
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Technical Report 1493 June, 1994

SodaBot: A Software Agent

Environment and Construction

System

Michael H. Coen
mhcoen@ai.mit.edu

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Copyright c
 Massachusetts Institute of Technology, 1994

This material is based upon work supported by the National Science Foundation under National
Science Foundation Young Investigator Award Grant No. IRI{9357761. Any opinions, �ndings,
conclusions or recommendations expressed in this material are those of the author and do not

necessarily re
ect the views of the National Science Foundation. The research described here was
conducted at the Arti�cial Intelligence Laboratory of the Massachusetts Institute of Technology.
Support for the laboratory's arti�cial intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense under O�ce of Naval Research contract

N00014{91{J{4038.



2

SodaBot: A Software Agent Environment and Construction

System

by

Michael H. Coen

Submitted to the Department of Electrical Engineering and Computer Science

on May 13, 1994, in partial ful�llment of the

requirements for the degree of

Master of Science in Computer Science and Engineering

Abstract

This thesis presents SodaBot, a general-purpose software agent user-environment and

construction system. Its primary component is the basic software agent | a compu-

tational framework for building agents which is essentially an agent operating system.

We also present a new language for programming the basic software agent whose

primitives are designed around human-level descriptions of agent activity. Via this

programming language, users can easily implement a wide-range of typical software
agent applications, e.g. personal on-line assistants and meeting scheduling agents.

The SodaBot system has been implemented and tested, and its description comprises

the bulk of this thesis.

Thesis Supervisor: Lynn Andrea Stein

Title: Class of 1957 Assistant Professor of Computer Science



3

Acknowledgments

Yikes! It's erev Shabbos and I have to run and turn my thesis in! So, who has time

to think about everyone to thank? Well, here's a list of those who come to mind in

the 3 minutes I have to write this!

Professor Lynn Stein is a real mench, i.e. a good person. Where does she get the

energy to provide so much support to so many students?! Needless to say, I'm quite

happy to have her as my advisor.

This thesis was supposed to be about philosophical issues in knowledge repre-

sentation, but Bart Selman and Henry Kautz got me interested in software agents

last summer at AT&T Bell Labs. Will I ever get back to reading Wittgenstein?

Chris Ramming provided thoughtful comments to earlier drafts of this thesis. Steven

Ketchpel provided much comraderie while we worked at AT&T.

Robyn Kozierok tested much of the SodaBot system and provided voluminous bug

reports.

My family always provides much love and support. I dedicate this thesis to my

grandmother, Dora Estrin.

My friends have all helped in their own ways, some by getting me to work and

some by getting me to stop. In particular, I thank (in lexicographic order): Andy,

Debbie, Je�, Sarah, Stacy, Upendra, Ye, and Yuri.



Contents

1 Introduction 8

1.1 Software Agent? : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

1.2 The Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

1.3 Towards a solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.3.1 The SodaBot Software Agent Paradigm : : : : : : : : : : : : : 13

1.3.2 The Software Agent Programming Language : : : : : : : : : : 17

1.3.3 Automatic Agent Distribution : : : : : : : : : : : : : : : : : : 18

1.4 Reader's Guide : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

1.4.1 SodaBot agents written in SodaBotL for a BSA? : : : : : : : : 20

2 The Basic Software Agent Paradigm 22

2.1 BSA Installation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

2.2 The Basic Software Agent : : : : : : : : : : : : : : : : : : : : : : : : 24

2.2.1 The Basic Software Agent Internals : : : : : : : : : : : : : : : 27

2.2.2 Agent Con�guration : : : : : : : : : : : : : : : : : : : : : : : 29

2.3 The Bene�t : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

3 Distributed Agents in SodaBot 32

3.1 The Anatomy of an Agent : : : : : : : : : : : : : : : : : : : : : : : : 33

3.2 A Sample Distribution : : : : : : : : : : : : : : : : : : : : : : : : : : 36

3.3 Network Topology : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

4



CONTENTS 5

3.4 What's the Risk? : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

3.5 The Bene�t : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

4 Writing SodaBot Agents 41

4.1 Agents Describe Dialogs : : : : : : : : : : : : : : : : : : : : : : : : : 41

4.2 SodaBotL Reference Manual : : : : : : : : : : : : : : : : : : : : : : : 44

4.2.1 SodaBot File Hierarchy : : : : : : : : : : : : : : : : : : : : : : 45

4.2.2 Variables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

4.2.3 Conditionals : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

4.2.4 Writing a Mail Filter : : : : : : : : : : : : : : : : : : : : : : : 47

4.2.5 Writing an Agent : : : : : : : : : : : : : : : : : : : : : : : : : 48

4.2.6 SodaBotL Primitives : : : : : : : : : : : : : : : : : : : : : : : 51

4.3 The Bene�t : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

5 Software Agents 55

5.1 What's an Agent? : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

5.1.1 Software agents are on-line pseudo-people : : : : : : : : : : : 56

5.1.2 Software agents are a testbed for other realms in Core AI. : : 57

5.1.3 Software agents are intelligent on-line assistants : : : : : : : : 58

5.1.4 Software agents are negotiators : : : : : : : : : : : : : : : : : 59

5.1.5 Other Points of View : : : : : : : : : : : : : : : : : : : : : : : 60

5.2 Agency De�ned : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

5.3 SodaBot's Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

5.3.1 The VisitorBot : : : : : : : : : : : : : : : : : : : : : : : : : : 62

6 Conclusions 65

6.1 SodaBot's Report Card : : : : : : : : : : : : : : : : : : : : : : : : : : 65

6.2 Closing Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

A Details of the Current Implementation 70



CONTENTS 6

B SodaBotL BNF Speci�cation 71



List of Figures

1-1 The Basic Software Agent : : : : : : : : : : : : : : : : : : : : : : : : 15

1-2 The BSA running on a Unix workstation : : : : : : : : : : : : : : : : 15

1-3 A simple agent for gathering opinions. : : : : : : : : : : : : : : : : : 18

1-4 The Pollster window. : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

2-1 The SodaBot basic software agent architecture : : : : : : : : : : : : : 25

2-2 Mail handling in the BSA : : : : : : : : : : : : : : : : : : : : : : : : 26

2-3 A SodaBot mail �lter : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

3-1 The generic SodaBot agent anatomy : : : : : : : : : : : : : : : : : : 34

3-2 Distribution of the Pollster agent : : : : : : : : : : : : : : : : : : : : 37

4-1 A SodaBot authorize agent for approving document publication : : : 43

7



Chapter 1

Introduction

This thesis is about creating software agents. We argue that software agents should

be written using a vocabulary not provided by traditional programming languages |

it should be possible to create agents solely by specifying their abstract behavior.

Motivated by this position, we introduce SodaBot, a general-purpose software

agent user-environment and construction system. Its primary component is the basic

software agent | a computational framework for building agents which is essentially

an agent operating system. We also present a new language for programming the basic

software agent whose primitives are designed around human-level descriptions of agent

activity. Via this programming language, users can easily implement a wide-range

of typical software agent applications, e.g. personal on-line assistants and meeting

scheduling agents. The SodaBot system has been implemented and tested, and its

description comprises the bulk of this thesis.

This introduction is divided into the following sections:

(1.1) What is a software agent in the �rst place?

(1.2) What research problems motivated this work?

(1.3) What is the SodaBot system and how does it solve these problems?

(1.4) A reader's guide to the remainder of the thesis

8



CHAPTER 1. INTRODUCTION 9

1.1 Software Agent?

The beginning is always a good place to start, so what exactly is a software agent?

The answer depends on whom you ask and can vary quite widely. (See chapter 5

for some typical responses.) For the purposes of this thesis, however, we will focus

exclusively on creating two speci�c types of software agents: (1) personal assistants

and (2) application agents.1 First, we examine some typical high-level characteristics

these two groups have in common, and then we look at several representative agents

from each.

Agents in the Abstract

Agents are autonomous and temporally continuous.
2
Agents can act in behalf of par-

ticular people, i.e. they can take actions which appropriately represent the interests of

others; therefore, agents must also be robust and capable of securely handling private

information. Agents tend to be highly interactive | they spend much of their time

communicating with other agents and human beings. Agents are active participants

in their computational universe, i.e., they react to and cause changes in overall system

state.

Agents in the Concrete

Agents are practical and helpful. We are particularly interested in the construction of

software agents that automate simple on-line, repetitive and time-consuming tasks.

Although we are interested in using software agents as a \testbed" for other areas in

core AI ([Etzioni, 1993]), we must keep in mind that \one of the most challenging

aspects of agent design is to de�ne speci�c tasks that are both feasible using current

technology and are truly useful..."([Kautz et al., 1994])

1Although, much of our discussion applies to other types of agents as well.
2In this particular sense, they are similar to Unix daemon processes, but agents are generally

associated with particular people or high-level applications.



CHAPTER 1. INTRODUCTION 10

We focus here on building the following two types of software agents:

1. personal on-line assistants: These agents generally belong to particular people

and act like simple electronic secretaries. They do things such as:

a) automatically respond to requests to schedule meetings by consulting

their owner's private schedule;

b) keep track of their owner's whereabouts and provide this information on

request;

c) contact their owner appropriately based on her location, e.g. via display-

ing a window on her workstation, sending a fax, or even making a phone

call (SodaBot can't telephone yet, but see [Kautz et al., 1994].)

d) �lter and sort incoming e-mail and faxes based on their owner's prefer-

ences (which may be provided explicitly or someday learned from ob-

served behavior.).

2. application agents: These agents coordinate the transfer and processing of in-

formation among people and other agents. Application agents include:

a) Time schedulers which schedule group or individual meetings among

a set of people by negotiating among their personal agents

to maximize some \convenience" measure.[Maes and Kozierok, 1993,

Dent et al., 1992, Kautz et al., 1994].

b) Text processing systems which allow complex processing of documents

involving many people at di�erent sites.

c) Receptionist agents which accept requests and determine their appropri-

ate destinations by interacting with other agents (and perhaps people as

well).
3

It is important to remember that software agents are simply computer programs,

like expert systems, text editors, etc. Sometimes, especially given the anthropomor-

3This is work in progress with Randy Davis and Howie Shrobe.



CHAPTER 1. INTRODUCTION 11

phic autonomy of agents, it is easy to lose track of this and disconnect expectations

from reality. However, one must keep in mind that what other programs cannot yet

do, e.g. converse in English, agents cannot yet do either. Nevertheless, throughout

this thesis, we will treat software agents as a unique class of computational entities

| agents are paradigmatically distinct from other types of computer software. This

outlook will direct how we intend for agents to be used and what types of tasks we

expect agents to perform.

1.2 The Problem

Much of the work done in the area of software agents can be placed into one of

two categories: (1) highly theoretical treatment of agents' intentions and capabilities

([Shoham, 1993, Doyle et al., 1991, Etzioni et al., 1992a]); (2) applied construction of

speci�c agents ([Etzioni and Segal, 1992, Maes and Kozierok, 1990, Vere and Bick-

more, 1990, Dent et al., 1992, Kautz et al., 1993]). However, determining for what

(and if) software agents are actually useful requires building many of them, and the

agent construction process poses di�cult technical challenges.

It is generally straightforward to specify an agent's abstract behavior, e.g. \I want

the agent to ask some user a question; it should remember her response in case the

same question comes up again. Then, it should process the response by calling my

preexisting C-language application on it and communicate the result to some other

agent." However, traditional programming languages o�er no primitive-level support

for the typical kinds of high-level \online activities" in which agents engage, e.g.

graphically obtaining structured, typed information from a user or communicating

reliably with other agents.

Building agents generally involves a multi-layered approach. First, it requires a

great deal of speci�c \system-hacking," e.g., of esoteric system software, networking

protocols, windowing systems. (See [Kautz et al., 1994] for a discussion of the di�-



CHAPTER 1. INTRODUCTION 12

culties involved in handling the most basic of agent functions, e.g., reading e-mail reli-

ably.) Second, agent construction frequently involves mid-level computational issues,

e.g. having agents handle several events simultaneously, provide reliable transactions,

or handle errors automatically. Finally, agents (usually) do something with their com-

putational foundation. For example, researchers in arti�cial intelligence may want to

implement agent-based schedulers or knowledge representation systems.

Each of these layers can require a substantial amount of independent implementa-

tion and debugging time. So much so, in fact, that very few software agents have yet

been built. And although the need to simplify agent construction is obvious, there

are as yet few systems designed to assist the agent creator.

Additionally, it can be di�cult to distribute new agents, i.e., to introduce them

to the world and let other people use them. Agents tend to be site-speci�c in intri-

cate ways and disconnecting them from their local dependencies can be technically

involved. Furthermore, an agent which has been \disconnected" from its birth-site

can also be quite challenging to install.

Finally, in particular with software that handles sensitive information and may

even represent the user in interactions with other people, a person needs an enormous

amount of con�dence that the software will operate correctly. For example, who is

likely to ftp and install a random program capable of autonomously sending e-mail

in their name?

