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Abstract

This report examines how to estimate the parameters of a chaotic system given noisy observations of
the state behavior of the system. Investigating parameter estimation for chaotic systems is interesting
because of possible applications for high-precision measurement and for use in other signal processing,
communication, and control applications involving chaotic systems.

In this report, we examine theoretical issues regarding parameter estimation in chaotic systems and develop
an e�cient algorithm to perform parameter estimation. We discover two properties that are helpful for
performing parameter estimation on non-structurally stable systems. First, it turns out that most data in
a time series of state observations contribute very little information about the underlying parameters of
a system, while a few sections of data may be extraordinarily sensitive to parameter changes. Second, for
one-parameter families of systems, we demonstrate that there is often a preferred direction in parameter
space governing how easily trajectories of one system can \shadow" trajectories of nearby systems. This
asymmetry of shadowing behavior in parameter space is proved for certain families of maps of the interval.
Numerical evidence indicates that similar results may be true for a wide variety of other systems.

Using the two properties cited above, we devise an algorithm for performing parameter estimation. Stan-
dard parameter estimation techniques such as the extended Kalman �lter perform poorly on chaotic
systems because of divergence problems. The proposed algorithm achieves accuracies several orders of
magnitude better than the Kalman �lter and has good convergence properties for large data sets. In some
systems the algorithm converges at a rate proportional to 1

n
2 where n is the number of state samples pro-

cessed. This is signi�cantly better than the 1p
n
convergence one would expect from nonchaotic oscillators

based on purely stochastic considerations.
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Chapter 1

Introduction

In this report we investigate theoretical limitations and develop computational methods

for estimating the parameters of a chaotic system given a noisy time series of state data

about the system. There are two primary reasons why we are interested in parameter

estimation of chaotic time series. First, there has been considerable interest in recent

years regarding signal processing and control applications involving chaotic systems (see

e.g., [11], [49], [9]). Parameter estimation has traditionally been an important problem in

signal processing and control theory, so in light of recent applications involving chaotic

systems, it is important to investigate what happens when the signals and systems

involved are chaotic.

Second, it has been suggested that parameter estimation in chaotic systems may have

applications for high-precision measurement. In particular the idea is that if a system

is chaotic and displays a sensitive dependence on initial conditions, then it can also be

sensitive to small changes in parameter values. Consequently, development of successful

parameter estimation techniques could make it possible to measure the parameters of a

system extremely accurately given a time series of data about the state of the system.

Our goal in this report is to systematically explore the feasibility of parameter es-

timation in chaotic systems including a theoretical analysis of what accuracies we can

reasonably expect to obtain and what factors limit this accuracy. We also present new

numerical algorithms for estimating the parameters of chaotic systems and discuss sim-

ulations demonstrating the performance of the algorithms.

It turns out that the parameter estimation problem is especially interesting because

it is simple enough that one can look carefully at the underlying dynamical mechanisms

that a�ect the feasibility and e�ciency of various numerical approaches. This is in

contrast with a number of typical research problems involving chaotic time series which

are broad enough that heuristics must generally be relied upon to attack the problem

numerically. On the other hand, the parameter estimation problem is also complex
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enough that the results are interesting, and in some cases, quite unexpected. As we shall

see, a close examination of the relationship between system dynamics and parameter

estimation reveals interesting observations that greatly aid in the development of an

e�cient numerical approach.

1.1 The problem

Before proceeding further, we should be more explicit about what is meant by \pa-

rameter estimation." Basically, the idea is the following: Suppose that we are given a

parameterized family of mappings fp(x); where x is the state vector of the system and

p are some invariant parameters of the system. We will assume that fp(x); varies con-

tinuously with x and p: Further, suppose that we are given a sequence of observations,1

fyng; of a certain state orbit,2 fxng; where:

xn+1 = fp(xn)

and yn = xn + vn

for all integer n where vn represents measurement errors in the data stream, fyng: We

are interested in how to estimate the value of p given a stream of data, fyng: Note that
we will concentrate the discrete-time formulation, but the results apply analogously to

continuous time systems. For example, one might imagine that time is one of the state

variables of the system, and that the y0
n
s represent samples of a continuous-time system.

For analytic purposes it is helpful to assume that, to �rst approximation, the mag-

nitude of the measurement errors are bounded so that:

jvnj < �

for some � > 0: For purposes of analyzing and evaluating algorithms, it will also be

useful later to think of vn as a random variable with various probability densities.

1.2 Preview of important issues

Parameter estimation and shadowing

Let us now try to get a 
avor for some of the important issues that govern the

performance of parameter estimation techniques. First of all, given a family of mappings

1Instead of writing fxng
1

n=0; we will sometimes write fxng to denote an in�nite sequence of states.
2We will refer to a sequence of states, xn

1

n=0; as an orbit of the map f if xn+1 = f(xn) for all integer

n. Finite sections of in�nite orbits, for example xn
N

n=0; for some N � 0 may also be referred to as

orbits.

9



of the form, fp; and a noisy stream of state data, fyng; we would like to know which fp's

have orbits that closely shadow or follow fyng: We know that fyng represents an actual

orbit of fp for some value of p; with � magnitude measurement errors added in. Thus,

if no orbit of fp shadows fyng within � error for a particular parameter value, p0, then

p0 cannot be the actual parameter value of the system that is being observed. On the

other hand, if many systems of the form, fp; have orbits that closely shadow fyng; then
it would be di�cult to tell from the state data which of these systems is actually being

observed.

It turns out that a signi�cant body of work is available to answer questions like,

\what types of systems are insensitive to small perturbations so that orbits of perturbed

systems shadow orbits of the original system and vice versa?" However, many of the

results in this direction are topological in nature; that is, they answer questions like

whether such shadowing orbits must exist or not for certain classes of systems. On the

other hand, in order to evaluate the possibilities for parameter estimation, it is also

important to know more geometrically-oriented results like, \how closely do shadowing

orbits follow each other for nearby systems in parameter space" and \how long do orbits

of nearby systems follow each other if the orbits do not shadow each other forever."

Such results tend to be more di�cult to establish and also depend more speci�cally on

the systems involved.

An example in one dimension

Investigating the geometry of shadowing orbits can yield some interesting results.

For example, consider the family of maps:

fp(x) = px(1 � x) (1.1)

for x 2 [0; 1] and p 2 [0; 4]: Henceforth we will refer to the family of maps (1.1) as simply

the family of quadratic maps.

It is known ([5]) that for a non-negligible set of parameter values, the quadratic

maps in (1.1) produce chaotic behavior for almost all initial conditions, meaning that

orbits tend to explore intervals in state space, and nearby orbits experience exponential

local divergence (i.e., positive Lyapunov exponents). Suppose that we pick p0 = 3:9 and

iterate an orbit, fxng; of fp0 starting with the initial condition x0 = 0:3: Numerically,

the resulting orbit appears to be chaotic and exhibits the properties cited above, at least

for large numbers of iterates. Now consider the question: \What parameter values, p;

produce orbits that shadow fxng for many iterations of fp?" We can get some idea of the

answer to this question by simply picking various values for p near 3.9 and attempting

to numerically �nd orbits that shadow fxng: There are a number of issues (see Chapter
5) about how to do this.3 However, let us for the moment simply assume that the results

we present are at least qualitatively correct.

3For example, note that because we cannot numerically iterate the orbit fxng accurately for many

iterations, one could argue that the experiment is dominated by roundo� errors. However, while our
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Figures 1.1 and 1.2 show the result of carrying out the described numerical experi-

ment with p0 = 3:9 and x0 = 0:3: For values of p close to p0; we attempt to �nd �nite

orbits of fp that closely follow the fp0 orbit, fxn = f
n(x0)gNn=0; for integers N > 0:4 In

order to measure how closely maps with di�erent parameters can shadow fxngNn=0; it is

helpful to de�ne ê(p;N; x0; p0) to be the maximal distance between the orbit, fxngNn=0;

and the closest shadowing orbit, ffn
p
(z0)gNn=0; of fp: In other words, let:

ê(N; p; p0; x0) = inf
z02[0;1]

max
0�n�N

jfn
p
(z0)� f

n

p0
(x0)j: (1.2)

So, for each p and integerN > 0; ê(N; p; p0; x0) measures how closely the best possible

shadowing orbit of fp follows the orbit, fxngNn=0; of fp0: For the purposes of this particular

experiment let p0 = 3:9 and x0 = 0:3 be constant and set e(N; p) = ê(N; p; p0 = 3:9; x0 =

0:3): There is nothing particularly special about our choice of p0 = 3:9 or x0 = 0:3: As

we shall see later, many other paramter values and initial conditions yeild similar results.

Figure 1.1 shows the result of numerically computing e(N; p) with respect to p for

three values of N: The three v-shaped traces in the �gure represents a plot of e(N; p)

for N = 61; N = 250; and N = 1000: e(N; p) is plotted on the y�axis, while p � p0;

the di�erence in parameter value, p; from the original parameter value, p0; is labeled on

the x�axis. Note the distinct asymmetry of the graph between values of p greater than

and less than p0 = 3:9: In fact, for N = 250 and N = 1000 the graph is so steep for

p < p0 that it looks coincident with the vertical line demarking p�p0 = 0: It seems that

at least in this case, systems with parameter values, p; less than p0 do not shadow the

orbit, fxng; nearly as easily as those systems with parameter values greater than p0: In

some sense, it seems that orbits for higher parameter values are more 
exible, or have a

greater degree of freedom than do orbits for slightly lower parameter values.

This phenonmenon of asymmetrical shadowing may seem counterintuitive. If an

orbit, O(p0); of paramteer value p0 is shadowed by an orbit, O(p0 + �); of a slightly

parameter value, p0 + �; then given the orbit, O(p0 + �); of parameter p0 + �; isn't

O(p0+ �); shadowed by the orbit, O(p0); of a lower parameter value, p0? Yes, but as we

shall see, it may be that the set of orbits of fp0+� that are shadowed by an orbit of fp0 is

actually vanishingly small. That is, if an orbit of fp0+� is generated by choosing an inital

condition at random, we would �nd that the probability that that orbit is shadowed by

an orbit of p0 is zero.

Returning to the example at hand, we �nd that the asymmetry in parameter space

is even more apparent if we consider how e(N; p) varies with N: Basically we want to

particular numerically-generated starting orbit may not look like the actual orbit, fxng; with initial

condition x0 = 0:3 for large values n; we will later see that qualitatively the pictures we present are

similar.
4Here we let fn+1 = f(fn), so that the function, fn; refers to the composition of f with itself n

times (de�ne f0 to be simply the identity function). Note that if xn+1 = f(xn) for all integer n; then

xn = f
n(x0) for all n:
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keep track of how the curves in �gure 1.1 move inward toward the vertical line, p = p0;

as N increases. We can do this by �xing a constant, e0; and keeping track of which

parameter values, p; satisfy e(N; p) < e0 for varying values of N: For example, for a

particular value of e0; suppose that IN is the maximal interval in parameter space such

that p0 2 IN and e(N; p) < e0 for all p 2 IN : We are interested in what fraction of the

interval, IN ; is greater than or less than the original parameter value, p0: To keep track

of this let IN = I

�
N
[ I

+
N
so that I�

N
= [p�

N
; p0] and I

+
N
= [p0; p

+
N
] where p�

N
� p0 and

p

+
N
� p0: Let a(N) be the length of I�

N
and let b(N) be the length of I+

N
: Figure 1.2 shows

graphs of a(N) and b(N) with respect to N as computed numerically for e0 = 0:01: Note

that the scale for a(N) and b(N) on the y-axis is logarithmic so that a(N) is several

orders of magnitude smaller than b(N) for larger values of N; re
ecting the asymmetry in

parameter space. Also, we see that a(N) and b(N) both appear approximately constant

for large stretches of N except where a(N) decreases in large increments over a small

number of iterates. We will later see that these decreases in a(N) occur along short

stretches of the orbit, fxng; where small di�erences in the parameter value of the system

can easily be distinguished by even noisy state data.

Applying theory to develop estimation algorithms

Figures 1.1 and 1.2 illustrate two interesting properties for the quadratic map exam-

ple: (1) there is an asymmetry in the shadowing behavior of maps in parameter space,

and (2) most iterates of a speci�c orbit are apparently not very sensitive to small changes

in parameter values, while a few special iterates may be especially sensitive to parameter

changes. It turns out that these two properties can be extremely helpful in developing

an algorithm to do parameter estimation.

First of all, the asymmetry illustrated in �gure 1.1 can be quite helpful. For instance,

in the example we just considered, few maps, fp; with parameter values lower than p0

have orbits that can shadow the given orbit of fp0 . Suppose that we are given noisy

measurements of a state orbit, fxng: If we �nd that only maps from a certain interval

in parameter space can shadow the observed data, then the real parameter value should

be close to the lower endpoint of this parameter range. Thus, to �rst order, if e0 is the

magnitude of measurement error, the error in the parameter estimate is approximately

governed by either a(N) or b(N); whichever one happens to be smaller.

In addition, we will see later that �gure 1.2 re
ects the fact that a few sections of

the observed state data stream contribute greatly to our knowledge of the parameters of

the system, while much of the rest of the data contributes almost no new information.

Thus, if we can quickly sift through all the useless data and examine the critical data

very carefully, we should be able to vastly improve a parameter estimation technique.

The key to this is whether or not physically interesting systems have the properties

described above. A major objective of this report will be to investigate the relevant

mechanisms behind the two properties and explore what types of systems might exhibit

these properties. We will then investigate how to take advantage of these two properties
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Figure 1.1: Graph of best shadowing distance, e(N; p); with respect to p; for fp = px(1� x);

p0 = 3:9 and x0 = 0:3: e(N; p) measures how closely an orbit of fp can shadow a �xed orbit,

fxng
N

n=0; of fp0 : On the x�axis of the graph, p is labeled as p� p0; the di�erence in parameter

value from the parameter used to generate fxng
N

n=0: e(N; p) is plotted on the y�axis with N

held constant for three di�erent values of N: The three v-shaped curves represent e(N; p) for

N = 61; N = 250; and N = 1000: Note the distinct asymmetry in how well orbits of fp track

fxng
N

n=0 for p > p0 and p < p0:
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parameter values, p > p0; such that fp that can shadow the orbit, fxng
N
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error.
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to produce superior parameter estimation algorithms.

1.3 New results and previous work

1.3.1 Dynamical theory and shadowing orbits

There has not been much work directly attacking the parameter estimation problem for

chaotic systems. However, as we saw in the previous section, the feasibility of parameter

estimation is closely related to the concept of shadowing orbits.

For uniformly hyperbolic systems, it is well know that orbits of perturbed systems

shadow orbits of the original system forever ([7],[4]). Applying this result to parameter

estimation, we �nd that one cannot expect to get accurate information about the pa-

rameters of a hyperbolic system based on state data, since it is di�cult to distinguish

orbits from systems with two nearby parameter values.

However, most physically interesting chaotic systems are not in fact hyperbolic. In

general5, one can only expect so-called subexponentially hyperbolic behavior (see eg.,

[52]), so that hyperbolicity on a state orbit is available on a local scale, but is not uniform

over an in�nite orbit. The result is that most �nite pseudo-orbits6 of a system can be

shadowed closely by a real orbit of that system. This observation was made in [24],

where attempts were also made to establish bounds on the shadowing behavior of �nite

orbits in nonhyperbolic systems by using linearization to exploit the locally hyperbolic

behavior along a typical state orbit. Such work received interest because shadowing was

thought of as a helpful property that lends credibility to computer-generated orbits with

roundo� error.

In the case of parameter estimation, the hyperbolic degeneracies that prevent shad-

owing behavior are in fact the focus of most of the interest. This is unlike past work

involving shadowing orbits, because in order to investigate the feasibility of parameter

estimation, it is important to speci�cally examine the mechanism behind the lack of

shadowing behavior in nonhyperbolic systems. In addition, it is also necessary to exam-

ine carefully how orbits for one parameter value can shadow orbits for systems with a

continuum of di�erent parameter values.

The result is that we �nd that most measurements of the state of a system contain

comparatively little information about the parameters of the system except for those

iterates where the hyperbolic behavior of a system becomes degenerate. This is the

phenomenon we observed with the quadratic map.

5for example, for almost all C2 di�eomorphisms
6A pseudo-orbit of a map, g; is a sequence of states fzng such that zn+1 = f(zn) + vn for all n;

where the magnitude of the noise, jvnj; is assumed to be small.
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In this report, we discuss how the lack of shadowing behavior seems to be the result

of a mechanismwhich shall be referred to as folding in state space. It also seems that this

folding behavior tends naturally to result in one-sided shadowing behavior in parameter

space, making it possible to e�ectively distinguish parameter values near areas where

folding occurs.

For one dimensional maps like the quadratic map, we have been able to characterize

the results quantitatively. For example, for the quadratic map, fp(x) = px(1 � x); we

show that the following is true:

Proposition: Let

~e(p; p0; x0) = limN!1ê(N; p; p0; x0)

where ê(p; p0; x0) is as given in (1.2). There exist constants � > 0; C > 0; and K > 0

such that the following is true: For any 
 2 (0; 1); there is a set, E(
) � [0; 4]; of positive

Lebesgue measure such that if p0 2 E(
); then :

(1) For x0 2 [0; 4];

~e(p; p0; x0) < Cjp� p0j 13

for all p 2 (p0; p0 + �):

(2) For almost all x0 2 [0; 4];

~e(p; p0; x0) > K(p � p0)



for all p 2 (p0 � �; p0):

This follows from Theorem 3.4.2.

From the proposition we see that there can in fact be a pronounced asymmetry in

the shadowing behavior of orbits in parameter space and that this phenomenon is quite

prevalent. For the quadratic maps (1.1) with positive Lyapunov exponents, it can also

be shown that the asymmetry always favors one particular direction in parameter space

for maps. That is, it is always easier for orbits of maps with slightly higher parameters

to shadow orbits of maps with slightly lower parameters.

For more complicated systems, like systems in higher dimensions, it is more di�-

cult to establish de�nite analytical results. However we present numerical results that

demonstrate that surprisingly many systems have the properties discussed, namely that

(1) a small fraction of the data contains most of the information about the parameters

of the system, and (2) there is an asymmetry in the behavior of shadowing orbits in

parameter space.
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1.3.2 Parameter estimation techniques

Traditionally, parameter estimation is carried out numerically using algorithms like the

extended Kalman �lter. However, we will demonstrate that algorithms like the extended

Kalman �lter that linearize state and parameter space around a certain trajectory ac-

tually perform worse than one might expect simply from linearization errors. This is

basically because most of the information about the parameters are contained in a small

number of data points, the very data points where nonlinear folding behavior is most

important. Techniques like the extended Kalman �lter have a di�cult timemodeling the

folding behavior of state space with these data points, along with the local exponential

expansion and contraction properties of state space in chaotic systems. The result is

that these algorithms typically diverge. In other words, the algorithm's estimate of the

error in its parameter estimate quickly becomes much less than the actual error, so that

the algorithm ends up converging to the wrong parameter value.

In this report, we describe a new algorithm for performing parameter estimation on

chaotic systems and show numerical results demonstrating the e�ectiveness of the new

algorithm and comparing the algorithm with traditional techniques. The new algorithm

attempts to sift through most of the data quickly, concentrating on the measurements

that are most sensitive to parameter values. The algorithm then uses a technique, based

on a Monte Carlo method, to pick out a parameter estimate by taking advantage of the

fact that shadowing behavior tends to be asymmetrical in parameter space.

1.4 Overview

This report is divided into two major parts. The �rst part, which includes chapters

2-4, discusses theoretical results concerning parameter estimation in chaotic systems. In

particular, we are interested in questions like: (1) What possible constraints are there

to the accuracy of parameter estimates, and what kind of accuracy can one expect given

large amounts of data? (2) How is the accuracy of a parameter estimate likely to depend

on the magnitude of the measurement error and the number of state measurements

available? (3) What types of systems exhibit the most sensitivity to small parameter

changes, and what types of systems are likely to produce the most (and least) accurate

parameter estimates? Basically we want to understand exactly how much information

state samples actually contain about the parameters of various types of systems.

In order to answer these questions, we �rst examine how parameter estimation relates

to well-known concepts like shadowing, hyperbolicity, and structural stability. Chapter

2 discusses how the established theory concerning these concepts relates to the problem

of parameter estimation. We also examine what types of systems are guaranteed to have

topologically stable sorts of behavior and how this constrains our ability to do parameter

estimation.
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In chapter 3, we examine one-dimensional maps. Because of the relative simplicity

of these systems, they are ideal for investigating how the speci�c geometry of a system

relates to parameter estimation, especially when one is dealing with systems that are not

topologically or structurally stable. New quantitative results are obtained concerning

how orbits for nearby parameter values shadow each other in certain one-dimensional

families of maps.

In chapter 4 we examine non-uniformly hyperbolic systems of dimension greater than

one. In such general settings it is di�cult to make quantitative statements concerning

limits to parameter estimation. However, we extend ideas from the analysis of one-

dimensional systems to suggest mechanisms that determine the shadowing behavior

of orbits. These mechanisms result from an examination of the stable and unstable

manifolds of the systems. Although the conjectures we make are not rigorously proved,

they are supported by numerical evidence.

The second major part of the report (comprising chapter 5) describes an e�ort to

use the dynamical systems theory to develop a reasonable algorithm to numerically esti-

mate the parameters of a system given noisy state samples. We discuss why traditional

methods of parameter estimation have problems, and some ways to �x these problems.

In chapter 6 we present numerical results demonstrating the e�ectiveness of the new

estimation techniques proposed.

Chapter 7 summarizes the main conclusions of this report, and suggests possible

future work.
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Chapter 2

Parameter estimation, shadowing,

and structural stability

In this chapter we review a variety of established mathematical results and apply these

results to an analysis of parameter estimation. In particular, we examine how topolog-

ical stability results for certain types of systems constrain the feasibility of parameter

estimation.

2.1 Preliminaries and de�nitions

In this section, we introduce some of the basic de�nitions and tools needed to analyze

problems related to parameter estimation. We begin by restating a mathematical de-

scription of the problem. We are given the family of discrete mappings, fp : M ! M

where M is a smooth compact manifold and p represents the invariant parameters of

the system. For the purposes of this report, we will also assume that p is a scalar so

that fp represents a one-parameter family of maps for p 2 Ip; where Ip � R is a closed

interval of the real line. Note that it will often be convenient to write f(x; p) in place of

fp(x) to denote functional dependence on both x and p: We will assume that this joint

function of state and parameters, f :M � Ip !M; is continuous over its domain.

The data we are given consists of a sequence, fyng; of noisy observations of the state
vectors, fxng; where yn 2M; xn 2 M; and:

xn+1 = fp(xn)

yn 2 B(xn; �)

for all n 2 Zwhere � > 0 and B(xn; �) represents an ��neighborhood of xn (ie., yn 2
B(xn; �) if and only if d(yn; xn) < � for some distance metric d): In other words, the
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measured data, yn; consists of the actual state of the system, xn; plus some noise of

magnitude � or less.

