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Abstract

This thesis addresses the problem of fault tolerance to system failures for database

systems that are to run on highly concurrent computers. It assumes that, in general, an

application may have a wide distribution in the lifetimes of its transactions.

Logging remains the method of choice for ensuring fault tolerance, but this thesis

proposes new ways of managing a database's log information that are better suited for

the conditions described above. The disk space reserved for log information is managed

according to the extended ephemeral logging (XEL) method. XEL segments a log into a

chain of �xed-size FIFO queues and performs generational garbage collection on records

in the log. Log records that are no longer necessary for recovery purposes are \thrown

away" when they reach the head of a queue; only records that are still needed for recovery

are forwarded from the head of one queue to the tail of the next. XEL does not require

checkpoints, permits fast recovery after a crash and is well suited for applications that

have a wide distribution of transaction lifetimes. The cost of XEL is more main memory

space and possibly a slight increase in the disk bandwidth required for log information.

XEL can signi�cantly reduce the disk bandwidth required for log information in a system

that has been augmented with a non-volatile region of main memory.

When bandwidth requirements for log information demand an arbitrarily large col-

lection of disks, they can be grouped into separate log streams. Each log stream consists

of a small �xed number of disks and operates largely independently of the other streams.

XEL manages the storage space of each log stream. Load balancing amongst the log

streams is an important issue. This thesis evaluates and compares three di�erent distri-

bution policies for assigning log records to log streams.

Simulation results demonstrate the e�ectiveness of the implementation techniques

proposed in this thesis for a highly concurrent database system in which transactions

may have a wide distribution in lifetimes.

Thesis Advisor: William J. Dally

Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

This thesis re-examines the problem of fault tolerance within the context of highly

concurrent databases whose applications may be characterized by a wide distribution

in transaction lifetimes. The goal of this e�ort is to propose and evaluate new data

structures and algorithms that constitute an e�cient and scalable solution to the fault

tolerance problem. This thesis devotes most of its attention toward the management of

information on disk and ignores other aspects of the problem. Current technical and

economic trends justify this approach. Processors have made dramatic improvements,

in terms of both cost and performance, compared to disk technology. Similarly, main

memory storage space and interconnection network bandwidth are now relatively inex-

pensive (compared to disk) and abundant in most concurrent computer systems. Disk

technology is becoming an increasingly crucial factor in the design of any concurrent

database management system (DBMS) because it accounts for a signi�cant fraction of

the cost of a system and threatens to limit the system's performance [22, 7].

Highly concurrent computers o�er the potential for powerful databases that can

process many thousands of transactions per second. According to [18], a good database

system typically requires 105 instructions per transaction for the debit-credit benchmark.

Current microprocessors can process instructions at a rate of at least 108 instructions

per second [29]. With current technology, therefore, it is reasonable to assume that

each processor can support a rate of at least 1000 TPS if there are no limitations other

than CPU speed. The overall performance of a system with hundreds of processors is

expected to be several hundred thousand transactions per second for the debit-credit

benchmark. A good DBMS design must eliminate bottlenecks that would otherwise

prevent users from fully harnessing the computational potential of highly concurrent

computers.
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Data structures and algorithms that worked well in DBMS designs for serial com-

puters are inappropriate for highly concurrent systems. Consider the speci�c problem

of fault tolerance to system failures (also known as crashes), in which the contents of

volatile main memory storage are corrupted. To provide support for atomic transac-

tions, a DBMS must guarantee fault tolerance to crashes. Traditionally, DBMSs have

kept a log of all modi�cations performed by transactions that are still in progress. Con-

ceptually, the log is a FIFO queue to which records are added at the tail; the log should

be su�ciently long that records become unnecessary before they reach the head. This

abstraction of a single FIFO queue becomes awkward and inappropriate in a highly

concurrent system; the tail of the queue is a potential serial bottleneck. Furthermore,

if only a single disk drive is dedicated to hold the log, it may not provide su�cient

bandwidth for large volumes of log information. For example, a system that generates

500 Bytes of log information per transaction and runs at 100,000 TPS needs at least 50

MBytes/sec of disk bandwidth. If current disk drive technology can provide at most 2

MBytes/sec bandwidth per drive, the system requires at least 25 disk drives just for log

information to ensure that the log is not a bottleneck.

To add to these di�culties, applications that use databases are becoming more di-

verse. Some applications may have a wide distribution of transaction lifetimes. An ap-

plication with a small proportion of transactions whose lifetimes are much longer than

average poses problems for traditional logging algorithms. Most variations of logging

retain all log records that have been written (by all transactions) since the beginning

of the oldest transaction that is still in progress. Many of these log records may be

unnecessary for the purposes of recovery, but their disk space cannot be reclaimed as

long as some older record must be retained; this situation arises as a consequence of

the FIFO policy which governs the management of a log's disk space. This constraint

poses disk management problems. If a transaction lives too long, the log will run out

of space to hold new records. An obvious solution is to simply allocate a large amount

of disk space for the log, but this implies some unpleasant consequences. First, it may

unnecessarily increase a system's cost. Second, the large size of the log may entail a

much longer recovery time after a crash. These drawbacks prompt an investigation into

better methods of fault tolerance for databases whose applications may have a wide

distribution in transaction lifetimes.

1.2 Major Contributions

The following paragraphs summarize the major contributions of this thesis.

Extended Ephemeral Logging (XEL). XEL is a new technique for managing a

log of database activity on disk. This thesis presents the data structures and algorithms

which constitute XEL; it explains XEL's operation during both normal database activity

12



and recovery from a crash. XEL does not require periodic checkpoints and does not abort

lengthy transactions as frequently as traditional logging techniques which manage the

log as a FIFO queue (assuming that XEL and the FIFO queue technique are both limited

to the same amount of disk space). Therefore, XEL is well suited for highly concurrent

databases and applications that have a wide distribution of transaction lifetimes. XEL

can o�er signi�cant savings in disk space, at the expense of slightly higher bandwidth for

log information and more main memory. The reduced size of the log permits much faster

recovery after a crash as well as cost savings. XEL can signi�cantly reduce both disk

space and disk bandwidth in a system that has at least some portion of main memory

which is non-volatile.

Proof of Correctness for XEL. XEL's safety and liveness properties are formally

proven. Apropos safety, this thesis proves that XEL never does anything wrong; there-

fore, the database can always be restored to a consistent state after a crash, regardless of

when the crash occurs. The liveness property ensures that XEL always makes progress;

every log record is eventually erased.

Evaluation of XEL. The bene�ts and costs of XEL, relative to logging techniques

which manage log information in a FIFO queue, are quantitatively evaluated via event-

driven simulation. This thesis presents these experimental results.

Evaluation of Parallel Logging Distribution Policies. The abstraction of mul-

tiple log streams for log information can be easily implemented in a highly concurrent

DBMS which requires an arbitrarily large collection of disk drives to provide the neces-

sary bandwidth for log information. A database system's distribution policy dictates the

log stream(s) to which any particular log record is sent. This thesis evaluates and com-

pares three di�erent distribution policies for a DBMS that has multiple parallel streams

of log records. The random policy, which randomly chooses a log stream for any log

record, has good load balancing properties and is simple to implement.

Logged Commit Dependencies (LCD). The LCD technique permits very high

throughput on \hot spot" objects in a highly concurrent database. It is a variant of the

precommitted transaction technique [15] and is especially well suited for a DBMS that

uses multiple parallel log streams. A transaction's dependencies on previous precommit-

ted transactions are explicitly encoded in a special PRECOMMIT record that is generated

as soon as the transaction requests to commit, thus eliminating potentially awkward

synchronization requirements between the log stream to which the transaction's COMMIT

record is eventually written and the log streams to which COMMIT records are written for

the transactions on which it depends.

13



1.3 Statement of Problem

In any DBMS, the log manager (LM) manages log information during normal database

operation, and the recovery manager (RM) is responsible for restoring the database to

a consistent state after a crash. Together, these two components make up a DBMS's

logging and recovery subsystem. The log holds records for only recent modi�cations

to the database. A version of the database kept elsewhere on disk stores the state of

all items of data in the database. At any given point in time, this disk version of the

database does not necessarily incorporate all the updates that have been performed

by committed transactions; some of these updates may be recorded only in the log.

Another DBMS component called the cache manager (CM) is responsible for managing

the contents of the disk version of the database and must work in collaboration with

the LM. The CM chooses to 
ush (transfer) updated objects1 to the disk version of the

database in a manner that uses I/O resources e�ciently.

Figure 1.1 graphically represents the disk con�guration of a concurrent database

system. At the top, a collection of disk drives provide the bandwidth and storage

capacity required for log information generated by the DBMS; these are called the log

disks. The LM manages these drives. The exact number of log disks is chosen to

support the highest rate of transaction processing of which the rest of the system is

capable. A small number of bu�ers, in main memory, are dedicated to each of these

log disks. On the right hand side, some other collection of disk drives hold the disk

version of the database. The exact number of drives required for the disk version of

the database depends on the demands for disk space and bandwidth imposed by the

rest of the system. A bu�er pool is associated with each di�erent disk drive of the disk

version of the database. These bu�er pools are quite large so that they serve as caches.

They reduce the number of retrievals from disk and allow writes to disk to be ordered

in a manner that permits higher transfer rates (due to mostly sequential I/O). The CM

manages these bu�er pools and their associated disk drives.

A complete solution to the logging and recovery problem in a concurrent DBMS must

answer all of the following questions, which apply to the management of log information

during normal operation of the database:

1. What events are logged?

2. What information should a log record contain?

3. How does the LM decide the disk drive(s) to which it will write a log record?

4. At what time should the LM write a log record to disk?

5. Where on disk should the LM write a log record?

1The term object is used broadly to denote any distinct item of data in a database. It may be a record
in a hierarchical or network database, a tuple in a relational database or an object in an object-oriented

database.
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Figure 1.1: Disk Con�guration for Concurrent Database System

6. When can the LM overwrite a log record on disk with more recent log information?

7. When can the CM 
ush an updated object's new value to the disk version of the

database?

Any proposed logging and recovery method must also respond to the following ques-

tions that concern recovery after a crash:

1. How should the RM schedule retrievals of blocks of log information from disk?

2. In what order does the RM process the log records contained in a block of log

information?

3. Given a particular log record, what does the RM do with it?

1.4 Review of Previous Research

Several good textbooks and articles have been published on the subject of fault toler-

ance in database systems. A reader who would like to become familiar with the basic

techniques and terminology of the �eld is referred to [20, 24, 30, 5, 26]. The remain-

ing subsections of this section review prior research that is speci�cally relevant to the

material in this thesis.
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1.4.1 Disk Storage Management

The Firewall Method of Disk Management

Traditionally, logging has been the method of choice for fault tolerance in most database

systems2. A LM maintains a log of database activity as transactions execute and modify

items of data (i.e., objects) in the database. Conceptually, the log is a FIFO queue.

The LM adds log records to the tail immediately after they are created. Log records

progress toward the head of the queue and ought to become unnecessary by the time

they eventually reach the head. The DBMS allocates a �xed amount of disk space to

hold log information. The LM manages this disk space as a circular array [3, 10]; the

log's head and tail pointers rotate through the positions of the array so that records

conceptually move from tail to head but physically remain in the same place on disk.

System R [24] is a familiar example of this traditional logging technique.

The LM maintains a pointer to the oldest record in the log that must still be retained;

this constitutes a \�rewall" beyond which the head of the log cannot be advanced.

Hence, this logging technique shall be referred to as the �rewall (FW) method. The

LM initiates periodic checkpoints. As soon as a checkpoint begins, the LM writes out

a special beginning-of-checkpoint record to the log. During a checkpoint, the CM writes

out all updated objects to the disk version of the database3 and then the LM writes out

a special end-of-checkpoint record to the log. After the checkpoint has completed, the

LM can be sure that all preceding log records for committed updates are no longer

necessary to ensure correct recovery of the database after a crash. The LM keeps

a pointer to the position within the log of the beginning-of-checkpoint record for the

most recently completed checkpoint. The LM also maintains a pointer for each active4

transaction that identi�es the position within the log of the oldest record written by

the transaction. At any given time, the log's �rewall is the oldest of the pointers for

all active transactions and the pointer to the beginning of the most recent checkpoint.

Figure 1.2 illustrates an example.

If the log starts to run short on space for new log records, the LM must free up

some space by advancing the �rewall. It must either kill an old active transaction or it

must perform another checkpoint, depending on the exact nature of the current �rewall.

In general, it is bad to kill a transaction because this will likely annoy the client who

originally initiated the transaction. Furthermore, all the resources consumed by the

transaction have essentially been wasted, and the transaction's e�ort will be repeated

2Logging is not the only possible solution to the fault tolerance problem. However, it has tended to

be the most popular solution for reasons of performance and e�ciency. Refer to [37, 30, 2, 5, 39] for

explanations of alternative methods of achieving fault tolerance (such as shadowing) and comparisons
of the strengths and weaknesses of the di�erent approaches.

3Sophisticated fuzzy checkpoint methods allow the database to continue servicing requests from client

transactions while the CM 
ushes out all updated objects, so that the checkpoint activity causes negli-
gibly small disruption to normal operation of the database.

4An active transaction is one that is still in progress (it has not committed nor been aborted).
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Figure 1.2: Firewall Method of Disk Space Management for Log

if its client decides to try it again. This scenario is particularly irritating because

many records in the log may be unnecessary for recovery purposes but the FIFO queue

abstraction prevents the LM from reclaiming their space until all prior log records have

been rendered unnecessary. For example, suppose that a transaction updates an object

and continues to live for another 10 min while many short (several seconds) transactions

each update a few objects and commit. The log records from these short transactions

follow the long transaction's �rst log record. Even though most of the log records

from these short transactions are no longer needed for recovery, their space cannot be

reclaimed until the long-lived transaction �nishes.

Checkpoints are not free. They become awkward in a concurrent system because

they entail synchronization and coordination amongst an arbitrarily large number of

participating parties. In general, if the LM wishes to perform a checkpoint, it must

coordinate activity at all the log disks and all the disk drives on which the disk version

of the database resides. A checkpoint operation requires communication bandwidth,

processor cycles, storage space in main memory and disk bandwidth. Periodic check-

points may interfere with the CM's operation by constraining it to schedule 
ushes to

disk in an order that does not take full advantage of locality within the disk version

of the database. Finally, the duration required to perform a checkpoint and the delays

between consecutive checkpoints limit the speed with which the LM can reclaim space

in the log.

As the number of log disks increases, the abstraction of a single queue becomes

increasingly di�cult to implement. The tail of the queue is a potential serial bottleneck

and the LM must carefully manage the order in which it writes blocks to each log disk

so that it preserves the log's FIFO property.

Therefore, the traditional \�rewall" method of logging poses implementation prob-
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lems for highly concurrent databases with wide variations in transaction lifetimes be-

cause it does not reclaim disk space su�ciently quickly, it su�ers from the overhead of

periodic checkpoint operations and it is di�cult to implement on an arbitrarily large

number of disk drives.

Recirculation of Log Records

Hagmann and Garcia-Molina [32] propose a solution to the disk management problem

posed by long lived transactions. If a record reaches the head of the log but must still

be retained, the LM recirculates the record within the log by adding it to the tail.

In contrast to the XEL method which this thesis will propose, they continue to

implement the log as a single FIFO queue, rather than a chain of FIFO queues. A log

record from a very long lived transaction may therefore be recirculated numerous times

within the log, thereby consuming more bandwidth than would be required by the XEL

method. Furthermore, Hagmann and Garcia-Molina do not attempt to eliminate the

need for checkpoint operations.

Log Compression

Log compression �lters out unnecessary information so that less storage space is required

to store the log. However, previous methods of log compression [34, 31] are intended

for \batch mode" log compression; the LM cannot add new records to the existing log

while it is being compressed.

The XEL method proposed in this thesis essentially performs log compression, but

its continuous and incremental nature distinguishes it from previous log compression

methods.

Generational Garbage Collection

Previous work on generational garbage collection inspired XEL's essential idea: the log

is segmented into a chain of FIFO queues. Lieberman and Hewitt [40] proposed the seg-

mentation of a system's main memory storage space into several temporal generations;

most of the system's garbage collection e�ort is limited to only its younger genera-

tions. Quantitative evaluation of several variations on generational garbage collection

[62, 49, 63, 59] have demonstrated its e�ectiveness for automatic memory management.

However, previous work on generational garbage collection addressed the more gen-

eral problem of automatic storage reclamation by a programming language's runtime
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system. The reference pattern amongst a program's data objects is usually more com-

plicated than the dependencies that exist amongst log records, and so garbage collection

methods that worked well for programming languages may be inappropriate for manag-

ing the disk storage reserved for a database's log. Less complicated yet more e�ective

techniques may be possible for the simpler problem of managing a database's log.

Rosenblum and Ousterhout [56, 57, 58] adopt a similar strategy for the log-structured

�le system (LFS). The LFS adds all changes to data, directories and metadata to the end

of an append-only log so that it can take advantage of sequential disk I/O. The log con-

sists of several large segments. A segment is written and garbage collected (\cleaned")

all at once. To reclaim disk space, the LFS merges non-garbage pieces from several

segments into a new segment; it must read the contents of a segment from disk to de-

cide what is garbage and what isn't. There is a separate checkpoint area and the LFS

performs periodic checkpoints. The LFS takes advantage of the known hierarchical ref-

erence patterns amongst the blocks of the �le system during logging and recovery; the

inode map, segment summary blocks and segment usage array data structures describe

the �le system's structure and play an important role in the LFS's management of disk

space.

1.4.2 Parallel Logging and Recovery

Distributed databases are similar to concurrent databases, but not identical. Like con-

current databases, a distributed database consists of an arbitrary number of processors

linked via some communication network; the total set of processors is partitioned into

disjoint sites, and the communication network connects the sites together. These sites

can share data, so that a transaction executing at any particular site e�ectively sees one

large database. However, the underlying technology distinguishes distributed databases

from concurrent databases. In general, a distributed database's communication network

has lower bandwidth, much longer latency and lower reliability than that of a concurrent

database. Moreover, individual sites or links in a distributed database's network may

fail (partial failures, in the terminology of [5]), yet other portions of the system remain

intact; the system can continue to provide service to client transactions as long as these

transactions do not require access to data that is unavailable due to failures elsewhere.

For many concurrent systems, either the entire system is operational so that all data is

available to client transactions or it is completely failed (a total failure [5]) so that no

transaction can execute. This \all or nothing" characteristic simpli�es some aspects of

the DBMS implementation problem.

The limitations of a distributed database's communication network and concerns

about availability of data lead to rigid partitioning of data objects within the system.

Assume, for simplicity, that objects are not replicated at di�erent sites. Each object has

a home site [5] and objects do not migrate between sites. Any transaction that wants to

access a particular object must do so at its home site. Whenever an object is updated,
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log information is generated and stored at its home site. This rigid partitioning is liable

to load balancing problems. One site may hold a disproportionately large number of

\hot spot" objects5 and so it is overloaded while another site is relatively idle. However,

the rigid partitioning prevents the system from taking advantage of available processing

power and disk bandwidth elsewhere in the system. A concurrent system has more


exibility in balancing the loads amongst processors and disk drives. The possibility of

partial failures necessitates complicated algorithms for atomic commitment, such as the

two phase commmit (2PC) and three phase commit (3PC) protocols [5], for distributed

databases. These sophisticated techniques are unnecessary for concurrent databases

under the \all or nothing" assumption.

The SWALLOW distributed storage system [54] stores objects in a collection of

autonomous repositories. Each object is represented as a sequence of versions, called

a version history, which records successive updates to the object over time. SWAL-

LOW creates a commit record at each repository at which a transaction updates objects

and links new versions of updated objects to the transaction's commit record while the

transaction executes. If the transaction eventually aborts, the system deletes the trans-

action's commit record and the versions for the updates which it performed on objects.

Otherwise, the committed transaction's changes become permanent in the multiversion

representation of the database. Hence, there are no distinct log records in SWALLOW

because it retains versions for objects. Old versions can be garbage-collected when there

are no longer any references to them.

Lomet [41] proposes a new method for redo logging and recovery that is intended for

use in a data sharing system. Multiple nodes can access common data, yet each node

can have its own log. In contrast to the partitioning of data which characterizes many

distributed databases, Lomet's system allows data objects to migrate within the system.

After modifying an object, a processing node records the operation in its own private

log; each private log is a sequential �le, apparently managed as a FIFO queue. Hence,

log records for di�erent updates to the same object may be distributed throughout

a collection of private logs. This data sharing approach o�ers potentially better load

balancing behavior. For each object, Lomet's system ensures that at most one node's log

can record updates that have not yet been applied to the version of the object currently

in the disk version of the database; hence, recovery activity for each object is still limited

to only a single node even though an object's log records may be distributed throughout

the private logs of numerous nodes.

Previous researchers have already broached the problem of parallel logging and re-

covery in a concurrent database but they often focussed on only isolated subproblems

or declined to propose detailed solutions. The expedient of using several disk drives to

increase the throughput for log information was suggested in [15]. Lehman and Carey

[39] propose storing log information in a logically parallel manner that easily maps to a

physically parallel implementation; every partition6 in the database has its own separate

5\Hot spot" objects are accessed much more frequently than other objects in the database.
6A partition, as de�ned in [39], is the unit of memory allocation for a system's underlying memory
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log of activity.

Agrawal [1, 2] investigates some alternative solutions to the recovery problem for the

multiprocessor-cache class of database machines, of which the DIRECT system [14, 8]

is an example. He investigates four di�erent distribution policies for determining the

log disk to which to send a log record: cyclic, random, Query Processor Number mod

Total Log Processors (QPNmTLP) and Transaction Number mod Total Log Processors

(TNmTLP). Agrawal concluded that the TNmTLP policy su�ers from signi�cant load

balancing problems; an exceptionally industrious transaction can generate a deluge of

log information for one log disk while the other disks sit relatively idle. As processor

speed and bandwidth continue to rise, relative to disk bandwidth, the QPNmTLP policy

faces similar load balancing problems. Agrawal examined these four policies within the

context of the multiprocessor-cache class of database machines and in conjunction with

di�erent solutions to some of the other subproblems associated with logging and recovery.

His evaluation criteria focused on overall performance (throughput and response time)

rather than on speci�c aspects of e�ciency. He does not consider how much disk space

the log requires or the extent to which the log disks' loads are balanced. This thesis

will make di�erent assumptions that more closely model today's concurrent computer

technology and will choose di�erent evaluation criteria.

Apropos recovery, DeWitt et al. [15] propose merging several parallel logs into a sin-

gle log so that familiar algorithms from the sequential world will be applicable. Agrawal's

algorithm [1] does not require a merge step, but it processes each log sequentially one

after the other and therefore forfeits the opportunity to exploit parallelism during re-

covery. Kumar [38] proposes a parallel recovery algorithm, but it requires processing at

all log streams to proceed in a lock-step manner; frequent barrier synchronization limits

the performance and scalability of this algorithm. To address these limitations, he pro-

poses an improved algorithm that involves minimal synchronization between recovery

activities at separate log streams, but this latter algorithm still requires two scans over

each log stream.

1.4.3 Management of Precommitted Transactions

Interactions between the LM and the concurrency control manager (CCM) of a DBMS

can a�ect a system's overall performance. Strict two phase locking (2PL) [5] requires

that the CCM release all write locks held by a transaction only after the transaction has

committed or aborted. Hence, the CCM must hold all the write locks of a successful

transaction for at least as long as the minimum response time for the LM to accept a

DLR and process a request to commit from the transaction. Without non-volatile main

memory, the lower bound for this response time is the minimum time required to write

a block to disk. Slow response on the part of the LM may entail concurrency control

bottlenecks on some objects that must be updated very frequently.

mapping hardware.
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To alleviate these performance limitations, the precommitted transaction (PT) tech-

nique [15] enables a CCM to release a transaction's write locks as soon as the transaction

requests to terminate. The transaction precommits when it requests to commit, and it

commits when all its log records (including a COMMIT record) have been written to

disk. It is in a precommitted state between these two times.

The PT technique alleviates the throughput bottleneck on \hot spot" objects due

to I/O latency to disk. Without the PT technique, a transaction that has requested

to commit cannot release its write locks until after it has committed, lest some other

transaction see its e�ects before they have been made permanent in the database. In

this case, the maximum rate at which independent transactions can update an object

is limited by the rate at which successive blocks of log records can be written to disk.

If the minimum time to write a block to disk is �min (for example, 10 ms), then each

transaction must hold its write locks for at least �min and the maximum throughput

for any object is 1=�min. If a database has hot spot objects, its entire throughput may

therefore be limited to 1=�min. When the LM uses the PT technique, independent

transactions can update hot spot objects at a much higher rate, limited by the time

required to acquire and release locks.

Now suppose that a DBMS's LM supports precommitted transactions. A transac-

tion can release its write locks after it has requested to commit but before it actually

commits. While it waits in this precommitted state, the only thing that could cause

it to fail is some failure on the part of the DBMS (e.g., a crash) which prevents the

log records from being written to disk. Other transactions can see the updates from

the precommitted transaction, but they become dependent on it to eventually commit.

The LM sends an acknowledgement to the transaction in response to its commit request

after the transaction commits. If a crash occurs before the precommitted transaction

commits, the RM must ensure that the restored database does not include updates from

the transaction or any of the subsequent transactions which depended on it. After a

transaction commits, a COMMIT log record exists on disk to record the fact that the

transaction committed and so its e�ects are guaranteed to survive a crash.

1.5 Commercial Systems

This section brie
y reviews existing commercial database systems. Most commercial

systems incorporate variations of the techniques presented in the previous section.

IBM has had a long and in
uential presence in the database market. Details about

several of its most noteworthy products can be found in [26]. IMS, one of the industry's

earliest database systems, runs on the MVS operating system; MVS runs on computer

systems built around the IBM 370 processor family. Early versions of IMS maintained

separate redo and undo logs. Redo information was kept for restart recovery and undo
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information (the dynamic log) was for transaction backout. More recently, IMS has

merged the redo and undo logs into one log to reduce I/O at commit. IMS supports

group commit [5] and performs fuzzy dumps for archive recovery. IBM's IMS FastPath

system introduced the notions of group commit and main-storage databases, among

other things. It is a pure deferred-update, redo-only system (this implies a :STEAL

bu�er management policy [5]). DB2 is IBM's implementation of SQL for its mainframe

systems; it implements a :STEAL bu�er management policy and the WAL (write ahead

log) protocol [5].

DEC markets a database system called Rdb/VMS. It runs on a VAXcluster sys-

tem (\shared disk" architecture) and supports a single global log. Rdb/VMS performs

undo/redo logging, with separate journals for redo and undo log records; the After Image

Journal (AIJ) holds redo information and the Run-Unit Journal (RUJ) keeps undo in-

formation. Periodic checkpoints bound the length of recovery time. Rdb/VMS exploits

group commit to achieve e�cient disk I/O.

The Teradata DBC/1012 system [60, 46, 47, 55] is a highly parallel database system

that is intended principally for decision support (i.e., mostly queries) but which provides

some support for on-line transaction processing (OLTP). The most recent version, the

DBC/1012 model 4, incorporates up to 1024 Intel 80486 microprocessors. The system's

processors are divided into interface processors (IFPs) and access module processors

(AMPs). The DBC/1012 can support multiple hosts; each IFP connects to one partic-

ular host. The AMPs manage the data. Tuples within a relation are partitioned across

the AMPs so that the DBC/1012 can support parallelism both within and between

independent requests. The AMPs and IFPs are interconnected by a proprietary Ynet

\active logic" interconnection network.

The Tandem NonStop SQL system [27, 28, 33, 16] is essentially a distributed rela-

tional database system. Data objects are partitioned across multiple processing nodes

and transactions can access data at di�erent sites. The system provides local autonomy

so that a site can perform work despite failures at other sites or in the interconnection

network. An implementation of the two-phase commit (2PC) protocol [5] ensures that

distributed transactions commit atomically. NonStop SQL performs undo/redo logging

and maintains a separate log at each site. The state of the database is periodically

archived by performing a fuzzy dump.

Oracle's Parallel Server [44] is intended to run on highly parallel systems (such as

the KSR1 [61]). It can support very high transaction processing rates, compared to

other available systems. Version 6.2 has been benchmarked at 1073 TPS (transactions

per second) for the TPC-B benchmark [21], with a cost of only $2,480 per TPS; these

results were obtained for Oracle V6.2 running on an nCube concurrent computer sys-

tem with 64 processors. Parallel Server employs redo/undo servers for log information,

performs periodic checkpoints and uses a partitioned distribution policy for distributing

log records.
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1.6 Assumptions

Physical State Logging at the Access Path Level. This thesis limits its attention

to physical state logging at the access path level [30]. According to this de�nition,

any modi�cation to an object in the database results in a log record that holds some

representation of the state of the object; the log record may hold the pre-modi�cation

state of the object, the post-modi�cation state, or both.

Bu�er Management: :FORCE, STEAL. This thesis assumes the most general

policy for bu�er management. The CM may 
ush an updated object to the disk version

of the database whenever it chooses, regardless of whether or not the transaction that

performed the update has yet committed. Restated in formal terminology, the bu�er

management policy is :FORCE and STEAL [30].

Concurrency Control: Two Phase Locking. The LM does not perform concur-

rency control, but the concurrency control manager that schedules requests to the LM

on behalf of client transactions must respect certain restrictions if the RM is to be able

to restore the database to a consistent state after a crash. This thesis assumes that

the concurrency control manager performs two phase locking (2PL) [17, 5] so that all

executions are serializable.

All chapters except Chapter 5 will further assume that all executions are strict [5]:

no transaction reads or updates an object that has been modi�ed by another transaction

which has not yet committed. Chapter 5 relaxes this assumption slightly; a transaction

may release its write locks shortly after it requests to commit even though it has not

actually committed yet.

Volatile Main Memory, Non-volatile Disk Storage. All main memory is volatile.

In the event of a system failure, such as a power interruption, some or all of the contents

of main memory may be lost. In contrast, disk storage (secondary memory) is non-

volatile. Any information written to disk will remain on disk despite a system failure.

Distributed Memory Multiprocessor System. The data structures and algo-

rithms presented in this thesis are intended for a �ne-grain distributed memory multi-

processor system, such as the MIT J-Machine [11, 12, 48], in which each processor can

directly address only its own local memory and all interprocessor communication must

occur via explicit message passing. Nevertheless, the techniques presented in this thesis

could be adapted to a shared memory multiprocessor system with little e�ort.
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Disks are the Limiting Resource. This thesis addresses the problem of manag-

ing log information on disk, subject to limited storage capacity and bandwidth. Disk

technology threatens to limit the performance of concurrent database systems, and is

expected to account for a signi�cant fraction of their cost [22, 7]. Existing concurrent

computer systems provide abundant computational power, volatile main memory stor-

age and interprocessor communication ability so that none of these resources constitutes

a bottleneck. Hence, the attention speci�cally to disk technology.

Recent trends and expectations for future progress justify this assumption. Proces-

sor performance has increased dramatically over the past decade and will likely continue

to improve at a fast pace in the near future. Similarly, DRAM (dynamic random access

memory) capacities have soared and prices have fallen during the past decade, and these

trends in main memory technology are expected to continue. Interconnection network

technology has improved signi�cantly so that high bandwidth, low latency interproces-

sor communication is now a reality. For example, the MIT J-Machine provides 288

Mbps communication bandwidth per channel [12, 50], and each processing node has 6

channels. In contrast, the capacity, bandwidth and cost of disk drives have not improved

as dramatically.

Unique Identi�ers for Objects and Transactions. Every object in the database

must have some unique object identi�er (oid). Similarly, each transaction must have a

transaction identi�er (tid) that distinguishes it from all other transactions.

1.7 Summary of Remaining Chapters

Chapter 2 explains the extended ephemeral logging (XEL) method. XEL is a new

method for managing a log of database activity on disk. It is a more general variation

of ephemeral logging (EL) [35]; XEL does not require a timestamp to be maintained

with each object in the database. XEL does not require periodic checkpoints and does

not abort lengthy transactions as frequently as traditional �rewall logging for the same

amount of disk space. Therefore, it is well suited for highly concurrent databases and

applications that have a wide distribution of transaction lifetimes.

Important safety and liveness properties for a simpli�ed version of XEL are proven

in Chapter 3. The log record from the most recently committed update to an object

remains recoverable as long as log records from earlier updates to the same object can

be recovered from the log. However, every log record is eventually erased so that its

space on disk can be re-used for subsequent log information.

Chapter 4 considers how to manage log information in a highly concurrent database.

The abstraction of a collection of log streams, all operating in parallel with one another,
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is suitable for applications with very high bandwidth requirements for log information.

The LM uses the XEL method to manage the disk space within each log stream. With

multiple log streams, the LM must have some distribution policy by which it decides

the stream(s) to which it will send any particular log record. Chapter 4 analyzes three

di�erent distribution policies.

Chapter 5 points out the di�culties of implementing the PT technique, in its current

form, in a LM that supports an arbitrarily large collection of log streams. The chapter

proposes a new variation of the technique, called Logged Commit Dependencies (LCD),

which alleviates these di�culties. It introduces a new type of record, called a PRECOMMIT

record, which explicitly states all a transaction's dependencies at the time that the

transaction requests to commit.

Chapter 6 quantitatively evaluates XEL via event-driven simulation. XEL's complex-

ity severely limits analytical attempts to evaluate its performance. Simulation provides

an alternative means by which to study its behavior. Section 6.1 describes the imple-

mentation of a simulator for XEL. It explains each of the input parameters, documents

the �xed parameters, presents the de�nitions of XEL's data structures as expressed in

the C programming languange [36] and justi�es the validity of the simulation model.

Section 6.2 evaluates XEL's performance for only a single log stream as various input

parameters vary and compares XEL's performance to that of the FW method. The

following section examines XEL's behavior for a collection of parallel log streams as the

degree of parallelism increases. Disk space, disk bandwidth, main memory requirements

and recovery time are the evaluation criteria throughout the chapter.

The last chapter of the thesis summarizes the important lessons that were learned,

explains the importance of the results and discusses various extensions to XEL.
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Chapter 2

Extended Ephemeral Logging

(XEL)

This chapter proposes a new technique for managing the disk space allocated for log

information. This new technique, called extended ephemeral logging (XEL), is a more

general variation of the ephemeral logging (EL) technique that the author presented in

an earlier publication [35]. Both EL and XEL break the abstraction of the single FIFO

queue that was presented in Section 1.4.1. Rather than managing log information in

a single FIFO queue, EL and XEL treat the log as a chain of �xed-size FIFO queues

and perform garbage collection at the head of each queue. This approach, inspired

by previous research on generational garbage collection, mitigates the threat of the log

running out of space for new log records because a transaction lives too long; EL and

XEL can retain the records from long running transactions but can reclaim the space of

chronologically subsequent log records that are no longer needed for recovery. Hence, a

log manager that uses EL or XEL generally requires less disk space than one that treats

the log as a single FIFO queue. Intuitively, this advantage is strongest if an application

has only a small fraction of transactions that execute for a very long time and write

only a small number of records to the log.

Another strong motivation for EL and XEL arises if a system can be augmented

with a limited amount of non-volatile main memory. In such a system, EL and XEL can

drastically reduce the amounts of disk space and bandwidth required for log information

if most log records emanate from short-lived transactions. The bene�ts here are twofold.

First, the system's cost may be substantially reduced since fewer disk drives are needed

for log information. Second, recovery after a crash may be much faster since the amount

of log information is considerably smaller.

Variations on EL and XEL can render a separate disk version of the database unnec-

essary. The most recently committed value for each object is always retained in the log.
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This approach may signi�cantly reduce a system's cost because it likely requires fewer

disk drives. It also simpli�es the DBMS design because the CM is no longer needed.

This expedient pertains to main memory database systems as well as other systems

which hold most of their data in main memory and update them su�ciently often.

EL and XEL maintain pointers to all records in the log that are relevant for recovery

purposes. This entails signi�cantly higher main memory requirements, compared to the

FW technique. However, the LM no longer needs to perform periodic checkpoints to

ensure that all updates prior to a particular point in time have been 
ushed to the disk

version of the database, as had been necessary for the FW method. Of course, the CM

should continue to 
ush committed updates to the disk version of the database at as fast

a rate as possible so as to reduce the amount of information that must be kept in the log.

This elimination of checkpoints is a bene�t for highly concurrent systems which have

many processors and an arbitrary number of parallel log streams (as will be discussed

in Chapter 4). Checkpointing is more complicated in concurrent systems, compared to

sequential systems, so EL and XEL relieve concurrent DBMS designers from having to

design and implement e�cient checkpointing algorithms that are provably correct.

The presence or absence of timestamps in the disk version of the database di�eren-

tiates EL and XEL. EL assumes that each object's representation in the disk version

of the database has a timestamp kept with it. However, there are good reasons why

some databases may violate this assumption. The absence of timestamps complicates

the problem of managing log information in a manner that does not jeopardize the con-

sistency of the database. The XEL technique presented in this chapter does not require

timestamps for objects in the disk version of the database.

Section 2.1 illustrates why EL cannot guarantee consistency after a crash for a DBMS

that does not maintain a timestamp with every object in the disk version of the database.

Once familiar with the pitfalls of EL, a reader will be better able to appreciate the ratio-

nale that underlies the complexities of XEL. Subsequent sections each address speci�c

problems that must be solved in order to implement XEL. To some extent, these sub-

problems are independent of one another. The structure of this chapter re
ects the

modular nature of these problems.

2.1 Preamble: Limitation of Ephemeral Logging

Ephemeral logging (EL), as originally proposed in [35], adopts a generational garbage

collection strategy for managing a log's disk space. The LM manages the log as a chain

of FIFO queues, each of which is called a generation. The LM adds new log records

to the tail of the youngest generation. When a record that must still be kept in the

log approaches the head of a generation, the LM forwards it to the tail of the next

generation or recirculates it within the last generation. For any particular application,

28



the generations' sizes are chosen so that only a small fraction of the records in any

generation need to be forwarded or recirculated.

EL requires each object in the database to have a monotonically increasing times-

tamp. The simplest implementation that satis�es this constraint maintains an integer-

valued counter with every object. The LM increments an object's counter each time a

transaction updates the object. Whenever the CM 
ushes an updated object to the disk

version of the database, the accompanying timestamp value is stored with the object.

Likewise, each data log record (DLR) for an object holds the value and corresponding

timestamp (as well as the object and transaction identi�ers) from a particular update

to the object. After a crash, the RM can determine if the disk version of the database

holds the most recently committed value for any particular object. It �nds the most

recently committed DLR for the object that is still in the log and checks if this DLR

has a more recent timestamp than the version of the object currently on disk. If the

DLR is more recent, then the RM should update the object in the disk version of the

database; otherwise, it should ignore the DLR.

Now suppose that timestamps are not kept with each object stored in the version

of the database on disk. This case might arise because of a deliberate decision to

conserve storage, or it could be a constraint inherited from an existing implementation.

Without timestamps in the database, EL is not su�cient to guarantee a consistent

state after recovery from a crash. The RM no longer has a standard by which to judge

whether or not a DLR holds a more recent value than that which currently exists for the

corresponding object on disk. Accordingly, the RM can no longer deduce which records

are non-garbage and which are garbage.

The following example illustrates what can go wrong. Assume that the log has

two generations. Suppose transaction tx3 assigns object ob8 a value of 12, writes a

corresponding DLR to the log and then commits. Assume that the DLR for this update

and the transaction's COMMIT TLR are both forwarded to generation 1 of the log1.

