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Abstract

In model based recognition the problem is to locate an instance of one or several known

objects in an image. The problem is compounded in real images by the presence of

clutter (features not arising from the model), occlusion (absence in the image of

features belonging to the model), and sensor error (displacement of features from

their actual location). Since the locations of image features are used to hypothesize

the object's pose in the image, these errors can lead to \false negatives", failures to

recognize the presence of an object in the image, and \false positives", in which the

algorithm incorrectly identi�es an occurrence of the object when in fact there is none.

This may happen if a set of features not arising from the object are located such that

together they \look like" the object being sought. The probability of either of these

events occurring is a�ected by parameters within the recognition algorithm, which

are almost always chosen in an ad-hoc fashion. The implications of the parameter

values for the algorithm's likelihood of producing false negatives and positives are

usually not understood explicitly.

To address the problem, we have explicitly modelled the noise and clutter that occurs

in the image. In a typical recognition algorithm, hypotheses about the position of the

object are tested against the evidence in the image, and an overall score is assigned

to each hypothesis. We use a statistical model to determine what score a correct

or incorrect hypothesis is likely to have. We then use standard binary hypothesis

testing techniques to decide the di�erence between correct and incorrect hypotheses.

Using this approach we can compare algorithms and noise models, and automatically

choose values for internal system thresholds to minimize the probability of making

a mistake. Our analysis applies equally well to both the alignment method and

geometric hashing.
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Chapter 1

Introduction

1.1 Motivation

In order to build machines capable of interacting intelligently in the real world, they

must be capable of perceiving and interpreting their environs. To do this, they must

be equipped with powerful sensing tools such as humans have, one of which is Vision

| the ability to interpret light re
ected from the scene to the eye. Computer Vision is

the �eld which addresses the question of interpreting the light re
ected from the scene

as recorded by a camera. Humans are far more pro�cient at this visual interpretation

task than any computer vision system yet built. Lest the reader think that this is

because the human eye may somehow perceive more information from the scene than

a camera can, we note that a human can also interpret camera images that a computer

cannot | that is, a human outperforms the computer at visual interpretation tasks

even when limited to the same visual input.

Model based recognition is a branch of computer vision whose goal is to detect the

presence and position in the scene of one or more objects that the computer knows

about beforehand. This capability is necessary for many tasks, though not all. For

example, if the task is to navigate from one place to another, then the goal of the

visual interpretation is to yield the positions of obstacles, regardless of their identity.

If the task is to follow something, then the goal of the interpretation is to detect

motion. However, if the task is to count trucks that pass through an intersection at

a particular time of day, then the goal of the interpretation is to recognize trucks as

opposed to any other vehicle.

Model based recognition is generally broken down into the following conceptual mod-

ules (Figure 1-1). There is a database of models, and each known model is represented

in the database by a set of features (for example, straight edges, corners, etc.). In

order to recognize any of the objects in a scene, an image of the scene is taken by

a camera, some sort of feature extraction is done on the image, and then the fea-

tures from the image are fed into a recognition algorithm along with model features

retrieved from the model database. The task of the recognition algorithm is to de-

1
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Figure 1-1: Stages in model based recognition.

termine the location of the object in the image, thereby solving for the object's pose

(position of the object in the environment).

A typical recognition algorithm contains a stage which searches through pose hy-

potheses based on small sets of feature correspondences between the model and the

image. For every one, the model is projected into the image under this pose assump-

tion. Evidence from the image is collected in favor of this pose hypothesis, resulting

in an overall goodness score. If the score passes some threshold �, then it is accepted.

In some algorithms this pose, which is based on a small initial correspondence, may be

passed onto a re�nement and veri�cation stage. For the pose hypothesis generator, we

use the term \correct hypothesis" to denote a pose based on a correct correspondence

between model and image features.

If we knew in advance that testing a correct hypothesis for a particular model would

result in an overall score of S, then recognizing the model in the image would be

particularly simple | we would know that we had found a correct hypothesis when

2



we found one that had a score of S. However, in real images there may be clutter,

occlusion, and sensor noise, each of which will a�ect the scores of correct and incor-

rect hypotheses. Clutter is the term for features not arising from the model; such

features may be aligned in such a way as to contribute to a score for an incorrect

pose hypothesis. Occlusion is the absence in the image of features belonging to the

model. This serves to possibly lower the score of a correct hypothesis. Lastly, sensor

noise is the displacement of observed image features from their true location.

If we knew that part of the model was occluded in the scene and yet we keep the

threshold for acceptance at S, we risk the possibility of the algorithm's not identifying

a correct hypothesis, which may not score that high. Therefore, we may choose to

lower the threshold for acceptance to something slightly less than S. However, the

lower we set the threshold, the higher the possibility that an incorrect hypothesis

will pass it. The goal is to use a threshold which maximizes the probability that the

algorithm will identify a correct hypothesis (called a true detection) while minimizing

the probability that it accepts an incorrect one (called a false alarm).

In this thesis, we determine the implications of using any particular threshold on the

probability of true detection and false alarm for a particular recognition algorithm.

The method applies to pose hypotheses based on minimal correspondences between

model and image points (i.e., size 3 correspondences). We explicitly model the kinds

of noise that occurs in real images, and analytically derive probability density func-

tions on the scores of correct and correct hypotheses. These distributions are then

used to construct receiver operating characteristic curves (a standard tool borrowed

from binary hypothesis testing theory) which indicate all possible triples of (thresh-

old, probability of false positive, probability of true positive) pairs for an appropriately

speci�ed statistical ensemble. We have demonstrated that the method works well in

the domain of both simulated and actual images.

1.2 Object Recognition as Information Recovery

To approach the problem in another way, we can think of the object recognition

problem as a process of recovering a set of original parameters about a source. In this

abstraction, there is some sort of information exchange between the source and the

observer, the information might be corrupted in some fashion, the observer receives

some subset of the information with added noise, and �nally, processes the observed

information in one or several stages to settle upon a hypothesis about the parameters

of interest.

For example, in the case of message transmission, the parameters of interest are

the message itself, the noise is introduced by the channel, and the observer tries to

recover the original transmitted message. In sonar based distance measurement, the

parameter of interest is the free distance along a particular direction from a source,

the information is the re
ected sonar beam, and the perceived information is the

time delay between sending and receiving the beam. The observer then processes this
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Figure 1-2: Recovering information from a source over a noisy channel.

information to derive a hypothesis about the free space along the particular direction.

In model based vision, the parameters of interest are the presence or absence of a

model in a scene, and its pose in three dimensional space. The information is the

light which is re
ected from a source by the objects in the scene, and the perceived

information is the light which enters the lens of a camera. The information goes

through several processing stages to get transformed into a two dimensional array of

brightness values representing an image, and then through several more steps to come

to a hypothesis about the presence and pose of any particular model.

In this thesis we cast the problem as a binary hypothesis testing problem. Let the

hypothesis H be \model is at pose P". We are trying to reliably distinguish between

H and H. It is generally not always possible to do this, especially as the noise goes

up, but we can bound the probability of error as a function of the statistics of the

problem, and can determine when the noise is too high to distinguish between the

two hypotheses.

1.3 Overview of the Thesis

All of the de�nitions, terminology, conventions and formulas that we will use in the

thesis are given in Appendix A.

Chapter 2 explains the model based recognition problem in more detail, and gives a

very general overview of work relevant to this thesis. We will de�ne the terms and

concepts to which we will be referring in the rest of the work.

In Chapter 3 we present the detailed error analysis of the problem.

In Chapter 4 we present the ROC (receiver operating characteristic) curve, borrowed

from hypothesis testing theory and recast in terms of the framework of model based

recognition. The ROC curve compactly encompasses all the relevant information to

predict (threshold, probability of false positive, probability of false negative) triples for

an appropriately speci�ed statistical ensemble. We also con�rm the accuracy of the

ROC curves performance predictions with actual experiments consisting of simulated

images and models.

Chapter 5 explores the e�ect of varying some of the assumptions that were used in
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Chapter 3. This chapter can be skipped without loss of continuity.

In the �rst part of Chapter 6 we measure the sensor noise associated with di�erent

feature types and imaging conditions. In the second part, we demonstrate the appli-

cation of ROC curves to the problem of automatic threshold determination for real

models and images.

In Chapter 7 we discuss implications of our work for geometric hashing, a recognition

technique closely related to the one analysed in the thesis.

Finally, we conclude in Chapter 8 with potential applications and extensions.
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Chapter 2

Problem Presentation and

Background

We begin by setting the context for our problem. First we will de�ne the terms to

which we will be referring in the rest of the thesis. We will then talk about di�erent

techniques for solving the recognition problem, and �nally we will discuss how these

techniques are a�ected by incorporating an explicit error model.

2.1 Images, Models and Features

An image is simply a two dimensional array of brightness values, formed by light

re
ecting from objects in the scene and reaching the camera, whose position we

assume is �xed (we will not talk about the details of the imaging process). An object

in the scene has 6 degrees of freedom (3 translational and 3 rotational) with respect

to the �xed camera position. This six dimensional space is commonly referred to as

transformation space. The most brute force approach to �nding an object in the scene

would be to hypothesize the object at every point in the transformation space, project

the object into the image plane, and perform pixel by pixel correlation between the

image that would be formed by the hypothesis, and the actual image. This method is

needlessly time consuming however, since the data provided by the image immediately

eliminates much of the transformation space from consideration.

Using image features prunes down this vast search space to a more manageable size.

What is meant by the term \image feature" is: something detectable in the image

which could have been produced by a localizable physical aspect of the model (called

model feature), regardless of the model's pose. For example, an image feature might

be a brightness gradient, which might have been produced by any one of several model

features | a sudden change in depth, indicating an edge or a boundary on the object,

or a change in color or texture. An image feature can be simple, such as \something

at pixel (x,y)", or arbitrarily complex, such as \a 45� straight edge starting at pixel

(x,y) of length 5 separating blue pixels from orange pixels".
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The utility of features lies in their ability to eliminate entire searches from considera-

tion. For example, if the model description consisted of only corner features bordering

a blue region, but there were no such corners detected in the image, this information

would obviate the need to search the image for that object. Another way to use

features is to form correspondences between image and model features. This con-

strains the possible poses of the object, since not all points in transformation space

will result in the two features being aligned in the image. In fact, depending on the

complexity of the feature, sometimes they cannot be aligned at all | for instance,

there is no point in transformation space that will align a 45� corner with a curved

edge. The more complex the feature, the fewer correspondences are required to con-

strain the pose completely. For instance, if the features consist of a 2D location plus

orientation, only two correspondences are required to solve for the pose of the object.

If the features are 2D points without orientation, then a correspondence between 3

image and model features (referred to as a size 3 correspondence) constrains the pose

completely.

It would seem intuitively that the richer the feature, the more discriminative power it

imparts, since one not need check correspondences that contain incompatible feature

pairings. In fact, there is an entire body of work devoted to using feature saliency

[SU88, Swa90] to e�ciently perform object recognition. It is true that one can use

more complex features to prune the search space more drastically, but the more

complex the feature, the more likely there is to be an error in the feature pairing

process due to error and noise in the imaging and feature extraction processes. For

simplicity, in this work we consider only point features, meaning that image and model

features are completely characterized by their 2D and 3D locations, respectively.

2.2 Categorizing Error

We use the term \error" to describe any e�ect which causes an image of a model in a

known pose to deviate from what we expect. The kinds of errors which occur in the

recognition process can be grouped into three categories:

� Occlusion | in real scenes, some of the features we expect to �nd may be

blocked by other objects in the scene. There are several models for occlusion:

the simplest is to model it as an independent process, i.e., we can say that we

expect some percentage of features to be blocked, and consider every feature to

have the same probability of being occluded independent of any other feature.

Or, we can use a view based method which takes into account which features are

self-occluded due to pose. More recently, Breuel [Bre93] has presented a new

model that uses locality of features to determine the likelihood of occlusion;

that is, if one feature is occluded under a speci�c pose hypothesis, an adjacent

feature is more likely to be occluded.

� Clutter or Noise| these are extraneous features present in the image not arising

from the object of interest, or arising from unmodelled processes (for example,
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highlights). Generally these are modelled as points that are independently and

uniformly distributed over the image. These will be referred to as clutter or

sometimes, \random image points".

� Sensor Measurement Error | image features formed by objects in the scene

may be displaced from their true locations by many causes, among them: lens

distortion, illumination variation, quantization error, or algorithmic processing

(for instance, a brightness gradient may be slightly moved due to the size of the

smoothing mask used in edge detection, or the location of point feature may be

shifted due to artifacts of the feature extraction process). This may be referred

to as simply \error".

The interest in error models for vision is a fairly recent phenomenon which has been

motivated by the fact that for any recognition algorithm, these errors almost always

lead to �nding an instance of the object where it doesn't appear (called a false posi-

tive), or missing an actual appearance of an object (a false negative).

We will present an overview of recognition algorithms, �rst assuming that none of

these e�ects are present, and subsequently we will discuss the implications of incor-

porating explicit models for these processes.

2.3 Search Methods

Much of the work done in model based recognition uses pairings between model

and image features, and can be loosely grouped into two categories: correspondence

space search and transformation space search. I will treat another method, indexing,

as a separate category, though it could be argued that it falls within the realm of

transformation space search. The error analysis presented in this work applies to

those approaches falling in a particular formulation of the transformation space search

category. In this section we discuss the general methods, assuming no explicit error

modeling.

2.3.1 Correspondence Space

In this approach, the problem is formulated as �nding the largest mutually consistent

subset of all possible pairings between model and image features, a set whose size is

on the order of mn (in which m is the number of model features, and n is the number

of image features). Finding this subset has been formalized as a consistent graph

labelling problem [Bha84], or, by connecting pairs of mutually consistent correspon-

dences with edges, as a maximal clique problem [BC82], and as a tree search problem

in [GLP84, GLP87]. The running time of all of these methods is at worst exponential,

however, at least in the latter approach Grimson has shown that with pruning, fruit-

less branches of the tree can be abandoned early on, so that this particular method's

expected running time is polynomial [Gri90].
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2.3.2 Transformation Space

In the transformation space approach, all size G correspondences are tested, where

G is the size of the smallest correspondence required to uniquely solve for the trans-

formation needed to bring the G image and model features into correspondence. The

transformation thus found is then used to project the rest of the model into the image

to search for other corresponding features. The size of the search space is polynomial,

O(nGmG) to be precise. This overall method has come to be associated with Hut-

tenlocher and Ullman ([HU87]), who dubbed it \alignment", though other previous

work used transformation space search (for example, the Hough transform method

[Bal81] as well as [Bai84, FB80, TM87], and others). One of the contributions of

Huttenlocher's work was to show that a feature pairing of size 3 was necessary and

su�cient to solve uniquely for the model pose, and how to do it. Another charac-

teristic of the alignment method as presented in [Hut88] was to use a small number

of simple features to form an initial rough pose hypothesis, and to iteratively add

features to stabilize and re�ne the pose. Finally, for the pose to be accepted it must

pass a �nal test in which more complex model and image features must correspond

reasonably well, for example, some percentage of the model contour must line up

with edges in the image under this pose hypothesis. This last stage is referred to

as \veri�cation". Since it is computationally more expensive than generating pose

hypotheses, it is more e�cient to only verify pose hypotheses that have a reasonable

chance of success.

2.3.3 Indexing Methods

Lastly, we come to indexing methods. Here, instead of checking all poses implied

by all size 3 pairings between model and image features, the search space is further

reduced by using larger image feature groups than the minimum of 3 and to pair

them only with groups in the model that could have formed them. This requires a

way to access only such model groups without checking all of them. To do this, the

recognition process is split into two stages, a model preprocessing stage in which for

each group of size G, some distinguishing property of all possible images of that group

is computed and used to store the group into a table, indexed by that property. This

preprocessing stage takes time O(mG) (where m is the number of model points). At

recognition time, each size G image group is used to index into the table to �nd the

model groups that could have formed it, for a running time of O(nG) (where n is the

number of image points).

At one extreme, we could use an index space of dimension 2G (assuming the features

are two dimensional) and simply store the model at all positions (x1; y1; :::xG; yG) for

every pose of the model. However, this saves us nothing, since the space requirements

for the lookup table would be enormous and the preprocessing stage at least as time

consuming as a straight transformation space approach. The trick is to �nd the

lowest dimensional space which will compactly represent all views of a model without

sacri�cing discriminating power.
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Lamdan, Schwartz, Wolfson and Hummel [LSW87, HW88] demonstrate a method,

called geometric hashing, to do this in the special case of planar models. Their

algorithm takes advantage two things | �rst, for a group of 3 non-collinear points in

the plane, the a�ne coordinates of any fourth point with respect to the �rst three as

bases is invariant to an a�ne transformation of the entire model plane. That is, any

fourth point can be written in terms of the �rst three:

m3 =m0 + �(m1 �m0) + �(m2�m0):

We can think of (�; �) as the a�ne coordinates of m3 in the coordinate system

established by mapping m0, m1, m2 to (0; 0), (1; 0), (0; 1). These a�ne coordinates

are invariant to a linear transformation T of the model plane.

Second, there is a one-to-one relationship between an image of a planar model in a 3D
pose and an a�ne transformation of the model plane. We assume that the pose has

3 rotational and 2 translational degrees of freedom, and we use orthographic projec-

tion with scale as the imaging model. Then the 3D pose and subsequent projection

collapses down to two dimensions:
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where s is the scale factor, and the matrices are the orthographic projection matrix

and rotation matrix, respectively. Conversely, a three point correspondence between

model and image features uniquely determines both an a�ne transformation of the

model plane, and also a unique scale and pose for an object (up to a re
ection over

a plane parallel to the image plane; see [Hut88]).

Therefore, suppose we want to locate an ordered group of four model points in an

image (where the model's 3D pose is unknown). The use of the a�ne coordinates of

the fourth point with respect to the �rst three as basis to describe this model group

is pose invariant, since no matter what pose the model has, if we come across the

four image points formed by this model group, �nding the coordinates of the fourth

image point with respect to the �rst three yields the same a�ne coordinates.

Geometric hashing involves doing this for all model groups of size 4 at the same time.

The algorithm requires the following preprocessing stage: for each model group of

size 4, the a�ne coordinates of the fourth point are used as a pose invariant index

into the table to store the �rst three points. This stage takes O(m4), where m is the

number of model points. At recognition time, each size 3 image group is tested in

the following way: for a �xed image basis B, (a) for every image point, the a�ne

coordinates are found with respect to B, then (b) the a�ne coordinates are used to

index into the hash table. All model bases stored at the location indexed by the a�ne

coordinates are candidate matches for the image basis B. A score is incremented for

each candidate model basis and the process is repeated for each image point. After
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all image points have been checked, the model basis that accumulated the highest

score and passes some threshold is taken as a correct match for the image basis B.

In theory, the technique takes time O(n4 +m4). More recently, Clemens and Jacobs

formalized the indexing problem in [CJ91] and showed that 4 dimensions is the mini-

mum required to represent 3D models in arbitrary poses. All views of a group of size

4 form a 2D manifold in this space, implying that unlike in the planar model domain,

there exists no pose invariant property for 3D models in arbitrary poses. Other work

involving geometric hashing can be found in [CHS90, RH91, Ols93, Tsa93].

2.4 The E�ect of Error on Recognition Methods

All recognition algorithms test pose hypotheses by checking for a good match between

the the image that would be formed by projecting the model using the tested pose

hypothesis, and the actual image. We will discuss exactly what we mean by a \good

match" shortly. The three kinds of errors cause qualitatively di�erent problems for

recognition algorithms. The e�ect of occlusion brings down the amount of evidence in

favor of correct hypotheses, risking false negatives. The presence of clutter introduces

the possibility that a clutter feature will arise randomly in a position such that it is

counted as evidence in favor of an incorrect pose hypothesis, risking false positives.

Sensor error has the e�ect of displacing points from their expected locations, such

that a simple test of checking for a feature at a point location in the image turns into

a search over a small disk, again risking the possibility of false positives.