Note that if we �x p0 2 Ip; we can generate an orbit, fxng; given an initial condition,

x0: Basically, we would like to know how much information this state orbit contains

about the parameters of the system. In other words, within possible measurement error,

can we resolve fxng from orbits of nearby systems in parameter space? In particular,

are there parameters near p0 that have no orbits that closely follow fxng? If so, then

we know that such parameters could not possibly produce the state data represented by

fyng; and we can thus eliminate these parameters as possible choices for the parameter

estimate. Thus, given p0 2 Ip and a state orbit, fxng; of fp0; one important question

to ask is: For what values of p 2 Ip does there exist an orbit, fzng; of fp such that

d(zn; xn) < � for all n?

This relates parameter estimation to the concept of shadowing. Below we describe

some de�nitions for various types of shadowing that will be useful later on:

De�nitions: Let g : M ! M be continuous. Suppose d(g(zn); zn+1) < � for all n:

Then fzng is said to be a �-pseudo-orbit of g. We say that a sequence of states, fxng;
�-shadows another sequence of states, fyng; if d(xn; yn) < � for all n: The map g has

the pseudo-orbit shadowing property if for any � > 0; there is a � > 0 such that every

�-pseudo-orbit is �-shadowed by a real orbit of g: The family of maps, ffpjp 2 Ipg; is
said to have the parameter shadowing property at p0 2 Ip if for any � > 0; there exists a

� > 0 such that every orbit of fp0 is �-shadowed by some orbit of fp for any p 2 B(p0; �):

Finally, suppose that g 2 X where X is some metric space. Suppose further that for

any � > 0; there is a neighborhood of g, U � X; such that if g0 2 U then any orbit of g

is ��shadowed by an orbit of g0: Then g is said to have a function shadowing property

in X:

We can see that the various types of shadowing have natural connections to parameter

estimation. If two orbits ��shadow each other, then these two orbits will (to �rst order)

be indistinguishable from each other with measurement noise of magnitude �: If fp0 has

the parameter shadowing property, then all systems near p = p0 in parameter space have

orbits that �-shadow orbits of fp0: This implies inherent constraints on the attainable

accuracy of parameter estimation based on state data, since observable state di�erences

for nearby systems in parameter space are lost in the noise caused by measurement

errors.

Thus parameter shadowing is really the property we are most interested in because

of its direct relationship with parameter estimation. The concept of function shadowing

is simply a generalization of parameter shadowing so that given some function g; we can

guarantee that any continuous parameterization of systems containing g must have the

parameter shadowing property at g. This situation implies that the state evolution of

the system is in some sense stable or insensitive to small perturbations in the system.

In the literature, the following language is used to describe this sort of \stability:"
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De�nitions: Two continuous maps, f : M !M and g :M ! M; are said to be topo-

logically conjugate if there exists a homeomorphism, h; such that gh = hf: Let Di� r(M)

be the space of Cr di�eomorphisms of M: Then g 2 Di�
r(M) is said to be structurally

stable if for every neighborhood, U 2 Di�
0(M); of the identity function, there is a

neighborhood, V � Di�
r(M); of g such that for each f 2 V there exists a homeomor-

phism, hg 2 U; satisfying f = h

�1
f
ghf : In addition, if there exists a constant K > 0 and

neighborhood V
0 � V of g such that sup

x2M d(hf (x); x) � K sup
x2M d(f(x); g(x)); for

any f 2 V
0
; then g is said to be absolutely structurally stable.

Unfortunately, we have introduced a rather large number of de�nitions. Some of the

de�nitions apply directly to parameter estimation, and others are introduced because

they are historically important and are necessary in order to apply results found in the

literature. Before we continue, it is important to state clearly how the various properties

are related and exactly what they mean for parameter estimation.

2.2 Shadowing and structural stability

We now investigate the relationship between various shadowing properties and structural

stability. The goal here is to relate well-known concepts like pseudo-orbit shadowing and

structural stability to parameter and function shadowing, so that we can apply results

from the literature.

Let us begin with a brief discussion. First of all, given any p0 2 Ip; note that if p is

near p0; then orbits of fp are pseudo-orbits of fp0 : The pseudo-orbit shadowing property

implies that a particular system can shadow all trajectories of nearby systems. That

is, any orbit of a nearby system can be shadowed by an orbit of the given system. On

the other hand, function shadowing is somewhat the opposite. A system exhibits the

function shadowing property if all nearby systems can shadow it. Meanwhile, structural

stability implies a one-to-one correspondence between orbits of all systems within a given

neighborhood in function space. Thus, if a system is structurally stable, then all nearby

systems can shadow each other.

While these three properties are not equivalent in general they are apparently equiv-

alent for certain types of expansive maps, where the de�nition of expansiveness is given

below:

De�nitions: A homeomorphism g : M ! M is said to be expansive if there exists

e(g) > 0 such that

d(gn(x); gn(y)) � e(g)

for n 2 Z if and only if x = y:
1
e(g) is called the expansive constant for g: Also, suppose

1Note that in general, if g is a function then we will write gn to mean the function g composed with
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X is a metric space of homeomorphisms. Then a function g 2 X is uniformly expansive

in X if there exists a neighborhood V � X of g such that inff2V (e(f)) > 0:

We now state some properties relating pseudo-orbit shadowing, function shadowing,

and structural stability. Many of these results are addressed by Walters in [62]. We refer

the reader to [62] and �ll in the gaps as necessary in Appendix A.

Theorem 2.2.1 Let g : M ! M be a structurally stable di�eomorphism. Then g has

the function shadowing property.

Proof: This follows directly from the de�nitions of structural stability and function shad-

owing. The conjugating homeomorphism, h; from the de�nition of structural stability

provides a one-to-one connection between shadowing orbits of nearby maps.

Theorem 2.2.2 (Walters) Let g : M ! M be a structurally stable di�eomorphism of

dimension � 2. Then g has the pseudo-orbit shadowing property.

Proof: This follows directly from Theorem 11 of [62]. The proof is not as simple as the

previous theorem, since a pseudo-orbit of g is not necessarily a real orbit of a nearby

map. However, Walters shows that given a pseudo-orbit of g; we can pick a (possibly)

di�erent pseudo-orbit of g that both shadows the original pseudo-orbit and is in fact a

true orbit of a nearby map. Then structural stability can be invoked to to show that

there must be a real orbit of g that shadows the original pseudo-orbit.

Theorem 2.2.3 Let g :M !M be an expansive di�eomorphism with the pseudo-orbit

shadowing property. Suppose there exists a neighborhood, V � Di� 1(M) of g that is

uniformly expansive. Then g is structurally stable.

Proof: This follows from discussions in [62]. See Appendix A.

Theorem 2.2.4 : Let g : M ! M be an expansive di�eomorphism with the function

shadowing property. Suppose there exists a neighborhood, V � Di� 1(M) of g such that

V is uniformly expansive. Then g is structurally stable.

Proof: This is similar to theorem 4 of [62]. See Appendix A.

Summarizing our results relating various forms of shadowing and structural stability,

we �nd that structural stability is the strongest condition considered. Structural sta-

bility of a di�eomorphism of greater than one dimension implies both the pseudo-orbit

itself n times. We assume that g0 is the identity function.
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shadowing and parameter shadowing properties for continuous families of mappings.

Thus we can use the literature on structural stability to show that certain families of

maps must have parameter shadowing properties, making it di�cult to accurately esti-

mate parameters given state data. As we shall see, however, most systems we are likely

to encounter in physical applications are not structurally stable.

Also, the pseudo-orbit shadowing property, parameter shadowing property, and struc-

turally stability are equivalent for expansive di�eomorphisms g :M ! M of dimension

greater than one if there exists a neighborhood of g in Di�
1(M) that is uniformly

expansive. However, again we shall see that most physical systems do not have this

expansiveness property. Note also that these results do not apply to the maps of the

interval which we consider in the next chapter.

2.3 Absolute structural stability and parameter es-

timation

There is one more useful property we have not yet addressed. That is the concept of

absolute structural stability.

Lemma 2.3.1 Suppose that fp 2 Di� 1(M) for p 2 Ip � R; and let f(x; p) = fp(x)

for any x 2 M: Suppose that f : M � Ip ! M is C
1
and that fp0 is an absolutely

structurally stable di�eomorphism for some p0 2 Ip: Then there exist �0 > 0 and K > 0

such that for every positive � < �0; any orbit of fp0 can be ��shadowed by an orbit of fp

if p 2 B(p0;K�):

Proof: This follows fairly directly from the de�nition of absolute structural stability.

The conjugating homeomorphism provides the connection between shadowing orbits.

See Appendix A for a complete explanation.

Thus if an absolutely structurally stable mapping, g; is a member of a continuous

parameterization of mappings, then nearby maps in parameter space can �-shadow any

orbit of g: Furthermore, from above we see that the range of parameters that can shadow

orbits of g varies at most linearly with � for su�ciently small � so that decreasing the

measurement error will not result in any dramatic improvements in estimation accuracy.

In these systems, it is clear that dynamics does not contribute a great deal to our ability

to distinguish between the behavior of nearby systems. In the next section, we shall see

that so-called uniformly hyperbolic systems can exhibit this absolute structural stability

property, making them poor systems for accurate parameter estimation.
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2.4 Uniformly hyperbolic systems

Let us now turn turn our attention to identifying what types of systems exhibit the

various shadowing and structural stability properties described in the previous section.

Stability is intimately associated with hyperbolicity, so we begin by examining uniformly

hyperbolic systems.

Uniformly hyperbolic systems are interesting as the archetypes for complex behavior

in nonlinear systems. Because of the de�nite structure available in such systems, it is gen-

erally easier to prove results in this case than for more general situations. Unfortunately,

from a practical viewpoint, very few physical systems actually exhibit the properties of

uniform hyperbolicity. Nevertheless, understanding hyperbolicity is important as a �rst

step to �guring out what is happening in more general situations.

Our goal in this section is to state some stability results for hyperbolic systems, and

to motivate the connections between hyperbolicity, stability, and parameter estimation.

Most of the results in this section are well-known and have been written about in numer-

ous sources. The material provided here outlines some of the properties of hyperbolic

systems that pertain to our treatment of parameter estimation. The brief discussions

use informal arguments in an attempt to motivate ideas rather than provide proofs.

References to more rigorous proofs are given. For an overview of some of the material in

this section, a few good sources include: Shub [55], Nitecki [43], Palis and de Melo [50],

or Newhouse [42].

We �rst need to know what it means to be hyperbolic:

De�nitions:

(1) Given g :M !M; � is a (uniformly) hyperbolic set of g if there exists a continuous

invariant splitting of the tangent bundle, TxM = E
s

x
� E

u

x
for all x 2 � and

constants C > 0 and � > 1 such that:

(a)jDgnvj � C�
�njvj if v 2 E

s

x
; n � 0

(b)jDg�nvj � C�
�njvj if v 2 E

u

x
; n � 0

(2) A di�eomorphism g :M !M is said to be Anosov if M is uniformly hyperbolic.

One important property for understanding the behavior of hyperbolic systems are

the existence of smooth uniformly contracting and expanding manifolds.

De�nition: We de�ne the local stable, W s

�
(x; g); and unstable, W u

�
(x; g); sets of g :

M !M as follows:

W

s

�
(x; g) = fy 2M : d(gn(x); gn(y)) � � for all n � 0 g

W

u

�
(x; g) = fy 2M : d(g�n(x); g�n(y)) � � for all n � 0 g
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We de�ne the global stable, W s(x; g); and unstable, W u(x; g); sets of g : M ! M as

follows:

W
s(x; g) = fy 2M : d(gn(x); gn(y))! 0 as n!1g

W
u(x; g) = fy 2M : d(g�n(x); g�n(y))! 0 as n!1g:

The following result shows that these sets have de�nite structure. Based on this

result, we replace the word \set" with the word \manifold" in the de�nitions above, so,

for example, W s(x; g) and W
u(x; g) are the stable and unstable manifolds of g at x:

Theorem 2.4.1 (Stable/unstable manifold theorem for hyperbolic sets): Let g : M !
M be a C

r
di�eomorphism (r � 1); and let � � M be a compact invariant hyperbolic

set under g: Then for su�ciently small � > 0 the following properties hold for x 2 �:

(1) W
s

�
(x; g) and W u

�
(x; g) are local Cr

disks for any x 2 �: W s

�
(x; g) is tangent to Es

x

at x and W
u

�
(x; g) is tangent to E

u

x
at x:

(2) There exist constants C > 0 and � > 1 such that:

d(gn(x); gn(y)) < C�

�n
for all n � 0 if y 2 W

s

�
(x)

d(g�n(x); g�n(y)) < C�

�n
for all n � 0 if y 2 W

u

�
(x):

(3) W
u

�
(x) and W

u

�
(x) vary continuously with x:

(4) We can choose an adaptive metric such that C = 1 in (2).

Proof: See Nitecki [43] or Shub [55].

Note that from (2) above, we can see that our de�nitions for the global stable

and unstable manifolds are natural extensions of the local manifolds. In particular,

W
s

�
(x; g) �W

s(x; g); W u

�
(x; g) �W

u(x); and:

W

s(x; g) =
[
n�0

g

�n(W s

�
(gnx))

W

u(x; g) =
[
n�0

g

n(W s

�
(g�nx)):

Thus Cr stable and unstable manifolds vary continuously, and intersect transversally on

hyperbolic sets, meaning that the angle of intersection between the stable and unsta-

ble manifolds is bounded away from zero on �. These manifolds create a foliation of

uniformly contracting and expanding sets that provides for a de�nite structure of the

space. We will now argue that uniformly hyperbolic systems obey shadowing properties

and are structurally stable.
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Lemma 2.4.1 (Shadowing Lemma): Let g :M !M be a C
r
di�eomorphism (r � 1);

and let � � M be a compact invariant hyperbolic set under g: Then there exists a

neighborhood, U � M; of � such that g has the pseudo-orbit shadowing property on U:

That is, given � > 0; there exists � > 0 such that if fzng is a �-pseudo-orbit of g; with

zn 2 U for all n; then fzng is ��shadowed by a real orbit, fxng; of g such that xn 2 �

for all integer n:

Proof: Proofs for this result can be found in [7] and [55]. Here we sketch an informal

argument similar to the one given by Conley [16] and Ornstein and Weiss [47] for the

case where g is Anosov (ie, � =M is hyperbolic).

Let fzng be a �-pseudo-orbit of g and let Bn = B(zn; �): For the pseudo-orbit shad-

owing property to be true, there must be a real orbit, fxng; of g such that xn 2 Bn for

all integer n. Thus it is su�cient to show that for any � > 0 there is a � > 0 such that

given any �-pseudo-orbit of g; fzng; there exists x0 2 � satisfying:

x0 2
\
n2Z

g

�n(B(zn; �)): (2.1)

Since the stable and unstable manifolds intersect transversally (at angles uniformly

bounded away from zero), for any p 2 �; we can use the structure of the manifolds around

p to de�ne a local coordinate system for uniformly large neighborhoods, of p 2 �:2 We

can think of this as locally mapping the stable and unstable manifolds onto a patch of Rn

such that stable and unstable manifolds lie parallel to the axes of a Cartesian grid (see

�gure 2.1). Also we can choose an adapted metric on � (speci�ed in part (4) of the stable

manifold theorem), for each p 2 � so that g has uniform local contraction/expansion

rates. Using this metric on the transformed coordinates, we have a nice, neat model of

local dynamical behavior, as we shall see below. From now on we deal exclusively with

transformed local coordinates centered around zn and the adapted metric. Note that the

discussion below and the pictures re
ect the two-dimensional case (the idea is similar in

higher dimensions).

Now for all n pick squares, S(zn; �) = Sn; of uniformly bounded size centered at

zn with S(zn; �) � B(zn; �) such that the sides of Sn are parallel to the axes of the

transformed coordinate system around zn. The sides of the Sn squares are �bered by

stable and unstable manifolds, so when we apply g to Sn; the square is stretched into

a rectangle, expanding along the unstable direction, contracting in the stable direction.

Meanwhile, the opposite is true for g�1. Note that if we can show that there exists some

x0 2 � and � > 0 such that:

x0 2
\
n2Z

g
�n(S(zn; �))

2The local coordinates we refer to here are known as canonical coordinates. For a more rigorous

explanation of these coordinates refer to Smale [59] or Nitecki [43].
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Figure 2.2: For any � > 0 we can choose � > 0 so that for any n 2 Z; (a) any line segment,

a
u

n
; along the unstable direction in Sn gets mapped by g so that it intersects Sn+1; and (b)

any line segment, as
n
; along the stable direction in Sn gets mapped by g�1 so that it intersects

Sn�1.
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for any sequence, fzng; that is �-pseudo-orbit of g; then the shadowing property must

be true. This is our goal.

Let n 2 Zand let au
n
be any line segment extending the length of a side of S(zn; �)

parallel to the unstable direction inside S(zn; �): Set a
u

n+1 = g(au
n
) \ S(zn+1; �): Then,

for any � > 0; we can choose a suitably small �1 > 0; such that for any n; au
n+1 must be

nonempty if fzng; is a �1�pseudo orbit, of g (see �gure 2.2). In �gure 2.2 we see that

�1 > 0 represents the possible o�set between the centers of the rectangle, g(Sn); and

the square, Sn+1: As � get smaller, the size of the rectangle and square gets smaller, but

we can still choose a suitably small �1 > 0 so that g(au
n
) intersects Sn+1: Furthermore

we can do exactly the same thing in the opposite direction. That is, let as
n
be any line

segment extending along the stable direction of S(zn; �); set a
s

n�1 = g
�1(as

n
)\S(zn�1; �);

and choose �2 > 0 suitably small so that as
n�1 must be nonempty for any n if fzng; is a

�2�pseudo orbit, of g:
Given any � > 0 set � = minf�1; �2g: Then, for any n > 0; let as

n
(n) be a segment

in Sn = S(zn; �) parallel to the stable direction. Set as
k�1(n) = g

�1(as
k
(n)) \ Sk�1 for

any k � n. From our previous arguments we know that as long as fzng is a ��pseudo
orbit of g; then a

s

k�1(n) must be a (nonempty) line in the stable direction within Sk�1
if as

k
(n) is a line in the stable direction of Sk: Consequently, by induction, as0(n) must

be a line in the stable direction of S0 for any n > 0: Furthermore note that as
k
(n) � Sk

for any k 2 f0; 1; : : : ; ng: Doing a similar thing for n < 0; working with g instead of

g
�1
; and starting with a segment au

n
(n) parallel to the unstable direction of Sn; we

see that for any n < 0 there exists a series of line segments, au
k
(n) � Sk; for each

k 2 fn; n + 1; : : : ;�1; 0g oriented in the unstable direction. Clearly a
s

0(�n) and a
u

0(n)

must intersect for any n > 0: Now consider the limit of this process as n!1: It is easy

to show that the intersection point

x0 = ( lim
n!1 a

s

0(n))
\
( lim
n!�1

a
u

0(n))

must exist and must in fact be the x0 we seek satisfying (2.1). This initial condition can

then be used to generate a suitable shadowing orbit, fxng:

Theorem 2.4.2 Anosov di�eomorphisms are structurally stable.

Proof: Proofs for this result can be found in [4] and [37].

It is also possible to prove this result based on the shadowing lemma. The basic idea

is to show that any Anosov di�eomorphism, g : M ! M; is uniformly expansive, and

then to apply theorem 2.2.3 to get structural stability. Walters does this in [62]. We

outline the arguments.

The fact that g is expansive is not too di�cult to show. If this were not true, then

there must exist x 6= y such that d(gn(x); gn(y)) � � all integer n: But satisfying this
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condition for both n � 0 and n � 0 would imply that y 2 W
s

�
(x; g) and y 2 W

u

�
(x; g);

respectively. This cannot happen unless x = y: The contradiction shows that the Anosov

di�eomorphism, g; must be expansive with expansive constant, e(g) � �; where � > 0 is

as speci�ed in the stable manifold theorem.

The next step is to observe that there exists a neighborhood, U; of g in Di�
1(M)

such that any f 2 U is Anosov. Then since the stable and unstable manifolds W s

�
(x; f)

and W
u

�
(x; f) vary continuously with respect to f 2 U ([28]),3 we can show that there

exists a neighborhood, U 0 � U; of g such that f 2 U
0 is uniformly expansive. Since g

has the pseudo-orbit shadowing property, we can apply theorem 2.2.3 to conclude that

Anosov di�eomorphisms must be structurally stable. This completes our explanation of

theorem 2.4.2.

Theorem 2.4.2, however, is not the most general statement we can make. We need a

few more de�nitions, however, before we can proceed to �nal result in theorem 2.4.3.

De�nitions:

(1) A point x is nonwandering if for every neighborhood, U; of x; there exists arbitrarily

large n such that fn(U) \ U is nonempty.

(2) A di�eomorphism f :M !M satis�es Axiom A if:

(a) the nonwandering set, 
(f) �M; is hyperbolic.

(b) the periodic points of f are dense in 
(f):

(3) We say that f satis�es the strong transversality property if for every x 2 M;

E
s � E

u = TM:

Theorem 2.4.3 (Franks) If f : M ! M is C
2
then f is absolutely structurally stable

if and only if f satis�es Axiom A and the strong transversality property.

Proof: See Franks [21].

Intuitively, this result seems to be similar to our discussion of Anosov systems, except

that hyperbolicity is not available everywhere. However, there has been a great deal of

research into questions concerning structural stability, especially whether structurally

stable f 2 Di�
1(M) implies that f satis�es Axiom A and the strong transversality

property. The reader may refer to [55] for discussions and references to this work.

3Instead of hiding the details in this statement about stable and unstable manifolds, [62] gives a

more direct argument (but one that requires math background which I have tried to avoid in the text).

Let B(M;M ) be the Banach manifold of all maps fromM to M and let �f : B(M;M )! B(M;M ) so

that �f (h) = fhg
�1
: If f = g; �g(h) has a hyperbolic �xed point near the identity function, id (where

by hyperbolic we mean that the spectrum of the tangent map, Th�; is disjoint from the unit circle).

Thus for any f 2 U; �f (h) has a hyperbolic �xed point near, id; and, since g is expansive, this shows

uniform expansiveness for f 2 U:
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For our purposes, however, we now summarize the implications of theorem 2.4.3 to

parameter estimation:

Corollary 2.4.1 Suppose that fp 2 Di� 1(M) for p 2 Ip � R; and let f(x; p) = fp(x)

for any x 2 M: Suppose also that f : M � Ip ! M is C
1
and that for some p0 2 Ip;

fp0
is a C

2
Axiom A di�eomorphism with the strong transversality property. Then there

exists �0 > 0 and K > 0 such that for every positive � < �0; any orbit of fp0 can be

��shadowed by an orbit of fp if p 2 B(p0;K�):

In other words, C2 Axiom A di�eomorphisms with the strong transversality satisfy

a function shadowing property. They are stable in such a way that their dynamics does

not magnify di�erences in parameter values. Chaotic behavior clearly does not lead to

improved parameter estimates in this case. However, as noted earlier, most known phys-

ical systems do not satisfy the rather stringent conditions of uniform hyperbolicity. In

the next two chapters we will investigate results for some systems that are not uniformly

hyperbolic, beginning with the simplest possible case: dynamics in one dimension.
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Chapter 3

Maps of the interval

In the last chapter we examined systems that are uniformly hyperbolic. In this case,

orbits of nearby systems have the same topological properties and shadow each other for

arbitrarily long periods of time. We would now consider what happens for other types

of systems. To start out with, we will investigate one-dimensional maps, speci�cally,

maps of the interval. One-dimensional maps are useful because they are the simplest

systems to analyze; yet as we shall see, even in one dimension there is a great variety of

possible behavior, especially if one is interested in geometric relationships between the

shadowing orbits of nearby systems. Such relationships are important in assessing the

feasibility of parameter estimation, since they determine whether nearby systems can be

distinguished from each other in parameter space.

