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Abstract

The control of aerial gymnastic maneuvers is challenging because these maneuvers

frequently involve complex rotational motion and because the performer has limited

control of the maneuver during 
ight. A performer can in
uence a manuever using a

sequence of limb movements during 
ight. However, the same sequence may not

produce reliable performances in the presence of o�-nominal conditions. How do

people compensate for variations in performance to reliably produce aerial

maneuvers? In this report I explore the role that passive dynamic stability may play

in making the performance of aerial maneuvers simple and reliable.

I present a control strategy comprised of active and passive components for

performing robot front somersaults in the laboratory. I show that passive dynamics

can neutrally stabilize the layout somersault which involves an \inherently unstable"

rotation about the intermediate principal axis. And I show that a strategy that uses

open loop joint torques plus passive dynamics leads to more reliable 1 1/2 twisting

front somersaults in simulation than a strategy that uses prescribed limb motion.

Results are presented from laboratory experiments on gymnastic robots, from

dynamic simulation of humans and robots, and from linear stability analyses of

these systems.
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Chapter 1

Introduction

In both the 1992 and 1994 winter Olympics, the �nal jump performed by the men's

champion freestyle skier was a quadruple twisting, triple somersault. In the per-

formance of these 'jumps' the athletes skied o� of a ramp from which they soared

approximately 45 feet into the air, remained aloft for approximately 3.0 sec, rotated

three times about a horizontal axis and four times about their body vertical axis, and

�nished by landing squarely on their feet so that they could continue skiing down the

hill in a controlled fashion. It is incredible that these athletes can perform a maneuver

like this with such accuracy. How do they do it?

Two related issues that make these performances challenging are the controllabil-

ity and stability of aerial maneuvers. Controllability refers to the ability of an athlete

to in
uence the outcome of an aerial maneuver once it has been initiated. An airborne

performer can not apply any external forces or torques to the body. So how can a

performer control his body orientation? Previous research of this topic has revealed

movement techniques that performers can use to produce complicated aerial maneu-

vers. These techniques involve moving the limbs to recon�gure the body during 
ight

(Figure 1-1). However, while a prescribed set of body con�gurations can produce a

desired aerial maneuver, this sequence may not lead to reliable performances.

The stability of aerial maneuvers concerns their reliable performance in the pres-

12
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Figure 1-1: A limited ability to in
uence the outcome of a ballistic maneuver arises

from the relative movement of the limbs and torso during 
ight. One way to in
uence

the outcome is to change the moment of inertia about an axis in order to change the

rotation rate about that axis. The standard being the ice-skater's spin. A second way

to in
uence the outcome is to use momentum-free rotations [Smith 67, Frohlich 79].

This technique allows a structure to be reoriented while maintaining zero angular mo-

mentum by performing a sequence of limb movements. A third way is to recon�gure

the system so that the principle axes of inertia are reoriented relative to the inertially

�xed angular momentumvector. This allows sharing of momentumbetween principal

axes. This procedure is frequently used to introduce or remove twist in somersaults

[Batterman 68, Frohlich 79, Yeadon 84]. The existence of these mechanisms makes

it possible to actively adjust the outcome of an aerial maneuver once it has been

initiated.
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ence of o�-nominal conditions. Stability is important because the accumulation of

even small errors during the relatively long 
ight times of an aerial maneuver could

result in a disastrous outcome. Making a performance reliable requires that the ath-

lete compensate for inaccuracies in movement, variations in equipment, and external

disturbances. It is possible that people produce reliable maneuvers by sensing these

variations and actively computing appropriate responses to compensate for them.

However, the complexity of this feedback control approach would appear to place

great demands on the athlete's perceptive and motor control abilities. Is there a

more simple approach to producing reliable maneuvers that does not require active

compensation by the athlete?

The focus of this thesis is on the use of passive dynamic stability as an alternative

or a complement to active control for producing reliable aerial maneuvers. Passive

dynamic stability means that a maneuver is inherently stable by virtue of the natural

dynamic interaction of the limbs and body. The precise limb movement that a per-

former makes during a maneuver will depend upon not only his motor activity but

also on environmental forces. Is it possible that the passive forces that arise due to o�-

nominal conditions could provide a built-in correction? If so, passive behavior could

automatically compensate for errors in initial conditions, in control movements, or

from external disturbances. If this were the case then the demands for active control

by the athlete could be dramatically reduced. A passive control strategy is appealing

because it could relieve the human performer of sensing small variations in movement

and computing control responses fast enough to produce accurate, stable maneuvers.

Instead, the athlete may need only to \play back" a pre-recorded set of motor actions.

This feed forward command combined with the passive dynamic response of his body

may allow the maneuver to \unfold" on its own.

To see if passive dynamic stability could play a role in aerial performances, I

consider the control of three gymnastic maneuvers, the tucked front somersault, the

back layout somersault, and the front somersault with one and a half twists. I show
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that passive dynamics can play a signi�cant role in making these maneuvers reliable.

Neutrally stable passive dynamics make the control of the tucked somersault simple

since an active controller need only consider rotation about the major principal axis.

The layout or straight body somersault is considered to be inherently unstable because

it requires rotation about the middle principal axis of inertia, an unstable equilibrium

for a rigid body. I show that the layout somersault can passively be made neutrally

stable by tuning the compliance of the shoulders of the performer. Finally, I present

results that suggest that a passive, compliant model of the human body that uses

open loop torque control can produce more reliable 1 1/2 twisting somersaults than

a model that uses prescribed limb motion. I obtained these results using simple

analytic models, non-linear dynamic simulation, and laboratory robots. Next, I brie
y

describe the results of experiments on each of these maneuvers.

The somersault is a maneuver in which a performer jumps into the air and rotates

once about a side-to-side axis before landing on the ground. The main requirement for

the somersault is to land in a balanced manner. This in turn requires the performer to

land with a precise body attitude. The tucked somersault exhibits passive directional

stability in rotation since it involves rotation about the major principal axis of inertia.

This means that imprecise initiation of a somersault will not dramatically a�ect the

orientation of the spin axis during 
ight. However, avoiding over-rotation or under-

rotation of a somersault about the spin axis may require compensation of rotation

rate during 
ight. Active control of the inertia can be used to correct errors in

somersault rotation rate. I present results from somersault experiments using a 60

lb, one meter tall laboratory robot that runs on two springy legs (Figure 1-2). The

robot was programmed to initiate the somersaults using a pre-programmed pattern

of action. To avoid large tilt and twist angles of the 3D Biped during take-o� and

landing we use a wide double stance of the robot and insure that the feet touch down

simultaneously. During 
ight the robot actively controls rotation rate by \tucking"

or \untucking" its legs to manipulate the robots inertia. The robot actively adjusts
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Figure 1-2: Photograph of the 3D Biped Robot.

the position of its feet relative to its center of mass just prior to landing. This element

was necessary to compensate for errors in the estimated landing time of the robot.

On its best day the robot did successful somersaults and continued running on 7 out

of 10 attempts.

The layout or straight body somersault is considered to be inherently unstable

because it requires rotation about the middle principal axis of inertia, an unstable

equilibrium for a rigid body. A rigid body that is somersaulting about the middle

principal axis will always exhibit a sequence of half twists about the minor principal

axis. Despite this fact, athletes regularly perform this maneuver with apparent ease.

Previously, biomechanics researchers have assumed that the athlete senses the insta-

bility of the maneuver and actively compensates for it with movements of the arms

and body [Nigg 74, Hinrichs 78, Yeadon 90].

I show that the layout somersault can be a passive, neutrally stable maneuver.
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Figure 1-3: Photograph of the mechanical doll used for experiments with layout

somersaults. The doll could consistently perform stable, triple layout somersaults.

Passive stabilization of the layout somersault results from the natural dynamic inter-

action of the limbs and body during movement. Stabilization arises from the inherent

tendency of the arms to tilt in response to twisting movement of the body. The arm

tilt forces the principal axes of the system to move in a direction that compensates

for tilt and twist errors. This built-in correction eliminates the divergent tendency of

the system as long as the compliance of the shoulders cancels the unstable centrifu-

gal forces on the arms. I verify this result with linear stability analysis, non-linear

dynamic simulation, and experiments on a human-like doll built and tested in the

laboratory (Figure 1-3.) The doll has spring-driven arms but has no other control

system, sensors, or actuators. The doll routinely exhibits triple somersaults about its

middle principal axis without twisting.

While twisting is to be avoided in the layout somersault, it is a feature in other
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Figure 1-4: Images arranged in right-to-left, top-to-bottom order from a dynamic

simulation of a 1 1/2 twisting front somersault. We found that open loop torque

control of a compliant model led to relatively reliable performances.

tricks. I present results from dynamic simulation of a human performing a front

somersault with one and a half twists. The twisting maneuver is started from a front

somersault by recon�guring the body mid-maneuver. While a sequence of prescribed

limb movements can be found to produce a twisting maneuver, simulation results

show that the performance is sensitive to small variations in initial conditions. If,

instead, open loop torque control is used with a compliant, passive dynamic model of

the human the maneuver reliability can be signi�cantly improved.

I also present results from dynamic simulation of a front somersault with one half

twist performed by the 3D Biped. We found that to make the simulated 3D Biped

perform a satisfactory front somersault with one half twist we had to add weight to

the robot to make its inertia more like that of a human.

The ultimate goal of this research is to develop a theory of passive dynamic,
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aerial maneuvers. By showing that passive dynamics can play a signi�cant role in

the performance of reliable aerial maneuvers we argue that they reduce the need for

active control from the athlete. The performance of a maneuver may be simpli�ed

by relegating some responsibility for control to the natural, mechanical behavior of

the body. The appropriate use of passive dynamics may have the added bene�t

of producing natural looking, coordinated movement. Perhaps athletes and other

people use a performance strategy that seeks to maximize passive dynamic behavior.

It is di�cult to know what control strategies people may or may not use, but in

the laboratory we can examine the feasibility of a strategy by testing it in a real or

simulated system.

1.1 Background

Relevant background material for the study of gymnastic maneuvers comes from

�elds such as biomechanics, biology, robotics, aeronautics, and astronautics. Several

researchers have explicitly studied the performance of gymnastic maneuvers. These

studies have revealed the salient features of known gymnastic techniques for produc-

ing maneuvers. Some robotics researchers have studied gymnastic maneuvers using

dynamic simulation and/or laboratory robots in order to develop strategies for con-

trol. The study of passive dynamic stability has roots in the �elds of aeronautics

and astronautics. It is common for airplanes and spacecraft to be designed to exhibit

passive dynamic stability. The study of human locomotion provides an inspirational

example of passive dynamic stability and the rich behavior that it can produce. In

the following sections, I brie
y discuss background material from each of these �elds.

1.1.1 Gymnastic Maneuvers

Most researchers investigating the control of aerial maneuvers have been concerned

with explaining the physics of the maneuvers. During the aerial phase of a maneuver
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the performer can not produce any external forces on the system so the trajectory of

the center of mass and the angular momentum are �xed from the moment of take-

o� to the moment of landing. Knowing this, early researchers were compelled to

�nd explanations of two aerial maneuvers that at �rst appeared to violate conser-

vation of angular momentum: 1) a cat when dropped with no net angular momen-

tum will right itself before landing on the ground [Marey, Kane 69] and 2) spring

board divers who leave the board with rotation only about a side-to-side (somer-

sault) body axis can subsequently initiate rotation about their head-to-toe (twist)

body axis [Batterman 68, Frohlich 79, Yeadon 84]. Where did the extra angular mo-

mentum come from? Resolving these apparent discrepancies led researchers to �nd

movement techniques that could be used to perform these and other interesting ma-

neuvers. These techniques involved recon�guring the body in 
ight (Figure 1-1).

Takashima [Takashima 90] studied high bar maneuvers. He used the control of

rotation rate about the somersault axis to produce a balanced landing of a simulated

human dismounting from the horizontal bar. His algorithm could produce accurate

tucked, multiple-somersault dismounts. In 
ight, he used the feedback control of

posture to control rotation rate. He used a combination of feed forward and feed

back control to execute the landing.

While they appear to be similar maneuvers, the tucked somersault and the layout

somersault are dynamically very di�erent. The tucked somersault involves rotation

about the major principal axis of inertia, a stable mode of rigid body rotation. Rota-

tion about the major and minor principal axes of inertia exhibits a limited form of sta-

bility called directional stability. Directional stability refers to the fact that the spin

axis will maintain roughly the same inertial orientation when deviated slightly from

that orientation. The layout somersault involves rotation about the intermediate prin-

cipal axis of inertia, an unstable mode of rigid body rotation [Crandall 68, Hughes 86].

When a rigid body is spun about its intermediate axis, that body axis will exhibit

large excursions from its initial orientation. These cyclic excursions are a series of
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nearly 180� rotations away from and returning to the initial axis orientation. The

di�erent modes of rotation can be easily demonstrated to the reader by spinning a

video tape or a book (with a rubber band around it) about each of its axes of sym-

metry. You will see that when the body is spun about the major and minor principal

axes the spin axis roughly maintains its inertial orientation. However, when the body

is spun about its middle principal axes it will exhibit a sequence of twists about the

long body axis. This rigid body instability has lead researchers to conclude that the

layout somersault is inherently unstable.

Nigg recognized that the layout somersault may be unstable since it involved

rotation about the middle principal axis [Nigg 74]. Using cinematographic techniques

Hinrichs [Hinrichs 78] measured the body con�guration of an athlete performing a

layout somersault. He con�rmed that the layout somersault involved rotation about

the middle principal axis of inertia. He hypothesized that the athlete made small

corrective movements of the arms and torso in 
ight to stabilize the somersault.

Yeadon [Yeadon 84] used a combination of cinematography and dynamic simula-

tion to study the control of aerial maneuvers. In his research he developed a mass

properties model of the human form that provided an estimate of inertial parameters

from anthropometric measurements. He also �lmed highly skilled athletes performing

complex aerial maneuvers and digitized this data to determine the body attitude, con-

�guration, and angular momentumduring 
ight. Then he used the inertia parameters

and digitized con�guration and momentum data as input to a dynamic simulation of

the human body during 
ight. This dynamic model computed the gross body atti-

tude during 
ight as a function of the measured internal con�guration and angular

momentum. Using this system, Yeadon could numerically study the e�ect of changes

in body con�guration on the performance of complex aerial maneuvers.

Yeadon found that by piking or arching (bending at the waist in the sagittal

plane) during a layout somersault an athlete can change his or her inertia enough

to make the somersault axis an axis of maximum inertia. This in turn implies that
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arched/piked somersaults are passively stable. Because many athletes perform layout

somersaults with arch, it is possible that this is done to stabilize the maneuver.

However, in Yeadon's analysis of a double layout somersault performed by Carl

Furrer, the 1982 World Trampoline Champion, he found that Furrer was in fact ro-

tating about the middle principal axis of inertia during nearly all of the maneuver.

Furthermore, dynamic simulation of this layout somersault exhibited the character-

istic twist instability of rotation about the middle principal axis while the actual

human performance exhibited no such instability. This di�erence implied that the

small digitization errors in translating �lm con�guration data to the simulation were

responsible for the change in performance, a fact that would point to an inherently

unstable system. These results suggest that the athlete uses some form of stabilization

to perform the layout somersault.

Yeadon proposed a speci�c technique for stabilizing the layout somersault. He

realized that asymmetric movement of the arms in the frontal plane could be used to

stabilize rotation about the middle principal axis of inertia. He designed a stabilizing

feedback controller that used the sensed twist angle as the feedback signal to drive

the arm abduction/adduction angular rates. Using a linear model, Yeadon found

the athlete would have to respond to a growing twist instability within 0.28 of a

somersault (� 200ms) [Yeadon] in order to maintain stability.

The ballistic nature of many gymnastic performances makes an open-loop (feed

forward) component a likely part of any control strategy. An open loop strategy is

one in which the performer's control motions are not derived from the current state

of motion but are instead produced from a pre-programmed pattern of action. Since

important parameters of ballistic motion are �xed from takeo�, an open-loop strategy

is required to anticipate the maneuver in order to set up appropriate initial conditions.

Raibert and Hodgins programmed a planar biped robot to perform front somersaults

in the laboratory using a combination of open loop and feedback control strategies.

The biped robot used an open loop strategy for initiation of the somersault and the
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majority of 
ight. A feedback controller was used to accurately place the feet just

prior to touch down. Using this combination of feed forward and feedback control, the

robot could successfully perform the front somersault followed by balanced running

on 90% of the trials.

1.1.2 Aeronautics, Astronautics and Celestial Mechanics

Some modern aircraft are designed to require active control for stabilization. These

aircraft use digital computers to manipulate the aircraft control surfaces to render the

planes 
yable. This inherent instability is tolerated to provide highly maneuverable

aircraft. However, passive dynamic stability is commonly built into general aviation

aircraft and spacecraft. More precisely, they have an equilibrium condition like 
ying

straight and level for an aircraft, or spinning about the major principal axis for a

satellite that is stable so that the craft can tolerate external disturbances without

diverging from the stable equilibrium condition. The origin of this topic has its roots

in celestial mechanics.

The moon always presents the same face to the Earth. However, it does not do

so exactly. Librational stability refers to the stability of the oscillations of the moon

about its center of mass as it circles the Earth. Galileo was the �rst to notice these

oscillations. Newton conjectured that a reason for this behavior would be that the

moon was elongated towards the Earth. However, it took Louis Lagrange to develop a

mathematical theory describing this phenomenon [Lagrange]. Using a linear analysis,

Lagrange derived a set of four inequalities involving the inertia of the moon that must

be satis�ed for the moon to exhibit stable librational motion.

In 1885, Henri Poincar�e [Poincare] realized that a linearized analysis could not

be conclusive in determining librational stability. This result gave rise to the use of

the Hamiltonian as a Lyapunov function candidate in determining Lyapunov stability.

This approach established the stability of a satellite con�guration called the Lagrange

satellite but it could not establish the stability of the Delp satellite which was also
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stable according to linear analysis.

The only other example that the author has found of stable rotation about the

intermediate axis is from a study of large cellestial structures. Duncan and Levison

[Duncan 89] simulated the behavior of a self-gravitating system of 2048 bodies in

order to determine if it was stable. They found an example of a simple spherical

system initially in dynamic equilibrium that experienced an instability producing a

�nal equilibrium state of stable rotation around the intermediate principal axis of

inertia of the system of particles. This result was considered noteworthy because it

con
icted with the rigid body analogy of unstable rotation about the middle principal

axis. No explanation of the source of stability was o�ered.

1.1.3 Ballistic Walking

While the signi�cance of passive dynamic stability is recognized in studies of celestial

structures and in the design of aircraft and spacecraft its relevance to the control of

movement in biology and robotics is only beginning to be explored. One possible

reason is that these former examples typically involve the stability of an equilibrium

con�guration, i.e. no accelerations. Animals, people, and robots frequently move

with signi�cant accelerations. The stability analysis of non-equilibrium movement is

a much more di�cult process. Some progress has been made with the analysis of

walking.

Mochon and McMahon and later McGeer showed that passive dynamic stability

may be important to human locomotion. First proposed by Mochon and McMa-

hon [Mochon 80], a ballistic walker uses only gravity and the dynamic interaction

of the swing and stance legs to produce a repetitive walking pattern. The passive

pattern accounted for the folding and unfolding of the legs and the positioning of

the foot forward. McGeer [McGeer 89] showed the viability of ballistic walking by

building passive, planar, anthropomorphic linkages with no sensor or actuators that

demonstrated stable walking down an incline.
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1.2 Organization of Thesis

The remainder of this thesis is organized as follows.

Ch. 2 This chapter provides a review of rigid body rotation. Rigid body rotation

provides an important simpli�ed model for the analysis of multi-body rotational

systems. Analysis and tools introduced here will be used throughout the thesis.

Ch. 3 In this chapter I discuss somersault experiments with a 3D biped robot. The

robot somersault axis is coincident with the major principal axis of inertia so the

maneuver exhibits some passive stability properties. The robot actively controls

landing attitude by retracting or extending its legs during the maneuver to

change somersault rate. The robot has successfully performed front somersaults

in the laboratory.

Ch. 4 In this chapter I present an analysis of the layout somersault. I show that the

layout somersault, involving rotation about the middle principal axis of inertia,

can be passively stabilized by tuning parameters of a passive dynamic model of

the human body. Using the simplest possible model of the layout somersault, I

explain the fundamental dynamics of passive stabilization.

Ch. 5 I describe layout somersault experiments with a human-like doll. These exper-

iments verify that the layout somersault can be consistently stabilized for at

least three and one half somersaults.

Ch. 6 I discuss non-linear dynamic simulation of a 1 1/2 twisting front somersault.

Simulation results suggest that maneuvers using prescribed limb motion will

not be reliable to o�-nominal initial conditions. If instead, a compliant passive

model is used with feed forward torques the maneuver can be made more reli-

able. I also describe twisting somersault experiments with the 3D Biped robot.

Using simulation we found that it was important that the robot have an inertia

tensor more like that of a human to produce a human-like front somersault with
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1/2 twist. Laboratory experiments with 3D Biped robot twisting somersaults

were not successful at least in part due to insu�cient actuator power.

Ch. 7 Here I summarize the results of the thesis and discuss future work.

Appx. In the Appendix I provide Mathematica code for deriving non-linear equations

of motion of a human model, and for analytically linearizing this model. I

provide a de�nition of the parameters used in the linear model. I also provide

a derivation of the analytic solution for rigid body rotation.



Chapter 2

Rigid Body Rotation

2.1 Introduction

Humans are multi-body systems and gymnastic maneuvers involve multi-body rota-

tions. We can better understand multi-body rotation by understanding the dynamics

and stability of rigid body rotation. In this chapter, I brie
y discuss some properties

of rigid body rotation. Rigid body rotational stability about a principal axis de-

pends only on the relative magnitude of the principal inertias. This result provides a

valuable reference for multi-body rotational stability. A linear analysis of rigid body

rotation provides simple stability results, and identi�es important non-dimensional

parameters that will be useful in multi-body analysis. Visualization tools for rigid

body rotation will also prove useful in understanding how to control rotational motion

in multi-body systems. Material for this chapter is based on the text of [Hughes 86].

2.2 Nonlinear Dynamic Model

The rotational motion of a free rigid body about its center of mass is governed by

Euler's equations.

27
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I1 _!1 � (I2 � I3)!2!3 = 0

I2 _!2 � (I3 � I1)!3!1 = 0 (2.1)

I3 _!3 � (I1 � I2)!1!2 = 0

where Ij refers to the jth principal moment of inertia and !j refers to the angular

velocity about that principal axis.

The orientation of the rigid body with respect to an inertial coordinate frame is

described by a set of three Euler angles. The Euler angles are used to de�ne the

3-by-3 matrix of direction cosines, Cbi, that transforms a vector described in inertial

coordinates into one described in the body �xed coordinate system. (For the rigid

body analyses of this chapter I assume that the principal axis frame is coincident

with this body axis frame.) I use a `2-1-3' Euler angle sequence for this purpose.

I borrow the names for the three Euler angles, somersault, tilt, and twist, from

Yeadon [Yeadon 84]. I use the letters, �;�;	 to refer to the somersault, tilt, and

twist angles respectively.

To describe the attitude of the body in inertial space, a coordinate system initially

parallel to the inertial reference frame is �rst rotated through the somersault angle

about the inertially �xed '2' axis, then rotated through the tilt angle about the

intermediate '1' body axis, and �nally rotated through the twist angle about the

body �xed '3' axis. Figure 2-1 depicts the �;�;	 Euler angle sequence applied to a

rigid human form. The rotation matrix is given by

Cbi =

2
666664

C	C� + S	S�S� S	C� �C	S� + S	S�C�

�S	C� + C	S�S� C	C� S	S� + C	S�C�

C�S� �S� C�C�

3
777775 (2:2)

The subscript bi refers to the fact that this rotation matrix rotates a vector from the

inertial system into the body axis system. S and C are the sine and cosine of the
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Figure 2-1: Illustration of the somersault (�), tilt (�), and twist (	) Euler angle

sequence used to de�ne body attitude.

respective angle. This Euler angle description of body attitude has a singularity, as do

all three parameter descriptions of body attitude. The singularity for this particular

sequence occurs at a tilt angle of ��=2. The kinematic equations governing the

evolution of the Euler angles are given by

2
666664

_	

_�

_�

3
777775 =

2
666664
S	S�C� C	S�C� 1

C	 �S	 0

S	C� C	C� 0

3
777775

2
666664
!1

!2

!3

3
777775 (2:3)

The inverse of the above relationship is also useful. It is given by

2
666664
!1

!2

!3

3
777775 =

2
666664
0 C	 S	C�

0 �S	 C	C�

1 0 �S�

3
777775

2
666664

_	

_�

_�

3
777775 (2:4)
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The dynamic equations of motion (2.1) are coupled so that general rotational

motion involves all three degrees of freedom. However, three simple solutions exist to

these equations. If a rigid body is spinning perfectly around a principal axis such that

two of the three angular velocities are zero then the non-linear coupling terms vanish.