It would appear that simply in terms of running time, the search techniques from

(correspondence space search! transformation space search! indexing) go in order

of worst to best. However, this ranking becomes less clear once the techniques are

modi�ed to take error into account. The di�erences between the approaches then

become somewhat arti�cial in their implementations, since extra steps must often be

added which blur their conceptual distinctions.

Correspondence space search is the most insensitive to error, since given the correct

model-feature pairings, the globally best pose can be found by minimizing the sum

of the model to image feature displacements.

For transformation space approaches, dealing with error turns the problem into a

potentially exponential one. The reason is that the transformation space approach

checks only those points in the space that are indicated by size 3 correspondences

between model and image features. Though there are many correct image to feature

correspondences, there is only one globally correct pose. The poses implied by all

correct correspondences will be clustered near the globally correct pose in transfor-

mation space, but it is likely that none of them will actually land on it. Therefore,

�nding the globally best pose will require iteratively adding model-feature pairings

to the initial correspondence and minimizing the total error. However, for each ad-

ditional pairing, the model point in the pair can match to any image points which

appears in a �nite sized disk in the image. Assuming uniform clutter, some fraction
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k of all the image points will appear in such a disk. If all of them have to be checked

as candidate matches, this brings the search to size O(mkn).

To conclude the discussion of the e�ect of noise on di�erent techniques, we note that

in general, the more e�cient an algorithm, the more unstable it is in the presence

of noise. This observation is not really surprising since the speed/reliability trade-o�

is as natural and ubiquitous in all computer science as the speed/space trade-o�. In

the remaining discusion and throughout the thesis, we will be dealing solely with

transformation space search, and the analysis that we present is applicable equally

well to both alignment and geometric hashing.

2.5 Error Models in Vision

The work incorporating explicit error models for vision has used either a uniform

bounded error model, or a 2D Gaussian error model. A uniform bounded error model

is one in which the di�erence between the sensed and actual location of a projected

model point can be modeled as a vector drawn from a bounded disk with uniform, or


at, distribution. A Gaussian error model is one in which the sensed error vector is

modeled with a two dimensional Gaussian distribution. Clutter and occlusion, when

modeled, are done so as uniformly distributed and independent. Though there has

not been a great deal of this type of work, there are some notable examples.

2.5.1 Uniform Bounded Error Models

Recently, Cass showed that �nding the best pose in transformation space, assuming

a uniform bounded error associated with each feature, can be reduced to the problem

of �nding the maximal intersection of spiral cylinders in transformation space. Stated

this way, the optimal pose can be found in polynomial time (O(m6n6)) by sampling

only the points at which pairs of these spiral cylinders intersect [Cas90]. Baird [Bai84]

showed how to solve a similar problem for polygonal error bounds in polynomial time

by formulating it in terms of �nding the solution to a system of linear equations.

Grimson, Huttenlocher and Jacobs [GHJ91] did a detailed comparative error analysis

of the both alignment and geometric hashing method of [LSW87, HW88]. They used

a uniform bounded error model in the analysis and concentrated on determining the

probability of false positives for each technique. Also, Jacobs demonstrates an index-

ing system for 3D models in [Jac92] which explicitly incorporates uniform bounded

error.

2.5.2 Gaussian Error Models

The previous work all used a uniform bounded error model to analyze the e�ect of

error on the recognition problem. This model is in some ways simpler to analyze, but
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in general it is too conservative a model in that it overestimates the e�ect of error.

A Gaussian error model will often give analytically better results and so it is often

assumed even when the actual distribution of error has not been extensively tested. It

can be argued, however, that the underlying causes of error will contribute to a more

Gaussian distribution of features, simply by citing the Central Limit Theorem. In

[Wel92], Wells presented experimental evidence that indicates that for a TV sensor

and a particular feature class, a Gaussian error model is in fact a more accurate

noise model than the uniform. Even when the Gaussian model is assumed, there is

often not a good idea of the standard deviation, and generally an arbitrary standard

deviation is picked empirically.

Wells also solved the problem of �nding the globally best pose and feature corre-

spondence with Gaussian error by constructing an objective function over pose and

correspondence space whose argmin was the best pose hypothesis in a Bayesian sense.

To �nd this point in the space he used an expectation-maximization algorithm which

converged quite quickly, in 10-40 iterations, though the technique was not guaranteed

to converge to the likelihood maximum.

Rigoutsos and Hummel [RH91] and Costa, Haralick and Shapiro [CHS90] indepen-

dently formulated a method to do geometric hashing with Gaussian error, and demon-

strated results more encouraging that those predicted in Grimson, Huttenlocher and

Jacobs' analysis of the uniform bounded model. Tsai also demonstrates an error

analysis for geometric hashing using line invariants in [Tsa93].

Bolles, Quam, Fischler, and Wolf demonstrate an error analysis in the domain of

recognizing terrain models from aerial photographs ([BQFW78]). In their work, a

Gaussian error model was used to model the uncertainty in the camera parameters and

camera to scene geometry, and it was shown that the under a particular hypothesis

(which in this domain is the camera to scene geometry) the regions consistent with

the projected model point locations (features in the terrain model) are ellipses in the

image.

2.5.3 Bayesian Methods

The Gaussian error model work has used a Bayesian approach to pose estimation,

i.e.,, it assumes a prior probability distribution on the poses and uses the rule

P (pose j data) = P (pose)P (datajpose)
P (data)

to infer the most likely pose given the data. The noise model is used to determine

the conditional probability of the data given the pose. In Bayesian techniques, the

denominator in this expression is assumed to be uniform over all possible poses, and

so can be disregarded ([Wel92, RH91, CHS90, Tsa93]). This assumes that one of the

poses actually is correct, that is, that the object actually appears in the image. The

pose which maximizes this expression is the globally optimal pose. However, if we do
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not know whether the model appears in the image at all, we cannot use the above

criterion.

2.6 The Need for Decision Procedures

In general, it is possible to �nd the globally best pose with respect to some criterion,

but if we have no information as to whether any of the possible poses are correct,

that is, if we have no information as to the probability that the model appears in the

image, then we must determine at what point even the most likely pose is compelling

enough to accept it.

In this thesis we address this problem with respect to poses based on size 3 corre-

sponces between image and model features. We will use the term \correct" hypotheses

to denote correct size 3 correspondences. Such correct correspondences indicate points

in transformation space that are close to the correct pose for the model in the image.

Since transformation space search samples only those points in transformation space

that are implied by size 3 correspondences, what we are doing is trying to determine

when we have found a point in the space close enough to the correct pose to accept

it or to pass it on to a more costly veri�cation stage.

Suppose we were working with a model of size m in a domain with no occlusion,

clutter, or error. In this case, a correct hypothesis would always have all corrob-

orating evidence present. Therefore, to test if a hypothesis is correct or not, one

would project the model into the image subject to the pose hypothesis implied by the

correspondence, and test if there were m image points present where expected. We

call this test a decision procedure and m the threshold. However, suppose we admit

the possibility of occlusion and clutter, modeled as stated. Now it is not clear how

many points we need to indicate a correct hypothesis, since the number of points in

the image that will arise from the model is not constant. In particular, if there is

the probability c for any given point to be occluded, then the number of points we

will see for a correct hypothesis will be a random variable with binomial distribution.

Deciding if a hypothesis is correct is a question of determining if the amount of evi-

dence exceeds a reasonable threshold. So even without sensor error, we must have a

decision procedure and with it, an associated probability of making a mistake.

When we also consider sensor error, the uncertainty in the sensed location of the 3

image points used in the correspondence to solve for the pose hypothesis magni�es

the positional uncertainty of the remaining model points (Figure 2-1). Therefore

since a model point could fall anywhere in this region, we have to count any feature

which appears there as evidence in favor of the pose hypothesis. As the regions

spread out spatially, there is a higher probability that a clutter feature will appear

in such a region, even though it does not arise from the model. So now, instead of

never �nding any evidence corroborating an incorrect pose hypothesis (assuming only

asymmetric models), the amount of evidence we �nd will also be a random variable

with distribution dependent on the error model.
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Figure 2-1: Possible positions of a model point due to positional uncertainty in the three

points used in the correspondence to form the pose hypothesis.

It is important to understand the implications of using any particular threshold as

a decision procedure, since when the distributions of the two random variables over-

lap, using a threshold will necessarily imply missing some good pose hypotheses and

accepting some bad ones. Most working vision systems operate under conditions in

which the random variables describing good and bad hypotheses are so widely sepa-

rated that it is easy to tell the di�erence between them. Few try to determine how

their system's performance degrades as the distributions approach each other until

they are so close that it is not possible to distinguish between them.

It is this area that is addressed in this thesis. Our approach focuses not on the pose

estimation problem, but rather on the decision problem, that is, given a particular

pose hypothesis, what is the probability of making a mistake by either accepting or

rejecting it? This question has seldom been dealt with, though one notable exception

is the \Random Sample Consensus" (RANSAC) paradigm by Fischler and Bolles

([FB80]), in which measurement error, clutter and occlusion were modeled similarly

as in our work, and the question of choosing thresholds in order to avoid false positives

addressed as well. More recently, error analyses concentrating on the probability of

false positives were presented in the domain of Hough transforms by [GH90], and in

geometric hashing by [GHJ91], and much of the approach developed in this thesis

owes a debt to that work.
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Conclusion

We have structured this problem in a way which can be applied to those algorithms

which sample transformation space at those points implied by correspondences be-

tween 3 model and image features. In the next few chapters we will present the

method, and its predictive power for both simulated and real images.
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Chapter 3

Presentation of the Method

In this chapter the problem we address is, given a model of an object and an image,

how do we evaluate hypotheses about where the model appears in the image?

The basic recognition algorithm that we are assuming is a simple transformation space

search equivalent to alignment, in which pose hypotheses are based on initial minimal

correspondences between model and image points. The aim of the search is to identify

correct correspondences between model and image points. We will refer to correct

and incorrect correspondences as \correct hypotheses" and \incorrect hypotheses".

Correct hypotheses specify points in transformation space that are close to the correct

pose, and can be used as starting points for subsequent re�nement and veri�cation

stages. The inner loop of the algorithm consists of testing the hypothesis for possible

acceptance. The steps are:

(1) For a given 3 model points and 3 image points,

(2) Find the transformation for the model which aligns this triple of model points

to the image points,

(3) Project the remaining model points into the image according to this transfor-

mation,

(4) Look for possible matching image points for each projected model point, and

tally up a score depending on the amount of evidence found.

(5) If the score exceeds some threshold �, then we say the hypothesis is correct.

Correspondences can be tested exhaustively, or the outer algorithm can use more

global information (such as grouping) to guide the search towards correspondences

which are more likely to be correct. The actual manner through which the correspon-

dences are searched is not relevant to the functioning of the inner loop.

In the presentation of the algorithm, steps (4) and (5) are deliberately vague. In

particular, how do we tally up the score, and how do we set the threshold? The
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answer to these two questions are linked to each other, and in order to answer them

we need to select:

� A weighting scheme | that is, when we project the model back into the image,

how we should weight any image points which fall near, but not exactly at, the

expected location of the other model points. The weighting scheme should be

determined by the model for sensor error.

� A method of accumulating evidence for a given hypothesis.

� A decision procedure | that is, how to set the threshold �, which is the score

needed to accept a hypotheses as being correct.

The �rst two choices determine the distributions of scores associated with correct

and incorrect hypotheses. Di�erent choices can make the analytic derivation of these

distributions easier or harder; Chapter 5 will discuss some of these issues but for now

we present a single scheme for which we can do the analysis.

After a brief presentation of the mechanics of the alignment algorithm, we will present

the error assumptions we are using for occlusion, clutter, and sensor noise, and how

these assumptions a�ect our scoring algorithm. For the remainder of the chapter we

will present a particular scoring algorithm for hypotheses, and we will derive the score

distributions associated with correct and incorrect hypotheses as a function of the

scoring algorithm. Once we know these distributions, the question of determining the

relationship between performance and the threshold used for acceptance will become

straightforward.

In our analysis we limit ourselves to the domain of planar objects in 3D poses. We

assume orthographic projection with scaling as our imaging model, and a Gaussian

error model, that is, the appearance in the image of any point arising from the model

is displaced by a vector drawn from a 2D circular Gaussian distribution. Because

much of the error analysis work in this domain has assumed a bounded uniform

model for sensor error, we will periodically refer to those results for the purpose of

comparison.

3.1 Projection Model

In this problem, our input is an image of a planar object with arbitrary 3D pose.

Under orthographic projection with scaling, we can represent the image location

[ui; vi]
T of each model point [xi; yi]

T with a simple linear transformation:

"
ui
vi

#
=

"
a b

c d

# "
xi
yi

#
+

"
tx
ty

#
(3.1)
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where the transformation matrix is a 2 � 2 non-singular matrix, and [tx; ty]
T is the

translation vector. To easily see why this is so, note that when the model is planar,

the coordinate frame of the model can be chosen so that the third coordinate is always

0. In this case the 3D transformation collapses down to two dimensions:

s

2
64
1 0 0

0 1 0

0 0 0

3
75
2
64
r1;1 r1;2 r1;3
r2;1 r2;2 r2;3
r3;1 r3;2 r3;3

3
75
2
64
xi
yi
0

3
75+

2
64
tx
ty
0

3
75 =

2
64
sr1;1xi + sr1;2yi + tx
sr2;1xi + sr2;2yi + ty

0

3
75

Here, s is the scale factor, and the matrices are the orthographic projection matrix

and rotation matrix, respectively. Conversely, a three point correspondence between

model and image features uniquely determines both an a�ne transformation of the

model plane, and also a unique scale and pose for an object (up to a re
ection over

a plane parallel to the image plane; see [Hut88]).

3.2 Image, Model, and A�ne Reference Frames

Conceptually, there are three di�erent coordinate frames we utilize during the anal-

ysis. Model space is the global reference frame used for the model representation,

and image space is the global reference frame of the image. The transformation from

model space to image space is accomplished by the linear projection model discussed

above.

A third coordinate frame, called a�ne space, is used for each correspondence tested.

This coordinate frame is established by the three model points used in the initial

correspondence (which must not be collinear, or they would not span a plane). The

ordered triple of model and image points used in the correspondence is referred to

as the model basis and image basis, respectively. Each model point can be uniquely

expressed as a linear function of the model basis:

mi = m0+ �i(m1 �m0) + �i(m2�m0) (3.2)

We can think of the vectors (m1�m0) and (m2�m0) as the unit basis vectors (1; 0)

and (0; 1) establishing the a�ne coordinate frame, in which (�i; �i) are the a�ne

coordinates of mi.

We convert from model space coordinates to a�ne space coordinates as follows: given

model points m0;m1;m2 (in model space coordinates), the coordinates of a fourth

point mi with respect to this basis are given by the expression

"
�i
�i

#
=

2
4 km0

i
k sin(�� )
km0

1
k sin�

km0
i
k sin 

km0
2k sin�

3
5
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Figure 3-1: Calculating the a�ne coordinates of a fourth model point with respect to

three model points as basis.

in which

m0
1 =m1 �m0 m0

2 =m2�m0 m0
i
=mi �m0

� = 6 m0
1m

0
2  = 6 m0

1m
0
i

and 6 denotes the angle between the two vectors of the argument.

If we perform an a�ne transformation T plus a translation t such as in Equation 3.1

to both sides of Equation 3.2, we demonstrate that the a�ne space coordinates (�i; �i)
of a model point mi remain unchanged with respect to the transformed coordinates

of the basis:

T [mi] + t = T [m0+ �i(m1 �m0) + �i(m2�m0)] + t

= Tm0+ t+T[�i(m1�m0)] +T[�i(m2 �m0)]

= Tm0+ t+ �i(Tm1 �Tm0) + �i(Tm2�Tm0)

= [Tm0+ t] + �i([Tm1+ t]� [Tm0+ t]) + �i([Tm2+ t]� [Tm0+ t])

This invariance of a�ne space coordinates under linear transformations (which we will

call \a�ne invariance") gives us several advantages. First, we can �nd the projected

image location of projected model points without having to solve directly for the

transformation, since the image locations of all the model points can be expressed by

such a linear operation. Therefore, the image location of a projected model point mi

with a�ne coordinates (�i; �i) with respect to a given basis, once a correspondence

between model and image points has been established, is given by the expression

si = s0 + �i(s1 � s0) + �i(s2 � s0) (3.3)

where si denotes the ith images point. Second, since there is a one-to-one correspon-

dence between a�ne transformations and poses, the a�ne invariance of this represen-
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tation implies that it is pose invariant as well. This is the key to a particular form of

indexing, called geometric hashing. In particular, for the a�ne space established by

every model basis, the a�ne coordinates of every other model point is used as pose

invariant indices into a table into which the model basis is stored.

Because the a�ne representation is pose independent, it is the smallest model repre-

sentation for indexing (see discussion of relative and absolute axes, [CJ91]); any other

smallest representation must necessarily use coordinates which are functions of the

coordinates on the axes formed by the model basis. Because of this, and the recent

interest in a�ne coordinates in indexing and invariance, it is this representation that

we discuss and analyze in the rest of the work. Using this representation, we will be

able to apply the analysis to both alignment and geometric hashing.

3.3 Error Assumptions

We use the term \error" to describe any e�ect which causes an image of a model in

a known pose to deviate from what we expect, using our projection model to form

the image from the model. There are three kinds of error we will be assuming for the

analysis | occlusion, clutter, and sensor error.

Occlusion occurs as a result of some part of the object in the scene being blocked,

thereby preventing the model feature from appearing in the image. The way we model

this process is to assume that all features on the model have the same probability c
of being occluded, and that the occludedness of any particular feature does not a�ect

any other. Though this independence assumption is probably not accurate, it is often

assumed for the sake of simplicity.

Any image point which does not arise from the model is referred to as clutter. We

assume that these points will be independently and uniformly distributed over the

image.

Lastly, we refer to the di�erence between an image feature's observed to actual loca-

tion as \sensor error". This displacement may arise due to artifacts of the imaging

or feature extraction process. We assume the same standard deviation of the sensed

error for all points from the same image, denoted by �0. The actual value of �0 will

depend on things such as lighting conditions, camera, and feature type used, and may

change from image to image. In the next section we will derive the e�ect this sensor

error has on the possible projected locations of model points in the image.

3.4 Deriving the Projected Error Distribution

In this section we give an expression for the possible locations of the projected model

points as a function of error in the observed image locations of the basis points. Any

point which appears at one of these locations may have arisen from this hypothesis,
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and may be counted in favor of its being correct. We use both a uniform bounded

error model and a Gaussian error model for the purpose of comparison.

3.4.1 Uniform Bounded Error

We are assuming that the sensed location of a point, si, is displaced from its actual

location by a vector drawn from a uniform bounded distribution. Let us use ŝi to

denote the true location of the point, and ei to denote the error vector. Therefore,

for every image point,

si = ŝi + ei:

Let us assume that fm0;m1;m2g : fs0; s1; s2g is a correct image to model correspon-

dence, and let (�i; �i) be the a�ne space coordinates of a fourth model point mi.

Then the true image location ofmi is a function of true image locations of fs0; s1; s2g:

ŝi = (1 � �i � �i)ŝ0 + �iŝ1 + �iŝ2

However, the computed location ofmi is a function of the locations of the image basis

points. We will denote the computed location as ~si, and

~si = s0 + �i(s1 � s0) + �i(s2 � s0)

= (1� �i � �i)s0 + �is1 + �is2

The expression for the displacement vector for the projected model point is given by

the di�erence between its computed and true location:

~si � ŝi = (1 � �i � �i)s0 + �is1 + �is2 � (1� �i � �i)ŝ0 + �iŝ1 + �iŝ2
= (1 � �i � �i)[ŝ0 + e0] + �i[ŝ1 + e1] + �i[ŝ2 + e2]

�(1 � �i � �i)ŝ0 + �iŝ1 + �iŝ2
= (1 � �i � �i)e0 + �ie1 + �ie2

When the error vectors ei are drawn from a uniform circular distribution with radius

�0, the vector given by this expression was shown in [GHJ91] to be distributed over a

disk with radius

�0(j 1� �i � �i j + j �i j + j �i j +1): (3.4)

3.4.2 Gaussian Error

For the 2D Gaussian error model, we will use the terminologyX � N(m;�2) to denote

that the random variable X is normally distributed with mean m and variance �2.