In section 3.1 we begin with a brief overview of what maps of the interval are struc-

turally stable, and in section 3.2 we look at function shadowing properties of these maps.

Our purpose here is not to classify maps into various properties. Although it is impor-

tant to know what types of systems exhibit various shadowing properties, the main goal

is to distill out some archetypal mechanisms that may be present in a number of inter-

esting nonlinear systems. Especially of interest are any mechanisms that may help us

understand what occurs in higher dimensional problems.

In the process of investigating function shadowing, we will examine how the \fold-

ing" behavior around turning points (i.e., relative maxima or minima) of one-dimensional

maps governs how orbits shadow each other. This investigation will be extended in sec-

tion 3.3, where we consider how folding behavior can often lead naturally to asymmetrical

shadowing behavior in the parameter space of maps. This, at least, gives us some hint

for why we see asymmetrical behavior in a wide variety of numerical experiments. As

we will see in chapter 5, this asymmetrical shadowing behavior seems to be crucial in

developing methods for estimating parameters, so it is important to try to understand

where the behavior comes from.
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In order to get de�nite results, we will restrict our claims to increasingly narrow

classes of mappings. In section 3.4 we will apply our results to a speci�c example,

namely the one-parameter family of maps we examined in chapter 1:

fp(x) = px(1� x):

Finally, in section 3.6, we conclude with a number of conjectures and suggestions for

further research into parameter dependence in one-dimensional maps.

3.1 Structural stability

We �rst want to examine what types of maps of the interval are structurally stable. These

are not the types of maps we are particularly interested in for purposes of parameter

estimation, but it is good to identify which maps they are. We brie
y state some known

results, most of which can be found in de Melo and van Strien [33].1

Note that since interesting behavior for maps of the interval occurs only in non-

invertible systems, we must slightly revise some of de�nitions of the previous section in

order to account for this. In particular, instead of bi-in�nite orbits, we now deal only

with forward orbits. These revisions apply, for example, in the de�nitions for various

types of shadowing. Unless we mention a new de�nition explicitly, the changes are as

one would expect.

Let us, however, make the following new de�nitions, some of which may be a bit

di�erent from the analogous terms from chapter 2. In the de�nitions that follow (and

this chapter in general) assume that I � R is a compact interval of the real line.

De�nitions: Suppose that f : I ! I is continuous. Then the turning points of f are

the local extrema of f in the interior I: C(f) is used to designate the set of all turning

points of f on I: Let C r (I; I) be the set of continuous maps on I such that f 2 C r (I; I)
if the following two conditions hold:

(a) f is Cr (for r � 0)

(b) f(I) � I:

If in addition, we have that

(c) f(Bd(I)) � Bd(I) (where Bd(I) denotes the boundary of I),

then we say that f 2 C r (I; I):
For either f; g 2 C r (I; I) or f; g 2 C r (I; I); then let d(f; g) = sup

x2I jf(x)� g(x)j:
De�nitions:

(1) f 2 C r (I; I) is said to be Cr
structurally stable if there exists a neighborhood U of

1 [33] is the best source of material I have seen for results involving one-dimensional dynamics.
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f in C r (I; I) such that for every g 2 U; there exists a homeomorphism hg : I ! I

such that ghg = hgf .

(2) Let f : I ! I: The !-limit set of a point, x 2 I; is:

w(x) = fy 2 I : there exists a subsequence fnig such that fni(x)! y

for some x 2 Ig

B is said to be the basin of a hyperbolic periodic attractor if B = fx 2 I : p 2 w(x)g
where p is a periodic point of f with period n and jDfn(p)j < 1:

(3) f 2 C r (I; I) is said to satisfy Axiom A if

(a) f has a �nite number of hyperbolic periodic attractors

(b) Every x 2 I is either a member of a (uniformly) hyperbolic set or is in the

basin of a hyperbolic periodic attractor.

The following theorem is the one-dimensional analog of theorem 2.4.3.

Theorem 3.1.1 Suppose that f 2 C r(I; I) (r � 2) satis�es Axiom A and the following

conditions:

(1) If c 2 I and Df(c) = 0; then c 2 C(f):

(2) f
n(C(f)) \ C(f) = ; for all n > 0:

Then f is C
2
structurally stable.

Proof: See for example, theorem III.2.5 in [33].

Axiom A maps are apparently prevalent in one-dimensional systems. For example,

the following is believed to be true:

Conjecture 3.1.1 The set of parameters for which fp = px(1 � x) satis�es Axiom A

forms a dense set in [0; 4]:

Proof: de Melo and van Strien [33] report that Swiatek has recently proved this result

in [61].

Assuming that this result is true, we can paint an interesting picture for the param-

eter space of fp = px(1 � x): Apparently there are a dense set of parameter values for

which fp = px(1 � x) has a hyperbolic periodic attractor. The set of parameter values

satisfying this property must be consist of a union of open sets, since we know that these

systems are structurally stable.
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On the other hand, this does not mean that all or almost all of the parameter space

of fp = px(1 � x) is taken up by structurally stable systems. In fact, as we shall see in

section 3.4, a positive measure of the parameter space is actually taken up by systems

that are not structurally stable. These are the parameter values that we will be most

interested in.

3.2 Function shadowing

We now consider function and parameter shadowing. In section 2.2 we saw that for

uniformly expansive di�eomorphisms, structural stability and function shadowing are

equivalent. For more general systems, structural stability still implies function shadow-

ing, however, the converse is not necessarily true. As we shall see, there are many cases

where the connections between shadowing orbits of nearby systems cannot be described

by a simple homeomorphism. The structure of these connections can in fact be quite

complicated.

3.2.1 A function shadowing theorem

There have been several recent results concerning shadowing properties of one-dimensional

maps. Among these include papers by Coven, Kan, and Yorke [17], Nusse and Yorke [39],

and Chen [12]. This section extends the shadowing results of these papers in order to

examine the possibility of parameter and function shadowing for parameterized families

of maps of the interval.

Speci�cally, we will deal with two types of maps: piecewise monotone mappings and

uniformly piecewise-linear mappings of a compact interval, I � R onto itself:

De�nitions: A continuous map f : I ! I is said to be piecewise monotone if f has

�nitely many turning points. f is said to be a uniformly piecewise-linear mappings if it

can be written in the form:

f(x) = �i � sx for xi 2 [ci�1; ci] (3.1)

where s > 1; c0 < c1 < : : : < cq and q > 0 is an integer. (We assume s > 1 because

otherwise there will not be any interesting behavior).

Note that for this section, it is useful to de�ne neighborhoods, B(x; �); so that they

do not extend beyond the con�nes of I. In other words, let B(x; �) = (x� �; x+ �) \ I:

With this in mind, we use the following de�nitions to describe some relevant properties

of piecewise monotone maps.

De�nition: A piecewise monotone map, f : I ! I; is said to be transitive if for any

two open sets U; V � I; there exists an n > 0 such that fn(U) \ V 6= ;:
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De�nitions: Let f : I ! I be piecewise monotone. Then f satis�es the linking property

if for every c 2 C(f) and any � > 0 there is a point z 2 I and integer n > 0 such that

z 2 B(c; �); fn(z) 2 C(f); and jf i(c)� f
i(z)j < � for every i 2 f1; 2; : : : ; ng: Suppose, in

addition, that we can always choose a z 6= c such that the above condition is satis�ed.

Then f is said to satisfy the strong-linking condition.

We are now ready to state the main result of this section.

Theorem 3.2.1 : Transitive piecewise monotone maps satisfy the function shadowing

property in C
0(I; I) if and only if they satisfy the strong linking property.

Proof: The proof may be found in appendix B.

In particular, this theorem implies the following parameter shadowing result. Let

Ip � R be a closed interval of the real line. Suppose that ffp : I ! Ijp 2 Ipg is a

continuously parameterized family of one-dimensional maps, and let fp0 be a transitive

piecewise monotone mapping with the strong linking property. Then fp must have the

parameter shadowing property at p = p0: Note that fp0 is certainly not structurally

stable in C 0(I; I):2 The connections between the shadowing orbits are not continuous

and one-to-one in general. In the next section we shall further examine what these

connections are likely to look like.

Now, however, we would like to present some motivation for why theorem 3.2.1

makes sense. The key to examining the shadowing properties of transitive piecewise

monotone maps is to understand the dynamics near the turning points. In regions away

from the turning points, these maps look locally hyperbolic, so �nite pieces of orbits

in these regions shadow each other rather easily. The transitivity condition guarantees

hyperbolicity away from the turning points, since any transitive piecewise monotone

maps is topologically conjugate to a uniformly piecewise linear map.

Close to the turning points, however, things are more interesting. Suppose, for

example, that we are given a family of piecewise monotone maps fp : I ! I; and

suppose that we would like to �nd parameter shadowing orbits for orbits of fp0 that pass

near a turning point, c; of fp0: Consider a neighborhood, U � I around the turning point

c: Regions of state space near c are folded on top of each other by fp0 (see �gure 3.1(a)).

This can create problems for parameter shadowing. Consider what the images of U look

like under repeated applications of fp0 compared to what they might look like for two

other parameter values (p� and p+) close to p0 (see �gure 3.1(b)). Under the di�erent

parameter values, the forward images of U become o�set from each other, since orbits

for parameter values near p0 look like pseudo-orbits of fp0:

2In fact, no map is structurally stable in C 0 (I; I): This is clear, since any C 0(I; I) neighborhood of

f 2 C 0 (I; I) contains maps with arbitrary numbers of turning points. Since turning points are preserved

by topological conjugacy, f cannot be structurally stable in C0 (I; I):

35



The forward images of U for di�erent parameter values tend to consistently either

lag or lead each other, a phenomenon which has interesting consequences for parameter

shadowing. For example, in �gure 3.1(b), since fk1
p�
(U) lags fk1

p0
(U); it appears that fp�

has a di�cult time shadowing the orbit of fp0 emanating from the turning point, c: On

the other hand, from the same �gure, there is no reason to expect that there are any

orbits of fp0 which are not shadowed by suitable orbits of fp+ :

However, this is not the end of the story. If the linking condition is satis�ed, then

the turning points are recurrent and neighborhoods of turning points keep returning to

turning points to get refolded on top of themselves. This allows the orbits of lagging

parameter values to catch up as regions get folded back (see �gure 3.1(c)). In this case,

we see that the forward image of U under fp0 gets folded back into the the corresponding

forward image of U under fp�; thus allowing orbits of fp� to e�ectively shadow orbits

of fp0.

On the other hand we see that there is an asymmetry in the shadowing behavior of

parameter values depending on whether the folded regions around turning point lag or

lead one another under the action of di�erent parameter values. The parameter values

that lag seem to have a more di�cult time shadowing other orbits than the ones that lead.

Making this statement more precise is the subject of the next section. Theorem 3.2.1

merely states that if the strong linking condition is satis�ed, then regions near turning

points are refolded back upon one another in such a way that the parameter shadowing

property is satis�ed.

3.2.2 An example: the tent map

In [12], Chen proves the following theorem:

Theorem 3.2.2 The pseudo-orbit shadowing property and the linking property are equiv-

alent for transitive piecewise monotone maps.

One interesting thing to note is the di�erence between function shadowing and

pseudo-orbit shadowing. For instance, what happens when a transitive map exhibits

the linking property but does not satisfy the strong-linking property? We already know

that such maps must exhibit the pseudo-orbit shadowing property but must not satisfy

the function shadowing property on C 0(I; I): It is worth a brief look at why this occurs.

As an illustrative example, consider the family of tent maps, fp : [0; 1] ! [0; 1];

where:

fp(x) =

(
px if x � 1

2

p(1 � x) if x > 1
2

for p 2 [0; 2]: Pick p0 2 (
p
2; 2) such that f5

p0
(1
2
) = 1

2
: It is not di�cult to show that such a

p0 exists. Numerically we �nd that one such value for p0 occurs near p0 � 1:5128763969:
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Figure 3.1: Figure 3.1(a) illustrates how neighborhoods near a turning point get folded. (b)

shows what might happen for three di�erent parameter values, p
�
< p0 < p+: The images

of neighborhoods near the critical point tend to get o�set each from other so that the neigh-

borhoods for certain parameters (eg., p+) may begin to lead while other parameters (eg., p
�
)

lag behind. Lagging parameters have di�culty shadowing leading parameters. (c) shows how

neighborhoods can get refolded on each other as a result of a subsequent encounter with a

turning point, allowing lagging parameters to \catch up," so that they are able to shadow

parameter values that normally lead.
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We can see that fp0 is transitive on the interval I(p0) = [f2
p0
(c); fp0(c)] where in this

case, c = 1
2
:Given any interval, U � I(p0); since p0 >

p
2; if c 62 U then jfp0(U)j >

p
2jU j

and if c 2 U then jfp0(U)j >
p
2
2
jU j; where jU j denotes the length of the interval U: Thus

either jf4
p0
(U)j > 2jU j or f4

p0
(U) = I(p0); and for any U � I(p0) there exists a k � 0 such

that fk
p0
(U) = I(p0): Consequently, f must be transitive on I. Note that even though

I(p) is not invariant with respect to p; theorem 3.2.1 still applies, since we could easily

rescale the coordinates to eliminate this problem.

Now let p0 be near 1:5128763969 so that f
5
p0
(c) = c = 1

2
:We would like to investigate

the shadowing properties of the orbit, ffk
p0
(c)g1

k=0: Let f(x; p) = fp(x): Two important

pieces of information are the following:

Dpf
5(c; p0) =

@f
5

@p

(c; p0) � �1:2715534 (3.2)

�5(c; p0) = �1 (3.3)

where we de�ne:

�i(c; p) =

(
1 if c is a relative maximum of f i

p

-1 if c is a relative minimum of f i
p

As we shall see in the next section, statistics like (3.2) and (3.3) are important

references in evaluating the shadowing behavior for families of maps. For this example,

let us consider a combined state and parameter space and examine how a small square

in this space around (x; p) = (c; p0) gets iterated by the map f: We see that because f5
p0

has a relative minimum at c = 1
2
and because Dpf

5(c; p0) is negative, parameter values

higher than p0 tend to lead while parameter values less than p0 tend to lag behind in the

manner described earlier in this section. Since the turning point of fp0 at c is periodic

with period 5; this type of lead/lag behavior continues for arbitrarily many iterates.

We want to know if nearbymaps, fp; for p near p0 have orbits that shadow ffkp0(c)g1k=0:

Consider how the lead/lag behavior a�ects possible shadowing orbits. Because c = 1
2
is

periodic, it is possible to verify that the quantity, [�n(c; p
�
0 )Dpf

n(c; p�0 )]; grows exponen-
tially as n gets large (where p�0 indicates that we evaluate the derivative for p arbitrarily

close to, but less than p0). Thus for maps with parameter values p < p0; all possible

shadowing orbits diverge away from ffk
p0
(c)g1

k=0 at a rate that depends exponentially on

the number of iterates. Consequently there exists a � > 0 such that if p 2 (p0 � �; p0);

then no orbit of fp ��shadows ffk
p0
(c)g1

k=0 for any � > 0 su�ciently small. On the other

hand the orbit ffk
p0
(c)g1

k=0 can be shadowed by fp for parameter values p � p0: In fact,

because everything is linear, it is not di�cult to show that there must exist a constant

K > 0 such that that for any � > 0; there is an orbit of fp that ��shadows ffkp0(c)g1k=0

if p 2 [p0; p0 +K�]:

In summary, we see that the orbit, ffk
p0
(c)g1

k=0; cannot be shadowed by parameter

values p < p0; but can be shadowed for parameter values p � p0: fp0 satis�es the
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linking but not the strong linking property. Thus fp0 satis�es the pseudo-orbit shadowing

property, and any orbit of fp for p near p0 can be shadowed by an orbit of fp0: On the

other hand, fp0 does not satisfy function or parameter shadowing properties, since not all

nearby systems (for example, fp for p < p0) have orbits that shadow orbits of fp0: Also,

note how the lead and lag behavior in parameter space results naturally in asymmetrical

shadowing properties in parameter space. We will look at this more closely in the next

section.

As a �nal note and preview for the next section, consider brie
y how the above ex-

ample might generalize to other situations. The tent map example may be considered

exceptional for two primary reasons: (1) the tent map is uniformly hyperbolic every-

where except for at the turning point, and (2) the turning point of fp0 is periodic. We

are generally interested in more generic situations involving parameterized families of

piecewise monotone maps, especially maps with positive Lyapunov exponents. Appar-

ently a number of likely scenarios also result in lead/lag behavior in parameter space,

producing asymmetries in shadowing behavior similar to that observed in the tent map

example. However, this behavior generally gets distorted by local geometry. Also things

become more complicated because of folding caused by close returns to turning points.

In particular for maps with positive Lyapunov exponents, shadowing orbits for lagging

parameter values tend to diverge away at exponential rates, just like in the tent map

example, but this only occurs for a certain number of iterates until a close return or

linking with a turning point occurs. In such cases, function shadowing properties may

exist, but the geometry of the shadowing orbits still re
ects the asymmetrical lead/lag

behavior. This behavior certainly a�ects any attempts at parameter estimation.

3.3 Asymmetrical shadowing

In the previous two sections we were primarily interested in topologically-oriented re-

sults about whether orbits of nearby one-dimensional systems shadow each other or not.

However, topological results really do not provide enough information for us to draw any

strong conclusions about the feasibility of estimation problems. Whether orbits shadow

each other or not, in general we would also like to know the answers to more speci�c

questions, for example: what is the expected rate of convergence for a parameter esti-

mate, and how does the level of noise or measurement error a�ect the possible accuracy

of a parameter estimate?

In this section we address a more analytical treatment of the subject of shadowing

and parameter dependence in one-dimensional maps. The problem with this, of course,

is that there is an extremely rich variety of possible behavior in parameterized families

of mappings, and it is di�cult to say anything concrete without limiting the statements

to relatively small classes of maps. Thus some compromises have to be made. However,

we approach our investigation with some speci�c goals in mind. In particular we are
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interested in de�nite bounds on how fast the closest shadowing trajectories in nearby

systems diverge from each other and some explanation concerning how the observed

asymmetrical shadowing behavior gets established in the parameter space. We will

concentrate on smooth maps of the interval, especially the quadratic map, fp(x) =

px(1 � x):

3.3.1 Lagging parameters

In this subsection, we argue that asymmetries are likely to occur in parameter space. In

particular, given a smooth piecewise monotone map with a positive Lyapunov exponent,

shadowing orbits for nearby lagging maps tend to diverge away from orbits of the original

system at an exponential rate before being folded back by close encounters with turning

points.

Preliminaries

We will primarily restrict ourselves to maps with the following properties:

(C0) g : I ! I; is piecewise monotone.

(C1) g is C2 on I:

(C2) Let C(g) be the �nite set such that c 2 C(g) if and only if g has a local extremum

at c 2 I: Then g
00(c) 6= 0 if c 2 C(g) and g

0(x) 6= 0 for all x 2 I n C(g):

We are also interested in maps that have positive Lyapunov exponents. In particular,

we will examine maps satisfying a set of closely related properties known as the Collet-

Eckmann conditions, (CE1) and (CE2). We will say that a map g satis�es (CE1) or

(CE2), if there exist constants KE > 0 and �E > 1 such that for some c 2 C(g):

(CE1) jDgn(g(c))j � KE�
n

E
;

(CE2) jDgn(z)j � KE�
n

E
if gn(z) = c:

respectively for any n > 0:

We also consider one-parameter families of mappings, fp : Ix ! Ix; parameterized by

p 2 Ip; where Ix � R and Ip � R are closed intervals of the real line. Let f(x; p) = fp(x)

where f : Ix � Ip ! Ix: We are primarily interested in one-parameter families of maps

with the following characteristics:

(D0) For each p 2 Ip; fp : Ix ! Ix satis�es (C0) and (C1). We also require that C(fp)

remains invariant with respect to p for all p 2 Ip:
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(D1) f : Ix � Ip ! Ix is C
2 for all (x; p) 2 Ix � Ip:

Note that the following notation will be used to express derivatives of f(x; p) with respect

to x and p:

Dxf(x; p) =
@f

@x

(x; p) (3.4)

Dpf(x; p) =
@f

@p

(x; p): (3.5)

The Collet-Eckmann conditions specify that derivatives with respect to the state,

x; grows exponentially. Similarly we will also be interested in families of maps where

derivatives with respect to the parameter, p; also grow exponentially. In other words,

we require that there exist constants Kp > 0; �p > 1; and N > 0 such that for some

p0 2 Ip; and c 2 C(fp0):

(CP1) jDpf
n(c; p0)j > Kp�

n

p

for all n � N: From now on, given a parameterized family of maps, ffpjp 2 Ipg, we will
say that fp0 satis�es (CP1) if the above condition holds.

This may seem to be a rather strong constraint, but in practice it often follows

whenever (CE1) holds. We can see this by expanding with the chain rule:

Dpf
n(c; p0) = Dxf(f

n�1(c; p0); p0)Dpf
n�1(c; p0) +Dpf(f

n�1(c; p0); p0) (3.6)

to obtain the formula for Dpf
n(x; p0) :

Dpf
n(x; p0) = Dpf(f

n�1(c; p0); p0) +
n�2X
i=0

[Dpf(f
i(c; p0); p0)

n�1Y
j=i+1

Dxf(f
j(c; p0); p0)]:

Thus, if jDxf
n(f(c; p0); p0)j grows exponentially, we expect jDpf

n(x; p0)j to also grow

exponentially unless the parameter dependence is degenerate in some way (eg, if f(x; p)

is independent of p).

Now for any c 2 C(fp0); de�ne �n(c; p) recursively as follows:

�n+1(c; p) = sgnfDxf(f
n(c; p); p)g�n(c; p) (3.7)

where

�1(c; p) =

(
1 if c is a relative maximum of fp
-1 if c is a relative minimum of fp

Basically �n(c; p) = 1 if fn
p
has a relative maximum at c and �n(c; p) = �1 if fn

p
has a

relative minimumat c:We can use this notion to distinguish a one direction in parameter

space from the other.
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De�nition: Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings satisfying

(D0) and (D1). Suppose that there exists p0 2 Ip such that fp0 satis�es (CE1) and

(CP1) for some c 2 C(fp0): Then we say that the turning point, c; of fp0 favors higher

parameters if there exists N 0
> 0 such that

sgnfDpf
n(c; p0)g = �n(c; p) (3.8)

for all n � N
0
: Similarly, the turning point, c; of fp0 favors lower parameters if

sgnfDpf
n(c; p0)g = ��n(c; p) (3.9)

for all n � N
0
:

The �rst thing to notice about these two de�nitions is that they are exhaustive if

(CP1) is satis�ed. That is, if (CP1) is satis�ed for some p0 2 Ip and c 2 C(fp0); then

the turning point, c; of fp0 either favors higher parameters or favors lower parameters.

We can see this from (3.6). Since jDpf(x; p0)j is bounded for x 2 Ix; if jDpf
n(x; p0)j

grows large enough then its sign is dominated by the signs of Dxf(f
n�1(c; p0); p0) and

Dpf
n�1(c; p0); so that either (3.8) or (3.9) must be satis�ed.