Thus, we see three problems with building software agents today:

1. They are technically challenging to write in traditional programming languages

and operating systems.

2. They are di�cult to distribute because they may have site-speci�c dependencies;

for the same reason, they can be di�cult to install.

3. People may be uncomfortable with the amount of responsibility given to an

unknown (and possibly buggy) agent.



CHAPTER 1. INTRODUCTION 13

1.3 Towards a solution

This thesis presents SodaBot, a general-purpose software agent user-environment and

construction system. In this section, we introduce the SodaBot system and outline

how it addresses the three aforementioned problems.

The four primary components of SodaBot discussed below are:

(1.3.1) The basic software agent

(1.3.1) The graphical user interface

(1.3.2) The SodaBot agent programming language

(1.3.3) Automatic distribution of application agents

1.3.1 The SodaBot Software Agent Paradigm

In SodaBot, each user (or owner) is given a personal basic software agent (BSA) which

typically runs in the background on her home workstation.
4
The BSA is an agent

operating system | think of it as the \Unix of the software agent world." By this,

we mean that it is a generic (in the sense of universal) computational framework for

implementing and running speci�c agent applications. The BSA is programmed in

the SodaBot agent programming language (SodaBotL).5 As a quick sanity check, see

if the following (rough) analogy makes sense:

SodaBotL is to SodaBot the way C++ is to Unix.

A BSA runs SodaBotL programs provided both by its owner and by other people.

It implements a time-sharing scheduling algorithm, so only one BSA needs to be

running to simultaneously execute several agent applications for a particular user |

see �gure 1-1. The BSA runs an agent until it needs to wait for something, e.g.

4The BSA can alternately be con�gured in several other ways. See section 2.1
5Pronounced \Soda-Bottle."



CHAPTER 1. INTRODUCTION 14

user-input or communication from another agent. At this point, the BSA can put

this agent to sleep and schedule another one in its place.

The user and her BSA interact through the SodaBot graphical user interface

(GUI). Figure 1-2 shows the GUI of a BSA running on a Sun Sparc workstation.

In this setup, the GUI occupies one of several virtual screens available to the user.

(However, it can open windows on whichever virtual screen the user has active.) The

central window in the display contains the BSA's main interface; it allows the user to

monitor and control the BSA's activity | including reviewing and limiting its access

to system resources. The top of the screen displays the SodaBot agent editor which

allows the user to create, compile, and install agent applications. The editor can also

be used to inspect incoming agent applications provided by other people. Finally,

the bottom of the screen contains several windows opened by various software agents

running on the BSA.

The GUI was designed to provide the user with a sense of control over her BSA;

she can enable or disable various capabilities | e.g. having it modifying her e-mail

�le | depending on her con�dence in it (or lack thereof). [Kautz et al., 1994] makes

clear that people are uncomfortable delegating absolute authority to software agents.

By giving the user a large degree of control over agent activity, we hope to help

assuage fears that the BSA will do something inappropriate or destructive.

The BSA has a novel architecture which allows it to perform a variety of com-

plex agent-oriented tasks such as: reliably handle e-mail; graphically and textually

interact with users; handle multiple concurrent events; interact in site-speci�c ways

with its computational environment (e.g. run other system software, speak with a

fax machine, etc.).
6
Typically, an individual software agent application must perform

a number of these activities. However, robustly implementing such tasks typically

requires a large programming e�ort and much esoteric system knowledge. Therefore,

6Several other features of the BSA will only make sense after we have introduced more of the
system and are therefore discussed below.



CHAPTER 1. INTRODUCTION 15

Provided by User

Meeting
Scheduler

(Received from
mhcoen@research)

AI Lab
Receptionist
(Received from
davis@ai)

Personal on-line
assistant

Received from other agents

User’s BSA

User’s Display

Agent OuputAgent Input

✉   ☎ ✉   ☎

SodaBot Programs

☎ =   fax

✉ =  e-mail

=  other agents

Figure 1-1: The Basic Software Agent

Figure 1-2: The BSA running on a Unix workstation



CHAPTER 1. INTRODUCTION 16

the BSA comes with them \built-in," and the SodaBot agent programming language

o�ers high-level primitives through which they can be accessed.

What does the BSA buy us? It essentially disconnects agent programs from the

speci�c computational environment in which they run. They no longer need to be

\hard-coded" with speci�c parameters for particular activities, e.g. they don't require

special knowledge of a host's mailer set-up. The problem of con�guring many software

agents is reduced to the problem of con�guring a single agent, the BSA. Thus, for

example, SodaBot agent programs written at MIT could be run without modi�cation

on BSAs at AT&T Bell Labs.
7
Furthermore, when a Macintosh or PC-based BSA

is created, agent programs running on Unix-based BSAs can be run directly on Mac

and PC-based BSAs.
8

Also, the BSA takes advantage of empirical knowledge we

have gained installing various software agents on several Unix con�gurations, and it

attempts to automate its own installation.

The BSA paradigm also assists in the development of user con�dence in agent

applications, because the BSA provides the only interface to critical system com-

ponents. For example, if the BSA knows how to provide event time-outs or how to

communicate correctly over TCP/IP, application agents running on the BSA do also.
9

Finally, there is a simple computational e�ciency gain by having only a single BSA

image in memory rather than several independent agent programs. The atomicity of

agent execution enforced by the time-sharing model can also simplify interaction

among several separate agent applications.

7In fact, BSAs automatically distribute sections of new agent programs. Therefore, this property
is essential for providing guarantees of correct behavior.

8This assumes, of course, that they are not Unix dependent because a non-portable SodaBotL
System call. However, even in this case, an agent can be divided into various sections, some of which
run in Mac and PC-based environments and others which run exclusively in Unix environments. See
section 3.1

9Of course, simply knowing how to use something doesn't provide any guarantee of the appro-
priateness of a particular use. We discuss this topic in greater depth in section 3.4.



CHAPTER 1. INTRODUCTION 17

1.3.2 The Software Agent Programming Language

The SodaBot agent programming language (SodaBotL) o�ers high-level primitives

and control-structures designed around human-level descriptions of agent activity.

SodaBotL abstracts out the low-level details of agent implementation. In a typical

Unix environment, for example, SodaBotL frees agent creators from the bother of

dealing with system calls, mail servers, sockets, and X-windows. It is therefore much

easier to have an agent:

1. Ask a question:

Ask fprompt \Time"g \When are you returning?";

2. Display a message:

Display fprompt \Read it?"; Choices(yes, no)g \Mail from $sender: $subject";

3. Contact another agent:

Contact Agent <Receptionist; querier> fusers: $inferredg

\Do you know who in the AI Lab is responsible for $topic?"

4. Handle time:

Wait until Tuesday before $date: f

Display \Reminder, you have an appointment with $person on $date";g

The SodaBot language design focuses speci�cally on building two kinds of software

agents: (1) personal assistants { Each user has a private SodaBot basic agent which

she can customize to act as a simple electronic secretary. A user can program her agent

in SodaBot to do things such as: �lter incoming e-mail; notify her about particular

events (e.g. someone has returned to his o�ce); or automatically handle incoming

requests. Users and other agents can also contact someone's personal assistant much

in the same spirit one would a human secretary.
10

(2) application agents { Users can

create agents that speci�cally provide various services. Application agents are also

10We have also been considering the development of personal assistants for mobile robots which
would provide on-line remote access to them.



CHAPTER 1. INTRODUCTION 18

AgentfPollsterg:
Get Response fprompt \And what's your opinion?";

timeout in 10 minutesg
$message body;

Reply with $response;

Figure 1-3: A simple agent for gathering opinions.

Figure 1-4: The Pollster window.

called SodaBots. For example, �gure 1-3 has a simple Pollster agent. This agent

allows us to quickly solicit opinions from a group of people by directing a Pollster

message to their personal agents.

1.3.3 Automatic Agent Distribution

A SodaBot environment is composed of a society of basic software agents which are

connected via the Internet (and/or a local area network). Within an environment,

new application agents are automatically distributed | as SodaBotL programs |

among its constituent BSAs. For example, suppose Robyn creates a group meeting

scheduler. When she schedules the �rst meeting, the basic software agents owned

by the people in her group will automatically request their required sections of this

application agent from her BSA. Note that SodaBot does not enforce a client/server

model of agent interaction. Sections of an agent's program are distributed as the need



CHAPTER 1. INTRODUCTION 19

arises, and the \server" role in an agent might dynamically rotate among the basic

agents or might not exist at all.

Additionally, SodaBotL allows for context-dependent interpretation of its prim-

itives based on their run-time environment. Primitives are requests to perform an

action that do not actually specify how the action should be done.
11

For example, a

request in an agent's program to display a message can be satis�ed by one (or more)

of the following, depending on the owner's location: (1) put up a window on the

user's display; (2) e-mail the message to the user; or (3) fax it to her, etc.

Finally, because SodaBotL agent programs can be much shorter than their coun-

terparts written in other systems, e.g. C on a Unix platform, they are that much

easier to debug and inspect for security threats. For example, while it may not be

possible for a user to peruse a random agent program she ftp'ed from somewhere

on the Internet, it is quite feasible that she can inspect in detail a SodaBotL agent

received by her BSA. (Security issues are discussed in section 3.4)

1.4 Reader's Guide

The remainder of this thesis discusses the SodaBot system and how it simpli�es the

construction of software agents. We do not propose that SodaBot is a universal agent

construction tool or that its level of support is su�cient for all or even many applica-

tions. However, central to the design of SodaBot is that all of its main components are

separate, replaceable modules. If some capability is not provided or if some feature is

inappropriate for a particular site, that part can be added or replaced while treating

the rest of the system as a black-box abstraction. Also, particular SodaBot modules

can be incorporated into other programs. For example, an application which needs

11[Kautz et al., 1994] describes this as \intension" vs. \extension," (i.e. \connotation" vs. \deno-
tation"). It is not clear this terminology (drawn from linguistics) accurately describes the intended
phenomenon. At least with respect to SodaBot, context-dependency is simply with respect to the
medium for conveying information; the information explicitly must be made available, but the BSA
may select precisely how.



CHAPTER 1. INTRODUCTION 20

to receive and �lter e-mail can use just these parts of the SodaBot system. Finally,

SodaBot can be used to get fast, working prototypes of software agents, even if it is

intended that the �nal application be completely written, say, in Lisp or C.

To summarize, SodaBot provides the following capabilities:

1. simple, fast construction of application agents and personal assistants

2. support for complex human/agent and agent/agent communication

3. automated distribution of new agents

4. a wide-range of default behaviors for \typical" situations

Chapter 2 introduces the SodaBot software agent paradigm, i.e., essentially, what

we mean when we talk about an agent. We introduce the automated distribution

of application agents in chapter 3. The SodaBot agent programming language is

presented in chapter 4: �rst, by way of example, and then through a more formal

speci�cation. How SodaBot relates to other current software agent research is exam-

ined in chapter 5. Finally, we evaluate the system in chapter 6.

1.4.1 SodaBot agents written in SodaBotL for a BSA?

The reader may be quite pleased that this document contains no �rst-order predicate

calculus. Even so, there is the risk that some of the new terms de�ned here may cause

confusion. To dispel any perplexity, we o�er the following guide:

� SodaBot is a software agent user-environment and construction system.

� A SodaBot is a software agent implemented in SodaBot.

� SodaBotL is the name of the programming language for building software agents

in SodaBot.

� The Basic Software Agent (BSA) is the foundation users build upon to create

personal assistants and application agents. It is a basic agent operating system.



CHAPTER 1. INTRODUCTION 21

� A personal assistant is a simple electronic secretary. It runs on a user's BSA.

� An application agent is an agent which performs a speci�c task. It runs among

the BSA's that comprise a SodaBot environment.

� A SodaBot environment is composed of a group of basic software agents which

communicate with each other (via E-mail, TCP/IP, etc.)

� An owner or user is the human being directly associated with a particular BSA.



Chapter 2

The Basic Software Agent

Paradigm

This chapter details the computational foundation of the SodaBot system | the

basic software agent. We �rst examine various con�gurations for running the BSA.

We then detail the behavior and architecture of the BSA along with issues that arose

during its implementation. Finally, we discuss the bene�ts provided by the BSA

to software agent creators. Although this chapter primarily addresses Unix-speci�cs

of the SodaBot system, presumably parallels exist in the PC world to much of this

discussion.

This chapter is divided into the following sections:

(2.1) BSA Installation

(2.2) BSA Behavior and Architecture

(2.3) What's It Good For?

2.1 BSA Installation

SodaBot can be con�gured to run in one of several ways:

22



CHAPTER 2. THE BASIC SOFTWARE AGENT PARADIGM 23

1. The BSA can run as a constant background job on some workstation | usually

(although not necessarily) the user's home workstation. This way, it is always

ready to respond to incoming requests, and if permitted, it can take actions

without the user's explicit approval. This con�guration does not tie the BSA

to a particular display if the site permits \xhosting" to other machines; in this

case, the user can simply notify her BSA of her current location. This is the

default and simplest way to con�gure SodaBot.