Also, E[X] denotes the expected value of the random variable X. We assume a �xed

standard deviation �0 for the error distribution, and proceed as follows1.
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Let ŝi = true image location of model point mi:

ŝi = (1� �i � �i)ŝ0 + �iŝ1 + �iŝ2:

Let si = observed image location of mi:

si = ŝi + ei

where ei � N(0; �20). Then si is a random variable, si � N(ŝi; �
2
0).

Let ~si = computed image location of mi:

~si = (1� �i � �i)s0 + �is1 + �is2:

The projected error distribution in which we are interested is the di�erence between

the computed and observed image location of mi:

�ŝi = si � ~si
E[�ŝi] = E[si]� E[~si]

= E[si]� ((1� �i � �i)E[s0] + �iE[s1] + �iE[s2])
= ŝi � ((1 � �i � �i)ŝ0 + �iŝ1 + �iŝ2)
= 0

For the covariance matrix, we want to �nd the relation between any two random

variables �ŝi and �ŝj:

Cov (�ŝi;�ŝj) = E
h
�ŝi�ŝ

T

j

i
� E[�ŝi] E

h
�ŝT

j

i
= E

h
(si � ~si)(sj � ~sj)

T
i
� 0

= E[(ŝi + ei � (1 � �i � �i)[ŝ0 + e0] + �i[ŝ1 + e1] + �i[ŝ2 + e2]) �
(ŝj + ej � (1 � �j � �j)[ŝ0 + e0] + �j[ŝ1 + e1] + �j[ŝ2 + e2])

T ]

= E[(ei � (1 � �i � �i)e0 + �ie1 + �ie2) �
(ej � (1� �j � �j)e0 + �je1 + �je2)

T ]

Since all the ei's are independent, all terms eie
T

j
; i 6= j disappear when we multiply

and average, leaving

E
h
(1� �i � �i)(1 � �j � �j)e0e

T

0 + �i�je1e
T

1 + �i�je2e
T

2 + eie
T

j

i
= (3.5)(

[(1 � �i � �i)(1� �j � �j) + �i�j + �i�j]�
2
0I i 6= j

[(1� �i � �i)
2 + �2

i
+ �2

i
+ 1]�20I i = j

(3.6)

where I is the identity matrix. The di�erence between the terms for i = j and i 6= j

comes from the fact that in the former case, E
h
eie

T

i

i
= �20I, while in the latter case
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E
h
eie

T

j

i
= 0. So, the distribution of the error vector for the ith point is a circular

Gaussian with variance

�2
i
� �20[(1� �i � �i)

2 + �2
i
+ �2

i
+ 1] (3.7)

The fact that the distribution has non-zero covariance (Equation 3.6) indicates that

the error vectors for the di�erent projected points are not independent. Since this

dependence is di�cult to take into consideration, we will assume that they are inde-

pendent and proceed with the analysis. This assumption will cause us to underesti-

mate the true variance of the score distribution for correct hypotheses, as we will see

in a later section.

3.5 De�ning the Uniform and Gaussian Weight

Disks

In our recognition algorithm, all size 3 correspondences are searched through in order

to �nd a good pose. Each correspondence between model and image points is used to

project the rest of the model points into the image, and for each projected model point

location, if an image point appears at that location, this is counted towards a total

score for this hypothesis. If after checking all the projected model point locations the

total score exceeds some threshold, this hypothesis is accepted.

When a correct correspondence is tested in the absence of any error, there will always

be an image point at the exact projected location of every model point. When we

take sensor error into account, then any image point appearing within the range of

the projected error distribution is a match candidate for the projected model point.

It is clear that the larger the distribution, the more likely it is that a random image

point will appear within its range.

In all previous work involving analyzing a bounded uniform sensor error model, the

method of scoring a point which appears inside the range of the projected error

distribution has been to accord it a full vote. Though the projected error distribution

is in fact not uniform, these analyses have implicitly treated it as though it were, by

according the same score to any point which appears inside it.

In order to di�erentiate the scoring method from the error model, we will de�ne an

entity called a weight disk, whose height at every point determines the score of an

image point which appears at that location. For example, the weight disk implied by

the scoring scheme just mentioned is a disk, centered at the projected model point

location, with height 1 and radius given by Equation 3.4. This will be called the

\uniform weight disk". Though an optimal weight disk for a given error model may

exist, it may also be di�cult to derive or use. In general, we will speak of comparing

weight disks, rather than error models, unless we are comparing the optimal weight

disks for the error models involved.
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We now de�ne the weight disk which we will use to assign scores to points appearing

in locations consistent with the projected error distributions, assuming a Gaussian

model for sensor noise. Because the projected Gaussian distribution is unbounded, it

could give rise to a point appearing anywhere in the image with non-zero probability.

In practice though, we will ignore all points appearing outside a disk of radius 2�

from the center. The reason for this is to reduce run time and will become clear when

we discuss geometric hashing. Because of this limitation, we will assign a value of 0

to points from the part of the distribution extending from 2� to 1:

Z 1

2�

Z 2�

0

1

2��2
e�

r2

2�2 rdrd� =
Z 1

2�

r

�2
e

�r2

2�2 dr

= �e�r2

2�2

����
1

2�2

= e�2

That is, we will miss an image feature arising from a model point 13:5% of the time.

Next, for a point falling within the range of the truncated distribution, we will assign

weights according to their proximity to the disk center. The weight is chosen to be:

v =
1

2��2
e�

d2

2�2

where d =distance from the point's location to the disk center. This is the actual

height of the 2D Gaussian distribution at the location where the image point appears.

Again, this weighting is not optimal for this error model, and we will discuss di�erent

weighting schemes and their implications in a Chapter 5. Therefore, the Gaussian

weight disk is a Gaussian distribution, centered at the projected model location, and

truncated at 2� from the center.

Figure 3-2 illustrates the projected Gaussian and uniform weight disks. The �gure

shows that the Gaussian weight disks are smaller and more dense at the center than

the uniform weight disks; this can also be seen by comparing the analytic expression

for the radius of the uniform weight disk (Equation 3.4) against the radius of the

Gaussian weight disk (where � is given in Equation 3.7):

�0(j 1 � �i � �i j + j �i j + j �i j +1) � 2�0

q
(1 � �i � �i)2 + �2

i + �2
i + 1

This inequality holds because of the triangle inequality. For the comparison, �0 = 2�0.

3.6 Scoring Algorithm with Gaussian Error

The exact method of determining a score for a correspondence is given by the following

algorithm:
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Figure 3-2: The top and bottom �gures show the location and density of the projected

uniform and Gaussian weight disks, respectively. The darkness of the disk indicates the

weight accorded a point which falls at that location. The three points used for the matching

are the bottom tip of the fork and the ends of the two outer prongs. The image points found

within the weight disks are indicated as small white dots. Note that the uniform disks are

bigger and more di�use than the Gaussian disks.
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(a) for a hypothesis (m0;m1;m2) : (s0; s1; s2), �nd all Gaussian weight disk loca-

tions and sizes:

(i) �nd a�ne coordinates mj = (�j ; �j) with respect to basis (m0;m1;m2)

(ii) projected image location for mj is s0 + �j(s1 � s0) + �j(s2 � s0)

(iii) projected Gaussian weight disk radius for mj is 2� = 2(�2
j
+�2

j
+[1��j�

�j]
2)

(b) for every image point sj , initially set d =1.

(i) �nd the minimum distance d between sj and mj such that d � 2�.

(ii) add v = 1
2��2

e�
d2

2�2 (the height of the Gaussian weight disk at the image

point location) to the sum w, which is the total score for this hypothesis.

If this image point did not come within 2� of any projected model point,

then v = 0.

The collection method seems somewhat nonintuitive in that we accumulate evidence

from every image point, instead of taking the contribution from at most one point per

projected weight disk. The reason we chose to associate a random variable with each

image point, rather than each weight disk, is that it is di�cult to work with sums

of random variables whose density function involves the max function. In Chapter 5

we will examine the implications of accumulating weight from at most a single image

point per weight disk.

Now that we have selected a weighting scheme and a particular algorithm for accu-

mulating scores for hypotheses, we can determine the score density associated with

correct and incorrect hypotheses. As we can see from step (b:ii) in the algorithm, the

score is a sum over the individual weights from the n image points (not including the

three used for the basis correspondence). First we will de�ne the random variables

describing the score contributions from the individual image points.

Suppose we are testing a correct hypothesis. Then a particular model point mi will

give rise to an image point which falls within the projected Gaussian weight disk for

model point mi 86.5% of the time, since the weight disk only extends to a radius

of 2�e. The weight that this image point yields using our weighting scheme can be

described by a random variable which we will call VM . For convenience we will refer
to such an image point as a \true" image point. To demonstrate what this means,

in the simpler bounded uniform error case and with c denoting the probability of

occlusion, the density of VM is:

fVM (v) = c�(0) + (1� c)�(v � 1)

where � is the unit impulse function. This indicates the fact that when we are testing

a true image point, it will always appear inside a projected weight disk and contribute

a score of 1, unless it is occluded, in which case it contributes 0.
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We also de�ne the random variable V
M

to describe the weight that a random point

will yield for a tested hypothesis, where the term \random point" is taken to mean an

image point which either does not arise from the model at all, or that does arise from

the model, but the hypothesis being tested is incorrect. Note that we are assuming

by this that a point which does arise from the model will contribute the same as a

clutter point when the correspondence being tested is incorrect.

Next, we de�ne the random variables WH and W
H
to describe the cumulative weight

of correct and incorrect hypotheses. We let n+3 be the number of image points and

m+ 3 be the number of model points. Then W
H
is de�ned as

W
H

=
nX
i=1

V
M

(3.8)

where the n in the sum is due to the fact that 3 image points are used in the basis

correspondence. Note that when we are testing an incorrect hypothesis we consider

all the image points to be random, whether or not the model appears in the image.

The expression for WH is slightly more complicated because of occlusion. If there

were no occlusion, then WH would receive contributions from m projected model

points and (n �m) clutter points, that is:

WH =
mX
i=1

VM +
n�mX
i=1

V
M

(3.9)

(3.10)

When c 6= 0, we observe n clutter points but we do not know how many of them arise

from the model. The number of projected model points that we observe is actually a

binomially distributed random variable M . Thus,

WH =
MX
i=1

VM +
n�MX
i=1

V
M

(3.11)

PfM = kg =

 
m

k

!
(1 � c)kcm�k (3.12)

To discriminate between correct and incorrect hypotheses, we must know the score

that a correct hypothesis is likely to have versus an incorrect one. For this we need to

�rst determine the probability densities of the variables VM and V
M
and subsequently

the densities of WH and W
H
. The derivations for the density of VM and V

M
given

a particular value for the size of the weight disk is straightforward; however the size

of the weight disk is itself dependent on the a�ne coordinates of the model points.

We will de�ne another random variable, �e, to describe the values of the standard

deviation of the projected Gaussian error distribution, and we will discuss the how

we estimate its density in the next section. Once we have this expression, we will �nd
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the densities of VM and V
M

by integrating the expressions:

fVM (v) =

Z 1

0
fVM j�e(v j �)f�e(�)d�

fV
M
(v) =

Z 1

0
fV

M
j�e(v j �)f�e(�)d�

3.6.1 Determining the Density of �e

The motivation for treating the weight disk radius as a random variable is that we

would like to remove the dependence of �e from the geometry of any particular model.

Rather, we would like to �nd an expression for the probability density of the weight

disk radius over all possible models. To do this, we estimate the density by generating

thousands of models and keeping a histogram of the a�ne coordinates of all the model

points in the a�ne space formed by randomly chosen model bases.

Speci�cally, the method is as follows: when a particular hypothesis is being evaluated,

each model point is projected into the image with a weight disk whose radius is a

function of the a�ne coordinates of the model point:

2� = 2�0

q
(1 � �i � �i)2 + �2

i + �2
i + 1

in which �0, the standard deviation of the sensed Gaussian error, is a constant which

must be determined empirically. We de�ne a random variable �e which takes on the

values of � in the above expression, and in order to remove the dependence of �e on
the constant �0, we de�ne another random variable

�e =
q
(1� �i � �i)2 + �2

i + �2
i + 1 (3.13)

and we set

�e = �0�e (3.14)

In the analysis we use two di�erent probability densities for �e, one for correct basis

matchings and one for incorrect basis matchings. Intuitively, this is due to the fact

that when incorrect basis matchings are tested, more often than not the projected

model points fall outside the image range and are thrown away, while when correct

hypotheses are tested the remaining model points always project to within the image.

In tests we have observed that over half of incorrect hypotheses tested are rejected

for this reason, leading to an altered density for �e.

Let us call the two densities f�ejH and f
�ejH. We empirically estimate the former

density by generating a random model of size 25, then for each ordered triple of

model points as basis, we increment a histogram for the value of �e as a function of �

and � for all the other model points with respect to that basis. For the latter density,

we generate a random model of size 4 and a random image, and histogram the values

of �e for only those cases in which the initial basis matching causes the remaining
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model point to fall within the image. The densities for �e found in this manner have

been observed to be surprisingly invariant over numbers of model points ranging from

1 to 30, over numbers of image points ranging from 1 to 1000, and even across ranges

of �0 di�ering by as much as 10 to 1 (using a �xed image size).

The model is constrained such that the maximum distance between any two model

points is not greater than 10 times the minimum distance, and in the basis selection,

no basis is chosen such that the angle  between the two axes is 0 �j  j� �

16
or

15
16
� �  � 17

16
�. This is done to avoid unstable bases, thereby bounding the size

of the a�ne coordinates. For example, the coordinates of the point P = (1; 1) with

respect to the bases (1; 0) and (�1; 0) is (1;1). A similar problem exists for the

same point P with respect to the bases (1; 0) and (0; 0). The minimum value of �e is

found analytically by minimizing Equation 3.13 with respect to � and �, and occurs

at � = � = 1
3
, where �e = (4

3
)1=2. The maximum value of �e occurs at the boundary

conditions discussed above, and was determined empirically to be � 40.

The results were almost identical in every test we ran; two typical normalized his-

tograms are shown in Figure 3-3. The histograms very closely �t the curves

f�ejH(�) = a1�
�2 a1 = 1:189

and

f
�ejH(�) = a0�

�4 a0 = 4:624

between the ranges r1 =
q

4
3
; r2 = 40. Note that the actual value for r2 is not crucial,

given the actual density functions | in fact, the di�erence in the analysis using

r2 = 40 or r2 =1 turns out to be very small. Figure 3-3 shows the estimated density

functions for �e superimposed on the empirical density functions. The integral of the

analytic expression thus de�ned = 1:018 and 1:052, respectively.

Using Equation 3.14, the density of �e implies the density of �e:

f�ejH(�) = b1�
�2 b1 = a1�0

and

f
�ejH(�) = b0�

�4 b0 = a0�
3
0

between the ranges s1 = �0r1 and s2 = �0r2. For the rest of the work we will work

with the variable �e rather than �e for convenience, keeping in mind that in the �nal

analysis, the terms a0; a1; r1 and r2 are constants, and the terms b0; b1; s1 and s2, are

variables dependent on them and on the value of �0.
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Figure 3-3: The density functions f�ejH(�) and f
�ejH(�), respectively.

3.6.2 Determining the Average Covariance of Two Pro-

jected Error Distributions

We have already derived the covariance between two projected error distributions,

once the model to image correspondence has been �xed. This was shown to be

Cov (�ŝi;�ŝj) = [(1� �i � �i)(1� �j � �j) + �i�j + �i�j]�
2
0I

The probability density of the expression (1��i��i)(1��j � �j) +�i�j + �i�j can

be estimated in a similar manner as in the previous section to determine the average

covariance between projected error distributions. The actual experiment performed

was: for 1000 randomly generated models, subject to the same constraints as in the

previous section, 25 random model bases were chosen (again, subject to the same

constraints as in the previous section). For each basis, 25 random model pairs were

tested for the value of the covariance, and the result histogrammed. The results

indicated that the average covariance was always positive. The implication of the

average covariance being positive is that our estimate of the variance of WH will be

too low, as we will observe.
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3.7 Deriving the Single Point Densities

3.7.1 Finding fVM (v)

Given a correct hypothesis and no occlusion, the possible locations of a projected

model pointmi can be modeled as a vector ŝi+ei, where ei = [R;�]T . Let us treat the

vector ei as a pair of random variables R and � to avoid de�ning new notation. Then

ei given a �xed weight disk size is a displacement vector with Gaussian distribution

(expressed in polar coordinates)

fR;�j�e(r; � j �) =
1

2��2
e�

r2

2�2

We now choose an evaluation function g(r; �), which we use to weight a match that

is o�set by ei from the predicted match location. We want to �nd its density, i.e., we

want fg(R;�)j�e(v), where the joint density of R and � is as stated. As mentioned, we

choose the evaluation function

g(r; �) =
1

2��2
e�

r2

2�2

We are assuming that the value of � is �xed without actually denoting this in the

function g. Since the evaluation function g is a really function of r alone, we need to

know the density function of r. To �nd this, we integrate fR;�j�e(r; � j �) over �:

fRj�e(r j �) =
Z 2�

0
fR;�j�e(r; � j �)rd� =

r

�2
e

�r2

2�2

Next, we want to �nd the density of the weight function v = g(R). The change of

variables formula for a monotonically decreasing function is given by Equation A.1,

restated here:

fg(R)(v) =
�fR(g�1(v))
g0(g�1(v))

Working through the steps, we �nd

g(r) =
1

2��2
e�

r2

2�2

g0(r) = � r

�2
g(r)

fRj�e(r j �) =
r

�2
e

�r2

2�2

= 2�rg(r)

fRj�e(g
�1(v) j �) = 2�g�1(v)g(g�1(v))

= 2�vg�1(v)

g0(g�1(v)) = �g
�1(v)
�2

g(g�1(v))
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= �g
�1(v)
�2

v

=) fg(R)j�e(v j �) =
�fRj�e(g�1(v))
g0(g�1(v))

= 2�vg�1(v)
�2

vg�1(v)
= 2��2

It may seem counterintuitive that the resulting distribution is constant. However,

this can be understood if one considers an example in which fR;�(r; �) is uniformly

distributed. Integrating over all angles yields a linearly increasing function in r.

Assigning an evaluation function g(r; �) which is inversely proportional to r yields a
constant density function on fRj�e(v j �). The same thing is happening here, only

quadratically. Since we only score a point if it falls within a radius of 2� from the

center, we miss the entire part of the distribution from a radius of 2� to 1, which as

we showed before is e�2. So the probability density of VM given a �xed sized weight

disk is:

fVM j�e(v j �) =
8<
:
e�2�(v) v = 0

2��2 1
2��2e2

� v � 1
2��2

0 otherwise

This expression correctly integrates to 1.

We need to integrate this expression over all values of �e. Dealing �rst with the case

�rst where v 6= 0, we get:

fVM (v) =

Z
fVM j�e(v j �)f�ejH(�)d�

=

Z
2��2b1�

�2d�

= 2�b1

Z
d�

There are two things to take into consideration when calculating the limits for the

integration: �rst, the possible values of �e range from a lower limit s1 to an upper

limit s2, due to limits on the values of the a�ne coordinates. Also, for a given �e = �,
it is clear that the maximum value we can achieve is when r = 0) v = 1

2��2
, and the

minimum value we can achieve is at the cuto� point r = 2� ) v = 1
2��2

e�2. Setting
v to each of these expressions and solving for � leads to the conclusion that for a

particular value v, the only values for �e such that g(ei j �e) could equal v are in the

range ( 1p
2�ve

; 1p
2�v

). Therefore the lower bound on the integral is � = max(s1;
1p
2�ve

),

and the upper bound is � = min( 1p
2�v
; s2).