After moving to generation 1, these two records soon become garbage. Now suppose

that transaction tx6 subsequently assigns object ob8 a value of 9 and then commits.

Figure 2.1 summarizes this chronology of events for transactions tx3 and tx6.

time

DLR for

by tx3
ob8←12

COMMIT
for tx3

DLR for

by tx6
ob8←9

COMMIT
for tx6

Figure 2.1: Two Successive Updates to Object ob8

Suppose further that both the DLR and the COMMIT TLR from tx6 become garbage

before they reach the head of generation 0 and are overwritten by other log records, but

1The DLR may have been forwarded because tx3 had a relatively long lifetime, for example. The
COMMITTLR was forwarded because not all the transaction's updates had been 
ushed to the disk version

of the database before it reached the head of generation 0.
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the \stale" log records from tx3 are still lingering in generation 1, as shown in Figure 2.2.

If a crash were to occur while the system is in such a state, the RM would �nd tx3's

DLR to be the most recently committed update in the log when it attempts to recover

object ob8 but it would not know whether the value in this DLR is more recent than

the value currently stored for ob8 in the disk version of the database.
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Figure 2.2: State of the Log After a Crash

In this example, the DLR from tx3 is garbage and ought to be ignored; the disk

version of the database already holds the most recently committed value for object ob8.

It is not di�cult to construct a di�erent example in which the RM �nds a (non-garbage)

DLR that is more recent than the value stored for an object in the disk version of the

database.

2.2 Conceptual Design of XEL

Extended ephemeral logging (XEL) manages a log's disk space as a chain of �xed-size

queues. Each queue is called a generation. If there are N generations, then generation

0 is the youngest generation and generation N�1 is the oldest generation. New log

records are added to the tail of generation 0. A log record near the head of generation

i, for i<N�1, is forwarded to the tail of generation i+1 if it must be retained in the

log; otherwise, it is simply discarded (overwritten by more recent log information). In

the special case of generation N�1, a log record near its head that must be retained is

recirculated in it by adding the record to its tail. The disk space within each queue is

managed as a circular array [10]; the head and tail pointers rotate through the positions

of the array so that records conceptually move from tail to head but physically remain
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in the same place on disk.

In tandem with the activity of the LM, the CM 
ushes (transfers) updates to the

disk version of the database so that some log records become unnecessary for recovery.

The LM no longer needs to retain these log records and so it can re-use their space on

disk.

Figure 2.3 conveys the essence of XEL for the speci�c case of a log stream with three

generations. Non-garbage log records are necessary for recovery and must be kept in the

log; all other log records are garbage. The \garbage pail" does not actually exist, but

is conceptually convenient to suggest that log records are \thrown away" after they are

no longer needed. The arrows at the head of each generation portray the two possible

fates for a log record near the head. If the record is garbage, it is ignored (conceptually

thrown away in the garbage pail). If it is non-garbage, then it must be retained in the

log and so it is either forwarded to the tail of the next generation or recirculated in the

last generation. A stable version of the database resides elsewhere on disk. It does not

necessarily incorporate the most recent changes to the database, but the log contains

su�cient information to restore it to the most recent consistent state if a crash were

to occur. The arrows underneath each generation illustrate the 
ushing activity that

occurs in parallel with logging, and indicate that the log records whose updated objects

are 
ushed may, in general, be anywhere in the log.

new
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disk version
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garbage
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legend:
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Figure 2.3: Disk Space Management Using XEL

This segmentation of the log is particularly e�ective if a large proportion of trans-

actions �nish execution and have their updates 
ushed before their log records near the

head of generation 0. Many, if not all, of these records become garbage before the LM

must decide whether or not to forward them and so the LM does not forward them to

generation 1; their disk space can quickly be reclaimed for more incoming log records.
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Only a small proportion of log records, mostly from transactions with longer lives, are

forwarded to subsequent generations.

Recirculation in the last generation means that the physical order of its records no

longer necessarily corresponds to the temporal order in which they were originally gen-

erated. The LM includes timestamps in data log records to enable the RM to establish

the temporal order of the records.

2.3 Types and Statuses of Log Records

The previous section described the segmentation of a log stream into a chain of �xed-size

FIFO queues and mentioned that the LM performs garbage collection at the head of

each queue. This section will explain the basis upon which the LM decides whether

or not a particular log record is garbage. There are several types of log records. For

each type of log record, a record may be in any one of several possible states at any

given time. In response to ongoing activity in the database, the state of a record may

change over time. The LM's decision about whether to retain or throw away a log record

depends on the record's state.

XEL performs physical state logging on the access path level, according to the tax-

onomy of [30]. In short, XEL performs redo logging with lazy logging of undo records.

It adheres to the write ahead log (WAL) protocol [5]: the disk version of the database

cannot be modi�ed before the LM has written a log record to disk which describes the

modi�cation.

There are two types of log records. Data log records (DLRs) chronicle changes to the

contents of the database (creation, modi�cation or deletion of objects). Transaction (tx)

log records (TLRs)mark important milestones (e.g., begin, commit or abort) during the

lives of transactions.

Apropos TLRs, XEL logs only commit events; it does not bother to log even the

commit of a transaction that did not update any objects in the database. When a

transaction (that updated at least one object) successfully terminates, the LM adds

a COMMIT record to the log to mark the occasion. The COMMIT record holds only the

transaction's identi�er. Previous logging and recovery methods also logged transactions'

begin and abort events. XEL can incorporate these other types of TLRs, but they

are super
uous. These anachronistic TLR types played an important role in previous

recovery algorithms but are no longer relevant for XEL's recovery algorithm.

Figure 2.4 illustrates the noteworthy events in the lifetime of a typical transaction.

The transaction begins, updates several objects and then requests to commit. Whenever

the transaction updates an object, the LM writes a DLR to the log. The transaction
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can continue executing without needing to wait for the DLR to be written to disk. If the

transaction eventually requests to commit, the LM generates a COMMIT record for it and

writes the record to the log. After all the transaction's log records have been written to

disk, the LM acknowledges the transaction's request to commit, thus bringing its course

of execution to a close.

tx
begins

tx updates
an object

tx updates
another

tx requests
to commit

object

DLR DLR COMMIT acknowledge
commit

time

Figure 2.4: Typical Events During the Lifetime of a Transaction

There are two varieties of DLRs: REDO and UNDO DLRs. The LM generates a

REDO DLR whenever a transaction modi�es an object in the database. Each REDO

DLR contains the following four pieces of information:
oid: identi�er for the a�ected object

txid: identi�er for the transaction that performed the update

timestamp: indication of when the update occurred

new-value: new value of the object

If the CM wants to 
ush an uncommitted update out to the disk version of the

database, it must �rst inform the LM of its intentions and obtain permission from the

LM. In response to such a request, the LM generates an UNDO DLR with the following

pieces of information:
oid: identi�er for the a�ected object

txid: identi�er for the transaction that performed the update

timestamp: indication of when the update occurred

old-value: old value of the object (prior to start of transaction)
The LM grants permission to the CM to 
ush the uncommitted update only after the

UNDO DLR has been written to disk. It is unnecessary for the LM to generate more

than one UNDO DLR for a particular object and a particular transaction.

The LM must write a REDO DLR to the log for every update, but it is expected that

only a very few updates, mostly from exceptionally lengthy transactions that modify a

large number of objects, will trigger UNDO DLRs as well. Therefore, UNDO DLRs

ought to be quite rare, in general.

Each log record must be in a particular state at any given time. The LM maintains
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data structures in main memory that track of the state of all log records; a record's

state information is not kept in the log record itself. Figures 2.5, 2.6 and 2.7 graphically

summarize the states and transitions for REDO DLRs, UNDO DLRs and COMMIT TLRs,

respectively. Subsequent paragraphs will explain these state transition diagrams in

detail.

unflushed

required

recoverable

non-recoverable

2

3

4

5

6

7

Transition events:

2)  Commit of more recent update to same object
3)  Commit of more recent update to same object
4)  Flush completed; older recoverable DLR still exists
5)  Flush completed; no older recoverable DLR exists
6)  Last older recoverable DLR becomes non-recoverable
7)  Transaction’s COMMIT record is overwritten

1

1)  Transaction updates same object again

Figure 2.5: State Transition Diagram for a REDO DLR

required

recoverableannulled

1 2

Transition events:
1)  Transaction commits
2)  Aborted update undone by cache manager

Figure 2.6: State Transition Diagram for an UNDO DLR

A REDO DLR may have one of four di�erent status values: un
ushed, required,

recoverable and non-recoverable. If a REDO DLR holds a more recent value for its asso-
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recoverable

1

Transition event:
1) No UNDO DLRs and only recoverable REDO DLRs left

Figure 2.7: State Transition Diagram for a COMMIT TLR

ciated object than does the disk version of the database, the REDO DLR corresponds to

the most recent modi�cation to its associated object by the transaction that performed

the update2 and there is no REDO DLR in the log for a more recently committed up-

date to the same object, then the DLR must have a status of un
ushed. A required DLR

must be retained in the log in order to ensure correct recovery after a crash. A REDO

DLR with a status of recoverable can be recovered by the RM after a crash (because the

COMMIT TLR from the corresponding transaction is also still in the log on disk), but is

not required for correct recovery. A REDO DLR whose status is non-recoverable cannot

be recovered after a crash because the COMMIT TLR from its transaction has already

been overwritten on disk by more recent log records.

An UNDO DLR can have one of three status values: required, annulled and recover-

able. An UNDO DLR initially has status required when the LM creates it. It remains

required until the transaction that wrote it commits, at which time it becomes annulled;

the UNDO DLR remains annulled until it is overwritten on disk. If a transaction writes

an UNDO DLR and later aborts, the UNDO DLR retains its required status until the

CM restores the corresponding object in the disk version of the database to the value

that it held prior to the aborted transaction's update. Note that the CM need not

immediately write out the object's original value to the disk version of the database;

it can bu�er the undo operation until a convenient opportunity, so as to achieve bet-

ter disk I/O. After the CM has undone the aborted update (by restoring the object's

representation in the disk version of the database to its original value), the LM changes

the status of the corresponding UNDO DLR to recoverable. A recoverable UNDO DLR

remains recoverable until it is eventually overwritten on disk.

There are two status values for a COMMIT TLR: required and recoverable. A COMMIT

TLR has status required if at least one UNDO DLR (which may have a status of either

required or annulled) that was written by the transaction still exists or if at least one

REDO DLR that was written by the transaction has a status of un
ushed or required;

otherwise (i.e., no UNDO DLRs and any remaining REDO DLRs have recoverable sta-

tus), the TLR has status recoverable.

2If a transaction modi�es a particular object more than once, then the REDO DLRs for all updates

except the most recent one have status recoverable.
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Whenever an executing transaction updates an object, it writes a REDO DLR to

the log. This DLR has un
ushed status. The LM downgrades the status of any REDO

DLRs from earlier updates to the same object by the same transaction to recoverable. If

the transaction eventually commits, its COMMIT TLR has status required. Suppose that

transaction t modi�es an object x and commits. At the time that t commits, the LM

checks if there is an un
ushed or required REDO DLR for object x from an update by

some earlier transaction. If such a DLR exists, the LM downgrades that DLR's status

to recoverable.

The CM may 
ush an updated object to the disk version of the database whenever

it chooses. In general, the CM attempts to 
ush all a transaction's updates after it has

committed, so that no UNDO DLRs are needed; nevertheless, the CM may occasionally

need to 
ush some of a transaction's updates to disk before the transaction commits. As

soon as the CM has 
ushed an update to some object, the LM downgrades the status

of any un
ushed REDO DLR from an earlier transaction. The LM assigns a status

of required to an earlier REDO DLR if it corresponds to the most recently committed

update to the object and must be retained because of lingering recoverable DLRs from

earlier updates to the same object; otherwise, it assigns a status of only recoverable to

the earlier REDO DLR. After processing any un
ushed previous DLR for the object,

the LM then processes the REDO DLR for the update that was just 
ushed. If this

DLR still has un
ushed status at the time the 
ush operation completes3 and there

exists a required or recoverable DLR from an earlier update to the object, then the LM

downgrades the DLR's status to required; otherwise, the LM assigns a status of only

recoverable to the DLR whose update was just 
ushed. The LM downgrades a required

REDO DLR's status to recoverable after there is no longer a required or recoverable

(REDO or UNDO) DLR from any earlier update to the corresponding object.

The LM downgrades a transaction's COMMIT TLR to status recoverable as soon as

there is no longer any un
ushed or required REDO DLR nor any UNDO DLR remaining

from the transaction. When a transaction's COMMIT TLR is eventually overwritten on

disk, the LM changes the status to non-recoverable for any remaining REDO DLRs that

the transaction wrote. Note that this may trigger status changes for REDO DLRs and

TLRs from more recent transactions.

The following pseudocode expresses how the LM manages the states of records in

the log.

create new record(log record) f

if (type of log record is REDO DLR) f

status of new record  un
ushed

if (log record's transaction previously updated same object) f

status of REDO DLR from previous update  recoverable

3A REDO DLR may have a status of un
ushed at the time that the CM decides to initiate a 
ush

operation for it, but the DLR may be rendered recoverable by a more recently committed update before
the 
ush operation completes.
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g

g

else f

status of new record  required

g

g

commit transaction(txid) f

for every object updated by transaction txid f

if (un
ushed or required REDO DLR remains from earlier transaction) f

status of REDO DLR from earlier transaction  recoverable

g

if (an UNDO DLR for the object was written out to the log) f

status of UNDO DLR  annulled

g

g

g

abort transaction(txid) f

for every object updated by transaction txid f

for every update to the object f

status of REDO DLR from the update  non-recoverable

g

if (uncommitted update was 
ushed to disk version of database) f

retrieve UNDO DLR from log

request CM to restore object in disk version of database to original value

g

g

g

change redo to recov(log record) f

status of log record  recoverable

tid  txid of transaction that write log record

if ( (no more un
ushed, required or annulled DLRs from txid)

AND (txid has committed)) f
status of COMMIT record from txid  recoverable

g

g

aborted update undone(object id, txid) f

status of UNDO DLR for update to object id by txid  recoverable
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g

update written to disk version of db(object id, txid, timestamp) f

for every REDO DLR r from a previous update that has status un
ushed f

if ( (r is for most recently committed update to object id)

AND (older recoverable DLRs for object id still exist)) f
status of r  required

g

else f

status of r  recoverable

g

g

if (status of DLR from 
ushed update is still un
ushed) f

if (recoverable DLRs from previous updates are in log) f

status of REDO DLR for 
ushed update  required

g

else f

change redo to recov(REDO DLR for 
ushed update)

g

g

g

record erased(log record) f

case (type of log record) f

REDO DLR:

if (status of oldest surviving REDO DLR for the object is required) f

change redo to recov(oldest surviving REDO DLR for object)

g

UNDO DLR:

if (no un
ushed, required or annulled DLRs from log record's tx) f

status of COMMIT record for log record's transaction  recoverable

g

COMMIT:

for every remaining recoverable REDO DLR from log record's tx f

status of REDO DLR  non-recoverable

if (status of oldest surviving REDO DLR for the object is required) f

change redo to recov(oldest surviving REDO DLR for object)

g

g

g

g
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2.4 Management of Log Records

The previous section explained the basis upon which the LM decides whether or not to

keep a log record. This section introduces the data structures which enable the LM to

make this decision. The LM keeps a pointer to every noteworthy log record. A record's

pointer indicates its location in the log and current status. The LM uses this information

when it must decide a log record's fate.

It is convenient to broadly classify log records as relevant or irrelevant. All records

that can a�ect the recovered state of the database are collectively referred to as relevant

log records; un
ushed, required and recoverable REDO DLRs and all UNDO DLRs are

relevant log records, as are all required COMMIT TLRs and recoverable COMMIT TLRs for

which some corresponding recoverable REDO DLRs still remain. All other log records

(non-recoverable DLRs and every recoverable COMMIT record for which no corresponding

REDO DLRs remain) are irrelevant. The LM must keep track of the positions of all

relevant records. It does not bother to keep track of irrelevant records.

A cell exists for every relevant record in any generation of the log. Each cell resides

in main memory and points to the record's location on disk. A record's location on disk,

as pointed to by its cell, is indicated by an identi�er of the block to which it belongs;

�ner granularity (e.g., position within the block) is not required by XEL. The cells

corresponding to each generation are joined in a doubly linked list that \wraps around"

in a circular manner; the cells nearest the head and tail have right and left pointers to

each other, respectively. For generation i, pointer hi points to the cell for the relevant

record nearest the head. There is no tail pointer for a generation, but the cell for the

relevant record nearest to the tail can be found quickly by following the right pointer of

the cell pointed to by hi.

The logged object table (LOT) has an entry for every object that has at least one

relevant DLR somewhere in the log. An object's LOT entry keeps track of the positions

within the log of its relevant DLRs. Cells for an object's relevant DLRs are accessible

via its LOT entry.

Likewise, the logged transaction table (LTT) has an entry for every transaction that

has updated at least one object. A transaction's LTT entry keeps track of all objects

that it updated and for which the corresponding REDO DLRs are still relevant. After

a transaction commits, its LTT entry points to the cell that corresponds to its COMMIT

TLR.

The LM continually updates the LOT and LTT to re
ect the current state of the

system as transactions and log records come and go. At any given time, the cells

associated with the LOT and LTT entries point to all relevant log records. Although

cells belong to these two di�erent tables, they may nonetheless simultaneously belong

to the same doubly linked list.
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An example of XEL with N=3 generations is shown in Figure 2.8. To relate Fig-

ure 2.8 to Figure 2.3, note that all irrelevant records are garbage records. Some relevant

log records can a�ect recovery but are not required for recovery, and so they are also

garbage records; they can be thrown away with impunity when convenient.

new
log
records

disk version
of database

garbage
pail

LOT

LTT

h0 h1 h2

relevant log record
irrelevant log record

cell
legend:

main memory

disk

generation 0 generation 1 generation 2

Figure 2.8: Data Structures for XEL

Figure 2.8 illustrates the most important aspects of XEL's data structures. The LOT

and LTT, with their constituent cells, reside in main memory. Other internal details of

the LOT and LTT have been omitted; the circular doubly linked lists of cells are the

important aspect of the LOT and LTT in this �gure.

Each cell has a status �eld that indicates the status of its corresponding log record.

At any given time, the LM can determine whether a record is non-garbage by checking

the status �eld in the record's cell. When a record must be forwarded to the tail of

generation i+1, the LM writes its contents to disk at the tail of generation i+1, updates

its cell, c, to point to its new position in the log and transfers c from the circular linked

list for generation i to the circular linked list for generation i+1. The LM updates pointer

hi to point to the cell previously to the left of c, if such a cell exists for generation i;

otherwise, it sets hi to NULL. If hi+1 was NULL immediately before the record was

forwarded, then the LM updates it to point to c (and c's left and right pointers point
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to itself). Recirculation in the last generation is handled similarly.

2.5 Bu�er Management for Disk Version of the Database

The LM relies on the CM to 
ush updated objects to the disk version of the database so

that log records from these updates will become garbage. This section brie
y discusses

how the CM ought to schedule 
ush operations and elaborates on how the CM interacts

with the LM.

In general, there is negligible locality of access between the updates of independent

transactions. Flushing updates in the order that they are written to the log would lead

to random disk I/O for the disk version of the database. Instead, the CM maintains a

pool of objects waiting to have their committed updates 
ushed and schedules writes to

disk so that it can take advantage of locality in the disk version of the database and thus

improve I/O performance. Ideally, there should usually be a signi�cantly large number

of committed updates from which the CM can choose the next object to be 
ushed; too

small a \pool" of updates leads to random I/O. Flushing can proceed continuously at

as high a rate as possible.

Occasionally, the CM may need to 
ush uncommitted updates out to the disk version

of the database (because its bu�er pool is running dangerously low on free space, for

example). In such an emergency situation, the CM must �rst obtain permission from

the LM, as described in section 2.3. After the LM has written the necessary UNDO

DLRs to disk and granted the CM permission to 
ush some uncommitted updates to

disk, the CM can schedule the writes to disk so as to exploit locality.

In the rare event that a transaction aborts after writing one or more UNDO DLRs,

the CM must undo the transaction's updates that have already been propagated to the

disk version of the database. The LM reads (from disk) every UNDO DLR that was

written by the aborted transaction. For each such UNDO DLR, the LM communicates

the oid and old value to the CM. In response, the CM restores the object (in the disk

version of the database) to the value that it had prior to the aborted transaction's update

and informs the LM after it has undone the transaction's modi�cation to the object.

2.6 Flow Control

This section discusses how the LM regulates the 
ow of log records from one generation

to the next in a log stream. Each generation is a FIFO queue of �xed size. If it begins

to run out of space for new records, the LM must try to free up some space by throwing

away or forwarding (or recirculating) log records from near the head of the queue. The
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LM can forward records from one generation only if the next generation is able to accept

them. Hence, 
ow control between successive generations within a log stream must be

regulated.

The LM attempts to keep at least Nfree blocks available in each generation to accept

incoming (and recirculated, in the case of the oldest generation) log records. When the

tail of generation i advances so as to violate this \low water mark", the LM attempts

to forward (or recirculate) log records from generation i. However, the LM can forward

log records to generation i+1 only if generation i+1 is able to accept them.

The LM refuses to overwrite any block that holds an un
ushed or required log record.

If hi+1 points to a record in the block immediately after the current tail position of

generation i+1, then generation i+1 cannot accept any forwarded log records. Similarly,

the LM refuses to accept any new log records from client transactions if space is not

available for them in generation 0.

When space eventually becomes available in generation i+1, the LM will resume

forwarding of records from generation i if there are fewer than Nfree blocks between

the current tail position of generation i and the block to which hi indirectly points (hi
points to a cell, and this cell points to a block position on disk).

This 
ow control policy is guaranteed to be free of deadlock. The LM never needs to

keep a log record because of the lingering presence of some chronologically subsequent

log record. This property ensures that the dependency graph amongst log records is

acyclic, and therefore deadlock is impossible.

In summary, a producer-consumer protocol between adjacent generations regulates

the 
ow of forwarded log records. Older generations that become full exert \backpres-

sure" on younger generations. If all generations become full, then the LM does not accept

log records from client transactions. This policy ensures that necessary log information

is never lost.

2.7 Bu�ering, Forwarding and Recirculation

The previous section explained how the LM regulated the 
ow of records into and out

of each generation of a log stream. This section elaborates on some important timing

details which govern this movement of log records. Much of the complexity arises from

the characteristics and limitations of current disk drive technology.

Two characteristics of current disk technology exert an important in
uence on the

implementation of XEL. Information is written to disk in �xed sized blocks (with each

block typically some multiple of 1024 bytes). Sequential disk I/O is faster than random
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disk I/O. XEL must accommodate the constraint of �xed sized disk blocks, and ought

to take advantage of the performance bene�ts of sequential I/O.

The LM uses the group commit technique [15, 5]. Records are collected in a bu�er

and written to disk all at once. Figure 2.9 illustrates the group commit technique. The

bottom of the bu�er holds log records that have already arrived. The LM adds new

incoming log records to the bu�er by putting them in the un�lled portion shown at the

top of the bu�er. In Figure 2.9, the direction of growth is upward.

1 block

log stream buffer

unfilled space

fill up
remainder
of buffer
with new
log records

records
already
in buffer

Figure 2.9: Bu�ering of Incoming Log Records for Batched Write to Disk

The LM should dedicate at least two bu�ers for log records that are to be written to

generation 0 because a disk write generally requires a signi�cant amount of time, such

as 10 ms, during which other log records may arrive. While one bu�er is being written

to disk, the LM can add new records to a di�erent bu�er without risk of interference.

The size of each bu�er in the pool is exactly equal to the size of a disk block. At any

given time, there is a current bu�er for generation 0. The LM adds new log records

to this bu�er until it is full or a time limit runs out, at which time the LM writes it

to disk; another bu�er in the pool becomes the current bu�er as soon as there are no

un
ushed or required records in the block to which the new current bu�er will be written.

Therefore, log records are not immediately written to disk. There is a delay while the

current bu�er �lls, and some extra delay for the disk I/O.

Only one bu�er is needed for each generation i>0 because the LM has the liberty

of scheduling the movement of log records between generations. There can be only one

outstanding write to the tail of a particular generation and the LM can quickly re�ll

generation i 's bu�er as soon as the current write operation completes, so additional

bu�ers would not help anyway.

The tail of generation i points to the location of a block on disk; �ner granularity is

unnecessary. When a new log record comes in to generation i, the LM will attempt to

allocate it to the block indicated by the current position of the tail; if there is insu�cient

room remaining in the current bu�er to accommodate the record, then the LM will

attempt to advance the tail block position and allocate the record to the new tail block.
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The head of generation i is the block to which hi (indirectly) points, if hi is not NULL.

If hi is NULL, then the head of generation i is, by default, the current tail block.

The movement of head and tail pointers in block sized quanta has implications.

When the LM decides to advance the head of generation i, it must deal with all log

records in the head block. The LM attempts to forward all un
ushed and required

records in this head block to generation i+1. Suppose that the LM can forward these

records to generation i+1. It adds the records to the bu�er for generation i+1. In

general, they are insu�cient to completely �ll the bu�er, but the LM must ensure that

the forwarded records are soon written to disk in generation i+1. Therefore, it attempts

to �ll the bu�er as full as possible before writing it. After forwarding records from the

block at the head of generation i, the LM works backward (i.e., to the left) from the

head to gather enough other non-garbage log records to �ll the bu�er that is destined

for the tail of generation i+1. In summary, the requirements of generation i dictate that

records be removed from its head in quanta of size at least a block. The requirements

associated with forwarding records to the tail of generation i+1 imply that records are

usually forwarded as a group from the �rst several blocks at the head of generation i.

There are two details that complicate the operation of forwarding records from gen-

eration i to generation i+1. First, there is some delay between the time when the LM

decides to forward a log record to the moment when the forwarded record is actually

on disk in generation i+1. Second, two copies of a forwarded record may temporarily

exist in the log. The forwarded copy of the record resides on disk in generation i+1,

but there is also the \stale" copy left behind in generation i; this latter copy remains

in the log until it is overwritten by newer log records. Because of these details, the LM

manipulates two additional special pointers for each generation.

For each generation i, si is the scan pointer. Like hi, it points to a cell in the circular

doubly linked list for generation i or is NULL. It indicates how far the LM has scanned

to forward log records to generation i+1. If there is no forwarding operation in progress,

then si coincides with hi. When the LM examines a log record and decides to forward

it, it leaves the cell in generation i's list and advances si to the left; if this leftward

movement causes si to \wrap around" so that it comes back to hi, then the LM sets

it to NULL instead. Immediately after a bu�er of forwarded records has been written

to disk in generation i+1, the LM keeps advancing hi leftward until it coincides with si
or becomes NULL; until hi \catches up" to si, the LM transfers each cell over which it

passes from generation i's circular list of cells to the tail of generation i+1's list. This

cautious management of the hi and si pointers ensures that the LM never inadvertently

overwrites a non-garbage log record in generation i before it has been forwarded to

generation i+1 (and is on disk in generation i+1).

The LM maintains a second circular doubly linked list of cells for every generation.

This other list is called the doomed list because it indicates relevant records that will

(soon) be overwritten. The pointer di points to the cell at the head of generation i's

doomed list. When the LM examines a log record's cell and decides that the record
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is garbage, it removes the cell from the regular list (after advancing si, of course, and

possibly also hi if necessary) and adds it to the tail of the doomed list. If di was

previously NULL, it will point to the cell that has just been transferred to the doomed

list; otherwise, the transferred cell is the target of the right pointer of the cell to which

di points. Now consider the case that the LM decides the log record to which si points

is non-garbage. It creates a new cell that also points to the record and leaves the old cell

intact in the regular list for generation i (where it waits to be forwarded to generation i+1

after the bu�er has been written to disk in that generation). If the log record is a DLR,

the LM adds the new cell to the LOT entry of the associated object; otherwise, it adds

the new cell to the LTT entry of the corresponding transaction. Finally, the LM inserts

this new cell into the doomed list at its tail. Whenever a block of log records is written

to disk in generation i, the LM examines di. If di (indirectly) points to the block that

has just been written, then the LM concludes that the record associated with the cell to

which di points is now gone and so it moves di leftward (or assigns di the value NULL, if

appropriate) and deletes the cell to which di had pointed. The LM continues to advance

di leftward until it becomes NULL or no longer (indirectly) points to the block that has

just been written. The di pointer ensures that the LM does not forget about any stale

copy of a relevant log record.

Recirculation is not as complicated. The LM recirculates records from only the block

at the head of the last generation and places them in a bu�er without immediately

writing it to disk. The existing copies of these records will not be overwritten before the

tail has advanced, but the recirculated copies will belong to the disk block written at

the tail. There is no need for a scan pointer in the last generation; the LM immediately

transfers the cells for the recirculated records from head to tail in the circular list (in

practice, this is accomplished simply by advancing hi to the left). Similar to the case

of forwarding, the LM transfers the cells for garbage log records to the doomed list and

eventually deletes the cells after the log records have actually been overwritten. As new

log records come in to the last generation, the LM adds them to the bu�er after the

recirculated records.

If the LM ever decides to delete the cell to which hi points, it must �rst adjust hi
accordingly. If there are other cells in generation i's linked list, then the LM advances

hi to the left; otherwise, it assigns NULL to hi. The LM behaves similarly if it deletes

the cell to which si or di points.

In summary, the LM collects records in a bu�er before writing them to any gener-

ation. It attempts to �ll a bu�er as full as possible before writing it to disk. When

the LM decides to forward a log record, it does not transfer the record's cell from the

circular list of generation i to the list of generation i+1 until after it is certain that the

record is on disk in generation i+1. The LM keeps track of the positions of all copies of

all relevant log records until they are actually overwritten on disk (or until they become

irrelevant, if this happens �rst).

The following pseudocode routines succinctly state the LM's algorithms for forward-
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ing and recirculating log records.

add cell to generation(cell, i) f

if (hi==NULL) f

hi  cell

si  cell

cell�>left  cell

cell�>right  cell

g

else f

if (si==NULL) f

si  cell

g

cell�>left  hi
cell�>right  hi�>right

cell�>left�>right  cell

cell�>right�>left  cell

g

g

delete cell from generation(cell, i) f

if (si==cell) f

if (si�>left==hi) f

si  NULL

g

else f

si  si�>left

g

g

if (hi==cell) f

if (hi�>left==hi) f

hi  NULL

g

else f

hi  hi�>left

g

g

if (di==cell) f

if (di�>left==di) f

di  NULL

g

else f

di  di�>left

g
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g

if (cell�>left 6=cell) f

cell�>left�>right  cell�>right

cell�>right�>left  cell�>left

g

g

add cell to doomed list(cell, i) f

if (di==NULL) f

di  cell

cell�>left  cell

cell�>right  cell

g

else f

cell�>left  di
cell�>right  di�>right

cell�>left�>right  cell

cell�>right�>left  cell

g

g

forward records from generation(i) f

while ((generation i+1 can accept records) AND (si 6=NULL)) f

if (record pointed to by si must be kept) f

copy record pointed to via si to bu�er for generation i+1

create new cell

copy contents of cell pointed to by si into new cell

add cell to doomed list(new cell, i)

if (si�>left==hi) f

si  NULL

g

else f

si  si�>left

g

g

else f

cell  si
delete cell from generation(cell, i)

add cell to doomed list(cell, i)

g

g

g
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recirculate records within generation(i) f

while (fewer than Nfree blocks available in generation i) f

if (record pointed to by hi must be kept) f

copy record pointed to via hi to bu�er for generation i

hi  hi�>left

g

else f

cell  hi
delete cell from generation(cell, i)

add cell to doomed list(cell, i)

g

g

g

bu�er written to generation(i) f

if (i>1) f

while ((hi�1 6=NULL) AND (hi�1 6=si�1)) f

cell  hi�1
delete cell from generation(cell, i-1)

add cell to generation(cell, i)

g

g

while ((di 6=NULL) AND (di points to block position just overwritten)) f

record erased(di)

if (di�>left==di) f

di  NULL

g

else f

di  di�>left

g

g

g

2.8 Management of the LOT and LTT

Section 2.4 introduced the LOT and LTT when it described the doubly linked lists of

cells that track the positions of all relevant log records in the generations of a log stream.

This section provides more details about the LOT and LTT and describes how the LM

manages these data structures.
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The LOT and LTT keep track of all relevant log records. The LM updates them on

a continual basis as records enter the log and progress through it.

The LM associatively accesses each object's LOT entry by using its object identi�er

(oid) as a key. A hash table implementation is therefore appropriate. The dynamic

nature of the LOT strongly suggests that chaining [10] (rather than open addressing) is

the most suitable technique for collision resolution. An object's LOT entry has one or

more cells, each of which points to the disk block of a relevant DLR for the object. The

LM manages these cells as a linked list.

Entries in the LTT are associatively accessed using transaction identi�ers (tids) as

keys. Like the LOT, the LTT is implemented as a hash table with chaining for collision

resolution. Each transaction's LTT entry holds a set obj ids of oids to keep track of

which objects were updated by the transaction; this set is initially empty and grows as

the transaction progresses and performs work.

The LM maintains a timestamp in each object's LOT entry, although no timestamp

is necessarily stored with any object in the disk version of the database. A simple

integer-valued counter su�ces for the timestamp. When the LM creates a new LOT

entry for an object, it initializes the timestamp to 0. Whenever a transaction updates

the object, the LM increments the timestamp and then puts the new timestamp value

in the resulting REDO DLR. An UNDO DLR for an object holds the current value of

the timestamp in its LOT entry at the time that the UNDO DLR is created; the LM

does not bother to increment the timestamp when it creates an UNDO DLR. The LM

removes an object's LOT entry only after it has no more relevant DLRs remaining in the

log (the LM detects this situation when the set of cells associated with the LOT entry

becomes empty). Therefore, at any given time, all relevant REDO DLRs for an object

have unique timestamps and these DLRs can be placed into chronological sequence

by their timestamps. Likewise, all UNDO DLRs have timestamps that indicate their

chronological ordering. The cell for each DLR has a tstamp �eld that stores the value

of the timestamp contained in the DLR.

Whenever a transaction modi�es an object in the database, it causes the LM to send

a REDO DLR to the log. If an entry does not already exist for the object in the LOT, the

LM creates one. The LM increments the timestamp in the object's LOT entry, formats

the DLR, adds the DLR to the current bu�er for the tail of generation 0, creates a cell

to point to the DLR's position in the log, adds it to the set of cells maintained in the

object's LOT entry, inserts the cell in the doubly linked list for generation 0, creates a

new LTT entry for the transaction that performed the update if it did not already have

one and then adds the object's oid to the obj ids set in the transaction's LTT entry.

Every transaction eventually commits or aborts. An abort is easy to handle. Because

the log will never hold a COMMIT TLR from an aborted transaction, all the REDO DLRs

from the transaction immediately become non-recoverable; the LM disposes the cells that

pointed to these DLRs and deletes the transaction's LTT entry. However, any UNDO
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DLRs from the transaction retain their required status after it aborts until the CM has

undone these updates to the disk version of the database, as described in Sections 2.3

and 2.5.

When a transaction (which updated at least one object) commits, the LM updates

its LTT entry so that it points to the cell for its COMMIT record in the log. Then the LM

processes the members of obj ids in the transaction's LTT entry. For each oid in obj ids ,

the LM retrieves the object's LOT entry, assigns a status of recoverable to any un
ushed

or required REDO DLR from an earlier committed update to the same object, assigns

a status of annulled to any UNDO DLR from the transaction that just committed and

informs the CM that the most recent update has now been committed. If the CM has

not already 
ushed this most recent update to disk, then the CM enqueues it to be


ushed4.

The LTT entry for each transaction includes a counter to keep track of the number of

UNDO DLRs and un
ushed or required REDO DLRs that exist for the transaction. The

LM initializes an LTT entry's counter to 0 and increments this counter every time the

transaction writes another REDO or UNDO DLR to the log. The LM also increments

this counter whenever it copies an existing UNDO DLR so that it can forward the DLR.

The LM decrements a transaction's counter each time that it downgrades the status of

one of the transaction's REDO DLRs from un
ushed or required to recoverable, or each

time that it overwrites an UNDO DLR from the transaction. When the counter reaches

zero, the LM downgrades the transaction's COMMIT TLR to recoverable.

After a transaction commits, its obj ids set can only shrink in size. Whenever the

last copy of a relevant REDO DLR is overwritten and no other REDO DLRs from

other updates to the same object by the same transaction remain, the LM removes the

corresponding oid from the obj ids set of the transaction that wrote the DLR.

When the last copy of a transaction's COMMIT TLR is eventually overwritten, the LM

examines its obj ids set; for every object still represented in this set, the LM downgrades

the status of all corresponding REDO DLRs to non-recoverable (and deletes the cells

that pointed to these DLRs). Finally, the LM deletes the transaction's LTT entry.

If the obj ids set in a committed transaction's LTT entry becomes empty and no

UNDO DLRs remain from the transaction (as indicated by a counter value of zero), all

copies of the transaction's COMMIT record become irrelevant. The LM disposes the cells

that point to them and removes the transaction's entry from the LTT.

To summarize, every object with relevant DLRs in the log has an entry in the LOT.

An object's LOT entry keeps track of the positions within the log of its relevant DLRs.

There is an LTT entry for every transaction currently in progress that has updated

4If the CM already enqueued the object in response to an earlier update by another transaction but

it has not yet 
ushed the object, then the object's oid remains unchanged in the set of objects waiting
to be 
ushed.

50



at least one object and every committed transaction that still has relevant DLRs. A

transaction's LTT entry keeps track of all objects that it updated and the positions

within the log of copies of its COMMIT record. The LM continually updates the LOT and

LTT to re
ect the current state of the system as transactions and log records come and

go. At any given time, the cells associated with the LOT and LTT entries point to all

relevant records in the log.

2.9 Crash Recovery

After a crash has happened, the database invokes the RM to restore the disk version

of the database to a consistent state. The RM examines the records in the log and

attempts to �nd the most recently committed value, if any, for each object that has one

or more DLRs in the log. The RM propagates each object's most recently committed

value, if any, to the disk version of the database, thus restoring the disk version of

the database to a consistent state: it incorporates all the e�ects of transactions which

committed prior to the crash and none of the e�ects of transactions which aborted or

were interrupted.

The RM starts sequentially reading from the disk(s) where the log is stored. It does

not need to begin at the tail of generation 0 (nor of any other generation). The RM

processes the log in a single pass. This new recovery algorithm is suitable for systems

in which the log is not larger than main memory.

As each block is read from the log, the RM processes the DLRs and TLRs in the

block. The Pending Object Table (POT) keeps track of all objects during the recov-

ery process, while the Recovered Transaction Table (RTT) serves a similar purpose for

transactions.

Each RTT entry belongs to a particular transaction. It holds two pieces of infor-

mation about the transaction. The �rst is the status of the transaction. If the RM has

found a COMMIT record for the transaction, it has a status of committed; otherwise, it

has an unknown status. The RTT entry also contains a set of oids, called pending objs.

The contents of this set are meaningful only if the transaction's status is still unknown.

Each member of pending objs indicates an object for which a REDO DLR was already

found in the log and this DLR was written by the transaction.