The body will continue to spin about that axis without coupling to the other degrees

of freedom. An analysis of these spin solutions will reveal that for a tri-inertial body,

a body with three di�erent principal inertias, only two of the spin solutions are stable

while the third is unstable. Here stability means if the spin axis of the system is

moved away from the nominal solution the attitude of the spin axis will not diverge

radically from its initial orientation. The linear stability analysis provided in the next

section reveals the required conditions for stable rotation about a principal axis.

2.3 Linear Analysis

In this section we linearize Euler's equations for the rigid body in order to study the

stability of steady rotation about a principal axis. The linear equations govern the

motion of the body relative to a reference frame that is rotating steadily about the

principal axis of inertia. The resulting equations will be valid for small deviations of

the system from the reference frame. This linearization process will be used again

when we linearize multi-body rotation about an equilibrium spin condition. The

linearizing condition will be steady somersaulting rotation about the `2` axis with

angular velocity _�. The angular velocity of the steadily rotating reference coordinate

system is ~!ra.

~!ra = _�îr2 (2:5)

where îr2 is the unit vector along the '2' axis in the reference coordinate system. The

angular velocity of the principal axis system, ~!pa, is comprised of the angular velocity
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relative to the reference coordinate frame, ~!pr, and ~!ra,

~!pa = ~!pr + ~!ra (2:6)

Let the attitude of the principal axis system relative to the reference frame be de-

scribed by the 2-1-3 Euler angle sequence of �; �;  . (The lower case notation indi-

cates that these are linearized states. These Euler angles describe the deviations of

the body from the rotating reference frame.) We can use Equations 2.2 and 2.4 to

express the components of ~!pa in terms of �; �;  , their derivatives and _�. First using

Equation 2.4

!pr =

2
666664
0 C S C�

0 �S C C�

1 0 �S�

3
777775

2
666664

_ 

_�

_�

3
777775 (2:7)

where !pr denotes a column whose components are the elements of the vector ~!pr

when described in the principal axis frame. To form the sum in Equation 2.6, we

need to express all the vector components in the same frame. To do this, using

Equation 2.2 as a model, form the rotation matrix Cpr that rotates a vector from the

reference frame into the principal coordinate frame. Then solve for !pa,

!pa = !pr + Cpr!ra

When Cpr and !pr are linearized for small �; ; � we get

!pa =

2
666664

_�

_�

_ 

3
777775+

_�

2
666664
 

1

��

3
777775 (2:8)
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This expression can be di�erentiated to �nd the Euler angle expression for angular

acceleration.

_!pa =

2
666664

��

��

� 

3
777775+

_�

2
666664

_ 

0

� _�

3
777775 (2:9)

Now, substituting Equations 2.8 and 2.9 into Equation 2.1 and eliminating terms that

are second order in �; �, and  results in the following equations

I1�� � _� (I2 � I3 � I1) _ � _�2(I3 � I2) � = 0

I2�� = 0 (2.10)

I3 � + _� (I2 � I3 � I1) _� � _�2(I1 � I2) = 0

These equations govern the behavior of the non-linear system in the vicinity of the

pure spin solution. The linear states, �; �;  , describe the deviation of the body axes

from the reference coordinate frame.

Examination of Equations 2.10 reveals that the system is unstable in the sense

that perturbations in _� will result in unbounded growth in �. Nevertheless, a reduced

form of stability called directional stability [Hughes 86] is possible in the subsystem

of �;  . Directional stability means that the two attitude variables � and  will not

diverge from zero if the system is perturbed slightly from the pure spin solutions.

This means that the spin axis will continue to point in roughly the same inertial

direction when disturbed from its equilibrium orientation.

The equations for � and  decouple from �. They can be written as

M �x+ _�G _x+ _�2Kx = 0 (2:11)

where

x =

2
64 �

 

3
75
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M =

2
64 I1 0

0 I3

3
75

G =

2
64 0 �(I2 � I3 � I1)

I2 � I3 � I1 0

3
75

K =

2
64 I2 � I3 0

0 I2 � I1

3
75

2.3.1 Conservative Gyric Systems

To investigate the stability of the � �  subsystem, I use the matrix second order

stability theory described in [Hughes 86]. Hughes describes a second order system of

equations of the form of Equation 2.11 as a conservative gyric system when

MT = M > 0

GT = �G

KT = K

The coe�cient matrices (M;G and K) are respectively associated with inertial, gyric,

and sti�ness forces. Conservative refers to the fact that the system energy is con-

served, while gyric re
ects the fact that these terms often arise in spinning systems.

This form of equations will be present in a multi-body analysis of rotating systems.

Hughes proves that asymptotic stability for a conservative gyric system is impos-

sible by showing that if s is a root of the characteristic equation of 2.11 then �s must

also be a root. Strictly left half plane poles will always have their right half plane

counterparts. Therefore, stability, as opposed to asymptotic stability, is the strongest

result possible for a conservative gyric system. A stable system will have all of the

roots of its characteristic equation on the imaginary axis.

A su�cient condition for stability of a conservative gyric system is that it be
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statically stable, i.e. the sti�ness matrix must be positive de�nite, K > 0. The

sti�ness matrix for the two-by-two system above is positive de�nite if I2 is the major

principal axis of inertia. That is, rotation about the major axis is directionally stable

by virtue of its static stability. However, K > 0 is only a su�cient condition for

stability. Rotation about the minor principal axis is also stable. Since in this case the

sti�ness matrix is not positive de�nite the system is considered gyrically stabilized.

To test for gyric stability we can check the roots of the characteristic equation of the

second order system. The system will be considered stable if the roots are purely

imaginary.

These results do not preclude the possibility that asymptotic stability could be

obtained by adding damping to a conservative gyric system. However, while damp-

ing tends to make statically stable systems become asymptotically stable systems,

damping also tends to destabilize gyrically stabilized systems. Hughes proves that

statically unstable systems are destabilized if they have a positive de�nite damping

matrix.

2.3.2 Rigid Body Inertia Ratios

Before we solve for the roots of the characteristic equation of Equation 2.11 we should

note that we can simplify our analysis by recognizing that only the ratios of inertia

are important to the analysis rather than the individual values of inertia. Dividing

each equation of Equation 2.11 by the corresponding diagonal term of M results in

the following form of M , G and K.

M =

2
64 1 0

0 1

3
75

G =

2
64 0 1 � k1

�(1� k3) 0

3
75
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K =

2
64 k1 0

0 k3

3
75

where

k1 =
I2 � I3

I1
; k3 =

I2 � I1

I3

A physical body can not have arbitrary values of I1; I2 and I3 [Hughes 86]. These

constraints are captured by the fact that

�1 < k1 < 1

�1 < k3 < 1

Therefore, all possible rigid body con�gurations can be represented on a plot of the

parameter space of k1 and k3 restricted to the unit square. Figure 2-2 shows how k1

and k3 depend upon the relative size of I1; I2, and I3. Also included in the �gure are

schematic drawings of rectangular prisms that would have approximately the correct

inertia ratios for selected points around the diagram.

The characteristic equation of this system is formed with the following determinant

det[Ms2 + _�Gs + _�2K] = 0

which results in the following

�
s
_�

�4
+ b̂1

�
s
_�

�2
+ b̂2 = 0 (2:12)

where

b̂1 = 1 + k1k3

b̂2 = k1k3
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Figure 2-2: The inertia ratio diagram shows how k1 and k3 depend upon the relative

value of the principal inertias. k1 = I2�I3

I1
, k3 = I2�I1

I3
. The di�erent rectangular

prisms located near the axes and corners of the diagram indicate an example shape

that would correspond to the local inertia ratios.



CHAPTER 2. RIGID BODY ROTATION 37

For stability we require

1. b̂1 = 1 + k1k3 > 0

2. b̂2 = k1k3 > 0

3. (b̂1)
2 � 4b̂2 = (1 � k1k3)

2 > 0

The only stability condition not met automatically is k1k3 > 0. This requirement

speci�es that k1 and k3 must have the same sign. On a plot of the fk1; k3g parameter

space stability occurs in the �rst and third quadrants.

Figure 2-3 shows the regions of stability for the simple spin solutions of a rigid

body.

Equation 2.12 is simple enough that we can solve for the roots of the characteristic

equation in closed form. Two roots are located at s = �j _�. This is the stroboscopic

mode of rotation. This mode of rotation occurs when the body is still spinning

perfectly about the principal axis but this axis is o�set from the original orientation.

The other two roots are located at s = ��, where

� = (k1k3)
1=2 _�

In the �rst and third quadrants of the inertia ratio diagram, � is positive and therefore

these roots are purely oscillatory. In the second and fourth quadrants of Figure 2-2,

� is imaginary forcing the roots of the characteristic equation to have real positive

and negative values. In these quadrants, the unstable mode of motion is governed by

the following equation

x = x0e
s where s = (�k1k3)

1=2 _�t (2:13)

To get an idea of how unstable the system is we compute the change in the nominal

somersault angle, �, required for the the unstable rotational mode to grow by a factor
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k1

k3

(1,1)

(1,−1)(−1,−1)

(−1,1)

Unstable

Directionally and Statically Stable

Directionally Stable, Statically Unstable
but Gyrically Stabilized

Figure 2-3: Stability diagram for the simple spin solutions of a rigid body. Rigid

body rotational stability depends only upon the two non-dimensional inertia ratios

k1 and k3. We assume the body is rotating about the principal axis corresponding to

I2 for this diagram.
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Figure 2-4: All rigid bodies with inertia ratios on a single curve have an unstable

mode that grows at the same rate. The value of a curve, indicated in the �gure, is

the somersault angle (in radians) the body must execute before the unstable twist

mode grows by a factor of ten. The most unstable systems are those with inertia

ratios in the corners fk1; k3g = f1;�1g or f�1; 1g. This plot is symmetric about the

origin.

of N .

� = _�t =
ln(N)

(�k1k3)1=2
(2:14)

Figure 2-4 shows curves of constant � on the fk1; k3g axes for N = 10.

2.4 Rotational Stability of the Rigid Human Body

For any particular con�guration of the human body, we can solve for the orientation

and magnitude of the principal axes of inertia. This allows us to compute the cor-

responding inertia ratios which in turn provide a valuable reference for the stability
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Figure 2-5: Tuck, pike, and layout positions for a human.

of the human body in rotation about the principal axes. Figure 2-5 shows from left

to right a human in the tuck, pike and layout positions. Figure 2-6 shows the inertia

ratios of a human performer moving from a tuck position through a pike position to

a layout position. To make this �gure, I assumed that I2 was the principal inertia

along the somersault axis of the human. This analysis shows that for a rigid body,

tuck and pike somersault con�gurations are stable in rotation about the somersault

axis while steady rotation in the layout position is unstable. In the pike and tuck

positions the inertia ratios are in the stable upper right quadrant of the inertia ratio

diagram while the inertia ratios of the layout somersault are in the unstable lower

right quadrant.
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Figure 2-6: Inertia ratios of a human performer for a sequence of con�gurations

connecting tuck, pike and layout positions. The tuck and pike positions are stable

(for a rigid body) while the layout is unstable.
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2.5 A Map of Rigid Body Rotation

The linear analysis we have used so far is restricted to three solutions for rigid body

rotation, pure spin about each of the principal axes. A general solution for the torque-

free motion of a rigid body tumbling in space would be useful for understanding the

range of behavior a rigid body can exhibit between these three special solutions.

Solving for such a solution is one of the classic problems of dynamics. The con-

tribution that this solution o�ers today is a concise description of the states and

non-dimensional parameters that govern rigid body rotation (see Appendix A.4). In

addition, the analytic solutions give rise to elegant geometric interpretations of rigid

body rotation that help to provide intuition of this otherwise complex movement. In

this section, I present one form of geometric tool derived from the analytic solution

that is useful in visualizing rigid body rotation. I think of this tool as a map of rigid

body rotation because it shows graphically two of the three Euler angle trajectories

involved in non-linear rotational motion of a rigid body. This map not only makes

clear the stable and unstable axes of rotation but also shows two distinct regions

of qualitatively di�erent motion. A performer can exert control over his rotational

motion by moving within and inbetween these two regions.

Two integrals of motion are used to de�ne a map of rigid body rotation. During


ight, a rotating rigid body must conserve angular momentum, ~h, and kinetic energy,

T . The magnitude of both of these quantities can be written as the equation for an

ellipsoid in angular velocity space

h2 = I21!
2
1 + I22!

2
2 + I23!

2
3 (2:15)

2T = I1!
2
1 + I2!

2
2 + I3!

2
3: (2:16)

Assume, with no loss of generality, that the angular momentum vector is aligned with

the inertially �xed '2' axis. Using the direction cosine matrix, (2.2), we can solve for
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the components of ~h in the principal coordinate frame.

~h = hc1îp1 + hc2îp2 + hc3îp3

where fc1; c2; c3g are the direction cosines of ~h and ipj is the j
th unit vector in the prin-

cipal axis system. Alternatively, the principal axes components of angular momentum

can also be written as follows

~h = I1!1îp1 + I2!2îp2 + I3!3îp3

Thus we have established that

hc1 = I1!1; hc2 = I2!2; hc3 = I3!3;

The ellipsoid describing angular momentum (2.15) can now be written as the equation

of a sphere in direction cosine space.

c21 + c22 + c23 = 1

Similarly the kinetic energy can be written as the equation of an ellipsoid.

c21
I1

+
c22
I2

+
c23
I3

=
2T

h2

For a �xed kinetic energy and angular momentum, the direction cosines must si-

multaneously lie on the surface of both the momentum sphere and energy ellipsoid.

Therefore, the intersection of these two shapes describes a trajectory in direction

cosine space that the body must `follow'.

Figure 2-7 shows a sample map for the possible rotational trajectories of a `rigid'

human body. Each trajectory shown on the sphere corresponds to a di�erent kinetic

energy of rotation. The axes of the sphere are the direction cosine axes. The sphere
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Figure 2-7: A map of rigid body rotation for a human in the layout position. The

axes of the sphere and the principal axes of the body remain parallel as the body

rotates. The inertially �xed angular momentum vector (black) paints trajectories

onto the surface of the sphere as the sphere rotates. Each trajectory on the sphere

corresponds to a di�erent rotational energy. The trajectories indicate the tilt and

twist angles of the body as it rotates. This map does not include somersault angle

and does not show the time dependence of the tilt and twist Euler angles.

rotates with the body so that its axes remain parallel to the principal axes of the

body. The angular momentum vector is shown protruding from the sphere. The

sphere (and body) must move so that the (inertially �xed) angular momentum vector

remains in the 'slot' that is appropriate for the given kinetic energy.

The stable and unstable axes of rotation are obvious from this map. The stable

principal axes are surrounded by trajectories that enclose the axes while the unstable

middle principal axis shows trajectories that converge then diverge from that axis.

This map also shows that the trajectories are divided into two qualitatively di�erent

regions. This division is based on the rotational kinetic energy.
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For a �xed angular momentum, the energy of rotation is bounded above and below

by the rotational energy in pure spin about the minimum and maximum principal

axes respectively.
h2

2Imax
� T �

h2

2Imin

Between these extremes exists a continuum of energy levels of rotational motion.

The dividing point among these trajectories is the energy required to spin about the

middle principal axis, T = h
2

2Imid

. Those trajectories with higher energy involvemonot-

ically increasing (or decreasing) twist while those with less energy involve oscillatory

twisting. In Figure 2-7, the trajectories which enclose the minimum principal axis

(head-to-toe axis) of the performer involve monotonic twist while those that enclose

the maximum principal axis of inertia involve twist angles that oscillate between 0

and �� depending on which region the trajectory is located in.

We can read the twist and tilt Euler angles of a trajectory from this map in an

intuitive way. Using Equation 2.2 we can derive an explicit relationship between the

direction cosines and the Euler angles as follows

2
666664
c1

c2

c3

3
777775 =

2
666664
S	C�

C	C�

�S�

3
777775

Drawing the components of the angular momentum vector as shown in Figure 2-8, we

realize that the spherical coordinates of the unit angular momentumvector are de�ned

by the tilt and twist Euler angles, f�;	g. The tilt angle, � is the (negative) latitude

of the energy curve and the twist angle, 	, is the (negative) longitude. Therefore we

can simply read the tilt and twist Euler angles of the body from the polar coordinates

of the angular momentum vector on this map. For example, the attitude of the body

shown in Figure 2-7 is approximately � = 3�;	 = 0.
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Figure 2-8: The spherical coordinates used to de�ne orientation of the unit angular

momentum vector in direction cosine space are the negative of the tilt and twist Euler

angles.

2.6 Dynamic Simulation Environment

The analytic and experimental results presented in this thesis are complemented with

numeric results from non-linear dynamic simulation of the creature in question. This

section brie
y describes the simulation environment used to compute the motion and

produce graphic output from dynamic simulations.

The simulation environment consists of three parts that allow us to compute the

movement of a creature, make a movie of its motion using computer graphics, and

analyze its motion using time histories of simulated data. Using software developed

in this laboratory, the Leg Laboratory at MIT, we have integrated the simulation en-

vironment so that the three parts are all generated automatically from a single input

�le that describes the shape, topology, and mass properties of the system. The part

that computes the motion does so by numerically integrating the non-linear equations

of motion for a given creature. The non-linear equations of motion are derived us-

ing the commercially available software package, SD-FAST. This package derives the
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equations of motion for a rigid link, multi-body system using the description �le as

input. The equations of motion are automatically incorporated into a dynamic simu-

lation that handles user interface to the software. The computer graphic and analysis

software is also generated automatically from the description of the creature allow-

ing us to animate movement from simulation data using either a simple \working"

picture or a higher quality, computer graphic image. The only part of the simulation

environment that is not automatically generated is the control software. This soft-

ware is used to specify the desired behavior of the system. It does so by computing

joint torques or other actuator inputs that we assume the creature to have. Passive

forces like those due to springs, dampers and gravity are input to the equations of

motion in a manner similar to active joint torques. The ability to quickly produce

dynamic simulations of a variety of creatures has made this simulation software a

useful research tool in the investigation of machine, human or animal movement.

2.7 Summary

Material in this chapter is derived from the text of [Hughes 86]. In this chapter, I

reviewed the dynamic and kinematic equations of rigid body rotation. Linear equa-

tions of motion describe rigid body rotation in the neighborhood of the equilibrium

solution of pure spin about a principal axis. A stability analysis of these equations

shows that rigid body rotation is stable about the major and minor principal axes but

is unstable about the intermediate axis. The linear stability analysis can be simpli-

�ed by the use of the non-dimensional inertia ratios, k1 and k3. A stability diagram

simply demarcates stable and unstable regions in the k1, k3 parameter space. I show

the values of k1 and k3 that a (rigid) human body would assume in the tuck, pike,

and layout positions in order to provide a stability reference for the rotating human

body. A geometric map derived from the closed-form solution of rigid body rotation

captures the range of possible rotational modes. This map intuitively shows the stable
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and unstable axes of rotation. It also demarcates between two regions of qualitatively

di�erent rotational motion.



Chapter 3

Robot Tucked Somersaults

3.1 Introduction

The somersault is a maneuver in which a performer jumps into the air and rotates

once about a side-to-side axis before landing on the ground. The main requirement of

a successful somersault is a balanced landing which in turn requires that the performer

�nish the somersault with a pre-speci�ed body attitude. In this chapter, I explore

attitude control techniques for producing stable landing con�gurations for the tucked

somersault of a 3D biped running robot.

The tucked somersault is distinguished by maintaining the tuck position during

most of the maneuver. Humans `tuck' by holding their knees close to the chest

with the knee joints 
exed to fold the lower legs under the body. An important

dynamic feature of the tuck somersault is that in most humans it involves rotation

about the major principal axis of inertia. Since a rigid body rotating about its major

principal axis is directionally stable, we might expect the tuck somersault to be stable

in the sense that the axis of rotation will tend to maintain its inertial orientation.

This stability in turn simpli�es the control of body attitude at landing in the tuck

somersault.

Directional stability of the spin axis during a tucked somersault means that a

49
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Figure 3-1: Photograph of the 3D Biped used for experiments. The body is an

aluminum frame on which are mounted hip actuators and computer electronics. Each

ball and socket hip joint has three low friction hydraulic actuators that can position

the leg forward and aft, side-to-side, and can rotate the leg along the axis of the leg.

A hydraulic actuator within each leg changes its length, while an air spring makes

the leg springy in the axial direction. Sensors measure the lengths of the legs, the

positions of the hip actuators, pressure in the hip actuators and contact between

the foot and the 
oor. Gyroscopes measure the inertial attitude of the body. An

umbilical cable connects the machine to hydraulic, pneumatic, and electrical power

supplies. Control computations are done my microprocessors, some located on board

and some nearby in the laboratory. Communications cables connect all processors.

somersault control strategy need deal primarily with avoiding over-rotation or under-

rotation about the somersault axis. Rotation rate about the somersault axis can be

controlled by changing rotational inertia. Since angular momentummust be conserved

during 
ight, increasing inertia will slow down the somersault rate while decreasing

inertia will increase somersault rate. If the performer knows the time of 
ight, then

control of somersault rate provides a means of controlling the somersault angle at

landing.

In this chapter, I discuss somersault experiments with a 3D biped robot, (Figure 3-

1). Figure 3-2 shows a sequence of photographs of the 3D Biped taken while the robot

performed a successful somersault. The somersault axis of the robot is coincident
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with the maximum principal axis of inertia making the robot somersault dynamically

similar to the tuck somersault in humans. To initiate the somersault the biped runs

forward, jumps to attain a double stance phase, then thrusts with both legs while

pitching its body forward. Once airborne, the robot shortens its legs (tucks) to

accelerate the forward rotation and swings its legs to a predetermined position with

respect to the body. During 
ight the robot uses a feedback algorithm that changes

the leg length to produce a rotation rate that will yield the desired somersault angle

at landing. To accommodate errors in the estimated time of landing, the robot

moves its feet to track the desired landing con�guration as the system approaches the

ground. The robot does not use any active control of out-of-plane rotation during


ight. Rather it uses a broad stance during takeo� to minimize tilt rotation at the

beginning of 
ight and it uses a broad stance during landing to minimize the e�ect

of landing tilt errors. The robot has successfully performed the somersault in the

laboratory. On its best day, the robot regained balance on landing to continue stable

running on seven out of ten somersault attempts.

3.2 The Mechanics of the Somersault

The most basic requirement of a somersault is that the performer neither over-rotate

nor under-rotate the landing. Accurate control of the landing attitude allows careful

placement of the foot relative to the center of mass of the robot which is a requirement

for stable dynamic running [Raibert 84]. Considering only the somersault degree of

freedom, the attitude requirement is expressed by equating the time of 
ight and the

time to rotate through the desired change in somersault attitude,

��

_�o
=

_zo +
q
_z2
o
+ 2g(zo � ztd)

g
(3:1)

where
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Figure 3-2: A sequence of photographs (arranged in left-right order starting upper

left) taken during the execution of a somersault. The robot is running from left to

right. Approximate relative time of each image: upper left{0.0 s, upper right{0.15 s,

middle left{0.33 s, middle right{0.66 s, lower left{0.80 s, lower right{1.02 s.
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�� is the change in somersault angle required during 
ight

_�o is the somersault rate of the body at lift-o�

zo is the height of the center of mass (c.o.m.) at lift-o�

_zo is the vertical velocity of the c.o.m. at lift-o�

ztd is estimated height of the c.o.m. at touchdown

g is the acceleration of gravity

Equation 3.1 relies on several simplifying assumptions: 1) the somersault dynamics

are governed by the planar equation I �� = 0, implying that the external torques due to

supply cables or wind resistance are negligible, and 2) only the rotation in somersault

is signi�cant and the somersault axis is a maximum principal axis of inertia so that

tilt and twist angles will stay small if they start small thus allowing us to ignore them,

and 3) the legs do not swing with respect to the body during the 
ight phase, so _�o

represents the angular rates of both the body and the legs.

