
Specialization of Perceptual Processes

Ian D. Horswill

December 6, 1994

Abstract

In this report, I discuss the use of vision to support concrete, everyday activity. I

will argue that a variety of interesting tasks can be solved using simple and inexpen-

sive vision systems. I will provide a number of working examples in the form of a

state-of-the-art mobile robot, Polly, which uses vision to give primitive tours of the

seventh
oor of the MIT AI Laboratory. By current standards, the robot has a broad

behavioral repertoire and is both simple and inexpensive (the complete robot was

built for less than $20,000 using commercial board-level components).

The approach I will use will be to treat the structure of the agent's activity|

its task and environment|as positive resources for the vision system designer. By

performing a careful analysis of task and environment, the designer can determine

a broad space of mechanisms which can perform the desired activity. My principal

thesis is that for a broad range of activities, the space of applicable mechanisms will

be broad enough to include a number mechanisms which are simple and economical.

The simplest mechanisms that solve a given problem will typically be quite spe-

cialized to that problem. One thus worries that building simple vision systems will be

require a great deal of ad-hoc engineering that cannot be transferred to other prob-

lems. My second thesis is that specialized systems can be analyzed and understood in

a principled manner, one that allows general lessons to be extracted from specialized

systems. I will present a general approach to analyzing specialization through the use

of transformations that provably improve performance. By demonstrating a sequence

of transformations that derive a specialized system from a more general one, we can

summarize the specialization of the former in a compact form that makes explicit

the additional assumptions that it makes about its environment. The summary can

be used to predict the performance of the system in novel environments. Individual

transformations can be recycled in the design of future systems.

Contents

I Introduction and Approach 12

1 Introduction 13

1.1 Example : 14

1.1.1 A coloring algorithm for navigation : : : : : : : : : : : : : : : 17

1.1.2 Analysis of the coloring algorithm : : : : : : : : : : : : : : : : 18

1.2 Preview of results : 19

1.2.1 Lightweight vision : 19

1.2.2 Mobile robotics : 20

1.2.3 Analysis of specialization : 21

1.3 Structure of this report : 21

2 Introduction to the Polly system 23

2.1 Task and environment : 23

2.2 Software architecture : 25

2.3 Detailed example : 27

2.3.1 Patrolling : 27

2.3.2 Giving tours : 29

2.4 Programming language issues : 30

2.5 Hardware design : 31

2.6 Other visually guided mobile robots : : : : : : : : : : : : : : : : : : : 34

2.6.1 Systems with geometric maps : : : : : : : : : : : : : : : : : : 34

2.6.2 Non-geometric systems : 35

2.6.3 Outdoor road following : 36

3 Lightweight vision 38

3.1 Background : 38

3.1.1 Problems with reconstruction : : : : : : : : : : : : : : : : : : 39

3.1.2 Active vision and task-based vision : : : : : : : : : : : : : : : 41

3.2 Building lightweight vision systems : : : : : : : : : : : : : : : : : : : 42

3.2.1 Resources for simplifying vision : : : : : : : : : : : : : : : : : 42

3.2.2 Distributed representation and mediation : : : : : : : : : : : : 44

1

3.3 Other related work : 44

3.4 Summary : 46

II Formal analysis of specialization 47

4 Introduction to part II 48

4.1 Background : 48

4.1.1 Loopholes in life : 48

4.1.2 Computational minimalism : : : : : : : : : : : : : : : : : : : 50

4.2 Transformational analysis : 50

4.3 Synthesis versus post hoc analysis : 52

4.4 Related work : 52

4.5 How to read part II : 54

5 Framework 56

5.1 Agents, environments, and equivalence : : : : : : : : : : : : : : : : : 56

5.2 Specialization as optimization : 56

5.3 Simple example : 57

6 Analysis of simple perceptual systems 60

6.1 Derivability and equivalence : 61

6.2 Unconditional equivalence transformations : : : : : : : : : : : : : : : 62

6.3 Transformations over simple vision systems : : : : : : : : : : : : : : : 63

7 Analysis of action selection 69

7.1 Environments : 69

7.1.1 Discrete control problems : 70

7.1.2 Cartesian products : 70

7.1.3 Solvability of separable DCPs : : : : : : : : : : : : : : : : : : 71

7.2 Agents : 72

7.2.1 Hidden state and sensors : 73

7.2.2 Externalization of internal state : : : : : : : : : : : : : : : : : 73

7.3 Progress functions : 73

7.4 Construction of DCP solutions by decomposition : : : : : : : : : : : 75

7.4.1 Product DCPs : 75

7.4.2 Reduction : 76

III The design of Polly 78

8 The core visual system 79

2

8.1 Computation of depth : 81

8.2 Detection of carpet boundaries : 83

8.3 Vanishing-point detection : 85

8.4 Person detection : 89

8.4.1 Symmetry detection : 89

8.4.2 The protrusion test : 90

8.5 Gesture interpretation : 91

8.5.1 Foot waving : 91

8.5.2 The �rst nod detector : 91

8.5.3 The second nod detector : 95

8.6 Summary : 95

9 Low level navigation 97

9.1 Speed controller : 97

9.2 Corridor follower : 98

9.2.1 Aligning with the corridor : 99

9.2.2 Avoiding the walls : 100

9.2.3 Integrating the control signals : : : : : : : : : : : : : : : : : : 100

9.3 Wall follower : 101

9.4 General obstacle avoidance : 101

9.5 Ballistic turn controller : 102

9.6 Steering arbitration : 102

9.7 The FEP bump re
ex : 102

9.8 Odometric sensing : 103

10 High level navigation 104

10.0.1 Derivation from a geometric path planner : : : : : : : : : : : 105

10.1 Navigation in Polly : 107

10.1.1 The navigator : 108

10.1.2 The unwedger : 109

10.2 Place recognition : 109

10.3 Patrolling : 114

10.4 Sequencers and the plan language : 114

10.5 Giving tours : 117

IV Results 119

11 Experiments with Polly 120

11.1 Speed : 121

11.1.1 Processing speed : 121

11.1.2 Driving speed : 122

3

11.2 Complete test runs : 123

11.3 Other environments : 124

11.3.1 Tech Square : 128

11.3.2 The Brown CS department : 130

11.4 Burn-in tests : 130

11.5 Limitations, failure modes, and useful extensions : : : : : : : : : : : : 133

11.5.1 Low-level navigation : 133

11.5.2 The navigator : 134

11.5.3 The unwedger : 134

11.5.4 Place recognition : 134

11.5.5 Camera limitations : 135

11.5.6 Multi-modal sensing : 135

12 Summary and conclusions 136

12.1 Why Polly works : 136

12.2 Lightweight vision : 137

12.3 Studying the world : 138

A The frame database 140

B Log of the last burn-in run 146

C Polly's source code 148

C.1 The main loop : 148

C.1.1 tour-demo.lisp : 150

C.2 The core vision system : 151

C.2.1 vision.lisp : 152

C.2.2 library.lisp : 159

C.3 Low level navigation : 162

C.3.1 motor-control.lisp : 163

C.4 High level navigation : 169

C.4.1 place-recognition.lisp : 169

C.4.2 kluges.lisp : 172

C.4.3 navigator.lisp : 173

C.4.4 wander.lisp : 175

C.5 Giving tours : 176

C.5.1 sequencers.lisp : 176

C.5.2 interact.lisp : 178

C.6 Voice : 180

C.6.1 chatter.lisp : 180

C.6.2 pith.lisp : 182

4

List of Figures

1.1 O�ce image : 15

1.2 Texture in the o�ce scene. : 16

1.3 Viewing a textureless cli� : 17

1.4 The carpet blob. : 18

2.1 Patrol pattern : 25

2.2 Gross anatomy of Polly : 26

2.3 High level states : 26

2.4 Leaving the o�ce : 28

2.5 Polly's habitat : 29

2.6 Basic components and layout of the robot : : : : : : : : : : : : : : : 32

2.7 Computational components and data-paths within the robot hardware 32

6.1 Coordinate system for GPC : 64

6.2 E�ect of perspective projection on Fourier spectrum of a surface patch 66

6.3 Monotonicity of image plane height in body depth : : : : : : : : : : : 67

7.1 The environment Z5 and its serial product with itself : : : : : : : : : 70

8.1 Major components of the core vision system : : : : : : : : : : : : : : 80

8.2 Computation of freespace from texture and height : : : : : : : : : : : 81

8.3 Source code for find-dangerous : 84

8.4 Source code for carpet-boundary? : : : : : : : : : : : : : : : : : : : 86

8.5 The vanishing point computation : 87

8.6 Source code for vanishing-point : 88

9.1 The low level navigation system : 98

9.2 The corridor following problem : 98

9.3 Nearest points in view : 100

10.1 Layout of Polly's environment : 104

10.2 The high level navigation system. : 108

10.3 Landmarks in Polly's environment and their qualitative coordinates. : 110

5

10.4 Example place frames. : 110

10.5 Source code for frame-matcher : 112

10.6 Source for for match-frame : 113

10.7 Source code for find-districts : 115

10.8 Sequencer for leaving o�ce : 116

10.9 Sequencer for o�ering tour : 117

10.10Sequencer for giving a tour : 118

11.1 Detail of elevator lobby area : 124

11.2 Transcript of �rst test run. : 125

11.3 Transcript of �rst test run (cont'd.) : : : : : : : : : : : : : : : : : : : 126

11.4 Transcript of second test run. : 126

11.5 Transcript of third test run. : 127

11.6 Transcript of third test run (cont'd.). : : : : : : : : : : : : : : : : : : 128

11.7 Transcript of the last test run. : 129

11.8 Transcript of the last test run (cont'd.). : : : : : : : : : : : : : : : : : 130

11.9 Typical robot paths through the playroom after workmen : : : : : : : 132

11.10The shadow problem : 133

C.1 Senselisp peculiarities : 149

C.2 Peculiarities of the Polly runtime system. : : : : : : : : : : : : : : : : 150

6

List of Tables

8.1 Partial list of visual percepts : 80

8.2 Habitat constraints used for depth-recovery. : : : : : : : : : : : : : : 83

8.3 Habitat constraints used by the vanishing point computation. : : : : 89

8.4 Constraints used in nod detection : 94

8.5 Habitat constraints assumed by the core vision system : : : : : : : : 96

10.1 Summary of habitat constraints used for navigation : : : : : : : : : : 107

11.1 Processing and driving speeds of various visual navigation systems : : 122

11.2 Execution times for various levels of competence : : : : : : : : : : : : 123

7

Acknowledgments

I would like to thank my advisors, Rod Brooks and Lynn Stein, for their support

and encouragement. My time as a graduate student would have su�ered badly had

they not been here for me at the right time. I would also like to thank the members

of my committee|Tom Knight, Shimon Ullman, and Eric Grimson|for their time,

patience, and support. I would particularly like to thank Eric for the time he put in

talking to me and giving me suggestions when he was not (yet) even on the committee.

This document also owes much to Patrick Winston for his comments on my talks.

Your fellow graduate students are the most important part of your graduate edu-

cation. Phil Agre, David Chapman, and Orca Starbuck taught me much before they

moved on. Phil was in many ways another advisor. The members of the Mobot lab,

particularly Maja Mataric, Dave Miller (research scientist and honorary grad stu-

dent), Anita Flynn, and Colin Angle, were very patient with me and did everything

from reading paper drafts to showing me how to build a power supply. Dave Miller

and Joanna Bryson read the TR and gave me useful comments. My various o�ce

mates, Eric Aboaf, Paul Resnick, David Michael, Jose Robles, and Tina Kapur gave

me comments on papers, talks, ideas, and general nonsense, and put up with me when

I was moody. The local vision people and honorary vision people, particularly Karen

Sarachik, Mike Bolotski, Henry Minsky, Steve White, Sandy Wells, David Jacobs,

and David Clemens, gave me useful advice, encouragement, and skepticism. Other

members of the lab, Jeanne Speckman, Annika P
uger, Laurel Simmons, Jonathan

Meyer, and Ron Wiken made my life much easier. Patrick Sobalvarro, Carl de Mar-

cken, and Dave Baggett made it much funnier. Sigrid Unseld was as good a friend

as one can ask for.

The local hardware hackers, particularly Tom Knight, Mike Bolotski, Grinnell

Moore, Mike Ciholas, Henry Minsky, Anita Flynn, and Colin Angle have earned my

undying gratitude for putting up with my EE questions while I was building my

robot.

A number of people have helped me through my thesis by giving me pep talks

and encouragement at conferences. I would particularly like to thank Bruce Don-

ald, Avi Kak, Stan Rosenschein, Takashi Gomi, Ron Arkin, Jim Hendler, and Drew

McDermott.

My housemates over the years, Hilda Marshall, Craig Counterman, John Romkey,

8

Rob and Cath Austein, Diana Walker, Rick and Rose Stout, and David Omar White,

have remained good friends, even when I have done a poor job of keeping in touch.

They have always been there for me.

Finally, I would like to thank my parents for all their love and care, and my wife,

Louise, for marrying me.

Support for this research was provided in part by the University Research Initiative

under O�ce of Naval Research contract N00014{86{K{0685, and in part by the

Advanced Research Projects Agency under O�ce of Naval Research contract N00014{

85{K{0124.

9

Preface: on Polly's youthful

demise

This work documents, in part, the development and testing of the Polly robot. In

it I claim that Polly was fast, robust, and had a very broad behavioral repertoire as

measured by the current standards of the �eld. It should be stated for the record

however that Polly is now all but dead; Its VMEbus boards are reluctant to boot

properly and its base has many broken gear teeth. This speaks less of the inadequacies

of the hardware than of the unusualness of its use. The electronics were never designed

to be run o� of batteries much less to be continuously shaken or periodically crashed

into walls. The base, although ultra-reliable by the standards of robot research

hardware, was not designed to exert 2g accelerations on 40 pounds of metal or to

move that metal at a meter per second for hours a day for over a year.

Many of the algorithms developed for Polly live on. The low level navigation

algorithms have been reimplemented in our lab for the Gopher, Frankie, and Wilt

robots. Other labs are starting to use the algorithms and a commercial version of

the collision avoidance system is even available. As of this writing, the basics of turn

detection and control have been reimplemented on Frankie, although the full place

recognition and navigation system will likely be considerably more sophisticated on

Frankie than on Polly.

You might think it odd that one could feel wistful about the decomissioning of a

large chunk of metal. But then you didn't spend as much time chasing it around the

lab as I did.
Ian Horswill

Cambridge, September 1994

10

Polly the robot

11

Part I

Introduction and Approach

12

Chapter 1

Introduction

In this report, I will discuss the use of vision to support concrete, everyday activ-

ity. I will argue that a variety of interesting tasks can be solved using simple and

inexpensive vision systems. I will provide a number of working examples in the form

of a state-of-the-art mobile robot, Polly, which uses vision to give primitive tours of

the seventh
oor of the MIT AI Laboratory. By current standards, the robot has a

broad behavioral repertoire and is both simple and inexpensive (the complete robot

was built for less than $20,000 using commercial board-level components).

The approach I will use will be to treat the structure of the agent's activity|

its task and environment|as positive resources for the vision system designer. By

performing a careful analysis of task and environment, the designer can determine

a broad space of mechanisms which can perform the desired activity. My principal

thesis is that for a broad range of activities, the space of applicable mechanisms will

be broad enough to include many that are simple and economical.

The simplest mechanisms that solve a given problem will typically be quite spe-

cialized to that problem. One thus worries that building simple vision systems will be

require a great deal of ad-hoc engineering that cannot be transferred to other prob-

lems. My second thesis is that specialized systems can be analyzed and understood in

a principled manner, one that allows general lessons to be extracted from specialized

systems. I will present a general approach to analyzing specialization through the use

of transformations that provably improve performance. By demonstrating a sequence

of transformations that derive a specialized system from a more general one, we can

summarize the specialization of the former in a compact form that makes explicit

the additional assumptions that it makes about its environment. The summary can

be used to predict the performance of the system in novel environments. Individual

transformations can be recycled in the design of future systems.

13

1.1 Example

Suppose we view vision as being the problem of answering questions about the envi-

ronment using images. Figure 1.1 shows an image of my o�ce taken from my robot.

We might want to determine whether the robot should turn left or right so as to

avoid the objects in the scene. This amounts to the problem of �nding which regions

of the
oor are free and which have objects on top of them. The correct answer is

that the robot should turn left, since there are obstacles nearby on the right while

there is clear
oor on the left. The fundamental di�culty here, as with most vision

problems, is that the projection process of the camera loses information, depth in-

formation in particular, and so we cannot uniquely determine the structure of the

scene without additional information either in the form of extra images or of extra

information assumed about the problem.

A common way of solving the problem would be to build a complete depth map

of the scene using multiple images. We could then project the features in the depth

map into the
oor plane to determine which parts of the
oor do and do not have

obstacles on top of them.

The simplest version of this is two use two cameras in a stereo con�guration.

Distinctive features (usually edges) can be found in the two images and matched to

one another. Given the matching of the features, we can compute each feature's shift

due to parallax. From the camera positions and the parallax data, we can compute

the positions of the surface patches in the world from which the individual features

were imaged (see Barnard and Fischler [11]).

The stereo approach is a perfectly reasonable approach, but it does have two un-

desirable features. First, it is computationally expensive, particularly in the matching

phase. It also requires that features be localized accurately and reliably, which usu-

ally means the use of high resolution data, which requires more computational power.

A more important problem however is that the
oor in this environment is textureless

and therefore featureless. Figure 1.2 shows a map of the image in which pixels with

signi�cant texture (actually, signi�cant intensity gradients) are marked in white. The

oor is uniformly black. The stereo process cannot make any depth measurements

in the region of the image which is most important to the robot because these are no

features to be matched there.

This problem is easily remedied. Since the
oor is always
at, it is reasonable for

the stereo system to interpolate a
at surface in the absence of texture. However,

it is important to remember that the stereo system is then working not because it

is measuring the depth of the
oor directly, but because it is making a smoothness

assumption which happens to be true of the
oor. This need not be true in the

general case. The
oor could slope gently or suddenly. There could even be a cli�.

While a such sudden discontinuity in depth would typically generate image features

along the discontinuity itself, there would still be no features on either side of the

14

Figure 1.1: Image of my o�ce taken from the robot's camera. The dots in the lower

middle of the image are artifacts due the quantization in the rendering process. The

structure in the lower right hand portion of the image is a 5-legged o�ce chair. The

structures in the top-left are (left to right) a doorway viewed from an oblique angle, a

small trash can, and a �le cabinet. The homogeneous region in the lower and middle

left is the carpet.

15

Figure 1.2: The pixels with signi�cant texture. Pixels marked in white di�er from

their neighbors above and to the right by total of at least 15 grey levels out of a

possible 510. Pixels marked in black di�er by less than 15 grey levels. The image

was �rst smoothed with a 3� 3 �lter to remove camera noise. Note that the
oor is

uniformly black.

16

imagesituation

Figure 1.3: An observer views a cli� of a textureless surface (left). Although varia-

tions in lighting of the two sides of the cli� may produce a local variation in image

brightness at the point of discontinuity (right), there is still no texture in the image

above or below the discontinuity which would allow the observer to infer the depth,

or even the presence, of the cli�.

discontinuity that could be used to detect the cli� (see �gure 1.3).

This brings out two important points. First truly general systems are extremely

rare, and so claims of generality should be considered carefully. Often the mechanisms

we build have hidden assumptions which can fail to be true. These can be particularly

di�cult to diagnose because we typically choose test data that �t the assumptions.

This it not to say that such assumptions are bad. Quite the contrary: they lead

to great improvements in performance. Rather, we should make informed decisions

about our use of specialization.

1.1.1 A coloring algorithm for navigation

When the stereo system works on the scene in �gure 1.1, it works because the
oor

is
at and the obstacles have texture. We can make a di�erent system to solve the

problem, one that is much more e�cient, by using these facts directly.

Let us treat the lack of texture on the
oor as a positive feature of the environment.

Notice that the
oor forms a single, connected black blob at the bottom of �gure 1.2.

This blob is shown alone in �gure 1.4). I will call this the carpet blob. The carpet

blob is easily computed by starting at the bottom of the screen and tracing up each

image column until a textured pixel is found. The set of pixels skipped over will be

the blob.

Notice that the height of the blob varies with the amount of exposed
oor in the

corresponding direction so the number of pixels skipped in a given column gives us a

rough and ready measure of the amount of free space in that direction. This suggests

the following algorithm for solving the original problem: �rst, �nd the textured pixels

in the image, then extract the carpet blob, and then turn in the direction in which

the carpet blob is taller. This algorithm is the basis of much of Polly's navigation

17

Figure 1.4: The set of textureless pixels corresponding to the carpet. Note that the

blob is taller where there is more exposed carpet.

capabilities. It can easily be executed in real time on a low end personal computer.

1.1.2 Analysis of the coloring algorithm

We can understand the relationship of the stereo-based and blob-based algorithms as

follows. Both systems determine whether there is more free space in front of the robot

on the left side or the right side of the image. The stereo systemmeasures this directly

by computing a depth map and projecting it into the
oor plane. Since we are only

concerned with determining which side is larger, however, we do not need to know

the exact distances in any particular units of measure. Any measure that increases

monotonically with distance will work, provided that we use the same measure on

both sides. We can thus substitute any system that computes a monotonic function

of the distance for the stereo system. More importantly, we do not even need to know

what the monotonic function is. It could vary from moment to moment so long as it

was used uniformly within a given image. It has been known at least since Euclid that

image plane height is a monotonic function of distance. This means, roughly, that if

all the obstacles rest on the
oor, then we can substitute the image plane height of

the obstacle for the stereo system, provided that we have some way of labeling each

pixel as being either obstacle or carpet. A general carpet detector that can recognize

any carpet (or, equivalently, any obstacle) might be be more di�cult to build than

the stereo system. However, the carpet in this environment has a very predictable

appearance: it has no texture. This means that we can substitute a texture detector

18

for the general carpet detector or obstacle detector.

We can summarize this analysis with the following general principles:

� We can substitute any monotonic measure of a quantity for a calibrated mea-

sure, provided that the measure will only be used for comparisons.

� We can substitute height in the image plane for some other distance calculation,

provided that all objects rest on the
oor and there is some way of classifying

pixels as being
oor or object.

� We can substitute a texture detector for a
oor detector, provided that the

oor is textureless.

These principles concisely describe the specialization of the blob-based algorithm.

Each describes a general transformation from a possibly ine�cient algorithm to a

more e�cient one, along with the conditions on the task and environment which

make it valid. These transformations can be applied to the design of other systems

or used to predict and modify the performance of the original system. For example, if

we wanted to use the blob-based algorithm in an environment with a textured carpet,

we would have to abandon the last transformation, but we would still be able to use

the other two. If there was some property other than texture which allowed carpet

pixels to be easily classi�ed, then we could use that property as the basis of a new

transformation.

1.2 Preview of results

This report contributes to three areas: the design of e�cient vision systems, the

design of mobile robots, and the analysis of specialized systems.

1.2.1 Lightweight vision

Vision is traditionally thought of as being very expensive. A number of researchers

have recently argued that vision can be signi�cantly simpli�ed by using the dynamics

of the agent's interaction with its environment or by specializing the vision system to

a particular task. (See Bajczy [8], Horswill [52], Ballard [9], Ikeuchi [53], or Aloimonos

[4]. See also section 3.1.2.) We can simplify vision further, however, by taking into

account speci�c properties of the agent's environment. We can view both the task

and the environment as positive resources for the designer. The task imposes concrete

constraints on the information which the system must extract from the image and

the performance with which it must extract it. Far from being bad, these constraints

are a good thing, for they tell the designer not only what is required of the agent,

but also what is not required of it.

19

Knowing the constraints is important because it allows the designer to make trade-

o�s intelligently. Performance has many parameters. These parameters typically can

not be optimized simultaneously, so the designer must decide what to optimize and

what not to optimize. Knowing the task constraints allows the designer to make

these choices e�ectively. A similar situation holds for choosing what information to

extract from the image. Resolution is a useful case in point. For a given amount

of computing power, the rate at which agent will be able to process frames will be

bounded above by the inverse of the number of pixels in the image, assuming the

program in the agent at least reads every pixel. The number of pixels is quadratic in

the linear resolution of the image however. This means that of you want to double

the accuracy with which you can localize a feature in the image, you must drop the

rate at which you process images by at least a factor of four. Most vision research

has focused on relatively high resolution images, whereas all the algorithms discussed

in this work operate on very low resolution images (64 � 48 or 16 � 12).

Understanding the environment allows the designer to make optimizations such

as the substitution of low level image properties for high level object properties. The

algorithm discussed above is a case in point: because of the special properties of

the environment, we can substitute a low level image property (texture) for a high

level symbolic property (obstaclehood). Understanding the environment might also

tell the designer that certain pathological situations will not occur or that certain

performance requirements can be relaxed. All of these serve to broaden the space of

mechanisms available to the designer.

For a given task and environment, the space of mechanisms which will solve that

task in that environment is typically large. My principal claim is that for many

real world task/environment pairs, the space is large enought to include a number of

very e�cient mechanisms. I call these very e�cient mechanisms, \lightweight" vision

systems.

1.2.2 Mobile robotics

The principal contribution of this report to the �eld of mobile robotics is to demon-

strate that it is possible to build a robust and economical vision-based robot using

only on-board computation and standard commerical hardware. The Polly robot uses

a single 16MIP digital signal processor, a Texas Instruments TMS320C30, for nearly

all its computation. A modi�ed version of the chip is available for $35 in quantity.

With each frame, the robot recomputes all its visual percepts, compares the scene to

its complete database of landmarks, and updates its motor velocities.

Polly patrols the seventh
oor of the MIT Arti�cial Intelligence Laboratory,

searching for visitors who may want tours. When it �nds a visitor, it o�ers them a

tour. If they gesture properly, the robot leads the vistor around the lab, giving infor-

mative speeches as it recognizes landmarks. This task involves a very wide repertoire

20

of behaviors by the current standards of the �eld. It can follow paths, recognize

landmarks, detect the presence of people, interpret simple gestures, and choose paths

to a speci�ed landmark.

The robot is extremely well tested. The lower layers of its control system have

been running for over a year and have seen several hundred hours of service. During

that time, the environment has steadily changed its geometry and appearance: the

student population rose and fell, furniture was rearranged, a small mountain range

was built in part of the lab (really), carpets were shampooed, and o�ce lighting was

completely replaced. The robot tolerated all these changes, although it sometimes

had to be modi�ed slightly to cope with them (see chapter 11). The robot has also

been tested in other, similar environments.

1.2.3 Analysis of specialization

There has been renewed interest within the AI community in the relationship between

agents and their environments, particularly within the arti�cial life, biologically-based

AI, and situated-action communities (see section 4.4 for a survey). We can analyze

this relationship formally by deriving an agent that is specialized to its environment

from a hypothetical general agent through a series of transformations that are justi-

�ed by particular properties of the agent's environment. In performing the derivation,

the designer divides the agent's specialization into a discrete set of reusable transfor-

mations, each of which is paired with an environment property that makes it valid.

I call such properties \habitat constraints" because the set of such constraints de�ne

the agent's habitat. I will generally refer to the transformations as \optimizations."

These are optimizations in the sense of compiler optimizations: they are transforma-

tions which improve performance, but do not necessarily yield optimal performance.

The advantage of the derivation is that it makes explicit the agent's implicit

assumptions about its environment. These assumptions can then be used in the

design or analysis of other agents. Thus it provides a way of recycling the experience

gained in designing specialized systems. Although it is not possible in general to

fully automate the design of specialized systems, this kind of post-hoc analysis can

eventually allow us to develop cookbook methods for a broad range of problems.

The technique is not limited to the analysis of vision systems. I will present

examples of its application to vision, motor control, and discrete action selection.

1.3 Structure of this report

The next three chapters present high level introductions to Polly, lightweight vision,

and specialization, respectively. Chapter 2 describes Polly's task and environment,

its high level software design, and discusses the language and hardware used to im-

21

plement it. It also provides a detailed example of a run of the robot and a survey of

other vision-based robot navigation systems. Chapter 3 discusses the history of vision

research, particularly reconstructionism and the recent move toward task-based and

active vision. It then discusses how task and environment can be used as resources

for building lightweight vision systems. Chapter 5 draws out the general framework

for analyzing specialization. Subsequent chapters are more detailed and technical.

Chapter 6 gives the formal basis for applying the transformational theory to a

class of simple vision systems. Chapter 7 does the same with the problem of discrete

action selection. The reader who is less interested in formalism may wish to skip

these.

Chapters 8, 9, and 10 describe in detail the robot's vision, low level navigation,

and high level navigation systems, respectively, and use the analytical framework to

explain their performance.

Chapter 11 discusses a number of experiments performed on Polly, gives a sense

of its reliability, and categorizes its failure modes.

Chapter 12 summarizes the key points of this work and gives conclusions.

22

Chapter 2

Introduction to the Polly system

Polly is a low-cost vision-based mobile robot built to explore the use of domain

constraints in the design of lightweight vision systems. Polly lives on the 7th
oor of

the MIT AI Laboratory and gives simple tours of the 7th
oor. Polly is interesting

for a number of reasons. First, it has a relatively wide range of capabilities. It can

navigate, recognize places, detect people, and understand their gestures. Second, it

is simple and inexpensive, costing only $20K to build from o�-the-shelf, board-level

components (a faster version could now be built for less that $10K). Third, it is very

fast, running between 0.75 and 1 meters per second, with its perception and control

systems running at 15Hz. Finally, it performs its tasks almost exclusively using

vision. Vision-based autonomous robots are relatively rare; Cheap, fast, autonomous

systems with wide behavioral repertoires have not been built previously.

In this chapter, I will describe the task, environment, and basic structure of the

robot. Section 2.1 describes the robot's task and habitat. Section 2.2 describes the

high level architecture of the robot. Section 2.3 gives a detailed run of the robot and

describes the operation of the robot during the run. Section 2.4 brie
y describes the

programming language used. Section 2.5 describes the basic hardware components of

the robot, their capabilities, and their interconnections. Finally, section 2.6 describes

previous visually guided mobile robots. Subsequent chapters will discuss the software

components in more detail.

2.1 Task and environment

Polly's environment is the network of corridors on the seventh
oor of the AI Labora-

tory at MIT (see �gure 2.1). Its task is to patrol the lab, �nd visitors, and give them

tours. Its patrol pattern is shown in �gure 2.1. As it drives through the hallways, it

searches for visitors who want tours. Since it can only look downward at the
oor,

it has to detect people by looking for their legs. The only way it can distinguish

a visitor from a normal occupant is to rely on the fact that the normal occupants

23

are probably sick of it and will therefore leave it alone, whereas visitors will actively

investigate it.1 For this reason, Polly only responds to people who stand directly in

front of it. It ignores people who casually pass by it or who lean against the wall.

When Polly does �nd a leg-like object directly in front of it, it introduces itself and

o�ers a tour, saying that the person should wave their foot around if they want a

tour. If the person indicates that s/he would like a tour by gesturing with their foot,

Polly leads the person around the lab, making pithy comments and giving canned

speeches when it recognized landmarks. For example, when it recognizes the T.V.

lounge, it says \This is the T.V. lounge. We waste a lot of time here." When Polly

returns to the place where it previously picked the visitor up, it thanks him/her and

says goodbye. It then looks for another visitor.

Here is a typical scenario for Polly:

Event Speech

Polly approaches visitor Hello. I am Polly. Would you like a tour?

If so, wave your foot around.

Visitor waves foot Thank you. Please stand to one side.

Visitor moves Thank you. Please follow me.

Polly drives I can avoid obstacles, follow corridors, rec-

ognize places, and navigate from point to

point.

Keeps driving My vision system runs at 15 frames per

second on a low cost computer

Robot passes vision lab On the right here is the vision lab.

By the way, I don't understand anything

I'm saying.

Robot enters T.V. lounge This is the T.V. lounge. We waste a lot of

time here.

Passes o�ce This is Karen and Mike's o�ce.

Passes o�ce This is the o�ce of Anita Flynn.

Enters playroom This is the playroom.

This is the end of the tour. Thank you and

have a nice day.

Robot drives o�.

Polly continually alternates between searching for visitors and giving tours until

it a switch is thrown on its control panel. It then drives back to my o�ce and parks

by my desk.

1Or so the theory went when I designed the system. In practice, it is exactly the other way
around: visitors, not wanting to cause any problems, get out of the robot's way; the denizens of the
lab, however, are perfectly happy to harass it in an e�ort to test its limits.

24

N

Figure 2.1: The layout of the 7th
oor of the lab, and Polly's patrol pattern within

it.

2.2 Software architecture

Polly is meant to be thought of as a group of communicating asynchronous processes

connected by �xed links (see, for example, Brooks [20] or Rosenschein and Kaelbling

[88]). These can be grouped into the high level structures shown in �gure 2.2.

A group of related visual processes, the core vision system (CVS), transform

images into high level percepts that encode speci�c relevant information such as

whether the robot's path is blocked or whether there is a person in view. These

percepts are e�ectively broadcast to all other parts of the robot.

Navigation is implemented by two groups of processes. The low-level navigation

system (LLN), controls the motors and implements obstacle avoidance, path (wall

or corridor) following, and switching from one path to another. It can also perform

open-loop turns of speci�ed angles. The high-level navigation system (HLN) matches

landmarks to an internal map and performs goal directed navigation. When a higher-

level process gives the HLN a goal landmark, the HLN directs the LLN through a

series of corridors leading to the goal. The goals are usually speci�ed by the wander

system which implements the patrol pattern by alternately instructing the high level

navigation system to go to opposite corners of the patrol circuit (the playroom and

the vision lab, see �gure 10.1).

A number of Polly's tasks, such as o�ering tours, require the robot to perform

�xed sequences of actions. Each such sequence is implemented by a special kind of

process called a \sequencer" (see section 10.4).

Another set of processes control the voice synthesizer. The tour-announce-place

process gives a canned speech whenever the robot recognizes a landmark and is in

the process of giving a tour. The tour-chatter process generates periodic small

talk during tours such as \my vision system runs at 15 frames per second on a

low cost computer," or \by the way, I don't understand anything I'm saying." The

25

CVS

sequencers

wander

HLN

LLN

voice synthesizer

motors

camera

speaker

po
si

tio
n goal

turn-request

motor velocities

Figure 2.2: Polly's gross neuroanatomy.

leave
office

pick
up

give
tour

go
home

patrol

Figure 2.3: High level states and transitions

messages process generates random messages at random times when the robot is

idle (not giving tours). This was done purely for the amusement of the author. The

crier process can be programmed to give a speci�c message at speci�c interval. It

e�ectively turns the robot into a \town crier." I have used it to announce talks.

Finally the chatter process arbitrates requests from the other processes for access

to the voice synthesizer. The design of these processes will not be discussed further.

The one piece of globally visible state in Polly is its high-levelmode (see �gure 2.3),

which is stored in the global variable global-mode. The values of global-mode are

0, meaning the the robot is starting up or going home, 1, meaning that it is on patrol,

2 meaning that the robot is giving a tour, and 3, meaning that it is in the process of

o�ering a tour. The global mode is used by the wander process to determine whether

it should drive in the patrol pattern, by the speech system to determine whether it

should give tour speeches, and by the pick-up routine to determine whether it should

26

attempt a pick-up. It is written by the pickup routine, the tour routines, and the

routines for starting up and going home. This could have been implemented using

local state information, such as having the di�erent processes check to see which other

processes were enabled, or by using a hormone-like mechanism (see Brooks [21]). In

this case, my needs were simple enough that a global variable su�ced.

2.3 Detailed example

The robot always begins near my desk, facing south (see �gure 2.4). It leaves the

o�ce by performing a �xed set of steps speci�ed by a sequencer. First it drives south

until it is blocked by an obstacle. This leaves it near the �le cabinet labeled (1) in

�gure 2.4. It then turns left and drives until it no longer sees a wall on the left,

bringing it out the o�ce door (point 2 in the �gure). It then moves forward a few

feet, turns left again, and drives until it is blocked and facing east, at which point it

should be facing the right-hand wall (point 3 in the �gure). It then turns right 120

degrees so as to face the pillar and couch, and moves forward. The robot's obstacle

avoidance mechanisms are su�cient to move it into the channel between the couch

and the wall and o� into the corridor (see point 4 in the �gure). At this point, Polly's

normal navigation systems are activated. The robot's position is initialized to \Ian's

o�ce" and the wanderer sets the goal landmark to be the vision lab (see �gure 10.1).

2.3.1 Patrolling

The robot now begins patrolling. It is in the corridor between \Ian's o�ce" and

\Elevator lobby" in �gure 10.1, traveling west. The HLN determines that it is east of

its goal, the vision lab, and so allows the LLN to continue to move west. When the

robot reaches the elevator lobby, the wall on the right-hand side suddenly vanishes

from view, indicating that the robot has reached a right turn. The robot checks its

map for a right turn and determines that it is at the elevator lobby. The entry in the

map for the elevator lobby says that the robot should veer to the right to remain in

the corridor, so the HLN instructs the LLN to make a small right turn. The LLN

does so and continues across the open space of the elevator lobby until it reaches the

other side. There, the LLN realigns with the corridor and continues west. As the

robot drives past the leftmost corridor in �gure 10.1 (the corridor between the vision

lab and the kitchen), the left-hand wall vanishes from view and the vision system

signals the presence of a left turn. The HLN �nds the turn in its map and updates

its position.