Finally, if p0 2 Ip and c 2 C(fp0); then for any � � 0; de�ne ne(c; �; p0) to be the

smallest integer n � 1 such that jfn(c; p0) � c�j � � for any c� 2 C(fp0): We say that

ne(c; �; p0) =1 if no such n � 1 exists.

Main result

We are now ready to state main results of this subsection.

Theorem 3.3.1 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings

satisfying (D0) and (D1). Suppose that (CP1) is satis�ed for some p0 2 Ip and c 2
C(fp0): Suppose further that fp0 satis�es (CE1) at c; and that the turning point, c; favors

higher parameters under fp0 : Then there exists �p > 0; � > 1; K 0
> 0; and K � 1; such

that if p 2 (p0 � �p; p0); then for any � > 0; the orbit ffn
p0
(c)g1

n=0 is not ��shadowed by

any orbit of fp if jp� p0j > K
0
��

�ne(c;K�;p0)
:

The analogous result also holds if fp0 favors lower parameters.

Proof: The proof of this result can be found in appendix C.

The proof is actually relatively straightforward, although the details of the analysis

becomes a bit tedious. The basic idea is that away from the turning points, everything is

hyperbolic, and we can uniformly bound derivatives with respect to state and parameters

to grow at an exponential rate. In particular, the lagging behavior for lower parameters

is preserved and becomes exponentially more pronounced with increasing numbers of

iterates. Shadowing orbits for parameters p < p0 diverge away exponentially fast if

higher parameters are favored. However, this only works for orbits that don't return

closely to the turning points where derivatives are small.
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3.3.2 Leading parameters

Motivation

We have shown in the previous section that if f : Ix � Ip ! Ix is a one parameter

family of maps of the interval and if there exists N > 0 such that

Dpf
n(c; p0) > �n(c; p0)K�

n (3.10)

for all n > N; then for p < p0; orbits of fp tend to diverge at an exponential rate away

from orbits of fp0 that pass near the turning point, c. Such orbits of fp0 can only be

shadowed by orbits of fp for p < p0 if the orbits of fp0 are folded back upon themselves

by a subsequent encounter with the turning point.

On the other hand, we would like to �nd a condition like (3.10) under which orbits

of fp for p � p0; can shadow any orbit of fp0 inde�nitely without relying on folding.

This type of phenomenon is indicated by numerical experiments on a variety of systems.

Unfortunately however, the derivative condition in (3.10) is local, so we have little con-

trol over the long term behavior of orbits. Thus, we must replace this condition with

something that acts over an interval in parameter space.

For instance, we are interested in addressing systems like the family of quadratic

maps:

f(x; p) = px(1� x): (3.11)

It is known that the family of quadratic maps in (3.11) satis�es a property known as

the monotonicity of kneading invariants in the parameter space of fp. This condition

is su�cient to make one direction in parameter space preferred over the other. We

show in this subsection that monotonicity of kneading invariant along with (CE1) is

su�cient to guarantee strong shadowing e�ects for parameters that lead, at least in

the case of unimodal (one turning point) maps with negative Schwarzian derivative, a

class of maps that include (3.11). Maps with negative Schwarzian derivative have been

the focal point of considerable research over the last several years, since they represent

some of the simplest smooth maps which have interesting dynamical properties. We

take advantage of analytical tools developed recently in order to analyze the relevant

shadowing properties.

De�nitions and statement of results

De�nition: Suppose that g : I ! I is C3 and I � R: Then the Schwarzian derivative,

Sg; of g is given by the following:

Sg(x) =
g
000(x)

g
0(x)

� 3

2
(
g
00(x)

g
0(x)

)2:

where g0(x); g00(x); g000(x) here indicate the �rst, second, and third derivatives of x:
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In this section we will primarily restrict ourselves to mappings with the following

properties:

(A0) g : I ! I; is C3(I) where I = [0; 1]; with g(0) = 0 and g(1) = 0:

(A1) g has one local maximum at x = c; g is strictly increasing on [0; c] and strictly

decreasing on [c; 1];

(A2) g
00(c) < 0; jg0(0)j > 1:

(A3) The Schwarzian derivative of g is negative, Sg(x) < 0, over all x 2 I (we allow

Sg(x) = �1):

Again we will be investigating one-parameter families of mappings, f : Ix� Ip ! Ix;

where p is the parameter and Ix; Ip � R are closed intervals. Let fp(x) = f(x; p) where

fp : Ix ! Ix: We are primarily be interested in one-parameter families of maps with the

following characteristics:

(B0) For each p 2 Ip; fp : Ix ! Ix satis�es (A0), (A1), (A2), and (A3) where Ix = [0; 1]:

For each p; we also require that fp has a turning point at c; where c is constant

with respect to p:

(B1) f : Ix � Ip ! Ix is C
2 for all (x; p) 2 Ix � Ip:

Another concept we shall need is that of the kneading invariant. Kneading invariants

and many associated topics are discussed in Milnor and Thurston [34].

De�nition: If g : I ! I is a piecewise monotone map with exactly one turning point

at c, then the kneading invariant, D(g; t); of g is de�ned as follows:

D(g; t) = 1 + �1(g)t+ �2(g)t+ : : : + �n(g)t
n + : : :

where

�n(g) = �1(g)�2(g) : : : �n(g)

�n(g) = lim
x!c+

sgn(Dg(gn(x)))

for n � 1: If c is a relative maximum of g; then one interpretation of �n(g) is that it

represents whether gn+1 has a relative maximum(�n(g) = +1) or minimum(�n(g) = �1)
at c:

We can also order these kneading invariants in the following way. We will say that

jD(g; t)j < jD(h; t)j if �i(g) = �i(h), for 1 � i < n; but �n(g) < �n(h): A kneading
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invariant, D(fp; t); is said to be monotonically decreasing with respect to p if p1 > p0

implies jD(fp1; t)j � jD(fp0 ; t)j:
We are now ready to state the main result of this subsection:

Theorem 3.3.2 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings

satisfying (B0) and (B1). Suppose that p0 2 Ip such that fp0 satis�es (CE1). Also,

suppose that the kneading invariant, D(fp; t); is monotonically decreasing with respect

to p in some neighborhood of p = p0: Then there exists �p > 0 and C > 0 such that for

every x0 2 Ix there is a set, W (x0) � Ix � Ip, satisfying the following conditions:

(1) W (x0) = f(�x0(t); �x0(t))jt 2 [0; 1]g where �x0 : [0; 1]! Ix and �x0 : [0; 1]! Ip are

continuous and �x0(t) is monotonically increasing with respect to t with �x0(0) = p0

and �x0
(1) = p0 + �p:

(2) For any x0 2 Ix; if (x; p) 2 W (x0) then jfn(x; p)� f
n(x0; p0)j < C(p� p0)

1
3 for all

n � 0:

Proof: See appendix D

Corollary 3.3.1 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings

satisfying (B0) and (B1). Suppose that p0 2 Ip such that fp0 satis�es (CE1). Also,

suppose that the kneading invariant, D(fp; t); is monotonically decreasing with respect

to p in some neighborhood of p = p0: Then there exists �p > 0 and C > 0 such that if

p 2 [p0; p0 + �p]; then for any � > 0; every orbit of fp0 is �-shadowed by an orbit of fp if

jp� p0j < C�
3
:

Proof: This is an immediate consequence of theorem 3.3.2.

Overview of proof

We now outline some of the ideas behind the proof of theorem 3.3.2. The proof

depends on an examination of the structure of the preimages of the turning point, x = c;

in the combined space of state and parameters (Ix� Ip space). The basic idea is to �nd

connected shadowing sets in state-parameter space. These sets have the property that

points in the set shadow each other under arbitrarily many applications of f: Certain

geometrical properties of these sets can be determined by squeezing the sets between

structures of preimage points. In order to discuss the approach further, we �rst need to

introduce some notation.

We consider the set of preimages, P (n) � Ix � Ip satisfying:

P (n) = f(x; p)jf i(x; p) = c for some 0 � i � ng:
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It is also useful to have a way of specifying a particular section of path-connected preim-

ages, R(n; x0; p0) � P (n); extending from a single point, (x0; p0) 2 P (n): Let us de�ne

R(n; x0; p0) so that (x
0
; p
0) 2 R(n; x0; p0) if and only if (x0; p0) 2 P (n) and there exists a

continuous function, g : Ip ! Ix; such that g(p0) = x0; g(p
0) = x

0, and

f(x; p)jx = g(p); p 2 [p0; p
0]g � P (n);

where [p0; p
0] may denote either [p0; p

0] or [p0; p0]; whichever is appropriate.

The �rst step is to investigate the basic structure of P (n): We show that P (n)

contains no regions or interior points and that P (n) cannot contain any isolated points

or curve segments. Instead, each point in P (n) must be part of a continuous curve

that stretches for the length of the parameter space, Ip: In fact, if (x0; y0) 2 P (n); then

R(n; x0; p0) \ (Ix � fsup Ipg) 6= ; and R(n; x0; p0) \ (Ix � finf Ipg) 6= ;:
The next step is to demonstrate that if the kneading invariant of fp; D(fp; t); is

monotonically decreasing (or increasing), then P (n) has a special topology. It must

take on a tree-like structure so that as we travel along one direction in parameter space,

branches of P (n) must either always merge or always split away from each other. For

example if D(fp; t) is monotonically decreasing, then branches of P (n) can only split

away from each other as we increase the parameter p: In other words, R(n; y�; p0) and
R(n; y+; p0) do not intersect each other in the space, Ix � fpg; for for p � p0 if y+ 6= y�
and y+; y� 2 Ix:

Now suppose we want to examine the points that shadow (x0; p0) under the action

of f given any x0 2 Ix: We �rst develop bounds on derivatives for di�erentiable sections

of R(n; x; p0): We then use knowledge about the behavior of R(n; x; p0) to bound the

behavior of the shadowing points. We demonstrate that for maps, fp; with kneading

invariants that decrease monotonically in parameter space, there exist constants C > 0

and �p > 0 such that if x0 2 Ix and

U(p) = fxj jx� x0j < C(p� p0)
1
3g (3.12)

for any p 2 Ip; then for any p
0 2 [p0; p0 + �p]; there exists x0+ 2 U(p0) such that

(x0+; p
0) 2 R(n+; y+; p0) for some y+ > x0 and n+ > 0 assuming that fn+(y+; p0) = c:

Likewise there exists x0+ 2 U(p0) such that (x0�; p
0) 2 R(n�; y�; p0) for some y� < x0 and

n� > 0 where fn�(y�; p0) = c:

However, setting n = maxfn+; n�g; since R(n; y�; p0) and R(n; y+; p0) do not in-

tersect each other for p � p0 and y� 6= y+; then we also know that for any y� < y+;

there is a region in Ix � Ip space bounded by R(n; y�; p0); R(n; y+; p0); and p � p0:

Take the limit of this region as y� ! x

�
0 ; y+ ! x

+
0 ; and n ! 1: Call the resulting

region S(x0): We observe that S(x0) is a connected set that is invariant under f and

is nonempty for every parameter value p 2 Ip such that p � p0 (by invariant we mean

that f(S(x0)) = S(f(x0; p0)): Thus, since S(x0) is bounded by (3.12), there exists a set

of points, S(x0); in combined state and parameter space that shadow any trajectory,
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ffn
p0
(x0)g1n=0 of fp0: Finally we observe that there exists a subset of S(x0) that can be

represented by the form given for W (x0):

3.4 Example: quadratic map

In this section we examine how the results of section 3.3 apply to the quadratic map,

fp : [0; 1]! [0; 1]; where:

fp(x) = px(1 � x) (3.13)

and p 2 [0; 4]: For the rest of this section, fp will refer to the map given in (3.13), and

f(x; p) = fp(x) for any (x; p) 2 Ix � Ip where Ix = [0; 1] and Ip = [0; 4]:

We have already seen in conjecture 3.1.1, that there appears to be dense set of pa-

rameters in Ip for which fp is structurally stable and has a hyperbolic periodic attractor.

However, by the following result, we �nd that there is also a large set of parameters for

which fp satis�es the Collet-Eckmann conditions and is not structurally stable:

Theorem 3.4.1 Let E be the set of parameter values, p; such that (CE1) is satis�ed for

the family of quadratic maps, fp; given in (3.13). Then E is a set of positive Lebesgue

measure. Speci�cally, E has a density point at p = 4 so that:

lim
�!0

�(E \ [4� �; 4])

�

= 1: (3.14)

where �(S) represents the Lebesgue measure of the set S:

Proof: The �rst proof of this result was given in [5]. The reader should also consult

the proof given in [33].3

Apparently, if we pick a parameter, p0; at random from Ip (with uniform distribution

on Ip) there is a positive probability that fp0 will satisfy (CE1). We might note that

numerical evidence suggests that the set of parameters, p; resulting in maps, fp; which

satisfy (CE1) are not just concentrated in a small neighborhood of p = 4:

In any case, applying the results of the last section, we see that for a positive measure

of parameter values, there is a de�nite asymmetry with respect to shadowing results in

parameter space. The following theorem illustrates this fact.

3These two references actually deal with the family of maps, ga(x) = 1 � ax
2
; where a is the

parameter. However, the maps ga and fp are topologically conjugate if a = p
2 � 2p: The conjugating

homeomorphism in this case is simply a linear function. Thus the results in the references immediately

apply to the family of quadratic maps, fp : Ix ! Ix for p 2 Ip:
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Theorem 3.4.2 Let Ip = [0; 4]; Ix = [0; 1]; and fp : Ix ! Ix be the family of quadratic

maps such that fp(x) = px(1 � x) for p 2 Ip: Then there exist constants � > 0; C > 0;

K > 0; and set E(
) � Ip with positive Lebesgue measure for every 
 > 1 such that:

(1) If 
 > 1 and p0 2 E(
); then fp0
satis�es (CE1).

(2) If fp0 satis�es (CE1), then for any � > 0 su�ciently small, any orbit of fp0 can be

��shadowed by an orbit of fp for p 2 [p0; p0 + C�
3]:

(3) If 
 > 1 and p0 2 E(
); then for any � > 0, almost no orbits of fp0 can be

��shadowed by any orbit of fp for p 2 (p0��; p0�(K�)
): That is, the set of possible

initial conditions, x0 2 Ix; such that the orbit ff i
p0
(x0)g1i=0 can be ��shadowed

by some orbit of fp comprises at most a set of Lebesgue measure zero on Ix if

p 2 (p0 � �; p0 � (K�)
):

Proof of theorem 3.4.2: The full proof for this result can be found in appendix E.

Before we take a look at an overview of the proof for theorem 3.4.2, it is useful to

make a few remarks. First of all, one might wonder whether the asymmetrical situation

in theorem 3.4.2 is really generic for all p0 2 Ip such that fp0 satis�es (CE1). For

example, are there other parameter values in Ip for which it is easier to shadow lower

parameter values than it is to shadow higher parameter values? Numerical evidence

indicates that most if not all p 2 Ip exhibit asymmetrical shadowing properties if fp has

positive Lyapunov exponents. Furthermore, it seems that these parameter values favor

the same speci�c direction in parameter space. In fact it is easy to show analytically

that condition (2) of theorem 3.4.2 actually holds for all p0 2 Ip for which fp0
satis�es

(CE1). In other words, for fp0 satisfying (CE1), there exists C > 0 such that for any

� > 0 su�ciently small, fp0 can be ��shadowed by an orbit of fp if p 2 [p0; p0 + C�
3]:

We now outline the strategy for the proof of theorem 3.4.2. For parts (1) and

(3) we basically want to combine theorem 3.3.1 and theorem 3.4.1 in the appropriate

way. There are four major steps. We �rst bound the return time of the orbit of the

turning point, c = 1
2
; to neighborhoods of c: Next we show that fp satis�es (CP1) and

favors higher parameters on a positive measure of parameter values. This allows us to

apply theorem 3.3.1. Finally we show that almost every orbit of these maps approach

arbitrarily close to c so that if the orbit, ff i
p0
(c)g1

i=0; cannot be shadowed then almost

all other orbits of fp0 cannot be shadowed either.

We bound the return time of the orbit of the turning point, c; to neighborhoods of c by

examining the proof of theorem 3.4.1. Speci�cally, as part of the proof of theorem 3.4.1,

Benedicks and Carleson [5] show that for any � > 0; there is a set of positive measure

in parameter space, S(�) 2 Ip; such that if p0 2 S(�) then fp0
satis�es (CE1) and the

condition:

jf i
p0
(c)� cj > e

��i (3.15)
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for all i 2 f0; 1; 2; : : : g: The set, S(�); has a density point at parameter value p = 4:

Next we show that fp satis�es (CP1) and favors higher parameters on a subset of S(�)

of positive measure. This is basically done by looking at what happens for p = 4 and

extrapolating that result for parameters in a small interval in parameter space around

p = 4: The result only works for those values of p for which fp satis�es (CE1). However,

since p = 4 is a density point of S(�); for any � > 0; there is a set, S�(�); contained in

a neighborhood p = 4 with a density at p = 4 for which p0 2 S�(�) implies fp0 satis�es

(CE1) and (3.15), and fp favors higher parameters and satis�es (CP1) at p = p0:

Then by applying theorem 3.3.1 we see that there exist constants � > 0; K0 > 0 and

K1 > 0 such that for any � > 0; if p0 2 S�(�) then the orbit, ff i
p0
(c)g1

i=0; cannot be

shadowed by any orbit of fp for p 2 (p0� �; p0�K0��
�ne(c;K1�;p0)) (recall that ne(c; �; p0)

is de�ned to be the smallest integer n � 1 such that jfn(c; p0)� cj � �:) By controlling

� > 0 in (3.15) we can e�ectively control ne(c; �; p0) to be whatever we want. Thus

for any 
 > 0 we can choose a set E(
) � Ip with a density point at p = 4 such

that if p0 2 E(
) then fp0
satis�es (CE1) and no orbits of fp ��shadow the orbit,

ff i
p0
(c)g1

i=0; for any p 2 (p0 � �; p0 � K0(K1�)

): But since 
 > 1; if we set constant

K = maxfK0K1;K1g > 0 we see that p0 �K0(K1�)


> p0 � (K�)
 for any � > 0: Thus,

no orbits of fp may ��shadow ff i
p0
(c)g1

i=0; if p 2 (p0 � �; p0 � (K�)
):

Finally it is known that if fp0 satis�es (CE1) then almost every orbit of fp0 approaches

arbitrarily close to c: Thus for almost all x0 2 Ix; the orbit, ff i
p0
(x0)g1i=0; cannot be

shadowed by an orbit of fp if the orbit, ff ip0(c)g1i=0; cannot be shadowed by any orbit

of fp: Consequently, we see that for any 
 > 1 if p0 2 E(
) then fp0
satis�es (CE1) and

almost no orbits of fp0 can be shadowed by any orbit of fp if p 2 (p0 � �; p0 � (K�)
):

This would prove parts (1) and (3) of the theorem.

Part (2) of theorem 3.4.2 is a direct result of corollary 3.3.1 and the following result,

due to Milnor and Thurston [34]:

Lemma 3.4.1 The kneading invariant, D(fp; t); is monotonically decreasing with re-

spect to p for all p 2 Ip:

Thus if fp0 satis�es (CE1) for some p0 2 E(
), there exists a constant C > 0 such that

any orbit of fp0 can be ��shadowed by an orbit of fp if p 2 [p0; p0 + C�
3]: This proves

part (2) of the theorem.

3.5 Remarks on convergence of parameter estimates

In order to determine the feasibility of parameter estimation applications, it is important

to have some idea about how many state samples are likely to be needed in order to attain

a certain accuracy in the parameter estimate. Ergodic theory comes into play here, since
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we would like to consider the behavior of typical orbits. In particular, suppose that a data

stream is generated from an initial condition that is chosen at random after the system

has settled into its equilibrium behavior. We would like to estimate the rate at which a

parameter estimate is likely to converge with increasing numbers of measurements from

the data stream. In this section, we outline ideas on how to approach this question, and

make certain conjectures about convergence results. These conjectures closely match

numerical results attained from actual parameter estimation techniques as shown in

chapter 6 of this report.

We have already seen that the accuracy of a parameter estimate for a piecewise

monotone map depends on how close the orbit being sampled comes to the turning

points of the map. When an orbit comes close to a turning point, nearby regions in

state space are subject to a folding e�ect that enables us to distinguish small di�erences

in parameters based on state data. With a given level of measurement noise, �; there

often exists a lower limit on the parameter estimation accuracy resulting from folding

and refolding e�ects near turning points (see theorem 3.2.1). This bound is related to

the amount of time it takes for an orbit near a turning point to return within � distance

of a turning point. For most numerical purposes, however, this lower limit is often too

small to be of practical importance. Thus, it is important to consider the approximate

rate at which a parameter estimate is likely to converge, before the system reaches the

lower limit in the accuracy of the parameter estimate.

Assuming that a family of piecewise monotone maps, ffpjp 2 Ip � Rg has the same

number of turning points for all p 2 Ip, this turns out to be equivalent to asking the

following question: Given a typical orbit, fxngNn=1; of fp0 (with p0 2 Ip), as N increases,

for what parameter values, p; do there exist shadowing orbits, fyn(p)gNn=1; of fp; such

that yn(p) and xn lie on the same monotone branch of fp0 for each n 2 f1; 2 : : : ; Ng: In
other words, if c1 < c2 < : : : < cm are the turning points of fp for all p 2 Ip; then for

any n 2 f1; 2 : : : ; Ng; we require that xn 2 [ci; ci+1] implies yn(p) 2 [ci; ci+1]: This makes

sense because the lower limit in the accuracy of the parameter estimate results from

the fact that orbits can shadow each other by evolving on di�erent monotone branches,

so that state space regions around an orbit for a map with leading parameters get

refolded more than regions around shadowing orbits for maps with lagging parameters.

Henceforth, given the family, fp; of piecewise monotone maps described above, we will

say that a sequence of points, fyngNn=1; �-monotone-shadows an orbit fxngNn=1; of fp0
if yn and xn lie on the same monotone branch of fp0 for each n 2 f1; 2 : : : ; Ng and if

jyn � xnj < � for each n 2 f1; 2 : : : ; Ng:
Using these ideas, we make the following conjectures:

Conjecture 1: Consider the family of tent maps, fgp : Ix ! Ixjp 2 Ipg; where Ix =

[0; 1];

gp(x) =

(
px if x � 1

2

p(1� x) if x > 1
2
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and Ip = (3
2
; 2]: Given � > 0 and p0 2 Ip; for almost all x0 2 Ix there is a constant

K > 0 such that for each positive integer N; there exists a p 2 (p0 �K
1
N
; p0] such that

the orbit fgn
p0
(x0)gNn=0 is not �-monotone-shadowed by any orbit of gp:

It turns out that numerical results indicate that the error in the estimate of the

parameters of the tent map tends to converge at a rate proportional to 1
N
where N is

the number of observations. Similarly we have:

Conjecture 2: Consider the family of quadratic maps, ffp : Ix ! Ixjp 2 I
0
p
g; where

Ix = [0; 1];

fp(x) = px(1 � x) (3.16)

and I
0
p
= (2; 4]: Then there exists a set E � I

0
p
of positive Lebesgue measure such that if

p0 2 E; then given � > 0; for almost all x0 2 Ix; there is a constant K > 0 such that for

each positive integer N; there exists a p 2 (p0�K

1
N2 ; p0] such that the orbit fgn

p0
(x0)gNn=0

is not �-monotone-shadowed by any orbit of fp:

Furthermore, we expect that the error in the parameter estimate of the quadratic

map should converge at a rate proportional to 1
N2 ; where N is the number of observations

processed. In chapter 6, we will see that this appears to agree with numerical results.

