the interactions between these variables are often assumed to be non-existent

or of a certain rigid form so that the analysis is tractable.

Time series are ordered sequences of numbers relating to some observed or mea-

sured entity, where the ordering of the sequence is typically done based on the time

of the observation or measurement. Typical examples in business and economics are

daily closing stock prices, weekly interest rates, and yearly earnings (see Figure 1-

2). Contrary to the ease with which we can come up with examples of time series

in �nance, however, there is a remarkable lack of the use of systematic time series

analysis techniques in �nance. For instance, very simple models (e.g. constant or

�rst order linear models) are sometimes used to predict future values of important

company attributes such as sales, but little use is made of higher order models. Why

is this?

A commonly held belief about �nancial markets is that they are e�cient, which

is often taken to mean that predictability cannot be pro�tably exploited in a trading

rule on the basis of publicly available information once the proper discounting for risk

is done (for instance see Jensen (1978)). A narrower statement of this basic belief

is the Random Walk Hypothesis, which proposes that the best prediction for future

values of a series is the last observed value. If these hypotheses are even close to being

true, it is easy to see that statistical modeling will not easily yield useful results.

Following the ideas of many researchers in the area, my hypothesis is that the

dynamical systems comprising the �nancial markets require more complex models

than have been tried previously. For instance, virtually all statistical modeling and

hypothesis testing in the �nancial markets has traditionally been done with linear

models (e.g. CAPM, APT). Partly this has been done for practicality; linear models
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Figure 1-2: Typical data used in this thesis: Japanese daily closing prices for a stock,

its industry sector, and a broad market index.
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have the best developed and understood techniques for speci�cation, estimation, and

testing. However, it is possible (or even likely) that many important relationships

in �nance are nonlinear, and that no simple transformation can be made to make

them linear over a large enough range to be interesting (Tong (1990) gives some

interesting arguments in this direction). Indeed, recent results in Tsay (1988) and

LeBaron (1990) indicate that simple nonlinear or \regime switching" models can be

e�ective for prediction.

Another possibility for capturing complexity may lie in estimating larger mod-

els. In the context of univariate models, this means using more lagged values of a

given time series in the model. If the underlying system we are looking for involves

data from multiple sources (or if there are multiple state variables for the system),

then multivariate models are a natural candidate for capturing the complexity of the

system. The problem with larger models, however, is that the potential for captur-

ing extra complexity does not come for free. Larger models mean more parameters,

which means either that we need more data to estimate the parameters, or we are less

certain in our estimates (and thus in the overall usefulness of the model). Since the

amount of data we can (or are willing to) use is often �xed, good statistical modeling

methodology often then amounts to a careful consideration of the interplay between

model complexity and reliability. These will be recurrent themes throughout this

work.

1.3 Learning Networks

Techniques for nonparametric nonlinear statistical modeling have proliferated over

the last 15 years. Projection pursuit regression, multilayer perceptrons (sometimes

called \backpropagation networks"1), and radial basis functions are three popular

1More accurately, the term \backpropagation" is now typically used to refer to the particular

gradient descent method of estimating parameters, while the term \multilayer perceptron" is used

to refer to the speci�c functional form described below.
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examples of these techniques. Although originally developed in di�erent contexts for

seemingly di�erent purposes, these techniques can all be viewed as nonparametric

approaches to the problem of nonlinear regression. Following Barron and Barron

(1988) we call this general class of methods learning networks, to emphasize this

unifying view and acknowledge their common history. We now review the de�nitions

and relevant properties of these networks.

1.3.1 Standard Formulations

In this section we show the standard formulations for the learning networks used

in this thesis. For ease of presentation we will assume the \multiple regression"

situation of mapping multiple input variables into a univariate output, although the

true multivariate situation is a straightforward extension in all cases. Given the well

known relation in statistical estimation theory between the size of models, number

of data points, and approximation error, we also focus on the number of parameters

implied by each model so that we can later make comparisons between them on a

roughly equal footing. Note however that the notion of counting free parameters is

a simplistic measure of the complexity of nonlinear models, and it may be possible

to be more accurate with other measures (e.g. the nonlinear generalizations of the

in
uence matrix in Wahba (1990)).

Radial Basis Functions

Radial Basis Functions (RBFs) were �rst used to solve interpolation problems - �tting

a curve exactly through a set of points (see Powell (1987) for a review). More recently

the RBF formulation has been extended by a variety of researchers to perform the

more general task of approximation (see Broomhead and Lowe (1988), Moody and

Darken (1989) and Poggio and Girosi (1990)). In particular, Poggio and Girosi (1990)

show how RBFs can be derived from classical regularization techniques for handling

ill-posed problems. A general formulation for Radial Basis Functions can be written
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as follows:

f(~x) =
kX

i=1

ci � hi(k~x� ~zik) + p(~x) (1:1)

where ~x is a vector of the d inputs x1 thru xd, the ~zi's are d-dimensional vector

prototypes or \centers", k � k is some vector norm, the ci's are coe�cients, the hi's

are scalar functions, and p() is a polynomial function. Note that this formulation

is more general than that used in many studies in that the ~zi's can vary, the vector

norm need not be Euclidean, k is typically less than the number of points in the data

set, and the basis functions hi can vary for each center2. In this work we take the

vector norm to be a weighted Euclidean norm de�ned by a d by d matrixW , and the

polynomial term will be taken to be just the linear and constant terms, thus resulting

in the following formulation:

f(~x) =
kX

i=1

ci � hi((~x� ~zi)
T �W T �W � (~x� ~zi)) +

dX
i=1

ci+k � xi + ck+d+1 (1:2)

Intuitively, an RBF network \operates" in the following manner. First, weighted

distances are computed between the input ~x and a set of \prototypes" ~z. These

scalar distances are then transformed thru a set of nonlinear basis functions h, and

these outputs are summed up in a linear combination with the original inputs and

a constant. Common choices for the basis functions h(x) are gaussians (i.e. e�x=�
2

)

and multiquadrics (i.e
p
x+ �2), although Micchelli (1986) showed that a large class

of functions are appropriate.

Note that networks of this type can generate any real valued output. In appli-

cations were we have a priori knowledge of the range of the desired outputs, it can

be advantageous to apply some nonlinear transfer function to the outputs to re
ect

that knowledge. This will be the case in this paper, for instance, and thus some of

2This formulation has been called \hyper basis functions" by Poggio and Girosi (1990). In this

thesis we use the term \radial basis functions" to encompass both the interpolation scheme used by

Powell and the subsequent generalizations of that basic method.
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the RBF networks used here will be augmented with an \output sigmoid". Thus the

new network will be of the form g(f(~x)) for f(~x) as above and g(z) = 1=(1 + e�z).

Given a particular modeling problem (i.e. a set of inputs and desired outputs),

model �tting amounts to estimating the parameters of the RBF approximation: the

d � (d+1)=2 unique entries of the symmetric weight matrixW TW , the d � k elements

of the centers ~z, and the d+k+1 coe�cients c. Thus the total number of parameters

that need to be estimated for d-dimensional inputs and k centers is then d�k+d2=2+

3 � d=2 + k + 1.

Multilayer Perceptrons

Multilayer perceptrons (MLPs) are arguably the most popular type of \neural net-

work", the general category of methods that derive their original inspiration from

simple models of biological nervous systems. They were developed independently by

Parker (1985) and Rumelhart et.al. (1986) and popularized by the latter. Following

the notation of Section 1.3.1, a general formulation for MLPs with one output can be

written as follows:

f(~x) = h

0@ kX
i=1

c0
i
� h(

dX
j=1

ci;j � xj + ci;d+1) + c0
k+1

1A (1:3)

where h is typically taken to be a smooth, monotonically increasing function such

as the \sigmoid" function 1=(1 + e�x), the c and c0's are coe�cients, and k is the

number of \hidden units". This is typically referred to as an MLP with \one hidden

layer" because the basic \sigmoid of a dot product" equation is nested once, but the

nesting be repeated more times. Note that unlike the RBF formulation, the nonlinear

function h in the MLP formulation is typically �xed for the entire network. Fitting

MLP models given the inputs ~x and desired univariate outputs f(~x) then amounts to

solving for (d+1)�k parameters c and (k+1) parameters c0, for a total of (d+2)�k+1

parameters.
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Projection Pursuit Regression

Projection pursuit methods are a class of methods that emerged from the statistics

community for analyzing high dimensional data sets by looking at low dimensional

projections of it. Friedman and Stuetzle (1991) developed a version particularly for

the nonlinear regression problem called projection pursuit regression (PPR). Similar

to MLPs, PPR solutions are composed of projections of the data (i.e. dot products

of the data with estimated coe�cients), but unlike MLPs they also estimate the

nonlinear combining functions from the data. The formulation for PPR then can be

written exactly as in Equation (1.3) if we note that the inner h are di�erent for each i

and are computed from the data (typically with a smoother), and the outer h is taken

to be the identity function. In terms of the number of parameters PPR estimates,

note that the use of a smoother for estimating the inner h's complicates matters. Our

simplistic approach is to count each use of the smoother as estimating one parameter

(i.e. the bandwidth of the smoother), although as mentioned in Section 1.3.1 it may

be possible to be more exact. Thus the total number of parameters is d�k projection

indices, k linear coe�cients and k smoothing bandwidths, for a total of (d + 2) � k
parameters.

1.3.2 Network Properties

Although the various learning network techniques originated from a variety of back-

grounds and generally are not completely understood, some common properties are

worth noting.

Approximation

All of the above learning networks have been shown to possess some form of a universal

approximation property. For instance, Huber (1985) and Jones (1987) have shown

that with su�cientlymany terms, any square integrable function can be approximated
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arbitrarily well by PPR. Cybenko (1988) and Hornik (1989) have shown that one

hidden layer MLPs can represent to arbitrary precision most classes of linear and

nonlinear continuous functions with bounded inputs and outputs. Finally, Poggio

and Girosi (1990) show that RBFs can approximate arbitrarily well any continuous

function on a compact domain. In a related vein, Poggio and Girosi also show that

RBFs have the best approximation property - i.e. there is always a choice for the

parameters that is better than any other possible choice - a property that is not

shared by multilayer perceptrons.

Error Convergence

The universal approximation results, however, say nothing about how easy it is to

�nd those good approximations, or how e�cient they are. In particular, does the

number of data points we will need to estimate the parameters of a network grow

exponentially with its size (the so-called \curse of dimensionality")? Recent results

show that this is not necessarily true if we are willing to restrict the complexity of

the function we want to model. For instance Barron (1991) recently derived bounds

on the rate of convergence of the approximation error in MLPs based on the number

of examples given assumptions about the smoothness of the function being approxi-

mated. Chen (1991) has shown similar results for PPR. Girosi and Anzellotti (1992)

derived bounds on convergence in RBFs using somewhat more natural assumptions

about the smoothness of the function being approximated. Niyogi and Girosi (1993)

subsequently extended this result for the estimation problem and derived a bound

on the \generalization error" of RBFs, i.e. the error an RBF network will make on

unseen data.

The importance and centrality of generalization error bounds to the process of data

driven modeling is worth noting. In particular, these bounds show that for a �xed

number of data points, the generalization error that we can expect from a network

�rst decreases as the network complexity (i.e. number of parameters) increases, then
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after a certain point the error increases (see Figure 1-3). For many of the �nancial

modeling problems considered in this thesis the data set size is to some extent �xed,

and thus these results indicate that there will be an optimal number of parameters

to use for that size of data set.

Figure 1-3: Generalization error E(N;n) for a gaussian RBF network as a function

of the number of data points N and the number of network parameters n (reprinted

with permission from Niyogi and Girosi (1993)).

Other interesting estimation properties have been investigated for PPR in partic-

ular. Diaconis and Shahshahani (1984) studied necessary and su�cient conditions for
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functions to be represented exactly using PPR. Donoho and Johnstone (1989) demon-

strated the duality between PPR and kernel regression in two dimensions, and showed

that PPR is more parsimonious for modeling functions with angular smoothness.

Parameter Estimation Methods

In our treatment above we have focused on the representation used by each method,

but of course a critical concern is how to actually estimate the parameters of the

models. To some extent these issues can be divorced from one another, and in fact

there is a large body of literature concerned with applying various estimation schemes

to various networks. Generally this work shows that the speed and accuracy of the

estimation process depends on what kind of derivative information is used, whether

all parameters are estimated simultaneously or incrementally, and whether all the

data is used at once in a \batch" mode or more incrementally in an \online" mode.

In Chapter 2 we will more fully explore estimation techniques for RBF networks, the

central method in this thesis. However, a rigorous comparison of methods is not the

primary goal of this work; rather it is to see if any method can yield useful results. As

such we have adopted the most common estimation schemes for our use of the other

types of learning networks (esp. in Chapter 3). In particular we adopt Levenberg-

Marquardt for batch mode estimation of the RBF networks, gradient descent (with

momentum) for online mode estimation of the MLP networks, and the Friedman and

Stuetzle algorithm for PPR (which uses a Newton method to compute the projection

directions and the \supersmoother" for �nding the nonlinear functions h).

Equivalence of Di�erent Learning Networks

There is another reason why we choose not to delve too deeply into the merits of par-

ticular learning networks over others; recent theoretical developments suggest that

there are signi�cant connections between many of these networks. Maruyama, Girosi

and Poggio (1991), for instance, showed an equivalence between MLP networks with
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normalized inputs and RBF networks. Subsequently, Girosi, Jones and Poggio (1993)

showed that a wide class of approximation schemes could be derived from regular-

ization theory, including RBF networks and some forms of PPR and MLP networks.

Nonetheless we expect each formulation to be more e�cient at approximating some

functions than others, and as argued by Ng and Lippman (1991), we should be mindful

that the practical di�erences in using each method (e.g. in running time or memory

used) may be a more di�erentiating factor than model accuracy.

1.4 A State Space / RBF Approach

In this section we outline our strategy for mapping time series prediction problems

investigated in this thesis onto the learning networks introduced in the previous sec-

tion. We can classify the general techniques for time series analysis and prediction

into two categories. (1) In the case that a lot of information about the underlying

model of a time series is known (such as whether it is linear, quadratic, periodic, etc.),

the main task left is then to estimate a few parameters of the model to �t the obser-

vation data. Su�cient observations can make this kind of model quite accurate and

powerful. Unfortunately, for many problems in �nance and economics the underlying

models are often unknown or ill-speci�ed. (2) At the other extreme, the only thing

available is a set of observations. For such problems, people often assume that the

underlying model has some \state variables," which determine what the values of the

time series should be.

Formally, we de�ne a general state space model as follows:

Let ::::::xt�j; :::; xt�1; xt; xt+1; :::::: be a time series, we assume:

xt+1 = f(y1
t+1; :::; y

i

t+1; :::; y
d

t+1) +Nt+1

where Nt+1 represents random noise at time t+1 and y1
t+1; :::; y

d

t+1 are state variables,

and
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yi
t+1 = gi(y

1
t
; :::; yk

t
; :::; yd

t
; xt; xt�1:::); i = 1; 2; :::; d

f and gi's are some functions. Note that x and y can be scalar quantities for univari-

ate models, but they could also be vector valued for the more general multivariate

setting. This formulation is a generalization of that given in Chat�eld (1989) to

approximate nonlinear models. The motivation of using state variables is that they

often correspond to certain features or properties of the time series and can help us

understand and characterize the series. They can also help to simplify the compu-

tations for analysis and prediction (see Figure 1-4). In our work, f is some general

tool for function approximation (model �tting), and gi's transform the original \raw

data" to a new representation (model building).
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Figure 1-4: A time plot (a) of the logistic function xt+1 = 3:9 �xt � (1�xt) is di�cult
to decipher, but a state space plot (b) clearly shows the underlying model. Following

the notation of the text, this simple example uses one state variable y1
t+1 = xt and

can then be written as xt = 3:9 � y1
t
� (1 � y1

t
).
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1.4.1 Model Fitting

Given this formulation for our models, it is now up to us to specify algorithms for

how to choose the functions f and the gi's given a particular data set of observations.

The purpose of our formulation was to pick a nonlinear representation at least for

f , since otherwise the formulation would degenerate into classical linear ARMA time

series models. In this thesis we will primarily choose RBF networks for model �tting

because of our experience with these networks, although all of the learning networks

from Section 1.3 are reasonable choices.

A central problem that arises from the large size of the RBF networks we propose

to use is that of over�tting the data, that is, having so many degrees of freedom in the

model that some of them capture meaningless features of the noise in the data. One

possible way of reducing the number of parameters is to only use a diagonal matrix

for W , which could su�ce if the di�erent inputs are in roughly commensurate units.

Another possibility is to keep the centers ~z �xed at a subset of the inputs, which can

work nicely when the problem is regular or there are many examples. Nonetheless,

as in all statistical modeling, the chances of our model �tting unseen data nicely

depends critically on maintaining a balance between the number of data points used

for estimation and the number of parameters estimated. Thus two major questions

addressed in Chapter 2 of this thesis are how to estimate these parameters e�ciently

and how to avoid unnecessary parameters.

Fast supercomputer implementations of these techniques will also prove useful in

this thesis. Partly this is because of our tendency to want to use as much data as

possible in �tting these relatively complex models, but it also will facilitate �tting the

multitude of models we will evaluate in both searching for the appropriate function

form for the models, and in testing their robustness via sample reuse strategies. For

these reasons, we have developed a general purpose RBF time series modeling program

on the Connection Machine supercomputer, which will be described in Chapter 6.
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1.4.2 Model Building

The use of \black box" techniques to discover structure in data sets is compelling,

since they relieve us of the need to hypothesize the exact functional form of the

structure. Indeed, it would be nice if we could simply give the computer our data set

and have it report to us the \best" formula for describing the data. However, this is

naive for at least three reasons.

First, with a data set of any appreciable size (esp. with many di�erent variables)

the combinatorial number of models to consider would preclude any sort of exhaustive

search, even on today's fastest supercomputers. Unfortunately, in the general case

exhaustive search is required, since we cannot infer anything about the performance

of an untried model from the performance of related models without knowing the

relationship between the variables. For example, \all subsets" methods are often

advocated for modeling linear systems since incremental or \stepwise" methods are

not guaranteed to �nd the best model (see Cryer and Miller (1991)).

Second, �nding good representations for the data is a crucial and labor intensive

ingredient in �nding good �tting models. This corresponds to choosing the gi func-

tions in our state space formulation above. By representation we refer to all of the

possible things we might do to massage the raw data into the form that is ultimately

used in model �tting, and includes issues such as which variables to use, how to sam-

ple the data, what (if any) simple transformations to perform on the data values, and

how to encode the resulting values. Inattention to these issues can deteriorate our

ability to �nd good models just as easily as a poor choice of model �tting technique.

For instance, scalar transformations of the input data are often necessary to express

inputs in commensurate units, satisfy distributional assumptions (e.g. normality),

achieve independence (e.g. �rst di�erencing serially dependent time series), or limit

the in
uence of \outliers". In general, a major lesson from Arti�cial Intelligence re-

search is that representation plays an important role in problem solving (for instance

see Winston (1984) or Brachman and Levesque (1985)). A good representation em-
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bodies our prior information about how to solve problems in a domain by making

useful information explicit and by stripping away obscuring clutter. Two di�erent

representations can be equivalent in terms of expressive power (e.g. the class of func-

tions expressible in both representations is the same), but di�er dramatically in the

e�ciency or ease with which to solve problems.

Finally, the tools for creating nonlinear statistical models are much too immature

to consider completely automating them. Identi�cation and diagnostic tools are too

piecemeal to believe that they would catch all conceivable situations. Most �tting

methods are too sensitive to permit naive use. The often heard advice of statisticians

is relevant here: look at your data, check your assumptions, and know your methods.

So what tools do we have available for determining the representation we should

use? Certainly we should take advantage of the corresponding tools for linear mod-

eling, since our nonlinear models may in fact be no more than linear, or contain a

signi�cant linear component. Thus for instance we can use linear correlation mea-

sures for identifying related variables. Plotting data will also be a signi�cant tool

- the power of the human eye to detect subtle regularities should not be underesti-

mated. However, our main tool in �nding good representations will be the nonlinear

�tting method itself. The idea here is to compare two representations by trying the

�tting method on each, and making an \apples to apples" comparison of the resulting

performance.