When the robot reaches the vision lab, it detects another left turn and the HLN

updates its position again. Now several things happen. First, the HLN notices that

it has reached its goal. Then the wanderer notices that it has reached the vision lab

27

Desk

Couch

File
cabinet

Starting
position

1

2

4

3

Figure 2.4: The robot's path as it leaves the o�ce and enters the corridor. Both path

and
oor plan are only schematic|neither is drawn to scale.

28

N

T.V. Lounge

Playroom

Ian's office

Anita's officeKaren and Mike

Elevator lobby
Kitchen

Conference room

Marie's office Vision
 lab

0 10 30 40 60 70 80 90 100

10

50

100

Figure 2.5: Polly's habitat, the 7th
oor of the MIT AI laboratory. The diagram is

not to scale, and the direction north has been de�ned for convenience, rather than

geological accuracy.

and sets the goal to be the southern corner of the playroom. This, in turn, causes the

HLN to wake up. The HLN determines that the goal is to the southeast. Since it is

at a turn to the south, it instructs the LLN to turn 90 degrees to the left. The LLN

turns left, and begins to align with the new (southern) corridor, as if nothing had

happened, and proceeds along the corridor. When the robot reaches the southern

wall (near the T.V. lounge in the �gure), several things happen again. The LLN can

no longer move any further and so it stops. The HLN notices that it has reached the

southern wall, and so updates its position again. Since the goal is now east instead of

southeast, the HLN tells the LLN to turn left again. The LLN turns, follows the wall

through the T.V. lounge, and proceeds on its way. The robot continues, the HLN

updating its position with the appearance of each left hand turn, until the robot

reaches the playroom. Then the wanderer sets the goal back to the vision lab, the

HLN tells the LLN to turn north, and the cycle repeats.

2.3.2 Giving tours

The robot continues to patrol until it encounters a person in the hallway. When this

happens, a sequencer (offer-tour) is started. The sequencer inhibits the LLN and

HLN and halts the robot. It then says \Hello, I am Polly. Would you like a tour? If so,

wave your foot around." It then looks to see if there is any motion in the image. If not,

it says \OK, have a nice day," and dis-inhibits the LLN and HLN. If there is motion,

then it says \please stand to one side," and waits until it is no longer blocked. Then

it says \OK, follow me," and starts a new sequencer, give-tour. Give-tour records

the current position of the robot, and sets the robot's global mode to give-tour mode,

which enables the tour-chatter and tour-announce-place processes. Give-tour

waits for the robot to return to that position. In the mean time, the wanderer, HLN,

29

and LLN continue as if nothing had happened. Each time the HLN recognizes a new

place, tour-announce-place wakes up and gives the speech listed in the map for

that place. This leaves long periods of boring silence while the robot drives from one

place to another, so the tour-chatter process inserts chatter messages in the pauses,

roughly every 15 seconds. Eventually, the robot returns to the place it started from.

Then give-tour wakes up, says \That's the end of the tour. Thank you and have

a nice day," sets the global mode to \patrol" (which disables tour-announce-place

and tour-chatter), and turns itself o�. The robot then continues on its way, looking

for a new visitor.

2.4 Programming language issues

While Polly is meant to be thought of as a parallel system, in practice it is imple-

mented on a serial processor. The processor is programmed in a subset of Scheme.2

The main loop of the program repeatedly grabs a new image, processes it, computes

a new set of motor commands, transmits the commands, and waits for a new image.

Each execution of the loop is referred to as a \clock tick."

Parallel processes are simulated using Scheme procedures, one procedure per pro-

cess. Each procedure is called once per clock tick by the main loop. Occasionally,

several simple processes are folded into a single procedure for e�ciency. Communi-

cation channels between the processes are simulated with global variables. Nearly all

of these variables are of thought of as wires carrying signals: each wire is updated on

each clock tick by a single process. For example, the variable direction is written

every clock tick by the process which reads the robot's rotational odometer. It always

holds the current direction of the robot. A few global variables, such as the variable

which holds the goal position of the robot, are set only rarely but may be set by

many di�erent processes. These are best though of as latches.

Nearly all of the vision code is implemented using a set of macros for vector

processing built on top of Scheme. Images are represented as 1D vectors in row-

major (raster) format so that the pixel at address (x; y) in a 64 � 48 image is the

x + 64y'th entry in the vector. Two images can then be compared using a vector

equivalent of mapcar:

2The actual dialect is called \Senselisp" (see Horswill [47][48]). Senselisp is essentially Scheme
with garbage collection and run-time type checking removed, and compile-time type inference, full
macros, and pointer arithmetic added. This modi�cations allow a relatively simple compiler to
produce very e�cient code. Until recently, the Senselisp compiler produced better code than the C
compiler sold by the manufacturer of the computer.

30

(define (compare-images in1 in2 out)

(map-vector! out

=

in1

in2))

This procedure takes two input vectors of the same length and applies the = function

to successive pairs of elements of the two inputs, writing the results (true or false)

to successive elements of the output. Vectors can be shifted around using pointer

arithmetic, which allows adjacent pixels of an image to be compared using the vector

macros. For example, the procedures

(define (bad-vertical-edge-detector in out)

(map-vector! out

=

in

(shift in 1)))

(define (bad-horizontal-edge-detector in out)

(map-vector! out

=

in

(shift in (raster-width in))))

detect vertical and horizontal edges by comparing a pixel with the pixel just to the

right of it, and just below it, respectively. The function raster-width returns the

number of pixels per line for a vector which is used to hold an image. Shift performs

pointer-arithmetic. It takes a vector and an integer and returns the vector displaced

by the speci�ed number of elements. Note that this shifting will produce bizarre

results at the boundary between the left and right sides of the image. In 2D, the left

and right sides of the image are not connected, but in the 1D array, the �rst pixel

of the 2nd line is right after the last pixel of the �rst, so the vertical edge detector

above will �nd artifactual edges near the boundary. This could be avoided by using

nested loops, but it is usually easier just to ignore the boundary pixels.

2.5 Hardware design

Because no commercial robot was available with an appropriate computer and frame

grabber, I was forced to build the system myself from commercial board-level com-

ponents. This was not as terrible as it sounds. It mostly involved making connectors

to link one board to another or screwing, gluing, taping, or velcro'ing the various

components to one another. Roughly a year was required to build the robot, but

nearly all of the time was spent reading catalogs, ordering parts, or waiting for parts

31

Frame grabber

DSP

FEPPwr sply

Motorcycle
battery

RWI
B12
base

Camera

Speaker
Voice
synthesizer

LCD display

Control
panel

Figure 2.6: Basic components and layout of the robot.

FEP
(6811)

DSP
(TI C30)

Frame
Grabber

Voice

Control
Panel

video
out

download
from Macintosh

CameraBase
(RWI)

Figure 2.7: Computational components and data-paths.

32

to arrive. Less than a month was spent on actual assembly. Writing boot roms, down

loaders, device drivers, and other systems software did take several months however.

The robot's hardware resources and physical layout are shown in �gure 2.6. The

robot's principal components are a commercial omni-directional robot base (Real

World Interface model B12), a 32 bit digital signal processor (DSP) based on the

Texas Instruments TMS320C30, with 65K words of SRAM (Pentek model 4283), a

frame digitizing board (Data Translation model 1452), a black-and-white surveillance

camera (Chinon CX-101), and a microcontroller front-end (Motorola MC68HC11)

which connects the DSP to various low-speed peripherals (voice-synthesizer, input

switches, LCD display).

The robot base contains motors, batteries, shaft encoders, a microcontroller to

drive the motors, and a standard 9600 baud serial port over which to send commands

to the microcontroller. The base has independent motors for driving forward and

turning in place. Each motor can be controlled in force, velocity, or position space.

The controller can also report the current position or velocity of either motor. The

voice synthesizer accepts standard English text and converts it �rst to phonemes and

then to audio.

Nearly all the interesting processing is done on board the DSP. The DSP is roughly

a 16MIP machine. The DSP reads images from the frame grabber, performs all visual

processing, and makes all control decisions. The DSP and the frame grabber are

linked by a VMEbus. The camera generates the image at a resolution of roughly

350 � 250 pixels, but converts the image to a standard RS-170 analog video signal.

The frame grabber then samples and digitizes the analog video signal at a resolution

of 512 � 512 pixels. Since this is more data than the DSP needs or can possibly

process, the DSP subsamples the image at a resolution of 64 � 48 pixels. Internal

limitations of the frame grabber and VMEbus limit the frame rate to 15Hz. The

camera is �xed in place so the robot cannot look around corners without pausing to

turn its entire body.

With the exceptions described below, the 6811 microcontroller, referred to as the

FEP (Front End Processor), is used only to interface the DSP to its peripherals. The

DSP communicates with the 6811 over a built-in high-speed serial port. The 6811

does not have hardware to speak the DSP's serial protocol, so the 6811 implements

the serial protocol in software. The DSP controls the base and other peripherals by

sending a byte stream to the 6811 over the serial line. The 6811 forwards the bytes

to the peripherals. Escape codes in the byte stream allow the DSP to switch from

one peripheral to another. Other escape codes cause the 6811 to transmit the status

of the front panel switches and the base's rotational odometer to the DSP.

The FEP only does two intelligent things. First, it parses the status output of the

base's serial port to �nd reports of the rotate motor's current position. It converts

these reports from hexadecimal to binary and sends them to the DSP upon request.

This was done because the DSP only has one DMA controller and so cannot read

33

and write its link to the FEP without taking an interrupt for every byte. To have

the FEP forward every character written by the base to the DSP would have slowed

the DSP down. It also would have required more complicated device drivers.

The other non-trivial task of the FEP is the polling of the bump switches. The

FEP constantly polls the bump switches to check whether the robot has hit some-

thing. When the robot hits something, the FEP stops its normal activities and sends

a sequence of commands to the base to reverse direction and turn away from the

bumper that was hit. When the bumper deactivates, the FEP returns to its normal

activity.

The program running on the DSP is approximately 1500 lines of Scheme code,

plus drivers and data. The load image for the DSP is under 7K words (28K bytes).

The program uses 5 image bu�ers, each of which is 3K words in size (64� 48 pixels),

so the total scratch space is less than 20K words (80K bytes).

2.6 Other visually guided mobile robots

A number of mobile robots have been built which use vision for navigation. Early

systems tended to use vision for all navigation, but more recent systems have of-

ten used sonar for obstacle avoidance, and have relied on vision only for localizing

themselves within a map, or for detecting a road or other path.

2.6.1 Systems with geometric maps

Many of these systems used vision to build up detailed geometric maps of the envi-

ronments. The earliest of these was certainly Shakey, see Nilsson [76]. Early visions

of Shakey used vision to construct grid-based maps of its environment, which was

restricted to contain matte polyhedra.

The Stanford Cart (see Moravec [74]), used a novel nine-eyed stereo algorithm

to build and maintain maps of the locations of feature points in its immediate sur-

roundings. It then used the maps to plan safe paths around the features. The system

worked surprisingly well, but unfortunately it required 15 minutes per frame to per-

form its computations because of the limited computing power available. It therefore

had serious problems with environmental dynamics such as shadows moving with the

sun.

Thorpe's FIDO system [100] used stereo vision to build grid-based local models

of its environment. The robot used the model to plan and execute a safe path along

a sidewalk.

Kriegman, Triendl, and Binford's Mobi system recognized hallways, walls, and

doors in a two dimensional world-model [59][60]. The world model was built as

the robot moved through its environment. The robot used 1D stereo to �nd the

34

positions of strong vertical edges in the environment and tracked them over time

using a Kalman �lter. The system was able to achieve a cycle time on the order of

ten seconds per frame.

Ayache and Faugeras [7], and later Kosaka and Kak [57] developed systems which

used Kalman �ltering with full 2D stereo to track the positions of vertical edges in a

map and localize the robot's position. Kosaka and Kak were able to reasonable speeds

using only a standard 16MIP workstation. Part of the e�ciency of their system is

due to the fact that it searches for edges only where its model says they should be.

While this gives their system a large performance boost, it also means that it must

rely on sonar for obstacle avoidance.

Braunegg's MARVEL system [18] used stereo data to build and maintain grid-

based representations of its environment and determine its location by matching

sensor data to the model. The most interesting thing about the system was its

ability to tolerate slow changes in the environment by gradually mutating its model.

2.6.2 Non-geometric systems

Kortenkamp et al. describe a system for navigation using vision to match landmarks

described by low resolution stereograms [56]. The system detects landmarks (corridor

intersections and doorways) using a sonar-based algorithm, then distinguishes them

using vision. The system navigates using the sort of topological map popularized by

Kuipers and Byun [61] and Mataric [69].

Nelson [75] describes a novel system for navigation using a visual associative

memory. The memory is trained to associate proper actions with overhead views

from a planar world. The system can return to a home position by repeatedly looking

up the proper action in the memory and executing it.

Engelson and McDermott describe a system for recognizing places using easily

computed image signatures, rather than complicated models [37]. The signatures are

convenient hash functions su�cient to distinguish views of di�erent places.

A number of purely reactive systems have been developed. Bellutta et al. devel-

oped a corridor follower which estimates the position of the vanishing point in the

image and servos on it to align with the corridor [16]. Storjohan et al. [95] devel-

oped a simple stereo-based system for obstacle avoidance based on back-projection

of images. The system is given the correct correspondence between pixels in the two

images for the case where both cameras are viewing a
oor with no objects on it.

The system warps the left image onto the right image, and compares them. If the

space in front of the robot is unoccupied, them the right image and the warped left

image should be identical. If they are not, then the o�ending pixels must contain

obstacles. Coombs and Roberts have described a system which uses the presence of

optic
ow in the image to avoid obstacles [29]. Horswill built systems for following

moving objects and following corridors using monocular vision and knowledge of the

35

appearance of the background [52].

2.6.3 Outdoor road following

A large segment of the work in visual navigation is devoted to the problem of outdoor

road following. A great deal of early road following work involved the construction of

explicit 3D models of the road. A large amount of work has been done on recovering

the three dimensional structure of visible road fragments from a single monocular

view. These systems use the extracted contours of the road, together with some

set of a priori constraints of road shape to recover the shape of the road. Waxman,

LeMoingne, Davis, Liang, and Siddalingaiah describe a system for reconstructing road

geometry by computing vanishing points of edge segments [111]. Turk, Morgenthaler,

Gremban, and Marra used a simpler system based on the assumption that the vehicle

and the visible portion of the road rested on the same
at plane [105]. This was called

the
at-earth model. The
at-earth model allowed much faster processing and was

su�cient for simple roads. Later, they substituted the constraint that the road have

constant width for the constraint that the road lie in a plane. This allowed the

system to handle roads which rose and fell and so it was termed the hill and dale

model. Because the hill and dale model cannot account for curved roads, DeMenthon

proposed an algorithm based on the zero-bank constraint which allows both hills and

turns but does no allow the road to bank (turn about its own axis) [33].

Much of the work in outdoor road following has been done at Carnegie Mellon.

Early work at CMU was done by Wallace, et. al. [110][109][108]. They use a

sensor-based algorithm driven in image coordinates for motor control. They take

the approach of extracting road edges rather than segmenting the road and using the

slicing technique however. They also make extensive use of color information [108].

Using the CMU Warp parallel processor, a 10-100 MIPS
oating-point processor

optimized for low-level vision, they have reported speeds up to 1.08 km/hour using

a servo-loop time of one frame every three seconds. More recently, Crisman [30]

implemented a color-based road tracker which was able to properly distinguish road

pixels from other pixels, even in the presence of complicated shadows. Pomerleau

[81] has described a neural network that e�ciently learns to follow roads using low

resolution images.

Arkin has reported an architecture based on the schema concept [6]. A schema is

a description of what action is appropriate to a given situation, similar to my notion

of a tactical routine. Arkin de�ned a number of motor-schemas for moving along

a path and avoiding obstacles which, when run concurrently, were able to navigate

about the UMass campus.

Dickmanns et al. [34] has described a number of road following systems which

can drive on the autobahn at speeds of up to 100km/hour. The systems use Kalman

�ltering to e�ciently search for road edges within small windows of the image. By

36

using multiple processors, their system is able to process images at 25 frames per

second.

37

Chapter 3

Lightweight vision

In this chapter I will argue that vision can be very cheap and suggest some general

techniques for simplifying visual processing. This is not an argument that all visual

tasks can be solved cheaply. My goal is to convince the reader, particularly the

reader who is not a vision researcher, that cheap real-time vision systems are feasible

for a variety of tasks. This is, therefore, a theory of how to build task-speci�c vision

systems as cheaply as possible, not a theory of how the human vision system works or

of how to build a general programmable vision system. Nevertheless, the issues raised

in building task speci�c vision systems overlap a great deal with recent discussions

on the nature of general vision systems.

3.1 Background

Much of the previous work in vision has focused on the construction of modules

of a hypothesized general vision system. Early work viewed vision as a domain-

independent system for creating monolithic models of the outside world. Proposals

vary as to the nature of the models, and the processing performed to create them,

but the general approach is to use a series of transformations of the sensory input to

move from what I will call the \surface structure" of the input to its \deep structure."

I borrow the terms from Chomsky [27], who used them to refer to di�erent levels of

structure within sentences. I will use them as relative terms. For example, one

might assume that a vision system takes images, transforms them into edge maps,

then into depth maps via stereo matching, and �nally into collections of geometric

descriptions of individual objects. One often thinks of the objects as being \what's

really out there," and of the image as being only a shadow; that the objects are

the true reality and the images are mere appearance. Thus the object descriptions

capture \what's really out there" better than the images, and so we can think of the

object descriptions as the \deep structure" which is buried beneath the surface of

the images.

38

In vision, the deep structure people have traditionally tried to extract is the de-

tailed geometry of the environment (see Aloimonos and Rosenfeld [5] for a historical

survey, or Marr [68] or Feldman [38] for examples of speci�c proposals). This is some-

times referred to as the \reconstruction approach." (see Aloimonos and Rosenfeld

[5]). The approach has a number of appealing features. First, a complete description

of the geometry of the environment, suitably annotated with other surface infor-

mation such as color, seems to be a convenient form from which to compute any

information about the environment which may be required. Another appealing char-

acteristic is that is it fully domain independent, in the sense that any information

needed about the environment can be derived from the model, provided the model is

su�ciently detailed.

3.1.1 Problems with reconstruction

There are a number of problems with the reconstruction model of vision. The criti-

cism that is the easiest to make and the most di�cult to assess, is that reconstruction

is hard to do from an engineering standpoint. Formally, it is an \ill-posed" inverse

problem (Poggio and Torre [80]): the projection process loses information, and so

inverting it requires additional assumptions such as smoothness of surfaces. These

assumptions are enforced e.g. by requiring the spatial derivatives of the image or

depth map to be small. This usually reduces the reconstruction problem to some

form of constrained optimization in a high-dimensional space (see Poggio and Torre

[80] or Horn [46] for discussions of general techniques for optimization in reconstruc-

tion). The resulting equations are frequently non-linear and so tend to be unstable

(see Aloimonos and Rosenfeld [5]). Instability means that estimates of surface struc-

ture are highly sensitive to noise in image measurements. Estimates are also highly

sensitive to deviations from the idealized smooth surface. Image discontinuities are a

particular problem since discontinuities are the ultimate non-smoothness (see again

Aloimonos and Rosenfeld, ibid.). To date, the reconstruction model of vision has

never been fully instantiated, although many individual modules have been built

with varying degrees of success. This does not prove that it cannot be done however.

A deeper criticism of reconstruction is that it is, at best, a partial theory. As

an agent goes about its life, it will need to assess di�erent aspects of its immediate

situation. This is rather like answering a series of questions: Is something about to

attack me? What direction is the hallway? Are there any free seats here? These

questions will vary from moment to moment and from situation to situation. The

agent will never need to answer the question what is the monolithic model of the

current state of the environment? other than to use that model to answer some other

question about its immediate situation. The important questions are always task-

dependent and quite speci�c. Any agent that can answer the right questions at the

right times will be successful, regardless of the organization of its perceptual system.

39

One of the major attractions of the reconstruction theory was that it gave us

a domain-independent theory of visual processing. However, the information an

agent needs from the environment is always domain-dependent. Thus reconstruction

cannot be a complete theory of vision, but rather a claim that the processing of

domain-dependent queries should begin by transforming sensor data into a canonical

form: a single domain-independent representation which allows e�cient processing

of speci�c queries. The validity of this claim rests on three engineering issues:

1. whether the use of a canonical form really does simplify query processing,

2. whether the canonical form that makes processing easiest is a surface recon-

struction, and

3. whether the savings accrued by using the canonical form are su�cient to justify

the processing required to build the canonical form.

These issues are hard to evaluate. It is likely that they will have to be answered

empirically. There are reasons to be skeptical that building a canonical form will be

the simplest solution, however. General experience with representation indicates that

expressiveness and explicitness trade o� with one another in representation languages

(see Levesque and Brachman [63] for a general discussion of this phenomenon in the

context of knowledge representation languages). The �rst thing which is taught in

many AI classes is the idea that a good representation should make the information

important to a task explicit, and nothing else. If this is to be taken seriously, then a

single canonical representation for all tasks is unlikely.

If it is hard to choose a single representation for all processing, it is equally hard to

choose a single algorithm for constructing the representation. For any given problem,

such as edge detection, there will tend to be many di�erent algorithms, each of which

makes di�erent performance trade o�s. One edge detector may be optimized to

localize an edge as well as possible, at the cost of speed and accuracy in detecting

the edge in the �rst place. Another edge detector may do the opposite. Again, it is

unlikely that there will be a single approach which will give the right performance

for all possible high level tasks.

All these problems can be answered by diluting reconstructionism. Indeed, few

people ever believed the reconstruction theory in its most absolute form. It is almost

certainly the case that some sort of shared intermediate processing is needed to build

a system for answering a wide range of queries (see section 3.2.2, below). Such

intermediate processing need not involve building a single monolithic representation,

nor need it involve a �xed set of processes.

It should be noted that nothing I have said here applies if the task facing the

designer is to do reconstruction; if one is trying to build digital terrain maps from

satellite imagery, then one must, by de�nition, do reconstruction.

40

3.1.2 Active vision and task-based vision

Over the years, a number of researchers have focused on how agents can use the

structure both of their task and of their own activity to simplify visual processing.

Gibson's theory of direct perception [42][41] was based on the notion that the an

agent's physiology was designed by nature to \resonate" with the particular infor-

mation inherent in its environment. Cutting has further developed Gibson's theory

of direct perception to take into account the agent's role of choosing which parts of

the stimulus to attend to (\directed perception," see Cutting [31]).

Recently, a great number of machine vision researchers researchers have proposed

various approaches to \active" and/or \task-based" vision. Bajczy [8] emphasized

the use of active sensing strategies such as active focusing and zooming. In my

master's thesis [52], I argued for basing the design of vision systems on concrete

tasks. This chapter is an elaboration of that work. Ballard [9] and the vision group

at Rochester University have developed an approach which they call \animate vision."

They give many examples of how gaze control, agent motion, and so on can be used

to simplify processing. Ikeuchi [53] has proposed an approach he calls \task oriented

vision." Ikeuchi is in the process of developing a \vision compiler" which can generate

custom vision applications given descriptions of visual tasks. Finally, Aloimonos [4]

has developed an approach he calls \purposive and qualitative active vision," which

stresses many of these same themes.

These proposals overlap a great deal. A common feature is the notion that visual

machinery can be greatly simpli�ed by computing only the information needed by

the agent to perform its immediate task(s). Another common feature of these new

proposals is the explicit use of agent dynamics to simplify visual processing. The ear-

liest use of dynamics that I know of is Gibson's The Senses Considered as Perceptual

Systems [41]. The earliest explicit use in the machine vision community of which I

am aware is Bandopadhay et al. [10] who used active tracking of a feature point to

simplify the equations for structure-from-motion. Perhaps the most systematic use

of dynamics is in Dickmanns' Dynamic Vision methodology [34], in which vision is

viewed as an optimal estimation problem in space-time. Dickmanns uses techniques

from control theory and optimal estimation theory (e.g. Kalman �ltering) to recover

metric scene parameters.

The �nal common feature is a tendency to use qualitative information rather than

metric information when possible. Qualitative information often has the twin advan-

tages of being easier to extract from images and of being more numerically stable

than metric information. The earliest proposal for the use of qualitative information

of which I am aware is Thompson and Kearney [98].

41

3.2 Building lightweight vision systems

Often, we want to build the simplest possible system which can solve a given task in

a given environment. In general, a given (task, environment) pair can be solved by a

broad range of mechanisms with a broad range of cost and performance parameters.

The better the designer's understanding of this range of mechanisms, the better she is

able to choose the mechanism that best suits her needs. Anything which can broaden

the range of mechanisms that could solve the problem is therefore a potential resource

for the designer.

3.2.1 Resources for simplifying vision

If an agent need only compute the information it needs to perform its task, then we

can treat that task as a resource which can be used to simplify visual processing.

By \task" here, I mean the high level task of the agent. The task speci�es, albeit

loosely and indirectly, what information is required to perform it. It speci�es it only

loosely and indirectly because a task such as obstacle avoidance does not require

any particular representation of space, obstacles, or the distance to obstacles, but

rather places a set of operational constraints on which representations are su�cient

for the task. One might use a depth map, or a Cartesian elevation map, or simply

the distance and direction of the nearest obstacle. The units of measurement might

be feet, meters, or some other unknown but repeatable system. This looseness should

be viewed as a positive feature, not as an ambiguity in need of clari�cation through

further task speci�cation. The fact that the task underdetermines the choice of

representation means that the designer has a wide range of choices available, some

of which may be very e�cient.

The task also provides the designer with concrete performance constraints. Again,

these constraints are a good thing. Performance constraints not only tell the designer

what is required, but also what is not required. Without concrete performance con-

straints, the designer can never know when to stop: since the system will never have

perfect performance, there will be room for endless improvement, but this additional

performance may be to no good end. More importantly, there is no single aspect of a

system which corresponds to performance. Performance has many parameters. These

parameters trade o� with one another and so cannot be optimized simultaneously.

The performance constraints of a task allow the designer to make intelligent choices

about which aspects of performance to optimize and which to sacri�ce.

One particularly important performance trade o� is the relation between spatial

sampling rate and temporal sampling rate. For a �xed amount of computational

power, the designer cannot increase one without decreasing the other. Since the

temporal sampling rate places a lower bound on response time, this can be a critical

trade o�. Many researchers have traded temporal resolution for spatial resolution.

42

Increasing spatial resolution can increase geometric accuracy, and so (one hopes)

increase the general reliability of the agent. Unfortunately, this can lead to a vicious

circle. Doubling the linear spatial resolution requires reducing the temporal sampling

rate by at least a factor of four. If the agent makes control decisions at the same rate

that it gets perceptual data, then the bandwidth of the control system will also have

to drop by a factor of four. The agent will have to wait four times as long to �nd out

if it made a mistake. If mistakes need to be corrected promptly, then the agent will

also have less time in which to recover, and so mistakes become a much graver issue.

Usually, the solution to this problem is to think very hard about a control decision

before making it. But that means that the agent needs very accurate and detailed

perceptual data about its environment, which means even more resolution, and so

on.

High spatial resolution is needed for good geometric accuracy1, but geometric

accuracy is not always needed to perform the task. All the processing in Polly is

performed on 64 � 48 images (or 16 � 12 for matching landmarks). Using these

images, it would be di�cult to estimate the robot's position relative to the walls

with any precision. Fortunately, Polly's navigation task does not require it to know

its exact position relative to the walls, only (1) whether it is moving roughly parallel

to the walls and (2) whether it is too close to one of them (see chapter 9 for more

discussion). Both of these can be checked e�ciently using low resolution images.

The correlations between the deep structure of objects in the world and the sur-

face structure of the image are another useful resource for simplifying vision. The

orientation of a corridor is a property of its geometric structure, and so one way of

�nding it would be to determine the geometric structure of the corridor and then to

extract the orientation from the geometric model. The geometric structure of the 3D

world is not re
ected in any simple manner in the structure of individual images. In

the case of the corridor, however, its orientation happens to coincide with the loca-

tion of the vanishing point of the corridor edges in the image. The vanishing point

is a purely 2D notion which is only present in the (surface) image structure, but in

this case, it happens to be correlated with the (deep) 3D structure of the corridor.

Since the vanishing point is easily computed from the image, we can easily compute

the orientation of the corridor.

The intended environment of the agent is another important resource for the

designer. To survive in a wide range of environments, an agent has to be prepared for

the worst cases of all environments. This means tighter performance constraints and

larger information requirements. By restricting the range of environments in which

the agent is to operate, we can often relax these constraints and use simpler systems.

Surface structure correlations often hold only in restricted classes of environments.

So, again, restricting the range of environments for an agent can allow optimizations

1It may also be needed in other cases such as when the only features in the scene are very very
small.

43

which would not otherwise be possible (see chapter 5 for more discussion).

3.2.2 Distributed representation and mediation

One of the principle features of the recent work in active and task-based vision, and

in many parts of AI in general, has been the move away from central mediating

representations, such as monolithic models, toward more distributed representations

in which di�erent parts of the problem are solved by di�erent computations which are

largely independent (see Horswill and Brooks [51], Aloimonos [4], and Brooks[20]).

These computations are often performed in parallel. One of the fears surrounding

this practice is that a complicated agent which performs a wide range of tasks will

need huge numbers of parallel processes. The issue of parallelism is outside the scope

of this work, but the issue of distributed representation is very important here.

Distributed representation and central mediating representations have comple-

mentary strengths. One advantage of using separate computations and representa-

tions to perform separate tasks is that it relaxes design constraints. A subsystem

that computes two pieces of information may have to satisfy the agent's performance

constraints (speed, accuracy, and so on) for both pieces of information simultane-

ously. Thus, solving the problems separately may be much easier than solving them

simultaneously. Sometimes, it is useful to use multiple computations to perform a

single task. If the performance constraints of the task are too tight for any particu-

lar computation, then a set of independent systems that make di�erent performance

trade o�s can accomplish the task reliably. For example, one system can give an

approximate answer immediately, while another gives a more accurate answer later.

Also, two systems with independent failure modes can be used together to perform

a task reliably. Polly can align itself with the corridor both by �nding the vanishing

point of the corridor and by turning so as to balance the distance to each wall. If the

vanishing point computation fails, the wall balancing algorithm compensates until

the vanishing point computation recovers.

On the other hand, many tasks may have similar performance constraints and

may perform the same intermediate steps. In that case, there is no reason not to

share those intermediate steps. The use of mediation thus depends on the mix of

tasks which the agent needs to perform, and the compatibility of their performance

constraints. In my work, I have tended to build independent systems for extracting

di�erent pieces of information, and then fold together similar computations afterward.

3.3 Other related work

In recent years, a number of active and task-based vision systems have been built. A

common task is the tracking of moving objects. Coombs [22] implemented a system

44

for �xating and tracking objects using a stereo eye/head system. The system used

disparity �ltering to localize the object. Wood�ll and Zabih [115] used optical
ow

to segment and track a moving object using monocular input. Horswill [52] used

environmental constraints to segment and track a moving object. Aloimonos [4]

describes a system, Medusa, which performs a number of tasks, including tracking.

Other researchers have built vision systems designed to extract useful high-level

information without building detailed depth maps. Aloimonos [4] describes a number

of motion algorithms which recover information useful for navigation without having

to solve the general structure-from-motion problem. Nishihara [77] describes a min-

imalist approach to early vision, particularly stereo. Swain [96] describes a system

for recognizing colored objects without using any geometric information whatsoever.

Various researchers have developed systems for directly detecting occluding contours,

without �rst measuring depth (see Mutch et al. [99], Spoerri [94], Toh and Forrest

[103], and Wixson [114]). Horswill [49] used disparity �ltering to implement prox-

imity detection from stereo images. Aloimonos' Medusa system extracts a number

of useful pieces of high-level information such as the presence of moving objects, the

direction of translation, and looming [4].

Tsotsos has argued that task-based recognition is simpler than bottom-up recog-

nition from a formal complexity standpoint [104]. Unfortunately, the proof is quite

speci�c to the particular formalizations of the task-based and bottom-up problems.

The former amounts to template matching when image position is not given and

occlusion is not present, the latter to template matching when when the pose is given

but occlusion is allowed. In the proof, it is the presence of occlusion which drives

the complexity of the bottom-up approach. The results also depend on the require-

ment that the templates must match using both a correlation metric and a di�erence

metric. If only one metric is used then, again, the complexity result falls.

One of the consequences of abandoning the model of vision as builder of monolithic

models is that resource limitations are introduced into sensing. A robot can only point

its camera in one direction at a time, the stereo system can only �xate one depth

plane at a time, the color histogram unit can only process one task at a time, and so

on. These computational and physical resources must be allocated and reallocated

continually by the agent. The result is that sensing becomes a series of actions

and so the traditional problems of action{planning, reaction, execution monitoring,

management of multiple con
icting goals|are recapitulated for perception. This

problem is generally referred to as the problem of the control of selective perception.

It has recently spawned a vast literature (see the collections [32, section XI] and

[91]). Approaches range from decision-theoretic models (see Rimey [101]) to full-

blown symbolic planning (see Pryor and Collins [82]).

Visual routines are a popular framework for discussing these problems. The no-

tion of visual routines is due to Ullman [106], who proposed the idea of a visual

routine processor (VRP), which acts as a co-processor for higher levels of processing,

45

and which has an instruction set of visual operations. To Ullman, visual routines

were patterns of processing implemented by sequences of operations in the same

manner as subroutines are implemented series of normal CPU instructions. Agre and

Chapman modi�ed and popularized the model within the greater AI community [3].

Agre and Chapman implemented a simulated VRP which they used for high-level

vision. The control inputs of the VRP were tied directly to the central system and

were treated in roughly the same way as any other e�ector. For Agre and Chap-

man, visual routines were not routines in the sense of \subroutines," but in Agre's

sense of common patterns of interaction between agent and environment [2]. Later,

Chapman implemented a second simulated VRP for his system, Sonja [26]. Chapman

proposed this system, the Sonja Intermediate Vision System or SIVS, as a provisional

computational model of biological intermediate vision [24].

Reece and Shafer implemented their own simulated VRP which they used to

model active vision for driving [83]. Since then, the use of the term has broadened

considerably, in e�ect, to include any sort of co-processor architecture. Swain [97]

discusses how a number of existing active vision systems can be thought of as \active

visual routines," but in this case, there is no visual routine processor!

3.4 Summary

Very general vision problems, such as building geometric models of arbitrary environ-

ments, can be very di�cult and expensive to build. However, we can often build very

simple and e�ective vision systems for speci�c tasks and environments. The structure

of the task and the environment are important resources for designing these simple

vision systems. As task and environment become more speci�c, the requirements on

the vision system become looser, and so the space of possible mechanisms which can

perform the task grows. Often, this space is very broad, and so some mechanism in

the space is often very e�cient. By making clear what design constraints do and do

not hold, we can greatly simplify the design of our vision systems.

I have no general prescription for designing such systems, I have tried to outline

the general resources available to the designer for simplifying vision problems. In the

following chapters, I will give a number of examples of lightweight vision systems and

discuss how they can be understood. With the proper analysis, the insights gained

from the design of one system can be extracted and applied to the design of other

systems.

46

Part II

Formal analysis of specialization

47

Chapter 4

Introduction to part II

4.1 Background

In the last decade AI has seen a surprising number of negative theoretical results.

Formal planning has been shown to be computationally intractable, or even undecid-

able (see Chapman [23]). Many perception problems have been shown to be highly

numerically unstable (see Aloimonos and Rosenfeld [5]). In general, most AI prob-

lems amount to search of large spaces, be they discrete spaces, as in the case of

reasoning, or continuous spaces, as in the problems of inverse optics. Unfortunately,

search is fundamentally hard. It is widely believed that no search problem which is

at least as di�cult as boolean satis�ability can be solved in polynomial time (Cook's

NP-completeness result; see Hopcroft and Ullman [45] for an introduction).

This is a problem. If search is formally intractable, then either AI is impossible, as

Penrose argues [79], or there must be a loophole somewhere. There are two candidate

loopholes. There could be a loophole in search: there might be polynomial-time

algorithms for solving search problems in the average case. This might be true if,

for example, there were a good way of generating admissible heuristics for A� in

an automated manner. On the other hand, there might be a loophole \in life": it

might be that most everyday problems facing agents are dramatically simpler, in

some formal sense, than typical general search problems.

4.1.1 Loopholes in life

This loophole-in-life case deserves some elaboration. It does not mean that humans

never solve hard problems. People prove theorems and play chess all the time. The

question is what fraction of human activity is fundamentally hard and what fraction

is fundamentally easy.

Complexity theory makes a distinction between problems and instances of prob-

lems. A problem is characterized by a set of instances together with their correct

48

answers. Any single instance, considered as its own problem, is trivially computable.

The instance has an answer whether we as programmers happen to know what it

is or not. Therefore, there must exist a program that prints that answer, regard-

less of its input. That program, although boring, correctly solves the instance, and

even does so in constant time and space. Single instances are uninteresting from a

complexity-theoretic viewpoint.