The bounds over which the integration is performed is illustrated in Figure 3-4. The

third dimension of this graph (not shown) is the joint density function fVM ;�e. Con-

ceptually what we are doing is integrating over the � axis. We split this integral into

the three 3 regions de�ned by the integration bounds, and deal with the case v = 0
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Figure 3-4: The �gure shows the boundaries for the integration for both fVM (v) and

fV
M
(v j m = 1). The bottom curve is � = 1p

2�v
, and the upper curve is � = 1

e

p
2�v

The

third dimension of the graph (not illustrated) are the joint density functions fVM ;�e(v; �)

and fV
M
;�e(v; � j m = 1).

separately. Integrating, we get:

fVM (v) =

8>>>>>><
>>>>>>:

e�2�(v) v=0

2�b1(s2 � 1

e

p
2�v

) `1 < v � `2

�b1
e�1
e

p
2�v

`2 < v � `3

2�b1(
1p
2�v

� s1) `3 < v � `4
0 otherwise

where

`1 =
1

2�s22e2
`2 =

1

2�s22

`3 =
1

2�s12e2
`4 =

1

2�s12

and s1; s2 are the minimum and maximum allowable values for �e, respectively. This
expression is graphed on the left in Figure 3-5 for �0 = 2:5. We break the equation

into cases not out of necessity, but for legibility.
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3.7.2 Finding fV
M
(v j m = 1)

We do the same derivation for the distribution fV
M
(v j m = 1), that is, the value that

a random point contributes to the basis of a model with 4 points. This is a prerequisite

for �nding the distribution for the case where the model has m + 3 points. Given a

hypothesis and a random point, we calculate the distribution as follows: let event E
= \point falls in a single hypothesized weight disk". Given �e = �, the probability of

event E equals the area of the weight disk divided by the area of the image A, i.e.,

PfE j �e = �g = 4��2

A
P
n
E j �e = �

o
=
A� 4��2

A

Now we calculate the probability that a point which is uniformly distributed inside a

disk of radius 2� contributes value v for an incorrect hypothesis, using the weighting

function de�ned in the previous section. As before, we express a uniform distribution

as a pair of random variables R;�, and then integrate over � to get the density of R

alone, since the evaluation function g is a function of R:

fR;�j�e(r; � j �) =
1

�(2�)2

fRj�e(r j �) =

Z 2�

0

1

�(2�)2
rd�

=
r

2�2

As before, we calculate the density fg(R)j�e given that the clutter point falls in the

weight disk with the new distribution for R and get:

fg(R)j�e(v j �;E) =
�f(g�1(v))
g0(g�1(v))

=
1

2
v�1

Therefore, the density of V
M

given a single weight disk with �xed �e is:

fV
M
j�e(v j �;m = 1) =

8><
>:
P
n
E j �e = �

o
�(v) = [A�4��

2
e

A
]�(v) v = 0

fV
M
j�e(v j �;E)PfE j �e = �g = 2��2

Av

1
2��2e2

� v � 1
2��2

0 otherwise

Again, this expression correctly integrates to 1. As before, we need to integrate over

�e:

fV
M
(v j m = 1) =

Z
fV

M
j�e(v j �;m = 1)f

�ejH(�)d�

=

Z  
2��2

Av

!
b0�

�4d�
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=
2�b0
Av

Z
��2d�

Dealing with v = 0 as a separate case, and with the same bounds as before, integrating

yields:

fV
M
(v j m = 1) =

8>>>>>><
>>>>>>:

[1� 4�b0
A
( 1
s1
� 1

s2
)]�(v) v=0

2�b0
Av

(e
p
2�v � 1

s2
) `1 < v � `2

2�b0
Av

(e� 1)
p
2�v `2 < v � `3

2�b0
Av

( 1
s1
�p2�v) `3 < v � `4

0 otherwise

where

`1 =
1

2�s22e2
`2 =

1

2�s22

`3 =
1

2�s12e2
`4 =

1

2�s12

This function is illustrated in on the right of Figure 3-5 for a value of �0 = 2:5.

We ran two simulations to verify the analysis of this section. In the �rst one, we

tested the density function fVM (v) as follows: we generated a random model of size

4, chose a random 3D pose and scale, projected the model into an image adding

a Gaussianly distributed displacement vector to each point, chose a correct image

to model correspondence, and histogrammed the value of the fourth point. This

was repeated 15; 000 times. The second simulation di�ered only in that instead of

projecting the model into the image, a random image was created and a random

correspondence tested. The results of the simulations are also shown in Figure 3-

5. Both graphs show a normalized histogram of the results of 15; 000 independent

trials excluding the value at v = 0. The measured density of fVM (v) does not �t
the prediction at v = 0 because of binning problems at that value, but the rest

of the �rst graph indicates the empirical results corroborating the predictions very

closely. For the second graph, most of the density occurs at v = 0; for the remainder

of the distribution a chi-squared test shows no signi�cant di�erence between the

empirical and analytic distributions (probability = .98 for �2 = 160 with 199 degrees

of freedom).

3.8 Deriving the Accumulated Densities

Having found the single point densities, we use them to �nd the density of the com-

bined weight of points for correct and incorrect hypotheses.
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Figure 3-5: Distributions fVM (v) and fV
M
(v j m = 1) for v > 0. For these distributions,

�0 = 2:5. Note that the scale of the y axis in the �rst graph is approximately ten times

greater than that of the second.

3.8.1 Finding fWH (w)

For a model of size m + 3 and an image of size n + 3, when a correct hypothesis is

being tested, then there are M true points in the image, and n�M random points,

where M is binomially distributed and

PfM = kg =
 
m

k

!
(1� c)kcm�k

The weight we collect for this hypothesis is a random variable with probability density

fWH
(w) =

Mz }| {
fVM (v)
 � � � fVM (v)


n�Mz }| {
fV

M
(v)
 � � � fV

M
(v)

=
MO
i=1

fVM (v)

n�MO
i=1

fV
M
(V

M
)

where 
 denotes convolution. The above shortened notation will be used from now

on for convenience. This formula assumes that each point contributes weight to its

supporting basis independently of any other.

In order to avoid explicitly convolving the preceding distributions, we �nd the ex-

pected value and the standard deviation of VM and V
M
, and invoke the central limit

theorem to claim that the combined weight of a correct correspondence between a

size m + 3 model in a size n + 3 image should roughly follow a normal distribution.

The fact that M is binomially distributed when c 6= 0 means that this distribution
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will not be completely Gaussian, but we will assume that it is for simplicity. Again,

N(m;�2) denotes a normal distribution with mean m and variance �2:

fWH
� N

 
E

"
MX
1

VM +
n�MX
1

V
M

#
;Var

 
MX
1

VM +
n�MX
1

V
M

!!
:

Lastly, we use the formulas for conditional mean and variance, given by Equations

A.2 and A.3, restated here, to simplify the above expression:

E[X] = E[E[X j Y ]]
Var (X) = E[Var (X j Y )] + Var (E[X j Y ])

Solving in stages, we �nd:

E

"
MX
1

VM +
n�MX
1

V
M
jM

#
= ME[VM ] + (n �M)E[V

M
]

Var

 
MX
1

VM +
n�MX
1

V
M
jM

!
= MVar (VM ) + (n�M)Var (V

M
)

E

"
E

"
MX
1

VM +
n�MX
1

V
M
jM

##
= E[M ] E[VM ] + E[n�M ] E[V

M
]

E

"
Var

 
MX
1

VM +
n�MX
1

V
M
jM

!#
= E[M ] Var (VM ) + E[n�M ] Var (V

M
)

Var

 
E

"
MX
1

VM +
n�MX
1

V
M
jM

#!
= Var (M) E[VM ]

2
+Var (n�M) E[V

M
]
2

We use the values E[M ] = (1 � c)m and Var (M) = mc(1 � c), and use the above

formulas to �nd that:

fW
H

� N(A;B)

in which

A = (1 � c)mE[VM ] + [n� (1� c)m]E[V
M
]

B = (1 � c)mVar (VM ) +mc(1� c)E[VM ]
2

+[n� (1� c)m]Var (V
M
) +mc(1� c)E[V

M
]
2

Solving for the remaining terms, we �nd

E[VM ] =

Z
`4

0
vfVM(v)dv
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Integrating over the four regions of the distribution and using the equalities

`1 =
1

2�s22e2
`2 =

1

2�s22
`3 =

1

2�s12e2
`4 =

1

2�s12

yields

E[VM ] = b1
e4 � 1

12�e4

"
1

s31
� 1

s32

#
:

Further substitutions of the equalities

b1 = a1�0 s1 = �0r1 s2 = �0r2

from Section 3.6.1 yield

E[VM ] = a1
e4 � 1

12��20e
4

"
1

r31
� 1

r32

#
:

Finally, the substitutions a1 = 1:189; r1 =
q

4
3
; r2 = 40, also from Section 3.6.1, yield

E[VM ] = 2:01 � 10�2 � 1

�20

The remaining terms are found using the same steps:

E
h
V 2
M

i
=

Z
`4

0
v2fVM (v)dv

= b1
e6 � 1

60�2e6

"
1

s51
� 1

s52

#

= a1
e6 � 1

60�2�40e
6

"
1

r51
� 1

r52

#

= 9:76 � 10�4 � 1

�40

Var (VM ) = E
h
V 2
M

i
� E[VM ]

2

Note that the value of the limit r2 was determined empirically and is a function of the

constraints on the bases that were chosen. Without the basis constraints, r2 tends to
in�nity, and in fact the values of these parameters for r2 = 40 and r2 = 1 are not

signi�cantly di�erent.

The values of E[V
M
] and Var (V

M
) are derived in the next section.
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3.8.2 Finding fW
H
(w)

For an incorrect hypothesis we look at the problem in two steps. First we derive, as
above, the mean and standard deviation of V

M
j m = 1, i.e., the weight of a single

random image point that drops into a single weight disk. From the distribution
fV

M
(v j m = 1), we �nd:

E[V
M
j m = 1] =

Z
`4

0
vfV

M
(v j m = 1)dv

=
b0(e

2 � 1)

3e2A

"
1

s31
� 1

s32

#

Substituting b0 = a0�
3
0 from Section 3.6.1, we get:

E[V
M
j m = 1] =

a0(e
2 � 1)

3e2A

"
1

r31
� 1

r32

#

Lastly, we note from Section 3.6.1 that

a0

"
1

3r31
� 1

3r32

#
= 1

since this is exactly the integral of the density f
�ejH

. Therefore,

E[V
M
j m = 1] =

e2 � 1

e2A

=
:8656

A

We continue with E
h
V 2

M
j m = 1

i
:

E
h
V 2
M
j m = 1

i
=

Z
`4

0
v2fV

M
(V j m = 1)dv

=
b0(e

4 � 1)

20e4A�

"
1

s51
� 1

s52

#

=
a0(e

4 � 1)

20e4A��20

"
1

r51
� 1

r52

#

Substituting a0 = 4:624, r1 =
q

4
3
, and r2 = 40, from Section 3.6.1:

E
h
V 2

M
j m = 1

i
= 3:52 � 10�2 � 1

�20A

Var (V
M
j m = 1) = E

h
V 2

M
j m = 1

i
� E[V

M
j m = 1]

2

Note that the mean E[V
M
j m = 1] is not dependent on the value of �0.
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Now, consider a single random image point (i.e., n = 4; three for the hypothesis and

one left over) dropped into an image where a model of size m+3 > 4 is hypothesized

to be. In this case the event that the random point will contribute weight v to this

hypothesis is calculated as follows: Let event Ei = \point drops in the ith weight

disk." Then,

fV
M
(v j v 6= 0) = fV

M
(v;E1) + fV

M
(v;E2) + : : :+ fV

M
(v;Em)

where we are assuming the disks are disjoint, hence we are overestimating the proba-

bility of the point falling in any disk. The actual rate of detection will be lower than

our assumption, especially as the m grows large.

fV
M
(v) =

8>>>>>><
>>>>>>:

1� m4�b0
A

[ 1
s1
� 1

s2
] v=0

m2�b0
Av

[e
p
2�v � 1

s2
] `1 < v � `2

m2�b0
Av

[(e� 1)
p
2�v] `2 < v � `3

m2�b0
Av

[ 1
s1
�p2�v] `3 < v � `4

0 otherwise

As m grows large, (1 �m4�b0
A
[ 1
s1
� 1

s2
]) < 0 so this expression is no longer a density

function. This is the point at which the model covers so much of the image that a

random point will always contribute to some incorrect hypothesis. Therefore, this

analysis only applies to models for which

m <
A

�20
�
�
4�a0

�
1

r1
� 1

r2

���1
=
A

�20
:02034

using the equalities b0 = a0�
3
0, s1 = �0r1 and s2 = �0r2 from Section 3.6.1. For ap

A : � ratio of 200 : 1, m < 800, and for a ratio of 50 : 1, m < 50.

The mean and standard deviation for the weight of one random point dropping into

an image with m weight disks is:

E[V
M
] =

Z
`4

0
vfV

M
(v)dv

= mE[V
M
j m = 1]

E
h
V 2
M

i
=

Z
`4

0
v2fV

M
(v)dv

= mE
h
V 2

M
j m = 1

i
Var (V

M
) = E

h
V 2

M

i
� E[V

M
]
2

= mE
h
V 2
M
j m = 1

i
�m2E[V

M
j m = 1]

2

Dropping n points convolves this distribution with itself n times:

fW
H
(w) =

nO
i=1

fV
M
(v)
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H Mean Variance

m n Emp Pred Emp/Pred Emp Pred Emp/Pred

1 1 3.695E-3 3.218E-3 1.15 1.519E-5 1.462E-5 1.04

1 100 3.838E-3 3.534E-3 1.09 1.735E-5 1.668E-5 1.04

1 500 4.803E-3 4.812E-3 .998 2.227E-5 2.498E-5 .891

5 5 1.966E-2 1.609E-2 1.22 1.493E-4 7.312E-5 2.04

10 10 4.199E-2 3.218E-2 1.30 5.413E-4 1.462E-4 3.70

10 100 4.451E-2 3.505E-2 1.27 5.340E-4 1.648E-4 3.24

10 500 5.548E-2 4.783E-2 1.16 5.748E-4 2.475E-4 2.32

H Mean Variance

m n Emp Pred Emp/Pred Emp Pred Emp/Pred

1 1 3.241E-6 3.462E-6 .936 1.875E-8 2.251E-8 .833

1 100 3.068E-4 3.462E-4 .886 1.974E-6 2.251E-6 .877

1 500 1.634E-3 1.731E-3 .944 1.1163E-5 1.126E-5 .992

5 5 8.913E-5 8.656E-5 1.03 6.4808E-7 5.616E-7 1.15

10 10 3.495E-4 3.462E-4 1.01 2.400E-6 2.240E-6 1.07

10 100 3.508E-3 3.462E-3 1.01 2.328E-5 2.240E-5 1.04

10 500 1.629E-2 1.731E-2 .941 1.077E-4 1.120E-4 .961

Table 3.1: A table of predicted versus empirical means and variances of the distribution

fWH
(w), in the top table, and fW

H
(w) in the bottom table, for di�erent values of m and n.

and therefore the weight that an n+3-size random image contributes to an incorrectly

hypothesized model of size m+ 3 follows the distribution:

N(nE[V
M
] ; nVar (V

M
))

The means for both distributions were tested empirically from the same experiment

as shown in Figures 3-5. That is, for WH , we generated a random model of size m+3

and projected it into an image, adding a Gaussian displacement error to each point,

and adding n�m additional clutter points (distributed uniformly within the image).

We only tested correct hypotheses, and kept track of the accumulated weight. We

repeated this experiment for a given (m;n) pair until we had over a few thousand

points. The same was done for W
H
except that the image tested contained n random

points (i.e., the model was not projected into the image) implying that only incorrect

hypotheses were tested. A table of values for the means and variances of all the

experiments is given in Table 3.1. For all the experiments, occlusion = 0; �0 = 2:5.

In all the experiments, the means are close those predicted for the experiments. For

W
H
, the predicted variance is also quite accurate. The underestimate of the variance

for WH is due to the fact that our assumption that the true points contribute weight

independently of any other true point is false, and in fact the average covariance

between pairs of projected error distributions is positive. This can be seen also in
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Figure 3-6: Comparison of predicted to empirical density of WH , for m = 10, n = 10,

c = 0, and �0 = 2:5. Note that the empirical density has much greater variance than

predicted.

Figure 3-6, which shows the empirical versus analytical density of WH for m, n, c, �0
= 10, 10, 0:0, 2:5.

Chapter Summary

In the analysis, we limited the model domain to planar objects. The reason for this

was that the analytic expression for the projected error of the fourth model point,

which for planar objects is given by Equation 3.4 and 3.7, is not known for either

the uniform or Gaussian error model when the model is not planar. This is the only

factor limiting the applicability of the analysis to 3D models; when such an expression

becomes available, this method will easily be able to incorporate it.

In the beginning of the chapter we asked the questions, how do we accumulate evi-

dence for a hypothesis, how do we decide if the hypothesis is correct, and how likely

are we to have made a mistake in the decision? So far we have addressed the �rst

question by selecting the recognition algorithm and noise model that we are using,

and deriving the probability density functions associated with the scores that correct

and incorrect hypotheses will accumulate using our algorithm. In the next chapter

we will discuss how to decide whether a hypothesis is correct or not, given its score.
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Chapter 4

Distinguishing Correct

Hypotheses

In the last chapter we selected an algorithm, noise model and weighting scheme, and

using these we derived expressions for fWH
and fW

H
, the weight densities of correct

and incorrect hypotheses. What we need now is a way to decide, given a score for a

hypothesis, if that score is high enough to warrant our deciding that the hypothesis

is correct. In this chapter we will show how to use the probability densities derived

in the previous chapter to do this. We brie
y introduce the ROC (receiver operating

characteristic) curve, a concept borrowed from standard hypothesis testing theory,

and cast our problem in terms of this framework.

4.1 ROC: Introduction

Suppose we have the following problem: we are observing a world in which there are

exactly two mutually exclusive and exhaustive events: H0 and H1. We are given the

task of deciding which one of them is correct. The only hint we have is some quantity

X that we can observe. We also know that if H0 were true, then we would observe

the value of X distributed in some known way, and similarly if H1 were true, i.e.,

we know fX(x j H0) and fX(x j H1). To relate this back to the object recognition

problem, H0 = \hypothesis being tested is incorrect" and H1 = \hypothesis being

tested is correct".

Let the space of all possible values of the random variable X be divided into two

regions, Z0 and Z1, such that we decide H0 if the value of X falls in Z0, and H1 if X

falls in Z1. Conversely, we can think of the decision procedure as de�ning the decision

regions Z0 and Z1. Then we can de�ne the quantities

Pfsay H0 j H0 is trueg =
Z
Z0

fX(x j H0)dx
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PF = Pfsay H1 j H0 is trueg =
Z
Z1

fX(x j H0)dx

PM = Pfsay H0 j H1 is trueg =
Z
Z0

fX(x j H1)dx

PD = Pfsay H1 j H1 is trueg =
Z
Z1

fX(x j H1)dx

These quantities are often referred to as PM = \Probability of a miss", PD = \Prob-

ability of detection", and PF = \Probability of false alarm" for historical reasons.

In our problem we are assuming we have no prior knowledge of the probabilities of

H0 or H1. In the absence of such information, a Neyman Pearson criterion, which

maximizes PD for a given PF , is considered optimal [VT68]. This criterion uses a

likelihood ratio test (LRT) to divide the observation space into decision regions, i.e.,

fX(x j H1)

fX(x j H0)

say H1

>

<

say H0

�

That is, we observe a particular value x, and compare the conditional probability

density functions for that value of x. If the ratio of the conditional densities is greater
than a �xed threshold �, choose H1, otherwise choose H0. Changing the value of

the threshold � changes the decision regions and thus the values of PF and PD. The

ROC (receiver-operating characteristic) curve is simply the graph of PD versus PF as

a function of varying the threshold for the LRT. The optimal performance achievable

is given by points on the curve.

If the prior probabilities of H0 and H1 are known, then the optimal Bayes decision

rule is used. This test also involves a likelihood ratio test, in which the threshold �

chosen to minimize the expected cost of the decision, and is a function of the costs

and priors involved:

� =
(C10 � C00)P0

(C01 � C11)P1

where Cij is the cost associated with choosing hypothesis i given that hypothesis j is

correct, Pi is the a-priori probability that hypothesis Hi is correct, and C10 > C00 and

C01 > C11 have been assumed. This point necessarily lies on the ROC curve, thus

the ROC curve encapsulates all information needed for either the Neyman Pearson

or Bayes criterion.