1.4.3 Model Reliability

Our division of the overall modeling problem into model \building" and \�tting" is

admittedly somewhat arbitrary, and there are certainly dependencies between the two

activities. Ultimately the important thing is not exactly how we label the pieces of

the �nal result (nor even how we found them!), but rather how accurate the complete

model is at describing unseen data.

In this regard we will make heavy use of sample re-use techniques from statistics
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such as cross-validation (see Efron and Gong (1983)), which give better estimates of

the error we are likely to see on unseen data. But there is a problem with the way we

intend to use these techniques - they only provide unbiased error estimates on the �rst

attempt at modeling the data. For a variety of reasons we are repeatedly attempting to

�t the same set of data, and thus we run the risk of \data mining"; that is, �nding a

spurious relationship in the data simply from looking too hard. Because of the general

importance of this concern for anyone adopting an data driven approach to modeling,

we will spend some time reviewing it and o�er some suggestions for minimizing its

impact.

In addition to the question of our overall con�dence in a model, we will also

address the question of where our models are accurate. We do this by deriving a

pointwise variance estimate for RBF networks, that is, an expression for what the

variance is of each output of the model. In predictive systems this will allow us to

quote a range for the outputs, or potentially say \I don't know" because of the high

uncertainty of the model at that point. This could lead to higher �delity models in

regions of high data density by dropping constraints of obtaining a spatially uniform

�t. Finally, it may be a useful notion for systems that have time varying statistics

by providing an operational de�nition of a \dead model" - one that no longer makes

su�ciently focused predictions.

1.4.4 Tasks Besides Prediction

As hinted at above, this approach to �nancial modeling is broader than simply trying

to predict tomorrow's stock market average. We would like estimates of what mod-

eling error we are likely to see on future data, how certain we are of predictions, and

when are our models outliving their usefulness. In this spirit, what are the other tasks

from the �nance perspective that we might pro�tably explore with this approach?

First, given a system that predicts the price of some security, there are numerous

ways that those predictions can be used to implement a trading system. From a
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�nance perspective we don't care about the R2 or RMS error or some other statistical

modeling measure of a model's performance: we care about how much money the

system can make, or how reliably it can make money, thus we should measure our

success in those terms. Furthermore, optimizing some performance measure of the

trading system may imply the appropriateness of a di�erent error measure for the

modeling process (e.g. least absolute value instead of least squares).

Another issue we would like to explore concerns the non-stationary, time varying

nature of �nancial data. In a heuristic attempt to limit the e�ects of non-stationarity

we will be tempted to avoid use of data that is too old. To get enough data for

estimation, then, we will naturally try to exploit another dimension, such as looking

at cross-sectional models (i.e. models that relate di�erent securities to each other,

rather than just to themselves).

Finally, we propose the usefulness of applying this modeling technology to other

areas besides prediction. One example is deriving a monetary value of a source of

data based on the best available trading system which uses it. Another example is

�nding persistent discrepancies between market prices and accepted pricing theories

(e.g. for options).

1.5 Other Approaches

Nonlinear time series analysis is a relatively new area of investigation, and it has been

approached from a variety of backgrounds. The statistics community pioneered it in

the 1980's by proposing extensions to existing linear models (esp. the ARIMAmodels

of Box & Jenkins (1976)), for instance combining two or more linear models in a simple

nonlinear way (e.g. threshold autoregressive or TAR models of Tong and Lim (1980)).

For reviews of the numerous possibilities here see Priestley (1988), Tong (1990), or

Granger (1991). These approaches are pleasing because of the scrutiny given in

their development for the standard statistical considerations of model speci�cation,
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estimation, and diagnosis, but their generally parametric nature tends to require

signi�cant a priori knowledge of the form of relationship being modeled.

Independently in the late 1980's, the physics and dynamical systems community

has constructed nonlinear state space models, motivated by the phenomena of chaos.

Crutch�eld and MacNamara (1987) introduced a general method for estimating the

\equations of motion" (i.e. model of the time behavior) of a data set cast into the

state space formulation, which included a novel measure of the usefulness of the model

based on entropy. Farmer and Sidorowich (1989) make a case for breaking up the

input domain into neighborhoods and approximating the function locally using simple

techniques (e.g. linear or quadratic �tting). Note that the work by this community

addresses many interesting problems besides prediction, such as optimal sampling

strategies, identifying the dimensionality of the system, identifying characteristics of

the system (i.e. Lyapunov exponents) that determine how feasible it is to do long

term prediction, and testing if a data set is nonlinear.

Many of the attempts from the dynamical systems area used RBFs as the function

approximation method, although we note that these previous approaches restricted

the RBF formulation given here in some way. Broomhead and Lowe (1988) applied

RBFs to predicting the logistic map, and showed the usefulness of using fewer centers

than data points. Casdagli (1989) investigated how error scaled with number of exam-

ples for strict interpolation RBFs (i.e. data used as �xed centers). Jones et.al. (1990)

show how normalizing the basis functions and adapting the gradient uses the data

more e�ciently for predicting the logistic map and Mackey-Glass equation. Kadirka-

manathan et.al. (1991) give a method similar to RBFs where they incrementally add

basis functions to the approximation as dictated by the distribution of error.

Simultaneously related attempts were being made in the \neural network" com-

munity in the late 1980's, focusing more on practical applications and on the issue

of prediction accuracy relative to other methods. Lapedes and Farber (1987) ap-

plied multilayer perceptrons (MLP) to some of the same prediction problems popu-
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lar in the chaos community, the Logistic map and the Mackey-Glass equation, and

found them to be superior to the Linear Predictive method and the Gabor, Wiener

& Volterra polynomial method, and comparable to the local linear maps of Farmer

and Sidorowich. White (1988) used MLP to model univariate IBM stock returns,

but found no signi�cant out of sample performance. The problem of over�tting on

the training data was noted by White and many other authors, and this inspired the

wider use of sample reuse techniques from statistics, such as cross validation methods.

Utans and Moody (1991) clearly state the advantages of doing so, and also develop a

new estimator of out of sample prediction error which penalizes for \e�ective" number

of parameters of general nonlinear models. They also apply this measure using MLP

networks to the problem of predicting corporate bond ratings and show superior per-

formance over linear regression. Weigend (1991) developed a technique for penalizing

extra parameters in an MLP network and show how the resulting parsimonious net-

works outperform the corresponding TAR model. De Groot and W�urtz (1991) also

�nd evidence for the usefulness of MLP networks by comparing them with traditional

statistical models such as linear, TAR, and bilinear models on univariate prediction

problems. They also note the superiority of smarter parameter optimization meth-

ods than gradient descent, and note that the Levenberg-Marquardt method worked

best for their problems. Refenes (1992) proposed a method for incrementally adding

units to the MLP paradigm and showed how his method outperformed linear ARMA

models on predicting foreign exchange rates. Finally, a number of researchers have

tried other more or less vanilla applications of MLP networks to �nancial market

prediction problems, but often the writeups of this work are plagued by insu�cient

detail concerning critical aspects of their models (e.g. variable selection and prepro-

cessing) and/or the performance measures quoted are not su�ciently explained or

benchmarked (for example Kimoto et.al. (1990) or Wong and Tan (1992)).
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1.6 Major Contributions

This section brie
y summarizes the unique aspects and important contributions in

this thesis, which fall in three main areas. First, I have developed speci�c algorithms

and methodologies for the e�cient use of RBF networks for modeling noisy and high

dimensional systems. Novel aspects of this work include:

� Insights into how RBF's operate most e�ciently drawn from analogies to related

systems.

� Integration of state-of-the-art nonlinear estimation procedures and a general

parameter pruning method not widely known in the machine learning commu-

nity.

� An elliptical clustering heuristic for setting initial RBF parameter values.

� Derivation of a pointwise variance estimate for RBF predictions.

� Suggestions for managing the \data mining" problem, and recognition that it

is not completely solved by sample reuse techniques.

Second, I have demonstrated that the data driven, learning network approach is useful

for �nancial modeling. I have:

� Demonstrated superior performance of multivariate, nonlinear models of the

Japanese stock market.

� Developed customized, adaptive option pricing formulas that may be superior

to theoretically derived textbook formula.

� Showed novel applications of modeling technology besides prediction, by com-

puting a monetary value for market data based on its arrival time.

Finally, I have o�ered some reasons for the usefulness of a fast computer implemen-

tation of these techniques to facilitate the use of large, real world data sets and
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repeated modeling attempts, and I have implemented a general purpose RBF code

on the Connection Machine parallel computer.

1.7 Outline

The rest of this thesis is organized as follows. Chapter 2 discusses how to e�ciently

estimate RBF networks and raises some parallels between RBFs and other systems.

These techniques and heuristics are put to use in Chapter 3, where we develop a non-

parametric method for estimating the pricing formula of derivative �nancial assets

and demonstrate its usefulness on synthetic and real examples. Chapter 4 addresses

the critical question for data driven statistical modeling; how con�dent can we be

that the individual estimates and the overall model are valuable for unseen data?

Chapter 5 provides more examples of applying this style of modeling to �nancial

time series prediction, and �nds that although interesting models can be found, their

economic relevance is questionable. Chapter 6 presents some of the implementation

issues encountered in this work, and outlines a parallel implementation on the Con-

nection Machine system. Finally, Chapter 7 brie
y discusses the results of this thesis

and lists some ideas for future work in this area.
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Chapter 2

Radial Basis Function Parameter

Estimation

In Chapter 1 we introduced the equations de�ning Radial Basis Functions, but said

little about how to �nd good values for the unknown parameters in those equations.

Results about universal approximation and error convergence tell us about the exis-

tence and e�ciency of our particular representation, but they tell us nothing about

how to set the coe�cients c, centers ~z, and norm weights W from Equation 1.2. Be-

fore we can successfully apply these networks to nontrivial problems, therefore, we

must �nd e�cient ways of estimating these parameters, and that will be the subject

of this chapter.

General methods for estimating nonlinear parameters have been around for many

years - the relatively sophisticated Levenberg-Marquardt method outlined in Sec-

tion 2.1, for instance, dates from 1963. We begin this chapter with a brief look at

applying these methods to estimating Radial Basis Function parameters. But in our

quest to push the limits of these systems to complex, high dimensional problems, we

will �nd that used naively, general methods quickly fall prey to the ubiquitous prob-

lem in non-convex optimization problems - local minima (see Figure 2-1). Stochastic

methods can help in terms of o�ering the system a chance of getting out of local

41
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minima, but they are often too slow to be palatable.
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Figure 2-1: Local minima in radial basis function parameter estimation. This plot

shows the sum squared error of an option pricing model from Chapter 3 as two center

parameters are varied.

Two approaches to solving this problem are investigated in this chapter. The

�rst approach is to take advantage of the speci�c form of RBF approximations to

either help constrain the estimation process, or to provide good initial values for the

parameters, so that subsequent use of a general estimation method is more likely to

produce acceptable results. The second approach is to �rst estimate a simple model,

and then use those estimates as initial values for successively more complex models.

Together these approaches will greatly increase the speed and quality of our overall

estimation process.
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2.1 General Methods

We begin by applying some standard methods to our problem. Given a function

f(x;a) which depends nonlinearly on an p vector of parameters a as well as the

inputs x, how can we solve for a? The standard approach is to de�ne a \cost" or

\merit" function �2 which when evaluated over the available data takes on small

values for good choices of the parameters a. A pervasive choice for �2 is

�2(a) =
nX
i=1

(yi � f(xi;a))
2 (2:1)

where f(xi; yi) : i = 1; ng are the example input/output pairs1. Since we are assuming

that f depends nonlinearly on a, minimizing �2 in general cannot be done directly,

and iterative methods must be used. In this thesis we discuss two such methods:

a second order method, commonly referred to as the Levenberg-Marquardt method,

which attempts to follow the contours of the �2 surface in parameter space; and a

simple stochastic method which o�ers the prospect of jumping out of (or through!)

local minima by taking random steps in parameter space.

2.1.1 Levenberg-Marquardt

A simple approach to minimizing the merit function �2 is to use information about the

gradient of the function to step along the surface of the function \downhill" towards

a minimum, i.e. update the parameters a at each iteration using the rule

�a = ��r�2(a) (2:2)

1This choice of �2 is often motivated by assuming independent and normally distributed measure-

ment errors with constant variance, in which case minimizing �2 is a maximum likelihood estimator,

but in fact it is a reasonable choice even if those assumptions are not true.
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where the gradient r�2(a) is composed of the p �rst derivatives ��2=�ak of �2 and

� is a small positive constant. This for instance is one of the estimation strategies

proposed in Poggio and Girosi (1990) for radial basis functions.

The problem with the gradient descent approach is in choosing �: we'd like it to

be small, so that we stay on the �2 surface and thus ensure we make progress moving

downhill, but we'd also like it to be big so that we converge to the solution quickly.

Solutions to this dilemma include varying � in response to how well previous steps

worked, or iteratively �nding the minimum in the direction of the gradient (i.e. \line

minimization").

The Levenberg-Marquardt method (see Marquardt (1963)) takes a di�erent ap-

proach, by recognizing that the curvature of the function gives us some information

about how far to move along the slope of the function. It approximates the �2 function

with a second order Taylor series expansion around the current point a0:

�2(a) � �2(a0) +r�2(a0)
T � a+ 1

2
aT �H � a (2:3)

where H is the Hessian matrix evaluated at a0, i.e.

[H]kl � �2�2

�ak�al

�����
a0

(2:4)

Since the approximating function is quadratic its minimum can easily be moved to

using step size

�a = �H�1 � r�2(a0) (2:5)

However, this approximation will not always be a good one (especially early in the

estimation process), and thus the Levenberg-Marquardt method allows the user to

adopt any combination of the simple gradient descent rule and the inverse Hessian

rule by multiplying the diagonal ofH with a constant � (i.e. H0

kk
�Hkk(1+�)). Thus

a typical iterative strategy is to use more of a gradient descent step by increasing �
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when the previous �a doesn't work (i.e. increases �2), and use more of an inverse

Hessian step by decreasing � when the previous �a does work (i.e. decreases �2).

Some comments about using the Hessian for RBF estimation are in order. First,

note that since the function f inside of �2 is an RBF model calculating the Hessian

can be done analytically, although following Press et.al. (1988) we drop the second

derivatives of f in evaluating H to minimize the e�ects of outliers on the quadratic

approximation. Second, the large number of parameters in RBF models is problem-

atic; the added cost of assembling and inverting the Hessian may not be worth the

speedup in convergence gained for large models. In fact even gradient descent may

be unsatisfactory for very non-smooth cost functions; we will pursue this thought in

the next section.

Perhaps a more immediate problem is that the Hessian matrix is likely to be ill-

conditioned for large models, causing numerical problems for the inversion procedure

despite the tendency of the Levenberg-Marquardt method to avoid these problems by

increasing � and making the Hessian diagonally dominant. This problem is especially

severe early in the estimation process when we are far from a minimum and there are

many con
icting ways the parameters could be improved. We avoid this problem by

using a Singular Value Decomposition for inverting H0, and zeroing singular values

less than 10�6 times the largest value.

On the other hand, the inverse Hessian provides valuable information about the

accuracy of parameter estimates, and can be useful for pruning unnecessary param-

eters from our model. If the quadratic approximation made above is reasonably

accurate and the residuals from our model are normally distributed, 2H�1 is an esti-

mate of the covariance matrix of the standard errors in the �tted parameters a (see

Press et.al. (1988)), thus a t-test on ak=(2
q
[H]kk) can be used to determine if the

k-th parameter should be removed from the model. Even if the residuals are not

normally distributed, the above test may be a reasonable way to identify unnecessary

parameters. Hassibi and Stork (1992) use this approach for multilayer perceptron
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networks, and give some evidence that it is superior to schemes that assume diagonal

dominance of the Hessian.

However, we would like to point out the advantage of looking at eliminating multi-

ple parameters simultaneously. In RBF networks, for instance, it makes little sense to

talk about eliminating just the scale parameter � from one basis function. Similarly,

why should we eliminate the coe�cient c connecting a basis function to the output

without eliminating all of the parameters of that basis function? Instead it makes

sense to consider the change in our cost function that would occur if we eliminated

an entire basis function at once. If the above quadratic approximation holds and we

are at the minimum, the increase in �2 for setting q parameters to zero is

��2 =
1

2
aT �PT �

h
P �H�1 �PT

i
�1 �P � a (2:6)

where P is a q � p projection matrix which selects the q dimensions of interest from

�a and H�1. If our model residuals are normally distributed, this quantity follows

a �2 distribution with q degrees of freedom and we have an exact con�dence test.

Note that commonly we will be uncertain both about the normality assumption and

the accuracy of the quadratic approximation, and thus we typically must take this

statistic with a grain of salt, especially if we attempt to test a con�dence region that

is large with respect to the nonlinear structure in the �2 surface.

As a simple example of the above pruning methods, we can model a linear equation

with a RBF network and see if the above diagnostics tell us to drop the nonlinear

unit. To check this we �t the equation y = 2x1 � 3x2 + 5 + �, where x1 and x2 are

evenly spaced along [-50,50] and � � N(0; 0:1) is independent gaussian noise, and we

used an RBF model with one gaussian basis function2. The results in Table 2.1 show

that the above tests correctly reject the single nonlinear basis function parameters,

2Note that because of the degeneracy of this simple example, the input weights W and the center

~z were held �xed to prevent complete dependence between the parameters.
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Parameter Value �2
1 p-value

c1 0.0004276 -1.836e-07 0.9997

c2 2 -1.298e+04 0.0000

c3 -3 -12.5 0.0004

c4 5 6.467e+08 0.0000

� 0.6408 -0.4107 0.5216

Table 2.1: Example of pruning RBF parameters using the inverse Hessian (see text for

details). P-value given is probability that the con�dence region includes zero, which

is signi�cant for the scale parameter � and the linear coe�cient c1 of the gaussian

unit. The joint test for these parameters yields a �2
2 statistic of 0.4106 with a p-value

of 0.8144. Thus both tests correctly indicate that we should drop the nonlinear unit.

both individually and jointly.

2.1.2 Random Step

Unfortunately if we are modeling complex nonlinear functions, our cost function �2

tends to be quite rough and plagued by local minima, and following the gradient

will not necessarily lead to good solutions. Stochastic optimization methods attempt

to get around this problem by using randomness to allow the evolving parameter

estimates to move out of (or through!) local minima. Caprile and Girosi (1990)

propose a very simple stochastic method that they found useful for estimating RBF

parameters. The basic loop of their algorithm looks like this:

Randomly draw �a uniformly from �! to !

if (�2(a+ �a) < �2(a)) then

a a + �a

!  � � ! (for constant �, � > 1)

else

!  � � ! (for constant �, 0 < � < 1)

if (! < !min) then !  !0
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The basic idea is that random changes to a subset of the parameters in a are tried

out and accepted if they lower the value of the cost function �2. This means that

no attempt is made to stay on the surface of the �2 function, and in fact even from

a local minima a lucky choice of �a could send the estimation process \through the

mountains" into a lower cost \valley". The idea behind this adaptive step size !

is presumably to accelerate the estimation process in regions where good steps are

abundant. Because a sequence of unlucky changes can make the range ! arbitrarily

small, a threshold !min is typically used to reset the range to its starting value !0.

In using this \random step" algorithm for estimating real problems, however, we

�nd that the probability of accepting �a drops o� quickly as the estimation process

proceeds. Given that the primary attraction of the random step method is its sim-

plicity, we o�er a further simpli�cation. If the probability of accepting �a is low, we

are e�ectively drawing a random number from a sum of uniform distributions. Since

parameters are typically chosen so that the maximum number of allowed consecutive

failures (i.e. log�(!0=!min)) is large, this sum approximates a normal distribution.

Since the variance of each uniform distribution is !2=3 and they are all independent, it

is easy to prove that the variance of the normal distribution approaches !2
0=(3(1��2)).

Thus a reasonable modi�cation to the random step algorithm is simply draw from

a �xed normal distribution, requiring the choice of only one scale parameter for the

noise.

As a simple test of the e�ectiveness of drawing from a normal distribution, we

minimized the function

f(x) =

8><>: sin(x)� 0:10101x if x < 99

0 if x >= 99
(2:7)

using both the variable uniform distribution and the �xed normal distribution. This

function has a global minimum of f(99) � �11, although a series of local minima

separate it from our starting condition of x0 = 0. For this test we somewhat arbitrarily
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chose � = 1:5; � = 0:75; !0 = 4, and !min = 0:0001, and ran each trial for 1000

iterations. In 8192 independent trials of each method, both found the minimum of

-11 on at least one trial, but interestingly the average minimum across all trials was

considerably better when using the �xed normal distribution (-10.9 vs -1.4).