One di�culty of AI research is that God doesn't tell us what the formal problem

speci�cation for life is. AI researchers have to consider speci�c instances (\scenar-

ios"), infer the complete problem form the instances, and then design algorithms to

�t the problems. However, the di�culty of the problems is extremely sensitive to the

details of the phrasing of the problem. If two researchers can look at the same set

of instances and infer radically di�erent problems from them, then we have a serious

methodological problem.

Consider the problem of getting to work in the morning. Most people agree that it

has something to do with \navigation," whatever that is. But what is the ontology of

navigation? Is navigation a process of getting from one set of Cartesian coordinates

to another? Is it a process of getting from one fuzzily-de�ned area (\your bed") to

another another (\around your o�ce")? This choice has a profound impact on the

computational di�culty of the problem. AI researchers may agree that agents need

to get to work in the morning, but they are likely to violently disagree over whether

agents need do Cartesian navigation.

If we believe that there is a loophole in life | that somehow, most real everyday

tasks are relatively easy compared to the general case | then we must necessarily

have made poor problem formalizations in the past. Our �rst task then, is to reopen

the issue of formalization. We must explore not only di�erent problem solutions,

but also di�erent problem de�nitions. Computer Scientists are often loath to do this.

Computer scientists like to formally prove that they're right. Since the process of for-

malization is by de�nition itself informal, you can never prove that your formalization

is correct.

The key question is: what is it about the instances we encounter regularly in our

lives that makes them easy to solve? A number of overlapping answers have been

proposed. Both Schank [90] and Agre [2] have argued at length that we tend to

solve similar or even identical instances over and over, so we can keep recycling old

solutions with minor modi�cations. Such a view means that we don't want to think

about the navigation problem, but rather the meta-problem of solving long series of

similar navigation problems in minimal amortized time.

A number of authors have stressed the importance of environmental dynamics in

explaining intelligent activity. Some authors stress that the world is much simpler

than the most general imaginable case (see, for example, Agre [2]). Other authors

stress the complexity of the environment, arguing that the complexity of the envi-

ronment allows agents to be simpler (see, for example, Simon [92]). These are not

49

incompatible statements. The former is a statement about which of the imaginable

possible worlds an agent must actually live in, whereas the latter is a statement

about the presence of simplifying structures within the environment. Both groups

agree that there are simplifying structures within the environment which allow agents

to be simpler than would otherwise be necessary.

4.1.2 Computational minimalism

One way of understanding the comparative di�culty of two problem formalizations

is to compare the simplest possible algorithms for each. Doing so allows us to

build natural taxonomies of problems and their solutions. If we treat problems as

task/environment pairs, then we can also taxonomize environments in terms of their

relative di�culty for speci�c tasks.

In recent years, many researchers have tried to build the minimal mechanisms for

speci�c task/environment pairs (see, for example, Agre [2], Brooks [20], Chapman

[25], Connell [28], and Rosenschein and Kaelbling [88]). Some researchers, such as

Connell, use minimalism as an engineering methodology. Agre, on the other hand,

treats it largely as a psychological or anthropological methodology. I will focus prin-

cipally on engineering issues.

From an engineering standpoint, the advantage of minimalism is that small

changes in task or environment can greatly simplify the machinery needed to solve it.

The disadvantage is that the same sensitivity makes the minimalist systems hard to

understand. A system that works in one environment may fail to work in a slightly

di�erent environment. Worse, the e�ort expended in building a system for one envi-

ronment may tell us nothing about how to build a system to perform the same task

in a di�erent environment.

Minimizing mechanism maximizes specialization. If computational minimalism is

to succeed then we need a set of theoretical tools for analyzing the specialization of

systems to their environments.

4.2 Transformational analysis

We can understand specialization by analyzing it, in the sense of dissecting it, into

discrete chunks that can be understood in isolation. We can perform the analysis by

treating the specialized system as a transformed, or optimized, version of a general

system that performs the same task. Each transformation required to optimize the

general system into the specialized system will be dependent on a speci�c property

of the agent's environment. I will call these computational properties of the envi-

ronment, not because the environment is doing computation, but because they have

computational rami�cations. The result of the analysis is then a series of independent

50

optimizations, each of which simpli�es a speci�c computational subproblem using a

speci�c environment property.

To take a simplistic example, animals often need to detect the presence of other

animals in the environment. If the (non-living) objects in the animal's environment

are all static then motion in the environment is a cue to the presence of another

animal. Consider two animals that are identical except that one detects other animals

using shape, color, and smell information and the other simply by treating any motion

as another animal. The animals behave identically within that environment and thus

are \behaviorally equivalent" given that environment. There are di�erences however.

The animal which uses motion may be more \economical" in some sense. If it were a

robot, it might be cheaper to build, or take less power or physical space. The other

animal has the advantage that it can potentially operate in environments violating

the constraint that inanimate objects never move.

We can view the substitution of a motion-based animal detector for a shape-based

one as a transformation of one mechanism into another, a transformation that pre-

serves behavior in exactly the same way that rules of logical inference preserve truth

value, substitution of identities in mathematics preserves denotation, or compiler op-

timizations preserve the input/output behavior of the program being compiled. An

important di�erence however is that the transformation only preserves behavior in

environments satisfying the constraint. We can view the constraint as representing a

possible structure of environments, namely that inanimate objects do not move, and

the transformation as the structure's computational signi�cance1. We can character-

ize environments and compare them by giving the sets of useful constraints that they

satisfy. We can characterize and compare agents by giving the sets of constraints

that they require. The set of constraints assumed by an agent de�ne the set of envi-

ronments in which the agent can operate, that is, its \habitat," and for this reason I

will refer to these constraints as \habitat constraints."

Application of a series of transformations produces a series of behaviorally equiva-

lent systems making di�erent engineering trade-o�s and di�erent assumptions about

the world. We can compare behaviorally equivalent systems by giving a series of

transformations by which one can be converted to the other. I will call such a series

a \derivation" of the one from the other. A particularly useful way to analyze a

specialized system S is to give a derivation of the system from a more general system

G. Giving such a derivation

� makes explicit what additional assumptions are made by S,

� makes explicit what role those assumptions play in S's normal functioning,

� makes it easier to predict S's performance in novel environments,

� can make clearer how to modify S to operate in di�erent environments.

1Or part of its computational signi�cance, if it allows many di�erent useful transformations.

51

Perhaps more importantly, the steps of the derivation can be reused in the design or

analysis of other systems. In addition, if we de�ne suitable notions of equivalence for

agents components, then we can apply the analysis recursively to subsystems of S

and G.

The general approach is as follows. We �rst de�ne spaces of possible mechanisms

and environments. We then decide what aspects of the behavior of a mechanismmake

it behaviorally equivalent to another mechanism. Di�erent criteria will be required

for di�erent kinds of systems. Given these de�nitions, we can �nd transformations

between mechanisms which preserve behavioral equivalence, either conditionally or

unconditionally. If the transformation yields more e�cient mechanisms, then we can

view it as an optimization. Important classes of environments can be described in

terms of the constraints they satisfy and the optimizations they facilitate. Optimiza-

tions can then be reused in the design of future systems.

4.3 Synthesis versus post hoc analysis

This work is frequently interpreted as a framework for automatic programming. How-

ever, it is intended only as a technique for post hoc analysis of existing mechanisms.

My claim is that however you build the �rst mechanism, you should reduce it to a

set of reusable lemmas for simplifying other mechanisms. This work does not itself

give any rigorous methodology for building the �rst mechanism. It certainly is not a

strong enough framework for doing automatic programming of the �rst mechanism.

One might imagine automatic programming systems that use a stock of preexisting

optimization lemmas to simplify new designs. However, the task of doing the original

design and analysis is no easier or harder than many other tasks in engineering or

mathematics.

4.4 Related work

Relatively little attention has been devoted to environmental specialization in com-

puter science, mostly likely because it is only recently that we have begun to construct

computational systems that are closely coupled to natural environments.

In biology, a great deal of attention has been given to the specialization of com-

plete agents to their environments. Cybernetics, the progenitor of arti�cial intelli-

gence, also focused on agent/environment interactions, although not necessarily on

the properties of speci�c, complex environments [112]. Ideas from these areas are

now being applied to arti�cial intelligence and robotics (see McFarland [70], Paton

et al. [78]. Meyer and Guillot [71]).

In perceptual psychology, Gibson proposed an \ecological" theory of perception

that stressed the role of the environment in forming an agent's perceptions. Gibson

52

argued that the structure of the environment determines a set of invariants in the

energy
owing through the environment and that these invariants can be directly

picked up by the perceptual apparatus of the organism via a process akin to resonance.

Marr [68] argued that in order to properly understand the operation of a percep-

tual system (or more generally, of any intelligent system), we must understand the

problem it solves at the level of a computational theory.2 The computational theory

de�nes the desired input-output behavior of the perceptual system, along with a set

of constraints on the possible interpretations of a given input. The constraints were

necessary because a single stimulus can usually be generated by an in�nite number

of possible situations. The virtue of a computational theory is that it abstracts away

from the details of an individual mechanism. A single computational theory can be

used to explain and unify many di�erent mechanisms that instantiate it. To Marr,

the role of the constraints within computational theories was to show how the struc-

ture of the environment made interpretation possible at all, not how to make it more

e�cient. Marr believed that the human visual system was a general mechanism for

constructing three dimensional descriptions of the environment and so was relatively

unconcerned with understanding how a system could be specialized to take advantage

of useful, but unnecessary, properties of the environment. This work extends Marr's

ideas by using constraints to explain optimizations at the implementation level.

Most formal models of environments use state-space descriptions of the envi-

ronment, usually �nite-state machines. Rosenschein and Kaelbling used �nite state

machines to represent both agent and environment (see Rosenschein [86][87], and

Rosenschein and Kaelbling [88]). Their formalization allowed specialized mechanisms

to be directly synthesized from descriptions of desired behavior and a formalization of

the behavior of the environment. The formalization was powerful enough to form the

basis of a programming language used to program a real robot. Later, Rosenschein

developed a method for synthesizing automata whose internal states had provable

correlations to the state of the environment given a set of temporal logic assertions

about the dynamics of the environment. Donald and Jennings [36] use a geometric,

but similar, approach for constructing virtual sensors.

Wilson [113] has speci�cally proposed the classi�cation of simulated environments

based on the types of mechanisms which can operate successfully within them. Wilson

also used a �nite state formalization of the environment. He divided environments

into three classes based on properties such as determinacy. Todd and Wilson [102]

used �nite state machines to taxonomize grid worlds for a class of arti�cial agents

created by a genetic algorithm. Littman [64] used FSM models to classify environ-

ments for reinforcement learning algorithms. Littman parameterized the complexity

of RL agents in terms of the amount of local storage they use and how far into the

future the RL algorithm looks. He then empirically classi�ed environments by the

2Marr's actual story is more complicated than this, and used three levels of explanation, not two.
See Marr [68].

53

the minimal parameters that still allowed an optimal control policy to be learned.

There is also an extensive literature on discrete-event dynamic systems (see

Ko�seck�a [58] for a readable introduction), which also model the environment as a

�nite state machine, but which assume that transition information (rather than state

information) is visible to the agents.

An alternative to the state-machine formalism can be found in the work of Dixon

[35]. Dixon derives his semantics from �rst order logic, in which the world comes

individuated into objects and relations, rather than on the state-space methods used

here. Dixon's \open" approach also avoids the need to de�ne the environment as a

single mathematical structure. Like this work, Dixon's work attempts to formally

model the assumptions a system makes about its environment. Dixon's interest how-

ever, is on what an individual program means rather than on comparing competing

programs.

Several researchers have discussed how time-extended patterns of interaction with

the environment (called \dynamics" by Agre [2]) can be used to reduce the compu-

tational burden on an agent. Lyons and Hendricks have discussed how to derive and

exploit useful dynamics from a formal speci�cation of the environment [67]. They

use a uniform formalization of both agent and environment based on process algebra.

Using temporal logic, they are able to identify useful dynamics and design reactive

behaviors to exploit them. Hammond, Converse, and Grass discuss how new dynam-

ics can be designed into an agent to improve the stability of the agent/environment

system [44].

4.5 How to read part II

The top-level claims of this report are that (1) the use of task and environment in the

design of special purpose vision systems can lead to dramatically simpler and more

robust systems and (2) those systems can be analyzed and understood in a principled

manner. Polly is meant to establish the plausibility of the �rst claim. Part II is meant

to establish the plausibility of the second. Part III will apply the techniques of part

II to the analysis of Polly.

The central claims of part II are that

1. Behavior-preserving transformations concisely describe the specialization of an

agent to its environment.

2. Formal analysis in terms of transformations allows insights from the design of

one special-purpose system to be applied to the design of another.

These ideas need not be applied formally; they can be used in everyday engineering

problems in a relatively informal manner such as the analysis of the coloring algo-

rithm given in section 1.1.2. Such analyses are useful, if somewhat hand-wavy. The

54

goal of part II is to show that transformational analysis can be made formal and

rigorous. Doing so requires the use of a fair amount of formalism. The formalisms

themselves are not the focus of the work. Transformational analysis is the focus, and

the formalisms are one set of possible tools for applying transformational analysis.

They were chosen for simplicity of presentation more than theoretical power. The

reader is free to adopt my formalisms, use other formalisms (see section 4.4), or to

work in an informal manner.

The reader who feels bogged down by the math should feel free to skip it and go

on to part III.

55

Chapter 5

Framework

5.1 Agents, environments, and equivalence

We will assume that we can reasonably separate the world into agent and environ-

ment. The world here need not mean the entire physical universe, only that portion

of it which is relevant to our analysis. Let A denote some set of possible agents and

E a set of environments. Each agent/environment pair will form a dynamic system

with some behavior. We will also assume some task-speci�c notion of equivalence

over possible behaviors. We will write (a1; e1) � (a2; e2) to mean that the behavior

of a1 operating in e1 is equivalent to the behavior of a2 in e2. We can then say that

two agents are equivalent if they are equivalent in all environments:

a1 � a2 i� 8e1; e2:(a1; e1) � (a2; e2)

We will call them conditionally equivalent given some environmental constraint C if

they are equivalent in all environments satisfying C. We will write this a1
C
� a2. Thus

a1
C
� a2 i� 8e1; e2:C(e1) ^ C(e2)) (a1; e1) � (a2; e2)

Often, the designer has a particular behavior that they want the agent to achieve.

Then the only useful behavioral distinction is whether the agent \works" or not, and

so the � relation will divide the possible behaviors into only two classes, working

and not working. Let the habitat HA of agent A be set of environments in which it

works. We will often refer to environment constraints as habitat constraints, since

the habitat can be described as a constraint or conjunction of constraints.

5.2 Specialization as optimization

Suppose we want to understand an agent s that is somehow specialized to its environ-

ment. Although s might be more e�cient than some more general system g, it may

56

also have a smaller habitat, i.e. Hs � Hg. If we can �nd a sequence of mechanisms

si and domain constraints Ci, such that

g
C1

� s1
C2

� s2:::
Cn

� s

then we have that g
C1\:::\Cn

� s. We can phrase this latter statement in English as:

within the environments that satisfy C1:::Cn, g and s are behaviorally equivalent{they

will work in exactly the same cases. This lets us express the habitat of s in terms of

the habitat of g:

Hs � Hg \ C1 \ :::\ Cn

Note that the left- and right-hand sides are not necessarily equal because there may

be situations where S works but g does not. One of the constraints on the right hand

side might also be overly strong.

I will call such a sequence of equivalences, in which g is gradually transformed

into s, a derivation of s from g, in analogy to the derivations of equations. We will

restrict our attention to the case where each derivation step si�1
Ci

� si can be seen

as the result of applying some general optimizing transformation Oi that preserves

equivalence given Ci, i.e. for which

si = Oi(si�1); for each i and

a
Ci

� Oi(a); whenever Oi(a) is de�ned

Exhibiting such a derivation breaks s's specialization into smaller pieces that are

easier to understand. It also places the constraints Ci in correspondence with their

optimizationsOi, making the computational value of each constraint explicit. Teasing

these constraints apart helps predict the performance of the agent in novel environ-

ments. If an environment satis�es all the constraints, the agent will work. If it does

not, then we know which optimizations will fail, and consequently, which parts of

the design to modify. In addition, if we can write a general lemma to the e�ect that

a
Ci

� Oi(a), then we can reuse Oi in the design of future systems. Such lemmas may

be of greater interest than the actual agents that inspired them.

Note that we can equally well perform a derivation of one subsystem of an agent

from another possible subsystem. For that reason, I will often use the term \mecha-

nism" to mean either an agent or one of its subsystems.

5.3 Simple example

Let's apply this framework to the case of a speci�c kind of feedback control system:

the �rst order control systems with one degree of freedom. Applying the framework

requires specifying what it means for two systems to be equivalent.

57

Suppose we have a �rst order system with a single degree of freedom x. In this

context, \�rst order" means we have direct control of dx
dt
. Suppose we want to make

x have some desired value. If the system converges to the desired value in �nite time,

then it is stable for that desired value. We will say two control systems are equivalent

if they are stable for the same sets of values.1

While second order control problems (problems where we only have control of
d2x
dx2

) can be di�cult, it seems that controlling the �rst order system should be more

or less trivial. Intuitively, all we should have to get right is the sign of the control

signal. While this isn't technically true,2 the control signal can tolerate a wide range

of variation and still converge. That means we don't need an accurate estimate of

the the error. It turns out that any strictly increasing measure of the error will allow

the system to converge, provide that it maps zero error to zero. We can formalize

this as an optimization that substitutes uncalibrated estimates for calibrated ones.

We will call this \decalibration:"

Theorem 1 (Control decalibration) Let x be a physical system with one degree of

freedom whose rate of change can be directly controlled. Then all control systems

whose control laws are of the form

dx

dt
(t) = �f(x(t)� xset) (5:1)

where f :R!R is nondecreasing and f(x) = 0 i� x = 0, will cause x(t) converge to

xset for arbitrary values of xset and so all such control systems are equivalent under

our de�nition.

Proof: Without loss of generality, we will assume that xset = 0. We want to show

that limt!1 x(t) = 0. This equation must have a unique, continuous solution for

a given initial value (see Brauer and Nohel [13], theorem 1.1). Note that x and its

derivative must always have opposite sign, except when one is zero, in which case

the other must also be zero. Thus x must be strictly decreasing over any interval

in which x is strictly positive, and strictly increasing in any interval in which x is

strictly negative. Suppose that x(t0) = 0 and that x(t) becomes positive before ever

becoming non-positive in some interval [t0; t1]. Then x(t1) > 0 and x is nonnegative

in [t0; t1]. By the mean value theorem, there must be some t 2 [t0; t1] for which

x0(t) > 0, a contradiction. Similarly, x cannot �rst become negative, and so x(t)
must be zero for all t > t0. Thus x can never cross zero.

Since x will stay at zero one it reaches zero, we need only consider the case in

which x stays either positive forever or negative forever. Suppose x(t) > 0 for all

t > t0, and so x(t) is strictly decreasing for all t > t0. Let � > 0. We want to

1This equivalence condition is not a necessary choice. One might want to include rate of conver-
gence, maximum speed, or some other condition in the criteria.

2The system could converge to an incorrect value.

58

show that there exists some t� such that x(t) < � for all t > t�. Since x is strictly

decreasing, we need only show that x(t) eventually reaches �. Suppose it does not.

Then x must always be larger than �, and so x0 must always be more negative than

�f(�), meaning that x is bounded above by x(t0)� (t� t0)f(�). But this drops below

�, and so x must too. Thus limt!1 x(t) = 0. The limit holds by similar reasoning

when x remains negative, and so must hold in general. 2

The caveat to this theorem is that we live in a second order universe and so few

physical systems can be accurately modeled as being �rst order systems with zero

delay. However, it is often the case that the rate of change of the second order system

is quickly and easily measured, while the absolute (or relative) position of the system

is much more di�cult to measure. An example might be a robot driving in a room.

The robot can easily measure its speed by sensing currents or reading shaft encoders,

but accurate information about the robot's position relative to obstacles might require

the use of a vision system or other sensing modality whose latency is large compared

to the accelerations which the motors can produce. In such situations, we can reduce

the second order control problem to two �rst order control problems: one to control

velocity using motor torques, and the other to control position by adjusting velocity.

Velocity control can often be done fast enough to make the robot look like a �rst

order system to vision. It is still necessary for the visual system to run fast enough

to prevent oscillation however.

An important implication of this theorem is that such a system will be insensitive

to errors in the calibration of their perceptual systems provided that (1) the system's

estimate of the error is still monotonic in the actual error, and (2) the system still

recognizes when there is zero error. Calibration can be a major problem for per-

ceptual systems, particularly when the systems are driven around on robots which

periodically crash into things, thus getting knocked out of calibration.

59

Chapter 6

Analysis of simple perceptual

systems

In this chapter, we will perform a more detailed analysis of the coloring algorithm

given in section 1.1.1. To do this, we need to
esh out the notions of environment,

behavior, and behavioral equivalence. Throughout the paper, we will use a state

space formalization of the environment. In this section, we will only be concerned

with the environment states themselves, not with the possible transitions between

them. We will also ignore the internal state of the agent. In section 7, we will add

dynamics and internal state.

Let W be the set of possible world states. We will model environments as subsets

of W (we will consider other state spaces in section 7.1). Thus E = 2W . Habitats,

which we have de�ned as sets of environments, will then e�ectively just be (larger)

regions of the state-space themselves. Habitat constraints, constraints over possible

habitats, are then also e�ectively just subsets of W .

Since we are ignoring dynamics and internal state, we will consider only those per-

ceptual systems that give information about the instantaneous world state. Thus a

perceptual system is a mechanism that has an identi�able output with an identi�able

set of possible states S such that the state of the output is causally determined by

the state of the world. E�ectively, the perceptual system computes a function from

W to S. We will call that function the information type that the perceptual system

computes. We will say that two perceptual systems are behaviorally equivalent if

they compute the same information type. An information type is �nite if its range

is �nite. Note that information types should not be confused with the concept of

information as inverse probability used in classical information theory (see Hamming

[43]). While the two are certainly compatible, classical information theory is con-

cerned with measuring quantities of information, whereas our concern here is with

distinguishing among di�erent kinds of information.

60

6.1 Derivability and equivalence

Often what is interesting about an information type is what other information types

can be computed from it. We will say that one information type I 0:W!S0 is derivable

from another, I:W!S, if there exists a derivation function f for which I 0=f �I. I1
and I2 are equivalent (written I1 � I2) if they are interderivable.

The range of an information type is irrelevant to derivability; We can arbitrarily

rename the elements of its range without changing what can be derived from it. Thus

what really matters is the partition PI it induces on the world states:

PI = fA � W j x; y 2 A, I(x) = I(y)g

The elements of the partition are the maximal sets of world states that are indistin-

guishable given only I.

Lemma 1 The following statements are equivalent:

1. I1 and I2 are equivalent, that is, interderivable.
2. X is derivable from I1 i� it is derivable from I2, for all X.

3. The partitions PI1 and PI2 are identical.

4. I1 and I2 di�er only by a bijection (a 1:1 onto mapping).

Proof: First, recall that derivability is transitive. Now suppose that (1) holds. Then

if X is derivable from I2 and I2 is, by (1), derivable from I1, then X is derivable

from I1. Similarly, if X is derivable from I1, then it must be derivable from I2. Thus

(1) implies (2). Now assume (2). Since derivability is re
exive, I1 and I2 must be
interderivable, and so, equivalent. Now suppose that (3) is false. Then there must

be a pair of world states w and w0 such that either I1(w)=I1(w
0) but I2(w) 6=I2(w

0)

or vice versa. Without loss of generality, we may assume that it is I2 which di�ers.

By interderivability, there is a derivation function f such that I2 = f � I1 and so

f(I1(w)) 6=f(I1(w
0)), which contradicts the assumption that I1(w)=I1(w

0). Thus (3)

must hold, and so (2) implies (3). Now note that for every information type I:W!S,

there is a trivial bijection between S and PI given by the rule s7!I�1(s) for all s2S.
Since the inverses and compositions of bijections are themselves bijections, (4) must

follow from (3). Finally, note that (1) follows trivially from (4) since the 1:1 mapping

would itself be the derivation function. 2

We will say that I and I 0 are conditionally identical given C (written I
C
= I 0)

if I(w) = I 0(w) for all w 2 C. Note that I
W
= I and that I1

C1= I2 and I2
C2= I3

implies I1
C1\C2= I3. Finally, we will say that two perceptual systems are behaviorally

equivalent if they compute the same information type and conditionally equivalent

given C if their information types are conditionally identical given C.

61

6.2 Unconditional equivalence transformations

We will use a single box labeled with an information type I

) I !

to represent a perceptual system that (somehow) computes I. The double arrow is

meant to represent a connection to the environment. When we want to expose the

internal structure in the system, we will use single arrows to represent connections

wholly within the system. Thus

) I ! f ! g !: : :

represents a system which �rst computes I and then applies the transformations f ,

g, : : : to it. Finally, we will denote predicates with a \?", thus

) I ! > T ? !

denotes a system which outputs true when I(w) > T , and false otherwise. These

diagrams inherit the associativity of function composition:

) f � I ! g ! �) I ! f ! g ! �) I ! g � f !

and so a simple optimization, which we might call \folding" (after constant-folding in

compiler optimization), is the replacement of a series of computations with a single

computation:

) I ! f ! �) f � I !

While folding is formally trivial, the technique is quite useful in practice. For

example, rather than �rst computing pose information from an image and then run-

ning a grasp planner to choose a grasping strategy, one might use the object's 2D

appearance to index directly into a table of grasping strategies. To abuse our notation

somewhat, we might say that

) recognize model ! compute pose ! plan strategy !

could be reduced to

) recognize view ! look up strategy !

62

One example of an optimizing transformation is what might be called \decalibra-

tion." Estimating precise parameters such as depth can be di�cult and can require

precise sensor calibration. Often all that is done with this information is to compare

it to some empirical threshold. For example, we might estimate the distance to an

obstacle to decide whether we should swerve around it, or whether it is too late and

we must brake to avoid collision. Generally, the designer arbitrarily chooses a thresh-

old or determines it experimentally. In such situations, we can use any mechanism

that computes distance in any units, provided that we correct the threshold.

Lemma 2 (Decalibration) For any information type I:W!R (R is the set of real

numbers) and any strictly increasing function f :R!R,

) I ! > T ? ! �) f � I ! > f(T)? !

Proof: By associativity, the right hand side is equivalent to

) I ! (> f(T)?) � f !

and for all x, f(x) > f(T) i� x > T , thus (> f(T)?) � f = (> T ?). 2

Decalibration allows a calibrated mechanism to be replaced with an uncalibrated

mechanism, in certain cases.

6.3 Transformations over simple vision systems

The coloring algorithm used image plane height to discriminate depth and a texture

detector to �nd obstacles. In the remainder of this chapter, we will derive su�cient

conditions for the validity of these techniques. We will show that image plane height

is a strictly increasing function of object depth, provided the object rests on the
oor

and its projection into the
oor is contained within its region of contact with the
oor.

We will also show that for
oors whose surface markings have no spatial frequencies

below ! and which are viewed from a distance of at least d, any low pass �lter with a

passband in the region (0; d!) can be used to discriminate between objects and
oor.

First, we need to de�ne our coordinate systems, one camera centered, in which the

forward direction direction (z) is the axis of projection, and the other body-centered,

in which the forward direction (Z) is the direction of motion (see �gure 6.1). We will

assume that the camera faces forward, but somewhat down, and so the camera- and

body-centered frames share their left/right axis, which we will call X. We will call

the up/down axes for the camera- and body-centered systems y and Y, respectively.

We will assume that the ground plane lies at Y = 0. We will denote the image with

range set X by I(X) so the b/w images are I(R) and the color images are I(R3).

63

Ground planecenter of body
coordinate system

z
y

Z

Y

h

P

camera

optic axis

Figure 6.1: A camera viewing a ground plane. The X axis (not shown) comes out

of the page and is shared by the the camera and body coordinate frames. The body

coordinate frame is formed by X, Y and Z, the camera frame, by X, y and z. z is

also the axis of projection, or optic axis, of the camera. h is the height of the camera

and P is an arbitrary point on the ground plane.

The projection process can be speci�ed in either of these coordinate frames. In

camera-centered coordinates, the projection process maps a point (X; y; z) in the

world to a point (fX=z; fy=z) on the image plane, where f is the focal length of

the lens. In the body-centered coordinate system, projection is best expressed with

vector algebra. A point P in the world will be projected to the image plane point

p =
f(P � h)

z � (P� h)

(These are 3D coordinates; the 2D coordinates are obtained by projecting it onto the

image plane axes X and y, yielding the coordinates (X � p;y � p)).

Salience functions and �gure/ground separation

Let O be a set of objects and FGO:W!I(fT;Fg) (\�gure/ground") be the unique

information type that, for all world states, returns an image in which pixels are

marked \T" if they were imaged in that world state from one of the objects O,
otherwise \F ." A perceptual system that can compute FGO within its habitat can

distinguish O from the background. FGO can be arbitrarily di�cult (consider the

case where O is the set of chameleons or snipers). Fortunately, there are often speci�c

cues that allow objects to be recognized in speci�c contexts. We will call these cues

salience functions. An information type is a salience function if it is conditionally

equivalent to FGO given some constraint (a \salience constraint"). The use of such

simple, easily computed functions to �nd particular classes of objects is common both

in AI (see Swain [96], Turk et al. [105], [30], Horswill and Brooks [51], Wood�ll and

Zabih [115]) and in the biological world (see Roitblat [85] for a good introduction).

64

The coloring algorithm uses the texture detector as a salience function. We want

to determine what salience constraint is required for a given texture detector. For

simplicity, we will restrict ourselves to Fourier-based measures of texture. E�ectively,

a texture detector examines a small patch of the image. We can approximate the

projection of a small patch with

(X; y; z) 7! (fX=z0; fy=z0)

where z0 is the distance to the center of the surface patch. A su�ciently small patch

can be treated as a plane with a some local coordinate system (x0; y0). Suppose the

patch's re
ectance varies as a sinusoid with frequency vector ~!. Then its re
ectance

R at a point (x0; y0) on the patch is given by:

R(x0; y0) =
1

2

sin

x0

!x
+ sin

y0

!y

!
+
1

2

If we view the patch:

� from a unit distance,

� through a lens of unit focal length,

� from a direction normal to the patch,

� with the X axis aligned with the x0 axis, and
� with even illumination of unit intensity

then the image intensity will simply be

I(x; y) = R(x; y)

Now consider the e�ect of changing the viewing conditions. Doubling the distance

or halving the focal length halves the size of the image.

I(x; y) = R(
x

2
;
y

2
) =

1

2

sin

x

2!x
+ sin

y

2!y

!
+
1

2

The image is still a sine wave grating, but its projected frequency is doubled. Rotating

the patch by and angle � around the X axis shrinks the projection along the Y axis

by a factor of cos �, producing a sine wave of frequency (!x;
!y

cos �
):

I(x; y) = R(x; y cos �) =
1

2

sin

x

!x
+ sin

y cos �

!y

!
+
1

2

Rotating the patch about the Y axis shrinks the X axis of the projection. Rotating

about the optic axis simply rotates the frequency vector.

Thus a sine wave grating viewed from any position appears as a grating with iden-

tical amplitude but with a frequency vector modi�ed by a scaling of its components

65

Zero band

Projected zero band

Figure 6.2: The e�ect of perspective projection on local frequency distributions.

and possibly a rotation. Since the projection process is linear, we can extend this

to arbitrary power spectra: the power spectrum of the patch's projection will be the

power spectrum of the patch, rotated and stretched along each axis (see �gure 6.2).

Frequency bands of the patch are transformed into elliptical regions of the frequency

domain of its projection. Bounds on the possible viewing conditions yield bounds on

how much the frequency bands can be deformed.

The background texture constraint (BTC) requires that all surface patches of the

background have surface markings whose power spectra are bounded below by !,

that all objects have surface markings with energy below !, and that no surface in

view is closer than d focal lengths, and that the scene is uniformly lit. We have that

Lemma 3 Any thresholded linear �ltering of the image with a passband in the inter-

val (0; d!) is a salience function given the background texture constraint.

Proof: By assumption, no patch of the background has energy in the band (0; !), but

all objects do. By the reasoning above, when any patch, either object or background,

is viewed fronto-parallel from distance d, the band (0; !) projects to the band (0; d!).
Thus a patch was imaged from an object i� its projection has energy in this band.

But note that increasing the distance or changing the viewing orientation can only

increase the size of the projected frequency ellipse. Thus for any distance greater

than d and any viewing orientation, a patch will have energy in (0; d!) i� it was

imaged from an object. Thus a thresholded linear �lter is a salience function given

BTC. 2

The corollary to this is that any thresholded linear �lter with passband in (0; d!)
is conditionally equivalent to a �gure/ground system given the background texture

constraint.

Depth recovery

Depth can be measured in either a camera-centered or a body-centered coordinate

system. We will call these \camera depth" and \body depth," respectively. The

camera depth of a point P is its distance to the image plane, z � (P�h). Body depth,

66

Ground plane
Z

P

image plane

point of
projection

y

Figure 6.3: Monotonicity of image plane height in body depth. Rays projected from

the point of projection to points on the ground plane pass through successively higher

points on the image plane as they move to more distant points on the ground plane.

on the other hand, is how far forward the robot can drive before it collides with the

point, Z �P. We will concern ourselves with body depth.

Consider a world of
at objects lying on a ground plane. Then both object

points and ground plane points have zero Y coordinates. The points must be linear

combinations of X and Z. Since both z and Z are perpendicular to X, the X
component of the point will make no contribution either to camera depth or to body

depth and we can restrict our attention to the one dimensional case, shown in �gure

6.1, of a point P = nZ. Its body depth is simply n, while its camera depth z�(nZ�h)
depends on camera placement. We can see by inspection, however, that the camera

depth is linear in n and so camera depth and body depth are related by a linear

mapping. More surprisingly, image plane height is a strictly increasing function of

body depth. This can be seen from �gure 6.3. It can also be shown analytically. The

image plane height of P is

y �

f(nZ � h)

z � (nZ � h)

!
=
y � (fnZ � fh)

nz � Z� z � h
=

n�� �

n� �

for � = fZ � y, � = z � Z,
 = z � h, and � = fh � y. Di�erentiating with respect to

n, we obtain
�(n� �
)� �(n�� �)

(n� �
)2
=

�� � �

(n� �
)2

When the camera looks forward and P is in front of the agent, we have that n; �; � > 0,

and
� < 0, so the derivative is strictly positive.

The ground plane constraint (GPC) requires that the camera view a set of the

objects O resting on a ground plane G, and that for each o 2 O, o is completely in

view and o's projection in G is its set of points of contact with G.1 Thus pyramids

resting on their bases would satisfy the restriction, but not pyramids resting on their

points. Given GPC, we can use least y coordinate as a measure of the depth of the

closest object. Let Body-DepthO be the information type that gives the correct body

1Formalizing the notion of contact can be di�cult (see for example Fleck [39], chapter 8), but we
will treat the notion as primitive, since the particular formalization is unimportant for our purposes.

67

depth for pixels generated by one of the objects O, or 1 for pixels generated by the

background.

Lemma 4 Let R be a region of the image. Then minR �Body-DepthO is conditionally

equivalent to minfy : FGO(x; y) for some (x; y) 2 Rg given GPC, modulo a strictly

increasing function.

Proof: Note that there can only be one minimal depth, but there can be many

minimal-depth object points. However, it must be the case that some contact point

(an object point touching the
oor) has minimal depth, otherwise there would be an

object point whose ground plane projection was not a contact point, a contradiction.

Let p be a minimal-depth contact point. We want to show that no object point can

have a smaller projected y coordinate than p. Since the y coordinate is invariant

with respect to changes in the X coordinate, a point which projects to a lesser y

coordinate than p must have either a smaller Z coordinate or a smaller Y coordinate.

The �rst would contradict p's being a minimal-depth point while the latter would

place the point below the ground plane. Thus p must have a minimal y projection.

We have already shown that for contact points the y projection is strictly increasing

in body depth. 2

A trivial corollary to this lemma is that the height of the lowest �gure pixel in an

image column gives the distance to the nearest object in the direction corresponding

to the column.

68

Chapter 7

Analysis of action selection

In this chapter we will apply transformational techniques to action-selection tasks

with the goal of demonstrating a number of formal conditions under which we can

reduce deliberative planning systems to reactive systems. We will continue to model

the environment as a dynamic system with a known set of possible states. First, we

will add actions (state transitions) to the environment, making it a full state-machine.

We will then model both deliberative planning systems and reactive systems as vari-

ants of the control policies of classical control theory (see Luenberger [65] or Beer

[15]). This gives us a uniform vocabulary for expressing both types of systems. We

can then examine various formal conditions on the environment that allow simpli�-

cations of the control policy (e.g. substitution of a reactive policy for a deliberative

one)

Again, the focus of chapter is the use of transformational analysis, not the speci�cs

of the notation used below. The notation is needed to establish a framework within

which to apply the transformations. The notation used here is largely equivalent to

those used by Rosenschein and Kaelbling [88], and by Donald and Jennings [36]. It

was chosen for largely for compactness of presentation. The formal trick of external-

izing the agent's internal state also turns out to be useful.

7.1 Environments

We will now allow di�erent environments to have di�erent state spaces and will treat

actions as mappings from states to states. An environment will then be a state

machine E = (S;A) formed of a state space S and a set of actions A, each of which

is a mapping from S to S.