For example, assume for our problem that H0 � N(m0; �
2
0) and H1 � N(m1; �

2
1), and

assume that m1 > m0 and �1 > �0. The likelihood ratio test yields:
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fX(x j H1)

fX(x j H0)

say H1

>

<

say H0

�

1p
2��1

exp(� (x�m1)
2

2�21
)

1p
2��0

exp(� (x�m0)2

2�2
0

)

say H1

>

<

say H0

�

exp

 
(x�m0)

2

2�20
� (x�m1)

2

2�21

! say H1

>

<

say H0

��1

�0

�
x�m0

�0

�2
�
�
x�m1

�1

�2 say H1

>

<

say H0

2 ln
��1

�0
= 


The regions Z0 and Z1 are found by solving the above equation for equality,

x1 =
[(m0�

2
1 �m1�

2
0)� �0�1(
[�

2
1 � �20] + (m0 �m1)

2)1=2]

�21 � �20

x2 =
[(m0�

2
1 �m1�

2
0) + �0�1(
[�

2
1 � �20] + (m0 �m1)

2)1=2]

�21 � �20

The values of PF and PD are found by integrating the conditional probability densi-

ties fX(x j H0) and fX(x j H1) over these regions Z0 and Z1, where Z0 � fx : x1 <
x < x2g and Z1 � Z0.

PF =

Z
Z1

fX(x j H0)dx = 1 �
Z
x2

x1

1p
2��0

e
� (x�m0)

2

2�2
0

PD =
Z
Z1

fX(x j H1)dx = 1 �
Z
x2

x1

1p
2��1

e
� (x�m1)

2

2�2
1

In Figure 4-1 for example, we have plotted the ROC curve for the distributions

fX(x j H0) and fX(x j H1) alongside. The axes are x = PF , y = PD. The line x = y

is a lower bound, since for a point on this line, any decision is as likely to be true

as false, so the observed value of X gives us no information. Though an ROC curve

is a 3D entity (i.e., a point in (PF ; PD; �) space), we display its projection onto the
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Figure 4-1: On the left is displayed the conditional probability density functions fX(x j
H0) � N(1; :25) and fX(x j H1) � N(3; 1) of a random variable X . On the right is the

associated ROC curve, where PF and PD correspond to the x and y axes, respectively. On

the left graph, the boundaries x1 = �0:76 and x2 = 1:42 implied by the value 
 = �1:76

are indicated by boxes. On the right, the ROC point for this 
 value is shown. The PF and

PD values are obtained by integrating the area under the curves fX(x j H0) and fX(x j H1)

respectively, outside the boundaries. The integration yields the ROC point (0:2; 0:94).
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� = 0 plane and can easily �nd the associated � value for any (PF ; PD) pair. When

the threshold is in�nite there is a 0 probability of false negative, but a 0 probability

of correct identi�cation as well. As the threshold goes down, the probabilities of both

occurences go up until the threshold is 0, when both positive and false identi�cation

are certain. In our problem we assume that we do not have priors, so our goal is to

pick a threshold such that we have a very high probability of identi�cation and a low

probability of false positives, i.e., we are interested in picking a point as close to the

upper left hand side as possible. Note that the larger the separation between the two

hypothesis distributions, the more the curve is pushed towards that direction.

4.2 Applying the ROC to Object Recognition

In our problem formulation, H0 = probability that the hypothesis is not correct, and

H1 = probability that it is. In our case, we have a di�erent ROC curve associated

with every �xed (m;n) pair, where m + 3 and n + 3 are the number of model and

image features, respectively. We assume that H0 and H1 have Gaussian densities

fW
H
and fWH

, whose means and variances were derived in Chapter 3. Because in our

formulation the variance of fWH
is always greater than that of fW

H
, the lower bound

of the interval de�ning Z0 is always negative. Since we can't in practice achieve any

score lower than 0, we will treat the test as a threshold test, that is, we will accept a

hypothesis as being correct if it falls above � = x2.

Using this technique, we can predict thresholds for simulated experiments, as shown

in the next section.

4.3 Experiment

The predictions of the previous section were tested in the following experiment: to

test an ROC curve for model size m+3, image size n+3, occlusion c and sensor error

�0, we run two sets of trials, one to test the probability of detection and one to test the

probability of false alarm. In all our experiments we used a value �0 = 2:5. For PD, a
random model of size m+3 consisting of point features was generated and projected

into an image, with Gaussian noise added to the x and y positional components of

each point feature, independently. Occlusion (c) is simulated by adding a c probability

of not appearing in the resulting image for each projected model point. Only correct

correspondences are tested, and the weight of each of these correct hypotheses is

found using the algorithm, restated here:

(a) for a hypothesis (m0;m1;m2) : (s0; s1; s2), �nd all Gaussian weight disk loca-

tions and sizes:

(i) �nd a�ne coordinates mj = (�j ; �j) with respect to basis (m0;m1;m2)

(ii) projected image location for mj is s0 + �j(s1 � s0) + �j(s2 � s0)
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(iii) projected Gaussian weight disk radius for mj is 2� = 2(�2
j
+�2

j
+[1��j�

�j]
2)

(b) for every image point sj , initially set d =1.

(i) �nd the minimum distance d between sj and mj such that d � 2�.

(ii) add v = 1
2��2

e�
d2

2�2 (the height of the Gaussian weight disk at the image

point location) to the sum w, which is the total score for this hypothesis.

If this image point did not come within 2� of any projected model point,

then v = 0.

We performed this experiment, keeping a histogram of the weights, until there were

2500 sample points. To test the probability of false alarm, we run the same experiment

using random images which do not contain the model we are looking for. The resultant

histograms are normalized to yield the empirical density of WH and W
H
for the given

values of m, n, c and �0. To construct the ROC curves we loop through 25 thresholds

and tally the proportion of the empirical distributions of WH and W
H
that fall above

the threshold, yielding a (PF ; PD) pair for each one. The resulting PD, PF , and ROC

curves as a function of threshold � are shown in Figure 4-2 for n = 10; 100; 500; 500,

occlusion c = 0:0; 0:0; 0:0; 0:25. The ROC curves for the same parameters are shown

alongside. The axes for the graphs are (x; y) = (�; PF ), (x; y) = (�; PD), and (x; y) =
(PF ; PD).

The graphs of the PF , PD and ROC curves indicate that the predicted and actual

curves match very well, with the best predictions when the number of clutter points is

high. Turning to the PD plots, we see that when the threshold is high we consistently

underpredict the probability of detection. This error works in our favor, since it

pushes the actual (PF ; PD) points up above the predicted ones. This high threshold

area corresponds to the region on the ROC curve along the PD axis.

The discrepancies between the curves are due to assumptions we made in the ana-

lytic derivations, the most signi�cant of which is the assumption that WH and W
H

are Gaussian. In fact, none of the displayed empirical curves are actually Gaussian,

though when the clutter is high the distributions are more nearly so. In theory we

could use Cherno� bounds to bound the expressions for PD and PF for a given thresh-

old [VT68] but we will not explore this option. Instead, we will use the analytical

curves as an approximation to the actual curves, and note that despite this modelling

error, we still see a good �t between empirical and actual performance.

4.3.1 Using Model-Speci�c ROC Curves

The largest discrepancy between predicted and actual performance can be traced to

PD prediction, as seen in Figure 4-2. In our analysis, we assume two things that cause

this mismatch. First, we assume that a correctly hypothesized model point accumu-

lates weight in favor of a correct hypothesis independently of any other. Second, we
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Figure 4-2: Comparison of predicted to empirical curves for probability of false alarm,

probability of detection, ROC curves. The empirical curves are indicated by boxes. The

axes for graphs, from left to right, are (x; y) = (�; PF ), (�; PD), and (PF ; PD). For all graphs,

m = 10, �0 = 2:5. From top to bottom, n = 10; 100; 500; 500, occlusion = 0; 0; 0; 0:25.
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assume that the number of model points is large enough so that we can approximate

the probability density ofWH by a Gaussian. However, we have shown in the previous

section how to empirically derive the actual WH and PD curves by simulation. We

can use this technique to tailor the overall method to a particular model in order to

improve the prediction for that model.

Speci�cally, the method would work as follows: the same simulation as was performed

in the previous section is done, using the given model instead of a randomly gener-

ated one, with no occlusion or clutter. A simple function can be �t to the actual

distribution for WH , and this function will subsequently be used as the density of WH

(with not clutter or occlusion) for this model. The density of W
H
for any other value

of n and c can then easily be derived from this.

Summary

In this chapter we introduced the ROC curve, which enables us to encapsulate all

the information needed to make a decision about choosing thresholds to determine

performance. That is, for a particular image, model, and threshold for the weight that

a hypothesized match must score in order to accept it, we can predict the probability

that a correct or incorrect match will pass the threshold. Conversely, for a given model

and image, we can predict the threshold required to achieve a given probability of

true detection or false alarm. We applied this technique to simulated models and

images and were able to successfully predict thresholds and performance for a wide

range of model to image sizes.

The ROC curve also indicates the level of performance achievable for a particular

model and image, so that we can determine when a desired level of performance

(for instance, 0 probability of false alarm at the same time as a 1:0 probability of a

true detection) is simply not possible for a given model and image. In e�ect, we are

able to identify when an image is simply too noisy to be able to achieve any better

performance than randomly guessing whether a given hypothesis is correct or not.
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Chapter 5

Comparison of Weighting Schemes

In the previous chapters we talked about decision making for a particular weighting

scheme; however, we can use the machinery we developed in the last chapter not only

to evaluate hypotheses, but also to compare the relative merits of di�erent possible

weighting schemes. In this chapter we use the ROC to compare several such schemes.

We have already discussed one weighting scheme which we will call Scheme 1. Scheme

2 will denote the weighting and decision scheme generally used with the uniform

bounded error model, and Scheme 3 will denote the same weight disk as Scheme 1,

but using a weight accumulation algorithm which collects evidence from at most one

point per projected error disk. Ultimately we will decide to remain with the original

scheme we developed in Chapter 3.

5.1 Uniform Weighting Scheme

The weight disk used with the uniform bounded error model assigns a full vote to

any model point which falls inside it. For a model point with coordinates (�; �) in
the frame established by the model basis used in the correspondence, the projected

weight disk has radius

�0(j 1 � � � � j + j � j + j � j +1):

where �0 is the radius of the uniform error distribution for sensor noise. We will use

the symbol �e to describe the values this expression takes on as the a�ne coordinates

vary. The expected value of VM under this scheme is 1�c, and for V
M
, E[V

M
j m = 1]

is the probability that a random point will contribute a vote of 1 at a particular weight

disk to an incorrect hypothesis. This is the expected size of the weight disk over the

size of the image, which is =
�E[�2e]
A

. This last expression was called the redundancy

factor � and was derived analytically in [GHJ91], but for our comparison we took

the empirical value from simulations such as those described in Section 3.6.1. For an
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� :
p
A ratio of 1 : 100, � � 0:0034. The expected value of V

M
is the probability that

a single random point dropping into an image with m circles of average area � will

fall into one or more of them. Using the notation

B(p;n; k) =
� �

n

k

�
pk(1� p)n�k k � n

0 otherwise

the expression describing the probability that a clutter point will drop into one or

more weight disks is given by the inclusion-exclusion principle, and is

mX
i=1

(�1)i�1B(�;m; i)

If we upper bound this probability by assuming the weight disks are disjoint, this is

simply m�. This approximation constrains the number of model points to be less

than m��1 � 300.

The random variable W
H
is binomially distributed:

FW
H
(k) = B(m�;n; k)

The distribution for WH is a little more complicated; that is, in order to observe

exactly k points, i points must have been observed from the model, and the remaining

k � i points were random, for all numbers from 0 to k:

FWH
(k) =

kX
i=0

B(1� c;m; i)B(m�;n; k � i)

This product of two binomial distributions is not itself binomial, and the optimal

Neyman Pearson test to distinguish between them is complicated to derive. We will

use a simple threshold test since it is widely used, though we have not proven that it

is optimal with respect to the Neyman Pearson criterion. The probabilities of a true

and false positive using a threshold test are, respectively

PD = 1 �
kX
i=0

FWH
(i)

PF = 1 �
kX
i=0

FW
H
(i)

Figure 5-1 compares the ROC curves for Scheme 1 (Gaussian weight disk) and Scheme

2 (uniform weight disk) form = 10,n = 10; 50; 100; 500; 1000, occlusion= 0:0 and 0:25.

We can see that in the case of no occlusion and for small values of n, both techniques

predict good PF vs PD curves, though the bounded uniform weight disk has better

performance because there is no possibility of a false negative when occlusion= 0,

53



while with the Gaussian weight disk there always is. However, as n increases, the

performance of Scheme 2 breaks down more rapidly than Scheme 1 for both occlusion

values. For occlusion= 0:25, both schemes perform about equally for small values of

n (for example, at n = 100), but again as n increases, the performance of Scheme 2

degrades more dramatically than that of Scheme 1 (n � 500).

5.2 An Alternative Accumulation Procedure

In Section 3.8 we presented the basic recognition algorithm, and pointed out that

in the accumulation procedure, we add the contributions from every image point, as

opposed to at most one point per error disk. That is, if several image points fall

within the same error disk, we add the contributions from all of them. Intuitively

one would expect that this would not work as well as simply taking the value of the

closest point to the center of each error disk.

In this section we investigate the what happens to the ROC curve if we modify the

accumulation step to take only the \heaviest" point per error disk, i.e., the one

appearing closest to the disk center. This weight scheme will be called Scheme 3, and

we will use the same variable names as we did for Scheme 1, but with a `�' in the name

to di�erentiate the random variables and their distributions from those of Scheme 1.

The derivations of the density functions for Scheme 3 are more di�cult, and we will

end up approximating the density function fV �

M

such that E
h
V �
M

i
is underestimated.

Surprisingly, we will see that even with this underestimate, the theoretical ROC curve

for Scheme 3 is not as good as for Scheme 1.

We begin by de�ning two new random variables, V �
M
and V �

M
. The di�erence between

VM and V �
M

is that the former variable described the weight that a true image point

would yield | that is, a point which actually arises from the model when a correct

correspondence between model and image points has been established, and the rest

of the model points are projected into the image. V �
M
is the weight that a true weight

disk will contribute to the accumulated sum | that is, a disk which is projected into

the image when a correct hypothesis is being tested, when the image contains n+ 3

points. The same distinction holds for the variables V
M

and V �
M
.

We begin with the random variable V �
M
. Extending a derivation given in [BRB89] for

the one dimensional case, we �rst de�ne yet another random variable,Xk = distance of

the closest point to the center of a disk, when the disk contains k uniformly distributed

points. We derive the probability density function as follows: Let a be the radius of

the disk. We divide the disk into an inner disk and 2 rings:
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Figure 5-1: Comparisons of uniform and Gaussian weight disks for m = 10, n = 10, 50,

100, 500, 1000. Left: uniform weight disk, right: Gaussian weight disk. Top: Occlusion=0,

bottom: occlusion=0.25. For all ROC curves, the x and y axes are PF and PD, respectively.

A low threshold results in an ROC point on the upper right corner. As the threshold

increases, the performance (PF ; PD) moves along the curve toward the lower left corner.
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x

ax+h

To �nd the probability density of Xk, we �rst �nd the probability that of k points,

none fall in the inner disk, one falls inside the h-ring and the remaining k � 1 fall

outside the ring:

Pfx � Xk � x+ hg =

 
k

1

! 
(x+ h)2 � x2

a2

!1  
a2 � (x+ h)2

a2

!k�1

= k
(2hx+ h2)(a2 � x2 � 2ax� h2)k�1

a2k

Now we take the above expression, divide by the width of the ring h, and take the

limit as h! 0:

fXk(x) = lim
h!0

P (x � Xk � x+ h)

h

= lim
h!0

k

a2k
(2x+ h)(a2 � x2 � 2hx� h2)k�1

=
k

a2k
2x(a2 � x2)k�1

Now, let Yn = distance of closest point to the center of a given weight disk disk (i.e.,

�e is �xed) in an image with n + 3 points. So, the radius of the disk, a, is 2�e. For

legibility, let us set �g =
4��2e
A

to be the probability that a random image point falls

in the error disk. Then the probability that the closest image point to the disk center

is at a distance x equals the probability that exactly k points fall in the disk times

the probability that the closest of the k points is x away from the center of the disk,

for all k:

fYnj�e(x j �) =
nX
k=1

Pfk pts fall in diskgPfn� k pts fall outsideg fXkj�e(x j �)

56



=
nX
k=1

 
n

k

!
(�g)

k
(1� �g)

n�k
"

k

(4�2)k
2x(4�2 � x2)k�1

#

To derive fV �

M
j�e(v j �), we have to determine the density of g(Yn) for a �xed �e, where

g(y) = 1
2��2e

e
� y

2

2�2e . This is extraordinarily complicated, and we will not even attempt

it.

Instead, we do the following. First let us assume that n < 1
�g
. We will justify this

assumption shortly. This together with the fact that (1 � �g) � 1 means that not

only is the binomial term decreasing after the �rst term, but that the second term

is less than half the �rst. Therefore, we take the liberty of approximating the entire

distribution by the �rst term. When we do this, the term fXk(x) becomes much

simpler, since we only have to worry about the case where a single random image

point falls in the error disk, k = 1:

fX1j�e(x j �) =
x

2�2

Not surprisingly, this is the same expression as we derived back in Chapter 3 for the

distance of a single point from the center of a disk, when the point is drawn from

a uniform distribution. At that time we derived the weight that such a point will

contribute when using our weighting scheme g:

fg(x)j�e(v j �) =
1

2
v�1

So, combining this expression with the probability that a single point will fall in a

given error disk, we get

fYnj�e(v j �) = n�g(1� �g)
n�1fg(x)j�e(v j �)

� n
4��2

e

A

�
1

2
v�1

�

which is exactly n times the distribution fV
M
(v j m = 1) that we derived back in

Chapter 3. Without rehashing all the steps, we simply point out a few di�erences. In

particular, in Equation 3.15, m was bounded above by A

�2
0

� (4�a0[ 1r1 � 1
r2
])�1 in order

for the distribution fV
M
(v) to be a density function. For the distribution fV �

M

(v) the

same bound must hold, but for n instead of m. Let us call N the maximum number

of allowable image points. Now we can justify our �rst assumption that n < 1
�g
: Let

us use the expected area of the Gaussian error disk over all values of �e. This is given
by the expression:

Z
s2

s1

�(2�)2f
�ejH

(�)d�

=

Z
s2

s1

�(2�)2
b0

�4
d�
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= 4�b0

Z
s2

s1

1

�2
d�

= 4�b0

�
1

s1
� 1

s2

�

= 4�a0�
2
0

�
1

r1
� 1

r2

�

The maximum number of disks that can �t into the image (assuming the disks are

disjoint) is the image area A divided by this expression, which is exactly the bound
1
�g

that we assumed above.

To sum up, we have derived the approximation

fV �

M

(v) � min(n;N)fV
M
(v j m = 1)

and therefore

E
h
V �
M

i
� min(n;N)E[V

M
j m = 1]

E
h
(V �

M
)2
i
� min(n;N)E

h
V 2

M
j m = 1

i
Var

�
V �
M

�
� min(n;N)E

h
V 2

M
j m = 1

i
�min(n;N)2E[V

M
j m = 1]

All the terms on the right hand side of these equations are known quantities that were

derived back in Chapter 3. Note that because of our approximations, our prediction

for E
h
V �
M

i
is an underestimate of the distribution's actual �rst moment.