When the 3D Biped robot somersaults it rotates about its major principal axis.

Figure 3-3 shows that the region of stable rotation about the somersault axis is large.

We may then expect that as long as the somersault is initialized with the angular

momentum vector close to the major principal axis then it will remain close to that

axis. This in turn means that the tilt and twist angles of the robot at landing will

be small and the somersault dynamics simplify as indicated above. In the remainder

of this chapter we assume that this simpli�cation is valid in computations involving

rotational dynamics of the robot.

3.3 Somersault Control Strategies

The goal of the somersault control strategy is to produce a landing attitude that allows

the robot to maintain balance. To regain balance on the landing, it is important that

the robot achieve a desired horizontal displacement of the foot relative to the center
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Figure 3-3: The somersault axis of the 3D Biped is coincident with the major principal

axis of inertia. With the legs in the fully extended position, as shown here, the minor

principal axis is the 'head-to-toe' axis.
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of mass. In the plane of the somersault this horizontal displacement is given by

d = l sin� (3:2)

where l is the leg length and � is the leg inclination angle, the angle the leg makes

with vertical in the plane of rotation (Figure 3-4). If the legs are held �xed relative to

the body, then the desired landing attitude, or equivalently ��, can be found from d.

If the initial conditions of 
ight, _�o, _zo, and zo, are established accurately so that for

a desired ztd and �� Equation 3.1 is satis�ed, then the desired landing attitude will

be achieved. More generally, one approach for generating somersaults is to establish

accurately the initial conditions of 
ight to a state that is empirically determined,

then to execute an open loop pattern of actuator signals to produce components of the

desired behavior. Hodgins and Raibert used this approach in programming a planar

biped robot to perform front somersaults with a 90% success rate. The success of

such an approach depends upon how precisely one can reproduce the state of the

robot and how sensitive the desired movement is to variations in the state.

For a running robot with less regular and repeatable motion, such as the 3D

Biped, precise initialization is more di�cult. Therefore, reliable production of a

desired landing attitude might be improved with an in-
ight feedback strategy that

modi�es the performance of the somersault based on the state of the robot in 
ight.

To the extent a system with non-zero angular momentum can change its inertia,

it can also change its rotation rate. For a somersault, if the time until landing is

known then control over rotation rate amounts to control over the landing attitude.

The basis of the somersault control strategy is to change the robot somersault inertia

to produce a rotation rate that will yield the desired body attitude at the time of

landing.

The robot can change its inertia by extending or retracting (untucking or tucking)

its prismatic legs. In 
ight, if the angular rate and moment of inertia of the robot in

one con�guration are _�1 and I1 then with constant angular momentum the angular
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Beta Alpha

Phi

Figure 3-4: In order to maintain balance at landing the leg inclination angle, �, must

be near the desired value. � is the angle the leg makes with the local vertical. It is a

function of the the hip angle, � and the body attitude, �.

rate in a con�guration with inertia I2 is _�2 = (I1=I2) _�1. Joint limits restrict the

range of inertia and thus limit control over the rotation rate. For the 3D Biped

robot, the inertia about the somersault axis ranges from 1:22 kg m2 with legs retracted

to 1:50kg m2 with legs fully extended. In moving from a fully retracted to a fully

extended position the robot can reduce its somersault rate to 81% of its initial value.

We will refer to the regulation of somersault rate and landing attitude via leg length

as the tuck servo.

3.3.1 Control of Somersault Angle

To implement the tuck servo with state feedback, we �rst pose the requirement of

Equation 3.1 as a function of the state during 
ight rather than at lift-o�.

�td � �

_�
=

_zo +
q
_z2
o
+ 2g(zo � cos �td ltd)

g
� (t� to) (3:3)

where
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�td is the desired somersault attitude at touch down,

� is the current somersault attitude,

_� is the current somersault rate,

�td is the desired leg inclination angle at touch down,

ltd is the leg length at touch down,

t is the current time,

to is the lift o� time.

The robot inertia and thus _� are functions of ltd, so we solve for the ltd that will make

Equation 3.3 an equality.

We nominally require the hip angle to be zero on landing. If this is the case then

�td = �td and the landing attitude and leg length determine the height of the hip.

The center of mass is coincident with the hip, so ztd is given by

ztd = cos �td ltd (3:4)

We have also assumed that the tilt angle at touchdown is zero.

De�ne a function, f , as the di�erence between the left and right hand sides of

(3.3).

f =
_zo +

q
_z2
o
+ 2g(zo � cos �td ltd)

g
� (t� to)�

�td � �

_�
(3:5)

If the desired landing attitude is to be achieved then f = 0. Otherwise, the pitch

rate needs to be increased or decreased depending on the sign of f . The control

algorithm we use changes the leg to a length that will make f = 0. The function, f ,

is a non-linear function of the leg length, so we use a Newton search [Strang 86] to

recursively solve for the desired leg length. The recursion uses the �rst order, Taylor

series expansion of f = 0,

0 = f(l) +
df

dl
�l (3:6)
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This yields the following equation for �l

�l =
�f

df=dl
(3:7)

Ideally, once the desired leg length is achieved, f remains zero for the rest of the

somersault and the desired leg length becomes the leg length at touch down, l! ltd.

During each control cycle the tuck servo executes the following process

1. measure the state of the robot

2. compute f and df=dltd

3. compute �ltd

4. estimate the next value of f using ltd = ltd +�ltd.

5. if f � 0 go to (6), else go to (2) using new values of f and ltd

6. servo the leg length to ltd.

To perform step 2 above we need to solve for df=dltd. Taking the derivative of

(3.5) with respect to ltd results in

df=dltd =
� cos �tdq

_z2
o
+ 2g(zo � cos �td ltd)

+
�td � �

_�2
d _�=dltd (3:8)

To obtain d _�=dltd we use the fact that the angular momentum is a constant so that

_� =
h

(Io + 2mlr2)
(3:9)

where

h angular momentum

r distance from the lower leg c.o.m. to the robot c.o.m.

ml lower leg mass
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Io robot pitch inertia about c.o.m. when r = 0.

The total inertia of the robot as a function of leg length is (Io+2mlr
2). The 2mlr

2

term represents that inertia due to the distance of the lower legs from the robot c.o.m.

This is the component of inertia that we control as the legs change length. From (3.9)

we get

d _�=dltd = �
2mlrh

(Io +mlr2)2
dr=dltd (3:10)

The robot center of mass moves very little when the legs are extended or retracted

so we assume dr=dltd = 1. Substituting for h from (3.9) results in

d _�=dltd = �
2mlr _�

(Io +mlr2)
(3:11)

Now by substituting (3.11), (3.8), and (3.5) into (3.7), we can compute the required

�ltd.

The computation of the desired leg length depends upon knowledge of robot pa-

rameters such as inertia and leg mass. However, since the process is repeated each

control cycle based upon the sensed state of the robot, sensitivity to precise knowl-

edge of these parameters is reduced. In exchange for this robustness to uncertainty

we give up the ability to pre-specify both the landing attitude and the leg length at

touchdown.

3.3.2 Accommodating Landing Time Errors

A limitation of the tuck servo strategy is its dependence upon accurate knowledge

of the time until landing. With somersault rates on the order of 500 deg=s, small

errors in the predicted landing time can result in intolerable landing attitude errors.

Because we have no measurement of the vertical position or speed while airborne these

quantities must be derived from estimates of the lift-o� conditions. To accommodate
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errors in these estimates, we have modi�ed the landing strategy to allow the robot

to land with the desired con�guration anywhere within a `window' of the predicted

landing time.

The leg inclination angle in (3.2) is the di�erence between the somersault angle

and the hip angle, � = � � �. By changing the hip angle the control algorithm

makes the foot track the desired displacement for a short time just prior to or after

the expected landing time. In this way, the robot maintains the desired landing

con�guration during a `landing window' that is centered about the nominal landing

attitude. In order to maximize the landing window the legs are moved `back' relative

to the body (� > 0) early in the 
ip. Prior to landing, the foot is swept forward in

order to track the desired foot position until touchdown.

3.3.3 Control of Tilt and Twist Angles

Achieving a takeo� attitude with no tilt and twist is challenging with the 3D Biped.

As the robot runs its body somersault angle stays close to zero but its body tilts and

twists in phase with the stepping cycle as it runs. During a normal running cycle,

the robot uses hip actuators during stance to apply torques to the body in order to

control body attitude. However, we found that it was di�cult to achieve small tilt

and twist angles and rates at takeo� using only the hip servos. We found that the

best method for keeping tilt and twist angles and angular rates small during takeo�

was to use a wide double stance during the 
ip initiation in combination with the

normal attitude control used during stance ([Raibert 84]). This wide double stance

helps stabilize the robot's tipping motion during takeo�. An important component of

this approach was to achieve simultaneous touch down of both feet at the beginning

of the double stance phase. Similarly, a wide double stance during somersault landing

and simultaneous touchdown of both feet were observed to minimize the e�ect of tilt

and twist errors on the somersault recovery.
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3.4 Experiments with 3D Biped Somersaults

The 3D Biped is a two-legged robot that is free to translate and rotate in 3D space.

Each leg is mounted adjacent to the center of gravity of the body with a ball and

socket hip joint. The hip joint allows leg rotation about the x, y, and z axes

(�20�;�60�;�15� see Fig. 1). Hydraulic actuators control each of these degrees

of freedom. The robot's telescoping legs contain a fourth hydraulic actuator that acts

in series with a pneumatic compression spring. Mass properties of the 3D Biped are

included in Table 3.1 Some of the kinetic energy of the machine is stored in com-

pression of the air spring during each bounce, and returned to power the subsequent


ight phase. Energy is added to the hopping oscillation by actively compressing the

air spring with the hydraulic piston during stance. The 3D Biped maintains balance

while running by performing three control tasks [Raibert 84]:

1. during stance, the robot maintains body posture by applying hip torques be-

tween the legs and the body,

2. during stance, the robot adds energy to the air spring to maintain the hopping

oscillation, and

3. during 
ight, the robot positions the foot in anticipation of the next stance

phase in order to control forward velocity.

To execute a somersault, the 3D Biped modi�es three steps in an otherwise normal

running sequence. The robot performs a hurdle step during which it hops higher than

normal as it prepares to land on both feet for the 
ip step. The 
ip step is initiated

by thrusting with both legs while pitching the body forward. During the landing step

the robot lands on both feet then resumes a normal running gait. The control actions

used to execute the 
ip are summarized in Table 3.2.

In laboratory experiments, the 3D Biped has successfully performed the forward

somersault and regained a stable running cycle afterwards (Figure 3-2).
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Table 3.1

3D Biped Parameters

Symbol Description Quantity

m total mass 31.44 (kg)

ml lower leg mass 0.652 (kg)
Io somersault inertia 1.02 (kg m2)

rmin min. lower leg radius 0.404 (m)

lmin min. leg length 0.647 (m)

lmax max. leg length 0.862 (m)

Three sets of data from a successful somersault and a nearly successful somersault

are shown in Figures 3-5, 3-6, and 3-7. Figure 3-5 shows data for the approach, 
ip,

landing, and continuation of running for a successful somersault. The nominal desired

landing attitude was set to 350�. The robot ran steadily until the hurdle step at which

time it hopped higher than normal as it prepared to land on both feet. During the


ip step the body is thrust upwards and accelerated in somersault. The desired leg

inclination angle was set to �5:7� based on the forward speed in 
ight. The robot

lands 0:080s earlier than anticipated with a somersault attitude of 325� and with a

leg inclination angle of �11�. The actual leg inclination angle is much closer to its

desired value than the corresponding values in somersault because of the feet-back

position in 
ight. The foot positioning servo was not used in this somersault because

the desired foot position was always slightly in back of the actual foot position, and

the legs were already in a swept back con�guration. Balance is regained on landing,

but since the robot lands with a slight backward lean, forward speed is lost. Forward

speed and posture are quickly restored during the following steps.

Note the oscillation in tilt angle during 
ight. This oscillation occurs because the

robot took o� with a non-zero tilt rate. Since rotation about the somersault axis

is passively stable, the oscillation does not grow. We found that in order to regain
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Table 3.2

Control Summary for the Somersault

Step Action

Approach Run forward (� 1m=s) with alternating gait

Hurdle Pitch up slightly

Hop with increased leg thrust

Prepare to land simultaneously on both feet

Flip Jump with maximum thrust

Pitch body forward with maximum torque

Shorten legs once airborne

Servo hips to feet back position

Engage tuck servo

Prepare to land simultaneously on both feet

Track desired foot position

Landing Dissipate energy on landing

Return somersault rate to zero, restore posture

Adjust nominal leg length based on ltd

Following Resume running with alternating gait
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balance after the somersault, the tilt angle on landing must be kept moderately small,

j�j < 15�. To do this we increased the stance width during the 
ip step, thereby

providing a passively stable stance con�guration in tilt during initiation.

The data in Fig. 4 shows the somersault action on a larger scale to illustrate the

function of the tuck servo. Between the beginning of the 
ip step and lift o�, the

magnitude of the somersault rate, hip angle rate, and leg length all increase. At lift

o�, the somersault rate of the body declines rapidly as the legs are accelerated to

the rotation rate of the body. The conservation of momentum constraint produces

the symmetry between the absolute angular rate of the body and the relative angular

rate of the hips. During this time, the legs are tucked to the shortest possible length.

The tuck servo is engaged as the hips reach the desired feet-back position and

come to rest relative to the body. The robot has a somersault rate of 606 deg=s at

the time the tuck servo is engaged. At this somersault rate, it is estimated that the

robot will over-rotate by 84�. This error is illustrated by the third graph of Fig. 4

which compares the estimated time until touchdown and the estimated time until

the desired somersault attitude is achieved. The tuck servo extends the legs to the

maximumpossible length to slow down the somersault rotation to 463 deg=s at which

point it is estimated that the robot will land at nearly the desired attitude. The robot

maintains this con�guration until landing.

Data from another nearly successful somersault is shown in Fig. 5. In this somer-

sault, the robot uses the foot positioning servo to keep from over-rotating. Once again

the desired somersault landing attitude was 350�. The desired leg inclination angle

was set to �5:9�. The robot lands 0:065s later than anticipated with a somersault

attitude of 391� and with a leg inclination angle of �3:2�. As the robot detected

that it was over-rotating it swept the feet forward quickly to track the desired foot

position. This increased the somersault rate because of the conservation of angular

momentum and contributed to the somersault attitude error on landing. A velocity

measurement error during stance after landing led to the loss of forward speed of the
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Table 3.3

3D Biped Flip Attempts

File Outcome �td �td _� _z0 (est) _z0 (meas) _z0%err speed
lo

deg deg deg/s m/s m/s m/s

92.346.4 success 0.12 -10.8 547 3.08 3.04 -1.2 1.04

92.346.5 success -0.14 -6.29 529 3.48 3.33 -4.3 0.77

92.346.6 success 0.33 -8.47 524 3.41 3.32 -2.8 0.89

92.346.7 success -0.31 -13.7 549 3.53 3.48 -1.4 1.10

92.346.8 6 steps -1.95 -18.9 553 3.69 3.70 1.6 1.02

92.346.9 success -0.39 -12.7 551 3.45 3.47 0.7 1.04

92.346.10 success -0.04 -11.6 545 3.54 3.48 - 1.7 0.96

92.346.11 success -0.28 -15.3 541 3.15 3.13 - 0.5 0.90

92.346.12 fall -3.42 -1.04 529 3.28 3.04 - 7.4 0.89

92.346.13 fall -1.87 -17.7 503 3.33 3.20 -3.9 0.88

robot so that it was momentarily supported by safety ropes before resuming running

and therefore not considered a complete success.

Table 3.3 shows data compiled for ten somersault attempts performed by the 3D

Biped in the laboratory. The robot successfully regained balanced running on seven

of these attempts.

3.5 Summary

In this chapter, I discuss a strategy for robot somersaults that combines elements of

feed forward control, feedback control, and passive dynamic stability. I also presented

results from somersault experiments done in the laboratory on a 3D biped running

robot. The somersault is initialized using pre-programmed patterns of action. In
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ight, a feedback strategy changes robot inertia to control the landing attitude of

the somersault. The robot actively positions its feet to maintain a desired landing

con�guration during an interval surrounding the predicted landing time. The passive

tilt stability inherent in a wide double stance is used to reduce tilt angle and rate on

takeo�. The passive stability of a rigid body rotating about its maximum principle

axis of inertia accounts for moderate tilt angles on touch down given moderate tilt

angles and rates on lift-o�.



Chapter 4

Passively Stable Layout

Somersaults

4.1 Introduction

The layout somersault is an airborne maneuver in which the performer rotates about

a side-to-side axis while maintaining an erect body con�guration. The layout somer-

sault is often considered to be inherently unstable because it involves rotation about

the middle principal axis of inertia, an unstable mode of rotation for a rigid body.

I found that passive arm movement could neutrally stabilize the layout somersault.

These passive movements are generated by dynamic forces that arise from body mo-

tion and from compliant shoulders. Figure 4-1 shows a sketch of the type of three-body

model used for simulation, analysis, and experimental tests in the laboratory. This

simple three-body model of a human can exhibit passively stable layout somersaults

if an appropriately tuned spring is used at the shoulder.

Layout somersaults are considered stable if steady somersaulting is achieved with-

out exhibiting any 'large' oscillations in the tilt or twist angles. For example, Fig-

ure 4-2 shows simulation data of the simple human model for two cases:

1. Rigid body (dashed lines): this model has very sti� shoulder springs and

70
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1

2

3

Figure 4-1: Diagram of a dynamic model used to study layout somersaults. The head,

torso, and legs comprise a single rigid body. The arms are connected to the body

with pin joints that allow rotation about the 1 body axis. Joint torques are provided

by torsional springs and (possibly) dampers.
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dampers to approximate the rigid body case. As with the true rigid body, the

tilt and twist angles periodically move through large excursions from zero as

the body somersaults.

2. Passively stable body (solid lines): this model has tuned shoulder springs

without dampers that allow considerable passive arm movement. The tilt and

twist angles of the body stay near zero.

The rigid body tilt and twist angles shown in Figure 4-2 are shown in another

form in the map of Figure 2-7 which is repeated here in Figure 4-3. The rigid body

instability is evident by the trajectories that converge and diverge upon the somersault

axis. The twisting oscillation of the simulation data corresponds to a trajectory on

the map that is centered about the maximum principal axes (front-to-back).

In this chapter, I present results of studies on the passive layout somersault using

non-linear dynamic simulation and linear stability analysis. By deriving a linearized

model of the dynamics of a three-body model, I show that passive layout stability

depends upon both the arm angle and the shoulder spring constant. I show condi-

tions under which passive layout stability can theoretically be achieved. Using the

simplest possible model of the layout somersault. I explain the fundamental dynam-

ics of passive stabilization. I also present summarized results of non-linear dynamic

simulations that support the linear stability analysis.

4.2 Simple Human Model

Figure 4-1 shows a simpli�ed human body model used to study the dynamic stability

of somersaulting motion. From the non-linear equations of motion of this model I

analytically derive linearized equations that govern the motion of the body relative to

pure somersaulting rotation. The linear equations of motion decouple into two distinct

subsystems which allow further model simpli�cations. When inertial parameters for

a human are used in this model, a linear stability analysis indicates that stability of
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Figure 4-2: Number of complete somersault revolutions, twist and tilt Euler angles

describing body attitude, and left and right shoulder angles for two simulations. The

solid lines indicate the passively stable case. The dashed lines indicate the rigid body

case. The data for the passively stable case shows nearly eight stable somersaults

about the middle principal axis.
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Figure 4-3: A map of rigid body rotation for a human in the layout position. The

inertially �xed angular momentum vector (black) paints trajectories onto the surface

of the sphere as the sphere rotates. The axes of the sphere and the principal axes of the

body remain parallel as the body rotates. Each trajectory on the sphere corresponds

to a di�erent rotational energy. The trajectories indicate the tilt and twist angles

of the body as it rotates. This map does not include somersault angle and does not

show the time dependence of the tilt and twist Euler angles.
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the layout somersault can be achieved for a range of nominal arm angles and shoulder

spring constants.

The human body model has shoulder pin joints that allow the arms to be raised

and lowered in the `2-3' plane of the body. The head, torso, and legs are modeled as

a single rigid body. Torques at the shoulder joints are provided by torsional springs

and dampers. Neglecting translation of the center of mass, the model has �ve degrees

of freedom (d.o.f.): three for rotation of the body with respect to inertial space and

two for relative movement of each arm. The orientation of the body with respect

to an inertial coordinate frame is described using a 2-1-3 sequence of Euler angles

(Figure 2-1.) To describe the attitude of the body relative to the inertial frame,

a coordinate system initially parallel to the inertial reference frame is �rst rotated

through the somersault angle about the inertially �xed `2' axis, then rotated through

the tilt angle about the intermediate `1' body axis, and �nally rotated through the

twist angle about the body �xed `3' axis.

The rotation of the right and left arms relative to the body are given respectively

by the angles 
r and 
l. An arm angle is equal to zero when the hand is held next

to the thigh. Positive rotation of the arm about the `1' axis is given by the right

hand rule. The right and left arm angles are rewritten in terms of symmetric (
s)

and asymmetric (
a) components as follows:


s = 1=2 (
l � 
r)


a = 1=2 (
l + 
r)

The parameters necessary to describe the three-body system in the non-linear

equations of motion are given below. The body is assumed to be symmetric from left

to right when the arms are held in a symmetric orientation.
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Figure 4-4: Diagram of a �ve d.o.f. model with body axes and vectors labeled.

mb mass of the body

ml mass of arms

Ib1; Ib2; Ib3 body principal inertias in body �xed axes

Il1; Il2; Il3 arm principal inertias in arm �xed axes�s0 = 0:0

rb1; rb2; rb3 vector components from body c.g. to left arm pin joint

rl1; rl2; rl3 vector components from left arm c.g. to pin joint

ksh; bsh shoulder spring and damping constants

Figure 4-4 shows vectors and body axes de�ned in the above list.

In order to study the layout somersault as performed by humans, I will use data

for a human performer, Carl Furrer, 1982 World Trampoline Champion [Yeadon 84].
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Table 4.1

Inertia Data for Carl Furrer

Parameter Value Units

mb 58.3 kg

ml 3.743 kg
Ib1 10.19 kg m2

Ib2 9.93 kg m2

Ib3 0.52 kg m2

Il1 0.128 kg m2

Il2 0.128 kg m2

Il3 0.0037 kg m2

rb1 0.0 m

rb2 0.18 m
rb3 0.479 m
rl1 0.0 m
rl2 0.0 m

rl3 0.262 m

The data for Furrer's body parameters are included in Table 4.1.

4.2.1 Nonlinear Equations of Motion

I derive the non-linear equations of motion1 as a starting point for a linear analysis

that will follow. I used Kane's method [Kane 85] to derive the equations. Rather than

include the lengthly equations here I include the Mathematica code used to produce

them in Appendix A.1. The equations are derived using a reference coordinate frame

located at the center of mass of the three body system. Therefore, the rotational

equations are decoupled from the translational equations.

1Non-linear equations used for dynamic simulation were derived using a commercially available

package, SD-FAST. This version of the equations was not amenable to analytic linearization.
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4.2.2 Linearized Equations of Motion

The linearized equations will describe the motion of the system with respect to a

reference frame that is steadily rotating about the 2 axis with rate _�. Pure somersault

rotation about a principal axis of inertia is an equilibrium solution for this system if

a constant feed forward shoulder torque is applied to cancel the centrifugal forces due

to steady rotation. This steady torque can be achieved by pre-tensioning the shoulder

spring. The magnitude of this torque will be a function of the nominal symmetric

arm angle, �s0, and the rotation rate, _�. Any deviation of the arm from �s0 will

result in additional shoulder torques from the springs and dampers.