For example, consider a robot moving along a corridor with n equally spaced

o�ces labeled 1, 2, and so on. We can formalize this as the environment Zn =

(f0; 1; :::; n� 1g; fincn; dec; ig), where i is the identity function, and where incn and
dec map an integer i to i+1 and i� 1, respectively, with the proviso that dec(0) = 0

69

0 1 2 3 4

inc5inc5 inc5 inc5

inc5dec

decdecdecdec

(0,1) (1,1)

(0,0) (1,0)

(inc,i)

(dec,i)

(i
,in

c)

(i
,d

ec
) (i,inc)

(i,dec)

(dec,i)
(i,dec)

(inc,i)
(i,dec)

(inc,i)
(i,inc)

(dec,i)
(i,inc)

(inc,i)

(dec,i)

Figure 7.1: The environment Z5 (left) and and the serial product of Z2 with itself,

expressed as graphs. Function products have been written as pairs, i.e. inc�i is
written as (inc; i). Identity actions (i and i�i) have been omitted to reduce clutter.

and incn(n � 1) = n � 1 (see �gure 7.1). Note that the e�ect of performing the

identity action is to stay in the same state.

7.1.1 Discrete control problems

We will say that a discrete control problem, or DCP, is a pair D = (E;G) where E

is an environment and G, the goal, is a region of E's state space. The problem of

getting to the beginning of the corridor for our robot would be the DCP (Zn; f0g).

By abuse of notation, we will also write a DCP as a triple (S;A;G). A �nite sequence

of actions a = (a1; a2; :::; an) solves D from initial state s if an(an�1(:::a1(s))) 2 G.
D em is solvable from s if such a sequence exists. D is solvable (in general) if it is

solvable from all s 2 S.

7.1.2 Cartesian products

Often, the state space of the environment is structured into distinct components that

can be acted upon independently. The position of the king on a chess board has row

and column components, for example. Thus we would like to think of the king-on-

a-chess-board environment as being the \product" of the environment Z8 with itself

(since there are eight rows and eight columns), just as R2 is the Cartesian product

of the reals with themselves. However, consider an environment in which a car drives

through an 8�8 grid of city blocks. We would also like to think of this environment

as being the product of Z8 with itself. Both the car and the king have 8�8 grids as

their state spaces, but the car can only change one of its state components at a time,

whereas the king can change both by moving diagonally.

We will therefore distinguish two di�erent Cartesian products of environments,

70

the parallel product, which corresponds to the king case, and the serial product, which

corresponds to the car case. Let the Cartesian product of two functions f and g be

f�g: (a; b) 7! (f(a); g(b)), and let i be the identity function. For two environments

E1 = (S1; A1) and E2 = (S2; A2), we will de�ne the parallel product to be

E1kE2 = (S1�S2; fa1�a2 : a1 2 A1; a2 2 A2g)

and the serial product to be

E1
*)E2 = (S1�S2; fa1�i : a1 2 A1g [fi�a2 : a2 2 A2g)

The products of DCPs are de�ned in the obvious way:

(E1; G1)k (E2; G2) = (E1 kE2; G1�G2)

(E1; G1)*)(E2; G2) = (E1*)E2; G1�G2)

The state diagram for Z2*)Z2 is shown in �gure 7.1.

We will say that an environment or DCP is parallel (or serial) separable if it is

isomorphic to a product of environments or DCPs.

7.1.3 Solvability of separable DCPs

The important property of separable DCPs is that their solutions can be constructed

from solutions to their components:

Claim 1 Let D1 and D2 be DCPs. Then D1*)D2 is solvable from state (s1; s2) i�

D1 is solvable from s1 and D2 is solvable from s2.

Proof: Consider a sequence S that solves the product from (s1; s2). Let S1 and S2 be

the sequences of actions from D1 and D2, respectively, that together form S, so that

if S were the sequence

(a�i; i�x; i�y; b�i; i�z; c�i)

then S1 would be (a; b; c) and S2 would be (x; y; z). S must leave the product in

some goal state (g1; g2). By de�nition, g1 and g2 must be goal states of D1 and D2

and so S1 and S2 must be solution sequences to D1 and D2, respectively. Conversely,

we can construct a solution sequence to the product from solution sequences for the

components. 2

The parallel product case is more complicated because the agent must always

change both state components. This leaves the agent no way of preserving one

solved subproblem while solving another. Consider a \
ip-
op" environment F =

(f0; 1g; fflipg) where flip(x) = 1�x. F has the property that every state is accessible

from every other state. F*)F also has this property. F kF does not however. F kF

71

has only one action, which
ips both state components at once. Thus only two states

are accessible from any given state in F kF , the state itself and its
ip. As with the

king, the problem is �xed if we add the identity action to F . Then it is possible to

leave one component of the product intact, while changing the other. The identity

action, while su�cient, is not necessary. A weaker, but still unnecessary, condition

is that F have some action that always maps goal states to goal states.

Claim 2 Let D1 and D2 be DCPs. If D1kD2 is solvable from state (s1; s2) then D1

is solvable from s1 and D2 is solvable from s2. The converse is also true if for every

goal state of D1 and D2, there is an action that maps to another goal state.

Again, let S be a solution sequence from (s1; s2). Now let S1 and S2 be the sequences
of obtained by taking the �rst and second components, respectively, of each element

of S. Thus, if S is

(a�x; b�y; c�z)

then we again have that S1 is (a; b; c) and S2 is (x; y; z). Again, S1 and S2 are solution
sequences for their respective component problems. Similarly, we can form a solution

to the product from solutions to the components by combining them element-wise.

To do this, the solutions to the components must be of the same length. Without

loss of generality, let S1 be the shorter solution. Since there is always an action to

map a goal state to a goal state, we can pad S1 with actions that will keep D1 within

its goal region. The combination of S2 and the padded S1 must then be a solution

to the product. 2

7.2 Agents

We will assume an agent uses some policy to choose actions. A policy p is a mapping

from states to actions. We will say that p:

� generates a state sequence si when si+1 = (p(si))(si) for all i.
� generates an action sequence ai when it generates si and ai = p(si) for all i.

� solves D from state s when p generates a solution sequence from s.
� solves D when it solves D from all states.

� solves D and halts when it solves D and for all s 2 G, (p(s))(s) 2 G.

For example, the constant function p(s) = dec is a policy that solves the DCP

(Zn; f0g) and halts.

72

7.2.1 Hidden state and sensors

A policy uses perfect information about the world to choose an action. In real life,

agents only have access to sensory information. Let T :S ! X be the information

type (see section 6) provided by the agent's sensors. The crucial question about T

is what information can be derived from it. We will say that an information type is

observable if it is derivable from T .

To choose actions, we need a mapping not from world states S to A, but from

sensor states X to A. We will call such a mapping a T -policy. A function p is a

T -policy for a DCP D if p�T is a policy for D. We will say that p T -solves D from a

given state if p � T solves it, and that p T -solves D (in general) if it T -solves it from
any initial state.

7.2.2 Externalization of internal state

We have also assumed that the agent itself has no internal state{that its actions are

determined completely by the state of its sensors. In real life, agents generally have

internal state. We will model internal state as a form of external (environmental) state

with perfect sensors and e�ectors. Let the register environment RA over an alphabet

A be the environment whose state space is A and whose actions are the constant

functions over A. We will write the constant function whose value is always a as Ca.

The action Ca \writes" a into the register. We will call E kRA the augmentation of

E with the alphabet A. An agent operating in the augmentation can, at each point

in time, read the states of E and the register, perform an action in E, and write a

new value into the register.

Using external state for internal state is not simply mathematical arti�ce. Agents

can and do use the world as external memory. An agent need only isolate some

portion of the world's state (such as the appearance of a sheet of paper) which can

be accurately sensed and controlled. Humans do this routinely. Appointment books

allow people to keep their plans for the day in the world, rather than in their scarce

memory. Bartenders use the position of a glass on the bar to encode what type of

drink they intend to mix and how far they are into the mixing (see Beach [14]). For

an example of a program that uses external state, see Agre and Horswill [1].

7.3 Progress functions

A progress function is a measure of distance to a goal. In particular, a progress

function � for a DCP D = (S;A;G) is a non-negative function from S to the reals

for which

1. � is nonnegative, i.e. �(s) � 0 for all s.

73

2. �(s) = 0 i� s 2 G.

3. For any initial state i from which D is solvable, there exists a solution sequence

S = (a1; :::an) along which � is strictly decreasing (i.e. �(aj(:::(a1(i)))) >

�(aj+1(aj(:::a1(i)))) for all j).

The term \progress function" is taken from the program veri�cation literature, where

it refers to functions over the internal state of the program that are used to prove

termination of loops. Progress functions are also similar to Liapunov functions (see

Luenberger [65]), admissible heuristics (see Barr and Feigenbaum [12], volume 1,

chapter II), and arti�cial potential �elds (see Khatib [54] or Latombe [62]).

We will say that a policy p honors a non-negative function �, if � steadily

decreases it until it reaches zero, i.e. for all states s and some � > 0, either

�((p(s))(s)) < �(s) � � or else �(s) = �((p(s))(s)) = 0. A policy that honors

� can be thought of as doing hill-climbing on � and so will run until it reaches a

local minimum of �. When � also happens to be a progress function for the DCP,

that local minimum will be a global minimum corresponding to the goal:

Lemma 5 Let �:S ! R be non-negative and let p be a policy for a DCP D that

honors �. Then p solves D and halts exactly when � is a progress function on D.

Proof: Consider the execution of p from an arbitrary initial state i. On each step,

the value of � decreases by at least � until it reaches 0, after which it must remain

zero. Thus � must converge to zero within
�(i)

�
steps after which the state of the

system is con�ned to the set ��1(0). We need only show that ��1(0) � G i� � is a

progress function for D. If � is a progress function ��1(0) � G holds by de�nition.

To see the converse, suppose ��1(0) � G. We want to show that from every state

from which D is solvable, there is a solution sequence that monotonically decreases

�. The sequence generated by p is a such a sequence. 2

Progress functions can be generated directly from policies. The standard progress

function �p;D on a policy p that solves D is the number of steps in which p solves D

from a given state. An important property of product DCPs is that we can construct

progress functions for products from progress functions for their components:

Lemma 6 If �1 is a progress function for D1 and �2 is a progress function for D2,

then �: (x; y) 7! �1(x) + �2(y) is a progress function for the serial product of the

DCPs.

Proof: Since �1 � 0 and �2 � 0, we have that � � 0. Similarly, � must be zero

for exactly the goal states of the product. Now suppose the product is solvable

from (s1; s2). Then there must exist solution sequences for the components that

monotonically decrease �1 and �2, respectively. Any combination of these sequences

to form a solution to the product must then monotonically decrease �, and so � must

be a progress function for the product. 2

74

Again, the parallel case is more complicated:

Lemma 7 If �1 is a progress function for D1 and �2 is a progress function for D2,

and for every goal state of D1 and D2 there is an action that maps that state to a goal

state, then �: (x; y) 7! �1(x) + �2(y) is a progress function for the parallel product

of the two DCPs.

Proof: Again, we have that � � 0 and that � is zero for exactly the the goal states of

the product. Now consider a state (s1; s2) from which the product is solvable. There

must be solution sequences S1 and S2 to the component problems along which �1

and �2, respectively, are strictly decreasing. Without loss of generality, assume that

S1 is the shorter. Of the two solutions. We can pad S1 and combine the solutions to

produce a solution to the product. The padding cannot change the value of �1, and

so the value of � must be strictly decreasing along the combined solution. 2

7.4 Construction of DCP solutions by decompo-

sition

7.4.1 Product DCPs

We now have the tools to construct solutions to product DCPs from the solutions to

their components:

Lemma 8 Let p1 be a policy which solves D1 and halts from all states in some set

of initial states I1, and let p2 be a policy which solves D2 and halts from all states in

I2. Then the policy

p(x; y) = p1(x)�p2(y)

solves D1 kD2 and halts from all states in I1�I2. (Note that here we are using the

convention of treating p, a function over pairs, as a function over two scalars.)

Lemma 9 Let p1 be a policy which solves D1 from all states in some set of initial

states I1, and let p2 be a policy which solves D2 from all states in I2. Then any policy

for which

p(x; y) = p1(x)�i or i�p2(y)

and

y 2 G2; x 62 G1) p(x; y) = p1(x)�i

x 2 G1; y 62 G2) p(x; y) = i�p2(y)

will solve D1*)D2 and halt from all states in I1�I2.

75

Proof: We can prove both lemmas using progress functions. Let �p1;D1
and �p2;D2

be the standard progress for p1 and p2 on D1 and D2, respectively. Their sum must

be a progress function for the product. This follows directly for the serial case, and

from the fact that p1 and p2 halt for the parallel case. Since the policies for both

products clearly honor the sum, they must solve their respective products. Note that

the constraint given in the second lemma is su�cient, but not necessary. 2

7.4.2 Reduction

We can often treat one environment as an abstraction of another; The abstract envi-

ronment retains some of the fundamental structure of the concrete environment but

removes unimportant distinctions between states. An abstract state corresponds to

a set of concrete states and abstract actions correspond to complicated sequences of

concrete actions.

Let a projection of an environment E = (S;A) into an abstract environment

E0 = (S0; A0) be a mapping �:S ! S0 [f?g. � gives the abstract state for a given

concrete state or else ? if it has no corresponding abstract state. ��1 gives the

concrete states corresponding to a given abstract state. For sets of states, we will let

��1(S) = [s2S ��1(s).

We de�ne a �-implementation of an abstract action a0 to be a policy that reliably

moves from states corresponding to an abstract state s0 to states corresponding the

abstract state a0(s0) without visiting states corresponding to other abstract states.

Thus for any s0 for which a0(s0) is de�ned, the implementation solves the DCP

(��1(fs0;?; a0(s0)g); A; ��1(a0(s0)))

Note that we do not require p to stay in ��1(a0(s0)) upon reaching it.

Given �-implementations pa0 of each abstract action a0, we can use an abstract

policy p0 to solve problems in the concrete environment by emulating the abstract ac-

tions. We need only look up the abstract state corresponding to our current concrete

state, look up the abstract action for the abstract state, and run its implementation.

This suggests the policy

p(s) = pp0(�(s))(s)

This concrete policy works by taking the state s, looking up its abstract state �(s),

computing the proper abstract action p0(�(s)), and then computing and running the

next concrete action in its implementation pp0(�(s)). Note that since this policy has

no internal state, it e�ectively recomputes the abstract action each time it chooses

a concrete action. This is no problem when the concrete environment is in a state

that corresponds to an abstract state, but the �-implementations are allowed to visit

states that have no abstract state. To handle this problem, it is necessary to add

76

a register to the environment to remember what abstract action is presently being

performed. The policy for the augmented environment computes a new abstract

action whenever the environment is in a concrete state with a corresponding abstract

state. It stores the name of the new abstract action in the register for later use, while

also executing it its implementation. When the environment is in a concrete state

with no abstract state, it uses the abstract action stored in the register and preserves

the value in the register:

Lemma 10 Let D = (S;A;G), D0 = (S0; A0; G0) be DCPs, � be a projection of D

into D0
, and for each action a0 2 A0, let pa0 be a �-implementation of a0 in D. If p0

is a policy which solves D0
, then the policy

p(s; a) =

(
pa(s)�Ca if �(s) = ?

pp0(�(s))(s)�Cp0(�(s)) otherwise

solves the augmentation of D with the alphabet A0, from any state in ��1(S0).

Proof: Let �p0;D0 be the standard progress function for p0 on D0 and let s 2 P�1(S0).
Then �p0;D0(�(s)) is the number of abstract actions need to solve the problem from the

concrete state s. If �p0;D0(�(s)) = 0, then the problem is already solved, so suppose

that p solves the problem from states s for which �p0;D0(�(s)) = n and consider an

s for which �p0;D0(�(s)) = n + 1. The policy p will immediately compute p0(�(s)),

store it into the register. Call this action a0. The policy p will also immediately begin

executing pa0. Since this policy is a p-implementation of a0, the system must reach a

state in ��1(a0(�(s))) in �nite time, which is to say that it will reach the next state

in D0. By assumption, p0 can solve D0 from this high level state in n steps, and so p
must be able to solve D from s, and so, by induction p solves D for all s 2 P�1(S0).

2

We will say that D is reducible to D0 if there exists a projection � of D into D0

and �-implementations of all of actions in D0. If D is reducible to D0 then we can

easily convert any solution to D0 into a solution to D.

77

Part III

The design of Polly

78

Chapter 8

The core visual system

Nearly all perceptual processing in Polly is done by a small group of processes which

I will call the core visual system (CVS). The core visual system is responsible for

computing depth information, the direction of the corridor, detecting people, de-

tecting motion, and sanity checking of the visual system's inputs. Every 66ms, the

CVS processes a 64� 48 image and updates a large number of \percepts" (see table

8.1). Most percepts are related to navigation. The CVS is implemented in the Polly

code by the procedures low-level-vision and derived-aspects, which call other

procedures to compute the individual percepts.

Figure 8.1 shows the principal components of the CVS. The CVS subsamples

the image, smoothes it, and passes it to several parallel computation streams. One

stream (in grey) computes a depth map of the scene and compresses the map into

a number of scalar values such as distance to the closest object in the robot's path

(center-distance) and whether there is a left turn in view (left-turn?). The

computation of the depth map assumes the presence of a single, textureless carpet.

The system will underestimate depth when two di�erent textureless carpets abut.

The CVS compensates for this problem using a second, parallel, computation to

check for carpet boundaries. When it detects a boundary, it instructs the depth

map computation to ignore the boundary. The CVS also computes the vanishing

point of the lines forming the corridor. The depth map and vanishing point are

used by the low level navigation system. A symmetry detector searches the image

for tall skinny symmetric regions. These regions typically correspond to people's

legs. The symmetry detector reports the direction of the most symmetric region

(person-direction) and a binary value indicating whether the size and symmetry

of the region are strong enough to be a person (person?). Finally, a motion unit is

used to detect foot gestures. A pair of nod-of-the-head detectors were implemented

and tested, but could not be used on the robot because of hardware problems (see

8.5).

Table 8.1 shows the suite of high level percepts generated by the CVS. Most

79

camera smoothing edges column
heights

compress
map

carpet
boundary?

vanishing
point

center-distance (c')
left-distance (l')

right-distance (r')

vanishing point
variance

wall
detector wall?

symmetry

motion

person?
person-direction

hmotion

Figure 8.1: The major components of the core visual system (CVS).

open-left? open-region? person-direction

open-right? blind? wall-ahead?

blocked? light-floor? wall-far-ahead?

left-turn? dark-floor? vanishing-point

right-turn? person-ahead? farthest-direction

Table 8.1: Partial list of percepts generated by the visual system.

percepts are derived from the depth map. Blocked? is true when the closest object

ahead of the robot is nearer than a threshold distance (about three feet). Open-left?

and open-right? are true when the there are no objects in the respective direction

closer than a threshold distance. Left-turn? and right-turn? are true when

open-left/right? is true and the robot is aligned with the corridor. Alignment

with the corridor is actually determined by the low level navigation system. The LLN

judges the robot to be aligned if the robot has driven straight for a su�cient period of

time. It would be preferable to use visual data, but the robot cannot always determine

the axis of the corridor from a single image: if the corridor is blocked, or the robot has

reached the end of the corridor, there will be insu�cient information to accurately

judge the corridor's orientation. Wall-ahead? and wall-far-ahead? are true when

there is a
at region ahead in the depth map. Dark-floor and light-floor are true

when the the bottom center image pixel intensity is above or below a given threshold.

Both percepts are computed with hysteresis to compensate for transient variations

in lighting or albedo.

80

Figure 8.2: The robot computes a depth map by labeling
oor pixels (above right)

and �nding the image plane height of the lowest non-
oor pixel in each column. The

result is a monotonic measure of depth for each column (above center).

8.1 Computation of depth

Since most of Polly's computation is devoted to navigation, a large fraction of its

visual processing is devoted to �nding the empty space around it. The central repre-

sentation used for this purpose is the radial depth map (RDM). The RDM gives the

distance to the nearest obstacle for each column of the image. Since image columns

correspond to directions in the ground (X-Z) plane, the representation is equivalent

to the sort of radial map one would get from a high resolution sonar ring (hence the

name).

The central pipeline of the CVS (shown in grey in �gure 8.1) computes depth

information. The robot starts by �nding the edges in the image. Then, for each

column of the image, it computes the height of lowest edge pixel in that column.

81

Under the right set of assumptions, this height will be a measure of the distance to

the closest obstacle in view within that column (see below, and also section 6.3).

Figure 8.2 gives an example of the depth map calculation.

We can understand the assumptions made by this system and their rami�cations

by performing a derivation. Consider an arbitrary system for computing a radial

depth map. For example, we might �rst use a stereo system to extract a 2D depth

map, then collapse the 2D data into a radial map:

) stereo ! project !

Such an approach might be quite e�ective, but it makes its own set of assumptions

about the world (e.g. smoothness of surfaces or presence of dense texture). By lemma

4, p. 68, we can reduce any such system to

) FG ! column heights !

where \FG" is some computation which performs �gure/ground separation. Fortu-

nately, Polly's environment also satis�es the background texture constraint because

the carpet has no visible texture. By lemma 3, p. 66, we can use any linear �lter

whose pass band is restricted to the zero-band of the carpet to solve the �gure/ground

problem. An edge detector is such a �lter, so we can reduce the system to

) edges ! column heights !

The derivation is summarized in table 8.2. The derivation shows that the the back-

ground texture constraint is used to to simplify �gure/ground separation. More

importantly, it shows that the constraint is used for nothing else. If we wish to run

the system in an environment that does not satisfy the background texture constraint

but does satisfy the ground plane constraint, then we can use any salience constraint

that holds of the domain. For example, if the background has a distinctive color or

set of colors, we can use a color system such as Swain's color histogram method [96]

to �nd the carpet:

) color ! column heights !

If we wanted to build a system that worked in both domains, we could implement both

the color system and the edge detector and switch between them opportunistically,

provided there was su�cient information to determine which one to use. One could

even implement the stereo system in parallel with these systems and add another

switch.

The particular edge detector used by Polly is a thresholded gradient detector. The

detector was chosen because it compiled to a very short loop on the DSP. Because

82

Constraint Computational problem Optimization

Ground plane depth perception use height

Background-texture �gure/ground separation use texture

Table 8.2: Habitat constraints used for depth-recovery.

any edge detector should work (by lemma 3), we are free to make the choice based

on computational e�ciency. The exact test is for j @I
@x
(x; y)j + j

@I

@y
(x; y)j > 15 after

smoothing with a 3�3 low-pass �lter to remove noise. The possible range of gradients

is 0 to 510, so this is a very sensitive detector. To avoid driving into dark regions

where edge detection is unreliable (because the estimates of the intensity derivatives

become noisy), the edge detector automatically marks any pixel darker than 40 grey

levels. This helps prevent the robot from driving into dark rooms. The edge detector

is implemented by the find-dangerous procedure, whose source code is shown in

�gure 8.3. The procedure is so named because it labels pixels to be avoided.

The CVS compresses the depth map into three values|left-distance,

right-distance, and center-distance|which give the closest distance on the left

side of the image, right side, and the center third, respectively. Other values are

then derived from these three. For example, open-left? and open-right? are true

when the corresponding distance is over threshold. Left-turn? and right-turn?

are true when the depth map is open on the correct side and the robot is aligned

with the corridor.

8.2 Detection of carpet boundaries

The background texture constraint fails at the boundaries between two carpets. At

such boundaries, the edge detector �res even though there is no object present, and

so the robot thinks it's blocked. Polly explicitly detects this condition and treats it as

a special case. The procedure carpet-boundary? (shown in �gure 8.4) checks for the

presence of a carpet boundary. If it returns true, then find-dangerous will ignore

horizontal edges. Since the carpet boundary is horizontal in the image when the

robot approaches it, this is su�cient to cause the robot to pass the carpet boundary.

Once it passes the boundary, carpet-boundary? returns false, and find-dangerous

once again becomes sensitive to horizontal lines.

The actual test used by Polly is overly simplistic but adequate for the job. The

robot examines a 10 � 15 window at the bottom center of the image. It searches for

a horizontal edge of medium contrast within the window. If there is such an edge,

and no pixel is brighter than 120 grey levels, then it treats the image as a carpet

boundary scene. The requirements that the edge have medium contrast and that no

pixel be too bright prevent the system from classifying baseboards, which are dark

83

(define (find-dangerous image out)

(let ((dark-threshold 40)

(edge-threshold 15))

(if suppress-horizontal

(map-vector! out

(lambda (up left center)

(if (and (< (abs (- left center))

edge-threshold)

(> center dark-threshold))

0 255))

(shift image (- *image-width*))

(shift image -1)

image)

(map-vector! out

(lambda (up left center)

(if (and (< (+ (abs (- left center))

(abs (- up center)))

edge-threshold)

(> center dark-threshold))

0 255))

(shift image (- *image-width*))

(shift image -1)

image))))

Figure 8.3: Source code for �nding obstacle pixels. The code has been simpli�ed by

removing compiler declarations. suppress-horizontal is a wire set by the carpet

boundary detector when it detects a horizontal boundary between two carpets. This

causes the robot to ignore horizontal lines (see section 8.2).

84

next to a bright wall, as carpet boundaries. A more intelligent test would certainly

be a good idea.

8.3 Vanishing-point detection

When Polly is in a corridor, the visual system also generates the x-coordinate of

the vanishing point of the corridor. The vanishing point coincides with the axis of

the corridor and so can be used for steering (this will be discussed further in section

9.2). The vanishing point computation works by �nding each edge pixel in the image,

�tting a line to the edge, intersecting it with the top of the screen, and computing

the mean of the intersections (see �gure 8.5).

As with the other visual computations in Polly, the computation of the vanishing

point is simpli�ed by Polly's knowledge of the appearance of the environment. We

can make this knowledge explicit by deriving Polly's vanishing point computation

from a more general computation. I will start from the system of Bellutta et al.

[16], which extracts vanishing points by running an edge �nder, extracting straight

line segments, and performing 2D clustering on the pairwise intersections of the edge

segments. We can represent the system schematically as:

) Canny edges ! lines ! intersect ! cluster !

We can simplify the system by making stronger assumptions about the environment.

We can remove the step of grouping edge pixels into segments by treating each edge

pixel as its own tiny segment:

) Canny edges ! intersect ! cluster !

This will weight longer lines more strongly, so the lines of the corridor must dominate

the scene for this to work properly.

If the edges are strong, then any edge detector will su�ce. Polly uses a gradient

threshold detector simply because it compiles to very e�cient code:

) jrIj ! intersect ! cluster !

Here I is the image, rI is the spatial gradient of the image, and so jrIj is the mag-

nitude of the gradient of the image. If the tilt-angle of the camera is held constant by

the camera mount, then the vanishing point will always have the same y coordinate,

so we can reduce the clustering to a 1D problem.

) jrIj ! y intersect ! 1D cluster !

85

(define (carpet-boundary? image)

(with-vars-in-registers

(let ((edges 0)

(edge-thresh 9)

(bad-thresh 25)

(region-width 10)

(region-height 15)

(top-line -1)

(bad-edges 0)

(bottom-line 0))

(let ((im (shift image 1947)))

;; im points to row 30, pixel 27 of image.

(countdown (lines region-height)

;; Process a line.

(countdown (pixel 10)

;; Process a pixel; check intensity and gradient.

(let ((center (in-register data (vector-ref im 0))))

(let ((delta (abs (- (vector-ref im 64) center))))

(when (> center 120)

(incf bad-edges))

(when (> delta bad-thresh)

(incf bad-edges))

(when (> delta edge-thresh)

(incf edges)

(when (< top-line 0)

(set! top-line lines))

(when (> lines bottom-line)

(set! bottom-line lines)))

(shiftf im 1))))

;; Move to next line.

(shiftf im 54)))

(and (> edges 7)

(< edges 30)

(= bad-edges 0)

(< (- bottom-line top-line) 7)))))

Figure 8.4: Source code for the carpet boundary detector. Note that countdown is

the same as dotimes in Common Lisp, except that it counts backward.

86

Figure 8.5: The vanishing point computation: edge fragments at individual pixels

(shown in circles) are extended (dashed lines) and intersected with the top of the

image to �nd the horizontal location of their intersections (arrowheads). The mean

of the horizontal locations is used as the vanishing point.

Finally, if we assume that the positions and orientations of the non-corridor edges are

uniformly distributed, then their y-intersections will have zero mean. If we replace

the clustering operation, which looks for modes, with the mean of the y-intersections,
the result will be a weighted sum of the means of the corridor and non-corridor edges.

Since the mean of the latter is zero, the result will be the mean of the corridor edges

multiplied by an unknown scale factor which will depend on the ratio of corridor to

non-corridor edges. Thus, while the result will typically underestimate the magnitude

of the vanishing point, it will get its sign right. As we will see in the next chapter,

that will be su�cient for our purposes. The resulting system is thus:

) jrIj ! y intersect ! �x !

The derivation is summarized in table 8.3.

The CVS also reports the variance of the y-intersections as a con�dence mea-

sure. This entire computation is performed in the Polly code by the procedure

vanishing-point. The procedure computes the mean and variance directly in a

single pass over the input array. The procedure contains its own edge detector which

is tuned to �nd diagonal edges (see �gure 8.6).

87

(define (find-vanishing-point image)

;; Start at the end of the 45th line of the image.

(let ((image (shift image (- (* 46 *image-width*)

2)))

(sum 0)

(sum-squares 0)

(points 0))

(countdown (y 45)

;;; Scan a line.

(countdown (x (- *image-width* 1))

(let* ((dx (- (vector-ref image 1)

(vector-ref image 0)))

(dy (- (vector-ref image *image-width*)

(vector-ref image 0))))

(when (and (> (abs dx) 10)

(> (abs dy) 10))

;; We have a reasonable edge point.

(let ((x-intercept (+ (quotient (* y dy)

dx)

x)))

(when (and (> x-intercept -1)

(< x-intercept 64))

(set! sum (+ sum x-intercept))

(set! sum-squares (+ sum-squares

(* x-intercept x-intercept)))

(set! points (+ points 1))))))

;; Next pixel.

(set! image (shift image -1)))

;; Skip over the pixel at the beginning of the line.

(set! image (shift image -1)))

;; Done with the image. Now compute the mean and variance.

(if (and (> points 20)

(< points 256))

(let ((mean (quotient sum points)))

(let ((variance (- (quotient sum-squares points)

(* mean mean))))

(make-pair mean variance)))

(make-pair 31 1000))))

Figure 8.6: Source code for the vanishing-point computation. The code walks over

the image, from bottom to top, end of line to beginning, �nding all the reasonable

edges and computing the mean and variance of their y intersections. The mean and

variance are returned as a pair (two 16-bit quantities in a 32-bit word). If there are

too many or too few edges, the code gives up and returns a large variance. Note that

the code has to skip the �rst pixel of every line because there is no pixel to the left

of it.

88

Constraint Computational problem Optimization

Long corridor edges line �nding use pixels as lines

Strong corridor edges edge detection use cheap detector

Known camera tilt clustering 1D clustering

Uniform non-corridor intersections clustering use mean

Table 8.3: Habitat constraints used by the vanishing point computation.

8.4 Person detection

In order to o�er tours to people, Polly needs to detect their presence as it moves

through the corridors of the lab. At present, the robot can only look downward, so

it can only see people's legs. Thus person detection reduces to leg detection. Polly

relies on the fact that people generally stand, and so it need only search for straight,

vertical legs, which appear as tall, narrow symmetric objects. Symmetric objects are

found in two passes. First, it searches for tall, skinny symmetric regions of the image.

Then, it tests the most symmetric region to see if it is a distinct object.

8.4.1 Symmetry detection

This is performed by the Scheme procedure find-symmetric. It is a simpli�ed version

of the technique used by Reisfeld et al. [84]. The simplest measure of symmetry about

the vertical axis at a point (x; y) is:

�

Z l

0

@I

@x
(x+ r; y)

@I

@x
(x� r; y)dr

where l is the width of the region being searched for symmetry. This will give a large

value if the pixels (x+ r; y) and (x� r; y) tend to have signi�cant horizontal intensity
gradients with opposite signs. Thus both a bright region in front of a light region and

a dark region in front of a light region will have positive scores, but a homogeneous

region will have zero score and a region with a ramp-shaped intensity will have a

negative score.

One disadvantage of this measure is that it is linear. If we superimpose a non-

symmetric pattern on a symmetric one, their scores will cancel one another. This is

a problem because the edges of a leg may be symmetric, while the surface markings

of the pant leg may not be. We can alleviate this problem to some extent by only

counting pixel pairs which are symmetric. We can do this by adding a min to the

integrand:

�

Z l

0
min

0;
@I

@x
(x+ r; y)

@I

@x
(x� r; y)

!
dr

89

Another problem with the linearity of the computation is that a single pair of strong

edges can generate a huge symmetry value for an otherwise non-symmetric region.

This can be alleviated by adding a compressive nonlinearity to the integrand. Reisfeld

et al. [84] used a log function for the nonlinearity. Polly uses a max because it is

somewhat faster to compute:

�

Z l

0
max

��;min

0;
@I

@x
(x+ r; y)

@I

@x
(x� r; y)

!!
dr

Here � is the maximal symmetry value which the system will give to a single pixel

pair.

Having scored all pixels for the vertical symmetry of the local regions centered

around them, we can then �nd vertical lines about which the image is strongly sym-

metric by integrating the pixel scores along columns of the image. The result is then

a vector of symmetry values for each column de�ned by:

s(x) =
X
y

lX
r=1

max

��;min

0;
@I

@x
(x+ r; y)

@I

@x
(x� r; y)

!!

where the derivatives are estimated as di�erences of adjacent pixels.

8.4.2 The protrusion test

Having tested the di�erent image columns for symmetry, the visual system still needs

to distinguish between objects which are symmetric and subregions of objects which

are symmetric. Since Polly speci�cally looks for people standing in hallways, and

such people will show up as distinct bulges in the radial depth map, the visual system

requires that a symmetric region align with a bulge in the depth map. This test is

performed by the procedure protrusion-near? which tests the depth map for a

negative depth edge followed by a positive depth edge within a speci�c width around

the region. If such edges are found, then there is such a protrusion and the visual

system asserts the person? signal and drives the person-direction wire with the

x-coordinate of the column with maximal symmetry.

The protrusion test is not actually a su�cient test to guarantee that a given region

is a person's leg. Any tall, skinny, vertical object, such as a chair leg, will pass the

protrusion test. To avoid these false positives, the pick-up system only operates while

it is in hallways. That is, trusts the person? signal when the corridor? signal is

also asserted.

The protrusion test can also generate false negatives. When the person leans

against the wall, the protrusion detector will generally missed them and the pick up

system won't o�er them a tour. Fortunately, this is useful for our purposes since we

only want the robot to o�er tours to people who actually approach the robot.

90

8.5 Gesture interpretation

When Polly o�ers a visitor a tour, it needs to be able to receive an answer. Since

it cannot hear, it looks for a particular gesture. Originally, this was to be a nod of

the head. I built two working nod detectors which ran in real time on a macintosh

using a static camera. In the end, however, I was forced to use waves of the foot

instead of nods. This was largely forced by hardware a considerations. The robot is

so short that the upward-looking camera saw only the bottom of the visitor's chin

and so thus nods ended up being Z-axis oscillations rather than Y -axis oscillations.

Z-axis oscillations are much more di�cult to measure. The upward looking camera

also has had to cope with a great deal of glare from the overhead lights. This glare

made it very di�cult to properly image the face. The right solution would have been

to raise the camera to human eye-level, but that was impossible to due to mechanical

stability issues. Finally, the upward-looking camera broke late in the design of the

system so it was decided to give up on the nod detector and use the wave detector.

8.5.1 Foot waving

Detecting foot waves turned out to be a trivial problem because anyone who was

actually interacting with the robot was standing still. Further, there is typically no

other motion in the scene. Thus the only motion in the scene is intentional shaking

of the leg and so a simple motion detector su�ced as a wave-of-the-leg detector

(in contrast to the various nod detectors). The detector used measures total image

change from frame to frame:

mtotal(t) =
X
x;y

jI(x; y; t)� I(x; y; t� 1)j

and applies a low-pass �lter to the resulting series mtotal(t).
The low-pass �ltered motion is computed by the procedure total-hmotion and

its instantaneous value is store in hmotion.

8.5.2 The �rst nod detector

Detecting nods is a more di�cult problem. Suppose that there is a person facing

the camera. For simplicity, we will assume orthographic projection so that a point

(x; y; z)T in the world is projected to a point (x; y)T in the image, and points higher

in the image have larger y coordinates. Finally, we will assume that the objects in

view are rigid or at least piecewise rigid. We will treat the motion of a given object

at a given point in time as a combination of a translation T and a rotation ! about

91

a point P.1 A point R on the object thus moves with an instantaneous velocity of

T+ (R�P)� !

Since a nod is an alternating rotation of the head, a nod is then a motion of the

head in which ! has constant direction but varying sign, R remains constant, and

T remains zero. The conceptually simplest approach to detecting nods would be to

�nd the head in the image, determine its pose (position and orientation in 3-space),

and to track the pose through time to recover the motion parameters T, R, P, and

!, and then test these parameters for rotational oscillation:

) �nd head ! 3D pose ! track ! oscillating? !