2.2 RBF Speci�c Methods

In Section 2.1 we investigated general methods for estimating nonlinear parameters,

without attempting to take advantage of the particular structure of RBF models. In

this section we would like to see to what extent we can use the speci�c structure

of RBF models to help ease the complexity of the general problem. We have found

useful ideas in this vein from two di�erent sources of inspiration: �rst, by making

analogies between RBFs and other traditional statistical systems; and second, by

adopting approaches that avoid numerical instabilities. The common goal of these

ideas is to come up with extra constraints or better initial parameter values so that

the methods from Section 2.1 converge quickly to good minima.

2.2.1 Relation to General Linear Least Squares

If considered in isolation, estimation of the coe�cients ci from Equation (1.1) is

exactly analogous to the statistical method commonly known as general linear least

squares, and the usual least squares estimator for the (k+d+1) vector of coe�cients

ĉ = (XTX)�1XTy (2:8)
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can be used on the [n� (k + d+ 1)] data matrix X of transformed inputs where

X =

2666666664

h1(kx1 � z1k) : : : hk(kx1 � zkk) x11 : : : xd1 1

h1(kx2 � z1k) : : : hk(kx2 � zkk) x12 : : : xd2 1
...

...
...

...
...

h1(kxn � z1k) : : : hk(kxn � zkk) x1
n

: : : xd
n

1

3777777775

and x
j

i
denotes the j-th component of observation i. Inverting XTX, however, is

unusually subject to numerical problems because of the likelihood in our high dimen-

sional nonlinear setting of the matrix being ill-conditioned. Dyn and Levin (1983)

proposed a solution to this problem in the context of vanilla interpolation RBFs that

preconditioned the X matrix thru the use of an iterated Laplacian operator, which

tends to make the matrix diagonally dominant and thus more easily inverted. We

instead adopt the solution of using a robust inversion routine; in particular, follow-

ing Press et.al. (1988) we use the Singular Value Decomposition method for solving

(2.8), zeroing singular values that are six orders of magnitude smaller than the largest

singular value. As noted in further discussion of this issue in Chapter 6, however,

numerical stability alone does not guarantee good, meaningful solutions to the overall

problem. We also note that depending on the cost function �2 of interest, other linear

solvers (e.g. least median or least L1 regression) may be more appropriate than least

squares.

2.2.2 Relation to Kernel Regression

There is an obvious similarity between RBF models and the class of models derived

from a standard statistical method known as kernel regression. The goal in kernel

regression is to come up with nonparametric models of � in the system

yj = �(xj) + �j; j = 1; :::; n (2:9)



2.2. RBF SPECIFIC METHODS 51

where we are given n observations f(xj; yj) : j = 1; :::; ng, and the �j are zero mean,

uncorrelated random variables. For ease of exposition we will restrict ourselves to

scalar valued xj here, although all of the results discussed have straightforward ex-

tensions to the vector case. The general form of a kernel estimator is a weighted

average of the example outputs yj near the input x, i.e.

��(x) =
nX

j=1

yjK�(x� xj) (2:10)

where K�(u) is the kernel function parameterized by a bandwidth or smoothing pa-

rameter �. Typically assumptions are made about the function K, for instance that

its integral is 1 and it is symmetric about the origin.

We note that Equation (2.10) can be seen as a restrictive form of the general

RBF Equation (1.1). This is obviously the case for a carefully chosen set of RBF

parameters; in particular, Equation (1.1) reduces to Equation (2.10) if we use the

observed outputs y as the coe�cients c, all n observations as centers, the kernel

function K for each basis function hi, the smoothing parameter � for each basis

function scale parameter �, the simple Euclidean norm for the distance measure (i.e.

W = I), and if we drop the polynomial term p(~Y ).

However, there is a broader connection between RBFs and kernel regression in

the context of estimation than the above correspondence of variables implies. To see

this, consider the solving the linear portion of the RBF equations once we have �xed

the parameters \inside" the basis functions. At this point Equation 1.1 is just

y = ~c � ~h(~x;W;~z; ~�) (2:11)

which must be satis�ed at every data point (~x; y). If we chose the typical least squares

solution to this linear problem this becomes

y = ~y(HTH)�1HT � ~h(~x;W;~z; ~�) (2:12)
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where ~y is the vector of all outputs in the data set, and H is the matrix of all basis

function outputs for the data set. Thus we can think of RBF networks as being linear

combinations of the outputs ~y, and note that the kernel regression of Equation 2.10 is

a dual form of the RBF representation if we choose the kernel function K such that

K� = (HTH)�1HT � ~h(~x;W;~z; ~�) (2:13)

This duality encourages us to apply results from the kernel regression literature, at

least in this restrictive sense. We point out a few such results here; interested readers

are encouraged to pursue others in the excellent review in Eubank (1988).

First, a basic observation is that the most important problem associated with the

use of a kernel estimator is the selection of a good value for the smoothing parameter

� (and thus by our above duality principle, the RBF scale parameters � and W ).

Although asymptotic results concerning the optimal choice of � have been obtained

(e.g. see Theorem 4.2 in Eubank (1988)), their practical usefulness is dubious since

they rely on knowledge of the unknown function. Similarly in deriving RBF networks

from regularization theory and adopting a Bayesian interpretation, Poggio and Girosi

(1990) note that � and W are in principle speci�ed by the prior probability distri-

bution of the data, although in practice this can be quite di�cult to estimate. Thus

from either perspective, a reasonable approach for these parameters is to set them

from the data using some robust technique such as cross-validation.

Other kernel regression results have implications for how we choose the basis

function in RBF models. In particular, the Nadaraya-Watson kernel estimator

��(x) =

P
n

j=1 yjK�(x� xj)P
n

j=1K�(x� xj)
(2:14)

was originally derived for use when the (xj; yj) are independent and identically dis-

tributed as a continuous bivariate random variable (X;Y ) (i.e. the xj are not �xed

experimental design points). Note that in this case �(x) estimates the conditional
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mean E[Y jX = x], and the �j will be independent but not identically distributed.

Under certain restrictions this estimator is known to have a variety of consistency

properties (see Eubank (1988)). For RBF modeling problems that �t the above as-

sumptions, then, a natural constraint to place on the basis functions h is to normalize

their outputs in the above fashion.

If our inputs (i.e. xj's) are nonstochastic, we can be more speci�c and suggest a

particular choice for the basis functions. It is well known that if we want to minimize

the sum squared error cost function �2 from Equation (2.1), the asymptotically op-

timal choice of unparameterized kernels is the quadratic or Epanechnikov kernel (see

Epanechnikov (1969))

K(u) =

8><>: 0:75(1 � u2) juj � 1

0 juj > 1
(2:15)

Note that to obtain this result we must make some assumption about the second

moment of the kernel such as

Z 1

�1
u2K(u)du = � 6= 0 (2:16)

so that we cannot shrink the kernel functions (and thus �2) arbitrarily small.

A �nal suggestion from the kernel estimation literature concerns estimation bias

(i.e. E[��(x) � �(x)]). It can be shown that kernels with support on the entire

line have di�culties with bias globally, since it is typically impossible to choose one

smoothing parameter � to minimize bias everywhere. If the inputs x are unequally

spaced, the situation is even worse, since the estimator will e�ectively be computed

from di�erent numbers of observations in di�erent input regions. Kernels with �nite

support (such as the Epanechnikov kernel above), however, localize the bias problems

to the boundary of the data, where specialized boundary kernels can often be de�ned

to lessen the bias (see Gasser and M�uller (1979) for examples). Variable bandwidth
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estimators, which vary � depending on the density of x, can also help here, although

it is not known how to do this optimally in general. For RBF networks this would

correspond to using di�erent input weights W in di�erent regions of the input space,

an idea we will pursue further next.

2.2.3 Relation to Normal Densities

Our analogy to kernel regression ignored details of what exactly forms the inputs to

our basis functions, and in this section we focus on that aspect of the problem. If we

assume that our input data x is now drawn from k independent multivariate normal

variables Xi of dimension d and common variance �, i.e.

x 2 Xi for Xi � Nd(�i;�); i = 1; :::; k (2:17)

then the joint probability densities for each population are given by

fi(x) =
1

(2�)d=2j�j1=2 exp
�
�1
2
(x� �i)

T��1(x� �i)

�
(2:18)

The correspondence to RBF Equation (1.2) is clear if we choose the basis functions

hi to be gaussians, the centers ~zi to be the means �i, and we set the weight matrix

W such that W T � W = ��1. We could use these RBF models, for instance, to

approximate any linear combination of the densities, such as standard classi�cation

rules. This analogy also suggests the use of multiple weight matrices W to handle

the more general case of populations with unequal covariances.

However in general we don't know the means �i or the common covariance � of

the populations, and must estimate them from the data. We can estimate � using

the usual sample covariance matrix, although we note that since this matrix has a

potentially large number of parameters (i.e. d(d+1)=2), it may be practical to assume

that the d dimensions of the Xi are independent and thus we only need to estimate
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the d diagonal elements of �. We also caution practitioners that basis functions

parameterized with a scale parameter � may be overspeci�ed by letting all elements

of the W matrix vary as well.

Similarly, we can estimate the means �i using the usual sample mean statistic, if

we know the population that each data point was drawn from. Otherwise, the use

of a clustering technique suggests itself, an idea which we will explore further in the

next section.

2.2.4 Heuristic Algorithm for Initial Parameter Values

In the spirit of combining the suggestions and considerations from the previous sec-

tions, we o�er the following heuristic algorithm for �nding reasonable initial values

for RBF parameters. In crude outline the algorithm is as follows:

1. Initialize centers to randomly selected observations

2. Initialize W using either I, �̂�1, or diag(�̂�1),

depending on amount and type of data

3. Use elliptical k-means clustering (possibly on inputs and outputs)

to improve centers and partition data among the centers

4. For each center, estimate local covariance matrices

using partitions of data found in step 3.

5. Pool similar local covariance estimates.

6. If centers/partitions have changed, go to step 3.

This algorithm is a generalization of the one used in Moody and Darken (1989). In

particular, it is much better suited to handling inhomogeneous multimodal data, or

data with input dimensions of incommensurate scales. Some comments about the

algorithm are in order:

� The clustering in step 3 may be done with the conjunction of input and output

data if we suspect that density of samples in the input space does not necessarily
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correspond to complexity of the function.

� The de�nition of \similar" in step 5 typically must be rather loose unless the

number of centers k is quite small relative to the amount of data we have, oth-

erwise we can't a�ord to estimate separate W matrices for each basis function.

� Typically the above algorithm obviates the need for a separate scale parameter

� for each basis function. However, if � is necessary, a reasonable rule of thumb

to avoid numerical problems is to choose � based on the local density of input

samples around each center, similar to variable bandwidth kernel estimators.

An example of this algorithm is shown in Figure 2-2. Note how a simple k-means

clustering step (shown in part (a)) is dominated by the global variance structure of

variable x2, whereas one iteration of the above algorithm (shown in part (b)) serves

to capture the local structure of the input data nicely, which undoubtedly would

improve any subsequent �tting process.

As a �nal note, we caution the reader against using the above algorithm blindly.

In fact we rarely use the above algorithm automatically Instead, we prefer to look at

the clustered and transformed data at each stage, following the fundamental adage

of statistics to know your data and methods.

2.2.5 Starting with Simple Models

Despite our best e�orts, sometimes the initial values we use for our estimation process

will be quite poor, either because our data doesn't satisfy the usual assumptions, or

our function is �endishly complex. In these cases we �nd that an approach similar to

interior point methods in optimization can help the speed and quality of the estimation

process. The general approach is as follows:

1. Increase the smoothness of the cost function �2 by holding a subset of the

parameters at �xed values.
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(a) Isotropic clusters
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(b) Iterative elliptical clusters

Figure 2-2: \X" data example of iterative elliptical k-means clustering. (a) Result

of single k-means clustering step, using simple Euclidean distance. (b) Result of

iterative clustering technique described in text. In both graphs, the numbers 1-5

indicate center positions, the lower case letters a-e indicate which center (cluster)

each data point \belongs" to, and ellipses indicate equipotential lines for the inputs

to the basis functions.
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2. Solve network.

3. Use those estimates as initial values for larger/full model.

For instance we know from Section 2.2.1 that we can solve for the linear parameters

c directly, thus a reasonable initial strategy is the \traditional RBF" approach of

using the Euclidean norm, all the observations (or a large subset) as centers, and just

solving for the c's. A second step might be to let the centers move, and then letting

the scale parameters � or the weights W move. This in fact is the strategy used for

some of the larger models estimated in Chapter 3.



Chapter 3

Application One: Option Pricing

In this chapter we propose a nonparametric method for estimating the pricing formula

of a derivative asset using the learning networks introduced in Chapter 1. Although

not a substitute for the more traditional arbitrage-based pricing formulas, network

pricing formulas may be more accurate and computationally more e�cient alterna-

tives when the underlying asset's price dynamics are unknown, or when the pricing

equation associated with no-arbitrage condition cannot be solved analytically. To

assess the potential value of network pricing formulas, we simulate Black-Scholes op-

tion prices and show that learning networks can recover the Black-Scholes formula

from a two year training set of daily options prices, and that the resulting network

formula can be used successfully to both price and delta-hedge options out-of-sample.

For purposes of comparison, we estimate models using four popular methods: OLS,

radial basis functions, projection pursuit regression, and multilayer perceptrons. To

illustrate the practical relevance of our network pricing approach, we apply it to the

pricing and delta-hedging of S&P500 futures options from 1987 to 1991, where we

�nd some evidence that the network pricing formulas outperform the Black-Scholes

formula.

59
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3.1 Background

Much of the success and growth of the market for options and other derivative secu-

rities may be traced to the seminal papers by Black and Scholes (1973) and Merton

(1973), in which closed-form option pricing formulas were obtained through a dy-

namic hedging argument and a no-arbitrage condition. The celebrated Black-Scholes

and Merton pricing formulas have now been generalized, extended, and applied to

such a vast array of securities and contexts that it is virtually impossible to provide

an exhaustive catalog. Moreover, while closed-form expressions are not available in

many of these generalizations and extensions, pricing formulas may still be obtainable

numerically.

In each case, the derivation of the pricing formula via the hedging/no-arbitrage

approach, either analytically or numerically, depends intimately on the particular

parametric form of the underlying asset's price dynamics S(t). A misspeci�cation of

the stochastic process for S(t) will lead to systematic pricing and hedging errors for

derivative securities linked to S(t). Therefore, the success or failure of the traditional

approach to pricing and hedging derivative securities, which we call the parametric

pricing method, is closely tied to the ability to capture the dynamics of the underlying

asset's price process.

In this chapter, we propose an alternative data-driven method for pricing and

hedging derivative securities, a nonparametric pricing method, in which the data is

allowed to determine both the dynamics of S(t) and its relation to the prices of

derivative securities with minimal assumptions on S(t) and the derivative pricing

model. To do this we will use learning networks introduced in Chapter 1 which

will take as inputs the observable economic variables that in
uence the derivative's

price, e.g. underlying asset price, strike price, and time to maturity, and whose

outputs will the derivative prices. When properly trained, the network \becomes" the

derivative pricing formula and can be used in same way that formulas obtained from
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the parametric pricing method are used: for pricing, delta-hedging, and simulation

exercises.

These network-based models have several important advantages over the more

traditional parametric models. First, since they do not rely on restrictive parametric

assumptions such as lognormality or sample-path continuity, they may be robust to

the speci�cation errors that plague parametric models. Second, they are adaptive,

and respond to structural changes in the data generating process in ways that para-

metric models cannot. Finally, they are 
exible enough to encompass a wide range

of derivative securities and fundamental asset price dynamics, yet relatively simple

to implement.

Of course, all of these advantages do not come without cost - the nonparametric

pricing method is highly data intensive, requiring large quantities of historical prices

to obtained a su�ciently well trained network. Therefore, such an approach would be

inappropriate for thinly traded derivatives, or newly created derivatives that have no

similar counterparts among existing securities1. Also, if the fundamental asset's price

dynamics are well understood and an analytical expression for the derivative's price

is available under these dynamics, then the parametric formula will almost always

dominate the network formula in pricing and hedging accuracy. Nevertheless, these

conditions occur infrequently enough that there may still be great practical value in

constructing derivative pricing formulas by learning networks.

3.2 Learning the Black-Scholes Formula

3.2.1 Motivation

Given the supposed power of learning networks, the �rst question we must answer

is if they can approximate the unknown nonlinear functions which de�ne derivative

1However, since newly created derivatives can often be replicated by a combination of existing

derivatives, this is not as much of a limitation as it may seem at �rst.



62 CHAPTER 3. APPLICATION ONE: OPTION PRICING

asset prices in real world �nancial markets. The simplest formula for these functions

that we might hope to �nd is of the form

c = f(S;X; T ) (3.1)

where c is the call option price, S is the underlying asset price, X is the exercise

price of the option, and T is the time to expiration of the option. Note that this

formula makes no mention of some of the usual factors for option pricing, in particular

measures of the underlying asset price distribution and risk free rates of return, and

thus the function f will typically be speci�c to a particular underlying asset and

interest rate environment to implicitly capture these factors.

However, what if the true f is actually a function of time, for instance due to these

implicit factors being time varying? This could easily be argued to be the case for

real �nancial markets, and thus we will have to address these concerns when we look

at real data in Section 3.3. For now, though, let's restrict our attention to an ideal

world where this is not a problem, so that we can address the more basic question

of how easily learning networks can approximate a reasonable option pricing formula.

For this purpose we will use the well known option pricing formula based on the work

of Black and Scholes (1973).

The standard Black-Scholes theory makes a number of assumptions about the

real world. Of particular interest for our discussion is the assumption of a time

invariant distribution for the underlying asset returns, the lognormal distribution

(i.e. ln(St=St�1) � N(�; �2) for constants � and �). Also, the risk free rate of return

is assumed to be constant as well. With these and other assumptions, the following

formula can be derived for the price of a European call option:

c = S�(d1)�Xe�rT�(d2) (3.2)
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where

d1 =
ln(S=X) + (r + �2=2)T

�
p
T

d2 =
ln(S=X) + (r � �2=2)T

�
p
T

�(x) is the cumulative probability distribution function for a standardized variable, r

is a constant risk free rate of return, and � is the constant volatility of the underlying

asset's returns.

In a world where the Black-Scholes assumptions hold, we should be able to �nd

our function f in the form of Equation (3.1), although it will be speci�c to a particular

underlying asset (i.e. �) and interest rate environment (i.e. r). In fact, we can simply

the problem even further by normalizing prices by the strike price and looking for a

function of two inputs2:

c=X = f 0(S=X; T ) (3.3)

Thus our strategy is to simulate underlying asset and option prices that follow the

Black-Scholes assumptions, and then apply learning networks to determine if they

converge satisfactorily to Black-Scholes formula when viewed in the form of Equa-

tion (3.3).

3.2.2 Calibrating the Simulations

For concreteness let us assume that the underlying assets for our simulations are

replications of a \typical" American stock, with an initial price S0 of $50.00, an

average annualized continuously compounded rate of return � of 10%, and an an-

2More generally, we can appeal to Theorem 8.9 of Merton (1990) to claim that this normalization

is valid at least when the stock returns are independently distributed.
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features here. At any one time, CBOE stock options outstanding on a particular

stock have 4 unique expiration dates: the current month, the next month, and the

following two expirations from a quarterly schedule. Strike prices for the options are

multiples of $53. When options expire and a new expiration date is introduced, the

two strike prices closest to the current stock price are used. If the current price is

very close to one of those strike prices4, a third strike price is used to better bracket

the current price. If the stock price moves outside of the current strike price range,

another strike price is generally added for all expiration dates to bracket that price5.

Note that we assume that all of the options generated in the above way are traded

every day, although in the real world far from the money and/or long dated options

are often not actively traded.

We refer to a stock price path and the associated options as one \sample path".

A typical sample path is shown in Figure 3-1. We can also plot the sample path as

a 3D surface if we divide stock and option prices by the appropriate strike price and

consider the option price as a function of the form of Equation (3.3) - see Figure 3-2.