2. The BSA can be run when the user logins and terminated when the user logs out.

This option is appropriate if the user is uncomfortable leaving SodaBot running

in her absence or if option (1) causes technical complications, e.g., \xhosting"

is not permitted and she moves around frequently. This con�guration disallows

certain interactions, e.g., TCP/IP connections from other agents, when the user

is not logged in.

3. The BSA can be started dynamically only when there is: incoming e-mail,

an incoming fax, a TCP/IP connection from another agent, etc. Unlike with

options (1) and (2), con�guring SodaBot for this behavior can be quite di�cult

and setting up the system requires \user-wizardry." (It generally requires root

access as well.)

For option (1), the user does nothing more than start her BSA by typing \Soda-

Bot" at the Unix prompt. The �rst time it is run, SodaBot creates a directory hi-

erarchy in \~/.sodabot/" that holds the user's agent �les and personal con�guration

information, such as the name of her home display. The BSA also tries to determine

site and organization-speci�c information such as the location of mailer �les, system

libraries, and the name of institution.
1
It may have to ask the user several questions

during installation, but in the current implementation this process is not generally

1Institution name can be guessed from the IP address although the current table of known
addresses is very small | just the MIT AI Lab and AT&T Bell Labs.



CHAPTER 2. THE BASIC SOFTWARE AGENT PARADIGM 24

interactive. Option (2) merely requires that the user start option (1) and \quit" the

BSA whenever she logs out. The BSA's starting and stopping can also be performed

by her .login and .logout �les respectively. The remainder of this thesis assumes the

BSA has been installed with either the �rst or second option. While we have done

much experimentation with option (3), the vast array of extant Unix con�gurations

today makes it simply too di�cult to automate installation, and the skills required for

custom installation are beyond the capabilities of most users.
2
More technical details

regarding agent con�guration for options (1) and (2) are discussed in section 2.2.2.

2.2 The Basic Software Agent

When it is not running an application agent, the BSA spends most of its time sleeping.

However, when idle, it periodically wakes up (e.g. every 5 seconds) and checks for

(1) incoming e-mail; (2) user activity in the GUI; (3) a record \waking up" in one

of the system databases; (4) completion of a system command invoked by the agent

or its owner; or (5) contact from another agent.
3
In order to insure responsiveness

during user interaction, the GUI runs as a separate process (which responds to various

X-windows events).

Figure 2-1 shows the general SodaBot system architecture. The BSA is connected

to available system resources, and all application agents access these resources through

the BSA. Thus, for example, the BSA is solely responsible for displaying windows on

the user's display and processing her e-mail.

Because application agents do not directly access system resources, the BSA is free

2If the user wants to try option (3), there is a seperate installation program which can automat-
ically generate the (generally) necessary setuid-to-root \wrappers." However, the user will have to
connect these wrappers to the system �les manually. Also because a system's servers rarely honor
setuid-to-root 
ags from remote clients, the installation program must be run directly on each server
and the wrappers must be stored on one of the server's local disks.

3The BSA's polling behavior when idle (i.e. waking up every few seconds) is no more CPU
intensive than that of other popular Unix applications, such as xbi�, and it would seem to be a good
deal less of a burden on system resources than the ubiquitous xload. The length of the sleep-wake
cycle is adjustable by the user.



CHAPTER 2. THE BASIC SOFTWARE AGENT PARADIGM 25

Incoming Mail,
      Faxes

From: ....

From: ....

From: ....

SodaBot Basic Agent Graphic Interface

Sockets

GUI

Databases:

System Delivery
System GUI

Other Agents

Agent 2Agent 1 Agent 3

Outgoing Mail, 
    Faxes

SodaBot Programs

User specified Received from
other agents

1) Incorporate program
    changes.
2) Check for e-mail
3) Listen on sockets
4) Examine databases

TCP/IP

Figure 2-1: The SodaBot basic software agent architecture



CHAPTER 2. THE BASIC SOFTWARE AGENT PARADIGM 26

Load
Personal
Agent

Mail
Filters

To: user

SodaBot:<AgentName; Req>

Load Agent

Request Delivery
of Agent

EAgent

EAgent
To: userbot

(Personal Assistant)

Incoming
Mail

Figure 2-2: Mail handling in the BSA

at run-time to reinterpret their access requests. For example, suppose an application

agent wants to display a message to the user, and the BSA knows that she is not at

her workstation but is reachable by fax. It can alternatively fax the message to her

in addition to (or instead of) displaying the message on her screen. This is dealt with

in more detail in section 1.3.1 in the chapter covering SodaBotL.

Work on a system TCP/IP connection for agent-to-agent communication is just

beginning. It will help alleviate the bottleneck caused by relatively slow e-mail deliv-

ery and it will allow new or cautious users to con�gure the BSA so that application

agents can run without accessing their e-mail. When faced with network \�re-walls"

or with temporary network failures, however, the BSA will be able to resort to using

e-mail for inter-agent communication.
4
Also, note that how messages are sent be-

tween application agents is actually invisible to those agents; the SodaBotL Contact

Agent primitive means send the message without specifying the transfer medium.

The connection to the system mailer is the most complicated system resource link

in SodaBot. (See section 2.2.2) In the standard con�guration, the BSA and its owner

share the same mailbox. Incoming e-mail can be intended for (see �gure 2-2):

1. The BSA's owner | In this case, it loads and runs her speci�ed mail �lters over

each new message. (Figure 2-3 contains a sample �lter.)

4Communication via e-mail can also be quite useful for debugging agent applications because it
is readable by a person, unlike TCP/IP data.



CHAPTER 2. THE BASIC SOFTWARE AGENT PARADIGM 27

Mail �lter:

Received mail ffrom: /las/; subject: /funding/g:
Displayfprompt \Read now?"; choices(yes, no, check)g

\Important mail from Lynn!: $subject";

if (choice(yes)) fDisplay $body;g
elsif (choice(check)) fSystem \�nger $address";

Display $result;g

Figure 2-3: A SodaBot mail �lter

2. A particular application agent | Mail can be directed to application agents by

including a special SodaBot header in the message, such as

To: mhcoen@ai.mit.edu

SodaBot: <Pollster>

in which case it is directed to the named agent. The speci�cation, partic-

ularly in headers generated by other agents, can also include a particular

\section" of the agent and a version number, e.g. \SodaBot: <Scheduler; re-

quest meeting; v1.0>"

Agents can also be contacted via e-mail aliases. For example, the address

\ScheduleBot@ai.mit.edu" can resolve to \mhcoen@ai.mit.edu." In this case,

the BSA is given a list of (alias, agent) pairs which it uses to resolve the contents

of the \To:" header into an application agent.

3. The owner's personal assistant | By default, the personal assistant is named

\user namebot@address," e.g. \mhcoenbot@ai.mit.edu."

2.2.1 The Basic Software Agent Internals

The BSA can be viewed as the kernel of a time-sharing agent operating system.

SodaBotL programs are compiled into the BSA's native operating language which is

directly interpreted by the BSA when it runs an agent. The compiled agent programs



CHAPTER 2. THE BASIC SOFTWARE AGENT PARADIGM 28

are divided into multiple sections which can be stopped and restarted by the BSA's

agent scheduler.
5

The agent scheduler allows the single-threaded BSA to respond to variety of con-

current system activity. It is not reasonable for the BSA to spend large amounts

of time waiting for an some event, e.g. user input or completion of an invoked ap-

plication (e.g. a constraint-propagation package for an agent-based planner), at the

expense of others. For example, the mail �lter in �gure 2-3 displays a message to the

user and then it needs to wait for the user's response before evaluating the subsequent

if-statements. SodaBot handles this required delay by putting the application agent

or mail-�lter to sleep until the user provides the requested input (or the message

times out). Sleeping agents are stored in one of three sleeping agent databases where

they wait for particular events to occur or for time limits to pass.
6

When a BSA receives input from the user interface, it checks the GUI database

for a record waiting for this input. This record would contain: (1) the name of the

sleeping agent; (2) the position in this agent at which to resume processing; and (3)

the data the agent was running on, e.g. an e-mail message and the agent program's

local state. If the appropriate record is found, its corresponding agent is then reloaded

and continues running until completion or until the next expression which causes it

to wait.

The BSA also has a database for dealing with the SodaBot \system" command,

which can be used to access local software, e.g., the \�nger" command, LaTeX,

ghostscript, etc. The system command can take an arbitrary amount of time to

�nish, so the BSA creates a separate process to run the speci�ed command and puts

the agent to sleep in the system database. The BSA will continue with some other

5SodaBot is written in Perl, Extended TCL/TK, and C. This part of the system is implemented
in Perl, a language which provides little support for this type of non-local program 
ow. In order
to permit it, agent programs get divided into many individual procedures, each of which must be
called in order to execute the agent. Thus, we can interrupt an agent's execution by pausing between
subroutine invocations.

6Mail �lters are actually run by the internal mail �lter agent which can also be placed in one of
the sleeping agent databases.



CHAPTER 2. THE BASIC SOFTWARE AGENT PARADIGM 29

activity. When it hears that the command has completed (over a Unix-style socket),

the BSA will reload the sleeping agent with the command's output stored in the

$result variable.

The third database is for incoming messages which have been directed to an

unknown application agent. When e-mail is sent to an agent that the BSA does

not know about, the BSA requests that the speci�ed agent be supplied either by

the original sender or by a central agent depository. Until that agent arrives (as a

SodaBotL program), the mail is held in the delivery database. Automatic distribution

of agents is discussed in chapter 3.

Agents can specify maximum lengths of time they are willing to spend sleeping in

a database. After this timeout expires, the agent is restarted at some speci�c error-

recovery or expired-timeout point where it can take remedial or default action, such

as re-sending a request or notifying its owner of the problem. Certain error-recovery

protocols are built-in to SodaBot, such as recovery from failure to receive requested

agent programs.

2.2.2 Agent Con�guration

The user can con�gure the BSA based on both her preferences for its behavior (see

section ) and the amount of con�dence she has in its correct operation. For example,

once the BSA has the ability to communicate directly via TCP/IP, it will be capable

of running without accessing the user's e-mail if she so desires; additionally, the BSA's

ability to run local software can be greatly curtailed or eliminated. It seems quite

essential, particularly because SodaBot is a new and experimental system, that we

provide people with a minimally risky way of using it. Thus, the BSA's connections

to speci�c system resources can be temporally or permanently disabled. As the user

becomes more comfortable with the system, she can selectively re-enable features.

Users can also determine precisely how the BSA, if permitted, processes their e-

mail. This is actually a rather complex issue, and there are many technical details



CHAPTER 2. THE BASIC SOFTWARE AGENT PARADIGM 30

that are not su�ciently interesting to document here. For example, there are (too)

many ways to connect a BSA to the system's mailer. The simplest way is for the

BSA and its owner to share the same mailbox �le. In this case, we would like the

BSA to quickly remove its messages from this �le so the sharing is transparent to

the user. However, in Unix, there are certain �le locking problems on distributed �le

systems which could cause a program that writes to a mail spooler �le to clobber

incoming mail.
7
In response to this problem, SodaBot's default con�guration does

not write user-messages back to the spooler �le after it removes mail intended for

the BSA. Thus, the user needs to obtain her new messages from somewhere other

than the system-mailer's spool �le; therefore, she must explicitly provide a location

for this new spool �le, and inform her mail-reader of its existence.
8
It is also possible

for the BSA to have its own e-mail address (as done in [Kautz et al., 1994]), but on

some systems this can require root access to set up.

2.3 The Bene�t

The basic software agent provides preliminary solutions to the three problems outlined

in section 1.2 with software agent construction. More importantly, it is a foundation

for other components of the SodaBot system, e.g. SodaBotL, to more completely

address these issues.

1. Software agents can be technically challenging to write in traditional program-

ming languages and operating systems:

� We discussed earlier the three coding-layers typically involved in software

agent construction: (1) low level, e.g. networking; (2) mid level, e.g. error

handling; and (3) high level, e.g. knowledge representation. The BSA

7The problem here is quite technical | it involves the distinction between lockf(3) and fcntl(2v)
| and occurs only very rarely, but I have veri�ed its existence with local GNU mail-wizards.

8If she prefers, the user can have her BSA write back to the mail-spooler �le. The risks are no
greater than if she did so herself using one of the more popular mail reading programs.



CHAPTER 2. THE BASIC SOFTWARE AGENT PARADIGM 31

helps free the agent creator from the �rst two of these e�orts so that she

can concentrate on the third. It pushes system-speci�c aspects of agent

creation beyond the abstraction barrier.

2. Software agents are di�cult to distribute because they may have site-speci�c

dependencies; for the same reason, they can be di�cult to install.