This system would be expensive and di�cult to implement, although it would cer-

tainly be conceptually possible. The main problems are with �nding faces and de-

termining pose. A particular problem with the latter is that it is easy to confuse

translation with a rotation. In particular, it is very di�cult to distinguish the cases

of my bending (rotating) my head downward, and my head translating down 3cm,

but still pointing forward. Both would involve the points of my facing moving down-

ward along the Y axis, while staying at the same point along the X axis. Of course,

the translation would require my neck to suddenly grow 3cm shorter or for me to do

deep knee bends.

An simpler system is:

) normal
ow !
R
image ! bandpass ! envelope det !

It computes the vertical component of normal
ow �eld (see below) of the image, then

integrates the �eld over the entire image to obtain a single net vertical motion, and

looks for oscillations in the net motion. The optic
ow of an image is the apparent

two-dimensional motion of the texture in the image. It is the projection into the

image plane of the motion vectors of the actual objects in the world. Since the

3-space motion of a point R is simply

T+ (R�P)� !

the optic
ow of R's projection is simply the x and y coordinates of this vector, or

fR =

"
Tx + (Ry � Py)!z � (rz � pz)!y
Ty + (Rz � Pz)!x � (Rx � Px)!z

#

1This is a gross oversimpli�cation of the kinematics of jointed objects, but it will su�ce for our
purposes.

92

The normal
ow �eld is the component of the optic
ow �eld in the direction of

the image's intensity gradient. The useful property of the normal
ow �eld is that it

is very easy to compute. If we let I(x; y; t) represent the brightness of a point (x; y)

in the image, at time t, then the vertical component of the normal
ow �eld is given

by

�

@I

@t
(x; y; t)

@I

@y
(x; y; t)

Since the derivatives can be approximated by subtracting adjacent points in time or

space, respectively, we can compute this value very quickly.

We can explain why (and when) this system works by performing a derivation.

We start from the original system:

) �nd head ! 3D pose ! track ! oscillating? !

Recall that computing the 3D pose is di�cult since translations and rotations both

generate vertical motions in the image. However, since the head is not physically

capable of translating, any up/down motion of the head in the image must be due to

a rotation, unless the person is bending their knees, jumping up and down, bowing

rapidly, or standing on an oscillating platform. If we assume that people don't do

these things, then we may safely interpret any vertical oscillation of a head as a

nod. Let's call this the head kinematics constraint: that the translation vector T

of the head is nearly always zero, and that it never oscillates. The head kinematics

constraint allows us to use the 2D position of the head (i.e. the position of the head

in the image itself), instead of its 3D pose. An oscillation of the 2D position will

indicate a nod. Thus we can replace the \3D pose" module with a module that �nds

the centroid of the image region occupied by the head:

) �nd head ! centroid ! track ! oscillating? !

Thus we've reduced the problem to �nding 2D oscillations of the head. Finding

the head can be di�cult in itself however. Fortunately, we're not looking for arbitrary

heads, only oscillating ones. Thus we need not bother searching static parts of the

image. Indeed, if we assume vertical oscillations are rare, i.e. people don't nod

their hands or play with yo-yos, then we can use the oscillatory motion itself to �nd

the head. We'll call this the motion salience constraint: no motion parameter of

any object is allowed to oscillate, save for the ! parameter of a head. The motion

salience constraint removes the need for a full recognition engine and allows us to use

a system like:

) �nd oscillating points ! �nd head !

93

Constraint Problem Optimization

Head kinematics motion disambiguation use 2D motion

Motion salience head detection use oscillation

Horizontal lines
ow computation substitute normal
ow

Nod dominance head detection use net
ow

Table 8.4: Constraints used in the derivation of the �rst nod detector, and the prob-

lems they were used to simplify.

which �nds the oscillating pixels, and then searches for head-shaped regions of oscil-

lating pixels. We can �nd the oscillating points by �rst computing the 2D motion

(optic
ow) at each point in the image, and then testing the motion for vertical oscil-

lation. The test can be done, in turn, by applying a bandpass �lter and an envelope

detector at each point. The resulting system is thus:

) optic
ow ! bandpass ! envelope det ! �nd head !

Computing optical
ow can still be fairly expensive however. The normal
ow

�eld is much easier to compute and, fortunately, its vertical component will always

have the same sign as the vertical component of the optical
ow, provided that the

normal
ow is non-zero. The normal
ow will be zero when the actual motion is

nonzero only if there is no texture in the image at that point, or if the y (vertical)

derivative of the image intensity is zero. Fortunately, faces have considerable vertical

intensity variation and so this is not a problem. Thus we can reduce the system to:

) normal
ow ! bandpass ! envelope det ! �nd head !

Even looking for oscillations at each point might be too expensive, however. If

we assume that the motion of the head will dominate any other motion in the image,

then we can look for oscillations in the net vertical motion of the entire image:

) normal
ow !
R
image ! bandpass ! envelope det !

which is exactly the system we sought to derive. The assumption that the head

motion dominates the motion in the rest of the image is needed to rule out the case

of motions in di�erent parts of the image canceling with one another to generate

the appearance of oscillatory motion when in fact, no single part of the image was

oscillating.

The derivation is summarized in table 8.4. I have implemented this system on a

Macintosh personal computer. The system uses 64�48 grey-scale images at a rate of

approximately 5 frames per second. The system performs reliably provided that the

94

subject nods their head several times to give the bandpass �lter a chance to respond.

Unfortunately, this can lead to dizziness if it is used frequently, so a di�erent system

was needed.

8.5.3 The second nod detector

The �rst nod detector was not adequate for general use because the bandpass �lter

required many cycles to decide that a head nod was really happening. This is a well

known problem with linear �lters: the narrower the pass band, the longer it takes the

system to respond. A non-linear oscillation detector such as a zero-crossing detector

would probably do better. The result would be something like this:

) normal
ow !
R
image ! zero-crossing det ! envelope det !

However we would expect the net
ow to have a relatively large number of random

zero crossings, even when the head is not moving. We can deal with this problem by

backing o� of the net
ow optimization and returning to computing the oscillations

on a per-pixel basis:

) normal
ow ! zero-crossing det ! envelope det ! �nd head !

The
ow and zero-crossing detectors have been implemented on Polly. Unfortunately,

the robot is so short, and the viewing angle of the camera so wide, that it can only

see the bottom of a person's chin, so it has been di�cult to get the
ow detector to

respond to any head movements, much less to detect nods.

8.6 Summary

Polly's vision system uses a number of parallel processes to e�ciently compute just

the information needed for its task. These processes are made more e�cient by taking

advantage of the special properties of the environment. We can understand the use

of these properties by deriving the systems from more general ones. The complete

list of constraints used in the derivations is given in table 8.5.

95

Constraint Computational problem Optimization

Ground plane depth perception use height

Background-texture �gure/ground separation use texture

Long corridor edges line �nding use edge pixels

Strong corridor edges edge detection use cheap detector

Known camera tilt clustering 1D clustering

Uniform intersections clustering use mean

Head kinematics motion disambiguation use 2D motion

Motion salience head detection use oscillation

Horizontal lines
ow computation use normal
ow

Nod dominance head detection use net
ow

Table 8.5: Habitat constraints assumed by the core visual system and the problems

they helped to simplify. Note that \known camera tilt" is more a constraint on the

agent, than on the habitat.

96

Chapter 9

Low level navigation

The LLN is the bottom layer of the robot's control system. It consists of a speed

(forward-velocity) controller, an open-loop (ballistic) turn controller, a corridor fol-

lower, a wall follower, and a small amount of code to arbitrate between them (see �g-

ure 9.1). These systems are controlled by the signals speed-request, turn-request,

and inhibit-all-motion?. Speed-request controls the maximum forward velocity

and has no e�ect on steering, other than to disable the wall follower and corridor

follower when it is zero. When turn-request is zero (no turn requested), the cor-

ridor follower (or wall follower if only one wall is visible) has complete control of

steering. When turn-request is driven with a desired turn angle, the open-loop

turn controller issues a turn command to the base and inhibits all steering for a time

proportional to the size of the turn. Inhibit-all-motion? inhibits all LLN compo-

nents, forcing the robot to stand still. It is asserted during visitor pickup (see section

10.5) to prevent the low-level navigation system from avoiding the visitor.

9.1 Speed controller

The robot's rate of forward motion is controlled by the procedure speed-control.

The two constraints on forward velocity are that the robot should move forward when

there's nothing in its way, and that it should stop when there is something close to

it. We want the robot to move at full speed when the nearest obstacle is more than

some safe distance, dsafe , and to stop when it's less than some distance dstop. We use

the rule

speed = min

vmax;

vmax

dsafe � dstop
(dcenter � dstop)

!

where dcenter is the distance to the closest object in the center of the image (the

center-distance output of the visual system). The robot smoothly decelerates as

it approaches an obstacle and will back up if it gets too close to the obstacle. Backing

97

arbitration

 motor
interface

odometry

speed request

 inhibit
all

motion

from
vision

 system

turn request

direction

FEP

bump
switches

 base
controller

wall
follower

speed
control

corridor
follower

ballistic
turn control

in
hi

bi
t-

fo
rw

ar
d

motors
shaft encoders

Figure 9.1: Components of the low level navigation system (LLN).

l

r

robot

direction of travel

θ

Figure 9.2: The corridor following problem. The robot needs to turn so as to simul-

taneously keep l and r large and � small.

up is useful because it allows one to herd the robot from place to place. The maximum

speed, vmax, is set by the input speed-request.

The speed controller is modulated by two other inputs. If inhibit-forward? is

asserted, the robot only drives backward, if at all. Inhibit-forward? is driven by

the ballistic turn controller (see section 9.5). When inhibit-all-motion? is set, all

motors are disabled, and the robot will not even back away from approaching threats.

9.2 Corridor follower

Corridor following consists of two basic subproblems: aligning with the axis of the

corridor and staying comfortably far from the walls on either side. In �gure 9.2, these

problems correspond to keeping � small and l and r large, respectively. The robot

base gives us control of the turn rate (d�
dt
) and the speed (s) and so the variables l, r,

and � are coupled in the kinematics of the base:

dl

dt
= �

dr

dt
= s sin �

98

so we cannot change l or r without �rst making � nonzero. Polly's corridor follower

uses separate control systems for wall distance and � and sums their outputs.

9.2.1 Aligning with the corridor

Polly uses a trivial algorithm for aligning with the corridor. It uses the control law

d�

dt
= ��

vpx �

width

2

!

where vpx is the core vision system's estimate of the vanishing point (carried in the

variable vanishing-point), � is a gain parameter, and \width" is the width of the

image in pixels. The vanishing point needs to be biased by width/2 because the

coordinate system of the image is centered on the left-hand side of the image, not in

the middle.

An obvious and direct way of performing this task would be to �rst construct a

3D model of the environment, then �nd the walls of the corridor in the model and

compute �, and �nally multiply � by some gain to drive the turning motor. We can

represent this schematically as:

) 3D model ! corridor ! � ! gain !
d�

dt

This is not a particularly e�cient design however, since 3D models are both di�cult

and computationally expensive to build. Intuitively, building an entire model of the

environment, only to compress it down to a single number, �, seems a waste of energy.

Any system that turns to minimize �, that is, any system of the form,

) � ! gain !
d�

dt

will work. By decalibration (lemma 1, p. 58), we can substitute any monotonic

function of � for our estimate of �, provided that we get zero right. Thus we can use

any system of the form:

) f(�) ! gain !
d�

dt

where f is a monotonic function for which f(0) = 0. Since vpx �
width
2

is such a

function, we can use it, and reduce the above system to

) vanishing point ! gain !
d�

dt

which is the system that Polly uses.

99

robot
θl’

r‘

Figure 9.3: The nearest points in view of the robot. The dashed curved line indicates

the robot's �eld of view. l0 and r0 are the distances to the nearest points in view

on the left and right walls, respectively. Note that as the robot rotates clockwise in

place, l0 gets larger and r0 gets smaller.

9.2.2 Avoiding the walls

One way to avoid the walls is to drive away from the wall that looks closest. If we

let l0 be the distance to the closest point in view on the left, and r0 the distance to
the closest point in view on the right (see �gure 9.3), then we might steer so as to

make l0 and r0 be equal.. Polly does this using the control law

d�

dt
= ��(left-distance� right-distance) (9:1)

where � is a gain parameter. Recall however, that left-distance and right--

distance are not the same as l0 and r0, rather they are equal to f(l0) and f(r0)

for some unknown monotonic f . We would like to show that this doesn't matter.

Unfortunately, we can't use lemma 1 directly, because it only allows us to replace

l0 � r0 with f(l0 � r0), not f(l0) � f(r0). Fortunately, for any given position of the

robot, l0 will be a strictly increasing function of �, while r0 will be a strictly decreasing

function of �. Thus their di�erence is also strictly increasing. But then f(l0)� f(r0)
must also be a strictly increasing function of �. Moreover, f(l0)�f(r0) is zero exactly

when l0 � r0 is zero. Thus both l0 � r0 and f(l0) � f(r0) are e�ectively decalibrated

versions of �, and both will converge to the same value of � for a given position in

the corridor.1

9.2.3 Integrating the control signals

The corridor-follower sums the control signals to align with the corridor and avoid

the walls, yielding the �nal control law:

d�

dt
= ��

vanishing-point�

width

2

!
� � (left-distance� right-distance)

1This reasoning assumes the robot's �eld of view is wholly to the right of the robot in the �gure,
and that both walls are in the �eld of view. For very large or small �elds of view, or for large values
of �, this may not be true.

100

The integration is modulated by the variance of the vanishing point and the presence

of obstacles. If the variance of the estimate of the vanishing point is high then �
is set to zero. This prevents the robot from steering in odd directions or oscillating

when the robot enters non-corridor areas. When the robot is blocked by an obstacle,

it makes all steering turns at full speed. This allows the robot to quickly turn around

the obstacle without causing stability problems at other times.

9.3 Wall follower

When the robot enters an open room or a very wide corridor, it will be unable to see

the opposite wall. In such situations, the corridor follower would treat the opposite

wall as being at in�nity but would still try to balance the distances of the two walls.

It would drive until neither wall could be seen and then continue on in a straight

path. It would have no idea where it was going. Polly has a separate control system

to handle this case. The control systems turns so as to keep the wall that is in view

at a �xed distance. The control law is then simply

d�

dt
= �
(f(l0)� d0)

for the case where the left wall is in view, or

d�

dt
=
(f(r0)� d0)

when the right wall is in view. Here
 is a gain parameter and d0 is the desired

(decalibrated) distance. Again, f(l0) and f(r0) are stored in the left-distance and

right-distance variables.

9.4 General obstacle avoidance

There is no general obstacle avoidance routine in the system. However, both the

corridor follower and the wall follower work to control the distance to the nearest

thing on either side. In the normal case, the nearest objects on each side are the

walls. However, if an obstacle is in the way, it will be the nearest thing on one or the

other side and the robot will avoid it. This is a local navigation strategy equivalent

to the method of arti�cial potential �elds (see Khatib [54]). It has the advantage of

being fast and easy to compute and the disadvantage that the left and right distances

can sometimes balance exactly, even when then robot is blocked by an obstacle. Such

cases are dealt with by the unwedger unit in the high level navigation system (see

section 10.1.2).

101

9.5 Ballistic turn controller

When the robot reaches a junction and needs to switch from one corridor to an-

other, it issues an open-loop turn command to the base. This command is issued

by the ballistic turn controller whenever the input line turn-request is non-zero.

Turn-request is normally held low by the ballistic turn controller, but can be driven

with a speci�c value (a number of degrees to turn) by the high level navigation sys-

tem to force a turn. After issuing an open loop turn, the controller maintains control

of the turning motors for a time proportional to the size of the turn. This gives the

microcontroller in the base time to servo to the correct direction and decelerate.

One potential problem with ballistic turns is that the robot can turn to face a

wall. If the wall is textureless and completely �lls the visual �eld of the robot, then

it will appear to be an empty �eld and the robot will happily try to drive into it.

In theory, the speed controller should back away from the wall as it turns toward

it. In practice, it is possible for the robot to turn so fast that the speed controller

literally never sees the wall coming. To prevent this, the ballistic turn controller

asserts the signal inhibit-forward? during large turns. This prevents the speed

controller from ever driving forward in the �rst place, while still allowing it to back

up if something gets too close.

9.6 Steering arbitration

Arbitration is performed by the procedure turn-controller. During ballistic turns,

it inhibits both the wall follower and the corridor follower, allowing the ballistic turn

controller to �nish its turn. If no ballistic turn is in progress, it uses the output of

either the corridor follower (if both open-left? and open-right? are false), or the

wall follower (if one is true). As with the speed controller, the turn controller stops

completely when inhibit-all-motion? is asserted.

9.7 The FEP bump re
ex

In addition to the visual collision avoidance implemented in the DSP, the FEP (the

6811 front-end processor) also monitors a pair of bump switches. If either switch

closes, the FEP immediately performs a �xed sequence of actions: �rst it halts the

base, then it reverses the base, and �nally, it issues a 45 degree open-loop turn away

from the activated bumper. During this time, the DSP is disconnected from the base.

When the bump switch opens, the FEP resumes normal processing and allows the

DSP to drive the base.

The bump re
ex was implemented in the FEP because processing latency was

a critical issue. Polly's normal top speed is 1m/s. Since the DSP only samples its

102

sensors at 15Hz, the robot can move up to 7cm between samples. The bump switches

extend roughly 12cm from the base and require 1cm of travel to trigger. Even at top

speed, the DSP could not initiate a braking action until there were only 4cm between

the robot and the obstacle. There is no way the robot can possibly brake in 4cm.

Fortunately, the FEP can sample the bump switches at approximately 1kHz, and

initiate braking actions immediately upon bumper contact. In practice, even this is

insu�cient however, and so the robot often collides with obstacles, albeit at lower

velocity. While the base is physically capable of decelerating fast enough to stop,

the required deceleration will topple the robot. This is not a pleasant experience for

either robot or owner.

9.8 Odometric sensing

The only other sensing on the robot is odometric. The RWI base provides high resolu-

tion shaft encoders for dead reckoning turns and forward motions. The vast majority

of this information is ignored by the current system. The inherent unreliability of

odometry was one reason for its limited use. In the course of driving from one end of

the building to the other, the rotational odometer can drift by as much as 45 degrees,

even when the base is reasonably well aligned. Another reason was simply that I was

more interested in vision than odometry and so chose to spend my time engineering

the vision side.

All that said, Polly does use the rotational shaft encoder to determine direction.

The robot assumes that it starts out pointed south and so the �rst shaft encoder

reading, call it !0, it receives will be a south reading. It can then compute its

rotation relative to that direction by taking the di�erence of its current reading

and !0. Because of encoder drift, the robot only computes orientation to within 90

degrees. It then drives the wire direction with one of the values north, south,

east, or west. Odometer drift can still cause the robot to misestimate its direction

however, so the system recalibrates itself: whenever the robot determines that it is

in a long corridor and the visual system reports that it is aligned with the axis of

the corridor, it assumes it is exactly aligned with one of the compass points, and

recomputes !0. This has proven very e�ective for compensating for drift. Using this

technique, Polly has survived drift rates of up to 4 degrees/second.

103

Chapter 10

High level navigation

Navigation is the central problem of current mobile robot research. If you have a

robot that can drive from place to place, then the �rst thing you probably want

it to do is to drive to a particular place. The problem remains largely unsolved.

Navigation su�ers from many of the same problems of intractability and sensitivity

to error that other AI problems su�er from. In this chapter, I will discuss how

Polly manages to navigate reasonably reliably and e�ciently. Polly navigates in a

particularly benign, but unmodi�ed, environment. As with most systems in Polly,

what's interesting is not it's precise navigation algorithm, but the basic structures

of the environment which allow it to function. I will begin by discussing a fairly

conventional formalization of the navigation problem and some of the reasons for its

di�culty. Then I will add progressively more structure to the problem and discuss

how that structure allows the use of simpler mechanisms. In doing so, I will derive a

very simple, idealized, navigation algorithm for a class of worlds to which the MIT

AI Laboratory belongs. Finally, I will give the details of Polly's navigation algorithm

and describe how it does and does not implement the idealized algorithm.

Consider the problem of piloting a robot about the o�ce environment shown in

�gure 10.1. At any given moment, the robot must decide given its destination how

fast to turn and how fast to move forward or backward. Polly uses the policy of

N

T.V. Lounge

Playroom

Ian's office

Anita's officeKaren and Mike

Elevator lobby
Kitchen

Conference room

Marie's office Vision
 lab

0 10 30 40 60 70 80 90 100

10

50

100

east

west

north

south

Figure 10.1: Approximate layout of the 7th
oor of the AI lab at MIT (left) and its

topological structure (right).

104

following corridors except when it reaches intersections. At intersections it compares

the coordinates of the intersection to the coordinates of its goal (presumed to be

another intersection) and turns north when the goal is to the north, south when the

goal is to the south, and so on:

ppolly(sensors) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

stop if at goal

turn-north if north of goal and at turn to north

turn-south if south of goal and at turn to south

:::

turn-north if south of goal and pointed south

turn-south if north of goal and pointed north

:::
follow-corridor otherwise

The details of the perception and control systems are given in [50].

10.0.1 Derivation from a geometric path planner

Geometric path planning is a common technique for solving this type of problem.

Given a detailed description of the environment, a start position, and a goal position,

a path planner computes a safe path through the environment from start to goal (see

Latombe [62]). Once the path has been planned, a separate system follows the

path. Geometric planning is versatile and can produce very e�cient paths, but is

not computationally e�cient. It also requires detailed knowledge of the environment

which the perceptual system may be unable to deliver.

We can clarify the relationship between a path planning system and Polly's re-

active algorithm by deriving Polly's algorithm from the planning system. Let N be

the DCP whose states are (position, orientation) pairs and whose actions are small

(translation, rotation) pairs such as the robot might move in one clock tick. Clearly,

Polly can be modeled as an N policy. However, the planner can equally well be mod-

eled as an N policy. A planner/executive is simply a policy that uses internal state to

compute and execute a plan. The planning portion uses scratch memory to gradually

compute a plan and store it in a plan register, while the executive reads the �nished

plan out of the register and executes each segment in turn. Thus a planner/executive

architecture has the form:

p0(s; plan; scratch) =

(
i� plan

N
(s; scratch) if plan incomplete

execute(plan)� i otherwise

execute(plan) = head(plan)� Ctail(plan)

An agent in N will spend nearly all its time in corridors. The only real choice

points in this environment are the corridor intersections. Thus only the graph of

105

corridors and intersections N 0, need be searched, rather than the full state space of

N (see �gure 10.1). By lemma 10, we can augment the environment with a register

to hold the current north/south/east/west action and replace p0 with the policy

p1(s; action) =

(
pp0

1
(I(s))(s)� Cp0

1
(I(s)) if at intersection

paction(s)� Caction otherwise

where:

� I(s) is the intersection at state s

� the di�erent paction policies implement following north, south, east, and west

corridors, respectively, and

� p01 is an arbitrary N 0 policy.

The lemma requires that the goal always be a corridor intersection and that the robot

always be started from a corridor intersection. We could now solveN 0 by adding plan

and scratch registers and using a plan/execute policy:

p01(intersec; plan; scratch) =

(
i� plan

N
0(intersec; scratch) if plan incomplete

execute(plan)� i otherwise

We can simplify further by noting that N 0 is isomorphic to Z4 *) Z2, that is, the

corridor network is a 4� 2 grid. By lemma 9, we can replace p01 with any policy that

interleaves actions to reduce grid coordinate di�erences between the current location

and the goal. We can then remove the plan and scratch registers from p1 and reduce

it to

p2(s; action) =

(
pp0

2
(I(s))(s)� Cp0

2
(I(s)) if at intersection

paction(s)� Caction otherwise

where p02 is any N
0 policy satisfying the constraints that (1) it only stops at the goal,

and (2) it only moves north/south/east/west if the goal is north/south/east/west of

I(s).

There are still two important di�erences between p2 and ppolly: Polly uses a dif-

ferent set of actions (\turn north" instead of \go north") and it has no internal state

to keep track of its abstract action. While it appears to use a qualitatively di�er-

ent policy than we have derived, it does not. Within a short period of beginning a

north action, an agent will always be pointed north. Similarly for east, south, and

west actions. The orientation of the robot e�ectively is the action register and turn

commands e�ectively write the register. There's no need for internal memory. Polly

stores its state in its motor.

We can summarize the transformations used in the derivation as follows (see

table 10.1). The constraint that the environment consist of a network of corridors

and that the goal be a corridor intersection allows us to replace geometric planning

106

Constraint Optimization

ground plane constraint use height for depth estimation

background-texture constraint use texture for obstacle detection

corridor network replace planning in N with planning in N 0

grid structure replace planning with di�erence reduction

orientation correlation store state in orientation

Table 10.1: Summary of constraints and optimizations used in Polly's navigation

system.

with planning in the corridor graph. The isomorphism of the corridor graph to a grid

allows us to replace planning with di�erence reduction. Finally, the correlation of

the robot's orientation with its internal state allows us to store the current action in

the orientation.

It is important to note that either, both, or neither of the subproblems (the

abstracted environment and corridor following) could be solved using deliberative

planning; the two decisions are orthogonal. If both are implemented using planners,

then the resulting system is e�ectively a hierarchical planner (see Sacerdoti [89] or

Knoblock et al. [55]). Polly's environment happens to allow the use of simple reactive

policies for both, so it is a layered reactive system (Brooks [20]). In an environment

with a more complicated graph topology, one could reverse the second optimization

and use a deliberative planner, leaving the �rst optimization intact. The result would

then be a hybrid system with planning on top and reacting on the bottom (see Spector

and Hendler [93], Lyons and Hendriks [67], Bresina and Drummond [19], or Gat [40]

for other examples). On the other hand, one could imagine an environment where

the individual corridors were cluttered but were connected in a grid. In such an

environment, the abstract problem could be solved reactively, but corridor following

might actually require deliberative planning.

10.1 Navigation in Polly

We have seen how Polly's navigation problem is easier than the general case of nav-

igation because of speci�c properties of the environment. These properties allow an

idealized policy, ppolly, to solve the navigation problem without any planning. In

fact, using only two bits of state information (the direction register telling whether

to go north, south, east, or west). Polly implements a version of this policy using

the network of parallel processes shown in �gure 10.2. The navigator chooses corri-

dors to steer toward the goal. When the robot comes to an intersection, it signals

the ballistic turn controller to align with the new corridor. In e�ect, the low-level

navigation system implements pnorth, psouth, peast and pwest, the navigator implements

107

position information

navigator speed request

unwedger turn request

from
vision

system

direction

goal

frame
matcher

Figure 10.2: The high level navigation system.

p0, the orientation of the robot implements the internal state, and the ballistic turn

controller implements the write circuitry for the internal state.

10.1.1 The navigator

The navigator receives messages on inputs goal-x and goal-y and sends messages

on the wires speed-request and turn-request, which are handled by the speed

controller and ballistic turn controller, respectively. The navigator also monitors

the outputs last-x, last-y, and frame-strobe? from the place recognition sys-

tem. The �rst two of these hold the coordinates of the last recognized landmark.

Frame-strobe? is asserted for one clock tick whenever a new landmark is recog-

nized.

When the navigator's goal inputs are zero, the navigator inhibits motion by set-

ting speed-request to zero. When the goal inputs are non-zero, the navigator sets

speed-request to full speed, and continually checks frame-strobe. When a new

landmark is reached, it checks whether the landmark is an intersection (the place

recognition system allows other types of landmarks), and if so, whether a left or right

turn would point in the direction of the goal. If so, it waits 2 seconds and issues a

turn (by setting turn-request). The 2 second delay is needed because the vision

system detects the turn before the robot reaches the intersection. The navigator

also informs the unwedger of what direction it would turn, if it it should reach an

intersection (see below).

While the robot is moving, the navigator continually checks whether it has reached

108

its goal (last-x=goal-x and last-y=goal-y). When it reaches its goal, it clears

goal-x and goal-y, stopping the robot.

Because the place recognition system can fail, the navigator also continually checks

whether it has overshot its goal. If so it initiates a u-turn.

10.1.2 The unwedger

One problem with the local navigation strategy used by the corridor follower is that it

can get stuck in local minima. This happens, for example, when the robot is perfectly

perpendicular to a wall, in which case the di�erence between the space on the left

and space on the right will be zero and the robot will not turn, even though it is

blocked. The unwedger takes care of this problem. When the robot is blocked for

more than two seconds, the unwedger initiates a 45 degree ballistic turn. The turn

is in the same direction that the navigator would turn if the navigator were at an

intersection. This is useful because the robot often is at intersections when it sees

a wall in front of it, but it cannot tell because it is unable to turn its head. If the

navigator has already aligned itself with the goal along one of the axes, then it will

be traveling along the other axis and will not want to turn at an intersection. In this

case, the unwedger is forced to turn in the direction of the last turn it saw. This is

a useful strategy for getting out of a cul de sac.

In most cases the turn initiated by the unwedger will be su�cient to direct the

corridor follower toward a new corridor. If the robot has driven into a dead end, then

the unwedger will �re every two seconds until the robot has turned itself around, at

which point the robot leaves the way it came. Occasionally, Polly aligns itself with

a corner and the unwedger and corridor follower �ght | the unwedger turning away

from the corner, and the corridor follower turning toward it. This problem is rare

enough to be ignored.

10.2 Place recognition

Polly keeps track of its position by recognizing landmarks and larger-scale \districts."

These places are given to it in advance. The lab and some of its landmarks are shown

in �gure 10.3. The job of the place recognition system is to determine, on each

clock tick, whether it has entered the region corresponding to a landmark or district,

and if so, what its qualitative coordinates are. The coordinates are only qualitative

because the navigator only requires that they order the landmarks properly along

the north/south and east/west axes. Therefore the coordinates can be warped by

any monotonic, or rather strictly increasing, deformation. The coordinates of the

di�erent landmarks are shown in �gure 10.3.

Information about landmarks is stored in an associative memory that is exhaus-

109

N

T.V. Lounge

Playroom

Ian's office

Anita's officeKaren and Mike

Elevator lobby
Kitchen

Conference room

Marie's office Vision
 lab

0 10 30 40 60 70 80 90 100

10

50

100

Figure 10.3: Landmarks in Polly's environment and their qualitative coordinates.

Kitchen

Position (50, 40)

Direction west

Veer 0

Image ...

Corridor 1

Position (40, 40)

Direction west

Veer 0

Features left

Elevator lobby

Position (60, 40)

Direction east

Veer 45

Features right, wall

Figure 10.4: Example place frames.

tively searched on every clock tick (66ms). The memory consists of a set of frame-like

structures, one per possible view of each landmark (see �gure 10.4). In some cases,

more than one frame per view is given to compensate for variations in lighting or

geometry over time. Each frame gives the expected appearance of a place from a

particular direction (north/south/east/west). All frames contain a place name, qual-

itative coordinates, a direction and some speci�cation of the landmark's appearance:

either a 16�12 grey-scale image or a set of qualitative features (left-turn, right-turn,

wall, dark-
oor, light-
oor). No explicit connectivity information is represented.

Frames can also be tagged with a speech to give during a tour or an open-loop turn

to perform. The latter is used to deal with the jog in the corridor at the elevator

lobby. The complete set of frames describing the 7th
oor is given in appendix A.

While at �rst glance this may seem to be an ine�cient mechanism, it is in fact

quite compact. The complete set of 32 frames for the 7th
oor requires approximately

1KW of storage. The system can scan all the frames and �nd the best match at 15Hz

using only a fraction of the CPU.

The code for the frame matcher is shown in �gure 10.5. The matcher process

is implemented by the procedure frame-matcher. On each clock tick, the frame

matcher computes a score for each frame. If the best frame's score is below threshold

(low scores are good), the frame matcher takes it to be the robot's new position.

The matcher then asserts the output frame-strobe? for one clock tick, latches

110

the matched frame into the output current-frame, and latches its coordinates into

last-x and last-y. To prevent false matches, the matcher disables itself when

it is not moving or not in a corridor, has been recently blocked, or has recently

matched another place. The latter two are implemented using the internal counter

frame-debounce, that holds the number of clock ticks (15ths of a second) to wait

before matching. The time to wait after matching a given frame is stored in one of

the frame's slots. Its default value is 2 seconds (30 ticks).

The procedure match-frame computes scores (see �gure 10.6). The score is the

sum of three penalty terms:

1. position di�erence from the last recognized landmark

2. direction di�erence between the frame and the current odometry, and

3. appearance di�erence

The position penalty depends on direction: if the robot is moving east and the frame

is west or north of the last position, then the penalty will be higher than if it were

east of the last position.

Polly uses two ways of encoding landmark appearance. Image frames contain

16�12 grey-scale images of their respective landmarks, each taken from some speci�c

position. An image frame has exactly one image, although a landmark could have

multiple image frames. The appearance di�erence for an image frame is the sum of

the squared di�erences of its pixels with the current image.

A feature frame contains a vector of binary features (left turn, right turn, dark

oor, wall ahead) computed by the visual system. The appearance di�erence for a

feature frame is small if the current feature vector and the frame's feature vector

are exactly the same, otherwise large. Feature frames are only matched when a new

feature appears or disappears in the world. The requirement that the feature bits

change amounts to a requirement that the robot leave one intersection or open space

before matching the next one. Because of the nature of the wall detector (it is only

sensitive to walls at a speci�c distance), the disappearance of a wall does not enable

frame matching. This prevents false positives when the wall bit is intermittent.

The frame matching relies on the fact that the robot only views landmarks from

speci�c directions. The restricted viewing angle is due both to the geometry of the

building (long narrow corridors) and to the fact that the corridor follower tends to

center the robot in the corridor. Roughly speaking, the hard parts of recognition

are variation in lighting, variation in viewpoint, variation in the landmark itself, and

occlusion. Polly fails in the latter two cases (as do most systems), but handles the

other two by relying on the fact that they don't vary much in this domain. Lighting

in o�ce buildings is usually internally generated and kept at a constant level. Most

viewing parameters are held �xed by the camera mount. Most of the rest are �xed

by the corridor follower. The only viewpoint parameter that normally varies is the

robot's distance. But that parameter is searched mechanically as the robot drives.

111

(define (frame-matcher)

(when (and corridor?

(> speed #x1800))

(when blocked?

(set! frame-debounce 30))

;; FRAMES is the address of the list of frames to be matched.

;; FRAME is a pointer to the current frame.

(let ((frame frames)

(best frames)

(best-value 99999999))

(decf frame-debounce)

(set! frame-strobe? false)

(when (< frame-debounce 0)

(find-districts)

(dotimes (n frame-count)

(let ((matchval (match-frame mini frame)))

(when (< matchval best-value)

(unless (and (= (frame-x frame) last-x)

(= (frame-y frame) last-y))

(setf best frame)

(setf best-value matchval))))

;; Advance FRAME to the start of the next frame.

(setf frame (shift frame (if (image-frame? frame)

image-frame-length

feature-frame-length))))

(when (< best-value 70000)

(setf frame-debounce (frame-place-size best))

(setf frame-strobe? true)

(setf current-frame best)

(setf last-x (frame-x best))

(setf last-y (frame-y best))))

(set! last-match-bits feature-bits))))

Figure 10.5: Source code for frame-matcher process. Code has been slightly simpli�ed

by removing compiler declarations.

112

(define (match-frame mini-image frame)

(let ((fimage (frame-image frame))

(sum 0)

(bits-changed? (not (= (logand feature-bits #b11110)

(logand last-match-bits #b11110)))))

(when wall?

(set! bits-changed? true))

;; Compute penalties based on estimated position and direction of

;; motion.

(let ((delta-x (- (frame-x frame) last-x))

(delta-y (- (frame-y frame) last-y)))

;; Encoding of direction is north=0, east=1, etc.

(incf sum (* (abs delta-x)

(vector-ref direction

(if (> delta-x 0)

; N E S W

#(3000 100 3000 3000)

; N E S W

#(3000 3000 3000 100)))))

(incf sum (* (abs delta-y)

(vector-ref direction

(if (> delta-y 0)

; N E S W

#(100 3000 3000 3000)

; N E S W

#(3000 3000 100 3000))))))

;; Large penalty for getting the direction wrong.

(unless (= (frame-direction frame)

direction)

(incf sum 100000))

(if (image-frame? frame)

;; MINI-IMAGE is the 16x12 version of the current image.

(incf sum (compute-difference fimage mini-image))

(incf sum (if (and (= (frame-features frame)

feature-bits)

bits-changed?)

60000

10000000)))

sum)))

Figure 10.6: Source code for matching process. Code has been slightly simpli�ed by

removing declarations and code for computing image di�erences.

113

No computational search is needed, and so viewpoint-dependent template matching

is su�cient. I will call this the constant viewpoint constraint: whenever the robot

approaches a landmark, its approach will includes some speci�c viewpoint (i.e. the

one in our image frame).

Polly can also recognize large-scale \districts" and correct its position estimate

even if it cannot determine exactly where it is. There is evidence that humans

use such information (see Lynch [66]). The robot presently recognizes the two long

east/west corridors as districts. For example, when the robot sees a left turn while

driving west, it must be in the southern east/west corridor, so its y coordinate must

be 10 regardless of its x coordinate. This helps Polly recover from recognition errors.