Our experimental setup for the simulations was as follows. A training set of 10

sample paths was generated, each using the above mentioned parameters. All options

in a sample path were concatenated to produce the data matrix and response vector

needed for �tting a function of the form given in Equation (3.3). Note that because the

options generated for a particular sample path are a function of the random stock price

path, the size of this data matrix (in terms of number of options and total number of

data points) varies between sample paths. For our training set, the number of options

per sample path ranged between 71 and 91, with an average of 81. The total number

of data points ranged between 5227 and 6847, with an average of 6001. For each type

of learning network, one network was then �t on each sample path in the training set,

then tested on out-of-sample data from a test set of 5 di�erent sample paths, again

3Since all of the simulated stock prices used here fall in the range of $25 to $200.
4Within $1 in our simulations.
5In our simulations, this was not done for options with less than a week till expiry.
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Figure 3-2: Simulated call option prices normalized by strike price and plotted versus

stock price and time to expiration. Points represent daily observations. Note the

denser sampling of points close to expiry is due to the CBOE strategy of always

having options which expire in the current and next month.
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all generated with the same parameters. This generated a matrix of results for each

type of learning network, with one result for every pair of training sample path (and

associated network), and test sample path. In this way it was possible for us to assess

the consistency of a single network across multiple test sample paths, as well as the

consistency of multiple networks (of the same type and architecture) on a single test

sample path.

3.2.3 Performance Measures

How shall we measure the performance of the learning networks on the option pricing

problem? First of course we are interested in how well the network's option prices

match the \true" option prices. This can be measured using standard regression

statistics, since the (normalized) option price is the response variable in our models.

We chose to look at the R2 and residual standard error statistics, although any \sum

squared error" based statistic would give equivalent results.

A second set of measures comes from a very practical desire to see how cheaply

we can dynamically hedge the options. By computing the networks' estimate of an

option's delta (i.e. @c

@S
) at each point, we can use the standard delta-adjusted hedging

strategy to replicate the option through time, and compare the discounted cost of

doing so with the initial price of the option. By a simple arbitrage argument, these

quantities should be equal if we adjust the hedge continuously and there are no

transaction costs. Thus if we de�ne the \hedging error" H to be

H = c0 � hedging cost, (3:4)

we would like H to be as close to zero and with as small a variance as possible. A

measure which meets both of these requirements is the \prediction error", which is

de�ned as

PE =
q
E(H)2 +Var(H) (3:5)
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where E and Var are the expected value and variance operators respectively.

Note that for the RBF and MLP learning networks, delta can be computed ana-

lytically from the network by taking the derivative. For PPR, however, the use of a

smoother for estimating the nonlinear functions h forces a numerical approximation

of delta, which we accomplish with a �rst order �nite di�erence with a increment @S

of size 1=1000 of the range of S.

How should we combine the test results from multiple options and test sets?

For instance, a weighted sum of the hedging errors would be the wealth generated

from holding some delta hedged portfolio. However, we are interested in the simpler

question of how this strategy works for each particular type of option, and thus we

will focus primarily on summary statistics applied across options of (roughly!) the

same term and degree of being in or out-of-the-money.

3.2.4 Linear and Network Pricing Formulas

Now we are set to estimate pricing formulas of the form of Equation (3.3) on the

synthetic data test sets. For comparison, we start with two simple types of linear

models estimated using ordinary least squares (OLS). The �rst type is one linear

model for the entire input space, and the second type is two linear models, one

for options currently in-the-money, and one for options currently out-of-the-money.

Typical estimates of these models are shown in Table 3.1. Note that in terms of the

implied dynamic hedging strategy, the �rst type of models say to buy a �xed number

of shares of stock in the beginning (0.6886 in the example in Table 3.1) and hold

them till expiration, regardless of the actual stock price changes. The second type of

model improves on this by 
ipping between hedging with a small number of shares

(0.1882 in the example) and a large number (0.9415 in the example) depending on

whether the current stock price is greater than or less than the strike price.

The nonlinear models obtained with learning networks, on the other hand, yield

estimates of option prices and deltas that are di�cult to distinguish visually from
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Residual Standard Error = 0.027, Multiple R-Square = 0.9098

N = 6782, F-statistic = 34184.97 on 2 and 6779 df, p-value = 0

coef std.err t.stat p.value

Intercept -0.6417 0.0028 -231.4133 0

S/X 0.6886 0.0027 259.4616 0

T 0.0688 0.0018 38.5834 0

(a) Single linear model.

Residual Standard Error = 0.0062, Multiple R-Square = 0.9955

N = 3489, F-statistic = 385583.4 on 2 and 3486 df, p-value = 0

coef std.err t.stat p.value

Intercept -0.9333 0.0012 -763.6280 0

S/X 0.9415 0.0011 875.0123 0

T 0.0858 0.0006 150.6208 0

(b) \In-the-money" linear model.

Residual Standard Error = 0.007, Multiple R-Square = 0.8557

N = 3293, F-statistic = 9753.782 on 2 and 3290 df, p-value = 0

coef std.err t.stat p.value

Intercept -0.1733 0.0022 -80.3638 0

S/X 0.1882 0.0023 80.6965 0

T 0.0728 0.0007 108.2335 0

(c) \Out-of-the-money" linear model.

Table 3.1: Regression summaries for typical linear models.
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the true Black-Scholes values. An example of the estimates and errors for an RBF

network is shown in Figure 3-3, which was estimated from the same data as the linear

models from Table 3.1. The largest errors in these networks tend to be right at the

discontinuity for options at the money at expiration, and also along the boundary of

the sample points. The equation for this RBF network is

d
c=X = �0:06

vuuuut
264 S=X � 1:35

T � 0:45

375
T
264 59:79 �0:03

�0:03 10:24

375
264 S=X � 1:35

T � 0:45

375+ 2:55

�0:03

vuuuut
264 S=X � 1:18

T � 0:24

375
T
264 59:79 �0:03

�0:03 10:24

375
264 S=X � 1:18

T � 0:24

375+ 1:97

+0:03

vuuuut
264 S=X � 0:98

T + 0:20

375
T 264 59:79 �0:03

�0:03 10:24

375
264 S=X � 0:98

T + 0:20

375+ 0:00

+0:10

vuuuut
264 S=X � 1:05

T + 0:10

375
T
264 59:79 �0:03

�0:03 10:24

375
264 S=X � 1:05

T + 0:10

375+ 1:62

+0:14S=X � 0:24T � 0:01 (3.6)

Note that the centers in the RBF model are not constrained to lie within the range

of the inputs, and in fact do not in the third and fourth centers in our example. PPR

and MLP networks of similar complexity generate similar response surfaces, although

as we shall see in the next section, each method has its own area of the input space

that it models slightly more accurately than the others.

3.2.5 Out-of-Sample Pricing and Hedging

In this section we discuss the out-of-sample results of �tting the various learning

networks to the simulated option data. Although the learning networks we consider

are nonparametric methods, they all have one basic parameter that needs to be chosen

- the number of nonlinear terms (i.e. \hidden units", basis functions, projections) to
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Figure 3-3: Typical behavior of 4 nonlinear term RBF model.
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use in the approximation. When we model noisy real data, we expect that there

will be an \optimal" number of parameters where the complexity of the model is

balanced against its out-of-sample error. For the noise free simulated data in this

section, however, �nding this optimal value is somewhat meaningless, and we are

more interested in how fast our error measures drop with increased model complexity.

The graph of average prediction error of hedging costs versus number of parameters

for the variety of models we tried is shown in Figure 3-4. The \knee" in the curve for

each method occurs roughly at 4 nonlinear terms (� 20 total parameters), and the

minimum prediction error among the networks tried was for an RBF network with

40 multiquadric nonlinear terms (126 total parameters6). Note that the prediction

error of the \true" Black-Scholes model is not zero because hedges are dynamically

adjusted once daily, not continuously.

Given that learning networks with 4 nonlinear terms are su�cient to explain most

of the variance in our simpli�ed option pricing problem, it is interesting to look closer

at the performance of these size networks to see which types of options (i.e. which

region of input space) each network performs the best on. To do this, we divide each

dimension of the input space into 3 regimes: long, medium, and short term for the

time to expiration (T ) axis, and in, near, and out-of-the-money for the normalized

stock price (S=X) axis. Pairwise conjunctions of these regimes then form 9 groups

that we can inspect. Breakpoints between the regimes are chosen to give each of the

9 groups roughly equal numbers of data points: for our simulations we choose these

breakpoints to be 2 and 5 months for T , and 0.97 and 1.03 for S=X.

Average prediction error for these \duration/richness" groups for the 4 nonlinear

term learning networks can be seen in Table 3.2. Inspection of the table reveals that

each learning network type has its own region of the input space that its nonlinear

units are particularly e�cient at approximating. RBF networks, for instance, seem

6The centers and the parameter of the multiquadric were kept �xed in this network to reduce

the number of free parameters.
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Figure 3-4: Prediction error of learning networks averaged across all training and test

set pairs of simulated option data. Interesting points on the curve include \linear"

for one global linear model of the data; \lin2" for two linear models, one for in-the-

money options and one for out-of-the-money options; \hbf4mqos" for RBF models

with 4 multiquadric centers and an output sigmoid; \pp4" for PPR models with 4

projections; \bp4" for MLP models with 4 hidden units; \hbf40mq3" for RBF models

with 40 �xed multiquadric centers; and \B-S" for the exact Black-Scholes model using

the true system parameters.
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Short term linear hbf4mqos pp4 bp4 B-S �c0
In-the-money 1.42 0.20 0.23 0.36 0.11 4.63

Near-the-money 1.44 0.47 0.40 0.51 0.29 1.78

Out-of-the-money 2.23 0.28 0.24 0.35 0.18 0.39

Medium term linear hbf4mqos pp4 bp4 B-S �c0
In-the-money 1.70 0.17 0.84 0.35 0.22 5.80

Near-the-money 2.04 0.40 0.35 0.60 0.15 2.29

Out-of-the-money 3.19 0.40 0.41 0.37 0.29 1.02

Long term linear hbf4mqos pp4 bp4 B-S �c0
In-the-money 2.36 0.39 0.88 0.61 0.26 6.39

Near-the-money 3.00 0.43 0.49 0.61 0.31 4.05

Out-of-the-money 3.67 0.59 0.58 0.40 0.29 2.30

Table 3.2: Out-of-sample average prediction error for 4 nonlinear term learning net-

works and the \true" Black-Scholes model. See text for de�nitions of groups, and

Figure 3-4 for de�nitions of model acronyms. Units of prediction error are in dollars,

and can be compared with �c0, the average initial price of the options in each group.

to have substantially less error for in-the-money options, regardless of duration. PPR

networks seem to outperform for short term options, and MLP networks do best on

medium and long term out-of-the-money options.

3.3 An Application to S&P500 Futures Options

3.3.1 Motivation

In Section 3.2 we showed that learning networks can e�ciently approximate the Black-

Scholes pricing formula if the data follows the necessary assumptions, and thus we

gained some con�dence that learning networks can handle a reasonable option pricing

world. However, the critical question for these networks is to ascertain whether or not

they can capture realmarket prices better than theoretically based models when there

is uncertainty about what assumptions hold, and thus what theoretical model to use.
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Thus as one test of the practical relevance of our empirical modeling approach, we

now apply it to S&P500 futures options prices, and compare it to the Black-Scholes

model applied to the same data.

3.3.2 The Data and Experimental Setup

The data used for these experiments are daily closing prices of S&P500 futures and

futures options for the 5 year period from January 1987 to December 1991. Futures

prices over this period are shown in Figure 3-5. There were 24 di�erent futures

contracts and 998 futures call options active during this period7. The futures contracts

have quarterly expirations, and on any given day 40-50 call options based on 4 di�erent

futures contracts were typically traded.

Our experimental setup for using the S&P500 data is similar to that given in

Section 3.2.2 for the simulated data. We divided the S&P500 data into 10 six month

subperiods for the purpose of training and testing the learning networks. Six month

subperiods were chosen so the number of data points in each training set was roughly

comparable to the number used in Section 3.2. Data for the second half of 1989 is

shown in Figures 3-6 and 3-7. Notable di�erences between this data and the simulated

data of Section 3.2 are the presence of \noise" in the real data and the irregular

inactivity of the options (esp. near term out of the money options). For the S&P500

data, the number of futures call options per subperiod ranged from 70 to 179, with an

average of 137. The total number of data points per subperiod ranged from 4454 to

8301, with an average of 6246. To limit the e�ects of non-stationarity and avoid data

snooping, we trained a separate learning network on each of the �rst 9 subperiods,

and tested those networks only on the data from the immediately following subperiod,

thus yielding 9 test sets for each network. We also separately considered the last 7

test sets (i.e. data from July 88 to December 91) to assess the possibility of our

results being strongly in
uenced by the October 87 crash.

7To simplify matters we did not use the available put options.
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Figure 3-5: Overlay of S&P500 futures prices for all contracts active from January

1987 to December 1991.
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Figure 3-6: S&P500 futures and futures options active from July through December

1989. Dashed line represents futures price, while the arrows represent the options on

the future. The y-coordinate of the tip of the arrow indicates the strike price (arrows

are slanted to make di�erent introduction and expiration dates visible).
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Figure 3-7: July through December 1989 S&P500 futures call option prices, normal-

ized by strike price and plotted versus stock price and time to expiration. Points

represent daily observations. Note the bumpiness of the surface, and the irregular

sampling away from the money.



3.3. AN APPLICATION TO S&P500 FUTURES OPTIONS 79

3.3.3 Estimating Black-Scholes

Estimating and comparing models on the S&P500 data will proceed much as it did in

Section 3.2 for the linear and learning network models. Unlike our simulated world,

however, the Black-Scholes model parameters r and � must be estimated when using

real data. From a strict theoretical viewpoint Black-Scholes model assumes that both

of these parameters are constant over time, and thus we might be tempted to estimate

them using all available past data. Few practitioners adopt this approach, however,

due to substantial empirical evidence of nonstationarity in interest rate and asset

price distributions. A common compromise is to estimate the parameters using only

a window of the the most recent data. We follow this latter approach for the S&P500

data. Speci�cally, we estimate the Black-Scholes volatility � for a given S&P500

futures contract using

�̂ = s=
p
60 (3:7)

where s is the standard deviation of the 60 most recent continuously compounded

daily returns of the contract. We approximate the risk free rate r to use for each

futures option as the yield of the 3 month Treasury bill on the close of the month

before the initial activity in that option (see Figure 3-8).

3.3.4 Out-of-Sample Pricing and Hedging

In this section we present the out-of-sample results of �tting the various models to

the S&P500 data. Based on our experience with simulated data, we chose learning

networks with 4 nonlinear terms as a good compromise between accuracy and com-

plexity, although we note that re-examining this tradeo� would be interesting on the

noisy S&P500 data8.

The out-of-sample tests show some evidence that the learning networks outperform

8A sample re-use technique such as cross-validation would be appropriate in this context for

selecting the best number of nonlinear terms.
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Figure 3-8: Black-Scholes parameters estimated from S&P500 data (see text for de-

tails). Values for �̂ fall between 9.63% and 94.39%, with a median of 16.49%.

the Black-Scholes model on this data. The delta hedging prediction error measure-

ments broken down by duration/richness groups are shown in Tables 3.3 and 3.4.

Similar to our results on the simulated data, each learning network has some portion

of the input space on which it performs the best, although it is less clear here how gen-

erally those regions can be summarized. Interestingly, results from the October 1987

crash in
uenced subperiods still show the learning networks with lower prediction

error than the Black-Scholes model, except for near term in-the-money options.

Rigorous hypothesis testing concerning relative sizes of hedging error is di�cult,

primarily because of the dependence of the options price paths. Selecting a single

non-overlapping sequence of options for testing would solve the dependence problem,

but would throw out 98% of the available options. Instead we present a less rigorous

test on all of the data, but caution the reader to not to give it undue weight. Since

we have hedging errors for each option and learning network, we can use a paired

t-test to compare the Black-Scholes absolute hedging error on each option with the

network's absolute hedging error on the same option. The null hypothesis is that

the average di�erence of the two hedging errors is zero, and the alternate (one-sided)
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Short term linear lin2 hbf4mqos pp4 bp4 BS60 �c0
In the money 6.70 4.92 5.04 4.52 4.94 4.42 24.26

Near the money 8.70 4.12 3.49 3.37 3.42 2.76 8.04

Out of the money 8.38 2.71 2.17 2.31 1.63 1.59 1.00

Medium term linear lin2 hbf4mqos pp4 bp4 BS60 �c0
In the money 9.48 6.41 6.70 6.53 5.62 5.93 35.88

Near the money 8.82 6.93 4.18 5.02 4.54 5.31 10.62

Out of the money 11.27 4.69 2.53 2.73 2.32 2.55 2.74

Long term linear lin2 hbf4mqos pp4 bp4 BS60 �c0
In the money 8.23 6.14 7.24 11.40 5.60 7.58 39.27

Near the money 8.55 8.58 6.37 5.55 5.17 6.18 16.14

Out of the money 12.13 7.35 3.54 5.39 4.36 5.02 6.86

Table 3.3: Delta hedging prediction error for the out-of-sample S&P500 data from

July 1988 to December 1991 (i.e. excluding October 1987 crash in
uenced subperi-

ods).

Short term linear lin2 hbf4mqos pp4 bp4 BS60 �c0
In the money 10.61 8.80 7.27 9.23 9.12 3.94 20.18

Near the money 16.30 12.73 7.77 7.48 8.08 9.09 10.76

Out of the money 23.76 8.48 7.43 5.51 5.34 10.53 5.44

Medium term linear lin2 hbf4mqos pp4 bp4 BS60 �c0
In the money 9.18 11.17 7.13 12.57 13.90 16.00 36.05

Near the money 24.48 13.36 7.59 5.65 5.11 6.12 12.98

Out of the money 34.31 14.80 12.30 9.44 9.64 13.46 7.45

L Long term linear lin2 hbf4mqos pp4 bp4 BS60 �c0
In the money 24.97 22.37 13.84 23.75 27.13 30.36 28.08

Near the money 35.06 12.93 10.78 10.11 12.27 16.03 16.98

Out of the money 29.07 14.05 9.50 8.59 8.10 10.86 10.26

Table 3.4: Delta hedging prediction error for the out-of-sample S&P500 data from

July 1987 to July 1988 (i.e. October 1987 crash in
uenced subperiods).



82 CHAPTER 3. APPLICATION ONE: OPTION PRICING

Pair t-statistic p-value

linear vs BS60 -15.1265 1.0000

lin2 vs BS60 -5.7662 1.0000

hbf4mqos vs BS60 2.1098 0.0175

pp4 vs BS60 2.0564 0.02

bp4 vs BS60 3.7818 0.0001

Table 3.5: Paired t-test comparing relative magnitudes of absolute hedging error,

using results from all S&P500 test sets (i.e. data from July 1987 to December 1991).

The degrees of freedom for each test were 1299, although see comments in the text

concerning dependence.

hypothesis is that the di�erence is positive (i.e. the learning network hedging error is

smaller). Results of this (rough) test show evidence that all three learning networks

outperform the Black-Scholes model, while the linear models do not (see Table 3.5).

It is also interesting to look at the computer time needed to estimate these mod-

els, although note that the code used was not particularly optimized, and we made

no attempt to ascertain the best estimation method for each type of learning net-

work. Nonetheless, second order methods seem advantageous on this problem. For

instance, the MLP network gradient descent equations were updated for 10000 itera-

tions, requiring roughly 300 minutes per network on a multiuser SUN SPARCstation

II, while the Levenberg-Marquardt method for the RBF networks used from 10 to

80 iterations and took roughly 7 minutes per network. Similarly, the PPR networks

(with a Newton method at the core) took roughly 120 minutes per network.

3.4 Discussion

Some caveats should be made concerning these results. Although results from our �rst

attempt are encouraging, we cannot yet claim the general usefulness of this type of

approach based only on results for a speci�c instrument and time period (i.e. S&P500

futures options for 1987 to 1991). Also, we are aware that there are many di�erent
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theoretical derivative pricing models and practical tricks for these models that may

improve the performance of our benchmark theoretical model on any given data set,

and we intend to investigate some of these alternatives in the future.