When the RM reads a REDO DLR from the log, it checks the POT entry for the

associated object to see if a more recently committed REDO DLR or a more recent

UNDO DLR has already been found (the timestamps within an object's REDO and

UNDO DLRs indicate their relative temporal ordering). If not, it adds the new DLR to

the POT. It also inspects the RTT to �nd out if the transaction that wrote the DLR is

known to have committed. If the transaction did indeed commit, then the RM marks
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the new update as committed and deletes from the POT all earlier DLRs for the same

object; otherwise, it leaves the update with a status of pending and adds the object's

oid to the pending objs set in the RTT entry of the corresponding transaction.

If the RM reads an UNDO DLR from the log, it ignores it if a more recently commit-

ted REDO DLR or a more recent UNDO DLR has already been found for the associated

object; otherwise, it adds the UNDO DLR to the object's POT entry and deletes all

DLRs that were written by earlier transactions (as indicated by their txid and timestamp

�elds).

When the RM upgrades a transaction's status from unknown to committed (in re-

sponse to the discovery of a COMMIT TLR), it processes each object represented in the

pending objs set kept with the transaction's RTT entry. For each such object, it marks

the corresponding update in the POT (if it still exists) as committed and deletes all

earlier updates to the object; it also deletes the object's oid from the pending objs set.

After all log records have been processed, the RM restores the disk version of the

database to the most recent consistent state that existed prior to the crash by examining

each object's POT entry and taking appropriate action. If an object's POT entry holds

an UNDO DLR and the transaction that wrote the record has a status of committed,

then the RM does nothing further for the object. However, an UNDO DLR from an

uncommitted transaction5 prompts the RM to propagate the object's value (indicated

in the UNDO DLR) to the disk version of the database and thus undo the e�ect of the

unsuccessful transaction. If an object's POT entry has a REDO DLR from a committed

transaction, the RM 
ushes this updated value to the disk version of the database.

The RM ignores any object whose POT entry holds neither an UNDO DLR from an

uncommitted transaction nor a committed REDO DLR.

The following pseudocode expresses the RM's algorithms.

should keep redo dlr(redo dlr) f

pot entry  POT entry for object redo dlr�>oid

redo ts  redo dlr�>timestamp

if (pot entry has a committed REDO DLR with timestamp > redo ts) f

return FALSE

g

else f

if (pot entry has an UNDO DLR with timestamp > redo ts) f

return FALSE

g

else f

if (pot entry has a REDO DLR with timestamp == redo ts) f

5The RM concludes that any transaction whose status is still unknown did not commit before the

crash.
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return FALSE

g

else f

return TRUE

g

g

g

g

known to have committed(txid) f

if (RTT entry of txid has committed status) f

return TRUE

g

else f

return FALSE

g

g

recover redo dlr(redo dlr) f

if (object redo dlr�>oid has no POT entry) f

create new POT entry for object redo dlr�>oid

g

if (should keep redo dlr(redo dlr)) f

add redo dlr to POT entry of redo dlr�>oid

if (known to have committed(redo dlr�>txid)) f

redo dlr�>txid  tx committed

delete all DLRs with timestamps less than redo dlr�>timestamp

delete any UNDO DLR with timestamp equal redo dlr�>timestamp

g

else f

add to pending objs in rtt(redo dlr�>oid, redo dlr�>txid)

g

g

g

should keep undo dlr(undo dlr) f

pot entry  POT entry for undo dlr�>oid

undo ts  undo dlr�>timestamp

if (pot entry has a committed REDO DLR with timestamp � undo ts) f

return FALSE

g

else f
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if (pot entry has an UNDO DLR with timestamp � undo ts) f

return FALSE

g

else f

return TRUE

g

g

g

recover undo dlr(undo dlr) f

if (object undo dlr�>oid has no POT entry) f

create new POT entry for object undo dlr�>oid

g

if (should keep undo dlr(undo dlr)) f

add undo dlr to POT entry of undo dlr�>oid

delete all other DLRs with timestamps less than undo dlr�>timestamp

g

g

update pot after tx commit(oid, txid) f

if (POT entry for oid still has a REDO DLR from transaction txid) f

redo dlr  REDO DLR for oid and txid with greatest timestamp

redo dlr�>txid  tx committed

delete all other DLRs with timestamps less than redo dlr�>timestamp

delete any UNDO DLR with the same timestamp as redo dlr�>timestamp

g

g

recover commit(commit record) f

if (commit record�>txid has no RTT entry) f

create new RTT entry for commit record�>txid

g

status of transaction commit record�>txid  committed

if (pending objs 6=; in RTT entry of commit record�>txid) f

for every oid in pending objs f

update pot after tx commit(oid, commit record�>txid)

remove oid from pending objs

g

g

g
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perform recovery() f

while (there are still some unread log records) f

log record  read another record from the log

case (type of log record) f

REDO DLR: recover redo dlr(log record)

UNDO DLR: recover undo dlr(log record)

COMMIT: recover commit(log record)

g

g

for every object with an entry in the POT f

if (object's POT entry has an UNDO DLR from an uncommitted tx) f

write out value from UNDO DLR to object in disk version of DB

g

else f

if (object's POT entry has a committed REDO DLR) f

write out value from committed REDO DLR to disk version of DB

g

g

g

g

The LM ensures that the log always contains su�cient information for the RM to

restore the database to a consistent state if a crash were to ever occur at any time.

Consider a series of updates, performed by di�erent transactions, to a particular object.

Suppose that the most recent update to the object has been committed. If the CM has

already 
ushed this update to the disk version of the database, then either no recoverable

(UNDO or REDO) DLRs from prior updates to the object remain in the log or the DLR

from the most recent update is still in the log (and has a status of required) along with

the COMMIT record for the transaction which performed this update. If the CM has not

already 
ushed this update, then its DLR must have a status of un
ushed and is still in

the log.

Now suppose that the most recent update to a particular object was performed by

a transaction that aborted or is still in progress. Therefore, the log does not contain

any COMMIT record from this transaction. If the log still holds a REDO DLR from this

update, then it is innocuous anyway (because the RM ultimately ignores any REDO

DLR from a transaction that did not commit). If the disk version of the database already

holds the new uncommitted value for the object, then the log must hold an UNDO DLR

which records the object's original value (i.e., the value which it had immediately prior

to the beginning of the current transaction). Since the RM �nds this UNDO DLR but

it does not �nd a COMMIT record for the associated transaction, it restores the object

in the disk version of the database to the value indicated in the UNDO DLR, thus

undoing the uncommitted transaction's update. If the disk version of the database still

holds the object's original value but the log holds an UNDO DLR for the uncommitted
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update (because the RM had requested the LM for permission to 
ush but had not yet

performed the 
ush), then correct recovery is still ensured. Finally, if the log contains

no UNDO DLR for the uncommitted update, then the disk version of the database must

hold the object's original value and either the log holds a REDO DLR (with un
ushed,

required or recoverable status) from the most recently committed update or the log holds

no un
ushed, required or recoverable DLRs from prior updates to the object. Either way,

the disk version of the database will hold the original value of the object after the RM

�nishes its work.

Therefore, the LM and RM together guarantee that the most recently committed

value for every object is restored to the database after a crash, and thus the consistency

of the database is maintained.

Note that the LOT and LTT data structures which played a crucial role during

normal logging operations are unnecessary for recovery. They enabled the LM to manage

the log's records so that the database could always be restored to a consistent state if a

crash were to ever occur. After a crash has actually happened, the RM must examine

the information which the LM left on disk and use it to restore the disk version of

the database to a consistent state. When the RM has �nished its work, the database

resumes normal processing. The LM initializes the LOT and LTT data structures (they

are initially empty) and then begins accepting requests from client transactions.
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Chapter 3

Correctness Proof for XEL

This chapter presents a theoretical model for a simpli�ed version of XEL and proves

important safety and liveness properties. E�ectively, the model ignores the role of the

cache manager and assumes that every update is 
ushed to the disk version of the

database immediately after it is committed. Nevertheless, the log manager must ensure

that the REDO DLR from the most recently committed update to each object is retained

until all prior REDO DLRs for the same object have �rst been rendered non-recoverable

(review Section 2.1 to understand this requirement).

A manual correctness proof for a complete implementation of XEL, as presented

in Chapter 2, would be overwhelming in terms of both size and e�ort; the proof itself

would be prone to human error and its length would deter most readers from bothering

to verify it. Nevertheless, this chapter does prove the correctness of a simpli�ed version

of XEL. The proof focuses on only a single object, but it applies to all objects in the

database. Therefore, this simpli�ed version of XEL ensures that the log always holds

su�cient information for the RM to restore the database to a consistent state after

a crash. Section 2.9 explained how the RM actually does restore the database to a

consistent state, given the information in the log. This chapter also proves that every

committed update's REDO DLR is eventually erased (a liveness property) so that its

disk space can be reused.

Although the proof considers only a simpli�ed version of XEL, it has worth nonethe-

less. After someone understands this proof for simpli�ed XEL, they can extend this un-

derstanding so that it applies to more realistic implementations of XEL. This approach

of starting reasonably simple and then gradually adding in more detail has pedagogic

value. Furthermore, the experience of proving the correctness for a simplied version of

XEL can suggest approaches for automating the many \mechanical" parts of the proof

e�ort so that much more sophisticated implementations of XEL can be proven auto-

matically by computer (assuming that the program which assists in the proof process is

itself correct); little human e�ort would be required and so the chance of human error
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would be signi�cantly reduced.

This chapter uses I/O automata theory [42, 43] extensively. A reader unfamiliar

with I/O automata theory is referred to [42, 43] for an explanation of it.

The remainder of the chapter is organized as follows. Section 3.1 states what aspects

of XEL are simpli�ed and explains the interface for this much-simpli�ed version of the

log manager. It also suggests how to gradually embellish this simpli�ed model so that

a more realistic version of XEL is obtained. To perform correctly, any variation of XEL

can reasonably require client transactions to behave appropriately; Section 3.2 formally

expresses these restrictions as four well-formedness properties that the log manager's

surrounding environment must always satisfy. Section 3.3 presents a model of the log

manager that is as simple as possible and proves that it is correct, as long as the

environment satis�es the well-formedness properties; this very simple model for the

log manager is referred to as SLM. Section 3.4 de�nes a more complex model for XEL

that more closely resembles a real implementation and then proves safety and liveness

properties for it. The I/O automata description for this implementation is presented

in Section 3.4.1. This implementation is referred to as LM. Even though LM is fairly

elaborate, it still has many simpli�cations and does not constitute an implementation

of the complete XEL technique as presented in Chapter 2. Section 3.4.3 postulates a

possibilities mapping f that maps each state in LM to a set of states in SLM and then proves

that f is indeed a possibilities mapping, according to the de�nition in [42, 43]. This

result inductively proves that LM is correct apropos safety. For any possible execution

of LM, a corresponding execution of SLM also exists which has exactly the same external

behavior. Since the correctness (in terms of all possible external behaviors) of SLM

has already been proven, the correctness of LM follows as a result. Finally, Section 3.4.4

states an important liveness property: every log record is eventually erased. Appendix A

provides the many lemmas and theorems which constitute the safety and liveness proofs.

3.1 Simpli�cations

This section describes the log manager's interface and explains how the log manager

interacts with the world around it. Subsequent sections will build upon the introductory

description which this section provides. Because this chapter considers a simpli�ed

version of XEL for the log manager, the interface is simpler than what was described in

Chapter 2. This section explains and justi�es these simpli�cations. It also discusses how

some of these simpli�cations would be relaxed if one wanted to extend the techniques

of this chapter to a more realistic version of XEL.

This chapter will prove that XEL (in its simpli�ed manifestation) does \the right

thing" for each object. Each object is characterized by a set of possible updates. These

updates may be sequenced in any particular order; the \external world" chooses the
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order by issuing a series of commit commands. Figure 3.1 illustrates the log manager's

interface for the simpli�ed version of XEL that is considered in this chapter. In this

simple model, the log manager manages only a single object. The external world sends

COMMITi and ERASEi messages to the log manager, where the subscript i (which is a

member of some index set) identi�es a particular update, and the log manager sends

ERASABLEi messages to the external world. Here, the external world is everything outside

the log manager.

ERASE1

ERASABLE1

COMMIT1

ERASEi

ERASABLEi

COMMITi

log
manager

Figure 3.1: Interface of Simpli�ed Log Manager

When the external world (speci�cally, some client transaction) wants to atomically

update an object, it sends a COMMITi request to the log manager; the subscript identi�es

the particular update which the external world wants to commit. The log manager keeps

some (internal) record of this update but may eventually decide to delete it. When it

decides that it no longer needs to retain a record from update i, it sends an ERASABLEi
message to the external world. In response to this message, the outside world chooses

exactly when the record from update i is actually deleted; the external world sends an

ERASEi message to the log manager to inform it when the record from update i has

been deleted. The ERASABLEi and ERASEi messages model the operation of a typical disk

drive. When the log manager decides to overwrite a particular log record on disk, it

submits a request to the disk drive's controller to write a block of new information to

the record's location on disk; this request corresponds to the ERASABLEi message. After

the disk drive has actually completed the write operation, it informs the log manager;

this acknowledgement corresponds to the ERASEi message.

The log manager must satisfy the following important property. Either the log man-

ager still retains the record from the most recently committed update to the object (i.e.,

COMMITi has happened, no subsequent COMMITj has occurred yet, and the log manager

has not issued an ERASABLEi message) or the records from all previously committed

updates have already been deleted (i.e., for every COMMITh which preceded COMMITi, a

corresponding ERASEh has already happened). This guarantees that no stale old update
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can jeopardize the state of the database if a crash were to occur.

The particular values of the updates to an object are irrelevant, so this simpli�ed

model makes no mention of them. It may help to think of update i's value being

communicated in the COMMITi message. A more elaborate model of XEL would choose

to include a MODIFYi action by which the external world assigns a value to the object

for update i. If the external world later decides to make this modi�cation permanent, it

submits a separate COMMITi request; alternatively, an ABORTi message would annul the

update.

The model ignores the role of the cache manager. E�ectively, it assumes that each

COMMITi action simultaneously commits update i and 
ushes the object's new value

(which was assigned by update i) to the disk version of the database. The log manager

can grant permission to erase the REDO DLR from some update i as soon as the records

from all chronologically preceding updates have been erased; it need not wait for the

completion of a 
ush to the disk version of the database. Furthermore, UNDO DLRs do

not play a role in this simpli�ed model because a new value is (conceptually) assigned

and committed at the same time. A more realistic model would include some additional

FLUSHi input action to the log manager to inform it that the value which update i

assigned to the object has been 
ushed to the disk version of the database; as long

as update i is the most recently committed update, the log manager cannot issue an

ERASABLEi message until FLUSHi has happened.

This model applies to only a single object. The fact that a transaction can update

an arbitrary number of other objects is irrelevant. A more realistic model would embed

the above model within a larger model that provides transactional support. In this

larger model, a transaction would send MODIFYi messages to any number of objects. If

the transaction later committed, the log manager would send a COMMITi message to each

object which the transaction updated. Hence, the above model is a building block on

which to construct a more realistic model.

3.2 Well-formedness Properties of Environment

The external world constitutes the environment in which the log manager must operate.

By de�nition, the environment is constrained to respect certain conventions which govern

its relationship with the log manager. These conventions are expressed in terms of the

well-formedness properties presented in this section.

Let � denote a behavior for the log manager module, and let �i represent the i
th

action of � (where i2N and i�1). The behavior � is well-formed if and only if it satis�es

the four properties expressed below.
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WF1: 8x: �i=COMMITx =) 6 9j, j 6=i, such that �j=COMMITx.

WF2: 8x: �i=ERASEx =) 9j, j<i, such that �j=ERASABLEx.

WF3: 8x: �i=ERASEx =) 6 9j, j 6=i, such that �j=ERASEx.

WF4: 8x: �i=ERASABLEx =) 9j, j>i, such that �j=ERASEx.

Property WF1 states that the external world may commit a particular update, x, at

most once. Property WF2 states that the external world cannot perform an ERASEx

action until after the log manager has given it permission to do so via the ERASABLEx

action, while WF3 constrains the external world to perform at most one ERASEx action

for any particular DLR x. Finally, WF4 insists that the external world must eventually

perform an ERASEx action in response to an ERASABLEx action.

These well-formedness properties which the environment must preserve can be rep-

resented in an automaton, called ENV, as shown in Figure 3.2.

ENV

committed
can_erase
erased

ERASE1

ERASABLE1

COMMIT1

ERASEi

ERASABLEi

COMMITi

Figure 3.2: Automaton to Model Well-formed Environment

The names, types and initial values of the three variables which constitute the state

of ENV are1:

variable type initial value

committed 2N ;

can erase 2N ;

erased 2N ;

The ENV module has the following transition relation:

1N denotes the set of natural numbers f0,1,2,...g. For any set S, 2S denotes the powerset of S.
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ERASABLEi
E�ect: can erase  can erase [ fig

COMMITi
Precondition: i62committed

E�ect: committed  committed [ fig

ERASEi
Precondition: (i2can erase) ^ (i62erased)

E�ect: can erase  can erase � fig

erased  erased [ fig

3.3 Speci�cation of Correctness (Safety)

This section de�nes a very simple I/O automaton, called SLM, which embodies the safety

property required of any implementation of XEL. Namely, it ensures that the record from

the most recently committed update is not erased unless the records from all previously

committed updates have already been erased. To prove this property, this section states

a set of invariants which describe the composition of the ENV and SLM automata in all

reachable states and then uses these invariants to prove that all behaviors of the SLM

automaton satisfy the safety property.

3.3.1 I/O Automaton Model

Figure 3.3 illustrates the I/O automaton for the very simple version of the log manager.

This automaton shall be referred to as SLM.

Three variables comprise the state of SLM. Their names, types and initial values are2:

variable type initial value

keep N? ?

let erase 2N ;

wait erase 2N ;

The SLM automaton has the following transition relation:

2For any set S, S? denotes the lifted domain S?=S [ ?, where ? is some unique bottom element

that does not belong to S.
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SLM

keep
let_erase
wait_erase

ERASE1

ERASABLE1

COMMIT1

ERASEi

ERASABLEi

COMMITi

Figure 3.3: Speci�cation Automaton for LM

COMMITi
E�ect: if ((let erase=;) AND (wait erase=;))

let erase  let erase [ fig

else

if (keep6=?)

let erase  let erase [ fkeepg

keep  i

ERASEi
E�ect: wait erase  wait erase � fig

if ((keep 6=?) AND (let erase=;) AND (wait erase=;))

let erase  let erase [ fkeepg

keep  ?

ERASABLEi
Precondition: i2let erase

E�ect: let erase  let erase � fig

wait erase  wait erase [ fig

3.3.2 Invariants for Composition of SLM and ENV

The following invariants apply to the system composed from the SLM and ENV automata.

It is easy to verify inductively that they are true in all reachable states of the system.

Invariant 3.1

(keep=?) _ (let erase 6=;) _ (wait erase6=;)
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Invariant 3.2

8x, x2N , (keep6=x) _ (x2committed)

Invariant 3.3

8x, x2N , (x62let erase) _ ((keep6=x) ^ (x2committed))

Invariant 3.4

8x, x2N , (x62wait erase) _ ((keep6=x) ^ (x62let erase) ^ (x2committed))

Invariant 3.5

(?62let erase) ^ (?62wait erase)

3.3.3 Correctness of SLM Module

Theorem 3.4, at the end of this subsection, expresses XEL's important safety property:

the log record from the most recently committed update is never erased before the

records from all earlier committed updates have already been erased. Several supporting

lemmas must �rst be proven. This subsection proves that the SLM automaton, when

composed with ENV, satis�es this property. Throughout this section, � will represent an

execution of the module composed of SLM and ENV, and �i will represent the i
th action

of �.

The following lemma states that after a particular update w has been committed,

the SLM automaton keeps track of w in one of its three state variables at least until w is

erased.

Lemma 3.1

^ (�l=COMMITw)

^ ( 6 9m, l<m�j, s.t. �m=ERASEw)

=)

8h, l�h�j, ((keep=w) _ (w2let erase) _ (w2wait erase)) in state th

Proof:

� �l=COMMITw =) ((keep=w) _ (w2let erase)) in state tl

� (((keep=w) _ (w2let erase) _ (w2wait erase)) in state tm�1) ^ (�m 6=ERASEw)

=) ((keep=w) _ (w2let erase) _ (w2wait erase)) in state tm

� (((keep=w) _ (w2let erase)) in state tl)

^ (6 9m, l<m�j, s.t. �m=ERASEw)

=) 8h, l�h�j, ((keep=w) _ (w2let erase) _ (w2wait erase)) in state th
by induction

and thus the lemma has been proven. 2
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The following lemma states that after a particular update x has been committed,

then at least one of the let erase and wait erase state variables of the SLM automaton

must be non-empty at least until x is erased (assuming that the execution is well-formed).

Lemma 3.2 (� is a well-formed execution)

^ (�i=COMMITx)

^ (9k, k>i, s.t. 6 9j, i<j�k, s.t. �j=ERASEx)

=)

8l, i�l�k, ((let erase 6=;) _ (wait erase 6=;)) in state tl

Proof:

� (�i=COMMITx) ^ (6 9j, i<j�k, s.t. �j=ERASEx)

=) 8l, i�l�k, ((keep=x) _ (x2let erase) _ (x2wait erase)) in state tl
by Lemma 3.1

� 8l, i�l�k, ((keep=?) _ (let erase 6=;) _ (wait erase6=;)) in state tl
by Invariant 3.1

� (((keep=x) _ (x2let erase) _ (x2wait erase)) in state tl)

^ (((keep=?) _ (let erase 6=;) _ (wait erase 6=;)) in state tl)

=) ((let erase6=;) _ (wait erase6=;)) in state tl
� It therefore follows that

8l, i�l�k, ((let erase 6=;) _ (wait erase6=;)) in state tl
and thus the lemma has been proven. 2

The following lemma proves that, in a well-formed execution, a particular update x

cannot be erased before it has been committed.

Lemma 3.3 (� is a well-formed execution)

^ (�i=COMMITx)

^ (�j=ERASEx)

=)

i<j

Proof:

� �i=COMMITx =) 6 9f , f 6=i, s.t. �f=COMMITx by WF1

� �j=ERASEx =) 9h, h<j, s.t. �h=ERASABLEx by WF2

� �h=ERASABLEx =) x2let erase in state th�1

� x2let erase in state th�1
=) Either

(1) 9f , f�h�1, s.t.

(�f=COMMITx)

^ (((let erase=;) ^ (wait erase=;)) in state tf�1)
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� (�f=COMMITx) ^ (6 9f , f 6=i, s.t. �f=COMMITx) =) f=i

� (f=i) ^ (f�h�1<j) =) i<j

or

(2) 9g, g�h�1, s.t. (�g=ERASEz for some z)

^ (keep=x in state tg�1)

� keep=x in state tg�1 =) 9f , f�g�1, s.t. �f=COMMITx

� (�f=COMMITx) ^ (6 9f , f 6=i, s.t. �f=COMMITx) =) f=i

� (f=i) ^ (f�g�1<j) =) i<j

Therefore, the desired result follows for both possible cases and thus the

lemma has been proven. 2

The following theorem proves that, in a well-formed execution, the most recently

committed update, x, cannot be erased before all previously committed updates have

been erased.

Theorem 3.4 (� is a well-formed execution)

^ (�i=COMMITx)

^ (�j=ERASEx)

^ (6 9k, i<k<j, s.t. �k=COMMITy for any y)

^ (�l=COMMITw , l<i)

=)

9m, m<j, s.t. �m=ERASEw

Proof:

By contradiction. Assume 6 9m, m<j, s.t. �m=ERASEw

� �i=COMMITx =) 6 9g, g 6=i, s.t. �g=COMMITx by WF1

� (�l=COMMITw) ^ (l<i) ^ (6 9g, g<i, s.t. �g=COMMITx) =) w 6=x

� (�l=COMMITw) ^ (6 9m, m�j, s.t. �m=ERASEw)

=) 8h, l�h�j, ((let erase6=;) _ (wait erase 6=;)) in state th
by Lemma 3.2

� (�i=COMMITx) ^ (�j=ERASEx) =) i<j by Lemma 3.3

� (l<i) ^ (i<j) ^ (8h, l�h�j, ((let erase 6=;) _ (wait erase 6=;)) in state th)

=) ((let erase6=;) _ (wait erase6=;)) in state ti�1

� (�i=COMMITx) ^ (((let erase 6=;) _ (wait erase 6=;)) in state ti�1)

=) keep=x in state ti
� �l=COMMITw =) 6 9n, n>l, s.t. �n=COMMITw by WF1

� (keep=x in state ti) ^ (x6=w) ^ (6 9n, n>l, s.t. �n=COMMITw) ^ (l<i)

=) 8p, i�p, keep 6=w in state tp

� �j=ERASEx =) 9q, q<j, s.t. �q=ERASABLEx by WF2

� �q=ERASABLEx =) x2let erase in state tq�1

� x2let erase in state tq�1 =) 9r, r�q�1, s.t. either
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(1) (�r=COMMITx) ^ (((let erase=;) ^ (wait erase=;)) in state tr�1)

� (�r=COMMITx) ^ (6 9g, g 6=i, s.t. �g=COMMITx) =) r=i

� r=i =) ((let erase6=;) _ (wait erase 6=;)) in state tr�1
But this is a contradiction, so this case cannot be true.

or

(2) (�r=ERASEz for some z)

^ (((keep=x) ^ (let erase=;) ^ (wait erase=fzg)) in state tr�1)

� (�r=ERASEz) ^ (r<q<j) ^ (6 9m, m<j, s.t. �m=ERASEw) =) z 6=w

� keep=x, x2N , in state tr�1 =) 9f , f�r�1, s.t. �f=COMMITx

� (�f=COMMITx) ^ (6 9g, g 6=i, s.t. �g=COMMITx) =) f=i

� (f=i) ^ (f�r�1) =) i�r�1

� (�l=COMMITw) ^ (6 9m, m�j, s.t. �m=ERASEw)

=) 8e, l�e�j,

((keep=w) _ (w2let erase) _ (w2wait erase)) in state te
by Lemma 3.1

� (((keep=x) ^ (let erase=;) ^ (wait erase=fzg)) in state tr�1)

^ (x6=w)

^ (l<i�r�1�j)

^ (8e, l�e�j,

((keep=w) _ (w2let erase) _ (w2wait erase)) in state te)
=) z=w

But this is a contradiction, and so this case cannot be true either.

Since both possible cases must be false the original assumption must be

false and thus the theorem has been proven. 2

3.4 Implementation of Log Manager

This section describes an implementation of the log manager. It composes a set of

constituent I/O automata to yield a module with the same external action signature as

the SLM module. This log manager module shall be referred to as LM. To prove that LM

satis�es XEL's safety property, this section states a set of invariants that characterize

all reachable states when LM is composed with ENV, postulates a possibilities mapping f

from the composition of LM and ENV to the composition of SLM and ENV and then proves

that f is indeed a possibilities mapping. Given that SLM (when composed with ENV)

is correct and that f is a possibilities mapping from LM to SLM, it immediately follows

that LM (when composed with ENV) implements SLM and therefore satis�es XEL's safety

property. Finally, this section proves a liveness property of LM: every record is eventually

erased.
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3.4.1 I/O Automata Model

Figure 3.4 depicts the composition of a collection of automata, all for the same object.

The LOT automaton represents the object's LOT entry and the accompanying proce-

dures which manage it. Each DLRi automaton represents a di�erent possible update to

the object. Together, these automata compose the LM module which models the log

manager's activity for the object. The external world issues a COMMITi command to

instruct LM to commit update i. Some time later, LM sends an ERASABLEi message to the

external world to inform it that it is now allowed to erase the DLR from update i. In

response, the outside world will eventually send an ERASEi message back to LM to inform

it that update i's DLR has been erased.

LOT

DLR1

DLR2

DLRi

LM
ERASE1

ERASE2

ERASEi

COMMIT1

ERASABLE1

COMMIT2

ERASABLE2

COMMITi

ERASABLEi

Figure 3.4: I/O Automata for an Object

This model ignores the problem of 
ow control between generations in a log stream.

Management of the producer-consumer relationship between consecutive generations is

an entirely di�erent problem which is not considered here. The focus of this section is

the management of each object's collection of REDO DLRs according to the state transi-

tion diagram that was represented in Figure 2.5. This state transition diagram implicitly

takes into account the fact that each stream may have more than one generation, and

that there may be more than one stream. It shall be proven that XEL guarantees a con-

sistent state when DLRs are characterized by the state transition diagram of Figure 2.5.

A more elaborate model that incorporates XEL's 
ow control activities would show that

XEL preserves the state transition diagram for each object's DLRs. By implication, this

more elaborate version of XEL must also guarantee a consistent state.
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Action Signatures of Automata

The LOT automaton has the following action signature:

in out int

COMMITi <ASSIGNi,tsi> none

ACK ASSIGNi CS REQDi
ACK CS RECVi CS RECVi

<DLR GONE,tsi> ERASABLEi

In this action signature, as well as that given below for DLRi, i2N and tsi2N , where N

denotes the set of natural numbers.

Each DLRi, i2N , automaton has the following action signature:

in out int

<ASSIGNi,tsi> ACK ASSIGNi none

CS REQDi ACK CS RECVi
CS RECVi <DLR GONE,tsi>

ERASEi

After receiving a COMMITi message from the external world, the LOT automaton

chooses a unique timestamp, tsi, for the associated DLR and sends an <ASSIGNi,tsi>

message to DLRi. The DLRi automaton receives the message and replies with an

ACK ASSIGNi message to the LOT.

The LOT automaton sends a CS REQDi message to DLRi to instruct it to change its

status from un
ushed to required. Similarly, the CS RECVi message informs DLRi that it

should change its status to recoverable. DLRi does not bother to acknowledge receipt of a

CS REQDi message, but it does send an ACK CS RECVi message to acknowledge a previous

CS RECVi message.

After DLR i has been erased, its DLRi automaton sends a <DLR GONE,tsi> message

to the LOT to inform it that the DLR whose timestamp was tsi no longer exists.

The subscripted messages from the LOT to DLRi (namely, <ASSIGNi,tsi>, CS REQDi
and CS RECVi) denote point-to-point communication. The fact that the <DLR GONE,tsi>

message is not subscripted re
ects the implementation of XEL, in which only the times-

tamp of an erased DLR is communicated to the LOT.
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States of Automata

The following variables constitute the state of the LOT automaton3:

variable type

pending ts assign 2N�N

recv tss 2N

current ts N

curr reqd ts N?

curr reqd dlr N?

curr reqd acked B

send cs reqd N?

send cs recv 2N

pending erasable 2N

Every member of pending ts assign represents a committed DLR for which no

<ASSIGNi,tsi> message has yet been generated. The recv tss variable represents the

set of timestamps which correspond to all DLRs whose status is merely recoverable.

The LOT maintains a counter, current ts, which it will assign as the timestamp value

for the next committed DLR. The curr reqd ts and curr reqd dlr variables indicate the

timestamp and identity, respectively, of the DLR which currently has status required, if

there is such a DLR. In conjunction with these two variables, the curr reqd acked vari-

able indicates if that DLR's automaton has acknowledged receipt of its timestamp. The

send cs reqd variable represents the DLR to which a CS REQDi message should be sent,

if any such DLR exists. Likewise, send cs recv identi�es all DLRs to which CS RECVi
messages should be sent. Finally, the pending erasable set indicates all DLRs for which

the LOT can issue an ERASABLEi message.

The following variables constitute the state of each DLRi automaton:

variable type

statusi fUNFL,REQD,RECV,NONRg

pending ack
i

B

timestamp
i

N?

The statusi variable of DLRi indicates the current status of the DLR and may have

one of the four values listed in the table above. If pending ack
i
is true, then DLRi owes

a message of response to the LOT; the value of statusi determines the particular type

of the message. The timestamp
i
variable represents a DLR's unique timestamp, and

receives its value in response to an <ASSIGNi,tsi> message from the LOT.

The variables which comprise the state of each of the constituent automata of the

LM and the relationships amongst these automata are depicted in Figure 3.5.

3B denotes the set of boolean values fT,Fg. For any sets S and T , S � T denotes the set which is
their cartesian product.
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LOT
pending_ts_assign
recv_tss
current_ts
curr_reqd_ts
curr_reqd_dlr
curr_reqd_acked
send_cs_reqd
send_cs_recv
pending_erasable

DLR1
status1
pending_ack1
timestamp1

DLRi
statusi
pending_acki
timestampi

<ASSIGNi , tsi >

ACK_ASSIGNi

CS_REQDi

CS_RECVi

ACK_CS_RECVi

<DLR_GONE, tsi >

LM

ERASEi

COMMITi

ERASABLEi

ERASE1

Figure 3.5: States and Action Signatures of Automata in LM Module

Initial State of System

The LOT automaton has a unique initial state. The initial values of the LOT's variables

are:

variable initial value

pending ts assign ;

recv tss ;

current ts 0

curr reqd ts ?

curr reqd dlr ?

curr reqd acked F

send cs reqd ?

send cs recv ;

pending erasable ;
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Each DLRi automaton also has a unique initial state in which its variables have the

following values:

variable initial value

statusi UNFL

pending ack
i

F

timestamp
i

?

Transition Relations of Automata

The steps for the LOT automaton's input actions are as follows:

COMMITi
E�ect: if (curr reqd ts6=?)

recv tss  recv tss [ fcurr reqd tsg

if (curr reqd acked=T)

send cs recv  send cs recv [ fcurr reqd dlrg

curr reqd ts  current ts

curr reqd dlr  i

pending ts assign  pending ts assign [ f<i,current ts>g

curr reqd acked  F

current ts  current ts + 1

ACK ASSIGNi
E�ect: if (i=curr reqd dlr)

curr reqd acked  T

if (recv tss6=;)

send cs reqd  i

else

recv tss  recv tss [ fcurr reqd tsg

send cs recv  send cs recv [ fig

curr reqd dlr  ?

curr reqd ts  ?

else

send cs recv  send cs recv [ fig

ACK CS RECVi
E�ect: pending erasable  pending erasable [ fig

<DLR GONE,tsi>
E�ect: if ((recv tss=ftsig) AND (curr reqd dlr6=?)

AND (curr reqd acked=T))

recv tss  recv tss [ fcurr reqd tsg

send cs recv  send cs recv [ fcurr reqd dlrg

curr reqd dlr  ?

curr reqd ts  ?

recv tss  recv tss � ftsig
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The steps for the LOT automaton's output actions are speci�ed below:

ERASABLEi
Precondition: i2pending erasable

E�ect: pending erasable  pending erasable � fig

<ASSIGNi, tsi>
Precondition: <i,tsi>2pending ts assign

E�ect: pending ts assign  pending ts assign � f<i,tsi>g

CS REQDi
Precondition: i=send cs reqd

E�ect: send cs reqd  ?

CS RECVi
Precondition: i2send cs recv

E�ect: send cs recv  send cs recv � fig

The steps for the DLRi automaton's input actions are:

<ASSIGNi, tsi>
E�ect: timestamp

i
 tsi

pending ack
i
 T

CS REQDi
E�ect: if (statusi=UNFL)

statusi  REQD

CS RECVi
E�ect: statusi  RECV

pending ack
i
 T

ERASEi
E�ect: statusi  NONR

pending ack
i
 T

The steps for the DLRi automaton's output actions are:

ACK ASSIGNi
Precondition: statusi=UNFL

pending ack
i
=T

E�ect: pending ack
i
 F

ACK CS RECVi
Precondition: statusi=RECV

pending ack
i
=T

E�ect: pending ack
i
 F
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<DLR GONE,tsi>
Precondition: statusi=NONR

pending ack
i
=T

timestamp
i
=tsi

E�ect: pending ack
i
 F

3.4.2 Invariants for Composition of LM and ENV

The following invariants will assist in the proof of LM's correctness. They apply to the

system composed of the LM and ENV modules. It is straightforward to verify that the

invariants are true in the initial state of the system. Likewise, the de�nitions for the

automata's actions ensure that the invariants remain true in all reachable states of the

system.

For convenience, de�ne a predicate recvbl(x), x2N , which characterizes a particular

update, x, as recoverable or not, in a particular state of LM:

recvbl(x) � ( (<x,u>2pending ts assign for some u)

_ ((timestamp
x
6=?) ^ (statusx 6=NONR)) )

Similarly, it is notationally convenient to de�ne three other predicates. These pred-

icates apply to a state of the LM automaton, but they have an obvious correspondence

to the variables which comprise the state of the SLM automaton. The lm pre�x is a

reminder of the fact that they apply to the LM automaton. These predicates will play

an important role in de�ning and proving a possibilities mapping from the states of LM

to the states of SLM.

lm keep(x) � (curr reqd dlr=x, x2N ) ^ (9y, y 6=x, s.t. recvbl(y))

lm let(x) � ((curr reqd dlr=x, x2N ) ^ (6 9y, y 6=x, s.t. recvbl(y)))

_ ( (curr reqd dlr6=x)

^ (recvbl(x))

^ ( (statusx 6=RECV)

_ (pending ack
x
6=F)

_ (x2pending erasable)) )

lm wait(x) � (statusx=RECV) ^ (pending ack
x
=F) ^ (x62pending erasable))

The following invariants for the composition of LM and ENV are expressed in terms of

the predicates de�ned above.

Invariant 3.6

8x, x2N , (statusx=UNFL) _ (statusx=REQD) _ (curr reqd dlr6=x)
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Invariant 3.7

8x, x2N , (timestamp
x
2N )

_ ( (statusx=UNFL) ^ (x6=send cs reqd)

^ (x62send cs recv) ^ (pending ack
x
=F)

^ (x62can erase) ^ (x 62pending erasable))

Invariant 3.8

8x, x2N , (curr reqd dlr 6=x)

_ (9v, v2N , s.t. (curr reqd ts=v)

^ ( (timestamp
x
=v)

_ (<x,v>2pending ts assign)))

Invariant 3.9

8x, x2N ,

(6 9v s.t. <x,v>2pending ts assign)

_ ( (9v, v2N , s.t. (<x,v>2pending ts assign)

^ (6 9u, u6=v, s.t. <x,u>2pending ts assign))

^ (timestamp
x
=?)

^ (statusx=UNFL))

Invariant 3.10

8x, x2N ,

(x2committed)

_ ( (curr reqd dlr 6=x) ^ (6 9u s.t. <x,u>2pending ts assign)

^ (x6=send cs reqd) ^ (x 62send cs recv)

^ (x62pending erasable) ^ (x 62can erase)

^ (pending ackx=F) ^ (timestampx=?))

Invariant 3.11

8x, x2N , (curr reqd dlr 6=x) _ ((x62send cs recv) ^ (x62can erase))

Invariant 3.12

8x, x2N , (x62pending erasable) _ ((pending ack
x
=F) ^ (x 62can erase))

Invariant 3.13

8x, x2N , (x62can erase) _ (pending ack
x
=F)

Invariant 3.14

8x, x2N , (statusx=RECV) _ ((x62pending erasable) ^ (x62can erase))
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Invariant 3.15

8x, x2N , (x62send cs recv) _ (statusx=UNFL) _ (statusx=REQD)

Invariant 3.16

8x, x2N , (( 6 9v s.t. <x,v>2pending ts assign) ^ (timestamp
x
=?))

_ (9v, v2N , s.t.

((<x,v>2pending ts assign) _ (timestamp
x
=v))

^ (8y, y 6=x, ( (6 9u s.t. <y,u>2pending ts assign)

^ (timestamp
y
=?))

_ (9u, u2N , s.t.