The linearized equations of motion for this model follow:

M �x+ _� (G +D) _x + _�2(K +K 0)x = 0 (4:1)

where

M =

2
6666666666664

m11 0 m13 0 0

0 m22 0 0 0

m13 0 m33 0 0

0 0 0 m44 0

0 0 0 0 m55

3
7777777777775

(4:2)

G =

2
6666666666664

0 g12 0 0 0

�g12 0 g23 0 0

0 �g23 0 0 0

0 0 0 0 g45

0 0 0 �g45 0

3
7777777777775

(4:3)
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D =

2
6666666666664

0 0 0 0 0

0 0 0 0 0

0 0 2bsh= _� 0 0

0 0 0 0 0

0 0 0 0 2bsh= _�

3
7777777777775

(4:4)

K =

2
6666666666664

k11 0 k13 0 0

0 k22 0 0 0

k31 0 k33 0 0

0 0 0 0 0

0 0 0 0 k55

3
7777777777775

(4:5)

K 0 =

2
6666666666664

0 0 0 0 0

0 0 0 0 0

0 0 2ksh= _�
2 0 0

0 0 0 0 0

0 0 0 0 2ksh= _�
2

3
7777777777775

(4:6)

The state vector, x, is comprised of (in order): � - the tilt angle,  - the twist

angle, 
a - the asymmetric deviation of the two arms from the nominal arm angle,

� - the deviation of the somersault angle from the frame steadily rotating at rate _�,

and 
s - the symmetric deviation of the two arms from the nominal arm angle.

The expressions for individual components ofM;G, andK are listed in Appendix`A.3.

In Equation 4.1 the nominal rotation rate, _�, scales the rate terms and _�2 scales the

spring terms. This is evidence of the fact that the coriolis forces involving somersault

rate give rise to rate dependent terms and the centrifugal forces involving somersault

rate give rise to spring terms. The terms in D and K 0 arise from the spring and

damper model of the shoulder torques (�l; �r) for each arm.

�l = �ksh(
l � �s0)� bsh _
l (4.7)
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�r = �ksh(
r + �s0)� bsh _
r (4.8)

Non-dimensional states (z; _z; �z) are derived by scaling _x, and �x by _� or _�2 as

follows

z = x

_z = _x= _�

�z = �x= _�2

Rewriting the equations of motion as functions of the non-dimensional states results

in the following

_�2 (M �z + (G +D) _z + (K +K 0) z) = 0 (4:9)

It is now clear that _� serves only as a time scale of Equation 4.9. We may consider

_� = 1 for simplicity in studying stability as long as we are willing to work with

scaled shoulder spring and damping terms. In the following stability analysis we use

a non-dimensional shoulder spring de�ned as follows

Ksh =
ksh
_�2Ish

where Ish is the inertia of the arm about the shoulder. For Furrer's data Ish =

0:3849kg m2.

The reason for describing arm angles in terms of symmetric and asymmetric com-

ponents is clear upon examination of the matrices of Equations 4.2 - 4.6. This de-

composition allows us to see that in general the linearized system decouples into two

distinct subsystems; the upper 3-by-3 system that couples tilt and twist with asym-

metric arm movement and the lower 2-by-2 system that couples rotation rate with

symmetric arm movement. We consider these two subsystems separately in a linear

stability analysis. It will turn out that the parameters which stabilize the composite
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system are nearly, but not exactly, identical to those that stabilize the 3-by-3 system.

4.3 Stability Analysis

In this section, I present a linear stability analysis of the layout somersault. To start,

I present the stability of the equivalent rigid body, that is the rigid body that would

result if the arms were rigidly �xed to the body. As expected, if the body were rigid

the layout somersault would be unstable. Then I proceed to an analysis of the three-

body system. The goal is to determine the shoulder spring constants and arm angles

that produce stable somersaults when the remaining body parameters are �xed. A

root locus plot shows how the location of the linear system poles move as the shoulder

spring constant is systematically varied. The root locus plot shows that under some

conditions, all poles of the linear system are simultaneously on the imaginary axis,

implying (neutral) stability. The results of the root locus are also presented in the

form of stability diagrams that show under what values of shoulder spring and arm

angle the passive stability can be realized.

4.3.1 Rigid Body

As a start, let us examine the characteristics of the equivalent rigid body for this

system. I consider the equivalent rigid body to be the rigid body that has the same

principal inertia as the whole three body system. If we consider the arms to be �xed

rigidly to the body then we can solve for the equivalent rigid body inertias, and thus

the inertia ratios, k1 and k3, (see Section 2.3.2) as a function of the nominal arm

angle, �s0. The inertia ratios k1 and k3 capture the inertia of the equivalent rigid

body and therefore determine its stability.

For a true rigid body rotating about its intermediate axis, the unstable mode of
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motion will grow at a rate given by Equation 2.13

z = z0e
s where s = (�k1k3)

1=2 _�t

Since _�t is simply the nominal somersault angle, the change in somersault angle, �,

required for the unstable mode to grow by a factor of N is given by Equation 2.14

� = _�t =
ln(N)

(�k1k3)1=2

Using the data for Furrer (Table 4.1) in the three d.o.f. model with a symmetric

arm angle of �s0 = 1:3 rad. the resulting rigid body inertia ratios are k1 = 0:65 and

k3 = �0:87. Using these numbers with N = 10 results in � = 3:1 rad, or the unstable

mode will grow by a factor of 10 in less than one half somersault. Figure 4-5 shows

a plot of the inertia ratios of the �ve d.o.f. model for symmetric arm angles between

0.0 and 3.0 radians. These inertia ratios are superposed upon curves of constant �.

4.3.2 Multi-Body

Some useful information regarding the stability of this system is available by a simple

examination of the form of the matrices in Equation 4.1. If shoulder damping, bsh, is

zero then D = 0 and Equation 4.1 describes a conservative gyric system. As discussed

in Section 2.3.1, the strongest stability result one may expect from a conservative gyric

system is neutral stability, i.e. the system will be a perfect oscillator. A su�cient

condition for stability is for the net sti�ness matrix to be positive de�nite,K+K 0 > 0.

This is not possible since K +K 0 is not even full rank for the �ve d.o.f. system. This

happens because the system is unstable to perturbations in somersault rate as was

the case for the rigid body system in Chapter 2. However, even the three-by-three

subsystem of tilt, twist, and asymmetric arm movement does not have a positive

de�nite sti�ness matrix for the �xed body parameters used here. Therefore, if the

system is to be stable it must be gyrically stabilized.
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Figure 4-5: Rigid body stability diagram for Furrer's data. The dark lines show k1
and k3 for 0 < �s0 < 3:0: The light lines are lines of constant �, the change in

somersault angle required for the unstable rigid body mode to grow by a factor of

ten. The plot shows that the human form is relatively unstable in the rigid body

sense.
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Figure 4-6: Root locus plot for the 3-by-3 subsystem of tilt, twist, and asymmetric

arm movement. bsh= _� = 0:0 and the nominal symmetric arm angle, �s0, is 1.3 rad.

Light dots indicate root locations for Ksh � �2:0. Dots get progressively darker as

Ksh increases to 4.0.

Root Locus

In this section I present plots of the roots of the characteristic equation of 4.9 as the

shoulder spring constant and nominal symmetric arm angle are systematically varied.

Figure 4-6 is a root locus for the 3-by-3 subsystem of tilt, twist, and asymmetric

arm angle. This plot shows how the 3-by-3 system roots move as the shoulder spring

sti�ness is gradually increased when �s0 = 1:3 rad. Note the symmetry about the

imaginary axis as predicted for a conservative-gyric system.

When the nondimensional shoulder spring, Ksh, is set to -2.0 the four symmet-

rically located roots have both real and imaginary components. As the shoulder

sti�ness is increased the symmetric right and left half plane roots converge on the

imaginary axis where they split. One set moves away from the origin along the imag-

inary axis for as long as shoulder sti�ness increases. The other pair converge at the

origin where they again split one traveling along the positive real axis the other along

the negative real axis. At very high shoulder sti�ness these two real roots approach



CHAPTER 4. PASSIVELY STABLE LAYOUT SOMERSAULTS 85

the real (stable and unstable) rigid body roots. At high shoulder sti�ness the high

frequency imaginary pair correspond to an arm-body oscillation.

There are two poles of this system at �i that do not move with changing shoulder

spring constant. These are the roots of the stroboscopic mode of rotation. This mode

is a rigid body mode of motion that does not include arm movement. Examination

of the eigenvectors associated with this mode reveals that the attitude and velocity

vectors are parallel. This indicates that this mode involves pure spin about the middle

principal axis, the equilibrium condition, when that axis is perturbed slightly from the

original orientation. This rigid body mode will exist for all values of the parameters.

For some values of shoulder spring all of the roots of this system are located on

the imaginary axis. These marginally stable conditions suggest that for these values

of the parameters the physical system may be stable. Note that even though equal

size steps in Ksh were used to numerically evaluate the root locus, the loci do not

move in even steps. In particular the loci `jump' to the imaginary axis from the right

and left half planes. This indicates that the edge of the stable region in parameter

space is steep.

Figure 4-7 shows a root locus for the same system with the addition of a viscous

damper at the shoulder joint. Note the loss of symmetry about the imaginary axis

and the lack of a set of spring values that stabilize the system. This result agrees

with the spirit of Hughes proof that damping tends to destabilize gyrically stabilized

systems. However, this model does not exactly �t the requirements of his proof since

the damping matrix is not positive de�nite. Finally, Figure 4-8 shows how the root

loci plots change as �s0 is varied between 0.0 and 2.8 radians.

The root loci of this section suggest that neutral stability of the layout somer-

sault is possible for certain combinations of nominal arm angle and shoulder spring

constant. It appears that asymptotic stability is unlikely as shoulder damping tends

to destabilize the system. In the next section we will examine more precisely the

dependence of stability on arm angle and shoulder spring constant.
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Figure 4-7: Root locus plot for the 3-by-3 subsystem of tilt, twist, and asymmetric

arm movement. bsh= _� = 0:1 and the nominal symmetric arm angle, �s0, is 1.3 rad.

Light dots indicate root locations for Ksh � �2:0. Dots get progressively darker as

Ksh increases to 4.0.

Stability Diagrams

In this section, I present plots that show precisely how stability depends on the

shoulder spring constant and nominal arm angle.

Figure 4-9 shows the results of a search in the �s0-Ksh parameter space for condi-

tions that stabilize the �ve d.o.f. linearized system. This collection of points suggests

a region in the parameter space that stabilizes the system. The stable points in Fig-

ure 4-9 are an intersection of the stable points of the two decoupled linear systems

that comprise the �ve d.o.f. system. Figures 4-10 and 4-11, are the corresponding

plots of stable points for the 3-by-3 subsystem of tilt-twist-asymmetric arm and the

2-by-2 subsystem of somersault-symmetric arm. Comparison of Figures 4-9 and 4-10

shows that stability of the �ve d.o.f. system is well represented by the stability of

the simpler 3-by-3 system, i.e. few conditions that stabilize the 3-by-3 system fail to

stabilize the 5-by-5 system.
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Figure 4-8: Root loci for the 3-by-3 subsystem of tilt, twist, and asymmetric arm

movement as the nominal symmetric arm angle, �s0, is varied between 0.0 (top left)

and 2.8 rad (bottom center) , bsh = 0, �2:0 < Ksh < 4:0.
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Figure 4-9: Each darkened point in this plot corresponds to a speci�c choice of Ksh

and the nominal symmetric arm angle (�s0) that stabilize the full �ve d.o.f. linear

system, bsh= _� = 0.
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Figure 4-10: Each darkened point in this plot corresponds to a speci�c choice of

Ksh and the nominal symmetric arm angle (�s0) that stabilize the three d.o.f. linear

system of tilt, twist, and asymmetric arm movement, bsh= _� = 0.



CHAPTER 4. PASSIVELY STABLE LAYOUT SOMERSAULTS 90

0.5 1 1.5 2 2.5 3
Gamma_s0

-1

-0.5

0

0.5

1

1.5

2
Ksh

Figure 4-11: Each darkened point in this plot corresponds to a speci�c choice of Ksh

and the nominal symmetric arm angle (�s0) that stabilize the two d.o.f. linear system

of somersault and symmetric arm movement, bsh= _� = 0. Higher values of Ksh than

are shown on this plot are suspected to also stabilize the system.
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4.3.3 Non-Linear Stability via Dynamic Simulation

The linear stability analysis (Figure 4-9) predicts that passive layout somersault sta-

bility can be achieved for nominal symmetric arm angles between 0.8 and 2.0 radians

(assuming only positive shoulder spring constants are allowed.) We would normally

expect the linear analysis results to be valid only in some region of the linearizing

condition. Stability to perturbations away from the linearizing condition will depend

upon the size of the perturbations. Since in the case of passive layout somersaults

the linear analysis can only predict neutral stability we can not conclude that the

non-linear system is stable even for arbitrarily small perturbations. While non-linear

dynamic simulation can not prove non-linear stability it can provide a fast and easy

check on whether or not the non-linear system is likely to be stable. In this section,

I use non-linear dynamic simulation as a check on the linear stability results.

Figure 4-12 shows results summarizing a series of dynamic simulations of the �ve

d.o.f. human model. Each three dimensional plot shows how many stable somersaults

the �ve d.o.f. model exhibited in simulation as a function of the nominal symmetric

shoulder angle, �s0, and the shoulder spring, Ksh. Each point in the grid represents

a separate simulation. A somersault was considered stable if it did not exhibit a

twist angle of at least ��=2 rad. There was little ambiguity between stable and

unstable layout somersaults. Either the twist angle remained small while the model

somersaulted or the twist angle would grow signi�cantly beyond one-quarter twist

making it easy to distinguish stable and unstable motion. The plots show that the

region in parameter space that the linear analysis predicted to be stable is also the

region that produces the most stable layout somersaults in non-linear simulation.

The height of the plots in Figure 4-12 has been limited to eight somersaults.

Several simulations exceeded this limit. For selected cases, the non-linear dynamic

simulations indicated that the maneuver may remain stable inde�nitely as long as

energy is conserved. Two simulations starting from an initial tilt angle of 0.01 radians

and zero twist angle were stopped after running for 2000 simulated seconds. During
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these simulations the performer produced over 2750 stable layout somersaults. The

shoulder springs and nominal arm angles that produced these long running maneuvers

were fKsh;�s0g = f1:2; 1:4g; f1:0; 1:6g. Other conditions may also have produced

stable, long running maneuvers. I did not perform an exhaustive search.

4.4 How Passive Layout Stability Works

In the last section we showed that under certain conditions a �ve d.o.f. dynamic

model of a human can exhibit passively stable layout somersaults. We used numer-

ical searches to �nd combinations of shoulder springs and nominal arm angles that

stabilized the layout somersault. This search process does not provide much insight

into how or why passive stabilization works. In this section, I describe what I consider

to be the fundamental dynamic processes that make passive layout stability possible.

First, I look at the di�erences in state trajectories between the passively stable case

and the unstable rigid body case. The di�erences in trajectories between the two

cases make evident that arm motion can change the orientation of the principal axes

in a way that stabilizes the layout somersault. We then look more closely at how

this arm movement arises. To do this I focus on the simplest possible model that

captures passive layout stability. I de�ne the important non-dimensional parameters

that govern this model and show how stability depends upon these parameters. Then

I provide an intuitive explanation of the passive dynamic process that stabilizes the

layout somersault.

4.4.1 Stabilization Via Principal Axes Reorientation

Batterman [Batterman 68] and later Frohlich [Frohlich 79] showed how an athlete can

control the orientation of his principal axes during a rotating maneuver using arm

movement. This control allows an athlete to initiate twist in a somersault without

using any external forces or torques. Using symmetry, Yeadon [Yeadon 84] has argued
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Figure 4-12: These plots show that the regions (in �s0 - Ksh space) of stable som-

ersaulting motion of a non-linear dynamic simulation are similar to those regions

predicted to be stable by the linear analysis (Figure 4-9). The height of each grid

point indicates the number of stable layout somersaults performed during a separate

dynamic simulation of the �ve d.o.f. model. The axes of each grid indicate the sym-

metric arm angle, 0:4 rad � �s0 � 2:2 rad, and the non-dimensional shoulder spring,

0:0 � Ksh � 1:8, used for each simulation. The di�erent plots show that the number

of stable somersaults performed is sensitive to the initial tilt and twist angles.
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Figure 4-13: The orientation of the principal axes of inertia can be controlled with

arm rotation. The tilt of the principal axes of the �gure on the right is a result of

body axis tilt due to airborne reorientation of the body plus principal axes tilt due

to body asymmetry.

that an athlete has an equal opportunity to remove twist from a twisting somersault

using arm motion. In this section I will show how arm movement is used to control

the orientation of the principal axes. Then I will show how principal axis orientation

can be used to in
uence rotational maneuvers.

The orientation of a human's principal axes relative to a set of body �xed axes

depends upon the con�guration of the arms and legs of the performer. Figure 4-13

shows a human �gure in two di�erent body con�gurations. The tilt of the body on

the right is the result of the airborne reorientation of the arms from the symmetric

con�guration of the �gure on the left to the asymmetric con�guration of the �gure

on the right. Also shown are inertially �xed axes and principal axes of the �gures.

The principal axes of the �gure on the left are aligned with the inertial axes. Notice
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that the principal axes of the �gure on the right are tilted with respect to the inertial

axes and also inclined relative to the body axes. This inclination of the principal

axes from the body �xed axes is due to asymmetry of the body and it has the a�ect

of changing the `gain' on principal axis reorientation due to arm movement. To see

how principal axis orientation can be used to control twist we will examine a plot of

rigid-body rotational trajectories.

Figure 4-14 shows the twist angles plotted as a function of tilt angle for several

rigid body trajectories of the human model while in the layout con�guration. This

plot is essentially a close up view of the fc1; c3g axes of the map shown in Figure 4-3.

The di�erent trajectories correspond to di�erent energy levels of rigid body rotational

motion. While time is not explicitly shown on the plot, the data points are all 0.01 sec.

apart. Thus dot spacing shows that twist rate increases with tilt magnitude. Arrows

have been drawn on this plot to show the direction of motion. The instability of

rotation about the middle principal axis is evident from the converging and diverging

trajectories near the origin. These trajectories show that if body attitude deviates

slightly from the origin then it will depart the origin in a direction that depends upon

which `side' of the equilibrium it is located.

Tilting the principal axes using arm movement has the e�ect of moving the body

from one energy trajectory to another. While an instantaneous change in tilt can

not change the twist angle, it can change the twist rate by putting the body on a

trajectory with a di�erent twist rate. Stabilization of the layout somersault can be

viewed as a process of selectively adding or subtracting twist over time using arm

movement so that the trajectory remains in the vicinity of the origin of Figure 4-14.

Figure 4-15 shows a trajectory of a non-linear dynamic simulation of the passive, �ve

d.o.f. model of the human. This trajectory of tilt and twist angles is superposed upon

the rigid body trajectories of the same model. The passively stable trajectory circles

the origin in a counter-clockwise fashion periodically increasing then decreasing the

twist and tilt angles. The counterclockwise rotation of the trajectory means that
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Figure 4-14: Tilt angles plotted as a function of twist angle for several di�erent energy

levels of rigid body rotation of a human. Arrows indicate the direction of motion with

increasing time. Dots are all 0.01 seconds apart. The arms of the rigid human model

were abducted to a symmetric angle of 1.3 radians.
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Figure 4-15: Tilt angles plotted as a function of twist angle for a non-linear dynamic

simulation of the �ve d.o.f. passive model of the human. The simulated trajectory

is superposed upon rigid body trajectories of the same model. This simulation was

initialized with a tilt angle of 0.01 rad, zero twist angle and symmetric arm angle of

1.3 rad.

while the body twists `with the 
ow' in the upper and lower halves of the plane it has

to move `upstream' with regard to the tilt angle. How is this accomplished?

The system uses arm movement to accomplish this `upstream' tilting action. In

Figure 4-15 we see that by starting with an initial condition of positive tilt angle, zero

twist angle, and arms symmetric the body begins to twist in the negative direction.

From this initial condition the tilt of the principal axes apparently decreases despite

the rigid body tendency to increase the tilt angle. This decrease in principal axis tilt is

a result of the arms moving asymmetrically (left arm up, right arm down) in response

to the negative twist rate. The arm tilting (rotation about the `1' axis) arises from

the combination of somersaulting (rotation about the `2' axis) and twisting (rotation
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Figure 4-16: A simple model that captures the essential dynamics for passive layout

stability. The single arm is allowed to pivot about its center. The arm and body

centers of mass are coincident.

about the `3' axis.) This gyroscopic a�ect will tend to move the arm in a direction

that reduces the tilt angle of the principal axes as long as the body is twisting.

This oscillation is a passive behavior that emerges from the mechanical properties

of the system interacting with the environmental forces due to rotation. The gyro-

scopic forces which provide the inherent correction of this model depend upon the

shape and position of the arm. To see how this passive behavior emerges we will look

at a simpli�ed model of the dynamics.

4.4.2 The Simplest Model

The simplest model that I can think of that captures the essential dynamics of passive

layout stability is shown in Figure 4-16 This model has the feature that only asym-

metric arm motion is allowed. Recall from Section 4.3.2 that symmetric arm motion

could be ignored when looking for stability of the �ve d.o.f. model. Also, since the
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center of mass of the arm is coincident with the center of mass of the body, the

equations of motion will be signi�cantly simpli�ed as compared to the more complex

human model.

The linear equations of motion for this four d.o.f. model will show that the

somersault degree of freedom again decouples from the remaining dynamics. Ignoring

this degree of freedom and assuming no damping at the pin joint of the arm results

in the following three d.o.f. linear model.

M �x+ _�G _x + _�2 (K +K 0)x = 0 (4:10)

M =

2
666664
m11 0 m13

0 m22 0

m13 0 m33

3
777775

G =

2
666664

0 g12 0

�g12 0 g23

0 �g23 0

3
777775

K =

2
666664
k11 0 k13

0 k22 0

k13 0 k33

3
777775

K 0 =

2
666664
0 0 0

0 0 0

0 0 ksh= _�
2

3
777775

where the state vector, x, is comprised of (in order) tilt, twist, and arm angle and

ksh is the spring between the arm and the body. The model parameters are given in

Table 4.2.

This dynamic model still requires us to de�ne the six inertia parameters of the

body before we consider stability. Recall from Chapter 2 that the rotational dynamics
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Table 4.2

Simplest Model Parameters

Parameter De�nition

m11 Ib1 + Il1
m13 Il1
m22 Ib3 + Il3
m33 Il1
g12 (Ib1 + Il1)� (Ib2 + Il2) + (Ib3 + Il3)

g23 �Il1 + Il2 � Il3
k11 (Ib2 + Il2)� (Ib3 + Il3)
k13 Il2� Il3
k22 �(Ib1+ Il1) + (Ib2 + Il2)

k33 Il2� Il3

of a rigid body depend only upon two non-dimensional inertia parameters. Following

the spirit of this result, in the next section we reduce the model to non-dimensional

form in order further simplify the analysis.

Non-Dimensional Linear Equations of Motion

I now present a non-dimensional version of the linear dynamic equations of motion of

the model shown in Figure 4-16 for the case of steady somersaulting about the `2' axis.

The purpose of this step is to discover the important non-dimensional parameters of

this model. The states are made non-dimensional through scaling by the nominal

somersault rate. Casting the equations in terms of non-dimensional parameters is

accomplished by dividing each equation by the corresponding inertia term on the

diagonal of the mass matrix. A few more simple algebraic manipulations will bring

the system of equations into the following form. (In this form these equations do not

re
ect the symmetry that we expect of a conservative gyric system. However, they

can easily be made to �t this canonical form.)

_�2 (M �z +G _z +Kz) = 0 (4:11)
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M =

2
666664
1 0 Irel

0 1 0

1 0 1

3
777775

G =

2
666664

0 1 � k1 0

�(1 � k3) 0 �(1�kl1)(1�k3)Irel
1�k1

0 1� kl1 0

3
777775

K =

2
666664
k1 0 kl1 Irel

0 k3 0

kl1 0 kl1 +Ksh

3
777775

The �ve independent non-dimensional parameters are de�ned as follows:

k1 =
(Ib2+ Il2)� (Ib3 + Il3)

Ib1 + Il1

k3 =
(Ib2+ Il2)� (Ib1 + Il1)

Ib3 + Il3

Irel =
Il1

Ib1 + Il1

kl1 =
Il2� Il3

Il1

Ksh =
ksh

Il1 _�2

Equation 4.11 depends upon only �ve non-dimensional parameters. The param-

eters k1 and k3 are the principal inertia ratios for an equivalent rigid body system.

They describe the inertia properties of the system that would result if the arm were

�xed in place. Notice that if the arm degree of freedom were eliminated from Equa-

tion 4.11 then the remaining equations are identical to the rigid body equations (2.11).

Irel de�nes how big the inertia of the arm is relative to the inertia of the rigid body. It

is important in determining how much the body moves in response to arm movement.