That being said, we believe there is reason to be cautiously optimistic about our

general approach, and feel there are a number of promising directions for future work

in this area. Perhaps highest on this list is the necessity to look at other input factors

for these models, for instance measures that traders commonly look at such as implied

volatility. A related idea would be to fold in a time series approach to the current

model in an attempt to capture temporal dependence. This could involve adding past

values of inputs and outputs, or could mean modeling the squared residuals using a

GARCH or related type of approach. For all of these ideas, the particular choice of

market is undoubtedly important, and it may be productive to look at other markets

that are not as well understood or as accurately described with current theoretical

models.

Other ideas for these networks are motivated by concerns from the statistical side.

First, it probably is important to �ne tune the network architecture (e.g. number of

nonlinear units, type of basis functions) on the speci�c data for each problem and/or

market, although we have not done this. It would also be interesting to determine

the minimal amount (e.g. number of days) of data necessary to achieve reasonable

approximations. In terms of applying the learning networks more appropriately, one

idea might be to use model prediction error estimates to decide when an instrument

can be safely hedged using that model. Similarly, it may be advantageous to combine

di�erent models to get lower variance estimates across the input range.

Finally, we note that there are other applications for these empirical models be-

sides their direct use as pricing formulas. In particular, a useful methodology may be

to track the discrepancies between these empirical models and a favored theoretical

model as a diagnostic of when and where reality is diverging from theory.
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Chapter 4

Prediction and Model Con�dence

What guarantee do we have that our carefully crafted empirical models will work on

unseen data? It is well known that a model can be constructed to �t a �xed data

set (i.e. the \in sample" or \training set" data) arbitrarily well, but that does not

necessarily imply that the model will describe new data (i.e. the \out of sample" or

\testing set" data) from that domain equally well. In this chapter we address some

of the central questions about how to measure and maximize the con�dence we have

in our models and model outputs. We begin by reviewing the notion of pointwise

prediction con�dence intervals, and we present such an estimator for a subset of RBF

networks that is asymptotically correct. However, bootstrap estimators may be more

useful in practice, although they are computationally expensive and little is known

about their theoretical properties. For overall model �tness we describe and evaluate

the use of standard methods (e.g. cross-validation) on RBF networks. Finally we

discuss the ubiquitous problem of data mining in this context - the tendency for us

to �nd spurious relationships in data simply from looking at the same data too long

- and note a few techniques to help in this regard, although ultimately we believe the

only fully satisfactory solution is to keep some data aside untouched until the very

last inference test.

85
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4.1 Prediction Con�dence

Consider the two example data sets and �tted linear models in Figure 4-1. In which

case are we more con�dent that new, previously unseen points will fall close to the

�tted lines? Judging simply from the relative dispersion of the training set points

around the �tted lines clearly the answer in this case is data set (a), regardless of

where in the input domain the new points are drawn from. Formalizing this intuitive

notion will provide an objective answer to the question of how useful a model is for

prediction tasks.
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Figure 4-1: Which example linear �t is \better"?

4.1.1 Formulation

A general description of our modeling goal is to �nd equations in the form of the

regression relationship

yj = �(~xj) + �j; j = 1; :::; n (4:1)
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where once again we will restrict our discussion to the case of (~xj; yj) 2 f<d;<g. One
way to think of the problem is that of trying to �nd the mean value �(~x) appropriate

for each input ~x. From this viewpoint, our informal notion of con�dence can be stated

precisely: at each input ~x, we would like to know the upper and lower bounds �̂u and

�̂l such that

Pr f�̂l(~x) � �(~x) � �̂u(~x) for any ~xg = 1 � � (4:2)

for some predetermined fraction �. The pair �̂u and �̂l are often said to de�ne a

100(1 � �) percent pointwise con�dence interval for the mean �(~x), and we denote

them with hats to emphasize that they are typically estimated from the data.

4.1.2 Linear Case

If our estimate �̂(~x) of the true �(~x) is a linear function, and we assume the errors �

are independent and identically distributed normal random variables, it is well known

that the quantity
�̂(~x)� �(~x)

s
q
~xT
�
(XTX)�1~x�

(4:3)

follows a t distribution with n� d� 1 degrees of freedom, where ~x� is the new input,

s is the usual sample standard deviation of the estimated error term �̂, and X is the

data matrix obtained from concatenating the n column vectors ~xj (see Johnson and

Wichern (1988) for a nice review of the linear case). Thus our desired con�dence

limits are

�̂l; �̂u = �̂(~x)� t(�=2;n� d� 1)s
q
~xT
�
(XTX)�1~x� (4:4)

Note however that this derivation is valid only if the distribution of � is not a function

of the input ~x, a point we will return to momentarily.



88 CHAPTER 4. PREDICTION AND MODEL CONFIDENCE

4.1.3 RBF Case

Can we derive similar con�dence intervals for RBF network outputs? In a restricted

sense we can; although our method is shown to be asymptotically correct only for

RBF networks of the kernel type (see Chapter 2), in fact it may be nonetheless useful

for more general cases. Before we present our result, however, two notable di�erences

from the linear case above deserve some discussion.

A �rst di�erence with the linear case concerns the uniformity of the con�dence

interval across the input space. In the linear case the width of the con�dence intervals

is relatively uniform, partly because of our assumption of i.i.d. error �, and partly

because our variance estimate is global function of all of the ~xj's. However, as the

function complexity and input dimensionality of the problems we consider increase, it

is desirable to �nd more local estimates of con�dence, in the sense that they depend

strongly on local input data density and error estimates. In fact this is possible for

the kernel-type RBF networks, due to their local representation.

The second di�erence with the linear case concerns bias. In the linear case it is

easy to show that �̂(~x) is an unbiased estimator of �(~x) (i.e. E[�̂(~x) � �(~x)] = 0),

so that on the average the only contribution to the error term is from the variance of

the estimator. Unfortunately, this proof is not easy for the RBF case, and in fact the

best results we know of in this regard are various asymptotic proofs of unbiasedness

for kernel regression (e.g. Krzy_zak (1986), H�ardle (1990)). For this reason, from a

practical viewpoint a careful assessment of the bias situation is in order for for real

problems with �nite data sets, despite any claims we might make about unbiasedness

in showing other asymptotic results.

We now present a pointwise con�dence interval result for kernel-type RBF net-

works based on the heuristic method of Leonard, Kramer and Ungar (1991). Following

the notation of RBF Equation (1.1), let us assume we use all of the data as centers

(i.e. k = n and ~zi = ~xi for i = 1::n), identical basis functions which are decreasing

functions with maxima at the centers, and identical scale parameters (e.g. the � of
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the gaussian) which are decreasing functions of the number of data points n. Then

our conjecture is that for a new input ~x� the random varaiable

f̂(~x�)� f(~x�)

Q(~x�)
(4:5)

where

Q(~x�) =
p
A �

P
k

i=1 h(k~x� � ~zik)siP
k

i=1 h(k~x� � ~zik)

si =

vuutPn

j=1 h(k~zi � ~zjk)(yj � f̂(~zj))2P
n

j=1 h(k~zi � ~zjk)
and

A =

Z
h2(u)du

converges in distribution to N(B; 1) where the bias term B is a function of the

derivatives of f and the marginal density of the data ~x (denote this by g(~x)). In cases

were this bias term is judged to be small relative to the variance term above, we can

then write approximate con�dence intervals for the RBF case as

f̂l(~x); f̂u(~x) = f̂(~x)� z(�=2)Q(~x) (4:6)

where z(p) is the 100p quantile of the standard normal distribution.

Proof of this conjecture relies upon a similar result for kernel regression due to

H�ardle (1990). In particular we can see that our above conjecture is equivalent to

a smoothed version of H�ardle's Theorem 4.2.1, if we can show two things. First,

we note that H�ardle's assumptions must hold, notably that our scale parameter �

must decrease at a rate proportional to n1=5, f(~x) and g(~x) must both be twice

di�erentiable, the conditional variance of � must be continuous around ~x�, and the

basis functions h(u) must have a bounded moment higher than the second1. Second,

1Note that the bounded moment assumption excludes increasing basis functions such as the
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we must show that the spatial averaging of our conditional variance estimate si in

Q(~x�) is correct at the data, i.e. that Q(~xi)!
p
A � si as n!1 for all i = 1::n, but

this is clearly the case if � � n�1=5 and the moments of h(u) are bounded as above.

Thus to complete the analogy we note that the marginal density g(~x) is approximated

in the limit by 1=n
P

n

i=1 h(k~x� ~xik) given the above conditions.

4.1.4 Examples

A few examples will serve to illustrate some properties of the RBF pointwise con�-

dence limits. First, a 1D example of these con�dence limits is shown in Figure 4-2 for

data chosen on a evenly spaced grid. Here the data were generated according to the

relation y = sin x+ x �N(0; (0:05)2). Selection of the basis function scale parameter

� is a careful balance of the bias in f̂(~x) from oversmoothing and the variance in our

con�dence limit from undersmoothing. For a suitable choice, though, the Q statistic

is able to estimate the size of the heteroskedastic error term of this example quite

well, something the global linear method has no chance of doing.

In general variance arises in our estimates not just from the inherent noise of

the problem, but also from not having enough data points in some regions of the

input space. In Figure 4-3 we show an example where the location of the input data

are chosen randomly in such a way that the marginal density of x does not exactly

coincide with the \interesting" features of the function. In particular, the input data

x is drawn from a N(1; 52) distribution, but the function is y = sinxe�0:1�(x+1)
2

+(x�
10)N(0; (0:01)2), which has interesting features well away from x = 1, the point of

highest marginal density. However, the increased size of the con�dence intervals for

lower marginal densities is quickly dominated by the variance from the noise term.

multiquadric.
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Figure 4-2: 1D example of RBF pointwise con�dence limits. Graph (a) shows the

data, true function, and approximate 95% con�dence limits computed by Equa-

tion (4.6) for � = 0:5. 17 evenly spaced training points (shown with o's) were used

to �t the curve, and 83 new points (shown with x's) were used for testing. Graph (b)

shows the true versus estimated conditional standard deviation of the error term for

various values of the scale parameter �.
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Figure 4-3: Example of RBF pointwise con�dence limits for uneven data distribution.

20 randomly sampled training points (shown with o's) were used to �t the curve, and

80 new points (shown with x's) were used to test the con�dence limits. The value of

1.0 is used here for the scale parameter �.
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4.1.5 Limitations for General RBFs

Up to this point our discussion about con�dence intervals for RBF networks has

been con�ned primarily to kernel type networks, where we are doing \local" mod-

eling with a high density of centers/data. For many applications this is a fruitful

approach, but it has signi�cant limitations. For instance, what reason in general do

we have for believing that the smoothness prior (and therefore the particular choice

of basis function) that is correct for our function is also appropriate for doing the

spatial smoothing of the Q statistic? In particular, as we decrease the number of

centers used (for instance to control the number of free parameters per data point)

this smoothness prior on the conditional variance of the error becomes increasingly

important. In addition, fewer centers will generate increasingly inaccurate estimates

of the conditional density g(~x) of the data.

Thus as we push our use of RBF networks toward the more parametric approach

using only a few carefully chosen parameters, better pointwise con�dence limits may

be available in other ways. For instance, H�ardle (1990) gives some compelling ar-

guments for the use of various bootstrap estimates in the case of kernel regression,

although little in the way of theoretical properties are known about them. The gen-

eral idea behind bootstrap methods is to �t numerous models to resampled sets of the

data, and compute con�dence intervals from the quantiles of �tted values obtained at

each point. Since these methods do not in general depend upon the particular form

of the �tting method they could be used in the general RBF case.

4.1.6 Related Work

Methods for estimating the conditional error variance have been explored for other

nonparametric techniques. From the statistics literature, Gu and Wahba (1992) derive

Bayesian con�dence intervals for a quite general class of smoothing splines. For

multilayer perceptrons, Buntine and Weigend (1991) and Neal (1992) adopt Bayesian

formulations and derive estimates of the posterior probability distributions for the
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network outputs based on somewhat arbitrary priors for both the free parameters

and the conditional error variance. In the context of characterizing implementation

considerations Lovell, Bartlett and Downs (1992) bound the variance of multilayer

perceptron outputs due to errors in the free parameters and inputs, assuming that

those errors are independent and small.

4.2 Model Con�dence

In some sense we have \jumped the gun" by asking questions about the detailed

local performance in the input space of our models. Pointwise con�dence results may

indeed allow the user the ability to �ne tune model usage, for instance in cases where

uniform convergence is either not possible or not desirable, however model diagnosis

typically begins with consideration of the overall merit of the model and an assessment

of the truth of the model assumptions. Verifying model assumptions is an important

diagnostic step, for instance involving checks of the independence and normality of

model residuals and the lack of obvious uncaptured \structure" in the data (see Cryer

and Miller (1991) for a nice introduction), but we merely recommend it here and will

not delve into it explicitly. On the other hand, as do many other authors we believe

that determining the overall merit of a model is a critical step for empirically guided

modeling e�orts, and thus we cannot help but add some of our own comments and

insights to the large literature on the subject.

4.2.1 Training Set Measures

The simplest strategy for determining the overall merit of a model amounts to cal-

culating some global measure of model �tness, such as the �2 measure of Chapter 2,

on the training set data. If we do this for the two examples from Figure 4-1, for

instance, the �2 scores of 916,985 for (a) and 19,230,192 for (b) con�rm our graphical
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impression that (a) is a much better �tting model2.

If we �t a linear model to the data and our inputs are independent and normally

distributed, we can be more precise about this inference using the F-test. This stan-

dard regression diagnostic tests the null hypothesis that all of the linear coe�cients

are actually zero (i.e. not needed). For a data set with n points and a linear model

with p coe�cients, the test is performed by computing the F-statistic

F =
(�2(y; �y)� �2(ŷ; y))=p

�2(ŷ; y)=(n� p� 1)
(4:7)

where �2(a; b) =
P

n

i=1(a�b)2, ŷ denotes our model outputs, and �y denotes the sample

mean of the true outputs y, and comparing it against the F distribution with p and

n� p � 1 degrees of freedom. Performing this test on the examples from Figure 4-1,

for example, reveals that we can reject the null hypothesis with near 100% con�dence

for model (a), but with only 90% con�dence for model (b).

Can we use this F-test on the linear portion of our RBF networks (or for that mat-

ter, any of the usual linear regression diagnostic tests)? One could for instance think

of the nonlinear basis functions as an elaborate preprocessing stage for a standard

OLS linear model. However, satisfying the normality and independence assumptions

of the test would put signi�cant restrictions on the choices we can make for the basis

functions. First, the basis function scaling parameters would have to be kept small

to limit the induced dependence detween nearby basis function outputs. Second, the

form of the basis functions would have to be chosen carefully to transform the input

data sample density into a gaussian probability density function. Exact solutions to

this problem are explored in Appendix A, but qualitatively it is clear that as the input

dimensionality of the problem rises, the basis function chosen typically must decay to

zero quickly to counterbalance the fact that the density of points in a d-dimensional

hypersphere scales as O(rd�1) for a distance r from the center. Nonetheless, even if

2Note that since the two examples have the same number of data points there is no need to worry

about normalizing �2 to make the comparison fair.
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the independence and normality assumptions are questionable the F-test can be used

as an approximate test of a model's overall signi�cance, and we will in fact do so in

Chapter 5.

4.2.2 Sample Reuse Techniques and Data Mining

The use of single sample methods may be adequate if our model is correctly speci�ed,

but typically we would like the data to guide our model speci�cation, and thus we

must take care to avoid over�tting the data, i.e. �tting an over-parameterized model.

This central problem in data driven modeling is often referred to as the \generaliza-

tion" problem by the neural network community, and has been extensively studied by

statisticians. Sample reuse techniques such as the jacknife, the bootstrap, and cross-

validation are a general class of techniques that help with this problem by repeatedly

dividing the training data up into two pieces and holding one piece out to use only

for testing, thus in e�ect testing versions of the model on \out of sample" data (see

Efron and Gong (1983) for a nice treatment of these methods). Empirical tests of

these di�erent techniques often indicate mild superiority of the cross-validation style

versions; for instance H�ardle (1990) provides evidence that generalized cross valida-

tion may be a good choice for kernel regression methods. For this reason we make

heavy use of cross-validation in our RBF and other model building.

However, cross-validation does not guarantee good out of sample test performance,

even if we disregard possible bias in the cross-validation estimates due to data depen-

dence and other issues. In fact, we are sure to �nd spurious relationships in data by

chance simply from looking too hard at the same data. In the econometrics commu-

nity this phenomena is often called \data mining", with the analogy that if you will

�nd nuggets of \gold" if you dig enough for them (see Lovell (1983)).

To illustrate this, consider the example shown in Figure 4-4. The simple linear

models shown were obtained by searching for relations between pairs of variables from

a database of 1000 variables of 50 observations each by randomly selecting 1000 pairs
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and keeping the model with the best �t. The �rst search was done with a single model

�t over the entire sample for each chosen pair of variables, while the second search was

done similarly but using cross-validation to \ensure generalization". Unfortunately,

the F-statistics for these models tell us that they are both signi�cant (at the 99.99%

and 98.86% level respectively), despite the fact that our \database" is actually a large

collection of independent normally distributed random samples!
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Figure 4-4: Example of \data mining" by searching for good models from a �xed

set of data. See text for details. Model (a) was obtained by �tting one model over

the entire sample for each trial, while (b) was the best obtained from using 5-fold

cross-validation. In each case, o's represent the training data, and x's represent the

model outputs.

In statistical inference terms what has happened is that we have made Type I

errors; after all, a 98.86% con�dence level means that 1.14% of the time random

variables will happen to have at least that large of an F-statistic. In actuality what

we should have been doing is testing the hypothesis that our F-statistic is signi�cant

for the number of modeling attempts we made. In other words, if we tried �tting

m models we really want there to be only a 1% chance (say) that we erroneously

accept any of those m models. The well known Bonferroni method for simultaneous

con�dence intervals addresses this issue by recognizing that the least con�dent we
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should be in making m statements is if the correctness of each statement is mutually

exclusive and independent of the correctness of the other statements. Thus we should

have at least 100(1 � m � �) percent con�dence in m simultaneous statements that

we are individually con�dent about at the 100(1 � �) percent level. On our example

from Figure 4-4, for instance, the Bonferroni method would require an F-statistic of

19.85 or greater for even a 95% con�dence level on 1000 trials, which neither of the

models have.

However, since the Bonferroni method ignores any possible dependence between

the constituent con�dence statements it produces rather loose lower bounds. In some

simple cases it is possible to quantify the e�ect of such dependences, but generally

we will have to back o� in our desire to make rigorous con�dence statements simply

because of the complexity of the typical development process that leads to most

\�nal" models. Even if one is lucky enough to obtain a good results with a model

on the �rst attempt at testing against a completely new set of data, how many of us

would have the restraint to simply accept that model, without trying to �ne tune it

by tweaking input variables or including others, or comparing it with other modeling

techniques? Our tendency to do just that is quite justi�able in terms of �nding

the \best model", but unfortunately it wreaks havoc with our ability to make valid

inferences about the results because it is impossible to accurately re
ect the e�ects

of typical ad hoc model exploration on our inferences. Furthermore, as pointed out

quite nicely in Granger and Newbold (1974), this tendency must be considered on an

organizational level as well as a personal level, since for instance previous results from

other researchers have just as much potential to bias our e�orts and conclusions as

our own past work. Ultimately these considerations point to the limited amount of

data available in many domains as the fundamental restriction in what we can learn

about the domain.



Chapter 5

Application Two: Price Prediction

We now have all the necessary tools to try our hand at predicting �nancial time series.

Chapter 1 introduced our basic approach to time series forecasting, and Chapters 2

and 4 detailed the RBF algorithms and ideas that we need to build models. In

this chapter we will give an answer to the question of whether or not multivariate

nonlinear models o�er any improvement over traditional linear and/or univariate

approaches to �nancial time series forecasting. In order to arrive at our answer,

small sample sizes and suspicions of nonstationarity of the underlying systems will

encourage us to look at cross-sectional analysis in order to use as much data as

possible in specifying models and making valid inferences. Ultimately, though, our

answer will be a quali�ed \no"; although multivariate and/or nonlinear models can

in some cases explain �nancial data signi�cantly better than simpler models, the

economic signi�cance of the examples presented is suspect due to practical issues

such as transaction costs, liquidity, and data availability. However, regardless of

whether direct use of these models is pro�table, they can be useful in other ways,

such as testing hypotheses about the markets and placing a value on timely data.