At present, the recognition of districts is implemented as a separate computation.

It ought to be folded into the frame system. District recognition is implemented by

find-districts (see �gure 10.7), which is called by frame-matcher.

10.3 Patrolling

Patrolling is implemented by the wander process which alternately sets the naviga-

tor's goal to the playroom (when the robot gets as far west as the vision lab) and the

vision lab (when the robot gets as far east as the playroom). Wander implements both

the patrol pattern and the path for giving tours. Wander always sets the navigator's

goal, except when the robot starts up or goes home.

10.4 Sequencers and the plan language

Since parallelism is the default in Polly, a separate mechanism is necessary to intro-

duce seriality. Polly uses a simple plan language to specify �xed action sequences.

The macro define-sequencer creates a such a sequence. It takes a sequence of

condition/action pairs and de�nes a new process (Scheme procedure) to run the ac-

tions, and a program counter to keep track of where the process is in the sequence.

The process checks its program counter on each clock tick. If it is negative, it does

nothing. If it is a positive number n, it checks the nth condition. If the condition

is true, it executes the nth action and increments the program counter. The basic

condition/action pair is given with the form:

(when condition

action)

The condition and action may be arbitrary pieces of scheme code, but must termi-

nate quickly, to allow the rest of the system to run before the end of the clock tick.

Various bits of syntactic sugar are available to make it more readable: (wait condi-

tion) and (then action) are ways of specifying pairs with null actions or conditions,

114

(define (find-districts)

;; Use a stricter criterion for turns so that we don't get doorways.

(let ((left-turn? (> left-distance 25))

(right-turn? (> right-distance 25)))

(when (and aligned?

ns-corridor?

wall?)

(when (= direction north)

(set! last-y 40))

(when (= direction south)

(set! last-y 10)))

(when (and ew-corridor?

(not dark-floor)

aligned-long-time?

(not blocked?))

(when (and (= direction west)

open-right?

(not open-left?)

in-corridor?)

(set! last-y 10))

(when (and (= direction east)

(not open-right?)

open-left?)

(set! last-y 10))

(when (and (= direction west)

(not open-right?)

open-left?)

(set! last-y 40))

(when (and (= direction east)

(not open-left?)

(< last-x 70)

open-right?)

(set! last-y 40)))))

Figure 10.7: Source code for �nd-districts. Some of the repeated tests could be

collapsed into single disjunctions, but it would have required the author to have done

a better job implementing boolean tests in his compiler.

115

(define-sequencer (leave-office :import (...))

(first (pdisplay-goal "Leave office"))

(when blocked?

;; robot should now be at far wall

(set! global-mode 1)

;; turn toward door

(turn! -40))

(sleep 2)

(when open-left?

;; robot should be out of office

(pdisplay-goal "Align"))

(sleep 2)

;; Now we want to make ourselves parallel with the corridor.

;; turn toward east wall of playroom

(then (turn! -60))

(sleep 1)

(when (and (= direction east)

blocked?)

;; Should be aligned with east wall; turn around

(turn! 150))

(wait ew-corridor?)

(sleep 5)

;; Robot now thinks it's aligned; set position.

(then

(set! last-x 80)

(set! last-y 40)))

Figure 10.8: Source code for the sequencer for leaving the author's o�ce and entering

the corridor. pdisplay-goal is a macro for displaying a string on the LCD display.

respectively. (Sleep seconds) causes the process to be inactive for the speci�ed

period.

A sequencer is started, or \�red," when another process executes the form (do!

sequencer-name). Do! simply clears the program counter. The sequencer executes

until it �nishes the last condition/action pair, at which point it sets its program

counter to -1 and waits to be �red again. Multiple �rings (executions of do!) do not

produce multiple copies of the sequencer, they just reset its program counter.

Figure 10.8 shows an example sequencer used to leave the o�ce and enter the

hallway. It is �red at boot time. The :import parameter is a compiler declaration.

116

(define-sequencer (offer-tour :import (...))

(first (set! global-mode 3)

(set! inhibit-all-motion? true))

(when done-talking?

(new-say "Hello. I am Polly. Would you like a tour?

If so, wave your foot around."))

(sleep 9)

(then (if blocked?

;; The person's still there.

(if (> hmotion 30)

(do! give-tour)

(begin (new-say "OK. Have a nice day.")

(set! global-mode 1)

(set! inhibit-all-motion? false)))

;; The person's gone.

(begin (set! global-mode 1)

(set! inhibit-all-motion? false)))))

Figure 10.9: Sequencer code for o�ering a tour.

10.5 Giving tours

The sequencers offer-tour and give-tour implement tour-giving. When the robot

is in patrol mode, in an east/west corridor, is blocked by a person, and has not o�ered

a tour in the last 5 seconds, the interact process �res offer-tour. Offer-tour

then �res give-tour if the visitor accepts (see �gures 10.9 and 10.10).

117

(define-sequencer (give-tour :import (...))

(first (new-say "OK. Please stand to one side.")

(if (= last-y 40)

(begin (set! tour-end-x 80)

(set! tour-end-y 10))

(begin (set! tour-end-x last-x)

(set! tour-end-y last-y))))

(when (not blocked?)

(new-say "Thank you. Please follow me.")

(set! inhibit-all-motion? false)

(set! global-mode 2))

(wait frame-strobe?)

(wait (at-place? tour-end-x tour-end-y))

(sleep 1.0)

(then

(new-say "That's the end of the tour.

Thank you and have a nice day.")

(set! global-mode 1)))

Figure 10.10: Sequencer code for giving a tour.

118

Part IV

Results

119

Chapter 11

Experiments with Polly

The great thing about optimality criteria is there are so many to

choose from!

| Anonymous robotics conference attendee

Polly is one of the best tested vision-based robots to date. The low-level naviga-

tion system has seen hundreds of hours of testing in several di�erent environments.

The coloring algorithm has been ported to half a dozen other robots and run at con-

ferences, in classrooms, and in auditoriums. The high-level navigation system and

the tour-giving components are newer and so less well tested. As of the Spring of

1993, the robot had given over a hundred tours.

The performance of complex robot systems is extremely di�cult to quantify in

any meaningful manner. It has been suggested to me that I use the the robot's RMS

deviation from the mid-line of the corridor to evaluate the low level navigation system.

Unfortunately, staying in the center of the corridor is not part of the task. It is neither

necessary, nor particularly desirable for the robot to stay always exactly in the center.

The task requires only that it safely get from one side to another. Alternatively, one

could try to prove the time- or power-optimality of the paths it generates, but again,

it is unclear that the 10% variations one might �nd between corridor followers would

ever matter to a real user. Worse, those real-world users who do care about power (or

time), care about total power consumption, including consumption by the computers.

Motor power consumption is actually dwarfed by computer power consumption on

Polly (the electronics use about 40W, compared to the 5W used by the motors). Since

optimizing the last 10% may require a thousandfold increase in computer power (or

worse), it is unclear that time or power consumption of the path alone, is at all

meaningful.

The most serious problem with quanti�cation is that all these measures ignore the

cases where the robot fails completely, e.g. because its environmental assumptions

fail. Given a choice between a \90% optimal" robot that \fails 2% of the time" and

a \100% optimal" robot that \fails 10% of the time", users will generally choose

120

the 90% optimal one. No one has the slightest idea what \90% optimal" or \fails

2% of the time" really mean in any realistic global sense, much less how to measure

them. There are far too many variables involved for one to be able to do controlled

experiments.

For these reasons, much of the data presented here are, of necessity, anecdotal.

Information tends to be more qualitative than quantitative, and much of it is, in the

end, dependent on the particular environment in which I tested it. This is true of

any complicated artifact interacting with a complicated environment. I see no real

alternative to this.

Since most of the time the robot works �ne, I have focused on classifying the errors

which do occur. I have tried to catalog the di�erent types of failure modes that I have

observed in the system as it has moved outside of its design envelope. I have also tried

to document the ways in which it recovers from problems, and the cases in which it

cannot. While this information is less de�nitive than numerical tests of speed and

accuracy, I feel that it is more edifying. In the end, it gives a more accurate picture

of the performance of the system. None of this is to say that the robot is unreliable.

Quite the contrary: the robot works well enough in the normal cases for which it is

designed that we can begin to focus on its performance in pathological situations.

Many of the failure modes discussed here, such as darkened rooms, the presence of

specular re
ection or the presence of isoluminant edges, would cause problems for

most vision systems.

11.1 Speed

Polly is the fastest indoor vision-based robot to date. It is fastest both in terms of

processing speed and rate of motion. Table 11.1 shows the processing and driving

speeds for a number of robots in the literature. Since the di�erent systems perform

very di�erent tasks, it is di�cult to draw �rm conclusions from the numbers. They

are su�cient to show that Polly is a fast system by any standard, however.

11.1.1 Processing speed

The low spatial resolution used on Polly allows the use high temporal resolution

(frame rate). A summary of the processing time for di�erent levels of capability is

given in table 11.2. The reader should note that the elapsed time does not decrease

as the amount of processing decreases, thus the system is I/O bound. The I/O time

was spent waiting for the serial link to the base, waiting for VMEbus transfers to and

from the frame grabber, and waiting for the frame grabber to �nish grabbing a frame.

Although it is hard to test this directly, I believe that the principle limitation was that

the frame grabber could not grab consecutive frames without double-bu�ering, which

121

System Frames/sec MIPS Speed Obstacle detection?

Polly 15 16 1 m/s Yes

Stanford Cart (Moravec) 0.001 .25 (?) 0.003 Yes

FINALE (Kosaka & Kak) 0.03 16 0.2 No

Mobi 0.1 1 0.1 Yes

Thorpe et al 0.1 1 0.4 No

VTIS < 1 ? ? 1{5.5 No

VaMoRs-87 (Dickmanns) 25 1.32 (?) 26.4 No

VaMoRs-91 (Dickmanns) 25 ? 14 Yes

SCARF (Crisman) 0.1 16 ? No

ALVINN (Pomerleau) ? ? 26.4 No

AuRa path follower 0.18 0.5 0.18 No

Table 11.1: Processing and driving speeds of various visual navigation systems, and

the problems they solve. The �rst group are indoor navigation systems intended for

o�ce buildings, although the Stanford Cart was also run outdoors. The second group

are outdoor path followers, mostly road followers.

could not be implemented without sacri�cing video output for debugging. Even if

this restriction were removed, it would only have shifted the bottleneck to the base.

At 9600 baud, there is only time to transmit 32 bytes per video frame time to the

base. Since most base commands require at least 11 bytes of I/O, between input

characters and output prompts, there would not be su�cient time to perform all the

necessary transactions with the base at video rate. At 15fps, which is one half video

rate, there is just barely enough time to reset the velocities and acceleration caps,

and to poll the base for the odometry.

There is room for a great deal of improvement. A better compiler might be able

to halve the processing time. Since the system was I/O bound in any case, it was

not worth implementing the compiler improvements.

11.1.2 Driving speed

Driving speed was limited by the dynamics of the robot base, not by processing

speeds. Although the robot's center of gravity is well below its midpoint, it can

still fall over when decelerating, since all torques are applied at the very bottom of

the robot. The result is that the wheels stop moving but the robot's card cage keeps

moving and the robot falls over. This can be controlled by imposing acceleration caps

at the cost of greatly increasing the stopping distance of the robot. The other problem

is that internal control system of the base is calibrated for unloaded conditions. When

the base tries to go from a stop to its maximum speed, the motors cannot provide

su�cient force to accelerate the base at the rate the control system wants. When the

122

Test Time (sec) Frames/sec

Full system 67 15

Corridor follower 67 15

I/O only 67 15

No I/O 15 67

No VP 10 100

Table 11.2: Execution times for 1000 frames. \Full system" is all code presently

implemented, including the person detector. \No I/O" is the corridor follower without

any frame grabbing or output to the base (a single frame is grabbed at the beginning

and processed repeatedly). \No VP" is the collision avoidance system run without

I/O or the vanishing-point box. All execution times are for a Texas Instruments

TMS-320C30-based DSP board (a Pentek 4283) running with no wait states. The

processor has a 60ns instruction time. The �rst three lines are the same because the

system cannot digitize frames faster than 15 FPS.

control system notices that it isn't moving fast enough, it signals an error and shuts

down. Therefore speeds over 1m/s require pushing the robot to help it accelerate. The

control system can be disabled, allowing the DSP to directly specify motor currents,

but then the robot tends to pop \wheelies," and so again, human intervention is

required to keep it from falling over. I believe the system has run as fast as 2.5m/s

in this mode, but I have not calibrated velocity measurements. Apart from these

stability and low-level control considerations, the navigation system appears to be

able to pilot the robot as fast it is physically capable of moving.

Polly has been run on two di�erent bases. The robot was generally run at 1m/s

on the old base. Unfortunately, the base was damaged during the testing of the

bump sensors and so a new base was substituted. The new base, while otherwise

functionally equivalent, had a di�erent gear ratio and internal control system. This

new control system was grossly under-damped. The new base regularly accelerated

to 2m/s regardless of the velocity it was given, at which point it would brake and

fall over. It was necessary to add extra damping within the DSP's control system to

compensate for this. Even so, the new base can only safely run at 0.75m/s.

11.2 Complete test runs

The night the pick-up system was �rst implemented, I videotaped four test runs.

Traces of the test runs are shown in �gures 11.2 through 11.7. The robot successfully

gave the tour in three of the four tests.

In the �rst run, the visitor misunderstood the instructions given by the robot and

thought the robot said to move out of the way. The visitor moved part-way out of

123

correct path

actual path

Figure 11.1: Detail of the area near the elevator lobby with the robot's intended path

and actual path during the �rst test run..

the way, and the robot misinterpreted the motion as a wave of the foot. It correctly

believed that the visitor wanted a tour, but for the wrong reasons. When the robot

started the tour, it was too close to the elevator lobby to recognize it as a landmark.

It had not recognized it previously because it was occluded by the visitor. The

robot should have recognized the area and veered to the right, but instead continued

forward until it was blocked by the wall. Fortunately, the unwedger and the navigator

were able to successfully pilot the robot into the next corridor, in spite of the failure

(see �gure 11.1). Once the robot reached the kitchen, the place recognition system

resynced itself, and the robot continued without incident.

In the second test, a place recognition error caused it to make an inappropriate

turn from which it took a long time to recover. The run was terminated, and the

robot was allowed to run, with the navigator turned o�, until the place recognition

system resynced itself. The robot made no errors after that point. The other test

runs were performed properly.

11.3 Other environments

Much of Polly's e�ciency is due to its environmental specialization. The robot is not

specialized to a particular environment, but to a class of environments, its \habitat."

The aim of the analytic part of this work is to understand the environmental features

necessary to the robot's operation. Put another way, we want to understand what

the robot's habitat really is. According to the analysis, the low-level navigation code

should work in any environment with corridors with textureless carpets and where

124

Place Action Comments

corridor drive west

stop detected person

\Hello..." introduction speech

pause confused visitor moves

out of the way

\Please stand to one side" Polly makes mistake

visitor moves

drives forward

\Thank you, please follow me" visitor follows

elevator lobby drives west robot misses landmark

west wall stop

turn right unwedger takes over

drive north

north wall stop

turn left unwedger takes over

robot now on course

\I can avoid obstacles..." chatter speech

kitchen \...follow corridors..." robot still making

previous speech

intersection \On the left here..." kitchen place speech

\My vision system runs..." chatter speech

vision lab turn left (south)

\On the right here is..." Vision lab speech

drives south

T.V. lounge wall stop

\By the way..." chatter speech

turn left (east) unwedger takes over

drives east

couch drives east

end of couch \This the T.V. lounge..." place speech

end of lounge \God, this place..." chatter speech

drives east

Karen's o�ce \This is..." place speech

drives east

Anita's o�ce \This is..." place speech

drives east

playroom turns left

\This is..." place speech

drives north

near chair stops

turns left obstacle avoidance

\This is the end..." Goodbye speech

drives cruise mode

Figure 11.2: Transcript of �rst test run.
125

Place Action Comments

west wall stops

turns right obstacle avoidance

drives north

north wall stops

turns left unwedger takes over

drives west

Figure 11.3: Transcript of �rst test run (cont'd.)

Place Action Comments

corridor drive east

stop detected person

\Hello..." introduction speech

pause visitor waves foot

\Please stand to..." visitor moves

drives forward

\Thank you, please follow me" visitor follows

Anita's o�ce \This is the playroom..." place recognition error

turns left

drives north drives into printer alcove

Figure 11.4: Transcript of second test run.

126

Place Action Comments

corridor drive east

stop detected person

\Hello..." introduction speech

pause visitor waves foot

\Please stand to..." visitor moves

drives forward

\Thank you, please follow me" visitor follows

Anita's o�ce \This is..." place speech

drives east

\I can avoid obstacles..." chatter speech

playroom turns left

drives north

\This is..." place speech

drives north

near chair stops

\My vision system..." chatter speech

turns left obstacle avoidance

drives

west wall stops

turns right obstacle avoidance

drives north

north wall stops

turns left unwedger takes over

drives west

\By the way..." chatter speech

drives west

elevator lobby veers right

north wall stops

turns left obstacle avoidance

drives west

kitchen \On the left..." place speech

drives west

\God,..." chatter speech

vision lab turns left

\On the right..." place speech

drives south

T.V. lounge wall stop

turn left (east) unwedger takes over

drives east

Figure 11.5: Transcript of third test run.

127

Place Action Comments

couch drives east

end of couch \This the T.V. lounge..." place speech

drives east

Karen's o�ce \This is..." place speech

drives east

\This is the end..." goodbye speech

Figure 11.6: Transcript of third test run (cont'd.).

all obstacles rest on the ground. I have conjectured that these properties are true of

many o�ce buildings, and I have tried to test the conjecture empirically by testing

the robot in alternate environments.

Note that no parameters were changed for any of these tests. The only di�erence

between the code run for these tests and the code run on the 7th
oor is that the

navigator was disabled (because the robot had no map for the other
oors).

11.3.1 Tech Square

Tech Square is the common term for the building which houses both the AI lab

and the Laboratory for Computer Science. The �rst test of Polly was to take it to

di�erent
oors of Tech Square. The building has nine
oors plus a basement. The

corridor follower and obstacle avoidance work on all
oors except the ninth
oor and

the basement. These
oors have shiny linoleum tile rather than carpet. The tile is

shiny enough that it acts like a dirty mirror when viewed from two feet above the

ground. The result is that images of the overhead lights appear in the
oor. Worse

yet, they move with the robot so that if one happens to be close enough to the robot

to make it back up, the robot will back into a wall. The roughness of the
oor serves

to di�use the light somewhat, so it is possible that the edge detector could be tuned

to a high enough frequency band to ignore the lights.

Many
oors have carpet boundaries. The robot had no problems with the bound-

aries which appeared horizontal in its �eld of view because the carpet boundary

detector was speci�cally tuned to horizontal boundaries, but some boundaries paral-

leled the walls. Such boundaries restricted the robot to the channel between the wall

and the boundary. If the robot had turned 90 degrees at the right point, it probably

could have crossed the boundary, but it did not do so. A more intelligent algorithm

for detecting carpet boundaries would be a great asset.

128

Place Action Comments

corridor drive west

stop detected person

\Hello..." introduction speech

pause visitor waves foot

\Please stand to one side" visitor moves

drives forward

\Thank you, please follow me" visitor follows

elevator lobby veers right

north wall stop

turn left avoid obstacles

\I can avoid obstacles..." chatter speech

kitchen \...follow corridors..." robot still making

previous speech

intersection \On the left here..." kitchen place speech

\My vision system runs..." chatter speech

vision lab turn left (south)

\On the right here is..." Vision lab speech

drives south

T.V. lounge wall stop

\By the way..." chatter speech

turn left (east) unwedger takes over

drives east

couch drives east

end of couch \This the T.V. lounge..." place speech

end of lounge \God, this place..." chatter speech

drives east

Karen's o�ce \This is..." place speech

drives east

Anita's o�ce \This is..." place speech

drives east

playroom turns left

\This is..." place speech

drives north

near chair stops

turns left obstacle avoidance

\This is the end..." Goodbye speech

drives cruise mode

Figure 11.7: Transcript of the last test run.

129

Place Action Comments

west wall stops

turns right obstacle avoidance

drives north

north wall stops

turns left unwedger takes over

drives west

Figure 11.8: Transcript of the last test run (cont'd.).

11.3.2 The Brown CS department

Polly was also tested at the Computer Science Department at Brown University.

Again, the system worked well: it successfully followed corridors, avoided obstacles,

including people, and moved through open spaces. There were problems, however.

The robot's major problem was lack of light. The lights were dark enough to seriously

inhibit the response of the video camera. Since many of the edges between the walls

and the carpet were very low contrast to begin with, the edge detector would often

miss them when running at low light levels. If robot saw one wall, but not the other,

it would sometimes drive into the invisible walls. Again, this situation would be a

problem for nearly any vision system.

Two aspects of the environment's geometry were problematic. One was the pres-

ence of a downward staircase. It is possible that the robot would have seen the

staircase boundary and stopped, but I was not brave enough to test it. Also, some

corridors were too narrow for the robot to turn around without backing into a wall

in the process. The problem was that the corridors were narrower than Polly's min-

imum safe distance. The robot could perform in-place 180 degree turns, but when it

reached dead ends and relied on the unwedger to turn it 45 degrees at a time, it had

problems. This could be solved with a rear bumper.

11.4 Burn-in tests

I conducted a number of \burn-in tests" on the robot, by letting the robot run laps

for 45 minutes at a time. I performed �ve controlled burn-in tests. The longest of

which was 90 minutes. All runs worked well, running without incident for extended

periods. Three of the �ve runs ran
awlessly until terminated by human intervention.

The other two are described below.

In the �rst test, the robot ran for 45 minutes without incident. The test was

terminates by a series of mishaps. The base, being under-damped, started up too

fast and then broke, almost tipping. This generated an internal error in the �rmware

control system of the base, causing the base to halt and limp itself. I reset the base,

130

but forgot that resetting the error also resets the odometer, so that the robot would

think it was pointing south, which it was not. The robot then performed most of a

lap in spite of having wildly incorrect odometry information. I reset the odometry

when I realized the problem. However, I accidentally triggered the go-home function

in the process. At the time, go-home could not be turned o� and, worse, was not

interlocked with the wanderer. The go-home sequencer and the wanderer fought for

control of the navigator for a few more laps. When the wanderer eventually brought

the robot near my o�ce, the go-home routine forcibly parked the base, ending the

run. The whole series of mishaps took about three laps to complete.

The �nal test was terminated by the failure of the motor battery. The battery

appears to have been weakened by the racing in the control system of the new base.

When the robot maneuvers through tight passages or oddly shaped areas, it makes

frequent start and stops, causing the internal base control system to race. When

racing, the base typically accelerates to 2m/s, then brakes to 0.5m/s. Racing pours

huge amounts of energy into the motors to accelerate the robot, only to pour more

energy into the motors to slow it down again. The racing seriously weakened Polly's

motor batteries. Alas, the weak batteries lead to sluggish motor performance, which

seems to cause the internal base control system to race even more. To make matters

worse, the playroom had just been rearranged by workmen and so the freespace

channel which the robot had to follow through the playroom was more complicated

than usual (see �gure 11.9). The complexity meant more starting and stopping.

Toward the end of the run, the base repeatedly shut itself down because it could

not obtain su�cient performance from the motors. The shutdowns required rather

elaborate human intervention to restart the base, while maintaining the its odometric

data.

Apart from these problems, the robot functioned well, running roughly 30 laps.

The robot made three errors. The �rst was due to the overhead lights having been

replaced with dimmer ones. The space between two lights had a strong enough

shadow on the right side to drive the robot away (the robot avoids places which

are dark enough to make the edge detector fail). The robot veered to the left in

a su�ciently gradual manner that it still thought it was in a straight corridor, see

�gure 11.10. When it �nally past the shadow, it was turned so far to the left that

the right wall was out of view. Since it believed it was aligned the corridor, it

concluded it had come to a landmark and turned accordingly. Once the problem

was diagnosed, it could be compensated for by placing an obstacle across from the

shadow to prevent the robot from veering. This solved the problem. Unfortunately,

it is hard to compensate for the new lights. Dropping the darkness threshold did in

fact prevent it from making the error, but also prevented the robot from halting when

it approached dark obstacles in dark areas. It appears that either brighter lights or

a more sensitive camera are the only answers.

The other two problems were due to shafts of bright morning sunlight coming

131

Figure 11.9: The layout of the playroom after begin rearranged by workmen, and

the typical paths made by the robot. Note that NEITHER LAYOUT NOR PATHS

ARE METRICALLY ACCURATE (neither could be measured accurately). Both

are qualitatively accurate however, and the paths accurately represent which pieces

of furniture redirected the robot's path.

132

AAAAA
AAAAAobstacleobstacle

shadowshadow

Figure 11.10: The shadow problem in the last burn-in run. When the overhead lights

were replaced, one area of the corridor was dark enough that the robot could not see

within it. The robot avoided the area, but lost sight of the right wall when it passed

it and thought it had reached the elevator lobby. The robot then veered to its right

as it should in the elevator lobby.

out of o�ce doors. The shafts of sunlight saturate the camera pixels and appear to

be obstacles. The robot halted and tried to �nd a way around the sunlight in vain.

In one case, it tried to enter an o�ce and grazed a doorway on its way in. Both

problems were solved by closing o�ce doors. A complete log of the run is given in

appendix B.

11.5 Limitations, failure modes, and useful ex-

tensions

11.5.1 Low-level navigation

In general, all low-level navigation problems are obstacle detection problems. Fortu-

nately, most of these are false positives rather than false negatives so the system is

very conservative. The system's major failure mode is braking for shafts of sunlight.

If sunlight coming through o�ce doors in into the hallway is su�ciently strong it

causes the robot to brake when there is in fact no obstacle. Shadows are less of a

problem because they are generally too di�use to trigger the edge detector.

False negatives can be caused by a number of less common conditions. The present

system also has no memory and so cannot brake for an object unless it is actually

within the camera's �eld of view. Some of the objects in the lab have the same surface

re
ectance as the carpet on which they rest, so they can only be distinguished in

color. Since the robot only has a black and white camera, it cannot distinguish these

isoluminant edges. The edge detector can also fail in low light levels. Of course, most

vision systems are likely to miss an object if they cannot even �nd its edges so this

failure mode should not be surprising.

133

The inability to see backward is the other major collision avoidance problem.

Adding a rear bumper would solve most of the backing-into-wall problems.

11.5.2 The navigator

High-level navigation performance is determined by the accuracy of place recognition.

In general, the system works
awlessly unless the robot gets lost. When the robot

gets lost, the navigator will generally overshoot and turn around. If the robot gets

severely lost, the navigator will
ail around until the place recognition system gets

reoriented. The worst case is when the place recognition system thinks it is east of

its goal when it is actually at the western edge of the building (or west of the goal

when it is east). In this case, the navigator unit and the unwedger continually make

opposite course corrections. The navigator should probably be modi�ed to give up

in these situations. In general, the system would bene�t from being able to explicitly

notice that it's lost.

11.5.3 The unwedger

In general, the unwedger works very well. Its one failure mode appears when the

robot gets into a corner. The corridor follower then tries to point the robot into the

corner. When the unwedger turns the robot 45 degrees, it is insu�cient to move it

out of the attractor basin of the corner. Thus the robot loops, alternately turning

toward and away from the corner. This could be �xed by increasing the turn angle,

but that can cause problems in other situations. Perhaps the best solution would be

to explicitly note the looping behavior and force a u-turn.

11.5.4 Place recognition

While recognition by matching images is quite general, it is fragile. It is particularly

sensitive to changes in the world. If a chair is in view when a landmark template is

made, then it must continue to be in view, and in the same place and orientation,

forever. If the chair moves, then the landmark becomes unrecognizable until a new

template is made. Another problem is that the robot's camera is pointed at the

oor and there isn't very much interesting to be seen there. For these reasons,

feature frames are preferred over image frames. The only image-based landmark is

the kitchen. In ten trials, the robot recognized the kitchen eight times going west

and ten times going east. Westward kitchen recognition fails completely when the

kitchen is rearranged.

Both methods consistently miss landmarks when there is a person standing in

the way. They also fail if the robot is in the process of readjusting its course after

driving around an obstacle or if the corridor is very wide and has a large amount

134

of junk in it. Both these conditions cause the constant-viewpoint constraint to fail.

The former can sometimes cause the robot to hallucinate a turn because one of the

walls is invisible.

Recognition of districts is very reliable, although it can sometimes become con-

fused if the robot is driven in a cluttered open space rather than a corridor.

11.5.5 Camera limitations

Dynamic range is a major problem for vision systems. Polly su�ers greatly from the

fact that its camera and digitizer only have a dynamic range of 10:1 or 20:1, which

means that any scene illuminated by both o�ce lights and sunlight will necessarily

lose pixels on one or both ends of the scale. These regions are e�ectively invisible.

Polly also su�ers greatly from its limited �eld of view. Although its �eld of view is

huge by most standards, it can still easily miss nearby obstacles because they are our

of view. The �eld of view also causes intersection detection problems. Without being

able to turn its head, it cannot look to see if it is really passing another corridor.1 A

wider �eld of view and/or the ability to steer the camera would be a great asset.

Finally, I would have liked very much to have been able to use color or stereo

information. I was not able to do so because of hardware limitations in the frame

grabber. I believe that both of these cues could greatly improve the performance of

the robot.

11.5.6 Multi-modal sensing

Given the current state of vision technology, it is a bad idea to rely exclusively on

vision for obstacle avoidance, particularly vision based on a camera with the limi-

tations discussed above. I avoided other sensing modalities because of limited time,

but the use of other modalities would be essential to the development of an industrial

strength version of Polly. I have found that bump switches are extremely useful. Pa-

pering one's robot with bump switches seems like a very good idea. Unfortunately,

bump switches are of little or no use at high speeds. A bump switch extending 10cm

forward only gives a 10ms collision warning at 1m/s. Stopping in 10ms would require

a 10g deceleration.

Finally, it would also be extremely useful to use translational odometry to disam-

biguate adjacent landmarks that are visually similar. Polly's hardware is physically

capable of it, but it would have required much complicated device drivers.

1The robot could stop dead, turn, look, and turn again, but this would both waste time, and
greatly increase the risk of its getting rear-ended by a human.

135

Chapter 12

Summary and conclusions

12.1 Why Polly works

Polly's e�ciency and reliability are due to a number of factors. Specialization to a

task allows the robot to compute only the information it needs. Specialization to a

habitat allows the robot to substitute simple computations for more general ones.

Polly is an existence proof that a robust system with a large behavioral repertoire

can be built using simple components specialized to their task and environment. It

also demonstrates how we can analyze specialization so that we may better under-

stand a system and transfer the insights gained in its design to the design of other

systems.

There are also a number of architectural features in Polly's favor. Polly uses

multiple strategies in parallel to reduces the likelihood of catastrophic failure. When

the strategies have independent failure modes their combination can be quite robust.

When the vanishing point computation generates bad data, the depth-balancing strat-

egy compensates for it and the distance control system prevents collisions until the

vanishing point is corrected.

Polly's control and perception loops run very fast (all visual percepts and motor

commands are recomputed every 66ms) so it can rapidly recover from errors. We can

think of Polly's control problem as being the problem of generating the next 66ms

of safe path. Even at 1m/s, 66ms is only 6.6cm or about 3 inches. Other navigation

systems that only process an image every few seconds or minutes, must compute path

segments on the order of meters. Verifying the safety of a 6cm path is simply a lot

easier than verifying a 1m path, particularly if the size of the freespace around the

robot is less than a meter. Before committing to the 1m path, a robot needs to make

very precise and reliable measurements to insure that that path will in fact be safe.

Those measurements take a great deal of computing time. But if it takes the control

system ten seconds to make a control decision, then the control system would have to

commit to a path at least 10m long to maintain a speed of 1m/s. But that, in turn,

136

requires even more precise measurements, and so on, resulting in a vicious circle.

The robot's small size signi�cantly simpli�es its navigation problems. O�ce build-

ings are designed human-sized creatures: the width of a doorway is determined by

human shoulder width. My o�ce door is 36 inches and my shoulders 20 inches. That

leaves an 8 inch clearance on either side. Even a robot which is only 2 feet in di-

ameter has only 6 inches of clearance, less than the minimum operating distance for

standard Polaroid sonar sensors. The robot must rely on very short range sensors,

such as infrareds, or on tactile feedback. Tactile feedback is very bad idea for a robot

weighing 100 pounds or more. Polly, being only 1 foot wide, can survive a great deal

slop in its navigation. Its small size and (relatively) light weight also simplify vehicle

dynamics at high speeds.

12.2 Lightweight vision

There are few things one can prove about vision as a whole. I do not claim that

lightweight systems are a replacement for reconstruction systems. Nor do I claim to

have proven the long-term e�cacy of task-based vision, active vision, or qualitative

vision as research strategies. This report is best taken as a reminder that there are a

number of resources available to the designer of vision systems that may have been

forgotten.

The most important such resource in this work has been the structure of the

environment. The presence of simplifying structures in the environment often allows

simple computations to be substituted for expensive ones. This simpli�cation can

be done in a principled manner by making the structures explicit in the form of

habitat constraints and describing the simpli�cation in the form of a general lemma.

The advantage of the lemma is that it allows other people to perform the same

optimization in the future. It also shows what is important about the simpli�cation

and what is not. The particular edge detector used by my robot for �gure ground

separation is unimportant. What is important is the fact that any (thresholded)

linear �lter restricted to the right band will work.

The structure of the task is a complementary resource. It tells the designer what

information is needed and what performance is required. More importantly, it tells

the design what information is not needed and what performance is not required.

Computing more information means computing more representations, which is ob-

viously more expensive, or squeezing more information into the existing representa-

tions, which is often even worse. The �rst principle taught in most undergraduate AI

classes is that a good representation makes the important information explicit, and

nothing else. As one squeezes more and more information into a representation, the

information becomes less explicit, so non-trivial processing is required just to look

at the representation and extract the information that was needed in the �rst place.

137

Any representation with all the expressive power of the original image, is likely to be

nearly as di�cult to interpret.

Improving performance parameters, on the other hand, generally requires making

trade-o�s, usually either trading cost for performance, or trading one performance

characteristic for another. Improving unimportant performance parameters is not

only wasted e�ort, it is also a waste of other performance parameters.

Resolution is a useful case in point. Many researchers I have talked to have

taken it for granted that images below 128 � 128 are mostly useless, whereas Polly

uses resolutions as low at 16� 12. Polly demonstrates that surprisingly good results

can be obtained with surprisingly low resolutions (see Horswill and Brooks [51] and

Pomerleau [81] for other examples). Obviously, some tasks and environments require

higher resolution, but many do not. Nor does a system need to sample everything

at the same resolution. If a smooth, �nely textured object moves past the camera,

then the intensity �eld will vary rapidly in both space and time and so will have to

be �nely sampled to estimate the motion �eld. The motion �eld itself however, will

vary much more slowly and need not be sampled nearly as �nely.

Fear of Vision

While it can be di�cult to get people to admit to it in writing, there is a common

attitude in both AI and robotics that vision is not even worth considering as a sensor

because of its expense and unreliability. Of course sometimes it really is expensive.

When tasked with constructing digital terrain maps from high resolution satellite

images, the only option is to build a full stereo or shape from shading system and

use whatever computational resources are necessary to do the job. However, simpler

options are available for simpler tasks, such as corridor following. A reactive planning

researcher wanting to give her planner something to execute, will be content with

anything that does the job. Many researchers have put up with inadequate sensory

suites, simply because they felt that vision was impractical. I hope this work succeeds

in convincing such users that vision is safe to try.

12.3 Studying the world

I have argued that we need to study not only the structure of agents, but the structure

of the environment and the relationships between agent structures and environment

structures. In short, that we need to study the world. The approach I have used

has been to de�ne a formal semantics on a set of possible agents and a set of trans-

formations over agents which preserve those semantics when some constraint holds.

This approach allows the assumptions made by an agent to be separated and their

computational signi�cance drawn out. The assumptions (constraints) can then be

138

cataloged for use in future designs and checked against di�erent domains to make

computational pro�les of those domains. There are doubtless approaches to be ex-

plored.

One may object that this project is applicable only to specialized systems, not

to truly general systems. However, truly general systems are extremely rare. Most

\general" vision systems tacitly assume the world is non-specular or that surfaces

are almost completely smooth. Others assume it is piecewise planar. Most planners

assume that the world is completely stable. That requires, among other things,

that the planner be the only agent in the world. Most also assume that the world is

deterministic or only boundedly unpredictable, so the e�ects of an action can be easily

determined in advance. These are not necessarily faults. They are habitat constraints,

no more, no less. Habitat constraints can only be judged by their usefulness and

their match to an agent's environment. The choice is not whether to use habitat

constraints, but which ones to use. However one chooses constraints, they need to

be stated explicitly along with their computational signi�cance. This is true both for

simple reactive robots and for complex reasoning systems. In short, we need to learn

to be intelligent consumers of specialization.

We also need to understand the real underlying di�culties of the actual test

domains of our systems. This can only be done by examining world and agent

together. Failure to analyze our test domains seriously undermines our conclusions

about our agents.