The next term, kl1 is an inertia ratio analogous to k1 involving only arm parameters.
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Table 4.3

Furrer's Non-dimensional Parameters

Parameter Value

k1 0.65

k3 -0.87

Irel 0.06

kl1 -0.99

It is important in determining the tendency of the arm to tilt in response to twist

rate.

We use data from the human model (Table 4.1) to derive sample values for these

dimensionless parameters. These parameter values are shown in Table 4.3. These

parameters are computed assuming the arms are held straight out to the side of the

body. To compute the arm inertia of the model in Figure 4-16 I let Il1 = Il3 =

2:0� 0:3849kg m2, the sum of the arm inertias about their shoulder axes in the given

con�guration.

With these numbers in mind, we can inspect the individual terms of the matrices

of Equation 4.11 to help us develop an understanding of the relevant dynamic forces.

Without arm movement the system reduces to the rigid body equations of motion

which are unstable for the set of parameters in Table 4.3. For this reason I will

focus on the arm related terms only. First consider the 3-2 term of G. This term

is nearly equal to 2.0. If the twist rate of the model is negative then this term will

contribute to a positive acceleration of the arm angle which is precisely the corrective

tendency that we observed in the plot of Figure 4-15. Additional arm accelerations

come from the centrifugal forces associated with somersault rotation. These forces

are represented by the 3-1 and 3-3 terms in the sti�ness matrix, K. If Ksh = 0 then

the 3-3 term of the sti�ness matrix is negative. This re
ects the fact that if the

arm is deviated from its equilibrium position then it will experience centrifugal forces

from somersault rotation that tend to drive the arm further away from zero. This
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is because the centrifugal forces on either side of the arm are opposite one another

due to asymmetry and the forces increase with de
ection of the arm. Without a

shoulder spring this term could overwhelm the helpful gyroscopic accelerations from

the 3 - 2 term in G to destabilize the system. However, the shoulder spring o�sets

this destabilizing force. In fact, a rule of thumb for choosing the shoulder spring

constant to stabilize the passive system is to choose the spring that exactly cancels

the destabilizing term due to centrifugal forces.

Performing a root locus search for stabilizing spring constants of this simple 3

d.o.f. system results in the following range of stabilizing shoulder springs:

0:98 � Ksh � 1:08

which approximately cancels kl1 = �1.

This rule for picking stabilizing shoulder springs generalizes to the more compli-

cated model of the human. The most important di�erence in the human model is that

the nominal symmetric angle of the arms can range from 0.0 radians (hands next to

legs) to � radians (hands overhead). The non-dimensional shoulder spring constants

that stabilize the human model are plotted as a function of nominal symmetric arm

angle in Figure 4-17 (repeated from Figure 4-10). Also shown in this plot is the value

of Ksh that would exactly cancel the spring term due to centrifugal forces on the arm.

Again, the region of stabilizing spring constants seems to be de�ned by the negative

of this centrifugal force term. Finally, it is interesting to note that for a nominal

symmetric arm angle of �=2 the non-dimensional stabilizing shoulder spring constant

is approximately Ksh = 1:0.

Stability Diagrams for the Simplest Model

The stability analyses performed thus far have all assumed that we have known values

of the body inertia parameters. The small number of non-dimensional parameters of

Equation 4.11 make it possible to study how linear stability depends upon these
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Figure 4-17: Plot of the stabilizing Ksh for a the 3-by-3 subsystem of the human

model. The solid curve shows the value of Ksh that will exactly cancel the spring

term due to centrifugal forces on the arm.
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inertia parameters as well. In this section I present two stability diagrams that show

how linear stability depends upon the parameters k1; k3; Irel, and Ksh. The stability

diagrams consist of a sequence of plots of the fk1; k3g parameter space. The darkened

regions of these plots represent values of k1 and k3 that are stable for the speci�ed

values of Irel and Ksh.

Figure 4-18 shows that the value of Ksh that stabilizes the largest region of the

unstable fourth quadrant of the fk1; k3g parameter space is Ksh � 1:1. Figure 4-19

shows that larger the value of Irel the easier it is to stabilize the bottom two quadrants

of the fk1; k3g parameter space. Large Irel corresponds to relatively larger arms.

The parameter kl1 is a shape parameter for the arm that describes the tendency

of the arm to tilt in response to twisting motion. Figures 4-9, 4-10, and 4-11 indicate

that the e�ectiveness of the arm to stabilize the layout somersault decreases as the

arms are moved away from �s0 = �=2 (hands held straight out to the side.) I believe

this change in e�ectiveness is due the change in the parameter kl1. To check this, I

allowed the shape of the arm in Figure 4-16 to re
ect the symmetric arm angle �s0.

Then I searched for the Ksh that would stabilize the simple three d.o.f. model with

�xed body parameters representative of those for a human. The stable �s0 - Ksh

con�gurations are shown in Figure 4-20. The shape of this plot is suggestive of the

shape in the stability diagrams for the �ve d.o.f. model. An important di�erence

between the diagrams for the simple three d.o.f. model and the �ve d.o.f. model is

that the center of mass of the arm for the three d.o.f. model is coincident with the

pin joint. I think this may lead to the extra stable conditions in Figure 4-20.

4.5 Summary

In this chapter I presented results from a study of the stability of several simple

models of the layout somersault. A rigid body analysis of the layout somersault

predicts that the maneuver is inherently unstable. A linear analysis of a passive three-
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Figure 4-18: These plots show that 1:0 � Ksh � 1:1 produces the largest region of

stable con�gurations for rotation about the middle principal axis for the \simplest

model". Each dark point represents a stable con�guration in k1 - k3 space for rotation

about a principal axis. kl1 = �1; Irel = 0:1 Each plot is for a di�erent value of Ksh.

Ksh = 0:0; 0:5; 0:8; 0:9; 1:0; 1:1; 1:2; 1:5 and 2.0 for plots positioned from left to right

and down the page.
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Figure 4-19: These plots show that stabilization gets easier with larger arms. Each

dark point represents a stable con�guration in k1 - k3 space for rotation about a

principal axis. kl1 = �1;Ksh = 1:0. Each plot is for a di�erent value of Irel. Irel =
0:01; 0:02; 0:05; 0:1; 0:2; 0:3; 0:4; 0:5 and 0.6 for plots positioned from left to right and

down the page.
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Figure 4-20: This plot shows that the stability of the \simplest model" can re
ect

the dependence on arm position that we saw in the �ve d.o.f. model (Figure 4-9.)

Each dark point represents a stable con�guration of the simple three d.o.f. model.

The shape of the arm of the \simplest model" is changed with the value of �s0 to

resemble the nominal symmetric arm angles of the �ve d.o.f. model.
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body human model of the layout somersault predicts that neutral stability can be

achieved for a range of nominal symmetric arm angles and shoulder spring constants.

The model is considered passive because the joint and body motion is the result

of the passive dynamic interaction of the bodies and the environmental forces. No

active control or sensing is used in the model. Non-linear dynamic simulation of the

passive three-body model shows that the most stable con�gurations conform to the

linear analysis results. The number of stable somersaults that the three body model

performed in dynamic simulation before exhibiting a twist instability is sensitive to

initial conditions. However, for selected cases, non-linear dynamic simulations of the

layout somersault indicated that the maneuver may remain stable inde�nitely as long

as energy is conserved.

In order to provide a more intuitive understanding of how passive stabilization of

the layout somersault works, we considered the impact of principal axis orientation on

layout stability. I showed how the natural tendency of the arms to tilt in response to

twisting movement of the body provides a built-in correction to the twist instability.

The arm tilt forces the principal axes of the system to move in a direction that

compensates for tilt and twist errors. This built-in correction eliminates the divergent

tendency of the system as long as the compliance of the shoulders cancels the unstable

centrifugal forces on the arms. This e�ect is clari�ed by studying a very simple two

body model of the layout somersault. This simple model also allows us to derive �ve

non-dimensional parameters that are important in studying passive layout stability.

I present stability diagrams that show how stability of the simplest model depends

upon these parameters.



Chapter 5

Layout Somersault Experiments

5.1 Introduction

To �nd out whether or not passively stable layout somersaults are physically possi-

ble, we built a somersaulting 'doll' that can be tested in the laboratory. The doll has

springy shoulders that allow armmovement in the frontal plane. The non-dimensional

inertia parameters of the doll show that it is dynamically similar to the �ve d.o.f.

model of the human performer studied in Chapter 4. The goals of the experiments

were 1) to determine if passive layout stability was physically possible, and, 2) em-

pirically determine the shoulder spring constants that best stabilized the motion.

To initialize the somersaults, we built a mechanical launching device that throws

the doll into the air with angular rotation about the somersault axis. The launcher

helped us to achieve consistency in the experimental conditions and helped to mini-

mize the human in
uence of the experiment. The operation of the launcher and doll

is similar in appearance to a gymnast swinging around a horizontal bar then releasing

the bar to perform a multiple somersaulting dismount.

In this chapter I describe the human-like doll and launching device used during

experiments. Using models from the previous chapter, I perform an analytic stabil-

ity analysis of the doll to determine under what conditions the doll is theoretically

110
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stable in somersault rotation. Then, I describe the somersault experiments in which

we repetitively launched the doll with di�erent shoulder springs to determine which

springs best stabilized the doll. During experiments we found that the doll could con-

sistently perform at least three and one half stable layout somersaults during 
ight.

The doll may have performed more layout somersaults if we had been able to observe

longer 
ight times. The laboratory ceiling height limited our opportunity to observe

more somersaults. Also, we found good agreement between theory and experiment in

�nding the shoulder springs that best stabilized the maneuver.

5.2 Experimental Apparatus

In this section I describe the human-like doll used during experiments. I compare three

non-dimensional parameters of the doll and the human model studied in Chapter 4

to show that the two models are dynamically similar. I also describe the launching

device used to initialize the somersaults during experiments.

5.2.1 Human-Like Doll

I built a mechanical version of the �ve d.o.f. human model studied in Chapter 4. This

doll is a �fteen inch tall, scaled version of the human performer whose anthropometric

data were used in the stability analysis of Chapter 4. A photograph of this doll is

shown in Figure 5-1. The body is made of wood. The shoulder joint axes are 3/16

in. diameter steel shafts that are �xed to the body via aluminum brackets screwed to

the front and back of the doll body. The arms are made of 1=400 threaded steel rod.

The arms are attached to the shoulder shaft via an aluminum block �tted with ball

bearings that allow free shoulder rotation in the frontal plane. Three shoulder pulleys

with 1/2 in., 3/8 in., and 5/16 in. radii are mounted to the aluminum block to be

concentric with the shoulder shaft. Linear springs attached between the body and

the shoulder pulleys act as torsional springs about the shoulder shaft. The di�erent
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Figure 5-1: Photograph of the mechanical doll used for experiments with layout

somersaults.

radii pulleys allow a single linear spring to be used as three di�erent torsional springs.

Two sets of springs were used in opposition to each shoulder. The shoulder springs

could be pre-tensioned so that the arm had any desired equilibrium angle. The doll

had a 1/4 in. diameter vertical shaft attached to its head. This shaft is used as a

handle for the mechanical launcher to grasp. One 30g threaded weight was added to

each arm. Moving the position of this weight on each arm allowed us to change the

inertia of the arm without changing the total mass of the body.

The physical parameters of the �ve d.o.f. doll without added arm weights and

with the arm weight located at a radius of 0:043m from the shoulder center of rotation

are given in Table 5.2.1. The arm inertias are given in an axis system located at the

center of mass of the arm and parallel to the body axis system when the arm is held

straight down at the side, �s0 = 0:0. Data for this chapter are all for the doll with

arm weight at a radius of 0.043 m from the shoulder.
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Table 5.1

Doll Body Parameters

Parameter No weight 30g weight

r = 0.043 m

mb 0.466 kg 0.466 kg
ml 0.0275 kg 0.0575 kg
Ib1 0.00411 kg m2 0.00411 kg m2

Ib2 0.00391 kg m2 0.00391 kg m2

Ib3 0.000354 kg m2 0.000354 kg m2

Il1 0.0000559 kg m2 0.0000789 kg m2

Il2 0.0000559 kg m2 0.0000789 kg m2

Il3 0.000001 kg m2 0.000001 kg m2

rb1 0.0 m 0.0 m

rb2 0.0413 m 0.0413 m
rb3 0.0664 m 0.0664 m
rl1 0.0 m 0.0 m

rl2 0.0 m 0.0 m

rl3 0.0832 m 0.0572 m

Figure 5.2.1 shows a plot of the rigid body inertia ratios of the doll and of the

human performer for symmetric arm angles between 0.0 and 3.0 radians. These are

superposed upon curves that show how quickly the unstable somersault mode grows

for a rigid body. Comparison of the inertia ratios shows that the doll has nearly

the same rigid body inertia ratios as the human model. Figure 5-3 shows a plot of

the non-dimensional parameter Irel for both the doll and the human model for arm

angles between 0.0 and 3.0 radians. Comparing these curves shows that the doll

has relatively more massive arms than the human which makes stabilization slightly

easier.

5.2.2 Launching Device

We built a launching device so that we could initialize the somersaults with consis-

tency and with minimum direct human in
uence. A photograph of the launcher is
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Figure 5-2: Rigid body inertia ratios of the doll (dotted line) and the human model

(solid line) for arm angles between 0.0 and 3.0 rad.
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Figure 5-3: Plot of Irel as a function of nominal symmetric arm angle, �s0, for the

doll (dotted line) and the human model.

shown in Figure 5-4. The launcher functioned by accelerating the doll in rotation

around a horizontal bar then releasing the doll at a �xed angle around the bar. The

launcher consisted of three components: 1) a horizontal bar, 2) a bearing supported

toggle clamp that was free to rotate around the bar, and 3) a torsion spring used to

accelerate the clamp relative to the bar.

To initialize the somersaults, the steel rod �xed to the head of the doll was clasped

in the toggle clamp. The doll and toggle clamp would then be wound around the hor-

izontal bar to tension the launcher spring. When the doll and toggle clamp were

released they would accelerate around the horizontal bar. When the toggle clamp

lever hit a trigger bar, the toggle clamp popped open, releasing the doll into a somer-

saulting, parabolic trajectory. The position of the trigger bar around the horizontal

bar could be changed so that the toggle clamp released the doll at an angle that pro-

duced the desired 
ight trajectory. The toggle clamp had adjustments that allowed

the doll to be launched with initial tilt or twist angles, however, for all experiments
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Figure 5-4: Photograph of the mechanical launcher used to initialize the doll somer-

saults in experiments.
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Figure 5-5: The points in this plot indicate the values of Ksh that theoretically will

stabilize layout somersaults in the doll. The cross-hairs indicate the spring constant

that best stabilized the doll during experiments.

we set the initial tilt and twist angles to be approximately zero.

5.3 Theoretical Predictions

Figure 5-5 shows the theoretically determined stabilizing values ofKsh as a function of

symmetric arm angle for the doll. Also shown in this �gure is the spring constant that

best stabilized the doll with a nominal arm angle of �s0 � 1:57 during experiments.

Note that this plot of the stabilizing Ksh is very similar to those for the human in

Figure 4-9. The most notable di�erence is the larger range of stabilizing Ksh for the

doll. This is due to the larger Irel of the doll.
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5.4 Description of Experiments

The experiments consisted of a sequence of launches of the doll to determine which

shoulder springs stabilized the doll in somersault rotation. For each di�erent shoulder

spring used on the doll, we launched the doll twenty times using approximately the

same launch spring pre-tension. The toggle clamp released the doll from the bar at

a somersault angle of approximately �

2
rad. We video taped each experiment. Using

the video tape for analysis, for each launch we recorded the number of somersaults

performed before the doll exhibited a twist angle of approximately �

2
(one quarter

twist). If during a dismount the doll never exhibited this large twist angle then the

dismount was considered to be completely stable. For comparison, we also performed

twenty launches with the arms of the doll �xed rigidly in place.

Recall from Chapter 4 that the nominal symmetric arm angle does a�ect the

value of the stabilizing spring constant. During experiments we attempted to keep

the nominal symmetric arm angle approximately equal to 1.6 radians by initializing

the somersault with the appropriate arm angle and shoulder spring pretension. Large

centrifugal forces on the arms during acceleration around the bar necessitated that we

devise a method for �xing the arm position until the moment of release from the bar.

In order to initialize the somersault with the desired arm angle we propped up the

arms with thin steel rods held between the arms and small indentures near the feet of

the doll. The rods were held in place by the shoulder spring pretension. As the doll

rotated about the bar, centrifugal forces pushed the arms towards the feet helping to

hold the steel rods and arms in place. Once free of the bar, the doll began rotating

about its center of mass which tended to lift the arms o� the steel rods allowing the

rods to fall clear of the doll. The nominal arm angle was di�cult to set precisely as

it depended not only on initial position of the arms but also on the pretension of the

springs necessary to hold the arms at this angle during rotation.

Figure 5-6 shows the beginning of two separate experiments with the doll.
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Figure 5-6: The photo on the left show the rigid doll with arms clamped in place.

This doll exhibits the twist instability. The photo on the right shows the doll with


exible arms performing a stable layout somersault.
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5.5 Experimental Results

There was little ambiguity between stable and unstable dismounts. Either the twist

angle remained small while the doll somersaulted or it would grow signi�cantly beyond

one-quarter twist making it easy to distinguish stable and unstable cases. The rotation

rate available from our launcher and laboratory ceiling height of 4.3 m limited the

doll to approximately three and one half complete somersaults from release to landing

in the hands of our human 'catcher'. Figure 5-7 shows the average number of stable

somersaults performed as a function of the six di�erent shoulder spring constants

tested. The average is computed over twenty sequential launches for a single shoulder

spring. The standard deviation for each condition is shown with error bars. The

average somersault rate was 16.6 rad/sec, and Ish = 3:021 � 10�4Nm2.

In addition to recording the number of stable somersaults exhibited during each

launch we recorded whether or not the doll still appeared stable at the end of the

maneuver (did not exhibit a quarter twist). If the doll had not exhibited a quarter

twist by the end of the maneuver then it was considered to be a completely stable

dismount. The percentage of completely stable dismounts as a function of Ksh is

shown in Figure 5-8.

Of the six conditions tested, (�ve springs plus rigidly �xed arms) one shoulder

spring value clearly outperformed the rest. The shoulder spring, Ksh = 0:82, per-

formed 18/20 dismounts without exhibiting the twist instability. This high percent-

age of completely stable dismounts led to the very small variance in Figure 5-7. If we

could have observed more somersaults, the doll may have exhibited a variance more

in accordance with the remaining data. The variance in number of stable somersaults

appears to increase with softer shoulder springs. While the doll became more erratic

under these conditions, it never-the-less occasionally performed a completely stable

dismount. At the other extreme, the doll with �xed arms reliably exhibited the twist

instability at about one complete somersault from release.

The experimental results contained in Figures 5-7 and 5-8 are in agreement with
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Figure 5-7: Plot of the average number of stable somersaults performed during twenty

launches of the doll as a function of the shoulder spring constant, Ksh. The standard

deviation is indicated by error bars. The data for the rigidly �xed arms is indicated

by the in�nite value of Ksh. The nominal arm angle was approximately 1.6 radians.

The best value of Ksh = 0:82 falls withing the range of stability predicted by theory

as indicated in Figure 5-5.
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Figure 5-8: Plot of the percentage (of twenty) of completely stable dismounts as a

function of the non-dimensional shoulder spring constant, Ksh. The two test condi-

tions on the right side of the plot exhibited zero completely stable somersaults. The

best value of Ksh = 0:82 falls withing the range of stability predicted by theory as

indicated in Figure 5-5.



CHAPTER 5. LAYOUT SOMERSAULT EXPERIMENTS 123

the theoretical results for stable layout somersaults. Figure 5-5 shows that for a

�s0 � 1:57, the stabilizing shoulder spring should have values in the range 0:7 �

Ksh � 1:4. The best experimental value for the doll, Ksh � 0:8 falls in this range

with performance falling o� on either side. Furthermore, this best value also falls

in the range of stabilizing shoulder springs for the human model data as shown in

Figure 4-9.

5.6 Summary

In this chapter I presented the results of layout somersault experiments on a mechani-

cal human-like doll. Comparison of the non-dimensional model parameters of the doll

and of a human indicate that the doll is dynamically similar to the human although

slightly easier to stabilize due to relatively more massive arms. The experiments

demonstrate that the doll can consistently perform at least three and one half sta-

ble layout somersaults. The consistency of the dismounts depends strongly upon the

value of the shoulder spring. The best shoulder spring exhibited 18/20 completely sta-

ble dismounts, somersaulting dismounts without any evident twist instability. While

softer shoulder springs make the dismount more erratic, they never-the-less allow the

doll to occasionally perform a completely stable dismount and regularly perform two

stable layout somersaults. On the other hand, sti� springs make the doll more reliable

but less stable. The best value of the non-dimensional shoulder spring constant was

Ksh = 0:82 which is within the region of stability predicted by the linear stability

theory.



Chapter 6

Twisting Somersaults

6.1 Introduction

The twisting somersault is a maneuver in which the performer simultaneously ro-

tates about the somersault and twist axes of the body. Multiple twisting, multiple

somersaulting maneuvers are among the most exciting and complex aerial maneuvers

performed by gymnasts and other athletes. Unlike the pure somersault, the twisting

somersault must include non-linear rotational coupling between the di�erent body

axes. One e�ect of this non-linearity is that the e�ect of the performer's control

actions will change during a maneuver making cause and e�ect relationships more

complex than in the pure somersault. Navigation and feedback control of twisting

maneuvers are challenging tasks. Does the accurate, reliable performance of this

maneuver necessitate a feedback control strategy?

In this chapter I brie
y discuss the open loop control of twisting somersaults. Open

loop control means the performer's control actions are simply replayed from memory.

We would like to know if twisting somersaults could exhibit passive dynamic stability

when performed with an open loop control strategy. We discuss one test we performed

to look for evidence of passive dynamic stability in the twisting somersault.

I present results from the non-linear dynamic simulation of a 1 1/2 twisting front
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somersault. This maneuver requires that the performer execute a sequence of limb

motions during 
ight. We found that when a simulated performer used a prescribed

set of motions for executing this maneuver, the landing attitude of the performer was

sensitive to initial conditions leading to poor landing attitudes. However, when the

performer's control movements were compliant, the reliability of the landing attitude

was signi�cantly improved. There appears to be an optimal choice for the performer's

compliance that leads to the most reliable landings.

I also discuss the control of twisting somersaults by the 3D Biped robot. We

programmed a simulated 3D Biped robot to perform a front somersault with half

twist. We found that in order to make the robot maneuver look like a front somersault

with twist as performed by a human, we had to add weight to the robot to make its

moments of inertia more like those of a human. We also had to use stronger actuators

than available for the physical robot. Our experiments to make the real 3D Biped

robot perform the maneuver in the laboratory were unsuccessful. The physical robot

actuators had insu�cient actuator power to perform the maneuver.

6.2 The Tilt of Twisting Somersaults

Frohlich [Frohlich 80] described two techniques for performing twisting somersaults.

In the torque twist the athlete derives rotation about the somersault and twist axes

from external forces as he or she leaves the ground, diving board or other apparatus.

In the torque-free twist with angular momentum the athlete initiates twist from

an airborne somersault with an asymmetric movement of the limbs (Figure 1-1). The

net e�ect of either technique is to tilt the principal axes of the body relative to the

angular momentum vector. A map of rotation, such as that in Figure 2-7, shows that

even a small amount of tilt of the principal axes from the layout somersault position

will result in twisting. (This is what makes layout somersaults challenging.) The

greater the tilt angle, the greater will be the twist rate.
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6.3 One and One Half Twisting Front Somersault

Yeadon [Yeadon 84] discusses a \torque-free" twist technique based on the hula move-

ment for initiating twist from a piked front somersault. The hula movement involves

a swiveling of the hips not unlike that required to swing a hula hoop about the hips.

A quarter cycle of hula movement performed during a pike front somersault will tilt

the performer's principal axes relative to the angular momentum vector. This e�ect

is increased if the arms are held in an abducted position during the movement. After

the hula movement the performer extends from the pike and the arms are adducted

to decrease the inertia about the twist axis. The extension from the hula movement

should happen between the 1/4 and 3/4 twist positions to maximize the net tilt of

the body. However, between these limits, Yeadon claims the timing of the extension

is not critical to the �nal tilt angle.