( (<y,u>2pending ts assign)

_ (timestamp
y
=u))

^ (u6=v)))

^ (v<current ts))

Invariant 3.17

8x, x2N ,

(curr reqd dlr=x)

_ (:recvbl(x))

_ (9v, v2N , s.t. ((<x,v>2pending ts assign) _ (timestamp
x
=v))

^ (v2recv tss))

3.4.3 Proof of Safety for LM

Let s be a state in the LM module (i.e., the implementation), t be a state in the SLM

module (i.e., the speci�cation), and let f denote a possibilities mapping from the states

of LM to the states of SLM. This possibilities mapping f is de�ned as follows.

De�nition 3.1

8x, x2N ,

((lm keep(x) in state s) ^ (keep=x in state t))

_ ((lm let(x) in state s) ^ (x2let erase in state t))

_ ((lm wait(x) in state s) ^ (x2wait erase in state t))

_ ( (:recvbl(x) in state s)

^ (((keep6=x) ^ (x62let erase) ^ (x62wait erase)) in state t) )

()

t2f(s)

Refer to Section A.1 in Appendix A for all the lemmas and theorems which prove

that f is a possibilities mapping from LM to SLM.
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3.4.4 Proof of Liveness

Theorem A.69, which is found in Section A.2, states an important liveness property for

LM: the DLR for every committed update is eventually erased. This property is formally

expressed as:

(� is a well-formed and fair execution)

^ (�i=COMMITx)

=)

9j, j>i, s.t. �j=ERASEx

where � represents an execution of the module composed of LM and ENV, and �i represents

the ith action of �.

Refer to Section A.2 for the proof of this theorem and the many lemmas that support

it.
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Chapter 4

Parallel Logging

4.1 Parallel XEL

The XEL algorithm presented in Chapter 2 can be applied in a parallel system in which

there are multiple log streams, each of which accepts incoming log records and operates

independently of other log streams. Collectively, the log streams provide the bandwidth

required for an application's log information. The name for this practice is parallel XEL.

Each log stream accepts incoming log records from client transactions and manages

them according to the XEL algorithm. The streams operate independently of one an-

other, except for dependencies introduced by the status values for log records. The LOT

and LTT tables are distributed across numerous processors in the parallel system so that

they can each provide the necessary throughput for operations on them.

Each log stream is segmented into the same number of generations. Generation i is

the same size for each stream, but di�erent generations within each stream may still be

of di�erent sizes. The positions of the head and tail for generation i in one stream are

completely independent of the head and tail positions for another stream's generation i.

That is, the LM performs forwarding and recirculation at each log stream independently

of such activity at other streams.

The abstraction of multiple log streams that operate independently of one another

is well suited to a system which requires an arbitrarily large number of disk drives to

provide the necessary bandwidth for log information. The LM can dedicate only one or

some small �xed number of disk drives to each particular stream.

Figure 4.1 illustrates the situation for a LM that manages four log streams, each com-

posed of two generations. Within each stream, non-garbage log records are forwarded
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or recirculated and garbage records are thrown away (no garbage pails are shown in this

�gure in order to reduce visual clutter). Updated objects whose DLRs are anywhere

in any of the log streams may have their new values 
ushed to the disk version of the

database.

disk
version
of
database

new
log
records

new
log
records

new
log
records

new
log
records

Figure 4.1: Four Parallel Log Streams

When the LM must examine or modify an object's LOT entry, it �rst hashes the

object's oid to a processor identi�er within the concurrent system and then it hashes

the oid to a particular address within the processor's memory space. The number of

processors over which the LOT is distributed must be su�cient to satisfy the throughput

requirements of client transactions. Similarly, the LTT is implemented as a distributed

hash table with a two-step translation procedure.

Each log stream has one particular processor that is responsible for managing its

records1. The cells for a stream's relevant log records all reside in the memory space of

the stream's processor. In general, the LM may send an object's DLRs to di�erent log

streams, and so the object's LOT entry cannot hold direct pointers to the cells for all

1This is not necessarily a one-to-one mapping. A processor may manage more than one log stream

if it has su�cient processing power, memory capacity and communication bandwidth.
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the object's relevant DLRs (as was the case for only a single log stream in Chapter 2).

Rather, an object's LOT entry keeps track of the streams at which relevant DLRs exist.

A local LOT at the processor of each of these streams, which is also associatively accessed

via oid, holds pointers to the cells for each object's DLRs at the stream. Similarly, a

transaction's LTT entry indicates the stream to which its COMMIT TLR, if any, was sent;

the transaction's entry in a local LTT at that stream points to the cells for all copies of

the COMMIT record within the stream.

As a special case, the LM may insist that all an object's DLRs go to the same

stream, and the identity of this stream is determined by a function whose domain is the

set of all oids. In this case, the LM can place the object's LOT entry at the processor

that manages the stream to which its DLRs are sent so that indirection via a local

LOT is unnecessary. This placement of LOT entries at processors that are responsible

for managing log streams assumes that each processor has ample resources to support

both purposes. Similarly, a transaction's LTT entry can be placed at the processor that

manages the stream to which its COMMIT record will be sent so that indirection via the

local LTT is eliminated (this assumes that each transaction is statically mapped to some

stream which will receive its COMMIT record).

When only a single log stream exists, the LM adds a COMMIT TLR to the log (i.e., adds

it to the bu�er in main memory that currently holds records at the tail of generation

0) as soon as a transaction requests to commit. In the more general case of more

than one log stream, the LM waits until all a transaction's DLRs are on disk before it

generates a COMMIT TLR for it; this delay is expected to be less than 100 ms. Therefore,

a transaction's COMMIT record marks both its intention and its eligibility to successfully

terminate.

The synchronization between a transaction's DLRs and its COMMIT record is ac-

complished as follows. For each bu�er of each log stream, the LM keeps a list of the

transaction identi�ers for all transactions which wrote log records to the bu�er. For each

transaction, the LM keeps a list which identi�es the bu�ers to which the transaction

has written log records; this list is stored in the transaction's LTT entry. Immediately

after a bu�er of log records has been written to disk, the LM examines the bu�er's list

of transactions. For each transaction in the list, the LM removes the bu�er identi�er

from the list kept in the transaction's LTT entry. If this list becomes empty and the

transaction is waiting to commit, then the LM generates a COMMIT record for the trans-

action; otherwise, the LM does nothing further and leaves the transaction waiting for

the rest of the bu�ers on which it depends to be written to disk.

Crash recovery is almost the same as for the special case of only a single log stream,

except that the POT and RTT data structures are distributed across processing nodes

in a parallel machine so that they provide the necessary throughput. Like the LOT

and LTT, they are implemented as distributed hash tables with a two step translation

procedure. The RM's work at each log stream proceeds completely independently of

recovery activity at other log streams. The RM sends each DLR to the processor that
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manages the POT entry for the object indicated in the DLR. Likewise, after retriev-

ing a transaction's COMMIT record from disk, the RM sends it to the processor that is

responsible for its RTT entry.

Many of the messages used in parallel XEL are quite short, typically only 10 to 20

Bytes in length. Low overhead interprocessor communication is therefore particularly

important. For best performance, parallel XEL should be implemented on a �ne-grain

concurrent computer that provides low overhead, low latency communication primitives.

The MIT J-Machine [11, 12, 48] is an existing example of such a machine. XEL will

perform satisfactorily on other concurrent systems in which the overhead for interpro-

cessor communication and synchronization is higher as long as the added delays are still

relatively short compared to the delays for writing blocks to disk, the interconnection

network provides su�cient bandwidth and CPU cycles are plentiful.

4.2 Three Di�erent Distribution Policies

When a client transaction submits a log record to the LM, the LM must choose the

stream(s) to which it will assign the record. The LM's distribution policy governs its

choice of log streams for records. In general, copies of a log record may be sent to any

number of streams. All the policies examined in this thesis send a log record to only

one log stream.

This section proposes three distribution policies: partitioned, random and cyclic.

These policies are all oblivious policies: they do not use information about current load2

imbalances to help choose the stream to which to send a log record. More elaborate

adaptive policies, which monitor load imbalances between streams and attempt to send

records to streams so as to counteract current imbalances, are beyond the scope of this

thesis.

The analyses in the following subsections consider only the bandwidth required for

incoming log records to generation 0 of each log stream. The bandwidth for forwarded

and recirculated records within each stream is ignored because it de�es accurate ana-

lytical modelling. In practice, the bandwidth required for forwarded and recirculated

records ought to be relatively small compared to that required for incoming new records.

4.2.1 Partitioned Distribution

The partitioned policy assigns each object to a particular log stream. A function whose

only argument is an oid de�nes this mapping. For each object, the LM directs all its

2In these discussions, a log stream's load is de�ned to be the bandwidth demanded of it.
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DLRs to the stream prescribed by this mapping. Similarly, another mapping (via some

other function) from tid to stream number determines the stream to which the LM sends

each transaction's COMMIT record.

The partitioned distribution is susceptible to \static skew" e�ects. Even if all objects

are updated with the same frequency, some streams may be assigned more objects than

others, and so they must provide more bandwidth for log information. By de�nition, the

entire LM fails when it must refuse to accept a log record from a client transaction. The

failure of only one log stream condemns the entire system, according to this de�nition. A

log stream will fail when the bandwidth demanded of it exceeds its available bandwidth.

Therefore, the maximum demanded bandwidth, over all log streams, is an important

metric when evaluating a parallel logging system.

A quantitative analysis for a simple case can provide some insight into the static

skew e�ect that threatens the partitioned distribution policy. Suppose that there are N

objects and 2 log streams; denote the log streams as A and B. Each of the N objects

is randomly assigned to a particular log stream; the probability that it is assigned to

stream A is PA=0.5 (and hence, PB=0.5 is the probability that it is assigned to stream

B instead) and is independent of the assignments for the other objects. Let M be

a random variable3 that denotes the maximum number of objects assigned to either

stream. The probability distribution function for M is

Prob[M=m] =

8>>>>>>>>>><
>>>>>>>>>>:

0 if m<
N

2

 
N

N

2

!
1
2N

if N is even and m= N

2

2

 
N

m

!
1
2N

if m>
N

2

It follows that the expected value for M is given by

E[M] =
NX

m=dN
2
e

m Prob[M=m]

=

8>>>>><
>>>>>:

1
2N

(
N

2

 
N

N

2

!
+ 2

P
N

m=1+N

2

m

 
N

m

!)
if N is even

1
2N�1

P
N

m=dN
2
e
m

 
N

m

!
if N is odd

3All random variables are typeset in boldface to emphasize their nature.
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De�ne E[M]/N to be the load imbalance; it represents the expected fraction of

the objects assigned to the stream with the most objects. Ideally, E[M]/N remains

constant at 0.5 (i.e., each stream gets half the objects) for all N . Figure 4.2 plots

E[M]/N as N increases. For small values of N , the imbalance between the two streams

is quite pronounced. For example, E[M]/N=0.6 for N=16. That is, 60% of the objects

go to one stream and the other 40% go to the other stream, on average; the �rst

stream's bandwidth is 50% higher than that of the second stream. However, a signi�cant

imbalance remains even for fairly large N . For N=128, E[M]/N=0.535193 and so the

busier stream's bandwidth is 15% higher than that of the other stream, on average. The

total number of objects in a database may be quite high (several million, say) but a

relatively small number of \hot" objects may receive a disproportionately large number

of updates. If these hot objects are not evenly distributed across all the log streams,

the static skew e�ect may lead to signi�cant load imbalances. The smaller the set of

hot objects and the higher their \temperature", the worse the threat of load imbalances

becomes.
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Figure 4.2: Load Imbalance vs. Number of Objects

Now consider what happens when the number of log streams increases in proportion

to the number of objects. This is a reasonable exercise because each object may be

characterized by a particular bandwidth (which depends on how often it is updated). If

every object has the same characteristic bandwidth and this parameter remains constant,

then a database's total demanded bandwidth is proportional to the number of objects

in the database. To satisfy this demanded bandwidth, the LM must provide a number

of log streams that is at least proportional to the number of objects.

Let there be N objects and S log streams. Each object is randomly assigned to

one stream; the probability that the object is assigned to stream i is 1
S
, for 1�i�S.

Let Peq(m,N ,S) denote the probability that the maximum number of objects assigned

to any stream is exactly m and Pge(m,N ,S) denote the probability that the maximum
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number of objects assigned to any stream is at least m.

Lemma 4.1 (N2>N1) ^ (d
N1

S
e<m�N2) =) Pge(m,N2,S)>Pge(m,N1,S)

Proof:

Partition the collection of N2 objects into two disjoint sets of sizes N1 and NR�N2�N1.

To assign the N2 objects to the S streams, �rst assign the N1 objects of the �rst set to

streams and then assign the remaining NR objects to streams. After assigning the �rst

N1 objects, let the random variable Bi denote the number of objects assigned to stream

i, for 1�i�S, and 	 denote the set of streams that have a maximum number of objects

assigned to them. That is, 8j2	, 6 9k, 1�k�S, such that Bk>Bj . The probability that

any one of the remaining NR objects is assigned to one of the streams in 	 is at least
1
S
(this minimum occurs for the case of NR=1 and j	j=1). Therefore,

Pge(m,N2,S) � Peq(m�1,N1,S)(
1
S
) + Pge(m,N1,S)

and

Peq(m�1,N1,S)>0 for dN1

S
e�m�1�N1

so
1
S
Peq(m�1,N1,S)>0 for dN1

S
e<m�N1+1

and hence

Pge(m,N2,S)>Pge(m,N1,S) for dN1

S
e<m�N1+1.

For larger values of m,

Pge(m,N1,S)=0 and Pge(m,N2,S)>0 for N1+1<m�N2

and so

Pge(m,N2,S)>Pge(m,N1,S) for N1+1<m�N2.

Therefore, the general result follows:

Pge(m,N2,S)>Pge(m,N1,S) for dN1

S
e<m�N2 2

Theorem 4.2 8m, d
N

S
e<m�2N , Pge(m,2N ,2S)>Pge(m,N ,S)

Proof:

Divide the set of 2S log streams into two equal (and disjoint) sets, each of size S. Assign

the 2N objects to streams in two steps. In step 1, randomly assign each object to one of

the two sets. In step 2, assign each object to a particular stream within its set. In step 1,

the two sets are equally likely to be chosen when assigning objects to sets; similarly, the

streams within a set all have the same probability of being chosen in step 2. Therefore,

this two step procedure implies that the probability that a particular object is assigned

to a particular stream is the same for all streams, as required by the statement of the

problem. After step 1, there are two possible outcomes:

(a) Both sets have been assigned exactly N objects each. Denote this outcome

by A.
or
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(b) One set has been assigned more than N objects. Denote this outcome by B,

and let the random variable MB represent the number of objects assigned to

the set with more objects. It must be true that MB>N .

The probability of outcome A is

PA =

 
2N

N

!
(1
2)

2N

and the probability of outcome B is

PB = 1�PA = 1�

 
2N

N

!
1

22N
.

Therefore,

Pge(m,2N ,2S) �

 
2N

N

!
1

22N
(2�� �

2) + (1�

 
2N

N

!
1

22N
) Pge(m,MB,S)

where ��Pge(m,N ,S) for dN
S
e<m�N .

By Lemma 4.1, Pge(m,MB,S)>� for dN
S
e<m�MB because MB>N . Therefore,

Pge(m,2N ,2S) >

 
2N

N

!
1

22N
(2�� �

2) + (1-

 
2N

N

!
1

22N
)�

= �[1 +

 
2N

N

!
1

22N
(1� �)]

> � because 0<�<1
This completes the proof that

Pge(m,2N ,2S) > Pge(m,N ,S) for dN
S
e<m�N .

Turning now to larger values of m,

Pge(m,2N ,2S)>0 but Pge(m,N ,S)=0 for N<m�2N

and so it follows that

Pge(m,2N ,2S) > Pge(m,N ,S) for N<m�2N .

Combining these results yields the �nal conclusion:

Pge(m,2N ,2S) > Pge(m,N ,S) for dN
S
e<m�2N .

This completes the proof of the theorem. 2

Theorem 4.2 implies that the threat of load imbalances becomes increasingly severe

as the number of log streams increases in proportion to the number of objects. Hence, a

LM must increase the number of log streams superlinearly if it is to maintain the same

probability of failure (i.e., overload) as the number of objects in the database increases

(assuming that the average rate at which each object is updated remains constant).

4.2.2 Random Distribution

The random distribution policy randomly chooses the stream to which each log record

is sent; all log streams are equally likely to be chosen. Static skew is not a problem

with the random distribution policy because it does not assign log records to streams

on the basis of oids or tids; log records for di�erent updates to the same object may go

85



to di�erent streams.

Nevertheless, di�erent streams may receive di�erent numbers of log records simply

as a consequence of the LM's random decisions. Imbalances between log streams are

now attributed to \dynamic skew" because they arise from decisions that the LM makes

during operation rather than from a static assignment of objects and transactions to log

streams.

Suppose that L log records are to be distributed to S log streams. The probability

that the LM chooses to send a particular log record to stream i, for 1�i�S, is 1
S
and

is independent of its choices for other log records. Let the random variable Ri denote

the number of log records that the LM sends to stream i, for 1�i�S; Ri has a binomial

distribution [6] with a mean E[Ri]=
L

S
and a variance V[Ri]=

L(S�1)

S
2 . De�ne another

random variable �i�
Ri

L
to be the fraction of log records sent to log stream i. Since

�i is a linearly scaled version of Ri, its mean is E[�i]=
E[Ri]

L
= 1

S
and its variance is

V[�i]=
V[Ri]

L2 =S�1
S2L

. By the Chebyshev Inequality4, Prob[j�i�
1
S
j � "] � S�1

S2L"2
and so

lim
L!1

Prob[j�i �
1

S

j � "] = 0:

Under the assumption that all log records are the same size, this result proves that load

imbalances between log streams are expected to diminish as the number of log records

increases. Therefore, dynamic skew is not expected to be a serious problem in a system

that operates on a continuous basis for long durations (so that many log records are

written).

4.2.3 Cyclic Distribution

The cyclic policy assigns log records to streams in a round robin manner: the LM assigns

a total order to the log streams and directs successive records to successive streams in

the order. The cyclic distribution policy does not su�er from either static or dynamic

skew e�ects. If all log records have the same size, it guarantees an optimal load balance

amongst the log streams.

Again, assume that L log records are to be distributed across S streams. According

to the cyclic distribution policy, the LM sends log record j to stream 1+(j mod S),

for j�0, and so stream i receives li=d
L

S
e records if i�(L mod S) and li=b

L

S
c records

otherwise, for 1�i�S. De�ne �i�
li

L
to be the fraction of log records sent to stream i

Note that �S��i��1, for all i, 1�i�S. Under the assumption that all log records are

the same size, �i is proportional to the load on stream i and so the load of the most

4The Chebyshev Inequality [6] states that for any random variable, X, which is characterized by an

expectation E[X]=� and a variance V[X]=�2, the following relation is true: Prob[jX � �j � "] � �
2

"2

where " is any arbitrarily chosen positive constant.
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heavily loaded stream cannot exceed that of the most lightly loaded stream by more

than a factor of �1

�S
= l1

lS
� (1+bL

S
c)/bL

S
c but this quantity monotonically approaches

1.0 as L increases. Therefore, load imbalances amongst the streams are expected to be

negligible after a system has been running for a while and many log records have been

generated.

In practice, not all log records will be the same size so the cyclic policy no longer

guarantees an optimal load balance amongst the set of log streams. Nevertheless, the

cyclic policy is expected to yield reasonably good load balancing behavior for most

applications if a system is allowed to run for a su�ciently long amount of time. The

cyclic policy will serve as a touchstone against which to judge the other distribution

policies.

The cyclic policy poses implementation problems as a system's degree of concurrency

increases. The most straightforward implementation employs a single variable that

keeps track of the stream to which the most recent log record was written. This single

variable may become a serial bottleneck at some point as the number of processing

nodes increases, or it may introduce signi�cant complexity (such as a combining tree

[19] implementation, for example). A simpler approach is to divide processing nodes

into disjoint sets and perform cyclic distribution amongst the members of each set; that

is, each set adheres to its own cyclic distribution discipline independently of the other

sets. In this latter approach, each set has a separate variable that identi�es the stream

to which the most recent log record was written by any processing node in the set. The

set size is restricted to some manageable limit, and the number of sets increases as a

system's degree of concurrency increases. The superimposed loads from the di�erent

sets will still yield even load balancing amongst the log streams. Bu�ering may still

be a problem, though. If the separate sets inadvertently \synchronize" so that they all

send their records to the same stream at approximately the same time, one stream may

receive a 
ood of records while other streams are relatively idle.
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Chapter 5

Management of Precommitted

Transactions

5.1 The Problem

The problem of managing precommitted transactions and the transactions which depend

on them becomes much more complicated in a highly concurrent database that has a

collection of parallel log streams. The following example illustrates the crux of the

problem.

Suppose a transaction tx1 acquires a write lock on some object Obj5 in a database,

updates the object and then requests to commit. Assume that the REDO DLR from

tx1's update to Obj5 is already on disk when tx1 requests to commit. In response to

tx1's request, the LM generates a COMMIT record for tx1 and adds the record to some log

stream's current bu�er in main memory. Recall that the LM does not write the bu�er

to disk right away. Rather, it waits for the arrival of enough log records from other

transactions to �ll up the bu�er (or for a time limit to expire) and then writes the bu�er

to disk.

Now suppose that some other transaction, tx2, reads the updated value of Obj5

before tx1's COMMIT record has been written to disk. Thus tx2 becomes dependent on

tx1. When tx2 later wants to commit, the LM must create a COMMIT record for tx2 and

add it to some log stream's current bu�er. If the COMMIT record for tx2 goes to the same

log stream as tx1's COMMIT log record did, then there are no problems. Either these two

log records belong to the same block of records, or tx2's record is subsequently written

to disk in another block. Either way, it is impossible for the RM to �nd tx2's COMMIT

record on disk, but not that of tx1.
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Now suppose that tx2's COMMIT log record is directed to a di�erent stream than tx1's

record. It is possible that the bu�er holding tx2's COMMIT log record will �ll up before

the bu�er to which tx1's COMMIT record belongs. Let buf1 and buf2 denote the bu�ers

that hold the COMMIT records from tx1 and tx2, respectively. If buf2 is written to disk

but then a crash occurs before buf1 can be written, the RM is faced with a problem.

It �nds a COMMIT record for tx2 but not for tx1. How is it to know that tx2 depended

on tx1, so that its changes must be undone, despite the fact that its COMMIT record was

written to disk?

The problem to be addressed concerns the management of precommitted transactions

in a highly concurrent system which has many parallel log streams. The LM must ensure

that the log on disk always contains su�cient information so that the RM can restore

the database to a consistent state after a crash. If a crash occurs before a precommitted

transaction commits, then the e�ects of this transaction and all transactions which

depend on it must not be present in the restored database.

5.2 Shortcomings of Previous Approaches

Other researchers [15] have previously suggested that the LM ensure that bu�ers are

written to disk in an order that will never jeopardize the consistency of the database.

Transactions' COMMIT log records do not contain any explicit information about depen-

dencies amongst transactions, so the LM must not allow the COMMIT log record of a

transaction to be written to disk before any of the COMMIT log records for earlier trans-

actions on which it depends.

Consider the application of this approach to the situation described in the previous

section. The COMMIT record for transaction tx1 is waiting in bu�er buf1 and the COMMIT

record for tx2, which depends on tx1, is waiting in bu�er buf2 at a di�erent log stream.

The log manager must enforce a topological ordering amongst these bu�ers so that buf2

is written to disk after buf1.

This approach becomes awkward as more complex situations arise. For example,

suppose that another transaction tx3 becomes dependent on tx2 and requests to commit

before either buf1 or buf2 has been written to disk. If the COMMIT record for tx3 is added

to buf1, then a dependency cycle now exists in the topological ordering amongst bu�ers.

Bu�er buf2 must be written after buf1 because of tx2's dependency on tx1, but buf1 must

be written after buf2 because of tx3's dependency on tx2. Neither bu�er can be written

to disk before the other without risking a possibly inconsistent state after recovery. This

situation is illustrated in Figure 5.1. The interdependencies amongst bu�ers at di�erent

log streams can be represented as a dependency graph. An arc from node x to node

y in the dependency graph indicates that bu�er x must be written after bu�er y. In

Figure 5.1, buf2 must be written after buf1 because of the dependency introduced by
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tx2, but buf1 must be written after buf2 because of the dependency introduced by tx3.

buf2buf1

tx3

tx2

Figure 5.1: Deadlock in Dependency Graph for Bu�ers at Two Log Streams

One solution to this problem is to keep track of existing dependencies so that a cycle

never forms. This leads to di�culties. In a large system with many parallel log streams,

the maintenance of a dynamic dependency graph would entail prohibitive overhead.

Before adding a COMMIT record to a stream's current bu�er, the LM must traverse the

graph to check that a cycle will not be created.

A static approach may involve less overhead. A static graph, de�ned at system

initialization, speci�es upon which other log streams a particular stream's bu�ers may

depend. The graph is constructed so that no cycles can possibly occur. When a transac-

tion's COMMIT record must be written, it is written to the stream which has the smallest

set of allowed dependencies that includes all of the transaction's current dependencies.

For any set of log streams, there must be a log stream which can have dependencies

on all of them. This implies that the graph be a partial order with some unique bot-

tom element. For example, the graph in Figure 5.2 is a suitable static partial ordering

amongst seven log streams. For any set of nodes in the graph, there exists some node

which is below all of them. Log stream L7 is the unique bottom element.

L1 L2 L3 L4

L5 L6

L7

Figure 5.2: Static Dependency Graph of Log Streams

If a transaction has dependencies on bu�ers at log streams L1 and L2, then its

COMMIT record will be sent to log stream L5. A transaction with dependencies on L2

and L3 must have its COMMIT record directed to L7.

Although this static ordering reduces the overhead of maintaining a dependency

graph to avoid cycles, it can lead to other problems. It restricts the LM's options for a
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distribution policy. Log streams at the bottom of the graph will tend to receive a higher

load, at least in terms of COMMIT records, than streams near the top; this imbalance

could persist inde�nitely.

This section has explained the drawbacks of dynamic and static solutions to the

problem of maintaining dependencies amongst bu�ers at di�erent log streams so that

transactions' COMMIT records are written to disk in an order that respects their depen-

dencies. Dynamic approaches have signi�cant run-time overhead, and static approaches

are prone to load imbalances.

5.3 Logged Commit Dependencies (LCD)

This section presents a new solution, called Logged Commit Dependencies (LCD), that is

an appealing alternative to the ones described in the previous section. All considerations

about dependency graphs are banished. The choice of a log stream to which a record is

written is no longer limited by synchronization constraints.

LCD introduces a new type of TLR called a PRECOMMIT record. When a transaction

requests to commit, the LM immediately generates a PRECOMMIT record which explicitly

identi�es all the transaction's unsatis�ed dependencies at the time of the request. The

LM can send the PRECOMMIT record to any log stream and can write it to disk at any

time.

Recovery becomes more complicated, however. If the LM wrote PRECOMMIT records

but not COMMIT records (which are no longer absolutely necessary), the RM might be

forced to unravel a deep \tree" of transaction dependencies before it can conclude that

a recent transaction actually committed. To make the RM's job easier, the LM also

generates a COMMIT record for each transaction after all the transaction's dependencies

have been satis�ed. This COMMIT record is simply an indication to the RM that the

transaction did indeed commit before the crash occurred, and so it need not bother to

check all the dependencies listed in the transaction's PRECOMMIT record.

The LM maintains a monotonically increasing Log Sequence Number (LSN) for each

log stream and associates a unique LSN value with every block of records that it writes

to disk at the stream. The LM places a block's LSN at the beginning of the bu�er which

has been allocated for it. When the LM decides to write the bu�er to disk, it increments

the stream's LSN and puts the new LSN at the beginning of the new current bu�er.

Each transaction's LTT entry has a �eld, called DLR deps, which keeps track of the

transaction's dependencies on unwritten REDO DLRs. This DLR deps �eld holds a set

of pairs, where each pair has a stream identi�er and a LSN. Whenever a transaction

writes a REDO DLR to the log, the LM notes the stream to which it was sent and the
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LSN for the bu�er to which it was added; denote the stream as s and the LSN as n. The

LM uses this information to update the transaction's LTT entry. If the transaction's

DLR deps �eld currently has no pair for stream s, it adds the pair <s,n> to the set.

Otherwise, it updates the existing pair for s so that it holds the new LSN n instead

of its previous value. Similarly, the LM also maintains corresponding information for

each bu�er at each log stream. The LM keeps track of the current LSN for a bu�er and

the transactions that have had log records added to the bu�er. After a bu�er has been

written to disk, the LM uses this information to update the appropriate LTT entries.

Suppose that transaction t had a log record in a bu�er at stream s whose LSN is n. After

this bu�er has been written to disk, the LM retrieves the current pair <s,m> for stream

s from the DLR deps �eld in t's LTT entry and compares m to n. If m=n, then the

LM removes the pair from the DLR deps �eld (because t has not written any records to

subsequent bu�ers at stream s); otherwise (i.e., m>n), it just leaves the current <s,m>

pair in t's DLR deps �eld.

Each transaction's LTT entry also has three more �elds, called depends on,

is depended on by and dep tx ctr. A transaction t's depends on �eld holds the set of

transaction identi�ers for all precommitted transctions on which transaction t depends,

and t's is depended on by �eld holds the set of transaction identi�ers for all subsequent

transactions that depend on t. The dep tx ctr �eld is an integer-valued counter that

keeps track of the number of transactions on which t depends while t is in a precommit-

ted state.

The LM must remember the identity of the precommitted transaction, if any, that

most recently updated each object. This information is kept in each object's LOT

entry. Whenever a transaction reads or updates an object, it becomes dependent on

the precommitted transaction, if any, that previously updated the object. The LM adds

this dependency information to the respective depends on and is depended on by �elds

in the LTT entries of both transactions.

Each PRECOMMIT record contains the following three �elds:
txid: identi�er for the transaction that has requested to commit

dlr streams: <stream id,LSN> pairs for all streams with unwritten DLRs

precomm txs: transactions on which this transaction depends

Suppose a transaction t requests to commit. The LM determines which REDO

DLRs (for updates by t) are still waiting to be written to disk and which precommitted

transactions (on which t depends) are still waiting to commit by examining the DLR deps

and depends on �elds, respectively, in transaction t's LTT entry. Unless both these �elds

are empty, the LM puts the contents of both �elds into their corresponding �elds of the

PRECOMMIT record for t and sends the PRECOMMIT record to some log stream. For each

object b that t modi�ed (as indicated by the contents of the obj ids set in t's LTT

entry), the LM updates b's LOT entry to record the fact that its current value depends

on precommitted transaction t and then the LM releases t's write lock on b. Finally, the
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LM counts the number of transactions listed in the depends on �eld of t's LTT entry and

assigns this value to t's dep tx ctr counter. If DLR deps and depends on are both empty

when t requests to commit, the LM just goes ahead and generates a COMMIT record for

t.

Similar to before, a transaction t does not actually commit until all its DLRs have

been written to disk, all the precommitted transactions on which it depends have com-

mitted, and its PRECOMMIT record (or its COMMIT record, as explained below) has been

written to disk. Without the LCD technique and with no explicit dependency informa-

tion in the COMMIT log record, transaction t committed at the instant that its COMMIT

record was written to disk (since all dependencies had to be satisi�ed before its COMMIT

record could be written to disk). Now, the explicit information in the PRECOMMIT record

allows the PRECOMMIT record to be written to disk before all dependencies on DLRs and

earlier transactions have been satis�ed. There may be some delay between the time that

t's PRECOMMIT record is written to disk and the time that it commits.

The LM detects that a precommitted transaction t's last dependency (on either an

unwritten DLR or a precommitted transaction) has been satis�ed when both

DLR deps=; and dep tx ctr=0 become true for the transaction. When this happens,

the LM immediately generates a COMMIT record for t and sends it to any log stream; the

LM can go ahead and generate a COMMIT record for t even before t's PRECOMMIT record

has been written to disk. The transaction commits as soon as either its PRECOMMIT

record or COMMIT record has been written to disk (and DLR deps=; and dep tx ctr=0).

When transaction t actually does commit, the LM sends an acknowledgement to t

in response to its commit request, updates the LOT entries of all objects which t had

modi�ed, and updates the LTT entries for all transactions listed in the is depended on by

set in t's LTT entry. For each object that t modi�ed (as indicated by the contents of

the obj ids set in t's LTT entry), the LM �rst checks to see if the object still depends on

t. If so, it changes the LOT entry to indicate that the object no longer depends on any

precommitted transaction. Otherwise, the object must now depend on some subsequent

precommitted transaction, and so the LM does not change the LOT entry. The LM

processes all the members of the is depended on by �eld in t's LTT entry immediately

after t commits. For each transaction u in this set, the LM decrements the dep tx ctr

counter in u's LTT entry.

The pseudocode for the LM's management of precommitted transactions, using the

LCD technique, is given below.

read object(txid, object id) f

lot entry  LOT entry for object object id

ltt entry  LTT entry for transaction txid

ptx  lot entry�>precom tx

if (ptx6=NULL) f

pretx ltt entry  LTT entry for transaction ptx
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pretx ltt entry�>is depended on by  

pretx ltt entry�>is depended on by [ ftxidg

ltt entry�>depends on  ltt entry�>depends on [ fptxg

g

g

update object(txid, object id) f

lot entry  LOT entry for object object id

ltt entry  LTT entry for transaction txid

ptx  lot entry�>precom tx

if (ptx6=NULL) f

pretx ltt entry  LTT entry for transaction ptx

pretx ltt entry�>is depended on by  

pretx ltt entry�>is depended on by [ ftxidg

ltt entry�>depends on  ltt entry�>depends on [ fptxg

g

<stream,lsn>  write log record(txid, object id)

if (9x s.t. <stream,x> 2 ltt entry�>DLR deps) f

ltt entry�>DLR deps  ltt entry�>DLR deps � f<stream,x>g

g

ltt entry�>DLR deps  ltt entry�>DLR deps [ f<stream,lsn>g

g

request to commit(txid) f

ltt entry  LTT entry for transaction txid

ltt entry�>tx status  precommitted

if ((ltt entry�>DLR deps=;) AND (ltt entry�>depends on=;)) f

generate commit rec(txid)

g

else f

generate precomm rec(txid, ltt entry�>DLR deps,

ltt entry�>depends on)

g

for (b 2 ltt entry�>obj ids) f

lot entry  LOT entry for object b

lot entry�>precom tx  txid

release write lock on object b

g

ltt entry�>dep tx ctr  jltt entry�>depends onj

g
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tx committed(txid) f

send acknowledgement of commit to txid

ltt entry  LTT entry for transaction txid

ltt entry�>tx status  committed

for (b 2 ltt entry�>obj ids) f

lot entry  LOT entry for object b

if (lot entry�>precom tx = txid) f

lot entry�>precom tx  NULL

g

g

for (u 2 ltt entry�>is depended on by) f

pretx committed(u)

g

g

pretx committed(txid) f

ltt entry  LTT entry for transaction txid

ltt entry�>dep tx ctr  ltt entry�>dep tx ctr � 1

if ( (ltt entry�>tx status = precommitted)

AND (ltt entry�>DLR deps=;)

AND (ltt entry�>dep tx ctr=0) ) f

generate commit rec(txid)

if (PRECOMMIT record from txid is already on disk) f

tx committed(txid)

g

g

g

bu�er written to disk(txid, stream, lsn) f

ltt entry  LTT entry for transaction txid

no commit yet  (ltt entry�>DLR deps6=;)

ltt entry�>DLR deps  ltt entry�>DLR deps � f<stream,lsn>g

if ( (ltt entry�>tx status=precommitted)

AND (no commit yet)

AND (ltt entry�>DLR deps=;)

AND (ltt entry�>dep tx ctr=0) ) f

generate commit rec(txid)

if (PRECOMMIT record from txid is already on disk) f

tx committed(txid)

g

g

g
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precommit or commit record written to disk(txid) f

ltt entry  LTT entry for transaction txid

if ( (ltt entry�>tx status=precommitted)

AND (ltt entry�>DLR deps=;)

AND (ltt entry�>dep tx ctr=0) ) f

tx committed(txid)

g

g

The RM now has greater responsibilities. It may discover transaction t's PRECOMMIT

record on disk, but it must do some detective work to �gure out if t really did commit

before the crash occurred. For every log stream listed in t's PRECOMMIT record, the RM

must check that all records in the stream up to and including the LSN indicated in the

PRECOMMIT record were written to disk prior to the crash. This is easily accomplished,

by inspecting the LSN numbers in all the blocks found in the log on disk. Likewise, for

every indicated precommitted transaction, it must verify that the transaction did indeed

commit before the crash. The RM keeps track of these dependencies by using two new

�elds, called depends on and is depended on by, that belong to each transaction's RTT

entry. These �elds are analogous to their counterparts in the LTT.

Let �max denote the maximum time required to �ll a bu�er and write it to disk.

A transaction will commit (and generate a COMMIT record) within time �max after it

submits its commit request. Therefore, a COMMIT record exists in the log on disk for

every transaction which precommitted at least 2�max prior to a crash. At worst, the

RM must deduce the fates of only those transactions which precommitted in the last

2�max seconds prior to the crash. It is expected that this number of transactions will be

small, compared to the total size of the log.

A transaction t's PRECOMMIT record explicitly lists all the streams on which t depends

for its REDO DLRs to be written to disk. To reduce the size of the PRECOMMIT record,

and thus save disk space and bandwidth, the LM can postpone generating a PRECOMMIT

record for t until all its REDO DLRs have been written to disk. Of course, transaction t

can still release all its write locks (after the DBMS has updated the objects' LOT entries

to record their dependency on t) as soon as t requests to commit. After all t's REDO

DLRs have been written to disk, the LM generates a PRECOMMIT record for t that lists

all the precommitted transactions on which t still depends at the time the PRECOMMIT

record is generated. Now, the RM may need to deduce the fates of transactions that

precommitted as early as 3�max prior to a crash.

Now consider how to integrate LCD into the XEL technique. The LM continues to

manage DLRs exactly the same as before, but has more complexity for the handling of

PRECOMMIT and COMMIT records. Each PRECOMMIT record has a status of either required or

recoverable. A PRECOMMIT record is initially required, and becomes recoverable after the

LM has written a COMMIT record (for the same transaction) to disk. The LM must keep
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a required PRECOMMIT record in the log, but can throw away a recoverable PRECOMMIT

record at its earliest convenience.

The LM must retain a transaction t's COMMIT record until all subsequent transactions

which depend on t have had COMMIT records written to the log. Suppose some transaction

u, which depends on t, commits. As soon as u's COMMIT record is on disk, the LM

retrieves the contents of the depends on �eld from u's LTT entry. For each member v of

this �eld, the LM removes u from the is depended on by �eld in v's LTT entry. Since u

depended on t, the LM will remove u from the is depended on by �eld in t's LTT entry.

As soon as the LM detects is depended on by=; in t's LTT entry, it concludes that

no subsequent transactions require t's COMMIT record any longer. The LM changes the

status of a transaction's COMMIT record to recoverable as soon as is depended on by=;

for the transaction, no recoverable UNDO DLRs remain from the transaction, and any

remaining REDO DLRs have only recoverable status (these latter two conditions are

determined by maintaining a counter in each transaction's LTT entry, as described in

Section 2.8).