Studying the world can also help us design \general-purpose" systems. It helps

make clear which tasks are hard or easy. Problems are often very hard in the general

case, but if the majority of actual problem instances encountered by an agent are

relatively simple, the agent may thrive by using simple methods whenever possible,

saving its cognitive resources for the truly hard instances.

AI is and must be a natural science. It must continually make and test hypotheses

about the nature of the external world. Our algorithms, representations, and formal-

izations of the world must eventually be compared with external reality. Doing so

early reduces the risk of wasted e�ort. To understand intelligence, we must study

not only ourselves but the world in which we live.

139

Appendix A

The frame database

The following is the database of frames presently in use by the robot. Each frame is

de�ned by a defframe form which takes the name of the landmark, its coordinates,

a set of features, and the direction the robot would be pointing if it were at that

landmark and saw those features. The features can be an image, or they can be bits.

The possible bits are left, right, wall, and dark (meaning there is a dark
oor here.

If the appearance of a place is variable, multiple frames can be used to specify the

possible appearances. The :veer parameter is the amount to veer left or right (in

degrees, right is positive), when reaching that landmark. The default veer is zero.

The speed parameter is used to specify a string to send to the voice synthesizer when

giving tours. Note that the spelling required to get the voice synthesizer to say the

right thing can be rather odd. The :place-size parameter is the amount of time it

should take the robot to drive through the landmark. The default is 2 seconds. The

:passage? parameter means that the landmark is a grid point, and so the navigator

should consider making turns at the landmark.

(defframe "Ian's office" ; starting point; Ian's office.

:x 90 :y 40

:direction south

:left? t)

(defframe "Ian's office"

:x 90 :y 40

:direction east

:speech "This is eean's office."

:place-size 20

:left? t :wall? t :dark? t)

(defframe "T.K.'s office"

:x 80 :y 40

140

:direction west

:place-size 10

:passage? t

:left? t :dark? t)

(defframe "Elevator lobby"

:x 60 :y 40

:direction west

:veer 35

:place-size 6

:right? t :wall? t :dark? t)

(defframe "Elevator lobby"

:x 60 :y 40

:direction west

:veer 45

:place-size 6

:right? t :wall? t)

(defframe "Elevator lobby"

:x 60 :y 40

:direction west

:veer 45

:place-size 6

:right? t :dark? t)

(defframe "Elevator lobby"

:x 60 :y 40

:direction west

:veer 45

:place-size 6

:right? t)

(defframe "Elevator lobby"

:x 60 :y 40

:direction east

:veer 45

:place-size 6

:right? t :wall? t)

(defframe "Kitchen"

141

:x 50 :y 40

:direction west

:speech "On the left here, we have the copier room and the kitchen."

:image ...)

(defframe "Kitchen"

:x 50 :y 40

:direction east

:image ...)

;; The control algorithms loose at this junction so the

;; place size is large to give them a chance to

;; stabilize.

(defframe "Corridor 1"

:x 40 :y 40

:direction west

:passage? t

:place-size 5

:left? t)

(defframe "Corridor 2"

:x 30 :y 40

:direction west

:passage? t

:speech "On the right here is the vizon lab."

:left? t)

;;; Kluge: this is to deal with the effects of having

;;; Marc Raibert's door open at the end of the hall on

;;; sunny days. It overwhelms the AGC on the camera

;;; and makes the whole corridor appear to be dark like

;;; the playroom.

(defframe "Corridor 2"

:x 30 :y 40

:direction west

:passage? t

:speech "On the right here is the vizon lab."

:left? t :dark? t)

(defframe "Corridor 1"

:x 40 :y 40

142

:direction east

:passage? t

:right? t)

(defframe "Corridor 2"

:x 30 :y 40

:direction east

:passage? t

:speech "On the right here is the vizon lab."

:right? t)

(defframe "Corridor 2"

:x 30 :y 40

:direction east

:passage? t

:speech "On the right here is the vizon lab."

:right? t :dark? t)

(defframe "Marie's office"

:x 10 :y 40

:direction west

:veer -30

:left? t)

(defframe "Marie's office"

:x 10 :y 40

:direction west

:veer -40

:left? t :right? t)

(defframe "Marie's office"

:x 10 :y 40

:direction north

:right? t)

(defframe "Marie's office"

:x 10 :y 40

:direction north

:right? t :left? t)

(defframe "Conference room"

143

:x 10 :y 10

:direction west

:right? t)

(defframe "T.V. Lounge"

:x 30 :y 10

:speech "This is the T.V. Lounj."

:direction east

:passage? t

:left? t)

(defframe "T.V. Lounge"

:x 40 :y 10

:speech "This is the T.V. lounj. We waste a lot of time here."

:direction east

:lefT? t :place-size 10)

(defframe "T. V. Lounge"

:x 40 :y 10

:direction west

:speech "This is the T.V. lounj. We waste a lot of time here."

:place-size 10

:right? t)

(defframe "T.V. Lounge"

:x 30 :y 10

:passage? t

:direction west :right? t)

(defframe "Anita's office."

:x 70 :y 10

:direction east

:speech "This is the office of Anneeta Flin,

superwoman of the Nineteez."

:left? t :place-size 3)

(defframe "Anita's office"

:x 70 :y 10

:direction west

:place-size 3

:right? t)

144

(defframe "Robert's office"

:x 71 :y 10

:direction east

:place-size 0

:right? t :dark? t)

(defframe "Play room"

:x 80 :y 10

:speech "This is the Playroom."

:direction east

:passage? t

:left? t :dark? t)

(defframe "Play room"

:x 80 :y 10

:direction east

:passage? t

:speech "This is the Playroom."

:left? t :right? t :dark? t)

(defframe "Hi Karen"

:x 60 :y 10 :direction west

:right? t)

(defframe "Hi Karen"

:x 60 :y 10 :direction east

:speech "This is Karen and Mike's office."

:left? t)

145

Appendix B

Log of the last burn-in run

7:50 AM Make freespace channel in playroom.

Started robot.

Robot consistently veers to left by room 739, loses the wall, and mistakes the

room for the elevator lobby.

Experimented with changing lighting conditions in room 739. No e�ect.

8:10 Have determined that the problem is due to a shadow cast by the new

lights. The shadow is dark enough to force the robot to avoid it.

Problem is solved by placing a new obstacle across from the shadow to balance

it. Will try dropping the shadow threshold later.

8:30 Door to room 793 is opened. Morning sun casts a band of light strong

enough to be a barrier into the hallway. Robot enters o�ce, skims doorway,

and halts. I reorient and reset the base and the robot continues. The robot

believes it is at (40; 40), when it is at (30; 10). The place recognition system

resets at the playroom and continues normally.

8:40 Uneven geometry of the playroom is making the robot do a lot of obstacle

avoidance. The control system of the base is racing whenever it starts up after

being blocked. No collisions so far. Damping in the DSP is compensating.

Robot's path through playroom is quite variable.

8:45 Base control system seems worse. It \popped a wheelie" while accelerating

from a stop in the playroom.

9:00 Another wheelie.

9:05 Base does another wheelie and shuts down. I manually reset the base and

the robot continues normally.

146

9:07 Door to room 711 is opened. Sunlight swamps the video camera, and the

robot stops and thrashes (trying to get past the sunlight). I disable the base.

9:09 Occupant of 711 leaves and closes the door. Robot restarted.

9:15 Base halts twice in a row. Possible battery problems. I recon�gure the

playroom to be more corridor-like so the robot will not have to stop as much.

9:17 The robot runs the playroom without stopping.

9:20 Base halts. Restarted.

9:23 Base halts. Run terminated.

147

Appendix C

Polly's source code

This chapter contains the source code to the parts of Polly that are likely to matter to

AI researchers. For brevity, it does not contain \system" code such as device drivers,

utility functions, macro de�nitions, the FEP code, the assembler, or the Senselisp

compiler. A few changes have been made: portions that were commented out have

been deleted entirely. Some compiler directives have been removed. Some comments

have been added.

The code is written in Senselisp, a statically-typed subset of Scheme that sup-

ports pointer arithmetic. Senselisp does not support garbage collection, so it must

enforce stack discipline on activation records. This means that closures are e�ectively

unsupported. Senselisp also includes a number of useful forms from Common lisp,

such as when and unless. A summary of the linguistic peculiarities of Senselisp is

given in �gure C.1. Run-system features that are peculiar to Polly are given in �gure

C.2.

Caveat: Complicated or expressions exercise an obscure bug in Senselisp's register

allocator. Since I had to graduate, I didn't �x the register allocator; I kluged around

the problem. The reader will �nd occasional places where constructs like (when (or

A B) C) are unpacked into (when A C) (when B C). I apologize if this makes the

code somewhat less readable.

C.1 The main loop

The top-level of the system is a series of initializations followed by the main loop.

The main loop grabs a new image, processes it, computes new motor actions, and

outputs them on the serial port to the FEP, which forwards them to the base.

Implementation notes

Serial I/O is a little odd on Polly. The C30's on-chip peripherals were su�ciently

�nicky that I decided to use a two-phase I/O system. First the CPU �lls the output

bu�er, then the DMA controller transfers it to the serial port. No serial I/O calls

148

Compiler declarations

with-vars-in-registers informs the compiler to place everything possible in

registers.

with-hardware-looping enables compiler generation of special C30 zero-overhead

looping instructions.

in-register forces register allocation of argument.

Iteration constructs

countdown Macro; just like dotimes but counts backwards. It's

faster.

Pointer arithmetic

shift performs pointer arithmetic on vectors

%read-and-shift! equivalent of the *p++ construct in C.

%write-and-shift! same

@++ abbreviation for %read-and-shift!

shiftf equivalent to (set! p (shift p offset))

Mapping

map-vector! Macro; like mapcar, but takes vectors as input and de-

structively modi�es its output.

do-vectors same, but no output argument. Procedure is called for

e�ect only.

map-region! like map-vector but only processes a sub-vector speci�ed

by start position and length parameters.

do-regions same, but no output.

Other

ash arithmetic shift

forge The equivalent of C type-casting; makes the compiler

think its argument has a speci�ed type.

external forces a reference to a given assembly-language label.

Useful for interfacing with the run-time system.

when Macro; like common lisp - an if with a body consequent

and null alternative.

unless Macro; like common lisp - opposite of when.

make-pair compresses two 16 bit integers into a single 32 bit integer.

pair-a, pair-b extract components from pairs.

Figure C.1: Senselisp peculiarities

149

Character I/O

write-line writes a string to the serial port along with CRLF.

write-line-formatted writes a string, then a hexadecimal number, then another

string and a CRLF.

display-line writes a string to a speci�ed location on the robot's LCD

display.

display-formatted-line like write-formatted-line, but to display.

display-packed-line Like display-line, but uses special packed strings.

pdisplay Macro; packs its argument string and generates call to

display-packed-line.

Other

switch-on? returns true if speci�ed front-panel switch is on.

true-time Macro; returns the number of consecutive clock ticks for

which the argument predicate has returned true.

define-box Macro; de�nes a named procedure and allocates space

for the wires named as its outputs.

Figure C.2: Peculiarities of the Polly runtime system.

can be performed while the DMA controller is running. This greatly simpli�es the

I/O library, but it makes the code a little weird. The wait-output call is used to

synchronize the CPU with the DMA controller to insure that it's safe for the CPU

to write the output bu�er again. Start-output re-initiates DMA.

Serial input is done by polling. I have since found that C30 interrupts are relatively

easy to write and debug, but after my experiences with the serial port, I was reluctant

to spend time debugging interrupt-driven serial I/O. The fep-interface call is used

to poll the serial port. Note that there are two calls to it in the main loop to make

sure that no bytes get lost.

The state-loopmacro expands to an in�nite loop plus some extra housekeeping

code used by the true-time macro (see �gure C.1).

C.1.1 tour-demo.lisp

(define (main)

;; Setup.

(initialize-hardware)

(initialize-library)

(set! last-x 90)

(set! last-y 40)

(set! current-frame frames)

(wait-output)

(do! leave-office)

150

(start-output)

;; The real loop.

(state-loop

(low-level-vision)

(fep-interface)

(derived-aspects)

;; This test should have gotten moved into the frame-matcher code.

(when (and corridor?

(looking-down?)

(> speed #x1800))

(frame-matcher))

(unwedger)

(wait-output)

(fep-interface)

(kluges)

(odometry)

(run-sequencers)

(navigator)

(interact)

(update-display)

(chatter)

(messages)

;;; This is needed to prevent some kind of weird race condition

;;; I never determined. Without it the FEP will sometimes crash

;;; when you bring it out of halt mode.

(dotimes (n 10000))

(motor-control)

(start-output)))

C.2 The core vision system

The CVS is implemented in the �les vision.lisp, which contains the vision routines

themselves, and library.lisp, which contains the calls to the routines and the code to

set the various global variables. The name \library" is due to historical reasons.

The routine low-level-vision computes most of the basic percepts such as the

depth map. Derived-aspects then computes additional percepts from the percepts

computed by low-level-vision.

151

C.2.1 vision.lisp

;;; This does a separable 3x3 low pass �lter.

(define (smooth in out scratch)

(with-hardware-looping

(map-region! scratch

0 (- (vector-length scratch) 2)

(lambda (left middle right)

(+ left right (ash middle 1)))

(shift in -1)

in

(shift in -1))

(map-region! out

64 (- (vector-length out) 128)

(lambda (up middle down)

(ash (+ up down (ash middle 1)) -4))

(shift scratch -64)

scratch

(shift scratch 64))))

;;; Given an edge image, compute the column heights and write them in VECTOR.

;;; The IMAGE argument is no longer used.

(define (�nd-distances edges image vector)

;;; Mark the top of the image so we can simplify the loop termination test.

(with-hardware-looping

;; Mark the top of the edge image to insure that we have an edge in

;; every column.

(map-region! edges 0 *image-width* (lambda () 255))

(let ((sedges (shift edges (* *image-width* 45))))

(countdown (column 63)

;; Find the height for column COLUMN.

(let ((pointer (in-register address (shift sedges column)))

(distance (in-register data 0)))

;; Scan up from the bottom until we �nd a non-zero pixel.

(while (= (%read-and-shift! pointer -64) 0)

(set! distance (+ distance 1)))

;; Write out the distance.

(vector-set! vector column distance))))))

(define (�nd-vanishing-point image)

(with-vars-in-registers

(let ((image (shift image (- (* 46 *image-width*)

2)))

(sum 0)

152

(sum-squares 0)

(horizon 24)

(points 0)

(reciprocals (forge (vector integer) (external reciprocal-table))))

(let ((quotient (lambda (x y)

(ash (* x (vector-ref reciprocals y)) -16))))

(countdown (y 45)

;;; Scan a line.

(with-hardware-looping

(countdown (x (- *image-width* 1))

;; Try a pixel; compute its gradients.

(let* ((dx (in-register index (- (vector-ref image 1)

(vector-ref image 0))))

(dy (- (vector-ref image *image-width*)

(vector-ref image 0))))

;; Test gradients and reject if one is too small.

(when (and (> (abs dx) 10)

(> (abs dy) 10))

;; We have a reasonable edge point.

;; Compute its x-intercept with the top of the screen

;; (which is assumed to be where the vanishing point is).

(let ((x-intercept (+ (quotient (* y dy)

dx)

x)))

;; Make sure it's in view.

(when (and (> x-intercept -1)

(< x-intercept 64))

;; It's in view; average it in.

(set! sum (+ sum x-intercept))

(set! sum-squares (+ sum-squares

(* x-intercept x-intercept)))

(set! points (+ points 1))))))

;; Next pixel.

(set! image (shift image -1))))

;; End of the line.

;; Skip over the ignored pixel at the end of the line.

;; We skip it because we can't compute it's gradient.

(set! image (shift image -1)))

;; We've done all the pixels.

;; Check that we got a sane number of edge pixels.

(if (and (> points 20)

(< points 256))

;; We did; return mean and variance.

153

(let ((mean (quotient sum points)))

(let ((variance (- (quotient sum-squares points)

(* mean mean))))

(make-pair mean variance)))

;; We didn't; return center-of-screen and in�nite variance.

(make-pair 31 1000))))))

(define suppress-horizontal false)

;;; Find the naughty pixels we want to avoid.

;;; Also return the number of edge pixels.

(define (�nd-dangerous image out)

(let ((dark-threshold 40)

(bright-threshold 270) ; no brightness threshold.

(edge-threshold 15)

(artifact-edges 50))

(with-vars-in-registers

(with-hardware-looping

(let ((total-edges 0))

(if suppress-horizontal

(map-vector! out

(lambda (up left center)

(if (and (< (abs (- left center))

edge-threshold)

(> center dark-threshold)

(< center bright-threshold))

0

(begin (incf total-edges)

255)))

(shift image (- *image-width*))

(shift image -1)

image)

(map-vector! out

(lambda (up left center)

(if (and (< (+ (abs (- left center))

(abs (- up center)))

edge-threshold)

(> center dark-threshold)

(< center bright-threshold))

0

(begin (incf total-edges)

255)))

(shift image (- *image-width*))

(shift image -1)

154

image))

(- total-edges artifact-edges))))))

;;; Compute a map of vertical symmetricalness about each pixel.

;;; IN is a grey-scale image.

;;; OUT is an image to write the per-pixel symmetry values into.

;;; RESULTS is a 64 element vector. On exit, the ith element of results holds

;;; the sum of the symmetry values for all pixels in column i.

(define (�nd-symmetry in out results)

(let ((scan-width 8) ;number of pixels on either side to

;compare when computing symmetry

(image-width 64)

(lines-to-skip 15)) ;don't bother with the top 15 lines.

(with-vars-in-registers

(let ((in (shift in (* image-width lines-to-skip)))

(out (shift out (+ (* image-width lines-to-skip)

scan-width)))

(res results))

(countdown (lines-to-go (- 48 lines-to-skip))

;; Do a line.

(countdown (pixels-to-go (- image-width (* 2 scan-width)))

;; Compute the symmetry (SCORE) of a particular pixel.

(let ((score 0))

(let ((left1 (in-register address in))

(left2 (in-register address (shift in 1)))

(right1 (in-register address

(shift in (* 2 scan-width))))

(right2 (in-register address

(shift in (+ 1 (* 2 scan-width))))))

;; Compare derivatives of each pair of opposing pixels.

(with-hardware-looping

(countdown (n scan-width)

(let ((left-deriv (- (@++ left1 1)

(@++ left2 1)))

(right-deriv (- (@++ right1 -1)

(@++ right2 -1))))

;; Compare derivatives of a speci�c pair.

(incf score

(min 0 (* n left-deriv right-deriv)))))))

;; We've got a symmetry value.

;; Now impose min and max limits.

(let ((true-score (min 255

(ash (max (- score) 0)

-2))))

155

;; And write it out.

(vset! out 0 true-score)

(vset! res 0 (+ (vref res 0)

(ash true-score -4)))))

;; Done with the pixel; shu�e the pointers.

(shiftf in 1)

(shiftf out 1)

(shiftf res 1))

;; Done with the line.

(set! res (shift results scan-width))

(shiftf in (* 2 scan-width))

(shiftf out (* 2 scan-width)))))))

;;; Return true if there is a bump in the distance vector near the speci�ed

;;; o�set.

(define (protrusion-near? distance-vec offset)

(with-vars-in-registers

(let ((edge-thresh 4)

(first-neg-edge -1)

(last-plus-edge -1)

(d (shift distance-vec (- offset 6))))

;; Start 5 columns to the left of o�set, and scan until 5 to the right.

;; Look for a negative-going distance edge followed by a positive-going

;; distance edge.

(dotimes (n 11)

(let* ((left (vref d n))

(right (vref d (+ n 1)))

(diff (- left right))

(edge? (> (abs diff) edge-thresh))

(neg-edge? (< diff 0)))

(when edge?

(if neg-edge?

(when (< first-neg-edge 0)

(set! first-neg-edge n))

(set! last-plus-edge n)))))

(and (> first-neg-edge -1)

(> last-plus-edge -1)

(> last-plus-edge first-neg-edge)))))

;;; Kluge to �nd the carpet boundary.

(define (carpet-boundary? image)

(with-vars-in-registers

(let ((edges 0)

156

(edge-thresh 9)

(bad-thresh 25)

(region-width 10)

(region-height 15)

(top-line -1)

(bad-edges 0)

(bottom-line 0))

(let ((im (shift image 1947)))

(countdown (lines region-height)

(countdown (pixel 10)

(let ((center (in-register data (vector-ref im 0))))

(let ((delta (abs (- (vector-ref im 64) center))))

(when (> center 120)

(incf bad-edges))

(when (> delta bad-thresh)

(incf bad-edges))

(when (> delta edge-thresh)

(incf edges)

(when (< top-line 0)

(set! top-line lines))

(when (> lines bottom-line)

(set! bottom-line lines)))

(shiftf im 1))))

;; Move to next line.

(shiftf im 54)))

(and (> edges 7)

(< edges 30)

(= bad-edges 0)

(< (- bottom-line top-line) 7)))))

;;; Compute the sum of absolute di�erences between OLD and NEW. This

;;; routine is misnamed. It once tred to compute horizontal
ow

;;; (hence the name), but di�erence images turned out to be more

;;; reliable on the whole.

(define fmotion 0)

(define (total-hmotion old new)

(let ((sum 0))

(do-vectors (lambda (old new right)

(let ((hmotion (abs (- new old))))

(when (> hmotion 20)

(incf sum hmotion))))

old

new

(shift new 1))

157

(set! fmotion

(+ (ash sum -6)

(ash fmotion -1)))

fmotion))

;;; Return the smallest element of a region of a distance vector.

(define (region-min vector start length)

(let ((m (in-register data 9999999)))

(do-regions start length

(lambda (x)

(when (< x m)

(set! m x)))

vector)

m))

;;; Return the index of the largest element of vector in speci�ed region.

(define (region-max-point vector start length)

(with-vars-in-registers

(let ((maximum 0)

(max-point 0)

(l length)

(v (shift vector start)))

(countdown (n l)

(let ((x (@++ v)))

(when (> x maximum)

(set! maximum x)

(set! max-point n))))

(- l max-point))))

;;; Return the number of elements in vector whose values are near VALUE.

(define (region-value-count vector start length value)

(with-vars-in-registers

(let ((value value) ; get it in a register

(count 0))

(do-regions start length

(lambda (x)

(when (< (abs (- x value))

3)

(incf count)))

vector)

count)))

;;; Smooth a distance map.

(define (smooth-1d in out)

(map-vector! out

158

(lambda (l c r)

(ash (+ l r (ash c 1)) -2))

(shift in -1)

in

(shift in 1)))

C.2.2 library.lisp

;; The subsampled image from the camera (64x48).

(define image null-vector)

;; IMAGE averaged down to 16x12.

(define mini null-vector)

;; Low-pass �ltered version of IMAGE.

(define smoothed null-vector)

(define old-smoothed null-vector)

(define motion null-vector)

(define reversals null-vector)

(define old-motion null-vector)

;; The edge map.

(define edges null-vector)

;; Radial depth map.

(define distance-vector null-vector)

;; Values of symmetry for each pixel.

(define symmetry-image null-vector)

;; Values of symmetry calculation for each column of the image.

(define symmetry-vector null-vector)

(define (initialize-library)

(set! distance-vector (make-vector *image-width*))

(set! image (make-image))

(set! old-smoothed (make-image))

(set! mini (make-mini-image))

(set! smoothed (make-image))

(vector-fill smoothed 0)

(vector-fill old-smoothed 0)

(set! edges (make-image))

(set! symmetry-image (make-image))

(set! symmetry-vector (make-vector *image-width*)))

;;;;; Visual System.

;;;; Tuning parameters.

(define-constant dark-
oor-level 100)

(define-constant light-
oor-level 100)

159

;; The number of noise edges introduced by frame grabber and dumb edge

;; algorithm.

(define-constant artifact-edges 150)

;;; We consider ourself "blind" if we see fewer than this number of edge

;;; pixels.

(define-constant blindness-threshold 50)

(define-box (low-level-vision

:outputs (left-distance right-distance ;left-space

;right-space

center-distance

;center-space

wall-ahead?

wall-far-ahead? boundary?

;farthest-direction

dark-floor light-floor blind?

edge-count vanishing-point variance

reversals

hmotion

person? person-direction))

;; Get the image an preprocess it.

(grab-and-start image)

(shrink-image image mini)

;; Swap the the smoothed and old-smoothed bu�ers

(let ((temp (in-register data old-smoothed)))

(set! old-smoothed smoothed)

(set! smoothed temp))

(smooth image smoothed edges)

;;; Find the edges for the distance �nder.

(set! boundary? (and (= (logand direction 1)

1)

(carpet-boundary? smoothed)))

(set! suppress-horizontal boundary?)

(set! edge-count (find-dangerous smoothed edges))

(set! blind? (< (true-time (> edge-count blindness-threshold)) 3))

;; Compute distances.

(find-distances edges image distance-vector)

(set! left-distance (region-min distance-vector 6 25))

(set! right-distance (region-min distance-vector 31 25))

(set! center-distance (region-min distance-vector 24 14))

160

(set! wall-far-ahead? (> (region-value-count distance-vector 27 10 28)

8))

(set! wall-ahead? (> (region-value-count distance-vector 24 16 25)

14))

;; Look for symmetry (i.e. people).

(vector-fill-internal symmetry-vector 0 64)

(find-symmetry smoothed symmetry-image symmetry-vector)

(set! person-direction (+ 21 (region-max-point symmetry-vector 21 22)))

(set! person? (and (> (vector-ref symmetry-vector person-direction)

100)

(protrusion-near? distance-vector person-direction)))

;; Find the vanishing point. VP computation returns a pair.

(let ((pair (in-register data

(find-vanishing-point smoothed))))

(set! vanishing-point (pair-a pair))

(set! variance (pair-b pair)))

(let ((floor (vector-ref mini (- (* 16 12) 8))))

(if dark-floor

(when (> floor 120)

(set! dark-floor false))

(when (< floor 80)

(set! dark-floor true)))

(set! light-floor (> (true-time (> floor light-floor-level))

5)))

(let ((temp (in-register data old-motion)))

(set! old-motion motion)

(set! motion temp))

(set! hmotion (total-hmotion old-smoothed smoothed)))

(define-macro (2bit value pos)

`(logand (forge integer ,value) ,(ash 1 pos)))

(define-box (derived-aspects

:outputs (blocked? open-left? open-right? turning? aligned?

left-turn? right-turn?

aligned-long-time? in-corridor?

feature-bits previous-bits wall? open-region?

person-ahead?))

(set! previous-bits feature-bits)

(set! turning? (> (abs turn-rate) 2000))

(set! aligned? (not turning?))

(set! aligned-long-time? (> (true-time aligned?)

161

8))

(set! blocked? (< center-distance 15))

(set! in-corridor? (> (true-time (> center-distance 35))

5))

(set! open-left? (> left-distance 18))

(set! open-right? (> right-distance 18))

;;; Sorry. This OR expression screwed up the register allocation on my

;;; compiler, so I kluged it by turning it into a logior.

(set! wall? (forge boolean (logior (forge integer wall-ahead?)

(forge integer

(> (true-time blocked?)

10))

(forge integer wall-far-ahead?))))

;;; Take a bunch of readings (wall?, open-left/right?, and dark-
oor) and

;;; package them up as a 4-bit value we can match against the 4-bit feature

;;; values in the place frames.

(set! feature-bits (logior (2bit wall? 0)

(2bit open-left? 1)

(2bit open-right? 2)

(2bit dark-floor 3)))

(set! open-region? (= (true-time (and open-left? open-right?))

10))

(set! person-ahead? (and (not open-left?)

(not open-right?)

person?

corridor?

aligned?

(< (abs (- person-direction 32)) 10))))

C.3 Low level navigation

The top-level entry point for the motor control system is motor-control. It

calls speed-control and turn-controller, which call other routines in turn.

Turn-controller, ballistic-turn-controller, and speed-control are the only

routines that actually generate motor outputs. The other routines just pass numbers

around representing speeds.

The odometry procedure talks to the FEP and processes any odometry informa-

tion that has come in. It updates the direction wire, updates the direction on the

LCD display, and corrects drift in the odometer's o�set. The idea is that if the robot

162

has been going in a straight line for a long time, it must be perfectly aligned with

a corridor. That means we know the true value that the odometer ought to have

and so we can compute the o�set from the di�erence between the ideal and actual

readings.

Implementation notes

The last part of this �le is intended only for those who are intimately familiar with

the RWI base control language and who want to know the dirty details of running a

large payload at 1m/s.

C.3.1 motor-control.lisp

;;;;; MOTOR CONTROL

;;;; Tunable parameters

(define-constant maximum-speed #x2800)

(define-constant maximum-turn #x8000)

(define-constant (degrees->encoder degrees)

(* degrees 328))

(define-constant (degrees->delay degrees)

(ash (abs degrees) -2))

;;;; Latching inputs: (ballistic) turn and speed.

;;; The speed that the higher-levels want to move at.

;;; Thus continuously adjusts speed.

(define speed-request maximum-speed)

;;; For inhiniting forward motion when turning.

(define inhibit-forward? false)

;;; To stop the robot when e.g. looking for motion.

(define inhibit-all-motion? false)

;;; The turn which has been requested by the higher-levels.

;;; The moment this is set, the motor control unit will initiate a

;;; ballistic turn of the speci�ed number of degrees. It will then

;;; ignore the input until the turn is complete. It will reset the input

;;; at the completion of the turn.

;;; (if no turn is speci�ed, the corridor follower runs)

(define turn-request 0)

;;;; State variables.

;;; Number of ticks to wait until turn is �nished.

(define turn-delay 0)

163

(define-box (motor-control :outputs (speed turn-rate))

(set! speed (speed-control))

(set! turn-rate (turn-controller)))

(define (turn-controller)

(let ((sturn (steer))

(bturn (ballistic-turn-controller)))

(set! turn-request 0)

(if (and (= bturn 0)

(= turn-delay 0))

(begin (set-turn-rate! sturn)

sturn)

bturn)))

(define (speed-control)

;;; Set the speed.

(let ((speed (if blind?

-1500

(min speed-request

(max -3000

(* 1300

(- center-distance 7)))))))

(when (and (> speed 0)

inhibit-forward?)

(set! speed 0))

(when inhibit-all-motion?

(set! speed 0))

(set-speed! speed)

speed))

(define (steer)

(let ((turn 0))

(when (and (not (= speed-request 0))

(not inhibit-all-motion?)

(= next-camera 0)

(= current-camera 0))

(set! turn

(if (eq? open-left? open-right?)

(follow-corridor)

(follow-wall)))

(when blocked?

(set! turn

(if (> (abs turn) 800)

(if (> turn 0)

164

#x4000

#x-4000)

0))))

turn))

(define (ballistic-turn-controller)

(when (> turn-delay 0)

(decf turn-delay))

(when (= turn-delay 0)

(set! inhibit-forward? false))

(if (and (not inhibit-all-motion?)

(= current-camera 0)

(= next-camera 0)

(= turn-delay 0)

(not (= turn-request 0)))

(do-turn! turn-request)

0))

;;; Start a ballistic turn.

(define (do-turn! turn)

(start-open-loop-turn! turn)

(set! turn-request 0)

(set! turn-delay (degrees->delay turn))

(set! inhibit-forward? true)

(if (> turn 0) #x4000 #x-4000))

;;; Align with corridor or free space.

(define (follow-corridor)

(let ((left-badness (max -1

(- 8 left-distance)))

(right-badness (max -1

(- 8 right-distance)))

(see-corridor? (< variance 64)))

(+ (* (- left-badness right-badness)

600)

(if (and see-corridor?

(not blocked?))

(* (- vanishing-point 31)

200)

0))))

(define (follow-wall)

(* 800

(if open-left?

(- right-distance 8)

165

(- 8 left-distance))))

(define wedge-counter 30)

(define-constant wedge-time 30)

(define-box (unwedger :outputs (last-turn))

(if (and blocked?

(not inhibit-all-motion?)

(not inhibit-forward?)

(looking-down?)

(not (= speed-request 0)))

(decf wedge-counter)

(set! wedge-counter wedge-time))

(when (and open-left?

(not open-right?))

(set! last-turn -45))

(when (and open-right?

(not open-left?))

(set! last-turn 45))

(when (= wedge-counter 0)

(set! wedge-counter wedge-time)

(set! turn-request last-turn)))

;;;; Odometry.

(import odometer aligned?)

(define old-ode 0)

(define corridor-counter 0)

(define prev-direction north)

(define corridor-time (secs->ticks 2.0))

;; Direction of perfect south.

(define odometer-o�set 0)

(define-box (odometry :outputs (direction last-direction corridor?

ew-corridor? ns-corridor?))

;; Ask FEP for a switch word, and the base for an odometry reading.

(write-line "^RW")

;; Update direction.

(set! last-direction direction)

(set! direction (logand #b11

(+ south

(quotient (+ 57

(ash (- odometer odometer-offset)

166

-8))

115))))

(when (> (true-time (and (> speed #x2000)

(< (abs (- old-ode odometer)) 300)))

60)

(when (= direction east)

(set! odometer-offset (+ odometer 29550)))

(when (= direction west)

(set! odometer-offset (- odometer 29550))))

(set! old-ode odometer)

(when (= (true-time (= direction south)) 1)

(pdisplay-line 4 0 "South"))

(when (= (true-time (= direction west)) 1)

(pdisplay-line 4 0 "West"))

(when (= (true-time (= direction north)) 1)

(pdisplay-line 4 0 "North"))

(when (= (true-time (= direction east)) 1)

(pdisplay-line 4 0 "East"))

;; Now �gure out if we're in a corridor district.

(when (not (= direction prev-direction))

(set! corridor-counter corridor-time))

(when (> turn-delay 0)

(set! corridor-counter corridor-time))

(when (and (not blocked?)

(> speed 0))

(decf corridor-counter))

(set! prev-direction direction)

(set! corridor? (< corridor-counter 0))

(set! ew-corridor? false)

(set! ns-corridor? false)

(when corridor?

(set! ew-corridor? (= (logand direction 1) 1))

(set! ns-corridor? (= (logand direction 1) 0)))

)

;;;;; This stu� is speci�c to the RWI base.

;;; This is used to manually damp the base's control system.

(define old-speed 0)

(define (set-speed! speed)

;; Don't accelerate too fast.

167

(when (> speed old-speed)

(set! speed (min speed (+ old-speed 500))))

(set! old-speed speed)

(when (= (logand *clock* 31) 0)

(write-line "TA 3000"))

(write-line-formatted "TV " 16 (min maximum-speed (abs speed)) "")

(write-line (if (< speed 0)

"T-"

(if (= speed 0) "TH" "T+"))))

;;; Fast-rotate? causes set-turn-rate to reset the rotate acceleration.

(define fast-rotate? true)

(define (set-turn-rate! rate)

(when fast-rotate?

(set! fast-rotate? false)

(write-line "RA 6000"))

(set! turn-rate (ash turn-rate -1))

(write-line-formatted "RV " 16 (min maximum-turn (abs rate)) "")

(write-line (if (< rate 0)

"R-"

(if (= rate 0) "RH" "R+"))))

(define (start-open-loop-turn! turn)

(write-line-formatted (if (> turn 0)

"R> " "R< ")

16

(degrees->encoder (abs turn-request))

"")

(write-line "RA 8000")

(write-line "RV 8000")

(set! fast-rotate? true))

(define-box (fep-interface :outputs (odometer switches))

(while (listen-port?)

(let ((info 0))

(set! info (read-port))

(if (= (logand info 1) 1)

;; low-order bit set: it's a switch word.

(set! switches info)

;; Odometer word.

(set! odometer (- info #x80000000)))))

(let ((old-value (vector-ref serial-port global-control)))

168

(vset! serial-port global-control

(logand old-value #b111111111111111111111111111))

(assemble (nop)

(nop)

(nop)

(nop))

(vset! serial-port global-control old-value))

)

C.4 High level navigation

C.4.1 place-recognition.lisp

;;;;; PLACE MEMORY (frame system).

(define-constant (square x) (let ((y (in-register data x))) (* y y)))

;;; Frame debouncing reduces the e�ects of random bits of furniture placed

;;; in large open spaces. The furniture would otherwise make the world look

;;; like it had extra turns.

(define frame-debounce 0)

(define last-match-bits 0)

;;; Compare the current sensory data to all frames ...

(define-box (frame-matcher :outputs (last-x last-y current-frame

frame-strobe?))

;; ... unless we're blocked by an obstacle ...

(when blocked?

(set! frame-debounce 30))

(let ((frame frames) ;frames points to a vector of frames.

(best frames) ;pointer to best frame so far

(best-value 99999999)) ;best score so far

(decf frame-debounce)

(set! frame-strobe? false)

;; ... or FRAME-DEBOUNCE says we recently matched a frame.

(when (< frame-debounce 0)

;; First, try to �x the X and Y axes independently by looking for

;; districts.

(find-districts)

;; Now compare each frame.

(countdown (n frame-count)

(let ((matchval (match-frame mini frame)))

169

(when (< matchval best-value)

(unless (and (= (frame-x frame) last-x)

(= (frame-y frame) last-y))

(setf best frame)

(setf best-value matchval))))

(setf frame (shift frame (if (image-frame? frame)

image-frame-length

feature-frame-length))))

;; If we found a match, update outputs.