6.3.1 The Nominal Case

I created a simulation of a human performing a one and one half twisting front somer-

sault. The simulated athlete used the technique described in the previous paragraph

to perform the maneuver in a weightless environment (Figure 6-1). The human model

has thirteen joint degrees of freedom, including three in each shoulder, one at each

elbow, two in each hip, and one in the torso allowing the upper body to twist relative

to the lower body. The maneuver was initialized from an upright piked somersault

position with the arms held straight out from the side of the body. The maneuver

�nished in a layout body position with the arms held straight out from the sides.

The control movements used to produce this maneuver were hand programmed

so that the model looked natural during the movement and �nished with the desired

attitude and body con�guration. The control movements consisted of a sequence of

desired positions of the joints written as functions of time. The purpose of designing

this maneuver was to empirically �nd a sequence of body con�gurations and joint
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Figure 6-1: Images arranged in right-to-left, top-to-bottom order from a dynamic

simulation of a 1 1/2 twisting front somersault. The maneuver was initialized from

somersault rotation in the piked position. The control movements for this maneuver

are a hand programmed sequence of joint angles written as functions of time.

torques that would produce the desired maneuver under nominal conditions. The

nominal somersault rate at the beginning of the maneuver was 12:6 rad=sec and the

maximum twist rate during the maneuver is 40:2 rad=sec.

6.3.2 O�-Nominal Performance, Prescribed Motion

If the simulated performer uses the prescribed set of control movements from a di�er-

ent set of initial conditions than the nominal case then the trajectory of the maneuver

will change. How sensitive the maneuver is to variation in the initial conditions is im-

portant to the reliability of the maneuver. We tested the sensitivity of this maneuver

to initial conditions by running a series of simulations, each starting from a di�erent

set of initial tilt (�0) and twist (	0) angles of the body. We evaluated the reliability
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of the maneuvers by comparing the landing attitude of the o�-nominal simulations

to that of the nominal case. (The landing attitude was considered to be the attitude

at a �xed time after the start of the maneuver.) The error, e in landing attitude was

computed as follows:

e2 = 1=4((�d ��)2 + (�d ��)2 + (	d �	)2 + 1=13
njointsX
i=1

(qdi � qi)
2)

where �;�, and 	 are the body attitude at landing qi refers to the i
th joint position

and the subscript d refers to the desired value. This equation for the error emphasizes

the body attitude over body con�guration. An error of 1.0 is large; it could mean the

twist angle or somersault angle was o� by 4.0 radians or about 270�.

The results of a series of simulations that varied the initial tilt and twist attitude

of the body over a range, �0:1 rad � �0 � 0:1 rad, �0:1 rad � 	0 � 0:1 rad are

shown in Figure 6-2.

The nominal maneuver, �0 = 0; 	0 = 0, corresponds to the center grid point

of this �gure. The height of the surface there is zero. Away from the nominal the

landing attitude error increases except for a narrow valley of initial tilt and twist

attitudes along which the landing error remains small. It appears that a prescribed

motion strategy would not produce reliable 1 1/2 twisting somersaults. Is there a

simple open loop strategy that can improve this performance?

6.3.3 O�-Nominal Performance, Compliant Motion

It seems unlikely that people could accurately reproduce prescribed motions in a

dynamic movement like the 1 1/2 twisting somersault. People use springy muscles

and tendons to position their limbs. It seems likely that the change in environmental

forces that would accompany a change in maneuver trajectory would mean that the

limb movements change even if the athlete tried to execute the exact same motions.

This idea is the basis for the following set of simulation experiments.
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Figure 6-2: This �gure shows the accuracy of a 1 1/2 twisting somersault in the

presence of o�-nominal initial conditions. The simulated performer used a prescribed

set of joint angles to perform the maneuver. The two grid axes correspond to initial

tilt and twist angles of the body, �0:1 rad � �0 � 0:1 rad, �0:1 rad � 	0 � 0:1 rad.

The height of the grid indicates the accuracy of the landing attitude of the simulation

starting from the corresponding set of initial conditions.
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We ran a series of simulations of the 1 1/2 twisting front somersault that used the

joint torques from the nominal maneuver as feed forward commands. We also used

the prescribed joint motion from the nominal maneuver as the commanded positions

for a set of compliant, position plus derivative (pd) servos at the joints. In this

open loop strategy, the net joint torques would be a combination of the feed forward

torques plus pd servo torques. Since the pd servos use a prescribed set of positions

as desired values, they act like passive springs and dampers at the joints. If the

maneuver started from the nominal initial conditions then the joints would follow the

prescribed trajectories. Then the torques from the pd servos would remain zero and

the nominal maneuver would be reproduced.

Our goal in this part of the experiment was to �nd a set of pd servo gains (spring

constants and damping coe�cients) that produced the most reliable performances.

Rather than search over the gain parameters of pd servos at thirteen joints, I chose to

search over one parameter. Therefore, I compute the gains of all joint servos according

to a single parameter, the body clamped natural frequency, !n. The intent behind

this choice is that all body joints have a similar compliance or natural frequency of

operation. We will then look for a body natural frequency that produces reliable 1

1/2 twisting somersaults.

To compute the servo gains at a given joint as a function of !n, I assume that the

body inboard (towards the torso) from the joint is inertially �xed and all out-board

joints are immobilized. This way the model simpli�es to a single d.o.f. joint between

the limb in question and ground. The equations reduce to a simple second order

system of equations as follows

I �x+ c ( _x� _xd) + k (x� xd) = 0

where I is the apparent inertia of the limb at the joint, c is the damping coe�cient,

and k is the spring constant of the joint. This simple system can be rewritten in the
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canonical form

�x+ 2�!n( _x� _xd) + !2
n
(x� xd) = 0

therefore c=I = 2�!n and k=I = !2
n
. We choose � = 0:7 to achieve a well damped

system response [Ogata]. Then choosing !n allows us to compute the sti�ness and

damping constants in a consistent manner.

We systematically varied the value of !n between 150 rad/s and 20 rad/s. At each

of these values of the body natural frequency we performed a series of simulations

starting from initial conditions just as in the case of prescribed motion at the joints.

I plotted the results in the form of the 3D plot shown in Figure 6-2 for each frequency

and subjectively evaluated them. There was a clear choice for the best natural fre-

quency. Figure 6-3 shows the simulation results for the case of !n = 30 rad=s. This

plot shows that the reliability of the 1 1/2 twisting somersault performed with the

open loop strategy shows marked improvement over the prescribed motion case. Now,

nearly half the set of initial conditions results in small �nal attitude errors. Further-

more, the landing attitude errors were worse for either smaller or larger values of

!n. These basic results held true for variations in the angular momentum, h, of the

maneuver as well (0:9h � h � 1:1h).

Figures 6-4 and 6-5 show data from two simulations using the nominal value of

angular momentum and with �0 = �0:1, and 	0 = �0:1. The data of �gure 6-4

shows that when prescribed joint motion is used for an o�-nominal maneuver, the

body attitude error becomes large at the end of the maneuver. In contrast, the data

of �gure 6-5 shows that while the joint angles incur some error during the maneuver

the body attitude is close to the desired value at the end of the maneuver.

Since the timing of this maneuver will scale with somersault rate it is instructive

to show how the body clamped natural frequency compares to the nominal somersault

rate, !n

_�0

= 30
12:6

= 2:38. It appeared in simulations that the compliance that allowed

the arms to open prematurely, thus increasing the body inertia about the twist axis,

was important in o�-nominal simulations. For this reason, one might consider scaling
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Figure 6-3: This �gure shows the accuracy of a 1 1/2 twisting somersault in the pres-

ence of o�-nominal conditions. The simulated performer used feed forward torques

plus passive pd servos at the joints to perform the maneuver. Pd servo gains were

chosen according to !n = 30rad=s. The pd servos used the prescribed joint angles

from the nominal maneuver as desired values. The two grid axes correspond to initial

tilt and twist angles of the body, �0:1 rad � �0 � 0:1 rad, �0:1 rad � 	0 � 0:1 rad.
The height of the grid indicates the accuracy of the landing attitude of the simulation

starting from the corresponding set of initial conditions.
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Figure 6-4: Simulation data from a 1 1/2 twisting somersault that used prescribed

control motions for initial conditions �0 = �0:1, and 	0 = �0:1 are shown with solid
lines. The body attitude and joint angles of the nominal maneuver are shown with

dashed lines. While the prescribed joint positions are accurate for the o�-nominal

case (bottom three graphs), the body landing attitude error is large. (The traces stop

at the landing time.)
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Figure 6-5: Simulation data from a 1 1/2 twisting somersault with !n = 30;�0 =

�0:1, and 	0 = �0:1 are shown with solid lines. The desired values of the body

attitude and joint angles are shown with dashed lines. Joint angles incur signi�cant

tracking errors but the landing attitude closely follows that of the nominal maneuver.

(The traces stop at the landing time.)
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the body clamped natural frequency by the maximum twist rate of the nominal

maneuver, !n

_	mx

= 30
40:2

= 0:746.

The body clamped natural frequency was chosen to be a simple parameter that

described the natural frequency of the whole body. However, since the computation

of this parameter assumed that parts of the body were inertially �xed, the actual

eigenfrequencies of the system will di�er from this body clamped frequency. The

actual eigenfrequencies of the body for the initial con�guration (pike) and the twisting

con�guration (wrap) of the Rudi, are shown in Table 6.3.3.

6.4 Twisting Somersault of the 3D Biped

We programmed a simulated 3D Biped robot to use the \torque twist" method to

initiate a twisting somersault. To use this technique the simulated 3D Biped robot

accelerated its torso in somersault and twist during the stance phase just prior to

take-o�. These two components of momentum should result in an angular momentum

vector that is tilted with respect to the principal axes of the robot.

Figure 3-3 shows the map of rotational motion of the 3D Biped. When compared

to the map for the layout somersault in the human (Figure 2-7) we see that the robot

requires signi�cantly more tilt of the principal axes (relative to the angular momentum

vector) to achieve a twisting somersault. This is partly due to the fact that the robot

somersault axis is the major principal axis but also due to the signi�cantly di�erent

shape of the regions on the two maps. The qualitative di�erence in shape of the maps

is due to the di�erence in rigid body inertia ratios of the robot and of the human.

To put it simply the human is long and skinny and the robot is short and fat. This

di�erence makes the twist harder to achieve (more tilt required), and it means the

maneuver will not look much like that of a human.

In its current con�guration, the twisting somersault mode of the 3D Biped would

force the robot to lay on its side some time during 
ight. This body orientation is not
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Table 6.1

Rudi Eigenfrequencies

Pike Wrap

!n rad=sec � !n rad=sec �

921.0 0 210.0 0

709.2 0 188.3 0

359.4 0 159.2 0

161.2 0 107.7 0

160.6 0 93.1 0

88.0 0 39.7 0.92

69.0 0 39.7 0.92

36.7 0.85 38.9 0.90

36.7 0.85 38.9 0.90

31.3 0.73 30.1 0.70

31.3 0.73 30.1 0.70

31.0 0 30.0 0.70

30.1 0.70 30.0 0.70

30.1 0.70 27.8 0

30.0 0.70 26.8 0.62

30.0 0.70 26.8 0.62

28.3 0 26.7 0

24.7 0 26.5 0.62

24.7 0 26.5 0.62

22.9 0.53 24.9 0.58

22.9 0.53 24.9 0.58

22.7 0 24.8 0.58

22.0 0 24.8 0.58

21.9 0 24.7 0

16.0 0.37 24.1 0

16.0 0.37 23.8 0
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what we identify with a twisting somersault in a human. The human's long axis stays

closer to the vertical during a twisting somersault. In addition, this inertial orientation

of the robot is undesirable from a practical standpoint because this orientation is

coincident with gimbal lock in the gyros used to measure body attitude. During

laboratory experiments, the physical robot achieved this horizontal position which

resulted in damage to the gyroscopes. To correct this situation we changed the robot

inertia, and thus its rotational modes, to look more like that of a human.

To change the robot inertia we added weight to increase the major and interme-

diate principal inertias without increasing the minor principal inertia. We did this

by adding weight along the '3' axis of the robot. Figure 6-6 shows the new map of

rotation for the 3D Biped with a 4:0 kg weight added 0:8m above the hips of the

robot. This map looks much more like that of a human now and the twisting somer-

sault should bear this resemblance as well. Figure 6-7 shows a sequence of computer

graphic images of a simulated 3D Biped with added weight (and strong actuators)

performing a front somersault with one half twist. Notice that the simulated robot

lands the twisting somersault facing the opposite direction it started from. Data

from the simulation is included in Figure 6-8. The simulated running robot regained

balance on landing to continue stable dynamic running.

We tried this maneuver with the physical 3D Biped robot in the laboratory. The

added weight and inertia were too large for the robot to achieve su�cient 
ight time

or angular momentum to produce the maneuver.

6.5 Summary

In this chapter I presented simulation results of a 1 1/2 twisting front somersault

performed by a model gymnast with thirteen joint degrees of freedom. The maneuver

is initiated from a piked front somersault. The twisting maneuver results from a

sequence of movements of the limbs and torso made during 
ight. We found that
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Figure 6-6: Spherical coordinate map of the tilt and twist Euler angle trajectories for

the 3D Biped with 4 kg of weight added at a distance of 0:8m above the hip.
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Figure 6-7: Sequence of images of the simulated 3D Biped somersault with twist.
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Figure 6-8: Hopping height, somersault, tilt and twist Euler angles of the 3D Biped

during a simulated front somersault with 1/2 twist. The simulated robot passes

through an Euler angle singularity at approximately 1.2 sec. causing discontinuties

in the data. This singularity did not a�ect the dynamic simulation however as a

di�erent set of attitude parameters were used.
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prescribed limb movements could produce reliable 1 1/2 twisting somersaults only for

a small set of o�-nominal initial conditions. In contrast, a control strategy that used

feed forward joint torques in a tuned passive dynamic model of the performer could

produce reliable maneuvers for a much larger set of o�-nominal initial conditions.

We do not yet know the signi�cance of this result. There are many degrees of

freedom of this model. Too many to easily distinguish between important and unim-

portant e�ects. Simpli�cation of this model may reveal salient features that can be

analytically con�rmed. These simulation results from the rudi are potentially inter-

esting because it suggests that a passive dynamic approach to twisting somersaults

may be capable of producing reliable maneuvers as was the case with the layout som-

ersault. It is interesting that many of the eigenfrequencies of the most reliable, tuned

compliant system for the rudi were in the neighborhood of the maximum twist rate of

the maneuver. This appears to be analogous to the ideal choice of arm-body oscilla-

tion in the passive layout somersault. In this case the best shoulder spring resulted in

an eigenfrequency of the arm-body oscillation that was equal to the somersault rate.

In this chapter, I also described simulation experiments with 3D Biped twisting

somersaults. The distribution of mass in the 3D Biped robot makes a twisting som-

ersault particularly di�cult. In order to enter a rotational mode that could produce

the twist angles desired, the robot had to assume body attitudes unlike those asso-

ciated with a human somersault with twist. This extreme body attitude could lead

to mechanical di�culties with inertial instruments on the physical robot. We added

weight to the robot so its natural rotational modes were more like those of a human.

A simulated 3D Biped robot was able to perform a 1/2 twisting front somersault. The

simulated robot landed the maneuver and continued running stably afterwards. The

added weight made twisting somersaults of the physical 3D Biped robot impossible

due at least in part to insu�cient actuator power.



Chapter 7

Summary and Discussion

Inspiration for this thesis comes from the remarkable performance of aerial maneu-

vers by gymnasts, divers, trampolinists, and skiers. From a distance, the control of

aerial maneuvers appears to be a very complex task. The shortage of control during


ight and the non-linear rotational mechanics make this problem more than a little

daunting. However, adversity breeds creativity and athletes and other people have

been very creative in working with these di�culties to produce elegant solutions to

movement control problems. It appears that we can learn something from human ca-

pability in making dynamic 
ying or 
oating machines that can reorient themselves

quickly, reliably, and accurately.

This thesis is concerned with how people can incorporate known aerial movement

techniques into a strategy that produces reliable performances. People can in
uence

aerial maneuvers through the relative movement of their limbs and torso during 
ight.

While a �xed sequence of control movements can be found to produce a desired

maneuver, prescribed limb motion may provide little reliability when a maneuver is

subject to the variety of conditions that would accompany any real performance. It

is possible that people produce reliable maneuvers by sensing these variations and

actively computing responses to compensate for them. However, the complexity of

this approach warrants the search for a simpler strategy. A persistent goal of this work

142
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has been to �nd control strategies that do not depend entirely on active feedback,

that are simple, and that can work in laboratory machines.

The contribution of this thesis is to point out via example that passive dynamic

solutions to movement control are an alternative to certain problems previously con-

sidered to require active feedback control. We focus on an open loop, passive dynamic

strategy for producing gymnastic maneuvers. Open loop means that control e�ort

(torques at joints) are simply replayed from memory during a maneuver (the motor

tape model of biological control). Under identical conditions open loop control will

produce identical maneuvers. Using open loop control under di�erent initial condi-

tions will produce di�erent outcomes due to the inherent dynamics of the system.

This may make open loop control by itself incapable of producing reliable maneuvers.

However, it is possible that the passive dynamic behavior of the performer's body

could automatically compensate for o�-nominal conditions in a way that produces

reliable maneuvers. The passive dynamic behavior of a system can be tuned through

the selection of passive elements like springs (springy muscles) or by choosing nominal

body con�gurations during the maneuver. Careful tuning of the passive dynamics of

a system coupled with open loop control may provide a strategy for producing reliable

gymnastic maneuvers.

This strategy is simple in the sense that it requires no computation during the

maneuver. Only memory playback is required. Compensatory movements are 'com-

puted' by the physical system as part of its natural behavior. Incorporation of this

strategy could simplify gymnastic performances by reducing the amount of active

control and computation required by the athlete.

To the extent possible, we have insisted upon laboratory experimentation to test

our ideas. We feel that laboratory experimentation on physical machines forces one

to discover the salient features of a problem that may be di�cult to reveal otherwise.

(Another reason is that laboratory experimentation is also a lot of fun!) However,

while a laboratory experiment can be used to validate a strategy for machine control,
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it can only suggest the viability of a strategy for human use.

We studied three di�erent gymnastic maneuvers in this thesis, the tucked somer-

sault, the layout somersault, and the 1 1/2 twisting front somersault.

7.1 Robot Tucked Somersaults

The tucked somersault is a common maneuver in athletic events. The main require-

ment of this maneuver is a balanced landing which in turn requires a precise body

attitude. We programmed a 3D Biped robot to perform front somersaults in the

laboratory. The control strategy relied implicitly upon the passive dynamic stability

of the tucked somersault. We used an active feedback system to control somersault

rotation rate and foot placement at landing.

A linear analysis of rigid body rotation showed that the tilt and twist attitude of

the somersaulting 3D Biped robot is passively stable. However somersault attitude

is unstable. This well known result led us to use active control of the somersault

degree of freedom in the 3D Biped maneuver. The robot controls somersault rotation

rate by tucking or untucking its legs during 
ight to change the rotational inertia.

During 
ight we depend upon a stable passive dynamic response of the tilt and twist

dynamics to insure small tilt and twist angles at landing. To keep the initial tilt

and twist angles small we use a wide double stance of the robot during take-o� and

insure that the feet touch down simultaneously. Another important element of active

control of the 3D Biped somersault was the placement of the feet prior to landing.

This element was necessary to compensate for errors in the estimated landing time.

On its best day the robot has performed successful front somersaults on seven out of

ten attempts in laboratory experiments.

We do not know if active control of rotation rate in the 3D Biped robot is necessary

to perform the front somersault. It is possible that open loop control plus active foot

placement prior to landing could also be used to perform reliable front somersaults.
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This was the case with the planar biped somersault work of Hodgins and Raibert. A

strategy that we would like to experiment with in the future could provide a middle

ground between the active rotation rate control used in this study and the (primarily)

open loop approach used in the planar biped. This strategy would use tuned leg

springs to passively in
uence somersault rotation rate. This technique could correct

rotation rate errors by allowing the legs to extend at higher than normal rotation

rates (due to higher centrifugal forces) and vice versa for slower rotation rates. This

passive dynamic approach coupled with active foot placement may provide reliable

front somersaults with less active feedback control.

7.2 The Layout Somersault

The layout somersault involves rotation about the middle principal axis of inertia,

an unstable rotation for a rigid body. Biomechanics researchers have suggested that

human athletes use active feedback control during 
ight to stabilize the layout somer-

sault. We found that the layout somersault could passively be made neutrally stable.

The layout somersault is stabilized by passive arm movement in the frontal plane.

The inherent tendency of the arms to tilt in response to twisting movement of the body

provides a built-in correction for the layout instability. The arm accomplishes this by

changing the orientation of the principal axes with respect to the angular momentum

vector. This built-in correction eliminates the divergent tendency of the system as

long as a carefully selected shoulder spring is used to cancel unstable centrifugal forces

on the arms. These results are con�rmed with linear stability analysis, non-linear

dynamic simulation and laboratory experiments with a somersaulting doll. During

experiments the doll can consistently perform at least three and one half stable layout

somersaults.

Analysis of a simpli�ed model of the layout somersault dynamics revealed several

salient features of the movement. The simpli�ed model revealed the simple rule
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for picking stabilizing non-dimensional shoulder springs, Ksh = 1:0. This spring

constant insures that the natural frequency of the arm-body oscillation is matched

to the rotation rate of the body. It also is the exact spring required to cancel the

destabilizing centrifugal forces on the arms. The empirically determined, best value

of Ksh for the experimental doll was Ksh = 0:82. This value is in agreement with the

theoretical results. I think that it is signi�cant that the stabilizing shoulder spring

just cancels the spring-like action of centrifugal forces. This balance between opposing

forces allows the arm to be responsive to the gyric forces which ultimately stabilize

the sytem.

The simple model also helped explain why arm orientation is important in stabi-

lizing the layout somersault. The tendency of the arms to tilt in response to twist is

greatest when the arms are held straight out to the side. This tendency is decreased

as the arms are raised or lowered from that position. Another feature that the simple

model revealed is that stabilization of the layout somersault is easier with bigger and

bigger arms. This is not surprising for in the limit when the arms (held straight out

to the side) are much larger than the body, the system resembles a rigid body rotating

about its minimum principal axis, a well known gyrically stabilized con�guration.

We ignored the control of somersault angle in the layout somersault. Stabiliza-

tion of the somersault angle will be important for practical layout somersaults as it

was for the 3D Biped tucked somersaults. However, decoupling of the tilt, twist,

and asymmetric arm movement from the somersault and symmetric arm movement

suggests that a somersault control strategy and a tilt-twist control strategy could be

developed separately then superposed in the complete system.

7.3 Twisting Somersaults

Twisting somersaults are among the most interesting and complex of aerial maneu-

vers. They involve simultaneous rotation about the twist axis and the somersault
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axis. Their dynamic complexity makes feedback control of these maneuvers chal-

lenging. Is it possible that open loop control can be used to reliably produce these

maneuvers? Perhaps it can if the performers body acts like a tuned passive dynamic

system. Our results on the open loop, passive dynamic control of twisting somersaults

are of a preliminary nature. However, they point to a potentially interesting subject

for future work. These results suggest that passive dynamics may help the reliable

performance of twisting maneuvers as was the case for the layout somersault.

We used a thirteen joint human model to simulate the performance of a 1 1/2

twisting front somersault. The twisting maneuver was initiated from a piked front

somersault using asymmetric movement of the limbs. We found that using prescribed

limb motion during the maneuver produced inaccurate landing attitudes when the

initial body attitude was allowed to vary. On the other hand, an open loop, passive

dynamic strategy was able to produce reliable landing attitude for a relatively large

set of initial conditions. In this strategy, open loop torque commands from the nom-

inal trajectory were combined with torques from passive springs and dampers at the

joints. We tuned the passive compliance of the performer's joints to �nd the value of

compliance that produced the most reliable maneuvers. We used a single parameter

to characterize the compliance of all the body joints. There was a clear choice for

the best system compliance. More or less compliance at the joints led to less reliable

performance. Inspection of the eigenfrequencies of the model revealed that the most

reliable system had natural frequencies in the vicinity of the maximum twist rate of

the maneuver. As in the layout somersault, it may be that a balance between the

centrifugal forces of twisting and the spring forces of the joints is required to make

the maneuver reliable.