� The BSA disconnects application agents from the speci�c computational

environment in which they run. Agent programs no longer need to be

\hard-coded" with site-speci�c information.

� This disconnection makes it easy to move agents around. They don't need

to be disconnected from their \birth-site" or hooked-up to anything when

being installed.

� The problem of con�guring many software agents is reduced to the problem

of con�guring a single agent, i.e., the BSA.

� The BSA has knowledge of several standard Unix con�gurations and tries

to automate its installation.

3. People may be uncomfortable with the amount of responsibility given to an

unknown (and possibly buggy) agent.

� The BSA allows the user to gradually establish con�dence in its behavior

and to selectively disable and enable access to speci�c system resources.

� The agent-system disconnection allows the BSA to reinterpret at run-time

requests for system resources from application agents. Users can therefore

customize the behavior of application agents without actually modifying

them.

� The BSA provides a stable agent-framework over which the user can exert

ultimate control.



Chapter 3

Distributed Agents in SodaBot

In SodaBot, an application agent generally doesn't run as a single program on a

particular basic software agent. Rather, various sections of an agent are automatically

distributed to and run on the BSAs which comprise a SodaBot environment. The

agent's activity is manifested by the coordinated interaction of these program sections.

This chapter discusses how SodaBot agent programs are structured and how they

are distributed. We are concerned here only with how SodaBotL programs are orga-

nized and how they move around the network, not with what they actually do (or

\mean") once they arrive at their destination. It might seem a little odd to discuss

how SodaBotL programs travel before saying what it is they actually do. However,

because understanding agent distribution is fundamental to writing a SodaBot agent,

we present it before detailing SodaBotL's semantics (in Chapter 4).

We also discuss several related issues, including SodaBot environment topology

and security concerns inherent in any automated distribution/installation of software.

Security against malicious adversaries was at best a peripheral consideration during

the design of the current implementation of SodaBot. However, it is a very interesting

research topic and one we hope to explore in the future.

32



CHAPTER 3. DISTRIBUTED AGENTS IN SODABOT 33

3.1 The Anatomy of an Agent

A SodaBot environment is formed by a group of basic software agents which coopera-

tively implement an application agent. These agents may all be running on the same

physical machine or they may be distributed across a network, each running (in the-

ory) on a di�erent operating system and platform. An individual BSA is most likely

a member of several di�erent environments, each expressing the unique connectivity

required for a particular application agent.

SodaBotL programs are composed of (possibly overlapping) groups, where each

group represents a di�erent distribution of sections of the agent's program. Groups

specify what role the agent requesting software is going to play in the execution of this

agent. For example, the simplest group labellings might be \client" and \server;" one

BSA might then contact another, \I need section X of agent Y," where section X is in

the \client" group. Then all sections of agent Y in the \client" group would be sent

out to the requesting agent; presumably, in its role as a \client," it will need access

to the other sections of agent Y which also fall into this group. However, SodaBot

doesn't enforce this model; agents can have more than two groups and individual

BSAs can fall in more than one group. It may also not be computable a priori which

BSAs will end up in which groups when the agent is running. As an agent gets added

to more groups, it may have to issue additional requests to obtain the sections of the

agent associated with them.

Figure 3-1 outlines the generic SodaBot application agent structure. An appli-

cation agent is divided into various sections (numbering corresponds to that in the

�gure):

1. Global declarations | These are declarations which get distributed to every

BSA running the agent.

2. The main agent | This section speci�es what happens when the agent gets

invoked. Notice there is no group expression speci�ed here. Presumably, a



CHAPTER 3. DISTRIBUTED AGENTS IN SODABOT 34

Global Declarations

Agent  Agent_Name:
   

Required Input

Body

Request  Request_1:  {groups  group_i, ...}

Required Input

Body

Request  Request_n:  {groups  group_j, ...}

Subroutine  Sub_1  {groups  group_k, ...}

{Body}

Subroutine  Sub_m  {groups  group_l, ...}

{Body}

(1)

(2)

(3)}
} (4)

Figure 3-1: The generic SodaBot agent anatomy



CHAPTER 3. DISTRIBUTED AGENTS IN SODABOT 35

BSA that requests this part of the agent needs all the other sections as well so

that it can in turn distribute them. So, a BSA that requests the agent without

specifying a group is sent the entire agent. The Required input speci�es the

format of the input which must be supplied to the agent. The body is a list of

SodaBotL expressions.

In the current implementation of SodaBot, agents can only be invoked via e-

mail.
1
For example, one might send the following structured message to the

hypothetical Authorize agent (which will be presented more fully in section 4.1):

To: authorize@ai.mit.edu
------

Person1: las
Person1: brooks
pathname: ~mhcoen/tr.ps

as input to Agent authorize:
Required input f
person1: *username
person2: *username
pathname: *pathnameg

Note that the structured input is in the body of the message, not its header.

3. Request Request i | Requests are atomic sections of agents which get dis-

tributed to and run on members of its environment; essentially, an application

agent's requests are simply what di�erent BSAs can ask each other to do while

running the agent; group membership simply determines which requests a BSA

is allowed to issue. Note that each request must specify to which group(s) it

belongs. One BSA can issue a request to another BSA by sending e-mail to its

owner such as:

To: las@ai.mit.edu
SodaBot: <authorize; certify>
SodaBot-Parser: <l:1;s:0;e:35. l:2;s:18;e:13.>
------

Michael H. Coen (mhcoen@ai.mit.edu) requests that you authorize
the submission in ~mhcoen/tr.ps

1We hope to soon also make them accessible via the graphic user interface. In a straightforward
way, we can generate a graphic input-window based on the Required input speci�cation. Most likely
it will look very much like the form input type in Mosaic.



CHAPTER 3. DISTRIBUTED AGENTS IN SODABOT 36

The \SodaBot-Parser:" header is used by the receiving BSA to determine where

SodaBotL variables have been substituted into the message body by the agent

that sent it. For example, the �rst argument in this case ($requester) is on line

1 of the message, starting at position 0, and runs for 35 characters. Requests

can also specify Required input which is used if the message was sent by a person

rather than a BSA.

4. Subroutines Sub i | Subroutines are called only by requests, not other sub-

routines. If they list no group membership, only the main agent has access to

them. Otherwise, they are distributed with their respective groups the same

way requests are.

3.2 A Sample Distribution

We now consider the simplest type of distribution | that between peers | with the

Pollster agent introduced in section 1.3.2. Suppose Patrick creates (or updates) this

agent and then sends e-mail directed to Gerry's Pollster.2 (See �gure 3-2.) Upon

receipt of this message, Gerry's BSA checks whether it has a Pollster agent. In order

that we have something to say here, let's assume that it doesn't.
3

Then, Gerry's

BSA places the incoming Pollster message in its delivery database, which consists

of messages awaiting the arrival of application agent software. It then requests that

Patrick's BSA supply the Pollster agent program. When it arrives, Gerry's BSA

compiles the Pollster SodaBotL program and then starts the Pollster on the messages

in the delivery database that were awaiting its arrival.

Every BSA has two built-in agents called the RequestAgent and the DeliveryAgent.

2Software updates are distributed like new software and are indicated by providing a higher than
current version number.

3Another issue that arises with agent distribution is developing a common namespace. Suppose
Gerry's BSA did have a Pollster agent, but a di�erent one than intended by Patrick. Currently,
the only way to handle this problem is to specify not only the agent name, but also its 
avor and
version, such as \<Pollster; Patrick; v1>".



CHAPTER 3. DISTRIBUTED AGENTS IN SODABOT 37

SodaBot: < RequestAgent > 
-------
Send: Pollster; main

To: gjs@martigny
SodaBot: <Pollster>
-------
I think Lisp is better than
sliced bread.

Patrick’s
BSA

Gerry’s
BSA

Pollster

(1) Request agent and wait
      for its files to arrive
(2) Perform security checks on agent
(3) Compile and install agent
(4) Start agent on original message

Patrick ✍

SodaBot: < Delivery Agent >
-------
[Files: Pollster; main ]

To : gjs@martigny

SodaBot : < Pollster >

-------

I think Lisp is better than

sliced bread.

Figure 3-2: Distribution of the Pollster agent

When a RequestAgent receives a request to provide some section of an application

agent, it tars, compresses, and mails the SodaBotL program corresponding to that

section to the requester's DeliveryAgent. In turn, when a DeliveryAgent receives a

previously requested agent, it unpacks the incoming program and uses the SodaBot

compiler to install the agent after taking whatever security precautions (discussed

below) that it has been con�gured for.

In this example, the Pollster agent is an atomic whole and requesting it is an

all-or-nothing a�air; it is not broken down into groups. However, \peer distribution"

doesn't require this. What is important is that when Gerry's BSA asks for the Pollster

agent, Patrick's BSA is ready to supply it. When the groups an agent contacts are a

subset of its own, then we call the resulting transfer of software a \peer distribution,"

i.e. your peer can supply you with the software it is requesting that you run.

3.3 Network Topology

What happens when an agent's environment is more complex? Unlike like with the

simple peer distribution above, sections of agent may contact other groups in the

agent of which they are not members; therefore, how do they supply any requests for

these groups' software?

Possible solutions include:



CHAPTER 3. DISTRIBUTED AGENTS IN SODABOT 38

� If an agent doesn't have the software, presumably, one of its \ancestors" does.

So, it should relay the request to its \parents" and pass on their responses.

This can require O((n=(n� g+1))
2
) separate communications overall, where n

is the number of BSA's involved and g is the number of groups in the agent. It

can incur long communication delays, particularly if done by e-mail.

� If an agent contacts another whose software it doesn't have, it should include

the the name of either: (1) its \parents"; or (2) the name it was given to contact

for software (if one was provided). Thus, requests can be sent to them directly,

and the agent is removed from any ensuing communication regarding obtaining

the software.

This can require O(ng) separate communications overall; assuming unit cost for

processing requests, this is perhaps the minimum we can expect.
4
Note that

the communication patterns that invoke the upper bound here and in the case

above are not necessarily bizarre or unlikely. However, these are only start-up

costs | invoked only the �rst time the agent is run or when it is updated | so

they may be quite tolerable.

� We set up a central agent depository which keeps all current agents in a library,

available upon request.

This is the solution we currently prefer for SodaBot. However, it is conceiv-

able that some applications may not be freely distributable, due to secrecy,

export limitations, software/patent licenses, etc. Thus, we might need to pro-

vide guarantees of limited access. We have not looked into this issue, but it

would seem a secure protocol | perhaps via a kerberos ticketing scheme |

might be developed to do this.

4The caveat is that a single BSA may receive a 
ood of requests for agent programs from all of
its descendants.



CHAPTER 3. DISTRIBUTED AGENTS IN SODABOT 39

� Do away with group distinctions and send out agents in their entirety. Then,

everybody has everything they need.

Note that application agents may contact completely di�erent agents | e.g.

the Scheduler can contact the RoomCoordinator | not merely other parts of

the same agent. Should we require that every BSA possess every application

agent? Also, the distribution limitation issues discussed above apply here as

well | e�ectively ruling out this option.

3.4 What's the Risk?

There are genuine security concerns for this (and any other) method of automatic

software distribution. In the introduction, we noted that no one is likely to ftp

and install random software that could send e-mail in her name. All the more so,

shouldn't a user be concerned about random software which can simply appear on

her workstation without her involvement?

Currently, SodaBot can be con�gured with several simple options including:

� Don't compile received agents which use the system command.

� Ask for owner permission before compiling such agents. However, if the user

has to read a program, what advantage does SodaBot provide? Simply that

the programs are much shorter and easier to understand. We would argue that

malicious behavior is therefore more easily detected.

� Insure that application agents only access �les and execute commands in par-

ticular user-speci�ed directories.

A user is free to limit the system access given to her BSA, thereby limiting the

access available to all application agents. She can also require that her BSA (and

therefore application agents as well) obtain explicit permission before taking certain

actions, e.g. sending e-mail.



CHAPTER 3. DISTRIBUTED AGENTS IN SODABOT 40

We hope to add more sophisticated security measures such as encrypting the

distribution of agents to guarantee authenticity and integrity.

3.5 The Bene�t

SodaBot's automatic distribution of application agents addresses the second and third

of the problems outlined earlier with software agent construction:

(2) Software agents are di�cult to distribute because they may have site-speci�c

dependencies; for the same reason, they can be di�cult to install.

� Agents in SodaBot distribute themselves over the Internet and/or local

area networks. This distribution can even be across platforms and operat-

ing systems. Simply put, acquisition of new agents does not require that

the user do anything.

(3) People may be uncomfortable with the amount of responsibility given to an

unknown (and possibly buggy) agent.

� SodaBot simultaneously helps alleviate and further exacerbates this prob-

lem. The BSA is a trusted, much tested framework, and its behavior is

under the ultimate authority of its owner. Regardless of this, however,

automated software distribution would seem to get many people very ner-

vous. Hopefully, additional e�orts to protect against malicious adversaries

will provide su�cient reassurance.