LCD can increase the maximum throughput for any particular object in the database,

but this enhanced performance comes at a cost. LCD requires more storage for extra

�elds in each LOT, LTT and RTT entry; these extra �elds maintain dependency infor-

mation. It also increases the complexity and computational requirements of the LM and

RM. Finally, the PRECOMMIT records consume disk space and bandwidth.
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Chapter 6

Experimental Results

This chapter evaluates XEL and the three proposed distribution policies for parallel

logging. Disk space, disk bandwidth, main memory requirements and recovery time are

the evaluation criteria throughout the chapter.

Section 6.1 describes the event-driven simulator by which the experiments were per-

formed. It explains each of the input parameters, documents the �xed parameters,

presents the de�nitions of XEL's data structures as expressed in the C programming

languange [36] and justi�es the validity of the simulation model.

Section 6.2 quantitatively evaluates and compares the performances of XEL and

the FW technique for a single log stream as various application characteristics vary.

Four sets of experiments consider separately the e�ects of: (1) the probability of long

transactions, (2) the duration of long transactions, (3) the size of DLRs from long

transactions and (4) the \data skew" which characterizes access patterns to objects in

a database. The results of this section demonstrate that XEL can signi�cantly reduce

the amount of disk space required for log information, compared to FW, although XEL

requires signi�cantly more main memory and may entail increased disk bandwidth for

log information. Recovery is I/O bound, so recovery time is less for XEL than for FW.

Section 6.3 quantitatively evaluates and compares the load balancing properties of

the three oblivious distribution properties as the number of parallel log streams increases.

Three separate sets of experiments consider the cases of low, moderate and high data

skew, respectively. In these experiments, the log streams are managed by only the XEL

technique (FW is no longer of interest in this section). This section's results indicate that

all three policies yield approximately equal load balancing behavior for low data skew.

The partitioned policy performs slightly worse than random and cyclic for moderate data

skew, and it is much worse for high data skew. However, the partitioned policy generally

consumes the least amount of main memory because it does not require indirection via

the LOT and LTT data structures.
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6.1 Simulation Environment

To quantitatively evaluate XEL and the three distribution policies for parallel logging,

the author implemented an event-driven simulator. The simulator is written in C and

runs on SPARCstations.

6.1.1 Input Parameters

The user can specify the following input parameters:

timestamps: 
ag to indicate if disk version of database keeps timestamps

arrival rate: rate at which transactions are initiated

tx pdf: statistical mix of transaction types

object pdf: statistical access pattern to objects


ush rate: rate for 
ushing updates to disk version of database

generations: number and sizes of generations

recirculation: 
ag to turn recirculation on or o�

num streams: number of parallel log streams

distn policy: distribution policy for parallel logging

runtime: duration of simulated time span

recovery: 
ag to request recovery after normal logging activity ends

The timestamps parameter speci�es whether or not timestamps are assumed to

exist in the disk version of the database. If timestamps exist, then the simulator uses

the EL [35] algorithm; otherwise, it uses the more complicated (but more general) XEL

algorithm.

The simulator initiates transactions at regular intervals, according to the speci�ed

arrival rate (transactions per second).

The user speci�es an arbitrary number of di�erent transaction types and their prob-

ability distribution function (pdf). For each type of transaction, the user states the

probability of occurrence, the duration of execution, the number of REDO DLRs writ-

ten and the size of each DLR. Figure 6.1 graphically represents this transaction model

for a transaction that generatesN=2 REDO DLRs in a system with only one log stream.

Whenever a new transaction must be initiated, the simulator randomly (according

to the pdf) selects its type. After choosing its type, the simulator schedules when its

REDO DLRs will be written. The DLRs are written at equally spaced intervals, with

the last being written only some short time � (equal to t3 � t2) prior to completion.

Suppose that the transaction's lifetime (speci�ed as part of its type) is T . It will �nish

execution and request to commit (at time t3) T seconds after it started. Its last DLR
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Figure 6.1: Simulation Transaction Model

is written (at time t2) T � � before it �nishes, and each DLR is written (T � �)=N after

the preceding one, where N is the number of REDO DLRs written by a transaction of

this type. After the LM has generated a COMMIT TLR for the transaction and sent it to

a particular log stream, the transaction continues to wait for acknowledgement (at time

t4) from the LM before it actually commits; this delay occurs because the LM waits

until a bu�er is almost full before writing it to disk at the tail of generation 0, and then

there is some delay �Disk Write for transferring the contents to disk.

Whenever a transaction writes a REDO DLR, the simulator randomly picks some oid,

according to the access probabilities speci�ed by the user and subject to the constraint

that the oid has not already been chosen for an update by a transaction which is still

active. The set from which an oid can be chosen consists of all integers from 0 up

to NUM OBJECTS�1, where NUM OBJECTS is the total number of objects (a �xed

value). The user breaks up this set of objects into several classes. For each class, the

user speci�es the probability of occurrence and the size as a proportion of the total

number of objects. When a DLR is to be written, the simulator �rst chooses a class

according to the speci�ed object pdf and then randomly selects an available oid from

within this class.

To control the rate at which the CM can 
ush updates, the user speci�es some

number of disk drives and the time required to write a block to any of these drives.

There can be at most one request at a time for any particular drive. The user can

increase the maximum rate at which updates are 
ushed by increasing the number of

drives or decreasing the time to write a block to any drive. The NUM OBJECTS objects

are striped evenly over these drives. That is, for D drives, object i is mapped to drive

i mod D. Striping ensures that the objects within each class are distributed as evenly

as possible across the di�erent drives, so no drive is relatively overloaded by a large

number of \hot spot" objects1. Each updated object requires a separate disk write

(i.e., the simulator assumes that there is negligible locality of updates within a disk

1A \hot spot" object is one which is updated very frequently.
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block). Each disk drive attempts to service pending 
ush requests in a manner that

minimizes access time. The simulator assumes that the di�erence between two objects'

oids corresponds to their locality on disk. For the purpose of calculating the di�erence

between two oids, the simulator assumes that the sequence of integers assigned to their

disk drive wraps around.

The user speci�es the number of generations and the size (number of disk blocks) of

each generation. The size of each disk block is �xed in the simulator.

In some experiments, it is worthwhile to examine the LM's behavior without recir-

culation in the last generation, just to see the e�ect of simply segmenting the log. There

is an input 
ag to specify whether recirculation in the last generation is turned on or

o�. If recirculation is disabled and the LM cannot advance the tail of the last genera-

tion because it would overwrite a non-garbage log record at the head, then it refuses to

accept any more incoming log records to the last generation; this tends to exert \back

pressure" on younger generations.

The user can specify the number of log streams that are to operate in parallel. If

more than one log stream is speci�ed, then the user must also specify one of the three

distribution policies.

If a log stream refuses to accept a log record, the simulator kills the client transaction

that submitted the request. A more realistic simulator would stall, rather than kill the

transaction. The current version of the simulator su�ces because the experimental

objective will be to determine the LM's resource requirements to support a particular

load without needing to kill or stall transactions.

After simulating normal logging activity for the speci�ed runtime, the simulator will

also simulate recovery if the recovery 
ag has been set. Recovery uses the state of the

log on disk in the condition which exists immediately after the speci�ed runtime has

elapsed. The simulator models only the �rst phase of recovery, in which the contents of

the log streams are retrieved from disk and the most recently committed value in the

log, if any, is determined for each object that had a DLR in the log. The second phase

of recovery, in which the disk version of the database is updated with these values from

the log, is not considered. In practice, this work can be performed in background after

normal processing has resumed, so it is reasonable to ignore it when simulating recovery.

The current version of the simulator does not incorporate the LCD technique; all

transactions retain their write locks until they commit. No experimental data are avail-

able for the performance of a LM which employs the LCD technique.
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6.1.2 Fixed Parameters

Several parameters are �xed in the simulator. The delay � between the write for a

transaction's last REDO DLR and its request to commit is �xed at 1 ms. The capacity

of each disk block is 2000 Bytes2. The LM attempts to keep Nfree�3 blocks available

in each generation to hold incoming log records. Four disk block bu�ers (2048 Bytes

each) are provided for generation 0 of each stream. Each COMMIT TLR is assumed to

require 8 Bytes. The simulator conservatively assumes a �xed delay of �Disk Write=15

ms to transfer a bu�er's contents to disk when writing out records to the log. For each

log stream, at most one disk write operation (to any generation) can be outstanding

at any time. If several generations have bu�ers waiting to be written to them, the

simulator gives older generations priority over generation 0 when it must schedule the

next bu�er to be written to disk. The simulator uses the group commit technique [5];

a log record is not written to disk until its bu�er is as full as possible. Therefore, the

delay between the time a record is added to a bu�er and the time it is written to disk

is generally longer than �Disk Write. The number of objects in the database is �xed

at NUM OBJECTS=107. Disk I/O from each log stream is entirely sequential during

recovery, so the simulator assumes that only 5 ms is required to retrieve a block from

disk when reading the log. When recovering the contents of a block, each DLR requires

100 �s to process and a TLR requires 40 �s.

These �xed parameters are summarized in the following table:

Parameter Value

� = delay from last REDO DLR to commit request 1 ms

Capacity of each disk block in log 2000 Bytes

Nfree = threshold number of free blocks per generation 3 blocks

Number of bu�ers (for generation 0) per log stream 4 bu�ers

Size of each COMMIT record 8 Bytes

�Disk Write = delay to write a block to the log 15 ms

Maximum number of outstanding disk writes per stream 1 write

NUM OBJECTS = number of objects in the database 107 objects

Delay to read a block from log during recovery 5 ms

Time required to process a DLR during recovery 100 �s

Time required to process a COMMIT TLR during recovery 40 �s

6.1.3 Data Structures

The following declarations de�ne XEL's principal data structures for the most gen-

eral situation of numerous parallel log streams and any distribution policy. They are

expressed according to the syntax of the C programming language [36], in which the

2A block size of 2048 is typical, but the simulator assumes 48 Bytes are reserved for bookkeeping

purposes and so only the remaining 2000 Bytes are available to hold log records.
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simulator itself is written. These data structures are intended for a distributed memory

message passing parallel system architecture, rather than a shared memory model.

struct str_lsm { /* one log stream id in a list */

int stream_id; /* identifier of a log stream */

int min_recov_tstamp; /* needed for parallel XEL */

struct str_lsm *next; /* pointer to next cell in the list */

};

struct str_oid { /* one object id in a list of oids */

OBJID oid; /* object identifier */

struct str_oid *next; /* pointer to next cell in the list */

};

struct str_ltt_entry { /* LTT entry for a transaction */

TXNID tid; /* id of transaction */

TX_STATUS status; /* current status of the transaction */

int num_rqd_dlrs; /* number of required DLRs remaining */

int rec_str; /* log stream to which COMMIT written */

struct str_pcg *set_cgs; /* cmt grps on which tx depends */

struct str_oid *obj_ids; /* objects modified by this tx */

struct str_ltt_entry *next; /* other txs in same hash buckt */

};

struct str_lot_entry { /* LOT entry for an object */

OBJID oid; /* id of object with records in log */

int uncm_tstamp; /* timestamp for most recent DLR */

int comm_tstamp; /* tstamp most recently committed DLR */

struct str_lsm *lstms; /* log streams with DLRs for object */

struct str_lot_entry *next; /* other objects in same hash bucket */

};

struct str_rel_cell { /* cell to point to a relevant log record */

TXNID tid; /* id of associated transaction */

int block_num; /* index of block in log to which rec belongs */

int rec_length; /* size of the log record (in Bytes) */

R_STAT rec_status; /* current status of log record */

int tstamp; /* timestamp of update, if cell is for DLR */

struct str_llot_entry *p_obj; /* parent object, if cell is for DLR */

struct str_rel_cell *next; /* more cells for same obj or tx */

struct str_rel_cell *left; /* left neighbor in doubly lkd list */

struct str_rel_cell *right; /* right neighbor in doubly lkd list */

};

struct str_llot_entry { /* local LOT entry for an object */
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OBJID oid; /* id of object with DLRs in stream */

struct str_rel_cell *cells; /* list of cells for object's DLRs */

struct str_llot_entry *next; /* other objects in same hash bucket */

};

struct str_lltt_entry { /* local LTT entry for a transaction */

TXNID tid; /* id of tx with TLRs in log */

struct str_rel_cell *cells; /* list of cells for the tx's TLRs */

struct str_lltt_entry *next; /* next tx in the hash bucket list */

};

static struct str_lot_entry *lot_tbl[LOT_TBL_SIZE]; /* LOT hash tbl */

static struct str_ltt_entry *ltt_tbl[LTT_TBL_SIZE]; /* LTT hash tbl */

The str rel cell de�nition does not include a �eld that indicates a log record's

type (TLR, REDO DLR or UNDO DLR). Such an extra �eld is unnecessary. The

contents of the rec status �eld identify both the type and the status of a record. For

example, a required REDO DLR and a required UNDO DLR have di�erent values in the

rec status �elds of their cells.

The str lsm and str lot entry structures go together on processing nodes that

administer portions of the LOT. The str oid and str ltt entry structures belong

together on nodes that manage the LTT. The str llot entry, str lltt entry and

str rel cell structures are used at nodes that manage the log streams.

Assume that each oid and tid requires 8 Bytes. Integers and pointers consume 4

Bytes each. Each �eld of type TX STATUS or R STAT requires 4 Bytes (these types

are typedef'ed to int). The amount of storage required for each of these structures is

summarized below.

Structure name Storage required (Bytes)

str lsm 12

str oid 12

str ltt entry 32

str lot entry 24

str rel cell 40

str llot entry 16

str lltt entry 16

For the speci�c case of a single log stream or multiple log streams with the partitioned

distribution strategy, indirection via the local LTT and local LOT is no longer neces-

sary. The cells �eld from the str lltt entry structure replaces the rec str �eld

in the str ltt entry structure. Similarly, the cells �eld from the str llot entry

structure replaces the lstms �eld in the str lot entry structure. The p obj pointer in

str rel cell now points to an instance of the str lot entry type. The declarations
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of the str lsm, str llot entry and str lltt entry structure types can be omitted.

The storage requirements for each of the str oid, str ltt entry, str lot entry and

str rel cell structure types remains unchanged, despite these modi�cations3.

The simulator can also report the storage requirements for FW logging. The user

must specify only a single log stream with a single generation, of course. The FWmethod

requires a simpler version of the LTT. As before, each entry in this LTT corresponds to a

particular transaction. It has �elds for the transaction's identi�er (8 Bytes), the current

status of the transaction (4 Bytes), the number of DLRs still waiting to be 
ushed (4

Bytes), the position within the log of the �rst record written by the transaction (4 Bytes)

and a pointer to the next entry in the LTT (4 Bytes). The FW method keeps track of

a transaction until after it has committed and none of its updates need to be 
ushed

to the disk version of the database. When a committed transaction no longer has any

updates waiting to be 
ushed, the FW method removes it from the LTT. Therefore, the

user should set the simulator's timestamps 
ag to true so that the EL algorithm is

used4, even though the disk version of the database may not actually keep a timestamp

with every object in the database.

6.1.4 Validity of Simulation Model

The simulator provides su�cient 
exibility to realistically evaluate various LM con�gu-

rations for many di�erent applications. It does not permit a user to precisely model every

possible application, but it does allow a user to succinctly specify the characteristics for

a broad range of applications. The simulator's inherent technological assumptions only

approximate reality, yet they capture the important characteristics of the underlying

technology while abstracting out many details that are largely irrelevant. Therefore,

the simulator provides su�cient power to evaluate XEL and its parallel variants as

important parameters vary.

The probabilistic transaction model statistically describes an application's static

mixture of transactions. It is worthwhile to examine XEL's behavior as the relative

lifetimes of di�erent transaction types vary, and so the simulator provides this capa-

bility. The number and size of each transaction type's log records a�ect XEL's per-

formance, and so a user can also vary these parameters. The probabilistic transaction

model does not provide su�cient power to specify every possible application. For ex-

ample, an application in which exactly every eighth transaction is 10.0 s long and the

remaining applications have duration 1.0 s cannot be modelled, nor can an application

whose transactions do not write REDO DLRs at equally spaced intervals. Despite these

shortcomings, enough di�erent application transaction mixes can be speci�ed to provide

3For the case of only a single log stream, the set cgs �eld can be removed from the str ltt entry

declaration, thus saving another 4 Bytes per transaction.
4The EL algorithm removes a committed transaction's LTT entry as soon as all its DLRs have become

garbage.
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meaningful results.

Likewise, the deterministic arrival rate enables a user to control the system's overall

throughput, but limits the ability to control precisely when each transaction is initiated.

A Markov arrival pattern [6], for example, cannot be accurately modelled with the

current version of the simulator. However, variations in the arrival pattern are not

an important issue for the evaluation of XEL; the overall throughput is the important

parameter.

The simulator is an open system. It does not incorporate feedback in its scheduling

of the times at which transactions are initiated, DLRs are generated and commits are

requested. If a transaction manager refrains from initiating new transactions before

it has received commit acknowledgements for enough previous transactions, then the

open system assumption is unrealistic. However, the open system assumption can be

justi�ed for some other applications. As long as the LM continues to accept incoming

log records, there may be little reason why the DBMS would change the rate at which

it initiates new transactions. Likewise, a client transaction never needs to wait for a

reply after requesting the LM to write a REDO DLR to the log; at the time that the

request is made, the LM already knows whether or not it has space available on disk

for the record and it can respond to the client transaction immediately. A transaction's

lifetime is therefore largely una�ected by the performance of the LM, as long as the

LM is able to accept its log records. After a transaction requests to commit, it must

wait for acknowledgement from the LM. For the most general case of more than one

log stream, the LM must make sure that all a transaction's DLRs are on disk before it

generates a COMMIT record for the transaction, and then there is some additional delay

before the COMMIT record arrives on disk. As the LM becomes busier, queues form and

a bu�er of records may need to wait longer before being written to disk. Therefore,

the length of time that a transaction must wait for acknowledgement to its request to

commit depends on the LM's load, but this delay does not a�ect the times at which the

transaction writes its DLRs and requests to commit. The experimental objective will

be to evaluate the LM's resource requirements such that the LM can accept all requests

without needing to kill (or stall) any client transactions, so the open system assumption

does not diminish the signi�cance of the experimental results.

The probabilistic speci�cation of data access patterns enables a user to model dif-

ferent collections of data objects in a database. These collections are characterized by

the frequency with which transactions update their member objects. A user can model

a wide range of di�erent \data skews". Again, the statistical nature of this modelling

is concise and simple but there are some applications whose exact data access patterns

cannot be expressed in terms of this model. This inability to accurately model all possi-

ble applications does not prevent one from using the simulator to conduct experiments

which illustrate important aspects of XEL's performance.

XEL's behavior is largely in
uenced by what happens as records approach the head

of a generation, because only then does XEL decide whether or not to forward or re-
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circulate a record. The arrival of subsequent records push a record toward the head of

its generation so that XEL must decide its fate, but the exact times of arrival of these

records are largely irrelevant. This observation supports the claim that the simulator's

acknowledged inabilities to accurately model all possible applications' characteristics

does not seriously limit its worth for the purposes of studying XEL.

The statistical speci�cations of transaction types and data access patterns are static,

as is the arrival rate. In reality, an application's characteristics may vary over time. The

simulator does not permit speci�cation of dynamically varying parameters. Despite this

shortcoming, meaningful experimental results may be obtained for important cases in

which an application's parameters remain static. These results can provide valuable

insights into XEL's behavior.

The simulator uses a simple model for disk I/O. A 
ush to the disk version of the

database always requires the same duration (a parameter which the user speci�es). In

reality, this duration may vary from one write operation to the next. However, small


uctuations in the actual duration to 
ush an update will have only a minor e�ect on

XEL's performance.

The simulator provides only a �rst order estimate of the bandwidth required for log

information. It assumes that each block write operation to the log requires the same

amount of time, �Disk Write. In reality, the time required to write a block of log records

to disk depends on whether the I/O is sequential or random in nature. Successive writes

to the tail of generation 0 are sequential and so they will generally have a short duration

(such as 5 to 10 ms each). When the LM must occasionally write a block to the tail

of generation 1, for example, the resulting disk I/O is random; it will tend to take

signi�cantly longer (such as 20 ms) because of seek and rotational delays. The e�ects

of the random disk I/O to all generations except generation 0 can be minimized by

choosing generation 0 to be su�ciently large so that only a small fraction of log records

need to be forwarded. Section 7.3.3 explains an optimization for a system with several

log streams so that most disk I/O to log disks is sequential.

The simple model of the CM assumes that no uncommitted updates are ever written

out to the disk version of the database. Hence, UNDO DLRs are never needed. Eco-

nomic trends justify this simpli�cation. For many applications, the savings in disk I/O

bandwidth outweigh the price of the extra main memory needed to bu�er uncommitted

updates. For example, suppose that each transaction modi�es X Bytes of state, is Tl
seconds long and begins Td seconds after the preceding transaction. The extra memory

required to bu�er all uncommitted updates from a continuous sequence of transactions

is no more than XTl/Td Bytes
5. If an UNDO DLR were written for each uncommitted

update, the extra disk bandwidth would be X/Td Bytes/sec. The technique introduced

in [25] permits a comparison of the relative costs for these two options. Let Cm repre-

sent the cost (in dollars per Byte) of main memory and Cd represent the cost of disk

5To be more precise, the upper limit is actually XdTl/Tde, but the approximation XTl/Td su�ces

for a �rst order analysis.
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bandwidth (in dollars per Byte/sec). The cost of bu�ering uncommitted updates is

CmXTl/Td, and the cost of writing UNDO DLRs is CdX/Td. Therefore, it is less ex-

pensive to bu�er uncommitted updates in main memory if Tl<Cd/Cm. A typical disk

drive costs at least $200 and provides a maximum I/O bandwidth of 2 MBytes/sec, so

Cd = 10�4 $�sec/Byte. On the other hand, 1 MByte of DRAM costs approximately $20,

so Cm = 20� 10�6 $/Byte. Hence, bu�ering of uncommitted updates is better econom-

ically if Tl<5 sec. For many applications, transactions have lifetimes shorter than 5 sec.

As the price of DRAM continues to fall, relative to the price of disk bandwidth, Tl will

continue to increase.

The simulator concerns itself with the management of log information on disk and

the associated data structures which must reside in main memory. It does not account

for computational requirements nor for interprocessor communication. To some extent,

the consumption and management of these latter two resources depend on the speci�c

system upon which the logging and recovery system is implemented and so it is di�cult

to accurately account for them. Furthermore, computation and communication are rel-

atively cheap and abundant in concurrent systems, and so they do not deserve nearly as

much serious attention as disk I/O, which is a limited and relatively expensive resource.

6.2 Extended Ephemeral Logging for a Single Stream

This section presents the results of many experiments which were conducted to observe

the behavior of XEL as applied to a single log stream and to understand the e�ects of

varying di�erent parameters. For comparison purposes, the traditional FW technique

was simulated by specifying a single generation with no recirculation. The FW sim-

ulation did not involve any checkpointing activity; the �rewall was always the oldest

log record from the oldest transaction in the system. This omission favors FW be-

cause it ignores the overhead (in terms of disk space and bandwidth) associated with

checkpointing.

There are several evaluation criteria. Disk space, disk bandwidth (in terms of block

writes per second) and main memory requirements (for the LOT and LTT) are the main

criteria for normal logging activity. Elapsed time is the primary criterion for recovery.

The following parameters are speci�ed for all experiments, unless otherwise stated.

There are two types of transactions. The �rst is of 1.0 s duration and writes 2 DLRs,

each of size 100 Bytes. The second lasts 10.0 s, in which time it writes 4 DLRs of size

100 Bytes each. Their probabilities of occurrence are 0.95 and 0.05, respectively.

The arrival rate is 100 TPS.
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There is no data skew. That is, all NUM OBJECTS objects are equally likely to be

chosen whenever an update is to be performed.

To provide su�cient bandwidth for 
ushing updates, each experiment speci�es 10

disk drives with a transfer time of 25 ms. The conservative 25 ms time allows for some

read operations to be interspersed with writes.

All tests of XEL use two generations. The minimum possible sizes for these genera-

tions are determined experimentally. Recirculation is disabled, so that it is possible to

assess the e�ect of simply segmenting the log. There is only one log stream.

The simulation time is 500 s; these results re
ect the minimum disk space required

to support 500 s of logging activity such that no transaction is killed.

6.2.1 E�ect of Transaction Mix

For the �rst set of experiments, the probabilities of occurrence for the two transaction

types are varied. The probability of the long transaction type increases from 0 to 1.0,

while the probability of the short type decreases accordingly.

Figure 6.2(a) plots the disk space requirements (number of blocks) versus the trans-

action mix for both FW and XEL. The corresponding graphs of disk bandwidth (to

only the log), main memory requirements and recovery time are shown in Figures 6.2(b)

to 6.2(d), respectively.

XEL's advantages are most apparent for the 5% mix. It reduces disk space by a

factor of 3.2 with only a 9.1% increase in bandwidth. XEL requires 13 times as much

main memory as FW for the 5% mix, but this requirement is still modest in absolute

terms; XEL needs only 57.5 KBytes of main memory. The time required to read in the

log from disk dominates recovery time for both XEL and FW, so XEL o�ers much faster

recovery. As the probability of 10 s transactions increases, XEL's relative advantage over

FW diminishes. The reductions in disk space and recovery time are not as large, but

the increase in bandwidth is greater.

As the probability of the long transaction type approaches 1.0, the rate at which ob-

jects are updated approaches the maximum rate at which updates can be 
ushed (400

updates/s). The resultant queueing delay causes DLRs to tend to remain un
ushed

longer, and so the length of a single FW log increases accordingly. In the case of XEL,

many of the DLRs have had their updates 
ushed by the time the LM must decide

whether or not to forward them to generation 1; most of these DLRs have recoverable

status and need not be forwarded. Only a fraction of all log records have un
ushed or

required status as they approach the head of generation 0, and so only these records ad-

vance into generation 1. By throwing away the garbage records at the head of generation
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Figure 6.2: Performance Results for Varying Transaction Mix
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0, XEL manages to use 44% less disk space than FW.

6.2.2 E�ect of Transaction Duration

Figures 6.3(a)-(d) show the results as the duration of transactions of the long type

increases from 10.0 s to 60.0 s in increments of 10.0 s.
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Figure 6.3: Performance Results for Varying Long Transaction Duration

XEL's advantage over FW increases as the duration of the long transaction type

lengthens. For a 60.0 s duration, XEL reduces the size of the log by a factor of 7.9

with only a 6.9% increase in disk bandwidth. Regardless of transaction duration, the

average rate of arrival of log records (in steady state) is the same for both FW and

XEL. At any given moment, FW must retain all log records that have been written
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since the �rst record of the oldest transaction, so the disk space required for FW is

roughly proportional to the duration of the longest transaction. However, XEL is able

to �lter out most log records from short transactions at the head of generation 0, so

XEL is largely una�ected by the duration of a small fraction of long transactions.

6.2.3 E�ect of Size of Data Log Records

This set of experiments examines the e�ect of the size of DLRs from the long (10.0 s)

transaction type. Each long-lived transaction still writes 4 DLRs, as before, but now the

size of each long transaction's DLRs varies from 100 Bytes up to 500 Bytes in increments

of 100 Bytes. Figures 6.4(a)-(d) present the results.
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Figure 6.4: Performance Results for Varying Size of DLRs from Long Transaction Type
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As the size of DLRs from long-lived transactions increases, XEL su�ers more than

FW. The proportion of log information, measured in Bytes, that must be forwarded to

generation 1 increases with the size of DLRs from long transactions, so disk space and

bandwidth for generation 1 both increase. Furthermore, the bandwidth for generation 0

increases, so records tend to move from tail to head faster. Most records from short

transactions are thrown away at the head of generation 0, so their faster movement

through generation 0 means that the LM does not need to keep track of them for as

long a period of time. This tends to decrease the overall main memory requirements for

XEL.

6.2.4 E�ect of Data Skew

This section examines the e�ect of data skew on the performance of XEL for a single

log stream. Suppose that there is some subset H of the set of all objects and that the

members of H receive a disproportionately large number of updates; these objects are

\hot spot" objects because they are updated much more frequently than other objects.

Let x, 0�x�1, be the ratio of the size of H to the total number of objects. Suppose

further that when a transaction must choose an object to update, the probability that

it chooses a member of H is 1�x. This simple de�nition provides a single parameter, x,

which represents an application's data skew. By varying x appropriately, it is possible

to control the amount of skew in the pattern of updates to data by an application's

transactions.

In this section's experiments, x ranges from 5�10�5 up to 0.5. In the case of

x=5�10�5, almost all the updates a�ect a set of only 500 objects. Such extremely

skewed distributions characterize databases with \hot spot" objects. When x=0.5, all

objects are updated equally often, on average. Figures 6.5(a)-(d) present the results.

Data skew has only a minor e�ect on XEL. Even for the most highly skewed distri-

bution, XEL requires only 48% more disk space and 5.5% more bandwidth than it does

for a completely unskewed distribution.

6.3 Parallel Logging

This section compares the performances of the three distribution policies for three dif-

ferent data skew speci�cations as the number of log streams increases. All experiments

in this section use the XEL method for disk space management within each log stream.

Let l be the number of log streams. The experiments in this section examine l=2k

for 0�k�6.
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Figure 6.5: Performance Results for Varying Data Skew
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Refer to section 6.2.4 for a de�nition of the data skew parameter, x. The experiments

in this section consider three cases of data skew: x=0.5 (no skew), x=0.01 (moderate

skew) and x=2�10�4 (high skew). In the case of x=2�10�4, 99.98% of the updates, on

average, a�ect a set of only 2,000 objects.

For the case of maximum data skew and the greatest number of log streams, the

average time between consecutive updates for a hot spot object becomes so short that

the transaction types de�ned for the previous sets of experiments (which involved only a

single log stream) are no longer feasbile. It is necessary to de�ne new transaction types

which would hold their write locks on objects for much shorter durations.

All experiments in this section specify the following two types of transactions. The

�rst is of 0.1 s duration and writes 2 DLRs, each of size 250 Bytes. The second lasts 2.0

s, in which time it writes 2 DLRs of size 250 Bytes each. Their relative probabilities of

occurrence are 0.99 and 0.01, respectively.

To provide su�cient bandwidth for 
ushing updates, each experiment speci�es 10�l

disk drives with a transfer time of 25 ms each. The conservative 25 ms time allows for

some read operations to be interspersed with writes.

The arrival rate is 100�l TPS and the simulation time is 500 s. All tests use two

generations. Recirculation is enabled for l�2 so that race conditions will not stall any

of the log streams 6. For each skew setting, the sizes of the two generations are found

such that disk space is minimized for l=1 (with recirculation disabled), subject to the

constraint that no transaction is killed. For l�2 and x=0.5 or x=0.01, the sizes of

generations 0 and 1 are both doubled. For l�2 and x=2�10�4, the size of generation

0 is quadrupled and double the size of generation 1 is doubled; the larger increase in

generation 0 for x=2�10�4 was chosen because it was found to yield substantially lower

bandwidth requirements for generation 1.

The evaluation criteria are disk bandwidth and main memory for normal logging

activity and elapsed time for recovery. When considering bandwidth, the results re
ect

the maximum total bandwidth (both generations) for any particular stream.

6To appreciate the subtlety of potential race conditions, suppose that recirculation in the last gener-

ation is disabled and imagine that two di�erent transactions update the same object in quick succession
and write DLRs to di�erent streams. Until the �rst REDO DLR becomes non-recoverable, the second

DLR must be either un
ushed or required (assuming that no other transaction subsequently updates the

object and commits). If the second DLR's stream is \faster" than the stream of the �rst DLR, it may

reach the head of the last generation of its log stream before the �rst DLR gets to the end of its stream.

The fast stream will be forced to stall until the slow stream has caught up. Similar situations can also

be imagined (such as for a DLR and the COMMIT TLR on which it depends). These interstream depen-

dencies can cause \fast" streams to synchronize with \slow" streams, which is generally undesirable for

performance reasons.
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6.3.1 No Skew

The results for the case of no skew (x=0.5) are presented in Figure 6.6. The sizes of

generations 0 and 1 are 10 and 5 blocks, respectively, for l=1; they are 20 and 10 blocks,

respectively, for l�2. Recovery time is dominated by the delay required to read in the

contents of the log from disk. The elapsed time for recovery is 76 ms for l=1 and 151

ms for l�2, regardless of the distribution policy.
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Figure 6.6: Disk Bandwidth and Memory Requirements vs. Parallelism (x=0.5)

All three distribution policies require approximately the same maximum bandwidth,

and the maximum bandwidth remains practically constant as the number of log streams

increases. Refer to Section 6.3.4 for an explanation of why the partitioned distribution

policy requires less main memory, compared to the other two policies, for all experiments.

6.3.2 Moderate Skew

Figure 6.7 shows the results for the moderate skew (x=0.01) case. The sizes of gener-

ations 0 and 1 are 10 and 5 blocks, respectively, for l=1; they are 20 and 10 blocks,

respectively, for l�2. The elapsed time for recovery is 76 ms for l=1 and 151 ms for

l�2, regardless of the distribution policy.

For all three policies, the maximum required bandwidth increases slightly with the

number of log streams. This behavior can be attributed to decreasing intervals between

successive updates to each object. The transaction arrival rate increases in proportion

to the number of log streams but the number of hot spot objects remains constant, so

the average duration between successive updates to any particular object is inversely

proportional to the number of log streams. At this skew setting, a REDO DLR becomes
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Figure 6.7: Disk Bandwidth and Memory Requirements vs. Parallelism (x=0.01)

more likely to have a required status, because of the lingering presence of a recoverable

DLR from a prior update to the same object, when the LM must decide whether or not

to forward the DLR from generation 0 to generation 1. In terms of maximum bandwidth,

the partitioned policy performs slightly worse than the other two because of static skew

e�ects.

The non-linear slope for main memory requirements can be explained similarly. The

COMMIT records from transactions are more likely to be forwarded into generation 1

because required REDO DLRs depend on them. Therefore, COMMIT records tend to

survive longer and the LM must continue to pay attention to all associated DLRs;

previously, the LM would have thrown away many of these COMMIT records at the head

of generation 0 instead of forwarding them, and any remaining REDO DLRs would

instantly become non-recoverable.

6.3.3 High Skew

Figure 6.8 shows the results for the case of high skew (x=2�10�4). The sizes of gen-

erations 0 and 1 are 10 and 5 blocks, respectively, for l=1; they are 40 and 10 blocks,

respectively, for l�2. The elapsed time for recovery is 76 ms for l=1 and 252 ms for

l�2, regardless of the distribution policy.

It is interesting to note that the bandwidth curves for the cyclic and random policies

slope up and then down, as the number of log streams increases. The initial increases

have a similar explanation as was given for the case of moderate skew. Namely, a

REDO DLR becomes more likely to be forwarded to generation 1 as the mean time
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Figure 6.8: Disk Bandwidth and Memory Requirements vs. Parallelism (x=2�10�4)

between updates decreases. As the throughput increases even further, the average time

between consecutive updates to an object becomes so short that a DLR is more likely

to become only recoverable by the time the LM must decide whether or not to forward

it to generation 1 because another transaction has already updated the same object and

committed.

6.3.4 Discussion

Regardless of skew, the partitioned distribution policy requires less main memory than

either cyclic or random because it takes advantage of the fact that all DLRs for a

particular object are directed to the same log stream; the object's LOT entry can be

located at the same processor node as the one that manages the cells for its DLRs

and can directly point to these cells. With the cyclic and random policies, an object's

LOT entry no longer points directly to the cells for its DLRs. Instead, it indicates the

streams where there are relevant DLRs for the object; local LOT tables at those streams

point directly to the corresponding cells. This indirection entails higher main memory

requirements.

In terms of disk bandwidth, all three distribution policies are approximately the

same for low data skew. For high data skew, partitioned su�ers noticeably from static

skew e�ects and so it requires signi�cantly more disk bandwidth than the other two.

The random and cyclic strategies both exhibit approximately the same behavior for all

data skews.
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Chapter 7

Conclusions

7.1 Lessons Learned

This thesis has proposed and evaluated a new variation of logging and recovery that is

well suited to highly concurrent database systems. Extended ephemeral logging (XEL),

a new disk management method that does not require periodic checkpoint operations,

is the cornerstone upon which the rest of the logging and recovery system is built. An

application's bandwidth requirements for log information may demand a collection of

log streams which work in parallel. Each log stream resides on a single disk drive or

possibly a small set of drives. XEL manages the disk space within each log stream.

Chapter 3 proved important safety and liveness properties for a simpli�ed version of

XEL that was expressed in terms of the I/O automata model [42], thereby imparting

con�dence in the correctness of XEL.

XEL's performance was experimentally evaluated in Chapter 6, using an event-driven

simulator. XEL was compared to the traditional \�rewall" (FW) disk management

method for a single stream of log records and the experimental results suggest that

XEL's advantage over FW increases under any of the following conditions:

� The lifetime of an application's longest transaction type increases.

� The amount of log information written by an application's longest transaction type

decreases.

� The probability of occurrence of an application's longest transaction type decreases

(but remains non-zero).
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When a system has multiple log streams, XEL can accommodate any distribution

policy but the partitioned policy generally requires less main memory space. Unless an

application updates a relatively small collection of objects much more frequently than

other objects in the database, all three oblivious distribution policies which Chapter 4

considered yield approximately equal loads on all log streams. However, the random and

cyclic distribution policies lead to better load balancing, compared to the partitioned

policy, if an application has a small collection of \hot spot" objects.

Log streams need not be especially large, in terms of storage space, when a system's

LM uses XEL to manage the disk space allocated for log information. Small log streams

and large main memories enable much faster recovery after a crash; a database system's

recovery manager (RM) can sequentially retrieve a log stream's contents from disk and

process them in a single pass. When multiple log streams exist, the RM processes them

all independently in parallel.

7.2 Importance of Results

This thesis widens the options available to DBMS designers. The �rewall (FW) method's

abstraction of a single FIFO queue for log information is inappropriate in some circum-

stances. In such circumstances, a DBMS designer may prefer to use the XEL method

instead.

If a small fraction of transactions have relatively long lifetimes, XEL retains the nec-

essary log information from these long transactions but reclaims the disk space occupied

by log records from much shorter transactions. Therefore, XEL can signi�cantly reduce

the size of the log for some applications. The primary bene�t of a much smaller log is

faster recovery after a crash. A smaller log may also decrease a system's cost.

Checkpoints are no longer a necessity with XEL. This eliminates the overhead (in

terms of computation, communication, disk bandwidth and disk space) and complexity

that accompany any disk management method which involves checkpoints (e.g., the FW

method). This advantage is especially welcome in highly concurrent systems that have

an arbitrarily large number of log streams and an arbitrarily large number of disk drives

on which the disk version of the database is kept; coordination for periodic checkpoints

in such a highly concurrent setting becomes cumbersome.

An arbitrarily large collection of disk drives provide the necessary bandwidth for

log information. As the size of this collection grows, the single FIFO queue abstraction

becomes increasingly awkward to implement. A more convenient abstraction is to view

the log as a collection of log streams that operate largely independently of each other.

This abstraction can be implemented e�ciently if XEL is used to manage the disk space

within each log stream.
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The simulation results presented in this thesis quantitatively demonstrate XEL's

e�ectiveness for a wide variety of applications and illustrate its strengths and weaknesses

compared to the traditional FW method.