While the reliability of the open loop, passive dynamic system was better than that

of the prescribed motion system there is still room for improvement. There were sets of

initial conditions that were 'close' to nominal for which landing attitude performance

was seriously degraded. Could a di�erent passive system improve reliability in this
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region as well? Perhaps a simple active controller could complement the passive

dynamics to produce an even more reliable system. Yeadon has discussed the need

for good timing in certain maneuvers. Perhaps a simple active controller that changed

the replay rate of a set of pre-recorded actions based on perceived errors could get

the timing `right' to further improve maneuver reliability.

7.4 Do Humans Use Passive Dynamics

We do not know if humans use a passive dynamic approach to stabilization of gym-

nastic maneuvers. This thesis can not prove or disprove the human use of such a

strategy. The results of this thesis can only suggest that such a strategy is a viable

one for particular maneuvers, or parts of maneuvers. What experiments could we do

to learn more about how people perform these maneuvers?

It would be useful to measure the range of initial conditions from which athletes

can reliably perform aerial maneuvers, and also measure their corresponding limb

movements. If the variations in initial conditions and control movements were large

then one may argue that dynamic compensation rather than a prescribed motion

strategy was at work. One could look for correlations between di�erent initial condi-

tions and di�erent control movements. Could a passive dynamic model explain any

observed correlations?

Tests of the compliance of human muscle could reveal if the e�ective spring con-

stants of human limbs are near the values predicted by theory to produce passively

stable maneuvers. This could support a passive dynamic theory but not prove it's use.

Measurements of the electromyographic signal of the muscles may not help to decide

what strategy people use. Even with accurate recordings of many performances of

a maneuver it would be di�cult to distinguish between a motor tape model and an

active control model of muscle activation.

A di�culty in making a distinction between an active control strategy and an
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open loop, passive dynamic strategy is that both approaches could produce a simi-

lar dynamic response. In fact, one may argue that if there is one clear technique to

achieving a reliable maneuver then both strategies would have to use it. This possibil-

ity is illustrated by the fact that the active controller designed by Yeadon to stabilize

the layout somersault used the same control e�ect as the passive strategy presented

in this thesis. Both techniques used arm tilt to control body twist. Yeadon's tech-

nique depended upon sensing the twist rate of the body and using it to compute an

appropriate arm tilt response. Whereas, in the passively stable case the arm tilt was

produced from the inherent dynamics of the system. Passive dynamic control is a

subset of the space of active controllers that require little if any on-line computation.

7.5 A Passive Dynamic Theory of Control De-

sign?

Can passive dynamic control be formulated into a machine design and control the-

ory? I did not use nor did I develop a consistent theory of passive dynamic design

for controlling gymnastic maneuvers. However, beyond the educated guesses I used

to �nd some answers, elements of linear and optimal control theory are central to the

approach used to analyze the movements of this thesis. Linear analysis allows one to

examine the behavior of a dynamic system in the neighborhood of a known solution.

Biology provides us with many examples of movements that we know work. I have

made explicit use of these known solutions to search for passive dynamic stability.

Tucked and layout somersaults can be analyzed using linear methods. Linear analysis

of the twisting somersault will be more di�cult but may help reveal the important

features of this maneuver. Searching for passive dynamic solutions to known move-

ments could, I think, be developed into a theory. In fact, one may argue that a passive

dynamic theory of control may consist of a restriction of the optimal control theory to

passive dynamic elements. Extension of a passive dynamic theory to unknown move-
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ment solutions will be more di�cult, re
ecting the complexity of non-linear systems.

However, perhaps this is where the greatest pay-o� from a passive dynamic theory

could lie.

Why is it so easy to tell animal movement from machine movement? The richness

of human and animal behavior re
ects the complexity of the dynamic systems, their

bodies, they are compelled to use. But this richness does not just come from complex-

ity, it comes also from coordination. Relatively speaking, machine movement is still

in its infancy. It would be a grand goal of any designer to make a machine that could

move like an animal. It is an unfortunate consequence of the complexity of non-linear

systems that non-linear control design techniques frequently rely upon cancellation of

the dynamics in order to reach a solution. This approach risks the design of forced,

uncoordinated behavior. Perhaps we should search for design techniques that em-

brace the inherent dynamics of a system rather than avoid them. Perhaps passive

dynamic stability could act as a guiding principal in the design of graceful movement

in machines. Perhaps it already serves this purpose in animal movement.
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A.1 Mathematica Code for Non-linear Equations

of Motion

Following is the Mathematica code for deriving the non-linear equations of motion of

the �ve d.o.f. system.

(* File for defining 3D equations of motion of a three link body with

links connected separately to the central body by two pin joints

allowing rotation about the x body axis. *)

(* same as man5dof.m except arm angles defined in terms of symmetric

and antisymmetric components phil = phia + phis, phir = phia - phis)

(* inertia matrices *)

ib = {{ib11,0,0},{0,ib22,0},{0,0,ib33}}; (* main body *)

il = {{il11,0,0},{0,il22,0},{0,0,il33}}; (* left limb *)

ir = {{ir11,0,0},{0,ir22,0},{0,0,ir33}}; (* right limb *)

(* body to joint vector for left arm, in arm coord. *)

bjl = {bjl1, bjl2, bjl3};

(* body to joint vector for right arm, in arm coord. *)

bjr = {bjr1, bjr2, bjr3};

(* inboard body to joint vector for left arm, in body coord. *)

ibjl = {ibjl1, ibjl2, ibjl3};

(* inboard body to joint vector for right arm, in body coord. *)

ibjr = {ibjr1, ibjr2, ibjr3};
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(* transformation from body coordinates to limb left coordinates thru phi

a pos. phi means limb left rotates positively relative to body *)

cbtol = {{1, 0, 0},

{0, Cos[phia[t] + phis[t]], Sin[phia[t] + phis[t]]},

{0, -Sin[phia[t] + phis[t]], Cos[phia[t] + phis[t]]}} ;

cltob = Transpose[cbtol];

(* transformation from body coordinates to limb right coordinates thru phir

a pos. phir means limb right rotates positively relative to body *)

cbtor = {{1, 0, 0},

{0, Cos[phia[t] - phis[t]], Sin[phia[t] - phis[t]]},

{0, -Sin[phia[t] - phis[t]], Cos[phia[t] - phis[t]]}} ;

crtob = Transpose[cbtor];

(* inertia matrices of arms expressed in body coord *)

ilb = cltob . il . cbtol;

irb = crtob . ir . cbtor;

(* vector from net cg to body cg, in body coord *)

rhob = -(ml (ibjl - cltob.bjl) + mr (ibjr - crtob.bjr))/mt;

(* vector from net cg to left limb cg, in body coord *)

rhol = rhob + ibjl - cltob.bjl;

(* vector from net cg to right limb cg, in body coord *)

rhor = rhob + ibjr - crtob.bjr;
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(* angular velocity of body in body coord.*)

wbi = {wb1[t], wb2[t], wb3[t]};

(* angular velocity of left limb w.r.t. body in body coord.*)

wlb = {phia'[t] + phis'[t], 0, 0};

(* angular velocity of limb in body coord.*)

wli = wbi + wlb;

(* angular velocity of right limb w.r.t. body in body coord.*)

wrb = {phia'[t] - phis'[t] , 0, 0};

(* angular velocity of right limb in body coord.*)

wri = wbi + wrb;

(* wbi tilde matrix for cross products *)

wbitilde = {{0,-wbi[[3]],wbi[[2]]},{wbi[[3]],0,-wbi[[1]]},{-wbi[[2]],wbi[[1]],0}};

(* wli tilde matrix for cross products *)

wlitilde = {{0,-wli[[3]],wli[[2]]},{wli[[3]],0,-wli[[1]]},{-wli[[2]],wli[[1]],0}};

(* wri tilde matrix for cross products *)

writilde = {{0,-wri[[3]],wri[[2]]},{wri[[3]],0,-wri[[1]]},{-wri[[2]],wri[[1]],0}};

(* velocity of body c.g. *)

vbi = Expand[D[rhob,t] + wbitilde . rhob];
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(* velocity of left limb c.g. *)

(* all components of rhol in body coord. so cross with wbi *)

vli = Expand[D[rhol,t] + wbitilde . rhol];

(* velocity of right limb c.g. *)

(* all components of rhor in body coord. so cross with wbi *)

vri = Expand[D[rhor,t] + wbitilde . rhor];

(* Matrix of Partial velocities :

columns correspond to generalized speeds

1 - wrt wb1[t]

2 - wrt wb2[t]

3 - wrt wb3[t]

4 - wrt phia'[t]

5 - wrt phis'[t]

rows correspond to body velocites

1 - vbi

2 - wbi

3 - vli

4 - wli

5 - vri

6 - wri

*)

pv = {

{D[vbi,wb1[t]],D[vbi,wb2[t]],D[vbi,wb3[t]],D[vbi,phia'[t]],D[vbi,phis'[t]]},
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{D[wbi,wb1[t]],D[wbi,wb2[t]],D[wbi,wb3[t]],D[wbi,phia'[t]],D[wbi,phis'[t]]},

{D[vli,wb1[t]],D[vli,wb2[t]],D[vli,wb3[t]],D[vli,phia'[t]],D[vli,phis'[t]]},

{D[wli,wb1[t]],D[wli,wb2[t]],D[wli,wb3[t]],D[wli,phia'[t]],D[wli,phis'[t]]},

{D[vri,wb1[t]],D[vri,wb2[t]],D[vri,wb3[t]],D[vri,phia'[t]],D[vri,phis'[t]]},

{D[wri,wb1[t]],D[wri,wb2[t]],D[wri,wb3[t]],D[wri,phia'[t]],D[wri,phis'[t]]}

};

(* inertia forces and inertia torques *)

(* all vectors are expressed in body coordinates. See pp26 of notebook

dated 6/4/93- for explanation of the following. ilb and irb are

inertia of arms expressed in body coord therefore they are not

constant in body coord. system. Therefore in taking total

time derivative of ang. mom. need to take time derivative

of ilb and wbi parts. Since everything in body coord. need

to take cross product of ang. mom. with wbi.

*)

infb = mb wbitilde.vbi + mb D[vbi,t];

intb = D[ib,t] . wbi + ib . D[wbi,t] + wbitilde . ib . wbi;

infl = ml wbitilde.vli + ml D[vli,t];

intl = D[ilb,t] . wli + ilb . D[wli,t] + wbitilde . ilb . wli;

infr = mr wbitilde.vri + mr D[vri,t];

intr = D[irb,t] . wri + irb . D[wri,t] + wbitilde . irb . wri;
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(* generalized inertia forces *)

fi1 = pv[[1,1]].infb + pv[[2,1]].intb +

pv[[3,1]].infl + pv[[4,1]].intl +

pv[[5,1]].infr + pv[[6,1]].intr;

fi2 = pv[[1,2]].infb + pv[[2,2]].intb +

pv[[3,2]].infl + pv[[4,2]].intl +

pv[[5,2]].infr + pv[[6,2]].intr;

fi3 = pv[[1,3]].infb + pv[[2,3]].intb +

pv[[3,3]].infl + pv[[4,3]].intl +

pv[[5,3]].infr + pv[[6,3]].intr;

fi4 = pv[[1,4]].infb + pv[[2,4]].intb +

pv[[3,4]].infl + pv[[4,4]].intl +

pv[[5,4]].infr + pv[[6,4]].intr;

fi5 = pv[[1,5]].infb + pv[[2,5]].intb +

pv[[3,5]].infl + pv[[4,5]].intl +

pv[[5,5]].infr + pv[[6,5]].intr;

(* External forces expressed in body coordinates *)

(*

positive acting on left limb, neg on body use wli,wbi

phi_rest is the spring rest length, should be less than

the nominal phil in order to make taul in steady rotation

cancel the centrifugal force.
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*)

ftaul = {-ksh (phia[t] + phis[t]) - bsh(phia'[t] + phis'[t]),0,0};

ftaur = {-ksh (phia[t] - phis[t]) - bsh(phia'[t] - phis'[t]),0,0};

(*generalized external forces *)

fe1 = -pv[[2,1]].ftaul + pv[[4,1]].ftaul - pv[[2,1]].ftaur + pv[[6,1]].ftaur;

fe2 = -pv[[2,2]].ftaul + pv[[4,2]].ftaul - pv[[2,2]].ftaur + pv[[6,2]].ftaur;

fe3 = -pv[[2,3]].ftaul + pv[[4,3]].ftaul - pv[[2,3]].ftaur + pv[[6,3]].ftaur;

fe4 = -pv[[2,4]].ftaul + pv[[4,4]].ftaul - pv[[2,4]].ftaur + pv[[6,4]].ftaur;

fe5 = -pv[[2,5]].ftaul + pv[[4,5]].ftaul - pv[[2,5]].ftaur + pv[[6,5]].ftaur;

(* Expand necessary for later simplifications *)

efi1 = Expand[fi1];

efi2 = Expand[fi2];

efi3 = Expand[fi3];

efi4 = Expand[fi4];

efi5 = Expand[fi5];

efe1 = Expand[fe1];

efe2 = Expand[fe2];

efe3 = Expand[fe3];

efe4 = Expand[fe4];

efe5 = Expand[fe5];
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A.2 Mathematica Code for Linearizing Equations

of Motion

Following is the Mathematica code for analytically linearizing the non-linear equations

of motion of the previous section.

(*

file for linearizing man5dof_sym_antisym model for following case.

here the arm movement is decomposed into symmetric and

antisymmetric components. phil = x4 + x5, phir = x4 - x5

x4 is the antisymmetric component

x5 is the symmetric component

vector from left limb c.g. to shoulder is {0,0,bj3} in limb coord.

vector from right limb c.g. to shoulder is {0,0,bj3} in limb coord.

mass of left and right limb are equal, mr = ml = m

inertia of left and right limb are equal, Il=Ir

vector from body c.g. to left shoulder is {0,ibj2,ibj3}in body coord

vector from body c.g. to rt. shoulder is {0,-ibj2,ibj3}in body coord

nominal body rotation rate is {0,W,0}

left arm is nominally at phi0, right arm is nominally at -phi0,

deviations in both arm movements are of equal sign and magnitude.

After the 5 dof linearized model is complete, a constraint equation

of the form x = B z can be applied to the system of equations.

B represents the dependence of the original state x on another

state vector z. z can be of lower dimension than x. Then the
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transformed set of linear equations are produced as follows:

B^T M B zddot + B^T C B zdot + B^T K B z

This transformation can be applied in this file or in a later

one that evaluates the numerical quantities.

*)

(* for yman model *)

(*

simplify = {bjl1->0, bjl2->0, bjl3->bj3,\

bjr1->0, bjr2->0, bjr3->bj3,\

ibjl1->0, ibjl2-> ibj2, ibjl3->ibj3,\

ibjr1->0, ibjr2-> -ibj2, ibjr3->ibj3,\

ir11->il11, ir22->il22, ir33->il33, mr->m, ml->m,\

mt->mb+2m};

*)

(* for yman model with no shoulder width and pvt at c.g.*)

simplify = {bjl1->0, bjl2->0, bjl3->bj3,\

bjr1->0, bjr2->0, bjr3->bj3,\

ibjl1->0, ibjl2-> 0, ibjl3->0,\

ibjr1->0, ibjr2-> 0, ibjr3->0,\

ir11->il11, ir22->il22, ir33->il33, mr->m, ml->m,\

mt->mb+2m};

sfi1 = efi1/.simplify;

sfi2 = efi2/.simplify;
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sfi3 = efi3/.simplify;

sfi4 = efi4/.simplify;

sfi5 = efi5/.simplify;

(* Replace angular velocities and accelerations with corresponding

euler angle expressions.

*)

S213 = {

{0, Cos[th1[t]], Sin[th1[t]]Cos[th2[t]]},

{0, -Sin[th1[t]], Cos[th1[t]]Cos[th2[t]]},

{1, 0, -Sin[th2[t]]}

};

C213 = {

{ Cos[th1[t]]Cos[th3[t]] + Sin[th1[t]]Sin[th2[t]]Sin[th3[t]],

Sin[th1[t]]Cos[th2[t]],

-Cos[th1[t]]Sin[th3[t]] + Sin[th1[t]]Sin[th2[t]]Cos[th3[t]]},

{ -Sin[th1[t]]Cos[th3[t]] + Cos[th1[t]]Sin[th2[t]]Sin[th3[t]],

Cos[th1[t]]Cos[th2[t]],

Sin[th1[t]]Sin[th3[t]] + Cos[th1[t]]Sin[th2[t]]Cos[th3[t]]},

{ Cos[th2[t]]Sin[th3[t]],

-Sin[th2[t]],

Cos[th2[t]]Cos[th3[t]]}

};

thdot = {th1'[t], th2'[t], th3'[t]};

wba = {0,W,0};

wca = S213.thdot + C213.wba
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wcadot = D[wca,t];

(* See Hughs pp 116 and my notebood 6/14/93 pp 33 to see linearization

of a steadily rotating system. This system steadily rotates

about the 2 axis with speed W.

the linearized states are not consistent with Hughs notation so

that the mass matrix retains its nominal form.

x1 tilt angle (th2)

x2 dev. from nominal sault angle (th3)

x3 twist angle (th1)

x4 dev of both arms in anit-symmetric mode form Phi0

x5 dev of both arms in symmetric mode form Phi0

*)

eulerreplace = {wb1[t]->wca[[1]], wb2[t]->wca[[2]], wb3[t]->wca[[3]],

wb1'[t]->wcadot[[1]], wb2'[t]->wcadot[[2]], wb3'[t]->wcadot[[3]]};

linname = {phia[t] -> x4, phis[t] -> x5, \

th1[t] -> x3, th2[t] -> x1, th3[t] -> x2, \

th1'[t] -> xdot3 W, th2'[t] -> xdot1 W, th3'[t] -> xdot2 W, \

phia'[t] -> xdot4 W, phis'[t] -> xdot5 W, \

th1''[t] -> xddot3 (W W), th2''[t] -> xddot1 (W W), th3''[t] -> xddot2 (W W), \

phia''[t] -> xddot4 (W W), \

phis''[t] -> xddot5 (W W)};

lincond = {xdot1->0, xdot2->0, xdot3->0, xdot4->0, xdot5->0,\
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x1->0, x2->0, x3->0, x4->0, x5->phi0};

eulfi1 = Expand[sfi1/.eulerreplace];

eulfi2 = Expand[sfi2/.eulerreplace];

eulfi3 = Expand[sfi3/.eulerreplace];

eulfi4 = Expand[sfi4/.eulerreplace];

eulfi5 = Expand[sfi5/.eulerreplace];

renfi1 = Expand[eulfi1/.linname];

renfi2 = Expand[eulfi2/.linname];

renfi3 = Expand[eulfi3/.linname];

renfi4 = Expand[eulfi4/.linname];

renfi5 = Expand[eulfi5/.linname];

renfe1 = Expand[efe1/.linname];

renfe2 = Expand[efe2/.linname];

renfe3 = Expand[efe3/.linname];

renfe4 = Expand[efe4/.linname];

renfe5 = Expand[efe5/.linname];

mm11 = Coefficient[renfi1,xddot1]/.lincond;

mm12 = Coefficient[renfi1,xddot2]/.lincond;

mm13 = Coefficient[renfi1,xddot3]/.lincond;

mm14 = Coefficient[renfi1,xddot4]/.lincond;

mm15 = Coefficient[renfi1,xddot5]/.lincond;

mm21 = Coefficient[renfi2,xddot1]/.lincond;

mm22 = Coefficient[renfi2,xddot2]/.lincond;
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mm23 = Coefficient[renfi2,xddot3]/.lincond;

mm24 = Coefficient[renfi2,xddot4]/.lincond;

mm25 = Coefficient[renfi2,xddot5]/.lincond;

mm31 = Coefficient[renfi3,xddot1]/.lincond;

mm32 = Coefficient[renfi3,xddot2]/.lincond;

mm33 = Coefficient[renfi3,xddot3]/.lincond;

mm34 = Coefficient[renfi3,xddot4]/.lincond;

mm35 = Coefficient[renfi3,xddot5]/.lincond;

mm41 = Coefficient[renfi4,xddot1]/.lincond;

mm42 = Coefficient[renfi4,xddot2]/.lincond;

mm43 = Coefficient[renfi4,xddot3]/.lincond;

mm44 = Coefficient[renfi4,xddot4]/.lincond;

mm45 = Coefficient[renfi4,xddot5]/.lincond;

mm51 = Coefficient[renfi5,xddot1]/.lincond;

mm52 = Coefficient[renfi5,xddot2]/.lincond;

mm53 = Coefficient[renfi5,xddot3]/.lincond;

mm54 = Coefficient[renfi5,xddot4]/.lincond;

mm55 = Coefficient[renfi5,xddot5]/.lincond;

(* this gets the d.c. forcing part *)

dc1 = renfi1/.lincond;

dc2 = renfi2/.lincond;

dc3 = renfi3/.lincond;

dc4 = renfi4/.lincond;
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dc5 = renfi5/.lincond;

c1 = renfi1/.{xddot1->0,xddot2->0,xddot3->0,xddot4->0,xddot5->0};

c2 = renfi2/.{xddot1->0,xddot2->0,xddot3->0,xddot4->0,xddot5->0};

c3 = renfi3/.{xddot1->0,xddot2->0,xddot3->0,xddot4->0,xddot5->0};

c4 = renfi4/.{xddot1->0,xddot2->0,xddot3->0,xddot4->0,xddot5->0};

c5 = renfi5/.{xddot1->0,xddot2->0,xddot3->0,xddot4->0,xddot5->0};

dcdx11 = D[c1,x1]/.lincond;

dcdx12 = D[c1,x2]/.lincond;

dcdx13 = D[c1,x3]/.lincond;

dcdx14 = D[c1,x4]/.lincond;

dcdx15 = D[c1,x5]/.lincond;

dcdx21 = D[c2,x1]/.lincond;

dcdx22 = D[c2,x2]/.lincond;

dcdx23 = D[c2,x3]/.lincond;

dcdx24 = D[c2,x4]/.lincond;

dcdx25 = D[c2,x5]/.lincond;

dcdx31 = D[c3,x1]/.lincond;

dcdx32 = D[c3,x2]/.lincond;

dcdx33 = D[c3,x3]/.lincond;

dcdx34 = D[c3,x4]/.lincond;

dcdx35 = D[c3,x5]/.lincond;

dcdx41 = D[c4,x1]/.lincond;

dcdx42 = D[c4,x2]/.lincond;
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dcdx43 = D[c4,x3]/.lincond;

dcdx44 = D[c4,x4]/.lincond;

dcdx45 = D[c4,x5]/.lincond;

dcdx51 = D[c5,x1]/.lincond;

dcdx52 = D[c5,x2]/.lincond;

dcdx53 = D[c5,x3]/.lincond;

dcdx54 = D[c5,x4]/.lincond;

dcdx55 = D[c5,x5]/.lincond;

dcdxdot11 = D[c1,xdot1]/.lincond;

dcdxdot12 = D[c1,xdot2]/.lincond;

dcdxdot13 = D[c1,xdot3]/.lincond;

dcdxdot14 = D[c1,xdot4]/.lincond;

dcdxdot15 = D[c1,xdot5]/.lincond;

dcdxdot21 = D[c2,xdot1]/.lincond;

dcdxdot22 = D[c2,xdot2]/.lincond;

dcdxdot23 = D[c2,xdot3]/.lincond;

dcdxdot24 = D[c2,xdot4]/.lincond;

dcdxdot25 = D[c2,xdot5]/.lincond;

dcdxdot31 = D[c3,xdot1]/.lincond;

dcdxdot32 = D[c3,xdot2]/.lincond;

dcdxdot33 = D[c3,xdot3]/.lincond;

dcdxdot34 = D[c3,xdot4]/.lincond;

dcdxdot35 = D[c3,xdot5]/.lincond;
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dcdxdot41 = D[c4,xdot1]/.lincond;

dcdxdot42 = D[c4,xdot2]/.lincond;

dcdxdot43 = D[c4,xdot3]/.lincond;

dcdxdot44 = D[c4,xdot4]/.lincond;

dcdxdot45 = D[c4,xdot5]/.lincond;

dcdxdot51 = D[c5,xdot1]/.lincond;

dcdxdot52 = D[c5,xdot2]/.lincond;

dcdxdot53 = D[c5,xdot3]/.lincond;

dcdxdot54 = D[c5,xdot4]/.lincond;

dcdxdot55 = D[c5,xdot5]/.lincond;