Chapter 4

Writing SodaBot Agents

This chapter presents SodaBotL | the SodaBot agent programming language. We

described in chapter 3 how an application agent gets distributed in sections to the

BSAs comprising its environment. Now, it's time to discuss what these programs

actually mean | both to the people who write them and the BSAs that receive

them.

By way of example, we �rst outline how to create a SodaBot application agent

that involves interactions among several people. We then present a SodaBotL pro-

gramming reference guide and discuss the bene�ts provided by SodaBotL to software

agent creators. Note, Appendix B contains a SodaBotL BNF grammar.

4.1 Agents Describe Dialogs

Chapter 3 described how SodaBot application agents run across a network of inter-

connected BSAs. Generally, no single BSA runs an entire agent program; rather, each

BSA falls into one or more groups and runs only those particular sections of an agent

that correspond to its group membership.

Our model for writing agents is that agent execution corresponds to a series of

dialogs among the BSAs that comprise the agent's environment. Thus, while running

41



CHAPTER 4. WRITING SODABOT AGENTS 42

a particular agent, a BSA's group membership determines who it's allowed to speak

with and what it's allowed to say in a series of conversations with people and other

BSAs. We use \conversation" here somewhat freely; we consider the BSA's owner

making a selection in the GUI, an incoming fax, or mail from another agent to be

among the things that the BSA can listen to. In turn the BSA can process what it

hears and then communicate it via the GUI, fax machine, TCP/IP, etc.

So, each request section of an agent's SodaBotL program expresses the agent's

reaction to \hearing" a particular request while running on a BSA in its environment.

In the framework of a conversation then, each request section of the program must

specify:

1. What to listen for | This is the section's permissible input. It can consist of

a required format for incoming e-mail and/or an input speci�cation from the

user through the GUI.

2. What to do with it | This speci�es how to process what the agent \hears,"

including searching the input, textually manipulating it, saving it to a �le, or

feeding it to some external program.

3. How to continue the conversation | If it is not �nished, the agent needs to

\pass the buck," by issuing one or more requests to BSAs in its environment

and thereby create continuing threads.

Thus, an agent writer outlines the shape of a dialog, i.e. what inputs are al-

lowed in the dialog, how they should be transformed, and how to communicate them.

Figure 4-1 presents a simple authorize agent for sanctioning document publication.
1

This agent was designed according to MIT AI Lab's procedure for authorizing the

publication of memos and technical reports. Our experience designing other ad hoc

1The current running SodaBot compiler uses a slightly di�erent, less readable syntax than the one
presented here. We are working towards making the syntax given here the standard for SodaBotL
and had initially hoped it would be ready by the publication date of this thesis. However, the new
compiler is not �nished. We are presenting only the new syntax in the body of this document. See
Appendix A for details relevant to the current implementation.



CHAPTER 4. WRITING SODABOT AGENTS 43

$auth dest = \publications@ai.mit.edu";

Agent authorize:
Required input f

person1: *username
person2: *username
pathname: *pathnameg

$requester = $from;
Contact Agent <authorize; certify> fusers: $person1, $person2g:

\$requester requests that you authorize the submission in $pathname";

Request certify:fgroup signerg
Display fprompt \Do you want to see the �le now?"; choices(yes, no, view)g:

\You have been requested to authorize $pathname by $requester";
if choice(yes) f

Load $pathname $contents;
Display fprompt \Do you want to authorize this?"; choices(yes, no)g:

$contents;g
if choice(yes) f&grant authorizationg

elsif choice(view) f
System \ghostscript $pathname";
Display fprompt \Do you want to?"; choices(yes, no)g:

\You have been requested to authorize $pathname by $requester";
if choice(yes) f&grant authorizationgg

Request grant:fgroup publicationsg
Display:

\Authorization received from $from for $requester for �le $pathname";
$record �le = \/home/com/publications/$requester.$pathname";
Save fappendg $record �le $message;

Subroutine grant authorization fgroup signergf
Contact Agent <authorize; grant> fusers: $auth destg:

\I grant authorization to $requester for �le $pathname.";g

Figure 4-1: A SodaBot authorize agent for approving document publication

task-speci�c software agents leads us to estimate that an agent of this complexity

would optimistically require several weeks of implementation time and roughly 50

pages of code. This SodaBot agent took 10 minutes to write and is approximately

one page in length.

The SodaBot version of the document publishing process works as follows:

1. The document author sends mail to the authorize agent at an aliased \publications"

e-mail address. This mail contains the name of two \authorized signers" and the

pathname of the viewable document.

2. The authorize agent contacts the authorized signers by sending mail to the certify

section of their authorize agents.

3. The authorized signers are given the opportunity to examine the document and certify

it.

4. Authorizations are sent back to the publications o�cer and recorded.



CHAPTER 4. WRITING SODABOT AGENTS 44

In this example, the BSAs of the authorized signers run the signer section of the

agent, and the BSA of the publications o�cer runs the publications section. Recall

that the \group" speci�cations in the SodaBotL program determine which other sec-

tions of the program get distributed when a BSA requests some speci�c portion. For

example, when the BSA of an authorized signer �rst requests the certify section of

the authorize agent, it is also sent all other members of the signer group, in this case,

the grant authorization subroutine.

It is essential that messages mailed by agents be readable by people who do not use

SodaBot.
2
Therefore, agents must send human-readable text. Note that the certify

section refers directly to variables, such as $requester, which have been substituted

into the text message it receives without any explicit parsing of the message body

or requirements for structured format. This is achieved by including an unobtrusive

extra header in the message which contains minimal su�cient information for deter-

mining the demarcations of the text substituted for the variables referenced by the

receiving agent. (Page 35 illustrates such a header.) The BSA automatically extracts

this text and stores it in the appropriate local variable(s).
3

4.2 SodaBotL Reference Manual

This section is an abbreviated guide to programming in SodaBotL. Readers who know

C or Perl may �nd it useful to keep in mind that SodaBot's syntax is loosely related

to each of theirs.

We discuss in this section the following topics:

(4.2.1) Where the BSA looks for things

2Of course we exclude here messages intended for SodaBot's internal use, such as a request for

agent distribution.
3SodaBot currently does not interact well with people who do not have SodaBot BSA's. We are

currently adding automated construction of a structured text form-generator based on the required

input speci�cation. This will be coupled with automated error handling for user text-based input
which di�ers from an agent's speci�ed input format that will result in appropriate explanatory error
messages.



CHAPTER 4. WRITING SODABOT AGENTS 45

(4.2.2) Variables in the BSA

(4.2.3) Conditionals

(4.2.4) How to write a mail �lter

(4.2.5) How to write an application agent

(4.2.6) SodaBotL primitives

4.2.1 SodaBot File Hierarchy

When a user �rst runs SodaBot, it creates a directory hierarchy in \~/.sodabot/."

The top-level subdirectories in this hierarchy are:

1. Agents | Contains compiled SodaBot application agents.

2. AgentsSrc | Contains the SodaBotL sources to all agents received by the BSA

and to agents written by its owner. Each application agents is kept in a separate

subdirectory.

3. DBase | Stores the sleeping, system, and delivery databases.

4. Lib | Internal SodaBot library �les

5. Log | Stores the BSA's extensive, human readable logs of its activity.

6. NonAgents | Contains compiled SodaBot mail �lters.

7. NonAgentsSrc | Contains the SodaBotL sources to the mail �lters.

8. SodaBot | Internal SodaBot directory, stores information about owner.

Users can create new agents and mail �lters through the SodaBot agent editor, or

they can write and compile SodaBotL �les directly. The agent editor is invoked via

the \Programmer" menu in the main GUI window. (See �gure 1-2.) The SodaBotL

compiler looks for its input in the appropriate \Src" directories and places compiled

output in the appropriate object �le directories. A sample interaction might be:

mhcoen@double-chex>compile test.sbt

SodaBot Compiler V1.1 running.



CHAPTER 4. WRITING SODABOT AGENTS 46

Reading /home/c2/mhcoen/.sodabot/NonAgentsSrc/test.sbt

Checking syntax of syntax of compiled program...

Writing program to /home/c2/mhcoen/.sodabot/NonAgents/test.pla

4.2.2 Variables

All variables in SodaBotL are prefaced with a $. Variables are typed according to

their current context, so no explicit type declaration is necessary; for example, \10"

can be either a number or a string, depending on how it is used. Variable assignment

and reference work as you would expect. Here are some sample expressions:

$name = $username;

$address = \545 Technology Square

Cambridge, Ma 02139nn";

Mail to $host:

\My snail-mail address is:nn$namenn$address";

Strings can be multiline and can contain n\ to quote things, e.g.

$quoted string = \n\Inside Quotes!n"";

The BSA automatically de�nes a number of variables. These include variables

corresponding to all headers present in the current e-mail message as de�ned

by [Horton, 1983]. (For example, $from and $subject. See the BNF \Field" pro-

duction on page 73 for a list of all valid headers.) Also, the following are always kept

current:

Variable name Description of value

$home user's home directory

$user[ ]name user's full name

$user login, $me user's login name

$message the complete text of the current message

$body the body of the message

$name sender's full name if speci�ed

$address sender's e-mail address

$reply-to if not speci�ed, value of $from is used



CHAPTER 4. WRITING SODABOT AGENTS 47

4.2.3 Conditionals

Conditionals in SodaBotL perform regular expression matching and numerical com-

parisons:

Expression True if

($a eq $b) $a and $b are equivalent

($a eq \moo") $a equals the string \moo"

($a neq $b) $a and $b are not equivalent

($a =~ /$b/) $a contains $b

($a =~ /moo/) $a contains \moo"

($a =~ /nd+/) $a contains a number, etc.

($a !~ /$b/) $a doesn't contain $b, etc.

($a == $b) $a and $b are numerically equal

($a <= $b) $a � $b, etc.

Regular expression are contained in \/.../" do not require internal quotations. Good

references for building regular expressions are [Wall and Schwartz, 1990, p24-29] and

[Dougherty, 1990].

You can use && for AND and jj for OR and ! for NOT. Conditionals can be nested

in the standard way, e.g

if ((($from eq \las") jj ($from eq \gjs")) && ($subject =~ /6n.001/))

4.2.4 Writing a Mail Filter

The BSA can execute a series of SodaBotL expressions upon the arrival of speci�c

incoming e-mail. The user speci�es which e-mail triggers the BSA by providing a

number of regular expressions that must match the e-mail's headers and/or body.

For each of these triggers, the user also speci�es the BSA's appropriate reaction.

A mail �lter is a list of these (trigger, response) pairs. User's can create multiple

mail �lters which are examined by the BSA when there is incoming e-mail. The BSA



CHAPTER 4. WRITING SODABOT AGENTS 48

can also batch new messages, waiting until a certain minimumnumber (speci�able by

the user) arrive before running the mail �lters. Currently, SodaBot does not give the

user particularly good control over incoming message volume, i.e., how many windows

the BSA is allowed to pop-up on the user's screen. While the announcement of new

messages can be delayed, there is no mechanism for prioritizing a group of incoming

requests and perhaps eliminating those of lesser importance or allowing the user to

select among them. We hope to add these capabilities shortly.

SodaBotL mail �lter primitives:

Mail �lter: (No arguments)

Declares that the following expressions constitute a mail �lter. All subsequent

SodaBotL expressions up to the next Agent or Mail �lter statement comprise the

body of the mail �lter.

Received Mail [fheader1: /reg-exp1/; header2: /reg-exp2; : : : g expressions]

If mail arrives where each header matches the corresponding regular expression,

execute the given SodaBotL expressions. A received mail statement with an empty

header-regular expression list gets triggered on every message.

Sample expressions:

Mail �lter:

Received mail ffrom: /fax noti�er/; to: /$me/; subject: /arrival/g:

Display \An incoming fax has arrived.";

Received mail ffrom: /$me/;g:

Save fappendg \~/Mail/outgoing" $message;

4.2.5 Writing an Agent

SodaBot application agents are divided into four sections: (See �gure 3-1.)

1. Global declarations



CHAPTER 4. WRITING SODABOT AGENTS 49

2. The main agent

3. Agent requests

4. Agent subroutines

This section presents the syntactic speci�cation of each of these sections. A model

for approaching application agent design was discussed in section 4.1.

Global declarations

Global declarations are variable assignments which can be referenced by all agents

requests and subroutines. They are included in all distributions of the agent.

Agent Name:

[Required input fString 1: *type 1

String 2: *type 2 : : :g]

[SodaBotL expressions]

The Agent declaration begins the de�nition of the named agent. All subsequent

SodaBotL expressions up to the next Agent or Mail �lter statement comprise the

body of the entire agent.

The Required input speci�es the format of the input which must be supplied to

the agent. The SodaBotL expressions are run by the agent when it is invoked.