The rest of this section will be devoted to motivating these two conjectures. In order

to estimate the convergence rate of the parameter estimate, we �rst need an estimate of

how fast an orbit is likely to approach a turning point. It turns out that the maps we

are interested in are ergodic so that the long term average behavior of almost all orbits

of the maps can be described by the appropriate invariant measure of the map. Thus,

in order to estimate how fast most orbits approach a turning point of map, it is helpful

to examine the invariant measures of the map.

� is said to be an invariant measure of the map h : Ix ! Ix if �(h�1(A)) = �(A)

for any open set A � Ix: Every ergodic map, h : Ix ! Ix; has an associated invariant

measure, �; such that for any continuous function � : Ix ! R; the relation,

lim
N!1

1

N

N�1X
n=0

�(fn(x0)) =
Z
x2I

�(x)�(dx);

holds for �-almost all x0 2 Ix: Thus, one might say that the \time-average" equals

the \space-average" of an ergodic map. The density, d�

d�
; of the measure � satis�es the

property that
R
x2A

d�

d�
(x)�(dx) = �(A) for any open A � Ix:

4

Conjecture 1:

Let us now outline the motivation behind Conjecture 1. The tent map, gp; is ergodic

if p 2 Ip: The density, d�p

d�
; of the associated invariant measure �p of gp is simply a

4For more information regarding invariant measures and ergodic theory of maps of the interval please

refer to chapter V in [33].
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constant over the region, [g2
p
(c); gp(c)]:We expect that for �p-almost all initial conditions

x0 2 [0; 1] there exists a K > 0 such that:

min
0�i�n

jgi
p
(x0)� cj < K

1

n

is satis�ed for all n � 0 if p 2 Ip:

Keeping this observation in mind, let c = 1
2
be the critical point of the tent map.

One can show that gp favors higher parameters for all p 2 Ip: In other words, using the

same notation as in (3.7) and (3.8), we know that

sgnfDpg
n(c; p)g = �n(c; p) (3.17)

for all n � 1:5 It is also not di�cult to show that there exist constants K1 > 0 and

K2 > 0 such that

K1p
n
< jDpg

n(c; p)j < K2p
n
: (3.18)

for all n � 1 if p 2 Ip:

Now given p0 2 Ip and an initial condition x0 2 [0; 1]; consider the �nite orbit

fgn
p0
(x0)gNn=0: We would like to determine if there is an orbit of gp that ��monotone-

shadows this orbit for p < p0:To �rst order, this is basically determined by the magnitude

of

�N = min
0�n�N

jgn
p0
(x0)� cj (3.19)

because regions of state space near the critical point c get folded, producing the leading

and lagging behavior which in turn leads to asymmetrical shadowing in parameter space.

Since the tent map favors higher parameters, gp cannot ��monotone-shadow the orbit

fgn
p0
(c+�N )gmn=1 for p < p0 if:

�n(c; p)[g
n

p0
(c+�N)� g

n

p
(c)] > �: (3.20)

for any n � m: Suppose that the inequality in (3.20) is false for all n � m � 1: Then,

from (3.17) and (3.18),

�m(c; p)[g
m

p0
(c+�N)� g

m

p
(c)] > K1p

m(p0 � p)� p

m

0 �N :

Now suppose that

m = log
p0

�

�N

: (3.21)

5Actually gp favors higher parameters for all p 2 (1; 2]: We con�ne our discussion here to p 2 Ip =

(3
2
; 2] for convenience since (3.17) may only hold for n � N0 for some N0 > 1 if p 2 (1; 3

2
]: However, we

suspect that Conjecture 2 also holds for any p 2 (1; 2]:
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We �nd that:

�m(c; p)[g
m

p0
(c+�N)� g

m

p
(c)] > �[(

p0 � p

�N

)(
�

�N

)
log p
log p0

�1 � 1]

So for �N su�ciently small and p 2 Ip; we can see that the inequality in (3.20) holds

for the value m given in (3.21) if p0 � p > 3�N :

Thus, given su�ciently small �N as de�ned in (3.19), there exists a p 2 (p�3�N ; p0]

such that no orbit of gp can ��monotone-shadow the orbit fxngN+m
n=0 : Recall, however,

that �N should decrease at rate at least proportional to 1
N
: Applying this fact, we get

a result similar to Conjecture 1.

Conjecture 2:

Now let us consider Conjecture 2. The basic idea here is similar to Conjecture

1. However,Conjecture 2 presents some additional complications. First the invariant

measures for the quadratic map are more complicated, and cannot be written in closed

form. Second, there is no uniform expansion available in state or parameter space, so

that it is not a simple matter to bound the quantity fn
p0
(c+�N) � f

n

p
(c) for small �N

and for p near p0:

The invariant measures of the quadratic map have been the subject of vigorous

research over the past several years. Nowicki and van Strien show in [46] that for the

maps given in (3.16) if fp0 satis�es (CE1) for some p0 2 (1; 2]; then fp0
has an ergodic

invariant measure � such that for any measurable set A � [0; 1] there exists a constant

K > 0 such that �(A) � KjAj 12 (where jAj is the Lebesgue of the set A).
Now consider the interval A� = (c� 1

2
�; c + 1

2
�): Note that there exists K 0

> 0 such

that for any � > 0; jf(A�)j < K
0
�
2
: Thus, from Nowicki and van Strien's result, we know

that there exists K1 > 0 such that for any � > 0:

�(A�) = �(fp0(A�)) < Kjfp0(A�)j 12 < K1�

Furthermore, it is fairly easy to show that there also exists K2 > 0 such that for any

� > 0 �(A�) > K2�: Thus, since K2� < �(A�) < K1� for any �; we expect that for almost

all initial conditions x0 2 [0; 1]; the quantity,

�N(x0) = min
0�n�N

jfn
p0
(x0)� cj: (3.22)

will decay at a rate proportional to 1
N
:

As in Conjecture 1, given p0 2 Ip; x0 2 Ix; and the �nite orbit, ffn
p0
(x0)gNn=0; of

fp0
; we would like to determine if there is an orbit of fp that ��monotone-shadows this

orbit for some p < p0: As before, the important statistic to know is �N (x0) (we will

henceforth assume that x0 is �xed and refer simply to �N).
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As in Conjecture 1, fp cannot ��shadow the orbit ffn
p0
(c+�N )gmn=1 for p < p0 if:

�i(c; p)[f
i

p0
(c+�N)� f

i

p
(c)] > �: (3.23)

for any i � m: This corresponds to what happens when an orbit, ffn
p0
(c + �N)gin=0;

of fp0 leads the orbit of the critical point of the map fp by more than � so there is

no orbit of fp that can e�ectively shadow that orbit. The other way that fp can fail

to ��monotone-shadow the orbit ffn
p0
(c+ �N)gin=0; is if f

i

p
(c) lags behind f

i

p0
(c + �N)

(by less than �), but f i
p
(c) and f

i

p0
(c+�N) are on di�erent monotone branches (ie, the

critical point, c = 1
2
is between f i

p
(c) and f

i

p0
(c+�N )).

Thus, the prove the conjecture it is su�cient to show that given � > 0 su�ciently

small, there exists a constant K > 0 such that that for each �N > 0 there exists a

p > p0 �K�2
N
and i < �Clog�2

N
such that one of the following is satis�ed:

(1) �i(c; p)[f
i

p0
(c+�N)� f

i

p
(c)] > �

(2) �i(c; p)[f
i

p0
(c+�N)� f

i

p
(c)] > 0 and sgnfc� f

i

p0
(c+�N )g = �sgnfc� f

i

p
(c)g:

The problem is getting a estimate for f i
p0
(c+�N )� f

i

p
(c): Recall that near p = 4 there

is a set E � (2; 4] of positive Lebesgue measure such that for each p0 2 E; fp0
satis�es

(CE1), (CP1), and favors higher parameters. Thus if p0 2 E; there exists a K0 > 0 and

N0 > 0 such that

1

K0

<

Dpf
i(c; p0)

Dxf
i�1(f(c; p0); p0)

< K0: (3.24)

for all i � N0: So, if p0 2 E; for p < p0 and each i > N0 we have that:

�i(c; p)[f
i

p0
(c+�N )� f

i

p
(c)]

= �i(c; p)[(fp0(c)� f

i

p
(c))� (fp0(c)� f

i

p0
(c+�N )]

> �i(c; p)[(Dpf
i(c; p0)(p0 � p) +O((p0 � p)2)

�(K 0
Dxf

i�1(f(c; p0); p0)�
2
N
+O(�3

N
))]

> jDxf
i�1

f(c; p0); p0)j[(p0 � p) �K0K
0�2

N
+O(�3

N
) +O((p0 � p)2)] (3.25)

For each i > N0; the left hand side of (3.23) tends to grow as (p0�p)�K0K1�
2
N
; at least

for small �2
N
and p0 � p: Recall that Dxf

i�1(f(c; p0); p0) tends to grow exponentially

with i and �N tends to decay proportional to 1
N
: Thus, given � > 0 one might expect

that there exists K > 0 and C > 0 such that either condition (1) or (2) are satis�ed for

some p > p0 �K�2
N
and i < �Clog�2

N
:

This, however, is a somewhat rough calculation, and in order to demonstrate that

either conditions (1) or (2) are satis�ed, we need to bound the higher order terms in

(3.25). This involves getting a uniform estimate of the relationship between Dpf
i(c; p0�

�p) and Dxf
i�1(f(c+ �x; p0); p0) for small values of �p and �x as i increases. This does

not to be a trivial task and is something that should be looked into more carefully in

the future.
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3.6 Conclusions, remarks, and future work

The primary goal of this chapter was to examine how shadowing works in one-dimensional

maps in order to evaluate the feasibility of parameter estimation on simple chaotic sys-

tems. We have been particularly interested in investigating how nonlinear folding a�ects

parameter shadowing and how this might help explain numerical results which show

asymmetrical behavior in the parameter space of one-dimensional maps. More speci�-

cally, for a parameterized family of maps, fp; it is apparently the case that an orbit for a

particular parameter value, p = p0; is often shadowed much more readily by maps with

slightly higher parameter values than by maps with slightly lower parameter values (or

vice versa). This phenomenon has important e�ects on the possibilities for parameter

estimation. For example, if we are given noisy observations of the orbit described above

and asked what the parameter value was of the map that produced that data, then we

would immediately be able to eliminate most values less than p0 as possible candidates

for the actual parameter value. On the other hand, it may be much more di�cult to

distinguish p0 from parameter values slightly larger than p0:

For piecewise monotone maps with positive Lyapunov exponents, we demonstrated

that the folding behavior around a turning point generally leads to asymmetrical behav-

ior, unless the parameter dependence is degenerate in some way. In particular, images

of neighborhoods of a turning point under fp tend to separate exponentially fast for per-

turbations in p: This results in a sort of lead-lag phenomenon as the images for di�erent

parameter values separate, causing images for some parameter values to overlap each

other more than others. Near the turning point, orbits for parameter values that lag

behind cannot shadow orbits for the parameter values that lead unless another folding

occurs because of a subsequent approach to a turning point.

For the case of unimodal families of maps with negative Schwarzian derivative, the

result is sharper. Apparently, if the parameter dependence is not degenerate, and if

a map, fp0 ; has positive Lyapunov exponents for some parameter value, p0; then for

any � > 0 su�ciently small, there exists C > 0 so that for one direction in parameter

space (either p � p0 or p � p0), all orbits of fp0 can be ��shadowed by an orbit of

fp if jp � p0j < C�
3
: Meanwhile, in the other direction in parameter space, there exist

constants � > 0 and K > 0 so that for any 
 > 1 there is a positive Lebesgue measure of

parameter values such that if jp�p0j < �; then almost no orbits of fp0 can be ��shadowed
by any orbit of fp if jp� p0j > (K�)
: This clearly illustrates some sort of preference of

direction in parameter space.

One might also note that this result demonstrates that all orbits of certain chaotic

(nonperiodic) systems can be shadowed by orbits of systems dominated by hyperbolic

periodic attractors (consider, for example, the quadratic map, fp(x) = px(1�x)). Shad-

owing results have sometimes been cited to justify the use of computers in analyzing

dynamical systems, since if one numerically iterates an orbit and �nds that it is chaotic,
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then similar real orbits must exist in that system (or nearby systems). This is true, but

one should also be careful, because the real orbits that shadow a numerically generated

trajectory are often purely pathological (ie, such orbits are often not qualitatively similar

to typical orbits of the system).

In any case, many questions related to this material still remain unanswered. It

seems to be quite di�cult to come up with crisp general results when it comes to a

general topic like parameter dependence in families of maps. For instance, I do not

know of a simple way of characterizing exactly when parameter shadowing favors one

direction over the other in parameter space for piecewise monotone maps. For unimodal

maps, it appears that perhaps a useful connection to topological entropy may be made.

If topological entropy is monotonic, and if there is a change in the topological entropy

of map fp with respect to p at p = p0 then certain asymmetrical shadowing results seem

likely for orbits of fp0: However, topological entropy does not appear to be an ideal

indicator for asymmetrical shadowing, since it is global in nature. On the other hand,

if a piecewise monotone map has multiple turning points, it is possible for some turning

points to favor higher parameters while other turning points favor lower parameters.

Such examples are interesting, from a parameter estimation point of view, because that

means that one may be able to e�ectively squeeze parameter estimates within a narrow

band of uncertainty as the orbit being sampled passes close to turning points which favor

di�erent directions in parameter space.
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Chapter 4

General nonuniformly hyperbolic

systems

In this chapter we examine shadowing behavior for general one-parameter families of

C
2 di�eomorphisms, fp : M ! M for p 2 R where M is a smooth compact manifold.

We want to consider why orbits shadow each other (or fail to shadow each other) in

maps that are nonuniformly hyperbolic. This is important to investigate so that we

can properly evaluate the feasibility of parameter estimation in a wide class of chaotic

systems.

The exposition in this chapter will not be rigorous. Most of the arguments will

be qualitative in nature. Our goal here is to motivate some possible mechanisms that

might help explain results from numerical experiments. In particular we will attempt

to draw analogies to our work in chapter 3 to help explain what may be happening in

multi-dimensional systems.

4.1 Preliminaries

Let us �rst outline some basic concepts.

We start by introducing the notion of Lyapunov exponents. Let f : M ! M be a

C
2 di�eomorphism. Suppose that M is a compact q�dimensional manifold and that for

some x 2 M there exist subspaces, Rq = E
1
x
� E

2
x
� : : : in the tangent space of f at x

such that:

�

i

x
= lim

n!1
1

n

logjDfn(x)uj if u 2 E

i

x
n Ei�1

x
:

for some numbers �1
x
> �

2
x
> : : : : Then the �

i

x
's are the Lyapunov exponents of the

orbit, ff i(x)g: Oseledec's Multiplicative Ergodic Theorem ([48]) demonstrates that for
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any f -invariant probability measure, �; these Lyapunov exponents exist for �-almost all

x 2M:

If there are no �i
x
's equal to zero, then there exist local stable manifolds at x tangent

to the linear subspace, Ei

x
if �i

x
< 0: There also exists an analogous unstable manifold.

In other words, for almost any x 2M there exists an � > 0 such that:

W

s

�
(x; f) = fy 2M : d(fn(x); fn(y)) � � for all n � 0 g

W

u

�
(x; f) = fy 2M : d(f�n(x); f�n(y)) � � for all n � 0 g

These manifolds are locally as di�erentiable as f: This result is based on Pesin [52] and

Ruelle [54]. The di�erence between these manifolds and manifolds for the uniformly

hyperbolic case is that these manifolds do not have to exist everywhere, the angles

between the manifolds can approach zero, and the neighborhoods, �; can be arbitrarily

small for di�erent x 2M:

We can also de�ne global stable and unstable manifolds as follows:

W
s(x; f) = fy 2 M : d(fn(x); fn(y))! 0 as n!1g

W
u(x; f) = fy 2 M : d(f�n(x); f�n(y))! 0 as n!1g:

Note that these manifolds are invariant in the sense that f(W s(x; f)) = W
s(f(x); f):

Although locally di�erentiable, the manifolds can have extremely complicated structure

in general.

4.2 Discussion

We now return to the investigation of shadowing orbits.

There have been some attempts to examine the linear theory regarding nonuniformly

hyperbolic maps in order to make statements about shadowing behavior (see for exam-

ple [24]). However, since the nonexistence of shadowing orbits fundamentally results

from degeneracy in the linear theory, it is also be useful to consider what happens in

terms of the structure of nearby manifolds.

For almost every x; f looks locally hyperbolic. However, in nonhyperbolic systems

if we iterate the orbit ff i(x)g; we will eventually approach some sort of degeneracy.

For example, one possible scenario is that for some point a 2 ff i(x)g; W s(a; f)

and W
u(a; f) are nearly tangent and intersect each other at some nearby point, y: As

illustrated in �gure 4.1, this structure implies a certain scenario for the evolution of

the manifolds as we map forward with f or backward with f�1: We will argue that this

situation is in some sense a multidimensional analog for the folding behavior we observed

in one dimension.
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Figure 4.1: Possible situation near a homoclinic tangency. Note how a fold in the unstable

manifold is created as we map ahead by fn; and a fold in the stable manifold is created as we

map back by f�n:
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Figure 4.2: An illustrative example of how homoclinic tangencies can cause problems for

shadowing.

For one thing, the homoclinic intersection of manifolds can prevent or at least hamper

shadowing. We illustrate this in �gure 4.2. Consider for example two nearby points a

and b such that d(a; b; ) < � and let fcng be a ��pseudo-orbit of f with the following

form:

cn =

(
f
n(a) if n < 0

f
n(b) if n � 0

In a uniformly hyperbolic scenario as shown in �gure 4.2(a), we can easily pick a suitable

orbit to shadow fcng, namely ff i(z)g where z = W
u

�
(a; f) \ W

s

�
(b; f): However if a

homoclinic intersection is nearby as in �gure 4.2(b), we see that there is no obvious way to

pick a shadowing orbit, since there may be no point z satisfying z = W
u

�
(a; f)\W s

�
(b; f):

Note that the di�culty in �nding a shadowing orbit seems to depends on how close a is

to the homoclinic tangency, and the geometry of the manifolds nearby.

Homoclinic tangencies could also cause asymmetrical shadowing in parameter space.

Numerical experiments with maps that favor higher parameters seem to show the follow-

ing scenario: As we map a state space region near a homoclinic tangency ahead by fp0

repeatedly, a tongue, or fold of the unstable manifold develops as the manifold expands.

If we examine the corresponding situation in a map with a slightly higher parameter

value, we �nd that the corresponding fold in the unstable manifold for the higher pa-

rameter system overlaps the fold in the unstable manifold of the original system. In this

case we expect that the original system would have di�culty shadowing a trajectory

close to the apex of the fold in the higher parameter system. This situation is depicted

in �gure 4.3. A similar argument works for f�1: Numerical results seem to indicate that

for many families of systems at least, there is an ordering in parameter space such that
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Figure 4.4: Refolding after a subsequent encounter with a homoclinic tangency.

Also recall that with maps of the interval, a folded region can get refolded upon a

subsequent encounter with a turning point. A similar thing can also happen in higher

dimensions. Consider �gure 4.4 for example. Here we see that the folded tongue of the

unstable manifold gets refolded back on itself, possibly allowing lagging orbits to catch

up so that shadowing is possible. This suggests that there may be interesting shadowing

results of the sort described in chapter 3 for one dimension. The situation here, however,
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is more complicated since in one dimension there were only a �nite number of sources

of folding, namely the turning point, while here there are likely to be an in�nite number

of sources for the folding.
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Chapter 5

Parameter estimation algorithms

5.1 Introduction

In this chapter we present new algorithms for estimating the parameters of chaotic

systems. In particular we will be interested in investigating estimation algorithms for

nonuniformly hyperbolic dynamical systems, because these systems include most of the

chaotic systems likely to be encountered in physical applications. From our discussion

in chapters 3 and 4, we know that there are three basic e�ects that are important to

consider when designing a parameter estimation algorithm for nonuniformly hyperbolic

dynamical systems: (1) most data points contribute very little to our knowledge of the

parameters of the system, while a relatively few data points may be extremely sensitive to

parameters, (2) the sensitive sections of orbits re
ect nearby folding behavior which must

be accurately modeled in order to extract information about the parameters, and (3)

the folding behavior often results in asymmetrical shadowing behavior in the parameter

space of the system, so we can generally eliminate only parameters slightly less than

or slightly greater than the actual parameter value. The goal is to develop an e�cient

algorithm that takes all three of these e�ects into account.

Our basic strategy will be to take advantage of property (1) above by using a linear

�ltering technique to scan through most of the data and attempt to locate parts of the

trajectory where folding occurs. In sections of the trajectory where folding does occur,

we will examine the data closely using a type of Monte-Carlo analysis which we have

designed to circumvent the numerical pitfalls that accompany work with chaotic systems.

We begin this chapter by surveying some traditional �ltering techniques and exam-

ining some basic approaches for parameter estimation problems (section 5.3). Those

readers who are familiar with traditional estimation theory may wish to skim these

sections. We go on in section 5.4 to examine how and why traditional algorithms fail

in high-precision estimation of chaotic systems. We then propose a new algorithm for
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estimating the parameters of a chaotic system in one dimension (section 5.5). This

algorithm is generalized in section 5.6 to deal with systems in higher dimensions.

Numerical results of these algorithms describing the performance of these techniques

are presented in chapter 6.

5.2 The estimation problem

Let us begin by restating the problem.1 Let:

xn+1 = fp(xn) (5.1)

and yn = xn + vn (5.2)

where xn is the state of the system, yn are observations, vn represents noise, f evolves

the state, p 2 Ip � R is the scalar parameter we are trying to estimate, and Ip is a closed

interval of the real line.

It will also be useful to write the system in (5.1) and (5.2) in terms of un = (xn; p);

a combined vector of state and parameters:

un+1 = g(un) (5.3)

yn = Hnun + vn (5.4)

where the map, g; satis�es g(x; p) = (fp(x); p); and:

Hn =

"
Iq 0

0 1

#
(5.5)

where Iq is a q � q identity matrix if the state, x; has dimension q:

We now make a few remarks about notation. In general, throughout this chapter,

the letters x; p; u will correspond to state, parameter, and state-parameter vectors. Set

x
n = (x0; x1; : : : ; xn); y

n = (y0; y1; : : : ; yn); and u
n = (u0; u1; : : : ; un):

The symbol \^" above a vector will be used to denote an estimate. For example.

the estimate of the parameter p based on the observations in y
n will be denoted p̂n:

We will also use the notation, ûnjk; to denote an estimate of un based on observations,

y
k
: Similarly, the symbol \~" will be used to denote an error quantity. For example we

might write that ~un = un � ûnjn:

1Note that the setup in (5.1) and (5.2) is somewhat less general than standard formulations of

�ltering problems. For example one could add an extra term, wn; to represent the system noise so that

xn+1 = fp(xn) + wn; or one could add an extra function, hn(x); so that yn = hn(xn) + vn; to re
ect

the fact that the observations might represent a more general function of the state. However, we have

elected to keep problem as simple as possible in order to concentrate on how chaos a�ects estimation,

and to be consistent with the presentation in chapters 2-4.
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5.3 Traditional approaches

We now examine some basic methods for approaching parameter estimation. In sec-

tions 5.3.1 and 5.3.2 we mainly concentrate on providing the motivation behind linear

techniques like the Kalman �lter. This treatment is extended in section 5.3.3, where

nonlinear techniques are discussed in more detail. The material in this section is well-

known in the engineering community, but we explain it here because it provides the

basis for new algorithms we develop later to deal with chaotic systems.