99
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5.1 Industry Sector Models

The search for good statistical models typically begins with some theory about how

the underlying system of interest works, and some idea about what sort of variables

might be relevant for the model. The complexity of the �nancial markets and our

relatively inexact understanding of them may tend to make our theory rather ad hoc

and ill-speci�ed, but it is important nonetheless in terms of reducing the amount

of searching we need to do, and thus minimize the data mining considerations of

Chapter 4. The theory may come from a variety of sources; extending or re�ning other

known theories, gleaning ideas from market participants, or arguing from economic

�rst principles, to list just a few.

Take for example a commonly held theory about industry sectors; it is often

claimed that some stocks in a sector tend to lead the price movements in that sector,

while other stocks tend to lag. Presumably this is because prices of the smaller,

less closely followed companies in the sector are slower to re
ect new information

about the market, although there may be other reasons. Regardless of the \true"

explanation, we should be able to quantify and test this theory by modeling stock

prices as a function of various sector and market indexes.

5.1.1 The Data and Notation

The data for our sector models, and the other models presented in this chapter, is daily

closing prices from the Tokyo stock exchange for the period from January 4, 1989, to

February 25, 1991. An example of the speci�c data used for the sector models is shown

in Figure 5-1 for Kyokuyo Company, a medium sized Japanese �shing company, as

well as the corresponding values for a number of broad market indicators, including

the Nikkei 225, small, medium and large capitalization indexes, and the industry

sector index which contains Kyokuyo. In the following work, the �rst 430 points from

each time series (i.e. up to September 13, 1990) were used to build models, and the
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following 100 values were held back for out of sample testing.
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Figure 5-1: Daily closing prices of the Kyokuyo Company, its industry sector, capi-

talization sector, and the broad Nikkei 225 index. Vertical line separates training and

testing data for sector models.

A bit of notation will be needed to refer to these series in our models. Let us

denote the price of the target stock (i.e. Kyokuyo) as P = fp1; p2; : : : ; png. Similarly,

we can denote the Nikkei index with N = fntg, the small cap index with S = fstg,
the medium cap index with M = fmtg, the large cap index with L = fltg, and �nally

the sector index with T = fttg. Also, we denote noise or residual series with at or �t,

depending on whether we are assuming a normal distribution or not.

Linear models generated from this raw data tend to be misspeci�ed, however,

because of the temporal dependence in these series. This misspeci�cation typically
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shows up in the form of dependent residuals, a violation of standard regression as-

sumptions. Following common practice for �nancial time series, we transform the

price series above by taking the �rst di�erence of the logarithm, i.e.

rpt = log(pt)� log(pt�1) = log(pt=pt�1): (5:1)

If the stock in question does not pay dividends then rp is the stock's continuously

compounded return. In this chapter we will attempt to �nd models of the target stock

returns, and thus we will assume the data follows an equation of the form

rpt = f(rn; rs; rm; rl; rt) + �t (5:2)

where f may use any past values of the input series. Our model then will be an

estimate f̂ of f , and we will assess the performance of the model by looking at the

estimated residuals

�̂t = rpt � r̂pt (5:3)

where r̂pt are the predictions of our model f̂ on the given data set.

5.1.2 Performance Measures

In measuring the performance of our predictive �nancial models, we like to distinguish

between the performance of the statistical model, and the performance of any trading

system we devise using the model. In many situations we create models that do not

directly tell us what to do to make money, even though this may be our primary

goal. The model may predict, for instance, that some stock's price will rise by 1%

tomorrow1, but it doesn't directly tell us how much (if any) of the stock to buy. Thus

we adopt two di�erent sets of performance measures: one set to assess the model

�tness, and the second set to assess the pro�tability of simple trading systems based

1Or perhaps even that the price will rise between 0.5% and 1.5% with probability 95%.



5.1. INDUSTRY SECTOR MODELS 103

on the model's predictions.

From the statistical side, most of the models will be �t using some sort of sum

squared error cost function, and thus it makes sense to �rst look at a related error

measure. We choose the usual multiple coe�cient of determination, de�ned by

R2 = 100

"
1�

 
nX
i=1

�̂2
i

!
=

 
nX
i=1

(r
p

i
�E[rp])2

!#
(5:4)

However, when we test out of sample predictions we will be interested in both the

mean and variance of the errors, and thus we also report the root mean squared

prediction error de�ned by

RMSPE =
q
E[�̂]2 +Var[�̂] (5:5)

where E[] and Var[] are the usual sample mean and variance operators.

From the �nance side, we are interested in whether or not we can make money

by using the statistical model to trade. A reasonable �rst order trading strategy

based on the above type of predictions simply buys a �xed number of shares of the

stock if the prediction is positive, and sells that same number of shares short if the

prediction is negative. More complex trading strategies which vary the quantity

and suggest \no change" are certainly possible (especially with pointwise prediction

variance estimates), but our simple buy/sell strategy will serve for our evaluation

purposes. One measure of the success of this simple strategy is to calculate the

percentage of times that the model predicts the correct sign of the return2. We also

would like to know how much money we will make on the trading strategy, and for

this we use the annual rate of return, which is de�ned as follows. Let ri denote the

continuously compounded rate of return of our trading strategy in period i. Then

2Note that the \special case" of the return being zero is relatively common for short period

returns, and we do not count such points as correct unless the model explicitly predicts zero.
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our annual rate of return is

ARR =
k

n

nX
i=1

ri (5:6)

where n is the number of points in the entire test period, and k is the number of trading

time units per year (e.g. 52 for weekly trading, and roughly 253 for daily trading).

However, these returns may be surprisingly large (esp. for high frequency trading)

due to the fact that we are not including any transaction costs in our evaluation.

Rather than attempting to �nd some \reasonable" transaction costs to use in the

above calculations, we instead report the break even transaction cost (BETC), which

we de�ne as the percentage of the value of each transaction that would have to be

charged for ARR to be zero for the entire test period. Note that we assume the

transaction cost is paid only when the position is changed, not necessarily at every

time period.

The �nal measure of trading performance we use is the so-called Sharpe ratio,

which attempts to normalize returns according to the risk of the trading strategy.

This measure is de�ned as

SHARPE = (E[R]� E[Rf ])=
q
Var[R] (5:7)

where R is the simple return of our trading strategy (R = er� 1 for our continuously

compounded return from above), and Rf is the simple rate of return for a risk free

investment over the same period3. The Sharpe ratio can be shown to be the best

measure to maximize for an isolated investment decision if CAPM style assumptions

hold (see Bodie et.al 1989), and nonetheless is widely used even when the CAPM

assumptions seem tenuous.

3In this chapter we use 3 month deposit rates converted to the appropriate holding period for

Rf , which should be negligibly di�erent from the more textbook use of government insured bond

rates for the exact same holding period as our investment.
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5.1.3 Benchmark Trading Strategies

A popular model for stock price series is the random walk model, which in our notation

can be formulated as

r
p

t = �t (5:8)

where � is random noise with E[�] = 0 and E[�i�j] = 0 for i; j 6= 0. One implication of

the model is that the best prediction of the tomorrow's price is simply today's price,

which captures the notion that if any traders had true information about tomorrow's

price they would act on it until the price re
ected that information. Thus our random

walk trading strategy is simply a prediction of zero returns for each period, and will

be a useful benchmark for the R2 and RMSPE performance measures. Note that since

the SIGN statistic counts the number of points for which the predictions and actual

data have the same sign (either -1, 0, or 1), its value for the unbiased random walk

strategy shows the percentage of days with no change in price. Another interesting

benchmark strategy for the betting measures is simply to buy the stock on the �rst

day and hold it to the end of the period, which tells us the SIGN, ARR, and SHARPE

measures for the stock itself. Performance results for both of these strategies applied

to our target stock, Kyokuyo Company, are shown in Table 5.1.

5.1.4 Univariate ARMA Models

Let us begin our modeling attempts by seeing what we can do by building a lin-

ear model using only the stock returns time series itself. Box and Jenkins (1976)

proposed autoregressive moving average (ARMA) models to capture the linear corre-

lation between any speci�ed lags of a univariate time series and the error term of the

model from previous time points. Following our notation from above, we can write

an ARMA(p; q) model as

rt = �+ �1rt�1 + �2rt�2 + : : :+ �prt�p + �t � �1�t�1 � �2�t�2 � : : :� �q�t�q (5:9)
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Model R2 RMSPE SIGN ARR BETC SHARPE

Random walk -0.08 3.49 7.24 NA NA NA

0.00 3.89 5.10 NA NA NA

Buy and Hold NA NA 45.56 24.81 52.14 0.02

NA NA 44.90 -2.73 -1.05 -0.01

ARMA(0,1) 7.14 3.36 46.26 109.18 0.73 0.12

0.29 3.88 51.02 74.18 0.51 0.07

ARMA(1,0) 7.13 3.36 43.22 91.11 0.64 0.10

-0.38 3.90 48.98 134.48 1.05 0.13

OLS NMT 17.73 3.16 53.27 196.35 1.98 0.22

-7.03 4.02 47.96 94.01 0.85 0.09

M-estimates 8.97 3.33 52.57 176.61 1.76 0.20

4.73 3.79 48.98 104.24 0.99 0.10

RBF 2mq 19.78 3.12 52.57 182.33 1.86 0.20

-4.53 3.97 50.00 118.15 1.07 0.11

Table 5.1: Summary of the prediction performance for models of Kyokuyo Com-

pany daily stock prices. All measures except SHARPE are percentages. See text

for discussion of models and performance measures. First line for a model indicates

performance in sample; second line indicates performance out of sample.
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where � is the mean of the returns process and the �'s and �'s are constant coe�-

cients. No optimal way for deciding on the order p and q of the model in general is

known, but useful tools in their speci�cation are the sample autocorrelation (ACF)

and partial autocorrelation (PACF) functions. ACFmeasures the correlation between

di�erent lags of a time series, while PACF measures the residual correlation after the

correlation implied from earlier lags is subtracted out4. Figure 5-2 show the ACF

and PACF for the in-sample Kyokuyo returns, and indicate that �rst order ARMA

models should su�ce to capture what little linear structure is present in the data.
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Figure 5-2: Sample autocorrelation (a) and partial autocorrelation (b) functions for

Kyokuyo returns. Dashed lines indicate approximate 95% signi�cance levels.

ARMA(0,1) and ARMA(1,0) models �t to the Kyokuyo in-sample data using a

conditional maximum likelihood �tting procedure yielded parameter estimates of �1

= -0.2724 (stderr = 0.0465) and �1 = 0.2685 (stderr = 0.0466). The usual diagnostics

for these models indicate a good overall �t, and the residuals do not display much

correlation structure left in them although our normality and constant variance as-

sumptions are suspect (see Figure 5-3). Note that the constant trend term � was not

4Interested readers are encouraged to consult a standard time series textbook such as Wei (1990)

for more detail on the de�nition and use of ACF and PACF.
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included in these models, based on a standard t-test of the mean of the returns (mean

= 0.09%, stdev = 3.48%).
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Figure 5-3: Diagnostics for the ARMA(0,1) model rpt = �t + 0:2724�t�1.

One step ahead predictions for the ARMA(0,1) model are shown in Figure 5-4.

The prediction performance of both models is roughly the same, which is an expected

result for �rst order ARMA models with small coe�cients (see Table 5.1). We also

�t seasonal ARMA models in an attempt to capture the weaker correlation structure

in the data at lags 5 and 9, but these did not yield signi�cantly better �ts than the

simple �rst order models.
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magnitude of the predictions is indicative of the poor explanatory power typical of

stock return models.
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5.1.5 Multiple Regression Models

In an attempt to improve on our univariate results, we now turn to multiple regression

linear models. The simplest model using all of our time series as regressors is of the

form

r
p

t = � + �pr
p

t�1 + �nr
n

t�1 + �sr
s

t�1 + �mr
m

t�1 + �lr
l

t�1 + �tr
t

t�1 + at (5:10)

where we are modeling the returns at time t as a linear combination of all the time

series at t � 1. However, we cannot expect all of the coe�cients � to be statisti-

cally signi�cant, and we would like to eliminate unneeded terms. Rather than �tting

the full model and one by one eliminating insigni�cant coe�cients, we performed an

all subsets regression test on the all of the available predictors, using Mallow's Cp

statistic (see Figure 5-5) and the adjusted R2 statistic to select appropriate reduced

models. This technique suggests using the NMT or PNMT terms as regressors. The

t-statistic of the P term in the PNMT model is too small to be signi�cant, however,

and thus we reject that model. OLS regression results for the NMT model are given

in Table 5.2. Diagnostics for the NMT model are similar to those for our univari-

ate models and show little autocorrelation in the residuals, although normality and

constant variance assumptions are suspect. Unfortunately prediction performance re-

sults show signi�cant improvement over the univariate models only for the in-sample

period (see Table 5.1).

5.1.6 Robust Methods

A striking feature of the Kyokuyo price series is the large rise around November 1989

and the breathtaking fall around March 1990. A natural concern is that points such

as these are contaminating our models, and thus we attempted to �t a robust multi-

variate model to the data to account for this. This model was obtained by performing

M-estimation, which uses iteratively reweighted least squares to approximate the ro-
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Figure 5-5: All possible subsets regression for Kyokuyo. Good models have values of

Cp close to the line shown.

Residual Standard Error = 0.0317, Multiple R-Square = 0.1773

N = 428, F-statistic = 30.4658 on 3 and 424 df, p-value = 0
coef std.err t.stat p.value

Intercept 0.0019 0.0015 1.2316 0.2188

Nikkei -1.4241 0.4061 -3.5068 0.0005

MedCap 1.8525 0.4166 4.4470 0.0000

Sector 0.4806 0.0875 5.4899 0.0000

Table 5.2: OLS regression results for NMT model of Kyokuyo returns.
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bust �t, with residuals from the current �t passed through a weighting function to

give the weights for the next iteration. The �tted coe�cients for our NMT model are

�n = �0:1194, �m = 0:3682, and �t = 0:1031, and the estimated weights are shown in

Figure 5-6. Indeed, the procedure gives low weight to the highly volatile stretches of

the data, and some of the prediction performance measures show improvement (see

Table 5.1). As a side note, if we apply the M-estimation procedure to the price series

alone (i.e. a univariate ARMA(1,0) model), the coe�cient obtained is very close to

zero, a result consistent with the random walk model.
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Figure 5-6: Weights estimated in robust multiple regression.
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5.1.7 RBF Models

Many other global linear models could be tried on our Kyokuyo prediction problem,

but it seems likely that the above methods yield results that are representative of what

we would obtain from other linear methods. There is also the pervasive belief that

many people have spent years in unsuccessful searches for predictive linear models.

Our hypothesis is that nonlinear models of multivariate inputs is the key to making

headway in this area, and thus we now put our hypothesis to the test by �tting an

RBF model to the Kyokuyo data.

For comparison purposes, we use the same input data as Sections 5.1.5 and 5.1.6

(i.e. NMT inputs at time t�1), and �t an RBFmodel with 2 multiquadric centers. To

lessen the number of parameters we need to estimate, we �x the input weight matrix

W at square root of the inverse of the input covariance matrix. These parameter

choices were made using cross-validation style model speci�cation, as discussed in

Chapter 4. The model obtained was

c
r
p

t
= �0:012
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for

M =

266664
217:56 �148:63 �21:94

�148:63 226:66 �9:45

�21:94 �9:45 51:75

377775
Note that the model diagnostics were similar to the linear models (i.e. no apparent

serial correlation in the residuals, but questionable normality). The prediction perfor-
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mance of this model, however, seems slightly better than the linear models, especially

in the out of sample period (see Table 5.1).

5.1.8 Signi�cance of Results

Based on the results in Table 5.1 can we conclude that our nonlinear RBF model

is superior to the linear models? Can we claim that any of the models signi�cantly

outperform the random walk model? Unfortunately we cannot make any such claims,

because the consistency and magnitude of outperformance is too small in each case.

For instance, if we assume the excess returns of our trading strategies are normally

distributed and we interpret the SHARPE measure as a t-test, we cannot reject

the null hypothesis that the average excess return is zero. Similarly, if assume that

the signs of our predictions are temporally independent and we interpret the SIGN

measure as a one sided proportions test, Pearson's �2 statistic for 98 observations (the

length of our out of sample test set) indicates that we would need roughly 57% correct

to be 95% con�dent in rejecting the null hypothesis that we are merely achieving the

random guessing performance of 47.45%5, but that is not the case for any of our

models.

Aside from simply �nding models with much larger magnitude outperformance,

the only way we can strengthen our inferences is to use more data
6. There are

a number of ways we can do this, although practical considerations often restrict

the usefulness of each approach. For instance, we could increase the size of the

testing period and hope that the performance measures did not decrease over the

longer period; however, data availability and fears of nonstationarity may limit our

ability to do this. Alternately we could use higher frequency data and hope the same

type of input factors are relevant at the faster time scale, although typically model

5Since we never count returns of zero as \correct", random guessing on the out of sample period

would on be (100%� 5:10%)=2 = 47:45% correct on average.
6Indeed, using more data also helps limit the data mining problem in our model speci�cation

search.
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performance is quite sensitive to this. In the stock market domain, however, we

have a perhaps less problematic approach available to us; we can build structurally

identical models for many di�erent stocks, and make inferences based on the aggregate

performance of the collection of these models.

5.1.9 Using Other Stocks

Rather than looking in the time dimension for more data to ease our inference di�-

culties, we suggest looking in the \space" dimension. In the sector model case this

means building structurally identical models for many di�erent stocks, which allows

us to look at our performance measures across more data. To this end we estimated

the models of Sections 5.1.3 thru 5.1.7 on a sample of 40 stocks randomly chosen

from the Tokyo Stock Exchange First Section7, using the same training and testing

periods as for Kyokuyo. The distribution of performance measures for the di�erent

stocks do in fact bolster our con�dence that the multivariate models are signi�cantly

better than both the benchmark and the linear models (see Figure 5-7).

The outperformance of the multivariate models can be shown somewhat more

rigorously by extending our proportions test and t-test from Section 5.1.8 to use

our expanded results. First we would like to compute a Pearson's �2 proportions

test on our SIGN measures averaged across the 40 stocks, which are BUY&HOLD

= 43.83%, ARMA(0,1) = 47.73%, ARMA(1,0) = 44.45%, OLS NMT = 52.20%, M-

estimates = 51.175%, and RBF 2mq = 52.10%. A somewhat liberal test would be

to pool the counts of getting the correct sign together for all 40 stocks, and test

it against 40 � 98 = 3920 trials and the average random guessing SIGN measure of

45.41%. A 95% con�dence interval for this one-sided test is 46.73%, which encourages

us to reject the null hypothesis in all but the BUY&HOLD and ARMA(1,0) cases.

However, the assumption of independence between the SIGN measures for each stock

7The stock codes used were 1301, 1802, 1923, 2501, 3101, 3405, 3862, 4004, 4092, 4503, 4613,

4902, 5401, 5563, 5701, 5711, 5802, 6302, 6383, 6474, 6501, 6701, 6758, 6857, 7011, 7203, 7701, 7731,

8051, 8053, 8232, 8302, 8311, 8402, 8585, 8604, 8755, 8801, 9001, and 9501.
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Figure 5-7: Boxplots of out of sample prediction performance across 40 randomly

chosen TSE1 stocks. For each box, the midline indicates the median of the distribu-

tion, the top and bottom of the box indicate the �rst and third quartiles, the whiskers

extend to 1.5 times the interquartile range, and the detached horizontal lines indicate

\outliers" beyond this range. Dashed horizontal reference lines are drawn at 0% for

R2, the random guessing score of 45.41% for SIGN, the risk free rate of 7.78% for

ARR, and the one way break even transaction cost of 0.5% for BETC.
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is problematic, because we know that even randomly selected stocks will be correlated

to some extent. To gain perspective on how much this dependence is a�ecting us,

we can also test against only 98 trials, which is tantamount to assuming the SIGN

measures from di�erent stocks are perfectly correlated. Using this more conservative

test the 95% con�dence level is roughly 54%, which we do not reach for any model

type8. A �nal note about these tests is that the \random guessing" SIGN measure

is an estimate from the stock data, and may be biased (for instance if the market

follows a random walk with a nonzero mean).