Required input fString 1: *type 1

String 2: *type 2 : : : g]



CHAPTER 4. WRITING SODABOT AGENTS 50

The Required input speci�cation is a template for describing the format of the

structured e-mail message which invokes the agent. Each line in the speci�cation

must match a corresponding line in the message such that the ordering is preserved.

The type expression *type i can be any of the types shown on page 73 or an arbitrary

regular expression.

For example, we again note the correspondence between the e-mail from page 35

and the authorize agent in section 4.1:

To: authorize@ai.mit.edu
------

Person1: las
Person1: brooks
pathname: ~mhcoen/tr.ps

as input to Agent authorize:
Required input f
person1: *username
person2: *username
pathname: *pathnameg

Request Name: fgroup[s] group1, : : :g

[Required input fString 1: *type 1

String 2: *type 2 : : : g]

[SodaBotL expressions]

A Request declaration begins the de�nition of the named request. All subsequent

expressions up to the next Request or Subroutine or until the end of the agent's

program comprise the body of the request. Requests can specify Required input to

allow people to invoke them directly. However, assuming it was invoked by a BSA,

a request's body can directly reference variables substituted into the e-mail when it

was sent. For example, note the correspondence between:

Agent A:
$person = $username;
Contact Agent <A; hello> fuser: mhcoeng
\Hi, I am $person.";

contacting (in Agent A)
Request hello: fgroup maing

Display \You received

greetings from $person.";



CHAPTER 4. WRITING SODABOT AGENTS 51

Subroutine Name fgroup[s] group1, : : :gf

[SodaBotL expressions]g

A Subroutine declaration de�nes the named subroutine. The body of the sub-

routine is contained within the indicated brackets. Subroutines have no explicit

arguments; however, they can directly access the variables de�ned in the requests

which invoke them. Note that subroutines are invoked only by requests, not other by

subroutines. They are called by prefacing their name with an \&."

4.2.6 SodaBotL Primitives

Contact Agent <Agentname; Requestname> fuser[s]: user1, user2, : : : g [string];

Agents issue requests to one another via Contact Agent. The users �eld speci�es

whose BSAs receive the given request. The optional string speci�es input for the

particular request being issued. Any variables referenced in this string can be directly

referenced in the receiving agent. If a receiving BSA doesn't have either the speci�ed

agent or the particular request section of that agent, it issues use Contact Agent to

get the software from the RequestAgent of whoever initiated this interaction.

Currently, agents contacts are only relayed via e-mail. We are beginning work on

a TCP/IP connection for the BSA as an alternate and hopefully faster inter-agent

communication medium.

Sample expression:

Contact Agent <007; setname> fuser: $secretg \James Bond";

Load �lename variable;

Loads the contents of �lename into the named variable.

Sample expressions:

Load $�lename $contents;

Load \/home/c2/mhcoen/.schedule" $schedule;



CHAPTER 4. WRITING SODABOT AGENTS 52

Mail [to] address: string

Mail simply sends the speci�ed string the given address.

Sample expressions:

Load \~/letter" $letter;

Mail to mhcoenai.mit.edu: $letter;

Mail to $user: \Your toast has popped up.nn";

Reply with string

Replies to current mail message with given string.

Sample expression:

Reply with \My �nal o�er is $USDollars.nn";

Save [fappendg] �lename string;

Saves (or appends) the speci�ed string into the named �le.

Sample expressions:

Save \/usr/tmp/current" \$from, $subject";

Save fappendg \/usr/games/XChess/$book openings" \It was a dark

and stormy night.nn";

GUI Primitives

Display [fchoices(cstring 1, cstring 2); : : : ; no delay; timeout in interval; for intervalg]

string;

Display creates a window containing the speci�ed string on the user's current

display. Choices allows the user to select possible responses from stacked rows of



CHAPTER 4. WRITING SODABOT AGENTS 53

\radio buttons." The BSA puts the agent to sleep until she has made her selections

unless no delay is speci�ed. The SodaBotL choice array is indexed over all speci�ed

options, e.g. cstring 1 { cstring i; after the user makes her selections, an element in the

array is true if the user selected the corresponding button in the displayed window.

The timeout (and equivalently for) speci�cation force the window created by this

command to disappear after the given interval and wake the agent up. Multiple new

windows appear in a staggered, overlapping layout to reduce screen clutter.

Display (and other GUI-speci�c primitives) have emacs-style \hooks" which can

be invoked before the command is executed. These hooks are simply appropriatety

named subroutines, e.g. Display hook, which are intended to allow the GUI access

to be redirected to another communication medium.

Sample expression:

Display fchoices(yes, no); for one hourg \Mail from Lynn!

Do you want to read it now?";

Get Response [fprompt = string; no delay; timeout in interval; for intervalg] string;

Get Response displays creates a window containing the speci�ed string on the

user's current display. This window also contains a mini-editor that allows the user

to enter an arbitrary textual response to the speci�ed prompt. This response is

available to the SodaBotL program in the $response variable.

Sample expression:

Get response fprompt = \What is your answer?"g

\$quiz question";

Query [ftype = reg-exp; prompt = string; no delay; timeout in interval; for intervalg]

string;



CHAPTER 4. WRITING SODABOT AGENTS 54

Query displays creates a window containing the speci�ed string on the user's

current display. It allows the user to enter a one-line response which much match the

given reg-exp in response to the given prompt.

Sample expression:

Query fprompt = \When you are you free?"; type = timeg

$schedule;

4.3 The Bene�t

SodaBotL contributes more complete solutions to two of the three problems outlined

above with software agent construction.

1. Software agents can be technically challenging to write in traditional program-

ming languages and operating systems:

� SodaBotL o�ers high-level primitives and control-structures designed

around human-level descriptions of agent activity. It allows users to easily

create automatically-distributed software agents while ignoring low-level

implementational details.

� Because SodaBotL agent programs can be much shorter and higher-level

than their counterparts in more traditional systems, they are easier to

debug and maintain.

2. People may be uncomfortable with the amount of responsibility given to an

unknown (and possibly buggy) agent.

� Users can inspect SodaBotL programs for security threats more easily than

would be possible with agent programs written in other programming lan-

guages, because: (1) the level of discourse is so much higher; and (2) the

programs are smaller.



Chapter 5

Software Agents

The thesis has so far presented a speci�c view of what software agents are and how

they should be used. However, software agents come in many 
avors, and they di�er

widely in terms of specialization, usefulness, and theoretical motivation. This chapter

discusses related work in the �eld and then outlines the common ties that link even

vastly dissimilar agent implementations. We simultaneously discuss how SodaBot

relates to and di�ers from other work in the �eld.

Section 5.3 presents our motivation for designing the SodaBot system based on

experience described in [Kautz et al., 1994]

5.1 What's an Agent?

There is simply no set of necessary or su�cient criteria for determining whether some

program is indeed a software agent. The \de�nition" varies widely, as do approaches

to building agents. However, we can look for some general agent characteristics by

examining some typical (and not necessarily mutually exclusive) approaches.

We note here that no other software agent system (of any 
avor) that we know

of has an automated distribution mechanism like SodaBot's. In fact, personal com-

munication with several of the researchers below indicates that this currently poses

55



CHAPTER 5. SOFTWARE AGENTS 56

some di�cultly, because few people outside of their research groups can make use of

their agents.

5.1.1 Software agents are on-line pseudo-people

Software agents are ontologically grounded in their role in the agent community.

Agents have beliefs, commitments, obligations, intentions, and perhaps even confu-

sion, stubbornness, etc. Exactly what these agents do with all their commitments,

obligations, intentions, etc, has not necessarily been made particularly clear, but

what's supposed to be important is that we have a motivated vocabulary for de-

scribing coordinated agent interaction, e.g. Agent1 sent Agent2 e-mail because it felt

\obligated," or perhaps Agent1 crashed the network because it was \confused."

[Shoham, 1993] has de�ned an formal language for describing agents' \mental

states" in terms of epistemic logic. He also presents a corresponding agent program-

ming language called AGENT-0 ([Torrance and Viola, 1991]) which is semantically

grounded in this mental state language. AGENT-0 very much resembles Prolog, but

it has primitives which are well-suited for communication of obligations, beliefs, and

capabilities between agents.

Whereas SodaBot is intended for assisting with practical, on-line tasks, AGENT-0

is suited for researching the interaction of coordinated cognitively-based agents, i.e.

agents that think, but don't do much else. It would seem that neither system would be

particularly adept at handling the job of the other. His approach does not necessarily

con
ict with our own. In fact, it would be very interesting to try combining aspects

of both systems by providing BSAs with some type of formal intentional state.

We note that there is much other theoretical research into agent cognition, such

as [Doyle et al., 1991]. Again, it would be very interesting to ground this work by

implementing it in a realized system.



CHAPTER 5. SOFTWARE AGENTS 57

5.1.2 Software agents are a testbed for other realms in Core

AI.

Software agents are the new universal research tool for AI. Because expert systems

and robots are leaving the limelight, software agents (and the people who research

them) should enjoy their moment in the sun.

[Etzioni, 1993] argues that software agents are an ideal \foundation for core

AI research." While we agree with this conclusion, we do not accept the argu-

ments he uses to reach it (see [Coen, 1994]). Regardless, Etzioni et al's work on

Unix \softbots" ([Etzioni et al., 1992a, Etzioni et al., 1993, Etzioni and Segal, 1992,

Etzioni et al., 1994]) provides a very interesting foundation for exploring many cen-

tral issues in traditional core AI, particularly in planning. There are many di�er-

ences between this work and our own. Softbots are intended for much more system-

administration oriented applications than are SodaBots; therefore, the softbot level

of discourse is in terms of (low-level) Unix primitives. Softbot agents do not seem

to interact with anything other than their owners, and thus, their capabilities do not

extend to inter-agent communication.
1
Finally, the softbot system does not seem to

have any provisions for assisting with distribution of softbot agents or their UWL

plans.

The Darpa Knowledge Sharing E�ort ([Neches et al., 1991]) has encouraged

much agent-based research into knowledge representation and communication lan-

guages. This e�ort has led to the design of an agent communication language

(ACL) intended as a universal medium for agent discourse. Genesereth et al.

([Genesereth and Singh, 1994, Genesereth and Ketchpel, 1994]) present a \federa-

tion" agent architecture that employs this ACL, and [Genesereth 1994] discusses these

agents obtaining arbitrary software programs from other agents by advertising their

required speci�cations written in ACL.

1We don't consider even sophisticated interaction with disk drives and printers to be
communication.



CHAPTER 5. SOFTWARE AGENTS 58

It is worth noting that work on ACL has yet not been completed, so agent sys-

tems which communicate in ACL do not yet exist. We also remain highly skeptical

of this ACL's ontological su�ciency and soundness. Furthermore, agents would have

to \know" a program existed before they could advertise for it; this type of distri-

bution does not address how novel programs are spread among networked agents.

Finally, this work makes no mention of the practical consequences its type of distri-

bution would entail, nor does it discuss the required e�ort to realize the described

hypothetical agents.

The work of [Vere and Bickmore, 1990] is quite unusual. Their \basic agent" has

a remarkably wide core AI foundation, drawing on a broader range of research areas

than any other system with which we are familiar. However, their domain is so narrow

and their application so involved that it bears little resemblance to any current work

in software agents.

5.1.3 Software agents are intelligent on-line assistants

Software agents are arti�cial secretaries which are the electronic counterpart of their

real-world namesakes. This is not to say that anyone looks forward to the prompt

delivery of simulated co�ee each morning! Rather, these personal assistants are de-

signed for tasks such as: �ltering e-mail, scanning NetNews, providing appointment

reminders, etc.
2
Given the complexity of on-line environments and huge volume of

information 
owing across the Internet, this type of agent looks quite attractive.

Interface agents ([Maes, 1994, Sheth, 1994]) are a special class of on-line assis-

tants which are designed to simply user-interaction with particular pre-existing ap-

plications. These agents are designed to learn and predict users' behaviors and pref-

erences. SodaBots have little in common with interface agents, because interface

agents are each highly elaborate, custom-crafted programs designed for very speci�c

2One rather extreme and slightly dismaying example of an on-line assistant might be the H.A.L.
9000 in 2001: A Space Odyssey.



CHAPTER 5. SOFTWARE AGENTS 59

applications. Also, SodaBot does not have built-in capabilities for learning user be-

havior and preferences. Providing these would be an interesting direction for future

development of the SodaBot system.

For example, Sheth provides an interactive information retrieval system for UseNet

NetNews articles. It is designed to autonomously select those articles whose content

would interest the user according to some complex metric involving the user's pre-

vious selections. Sheth's work is similar in spirit to much of the activity regarding

knowbotsTM ([Kahn and Cerf, 1988, Waldrop, 1990]), which has generally fallen out-

side of the realm of mainstream AI research, although there are some exceptions, e.g.