Finally we derive fV �
M
(v). We �rst look at a single correctly hypothesized weight disk

| that is, the weight that is scored by a disk which is projected into the image as a

result of testing a correct hypothesis. The weight disk always contains the correctly

projected model point, unless (a) the point is occluded, or (b) the point falls outside

the 2�e Gaussian weight disk. If either of these two things happen, then all of the

clutter points get a chance to score inside the weight disk. We will also assume

for simplicity that if the true point appears inside the disk then we will take its

contribution even if clutter points also appear inside the disk. Then the probability

that we will see weight v > 0 is:

Pfdisk gets weight v > 0g =
Pfdisk gets weight v > 0 j true point seeng+
Pftrue point not seengPfdisk gets weight v > 0 j false point seeng

And for the case when v = 0:

Pfdisk gets weight v = 0g = Pftrue point not seengPffalse point not seeng

For convenience let us call B the probability that no clutter point falls inside a true

weight disk. In the case in which occlusion= 0 the expression for the density fV �
M

58



would be correctly given by the expression

fV �
M
(v) =

(
[c+ (1 � c)e�2]B�(v) v = 0

fVM (v) + [c+ (1 � c)e�2]fV �

M

(v) v 6= 0

in which the c's would disappear. When occlusion 6= 0 we have the problem that we

don't know how many of the observed image points are clutter points. Therefore, we

must de�ne a random variableM describing the number of model points that actually

show up in the image. M is binomially distributed with mean (1� c)m and variance

c(1 � c)m. Using this random variable instead of m in the expression for fV �

M

in the

above expression, the density fV �
M
becomes:

fV �
M
(v) =

(
[c+ (1� c)e�2]B�(v) v = 0

fVM (v) + [c+ (1 � c)e�2]min(n �M;N)fV
M
(v j m = 1) v 6= 0

Let us temporarily rename p = c+(1�c)e�2, and assume that min(n�M;N) = n�M
for ease of manipulation. Then

fV �
M
(v) =

(
pe�2B�(v) v = 0

fVM (v) + p(n �M)fV
M
(v j m = 1) v 6= 0

We use Equations A.2 and A.3 to remove the random variable M , �rst for the mean:

E[V �
M
] = E[VM ] + p(n� (1 � c)m)E[V

M
j m = 1] (5.1)

and proceeding in stages for the variance:

E[V �
M
jM ] = E[VM ] + p(n �M)E[V

M
j m = 1]

Var (V �
M
jM) = E

h
(V �

M
)2 jM

i
� E[V �

M
jM ]

2

=
h
E
h
V 2
M

i
+ p(n �M)E

h
V 2

M
j m = 1

ii
�

[E[VM ] + p(n�M)E[V
M
j m = 1]]

2

Var (E[V �
M
jM ]) = p2E[V

M
j m = 1]

2
Var (M)

E[Var (V �
M
jM)] = E

h
V 2
M

i
� E[VM ]

2
+ pE[(n�M)]E

h
V 2
M
j m = 1

i
�p2E

h
(n�M)2

i
E[V

M
j m = 1]

2

�2pE[n�M ]E[VM ] E[VM j m = 1]

Next, substituting the expression E[M2] = Var (M) + E[M ]
2
into the last equation

and solving for the entire expression, we get:

Var (V �
M
) = Var (E[V �

M
jM ]) + E[Var (V �

M
jM)]

= p2E[V
M
j m = 1]

2
Var (M) + E

h
V 2
M

i
� E[VM ]

2

+p(n � E[M ])E
h
V 2

M
j m = 1

i
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�p2[(n� E[M ])2 +Var (M)]E[V
M
j m = 1]

2

�2pE[n�M ] E[VM ] E[VM j m = 1]

Note that the �rst term in the sum cancels out the variance in the third line, leaving

the expression:

Var (V �
M
) = E

h
V 2
M

i
� E[VM ]

2

+p(n� E[M ])E
h
V 2

M
j m = 1

i
� p2(n � E[M ])2E[V

M
j m = 1]

2

�2p(n � E[M ])E[VM ] E[VM j m = 1]

Putting back the min expression and substituting the value of E[M ] we �nally get

Var (V �
M
) = E

h
V 2
M

i
� E[VM ]

2
+ pmin(n� (1 � c)m;N)E

h
V 2

M
j m = 1

i
�p2min(n� (1 � c)m;N)2E[V

M
j m = 1]

2

�2pmin(n� (1 � c)m;N)E[VM ] E[VM j m = 1]

in which all the terms are known.

The accumulated densities W �
H
and W �

H
are simply collected over all m error disks

independently, so that

W �
H

� N(mE[V �
M
] ;mVar (V �

M
))

W �
H

� N(mE
h
V �
M

i
;mVar

�
V �
M

�
)

In Figure 5-2 we show an ROC comparison of Schemes 1 and 3. The new method,

Scheme 3, performs very poorly in theory because as the number of clutter points

go up, the chance of at least one point appearing in every disk is very high. When

this happens it is no longer possible to distinguish between correct and incorrect

hypotheses. For a �0 :
p
A ratio of 1:200, the maximum number of image points

allowable by the method is 818; at this point a random point will appear in every

weight disk with probability 1 and the ROC curve becomes almost diagonal.

In Figure 5-3 we see the actual PF , PD and ROC curves using this weighting method.

The predicted performance greatly underestimates the actual performance of the

method. This discrepancy is due to a simpli�cation which we glossed over in our

analysis, which is the assumption that the weight disks are disjoint. When this is not

the case, then this assumption overestimates the actual probability of a clutter point

landing in a weight disk, thereby overestimating the mean of the random variable

V �
M
. The same e�ect occurs in Scheme 1 as well, though to a lesser extent.

Despite the fact that the actual performance of Scheme 3 is better than predicted, it

is still the case that the actual ROC curves for Scheme 3 are not as good as those for

Scheme 1, as can be seen in Figure 5-4.

It is clear that Scheme 1 is better than Scheme 3 most importantly because the latter

performs better in actual simulations than Scheme 3. It also has the advantage that
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our predictions for the distributions of WH and W
H
are more accurate than those

of W �
H
and W �

H
. For both these reasons we will perform all experiments in the next

chapter using Scheme 1.

Summary of Weighting Schemes

In this chapter we discussed two di�erent possible weighting schemes and used the

ROC curves to compare them to the original scheme we developed in Chapter 3.

Ultimatelywe showed that our original scheme has better error performance than both

alternative schemes. It is important to note that none of the schemes we have analyzed

is optimal with respect to a maximum likelihood criterion, which would assign a

better score to hypothesis HA than to HB if Pfimage j HAg > Pfimage j HBg. For
the remainder of the thesis we will use the original scheme we developed in Chapter

3.
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Figure 5-2: The graphs show the comparison of ROC curves for Scheme 1 (top curve)

versus Scheme 3 (bottom curve). The x and y axes are PF and PD, respectively. Increasing

(PF ; PD) corresponds to a decreasing threshold for the direction of The (m,n) pairs are

(10,100), (10,500), (30,100), and (30,500). For all graphs, occlusion = 0 and �0 = 2:5.
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Figure 5-3: Comparison of predicted to empirical curves for probability of false alarm,

probability of detection, and ROC curves for Scheme 3. The empirical points are indicated

by boxes. The axes for graphs, from left to right, are (x; y) = (�; PF ), (�; PD), and (PF ; PD).

For all graphs, m = 10, occlusion = 0, �0 = 2:5. From top to bottom, n = 10; 100; 500.
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Figure 5-4: Comparison of empirical ROC curves for Schemes 1 and 3. In all graphs the

ROC curve for Scheme 1 is above that of Scheme 3. The axes are (x; y) = (PF ; PD). For

all graphs, m = 10, occlusion = 0, �0 = 2:5. From left to right, n = 10; 100; 500.
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Chapter 6

A Feasibility Demonstration

In the preceding chapters we presented a theoretical approach to placing a bound on

the probability of true versus false detection for the output of a recognition problem

in a limited domain, and some simulations supporting the viability of the method. In

this chapter we argue that the Gaussian error model is a reasonable approximation for

point feature locations by measuring the noise associated with di�erent point feature

types. Finally, we demonstrate the process of applying the analysis to real images.

6.1 Measuring Noise

6.1.1 Feature Types

A point feature is a physical aspect of the model which can be detected at a 2D

location in an image of the model, regardless of the model's pose. When consid-

ered in this light, we can see that there are two aspects of how powerful a feature

type is as a representation | its ability to represent the model, and its ability to be

reliably extracted from the image. Asada and Brady [AB86] discuss a model repre-

sentation called a Curvature Primal Sketch, in which point features are de�ned as

distinctive points in the curvature of the boundary of the object; i.e., zero crossings,

minima/maxima, and discontinuities, in the boundary curve's �rst derivative. In the

domain of planar models, these model features are all invariant to a�ne transforma-

tions and by extension, pose (note that it is the location of the features, and not the

magnitude of the boundary curve's �rst derivative at these points, that is a�ne invari-

ant). However, reliably extracting these sorts of features from an image is di�cult,

since their location is extremely dependent on factors such as pixel resolution, image

processing parameters, and even model pose, since at certain poses the magnitudes

of the boundary curve's �rst derivative becomes so small that the features become

undetectable.

Another possible representation is to limit the feature types to a single kind of cur-

vature discontinuity, that is, intersections of straight line segments greater than some
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�xed length. Line crossings, junctions, and corners are all examples of this. This

representation has its own problems since boundary curves on the model cannot be

represented at all by line segments. From the image processing side, a curve appearing

in an image gives rise to a indeterminate number of corner features, depending on the

magnitude of the curvature and image processing parameters. However, the locations

of intersections of long straight line segments might be more stably detected.

Wells [Wel92] uses as point features the center of mass of connected pixel strings

of length k, broken randomly. This is similar, but not equivalent, to sampling the

contour of the object at �xed intervals. One possible problem with this type of point

feature is simply that there are so many | that is, if k is too small, we are not

signi�cantly pruning the search in transformation space by using these features to

form hypotheses.

Few recognition systems in the literature use the simple point features described

above; for example, SCERPO [Low86] and HYPER [AF86] both use entire line seg-

ments as features, the Local-Feature-Focus method of Bolles and Cain [BC82] uses

oriented corners and holes, Huttenlocher's ORA system [Hut88] uses oriented points,

and Ettinger's SAPPHIRE system ([Ett87]) uses the compound point features de-

�ned in the Curvature Primal Sketch. The advantage of using more information per

feature is that the additional information will often eliminate hypotheses consisting

of impossible image-feature pairings.

One disadvantage of using more complex features is that there is more likely to be

errors in their extraction, and this error may prevent correct image-model feature

pairings from being tested. Also, Jacobs has recently shown that some basic work

using simple point features in the domains of linear combinations of models [UB89]

and indexing of 3D models [CJ91] does not extend to oriented point features [Jac92].

We wish to sidestep the issue of which is the best feature representation by arguing

that no matter what feature type is chosen, there will inevitably be some error in

extracting the features from the image, no matter what dimensionality the feature

type has, be it a simple 2D location, or a 2D location with orientation, magnitude,

or any combination of other kinds of information. Our goal is to argue that, given a

feature type, we can measure the noise associated with it and apply an error analysis

to determine the probability of false versus positive identi�cation. Because it was

simpler to use simple point features, we have limited ourselves to using only these.

We have measured the noise associated with four feature types, under di�erent con-

ditions. They are

� intersections of straight line segments of a �xed minimum length,

� points of maximum curvature,

� in
ection points,

� centers of mass of connected �xed length pixel strings.
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The actual algorithm we used to extract these features is unimportant, since we are

interested in measuring the variability of each type of feature, given a �xed feature

�nder. We have attempted to measure the noise per feature type as a function of

� di�erent images of the same scene,

� di�erent degrees of image smoothing,

� illumination.

Interestingly enough, there was some variation in feature locations even for the �rst

image group, where one would expect the images to be identical. In fact, there are

slight di�erences in pixel values between images, probably due to di�erent amounts

of light reaching the camera during the imaging stage (
uorescent lighting was used),

or possibly due to quantization error. This introduces a level of uncertainty in all

the subsequent image processing stages, from image smoothing to edge detection to

boundary tracing to subsequent feature extraction.

6.1.2 Procedure for Measuring Noise

To measure the noise associated with each feature type under each kind of condition,

three groups of images processed as follows:

� 5 images of a telephone, same illumination, at 5 second intervals. Each image

was smoothed with a Gaussian mask with � = 2 pixels and Canny edge detected

with thresholds of 2 and 4.

� A single image of a fork, with 5 di�erent sized Gaussian smoothing masks:

� = 1; 1:5; 2; 2:5, and 3 pixels. Each image was Canny edge detected with

thresholds of 2 and 4.

� 5 images of an army knife, varying illuminant position and strength. Each

image was smoothed with a Gaussian mask with � = 2 pixels and Canny edge

detected with thresholds of 2 and 4.

The result of processing yielded 5 di�erent edge maps for each group. The original

images were all taken with a Panasonic TV camera with automatic gain control,

using an 16mm lens and manually focused. The exact conditions were not measured

precisely, since we are interested in them only insofar as they conform to \reasonable"

operating conditions. All images consisted of a 720 � 484 pixel map. Only overhead

lighting was used except for the last image group, for which a 
oodlight was used to

change the direction of illumination.

For each edge map, all chains of connected pixels were computed and smoothed, and

each feature type found:
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� Intersection points | the chains were segmented into straight edge segments

using a recursive line-splitting algorithm ([GLP87]), then all intersection points

whose distance was < 10 pixels away from the ends of the segments which

formed them were kept.

� Maximum curvature points | the derivative of the tangent along the curve was

computed, then all minima and maxima exceeding a �xed threshold were kept

as point features.

� In
ection points | the zero crossings of the tangent's derivative along the curve

whose absolute slope exceeded a �xed threshold were kept as point features.

� Mass centers of chain fragments | the chains were broken into fragments of

length 10, then the center of mass of each one taken as a point feature.

For each image group, the feature locations for each of the 5 images were indicated

on a single bitmap, color coded by the index of the image from which it came. In

Figures 6-1, 6-3 and 6-5, the features are shown only in white, due to reproduction

limitations. The correspondences across images were manually indicated for the �rst

three feature types by mousing on clusters which the user believed indicated a feature

of a given type. For the fourth feature type, the correspondences were automatically

formed by clustering together those features from every image who mutually agreed

on their nearest corresponding feature. Figures 6-1, 6-3 and 6-5 show a representative

image from each image group, and the point features from all the image groups with

their correspondences indicated by circles. The feature types depicted are intersection

points (phone), centers of mass (fork), and maximum curvature points (army knife).

The in
ection point feature was the most unstable, and is not illustrated.

For each cluster within a given feature type, the mean in both the x and y direction
was calculated, then for each feature in the cluster, its distance from the mean of

the cluster was histogrammed. This yielded, for each image, a histogram per feature

type. This histogram is intended to be an accurate sample of the error distribution of

the feature type. Some sample histograms are shown next to the pictures from which

the features were clustered.

In addition, the error distribution of a third coordinate for each feature type was

calculated. For the intersection points, the third dimension is the angle, for maxi-

mum curvature points, it is the magnitude of the curvature, for in
ection points, the

slope, and for centers of mass, the tangent of the curve at that point. The results

indicate that the error distribution along this third dimension can also be modelled as

Gaussian, and suggests that our method could be extended to incorporate this extra

information, though we have not done so.

The calculated variances of each feature type per image group are:
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Figure 6-1: First image group. The group consists of 5 images of a telephone, same

lighting conditions and smoothing mask. The top �gure shows one of the images of the

group, with the intersection of straight line segment features from all 5 images of the group

superimposed in white. The bottom �gure shows the result after Canny edge detection and

chaining. The straight line segments from which the intersection points were taken are not

illustrated. Superimposed on the bottom �gure are the location of the clusters chosen for

the noise measurements, indicated by circles. All intersection features located within the

bounds of the circle were used as sample points for the noise measurement.
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Figure 6-2: Left hand side, from top to bottom: the histograms of the x, y and z coordi-

nates of the intersection features depicted in the previous �gure. For intersection features,

the z coordinate is the angle of intersection. The Gaussian distribution with mean and

variance de�ned by the histogram is shown superimposed on the graph. On the right hand

side is the cumulative histogram, again with the cumulative distribution superimposed.
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Figure 6-3: Second image group, consisting of the edges from 5 di�erent smoothing masks

of the same image. Again, the top �gure shows one of the images of the group, but the

features shown are the center of mass features from the boundary, randomly broken into

segments of length 10. The bottom �gure show the clusters, i.e., groups of features which

mutually agree upon their nearest neighbor features across all of the images.
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Figure 6-4: Histograms of the x, y and z coordinates of the center of mass features depicted

in the previous �gure. For this feature type, the z coordinate is the angle of the tangent to

the curve at the center of mass.
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Figure 6-5: Third image group | an army knife under 5 di�erent illuminations. The top

�gure shows one of the images of the group, with the maximum curvature features from all

5 images superimposed.
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Figure 6-6: Histograms of the x, y and z coordinates of the maximum curvature features

depicted in the previous �gure. The z coordinate is the magnitude of the curvature.
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# clusters # points �2
x

�2
y

�2
z

INTERSECTIONS:

Phone: 28 325 1.8 1.2 0.079

Fork: 7 231 8.3 2.9 0.52

Knife: 19 85 2.0 2.6 0.30

MAX CURVATURE:

Phone: 38 221 0.54 0.27 0.017

Fork: 8 71 3.8 1.7 0.093

Knife: 23 169 2.4 4.2 0.11

CENTERS OF MASS:

Phone: 523 2615 2.0 1.2 0.015

Fork: 305 1525 3.4 1.6 0.0027

Knife: 244 1220 2.7 2.1 0.027

INFLECTIONS:

Phone: 10 48 0.68 0.96 4.3

Fork: 3 18 6.8 2.6 1.1

Knife: 5 26 5.7 3.3 3.5

Since there were so few reliable clusters of in
ection points for each set of images, the

results from the distribution can't be taken as representative of any sort of underlying

distribution for this feature type. The intersection and maximum curvature points

were fairly abundant and stable. For the centers of mass feature, note that the

variances are about twice as large in the x direction as the y direction. This is

because the contour of the objects were aligned more along the x direction, so the

uncertainty would naturally be greater along the contour's tangent due to the manner

in which these points were found. We expect that any directional bias of this sort

will be symmetrised by the random orientation of the object in the image.

Because the results between image groups are so disparate, we chose to use the average

variance for a particular image group as a guide for choosing �0 per experiment (again,

assuming that the rotational component of the pose distribution allows us to do this).

The calculation is simply

�0 =

s
�2
x
+ �2

y

2

per feature type per experiment. In our subsequent work we will limit ourselves to

using only maximumcurvature feature types. For these features, the above calculation

yields �0 � :65; 1:7; 1:8 for the phone, fork, and knife respectively. In the actual

experiments it was found that better performance was achieved by using values that

were slightly larger than these for the phone and the knife.
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6.1.3 Discussion of the Method

There are several aspects of the noise calculation that an observer might take issue

with. The �rst is simply the assumption that the real location of the sought after

feature is the mean of every cluster; that is, there is no bias in the error distribution.

This brings up the question, what is the real location of a feature? Suppose the

particular feature �nder we were using always displaced features to the left by 3

pixels, or, displaced features in an orientation-dependent fashion. Representing the

distribution of vectors between where we believe the feature should be, and where the

feature �nder actually localizes them, can be a problem. However, the complexity

disappears if we decide to let the feature �nder be the judge of the \actual" location

of the features. This will require the model representation to be determined by the

feature �nder (we will discuss exactly how in the next section). Also, any orientation-

dependent directional bias of the feature �nder should be randomized by the fact that

the orientation of the model in the image is random as well.

Another objection might be that we are not measuring the correct thing: rather,

what should be measured is the displacements of a single feature from, say, 100

di�erent images. Instead, what we are really doing is sampling many di�erent random

variables, and as such, it is no wonder that we are ending up with a close to Gaussian

error distribution, since by the Central Limit Theorem, the sum of many di�erent

random variables will be Gaussian, no matter what their individual distributions. The

answer to this charge is that this sum of random variables is exactly the distribution

that we are interested in measuring; far from invalidating the method, this objection

reinforces it.