(when (< best-value 70000)

(setf frame-debounce (frame-place-size best))

(setf frame-strobe? true)

(setf current-frame best)

(setf last-x (frame-x best))

(setf last-y (frame-y best))))

(set! last-match-bits feature-bits)))

;; Match a speci�c frame to the current sensory data.

(define (match-frame mini-image frame)

(with-vars-in-registers

(let ((fimage (frame-image frame))

(image (in-register address mini-image))

(sum 0)

(bits-changed? (not (= (logand feature-bits #b11110)

(logand last-match-bits #b11110)))))

(when wall?

(set! bits-changed? true))

;; Compute penalties based on estimated position and direction of

;; motion.

(let ((delta-x (- (frame-x frame) last-x))

(delta-y (- (frame-y frame) last-y)))

(incf sum (* (abs delta-x)

(vector-ref direction

(if (> delta-x 0)

#(3000 100 3000 3000)

#(3000 3000 3000 100)))))

(incf sum (* (abs delta-y)

(vector-ref direction

(if (> delta-y 0)

#(100 3000 3000 3000)

#(3000 3000 100 3000))))))

;; Large penalty for getting the direction wrong.

(unless (= (frame-direction frame)

170

direction)

(incf sum 100000))

;; IMAGE FRAME COMPARISON.

(if (image-frame? frame)

;; This loop compares the image in an image frame to MINI-IMAGE.

;; The C30 doesn't support byte addressing, so the image templates

;; in the frames are stored in a packed format (4 8-bit pixels per

;; 32-bit word). That's why there's so much shifting and masking

;; here.

(with-hardware-looping

;; There are 16x12=192 pixels per template, so 48 words per template.

(countdown (n 48)

(let ((bytes (in-register data (@++ fimage))))

;; Compare a word's worth of pixels.

(incf sum

(square (abs (- (logand bytes #xff) (@++ image)))))

(incf sum

(square (abs (- (logand (ash bytes -8)

#xff)

(@++ image)))))

(incf sum

(square (abs (- (logand (ash bytes -16)

#xff)

(@++ image)))))

(incf sum

(square (abs (- (logand (ash bytes -24)

#xff)

(@++ image))))))))

;; FEATURE FRAME COMPARISON.

(incf sum (if (and (= (frame-features frame)

feature-bits)

bits-changed?)

60000

10000000)))

sum)))

;;; Check if we can prove we're in a particular part of the building even

;;; without knowing our precise location.

(define (�nd-districts)

;; Use a stricter criterion for turns so that we don't get doorways.

(let ((left-turn? (> left-distance 25))

(right-turn? (> right-distance 25)))

171

;; Decide if we've reached the end of a N/S corridor.

(when (and aligned?

ns-corridor?

wall?)

(when (= direction north)

(set! last-y 40))

(when (= direction south)

(set! last-y 10)))

;; If we're in an E/W corridor and see a turn, we know which side of the

;; building we're on.

(when (and ew-corridor?

(not dark-floor)

aligned-long-time?

(not blocked?))

(when (and (= direction west)

open-right?

(not open-left?)

in-corridor?)

(set! last-y 10))

(when (and (= direction east)

(not open-right?)

open-left?)

(set! last-y 10))

(when (and (= direction west)

(not open-right?)

open-left?)

(set! last-y 40))

(when (and (= direction east)

(not open-left?)

(< last-x 70)

open-right?)

(set! last-y 40)))))

C.4.2 kluges.lisp

(define (kluges)

;; This is because there isn't anything even remotely like a corridor in

;; the playroom. This should have gotten worked into the district

;; recognition code, but never did.

(when (and (> last-x 7)

(= direction north)

wall?)

(set! last-y 40)))

172

C.4.3 navigator.lisp

;;; Simple algorithm for navigating to a speci�ed place.

(define goal-x 0)

(define goal-y 0)

(define (display-packed-goal string)

(pdisplay-line 5 0 "Goal:")

(display-packed 5 6 string))

(define-box (navigator)

(do-veering)

(steer-to-goal))

;;; Place frames are tagged with small turns ("veers") that are executed

;;; VEER-DELAY ticks after recognizing the frame. This takes care of the

;;; embedded turn in the northern E/W corridor (the one near the elevator

;;; lobby).

(define-constant veer-delay (secs->ticks 0.75))

(define (do-veering)

;; Check if FRAME-STROBE? rose, then fell, VEER-DELAY ticks ago.

(when (= (true-time (not frame-strobe?)) veer-delay)

;; If so, turn.

(set! turn-request (frame-veer current-frame))))

;;; This is the real meat of the navigator. It computes the di�erence of

;;; current coordinates and goal coordinates for each axis and

;;; opportunistically makes turns to reduce the di�erence.

(define-box (steer-to-goal)

;; UPDATE THE DISPLAY.

;; Hardware issue: need to use true-time to debounce the switch.

(when (= (true-time (switch-on? sw3)) 3)

(pdisplay 7 0 "Navigation enabled."))

(when (= (true-time (not (switch-on? sw3))) 3)

(clear-line 7))

;; CHOOSE TURNS.

(when (and (> (true-time (switch-on? sw3)) 5)

(> goal-x 0))

;; We're not there yet, so start driving.

(speed! #x5000)

;; Compute the di�erence between our current and desired positions.

;; Decide what turns would be useful to make.

173

(let* ((delta-x (- goal-x last-x))

(time-since-strobe (true-time (not frame-strobe?)))

(desired-x-direction (if (> delta-x 0) east west))

(delta-y (- goal-y last-y))

(desired-y-direction (if (> delta-y 0) north south))

(left-direction (logand (- direction 1) #b11))

(right-direction (logand (+ direction 1) #b11)))

;; CLEAR THE GOAL if we're there already.

(when (and (= delta-x 0)

(= delta-y 0))

(set! goal-x 0)

(set! goal-y 0)

(speed! 0))

;; TELL THE UNWEDGER WHERE TO TURN.

;; When the unwedger activates, it executes the turn in LAST-TURN.

(when (and (not (= delta-x 0))

blocked?

(= left-direction desired-x-direction))

(set! last-turn -35))

(when (and (not (= delta-x 0))

blocked?

(= right-direction desired-x-direction))

(set! last-turn 35))

(when (and (not (= delta-y 0))

blocked?

(= left-direction desired-y-direction))

(set! last-turn -35))

(when (and (not (= delta-y 0))

blocked?

(= right-direction desired-y-direction))

(set! last-turn 35))

;; U-TURNS. Do a u-turn if we've overshot.

(when (and (not (= delta-x 0))

ew-corridor?

(> time-since-strobe 25)

aligned-long-time?

(not (= direction desired-x-direction))

(not open-left?)

(not open-right?))

(set! turn-request 180))

(when (and (not (= delta-y 0))

174

ns-corridor?

(> time-since-strobe 25)

aligned-long-time?

(not (= direction desired-y-direction))

(not open-left?)

(not open-right?))

(set! turn-request 180))

;; Do a turn if at an intersection.

;; The turns are 80 degress, rather than 90, so that if we turn a

;; little bit early, we'll be pointed toward the far wall, rather

;; the near one.

(when (= time-since-strobe 25)

(when (and (frame-left-turn? current-frame)

(not (= delta-x 0))

(= left-direction desired-x-direction))

(set! turn-request -80))

(when (and (frame-right-turn? current-frame)

(not (= delta-x 0))

(= right-direction desired-x-direction))

(set! turn-request 80))

(when (and (frame-left-turn? current-frame)

(not (= delta-y 0))

(= left-direction desired-y-direction))

(set! turn-request -80))

(when (and (frame-right-turn? current-frame)

(not (= delta-y 0))

(= right-direction desired-y-direction))

(set! turn-request 80))))))

C.4.4 wander.lisp

(define global-mode 0)

(define-constant wander-mode 1)

(define-constant tour-mode 2)

(define-constant o�er-mode 3)

;; Drive in a loop around the lab. The endpoints are determinate, but

;; the direction of motion (clockwise or counterclockwise) depends on

;; the initial con�guration of the robot.

(define (wander)

(when (> global-mode 0)

;; If we've overshot, turn around.

(when (and (at-place? 10 40)

175

frame-strobe?

(= direction west))

(set! turn-request 180))

;; If we've gotten to the vision lab, go to the playroom.

(when (< last-x 40)

(set-goal 80 10 "Playroom"))

;; If we've gotten to the playroom, go to the vision lab.

(when (> last-x 70)

(set-goal 30 40 "Vision lab"))))

C.5 Giving tours

C.5.1 sequencers.lisp

(define (run-sequencers)

(go-home)

(wander)

(offer-tour)

(give-tour)

(leave-office)

(tour-chatter))

;; When enabled, this drives from my desk out into the hallway.

(define-sequencer (leave-o�ce :import (...))

(first (pdisplay-goal "Leave office"))

(when blocked?

(set! global-mode 1)

(turn! -40))

(sleep 2)

(when open-left?

(pdisplay-goal "Align"))

(sleep 2)

(then (turn! -60))

(sleep 1)

(when (and (= direction east)

blocked?)

(turn! 150))

(wait ew-corridor?)

(sleep 5)

(then

(set! last-x 80)

176

(set! last-y 40)

(speed! 0)))

;; This tries to drive from an arbitrary place back to my desk.

(define-sequencer (go-home :import (...))

(then (stop! give-tour)

(set! global-mode 0))

(go-to 90 40 "Home")

(then (speed! #x5000))

(when blocked?

(turn! -120)

(speed! #x5000))

(sleep 10)

(when (and (= direction north)

blocked?)

(pdisplay-goal "Done.")

(set! inhibit-all-motion? true)

(say "I'm home.")

(speed! 0)))

;; O�er a tour to a person. If they wave their foot, �re GIVE-TOUR.

(define-sequencer (o�er-tour :import (...))

(first (set! global-mode 3)

(set! inhibit-all-motion? true))

(when done-talking?

(new-say "Hello. I am Polly. Would you like a tour?

If so, wave your foot around."))

(sleep 9)

(then (if blocked?

;; The person's still there.

(if (> hmotion 30)

(do! give-tour)

(begin

(new-say "OK. Have a nice day.")

(set! global-mode 1)

(set! inhibit-all-motion? false)))

;; The person's gone.

(begin (set! global-mode 1)

(set! inhibit-all-motion? false)))))

;; Coordinates of the place where we started the tour.

;; When we get back there, it's safe to stop.

(define tour-end-x 0)

(define tour-end-y 0)

177

;; Actually give the tour.

(define-sequencer (give-tour :import (...))

(first (new-say "OK. Please stand to one side.")

(if (= last-y 40)

(begin (set! tour-end-x 80)

(set! tour-end-y 10))

(begin (set! tour-end-x last-x)

(set! tour-end-y last-y))))

(when (not blocked?)

(new-say "Thank you. Please follow me.")

(set! inhibit-all-motion? false)

(set! global-mode 2))

(wait frame-strobe?)

(wait (at-place? tour-end-x tour-end-y))

(sleep 1.0)

(then

(new-say "That's the end of the tour.

Thank you and have a nice day.")

(set! global-mode 1)))

C.5.2 interact.lisp

(define-constant hello-interval (secs->ticks 5))

(define hello-counter 30)

(define (interact)

;; Announce the current place, if we've just reached a new landmark.

(when frame-strobe?

(announce-place))

;; Go home if switch 4 is thrown.

;; True-time is used to debounce the switch.

(when (= (true-time (switch-on? sw4)) 5)

(do! go-home))

(when (= (true-time (switch-off? sw4)) 5)

(stop! go-home))

;; If the right list of magic conditions holds, o�er a tour.

(when (and person?

(= turn-delay 0)

ew-corridor?

blocked?

(switch-off? sw1)

(< (abs (- person-direction 31)) 10)

178

(= global-mode 1)

(= hello-counter 0))

;; Fire the o�er-tour sequencer.

(do! offer-tour))

;; This prevents repeated o�ering of tours. It was important back when

;; Polly was programmed to say "hello" any time it saw a person at a

;; distance. It's probably not needed anymore.

(when (> hello-counter 0)

(decf hello-counter))

(when (active? offer-tour)

(set! hello-counter hello-interval)))

;; Put the current place on the screen.

(define (announce-place)

(tour-announce-place)

(display-packed-line 3 0 (frame-name current-frame)))

;; Send the speech for the current place to the voice synthesizer, provided

;; we're in tour-mode.

(define (tour-announce-place)

(when (= global-mode tour-mode)

(set! priority-message

(frame-speech current-frame))))

;; Update the LCD display with position information, etc.

(define (update-display)

(clear-line 10)

(when (> (logand feature-bits #b10) 0)

(pdisplay 10 0 "Left"))

(when (> (logand feature-bits #b1) 0)

(pdisplay 10 5 "Wall"))

(when (> (logand feature-bits #b1000) 0)

(pdisplay 10 10 "Dark"))

(when (> (logand feature-bits #b100) 0)

(pdisplay 10 15 "Right"))

(display-digit 2 4 (quotient last-x 10))

(display-digit 2 6 (quotient last-y 10))

(display-digit 2 16 (quotient goal-x 10))

(display-digit 2 18 (quotient goal-y 10)))

179

C.6 Voice

Chatter controls voice output. It takes two inputs, a pointer to an unimportant

\chatter" message and a priority message. If there is a priority message, it sends it

to the voice synthesizer. If not, and if there is a chatter message, it sends that to the

voice synthesizer. Otherwise it is silent. If a priority message arrives in the middle of

saying a chatter message, the chatter routine terminates the chatter message, says

the priority message, and restarts the chatter message from the beginning.

Priority messages are generated by tour-announce-place when a landmark is

recognized in tour mode. Chatter messages are generated by try-chatter when in

tour mode and by messages when in patrol mode. Each has its own list of messages.

Try-chatterworks through them in order, while messages generates them randomly

(and rarely) by looking at the low order bits of the odometer.

Implementation notes

The voice synthesizer is driven through the FEP. An escape code in the FEP

output stream causes subsequent bytes to be diverted from the base to the voice

synthesizer. A CR diverts output back to the base. To prevent a large block of

speech output from starving the base, chatter only sends four bytes per clock tick.

There is no feedback channel from the voice synthesizer, so the robot doesn't

know when the speech is done or when the synthesizer's input bu�er is full. To deal

with this problem, chatter waits between saying messages. The length of the wait

is proportional to the length of the previous message.

To save memory, messages are stored as packed strings (4 8-bit bytes per 32-bit

word).

C.6.1 chatter.lisp

(define priority-message null-vector)

(define chatter-message null-vector)

(define-constant chattering 0)

(define-constant priority 1)

(define talk-state chattering)

(define string-position 0)

(define chatter-delay 0)

(define-box (chatter :outputs (done-talking?))

;; Check if speaking is inhibited (because of previous utterance).

(decf chatter-delay)

(when (< chatter-delay 0)

;;; It's OK to talk.

;; If we were chattering, but a priority message comes in, then

;; break the chatter and start the priority message.

180

(when (and (= talk-state chattering)

(not (eq? priority-message null-vector)))

;; Interrupt the chatter and move to the priority message.

(set! talk-state priority)

(set! string-position 0)

(buffered-write-char (char-code #\!))

(buffered-write-char (char-code #\.))

(buffered-write-char (char-code #\return)))

(let ((string (if (= talk-state chattering)

chatter-message

priority-message)))

(when (not (eq? string null-vector))

;; Send some more.

(when (< string-position (vector-length string))

(say-some string))

;; If done with this utterance, then set delay and setup for next

;; utterance.

(when (not (< string-position (vector-length string)))

(set! chatter-delay (* (vector-length string) 6))

(set! string-position 0)

(if (= talk-state chattering)

(set! chatter-message null-vector)

(set! priority-message null-vector))

(set! talk-state chattering)))))

(set! done-talking? (and (= talk-state chattering)

(eq? chatter-message null-vector))))

(define (say-some string)

(let ((word (vector-ref string string-position)))

;; Send the FEP escape code to initiate voice output.

(buffered-write-char #.(char-code #\!))

;; Now send one word's worth (4 bytes) of the current speech.

(buffered-write-char (logand word #xff))

(buffered-write-char (logand (ash word -8) #xff))

(buffered-write-char (logand (ash word -16) #xff))

(buffered-write-char (logand (ash word -24) #xff))

;; Update pointers.

(when (= string-position (- (vector-length string) 1))

(buffered-write-char 0))

(incf string-position)

;; Turn o� speech output.

(buffered-write-char #.(char-code #\return))))

181

(define message-counter 30)

(define (messages)

(let ((rand (logand (ash odometer -1) 1023))

(yow (external (! yow))))

;; This is to keep it from talking before the base is actually connected.

(unless (and (= odometer 0)

(= odometer-offset 0))

(when (and (eq? chatter-message null-vector)

(= global-mode 1)

(< rand (vector-length yow)))

(decf message-counter)

(when (= message-counter 0)

(set! message-counter 10)

(set! chatter-message

(vector-ref yow rand)))))))

(define-constant tour-chatter-delay (secs->ticks 20.0))

(define tc-index 0)

(define tc-delay tour-chatter-delay)

(define (tour-chatter)

(if (= global-mode 2)

(try-chatter)

(set! tc-index 0)))

(define (try-chatter)

(decf tc-delay)

(let ((tm (external (! tour-messages))))

(when (and done-talking?

(< tc-delay 0)

(< tc-index (vector-length tm)))

(set! chatter-message (vector-ref tm tc-index))

(set! tc-delay tour-chatter-delay)

(incf tc-index))))

C.6.2 pith.lisp

;;; This �le creates a separate loader segment for Polly's

;;; phrases. The phrases are stored as packed strings.

(eval-when (:load-toplevel :compile-toplevel :execute)

;; De�ne an assembler symbol NAME whose address is the start

;; of the packed string STRING.

(defmacro define-phrase (name string)

;; Code-string converts a string to a packed string

182

;; (a list of 32-bit integers).

(let ((code (code-string string)))

`(defc30 (,name polly)

,(first code) ,name ,@(rest code))))

;; De�ne an assembler symbol NAME that points to a vector of

;; pointers to packed strings

(defmacro define-phrases (name &rest phrases)

(let ((code (list (length phrases) name)))

(dolist (phrase phrases)

(let ((sym (gensym))

(c (code-string phrase)))

(setf code

(nconc (list* (first c) sym (rest c))

code

`((word ,sym))))))

`(defc30 (,name polly)

,@code))))

;; These messages are randomly generated by MESSAGES in chatter.lisp

;; when the robot is in patrol mode.

;; Note that the misspellings here are deliberate - they're needed to fool

;; the voice synthesizer into saying the right phonemes.

(define-phrases yow

"Yaaw. Are we having fun yet?"

"My hovercraft is full of eels."

"I think you ought to know I'm feeling very depressed."

"I have this terrible pain in all the daaiodes

down my left side."

"The playroom is full of jaient purple jello people."

"Help me. I'm having a zen experience."

"Yaaw. I think I'm experiencing natural stupidity."

"I will not buy this tobaconist, it is scratched."

"Hey buddy, can you spare some change?")

;; These messages are generated (in order) by CHATTER during tours.

(define-phrases tour-messages

"I can avoid obstacles, follow corridors, recognize places,

and navigate from point to point."

"My vision system runs at 15 frames per second on a low-cost computer."

"By the way, I don't understand anything I'm saying."

"God, this place is such a dump.")

183

Bibliography

[1] Philip Agre and Ian Horswill. Cultural support for improvisation. In Tenth

National Conference on Arti�cial Intelligence, Cambridge, MA, 1992. American

Assoiciation for Arti�cial Intelligence, MIT Press.

[2] Philip E. Agre. The dynamic structure of everyday life. Technical Report

1085, Massachusetts Institute of Technology, Arti�cial Intelligence Lab, Octo-

ber 1988.

[3] Philip E. Agre and David Chapman. Pengi: An implementation of a theory of

activity. In Proceedings of the Sixth National Conference on Arti�cial Intelli-

gence, pages 268{272, 1987.

[4] John Aloimonos. Purposive and qualitative active vision. In DARPA Image

Understanding Workshop, 1990.

[5] Yiannis Aloimonos and Azriel Rosenfeld. Computer vision. Science, 253:1249{

1254, September 1991.

[6] Ronald C. Arkin. Motor schema based navigation for a mobile robot. In

1987 IEEE Internation Conference on Robotics and Automation, pages 264{

271. IEEE, March 87.

[7] N. Ayache and O. D. Faugeras. Maintaining representations of the environment

of a mobile robot. IEEE Transactions on Robotics and Automation, 5(6):804{

819, 1989.

[8] Ruzena Bajcsy. Active perception vs. passive perception. In Proc. Third IEEE

Workshop on Computer Vision: Representation and Control, pages 55{59.

IEEE, October 1985.

[9] Dana H. Ballard. Animate vision. Arti�cial Intelligence, 48(1):57{86, 1991.

[10] A. Bandopadhay, B. Chandra, and D.H. Ballard. Egomotion using active vision.

In Proceedings, CVPR '86 (IEEE Computer Society Conference on Computer

184

Vision and Pattern Recognition, Miami Beach, FL, June 22{26, 1986), IEEE

Publ.86CH2290-5, pages 498{503. IEEE, 1986.

[11] Stephen T. Barnard and Martin A. Fischler. Computational and biological

models of stereo vision. In Proc. DARPA Image Understanding Workshop,

September 1990.

[12] Avron Barr and Edward A. Feigenbaum. The Handbook of Arti�cial Intelli-

gence. William Kaufmann, Inc., 1981.

[13] Fred Bauer and John A. Nohel. Ordinary Di�erential Equations: a First

Course. W. A. Benjamin, Inc., New York, 1967.

[14] King Beach. Becoming a bartender: The role of external memory cues in a

work-directed educational activity. Journal of Applied Cognitive Psychology,

1992.

[15] Randall Beer. A dynamical systems perspective on autonomous agents. CES

92-11, Case Western Reserve University, Cleveland, Ohio, 1992.

[16] P. Bellutta, G. Collini, A. Verri, and V. Torre. Navigation by tracking vanishing

points. In AAAI Spring Symposium on Robot Navigation, pages 6{10, Stanford

University, March 1989. AAAI.

[17] Andrew Blake and Alan Yuille, editors. Active Vision. MIT Press, Cambridge,

MA, 1992.

[18] David J. Braunegg. Marvel: A system for recognizing world locations with

stereo vision. Technical report, MIT Arti�cial Intelligence Laboratory, 1990.

[19] J. Bresina and M. Drummond. Integrating planning and reaction. In J. Hendler,

editor, AAAI Spring Symposium on Planning in Uncertain, Unpredictable or

Changing Environments. AAAI, March 1990.

[20] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE

Journal of Robotics and Automoation, 2(1):14{23, March 1986.

[21] Rodney A. Brooks. The behavior language; user's guide. AI Lab Memo 1227,

MITAI, Apr 1990.

[22] Christopher Brown, David Coombs, and John Soong. Real-time smooth pursuit

tracking. In Blake and Yuille [17], pages 126{136.

[23] David Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32:333{

377, 1987.

185

[24] David Chapman. Intermediate vision: Architecture, implementation, and use.

TR 90-06, Teleos Research, 1990.

[25] David Chapman. Vision, instruction, and action. Technical Report 1204, Mas-

sachusetts Institute of Technology, Arti�cial Intelligence Lab, April 1990.

[26] David Chapman. Vision, Instruction, and Action. MIT Press, 1992.

[27] Noam Chomsky. Aspects of the Theory of Syntax. MIT Pres, Cambridge, MA,

1965.

[28] Jonathan H. Connell. Minimalist Mobile Robotics. Academic Press, 1990.

[29] David Coombs and Karen Roberts. \bee-bot": using peripheral optical
ow to

avoid obstacles. In Proc. of the SPIE Conf. on Intelligent Robots and Computer

Vision XI: Algorithms, Techniques, and Active Vision, (Boston, MA, November

15{20, 1992), 1992.

[30] Jill D. Crisman. Color region tracking for vehicle guidance. In Blake and Yuille

[17], chapter 7.

[31] James E. Cutting. Perception with an Eye for Motion. MIT Press, 1986.

[32] DARPA SISTO. Proceedings of the 1993 DARPA Image Understanding Work-

shop, Washington, D.C., 1993. Morgan Kaufman.

[33] D. DeMenthon. A zero-bank algorithm for inverse perspective of a road from a

single image. In 1987 IEEE Internation Conference on Robotics and Automa-

tion, pages 258{263. IEEE, March 1987.

[34] Ernst D. Dickmanns. Expectation-based dynamic scene understanding. In

Blake and Yuille [17], chapter 18.

[35] Michael Dixon. Embedded computation and the semantics of programs. TR

SSL-91-1, Xerox Palo Alto Research Center, Palo Alto, CA, September 1991.

[36] Bruce Randall Donald and James Jennings. Constructive recognizability for

task-directed robot programming. Robotics and Autonomous Systems, 9:41{74,

1992.

[37] Sean P. Engelson and Drew McDermott. Image signatures for place recognition

and map construction. In Proceedings SPIE Symposium on Intelligent Robotic

Systems, Sensor Fusion IV, November 1991.

186

[38] Jerome A. Feldman. Four frames su�ce: A provisionary model of vision

and space. TR 99, Computer Science Department, University of Rochester,

Rochester, NY 14627, September 1982.

[39] Margaret M. Fleck. Boundaries and topological algorithms. TR 1065, MIT

Arti�cial Intelligence Laboratory, Cambridge, MA, 1988.

[40] Erann Gat. Integrating planning and reacting in a heterogeneous asynchronous

architecture for controlling real-world mobile robots. In Proceedings, AAAI-92,

1992.

[41] J. J. Gibson. The Senses Considered as Perceptual Systems. Houghton-Mi�in,

Boston, 1966.

[42] J. J. Gibson. The Ecological Approach to Perception. Houghton-Mi�in, Boston,

1979.

[43] Richard W. Hamming. Coding and Information Theory. Prentice Hall, Engle-

wood Cli�s, N.J. 07632, 1980.

[44] Kristian J. Hammond and Timothy M. Converse. Stabilizing environments to

facilitate planning and activity: An engineering argument. In Ninth National

Conference on Arti�cial Intelligence, pages 787{793, Menlo Park, CA, July

1991. American Association for Arti�cial Intelligence, AAAI Press.

[45] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison Wesley, 1979.

[46] B. K. P. Horn. Robot Vision. MIT Press, 1986.

[47] Ian Horswill. The senselisp programmer's manual. Unpublished technical note,

MIT Arti�cial Intelligence Laboratory, 1989.

[48] Ian Horswill. How to hack yourself senselisp. Unpublished technical note, MIT

Arti�cial Intelligence Laboratory, March 1990.

[49] Ian Horswill. Proximity detection using a spatial �lter tuned in three-space. In

Proceedings of the 1991 AAAI Fall Symposium on Sensory Aspects of Robotic

Intelligence, 1991.

[50] Ian Horswill. Specialization of perceptual processes. PhD thesis, Massachusetts

Institute of Technology, Cambridge, May 1993.

[51] Ian Horswill and Rodney Brooks. Situated vision in a dynamic environment:

Chasing objects. In Proceedings of the Seventh National Conference on Arti�-

cial Intelligence, August 1988.

187

[52] Ian D. Horswill. Reactive navigation for mobile robots. Master's thesis, Mas-

sachusetts Institute of Technology, June 1988.

[53] Katsushi Ikeuchi and Martial Herbert. Task oriented vision. In DARPA Image

Understanding Workshop, 1990.

[54] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics Research, 5(1):90{98, 1986.

[55] Craig A. Knoblock, Josh D. Tenenberg, and Qiang Yang. A spectrum of ab-

straction hierarchies for planning. In Proceedings of AAAI-90, 1990.

[56] David Kortencamp. Applying computational theories of cognitive mapping

to mobile robots. In Marc Slack and Erann Gat, editors, Working notes of

the AAAI Spring Symposium on Control of Selective Perception, pages 83{89.

AAAI, Cambridge, Massachusetts, 1992.

[57] A. Kosaka and A. C. Kak. Fast vision-guided mobile robot navigation us-

ing model-based reasoning and prediction of uncertainties. Computer Vision,

Graphics, and Image Processing, 56(3), September 1992.

[58] Jana Ko�seck�a. Control of discrete event systems. GRASP LAB report 313,

University of Pennsylvania Computer and Information Science Department,

Philadelphia, PA, April 1992.

[59] David J. Kriegman and Ernst Triendl. Stereo vision and navigation within

buildings. In 1987 IEEE Internation Conference on Robotics and Automation,

pages 402{408. IEEE, March 87.

[60] David J. Kriegman, Ernst Triendl, and Tomas O. Binford. A mobile robot:

Sensing, planning and locomotion. In 1987 IEEE Internation Conference on

Robotics and Automation, pages 402{408. IEEE, March 87.

[61] Benjamin J. Kuipers and Yung-Tai Byun. A robust, qualitative approach to

a spatial learning mobile robot. In SPIE Advances in Intelligent Robotics Sys-

tems, November 1988.

[62] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,

Boston, 1991.

[63] Hector J. Levesque and Ronald J. Brachman. A fundamental tradeo� in knowl-

edge representation and reasoning (revised edition). In Ronald J. Brachman

and Hector J. Levesque, editors, Readings in Knowledge Representation, pages

42{70. Morgan Kaufman, Los Altos, CA, 1985.

188

[64] Michael L. Littman. An optimization-based categorization of reinforcement

learning environments. In Meyer and Wilson [73], pages 262{270.

[65] David G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and

Applications. John Wiley and Sons, 1979.

[66] Kevin Lynch. The Image of the City. MIT Press, 1960.

[67] D. M. Lyons and A. J. Hendriks. Exploiting patterns of interaction to achieve

reactive behavior. in submission, 1993.

[68] David Marr. Vision. W. H. Freeman and Co., 1982.

[69] Maja J. Mataric. Minimizing complexity in controlling a collection of mobile

robots. In IEEE International Conference on Robotics and Automation, pages

830{835, Nice, France, May 1992.

[70] David McFarland. What it means for robot behavior to be adaptive. In Meyer

and Wilson [72], pages 22{28.

[71] Jean-Arcady Meyer and Agnes Guillot. Simulation of adaptive behavior in

animats: Review and prospect. In Meyer and Wilson [72], pages 2{14.

[72] Jean-Arcady Meyer and Stewart W. Wilson, editors. From Animals to Animats:

Proceedings of the First International Conference on Simulation of Adaptive

Behavior. MIT Press, Cambridge, Massachusetts, 1991.

[73] Jean-Arcady Meyer and Stewart W. Wilson, editors. From Animals to Animats:

The Second International Conference on Simulation of Adaptive Behavior. MIT

Press, Cambridge, Massachusetts, 1993.

[74] Hans P. Moravec. The stanford cart and cmu rover. Technical report, Robotics

Institute, Carnegie-Mellon University, February 1983.

[75] Randal C. Nelson. Visual homing using an associative memory. In Proceedings

of the DARPA Image Understanding Workshop, pages 245{262, 1989.

[76] ed. Nils J. Nilsson. Shakey the robot. Technical Report 323, SRI International,

April 1984.

[77] H. Keith Nishihara. Minimal meaningful measurement tools. TR 91-01, Teleos

Research, 1991.

[78] R. C. Patton, H. S. Nwana, M. J. R. Shave, and T. J. M. Bench-Capon. Com-

puting at the tissue/organ level (with particular reference to the liver). In

Varela and Bourgine [107], pages 411{420.

189

[79] Roger Penrose. The Emperor's New Mind. Oxford University Press, 1989.

[80] T. Poggio and V. Torre. Ill-posed problems and regularization analysis in early

vision. In Lee S. Baumann, editor, Image Understanding Workshop (New Or-

leans, LA, October 3-4, 1984), pages 257{263. Defense Advanced Research

Projects Agency, Science Applications International Corp., 1984.

[81] Dean A. Pomerleau. E�cient training of arti�cial neural networks for au-

tonomous navigation. Neural Computation, 3(1), 1991.

[82] Louise Pryor and Gregg Collins. Planning to perceive: a utilitarian approach.

In Simmons [91], pages 113{122.

[83] Douglas A. Reece and Steven Shafer. Active vision at the system level for robot

driving. In Simmons [91], pages 70{77.

[84] Daniel Reisfeld, Haim Wolfson, and Yehezkel Yeshurun. Detection of interest

points using symmetry. In Proceedings of the Third International Conference on

Computer Vision, pages 62{65, Osaka, Japan, December 1990. IEEE Computer

Society.

[85] Herbert L. Roitblat. Introduction to Comparitive Cognition. W. H. Freeman

and Company, 1987.

[86] Stanley J. Rosenschein. Formal theories of knowledge in ai and robotics. report

CSLI-87-84, Center for the Study of Language and Information, Stanford, CA,

1987.

[87] Stanley J. Rosenschein. Synthesizing information-tracking automata from en-

vironment descriptions. In Ronald J. Brachman, Hector J. Levesque, and

Raymond Reiter, editors, Proceedings of the First International Conference on

Principles of Knowledge Representation and Reasoning, pages 386{393, May

1989.

[88] Stanley J. Rosenschein and Leslie Pack Kaelbling. The synthesis of machines

with provable epistemic properties. In Joseph Halpern, editor, Proc. Conf.

on Theoretical Aspects of Reasoning about Knowledge, pages 83{98. Morgan

Kaufmann, 1986.

[89] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti�cial

Intelligence, 5(2), 1974.

[90] Roger C. Schank. Tell Me a Story. Charles Scribner's Sons, 1990.

190

[91] Reid Simmons, editor. Working notes of the AAAI Spring Symposium on Con-

trol of Selective Perception, Stanford, California, 1992. American Association

for Arti�cial Intelligence.

[92] Herbert A. Simon. Sciences of the Arti�cial. MIT Press, Cambridge, Mas-

sachusetts, 1970.

[93] Lee Spector and James Hendler. The supervenience architecture. In Avi Kak,

editor, Working notes of the AAAI Fall Symposium on Sensory Aspects of

Robotic Intelligence, pages 93{100. AAAI Press, Asilomar, California, 1991.

[94] Anselm Spoerri. The early detection of motion boundaries. Technical Report

1275, MIT Arti�cial Intelligence Laboratory, 1991.

[95] K. Storjohann, T. Zeilke, H. A. Mallot, and W. von Seelen. Visual obstacle

detection for automatically guided vehicles. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, pages 761{766, May 1990.

[96] Michael J. Swain. Color indexing. Technical Report 390, University of

Rochester Computer Science Department, November 1990.

[97] Michael J. Swain. Active visual routines. In Simmons [91], pages 147{149.

[98] W.B. Thompson and J.K. Kearney. Inexact vision. In Workshop on Motion:

Representation and Analysis, 1986.

[99] W.B. Thompson, K.M. Mutch, and V.A. Berzins. Dynamic occlusion analysis

in optical
ow �elds. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 7:374{383, 1985.

[100] C. E. Thorpe. FIDO: Vision and Navigation for a Robot Rover. PhD thesis,

Department of Computer Science, Carnegie-Mellon University, December 1984.

[101] Where to Look Next Using a Bayes Net: The TEA-1 System and Future Di-

rections. Raymond d. rimey. In Simmons [91], pages 118{122.

[102] Peter M. Todd and Stewart W. Wilson. Environment structure and adaptive

behavior from the ground up. In Meyer and Wilson [73], pages 11{20.

[103] Peng-Seng Toh and Andrew K. Forrest. Occlusion detection in early vision. In

Proceedings of the International Conference on Computer Vision, 1990.

[104] John K. Tsotsos. Analyzing vision at the complexity level. Behavioral and

Brain Sciences, 13(3):423{469, 1990.

191

[105] Matthew A. Turk, David G. Morgenthaler, Keith Gremban, and Martin Marra.

Video road following for the autonomous land vehicle. In 1987 IEEE Internation

Conference on Robotics and Automation, pages 273{280. IEEE, March 1987.

[106] Shimon Ullman. Visual routines. Cognition, 18:97{159, 1984.

[107] F. J. Varela and P. Bourgine, editors. Toward a Practice of Autonomous Sys-

tems: the Proceedings of the First European Conference on Arti�cial Life. MIT

Press, Cambridge, MA, 1992.

[108] R. Wallace. Robot road following by adaptive color classi�cation and shape

tracking. In 1987 IEEE Internation Conference on Robotics and Automation,

pages 258{263. IEEE, March 1987.

[109] R. Wallace, K. Matsuzaki, Y. Goto, J. Crisman, J. Webb, and T. Kanade.

Progress in robot road-following. In 1986 IEEE Internation Conference on

Robotics and Automation, pages 1615{1621, April 1986.

[110] R. Wallace, A. Stenz, C. Thorpe, H. Moravec, W. Whittaker, and T. Kanade.

First results in robot road-following. In IJCAI-85, 1985.

[111] A. M.Waxman, J. LeMoinge, and B. Srinivasan. Visual navigation of roadways.

In 1985 IEEE Internation Conference on Robotics and Automation, April 1985.

[112] Norbert Wiener. Cybernetics. MIT Press, Cambridge, 1961.

[113] Stewart W. Wilson. The animat path to ai. In Meyer and Wilson [72], pages

15{21.

[114] Lambert E. Wixson. Detecting occluding edges without computing dense cor-

respondence. In IU93 [32], pages 933{938.

[115] John Wood�ll and Ramin Zabih. Using motion vision for a simple robotic task.

In AAAI Fall Symposium on Sensory Aspects of Robotic Intelligence, 1991.

192