[Knoblock and Arens, 1994]. Knowbots (knowledge robots) are intended roughly as

librarians for enormous digital data-libraries. They are not general purpose but are

highly elaborate, speci�c creations. Thus, these too have little if anything in common

with SodaBots.

5.1.4 Software agents are negotiators

Groups of software agents can make decisions or form coalitions. If a group of people

with complex time-constraints need to arrange a meeting, software agents can do it for

them without requiring that a person bother with the intricate constraint balancing

inherent in meeting-scheduling (and perhaps without anyone's feelings getting hurt).

In fact, meeting scheduling is the most popular software agent negotiation

application. [Kozierok, 1993, Maes and Kozierok, 1993] schedules group meetings,

[Kautz et al., 1994] schedules meetings between individuals, and [Dent et al., 1992]

does both (and more). The backbone of all of these systems could be implemented in

SodaBot. However, the actual scheduling processes would require external applica-

tions. For example, Kautz et al.'s VisitorBot requires use of CPlex | a sophisticated

integer programming package | which could be accessed through the SodaBot system

command.
3

3CPlex actually requires a very expensive machine-speci�c license. However, we note (without



CHAPTER 5. SOFTWARE AGENTS 60

There has also been much theoretical work on abstract agent negotiation protocols,

as in [Zlotkin and Roesnschein, 1994, Rosenschein, 1993]. As we pointed out earlier

with reference to the work of Doyle, it would be very interesting to ground this

theoretical work in negotiation by implementing it in a realized system.

5.1.5 Other Points of View

[Stein, 1994] has suggested that \agency" (i.e., the property of being an agent) is

determined by an observer's intentional stance; what a person views as an agent is

an agent. While this may well be a tenable philosophical position, it is not clear

what bene�t it provides. Rather, in term of directing research e�orts, particularly

with the growing popularity of \agents," it might be preferable to narrow the scope

of the term. Even in research communities this designation is perhaps being abused.

Work such as [Lansky, 1994] was once called an expert system. It was quite surprising

to hear such a classic example of that paradigm being presented at the AAAI 1994

Spring Symposium on Software Agents.

The �nal system we discuss is Telescript ([Wayner, 1994]). Although few details

of this proprietary system have been disclosed, enough information has been released

to permit a tentative comparison. Telescript is a very sophisticated computational

environment in which machine-independent programs move freely around a network.

Telescript programs are interpreted, and interpreters exist for all standard platforms.

Essentially, in terms of portability, it is the algorithmic equivalent of \postscript."

High Telescript, the system's programming language, is reportedly very similar

to Smalltalk and Modula-3. Thus, it does not provide the right level of abstraction

for writing agent applications. Furthermore, Telescript programs have �xed mean-

ings, i.e. primitives are not interpreted with respect to their context. However, it

would seem that Telescript might be an ideal system for reimplementing SodaBot.

advocating) that by setting up a BSA on the machine on which CPlex has been installed, it is trivial
to allow anyone, anywhere, to access CPlex via a simple SodaBot application agent.



CHAPTER 5. SOFTWARE AGENTS 61

Regardless, we look forward to seeing what comes out of this very promising endeavor.

Telescript seems like a step in the right direction.

5.2 Agency De�ned

Clearly, there is an enormous variety in what people deem a software agent, and it

is somewhat di�cult to tell whether this is good or bad for the �eld. Nonetheless,

having many enthusiastic researchers working on their various \agents" is probably

to everyone's bene�t, so we refrain from complaining too loudly.

However, we favor the following as a set of minimum criteria for establishing a

program's \agency:"

1. Software agents engage in dialogs; we don't issue commands to agents, rather

we have conversations with them. The communication patterns among agents

can be quite complicated.

2. Software agents are autonomous and intelligent; they respond to complex stimuli

with sophisticated (and appropriate) behaviors.

3. Software agents must be robust. Because they are autonomous and presum-

ably doing something important, agents must be able to respond to unexpected

changes in their computation world.

4. Software agents are generally not time invariant | they have memory and

change what they do over time. Agents can employ formal machine learning

techniques, or they can more casually collect data while they operate. Per-

sonal assistants can learn patterns in their owners' behavior, and more gener-

ally, agents can spontaneously react to particular events in their computational

world.

5. Software agents are typically distributed across a network, so their behavior can



CHAPTER 5. SOFTWARE AGENTS 62

have both local and global e�ects. Abstraction barriers can become confused if

an agent is responsible for too many non-local events.

5.3 SodaBot's Motivation

The SodaBot system was heavily in
uenced by my participation in developing the

VisitorBot ([Kautz et al., 1994]) in the AT&T Bell Laboratories' AI Principles Re-

search Group.
4

5.3.1 The VisitorBot

The VisitorBot is a software agent that schedules meetings with a visiting researcher

(who is presumably also giving a talk). The VisitorBot distributes the talk's abstract

and accepts requests for meetings with the speaker. It then distributes schedule-

outlines which are �lled out by those interested in reserving a time slot. Finally, after

receiving submitted time constraints from users, the agent generates (and distributes)

a schedule of meetings with the visitor.

The history behind the development of this agent is revealing. The version de-

scribed in [Kautz et al., 1994] was begun at AT&T Bell Labs while I was a summer

student there. However, due to numerous technical di�culties, this agent was not

yet completed by the time I returned to MIT at the end of the summer.
5
Therefore,

I ported the agent to the MIT AI Lab in order to �nish working on it. Interfacing

the agent to the AI Lab's mailer involved nontrivial e�ort, and after completing it

here, installing and debugging the agent at Bell Labs remotely from MIT required a

ridiculous amount of time. (This was primarily due to Bell Lab's network \�rewall.")

While writing the VisitorBot (among other agents)
6
, it became clear that get-

4I worked at Bell Labs from the the middle of May through the �rst week of September during
1993.

5Steven Ketchpel actually implemented an earlier, complete version of the VisitorBot on top of
a simple mail-reading agent developed by Henry Kautz.

6I wrote several other software agents at Bell Labs over the summer. Most notable is the LaTEXBot



CHAPTER 5. SOFTWARE AGENTS 63

ting an agent to run at a particular location required a large amount of site-speci�c

information. Additionally, an agent which centrally controlled all aspects of user-

interaction was prone to failure in a networked environment. (For example, it is

not possible to open X-Windows across a �rewall.) Essentially, there were no clean

abstraction barriers for writing agent software.

The development of personal agents in [Kautz et al., 1994] was a �rst step towards

establishing some minimum level of distinction between local and non-local agent

activity. For example, the VisitorBot could tell a user's personal agent to open a

window on the user's display rather than doing so itself. However, both the VisitorBot

and its involved personal agents are very much ad hoc, non-generalizable creations.

The personal agent in [Kautz et al., 1994] is hard-coded and custom tailored to the

VisitorBot, i.e. a hypothetical PaperReviewBot would require that users obtain a

di�erent personal agent to interact with it. According to this approach, every time a

new agent is written, each user must install the appropriate personal agent to permit

interaction with it.

SodaBot was my reaction to the e�ort required for writing and installing the

VisitorBot. Although we found that it was generally very easy to state succinctly

the desired agent behavior in English, it was quite another thing to formulate this in

Perl and C. This distinction di�erentiates between SodaBot and e�orts in the �eld of

automated programming. Loosely speaking, the shortest speci�cation of a program

is generally the program itself; however, given the highly specialized domain in which

software agents function (at least in SodaBot), it is usually quite easy to give a short

high-level speci�cation of an agent's desired behavior. SodaBot takes advantage of

this by allowing an agent creator to provide merely this high-level speci�cation. The

system essentially handles all the e�ort involved in actually realizing the speci�ed

agent.

which allowed me to edit my SM thesis proposal at Bell Labs and process it remotely at MIT. It
noti�ed me of any errors encountered during text processing at MIT, displayed the �nal results on
my Bell Labs' workstation, etc.



CHAPTER 5. SOFTWARE AGENTS 64

We did not address in [Kautz et al., 1994] how a new agent is released to the

world. The VisitorBot was a collection of random C and Perl �les which had to

be installed and con�gured by a skilled human being. The di�culties inherent in

encouraging use of new agents are thus enormous. Not only would a new user need to

be convinced that the �les are safe to install and to use, but she would additionally

have to be willing to trust the system could, for example, handle her e-mail properly.

Finally, installing and running the VisitorBot also sometimes required root access,

which generally would prevent the average user from installing it herself.

How to distribute new agents was the subject of much discussion over the summer.

The approach in SodaBot was motivated by a discussion of distributed agent planning

at a Bell Lab's Bot meeting, where Ron Brachman suggested that planning agents

could e-mail STRIPS operators to each other. I was quite taken with this idea and it

eventually found its way into SodaBot (where agents instead send SodaBot programs).



Chapter 6

Conclusions

This chapter evaluates the SodaBot system; we discuss it strengths, weaknesses, and

future work.

6.1 SodaBot's Report Card

We could evaluate the SodaBot system by the following criteria:

1. It solves the problems listed in section 1.2.

2. Naive users enjoyed interacting with it.

3. We learned something building it.

However, only the �rst and third are currently capable of being assessed, because

we did not have genuinely naive users test SodaBot. Nonetheless, we examine each

of the three criteria in turn and discuss how it is addressed by various components of

the SodaBot system.

It solves the problems listed in section 1.2:

1. Software agents can be technically challenging to write in traditional program-

ming languages and operating systems:

65



CHAPTER 6. CONCLUSIONS 66

� The BSA provides the right foundation for software agent creation. It

removes system speci�c aspects of agent creation from the domain of the

agent programmer.

� SodaBotL o�ers a level of discourse appropriate for the types of on-line

activities in which agents engage. The high level primitives in SodaBotL

allow agents to be written more quickly and in less space.

For example, we can approximately implement the \VisitorBot" system

described in [Kautz et al., 1994] in several pages of SodaBotL code.
1
The

VisitorBot implementation described there is well over 50 pages of Perl

and C code.

2. Software agents are di�cult to distribute because they may have site-speci�c

dependencies; for the same reason, they can be di�cult to install.

� The BSA disconnects application agents from the speci�c computational

environment in which they run. Agent programs no longer need to be

\hard-coded" with site-speci�c information. The problem of con�guring

many software agents is reduced to the problem of con�guring a single

agent, i.e., the BSA.

� Agents in SodaBot distribute themselves over the Internet and/or local

area networks. Although there is currently only a Unix platform for Soda-

Bot, this distribution can theoretically be across operating systems. Sim-

ply put, the acquisition of new agents in SodaBot does not require that

the user do anything.

3. People may be uncomfortable with the amount of responsibility given to an

unknown (and possibly buggy) agent.

1In terms of features, the two scheduling agents are not strictly comparable yet. Kautz et al.'s
looks better. Ours is more robust.



CHAPTER 6. CONCLUSIONS 67

� The BSA allows the user to gradually establish con�dence in its behavior

and to selectively disable and enable access to speci�c system resources. It

provides a stable agent-framework over which the user can exert ultimate

control.

The system as a whole has seen four months of use, testing, and debug-

ging, and its longest continuous operation without restarting has lasted

approximately one week. It has been reliable handling e-mail, i.e., it has

not lost messages, and it has had low system overhead.

� Users can inspect SodaBotL programs for security threats more easily than

would be possible with agent programs written in other programming lan-

guages, because: (1) the level of discourse is so much higher; and (2) the

programs are smaller.

We feel SodaBot successfully presents solutions to the speci�ed problems. How-

ever, most of our time has been spent developing the system, not using it. We have

built many \toy agents" but very few large-scale ones. Therefore, we can't (yet) claim

a 
ood of agent development has resulted from the SodaBot system. Hopefully, when

the system is \bullet-proofed" and released for general use, more agent applications

will be forthcoming.

Finally, we acknowledge that evaluating the SodaBot system is not a necessarily

objective process. We have received the critique \[the authorize agent in section 4.1]

would be very easy to implement in very few lines of [non-SodaBotL] code." Even

though this agent is a quite simpli�ed version of what an \end product" would require,

we disagree and suggest that those who are skeptical of our position actually go ahead

and implement the agent in \very few lines."
2

2Some things to consider include handling: (1) network downage; (2) e-mail lossage; (3) user
I/O; (4) distributing the agent so that people can use it; etc.



CHAPTER 6. CONCLUSIONS 68

Naive users enjoyed interacting with it.

SodaBot is not intended to be a \Unix wizards only" tool. A major consideration

while designing it was to make it as user-friendly as possible. For example, the

compiler gives quite instructive error messages; it points out explicitly the o�ending

statement and suggests what might be the problem and how to �x it. However, we

can't say any genuinely naive users have used it, so the assessment of this criterion

will have to wait.

There are some de�nite aspects of the system that need improvement, particularly

with respect to mail �lters. For example, users will almost certainly insist on some

way of prioritizing mail �lter �ring so they don't get 
ooded by window's popping up

on their screen after a long absence. This does not constitute a major addition, and

implementing user demands can only increase the value of the system.