Another question might be about the manner in which the clusters were formed; that

is, at least for the 3 out of 4 of the feature types, we manually clustered together

those features that seemed to be close to a location at which it seemed reasonable

that a feature should appear. There was no guarantee that there was exactly one

feature from each image group in the cluster; some clusters probably were missing

representative features from some images, some clusters probably contained several

features from the same image. Also, we didn't take all possible clusters, only those

which seemed subjectively appropriate. Despite these issues, we claim that since

the model representation is chosen by the user (i.e., which model features comprise

the representation), it is not unreasonable for the user to determine the range of

locations at which a projected model feature may appear. As to the question of

variable number of features per image included in a single distribution, we note that

if the image feature extraction process drops a feature for one of the images in the

distribution, there is nothing we can do. If one image contains several features close

to the desired feature location, then including all of them in the distribution implies

that any of them is a feasible match for a model feature which projects to near that

location.

76



6.1.4 Using Di�erent Feature Types

Now that we have several feature types, each with their associated �0, we look at the

problem of combining information for a hypothesis consisting of pairings of di�erent

feature types: i.e., suppose we have a hypothesis consisting of a size 3 pairing of

feature types 1, 2 and 3 with associated error standard deviations �1, �2 and �3
respectively. Then the possible locations of a fourth point (�; �) of feature type 4

with error standard deviations �4 remains centered at the expected location, but with

variance

�21(1� � � �)2 + �22�
2 + �23�

2 + �24

We can still weight the occurences of a corroborating point as before. However,

the calculation of the densities for VM and V
M

become more involved, since we can

no longer use the same approximation for f�ejH(�) and f�ejH(�). If the �'s are not

all equal, these density functions are dependent on the four new random variables

�i; i = 1 : : : 4, whose distributions are di�erent for each model. Though it is still

possible to do the calculation, it is much more complex than before.

6.2 Building the Planar Model

Building models for 2D planar objects is particularly easy, since a single image con-

tains su�cient information to do it. In order to be able to use the error model which

we have analysed and measured, we build our model as follows: a single image of

the model at in an arbitrary pose is run through the feature detector. The user then

clicks on clusters of points appearing near the location of a desired feature; the mean

of this cluster is then incorporated into the model representation. This method of

building the model is compatible with the way in which we measure and represent

error in our analysis.

6.3 Applying the Error Analysis to Automatic

Threshold Determination

Here's an example of an application of our error analysis to a typical problem in

object recognition | automatic threshold determination for a system which uses our

recognition algorithm. Optimally, we would like to build a demonstration system in

which, given a model and some image, the user speci�es a certainly level up front,

i.e., \I don't want the system to tell me about anything unless it is 90% certain that

it is an instance of the model". In order to achieve this, it would have to be the case
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that
NDPD

NDPD +NFPF
� 0:9

in which ND and ND are the total number of true and false hypotheses, respectively.

However, in our problem these numbers are unknown; the only control we have is

over the values of PF and PD and this does not bound the certainty of the result.

Thus our demo will be as follows: the user is able to specify a desired value for either

PF or PD. The image is processed to �nd the number of model and image features,

and then the system constructs the associated ROC curve and �nds the implied PD
(if a PF was speci�ed, otherwise the implied PD for the speci�ed PF ), and what

threshold will give that performance. It then noti�es the user of the implications of

the choice.

As it turns out, the simplifying assumption that the clutter is randomly distributed in

real images is not only incorrect, but the deviation from the modeled error also very

strongly a�ects the way the system works. The reasons for this are illustrated by an

extreme example: imagine an image in which n feature points appear in the left side

of the image while the right side has none. When we project an error disk into the

image, if it appears in the left side it is twice as likely to encompass an image point

at random than our prediction. In addition, the denser region will more likely be

sampled (in this example, will de�nitely be sampled) for the 3 random image points

chosen at random to form the pose hypothesis, making it much more likely that the

remaining error disks also project to the left side of the image. These two e�ects

result in a much higher e�ective density than indicated by the mere number of points

appearing in the image.

We can attempt to �x to the problem in two ways: we can either estimate an e�ective

image density as a function of density variability across the image and use a single

ROC curve and threshold per image, as we have been doing up until now. Or, we can

calculate the e�ective density per hypothesis (that is, density of the region in which

the projected model falls), and use a di�erent ROC and threshold per hypothesis.

We chose the latter approach, that is, we chose to calculate an ROC curve not for an

entire picture (since a single value for n does not su�ce to describe all hypotheses

when the density is so variable across the image) but rather on a per-hypothesis basis.

So, instead of being able to predict a single threshold for all hypotheses emanating

from an image, we calculate the threshold every time we test a di�erent hypothesis.

Since we are changing the ROC curve per hypothesis, we can choose the threshold to

constrain either the false alarm rate or the true detection rate, but not both.

6.3.1 The Problem with the Uniform Clutter Assumption

In this section we illustrate in more detail the problem with the uniform clutter

assumption. First we show the original demonstration in which we found a discrep-

ancy between our predicted and actual behavior of the system, and subsequently, a

sequence of experiments to isolate its cause.
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Initially we built a demo which runs in one of two modes, random and exhaustive.

For both modes, the system takes as its input

� The model, consisting of a list of 2D feature locations,

� The image, also consisting of a list of 2D feature locations,

� Estimated occlusion level, which is a number between 0 and 1, inclusive,

� The value of �0 for this feature type.

In addition there are two optional arguments SUB-MODEL and SUB-IMAGE, which

are subsets of the model and image, respectively. If these optional arguments are non

empty, the demo runs in exhaustive mode, otherwise it runs in random mode. The

motivation for these optional arguments is to limit the number of hypotheses tested

to a reasonable size, and to be able to include some correct hypotheses among those

tested. For instance, in the telephone test with 33 model features and 250 image

features, the number of hypotheses, though polynomial, is still � 4 � 1011. Even if

we could check one hypothesis per second, this would still take 13 thousand years,

risking a very dull demo for the user. However, when a sub-model and sub-image

group of size 4 that correctly correspond to each other is speci�ed, then the demo

exhaustively tests 96 hypotheses of which 4 are correct.

When the demo runs in exhaustive mode, the user is asked to specify a desired PF .

The number of model and image features implies a single ROC curve, and the user

speci�ed PF implies a particular PD and threshold. The system reports to the user

the implied PD and proceeds to cycle through all size 3 hypotheses formed by cor-

respondences between the model and image subsets, showing the user all hypotheses

which score above the threshold. The user answers each query with \correct" or

\incorrect", and the number of times the system makes a mistake is tallied.

When the demo runs in random mode, the user is asked to specify only a PF , after
which 1000 randomly chosen hypotheses are tested, the assumption being that the

probability of randomly choosing a correct one is in�nitesimal.

The output of the demo is a histogram of the weights of all the hypotheses tested.

If the demo was in random mode, the normalized histogram should have the same

distribution as W
H
. If the demo was in exhaustive mode, then the predicted to

empirical (PF ; PD) point is illustrated on a graph.

We ran the demo in exhaustive mode on the telephone image shown in Figure 6-7 with

a user speci�ed certainty level of :99. The �rst part of the �gure shows the grey-scale

image of the telephone with the points chosen to comprise the model indicated in

white. The bottom �gures show a correct and incorrect hypothesis that the system

came up with that exceeded the threshold.

In terms of performance, the demo failed quite dramatically, showing far more incor-

rect hypotheses exceeding the predicted threshold than should have been the case.

Upon inspection the cause for this breakdown is easily identi�ed; running the demo
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in random mode with the same model and image produced the histogram shown in

Figure 6-8. The �gure shows the predicted density of W
H
for m = 30; n = 248 super-

imposed on the normalized histogram of the actual density function. Both the mean

and variance are much larger than they should be. The question is, what is causing

such a large discrepancy?

We pinpointed the problem by performing the following sequence of experiments.

(A) First we eliminated the possibility that the sheer number of model and image

points was the culprit by performing the same simulation as was done to derive

the ROC curves in Chapter 4 for the same value for m and n as in the tele-

phone model and image. The results of the simulation follow the predictions of

the error analysis very satisfactorily and normalized histogram of the weights,

approximating the density of W
H
, is shown in Figure 6-9. This indicates that

the problem lies elsewhere.

(B) To eliminate the possibility that something about the model itself was causing

the behavior (for instance, the model symmetry), we created an image in which

the model was present, but all the remaining image points were redistributed

uniformly over the image, maintaining the same values of m and n. We then ran

the demo in random mode, and found that the resulting histogram of weights

also conformed to the predictions of the error analysis (Figure 6-10). This also

pinpoints the problem, since the only di�erence between this experiment and

the original demo was the distribution of the clutter points, thus isolating the

cause of the discrepancy.

(C) Lastly, we tested to make sure that model pose did not a�ect the results by

running the same test as (B), but translating the model points to the very

top of the image (Figure 6-11). This did a�ect the weight histogram slightly,

but in the other direction | that is, it served to make the PF prediction an

overestimate, not an underestimate, of the clutter e�ects.

6.3.2 Finding a Workaround

Density Correction Factor

Our �rst attempt at �xing the problem is to determine the e�ective image density.

If we can do this, then we can maintain a single ROC and threshold per image.

Let us de�ne a quantity which we will name the density correction factor. This

is an empirically derived number which serves as a kind of ampli�cation factor, in

that it scales the actual number of image features to yield the e�ective number of

image features. The procedure for �nding it is simple: we subdivide the image into

a 16 � 16 grid of regions, each one with approximately uniformly distributed image

clutter. During the demo, every time an error disk is projected into the image, a
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Figure 6-7: The top �gure shows the original image, with the feature points chosen for

the model indicated in white. The middle �gure is a correct hypothesis that exceeded the

predicted threshold, and the bottom shows an incorrect one. The points indicate image

feature points, and the circles indicate projected weight disks.
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Figure 6-8: The histogram for the weights of incorrect hypotheses chosen from the original

image. Note that the mean and variance greatly exceeds those of the predicted density of

W
H
for m = 30; n = 248.
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Figure 6-9: The histogram of W
H

for 2500 randomly chosen hypotheses For this model

and image, m = 30, n = 248, when the clutter is uniform and the model does not appear

in the image. The prediction closely matches the empirical curve.
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Figure 6-10: The top picture shows the model present in the image, but with the clutter

points redistributed uniformly over the image. The actual density of W
H

closely matches

the predicted density.
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Figure 6-11: When the model points are displaced to the top of the image, the resulting

density of W
H

is a�ected, but in the other direction. That is, the noise e�ects are now

slightly overestimated instead of underestimated.

84



count for that region is incremented. Finally, the histogram is normalized (turning

it into a 2D probability density function for the probability of being hit by an error

disk), and from this we calculate the expected number of image points per region

by multiplying the normalized histogram by the number of image points per region.

Finally this is turned into the density correction factor by multiplying it by (number

of regions / number of image points).

We used the density correction factor to get an idea of the di�erence between the

number of clutter points that we are using in our calculation versus the e�ective

amount of clutter. We would expect the demo to produce a correction factor of

� 1 when run on a completely uniformly distributed image, with a higher number

indicating a higher variability in density. As expected, the original image resulted

in a correction factor of � 4:57, while experiment A (completely uniform image)

yielded a correction factor of � 1:13. Experiments B (model with uniform noise),

and C (displaced model with uniform noise) yielded intermediate values of � 2:03
and � 1:75, respectively. Note that knowing this number doesn't directly suggest a

solution, since a correction factor of > 1 doesn't imply that the method breaks down.

Rather, it simply con�rms that regions of high clutter density are actually hit more

often than the low clutter regions, as we suspected.

Threshold per Hypothesis

It is clear from our work up until this point that the uniform clutter assumption does

not adequately model the clutter in real images, and we cannot �x the method by

amplifying the number of image points in a naive way. Instead, we have modi�ed

the method to work on a per-hypothesis basis. That is, we use the same grid of

uniformly distributed density regions to estimate the e�ective image density every

time we project the model into the image, and calculate the ROC curve and threshold,

assuming a �xed certainty level. This implies that we cannot predict the overall

probability of a miss at the outset of the demo, since it changes for every hypothesis,

but we can set the threshold to maintain a �xed probability of false alarm.

Implications of the Uniform Clutter Assumption

We have de�nitively shown that the assumption of uniformly distributed clutter un-

derestimates the negative e�ects of clutter for this recognition algorithm. Though

the number of images we have examined is not enormous, it is quite safe to say that

one cannot assume that the feature points in an image will be so distributed, and

so any analysis which depends on this assumption will underestimate the e�ects of

clutter. To our knowledge, all error analyses that have been done until now in the

�eld of computer vision have used this assumption.
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6.4 Demo

We revised the demo to take into account the density correction per hypothesis. The

demo runs as before, with two changes. First, the user is able to specify either

a PF or PD level. If a PD level is speci�ed, then only correct correspondences are

tested. These correct correspondences are passed to the demo through the parameters

SUB-MODEL and SUB-IMAGE. Second, the user is not told at the outset what the

implied PF rate (or PD rate) will be for the speci�ed level, since it changes for every

hypothesis.

In this section we present the output of the demo in action. In theory the demo

should work for any planar object in an arbitrary pose, but in practice the fact that

we are working under perspective instead of orthographic projection will lead to errors

that we do not expect will be adequately modeled by a Gaussian. For this reason

we cannot vary the pose of the object in our experiment (except for translations in

the x and y direction), and so for this limited case we can include 3D models in our

domain.

For the demo, then, we can use all the 3D objects that we have been working with

until now, namely, the telephone, fork, and army knife. We work with a single object

at a time. A model of an object is constructed from a single image of it by �rst

processing the image to �nd all the feature locations, displaying their 2D locations,

and then mousing on points which we want to be in the model. To test the validity

of the error analysis, we run the demo on a di�erent image than the one from which

the model was constructed.

6.4.1 Telephone

In this test, we used the telephone model that was shown in Figure 6-7. For every

hypothesis, the e�ective density is calculated, and the ROC curve for that model

size and image density determined. The threshold associated with the ROC point

(PF ; PD) on the curve is found, and if the weight exceeds the threshold, the hypothesis

is displayed.

Table 6.1 shows the results of experiments in which a particular rate of either false

alarm or true detection was given, then the threshold was dynamically set per hy-

pothesis to maintain the speci�ed rate. The same three experiments were performed

for four di�erent values of �0 including that found in Section 6.1.2. The �rst column

is the �0 value that was assumed for the experiment. The second and third columns

contain the user speci�ed PF or PD. In the fourth column is the total number of hy-

potheses tested. The �fth, sixth and seventh columns contain the expected number

of hypotheses of those tested that should pass the threshold, the actual number of

hypotheses that pass the threshold, and the error bar for the experiment (we show

one standard deviation =
q
tPF (1 � PF ), t = number of trials. The actual PF (or

PD) is shown in the eighth column. The last column shows the average distance of all

86



�0 PF PD Total Expect Actual Error Act PF =PD E[D]

0.5 .01 1081 11 15 3.27 .014 -2.1

.001 1121 1 0 1.06 0

.9 512 461 503 6.8 .98 5.1

0.65 .01 1082 11 29 3.27 .027 -3.7

.001 1080 1 0 1.04 0

.9 510 459 510 6.8 1.0 2.7

1.0 .01 1073 11 23 3.26 .021 -3.24

.001 1094 1 0 1.05 0

.9 514 463 501 6.8 .97 5.5

2.0 .01 1113 11 21 3.32 .019 -1.95

.001 1091 1 0 1.05 0

.9 508 457 496 6.8 .98 4.2

Table 6.1: Results of experiments for the telephone. The �rst column is the �0 value that

was assumed for the experiment. The second and third columns contain the user speci�ed

PF or PD. In the fourth column is the total number of hypotheses tested. The �fth, sixth

and seventh columns contain the expected number of hypotheses of those tested that should

pass the threshold, the actual number of hypotheses that pass the threshold, and the error

bar for the experiment (we show one standard deviation =
p
tPF (1� PF ), t = number of

trials). The actual PF (or PD) is shown in the eighth column. The last column shows the

average distance of all the hypotheses that passed the threshold from E[WH ].

the hypotheses that passed the threshold from E[WH], The distance is given in terms

of the standard deviation of WH , that is:

D =
E[WH ]� wq
Var (WH)

where w is the weight of the hypothesis which crossed the threshold.

This model and image contained 33 and 231 features, respectively. In our experiments

we tested several values of �0 to see how varying that value would a�ect the accuracy

of our predictions. In Section 6.1.2 when we measured the noise associated with

the maximum curvature feature type for the phone image group, we determined that

�0 = 0:65. As we can see from the table, the results were not signi�cantly di�erent for

the di�erent values of �0, though a value of �0 = 0:5 seemed to be most accurate for

the experiment PF = 0:01. Oddly enough, using the measured value for �0 resulted
in the worst predictions.

For all of the experiments, we see that the threshold predicted to maintain a speci�ed

PF of :01 did not achieve the desired false detection rate. The reason for this is that

our assumption that the density function ofW
H
is Gaussian is false; in fact, the upper

tail of the actual distribution ofW
H
contains more of the distribution than a Gaussian

with the same mean and variance would. Despite this, the predicted thresholds for
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Figure 6-12: The incorrect hypotheses that fell above the threshold chosen to maintain a

PF of 0:01. For these experiments, �0 = 2:0. The circles show the locations of the projected

weight disks, while the points show the feature locations.
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�0 PF PD Total Expect Actual Error Act PF =PD E[D]

1.0 .01 1157 12 44 3.38 .038 -1.6

.001 1139 1 0 1.02 0

.9 514 463 0 6.8 0

1.8 .01 1075 11 51 3.26 .047 -.98

.001 1017 1 1 1.01 .001 -2.77

.9 512 461 318 6.8 .62 -.048

2.0 .01 1126 11 40 3.34 .036 -.93

.001 1100 1 0 1.05 0

.9 541 487 423 7.0 .78 -.2

3.0 .01 1020 10 29 3.18 .028 -.44

.001 1044 10 2 1.0 .002 -1.06

.9 517 465 431 6.8 .83 .5

Table 6.2: Experimental results for the army knife. Though �0 for this image group was

determined to be 1:8, we see that the predictions for a value of �0 = 2 or 3 are much better.

The columns indicate the �0 used for the experiment, either PF or PD , the total number

of hypotheses tested, the expected number of hypotheses to score above the threshold, the

actual number that scored above the threshold, and the error bar for this value (we show

one standard deviation =
p
tPF (1� PF ), t = number of trials). The actual PF (or PD)

is shown in the next column, and the last column shows the average distance of all the

hypotheses that passed the threshold from E[WH ]

an even lower probability of false alarm (i.e., PF = 0:001) work well.

Lastly, we note that on the average, even those false hypotheses which passed the

threshold had weights which were still signi�cantly below the mean of WH , while the

weights of true hypotheses passing the threshold were signi�cantly above. Though not

justi�ed by the analysis, this information might also be used to discriminate between

true and false hypotheses passing the threshold.

6.4.2 Army Knife

The same experiment was done with the army knife. This example di�ers from the

previous example in that we used far fewer model points, 14 versus 33. This brings

the value of E[WH ] much closer to E[W
H
], and in general we found that the system

behaved less well due to this. For this experiment, the number of model and image

features were 14 and 162 respectively. The model plus two examples of hypotheses

which fell above the threshold are shown in Figure 6-13.

The �0 for this feature type was determined in Section 6.1.2 to equal 1:8. Referring

to Table 6.2, we see that using this value for the sensor noise results in a very poor

prediction for PD. For example, for a speci�ed PD value of 0:9 we can see that

the actual percentage of true hypotheses that passed the threshold was only 0:62.
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Figure 6-13: The top �gure shows the original image, with the feature points chosen for

the model indicated in white. The middle �gure is a correct hypothesis that exceeded the

predicted threshold, and the bottom shows an incorrect one.
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Figure 6-14: The model of the fork superimposed in white onto the original image.

Raising the value of �0 improved the prediction for both PF and PD, with the best

performance prediction resulting from using a value of �0 = 3:0, with �0 = 2:0

a close second. However, even the predictions for these �0 values results in too

high a false alarm rate when a value of PF = 0:01 is speci�ed | again, using a

Gaussian approximation for the density of W
H
causes us to underestimate the extent

of the upper tail of the actual distribution. As in the previous model, the predicted

performance closely matched actual performance for a PF value of 0:001.