7.3 Extensions

7.3.1 Non-volatile Region of Main Memory

Previous authors [15, 13, 39, 9, 53] have proposed system designs in which some (but

not all) of main memory is non-volatile. Battery backup to some portions of RAM

ensures that the contents will not be lost if the regular power supply is interrupted.

In such a system, parallel XEL can greatly reduce the disk bandwidth required for

log information so that much fewer disk drives are needed for the log. The youngest

generation (generation 0) for each log stream can be kept in non-volatile main memory;

the LM writes log records to disk only when space in non-volatile main memory has

been exhausted.

7.3.2 Log-Only Disk Management

Suppose a computer's main memory provides su�cient capacity to hold all the objects

of a database and that applications update most of these objects quite frequently. In

such a setting, a separate disk version of the database is super
uous. The most recently

committed value for each object can be kept in only the log. A few small changes to the

XEL algorithm yield a variant that meets the needs of this log-only situation. Without

a disk version of the database, UNDO DLRs are no longer needed. The status of each

REDO DLR is either required or not-required; a REDO DLR has status required if the

transaction which performed the update is still in progress or if the DLR is for the most

recently committed update to the object. Although older REDO DLRs for the same

object may still be recoverable, the LM doesn't need to keep track of them because it

will never erase the DLR for the most recently committed update to the object; hence,

these older REDO DLRs all have status not-required. Likewise, a COMMIT record can

have a status of either required or not-required; a COMMIT record is required if any only

if at least one DLR from the transaction is still required. The LM keeps track of only

COMMIT records which are required.

This log-only variant of XEL o�ers several advantages. First, it eliminates the ex-

pense and complexity that arise from managing a separate disk version of the database.

Second, the LM no longer needs to keep track of old stale records in the log, and this

implies lower main memory storage requirements for the LOT and LTT. Furthermore,

the fact that the LM keeps track of only required records means that the status �eld can
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be eliminated from each cell, thus yielding further reductions in main memory require-

ments.

7.3.3 Multiplexing of Log Streams

One possible drawback to XEL is that it may cause write operations to non-sequential

positions on disk. Movement between generations within a stream introduces random

disk I/O, which is generally much less e�cient than sequential I/O. For example, suppose

a log stream has two generations. When the LM must occasionally write a block of

forwarded log records to the tail of generation 1, it must seek to this track's location on

disk and wait for the block's location to rotate under the disk head. When the write

to generation 1 has �nished, the LM returns to the tail of generation 0, where it can

resume writing blocks to generation 0 in sequential order.

A LM with a su�ciently large collection of log disk drives can alleviate the need for

occasional non-sequential accesses to the log by multiplexing older generations from dif-

ferent streams, as illustrated in Figure 7.1 for a LM whose streams have two generations.

new
log
records

new
log
records

new
log
records

disk 1

disk 2

disk 3

disk 4

Figure 7.1: Multiplexing of Older Generations

With this con�guration, the LM can exploit completely sequential disk I/O when

writing log information to generation 0 of any particular log stream. When the LM

must forward log records to generation 1, it writes them to a physically di�erent disk

drive (or set of drives) so that no random I/O is required.

This technique of multiplexing older generations from di�erent streams permits quick

reclamation of the disk space allocated to log records from short transactions but doesn't
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su�er from any performance degradations due to random disk I/O to the log disks.

7.3.4 Choice of Generation Sizes

For a particular application, how many generations should each log stream have, and

what should be the sizes of these generations? Currently, no analytical methods are

available to answer these questions. The experiments reported in Chapter 6 relied on

simulation to determine the optimal con�guration for each particular case. Therefore,

formulation of an accurate analytic model to determine the optimal number of genera-

tions and their sizes for any particular application remains a challenging open problem.

The characteristics of an application may vary over time, and so the design of an

enhanced version of XEL that can adaptively alter its parameters in response to changing

conditions is another important open problem.

7.3.5 Fault Tolerance to Isolated Media Failures

This thesis has concentrated on fault tolerance to system failures (crashes) in which

the contents of main memory are lost but all information on non-volatile disk storage

remains intact. To tolerate media failures, in which information on disk is lost, a DBMS

must exploit redundancy. RAID [52, 51] and Parity Striping [23] have both recently

been proposed as solutions to the problem of isolated media failures. A parallel im-

plementation of XEL and RAID can be combined with little di�culty. Disk I/O for

log information is characterized by sequential transfers of large blocks of information,

and so level 3 RAID is most appropriate. A group of disk drives, one of which is used

only for parity information, constitute each log stream. The maximum bandwidth per

stream is now higher (compared to the simplistic situation of only one disk drive per

log stream), so fewer streams are required. In contrast, I/O for the disk version of the

database is characterized by random requests for small pieces of data, so level 5 RAID

or Parity Striping would be the best choice for it. The di�ering requirements of the LM

and CM provide a good example of a situation in which it is advantageous to employ

two di�erent levels of RAID in the same system.

RAID systems can be designed to provide very high reliability. For example, a 1000

disk level 5 RAID with a group size of 10 and a few standby spares could have a calculated

MTTF (mean time to failure) of over 45 years [52]. Isolated media failures pose very

little threat under such circumstances. Other components of the system may likely

fail before an irrecoverable media failure happens. Nevertheless, the mere threat of an

irrecoverable media failure may warrant attempts for further fault tolerance. A familiar

solution (see [5], for example) is to periodically dump the database's current state to an

archive version and maintain an archive log of all transactions which have executed since
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the archive version was dumped. The archive version of the database and the archive

log may be kept on tape rather than on disk. This thesis has not addressed the problem

of maintaining an archive log for a database which requires very high bandwidth for

log information. Another option, which is already practiced by some large commercial

users of databases, is to have two duplicate database systems running at geographically

separate sites to that a natural or man-made disaster at one site does not wipe out all

data. This option may be expensive, because it requires full duplication, but it does

provide good fault tolerance. In the event of a media failure at one site, the other site

still o�ers an up-to-date version of the database. The likelihood of simultaneous failures

at both sites ought to be very low. The provision of more e�cient means to ensure fault

tolerance to irrecoverable media failures remains a challenging open problem.

7.3.6 Fault Tolerance to Partial Failures

This thesis has conveniently assumed that the concurrent system on which the DBMS

executes is either completely up or completely down. In practice, some machines may

be able to continue operation at some processing nodes despite partial failures at other

nodes elsewhere within the same machine. When the system hardware allows such

\graceful degradataion", a DBMS designer might wish to structure the DBMS software

so that it too allows graceful degradation.

One obvious way to provide fault tolerance to partial failures is to duplicate all an

application's data structures and code. For example, all LOT entries at a particular

node would be duplicated at some other node elsewhere in the machine. Any update

to one copy of the these LOT entries must be applied to the other copy as well. Refer

to [4] for an example of a system which exploits software redundancy to tolerate partial

failures.

7.3.7 Support for Transition Logging

This thesis has always assumed physical state logging at the access path level. Some

DBMS designers may prefer other styles of logging. For example, the ARIES method

for logging and recovery [45] uses transition logging [30] and incorporates compensation

log records (CLRs) to undo the e�ects of previous updates to objects. If a LM performs

transition logging for an object and a transaction updates the object, the resulting log

record indicates only the operation that transformed the object's old value into its new

value; neither the old state nor the new state of the object is represented in the log. In

this context, what is the de�nition of a garbage log record, and what is a relevant log

record? How should the LM manage the LOT and LTT?

When a transaction performs an operation on an object, the resulting log record shall
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be called a FWD record (since it refers to an operation in the \forward" direction in

time). When the LM undos an operation, the resulting record is a CLR, as mentioned

above. In general, an operation described in a log record is not idempotent. If the

RM must undo an update by a transaction, it must �rst be sure that the version of the

object in the disk version of the database actually incorporates the transaction's original

update, lest an unwarranted undo action put the object into an incorrect state. One

way to synchronize the log and the disk version of the database is to keep a timestamp

with every object upon which the LM will perform transition logging. Suppose this

timestamp is an integer-valued counter (initially 0) and the LM increments the counter

every time it changes the object. Whenever the CM 
ushes an updated object to the disk

version of the database, the object's current timestamp accompanies it and resides with

it in the disk version of the database. Whenever the LM modi�es an object (in either

the \forward" or \backward" direction), it increments the timestamp and stores the new

timestamp value in the associated log record. When the RM must restore an object to

its most recently committed pre-crash state, it knows that the version of the object in

the disk version of the database already incorporates the e�ects of all operations whose

log records have timestamps less than or equal to that found with the object in the disk

version of the database. The RM must redo only those operations which are described

in subsequent log records from committed transactions. Similarly, the RM must undo

any operations that were performed by transactions which aborted or were interrupted

by the crash; some of these operations may temporally precede the current version of

the object in the disk version of the database.

The LM must retain all FWD and CLR log records for operations that temporally

follow the current version of the object in the disk version of the database. It must also

retain all FWD log records from uncommitted transactions that do not have correspond-

ing CLRs, regardless of whether these records temporally precede or follow the current

version of the object in the disk version of the database. If a transaction commits, the

LM must retain its COMMIT record until all FWD log records from the transaction have

been overwritten; otherwise, the RM could �nd a FWD log record which appears to be

from an uncommitted transaction but the log contains no subsequent CLR so the RM

ought to undo the operation described in the FWD record. If the LM writes a FWD log

record and later writes a CLR to undo the operation, it must retain the CLR in the log

until the FWD record has been overwritten; this ensures that the RM does not undo an

operation which has already been undone. These considerations dictate when COMMIT,

FWD and CLR records become garbage. The LOT and LTT can track the positions

and status values for FWD and CLR records just as it did for other types of log records.

7.3.8 Adaptive Distribution Policies

This thesis demonstrated that a simple oblivious distribution policy, such as random or

cyclic, can ensure excellent load balancing behavior in a system with arbitrarily many

log streams, where load balancing is de�ned in terms of the demanded bandwidth of each
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stream. However, there may still be reasons to pursue more sophisticated distribution

policies.

An adaptive distribution policy takes into account the current state of the system

when deciding the stream to which to send a log record; any such strategy is clearly not

oblivious. Although an adaptive strategy cannot achieve any improvements in terms of

balancing the demanded bandwidths of log streams, it can o�er other bene�ts. Each

log stream has a �xed number of bu�ers. If one stream's bu�ers are all completely

full temporarily, an adaptive strategy ought to redirect log records to other streams

which still have bu�er capacity available. Furthermore, the random and cyclic policies

make no attempt to exploit locality within a concurrent computer. As a system's degree

of concurrency scales up, global network bandwidth may become more limited and

locality may a�ect a database's overall performance. The partitioned policy, despite its

drawbacks in terms of load balancing, can provide good locality; a modi�ed variant of

the partitioned policy may yield the best solution, in terms of both load balancing and

locality. Log records are sent to streams according to the partitioned policy. However,

an overloaded log stream does not refuse to accept records if it can redirect them to

some other stream (preferably one that is nearby) that can accept more records.

Theoretical analysis of an adaptive distribution policy becomes quite complicated

because the system incorporates feedback. Such problems have classically been the

preserve of control systems theory. Theoretical analysis and experimental evaluation

of an adapative policy must take into the system's dynamic behavior. For example, a

system might exhibit oscillatory behavior under some conditions. These issues ought to

be thoroughly understood before any adaptive policy is chosen for use within a database

system.

7.3.9 Quick Resumption of Service After a Crash

The description of the RM's operation in Section 2.9 stated that normal operation re-

sumes after recovery activity has completely �nished. For some applications, availability

is very important and normal activity should resume as quickly as possible after a crash.

More sophisticated recovery algorithms for XEL may permit a database to start servic-

ing requests before recovery has entirely completed; normal operation and recovery are

overlapped. This remains an interesting open problem.

7.4 The Future of High Performance Databases

In the future, information will be plentiful, available and inexpensive; but it won't be

free. As computer and communications technology becomes pervasive in our society,

many o�ces and homes will be able to retrieve information from large databases. In
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general, the corporations which provide these information services will charge the con-

sumers appropriately. Fees will re
ect the value of the information to the consumer

and the cost to the producer for gathering, storing and distributing the information.

Database technology will provide not only the ability to store and retrieve large amounts

of diverse information. It will also provide a means to charge customers accordingly, so

as to ensure economic e�ciency.

Suppose an \information vendor" establishes a database which provides information

services to many millions of customers. If 10,000,000 customers happen to be using the

system at one time and each customer submits approximately one request every 100

seconds, say, this generates a load of 100,000 TPS (transactions per second) for the

billing database. This is enormous, compared to the best demonstrated performance of

today's systems.

The cost for maintaining billing information is important. It ought to be relatively

low, compared to the cost of the information itself, so that the price is not signi�cantly

in
ated by the need to charge a fee for each request.

These considerations suggest that high performance, low cost transaction processing

systems will play an important role in our society as we become information consumers

and many hundreds of millions of people and companies buy and sell information.

The work in this thesis is a step toward realizing this dream. However, it addresses

only a necessary condition (fault tolerance), not a su�cient condition. Much more

work remains to be done in many other areas. The problems of concurrency control,

query optimization and transaction management all deserve re-examination within the

context of highly concurrent database systems that support very high rates of transaction

processing.
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Appendix A

Theorems for Correctness Proof

of XEL

This appendix contains proofs for the safety and liveness properties of XEL. These proofs

supplements Chapter 3 in the main body of the thesis.

A.1 Proof of Possibilities Mapping

The following lemmas and theorems will prove that f , as de�ned in Section 3.4.3, satis�es

the su�cient conditions (stated in [42, 43]) to be a possibilities mapping from LM to SLM.

Theorem A.1 8s0, s02start(LM), 9t0 s.t. (t02start(SLM)) ^ (t02f(s0))

Proof:

� (( (curr reqd dlr=?)

^ (pending ts assign=;)

^ (8x, x2N , timestamp
x
=?)

^ (8x, x2N , statusx=UNFL) ) in state s0)

^ (t2f(s0))

=) ((keep=?) ^ (let erase=;) ^ (wait erase=;)) in state t

� start(SLM)=ft0g

where ((keep=?) ^ (let erase=;) ^ (wait erase=;)) in state t0

� ((keep=?) ^ (let erase=;) ^ (wait erase=;)) in state t0 =) t=t0

� (t=t0) ^ (t2f(s0)) =) t02f(s0)

and thus the theorem has been proven. 2
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Lemma A.2 (lm keep(x) in state s)

^ (t2f(s))

=)

keep=x in state t

Proof:

By contradiction. Assume keep 6=x in state t.

� (t2f(s)) ^ (keep6=x in state t)

=) Either

(1) (lm let(x) in state s) ^ (x2let erase in state t)

� lm let(x) in state s =) :lm keep(x) in state s

by de�nition of lm let(x) and lm keep(x)

But this is a contradiction, so this case cannot be true.
or

(2) (lm wait(x) in state s) ^ (x2wait erase in state t)

� lm wait(x) in state s

=) statusx=RECV in state s by de�nition of lm wait(x)

� statusx=RECV in state s

=) curr reqd dlr6=x in state s by Invariant 3.6

� curr reqd dlr6=x in state s

=) :lm keep(x) in state s by de�nition of lm keep(x)

But this is a contradiction, so this case cannot be true.
or

(3) (:recvbl(x) in state s)

^ (((keep6=x) ^ (x62let erase) ^ (x 62wait erase)) in state t)

� lm keep(x) in state s

=) curr reqd dlr=x in state s by de�nition of lm keep(x)

� curr reqd dlr=x in state s =) recvbl(x) in state s

by Invariants 3.6 and 3.8 and de�nition of recvbl(x)

But this is a contradiction, so this case cannot be true.

� Therefore, every possible case leads to a contradiction and so the original

assumption must be false. Thus the lemma has been proven. 2

Lemma A.3 (lm let(x) in state s)

^ (t2f(s))

=)

x2let erase in state t

Proof:

By contradiction. Assume x 62let erase in state t.

� (t2f(s)) ^ (x62let erase in state t)

=) Either
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(1) (lm keep(x) in state s) ^ (keep=x in state t)

� lm keep(x) in state s =) :lm let(x) in state s

by de�nition of lm keep(x) and lm let(x)

But this is a contradiction, so this case cannot be true.
or

(2) (lm wait(x) in state s) ^ (x2wait erase in state t)

� lm wait(x) in state s

=) statusx=RECV in state s by de�nition of lm wait(x)

� statusx=RECV in state s

=) curr reqd dlr6=x in state s by Invariant 3.6

� ((curr reqd dlr6=x) ^ (lm wait(x))) in state s

=) :lm let(x) in state s by de�nition of lm let(x)

But this is a contradiction, so this case cannot be true.
or

(3) (:recvbl(x) in state s)

^ (((keep6=x) ^ (x62let erase) ^ (x 62wait erase)) in state t)

� lm let(x) in state s

=) ((curr reqd dlr=x) _ (recvbl(x))) in state s

by de�nition of lm let(x)

� ((curr reqd dlr=x) _ (recvbl(x))) in state s

=) recvbl(x) in state s

by Invariants 3.6 and 3.8 and de�nition of recvbl(x)

But this is a contradiction, so this case cannot be true.

� Therefore, every possible case leads to a contradiction and so the original

assumption must be false. Thus the lemma has been proven. 2

Lemma A.4 (lm wait(x) in state s)

^ (t2f(s))

=)

x2wait erase in state t

Proof:

By contradiction. Assume x 62wait erase in state t.

� (t2f(s)) ^ (x62wait erase in state t)

=) Either

(1) (lm keep(x) in state s) ^ (keep=x in state t)

� lm keep(x) in state s

=) curr reqd dlr=x in state s by de�nition of lm keep(x)

� curr reqd dlr=x in state s

=) statusx 6=RECV in state s by Invariant 3.6

� statusx 6=RECV in state s

=) :lm wait(x) in state s by de�nition of lm wait(x)

But this is a contradiction, so this case cannot be true.
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or

(2) (lm let(x) in state s) ^ (x2let erase in state t)

� lm let(x) in state s

=) ((curr reqd dlr=x) _ (:lm wait(x))) in state s

by de�nition of lm let(x)

� ((curr reqd dlr=x) _ (:lm wait(x))) in state s

=) :lm wait(x) in state s by Invariant 3.6

But this is a contradiction, so this case cannot be true.
or

(3) (:recvbl(x) in state s)

^ (((keep6=x) ^ (x62let erase) ^ (x 62wait erase)) in state t)

� lm wait(x) in state s

=) statusx=RECV in state s by de�nition of lm wait(x)

� statusx=RECV in state s

=) timestamp
x
2N in state s by Invariant 3.7

� ((statusx=RECV) ^ (timestamp
x
2N )) in state s

=) recvbl(x) in state s by de�nition of recvbl(x)

But this is a contradiction, so this case cannot be true.

� Therefore, every possible case leads to a contradiction and so the original

assumption must be false. Thus the lemma has been proven. 2

Lemma A.5 (:recvbl(x) in state s)

^ (t2f(s))

=)

((keep6=x) ^ (x 62let erase) ^ (x2wait erase)) in state t

Proof:

By contradiction.

Assume ((keep=x) _ (x2let erase) _ (x2wait erase)) in state t.

� (t2f(s)) ^ (((keep=x) _ (x2let erase) _ (x2wait erase)) in state t)

=) Either

(1) (lm keep(x) in state s) ^ (keep=x in state t)

� lm keep(x) in state s

=) curr reqd dlr=x in state s by de�nition of lm keep(x)

� curr reqd dlr=x in state s =) recvbl(x) in state s

by Invariants 3.6 and 3.8 and de�nition of recvbl(x)

But this is a contradiction, so this case cannot be true.

or

(2) (lm let(x) in state s) ^ (x2let erase in state t)

� lm let(x) in state s

=) ((curr reqd dlr=x) _ (recvbl(x))) in state s

by de�nition of lm let(x)
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� ((curr reqd dlr=x) _ (recvbl(x))) in state s

=) recvbl(x) in state s

by Invariants 3.6 and 3.8 and de�nition of recvbl(x)

But this is a contradiction, so this case cannot be true.
or

(3) (lm wait(x) in state s) ^ (x2wait erase in state t)

� lm wait(x) in state s =) statusx=RECV in state s

by de�nition of lm wait(x)

� statusx=RECV in state s

=) timestamp
x
2N in state s by Invariant 3.7

� ((statusx=RECV) ^ (timestamp
x
2N )) in state s

=) recvbl(x) in state s by de�nition of recvbl(x)

But this is a contradiction, so this case cannot be true.

� Therefore, every possible case leads to a contradiction and so the original

assumption must be false. Thus the lemma has been proven. 2

Lemma A.6 ^ (recvbl(x), x2N , in state s)

^ (t2f(s))

=)

((keep=x) _ (x2let erase) _ (x2wait erase)) in state t

Proof:

By contradiction.

Assume ((keep6=x) ^ (x 62let erase) ^ (x62wait erase)) in state t.

� (t2f(s)) ^ (((keep6=x) ^ (x62let erase) ^ (x62wait erase)) in state t)

=) :recvbl(x) in state s by De�nition 3.1

But this contradicts the lemma's predicate. Therefore, the initial assumption

must be false and thus the lemma has been proven. 2

Lemma A.7 (s is a reachable state of LM)

^ (recvbl(x), x2N , in state s)

^ (t2f(s))

=)

((let erase 6=;) _ (wait erase 6=;)) in state t

Proof:

� (recvbl(x) in state s) ^ (t2f(s))

=) ((keep=x) _ (x2let erase) _ (x2wait erase)) in state t

by Lemma A.6

� Either

(1) keep=x in state t
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� t is a reachable state

=) ((keep=?) _ (let erase 6=;) _ (wait erase 6=;)) in state t

by Invariant 3.1

� (keep=x, x2N , in state t)

^ (((keep=?) _ (let erase 6=;) _ (wait erase 6=;)) in state t)

=) ((let erase6=;) _ (wait erase 6=;)) in state t
or

(2) keep 6=x in state t

� (keep6=x, x2N , in state t)

^ (((keep=x) _ (x2let erase) _ (x2wait erase)) in state t)

=) ((x2let erase) _ (x2wait erase)) in state t

� ((x2let erase) _ (x2wait erase)) in state t

=) ((let erase6=;) _ (wait erase 6=;)) in state t

Therefore, the desired result is obtained for both possible cases and thus

the lemma has been proven. 2

Lemma A.8 (s is a reachable state of LM)

^ (6 9x, x2N , s.t. recvbl(x), in state s)

^ (t2f(s))

=)

((let erase=;) ^ (wait erase=;)) in state t

Proof:

By contradiction. Assume ((let erase 6=;) _ (wait erase 6=;)) in state t

� (((let erase 6=;) _ (wait erase6=;)) in state t)

^ (((?62let erase) ^ (?62wait erase)) in state t)

=) 9x, x2N , s.t. ((x2let erase) _ (x2wait erase)) in state t

by Invariant 3.5

� (((x2let erase) _ (x2wait erase)) in state t) ^ (t2f(s))

=) ((lm let(x)) _ (lm wait(x))) in state s by Lemmas A.3 and A.4

� ((lm let(x)) _ (lm wait(x))) in state s =) recvbl(x) in state s

by de�nitions of lm let(x) and lm wait(x),

and by Invariants 3.6, 3.7 and 3.8

But this contradicts the lemma's predicate, and so the original assumption

must be false. Thus the lemma has been proven. 2

Theorem A.9 (si�1 is a reachable state of LM)

^ (�i=COMMITx)

^ ((si�1,COMMITx,si)2steps(LM))

^ (t'2f(si�1))

=)

9t s.t. ((t',COMMITx,t)2steps(SLM)) ^ (t2f(si))
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Proof:

� �i=COMMITx =) curr reqd dlr=x in state si

� Either

(1) 9y, y 6=x, s.t. recvbl(y) in state si�1

� (recvbl(y) in state si�1) ^ (�i=COMMITx) =) recvbl(y) in state si

� ((curr reqd dlr=x) ^ (recvbl(y), y 6=x)) in state si
=) lm keep(x) in state si

� (recvbl(y) in state si�1) ^ (t'2f(si�1))

=) ((let erase6=;) _ (wait erase 6=;)) in state t'

by Lemma A.7

� (((let erase6=;) _ (wait erase 6=;)) in state t')

^ ((t',COMMITx,t)2steps(SLM))
=) x=keep in state t

� Either

(i) 9w, w 6=x, s.t. curr reqd dlr=w in state si�1

� curr reqd dlr=w in state si�1
=) ((recvbl(w)) ^ (statusw 6=RECV)) in state si�1

by Invariants 3.6 and 3.8

� (((recvbl(w)) ^ (statusw 6=RECV)) in state si�1)

^ (�i=COMMITx)

=) ((recvbl(w)) ^ (statusw 6=RECV)) in state si

� (�i=COMMITx) ^ (w 6=x) =) curr reqd dlr6=w in state si

� ( (curr reqd dlr 6=w)

^ (recvbl(w))

^ (statusw 6=RECV) ) in state si
=) lm let(w) in state si

� curr reqd dlr=w in state si�1
=) ((lm keep(w)) _ (lm let(w))) in state si�1

� (((lm keep(w)) _ (lm let(w))) in state si�1) ^ (t'2f(si�1))

=) ((keep=w) _ (w2let erase)) in state t'

by Lemmas A.2 and A.3

� (((keep=w) _ (w2let erase)) in state t')

^ ((t',COMMITx,t)2steps(SLM))
=) w2let erase in state t

or

(ii) 6 9w, w 6=x, s.t. curr reqd dlr=w in state si�1

� 6 9w, w 6=x, s.t. curr reqd dlr=w in state si�1
=) 6 9w, w 6=x, s.t. lm keep(w) in state si�1

� 8z, z 6=x, (lm let(z) in state si�1) ^ (�i=COMMITx)

=) lm let(z) in state si

� 8z, z 6=x, (lm let(z) in state si�1) ^ (t'2f(si�1))

=) z2let erase in state t' by Lemma A.3
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� 8z, z 6=x, (z2let erase in state t') ^ ((t',COMMITx,t)2steps(SLM))

=) z2let erase in state t
� 8z, z 6=x, (lm wait(z) in state si�1) ^ (�i=COMMITx)

=) lm wait(z) in state si

� 8z, z 6=x, (lm wait(z) in state si�1) ^ (t'2f(si�1))

=) z2wait erase in state t' by Lemma A.4

� 8z, z 6=x, (z2wait erase in state t') ^ ((t',COMMITx,t)2steps(SLM))

=) z2wait erase in state t
or

(2) 6 9y, y 6=x, s.t. recvbl(y) in state si�1

� (6 9y, y 6=x, s.t. recvbl(y) in state si�1) ^ (�i=COMMITx)

=) 6 9y, y 6=x, s.t. recvbl(y) in state si

� ((curr reqd dlr=x) ^ (6 9y, y 6=x, s.t. recvbl(y))) in state si
=) lm let(x) in state si

� (6 9y, y 6=x, s.t. recvbl(y) in state si�1) ^ (t'2f(si�1))

=) ((let erase=;) ^ (wait erase=;)) in state t'

by Lemma A.8

� (((let erase=;) ^ (wait erase=;)) in state t')

^ ((t',COMMITx,t)2steps(SLM))

=) ((keep=?) ^ (x2let erase)) in state t

� 8z, z 6=x, (:recvbl(z) in state si�1) ^ (�i=COMMITx) =) :recvbl(z) in state si

� 8z, z 6=x, (:recvbl(z) in state si�1) ^ (t'2f(si�1))

=) ((keep6=z) ^ (z 62let erase) ^ (z 62wait erase)) in state t'

by Lemma A.5

� 8z, z 6=x, (((keep 6=z) ^ (z 62let erase) ^ (z 62wait erase)) in state t')

^ ((t',COMMITx,t)2steps(SLM))

=) ((keep6=z) ^ (z 62let erase) ^ (z 62wait erase)) in state t

� Therefore, from the above deductions it follows that

t2f(si) by De�nition 3.1

and thus the theorem has been proven. 2

Theorem A.10 (si�1 is a reachable state of LM)

^ (�i=ERASABLEx)

^ ((si�1,ERASABLEx,si)2steps(LM))

^ (t'2f(si�1))

=)

9t s.t. ((t',ERASABLEx,t)2steps(SLM)) ^ (t2f(si))

Proof:

� �i=ERASABLEx =) x2pending erasable in state si�1

� x2pending erasable in state si�1
=) ((statusx=RECV) ^ (pending ack

x
=F)) in state si�1

by Invariants 3.14 and 3.12
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� (((statusx=RECV) ^ (pending ack
x
=F)) in state si�1) ^ (�i=ERASABLEx)

=) lm wait(x) in state si
� x2pending erasable in state si�1

=) ((statusx=RECV) ^ (curr reqd dlr6=x) ^ (timestamp
x
2N ))

in state si�1
by Invariants 3.14, 3.6 and 3.7

� ( (statusx=RECV)

^ (curr reqd dlr 6=x)

^ (timestamp
x
2N )

^ (x2pending erasable)) in state si�1
=) lm let(x) in state si�1 by de�nition of lm let(x)

� (lm let(x) in state si�1) ^ (t'2f(si�1)) =) x2let erase in state t'

by Lemma A.3

� (x2let erase in state t') ^ ((t',ERASABLEx,t)2steps(SLM))

=) x2wait erase in state t
� 8z, z 6=x, (lm keep(z) in state si�1) ^ (�i=ERASABLEx)

=) lm keep(z) in state si

� 8z, z 6=x, (lm keep(z) in state si�1) ^ (t'2f(si�1))

=) keep=z in state t' by Lemma A.3

� 8z, z 6=x, (keep=z in state t') ^ ((t',ERASABLEx,t)2steps(SLM))

=) keep=z in state t

� 8z, z 6=x, (lm let(z) in state si�1) ^ (�i=ERASABLEx) =) lm let(z) in state si

� 8z, z 6=x, (lm let(z) in state si�1) ^ (t'2f(si�1))

=) z2let erase in state t' by Lemma A.3

� 8z, z 6=x, (z2let erase in state t') ^ ((t',ERASABLEx,t)2steps(SLM))

=) z2let erase in state t
� 8z, z 6=x, (lm wait(z) in state si�1) ^ (�i=ERASABLEx)

=) lm wait(z) in state si

� 8z, z 6=x, (lm wait(z) in state si�1) ^ (t'2f(si�1))

=) z2wait erase in state t' by Lemma A.4

� 8z, z 6=x, (z2wait erase in state t') ^ ((t',ERASABLEx,t)2steps(SLM))

=) z2wait erase in state t
� 8z, z 6=x, (:recvbl(z) in state si�1) ^ (�i=ERASABLEx)

=) :recvbl(z) in state si

� 8z, z 6=x, (:recvbl(z) in state si�1) ^ (t'2f(si�1))

=) ((keep6=z) ^ (z 62let erase) ^ (z 62wait erase)) in state t'

by Lemma A.5

� 8z, z 6=x, (((keep 6=z) ^ (z 62let erase) ^ (z 62wait erase)) in state t')

^ ((t',ERASABLEx,t)2steps(SLM))

=) ((keep6=z) ^ (z 62let erase) ^ (z 62wait erase)) in state t

� Therefore, from the above deductions it follows that

t2f(si) by De�nition 3.1

and thus the theorem has been proven. 2
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Theorem A.11 (si�1 is a reachable state of LM)

^ (�i=ERASEx)

^ ((si�1,ERASEx,si)2steps(LM))

^ (t'2f(si�1))

=)

9t s.t. ((t',ERASEx,t)2steps(SLM)) ^ (t2f(si))

Proof:

� �i=ERASEx =) x2can erase in state si�1

� x2can erase in state si�1
=) lm wait(x) in state si�1 by Invariants 3.14, 3.13 and 3.12

� lm wait(x) in state si�1
=) 6 9v s.t. <x,v>2pending ts assign in state si�1 by Invariant 3.9

� (6 9v s.t. <x,v>2pending ts assign in state si�1) ^ (�i=ERASEx)

=) :recvbl(x) in state si

� (lm wait(x) in state si�1) ^ (t'2f(si�1))

=) x2wait erase in state t' by Lemma A.4

� x2wait erase in state t'

=) ((keep6=x) ^ (x62let erase)) in state t' by Invariant 3.4

� (((keep 6=x) ^ (x62let erase)) in state t') ^ ((t',ERASEx,t)2steps(SLM))

=) ((keep6=x) ^ (x62let erase) ^ (x 62wait erase)) in state t

� Either

(1) 9w, w2N , s.t. curr reqd dlr=w in state si�1

� (curr reqd dlr=w in state si�1) ^ (�i=ERASEx)

=) curr reqd dlr=w in state si
� ((curr reqd dlr=w) ^ (statusx=RECV)) in state si�1

=) w 6=x by de�nition of lm wait(x) and Invariant 3.6

� lm wait(x) in state si�1
=) recvbl(x) in state si�1 by Invariant 3.7

� ((curr reqd dlr=w) ^ (recvbl(x)) ^ (w 6=x)) in state si�1
=) lm keep(w) in state si�1

� (lm keep(w) in state si�1) ^ (t'2f(si�1))

=) keep=w in state t' by Lemma A.2

� Either

(i) 9y, y 62fx,wg, s.t. recvbl(y) in state si�1

� (recvbl(y) in state si�1) ^ (�i=ERASEx) ^ (y 6=x)

=) recvbl(y) in state si

� ((curr reqd dlr=w) ^ (9y, y 6=w, s.t. recvbl(y))) in state si
=) lm keep(w) in state si

by de�nition of lm keep(w)
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� (recvbl(y) in state si�1) ^ (t'2f(si�1))

=) ((keep=y) _ (y2let erase) _ (y2wait erase))

in state t'

by Lemma A.6

� (( (keep=y)

_ (y2let erase)

_ (y2wait erase)) in state t')

^ (keep=w in state t')

^ (y 6=w)

=) ((y2let erase) _ (y2wait erase)) in state t'

� (( (keep=w)

^ ((y2let erase) _ (y2wait erase))) in state t')

^ ((t',ERASEx,t)2steps(SLM))
=) keep=w in state t

or

(ii) 6 9y, y 62fx,wg, s.t. recvbl(y) in state si�1

� (6 9y, y 62fx,wg, s.t. recvbl(y) in state si�1) ^ (�i=ERASEx)

=) 6 9y, y 6=w, s.t. recvbl(y) in state si

� ((curr reqd dlr=w) ^ (6 9y, y 6=w, s.t. recvbl(y))) in state si
=) lm let(w) in state si

� x2wait erase in state t'

=) x62let erase in state t' by Invariant 3.4

� keep=w in state t'

=) ((w 62let erase) ^ (w 62wait erase)) in state t'

by Invariants 3.4 and 3.3

� (6 9y, y 62fx,wg, s.t. recvbl(y) in state si�1) ^ (t'2f(si�1))

=) 8y, y 62fx,wg, ( (keep6=y)

^ (y 62let erase)

^ (y 62wait erase) ) in state t'
by Lemma A.5

� ((x62let erase) ^ (x2wait erase) in state t')

^ (((w 62let erase) _ (w 62wait erase)) in state t')

^ (8y, y 62fx,wg, ( (keep 6=y)

^ (y 62let erase)

^ (y 62wait erase) ) in state t')

=) ((let erase=;) ^ (wait erase=fxg)) in state t'

� (( (keep=w)

^ (let erase=;)

^ (wait erase=fxg)) in state t')

^ ((t',ERASEx,t)2steps(SLM))

=) ((keep=?) ^ (w2let erase)) in state t
or

(2) 6 9w, w2N , s.t. curr reqd dlr=w in state si�1
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� 6 9w, w2N , s.t. curr reqd dlr=w in state si�1
=) 6 9w, w2N , s.t. lm keep(z) in state si�1

� 8z, z 6=x, (lm let(z) in state si�1) ^ (�i=ERASEx) =) lm let(z) in state si

� 8z, z 6=x, (lm let(z) in state si�1) ^ (t'2f(si�1))

=) z2let erase in state t' by Lemma A.3

� 8z, z 6=x, (z2let erase in state t') ^ ((t',ERASEx,t)2steps(SLM))

=) z2let erase in state t
� 8z, z 6=x, (lm wait(z) in state si�1) ^ (�i=ERASEx) =) lm wait(z) in state si

� 8z, z 6=x, (lm wait(z) in state si�1) ^ (t'2f(si�1))

=) z2wait erase in state t' by Lemma A.4

� 8z, z 6=x, (z2wait erase in state t') ^ ((t',ERASEx,t)2steps(SLM))

=) z2wait erase in state t
� 8z, z 6=x, (:recvbl(z) in state si�1) ^ (�i=ERASEx) =) :recvbl(z) in state si

� 8z, z 6=x, (:recvbl(z) in state si�1) ^ (t'2f(si�1))

=) ((keep6=z) ^ (z 62let erase) ^ (z 62wait erase)) in state t'

by Lemma A.5

� 8z, z 6=x, (((keep 6=z) ^ (z 62let erase) ^ (z 62wait erase)) in state t')

^ ((t',ERASEx,t)2steps(SLM))

=) ((keep6=z) ^ (z 62let erase) ^ (z 62wait erase)) in state t

� Therefore, from the above deductions it follows that

t2f(si) by De�nition 3.1

and thus the theorem has been proven. 2

Lemma A.12 (si�1 is a reachable state of LM)

^ (lm keep(z) in state si�1)

^ (�i=ACK ASSIGNx)

=)

lm keep(z) in state si

Proof:

� lm keep(z) in state si�1
=) ((curr reqd dlr=z) ^ (9y, y 6=z, s.t. recvbl(y))) in state si�1

� ((curr reqd dlr=z) ^ (9y, y 6=z, s.t. recvbl(y))) in state si�1
=) recv tss6=; in state si�1 by Invariant 3.17

� (((curr reqd dlr=z) ^ (recv tss 6=;)) in state si�1) ^ (�i=ACK ASSIGNx)

=) curr reqd dlr=z in state si
� (recvbl(y) in state si�1) ^ (�i=ACK ASSIGNx) =) recvbl(y) in state si

� ((curr reqd dlr=z) ^ (recvbl(y), y 6=z)) in state si =) lm keep(z) in state si
and thus the lemma has been proven. 2
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Lemma A.13 (si�1 is a reachable state of LM)

^ (lm let(z) in state si�1)

^ (�i=ACK ASSIGNx)

=)

lm let(z) in state si

Proof:

� lm let(z) in state si�1

=) Either

(1) ((curr reqd dlr=z) ^ (6 9y, y 6=z, s.t. recvbl(y))) in state si�1

� (6 9y, y 6=z, s.t. recvbl(y) in state si�1) ^ (�i=ACK ASSIGNx)

=) 6 9y, y 6=z, s.t. recvbl(y) in state si
� curr reqd dlr=z in state si�1

=) ((recvbl(z)) ^ (statusz 6=RECV)) in state si�1
by Invariants 3.6 and 3.8

� (((recvbl(z)) ^ (statusz 6=RECV)) in state si�1)

^ (�i=ACK ASSIGNx)

=) ((recvbl(z)) ^ (statusz 6=RECV)) in state si

� ( ( 6 9y, y 6=z, s.t. recvbl(y))

^ (recvbl(z))

^ (statusz 6=RECV) ) in state si
=) lm let(z) in state si

or

(2) ((curr reqd dlr 6=z) ^ (recvbl(z)) ^ (:lm wait(z))) in state si�1

� (( (curr reqd dlr6=z)

^ (recvbl(z))

^ (:lm wait(z)) ) in state si�1)

^ (�i=ACK ASSIGNx)

=) ((curr reqd dlr6=z) ^ (recvbl(z)) ^ (:lm wait(z)))

in state si
� ((curr reqd dlr6=z) ^ (recvbl(z)) ^ (:lm wait(z))) in state si

=) lm let(z) in state si by de�nition of lm let(z)

� For both possible cases, the desired result is obtained and thus the lemma has

been proven. 2

Theorem A.14 (si�1 is a reachable state of LM)

^ (�i=ACK ASSIGNx)

^ ((si�1,ACK ASSIGNx,si)2steps(LM))

^ (t'2f(si�1))

=)

t'2f(si)

Proof:
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� 8z, z2N , (lm keep(z) in state si�1) ^ (t'2f(si�1))

=) keep=z in state t' by Lemma A.2

� 8z, z2N , (lm keep(z) in state si�1) ^ (�i=ACK ASSIGNx)

=) lm keep(z) in state si by Lemma A.12

� 8z, z2N , (lm let(z) in state si�1) ^ (t'2f(si�1))

=) z2let erase in state t' by Lemma A.3

� 8z, z2N , (lm let(z) in state si�1) ^ (�i=ACK ASSIGNx)

=) lm let(z) in state si by Lemma A.13

� 8z, z2N , (lm wait(z) in state si�1) ^ (t'2f(si�1))

=) z2wait erase in state t' by Lemma A.4

� 8z, z2N , (lm wait(z) in state si�1) ^ (�i=ACK ASSIGNx)

=) lm wait(z) in state si

� 8z, z2N , (:recvbl(z) in state si�1) ^ (t'2f(si�1))

=) ((keep6=z) ^ (z 62let erase) ^ (z2wait erase)) in state t'

by Lemma A.5

� 8z, z2N , (:recvbl(z) in state si�1) ^ (�i=ACK ASSIGNx)

=) :recvbl(z) in state si
� Therefore, from the above deductions it follows that

t'2f(si) by De�nition 3.1

and thus the theorem has been proven. 2

Theorem A.15 (si�1 is a reachable state of LM)

^ (�i=ACK CS RECVx)

^ ((si�1,ACK CS RECVx,si)2steps(LM))

^ (t'2f(si�1))

=)

t'2f(si)

Proof:

� 8z, z2N , (lm keep(z) in state si�1) ^ (t'2f(si�1))

=) keep=z in state t' by Lemma A.2

� 8z, z2N ,

(lm keep(z) in state si�1) ^ (�i=ACK CS RECVx) =) lm keep(z) in state si

� 8z, z2N , (lm let(z) in state si�1) ^ (t'2f(si�1))

=) z2let erase in state t' by Lemma A.3

� 8z, z2N ,

(lm let(z) in state si�1) ^ (�i=ACK CS RECVx) =) lm let(z) in state si

� 8z, z2N , (lm wait(z) in state si�1) ^ (t'2f(si�1))

=) z2wait erase in state t' by Lemma A.4

� 8z, z2N ,

(lm wait(z) in state si�1) ^ (�i=ACK CS RECVx) =) lm wait(z) in state si
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� 8z, z2N , (:recvbl(z) in state si�1) ^ (t'2f(si�1))

=) ((keep6=z) ^ (z 62let erase) ^ (z2wait erase)) in state t'

by Lemma A.5

� 8z, z2N ,

(:recvbl(z) in state si�1) ^ (�i=ACK CS RECVx) =) :recvbl(z) in state si
� Therefore, from the above deductions it follows that

t'2f(si) by De�nition 3.1

and thus the theorem has been proven. 2

Lemma A.16 (si�1 is a reachable state of LM)

^ (lm keep(z) in state si�1)

^ (�i=<DLR GONE,u>)

=)

lm keep(z) in state si

Proof:

� lm keep(z) in state si�1
=) ((curr reqd dlr=z) ^ (9y, y 6=z, s.t. recvbl(y))) in state si�1

by de�nition of lm keep(z)

� ((curr reqd dlr6=y) ^ (recvbl(y))) in state si�1
=) 9v, v2N , s.t.