(* this is the linearization of the external forces *)

dtaudxdot11 = D[renfe1,xdot1]/.lincond;

dtaudxdot12 = D[renfe1,xdot2]/.lincond;

dtaudxdot13 = D[renfe1,xdot3]/.lincond;

dtaudxdot14 = D[renfe1,xdot4]/.lincond;

dtaudxdot15 = D[renfe1,xdot5]/.lincond;

dtaudxdot21 = D[renfe2,xdot1]/.lincond;

dtaudxdot22 = D[renfe2,xdot2]/.lincond;

dtaudxdot23 = D[renfe2,xdot3]/.lincond;

dtaudxdot24 = D[renfe2,xdot4]/.lincond;

dtaudxdot25 = D[renfe2,xdot5]/.lincond;
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dtaudxdot31 = D[renfe3,xdot1]/.lincond;

dtaudxdot32 = D[renfe3,xdot2]/.lincond;

dtaudxdot33 = D[renfe3,xdot3]/.lincond;

dtaudxdot34 = D[renfe3,xdot4]/.lincond;

dtaudxdot35 = D[renfe3,xdot5]/.lincond;

dtaudxdot41 = D[renfe4,xdot1]/.lincond;

dtaudxdot42 = D[renfe4,xdot2]/.lincond;

dtaudxdot43 = D[renfe4,xdot3]/.lincond;

dtaudxdot44 = D[renfe4,xdot4]/.lincond;

dtaudxdot45 = D[renfe4,xdot5]/.lincond;

dtaudxdot51 = D[renfe5,xdot1]/.lincond;

dtaudxdot52 = D[renfe5,xdot2]/.lincond;

dtaudxdot53 = D[renfe5,xdot3]/.lincond;

dtaudxdot54 = D[renfe5,xdot4]/.lincond;

dtaudxdot55 = D[renfe5,xdot5]/.lincond;

dtaudx11 = D[renfe1,x1]/.lincond;

dtaudx12 = D[renfe1,x2]/.lincond;

dtaudx13 = D[renfe1,x3]/.lincond;

dtaudx14 = D[renfe1,x4]/.lincond;

dtaudx15 = D[renfe1,x5]/.lincond;

dtaudx21 = D[renfe2,x1]/.lincond;

dtaudx22 = D[renfe2,x2]/.lincond;

dtaudx23 = D[renfe2,x3]/.lincond;
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dtaudx24 = D[renfe2,x4]/.lincond;

dtaudx25 = D[renfe2,x5]/.lincond;

dtaudx31 = D[renfe3,x1]/.lincond;

dtaudx32 = D[renfe3,x2]/.lincond;

dtaudx33 = D[renfe3,x3]/.lincond;

dtaudx34 = D[renfe3,x4]/.lincond;

dtaudx35 = D[renfe3,x5]/.lincond;

dtaudx41 = D[renfe4,x1]/.lincond;

dtaudx42 = D[renfe4,x2]/.lincond;

dtaudx43 = D[renfe4,x3]/.lincond;

dtaudx44 = D[renfe4,x4]/.lincond;

dtaudx45 = D[renfe4,x5]/.lincond;

dtaudx51 = D[renfe5,x1]/.lincond;

dtaudx52 = D[renfe5,x2]/.lincond;

dtaudx53 = D[renfe5,x3]/.lincond;

dtaudx54 = D[renfe5,x4]/.lincond;

dtaudx55 = D[renfe5,x5]/.lincond;
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A.3 Parameters of the Five D.O.F. Linear Model

In this section I present the algebraic expressions for the elements of the linear dy-

namic model used to study passive layout stability. These elements were computed

from the symbolic linearization of the full non-linear dynamic equations of the �ve

d.o.f. system. The equations of motion and the associated matrices are repeated from

Chapter 4 Equations 4.1-4.6.

M �x+ 
(G +D) _x + 
2(K +K 0)x = 0

where

M =

2
6666666666664

m11 0 m13 0 0

0 m22 0 0 0

m13 0 m33 0 0

0 0 0 m44 0

0 0 0 0 m55

3
7777777777775

G =

2
6666666666664

0 g12 0 0 0

�g12 0 g23 0 0

0 �g23 0 0 0

0 0 0 0 g45

0 0 0 �g45 0

3
7777777777775

D =

2
6666666666664

0 0 0 0 0

0 0 0 0 0

0 0 2b0
sh
=
 0 0

0 0 0 0 0

0 0 0 0 2b0
sh
=


3
7777777777775
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K =

2
6666666666664

k11 0 k13 0 0

0 k22 0 0 0

k31 0 k33 0 0

0 0 0 0 0

0 0 0 0 k55

3
7777777777775

K 0 =

2
6666666666664

0 0 0 0 0

0 0 0 0 0

0 0 2ksh=

2 0 0

0 0 0 0 0

0 0 0 0 2ksh=

2

3
7777777777775

The state vector, x, is comprised of (in order): � - the tilt angle, 
 - the twist angle,

�a - the asymmetric deviation of the two arms from the nominal arm angle, � - the

deviation of the somersault angle from the frame steadily rotating at rate 
, and �s

- the symmetric deviation of the two arms from the nominal arm angle.

The individual elements of the above matrices are given below.

m11 = (Ib1 + 2 Il1 + 2 rb2
2ml + 2 rb3

2ml +
8 rb3

2m3
l

(2ml +mb)
2
+

4 rb3
2m2

l
mb

(2ml +mb)
2
�

8 rb3
2m2

l

2ml +mb

� 4 rl3 rb3 ml cos(�0 )�
16 rl3 rb3 m

3
l
cos(�0 )

(2ml +mb)
2

�

8 rl3 rb3 m
2
l
mb cos(�0 )

(2ml +mb)
2

+
16 rl3 rb3 m

2
l
cos(�0 )

2ml +mb

+ 2 rl3
2ml cos(�0 )

2
+

8 rl3
2m3

l
cos(�0 )

2

(2ml +mb)
2

+
4 rl3

2m2
l
mb cos(�0 )

2

(2ml +mb)
2

�

8 rl3
2m2

l
cos(�0 )

2

2ml +mb

+ 4 rl3 rb2 ml sin(�0 ) + 2 rl3
2ml sin(�0 )

2
)

m13 = (2 Il1 � 2 rl3 rb3 ml cos(�0 )�
8 rl3 rb3 m

3
l
cos(�0 )

(2ml +mb)
2 �

4 rl3 rb3 m
2
l
mb cos(�0 )

(2ml +mb)
2 +

8 rl3 rb3 m
2
l
cos(�0 )

2ml +mb

+ 2 rl3
2ml cos(�0 )

2
+
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8 rl3
2m3

l
cos(�0 )

2

(2ml +mb)
2 +

4 rl3
2m2

l
mb cos(�0 )

2

(2ml +mb)
2 �

8 rl3
2m2

l
cos(�0 )

2

2ml +mb

+

2 rl3 rb2 ml sin(�0 ) + 2 rl3
2ml sin(�0 )

2
)

m22 = (Ib3 + 2 rb2
2ml + 2 Il3 cos(�0 )

2
+ 4 rl3 rb2 ml sin(�0 ) +

2 Il2 sin(�0 )
2
+ 2 rl3

2ml sin(�0 )
2
)

m33 = (2 Il1 + 2 rl3
2ml cos(�0 )

2
+
8 rl3

2m3
l
cos(�0 )

2

(2ml +mb)
2

+

4 rl3
2m2

l
mb cos(�0 )

2

(2ml +mb)
2 �

8 rl3
2m2

l
cos(�0 )

2

2ml +mb

+ 2 rl3
2ml sin(�0 )

2
)

m44 = (Ib2 + 2 rb3
2ml +

8 rb3
2m3

l

(2ml +mb)
2 +

4 rb3
2m2

l
mb

(2ml +mb)
2 �

8 rb3
2m2

l

2ml +mb

�

4 rl3 rb3 ml cos(�0 )�
16 rl3 rb3 m

3
l
cos(�0 )

(2ml +mb)
2 �

8 rl3 rb3 m
2
l
mb cos(�0 )

(2ml +mb)
2 +

16 rl3 rb3 m
2
l
cos(�0 )

2ml +mb

+ 2 Il2 cos(�0 )
2
+ 2 rl3

2ml cos(�0 )
2
+

8 rl3
2m3

l
cos(�0 )

2

(2ml +mb)
2 +

4 rl3
2m2

l
mb cos(�0 )

2

(2ml +mb)
2 �

8 rl3
2m2

l
cos(�0 )

2

2ml +mb

+

2 Il3 sin(�0 )
2
)

m55 = (2 Il1 + 2 rl3
2ml cos(�0 )

2
+ 2 rl3

2ml sin(�0 )
2
+
8 rl3

2m3
l
sin(�0 )

2

(2ml +mb)
2

+

4 rl3
2m2

l
mb sin(�0 )

2

(2ml +mb)
2 �

8 rl3
2m2

l
sin(�0 )

2

2ml +mb

)

g12 = (Ib1 � Ib2 + Ib3 + 2 Il1 + 4 rb2
2ml � 2 Il2 cos(�0 )

2
+

2 Il3 cos(�0 )
2
+ 8 rl3 rb2 ml sin(�0 ) + 2 Il2 sin(�0 )

2
� 2 Il3 sin(�0 )

2
+

4 rl3
2ml sin(�0 )

2
)
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g23 = (�2 Il1 + 2 Il2 cos(�0 )
2
� 2 Il3 cos(�0 )

2
� 4 rl3 rb2 ml sin(�0 )�

2 Il2 sin(�0 )
2
+ 2 Il3 sin(�0 )

2
� 4 rl3

2ml sin(�0 )
2
)

g45 = (4 rl3 rb3 ml sin(�0 ) +
16 rl3 rb3 m

3
l
sin(�0 )

(2ml +mb)
2 +

8 rl3 rb3 m
2
l
mb sin(�0 )

(2ml +mb)
2 �

16 rl3 rb3 m
2
l
sin(�0 )

2ml +mb

� 4 Il2 cos(�0 ) sin(�0 ) + 4 Il3 cos(�0 ) sin(�0 )�

4 rl3
2ml cos(�0 ) sin(�0 )�

16 rl3
2m3

l
cos(�0 ) sin(�0 )

(2ml +mb)
2 �

8 rl3
2m2

l
mb cos(�0 ) sin(�0 )

(2ml +mb)
2 +

16 rl3
2m2

l
cos(�0 ) sin(�0 )

2ml +mb

)

k11 = (Ib2 � Ib3 � 2 rb2
2ml + 2 rb3

2ml +
8 rb3

2m3
l

(2ml +mb)
2 +

4 rb3
2m2

l
mb

(2ml +mb)
2 �

8 rb3
2m2

l

2ml +mb

� 4 rl3 rb3 ml cos(�0 )�
16 rl3 rb3 m

3
l
cos(�0 )

(2ml +mb)
2

�

8 rl3 rb3 m
2
l
mb cos(�0 )

(2ml +mb)
2 +

16 rl3 rb3 m
2
l
cos(�0 )

2ml +mb

+ 2 Il2 cos(�0 )
2
�

2 Il3 cos(�0 )
2
+ 2 rl3

2ml cos(�0 )
2
+
8 rl3

2m3
l
cos(�0 )

2

(2ml +mb)
2 +

4 rl3
2m2

l
mb cos(�0 )

2

(2ml +mb)
2 �

8 rl3
2m2

l
cos(�0 )

2

2ml +mb

� 4 rl3 rb2 ml sin(�0 )�

2 Il2 sin(�0 )
2
+ 2 Il3 sin(�0 )

2
� 2 rl3

2ml sin(�0 )
2
)

k13 = (�2 rl3 rb3 ml cos(�0 )�
8 rl3 rb3 m

3
l
cos(�0 )

(2ml +mb)
2 �

4 rl3 rb3 m
2
l
mb cos(�0 )

(2ml +mb)
2 +

8 rl3 rb3 m
2
l
cos(�0 )

2ml +mb

+ 2 Il2 cos(�0 )
2
�

2 Il3 cos(�0 )
2
+ 2 rl3

2ml cos(�0 )
2
+
8 rl3

2m3
l
cos(�0 )

2

(2ml +mb)
2 +

4 rl3
2m2

l
mb cos(�0 )

2

(2ml +mb)
2 �

8 rl3
2m2

l
cos(�0 )

2

2ml +mb

� 2 rl3 rb2 ml sin(�0 )�

2 Il2 sin(�0 )
2
+ 2 Il3 sin(�0 )

2
� 2 rl3

2ml sin(�0 )
2
)
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k22 = (�Ib1 + Ib2 � 2 Il1 � 2 rb2
2ml + 2 Il2 cos(�0 )

2
� 4 rl3 rb2 ml sin(�0 ) +

2 Il3 sin(�0 )
2
� 2 rl3

2ml sin(�0 )
2
)

k33 = (�2 rl3 rb3 ml cos(�0 )�
8 rl3 rb3 m

3
l
cos(�0 )

(2ml +mb)
2 �

4 rl3 rb3 m
2
l
mb cos(�0 )

(2ml +mb)
2 +

8 rl3 rb3 m
2
l
cos(�0 )

2ml +mb

+ 2 Il2 cos(�0 )
2
� 2 Il3 cos(�0 )

2
+ 2 rl3

2ml cos(�0 )
2
+

8 rl3
2m3

l
cos(�0 )

2

(2ml +mb)
2

+
4 rl3

2m2
l
mb cos(�0 )

2

(2ml +mb)
2

�
8 rl3

2m2
l
cos(�0 )

2

2ml +mb

�

2 Il2 sin(�0 )
2
+ 2 Il3 sin(�0 )

2
� 2 rl3

2ml sin(�0 )
2
)

k55 = (�2 rl3 rb3 ml cos(�0 )�
8 rl3 rb3 m

3
l
cos(�0 )

(2ml +mb)
2 �

4 rl3 rb3 m
2
l
mb cos(�0 )

(2ml +mb)
2 +

8 rl3 rb3 m
2
l
cos(�0 )

2ml +mb

+ 2 Il2 cos(�0 )
2
� 2 Il3 cos(�0 )

2
+ 2 rl3

2ml cos(�0 )
2
+

8 rl3
2m3

l
cos(�0 )

2

(2ml +mb)
2 +

4 rl3
2m2

l
mb cos(�0 )

2

(2ml +mb)
2 �

8 rl3
2m2

l
cos(�0 )

2

2ml +mb

�

2 Il2 sin(�0 )
2
+ 2 Il3 sin(�0 )

2
� 2 rl3

2ml sin(�0 )
2
�

8 rl3
2m3

l
sin(�0 )

2

(2ml +mb)
2

�

4 rl3
2m2

l
mb sin(�0 )

2

(2ml +mb)
2 +

8 rl3
2m2

l
sin(�0 )

2

2ml +mb
)
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A.4 Analytic Solution

Solving for the torque-free motion of a rigid body tumbling in space is one of the

classic problems of dynamics. Given the limited value of numerical integration as

a means of studying dynamics problems before the advent of the digital computer,

much e�ort was applied to �nding an analytic solution to the governing equations of

motion. The analytic solution provides the angular velocity of the body in a body

�xed principle axes system and the attitude of the principle axis system with respect

to an inertial coordinate system [Hughes 86]. The contribution that these analytic

solutions o�er today is a concise description of the minimal number of states and

non-dimensional parameters that govern rigid body rotation. The analytic solutions

also give rise to elegant geometric interpretations of the motion that helps provide

some intuition of this otherwise complex movement.

I present the analytic solution for a tri-inertial body. A tri-inertial body is one

in which each of the principal inertias is distinct. Without loss of generality for

the rest of this section I will insist that, I1 > I2 > I3. The analytic solution for

rotation of a tri-inertial body uses the Jacobian elliptic functions. Elliptic functions

are a generalization of the circular functions, sine and cosine, that originated from

an e�ort to compute the circumference of an ellipse [Bowman 61]. The Euler angles

describing the body attitude with respect to inertial space can also be written using

elliptic functions.

Two integrals of motion are essential in the analytic solution for torque free rigid

body motion. These represent conservation of angular momentum~h and conservation

of kinetic energy T .

h2 = I21!
2
1 + I22!

2
2 + I23!

2
3 (A:1)

2T = I1!
2
1 + I2!

2
2 + I3!

2
3 (A:2)

For a �xed angular momentum, the kinetic energy of rotation is bounded above and

below by the kinetic energy of two pure spin solutions. The highest possible energy
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state corresponds to rotation about the minor principal axis and the lowest energy

state corresonds to rotation about the major principal axis. A continuum of solutions

of rotational motion of a rigid body exist, each corresponding to a di�erent energy

level, between these two bounds,

h2

2I1
� T �

h2

2I3

The qualitative nature of the solution is divided into two regions between these bounds

and separated by the solution of pure spin about the middle principal axis. The

following parameter is useful in distinquishing between the two qualitatively di�erent

solutions.

I =
h2

2T

I has units of inertia. The bounds on I corresponding to the bounds on energy are

I1 � I � I3

I = I1, I = I2, and I = I3 correspond to the pure spin solutions.

The maximum amplitude of the body �xed angular velocities can be obtained

directly from the two integrals of motion.

!1m = h

"
I � I3

II1(I1 � I3)

#1=2
(A.3)

!3m = h

"
I1 � I

II3(I1 � I3)

#1=2
(A.4)

!2m = h

"
I1 � I

II2(I1 � I2)

#1=2
(I1 � I > I2) (A.5)

!2m =
h

I2
(I = I2) (A.6)

!2m = h

"
I � I3

II2(I2 � I3)

#1=2
(I2 > I � I3) (A.7)
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Next, the analytic solution for the angular velocity is given for the case of I1 � I > I2

!1 = s1!1mdn(� ; k) (A.8)

!2 = s2!2msn(� ; k) (A.9)

!3 = s3!3mcn(� ; k) (A.10)

� = h

"
(I1 � I2)(I � I3)

II1I2I3

#1=2
(t� t0) (A.11)

k =

"
(I2 � I3)(I1 � I)

(I1 � I2)(I � I3)

#1=2
(A.12)

and similarly for I2 > I � I3

!1 = s1!1mcn(� ; k) (A.13)

!2 = s2!2msn(� ; k) (A.14)

!3 = s3!3mdn(� ; k) (A.15)

� = h

"
(I2 � I3)(I1 � I)

II1I2I3

#1=2
(t� t0) (A.16)

k =

"
(I1 � I2)(I � I3)

(I2 � I3)(I1 � I)

#1=2
(A.17)

The coe�cients s1; s2 and s3 are all �1 such that s1s2s3 = �1, allowing four com-

binations of signs. The Jacobian elliptic functions, (sn; cn and dn), depend on the

scaled time, � and the modulus k. When k� > 0 sn; cn; dn� > sin; cos; 1.

To complete the solution of the tumbling motion we require the attitude of the

body as a function of time. Since angular momentum is conserved, the inertially

�xed angular momentum vector provides the reference with which to measure body

attitude. The components of angular momentum as measured in the body �xed axis
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system is given by 2
666664
h1

h2

h3

3
777775 =

2
666664
I1!1

I2!2

I3!3

3
777775 (A:18)

Another expression for this vector can be obtained by projecting the inertially �xed

angular momentum vector onto the body �xed axes using the matrix Cbi (2.2). Since

the orientation of the inertial coordinate system is arbitrary, we choose it to oriented

such that the angular momentum vector is oriented intirely along the inertial y axis.

With this assumption in mind, equating the components of these two expressions for

angular momentum gives 2
666664
I1!1

I2!2

I3!3

3
777775 =

2
666664
S	C�h

C	C�h

�S�h

3
777775 (A:19)

Solutions for two of the Euler angles are available immediately as

� = sin�1
�
I3!3

h

�
(A.20)

	 = tan�1
�
I1!1

I2!2

�
(A.21)

The solultion for � requires signi�cantly more work. First we use equation (2.4) to

substitute for !i in (A.19).

I1(S	C�
_� + C	

_�) = S	C�h

I2(C	C�
_� � S	 _�) = C	C�h

I3(�S� _� + _	) = �S�h

Solving for _� from the �rst two of these equations yields

_� =
h(I2S

2
	 + I1C

2
	)

I1I2
(A:22)
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To proceed we need an expression for C2
	 and S2

	. Using equation A.21, we obtain

tan	2 =
(I1!1)

2

(I2!2)2

Using trigonometric identities we obtain

sin2	 =
(I1!1)

2

(I1!1)2 + (I2!2)2
(A.23)

cos2	 =
(I2!2)

2

(I1!1)2 + (I2!2)2
(A.24)

Using these in equation A.22 we obtain

_� = h

"
I1!

2
1 + I2!

2
2

(I1!1)2 + (I2!2)2

#

Using equation 2.15 for the denominator and equation 2.16 for the numerator, _� can

be written as

_� = h

"
2T � I3!

2
3

h2 � (I3!3)2

#

At this point we have to specialize the solution for one of the two qualitatively

di�erent cases. First we solve for the case I1 � I > I2. Substituting for !3 from

equation A.10

_� = h

"
2T � I3 s

2
3 !

2
3mcn

2

h2 � I23 s
2
3 !

2
3mcn

2

#

When we use the identity sn2 + cn2 = 1 we obtain,

_� =

"
L1 + L2 sn

2�

L3 + L4 sn2�

#
(A:25)

where

L1 = h(2T � I3!
2
3m) (A.26)

L2 = hI3!
2
3m (A.27)
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L3 = h2 � I23!
2
3m (A.28)

L4 = I23!
2
3m (A.29)

Integrating the equation above for _� will provide the somersault angle as a function

of time. This integral can be written in terms of the Legendre elliptic integrals.

In a similar fashion we can solve for the somersault angle for the second case

I2 > I � I3. In this case substitute !3 from equation A.15 into A.4 and use the

following identity: dn2 = 1 � k2sn2. This results in the same form for _� with new

coe�cients.

_� =

"
L1 + L2 sn

2�

L3 + L4 sn2�

#

where

L1 = h(2T � I3!
2
3m) (A.30)

L2 = hI3!
2
3mk

2 (A.31)

L3 = h2 � I23!
2
3m (A.32)

L4 = I23!
2
3mk

2 (A.33)

To integrate equation A.25 we split the integrand into two parts to obtain

� =
L1

L3

Z
dt

1 + n sn2
+

L2

L3 n

Z
tf

t0

n sn2dt

1 + n sn2

where n = L1=L3. We would like to integrate this equation with respect to the scaled

time � = C�t (A.11 or A.16) since sn = sn(� ). Therefore, we compute the di�erential

dt = d�

C�
and substitute it into the integral

� =
L1

L3C�

Z
d�

1 + n sn2
+

L2

L3C� n

Z
tf

t0

n sn2d�

1 + n sn2

To �nd the change in somersault angle in a set period of time we de�ne the limits of
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integration to be the initial time, t0, and the �nal time, tf or equivalently �0 and �f .

The change in somersault angle is then given by the following integral

�f � �0 =
L1

L3C�

Z
�f

�0

d�

1 + n sn2
+

L2

L3C� n

Z
�f

�0

n sn2d�

1 + n sn2

These integrals can be expressed as standard elliptic integrals

Z
�

0

d�

1 + n sn2(� )
= �(k; n; �)

and Z
�

0

n sn2(� )d�

1 + n sn2(� )
= � ��(k; n; �)

where sin� = sn � . Therefore, breaking up the limits of integration we obtain,

�f��0 =
L1

L3C�

"Z
�f

0

d�

1 + nsn2
�

Z
�0

0

d�

1 + nsn2

#
+

L2

L3C� n

"Z
�f

0

nsn2d�

1 + nsn2
�

Z
�0

0

nsn2d�

1 + nsn2

#

which is written compactly as,

�f��0 =
L1

L3C�
[�(k; n; �f)��(k; n; �0)]+

L2

L3C� n
[(�f ��(k; n; �f))� (�0 ��(k; n; �0))]

To compute these integrals we must solve for the initial scaled time, �0, for a given

initial state. To this end, the angular velocity, !2, is given by the elliptic function sn

!2(� ) = s2 !2msn(� ; k)

For a given value of !2=(!2m s2) we need to compute � . If we assume that � = 0

when !2 is zero and increasing then by de�nition s2 = 1. The inverse of the Jacobian

elliptic function, sn, is the Jacobian elliptic integral of the �rst kind.

� =
Z !2

!2m s2

0

dxq
(1 � x2)(1� k2x2)
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Computation of this integral allows us to compute �0 for a given initial !2.
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