Unlike in the previous set of experiments with the telephone, there is not much

di�erence between the average distance from E[VM ] of true and false hypotheses which
pass the threshold. Whereas before there was a chance that this extra information

might further help discriminate between true and false hypotheses which pass the

threshold, for this model and image the extra information is no help.

6.4.3 Fork

The same group of experiments for the fork image group are depicted in Table 6.3.

The model contained 9 feature points and is shown in Figure 6-14, while the image

contained 170. The table indicates that the predictions for the �0 = 1:7 and 2:0

give the best results of the group, though the prediction for �0 = 1:7 is worse for a

speci�ed PF = 0:01, and the prediction for �0 = 2:0 is worse for PF = 0:001. The

former value, �0 = 1:7, was the value determined for this image group in Section

6.1.2. Generally, performance predictions were not quite as successful for this model

as for the �rst two.
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Figure 6-15: Three kinds of false positives that occurred for a highly symmetric model.
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�0 PF PD Total Expect Actual Error Act PF =PD E[D]

1.0 .01 1093 11 36 3.28 .033 -.058

.001 1070 1 1 1.03 .001 -1.84

.9 508 457 468 6.8 .92 2.48

1.7 .01 1052 11 56 3.23 .053 .27

.001 1065 1 1 1.03 .001 1.77

.9 529 476 475 6.9 .90 2.55

2.0 .01 1011 11 43 3.16 .043 -.28

.001 1020 1 7 1.01 0.007 1.82

.9 523 471 467 6.9 .89 2.4

3.0 .01 1043 10 59 3.21 .056 .67

.001 1057 10 17 1.03 .016 1.5

.9 512 461 444 6.8 .87 1.6

Table 6.3: Experimental results for the fork model.

6.4.4 The E�ect of Model Symmetry

While performing the previous experiments, it was noted that incorrect hypotheses

which roughly aligned the model along an axis of symmetry in its image projection

would be more likely to get a high score and pass the threshold. The second hypoth-

esis in Figure 6-12 is an example of this phenomenon, as well as the �rst two false

hypotheses shown in Figure 6-15. These \symmetric" hypotheses are more likely to

be sampled when the three image points in the basis actually arise from the model

(while not correctly corresponding to the model basis tested). To test this e�ect, we

ran the above experiments for some sample values of �0. The three points in the

image basis used for the random correspondence was restricted to those arising from

the model.

The results in Table 6.4 show that on the whole, the restriction to hypotheses using

image bases arising from the model causes a higher false positive rate than the same

experiment without the restriction. This does not prove that the model symmetry is

entirely causing this e�ect, especially since the knife model, which is not symmetric,

shows the same tendency towards a higher false positive rate, while the fork, which is

highly symmetric, does not (at least for the PF = :01 experiment). Nonetheless, we

suspect that model symmetry may is a contributing factor, though more tests would

have to be done to settle the matter conclusively.

6.4.5 Comparison to Results Using the Uniform Clutter

Assumption

In the previous sections we performed experiments in which we dynamically set the

threshold per hypothesis, depending on which region of the image the model projected
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Model �0 PF Total # Found This PF Previous PF Error

Phone 1.0 .01 1101 37 .034 .021 3.3

.001 1126 2 .002 0 1.06

Knife 3.0 .01 1096 66 .06 .028 3.29

.001 1015 11 .011 .002 1.01

Fork 2.0 .01 1070 46 .043 .043 3.25

.001 1067 22 .021 .007 1.03

Table 6.4: Experimental results when all the points in the image bases tested come from

the model. The �rst and second columns contain the model and �0 tested. The next columns

contain the speci�ed PF , total number of hypotheses tested, and number of hypotheses that

passed the threshold. The next two columns contain the actual PF for this experiment and

the value for the same experiment in which the tested image bases are not constrained to

come from the model (this value was taken from the previous group of experiments. Finally

the last column is the error bar for the experiment, which we took to be one standard

deviation =
p
tPF (1� PF ), t = number of trials.

Model �0 PF Total # Found This PF Previous PF
Phone 1.0 .01 1080 418 .39 .021

Knife 3.0 .01 1114 528 .47 .028

Fork 2.0 .01 1061 490 .46 .043

Table 6.5: Experimental results when uniform clutter is assumed. The �rst and second

columns contain the model and �0 tested. The next columns contain the speci�ed PF ,

total number of hypotheses tested, and number of hypotheses that passed the threshold.

The next two columns contain the actual PF for this experiment and the value for the same

experiment in which the e�ective density is calculated per hypothesis, and the threshold

dynamically reset.

to under the tested hypothesis. We have shown the method working reasonably well

despite a slightly higher false positive rate than expected for some cases. One source

of the problem may possibly be that the image was indiscrimately broken into a

16� 16 grid for the e�ective density calculation, in which the clutter was assumed to

be uniformly distributed within a rectangle of the grid. This approximation may not

be quite correct for the images used.

Lest the reader question the advantage of using a dynamic threshold, we illustrate

some experiments for the case when clutter is assumed to be uniform. That is, a

single ROC curve and threshold is calculated for the entire image, and any hypothesis

which falls above it is counted. The results are shown in Table 6.5. The table clearly

shows the necessity of using dynamic thresholds, and one can appreciate how well our

method actually performs when compared with these results.
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6.5 Conclusion

In this chapter we have demonstrated the applicability of many of the ideas developed

so far. First we argued that the positional error of features due to e�ects such as

lighting and smoothing are well modeled by a Gaussian approximation, and showed

how to determine the size of the Gaussian for di�erent feature types. Finally we

showed an example of automatic threshold setting applied to the problem of �nding a

correct correspondence between model and image features. It was found that in two

of the three image groups, the better predictions were achieved when using a �0 for

each image group that was slightly higher than that found in our measurements.

It was demonstrated early on that the assumption that clutter is uniformly distributed

over an image greatly underestimates the e�ects of clutter on the algorithm we are

using when applied to a real recognition problem. Because of this, we were not able

to apply exactly the same approach that we demonstrated on simulated images in the

Chapter 4; rather, we had to adjust the threshold for every model pose hypothesis,

depending on the clutter levels of the regions that the model projected to. This

meant that when a hypothesis projected to a region of high density, it needed far

more evidence to be considered a possible detection than otherwise. We showed this

approach working reasonably well for a small group of images. When given false alarm

rates of :01 and :001, the system was able to recalculate the threshold per hypothesis

to achieve close to the speci�ed performance.

One e�ect that we noted was that when the image basis used in the correspondence

was constrained to come from the model points in the image, the false positive rate

tended to be higher. We suspect this may be related to the e�ect of model symmetry,

since incorrect correspondences that happened to project the model to a position that

was relatively symmetric to the actual pose would often pass the threshold. This event

is more likely to occur when the features in the image basis come from the model.

In the next chapter we will discuss the implications of our �ndings to other existing

recognition techniques.
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Chapter 7

Implications for Recognition

Algorithms

The error analysis we have presented applies not only to alignment, but to geometric

hashing as well. We will brie
y discuss the original geometric hashing algorithm and

explain the modi�cations that are required to be able to apply our error analysis.

Finally we will discuss possible applications and extensions of our work.

Because we used a�ne coordinates as the model representation and limited the Gaus-

sian weight disk to a radius of 2�e, our method for threshold and performance pre-

diction applies equally well to both alignment and geometric hashing, provided the

original geometric hashing algorithm is modi�ed to take error into account in a par-

ticular way. First we will discuss the original algorithm, and then we will describe

the modi�cations required for the error analysis to apply.

7.1 Geometric Hashing

The geometric hashing method was introduced by Lamdan, Schwartz and Wolfson

in [LSW87], and Hummel and Wolfson in [HW88]. The algorithm consists of two

stages, a preprocessing stage in which a lookup table is created, and a run time

stage in which small groups of image are features used to access the lookup table for

potential matches.

In the preprocessing stage, the hash table is constructed as follows: Every ordered

triple of model points is used as a basis, and the a�ne coordinates (�; �) of all other

model points are computed with respect to each basis. Thus, if ~m0; ~m1 and ~m2 are

basis points, then we represent any other feature point by

mi =m0+ �i(m1 �m0) + �i(m2�m0)

The basis (m0;m1;m2) is entered into the hash table at each (�i; �i) location. Intu-

itively, the invariance of the a�ne coordinates of a model with respect to 3 of its own
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points as basis is being used to \precompute" all possible views of the model in an

image. The precise algorithm is:

� for every ordered model triplet Bk = (m0;m1;m2);

{ for every other model point mj

(i) �nd coordinates mj = (�j; �j) with respect to basis Bk

(ii) enter basis Bk at location (�j ; �j) in the hash table.

The running time for this stage is O(m4), where m=number of model points.

At recognition time, the image is processed to extract 2D feature points. Every image

triple is then taken as a basis, and the a�ne coordinates of all other image points are

computed with respect to the basis to index into the hash table and \vote" for all

bases found there. We will use the term \random image basis" to refer to an image

basis which contains at least one point not arising from the model. Intuitively we

are searching for any three image points which come from the model, and using the

hash table to verify hypothesized triples of image points as instances of model points.

Such an image triple will yield a large number of votes for its corresponding model

basis. The precise algorithm is:

� for every unordered image triplet (i0; i1; i2)

(a) for every other image point ij

(i) �nd coordinates ij = (�j; �j) with respect to basis (i0; i1; i2)

(ii) Index into the hash table at location (�j; �j) and increment a his-

togram count for all bases found there.

(b) If the weight of the vote for any basis Bk is greater than some threshold

�, stop and output the correspondence between triple (i0; i1; i2) and basis

Bk as a correct hypothesis.

A single pass of the algorithm corresponds to testing a single image basis for a corre-

spondence to any model basis. In some versions of the algorithm, the hypothesis that

is output subsequently undergoes a veri�cation stage before being accepted as cor-

rect. The termination condition for accepting a correspondence of bases (and hence

a pose of the object) and the implied probability of true detection and false alarm

are exactly the issues that our error analysis addresses.

7.2 Comparison of Error Analyses

The �rst error analysis of the geometric hashing technique was done by Grimson,

Huttenlocher and Jacobs [GHJ91]. They used a uniform model for sensor error, and
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concluded several things: �rst, that when sensor error is taken into account and a

particular image triplet is chosen in the recognition stage, then the regions in the hash

table that are consistent with the sensed position of any fourth image point (step (ii))

are ellipses whose center and axes are dependent on con�guration of the image basis.

Thus, the error regions themselves cannot be taken into account at the preprocessing

stage, but rather must be computed in step (ii) of the recognition stage, and all model

bases in the region incremented.

Second, they derived the probability that a single random image basis would match

any model basis as follows: Suppose the probability that a single random image point

will be in a region consistent with any model point is � on average. Let us �x the

model basis that we are interested in. The probability that a single image point will

fall in any region consistent with this particular model basis is

p = 1 � (1� �)m

since there are m places in the index table where this basis appears, and the image

point must avoid all of them. However, there are n image points, so the probability

that this particular model basis gets at least k votes is

wk = 1�
k�1X
i=0

 
n

k

!
pk(1 � p)n�k

This is the probability that a single random image basis matches a �xed model basis.

There are m(m� 1)(m � 2) bases in the hash table (we will use mh3i to denote this
expression), so probability that this image basis will contribute at least k votes to

any model basis is

1 � Pfimage basis contributes � k to no model basisg
= 1 � (1 � wk)

mh3i

= 1 �
"
k�1X
i=0

 
n

k

!
pk(1� p)n�k

#mh3i

This is the probability that in a single pass through the recognition stage of the

geometric hashing algorithm, the image basis being tested will �nd a match of at

least size k at random. They presented an analogous analysis for alignment, which

is identical except the roles of n and m are switched. Thus they conclude that the

probability of an overall false positive was greater for the geometric hashing case than

for alignment, because n > m prevails rather generally.

The di�erence in the positions of n and m in their analysis was based on the assump-

tion that alignment counts at most one image point per model disk whereas geometric

hashing counts all image points that appear in the model disk. This is equivalent to

the distinction between Schemes 1 and 3 that was discussed in Chapter 5. However,

the geometric hashing scheme can be easily modi�ed to use either collection method

by keeping track of whether a point has already been collected from that particular
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location; in fact, this is the method generally used. The alignment method can also

easily use either collection scheme. Therefore, the probability of error is equivalent

for either method when using comparable collection schemes.

Interestingly enough, we have shown the opposite of the conclusion of [GHJ91] with

regard to the probability of error as a function of collection method. We concluded

in Chapter 5 that the performance of Scheme 1 (counting all image points that fall in

a weight disk) is better than that of Scheme 3 (at most one image point per weight

disk); this is because even when the clutter is very high, the expected number of points

falling inside a correctly hypothesized weight disk is always greater than the expected

number of points falling inside a random weight disk regardless of the clutter level.

Therefore, the expected value of the sum of points appearing in the disk will always

be higher if the disk is correct. The other collection scheme saturates with noise once

there is a high probability that at least one image point will appear per weight disk.

This �nding does not contradict the analysis in [GHJ91] since the weighting scheme

used in that analysis was based on a uniform model for sensor noise.

To apply our error analysis we would have to project entire error ellipses into the

hash table as described in [GHJ91], but in the Gaussian error model case, the ellipses

would be smaller and we would increment weights for model bases instead of votes.

Now we can appreciate why it was important to limit the Gaussian weight disk to a

�nite size. If the distribution were unbounded, we would have to go through the entire

table and contribute some small weight to every basis, thus changing the run time

of the original geometric hashing algorithm. Applying our method to this domain

results in being able to derive triples of (�, PF , PD) for the termination step of the

geometric hashing algorithm (step (b)).

Furthermore, we can easily calculate the probability that a particular image basis

will match any model basis, as was done in [GHJ91]. We already mentioned that

the geometric hashing technique can be considered a \�ltering" step which provides

candidate model to image basis correspondences to some more expensive veri�cation

step. Then the technique would be considered to break down once the number of

matches it o�ers up is too high.

Suppose we are willing to verify (by alignment or any other veri�cation technique) all

bases that pass our threshold, as long as there are � k of them. Then, an overall false

positive is the combined event that the three image points being tested do not arise

from the model, yet more than k model bases \look good". An overall true positive

is the combined event that the three image points do arise from the model, that � k

model bases pass the test, and of these, one of them is the correct one. We will call

these combined events 
F and 
D, and

Pf
Fg = 1 �P
k

i=0

�
mh3i

i

�
P i

F
(1� PF )

mh3i�i

Pf
Dg = PD �Pk�1
i=0

�
mh3i

i

�
P i

F
(1� PF )

mh3i�i
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7.3 Summary

The error analysis and threshold prediction method that we derived in this thesis

are directly translatable to the geometric hashing algorithm, provided the latter is

modi�ed to take Gaussian error into account.
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Chapter 8

Conclusion

The kind of analysis we have done in this thesis is crucial in order to build robust

systems. One way of making a system more robust is to incorporate several di�erent

sensors or processing modules for the same feature. Each sensor or module has a

weighting attached to its output which is related to its reliability. The process of

integrating the information from all the sensors is dependent on correctly assessing

the reliability of the sensors under what conditions.

What we have done in this thesis is to begin to assess the reliability of a vision

sensor for a �xed algorithm. We expect that such error analyses will be necessary for

integrating vision into any automated system, with or without multiple sensors.

8.1 Extensions

To conclude, we have demonstrated an error analysis for alignment or geometric

hashing, and a companion method that predicts triples of (threshold, PF , PD) for a

�xed number of model and image features. The method as presented is limited to

planar models solely due to our ignorance, as yet, of an analytical expression for the

size of a projected error disk as a function of sensor error in the 3D case. We showed

the method working well �rst in the domain of simulated models and images, and

subsequently in real images.

The application to real images was problematic in that our model for clutter was

not accurate, and the disparity initially resulted in an unexpectedly high false alarm

probability. We modi�ed the basic method to take the non-uniformity of the clutter

distribution into account, and subsequently demonstrated a method to dynamically

reset the threshold used for accepting a hypothesis to maintain a �xed probability of

detection or false alarm.

There are several areas for extending the initial work presented in this thesis:

� The most signi�cant improvement would result from a more sophisticated model
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for clutter. Though we assumed a uniform model, which is a standard in the

�eld, this model vastly underpredicts the negative e�ects of clutter on the prob-

ability of false positives.

� When a model is symmetric, often a pose which aligns the model in the image

along an axis of symmetry will appear very good. Information about model

symmetry could be incorporated into the method such that when we are testing

such a case, the threshold would be raised accordingly.

� Though we used simple 2D features for the analysis, there is nothing inherent

in the method preventing extensions to more complex features.

� The method can easily be tailored to a particular model database by repre-

senting the score distributions for correct hypotheses for each model, and using

these distributions instead of the generic distributions to improve performance

for the given database.

It is our belief that model based vision algorithms will not be useful unless and until

we can know how much faith we can place in the interpretations given by them. The

work presented in this thesis is a step towards addressing the question.
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Appendix A

Glossary, Conventions and

Formulas

The notation that I use in the thesis generally follows the conventions used in Van

Trees [VT68] except where no confusion would result by abbreviation.

A.1 Conventions

Random variables are denoted by capital letters, and their values are generally de-

noted by the same letter in lower case.

Vectors (such as 2D image and model features) are denoted in bold-face lower case,

and matrices are denoted in bold-face upper case.

Pf�g denotes the probability of the event in parentheses.

FX(x) is the probability that random variable X is less than or equal to x.

fX(x) is the probability density function of the random variable X.

A vertical line in an expression means \given that". So for example, fX(x j E) is the
probability density function of X given event E. If the event being conditioned upon
is that the value of a random variable A = a, then we write fXjA(x j a)
E[�] is the expected value of the random variable in brackets.

Var (�) is the variance of the random variable in parentheses. Cov (X;Y ) is the co-
variance between the random variables X and Y .

X � N(m;�2) denotes that the random variableX is normally distributed with mean

m and variance �2.
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A.2 Symbols and Constants

m+ 3 number of model features

n+ 3 number of image (sensor) features

mi ith model feature

si ith image feature

� threshold used in recognition algorithm

PF probability of false positive (false detection)

PD probability of true positive (true detection)

�0 standard deviation of sensor noise for the Gaussian error model.

This is considered to be a constant whose value

must be determined empirically.

�0 radius of sensor noise for the uniform error model.

A image area

�, angles

i, j, k indices

H the event \three feature correspondence is correct"

H the event \three feature correspondence is incorrect".

M the event \image feature arises from model"

M the event \image feature does not arise from model", or alternatively,

\image feature is clutter"

A.3 Random Variables

�e ranges over the values of the expression

�2 + �2 + (1� �� �)2 + 1

for all model points, where (�; �) is a model point's a�ne coordinates in the

coordinate frame established by the three model points used in the correspon-

dence.

�e describes the standard deviation of projected Gaussian error disks and is de�ned

as

�0�e:

VM (m;n; c; �0) describes the weight or score distribution of a single point arising from the model

for the speci�ed values of m, n, c and �0.

V
M
(m;n; c; �0) describes the weight or score distribution of a single clutter point for the speci-

�ed values of m, n, c and �0.

WH(m;n; c; �0) describes the weight or score distribution of an entire correct hypothesis for the

speci�ed values of m, n, c and �0.
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W
H
(m;n; c; �0) describes the weight or score distribution of an entire incorrect hypothesis for

the speci�ed values of m, n, c and �0.

For simplicity, the last four random variables will be referred to as VM , VM , WH and

W
H
, since the values of the parameters m, n, c and �0 are constant for the scope of

the discussion.

A.4 Functions of Random Variables

Let X be a random variable with probability density fX(x), and let Y be a random

variable which arises as a function of X, speci�cally, Y = g(X). Assuming the func-

tion g is monotonically increasing and di�erentiable, the probability density function

for the random variable Y is given as follows [BRB89]:

fY (y) =
fX(g

�1(y))
g0(g�1(y))

(A.1)

For a monotonically decreasing function, the formula is the negation of the above

expression.

Suppose X and Y are jointly random variables. Then the mean and variance of X

can be found by conditioning on the value of Y [Ros84]:

E[X] = E[E[X j Y ]] (A.2)

Var (X) = E[Var (X j Y )] + Var (E[X j Y ]) (A.3)
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