In a related vein we note that the distribution of the annual rate of return (ARR)

measure across the 40 stocks is roughly gaussian for each of the model types, and thus

it makes sense to apply a t-test on the 40 ARR numbers for each model type to test if

ARR is higher than the risk free rate9. We can take this approach one step further and

compute a paired t-test for each pair of model types, in order to see which model type

ARR means are signi�cantly higher than other model types. To avoid the escalated

chance of incorrectly rejecting the null hypothesis in these tests due simply to the

large number of them, we adopt Bonferonni's method for simultaneous t-tests. Note

that these tests should be used only as rough approximations because of our concern

about the independence between model performance on di�erent stocks. However,

results of these approximate tests once again indicate that the multivariate models

(especially OLS and RBF) are signi�cantly better than the other models, although

the di�erence between the multivariate models is not quite signi�cant (see Table 5.3).

A similar test can be performed on the BETC measure to show that the one way

break even transaction cost is greater than 0.5% for the OLS and RBF models, but

not the ARMA or M-estimate models.

What about our original hypothesis that some stocks should lag sector prices

8The model type with the best SIGN measure, OLS NMT, has an 89% con�dence level for this

test.
9This test corresponds to taking the Sharpe measure of an equally weighted portfolio of the 40

trading strategies for each model type.
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B&H ARMA(0,1) ARMA(1,0) OLS M-est RBF

BUY&HOLD 0.93

ARMA(0,1) 1.65 2.72

ARMA(1,0) 1.99 0.91 3.20

OLS NMT 4.53 3.44 3.02 7.46

M-estimates 3.43 1.95 1.68 -2.38 5.55

RBF 2mq 5.33 3.26 3.14 -0.06 1.86 8.14

Table 5.3: Approximate t-statistics for ARR measures across 40 stock models of each

type. Diagonal elements are one-sided tests against the risk free ARR rate of 7.78%

for this period. O� diagonal elements are paired t-tests that the average ARR of the

\row" model type is higher than the average ARR of the \column" model type. Bold

entries exceed the overall 95% con�dence level of 2.994 for 21 simultaneous t-tests

each with 39 degrees of freedom.

and some should lead? If this hypothesis is true, we should see that our models for

some stocks should be relatively accurate and pro�table, while others should not. In

particular, we suspect that the laggards are small capitalization stocks. Evidence in

favor of this hypothesis can be shown by computing the rank correlation between

stocks' in-sample R2 measures and their market capitalization, which is signi�cantly

negative for the OLS and M-estimate models (-0.43 and -0.46 respectively). Indeed,

if only trade the 20 stocks with the highest in-sample R2 measures, in both cases the

average out-of-sample ARR measures increase (104% to 124% for OLS models, and

84% to 90% for M-estimate models). In general, though, it appears that we have

delivered on only half of our promise; the use of multivariate input data has improved

our predictions, but the bene�t of using a nonlinear RBF model isn't clear thus far.

5.2 Margin Models

In this section we will apply the insights and methodology we developed for sector

models to a second example, margin trading. One way that investors take larger

bets than they otherwise might be able to do is to buy or sell stocks on margin.
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Buying stock on margin amounts to paying only a percentage of the total cost of the

purchase, and implicitly borrowing the remainder. Similarly selling stock on margin

means that the investor need only leave a percentage of the proceeds of a short sale in

their account as protection against an increase in the cost of closing out the position.

In this way margin trading provides the investor with greater leverage than ordinary

trading, and thus is often adopted by speculative investors.

The Japanese equity market is well known, historically at least, for the speculative

fever that regularly attacks the favored \stock of the month", where that stock's price

undergoes a breathtaking rise and eventual fall which cannot typically be justi�ed

from any fundamental considerations of the underlying company. To some extent

these speculative price \bubbles" are thought to be caused by the (again, at least

historical) tendency of the largest four brokerage houses in Japan to use their large

numbers of salespeople to push particular stocks on investors. Can we use margin

trading information as a surrogate for this speculative behavior and predict these

disproportionate price movements? This is the goal of our modeling e�orts in this

section.

5.2.1 The Data

The data used for these experiments is the total balance of margined shares held

(either long or short) at the end of each week for the 40 stocks introduced in Sec-

tion 5.1.9, along with the corresponding stock returns, for the 111 week period from

January 8, 1989 to February 17, 1991. Let us denote the margin buying balance as

B = fbtg, the margin selling balance as S = fstg, and the target stock price again as

P = fptg. Exploratory analysis of this data indicate some support for our theory of a

relation between margin data and price bubbles. For instance, quick jumps in margin

buying and selling often occur around large jumps in price, although the exact timing

of these variables is not clear (see Figure 5-8).

To model this data we again use the stock returns rather than the raw prices. Sim-
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Figure 5-8: Weekly margin and price data for Nippon Chemical. Left axis shows price

per share in yen, and the right axis shows margin balance expressed as a percentage

of shares outstanding. Dashed vertical line shows split of data into training and out

of sample testing sets.
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ilarly after some experimentation with various transformations of the margin balance

data, we use the \return" of that as well, although this has a less obvious mean-

ing. As before we denote these returns as rb
t
� log(bt=bt�1), r

s

t
� log(st=st�1), and

r
p

t � log(pt=pt�1). For the purposes of out of sample testing, we divide the data set at

the same date as our daily sector models, yielding a training set of the �rst 90 weeks

of returns data and a test set of the last 20 weeks.

5.2.2 Models

Following similarmodel identi�cation steps as in Section 5.1, a reasonable multivariate

model of the margin data was found to be

rpt = � + f(rpt�1; r
p

t�2; r
b

t�1; r
b

t�2; r
s

t�1; r
s

t�2) + �t (5:12)

i.e. using the values of the previous two weeks of each series to predict the price for

this week. As usual, the unfortunately small size of the database encouraged us to

focus attention on models with small numbers of parameters. The linear OLS versions

of this model, for instance, have 7 parameters. For RBF models we chose to use 4

gaussian nonlinear units with �xed centers and �xed input weights, thus yielding 11

free parameters (4 gaussian scale parameters and 7 output coe�cients).

Perhaps not surprisingly, we were not able to �nd good models for all of the

40 stocks in our sample. For instance, looking at the OLS models described by

Equation (5.12), the F-test of the model �tness as a whole could not reject the null

hypothesis at the 95% signi�cance level for 28 out of 40 of the models. We believe

our inability to �nd good models for some of these stocks is due simply to the fact

that not all of the stocks encountered substantial margin trading activity during our

training period. To support this belief, we note a rank correlation of -0.27 between

the F-statistic p-value for our OLS models and the median percentage of weekly total

trading volume that are margin buy trades. Thus we continue our analysis with only
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B&H ARMA(0,1) OLS RBF

BUY&HOLD 4.04

ARMA(0,1) -0.99 0.46

OLS -2.01 -1.66 -1.39

RBF 4g 1.00 1.67 2.16 3.15

Table 5.4: Approximate t-statistics for ARR measures across 12 margin models of

each type. Diagonal elements are one-sided tests against the risk free ARR rate of

7.78% for this period. O� diagonal elements are paired t-tests that the average ARR

of the \row" model type is higher than the average ARR of the \column" model type.

Bold entries exceed the overall 95% con�dence level of 3.11 for 10 simultaneous t-tests

each with 11 degrees of freedom.

the 12 stocks that from our F-test seem to have reasonable margin models. Out of

sample results for all of our model types across these 12 stocks are shown in Figure 5-

9. RBF models perform the best for this period, and accumulate an average annual

rate of return of 293% with an average one way break even transaction cost of 2.14%.

These results indicate that the nonlinear RBF models may be more appropriate for

this problem than the others, although we note that the overall bull market during this

period makes the buy and hold strategy a stronger than usual choice. The matrix of

t-test results on the rate of return for each strategy across an equal weighted portfolio

of the 12 stocks are shown in Table 5.4.

5.3 Economic Signi�cance

Although we seem to have discovered some useful stock return models in the previous

sections, can we claim any economic signi�cance about them? Should we put them

forth as refutation of some form of the e�cient markets hypothesis? Unfortunately

the answer to these questions is \no".

Despite our attempt to be realistic about measuring the trading performance of

our models (including consideration of transaction costs), we have made a number of

assumptions in our testing that are or may be unwarranted. For instance, in our sector
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Figure 5-9: Boxplots of out of sample prediction performance for margin models across

12 TSE1 stocks. For each box, the midline indicates the median of the distribution,

the top and bottom of the box indicate the �rst and third quartiles, the whiskers

extend to 1.5 times the interquartile range, and the detached horizontal lines indicate

\outliers" beyond this range. Dashed horizontal reference lines are drawn at 0% for

R2, the random guessing score of 47.08% for SIGN, the risk free rate of 7.78% for

ARR, and the one way break even transaction cost of 0.5% for BETC.
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models we made the tacit assumption that when we wanted to buy a particular stock

that we predicted would rise in price tomorrow, we could purchase an acceptable

number of shares of it at today's closing price. Unfortunately the stocks that we

identi�ed as most likely to be pro�table are probably in fact the very stocks for which

this assumption is least valid - small cap stocks. Even if we could get the prices we

wanted for these trades, the volume we could manage might not be enough to keep our

transaction costs at a reasonable level. Thus before claiming economic signi�cance

for our sector (or any other) models, we would �rst have to provide evidence that

trades at the required size and price could be executed, although in this case we do

not have the data to do this.

Our margin models su�er from a equally disarming problem - the margin balance

data is in fact not available in time to make our predictions. Although we were careful

to use postdated information in our predictions - i.e. the prediction for change in price

from the close of one Friday to the close of the following Friday depended only on

data describing margin balances up to the �rst Friday - in fact the data we used is

not published until Thursday of the predicted week, thus eliminating the value of our

models for trading purposes.

We've touched on a few of the most common practical considerations (liquidity,

asynchronous trading, data availability) that can cause problems when we actually go

to implement our strategies in the real markets, but there are a multitude more. For

instance related to the liquidity question, it might be crucial to factor in some estimate

of how the price we obtain is in
uenced by the size of our transaction, especially if

we plan to do relatively large trades. Another complication is that historical data is

often corrected or revised after the fact, and it may be di�cult to obtain the original

version. Finally, some strategies may simply require the execution of more trades than

existing infrastructure can handle. In general, deciding if \paper" trading strategies

will work in the real world takes a surprising amount of e�ort and attention.

Regardless of the economic signi�cance of our models, however, they can be quite
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useful in other ways. For instance in the case of our margin models, if we hypothesize

di�erent delivery days for the margin balance information we �nd that our hypothet-

ical trading pro�ts decrease monotonically as the delivery time approaches the actual

time, thus in essence placing a monetary time value on this source of data (see Fig-

ure 5-10). In general we believe that these types of models can provide a quantitative

methodology for making money if their trading characteristics are engineered to care-

ful match an investor's inherent advantages in data availability, trading execution, or

market presence.
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Figure 5-10: Distribution of ARR performance for the 12 best RBF margin models

for di�erent hypothetical delivery days of the margin balance data.
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Chapter 6

Implementation Issues

In Chapter 2 we touched upon how we might implement the ideas presented in this

thesis when we discussed estimation algorithms. In this chapter we return to this

topic and further explore the issues and possibilities that arise when writing the

computer programs that implement the style of statistical modeling we would like

to do. Generally speaking, the advent of fast, massively parallel computer systems

encourage us to pursue this nonlinear/multivariate exploratory style of modeling. The

increased size of these computer systems allow us to work on much larger and more

realistic data sets, and their increased speed enables us to use computationally intense

algorithms that in some cases ameliorate our lack of analytic or theoretical results.

However, we must take care to use the machines in sensible and e�cient ways if we

are to pro�tably pursue this style of modeling. In addition to the data mining worries

discussed in Chapter 4, the nonlinearity and large size of some problem domains we

might consider will cause extra numerical problems that we will have to guard against.

6.1 Parallel Computer Implementations

Much of the computation necessary for exploratory statistical modeling can be found

directly in the equations describing the various estimators used. These equations

127
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typically involve the repeated evaluation of various functions, some fairly complex,

across large sets of data. This style of repetitive computation has a natural analog

in the data parallel computing paradigm of the parallel computing world, a paradigm

commonly supported on massively parallel computers such as the Connection Machine

system that was used to generate some of the results in this thesis. The data parallel

paradigm logically assigns one data element (e.g. of an array) to each processor in the

parallel machine, and evaluates functions of that data simultaneously across selected

subsets of those processors. This contrasts with process level parallel computing,

where di�erent stages in an algorithm are allocated to di�erent processors and run

simultaneously, passing data from one stage to the next.

Although on a super�cial level the data parallel computing paradigm is a nice

match for the kinds of computations we would like to do, it is nontrivial to come up

with applications that use this style in an e�cient and sensible way. The novelty of the

paradigm and the machines that support it mean that much of the software necessary

must be written from a low level. On one hand writing software \from the ground up"

on these powerful machines provides an opportunity to rethink algorithms, but on

the other hand we will also be forced to reconsider issues such as data layout, 
oating

point precision, and numerical stability of algorithms. Before undertaking such an

e�ort it makes sense to understand where the motivations and potential bene�ts lie

in doing so.

6.1.1 Large Data Sets

Many studies that have applied learning networks to time series analysis have used

quite small data sets, such as the annual record of sunspot activity. Why do we

need fast and/or parallel computers to study a data set with only a few hundred

points? Indeed, a fast workstation may be su�cient in this particular case even for

the most demanding learning algorithms. In general, however, we argue that for real

world problems our tendency will be to try to use as much data as possible in our
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modeling e�orts, both to improve our situation from an estimation standpoint, and

to increase the complexity of functions which we can learn. Extensions to the option

pricing application from Chapter 3, for instance, could involve a sampling across

the operating range of all the feasible inputs (e.g. stock price, strike price, time to

expiration, risk free rates, volatility) which could easily lead one to use data sets with

millions of examples.

Thus despite initial impressions, we will often want to use much larger sets of data

than we might imagine initially. Convergence results for learning networks such as

those found in Barron (1991), and Girosi and Anzellotti (1993), for instance, show

that the size of errors a statistical model makes is a function of the complexity of

the underlying relationship being learned and the number of data points available for

training. For a �xed underlying relationship, then, the way we get better models is

to use more data points. However if for whatever reason we must be mostly passive

in our collection of data, we must go about �nding this extra data in smarter ways

than simply collecting more data.

One way of doing this in our modeling context is to use observations from similar

relationships in some way, either to help set some prior for the model (for example

by setting the general functional form of the cross-sectional models of Chapter 5), or

directly to solve a joint estimation problem (for example formulating one model for

all stocks in the market). Another possible solution to the sample size problem is to

create \new" data, which can be done in a number of ways. If we know the noise model

of the data, we can simply resample the existing data and add the appropriate noise

to obtain more data1. If our estimate of the underlying relationship is good, it may

be possible to do even better than this by using the function estimate to interpolate

between examples. Techniques such as the latter have been used to analyze chaotic

time series, for instance see Farmer and Sidorowich (1989).

From an implementation viewpoint, then, we will often generate data sets large

1This is the idea behind naive bootstrap methods.
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enough to use a few hundred processors e�ciently if we are careful to lay out the

data so that the data expanding style of resampling and interpolation will not cause

unnecessary data motion. Another overriding e�ciency consideration related to this

is how much time we will have to spend reading the data into the machine and write

out the results - if the I/O performance of our parallel machine is not fast enough,

for instance, it may not be worth the e�ort of writing highly e�cient computational

routines.

6.1.2 Computationally Intense Algorithms

The ability to handle large data sets is nice for solving real world problems, but

there is another perhaps more interesting way that parallel computers can help with

exploratory statistical modeling - they provide the speed to use algorithms too com-

putationally intense to consider otherwise. These algorithms fall into two broad

classes: �rst, learning network speci�c ways to parallelize the networks' iterative,

time consuming estimation algorithms; and second, general methods for identifying

good models and estimating our con�dence in them.

Large Matrix Algebra

Estimating RBF networks is a good case in point. RBF networks are often touted

as being more computationally e�cient than other learning networks (such as mul-

tilayer perceptrons) that require iterative techniques because an important stage in

the estimation of RBF networks, the output coe�cients, can be done directly using

matrix inversion (for instance see Moody and Darken (1989)). This claim may be

true if we �x the other parameters or if we can use fast heuristics for their estimation

(such as the clustering approach of Moody and Darken for selecting centers), but in

general we will have to adopt an iterative approach for RBF networks as well if we

want to estimate all of the parameters with a general minimization method such as

Levenberg-Marquardt. Although we cannot make any claims about increased e�-
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ciency in the general case, it is clear that practically we will get a lot of mileage out

of the use of e�cient matrix algebra routines such as matrix inversion, multiplication,

and transposition. Note that this will be true even in the direct solution case if we

need to select a large number of centers, and therefore have to invert a large matrix

to solve for the output coe�cients.

However, even if our parallel machine has a nice library of matrix algebra routines,

it is not necessarily clear what is the best way to organize the overall structure of the

computations necessary. Various e�orts have been made to implement a multilayer

perceptron estimation program on the Connection Machine system, for instance, and

the best implementation to use depends on the size of the data set and the complexity

of the function being learned (see Singer (1990)). If we have enough data it is likely

that spreading the data over the entire machine and estimating one network at a time

will be the best solution - this is the strategy used below on our implementation in

Section 6.1.3.

Parallel Search

Another interesting strategy is to estimate multiple networks simultaneously. The

goal of this strategy could simply be the \embarrassingly parallel" application of sat-

isfying many model estimation requests, either from multiple users or from a model

identi�cation search for one user. Note that the judicious use of the latter can to

some extent o�set our lack of prior knowledge in the problem domain. Estimating

multiple networks could also be pursued in the context of a parallel search for good

minima on a single problem. This search could be as simple as simultaneously check-

ing various samples of the parameter space, or it could use a more advanced algorithm

to coordinate the search. One natural candidate for this kind of search is \genetic

algorithms", which update a pool of candidate solutions using operators analogous

to those found in biological evolution. Hillis (1990) shows how this kind of search

algorithm can be parallelized for the Connection Machine by dividing the candidate
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solutions amongst the processors and updating them using the communication ca-

pabilities of the machine, although his system is not speci�cally targeted towards

statistical modeling.

Sample Reuse

A �nal way that we can leverage the power of fast computers by estimating multiple

networks is in implementing the sample reuse methods of Chapter 4. Cross-validation,

for example, multiplies the number of models that must be estimated by a constant

but signi�cant factor (e.g. 10), while each model is still estimated on the bulk of the

data (e.g. 90% of the points). Not coincidentally, the use of sample reuse techniques

such as cross-validation is most important in a data driven, exploratory setting to

minimize the dangers of data mining, and thus any system that we propose which

might \mine" the data (for instance based on the parallel search strategies outlined

above) should also incorporate the added expense of a sample reuse technique. Fur-

thermore, bootstrap techniques for generating con�dence intervals require estimation

of 10's to 100's of identical models to collect statistics on the distributional prop-

erties of the system. Regardless of the exact mix of methods we choose, the best

implementation strategy for such a joint sample reuse / parallel search system would

again depend on the size of the data set and the complexity of the estimation process,

although computationally there doesn't need to be any distinction between di�erent

cross-validation model instances and bootstrap model instances and parallel search

model instances, as long as we can conceptually group models when computing some

global values such as the cross-validation error. This type of operation is well sup-

ported by the segmented parallel pre�x class of operations on the Connection Machine

system, for example.
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6.1.3 A CM-2 Implementation

An e�ort was made early in the research for this thesis to build a general purpose

Radial Basis Function estimation program for the Connection Machine CM-2 system.

This program was written entirely in CM Fortran, and made heavy use of the matrix

algebra routines in the prepackaged CMSSL Scienti�c Software Library on the CM-2.

A general �le interface was provided to the program so that it could be used for

any problem of learning from real numbered examples. The program supported the

estimation techniques described in Chapter 2, including random step with gaussian

noise, batch style gradient descent, and Levenberg-Marquardt.