( ((<y,v>2pending ts assign) _ (timestamp
y
=v))

^ (v2recv tss)) in state si�1
by Invariant 3.17

� �i=<DLR GONE,u>

=) 9x s.t. ((statusx=NONR) ^ (timestamp
x
=u)) in state si�1

� statusx=NONR in state si�1
=) 6 9w s.t. <x,w>2pending ts assign in state si�1 by Invariant 3.9

� (( 6 9w s.t. <x,w>2pending ts assign) ^ (statusx=NONR)) in state si�1
=) :recvbl(x) in state si�1

� ((recvbl(y)) ^ (:recvbl(x))) in state si�1 =) x 6=y

� ( ((<y,v>2pending ts assign) _ (timestamp
y
=v, v2N ))

^ (timestamp
x
=u)

^ (x6=y)) in state si�1
=) u 6=v by Invariant 3.16

� (((curr reqd dlr=z) ^ (v2recv tss)) in state si�1)

^ (�i=<DLR GONE,u>)

^ (u6=v)
=) curr reqd dlr=z in state si

� (9y, y 6=z, s.t. recvbl(y) in state si�1) ^ (�i=<DLR GONE,u>)

=) 9y, y 6=z, s.t. recvbl(y) in state si

� ((curr reqd dlr=z) ^ (9y, y 6=z, s.t. recvbl(y))) in state si
=) lm keep(z) in state si

and thus the lemma has been proven. 2

142



Lemma A.17 (si�1 is a reachable state of LM)

^ (lm let(z) in state si�1)

^ (�i=<DLR GONE,u>)

=)

lm let(z) in state si

Proof:

� lm let(z) in state si�1

=) Either

(1) ((curr reqd dlr=z) ^ (6 9y, y 6=z, s.t. recvbl(y))) in state si�1

� curr reqd dlr=z in state si�1
=) ((recvbl(z)) ^ (statusz 6=RECV)) in state si�1

by Invariants 3.6 and 3.8

� (( (6 9y, y 6=z, s.t. recvbl(y))

^ (recvbl(z))

^ (statusz 6=RECV)) in state si�1)

^ (�i=<DLR GONE,u>)

=) ( (6 9y, y 6=z, s.t. recvbl(y))

^ (recvbl(z))

^ (statusz 6=RECV)) in state si

� ( ( 6 9y, y 6=z, s.t. recvbl(y))

^ (recvbl(z))

^ (statusz 6=RECV) ) in state si
=) lm let(z) in state si by de�nition of lm let(z)

or

(2) ((curr reqd dlr 6=z) ^ (recvbl(z)) ^ (:lm wait(z))) in state si�1

� (( (curr reqd dlr6=z)

^ (recvbl(z))

^ (:lm wait(z)) ) in state si�1)

^ (�i=<DLR GONE,u>)

=) ((curr reqd dlr6=z) ^ (recvbl(z)) ^ (:lm wait(z)))

in state si
� ((curr reqd dlr6=z) ^ (recvbl(z)) ^ (:lm wait(z))) in state si

=) lm let(z) in state si by de�nition of lm let(z)

� For both possible cases, the desired result is obtained and thus the lemma has

been proven. 2

Theorem A.18 (si�1 is a reachable state of LM)

^ (�i=<DLR GONE,u>)

^ ((si�1,<DLR GONE,u>,si)2steps(LM))

^ (t'2f(si�1))

=)

t'2f(si)
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Proof:

� 8z, z2N , (lm keep(z) in state si�1) ^ (t'2f(si�1))

=) keep=z in state t' by Lemma A.2

� 8z, z2N , (lm keep(z) in state si�1) ^ (�i=<DLR GONE,u>)

=) lm keep(z) in state si by Lemma A.16

� 8z, z2N , (lm let(z) in state si�1) ^ (t'2f(si�1))

=) z2let erase in state t' by Lemma A.3

� 8z, z2N , (lm let(z) in state si�1) ^ (�i=<DLR GONE,u>)

=) lm let(z) in state si by Lemma A.17

� 8z, z2N , (lm wait(z) in state si�1) ^ (t'2f(si�1))

=) z2wait erase in state t' by Lemma A.4

� 8z, z2N , (lm wait(z) in state si�1) ^ (�i=<DLR GONE,u>)

=) lm wait(z) in state si

� 8z, z2N , (:recvbl(z) in state si�1) ^ (t'2f(si�1))

=) ((keep6=z) ^ (z 62let erase) ^ (z2wait erase)) in state t'

by Lemma A.5

� 8z, z2N , (:recvbl(z) in state si�1) ^ (�i=<DLR GONE,u>)

=) :recvbl(z) in state si
� Therefore, from the above deductions it follows that

t'2f(si) by De�nition 3.1

and thus the theorem has been proven. 2

Lemma A.19 (si�1 is a reachable state of LM)

^ (lm keep(z) in state si�1)

^ (�i=<ASSIGNx,v>)

=)

lm keep(z) in state si

Proof:

� lm keep(z) in state si�1
=) ((curr reqd dlr=z) ^ (9y, y 6=z, s.t. recvbl(y))) in state si�1

� (curr reqd dlr=z in state si�1) ^ (�i=<ASSIGNx,v>)

=) curr reqd dlr=z in state si
� �i=<ASSIGNx,v> =) <x,v>2pending ts assign in state si�1

� <x,v>2pending ts assign in state si�1
=) (v2N ) ^ (statusx=UNFL in state si�1) by Invariant 3.9

� (statusx=UNFL in state si�1) ^ (�i=<ASSIGNx,v>) ^ (v2N )

=) ((timestamp
x
2N ) ^ (statusx=UNFL)) in state si

� ((timestamp
x
2N ) ^ (statusx=UNFL)) in state si

=) recvbl(x) in state si by de�nition of recvbl(x)

� (recvbl(y) in state si�1) ^ (�i=<ASSIGNx,v>) =) recvbl(y) in state si
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� ((curr reqd dlr=z) ^ (9y, y 6=z, s.t. recvbl(y))) in state si
=) lm keep(z) in state si

and thus the lemma has been proven. 2

Lemma A.20 (si�1 is a reachable state of LM)

^ (lm let(z) in state si�1)

^ (�i=<ASSIGNx,v>)

=)

lm let(z) in state si

Proof:

� �i=<ASSIGNx,v> =) <x,v>2pending ts assign in state si�1

� <x,v>2pending ts assign in state si�1
=) (v2N ) ^ (statusx=UNFL in state si�1) by Invariant 3.9

� (statusx=UNFL in state si�1) ^ (�i=<ASSIGNx,v>) ^ (v2N )

=) ((timestamp
x
2N ) ^ (statusx=UNFL)) in state si

� lm let(z) in state si�1

=) Either

(1) ((curr reqd dlr=z) ^ (6 9y, y 6=z, s.t. recvbl(y))) in state si�1

� ( (<x,v>2pending ts assign)

^ (6 9y, y 6=z, s.t. recvbl(y)) ) in state si�1
=) x=z

� (curr reqd dlr=z in state si�1) ^ (�i=<ASSIGNz ,v>)

=) curr reqd dlr=z in state si
� (6 9y, y 6=z, s.t. recvbl(y) in state si�1) ^ (�i=<ASSIGNz ,v>)

=) 6 9y, y 6=z, s.t. recvbl(y) in state si

� ((curr reqd dlr=z) ^ (6 9y, y 6=z, s.t. recvbl(y))) in state si
=) lm let(z) in state si

or

(2) ((curr reqd dlr 6=z) ^ (recvbl(z)) ^ (:lm wait(z))) in state si�1

� (( (curr reqd dlr6=z)

^ (recvbl(z))

^ (:lm wait(z)) ) in state si�1)

^ (�i=<ASSIGNx,v>)

^ (v2N )

=) ((curr reqd dlr6=z) ^ (recvbl(z)) ^ (:lm wait(z)))

in state si
� ((curr reqd dlr6=z) ^ (recvbl(z)) ^ (:lm wait(z))) in state si

=) lm let(z) in state si
� For both possible cases, the desired result is obtained and thus the lemma has

been proven. 2
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Lemma A.21 (si�1 is a reachable state of LM)

^ (lm wait(z) in state si�1)

^ (�i=<ASSIGNx,v>)

=)

lm wait(z) in state si

Proof:

� �i=<ASSIGNx,v> =) <x,v>2pending ts assign in state si�1

� <x,v>2pending ts assign in state si�1
=) statusx=UNFL in state si�1 by Invariant 3.9

� lm wait(z) in state si�1
=) statusz=RECV in state si�1 by de�nition of lm wait(z)

� ((statusx=UNFL) ^ (statusz=RECV)) in state si�1 =) x6=z

� (lm wait(z) in state si�1) ^ (�i=<ASSIGNx,v>) ^ (x 6=z)

=) lm wait(z) in state si
and thus the lemma has been proven. 2

Lemma A.22 (si�1 is a reachable state of LM)

^ (:recvbl(z) in state si�1)

^ (�i=<ASSIGNx,v>)

=)

:recvbl(z) in state si

Proof:

� �i=<ASSIGNx,v> =) <x,v>2pending ts assign in state si�1

� <x,v>2pending ts assign in state si�1
=) recvbl(x) in state si�1 by de�nition of recvbl(x)

� ((:recvbl(z)) ^ (recvbl(x))) in state si�1 =) x6=z

� (:recvbl(z) in state si�1) ^ (�i=<ASSIGNx,v>) ^ (x6=z)

=) :recvbl(z) in state si
and thus the lemma has been proven. 2

Theorem A.23 (si�1 is a reachable state of LM)

^ (�i=<ASSIGNx,v>)

^ ((si�1,<ASSIGNx,v>,si)2steps(LM))

^ (t'2f(si�1))

=)

t'2f(si)

Proof:
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� 8z, z2N , (lm keep(z) in state si�1) ^ (t'2f(si�1))

=) keep=z in state t' by Lemma A.2

� 8z, z2N , (lm keep(z) in state si�1) ^ (�i=<ASSIGNx,v>)

=) lm keep(z) in state si by Lemma A.19

� 8z, z2N , (lm let(z) in state si�1) ^ (t'2f(si�1))

=) z2let erase in state t' by Lemma A.3

� 8z, z2N , (lm let(z) in state si�1) ^ (�i=<ASSIGNx,v>)

=) lm let(z) in state si by Lemma A.20

� 8z, z2N , (lm wait(z) in state si�1) ^ (t'2f(si�1))

=) z2wait erase in state t' by Lemma A.4

� 8z, z2N , (lm wait(z) in state si�1) ^ (�i=<ASSIGNx,v>)

=) lm wait(z) in state si by Lemma A.21

� 8z, z2N , (:recvbl(z) in state si�1) ^ (t'2f(si�1))

=) ((keep6=z) ^ (z 62let erase) ^ (z2wait erase)) in state t'

by Lemma A.5

� 8z, z2N , (:recvbl(z) in state si�1) ^ (�i=<ASSIGNx,v>)

=) :recvbl(z) in state si by Lemma A.22

� Therefore, from the above deductions it follows that

t'2f(si) by De�nition 3.1

and thus the theorem has been proven. 2

Theorem A.24 (si�1 is a reachable state of LM)

^ (�i=CS REQDx)

^ ((si�1,CS REQDx,si)2steps(LM))

^ (t'2f(si�1))

=)

t'2f(si)

Proof:

� 8z, z2N , (lm keep(z) in state si�1) ^ (t'2f(si�1))

=) keep=z in state t' by Lemma A.2

� 8z, z2N , (lm keep(z) in state si�1) ^ (�i=CS REQDx)

=) lm keep(z) in state si

� 8z, z2N , (lm let(z) in state si�1) ^ (t'2f(si�1))

=) z2let erase in state t' by Lemma A.3

� 8z, z2N , (lm let(z) in state si�1) ^ (�i=CS REQDx)

=) lm let(z) in state si

� 8z, z2N , (lm wait(z) in state si�1) ^ (t'2f(si�1))

=) z2wait erase in state t' by Lemma A.4

� 8z, z2N , (lm wait(z) in state si�1) ^ (�i=CS REQDx)

=) lm wait(z) in state si

147



� 8z, z2N , (:recvbl(z) in state si�1) ^ (t'2f(si�1))

=) ((keep6=z) ^ (z 62let erase) ^ (z2wait erase)) in state t'

by Lemma A.5

� 8z, z2N ,

(:recvbl(z) in state si�1) ^ (�i=CS REQDx) =) :recvbl(z) in state si
� Therefore, from the above deductions it follows that

t'2f(si) by De�nition 3.1

and thus the theorem has been proven. 2

Lemma A.25 (si�1 is a reachable state of LM)

^ (lm let(z) in state si�1)

^ (�i=CS RECVx)

=)

lm let(z) in state si

Proof:

� �i=CS RECVx =) x2send cs recv in state si�1

� x2send cs recv in state si�1
=) ((curr reqd dlr 6=x) ^ (recvbl(x))) in state si�1

by Invariants 3.11, 3.7 and 3.15

� Either

(1) x=z

� (((curr reqd dlr6=x) ^ (recvbl(x))) in state si�1)

^ (�i=CS RECVx)

^ (x=z)

=) ((curr reqd dlr6=z) ^ (recvbl(z))) in state si

� (�i=CS RECVx) ^ (x=z) =) pending ackz=T in state si

� ((curr reqd dlr6=z) ^ (recvbl(z)) ^ (pending ack
z
=T)) in state si

=) lm let(z) in state si
or

(2) x6=z

� (((lm let(z)) ^ (recvbl(x))) in state si�1) ^ (x6=z)

=) ((curr reqd dlr6=z) ^ (recvbl(z)) ^ (:lm wait(z)))

in state si�1

� (( (curr reqd dlr6=z)

^ (recvbl(z))

^ (:lm wait(z)) ) in state si�1)

^ (�i=CS RECVx)

^ (x6=z)

=) ((curr reqd dlr6=z) ^ (recvbl(z)) ^ (:lm wait(z)))

in state si
� ((curr reqd dlr6=z) ^ (recvbl(z)) ^ (:lm wait(z))) in state si

=) lm let(z) in state si by de�nition of lm let(z)
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� For both possible cases, the desired result is obtained and thus the lemma has

been proven. 2

Lemma A.26 (si�1 is a reachable state of LM)

^ (lm wait(z) in state si�1)

^ (�i=CS RECVx)

=)

lm wait(z) in state si

Proof:

� �i=CS RECVx =) x2send cs recv in state si�1

� x2send cs recv in state si�1
=) statusx 6=RECV in state si�1 by Invariant 3.15

� (lm wait(z) in state si�1) ^ (statusx 6=RECV in state si�1)

=) z 6=x by de�nition of lm wait(z)

� (lm wait(z) in state si�1) ^ (�i=CS RECVx) ^ (z 6=x)

=) lm wait(z) in state si
and thus the lemma has been proven. 2

Lemma A.27 (si�1 is a reachable state of LM)

^ (:recvbl(z) in state si�1)

^ (�i=CS RECVx)

=)

:recvbl(z) in state si

Proof:

� �i=CS RECVx =) x2send cs recv in state si�1

� x2send cs recv in state si�1
=) recvbl(x) in state si�1 by Invariants 3.7 and 3.15

� ((:recvbl(z)) ^ (recvbl(x))) in state si�1 =) z 6=x

� (:recvbl(z) in state si�1) ^ (�i=CS RECVx) ^ (z 6=x)

=) :recvbl(z) in state si
and thus the lemma has been proven. 2

Theorem A.28 (si�1 is a reachable state of LM)

^ (�i=CS RECVx)

^ ((si�1,CS RECVx,si)2steps(LM))

^ (t'2f(si�1))

=)

t'2f(si)
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Proof:

� 8z, z2N , (lm keep(z) in state si�1) ^ (t'2f(si�1))

=) keep=z in state t' by Lemma A.2

� 8z, z2N ,

(lm keep(z) in state si�1) ^ (�i=CS RECVx) =) lm keep(z) in state si

� 8z, z2N , (lm let(z) in state si�1) ^ (t'2f(si�1))

=) z2let erase in state t' by Lemma A.3

� 8z, z2N , (lm let(z) in state si�1) ^ (�i=CS RECVx)

=) lm let(z) in state si by Lemma A.25

� 8z, z2N , (lm wait(z) in state si�1) ^ (t'2f(si�1))

=) z2wait erase in state t' by Lemma A.4

� 8z, z2N , (lm wait(z) in state si�1) ^ (�i=CS RECVx)

=) lm wait(z) in state si by Lemma A.26

� 8z, z2N , (:recvbl(z) in state si�1) ^ (t'2f(si�1))

=) ((keep6=z) ^ (z 62let erase) ^ (z2wait erase)) in state t'

by Lemma A.5

� 8z, z2N , (:recvbl(z) in state si�1) ^ (�i=CS RECVx)

=) :recvbl(z) in state si by Lemma A.27

� Therefore, from the above deductions it follows that

t'2f(si) by De�nition 3.1

and thus the theorem has been proven. 2

A.2 Proof of Liveness

Theorem A.69, which is found at the end of this section, states XEL's important liveness

property: the DLR for every committed update is eventually erased. Some preliminary

lemmas must �rst be proven which will ultimately contribute toward the proof of The-

orem A.69. In all the following lemmas and theorems, let � denote an execution for the

LM module, and let �i represent the i
th action of � (where i2N and i�1).

Lemma A.29 �h=ACK ASSIGNx
=)

9g, g<h, s.t. �g=<ASSIGNx,t> for some t

Proof:

� �h=ACK ASSIGNx =) ((statusx=UNFL) ^ (pending ack
x
=T)) in state sh�1

� ((statusx=UNFL) ^ (pending ack
x
=T)) in state sh�1

=) 9g, g�h�1, s.t. �g=<ASSIGNx,t> for some t

and thus the lemma has been proven. 2
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Lemma A.30 (� is a well-formed execution)

^ (�i=<ASSIGNx,u> for some u)

=)

6 9h, h6=i, s.t. �h=<ASSIGNx,v> for any v

Proof:

By contradiction. Without loss of generality, assume

9h, h<i, s.t. �h=<ASSIGNx,v> for some v.

Case 1: u=v.

� �h=<ASSIGNx,v> =) (<x,v>2pending ts assign in state sh�1)

^ (<x,v>62pending ts assign in state sh)

� <x,v>2pending ts assign in state sh�1 =) 9q, q�h�1, s.t. �q=COMMITx

� (�i=<ASSIGNx,u>) ^ (u=v) =) <x,v>2pending ts assign in state si�1

� (<x,v> 62pending ts assign in state sh)

^ (<x,v>2pending ts assign in state si�1)

^ (h<i)
=) 9r, h<r�i�1, s.t. �r=COMMITx

� �r=COMMITx =) 6 9q, q 6=r, s.t. �q=COMMITx by WF1

But this contradicts the earlier deduction that

9q, q�h�1<r, s.t. �q=COMMITx
and so this case is impossible.

Case 2: u6=v.

� �i=<ASSIGNx,u> =) <x,u>2pending ts assign in state si�1

� <x,u>2pending ts assign in state si�1
=) 9r, r�i�1, s.t. ((�r=COMMITx) ^ (u=current ts in state sr�1))

� �r=COMMITx =) 6 9q, q 6=r, s.t. �q=COMMITx by WF1

� �h=<ASSIGNx,v> =) <x,v>2pending ts assign in state sh�1

� <x,v>2pending ts assign in state sh�1
=) 9q, q�h�1, s.t. ((�q=COMMITx) ^ (v=current ts in state sq�1))

� u6=v =) sq�1 6=sr�1

� sq�1 6=sr�1 =) q 6=r

But this contradicts the earlier deduction that

6 9q, q 6=r, s.t. �q=COMMITx
and so this case is also impossible.

Since both cases are impossible, the original assumption must be false and the

lemma has been proven. 2

Lemma A.31 (� is a well-formed execution)

^ (((statusx=UNFL) ^ (pending ack
x
=T)) in state si)

=)

6 9h, h�i, s.t. �h=ACK ASSIGNx
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Proof:

By contradiction. Assume 9h, h�i, s.t. �h=ACK ASSIGNx

� ((statusx=UNFL) ^ (pending ack
x
=T)) in state si

=) 9g, g�i, s.t. (�g=<ASSIGNx,t> for some t)

^ (6 9f , g�f�i, s.t. �f=ACK ASSIGNx)

� �g=<ASSIGNx,t>

=) 6 9d, d 6=g, s.t. �d=<ASSIGNx,u> for any u by Lemma A.30

� (9h, h�i, s.t. �h=ACK ASSIGNx) ^ (6 9f , g�f�i, s.t. �f=ACK ASSIGNx)

=) 9e, e<g, s.t. �e=ACK ASSIGNx
� �e=ACK ASSIGNx

=) 9d, d<e<g, s.t. �d=<ASSIGNx,u> for some u by Lemma A.29

But this is a contradiction and so the original assumption must be false. Thus

the lemma has been proven. 2

Lemma A.32 ((curr reqd dlr=x, x2N ) ^ (curr reqd acked=T)) in state si
=)

9h, h�i, s.t. �h=ACK ASSIGNx

Proof:

By contradiction. Assume 6 9h, h�i, s.t. �h=ACK ASSIGNx

� curr reqd dlr=x, x2N , in state si
=) 9g, g�i, s.t. (�g=COMMITx)

^ (6 9f , g<f�i, s.t. �f=COMMITy for some y 6=x)

� �g=COMMITx =) ((curr reqd dlr=x) ^ (curr reqd acked=F)) in state sg

� (((curr reqd dlr=x) ^ (curr reqd acked=F)) in state sm�1)

^ (�m 6=ACK ASSIGNx)

^ (�m 6=COMMITy for y 6=x)

=) ((curr reqd dlr=x) ^ (curr reqd acked=F)) in state sm

� (((curr reqd dlr=x) ^ (curr reqd acked=F)) in state sg)

^ (6 9h, h�i, s.t. �h=ACK ASSIGNx)

^ (6 9f , g<f�i, s.t. �f=COMMITy for y 6=x)

=) ((curr reqd dlr=x) ^ (curr reqd acked=F)) in state si
by induction.

But this contradiction implies that the original assumption must be false and

thus the lemma has been proven. 2

Lemma A.33 x2send cs recv in state si
=)

9h, h�i, s.t. �h=ACK ASSIGNx

Proof:
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By contradiction. Assume 6 9h, h�i, s.t. �h=ACK ASSIGNx

� x2send cs recv in state si =) either

(1) 9g, g�i, s.t. (�g=COMMITy for some y)

^ (curr reqd dlr=x in state sg�1)

^ (curr reqd acked=T in state sg�1)

� ((curr reqd dlr=x) ^ (curr reqd acked=T)) in state sg�1
=) 9h, h�g�1, s.t. �h=ACK ASSIGNx by Lemma A.32

But this is a contradiction, so this case cannot be true.
or

(2) 9h, h�i, s.t. �h=ACK ASSIGNx

� But this is a contradiction, so this case cannot be true.

or

(3) 9g, g�i, s.t. (�g=<DLR GONE,t> for some t)

^ (curr reqd dlr=x in state sg�1)

^ (curr reqd acked=T) in state sg�1)

� ((curr reqd dlr=x) ^ (curr reqd acked=T)) in state sg�1
=) 9h, h�g�1, s.t. �h=ACK ASSIGNx by Lemma A.32

But this is a contradiction, so this case cannot be true.

� Since all three possible cases lead to contradictions, the original assumption

must be false and thus the lemma has been proven. 2

Lemma A.34 (� is a well-formed execution)

^ (�j=ERASEx)

=)

9f , f<j, s.t. �f=CS RECVx

Proof:

� �j=ERASEx =) 9h, h<j, s.t. �h=ERASABLEx by WF2

� �h=ERASABLEx =) x2pending erasable in state sh�1

� x2pending erasable in state sh�1 =) 9g, g�h�1, s.t. �g=ACK CS RECVx

� �g=ACK CS RECVx =) statusx=RECV in state sg�1

� statusx=RECV in state sg�1 =) 9f , f�g�1, s.t. �f=CS RECVx
and thus the lemma has been proven. 2

Lemma A.35 (curr reqd dlr=x in state si for some x2N )

^ (6 9h, h�i, s.t. �h=ACK ASSIGNx)

=)

curr reqd acked=F in state si

Proof:
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By contradiction. Assume curr reqd acked=T in state si

� curr reqd acked=T in state si
=) 9h, h�i, s.t. (�h=ACK ASSIGNy)

^ (curr reqd dlr=y, for some y2N , in state sh�1)

^ (6 9j, h<j�i, s.t. �j=COMMITz for some z2N )

� (curr reqd dlr=y, y2N , in state sh�1) ^ (�h=ACK ASSIGNy)

=) ((curr reqd dlr=y) _ (curr reqd dlr=?)) in state sh

� (((curr reqd dlr=y, y2N ) _ (curr reqd dlr=?)) in state sh)

^ (6 9j, h<j�i, s.t. �j=COMMITz for some z2N )

=) 8l, h�l�i, ((curr reqd dlr=y, y2N ) _ (curr reqd dlr=?)) in state sl
by de�nition of steps(LOT)

� Either

(1) curr reqd dlr=y, y2N , in state si

� By transitivity, x=y so 9h, h�i, s.t. �h=ACK ASSIGNx.

But this contradicts the lemma's predicate.
or

(2) curr reqd dlr=? in state si

� But this also contradicts the lemma's predicate.

Since both possible cases lead to contradictions, the original assumption

must be false and so the lemma has been proven. 2

Lemma A.36 (� is a well-formed execution)

^ (�i=ERASEx)

=)

9h, h<i, s.t. �h=ACK ASSIGNx

Proof:

By contradiction. Assume 6 9h, h<i, s.t. �h=ACK ASSIGNx

� �i=ERASEx =) 9e, e<i, s.t. �e=CS RECVx by Lemma A.34

� �e=CS RECVx =) x2send cs recv in state se�1

� x2send cs recv in state se�1 =) 9d, d�e�1, s.t. either

(1) ( (�d=COMMITy for some y2N )

^ (((curr reqd dlr=x) ^ (curr reqd acked=T)) in state sd�1) )

� (curr reqd dlr=x in state sd�1)

^ (6 9h, h�d�1�i, s.t �h=ACK ASSIGNx)
=) curr reqd acked=F in state sd�1 by Lemma A.35

But this is a contradiction, and so this case could not possibly occur.
or

(2) �d=ACK ASSIGNx

� But this contradicts the assumption, and so this case can never

occur.
or
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(3) ( (�d=<DLR GONE,tsy> for some tsy)

^ (curr reqd dlr=x in state sd�1)

^ (curr reqd acked=T in state sd�1) )

� (curr reqd dlr=x in state sd�1)

^ (6 9h, h�d�1�i, s.t. �h=ACK ASSIGNx)
=) curr reqd acked=F in state sd�1 by Lemma A.35

But this is a contradiction and so this case also cannot occur.

Since none of these three cases can be true and there are no other possi-

bilities, the original assumption must be false and so the lemma has been

proven. 2

Lemma A.37 (� is a well-formed execution)

^ (((statusx=UNFL) ^ (pending ack
x
=T)) in state sk)

^ (9q, q>k, s.t. 6 9n, n<q, s.t. �n=ACK ASSIGNx)

=)

6 9p, p<q, s.t. (�p=CS REQDx) _ (�p=CS RECVx) _ (�p=ERASEx)

Proof:

By contradiction.

Assume

9p, p<q, s.t. (�p=CS REQDx) _ (�p=CS RECVx) _ (�p=ERASEx)

� Either

(1) 9p, p<q, s.t. �p=CS REQDx

� �p=CS REQDx =) x=send cs reqd in state sp�1

� x=send cs reqd in state sp�1 =) 9n, n�p�1, s.t. �n=ACK ASSIGNx
But this contradicts the lemma's predicate and so this case cannot

occur.
or

(2) 9p, p<q, s.t. �p=CS RECVx

� �p=CS RECVx =) x2send cs recv in state sp�1

� x2send cs recv in state sp�1 =) either

(i) 9m, m�p�1, s.t. (�m=COMMITy for some y2N )

^ (curr reqd dlr=x in state sm�1)

^ (curr reqd acked=T in state sm�1)

� ((curr reqd dlr=x) ^ (curr reqd acked=T)) in state sm�1
=) 9n, n�m�1, s.t. �n=ACK ASSIGNx

by Lemma A.32

But this contradicts the lemma's predicate and so this sub-

case cannot occur.
or

(ii) 9n, n�p�1, s.t. �n=ACK ASSIGNx

� But this contradicts the lemma's predicate, and so this sub-

case cannot occur either.
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or

(iii) 9m, m�p�1, s.t. (�m=<DLR GONE,t> for some t)

^ (curr reqd dlr=x in state sm�1)

^ (curr reqd acked=T in state sm�1)

� ((curr reqd dlr=x) ^ (curr reqd acked=T)) in state sm�1
=) 9n, n�m�1, s.t. �n=ACK ASSIGNx

by Lemma A.32

But this contradicts the lemma's predicate and so this sub-

case cannot occur either.
Since all three subcases lead to contradictions and there are no other

possible subcases, the entire case (2) must be impossible.
or

(3) 9p, p<q, s.t. �p=ERASEx

� �p=ERASEx
=) 9n, n<p, s.t. �n=ACK ASSIGNx by Lemma A.36

But this contradicts the lemma's predicate, and so also this case

must be impossible.

� All possible cases lead to contradictions. Therefore, the original assumption

must be false and thus the lemma has been proven. 2

Lemma A.38 �i=ACK ASSIGNx
=)

9h, h<i, s.t. �h=COMMITx

Proof:

� �i=ACK ASSIGNx =) ((statusx=UNFL) ^ (pending ack
x
=T)) in state si�1

� ((statusx=UNFL) ^ (pending ack
x
=T)) in state si�1

=) 9j, j�i�1, s.t. �j=<ASSIGNx,tsx> for some tsx

� �j=<ASSIGNx,tsx> =) <x,tsx>2pending ts assign in state sj�1
� <x,tsx>2pending ts assign in state sj�1 =) 9h, h�j�1, s.t. �h=COMMITx
� By transitivity,

9h, h<i, s.t. �h=COMMITx
and thus the lemma has been proven. 2

Lemma A.39 (� is a well-formed execution)

^ (�g=COMMITx)

=)

8f , f�g, x62send cs recv in state sf

Proof:

By contradiction. Assume 9f , f�g, s.t. x2send cs recv in state sf
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� �g=COMMITx =) 6 9d, d<g, s.t. �d=COMMITx by WF1

� x2send cs recv in state sf =) 9e, e�f , s.t. �e=ACK ASSIGNx
by Lemma A.33

� �e=ACK ASSIGNx =) 9d, d<e, s.t. �d=COMMITx by Lemma A.38

� (d<e�f�g) ^ (9d, d<e, s.t. �d=COMMITx) =) 9d, d<g, s.t. �d=COMMITx
But this is a contradiction, and so the original assumption must be false. Thus

the lemma has been proven. 2

Lemma A.40 (� is a well-formed execution)

^ (x2send cs recv in state si)

=)

curr reqd dlr6=x in state si

Proof:

By induction.

� x2send cs recv in state si =) 9h, h�i, s.t. �h=ACK ASSIGNx
by Lemma A.33

� �h=ACK ASSIGNx =) 9g, g<h, s.t. �g=COMMITx by Lemma A.38

� �g=COMMITx =) 6 9m, m>g, s.t. �m=COMMITx by WF1

� �g=COMMITx =) curr reqd dlr=x in state sg

� �g=COMMITx =) 8f , f�g, x62send cs recv in state sf by Lemma A.39

� 8f , f�g, x 62send cs recv in state sf
=) 8f , f�g, ((curr reqd dlr6=x) _ (x 62send cs recv)) in state sf

� (((curr reqd dlr6=x) _ (x62send cs recv)) in state sm�1) ^ (�m 6=COMMITx)

=) ((curr reqd dlr 6=x) _ (x 62send cs recv)) in state sm
by de�nition of steps(LOT)

� Therefore, by induction,

8p, p>g, ((curr reqd dlr6=x) _ (x 62send cs recv)) in state sp
� Hence,

8q, q>0, ((curr reqd dlr6=x) _ (x62send cs recv)) in state sq

� ((x2send cs recv) ^ ((curr reqd dlr6=x) _ (x62send cs recv))) in state si
=) curr reqd dlr6=x in state si

and thus the lemma has been proven. 2

Lemma A.41 (� is a well-formed execution)

^ (�i=ACK ASSIGNx)

=)

6 9h, h6=i, s.t. �h=ACK ASSIGNx

Proof:
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By contradiction.