There are a variety of ways to approach parameter estimation problems. Engineers

have developed a whole host of ad hoc tricks that may be applied in di�erent situations.

The basic idea, however, is relatively simple. Given observations, fykgnk=0; and a model

for fp; we would like to pick our parameter estimate, p = p̂n; so that there exists an

orbit, fx̂k(p)gnn=0; of fp that makes the residuals,

�k(p) = yk � x̂k(p)

as small as possible for k 2 f0; 1; : : : ; ng: In order to choose the best possible estimate,

p̂n; we need some criteria for evaluating how small these residuals are.

From here, there are a number of di�erent ways to approach the problem of how

to choose the optimizing criteria to make use of all the known information. In fact,

the recursive Kalman �lter itself has many di�erent possible interpretations. Many of

the di�erent approaches to parameter estimation provide interesting insight into the

estimation problem itself. Our objective here will be to motivate some of the di�erent

ideas on how to look at parameter estimation, without getting immersed in speci�c

derivations. The reader may consult [3], [29], or [23] for more detailed and/or formal

treatments of this subject.

5.3.1 Nonrecursive estimation

Least squares estimation

One of the simplest ideas about how to estimate parameters is to choose the estimate

p̂n so that p = p̂n minimizes the quantity:

S

0
n
(p) = inf

fx̂ijn(p)gni=0
2Z(p)

f
nX
i=0

(yi � x̂ijn(p))
T (R0

i
)�1(yi � x̂ijn(p))g (5.6)

where Z(p) is the set of all orbits of fp and (R0
i
)�1 are symmetric positive-de�nite

matrices that weight the relative importance of various measurements. This sort of

idea, known as least squares estimation, dates back to Gauss [22].

The formulation in (5.6) is not really useful for estimating parameters in practice,

since there is no direct way of choosing p̂n to minimize (5.6). Things become more
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concrete, however, if we assume the function g in (5.4) is linear in both state and

parameters.2 In this case we can write:

y

n = Gnu0 + v

n (5.7)

where Gn is a constant matrix that e�ectively represents the dynamics of the system.

Our goal is to get a good estimate for u0 = (x0; p) based on the observations in y
n
: In

this case, least squares estimation amounts to minimizing

Sn(u0) = (yn �Gn(u0))
T
R

�1
n
(yn �Gn(u

n)) (5.8)

with respect to u0 where R
�1
n

are positive-de�nite weighting matrices. Our estimate for

u0 based on y
n
; û0jn = (x̂0jn; p̂n); is the value of u0 that minimizes Sn(u0): We can �nd

the appropriate minimum of Sn(u0) by taking the derivative of Sn with respect to u0: If

we do this we �nd that thus value of u0 that minimizes Sn(u0) is:

û0jn = (GT

n
R

�1
n
Gn)

�1
G

T

n
R

�1
n
y

n (5.9)

where GT

n
denotes the transpose of Gn:

Stochastic framework

Another way to approach the problem is to think of un; yn; and vn as random

variables. We shall assume that the vn's are independent random variables with zero

mean. The idea is to choose a parameter estimate, p̂n; based on yn so that the residuals,

�i(p) = yi � x̂i(p); are as close to zero as possible in some statistical sense for i 2
f0; 1; : : : ; ng:

We can write the probability density function3 for un given y
k according to Bayes

rule:

P (unjyk) = P (ykjun)P (un)
P (yk)

(5.10)

These density functions describe everything we might know about the states and param-

eters of the system. Later we will examine more closely how tracking such probability

densities in full can provide information about how to choose parameter estimates, es-

pecially in cases involving nonlinear or chaotic systems. To start with, however, we

concentrate on examining conventional �lters which look only at �rst and second order

moments of these densities.

2Note that this assumption is extremely restrictive in practice, since even if the system is linear

with respect to state, it is generally nonlinear with respect to combined states and parameters. The

purpose of this example, however, is to simply motivate linear ideas. We address nonlinearity in the

next section.
3Contrary to common convention, our choice of the letter p for the parameter necessitates using a

capital P to denote probability density functions. Thus P (unjy
k) represents the density for for un given

the value of yk.

66



Minimum variance

Given the density function, P (u0jyn), one approach is to pick the estimate, û0jn; to
minimize the variance,

E[(u0 � û0jn)
T (u0 � û0jn)] (5.11)

where E[x] =
R
xP (x)dx denotes the expected value of x: This criterion is called the

minimum variance condition. It turns out that this estimator has particularly nice

properties. For instance, it is not hard to show (e.g., [57]) that the û0jn that minimizes

(5.11) also satis�es:

û0jn = E[u0jyn]:
for any density function, P (u0jyn):

Now suppose that g is linear in state and parameters so that (5.7) is satis�ed. Let

us attempt to �nd the so called optimal linear estimator:

û0jn = Any
n + bn

where the constant matrix, An; and constant vector, bn; are chosen to minimize the

variance condition in (5.11). Assuming that the estimator is unbiased (i.e., E(u0 �
û(nj0)) = 0) then:

bn = E(u0)�AnE(y
n):

Minimizing E[(u0 � û0jn)
T (un � û0jn)] we �nd ([57]) that

An = (Q�1 +G

T

n
R

�1
n
G)�1GT

R

�1 (5.12)

where Q = E[u0u
T

0 ] is the covariance matrix of u0 and Rn = E[vn(vn)T ] is the covariance

matrix of vn: Thus we have:

û0jn = E(u0) +An(y
n � E[yn]) (5.13)

where An is as given in (5.12). Comparing this result with (5.9) we see that the û0jn
above, which we derived as the linear estimator with minimum variance, actually looks

a lot like the estimator from the deterministic least squares approach except for the

addition of a priori information about u0 (in the form of E(u0) and the covariance

Q). With the minimum variance approach, the weighting factor Rn also has a de�nite

interpretation as the covariance of the measurement noise.

Furthermore, if we assume that un and vn are Gaussian random variables,4 and

attempt to optimize the estimator û0jn for minimum variance, we again �nd (see [30])

that û0jn has the form given in (5.12) and (5.13).

4A random variable v 2 R
q has Gaussian distribution if

P (v) =
1

(2�)
q

2

e
�

1

2
(v�E(v))T��1

v
(v�E(v))

where E[v] is the expected value of v and �v = E[vvT ] is the covariance matrix of v:
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Thus, in summary, we see that the optimal estimator, û0jn as given in (5.12) and

(5.13) has a number of di�erent interpretations. If the system, g; is linear then the

estimator can be thought of as resulting from a deterministic least squares approach. If

un and vn are thought of as random variables, then û0jn = E[u0jyn]; and if we assume

that un and vn are Gaussian then the û0jn given in (5.13) satis�es the minimum variance

condition. Alternatively, if we drop the Gaussian assumption and search of the best

linear estimator that minimizes the variance condition, we �nd that û0jn as given in

(5.12) and (5.13) is the optimal linear estimator. All these interpretations motivate us

to use the estimator given in (5.12) and (5.13).

5.3.2 The Kalman �lter

We now have the form of an optimal �lter for linear systems. However, the �lter has

problems computationally. It would be nice if there were a way so that new data could be

taken into account easily without having to recompute everything. This is accomplished

with the recursive Kalman �lter.

The Kalman �lter is mathematically equivalent to the linear estimator described in

(5.12) and (5.13), except that it has some important computational advantages. The

basic premise of the Kalman �lter is that the state of the �lter can be kept with two

statistics, ûnjn and �njn; where �njn is the covariance matrix, E[(un� ûnjn)(un� ûnjn)
T ]:

Once we have these two particular statistics, it will be possible, for example, to determine

the next state of the �lter, ûn+1jn+1 and �n+1jn+1; directly given a new piece of data,

yn+1; the �lter's present state, ûnjn; �njn; and knowledge of the map g:

Speci�cally, suppose we are given the linear system:

un+1 = �nun

yn = Hnun + vn:

where vn are independent random variables with zero mean and covariance Rn: The

recursive Kalman �lter can be written in two parts:

Prediction:

ûn+1jn = �nûnjn (5.14)

�n+1jn = �n�njn�
T

n
+Rn+1 (5.15)

Combination:

ûn+1jn+1 = ûn+1jn +Kn+1(yn+1 �Hn+1ûn+1jn) (5.16)

�n+1jn+1 = (I �Kn+1Hn+1)�n+1jn (5.17)
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where the Kalman gain, Kn+1; is given by:

Kn+1 = �n+1jnH
T

n+1[Hn+1�n+1jnH
T

n+1 +Rn+1]
�1
: (5.18)

Motivation and derivation

The Kalman �lter can be motivated in the following way.5 Consider the metric space,

X; of random variables where inner products and norms are de�ned by:

hx; yi = E[xyT ]

and kxk = hx; xi
if x; y 2 X: Let Yn = spanfy0; y1; : : : ; yng be the space of a all linear combinations

of fy0; y1; : : : ; yng: To satisfy the minimum variance condition, we would like to pick

ûnjn 2 Yn to minimize:

E[~uT
n
~un] = k~unk:

where ~un = un � ûnjn: This formulation gives a de�nite geometric interpretation for the

minimization problem and helps to show intuitively what the appropriate ûnjn is. In

order to minimize the distance between un and ûnjn 2 Yn; it makes sense to pick ûnjn so
that ~un is orthogonal to Yn: That is, we require:

h~un; yi = 0 (5.19)

for any y 2 Yn: It is not hard to show that this condition is in fact su�cient to minimize

E[~uT
n
~un] (see e.g., [3]). From a statistical standpoint, this result also makes sense since it

says that the error of the estimate, ~un; should be uncorrelated with the measurements.

In some sense, the estimate uses all the information contained in the measurements.

We can now derive the equations of Kalman �lter. The prediction equations are

relatively straightforward:

ûn+1jn = E[un+1jyn] = �nûnjn

�n+1jn = E[(un+1jn � ^un+1jn)(un+1jn � ^un+1jn)
T ] = �n�njn�

T

n
+Rn+1:

For the estimator ûn+1jn+1 to be unbiased, ûn+1jn+1 must have the form given in

(5.16). Now let us now verify that the formula for Kn+1 in (5.18) makes the Kalman

�lter an optimal linear estimator. To do this, we must show that Kn+1 minimizes the

variance, E[~uT
n+1~un+1]; where ~un+1 = un+1 � ûn+1jn+1: Since ûn+1jn+1 2 Yn+1 we know

from (5.19) that a su�cient condition for E[~uT
n+1~un+1]; to be minimized is that:

E[~uT
n+1ûn+1jn+1] = TraceE[~un+1û

T

n+1jn+1] = 0: (5.20)

5Much of the explanation here follows the exposition in Siapas [56].
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Let us investigate the consequences of this condition. First we have:

~un+1 = �nun � [ûn+1jn +Kn+1(yn+1 �Hn+1ûn+1jn)]

= �nun � �nûnjn �Kn+1[Hn+1un+1 + vn+1] +Kn+1Hn+1�nûnjn

= (I �Kn+1Hn+1)�n~un �Kn+1vn+1

So,

E[~un+1û
T

n+1jn+1] = E[f(I �Kn+1Hn+1)�n~un �Kn+1vn+1g
fûn+1jn +Kn+1(yn+1 �Hn+1ûn+1jn)gT ]

= E[f(I �Kn+1Hn+1)�n~un �Kk+1vn+1g
f�nûnjn +Kn+1�n~un +Kn+1vn+1gT ] (5.21)

Since we require that E[~uT
n
ûnjn] = TracefE[~unûTn ]g = 0; from (5.21) we get that:

TracefE[~un+1ûn+1jn+1]
Tg

= Tracef(I �Kn+1Hn+1)�nE[~un~u
T

n
]�T

n
H

T

n+1K
T

n+1 �Kn+1E[vn+1v
T

n+1]K
T

n+1g
= Tracef�n�njn�

T

n
H

T

n+1K
T

n+1 �Kn+1Hn+1�n�njn�
T

n
H

T

n+1K
T

n+1 �Kn+1Rn+1K
T

n+1g
= Tracef[�n+1jnH

T

n+1 �Kn+1(Hn+1�n+1jnH
T

n+1 +Rn+1)]K
T

n+1g:

Thus, choosing Kn+1 = �n+1jnH
T

n+1[Hn+1�n+1jnH
T

n+1 + Rn+1]
�1 as in (5.18) makes

TracefE[~uT
n+1ûn+1jn+1]g = 0 and therefore minimizes E[~uT

n+1~un+1]:

The equation for �n+1jn+1 in (5.17) can then be derived by simply evaluating �n+1jn+1 =

E[~uT
n+1~un+1]:

5.3.3 Nonlinear estimation

Probability densities

The �lters we looked at in the previous section are optimal linear estimators in the

sense that a minimum variance or least squares condition is satis�ed. Estimators like

the Kalman �lter are only optimal, however, if the system is linear and the correspond-

ing probability densities are Gaussian. Let us now, however, consider how one might

approach estimation problems when these rather stringent condition are relaxed.

Let us begin by recalling the density function in (5.10):

P (unjyk) = P (ykjun)P (un)
P (yk)

(5.22)

where un = (xn; p) is the joint vector of state and parameters and y
k = (y0; y1; : : : ; yk)

represents a vector of observations. This density function represents everything we know
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Figure 5.1: Mapping probability densities using g and combining them with new information.

This is a probabilistic view of what a recursive estimator like the Kalman �lter does. Note

that Gaussian densities have equal probability density surfaces that form ellipsoids. In two

dimensions we draw the densities as ellipses.

mapping P (unjyn) using the system dynamics, g: More precisely we have that:

P (un+1jyn) =
X

z2U(un+1)

[P (zjyn)jDg(z)j�1] (5.23)

where U(un+1) = fzjz = g
�1(un+1)g and jDg(z)j is the determinant of the Jacobian of

g evaluated at z: It is not hard to show that if g is linear and P (unjyn) is Gaussian
then P (un+1jyn) is also Gaussian. Also by Bayes rule, (P (A;B) = P (AjB)P (B) =

P (BjA)P (A)) we have that:

P (un+1; yn+1jyn) = P (un+1jyn+1)P (yn+1jyn) = P (yn+1jun+1; y
n)P (un+1jyn)

where P (yn+1jyn) = R
P (yn+1jun+1)P (un+1jzn)dun+1: Thus we �nd that combining in-
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formation from a new measurement, yn+1; results in the density:

P (un+1jyn+1) =
P (yn+1jun+1)P (un+1jyn)

P (yn+1jyn) : (5.24)

Since the denominator is independent of un+1; it is simply a normalizing factor and is

therefore not important for our considerations. Also note that since P (yn+1jun+1) and

P (un+1jyn) are Gaussian, P (un+1jyn+1) must also be Gaussian. Thus, by induction if

all the data is Gaussian distributed, then P (ukjyk) must be Gaussian for any k: Also,

the MAP estimate and minimum variance estimate for un+1 are both the same, namely

ûn+1jn+1 = E[un+1jyn+1]:

Now consider what happens if the system is nonlinear. The appropriate densities still

describe all we know about the states and parameters. In particular, the equations in

(5.23) and (5.24) are still valid descriptions of how to map ahead and combine densities.

However, in general there are no constraints on the form of these densities. As a practical

matter, the problem becomes how can we deal with these arbitrary probability densities?

How can one represent approximations of the densities in a computationally tractable

form while still retaining enough information to generate useful estimates? There have

been a number of e�orts in this area:

Extended Kalman �lter

The most basic and widely used trick is to simply linearize the system around the

best estimate of the trajectory and then use the Kalman �lter. The idea is that if the

covariances of the relevant probability densities are small enough, then the system acts

approximately linearly on the densities, so linear �ltering may adequately describe the

situation. For the system,

un+1 = g(un) (5.25)

yn+1 = Hnun + vn; (5.26)

as in (5.3), (5.4), and (5.5), the extended Kalman �lter is given by the following equa-

tions, mirroring the Kalman �lter in (5.14)-(5.18):

Prediction:

ûn+1jn = g(ûnjn) (5.27)

�n+1jn = Dg(ûnjn)�njnDg(ûnjn)
T (5.28)

Combination:

ûn+1jn+1 = ûn+1jn +Kn+1(yn+1 �Hn+1ûn+1jn) (5.29)

�n+1jn+1 = (I �Kn+1Hn+1)�n+1jn (5.30)
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where the Kalman gain, Kn+1; is given by:

Kn+1 = �n+1jnH
T

n+1[Hn+1�n+1jnH
T

n+1 +Rn+1]
�1
: (5.31)

Other work in nonlinear estimation

A number of other e�orts to do estimation on nonlinear systems have concentrated

on developing a better description of the probability densities. For example, in [23]

methods are presented that attempt to take into account second order behavior from

the dynamics. However, the method still relies on a basically Gaussian assumption of the

error distributions, since it computes and propagates only the mean and covariance ma-

trices of densities, adjusting the computations to account for errors due to nonlinearity.

Taking into account higher order e�ects in the densities is in fact a di�cult proposi-

tion because there is no obvious representation for these densities. Gaussian densities

are invariant under linear transformations, and are especially easy to deal with when

it comes to combining data from new measurements. However, similar higher order

representations do not exist.

Other methods do attempt to get a better representation of the error densities. For

example in [2], a method is proposed whereby the densities are represented as a sum of

Gaussians. For example, one might write:

P (u) =
X
i

�iN(u;mi;�i)

where the �i's represent scalar constants and N(u;mi;�i) evaluates the Gaussian density

function with mean mi and covariance matrix �i at u:
6 If each of the Gaussians in the

sum are localized in state-parameter space (have small covariances) then we might be

able to use linear �lters to evolve and combine each density in the sum in order to

generate a representation of the entire density.

5.4 Applying traditional techniques to chaotic sys-

tems

In this section we examine why traditional techniques have a di�cult time performing

high accuracy parameter estimation on chaotic systems. This investigation will illumi-

nate some of the general di�culties one encounters when dealing with chaotic systems,

and will provide some useful ground rules for designing new parameter estimation algo-

rithms.

Let us attempt, for example, to naively apply an estimator like the extended Kalman

�lter in (5.27)-(5.31) to a chaotic system and see what problems emerge.

6In other words, N (u;mi;�i) =
1

(2�)
q

2

e
�

1

2
(u�mi)

T��1
v

(u�mi) if q is the dimension of u:

73



The �rst problem one is likely to encounter is numerical in nature, and has a relatively

well-known solution. It turns out that the formulation in (5.27)-(5.31) is not numerically

sound. The problems are especially bad, however, in chaotic systems because covariance

matrices become ill-conditioned quickly as densities are stretched exponentially along

unstable manifolds and contracted exponentially along stable manifolds. Similar sorts

of problems, albeit less severe, have been encountered and dealt with by conventional

�ltering theory. One solution is to represent the covariance matrix �njn as the product

of two matrices:

�njn = SnjnS
T

njn; (5.32)

and propagate the matrices Snjn instead of �njn: These estimation techniques, known

as square root algorithms, are mathematically the same as the Kalman �lter, but have

the advantage that they are less sensitive to ill-conditioned covariance matrices. Using

square root algorithms, for instance, the resulting covariance matrices are assured to

remain positive de�nite. Since the decomposition in (5.32) is not unique, there are

a number of possible implementations for such algorithms. The reader is referred to

Kaminski [31] and related papers for detailed implementation descriptions.7

Other problems result from the nonlinearity of the system. Some of these problems

can be observed in general nonlinear systems, while others seem to be unique to chaotic

systems. First of all, using a linearized parameter estimation technique on any nonlin-

ear system can cause trouble, even if the system is not chaotic. Often errors due to

nonlinearity cause the �lter to become too con�dent in its estimates, which prevents the

�lter from updating its information correctly based on new data and eventually locks

the �lter into a parameter estimate with larger error than expected. This phenomenon is

known as divergence.8 It is not hard to see why divergence can become a problem with

estimators like the Kalman �lter. For example, in the linear Kalman �lter, note that

the the estimation error covariance matrix, �njn; can actually be precomputed without

knowledge of the data. In other words there is no feedback between the actual perfor-

mance of the �lter and the �lter's estimate of its own accuracy. In the extended Kalman

�lter there is also virtually no feedback between the observed residuals, yn �Hnûn; and

the computed covariance matrix, �njn:

The divergence problem is considerably worse in nonuniformly hyperbolic systems

than it is in other nonlinear applications. This is because folding, a highly nonlinear

phenomenon, is crucial to parameter estimation. While linearized strategies may do rea-

sonably well following most chaotic trajectories if the uncertainty variances are small,

linearized techniques invariably have great trouble with the sections of trajectories that

are most sensitive to parameter perturbations. Figure 5.2 gives a schematic of what

happens when folding occurs. The linearized probability densities in that case become

7In this report, whenever we refer to numerical results using square root �ltering techniques, the

implementation we use is the one given in [31] labeled \Square Root Covariance II."
8See for example, Ljung [41] for discussion of some related work.
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Figure 5.2: In this picture we show a typical example of what can happen to probability

densities in chaotic systems. Because of the e�ects of local folding, linear �lters like the

Kalman �lter sometimes have di�culty tracking nonuniformly hyperbolic dynamical systems.

In chapter 6, we show some examples of the performance of the square root extended

Kalman �lter on various maps. The �lter generally performs reasonably well at �rst

but eventually diverges as the trajectory it is tracking passes close to a folding area. As

we observed earlier, once the extended Kalman �lter becomes too con�dent about its

estimate, it generally cannot recover. While various ad hoc techniques can make small

improvements to this problem, none of the standard techniques I encountered did an

adequate job of handling the folding. For example, consider the case of the Gaussian

sum �lter, which is basically the only method that one might expect to have a chance at

modeling the folding behavior. Note that the densities in the Gaussian sum have to be

re-decomposed into constituent Gaussians every few iterations because of spreading, as

expansion along unstable manifolds quickly pushes most of the constituent densities out

into regions of near zero probability. In addition, the position of the apex of the fold,

which is crucial to estimating the correct parameters, is quite di�cult to get a handle

on without including many terms in the representation of the density.

5.5 An algorithm in one dimension

In the previous section we saw that traditional techniques do not seem to do a reasonable

job modeling the e�ects of folding on parameter estimation. Since there seems to be

no simple way of adequately representing a probability density as it gets folded, we
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resort to a Monte Carlo representation of densities near folded regions, meaning that

the appropriate densities are sampled at many di�erent points in state and parameter

space and this data is used as a representation for the density itself. The eventual hope is

that we will only have to examine a fraction of the data using computationally-intensive

techniques like Monte Carlo, since we know that only a few sections of data are really

sensitive to parameter values.

Though the ideas are simple, the actual implementation of such parameter estimation

techniques is not as easy one might think because of numerical problems associated with

chaotic systems. In this section we examine the basics of how to apply Monte Carlo-type

analysis to chaotic systems by looking at an algorithm for one-dimensional noninvertible

systems. An algorithm for higher dimensional invertible systems will be considered in

section 5.6.