Some comments are in order about the naive random step algorithm. As noted in

Caprile and Girosi (1990), this algorithm is more e�cient if di�erent noise distribu-

tions are used for qualitatively di�erent groups of parameters. In our implementation

for RBF networks, we group the input weights, centers, scale parameters, and output

coe�cients separately, and allow a separate mean and standard deviation for the noise

distribution for each group. In addition, we assign each group a selection probability

which determines how what percentage of the time a parameter from that group will

be chosen for modi�cation. We view this as a possible precursor to more sophisticated

algorithms which temporally alter these selection probabilities, for instance to �rst

concentrate on center placement, then scale. We also note that signi�cant compu-

tational savings can be made when implementing the random step algorithm by not

recomputing the entire network for all parameter changes. Indeed, for a single scale

parameter or output coe�cient we compute the incremental change in overall error

due only to that term of the equation. However, we have found experimentally that

trials for the centers and input weights are virtually never accepted unless the out-

put coe�cients are also adjusted to compensate, and thus we follow all such trials by

solving for the least squares optimal coe�cients using the matrix inversion procedure.

Thus a basic random step iteration for RBF networks is to run the network forward

for all inputs, while computing a matrix inverse to solve for the output coe�cients.
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Each iteration of the Levenberg-Marquardt algorithm is of similar complexity, al-

though it requires additional calculation of the network derivatives. Timings on the

Connection Machine for random step iterations are shown in Figure 6-1, although we

note that this code was not particularly optimized for speed. Also note that because

of the matrix inversion, the storage requirement for this operation is O(n � k) for k
centers and n data points, whereas the simple gradient descent algorithm is O(n+ k)

and thus can handle signi�cantly more data on a �xed size machine. However, on

informal comparisons of these algorithms on examples from the research in this thesis,

the Levenberg-Marquardt (LM) algorithm consistently converged faster than random

step or gradient descent (both in terms of number of iterations and in terms of wall

clock time) despite the fact that we found it was better to adjust the variable pa-

rameter of LM (i.e. controlling the degree of use of the inverse Hessian versus the

gradient) quite slowly to avoid getting too optimistic or pessimistic about the validity

of LM's quadratic approximation.

For the reasons presented above, we believe that it makes sense to implement such

an exploratory nonlinear statistical modeling software package on a parallel computer.

It should be noted, however, that in some applications the need for interprocessor

communication will be very light, and thus a network of workstations may be more

appropriate from a cost-performance point of view. This is especially true for the

mostly independent searches and simple models that tend to dominate early stages of

the exploratory process in a noisy domain, although of course in other domains large

models may be appropriate from the very beginning. Regardless, from a practical

point of view a parallel computer implementation's ability to greatly speed up the

turnaround time for experiments, ease the handling large data sets, and permit the

use of computationally intense algorithms give it a de�nite advantage when compared

to existing serial implementations. Zhang and Hutchinson (1993), for example, argue

that this advantage was a reason for their success in the 1992 Santa Fe Institute Time

Series Prediction Competition. We also note that in terms of gaining broad acceptance
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among users, the 
oating point performance of a statistical software package may be a

necessary condition, but other considerations such as functionality, I/O performance,

graphics, and documentation often prevail.

6.2 Numerical Considerations

In this section we review some of the numerical di�culties that we encountered while

implementing various RBF estimation programs. Although these di�culties are cer-

tainly present for the CM-2 implementation discussed above, they stem from the

complexity and large size of the networks being estimated, and thus we discuss them

in a separate section to highlight the fact that they will be encountered in the esti-

mation of complex, large RBF networks implemented on any hardware platform. In

addition, we feel that understanding these numerical di�culties is important not only

to get good solutions; but also that exploring the di�culties in a bottom-up style can

often lead to new insights about the estimation process itself.

6.2.1 Matrix Inversion

In Chapter 2 we noted two places where a required matrix inversion operation was

possibly ill-conditioned: in the direct solution of the output coe�cients (see Equa-

tion 2.8), and at the heart of the Levenberg-Marquardt method when inverting the

Hessian matrix (see Equation 2.5). Although blind adoption of a stable matrix in-

version routine such as Singular Value Decomposition (SVD) will for the most part

remedy the numerical di�culties here, it won't necessarily yield the most meaningful

solutions. It is worthwhile, therefore, to stop for a moment and consider the causes

of this numerical instability and see if in some cases there are better ways around the

problem.

In general the di�culties with matrix inversion come about from nearly collinear

columns in the matrix. In the speci�c case of RBF networks, this collinearity can come
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from about from the linear terms in the formulation, which is exactly analogous to the

well understood problems with collinearity in linear regression. The typical strategy

for dealing with the problem in linear regression is to choose a better set of regressors

via some technique such as stepwise regression (see Cryer and Miller (1991)). The

other source of collinearity we might encounter is from the nonlinear basis functions,

and by implication our choices for free parameters of those functions: the centers ~z,

the basis function scale parameters �, and the input weights W . One way this can

happen is if the rotation and stretching of the data caused by W does not produce

a good distribution of data points and basis function centers, although typically this

is not a concern if W is chosen as some form of the inverse covariance matrix of the

data. A second way that we can get collinear basis functions is if the sampling of their

centers is either too dense or much too sparse relative to the scale parameters, which

causes either nearby or all basis function outputs to be virtually identical. This can

be recti�ed by individually changing the scale of the basis functions, shifting their

centers, or eliminating some of them. Note that automatic methods can be devised

to implement these corrections; the techniques outlined in Chapter 2, for example,

are designed to avoid this kind of collinearity. However, just as in the case of linear

regression collinearity, manual inspection by someone knowledgeable in the problem

domain is preferred whenever possible to take full advantage of any domain or case

speci�c considerations.

6.2.2 Precision

Another implementation issue in estimating RBF networks concerns numerical pre-

cision. Because of their large size, inhomogeneity, and possibly local structure, esti-

mation of RBF networks tends to deal with many numbers of vastly di�erent orders

of magnitude. On one hand, local structure can imply the insigni�cance of many of

these numbers, and may enable us to greatly reduce the quantity of 
oating point

operations required to achieve answers virtually identical to the \true" full precision
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answers. On the other hand, inhomogeneity and large size of the networks can gen-

erate function values and derivatives that are di�cult to combine accurately without

using high precision. Unlike the collinearity questions, however, our concerns about

precision are relatively easy to analyze and handle and only require that we take the

time to do so.

The basic idea behind our observation about locality is that if we are willing to use

kernel-type basis functions that have a maximum at zero and decrease fairly rapidly

away from zero, then the network's output at each point will largely be a function

only of the nearby basis functions, and thus we do not need to waste computer cycles

calculating the other basis functions. Put another way, a reasonable approximation

to Equation (1.1) is if we drop the terms in the summation where hi(k~x� ~zik) < � for

a particular input ~x and some small constant � which we can choose relative to the

overall maximum and minimum of hi (e.g. if hi is a gaussian with outputs ranging

from 0 to 1, perhaps we don't need values less than � = 10�4). Note that we may

be tempted to determine signi�cance versus the particular minimum and maximum

outputs for a given input, but this requires computing all of the outputs and thus

defeats our goal of saving computation.

How much computation would this type of approximation save? If we assume that

multiplication, addition, and subtraction take the same amount of time, it takes H

of these generic operations to compute each basis function, and the polynomial term

p(~x) is linear, then computing the full RBF equation for a single input takes

2k � (2d(d + 1) +H) + 2d

operations for k basis functions and d-dimensional inputs. If on a particular applica-

tion it makes sense to choose � such that we only need to compute a � k of the basis

functions, then, we would save

2k(1 � a) � (2d(d + 1) +H)
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operations. Incidentally, we note that the decision to use a diagonal or constant d x d

weight matrix is important from a computational complexity point of view only if the

basis functions are simple relative to the input dimensionality (i.e. H 6� 2d(d + 1)).

On the negative side, RBF networks can place unusually stringent requirements on

numerical precision, especially when using increasing basis functions which carefully

balance one another, or when we are early in the estimation process and our param-

eter estimates are far from optimal. For contrast, consider the multilayer perceptron

representation in Equation (1.3); if the free parameters c are chosen to be small zero

mean random numbers with bias terms set to the mean of the inputs, then the sig-

moidal nonlinear units will operate in their linear range and generate well conditioned,

low variance outputs right from the very �rst few iterations of a typical estimation

process. If we chose random values for RBF network free parameters, on the other

hand, intermediate calculations in the network can take on values of arbitrary and

widely varying magnitudes, which increase the need for stable algorithms and high

precision arithmetic. The large size of some of the systems considered only worsens

this situation by increasing the number and nesting of �nite precision calculations

that are made. This in fact is a major motivation for the initial parameter estimate

heuristics of Chapter 2. Choosing an input weight matrixW that adequately handles

disproportionate scales of di�erent input dimensions is an important and common

example of this. However, the general importance of this type of numerical problem

is lessened somewhat by the fact that typically these conditions will not hold near

the minima of the network cost function, and thus may not greatly a�ect the �nal

solutions obtained except for a possible bias towards \stable" parameter sets.
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Chapter 7

Conclusion

In Chapter 1 we began with the rather ambitious goal of trying to predict the stock

market using a data driven, nonlinear and multivariate statistical modeling approach.

Did any of the results obtained in this thesis constitute \success"? Strictly speaking,

we would have to reply \no"; after all, the commonly understood de�nition of pre-

dicting the stock market implies developing a system which can make money more

reliably than other investment strategies, and unfortunately we have not done that.

However often the ideas and techniques developed in the pursuit of a lofty goal are

useful in their own right, and we hope that is the case here. In this concluding chapter

we discuss some of the contributions and limitations of this thesis from a few broader

perspectives, while pointing out interesting areas for further investigation.

7.1 Financial Markets

Although the general mechanisms underlying the evolution of stock market prices

elude us, we believe there is still room for cautious optimism about the use of ex-

ploratory statistical modeling in the �nancial markets. At the very least, the results

of Chapter 5 indicate that statistical models may provide a systematic way to lever-

age an investor's natural advantages in terms of access to data, market presence, or
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market expertise. It seems that the best way to do this is to think locally about

what narrow markets, trading environments, and data that one has a competitive

advantage with, rather than globally about broad forces and highly e�cient �nancial

instruments. Perhaps successful systems will not be predictive in nature (e.g. the

options models from Chapter 3), and perhaps they won't output prices directly (e.g.

determining the time value of data in Chapter 5) , but approached in this way, it may

be possible to develop models that some of the time tell us something useful about

the markets.

This line of thinking points to a few ideas for future work. First is the general goal

of �nding hedging relationships, which model the spread between speci�ed �nancial

instruments by explicitly going long (i.e. buying) some of them, and going short

(i.e. selling) the others. Because the modeler is looking for the di�erence of two (or

more) instruments, it may be possible to avoid the need to capture some aspects of the

price dynamics, and instead focus on some more localized mechanisms. A second idea

is to think more explicitly about \regime variables" which might split the problem

domain into simpler parts, rather than depending upon the 
exibility of nonlinear

maps to segment the domain. These regime variables could be based on the kinds of

information that traders often look at, or they might be chosen strictly on statistical

grounds.

Our conclusion that learning network technology is not enough by itself to \break

open the stock market problem" should not be surprising to most. The scienti�c

method suggests that we use experimental data to con�rm or refute preconceived

hypotheses and to suggest new ones, and it is clear why that time honored method-

ology is appropriate in this case; combinatorics, statistical inference considerations,

and limited data set sizes are all against us if we attempt to derive everything from

the data. Thus we prefer to start from a theoretical model and use the data to look

for important discrepancies from that theory, where perhaps the steps we can take

away from theory are slightly larger with the more powerful nonlinear tools. For in-
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stance in our option pricing application, �rst matching the Black-Scholes theoretical

results provides a sound base for future work to expand from exploring more advanced

alternatives, such as explicitly including volatility measures as inputs.

7.2 Statistical Modeling

The central question in exploratory statistical modeling is the question of con�dence;

if we don't know how much to believe our models and predictions, we may be better o�

not using them or developing them in the �rst place. Our preoccupation with the topic

of con�dence in Chapter 4 underlines our belief that the choice of methodologies and

technologies used in these problems should revolve around considerations of con�dence

and data mining. Although such considerations will for the near future necessitate

a good dose of expert judgment, more rigorously derived statistical estimators and

diagnostic tests would help.

Our pointwise variance estimator in Chapter 4 was a step in this direction, but

it was not as general as one would like. In particular, that result was asymptotic

and relied upon large numbers of nonlinear units, a requirement that contradicts

our tendency to prefer simpler models. A more useful estimator may be found in

extensions of the distributional results in Appendix A. Those results may also form

the basis for better diagnostic tests of RBF networks, and thus deserve further study.

Another idea derived primarily from statistical concerns is that of combining dif-

ferent models and pieces of models. At one end of this spectrum of ideas is the simple

concept of combining model forecasts to reduce variance. This idea is a long standing

one in the statistics community (for a review see Clemen (1989)), and has recently

been rediscovered by a number of researchers in the connectionist and machine learn-

ing community (for instance see Perrone (1993) or Buntine and Weigend (1991)),

where they have been found to be particularly useful in part because of the vari-

ance arising from random initial conditions and relatively ill-conditioned estimation
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procedures. On the other end of the spectrum the combination idea can be thought

of as motivation for creating complex models from simpler pieces that each in some

(perhaps minor) way produce interesting transformations or \add value" to the in-

puts, where in this case the combining functions subsume a substantial portion of the

\work" (for instance see Jordan and Jacobs (1993)). In the case of RBF networks,

our algorithm in Chapter 2 for sometimes including multiple input weight matrices to

handle multimodal data falls into the later category, and perhaps could be augmented

with other systematic techniques for piecing together better performing networks.

However, a fundamental conclusion of this thesis is that it does not pay to focus

solely on what techniques are used - it is also vitally important to carefully understand

how to use them, and what data to use them on. Partly this is due to the fact that

the tools are not robust and must be used carefully, and partly this re
ects the fact

that the best models are typically obtained by incorporating as much domain speci�c

expertise as possible. As the interaction between this expertise and the statistical

methodology becomes well de�ned it can be captured in an algorithm (such as the

combination ideas above), but until then it must be embodied in the expert intensive

style of manually checking and plotting data, assumptions and diagnostics. In par-

ticular, good �nancial time series modeling methodology relies heavily upon checking

the source, composition, and quality of the data used.

7.3 High Performance Computing

Is has often been argued that the advent of fast, ubiquitous computing power has

enabled the increasingly popular method of using exploratory modeling as a means

to quantitatively understand many problem domains, including the �nancial markets.

Indeed in Chapter 6 we have argued that the need for large databases, sample reuse

techniques, and limited model identi�cation searches, along with the high dimen-

sionality and complexity of the models presently considered all necessitate the large
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storage, networks, and fast execution rates of today's computer systems. Although

the use of megabytes of data and mega
ops of number crunching does not by itself

guarantee that better models and more useful insights will be obtained, careful at-

tention to statistical methodology should increase the leverage that this computing

power provides to the exploratory process.

From a computer science perspective, we are interested in developing systems

that learn the most useful information possible from a problem domain for a given

cost. However, this high level tradeo� between amount and quality of learning versus

cost is not well understood currently. For instance, if we are to use parallel com-

puters to minimize complex cost functions (e.g. for estimation), what are the best

algorithms for coordinating that search? \Single thread" search algorithms such as

Levenberg-Marquardt may be the most e�cient in terms of least amount of \wasted"

computation, but \multiple thread" algorithms such as parallel stochastic search may

be best in terms of solution quality per unit of processing time. A better understand-

ing of these tradeo�s will allow us to determine the relative importance we give to

communication bandwidth, memory, and computation, and thus engineer the most

cost e�ective learning systems.
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Appendix A

RBF Distributions

In considering the statistical properties of RBF networks it is useful to know how the

networks transform the probability distributions of the inputs. Clearly this trans-

formation depends on the type of basis function used and the dimensionality of the

problem considered. However, we note that a fundamental attribute of this transfor-

mation comes about from the use of a distance metric.

To see this, assume we have a random variable x 2 <d with uniform probability

distribution on the d-dimensional sphere of radius R, i.e.

P (x) = C�(R� kxk) (A:1)

where � is the Heaviside (step) function and C is a normalization constant. Let us

compute C, imposing:

1 =

Z
Rd

dx P (x) = C
Z
Rd

dx �(R� kxk) = C
Z

R

0
dr rd�1

Z
d
d = C

Rd

d
�d

where d
d is the element of solid angle in d dimensions, and �d is its integral over

147



148 APPENDIX A. RBF DISTRIBUTIONS

the entire sphere1. Therefore the uniform probability distribution on the sphere is:

P (x) =
d

Rd�d

�(R � kxk) : (A:2)

Denoting r � kxk, we can now compute the probability distribution of the norm of

the vector x as:

P (r) =
Z
Rd

dx P (x)�(kxk� r) =
d

Rd�d

Z
Rd

dx �(R� kxk)�(kxk� r) =

=
d

Rd�d

Z
1

0
dh hd�1�(R � h)�(h� r)

Z
d
d =

d

Rd
rd�1�(R � r)

This result is simply a statement of the fact that as the dimensionality of a problem

increases, the bulk of the volume of a hypersphere is concentrated more and more in

its outermost \layers". In fact, the probability that a point x has norm r between R1

and R2 is:

P (R1 � kxk � R2) =

Z
R1�kxk�R2

dx P (x) =
Rd

2 �Rd

1

Rd
: (A:3)

Taking R2 = R we have that the probability that the distance of a point from the

surface is greater than R1 is:

P (R1 � kxk � R) = 1 � (
R1

R
)d :

It is also instructive to compute the average value of r:

< r >=
Z
1

0
dr rP (r) =

d

d+ 1
R

Notice how the average value of r tends to the radius of the sphere R as the dimension

increases.

1The function �d =
R

d
d can be computed in terms of the Euler �-function.
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The implications of this phenomena on the basis function outputs of an RBF

network can be seen in the following related result. Let h(kxk) be the output of a

Radial Basis Function unit. We want to derive the probability distribution P of the

random variable y = h(kxk) given the probability distribution of x, which we assume

to be the radial function P (kxk). We have:

P (y) =
Z
Rd

dx P (kxk)�(y� h(kxk) = �d

Z
1

0
dr rd�1P (r)�(y � h(r)) :

We also assume that the basis function h(r) is invertible on the real positive axis.

Performing the change of variable s = h(r) we obtain:

P (y) = �d

Z
1

0

ds

h0(h�1(s))
[h�1(s)]d�1P (h�1(s))�(y � s)

and consequently:

P (y) = �d

1

h0(h�1(y))
[h�1(y)]d�1P (h�1(y)) (A:4)

If we now set g(y) = h�1(y) this expression can be rewritten as

P (y) = �dg
0(y)[g(y)]d�1P (g(y)) : (A:5)

where we used the rule of di�erentiation of the inverse function:

g0(y) =
1

h0(h�1(y))
:

If we are given the probability distribution P , and we want to �nd out what kind of

basis function h transform P in P , the previous equation can be seen as a di�erential

equation for g.

Although the di�erential equation (A.5) is very di�cult to solve in general cases, in

the case in which the probability distribution P is uniform over a sphere the function



150 APPENDIX A. RBF DISTRIBUTIONS

h can be expressed in terms of the inverse of the density of the probability distribution

P . In fact, taking the sphere of radius 1 for simplicity, it can be rewritten as :

P (y) = dg0(y)[g(y)]d�1�(1 � g(y)) : (A:6)

We now make the following choice for g:

g(y) =

�Z
y

�1

ds P (s)

� 1
d

: (A:7)

The �rst derivative of g is therefore:

g0(y) =
1

d

�Z
y

�1

ds P (s)
� 1

d
�1

P (y)

and substituting it in equation (A.6) we obtain

P (y) =

�Z
y

�1

ds P (s)

� 1
d
�1

P (y)

�Z
y

�1

ds P (s)

�1� 1

d

�(1� g(y)) = P (y)�(1� g(y)) :

Since by de�nition g(y) < 1 for all the values of y, the step function has always value

equal to one, and the previous equation is an identity.

Consequently we conclude that, if we want the output of a Radial Basis Functions

unit to be distributed according to the distribution P whenever the input variables are

distributed uniformly inside a sphere of radius 1, the basis function h should be such

that:

h�1(y) =

�Z
y

�1

ds P (s)

� 1
d

: (A:8)

If, for example, we want the output of a radial basis function unit to be have a

Gaussian distribution, the basis function should be:

h(kxk) = erf�1(kxkd)
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where erf(y) is the error function, that is the density of the gaussian distribution.
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