Without loss of generality, assume 9h, h<i, s.t. �h=ACK ASSIGNx

� �h=ACK ASSIGNx =) ((statusx=UNFL) ^ (pending ack
x
=T)) in state sh�1

� ((statusx=UNFL) ^ (pending ackx=T)) in state sh�1
=) 9g, g�h�1, s.t �g=<ASSIGNx,tsx> for some tsx

� �h=ACK ASSIGNx =) ((statusx=UNFL) ^ (pending ack
x
=F)) in state sh

� �i=ACK ASSIGNx =) ((statusx=UNFL) ^ (pending ack
x
=T)) in state si�1

� (((statusx=UNFL) ^ (pending ack
x
=F)) in state sh)

^ (((statusx=UNFL) ^ (pending ack
x
=T)) in state si�1)

^ (h<i)
=) 9f , h<f�i�1, s.t. �f=<ASSIGNx,u> for some u

� �f=<ASSIGNx,u> =) 6 9g, g<f , s.t. �g=<ASSIGNx,tsx> for any tsx

by Lemma A.30

But this is a contradiction, and so the assumption must be false. Thus the

lemma has been proven. 2

Lemma A.42 (� is a well-formed execution)

^ (�g=CS RECVx)

=)

6 9d, d 6=g, s.t. �d=CS RECVx

Proof:

By contradiction. Without loss of generality, assume 9d, d<g, s.t. �d=CS RECVx

� �d=CS RECVx
=) (x2send cs recv in state sd�1) ^ (x 62send cs recv in state sd)

� x2send cs recv in state sd�1
=) 9c, c�d�1, s.t. �c=ACK ASSIGNx by Lemma A.33

� �c=ACK ASSIGNx =) 6 9q, q>c, s.t. �q=ACK ASSIGNx by Lemma A.41

� �c=ACK ASSIGNx =) 9b, b<c, s.t. �b=COMMITx by Lemma A.38

� �b=COMMITx =) 6 9a, a>b, s.t. �a=COMMITx by WF1

� x2send cs recv in state sd�1 =) curr reqd dlr6=x in state sd�1
by Lemma A.40

� (curr reqd dlr6=x in state sd�1) ^ (6 9a, a>b, s.t. �a=COMMITx) ^ (b<c<d)

=) 8p, p�d�1, curr reqd dlr6=x in state sp

� �g=CS RECVx =) x2send cs recv in state sg�1

� (x62send cs recv in state sd)

^ (x2send cs recv in state sg�1)

^ (d<g)
=) either

(1) 9q, d<q�g�1, s.t. (�q=COMMITy for some y)

^ (curr reqd dlr=x in state sq�1)

^ (curr reqd acked=T in state sq�1)
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� But curr reqd dlr=x in state sq�1 is a contradiction, so this case

cannot occur.
or

(2) 9q, d<q�g�1, s.t. �q=ACK ASSIGNx

� But this is a contradiction, so this case cannot occur.

or

(3) 9q, d<q�g�1, s.t. (�q=<DLR GONE,t> for some t)

^ (curr reqd dlr=x in state sq�1)

^ (curr reqd acked=T in state sq�1)

� But curr reqd dlr=x in state sq�1 is a contradiction, so this case

cannot occur.
� Since all three cases lead to contradictions and there are no other possible

cases besides these, the original assumption must be false and thus the lemma

has been proven. 2

Lemma A.43 �g=CS RECVx
=)

9f , f<g, s.t. �f=<ASSIGNx,t> for some t

Proof:

� �g=CS RECVx =) x2send cs recv in state sg�1

� x2send cs recv in state sg�1
=) 9e, e�g�1, s.t. �e=ACK ASSIGNx by Lemma A.33

� �e=ACK ASSIGNx
=) 9f , f<e, s.t. �f=<ASSIGNx,t> for some t by Lemma A.29

and thus the lemma has been proven. 2

Lemma A.44 (pending ackx=F in state sh)

^ (((statusx=RECV) ^ (pending ack
x
=T)) in state si)

^ (h<i)

^ (6 9e, e>h, s.t. �e=<ASSIGNx,u> for any u)

=)

9d, h<d�i, s.t. �d=CS RECVx

Proof:

By contradiction. Assume 6 9d, h<d�i, s.t. �d=CS RECVx

� (((statusx 6=RECV) _ (pending ack
x
=F)) in state sm�1)

^ (�m 6=<ASSIGNx,u> for any u)

^ (�m 6=CS RECVx)

=) ((statusx 6=RECV) _ (pending ack
x
=F)) in state sm
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� (pending ack
x
=F in state sh)

^ (h<i)

^ (6 9e, e>h, s.t. �e=<ASSIGNx,u> for any u)

^ (6 9d, h<d�i, s.t. �d=CS RECVx)

=) ((statusx 6=RECV) _ (pending ack
x
=F)) in state si by induction

But this contradicts the lemma's predicate, and so the original assumption

must be false. Thus the lemma has been proven. 2

Lemma A.45 (� is a well-formed execution)

^ (((statusx=RECV) ^ (pending ack
x
=T)) in state si)

=)

6 9h, h<i, s.t. �h=ACK CS RECVx

Proof:

By contradiction. Assume 9h, h<i, s.t. �h=ACK CS RECVx

� �h=ACK CS RECVx
=) (((statusx=RECV) ^ (pending ack

x
=T)) in state sh�1)

^ (((statusx=RECV) ^ (pending ack
x
=F)) in state sh)

� statusx=RECV in state sh�1
=) 9g, g�h�1, s.t. �g=CS RECVx

� �g=CS RECVx =) 9f , f<g, s.t. �f=<ASSIGNx,t> for some t

by Lemma A.43

� �g=CS RECVx =) 6 9d, d 6=g, s.t. �d=CS RECVx by Lemma A.42

� �f=<ASSIGNx,t>

=) 6 9e, e>f , s.t. �e=<ASSIGNx,u> for any u by Lemma A.30

� (f<g<h) ^ (6 9e, e>f , s.t. �e=<ASSIGNx,u> for any u)

=) 6 9e, e>h, s.t. �e=<ASSIGNx,u> for any u

� (pending ack
x
=F in state sh)

^ (((statusx=RECV) ^ (pending ack
x
=T)) in state si)

^ (h<i)

^ (6 9e, e>h, s.t. �e=<ASSIGNx,u> for any u)
=) 9d, h<d�i, s.t. �d=CS RECVx by Lemma A.44

But this is a contradiction, and so the original assumption must be false. Thus

the lemma has been proven. 2

Lemma A.46 (� is a well-formed execution)

^ (((statusx=RECV) ^ (pending ack
x
=T)) in state sm�1)

=)

�m 6=ERASEx

Proof:
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By contradiction. Assume �m=ERASEx.

� ((statusx=RECV) ^ (pending ack
x
=T)) in state sm�1

=) 6 9h, h<m�1, s.t. �h=ACK CS RECVx by Lemma A.45

� �m=ERASEx =) 9g, g<m, s.t. �g=ERASABLEx by WF2

� �g=ERASABLEx =) x2pending erasable in state sg�1

� x2pending erasable in state sg�1
=) 9f , f�g�1<m�1, s.t. �f=ACK CS RECVx

This contradiction implies that the original assumption must be false and thus

the lemma has been proven. 2

Lemma A.47 (� is a well-formed and fair execution)

^ (((statusx=UNFL) ^ (pending ack
x
=T)) in state sk)

=)

9l, l>k, s.t. �l=ACK ASSIGNx

Proof:

� ((statusx=UNFL) ^ (pending ack
x
=T)) in state sk

=) 9q, q>k, s.t. 6 9n, n<q, s.t. �n=ACK ASSIGNx by Lemma A.31

� (((statusx=UNFL) ^ (pending ack
x
=T)) in state sk)

^ (9q, q>k, s.t. 6 9n, n<q, s.t. �n=ACK ASSIGNx)

=) 6 9p, p<q, s.t. (�p=CS REQDx) _ (�p=CS RECVx) _ (�p=ERASEx)

by Lemma A.37

� (((statusx=UNFL) ^ (pending ack
x
=T)) in state sm�1)

^ (�m 6=CS REQDx)

^ (�m 6=CS RECVx)

^ (�m 6=ERASEx)

=) ((statusx=UNFL) ^ (pending ack
x
=T)) in state sm

� By induction and the de�nition of a fair execution, it therefore follows that

9l, l>k, s.t. �l=ACK ASSIGNx
and thus the lemma has been proven. 2

Lemma A.48

((<x,t>2pending ts assign) _ (timestamp
x
=t, t2N )) in state si

=)

9h, h�i, s.t. (�h=COMMITx) ^ (current ts=t, t2N , in state sh�1)

Proof:

� Either

(1) <x,t>2pending ts assign in state si
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� <x,t>2pending ts assign in state si
=) 9h, h�i, s.t. (�h=COMMITx)

^ (current ts=t, t2N , in state sh�1)

by de�nition of steps(LOT)
or

(2) timestamp
x
=t, t2N , in state si

� timestamp
x
=t, t2N , in state si =) 9g, g�i, s.t. �g=<ASSIGNx,t>

� �g=<ASSIGNx,t> =) <x,t>2pending ts assign in state sg�1

� <x,t>2pending ts assign in state sg�1
=) 9h, h�g�1�i, s.t.

(�h=COMMITx)

^ (current ts=t, t2N , in state sh�1)

and thus the lemma has been proven. 2

Lemma A.49 i�j

=)

(current ts in state si)�(current ts in state sj)

Proof:

By induction.

� The basis case of i=j is trivial.

� For any action �j , either

(current ts in state sj�1)=(current ts in state sj)

for �j 6=COMMITx for any x2N

or

(current ts in state sj�1)+1=(current ts in state sj)

for �j=COMMITx for some x2N

Therefore, for any action �j ,

(current ts in state sj�1)�(current ts in state sj)

� By the inductive hypothesis,

i�j�1 =) (current ts in state si)�(current ts in state sj�1)

� Therefore,

(i�j�1) ^ ((current ts in state sj�1)�(current ts in state sj))

=) ((current ts in state si)�(current ts in state sj))

and so the lemma has been proven. 2

Lemma A.50

(� is a well-formed execution)

^ (curr reqd ts=t, t2N , in state si)

^ (((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state si)

=)

curr reqd dlr=x in state si
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Proof:

� ((<x,t>2pending ts assign) _ (timestamp
x
=t, t2N )) in state si

=) 9h, h�i, s.t. (�h=COMMITx) ^ (current ts=t in state sh�1)

by Lemma A.48

� (�h=COMMITx) ^ (current ts=t in state sh�1)

=) ((curr reqd dlr=x) ^ (curr reqd ts=t) ^ (current ts=t+1)) in state sh

� (current ts=t+1 in state sh)

=) 8j, j�h, t<current ts in state sj by Lemma A.49

� (8j, j�h, t<current ts in state sj)

^ (curr reqd ts=t, t2N , in state si)

^ (h�i)
=) 6 9k, h<k�i, s.t. �k=COMMITy for any y

� (curr reqd dlr=x in state sh)

^ (6 9k, h<k�i, s.t. �k=COMMITy for any y)

^ (curr reqd ts=t, t6=?, in state si)

=) curr reqd dlr=x in state si by de�nition of steps(LOT)

and thus the lemma has been proven. 2

Lemma A.51 (� is a well-formed execution)

^ (�i=ERASEx)

=)

8k, k�i, curr reqd dlr6=x in state sk

Proof:

� �i=ERASEx =) 9h, h<i, s.t. �h=CS RECVx by Lemma A.34

� �h=CS RECVx =) x2send cs recv in state sh�1

� x2send cs recv in state sh�1 =) curr reqd dlr6=x in state sh�1
by Lemma A.40

� �h=CS RECVx =) 9g, g<h, s.t. �g=<ASSIGNx,t> for some t

by Lemma A.43

� �g=<ASSIGNx,t> =) <x,t>2pending ts assign in state sg�1

� <x,t>2pending ts assign in state sg�1 =) 9f , f�g�1, s.t. �f=COMMITx

� �f=COMMITx =) 6 9j, j>f , s.t. �j=COMMITx by WF1

� (curr reqd dlr6=x, x2N , in state sm�1) ^ (�m 6=COMMITx)

=) curr reqd dlr6=x in state sm

� (curr reqd dlr 6=x in state sh�1)

^ (6 9j, j>f , s.t. �j=COMMITx)

^ (f�g�1<h<i)
=) 8k, k�i, curr reqd dlr6=x in state sk by induction

and thus the lemma has been proven. 2
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Lemma A.52 (� is a well-formed execution)

^ (timestamp
x
=t, t2N , in state sj)

=)

6 9k, k>j, s.t. �k=<ASSIGNx,u> for any u

Proof:

By contradiction. Assume 9k, k>j, s.t. �k=<ASSIGNx,u> for some u

� timestamp
x
=t, t2N , in state sj =) 9i, i�j, s.t. �i=<ASSIGNx,t>

� (i�j) ^ (j<k) =) i<k

� �k=<ASSIGNx,u> =) 6 9i, i<k, s.t. �i=<ASSIGNx,t> by Lemma A.30

This contradiction implies that the original assumption must be false, and so

the lemma has been proven. 2

Lemma A.53 (� is a well-formed execution)

^ (timestamp
x
=t, t2N , in state si)

=)

8l, l�i, timestamp
x
=t in state sl

Proof:

� timestamp
x
=t, t2N , in state si

=) 6 9j, j>i, s.t. �j=<ASSIGNx,u> for any u by Lemma A.52

� (timestamp
x
=t in state sm�1) ^ (�m 6=<ASSIGNx,u> for any u)

=) timestamp
x
=t in state sm

� (timestamp
x
=t in state si) ^ (6 9j, j>i, s.t. �j=<ASSIGNx,u> for any u)

=) 8l, l�i, timestamp
x
=t in state sl by induction

and thus the lemma has been proven. 2

Lemma A.54 (� is a well-formed execution)

^ (timestamp
x
=t, t2N , in state si)

^ (t62recv tss in state si)

^ (9h, h<i, s.t. �h=ERASEx)

=)

8j, j�i, t62recv tss in state sj

Proof:

By contradiction. Assume 9j, j>i, t2recv tss in state sj

� (t62recv tss in state si) ^ (t2recv tss in state sj) ^ (i<j)

=) 9k, i�k<j, s.t. (t 62recv tss in state sk) ^ (t2recv tss in state sk+1)

� (t62recv tss in state sk) ^ (t2recv tss in state sk+1)

=) curr reqd ts=t in state sk by de�nition of steps(LOT)
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� (timestamp
x
=t, t2N , in state si)

=) 8l, l�i, timestamp
x
=t in state sl by Lemma A.53

� (8l, l�i, timestamp
x
=t in state sl) ^ (k�i) =) timestamp

x
=t in state sk

� ((curr reqd ts=t, t2N ) ^ (timestamp
x
=t)) in state sk

=) curr reqd dlr=x in state sk by Lemma A.50

� (�h=ERASEx) ^ (h<k) =) curr reqd dlr6=x in state sk by Lemma A.51

But this is a contradiction and so the original assumption must be false. Thus

the lemma has been proven. 2

Lemma A.55 (� is a well-formed and fair execution)

^ (x2send cs recv in state si)

=)

9j, j>i, s.t. �j=ERASEx

Proof:

� x2send cs recv in state si =) 9k, k>i, s.t. �k=CS RECVx

� �k=CS RECVx =) ((statusx=RECV) ^ (pending ack
x
=T)) in state sk

� ((statusx=RECV) ^ (pending ack
x
=T)) in state sm�1

=) �m 6=ERASEx by Lemma A.46

� (((statusx=RECV) ^ (pending ack
x
=T)) in state sm�1) ^ (�m 6=ERASEx)

=) ((statusx=RECV) ^ (pending ackx=T)) in state sm

� ((statusx=RECV) ^ (pending ack
x
=T)) in state sk

=) 9n, n>k, s.t. �n=ACK CS RECVx by induction and fairness

� �n=ACK CS RECVx =) x2pending erasable in state sn

� x2pending erasable in state sn =) 9p, p>n, s.t. �p=ERASABLEx

� �p=ERASABLEx =) 9j, j>p, s.t. �j=ERASEx by WF4

� By transitivity, j>i and thus the lemma has been proven. 2

Lemma A.56 (� is a well-formed and fair execution)

^ (x2send cs recv in state si)

^ (timestamp
x
=t, t2N , in state si)

=)

9j, j>i, s.t 8k, k�j, t62recv tss in state sk

Proof:

� x2send cs recv in state si =) 9l, l>i, s.t. �l=ERASEx by Lemma A.55

� �l=ERASEx =) ((statusx=NONR) ^ (pending ack
x
=T)) in state sl

� timestamp
x
=t, t2N , in state si

=) 8n, n�i, timestamp
x
=t in state sn by Lemma A.53

� �l=ERASEx =) 9r, r<l, s.t. �r=CS RECVx by Lemma A.34
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� �r=CS RECVx =) 6 9q, q>r, s.t. �q=CS RECVx by Lemma A.42

� (statusx=NONR in state sl)

^ (6 9q, q>l, s.t. �q=CS RECVx)

^ (pending ack
x
=T in state sl)

^ (8n, n�l, timestamp
x
=t in state sn)

=) 9j, j>l, s.t. �j=<DLR GONE,t> by de�nition of fairness

� �j=<DLR GONE,t> =) t62recv tss in state sj

� (timestamp
x
=t, t2N , in state sj)

^ (t 62recv tss in state sj)

^ (�l=ERASEx)

^ (l<j)
=) 8k, k�j, t62recv tss in state sk by Lemma A.54

and thus the lemma has been proven. 2

Lemma A.57 (� is a well-formed execution)

^ (�i=ACK ASSIGNx)

^ (curr reqd dlr=x in state sj)

^ (i�j)

=)

curr reqd acked=T in state sj

Proof:

� �i=ACK ASSIGNx =) 9h, h<i, s.t. �h=COMMITx by Lemma A.38

� �h=COMMITx =) ((curr reqd dlr=x) ^ (curr reqd acked=F)) in state sh

� �h=COMMITx =) 6 9k, k>h, s.t. �k=COMMITx by WF1

� (curr reqd dlr=x, x2N , in state sh)

^ (curr reqd dlr=x, x2N , in state sj)

^ (h<j)

^ (6 9k, k>h, s.t. �k=COMMITx)

=) (6 9l, h<l�j, s.t. �l=COMMITy for any y)

^ (8m, h�m�j, curr reqd dlr=x in state sm)

� (�i=ACK ASSIGNx)

^ (8m, h�m�j, curr reqd dlr=x in state sm)

^ (h<i�j)
=) curr reqd acked=T in state si

� (curr reqd acked=T in state si) ^ ( 6 9l, i<l�j, s.t. �l=COMMITy for any y)

=) curr reqd acked=T in state sj
and thus the lemma has been proven. 2
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Lemma A.58 (� is a well-formed execution)

^ (�k=<ASSIGNx,t> for some t)

=)

statusx=UNFL in state sk

Proof:

By contradiction. Assume statusx 6=UNFL in state sk.

� �k=<ASSIGNx,t>

=) 6 9h, h<k, s.t. �h=<ASSIGNx,v> for any v by Lemma A.30

� Either

(1) statusx=REQD in state sk

� statusx=REQD in state sk =) 9j, j�k, s.t. �j=CS REQDx

� �j=CS REQDx =) x=send cs reqd in state sj�1

� x=send cs reqd in state sj�1 =) 9i, i�j�1, s.t. �i=ACK ASSIGNx

� �i=ACK ASSIGNx =) 9h, h<i<k, s.t. �h=<ASSIGNx,v> for some v

by Lemma A.29

This contradiction implies that this case is impossible.
or

(2) statusx=RECV in state sk

� statusx=RECV in state sk =) 9j, j�k, s.t. �j=CS RECVx

� �j=CS RECVx =) x2send cs recv in state sj�1

� x2send cs recv in state sj�1 =) 9i, i�j�1, s.t. �i=ACK ASSIGNx
by Lemma A.33

� �i=ACK ASSIGNx =) 9h, h<i<k, s.t. �h=<ASSIGNx,v> for some v

by Lemma A.29

But this is a contradiction, so this case must be false.
or

(3) statusx=NONR in state sk

� statusx=NONR in state sk =) 9j, j�k, s.t. �j=ERASEx

� �j=ERASEx =) 9i, i<j, s.t. �i=ACK ASSIGNx by Lemma A.36

� �i=ACK ASSIGNx =) 9h, h<i<k, s.t. �h=<ASSIGNx,v> for some v

by Lemma A.29

But this is a contradiction and so also this case must be false.

� All possible cases lead to contradictions, so the original assumption must be

false and thus the lemma has been proven. 2

Lemma A.59 (� is a well-formed and fair execution)

^ (�i=COMMITx)

=)

9l, l>i, s.t. �l=ACK ASSIGNx
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Proof:

� (�i=COMMITx) ^ (current ts=t for some t2N )

=) <x,t>2pending ts assign in state si
� <x,t>2pending ts assign in state si =) 9k, k>i, s.t. �k=<ASSIGNx,t>

� �k=<ASSIGNx,t> =) pending ack
x
=T in state sk

� �k=<ASSIGNx,t> =) statusx=UNFL in state sk by Lemma A.58

� ((statusx=UNFL) ^ (pending ack
x
=T)) in state sk

=) 9l, l>k, s.t. �l=ACK ASSIGNx by Lemma A.47

and thus the lemma has been proven. 2

Lemma A.60

(� is a well-formed execution)

^ (�i=COMMITx)

^ (current ts=t, t2N , in state si�1)

=)

8j, j�i, ((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sj

Proof:

By induction.

� (�i=COMMITx) ^ (current ts=t in state si�1)

=) <x,t>2pending ts assign in state si
� (<x,t>2pending ts assign in state sj�1) ^ (�j 6=<ASSIGNx,t>)

=) <x,t>2pending ts assign in state sj by de�nition of steps(LOT)

� (<x,t>2pending ts assign in state sj�1) ^ (�j=<ASSIGNx,t>)

=) timestamp
x
=t in state sj by de�nition of steps(DLRx)

� (timestamp
x
=t in state sj�1) ^ (�j 6=<ASSIGNx,u> for any u)

=) timestamp
x
=t in state sj by de�nition of steps(DLRx)

� timestamp
x
=t in state sj�1 =) 6 9k, k>j�1, s.t. �k=<ASSIGNx,u> for any u

by Lemma A.52

� Therefore,

((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sj�1

=) ((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sj

for any possible action �j in a well-formed execution.

� By induction,

8j, j�i, ((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sj

and so the lemma has been proven. 2

Lemma A.61 (� is a well-formed execution)

^ (t2recv tss in state si, t2N )

=)

9x s.t. 8j, j�i, ( (<x,t>2pending ts assign)

_ (timestamp
x
=t) ) in state sj
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Proof:

� t2recv tss in state si =) 9h, h<i, s.t. curr reqd ts=t in state sh

� curr reqd ts=t, t2N , in state sh
=) 9g, g�h, s.t. (�g=COMMITx for some x) ^ (current ts=t in state sg�1)

� (�g=COMMITx) ^ (current ts=t in state sg�1)

=) 8j, j�g, ((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sj
by Lemma A.60

� (g�h<i)

^ (8j, j�g, ((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sj)

=) 8j, j�i, ((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sj

and thus the lemma has been proven. 2

Lemma A.62 (� is a well-formed execution)

^ (x2send cs recv in state si)

=)

<x,u>62pending ts assign in state si for any u

Proof:

By contradiction. Assume <x,u>2pending ts assign in state si for some u

� x2send cs recv in state si =) 9h, h�i, s.t. �h=ACK ASSIGNx
by Lemma A.33

� �h=ACK ASSIGNx
=) 9g, g<h, s.t. �g=<ASSIGNx,t> for some t by Lemma A.29

� �g=<ASSIGNx,t> =) (<x,t>2pending ts assign in state sg�1)

^ (<x,t>62pending ts assign in state sg)

� <x,t>2pending ts assign in state sg�1
=) 9f , f�g�1, s.t. (�f=COMMITx) ^ (current ts=t in state sf�1)

� �f=COMMITx =) 6 9j, j 6=f , s.t. �j=COMMITx by WF1

� (<x,t>62pending ts assign in state sg)

^ (6 9j, j>f , s.t. �j=COMMITx)

^ (f<g)
=) 8k, k�g, <x,t> 62pending ts assign in state sk

� (<x,u>2pending ts assign in state si)

^ (8k, k�g, <x,t>62pending ts assign in state sk)

^ (g<h�i)
=) u 6=t

� <x,u>2pending ts assign in state si
=) 9e, e�i, s.t. (�e=COMMITx) ^ (current ts=u in state se�1)

� (current ts=t in state sf�1) ^ (current ts=u in state se�1) ^ (u6=t)

=) e6=f

� e6=f =) 9e, e6=f , s.t. �e=COMMITx
But this is a contradiction and so the original assumption must be false. Thus

the lemma has been proven. 2
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Lemma A.63 (� is a well-formed execution)

^ (curr reqd dlr=x, x2N , in state si)

^ ( ( (<x,t>2pending ts assign)

_ (timestamp
x
=t, t2N ) ) in state si)

=)

curr reqd ts=t in state si

Proof:

� ((<x,t>2pending ts assign) _ (timestamp
x
=t, t2N )) in state si

=) 9h, h�i, s.t. (�h=COMMITx) ^ (current ts=t, t2N , in state sh�1)

by Lemma A.48

� (�h=COMMITx) ^ (current ts=t in state sh�1)

=) ((curr reqd dlr=x) ^ (curr reqd ts=t) ^ (current ts=t+1)) in state sh

� (((curr reqd dlr=x, x2N ) ^ (curr reqd ts=t, t2N )) in state sm�1)

^ (current ts 6=t in state sm�1)

^ (�m 6=COMMITx)

=) (((curr reqd dlr 6=x) ^ (curr reqd ts6=t)) in state sm)

_ (((curr reqd dlr=x) ^ (curr reqd ts=t)) in state sm)

� (((curr reqd dlr6=x, x2N ) ^ (curr reqd ts6=t, t2N )) in state sm�1)

^ (current ts 6=t, t2N , in state sm�1)

^ (�m 6=COMMITx)

=) ((curr reqd dlr 6=x) ^ (curr reqd ts6=t)) in state sm
� �h=COMMITx =) 6 9j, j>h, s.t. �j=COMMITx by WF1

� current ts=t+1 in state sh =) 8l, l�h, current ts�t+1 in state sl

� 8l, l�h, current ts�t+1 in state sl =) 8l, l�h, current ts6=t in state sl

� (((curr reqd dlr=x, x2N ) ^ (curr reqd ts=t, t2N )) in state sh)

^ (8l, l�h, current ts 6=t in state sl)

^ (6 9j, j>h, s.t. �j=COMMITx)

=) 8k, k�h, (((curr reqd dlr6=x) ^ (curr reqd ts6=t)) in state sk)

_ (((curr reqd dlr=x) ^ (curr reqd ts=t)) in state sk)
by induction

� (curr reqd dlr=x in state si)

^ (h�i)

^ (8k, k�h, (((curr reqd dlr6=x) ^ (curr reqd ts6=t)) in state sk)

_ (((curr reqd dlr=x) ^ (curr reqd ts=t)) in state sk) )
=) curr reqd ts=t in state si

and thus the lemma has been proven. 2

Lemma A.64 (� is a well-formed execution)

^ (curr reqd dlr=x, x2N , in state si)

=)

curr reqd ts6=? in state si
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Proof:

� curr reqd dlr=x, x2N , in state si =) 9j, j�i, s.t. �j=COMMITx

� (�j=COMMITx) ^ (current ts=t, for some t2N , in state sj�1)

=) 8k, k�j, ((<x,t>2pending ts assign) _ (timestampx=t)) in state sk
by Lemma A.60

� (8k, k�j, ((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sk) ^ (j�i)

=) ((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state si

� (curr reqd dlr=x in state si)

^ (((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state si)

=) curr reqd ts=t in state si by Lemma A.63

� t2N =) curr reqd ts 6=? in state si
and thus the lemma has been proven. 2

Lemma A.65 (� is a well-formed execution)

^ (t2recv tss in state si)

=)

t2N

Proof:

� t2recv tss in state si =) either

(1) 9h, h�i, s.t. (�h=COMMITx for some x)

^ (curr reqd ts6=? in state sh�1)

^ (curr reqd ts=t in state sh�1)

� ((curr reqd ts6=?) ^ (curr reqd ts=t)) in state sh�1 =) t2N

or

(2) 9h, h�i, s.t. (�h=ACK ASSIGNx)

^ (curr reqd dlr=x in state sh�1)

^ (curr reqd ts=t in state sh�1)

� curr reqd dlr=x, x2N , in state sh�1
=) curr reqd ts6=? in state sh�1 by Lemma A.64

� ((curr reqd ts6=?) ^ (curr reqd ts=t)) in state sh�1 =) t2N

or

(3) 9h, h�i, s.t. (�h=<DLR GONE,u> for some u6=t)

^ (curr reqd dlr6=? in state sh�1)

^ (curr reqd ts=t in state sh�1)

� curr reqd dlr6=? in state sh�1
=) curr reqd dlr=x, for some x2N , in state sh�1

� curr reqd dlr=x, for some x2N , in state sh�1
=) curr reqd ts6=? in state sh�1 by Lemma A.64

� ((curr reqd ts6=?) ^ (curr reqd ts=t)) in state sh�1 =) t2N

171



� Therefore, for all possible cases, the desired result is obtained and thus the

lemma has been proven. 2

Lemma A.66 (� is a well-formed and fair execution)

^ (t2recv tss in state si)

=)

9j, j>i, s.t. 8k, k�j, t62recv tss in state sk

Proof:

� t2recv tss =) t2N by Lemma A.65

� (t2recv tss in state si) ^ (recv tss=; in state s0)

=) 9h, h�i, s.t. (t62recv tss in state sh�1) ^ (t2recv tss in state sh)

� t2recv tss in state sh
=) 9x s.t. 8l, l�h, ( (<x,t>2pending ts assign)

_ (timestamp
x
=t) ) in state sl

by Lemma A.61

� (t62recv tss in state sh�1) ^ (t2recv tss in state sh)

=) either

(1) (�h=ACK ASSIGNy for some y) ^ (curr reqd ts=t in state sh�1)

� (((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sh)

^ (�h=ACK ASSIGNy)

=) ( (<x,t>2pending ts assign)

_ (timestamp
x
=t) ) in state sh�1

� (�h=ACK ASSIGNy)

^ (t 62recv tss in state sh�1)

^ (t2recv tss in state sh)

=) (curr reqd dlr=y in state sh�1)

^ (y2send cs recv in state sh)

� (curr reqd ts=t, t2N , in state sh�1)

^ (( (<x,t>2pending ts assign)

_ (timestamp
x
=t) ) in state sh�1)

=) curr reqd dlr=x in state sh�1 by Lemma A.50

� (curr reqd dlr=y in state sh�1) ^ (curr reqd dlr=x in state sh�1)

=) x=y

� (y2send cs recv in state sh) ^ (x=y)

=) x2send cs recv in state sh
or

(2) (�h=<DLR GONE,u> for some u 6=t) ^ (curr reqd ts=t in state sh�1)

� (((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sh)

^ (�h=<DLR GONE,u> for some u6=t)

=) ( (<x,t>2pending ts assign)

_ (timestamp
x
=t) ) in state sh�1
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� (curr reqd ts=t, t2N , in state sh�1)

^ (( (<x,t>2pending ts assign)

_ (timestamp
x
=t) ) in state sh�1)

=) curr reqd dlr=x in state sh�1 by Lemma A.50

� (�h=<DLR GONE,u>)

^ (t 62recv tss in state sh�1)

^ (t2recv tss in state sh)

^ (curr reqd dlr=x in state sh�1)
=) x2send cs recv in state sh

or

(3) (�h=COMMITy for some y) ^ (curr reqd ts=t in state sh�1)

� (((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sh)

^ (�h=COMMITy for some y)

=) ( (<x,t>2pending ts assign)

_ (timestamp
x
=t) ) in state sh�1

� (curr reqd ts=t in state sh�1)

^ (( (<x,t>2pending ts assign)

_ (timestamp
x
=t) ) in state sh�1)

=) curr reqd dlr=x in state sh�1 by Lemma A.50

� Either

(i) 9g, g�h�1, s.t. �g=ACK ASSIGNx

� (�g=ACK ASSIGNx)

^ (curr reqd dlr=x in state sh�1)

^ (g�h�1)
=) curr reqd acked=T in state sh�1

by Lemma A.57

� (�h=COMMITy)

^ (curr reqd ts=t, t2N , in state sh�1)

^ (curr reqd acked=T in state sh�1)

^ (curr reqd dlr=x in state sh�1)
=) x2send cs recv in state sh

or

(ii) 6 9g, g�h�1, s.t. �g=ACK ASSIGNx

� curr reqd dlr=x, x2N , in state sh�1
=) 9f , f�h�1, s.t. �f=COMMITx

� �f=COMMITx
=) 9e, e>f , s.t. �e=ACK ASSIGNx by Lemma A.59

� (9e, e>f , s.t. �e=ACK ASSIGNx)

^ (6 9g, g�h�1, s.t. �g=ACK ASSIGNx)

^ (f�h�1)

^ (�h 6=ACK ASSIGNx)
=) 9e, e>h, s.t. �e=ACK ASSIGNx

� �f=COMMITx =) 6 9d, d>f , s.t. �d=COMMITx by WF1
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� (�h=COMMITy) ^ (6 9d, d>f , s.t. �d=COMMITx) ^ (f<h)

=) x6=y

� �h=COMMITy =) curr reqd dlr=y in state sh

� (curr reqd dlr=y in state sh)

^ (x6=y)

^ (6 9d, d>f , s.t. �d=COMMITx)

^ (f<h)
=) 8c, c>h, curr reqd dlr6=x in state sc

� (�e=ACK ASSIGNx)

^ (e>h)

^ (8c, c>h, curr reqd dlr6=x in state sc)
=) x2send cs recv in state se

Therefore, for all possible cases, it must be true that

9e, e�h, s.t. x2send cs recv in state se
� x2send cs recv in state se

=) <x,t> 62pending ts assign in state se by Lemma A.62

� (<x,t>62pending ts assign in state se)

^ (8l, l�h, ((<x,t>2pending ts assign) _ (timestamp
x
=t)) in state sl)

^ (e�h)
=) timestamp

x
=t in state se

� ((x2send cs recv in state se) ^ (timestamp
x
=t, t2N )) in state se

=) 9j, j>e, s.t. 8k, k�j, t62recv tss in state sk by Lemma A.56

and thus the lemma has been proven. 2

Lemma A.67 (� is a well-formed and fair execution)

^ (curr reqd dlr=x, x2N , in state si)

^ (curr reqd acked=T in state si)

^ (recv tss6=; in state si)

^ (6 9j, j>i, s.t. (�j=COMMITy for some y)

^ (curr reqd dlr=x in state sj�1) )

=)

9k, k>i, s.t. x2send cs recv in state sk

Proof:

By contradiction. Assume 6 9k, k>i, s.t. x2send cs recv in state sk
� curr reqd dlr=x, x2N , in state si

=) curr reqd ts6=? in state si by Lemma A.64

� ((curr reqd dlr=x, x2N ) ^ (curr reqd acked=T)) in state si
=) 9h, h�i, s.t. �h=ACK ASSIGNx by Lemma A.32

� �h=ACK ASSIGNx =) 6 9g, g>h, s.t. �g=ACK ASSIGNx by Lemma A.41

174



� (curr reqd dlr=x, x2N , in state sm�1)

^ (curr reqd ts6=? in state sm�1)

^ (curr reqd acked=T in state sm�1)

^ (�m 6=COMMITy for any y)

^ (�m 6=ACK ASSIGNx)

^ (x62send cs recv in state sm)

=) (6 9u, u2N , s.t. (�m=<DLR GONE,u>)

^ (recv tss=fug in state sm�1) )

^ (curr reqd dlr=x in state sm)

^ (curr reqd ts6=? in state sm)

^ (curr reqd acked=T in state sm)

� (curr reqd dlr=x, x2N , in state si)

^ (curr reqd ts6=? in state si)

^ (curr reqd acked=T in state si)

^ (6 9j, j>i, s.t. (�j=COMMITy for some y)

^ (curr reqd dlr=x in state sj�1))

^ (6 9g, g>i, s.t. �g=ACK ASSIGNx)

^ (6 9k, k>i, s.t. x2send cs recv in state sk)

=) (8c, c�i, curr reqd dlr=x in state sc)

^ (6 9d, d>i, s.t. (�d=<DLR GONE,u>) ^

^ (recv tss=fug in state sd�1) for any u)
by induction

� (curr reqd dlr=x, x2N , in state sm�1)

^ (recv tss=A in state sm�1)

^ (�m 6=COMMITy for any y)

^ (�m 6=ACK ASSIGNx)

^ (6 9u, u2N , s.t. (�m=<DLR GONE,u>) ^ (recv tss=fug in state sm�1))

=) recv tss�A in state sm by de�nition of steps(LOT)

� (recv tss=R in state si)

^ (R6=;)

^ (8c, c�i, curr reqd dlr=x in state sc)

^ (6 9j, j>i, s.t. (�j=COMMITy for some y)

^ (curr reqd dlr=x in state sj�1))

^ (6 9g, g>i, s.t. �g=ACK ASSIGNx)

^ (6 9d, d>i, s.t. (�d=<DLR GONE,u>)

^ (recv tss=fug in state sd�1) for any u)
=) 8b, b�i, recv tss�R in state sb by induction

� (8b, b�i, recv tss�R in state sb)

^ (R6=;)

^ (6 9d, d>i, s.t. (�d=<DLR GONE,u>)

^ (recv tss=fug in state sd�1) for any u)
=) 9v, v2R, s.t. 8a, a�i, v2recv tss in state sa
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� v2R in state si
=) 9n, n>i, s.t. 8q, q�n, v 62recv tss in state sq by Lemma A.66

But this contradicts the earlier deduction that

8a, a�i, v2recv tss in state sa
and so the original assumption must be false and the lemma has been proven.

2

Lemma A.68 (� is a well-formed and fair execution)

^ (curr reqd acked=T in state sl)

^ (curr reqd dlr=x, x2N , in state sl)

^ (recv tss6=; in state sl)

=)

9r, r>l, s.t. x2send cs recv in state sr

Proof:

� Either

(1) 9r, r>l, s.t. (�r=COMMITy for some y)

^ (curr reqd dlr=x in state sr�1)

� curr reqd dlr=x, x2N , in state sr�1
=) curr reqd ts6=? in state sr�1 by Lemma A.64

� (curr reqd dlr=x in state sl)

^ (curr reqd dlr=x in state sr�1)

^ (r>l)
=) 6 9q, l�q�r�1, s.t. �q=COMMITz for any z

� (curr reqd acked=T in state sl)

^ (6 9q, l�q�r�1, s.t. �q=COMMITz for any z)
=) curr reqd acked=T in state sr�1

� (�r=COMMITy for some y)

^ (curr reqd dlr=x in state sr�1)

^ (curr reqd ts6=? in state sr�1)

^ (curr reqd acked=T in state sr�1)
=) x2send cs recv in state sr

or

(2) 6 9m, m>l, s.t. (�m=COMMITy for some y)

^ (curr reqd dlr=x in state sm�1)

� (curr reqd dlr=x, x2N , in state sl)

^ (curr reqd acked=T in state sl)

^ (recv tss6=; in state sl)

^ (6 9m, m>l, s.t. (�m=COMMITy for some y)

^ (curr reqd dlr=x in state sm�1) )
=) 9r, r>l, s.t. x2send cs recv in state sr by Lemma A.67

� The desired result follows for both possible cases, and so the lemma has been

proven. 2
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Theorem A.69 (� is a well-formed and fair execution)

^ (�i=COMMITx)

=)

9j, j>i, s.t. �j=ERASEx

Proof:

� �i=COMMITx =) 9l, l>i, s.t. �l=ACK ASSIGNx by Lemma A.59

� �i=COMMITx =) 6 9k, k>i, s.t. �k=COMMITx by WF1

� Either

(1) 9m, i<m<l, s.t. �m=COMMITy for some y 6=x

� (�m=COMMITy for some y 6=x) ^ (6 9k, k>i, s.t. �k=COMMITx)

=) curr reqd dlr6=x in state sl�1
� (curr reqd dlr 6=x in state sl�1) ^ (�l=ACK ASSIGNx)

=) x2send cs recv in state sl
or

(2) 6 9m, i<m<l, s.t. �m=COMMITy for any y

� �i=COMMITx
=) ((curr reqd dlr=x) ^ (curr reqd acked=F)) in state si

� �l=ACK ASSIGNx
=) 6 9h, h<l, s.t. �h=ACK ASSIGNx by Lemma A.41

� (((curr reqd dlr=x) ^ (curr reqd acked=F)) in state sn�1)

^ (�n 6=COMMITy for any y)

^ (�n 6=ACK ASSIGNx)

=) ((curr reqd dlr=x) ^ (curr reqd acked=F)) in state sn

� (((curr reqd dlr=x) ^ (curr reqd acked=F)) in state si)

^ (6 9m, i<m<l, s.t. �m=COMMITy for any y)

^ (6 9h, h<l, s.t. �h=ACK ASSIGNx)

=) ((curr reqd dlr=x) ^ (curr reqd acked=F)) in state sl�1
by induction

� Either

(i) recv tss=; in state sl�1

� (curr reqd dlr=x in state sl�1)

^ (recv tss=; in state sl�1)

^ (�l=ACK ASSIGNx)
=) x2send cs recv in state sl

or

(ii) recv tss 6=; in state sl�1

� (curr reqd dlr=x in state sl�1)

^ (recv tss6=; in state sl�1)

^ (�l=ACK ASSIGNx)

=) (curr reqd acked=T in state sl)

^ (curr reqd dlr=x in state sl)

^ (recv tss6=; in state sl)
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� (curr reqd acked=T in state sl)

^ (curr reqd dlr=x in state sl)

^ (recv tss6=; in state sl)
=) 9r, r>l, s.t. x2send cs recv in state sr

by Lemma A.68

� Therefore, for all possible cases, it is true that

9r, r�l, s.t. x2send cs recv in state sr
� x2send cs recv in state sr

=) 9j, j>r, s.t. �j=ERASEx by Lemma A.55

and thus the theorem has been proven. 2
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