We learned something while building it.

Certainly, a fair amount (perhaps too much) of Unix, X-windows, C language, etc.

knowledge was acquired building SodaBot. It provided ample opportunity to learn

about the many obscure aspects of building large \real-world" systems.

However, perhaps the best indication that we learned something is that we are

immediately setting out to rewrite it. We want to make SodaBot more user-extensible:

she should be able to declare new SodaBotL primitives, enhance the GUI, and easily

hook the BSA up to arbitrary system components, e.g. a speech synthesizer.

We do not plan on distributing the current SodaBot implementation outside of

the MIT AI Lab. We will continue rewriting it, playing with it, and introducing

it to the local community. We feel it was a very good �rst step towards making a

general purpose software agent construction system. We very much look forward to

completing the next release and seeing what people end up doing with it.



CHAPTER 6. CONCLUSIONS 69

6.2 Closing Summary

This thesis has presented SodaBot, a software agent user-environment and construc-

tion system. The basic software agent was introduced as a foundation for construct-

ing SodaBot application agents. We then presented SodaBotL | the software agent

programming language | whose primitives are designed around human-level descrip-

tions of agent activity. Via this programming language, users can easily implement

a wide-range of typical software agent applications. Along the way we also discussed

how people go about writing application agents and how SodaBot automatically dis-

tributes them.



Appendix A

Details of the Current

Implementation

The primary di�erence between the current SodaBotL syntax and the one presented in

the paper is in the structural division of agent programs. In both versions, application

agents are stored in unique directories in \~/.sodabot/AgentsSrc/" However, the

current version requires that each group of an agent be stored in a seperate sub-

directory; thus, no single �le contains an entire agent having 2 or more (non-trivial)

groups. Each group is acutally treated as a unique application agent.

Also, in the current implementation:

1. All numbers must be inside quotes.

2. The types listed in the agent input speci�cation on page 73 do not exist.

3. Order is not preserved for required inputs.

4. The \SodaBot-Parser:" header does not work for multiline strings.

5. The $message variable is not preserved if the agent is placed in one of the three

databases.

6. Subroutines are identical to requests. An agent simply directs a request to its

host BSA to call a subroutine, so variables must be passed explicitly.

7. The semi-colon and bracketing syntax are slightly di�erent.

70



Appendix B

SodaBotL BNF Speci�cation

Functional Declarations:
<Program> ::= <Mail �lter> [<Program>] j <Agent> [<Program>]

<Mail �lter> ::= Mail �lter: [<Declaration>�] <Mail description>�

<Mail description> ::= Received Mail [f<Mail speci�cation>g]:

<Statements>�

<Agent> ::= Agent <Agent name>:

[<Input>]

<Statements>�

<Agent requests>�

<Subroutine>�

<Agent request> ::= Request <Request string>: [f group <string> g] <Statements>�

<Subroutine> ::= Subroutine <Sub name>([<Arg list>]): [fgroup <string>g]

f<Statements>�g

<Declaration> ::= Library <Library name> j <Declaration>

71



APPENDIX B. SODABOTL BNF SPECIFICATION 72

Statements:
<Statement> ::= <Assignment> j <System> j <Save> j <Load> j <Reply> j

<Mail> j <Contact agent> j <Sub call> j <If> j <GUI call>

<Assignment> ::= <Variable> = <String value>;

<System> ::= System <String value>;

<Save> ::= Save [fAppendg] <<Filename> <String value>;

<Load> ::= Load <Filename> <Variable>;

<Reply> ::= Reply with <String value>;

<Mail> ::= Mail to <Address>: <String value>;

<Contact agent> ::= Contact agent <<Agent name>;<Request string>>

fusers: <Address list>g [<String value>];

<Sub call> ::= &<Sub name>([<Arg List>]);

<If> ::= If (<Condition>) f <Statement> g

[elsif (<Condition>) f<Statement>g]�

[else f<Statement>g]

GUI Statements:
<GUI call> ::= <Display> j <Get response> j <Query>

<Display> ::= [f<Display options>*g] <String value>;

<Get response> ::= [f<Query options>*g] <String value>;

<Query> ::= [f<Query options>*g] <String value>;

Conditions:
<Condition> ::= <Boolean>

::= <String value> eq <String value>

::= <String value> neq <String value>

::= <Reg exp> in <String value> j <String value> =~ <Reg exp>

::= <Reg exp> nin <String value> j <String value> !~ <Reg exp>

::= (<Condition>) or (<Condition>) j (<Condition>) jj (<Condition>)

::= (<Condition>) and (<Condition>) j (<Condition>) && (<Condition>)



APPENDIX B. SODABOTL BNF SPECIFICATION 73

Data Types:

<String value> ::= <String> j <Variable>

<String> ::= <Multiline string> j <Simple string>

<Variable> ::= $<Simple string>

<Filename> ::= [/] <Simple string> [/] [<Filename>] j <Variable>

<Sub name> ::= <Simple string>

<Agent name> ::= <Simple string>

<Library name> ::= <Simple string>

<Arg list> ::= <String value> [, <Arg list>]

<Multline string> ::= <Rich string> nn [<Multiline string>]

<Rich string> ::= All characters except nn

<Simple string> ::= [a-z, A-Z, 0-9, ]�

<Reg exp> ::= See [Wall and Schwartz, 1990, p25].

Mail Filter Speci�cation:

<Mail speci�cation> ::= <Field>: /<Reg exp>/ [;<Mail Speci�cation>]

<Field> ::= to j cc j bcc j from j sender j reply-to j

return-receipt-to j errors-to j date j

return-header j message-id j subject j status j

newsgroups j followup-to

Agent Input Speci�cation:

<Input> ::= Required input f<Input spec>g

<Input spec> ::= <Rich string>: <Input type>

<Input type> ::= <Rich string> j *name j *username j *�lename j

*date j *time j *address j *host j *number



Bibliography

[Brooks, 1991] Brooks, Rodney. Intelligence without representation. Arti�cial Intel-

ligence, 47:139-160. 1991.

[Coen, 1994] Coen, Michael. Letter to the Editor. AI Magazine. Summer 1994.

[Dent et al., 1992] Dent, Lisa; Boticario, Jesus; McDermott, John; Mitchell, Tom;

and Zabowski, David. A personal learning apprentice. In Proceedings of the Tenth

National Conference on Arti�cial Intelligence, AAAI-92, San Jose, CA. p96-103.

1992.

[Dougherty, 1990] Dougherty, Dale. sed & awk. O'Reilly Associates. Sebastopol, CA.

1990

[Doyle et al., 1991] Doyle, Jon; Shoham, Yoav; and Wellman, Michael. A logic of

relative desire. In Z.W. Ras and M. Zemankova (eds.) Methodologies for Intelligent

Systems, Springer-Verlag, Berlin. p16-31. 1991.

[Etzioni et al., 1992a] Etzioni, Oren; Hanks, Steve; Weld, Daniel; Draper, Denise;

Lesh, Neal; and Williamson, Mike. An approach to planning with incomplete

information. In Proceedings of the Third International Conference on Principles

of Knowledge Representation and Reasoning, KR-92, Cambridge, MA. p115-125.

1992.

74



BIBLIOGRAPHY 75

[Etzioni and Segal, 1992] Etzioni, Oren and Segal, Richard. Sofbots as testbeds for

machine learning. InWorking Notes of the AAAI Spring Symposium on Knowledge

Assimilation, Menlo Park, CA. 1992.

[Etzioni et al., 1993] Etzioni, Oren; Levy, Henry; Segal, Richard; and Thekkath,

Chandramohan. OS Agents: Using AI Techniques in the Operating System En-

vironment. Technical Report 93-04-04. University of Washington, Seattle, WA.

1993.

[Etzioni, 1993] Etzioni, Oren. Intelligence without Robots: A Reply to Brooks. In AI

Magazine, Winter, 1993.

[Etzioni et al., 1994] Etzioni, Oren; Lesh, Neal; and Segal, Richard. Building softbots

for Unix (Preliminary Report). In Working Notes of the AAAI Spring Syposium

on Software Agents, Stanford, CA. p9-16. 1994.

[Genesereth and Singh, 1994] Genesereth, Michael and Narinder Singh. A Knowledge

Sharing Approach to Software Interoperation. Unpublished draft. 1994.

[Genesereth and Ketchpel, 1994] Genesereth, Michael and Ketchpel, Steven. Soft-

ware Agents. CACM - Special Issue on Intelligent Agents. 37:7. 1994.

[Genesereth 1994] Genesereth, Michael. MIT AI Laboratory Revolving Seminar.

February 3, 1994.

[Horton, 1983] Horton, Mark. Standard for interchange of usenet messages. Internet

Request for Comment (RFC) 850. 1983.

[Kahn and Cerf, 1988] Kahn, Robert and Cerf, Vinton. An open architecture for a

digital library system and a plan for its development. Technical report. Corporation

for National Research Initiatives. 1988.



BIBLIOGRAPHY 76

[Kautz et al., 1994] Kautz, Henry; Selman, Bart; Coen, Michael; Ketchpel, Steven.

An experiment in the design of software agents. Proceedings of the Twelfth National

Conference on Arti�cial Intelligence, AAAI-94, Seattle, WA. 1994.

[Knoblock and Arens, 1994] Knoblock, Craig and Aren, Yigal. An architecture for

information retrieval agents. In Working Notes of the AAAI Spring Syposium on

Software Agents, Stanford, CA. p49-56. 1994.

[Kozierok, 1993] Kozierok, Robyn. A learning approach to knowledge acquisition for

intelligent interface agents. Technical Report 93-01, Learning and Common Sense

Group, MIT Media Lab. 1993.

[Krishnamurthy and Rosenblum, 1992] Krishnamurthy, Balachander and Rosen-

blum, David. Yeast: a general purpose event-action system. AT&T Bell Labs Tech-

nical Memorandum. 1992.

[Lansky, 1994] Lansky, Amy.A data analysis assistant. InWorking Notes of the AAAI

Spring Syposium on Software Agents, Stanford, CA. p57-63. 1994.

[Maes, 1990] Maes, Pattie (ed). Designing Autonomous Agents, MIT Press, Cam-

bridge, 1990.

[Maes and Kozierok, 1993] Maes, Pattie and Kozierok, Robyn. Learning interface

agents. In Proceedings of the Eleventh National Conference on Arti�cial Intelli-

gence, AAAI-93, Washington D.C., p459-464. 1993.

[Maes, 1994] Maes, Pattie. Social interface agents: acquiring competence by learning

from users and other agents. In Working Notes of the AAAI Spring Syposium on

Software Agents, Stanford, CA. p71-78. 1994.

[Neches et al., 1991] Neches, Robert; Fikes, Richard; Finin, Tom; Gruber, Thomas;

Patil, Ramesh; Senator, Tod; and Swartout, William. Enabling Technology for

Knowledge Sharing. In AI Magazine, Fall, 1991.



BIBLIOGRAPHY 77

[Rosenschein, 1993] Rosenschein, Je�rey. Negotiation mechanisms for multi-agent

systems. In Proceedings of the Thirteenth International Joint Conference on Arti-

�cial Intelligence, Chambery, France. p792-799. 1993.

[Sheth, 1994] Sheth, Beerud. Adaptive Agents for Information Processing. SMThesis.

MIT. Cambridge, MA. 1994.

[Shoham, 1992] Shoham, Yoav. Agent Alpha Programming Overview. 1992.

[Shoham, 1993] Shoham, Yoav. Agent oriented programming. Arti�cial Intelligence,

60:51-92. 1993.

[Stein, 1994] Stein, Lynn. Private communication. (Also from comments made during

the third discussion section at the AAAI 1994 Spring Syposium on Software Agents.

Patrick Hayes made a similar statement.)

[Torrance and Viola, 1991] Torrance, Mark and Viola, Paul. The AGENT0 Manual.

Technical Report STAN-CS-91-1389. Stanford University Department of Computer

Science. Stanford, CA. 1991.

[Vere and Bickmore, 1990] Vere, S and Bickmore, T. A basic agent. Computational

Intelligence, 6(1). 1990.

[Waldrop, 1990] Waldrop, M. Mitchell. Learning to drink from a �re hose. Science,

v248, pg 674. 1990.

[Wall and Schwartz, 1990] Wall, Larry and Schwartz, Randall. Programming Perl.

O'Reilly & Associates. Sebastopol, CA. 1990

[Wayner, 1994] Wayner, Peter. Agents away. Byte, p113-118. May, 1994.

[Zlotkin and Roesnschein, 1994] Zlotkin, Gilad, and Rosenschein, Je�rey. Coalition,

cryptography, and stability: mechanisms for coalition formation in task oriented



BIBLIOGRAPHY 78

domains. In Working Notes of the AAAI Spring Syposium on Software Agents,

Stanford, CA. p87-94. 1994.