5.5.1 Motivation

Let us consider the following question. Suppose we are given a family of maps of the

interval, fp : Ix ! Ix; for p 2 Ip and noisy measurement data, fyng; such that:

xn+1 = fp0
(xn)

and yn = xn + vn;

where xn 2 Ix for all n; Ix � R; and p0 2 Ip � R such that fp0 is chaotic. Suppose also

that the vn's are zero mean Gaussian independent variables with covariance matrix, Rn,

and that we have some a priori knowledge about the value of p0: Given this information,

we would like to use the state samples, fyng; to get a better estimate of p0: Let us

assume for the moment that we have plenty of computing power and time. What sort

of method is likely to extract the most possible information about the parameters of the

system given the state data?

The �rst thing one might try is to simply start picking parameter values, p; near p0
and initial conditions, x; near y0; and attempt to iterate orbits of the form ff i

p
(x)gn

i=0

to see if they come close to fyigni=0: If no orbit of fp follows fyigni=0 then we know that

p0 6= p. As we increase n; many orbits of the form ff i
p
(x)gn

i=0 diverge from fyigni=0;

and we can gradually discard more and more values of p as candidates for the actual

parameter value, p0:

5.5.2 Overview

In order to implement this idea, we �rst need some criteria for measuring how close orbits

of fp follow fyig and some rules for how to use this information to decide whether the

parameter value, p; should remain a candidate for our estimate of p0: Basically, we want
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p to be eliminated if the best shadowing orbit, ff i
p
(x)g; of fp is far enough away from

fyig that it is highly unlikely that sampling ff i
p
(x)g could have resulted in fyig; given

the expected measurement noise. As discussed earlier, one way to do this is to think

of xn; yn; and p0 as random variables and to consider a probability density function of

the form, P (x0; p0jyn): Our goal will be to numerically sample such probability densities

and use the results to extract information about the parameters. This is accomplished

in stages, since we can only reliably compute orbits for a limited number of iterates at

once. Information from various stages can then be combined to construct the composite

density, P (x0; p0jyn); for increasing values of n:
So, for example, let us examine how to analyze the kth stage of observations, con-

sisting of the data, fyigNk+1

Nk
; where Nk+1 is chosen to be as far away from Nk as possible

without greatly a�ecting the numerical computation of orbits shadowing fyigNk+1

Nk
: Let

y[a; b] = (ya; ya+1; : : : ; yb); be a vector of state data. We begin by picking values of p near

p0: For each of these parameter samples, p; we pick a number of initial conditions, x;

and iterate out orbits of the form ff i
p
(x)gn

i=Nk
for n � Nk to evaluate P (xNk

jp0; y[Nk; n])

for increasing values of n:9

For each n � Nk we want to keep track of the set of initial conditions x0 2 Ip such

that P (xNk
jp0; y[Nk; n]) is above a threshold value. If P (xNk

jp0; y[Nk; n]) is below the

threshold for some value of xNk
, we discard the orbit ff i

p
(xNk

)gn
i=0 because it is too

far from fyignNk
and attempt to repopulate a region, Uk(p; n) � Ix; in state space with

more initial conditions, where Uk(p; n) is constrained so that x 2 Uk(p; n) implies that

P (xNk
jp0; y[Nk; n]) is above the threshold. Some care must be taken in �guring out how

to choose Uk(p; n) so that new initial conditions can be generated e�ectively. Without

care, these regions develop Cantor-set-like structure that is di�cult to deal with.

After collecting information from various stages, we then recursively combine the

information from consecutive stages (similar to probabilistically combining densities in

the Kalman �lter) in order to determine the appropriate overall statistics for concate-

nated orbits over multiple stages. After combining information, at the end of each stage

we also take a look at the composite densities for the various parameter samples, p:

Values of p whose densities are too low are thrown out, since this means that fp has

no orbits which closely shadow fyigNk+1

i=0 : The surviving parameter set, i.e., the set in

parameter space still being considered for the parameter estimate, must then be repopu-

lated with new parameter samples. The statistics of the new parameter samples may be

determined through a combination of interpolation with nearby parameter samples and

recomputation of the statistics of nearby stages. Because of the asymmetrical behavior in

9Note that P (xNk
jp0; y[Nk; n]) is su�cient to determine P (xNk

; p0jy
n) for any particular value of p;

since

P (xNk
; p0jy

n) = P (xNk
jp0; y

n)P (p0)

where P (p0) is a normalizing factor quantifying a priori information about the parameters.
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Figure 5.3: This block diagram illustrates the main steps in the proposed estimation algorithm

for one-dimensional systems. The algorithm breaks up the data in sections called \stages."

The diagram above shows the basic steps the algorithm takes in analyzing each stage of data.
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5.5.3 Implementation

Below we explain various aspects of the algorithm in more depth. Note that unless

otherwise indicated, xn; yn; and p0 refer to random variables in the discussion below.

Evaluating probability densities

The �rst thing we must address is how to compute the values of relevant densities.

From (5.24) we have that:

P (x0; p0jyn) = P (ynjx0; p0)P (x0; p0jyn�1)
P (ynjyn�1) : (5.33)

Expanding the right hand side of this equation recursively we have:

P (x0; p0jyn) = K1P (x0; p0)
nY
i=0

N(yi; f
i

p0
(x0); Ri) (5.34)

where K1 is some constant and P (x0; p0) is the probability density representing a pri-

ori knowledge about the values of x0 and p0; while N(f i
p0
(x0); yi; Ri) is the value of a

Gaussian density with mean f
i

p0
(x0) and covariance matrix Ri evaluated at yi: In the

limit where no a priori knowledge about x0 is available, the weighting factor, P (x0; p0);
reduces to P (p0); re
ecting a priori information about the parameters. Then, taking
the natural log of (5.34) we get that:

log[P (x0; p0jy
n)] = K2 + log[P (p0)]�

1

2

nX
i=0

(f i
p
(x0)� yi)

T
R
�1
i
(f i

p0
(x0)� yi): (5.35)

where K2 is a constant. Note that except for the extra term corresponding to the a

priori distribution for p0; maximizing (5.35) is essentially the same as minimizing a least

squares criterion. Also note that for any particular value of p0 we have from (5.35) that:

log[P (x0jp0; yn)] = log[P (x0; p0jyn)]� log[P (p0)]

= K2 � 1

2

nX
i=0

(f i
p
(x0)� yi)

T
R
�1
i
(f i

p
(x0)� yi): (5.36)

Representing and dividing state regions

Given a parameter sample, p0; and stage, k; we need to specify how to choose sam-

ple trajectories, ff i
p0
(xNk

)gn�Nk
i=0 ; to shadow fyigni=Nk

for n 2 fNk; Nk + 1; : : : ; Nk+1g:
For each n 2 fNk; Nk + 1; : : : ; Nk+1g we want to keep track of the set of interesting

initial conditions, Uk(p0; n) � Ix; from which to choose states, xNk
; to evaluate the den-

sity, P (xNk
jp0; y[Nk; n]): We require that if xNk

2 Uk(p0; n); then xNk
must satisfy the

following thresholding condition:

log[P (xNk
jp0; y[Nk; n])] � sup

xNk
2Ix

flog[P (xNk
jp0; y[Nk; n])]g � �

2 (5.37)
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for some constant, � > 0 so that the orbit, ff i
p0
(xNk

)gn�Nk

i=0 ; follows su�ciently close to

fyigni=Nk
: � can be interpreted to be a measure of the maximum number of standard

deviations xNk
is allowed to be from the best shadowing orbit of the map, fp0: This

interpretation arises since if P (xNk
jp0; yn) were Gaussian, condition (5.37) would be

satis�ed by all states, xNk
; within � standard deviations of the mean, x̂Nk

(p0; n) =R
xNk

2Ix xNk
P (xNk

jp0; y[Nk; n])dx:
10 To be reasonably sure we don't accidentally eliminate

important shadowing orbits of fp0 close to fyig; we might choose, for example, for � to

be between 8 and 12:

Given a parameter sample, p0; let Vk(p0; n) � Ix represent the set of all xNk
2

Ix satisfying (5.37). Recall that Uk(p0; n) represents the set of points from which we

will choose new sample initial conditions, xNk
: We know that we want Uk(p0; n) �

Vk(p0; n); but problems arise if we always attempt to saturate the set Vk(p0; n) with

sample trajectories. For low values of n; Vk(p0; n) is an interval. In this case, let

Uk(p0; n) = Vk(p0; n) and we can simply choose initial conditions, xNk
; at random inside

Vk(p0; n) to generate samples of P (xNk
jp0; y[Nk; n]): As n gets larger, Vk(p0; n) tends

to shrink as f
n�Nk
p0

expands regions in state space and more trajectory samples get

discarded from consideration for failing to satisfy (5.37). However, as long as Vk(p0; n)

is an interval, continue to set Uk(p0; n) = Vk(p0; n); since it is not hard to keep track of

Vk(p0; n) to repopulate the region with new trajectory samples.

A problem occurs, however, because of the folding around turning points. If the

region, fm
p0
(Vk(p0;m)); contains a turning point for some integer m > 0, then as n grows

larger than m; Vk(p0; n) may split into two distinct intervals, V +
k
(p0; n) and V

�
k
(p0; n).

Folding causes the two separate regions to get mapped into each other by f
m+1
p0

(i.e.,

f
m+1
p0

(V +
k
(p0; n)) = f

m+1
p0

(V �
k
(p0; n))). In addition, the new intervals, V +

k
(p0; n) and

V

�
k
(p0; n); can also be split apart into other separate intervals by similar means as n

increases. In principle, this sort of phenomenon can happen arbitrarily many times,

turning Vk(p0; n) into a collection of thin, disjoint intervals. This makes it di�cult

to keep up with a characterization of Vk(p0; n); and makes it di�cult to know how to

choose new initial conditions, xNk
2 Vk(n; p); to replace trajectory samples that have

been eliminated.

Instead of attempting to keep up with all the separate areas of Vk(p0; n); and trying

to repopulate all these areas with new state samples, we let Uk(p0; n) � Vk(p0; n) be

the single connected interval of Vk(p0; n) where P (xNk
jp0; y[Nk; n]) is a maximum.11 We

10One might think that this Gaussian assumption may be a bad one and that in general we might, for

instance, want to make sure that we kept a set, Q; of initial states such that Pr(xNk
2 Qjp0) > 1� �

for � > 0 small, where Pr(X) is the probability of event X. However, in practice, the condition (5.37)

is simpler to evaluate and works well for all the problems encountered. The choice of thresholding value

is not critically important as long as it is not so high that close shadowing orbits are thrown away from

consideration.
11Strictly speaking we actually want to maximize P (xNk�1

jp0; y[Nk�1; Nk])P (xNk
jp0; y[Nk; n]); (see

the section on how to combine data). In practice this almost always amounts to maximizing
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know that the separate areas of Vk(p0; n) eventually get mapped into each other, so

there is no way that one of the separate areas of Vk(p0; n) can end up shadowing fyig
if no states in Uk(p0; n) can shadow fyig: Since we are primarily interested in the best

shadowing orbit of fp0; keeping up with orbits with initial conditions in Uk(p0; n) is

adequate.

Finally, note also that it is sometimes obvious that the parameter sample, p0; cannot

possibly be the correct parameter value. This happens if no orbit of fp0 comes anywhere

close to shadowing fyig: In this case we can immediately discard parameter sample, p0;

from consideration.

Deciding what parameters to keep

We need to evaluate how good a parameter sample is, so we know which parameter

samples to keep and which parameters to eliminate as a possible choice for the parameter

estimate. After the completion of stage k; we evaluate a parameter sample, p0; according

to the following criterion:

Lk+1(p0) = sup
xNk

2Ix
flog[P (xNk

; p0jyNk+1)]g (5.38)

which is what one would expect if we were interested in obtaining a MAP estimate. Let

Pk be the set of parameter samples valid at the start of the kth stage. We will eliminate

a parameter sample, p0; after the kth stage if it satis�es the following formula:

Lk+1(p0) < sup
p02Pk

fLk+1(p
0)g � �

2
:

where � > 0 is some measure of the number of standard deviations p is allowed to be

from the most likely parameter value.

Choosing the number of iterates per stage

The necessity of breaking up orbits into stages is apparent, since orbits can be reliably

computed only for a limited number of iterates. We now explain how to determine the

number of iterates in each stage. Let p̂MAP (k); be the MAP estimate for p0; at the

beginning of stage k (ie p = p̂MAP (k) is the parameter sample that maximizes Lk(p) for

any p 2 Pk): We want to choose Nk+1 to be as large as possible provided we are still

able to reliably compute orbits of the form ff i
p0
(xNk

)gNk+1�Nk

i=0 to shadow fyigNk+1

i=Nk
:

Suppose that xNk
2 Uk(p0; n): A reasonable measure of the number of iterates we

can reliably compute for an orbit like ff i
p0
(xNk

)gn�Nk

i=0 is given by the size of Uk(p0; n): If

Uk(p0; n) is small, this implies that small changes or errors in initial state get magni�ed

to magnitudes on the order of the measurement noise. Since we need to compute states

to accuracies better than the measurement noise, it makes sense to pick Nk+1 so that

Uk(p0; Nk+1) is a few orders of magnitude above the precision of the computer.

P (xNk
jp0; y[Nk; n]) because Uk(p0; n) is generally much smaller than f

Nk�Nk�1 (Uk�1(p0; Nk)):
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One complication that can arise, is that the sequence of states, fyNk
; yNk+1; : : : g;

might correspond to an especially parameter-sensitive stretch of points, so that there

may be no orbit of fp̂MAP (k) that shadows the data, fyigni=Nk
: In this case, we cannot use

the size of Uk(p̂MAP (k); n) to determine Nk+1: Instead of using p̂MAP (k) pick the next

best parameter sample in Pk; p̂
0(k); where p̂0(k) maximizesLNk

(p) for any p 2 Pk; besides

p̂MAP (k):We then try to play the same procedure with p̂0 that we described for p̂MAP (k):

Similarly, if fp̂0 cannot shadow the data choose another parameter value from Pk; and

so forth. Eventually some parameter value in Pk must work, or else either: (1) there are

not enough parameter samples, or (2) p0 is not in the parameter space region speci�ed

upon entrance to the kth stage. This can be especially be a problem at the beginning of

the estimation process when the parameters are not known well, and parameter samples

are more sparse in parameter space. The solution is to choose parameters intelligently,

choosing varying numbers of parameter samples in di�erent regions of parameter space

and in di�erent situations (for example, to initialize the estimation routine).

Combining data from stages

As in the Kalman �lter, we want to build a recursive algorithm so that data sum-

marizing information for stages 1 through k � 1 can be combined with information

from stage k to produce results which summarize all knowledge about stages 1 through

k: Speci�cally, suppose that y[Nk; Nk+1] = (yNk
; yNk+1; : : : ; yNk+1

) represents the state

samples of the kth stage. We propose to compute Lk+1(p0) using information given in

Lk(p0); P (xNk�1
jp0; y[Nk�1; Nk]); and P (xNk

; p0jy[Nk; Nk+1]): Then all information about

stages 1 through k can be represented by Lk+1(p0) and P (xNk
jp0; y[Nk; Nk+1]):

From (5.38) we see that Lk(p0) depends only on P (xNk�1
; p0jyNk) evaluated on the

orbit that best shadows the �rst Nk state samples. In other words if fx̂ijNk
gNk

i=0 is the

best shadowing orbit based on the �rst Nk state samples, then from (5.38) and (5.35):

Lk(p0) = log[P (xNk�1
= x̂Nk�1jNk

; p0jyNk)]

= K2 + log[P (p0)]� 1

2

NkX
i=0

(x̂ijNk
� yi)

T
R

�1
i
(x̂ijNk

� yi): (5.39)

One key thing to notice is that Uk�1(p0; Nk) and Uk(p0; Nk+1) should be very small

compared to the measurement noise, Ri; for any i: This is a reasonable assumption as

long as none of the measurements have relative accuracies on the order of the machine

precision. Therefore we can approximate x̂ijNk+1
with x̂ijNk

for i 2 f0; 1; : : : ; Nk�1g in

(5.39) and if we let:

Ak(p0) = log[P (p0)]� 1

2

Nk�1X
i=0

(x̂ijNk+1
� yi)

T
R

�1
i
(x̂ijNk+1

� yi) (5.40)

Then from (5.36), (5.39), and (5.40):

Lk(p0) � Ak(p0) + sup
xNk�1

2Ix
flog[P (xNk�1

jp0; y[Nk�1; Nk])]g (5.41)
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and also:

Lk+1(p0) � Ak(p0)� 1

2

NkX
i=Nk�1

(x̂ijNk+1
� yi)

T
R
�1
i
(x̂ijNk+1

� yi)

+ sup
xNk

2Ix
flog[P (xNk

jp0; y[Nk; Nk+1])]g: (5.42)

We can now evaluate (5.42) given the appropriate representations of Lk(p), P (xNk�1
jp0; y[Nk�1; Nk]),

and P (xNk
jp0; y[Nk; Nk+1]): The term on the right hand side of (5.42) involving sup

xNk
2Ix

can be approximated from our representation of the density P (xNk
jp0; y[Nk; Nk+1]) by

simply taking the maximum density value over all the trajectory samples. Likewise

Ak(p0) can be evaluated from (5.41) in a similar manner given Lk(p0): The trajectory

fx̂ijNk+1
gNk

i=Nk�1
can be approximated by looking for trajectory sample x0 2 Uk�1(p0; Nk)

in the representation for P (xNk�1
jp0; y[Nk�1; Nk]) that makes fNk�Nk�1

p0
(x0) as close to

Uk(p0; Nk+1) as possible. Then let x̂ijNk+1
= f

i�Nk�1
p0

(x0) for i 2 fNk�1; : : : ; Nkg:
Note that this assumes that Uk(p0; Nk+1) � f

Nk�Nk�1
p0

(Uk�1(p0; Nk)): If this is not true

then no orbit of fp0 adequately shadows fyigNk+1

i=0 ; and we can throw out the parameter

sample p0:

Choosing new parameter samples and evaluating associated densities

Once a parameter sample is deleted because it does not satisfy (5.37), a new parame-

ter sample must be chosen along with the appropriate statistics and densities. We want

choose new parameters after stage k so that they adequately describe Lk+1(p) over the

surviving parameter range. In other words we attempt to choose new parameters to �ll

in gaps in parameter space where nearby parameter samples, p1 and p2; for example,

have very di�erent values of Lk+1(p1) and Lk+1(p2):

Once we choose the new parameter sample, p�; we need to evaluate the relevant

statistics, namely Lk+1(p�) and P (xNk
jp0 = p�; y[Nk; Nk+1]): We could, of course, do

this by going back through all of data fyigNk+1

i=0 and sampling the appropriate densities.

This, however, would be quite time-consuming, and would likely not reveal much more

information about the parameters than we could get by much simpler means, assuming

that enough parameter samples are used. Instead, we interpolate Ak(p�) given Ak(p)

for all valid parameter samples, p 2 Pk: We then compute P (xNk�1
jp0; y[Nk�1; Nk]) and

P (xNk
jp0; y[Nk; Nk+1]) by iterating trajectory samples. We can then evaluate Lk+1(p�)

according to (5.42).

E�ciency concerns

This algorithm is not designed to be especially e�cient. Rather, it is intended to

try to extract as much information about the parameters of a one-dimensional map as

reasonably possible. For a discussion of some performance issues, see the next section

where we apply the algorithm to the family of quadratic maps.
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One way to increase the e�ciency of this algorithm would be to attempt to locate the

sections of the data orbit that are sensitive to parameters, and perform the appropriate

analysis only on these observations. For maps of the interval this corresponds to locating

sections of orbit that pass near turning points. The problem, however, is not as obvious

in higher dimensions. Rather than address this issue in a one-dimensional setting, in

section 5.6 we will look at how this might be done in higher dimensional systems using

linear analyses.

5.6 Algorithms for higher dimensional systems

In this section we develop an algorithm to estimate the parameters of general nonuni-

formly hyperbolic systems. Suppose we are given a family of maps, fp : M ! M; for

p 2 Ip and noisy measurement data, fyng; where:
xn+1 = fp0

(xn)

and yn = xn + vn

where xn 2 M for all n; M is some metric space, and p0 2 Ip � R such that fp0 is

nonuniformly hyperbolic. Suppose also that the vn's are zero mean Gaussian independent

random variables with covariance matrix, Rn, and that we have some a priori knowledge

about the value of p0: Our goal in this section is to develop an algorithm to estimate p0
given fyng:

Like the algorithm for one-dimensional systems discussed in the last section, the

estimation technique presented here is based on an analysis of probability densities using

a Monte-Carlo-like approach. The idea, however, is to avoid the heavy computational

burden typical of Monte Carlo methods by selectively choosing which pieces of data

to fully analyze. Since most of the state data in a nonuniformly hyperbolic systems

apparently do not contribute much information about the parameters of the system, the

objective is to quickly bypass the vast majority of data, but still construct extremely

accurate parameter estimates by performing intensive analyses on the small sections of

data that really matter.

5.6.1 Overview

The parameter estimation algorithm has two primary components. The �rst component

sifts through the data to locate orbit sections that might be sensitive. The second

component performs an analysis on the parameter-sensitive data sections to determine

the parameter estimate.

The data is �rst scanned using a linear estimator like the square root extended

Kalman �lter. As described in chapter 4, linear analyses can indicate the presence of
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degeneracy in the hyperbolic structure of a system. In the case of a recursive linear �lter,

degeneracies corresponding to parameter-sensitive stretches of data are indicated by a

sharp drop in the covariance matrix of the estimate. We simply run the data through

the appropriate �lter, look for a drop in covariance estimate over a small number of

iterates, and note the appropriate sections of data for further analysis.

The second component of the estimation technique consists of Monte-Carlo-based

technique. The underlying basis for this analysis is similar to what was described in

section 5.5 for one-dimensional systems. Basically the estimate is constructed by using

information obtained by sampling the appropriate probability densities in state and

parameter space. There are, however, a few important di�erences to point out from the

one-dimensional algorithm. First, since the systems are invertible, we iterate the map

both forwards and backwards in time12 in order to obtain information about probability

densities. Also the higher dimensionality of the systems causes a few problems with how

to represent and choose regions of state space in which to generate samples. Finally

instead of concatenating consecutive stages by matching initial and �nal conditions of

sample trajectories, we generate only one stage for each section of sensitive state data.

The stages are separated in space and time, so there is no matching of initial and �nal

conditions.

5.6.2 Implementation

In this section we detail some of the basic issues that need to be addressed in order to

implement the proposed algorithm.

Top-level scan �lter

The data is �rst scanned by a square root extended Kalman �lter. The implementa-

tion is straightforward: simply process the data and look for drops in the error covariance

matrix. There are two parameters that may be adjusted: (1) a parameter, N; to set the

number of iterates (time scale) to look for degeneracies, (2) a parameter, �; to set the

threshold that governs whether a section of data is sent to the Monte-Carlo algorithm

for further analysis. � is expressed in terms of a ratio of the square roots of the variances

of the parameter error.

Evaluating densities

Let yn = (y0; y1; : : : ; yn): To estimate parameters, we are interested in densities of

12For lack of a better term we use \time" to refer to increasing iterations of the discrete map fp: For

example applying fp to a state will sometimes be called mapping forwards in time and applying f�1
p0

will be referred to as mapping backwards in time.
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the form P (x0; p0jyn). From (5.36) we have that:

log[P (x0; p0jyn)]
= logP (p0) + log[P (x0jp0; yn)]
= K2 + logP (p0)� 1

2

nX
i=0

(f i
p0
(x0)� yi)

T
R
�1
i
(f i

p0
(x0)� yi) (5.43)

where K2 is a constant.

Information about probability densities is obtained by sampling in state and parame-

ter space. For a MAP estimator, we expect that the relative merit of various parameters

samples, p0; would be evaluated according to the formula:

L(p0jyn) = sup
x02Ix

log[P (x0; p0jyn)]
= logP (p0) + sup

x02Ix
log[P (x0jp0; yn)]

= K2 + logP (p0)� 1

2
sup
x02Ix

f
nX
i=0

(f i
p0
(x0)� yi)

T
R
�1
i
(f i

p0
(x0)� yi)g:

In general, however, we will only consider a few sets of observations in the sequence,

fyig: For example, suppose that for any integer, n > 0; the linear �lter has identi�ed

k(n) groups or stages of measurements that may be sensitive to parameters. Then for

each j 2 f1; 2; : : : ; k(n)g; de�ne Yj = fyiji 2 Sjg to be a set of sensitive measurements

that have been singled by the linear �lter, where the sets, Sj �Z; represent the indices
that can be used to identify the measurements. From our arguments in chapters 3

and 4 we expect that most of the information about the parameters of the system can

be extracted locally by looking at each group of measurements individually. Thus we

consider the statistic, Lk(n)(p0); as a replacement for L(p0jyn) where:

Lk(n)(p0) = K2 + logP (p0) +
k(n)X
j=1

sup
x02Yj

log[P (x0; p0jYj)]

= K4(k(n)) + logP (p0)� 1

2

k(n)X
j=1

[ sup
x02Ix

fX
i2Sj

(f i
p0
(x0)� yi)

T
R
�1
i
(f i

p0
(x0)� yi)g]

and K4(k(n)) depends only on k(n):

As in the one-dimensional case, we eliminate parameter samples, p; that fail to

satisfy a thresholding condition: Lk(n)(p) � sup
p02Pk(n)fLk(n)(p

0)g � �
2 for some � > 0

where Pk(n) is the set of parameter samples at stage k(n): In practice, if Yj for j 2
f1; 2 : : : ; k(n)g are really the main measurements sampling parameter-sensitive areas of

local folding, then Lk(n)(p0) in fact mirrors L(p0jyn); at least with respect to eliminating

parameter values that are not favored. This is the most important property of Lk(n)(p0)
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with respect to parameter estimation, since, as in the one-dimensional case, we would

like to choose the parameter estimate, p̂n; to re
ect the extremum of the surviving

parameter range where L(p0jyn) drops o� rapidly.

Stages

Suppose that the linear �lter decides that the data, fyig; might be sensitive near iter-

ate i = Nk:Given parameter sample, p0;we begin to examine the density, P (xNk
jp0; y[Nk�

n;Nk + n]); for increasing values of n by generating trajectory samples of the form

ff i
p0
(xNk

)gn
i=�n and evaluating:

log[P (xNk
jp0; y[Nk � n;Nk + n])] = K � 1

2

nX
i=�n

(f i
p0
(xNk

)� yi)
T
R

�1
i
(f i

p0
(xNk

)� yi)

for some constant, K: As in the one-dimensional case, for each n we keep only trajectory

samples, xNk
; that satisfy a thresholding condition like:

log[P (xNk
jp0; y[Nk � n;Nk + n])]

� sup
xNk

2M
flog[P (xNk

jp0; y[Nk � n;Nk + n])]g � �
2 (5.44)

for some � > 0: As n is increased, we replace trajectory samples that have been thrown

out for failing to satisfy (5.44) by trying new initial conditions chosen at random from

a bounded region in state space which we will denote B0(p0; Nk; n). B0(p0; Nk; n) � M

plays a role analogous to Uk(p0; Nk+1) in the one-dimensional case, except that it is a

multidimensional neighborhood instead of simply an interval.

Representing sample regions

Given a speci�c parameter sample, p0; we now discuss how to choose trajectory

samples. In particular we examine the proper choice of B0(p0; Nk; n) for n � 0: For

any n � 0; the objective is to choose B0(p0; Nk; n) so that it is a reasonably e�cient

representation of the volume of space occupied byX0(p0; Nk; n) whereX0(p0; Nk; n) �M

is a bounded region in state space such that x 2 X0(p0; Nk; n) satis�es (5.44). We want to

choose a simple representation for B0(p0; Nk; n) so that B0(p0; Nk; n) is large enough that

B0(p0; Nk; n) � X0(p0; Nk; n); but small enough so that if an initial condition x is chosen

at random from B0(p0; Nk; n) then there is high probability that x 2 X0(p0; Nk; n): We

get an idea for what X0(p0; Nk; n) is by iterating old trajectory samples of the density,

P (xNk
jp0; y[Nk � (n� 1); Nk + (n� 1)]); and deleting the initial conditions that do not

satisfy (5.44). Based on these trajectory samples, we choose B0(p0; Nk; n) to be a simple

parallelepiped enclosing the surviving initial conditions. As new trajectory samples are

chosen by picking random initial conditions in B0(p0; Nk; n); we get a better idea about

the geometry of X0(p0; Nk; n) and can in turn choose a more e�cient B0(p0; Nk; n) to

generate additional trajectory samples.

In our implementation of the algorithm, B0(p0; Nk; n) is always represented as a

box. This method has the advantage that it is extremely simple and also makes it
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Figure 5.4: Here we illustrate why there can be multiple regions shadowing the same orbit.

Near areas of folding, two regions, A and B; can be separate, yet can get asymptotically

mapped toward each other both forwards and backwards in time. Note that in the picture, A

and B are located at intersections of the same stable and unstable manifolds. This situation

must be dealt with when sampling probability densities and searching for optimal shadowing

orbits.

Avoiding degenerate sample regions
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The other problem is that X0(p0; Nk; n) tends to collapse onto a lower dimensional

surface as n gets large. This is due to the fact that the map, fn
p0
; generally contracts and

expands some directions in state space more than others. Our ability to compute orbits

like ff i
p0
(x)gn

i=�n is related to the largest expansion factor of either fn
p0
or f�n

p0
(e.g., the

square root of Dfn
p0
(x)TDfn

p0
(x)). If X0(p0; Nk; n) collapses onto a lower dimensional

surface, that means that across the width of the surface of X0(p0; Nk; n), tiny di�erences

in initial conditions get magni�ed to the level of the measurement noise by either fn
p0

or f�n
p0
: For example, if fn

p0
is responsible for collapsing X0(p0; Nk; n) onto a surface

with thickness comparable to the machine precision, then we cannot expect to choose

trajectory samples of the form f
i

p0
(x) for i > n without experiencing debilitating roundo�

errors.

Ideally, as n increases, we would like X0(p0; Nk; n) to converge toward smaller and

smaller ball-shaped regions while maintaining approximately the same thickness in every

direction. Besides having better numerical behavior than regions that collapse onto a

lower-dimensional surface, it is also much easier to represent such regions and choose

initial conditions inside these regions.

There is a degree of freedom that is available and can be used to adjust the shape

of the region where initial conditions are sampled. We can simply choose to iterate

trajectory samples further backwards in time than forwards in time or vice-versa. In

other words, if fn
p0
expands one direction much more than f

�n
p0

expands any direction in

state space then we may iterate orbits of the form ff i
p0
(x)gnb

i=�na where na > nb: The

relative sizes of na and nb can then be adjusted to match the rates of convergence of the

region where initial conditions are sampled.

In practice it can be a bit tedious to adjust the number of iterates in sample trajec-

tories and attempt to �gure out what e�ect iterating forwards or backwards has on the

shape of a particular region in state space. A better way to approach the problem is to

examine regions of the form:

Xj(p0; Nk; n) = f

j

p0
(X0(p0; Nk; n))

for j 2 f�n;�n+1; : : : ; n�1; ng: For any particular p0; Nk; and n; ifX0(p0; Nk; n) starts

to become an inadequate region for choosing new sample trajectories, we simply search

for a j so that the region, Xj(p0; Nk; n); is not degenerate in any direction in state space

(This process is described in the next section). We can then pick new initial conditions,

x 2 Xj(p0; Nk; n) and iterate orbits of the form ff i
p0
(x)gn�j

i=�n�j in order to evaluate the

proper densities. Note that instead of deleting sample trajectories according to (5.44),

new sample trajectories are now thrown out if they fail to satisfy

log[P (xNk�j jp0; y[Nk � n;Nk + n])] � sup
xNk�j

2M
flog[P (xNk�j jp0; y[Nk � n;Nk + n])]g � �

2
:

This procedure is thus equivalent to sampling trajectories from X0(p0; Nk; n); except

that it is better numerically.
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Evaluating and choosing new sample regions

We now describe how to decide when an initial condition sample region likeXj0
(p0; Nk; n)

has become inadequate and how to choose a new j
� 2 f�n;�n+1; : : : ; n�1; ng so that

Xj�(p0; Nk; n) makes an e�ective sample region.

Basically, as long as we can pick B0(p0; Nk; n) so that most initial conditions, x;

chosen from B0(p0; Nk; n) satisfy x 2 Xj0
(p0; Nk; n); then things are satisfactory, and

there is no need to search for a new sample region. However, suppose that it becomes

di�cult to choose x 2 B0(p0; Nk; n) so that x 2 Xj0
(p0; Nk; n): It might be the case

that Xj0
(p0; Nk; n) is collapsing in multiple directions, and we simply cannot increase n

without running into numerical problems. If this is not the case, then we �rst search

for whether Xj0
(p0; Nk; n) can be divided into two separate high density regions. If so,

then we concentrate on one of these regions. Otherwise we have to search for a new

j
� 2 f�n;�n+ 1; : : : ; n� 1; ng and a new sample region, Xj�(p0; Nk; n):

This is done in the following manner. We take the trajectory samples marking

the region, Xj0
(p0; Nk; n); and iterate them forwards and backwards in time looking at

samples of

Xj(p0; Nk; n) = f

j�j0
p

(Xj0
(p0; Nk; n))

for j 2 f�n + j0;�n + j0 + 1; : : : ; n + j0g: We would like to pick j
� to be a value for

j such that Xj(p0; Nk; n) is not degenerate, so that it is easy to pick B0(p0; Nk; n) such

that x 2 B0(p0; Nk; n) implies x 2 Xj(p0; Nk; n) with high probability.

We would also like to pick j
� so that Xj�(p0; Nk; n) is a well balanced region and

is not degenerate in any direction. The �rst thing to check is to simply generate the

box, Bj(p0; Nk; n); enclosing Xj(p0; Nk; n) for each j and make sure that none of its side

lengths are degenerate. This condition is not adequate, however, since one could end

up with a j
� in which Xj�(p0; Nk; n) is actually long and thin but curls back on itself

so that its bounding box, Bj(p0; Nk; n); is not long and thin. In order to check for this

case, one thing to do is to partition the box, Bj(p0; Nk; n); into a number of subregions

and check to see how many of these subregions are actually occupied by the trajectory

samples demarking Xj(p0; Nk; n): If very few subregions are occupied then we have to

reject j as a possible choice for j�: An adequate choice for j� can then be made using this

constraint along with information about the ratio of the side lengths of Bj(p0; Nk; n):
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Chapter 6

Numerical results

In this chapter we present results from various numerical experiments. In particular, we

demonstrate the e�ectiveness of the algorithms proposed in chapter 5 for estimating the

parameters of chaotic systems.

The algorithms are applied to four di�erent systems. The �rst system, the quadratic

map, is the same one-dimensional system that was examined in chapter 3 of this report.

The second system we look at is the Henon map, a dissipative two-dimensional mapping

with a strange attractor. The third system is the standard map, an area-preserving map

that exhibits chaotic behavior. Finally in contrast to the �rst three systems, which are

all nonuniformly hyperbolic, we also take a brief look at the Lozi map, one of the few

nonpathological examples of a chaotic map exhibiting uniformly hyperbolic behavior.

We �nd that with the exception of the Lozi map, the other maps in this chapter

all exhibit asymmetrical shadowing behavior on the parameter space of the map. Fur-

thermore, this asymmetrical behavior always seems to favor one direction in parameter

space regardless of locality in state space.

Note that many of the basic comments and explanations applicable to all the systems

are included in section 6.1 on the quadratic map, where the issues are �rst encountered.

6.1 Quadratic map

In this section we describe numerical experiments on the quadratic map:

fp(x) = px(1 � x) (6.1)

where x 2 [0; 1] and p 2 [0; 4]: For values of p between 3.57 and 4.00, numerical exper-

iments suggest that there are a large number of parameter values where (6.1) exhibits
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chaotic behavior. In particular we will concentrate on parameters near p0 = 3:9: For

p0 = 3:9; numerical results indicate that fp0 has a Lyapunov exponent of about 0:49:

Let us begin by presenting a summary of our results for one particular orbit of the

quadratic map, the orbit with initial condition x0 = 0:4: These results are summarized

in �gure 6.1. Our discussion in this section will seek to answer the following questions:

(1) what each of the lines in �gure 6.1 mean, (2) why each of the data sets graphed has

the behavior shown, and (3) what we expect the asymptotic behavior for each of the

traces might be if the simulations were continued for higher numbers of data points.
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Figure 6.1: This graph summarizes results related to estimating the parameter p in the

quadratic map for data generated using the initial condition x0 = 0:4:
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6.1.1 Setting up the experiment

In order to test parameter estimation algorithms numerically, we �rst pick a parameter

value, p0 and generate a sequence of data points fyigni=0; to represent noisy measurements

of fp0: This is done by choosing an initial condition, x0; and numerically iterating the

orbit fxi = f
i

p0
(x0)gni=0: The noisy measurements, fyigni=0; are then simulated by setting

yi = xi + vi where the vi's are randomly generated values for i 2 f0; 1; : : : ; ng: For
the experiments in this section, the vi's are chosen to simulate independent identically

distributed Gaussian random variables with standard deviation 0:001:

We then use the simulated data, fyigni=0; as input to the parameter estimation al-

gorithm to see whether the algorithm can �gure out what parameter value was used to

generate the data in the �rst place. In general the parameter estimation algorithm may

also use a priori information like an initial parameter estimate along with some measure

of how good that estimate is. In this chapter we generally choose the initial parameter

estimate to be a random value within :025 of p0:

6.1.2 Kalman �lter

Let us now examine what happens when we apply the square root extended Kalman

�lter to the quadratic map. We investigate the Kalman �lter for data generated from

four di�erent initial conditions: x0 = f0:1; 0:2; 0:3; 0:4g:
Figure 6.2 illustrates perhaps the most important feature of the simulations, namely

that the Kalman �lter eventually \diverges." Each trace in �gure 6.2 represents the

average of ten di�erent runs using ten di�erent sets of numerically generated data from

each initial condition. On the y�axis we plot the ratio of the actual error of the pa-

rameter estimate versus the estimated mean square error obtained from the covariance

matrix of the �lter. If the �lter is working, we generally expect this ratio to be close

to 1. Note also that the �lter seems to start �ne, but then the error jumps to many

\standard deviations" of the expected error and never returns to the normal operating

range.

In fairness, plotting an average can be somewhat misleading because the average

might be skewed by outliers and runs that fail massively. There are in fact signi�cant

di�erences from run to run. However, numerous experiments with the Kalman �lter

suggest that divergence pretty much always occurs if one allows the �lter to run long

enough. In addition, none of the standard techniques for addressing divergence di�cul-

ties seem to be able to adequately solve the problem (eg, exponential forgetting of data).

It seems that one is stuck with either letting the �lter diverge, or somehow decreasing

con�dence in the covariance matrix so much that accurate estimates cannot be attained.

In �gure 6.3 we plot the actual error of the Kalman �lter versus number of state
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Figure 6.2: This �gure shows results for applying the square root extended Kalman �lter to

estimating the parameters of the quadratic map with p = 3:9: Each trace represents the average

ratio of the actual parameter estimate error to the estimated mean square error as calculated

by the Kalman �lter over 10 di�erent trials. The di�erent traces represent experiments based

on orbits with di�erent initial conditions. Note how the error jumps up to levels on the order

of 10 or higher, indicating divergence.
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samples used on a log-log scale. Again the errors plotted are the average of the errors of

ten di�erent runs. We see that the error makes progress for a little while but then diver-

gence occurs. The Kalman �lter rarely makes any real progress after divergence occurs,

not even exhibiting the 1p
n
improvement characteristic of purely stochastic convergence

(ie, the �lter is not getting any information from the dynamics), since the over-con�dent

covariance matrix prohibits the parameter estimate from moving much unless the state

data drifts many deviations away from what the �lter expects. 1

6.1.3 Analysis of proposed algorithm

We now examine the performance of the algorithm presented in section 5.5. The results

in this section re
ect an implementation of the algorithm based on 9 samples in param-

eter space and 50 samples in state space (250 when representations for di�erent stages

are being combined). Each stage is iterated until the state sample region is of length

1� 10�9 or less. We use � = 8 so that the sample spaces in state and parameters are 8

deviations wide.

One of the most striking things about the results of the algorithm is the asymmetry

of the merit function, L(p); in parameter space. As shown in �gure 6.4, the parameter

merit function typically shows a very sharp dropo� on the low end of the parameter

space. Based on this asymmetry we choose the parameter estimate to be the parameter

value at which the sharp dropo� in L(p) occurs.

In �gure 6.5 we see the performance of the algorithm on data based on the initial

conditions, x0 2 f0:1; 0:2; 0:3; 0:4g: Each trace in the �gure represents one run of the

algorithm. Rerunning the algorithm multiple times on data based on the same initial

condition produces similar results, except that the scanning linear �lter sometimes defers

a few more or less points to the Monte Carlo estimator for analysis.

Note how the error in the estimate tends to converge in sudden large jumps over small

numbers of iterates, while staying approximately constant in between these jumps. The

large decreases in error level occur when the data orbit makes a close approach to the

turning point, causing a stretch of state samples to become sensitive to parameters.

This is not simply a product of discretization in the algorithm, since the Monte Carlo

estimator sometimes makes no gains at all, while other times great gains are made, and

a large number of parameter samples are deleted on the lower end of the parameter

sample range.

One might wonder how this graph would look like if we were to extend it for arbitrarily

many iterates. Consider the theory presented in chapter 3. First of all, it is likely

1Interestingly, this actually does occur, apparently near areas of folding, since the �lter models the

folding phenomena so poorly. Occasionally this can even cause the �lter to get back in sync, moving

the parameter estimate just the right amount to lower the error. This seems to be quite rare, however.
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Figure 6.3: Graph of the average error in the parameter estimate as computed by square

root extended Kalman �lter applied to the quadratic map with parameter value p = 3:9: Data

represents average error over 10 runs.
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Figure 6.4: Asymmetry in the parameter space of the quadratic map: Here we graph the

parameter merit function L(p) after processing 2500 iterates of an orbit with initial condition

x0 = 0:4: The merit function is normalized so that L(p) = 0 at the maximum. Since � = 8;

a parameter sample, p; is deleted if L(p) < �64: This sort of asymmetrical merit function is

typical of all orbits encountered in the quadratic map, Henon map, and standard map.

that fp0 satis�es the linking condition, and therefore exhibits a parameter shadowing

property. This means there is essentially an end to the progress that can be made in

the estimate based on dynamical information, after which stochastic convergence would

be the rule. However, there is evidence that the level of accuracy at which this e�ect

becomes important is probably many, many orders of magnitude smaller from the level

we are dealing with. 2

This leads us to ask: assuming that we do not see the e�ects of parameter shadowing,

how does the parameter estimation accuracy converge with respect to n; the number of

state samples processed by the algorithm? As conjectured in section 3.5, we believe that

the accuracy converges at a rate proportional to 1
n2
: A line with a slope of -2 is drawn

in �gure 6.5 to suggest the conjectured asymptotic behavior. Note that the conjecture

seems plausible from the picture, although more data would be needed to really make

the evidence convincing.

In �gure 6.6 we show the error in the upper bound of the parameter range being con-

sidered by the algorithm. While the lower bound of this range is used as the parameter

estimate, the upper bound has signi�cantly di�erent behavior. After an initial period,

the convergence of the upper bound is governed purely by stochastic means (ie, without

any help from the dynamics). This is predicted by Theorem 3.4.2. Thus we expect that

2It is di�cult to calculate this directly, since it requires knowing the exact number of iterates it takes

an orbit from the turning point to return near the turning point. However, rough calculations suggest

that for most parameters around p0 = 3:9 we expect that parameter shadowing would not be seen until

parameter deviations are less than 1� 10�50 for noise levels of 0:001:
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Figure 6.5: Graph of the actual error in the parameter estimate of the proposed algorithm

when applied to data from the quadratic map with p = 3:9: A line of slope -2 is drawn on the

graph to indicate the conjectured asymptotic rate of convergence for the estimate.
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the convergence will be on the order of 1p
n
; as suggested by the line with a slope of �1

2

as shown in the �gure. The small jumps in the graphs for �gure 6.6 are simply the result

of the discrete nature of how parameter space is sampled.

6.1.4 Measurement noise

One other important question to ask is, what happens if we change the level of mea-

surement noise? The short answer is that the parameter estimate results presented here

are surprisingly insensitive to measurement noise. If we ignore the parameter shadow-

ing e�ects caused by close returns to the turning point (which we have already argued

are negligible for our experiments), then shadowing of any �nite orbit is really an all

or nothing property in parameter space. Consider a stretch of state orbit with initial

condition x0 close to the turning point. Then for a parameter value in the unfavored

direction, either the parameter value can shadow that stretch of orbit (presumably with

initial condition closer to the turning point than x0), or the parameter value cannot

shadow the orbit, in which case it loses track of the original orbit exponentially fast.

Asymptotically, the measurement noise actually makes no di�erence in the parameter

estimate other than through parameter shadowing e�ects caused by linking. Thus, once

the measurement noise is lower than a certain level, the actual measurement noise makes

very little di�erence in the accuracy of parameter estimates.

Measurement noise does have a large a�ect on �gure 6.6, the upper parameter bound,

and the possibility of parameter shadowing caused by linking. If the measurement noise

is large, then there is likely to be more parameter shadowing e�ects caused by linking. On

the other hand, if the measurement noise is really small, then the asymmetrical e�ect in

parameter space will in fact get drowned out for quite a while (until the sampled orbit

comes extremely close to the turning point). In most reasonable cases however, the

asymmetry in parameter space is likely to be quite important if we want to get accurate

parameter estimates for reasonably large data sets.

6.2 Henon map

We now discuss numerical experiments with the Henon map:

xn+1 = yn + 1 � ax

2
n

(6.2)

yn+1 = bxn (6.3)

where the state (xn; yn) 2 R
2 and the parameter values, a and b; are invariant. For

parameter values a = 1:4 and b = 0:3; numerical evidence indicates the existence of a

chaotic attractor as shown in �gure 6.7. See Henon [27] for a more detailed description

of the basic properties of Henon map.
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Figure 6.7: The Henon attractor for a = 1:4; b = 0:3:

For the purposes of testing out parameter estimation algorithms, we �x b = 0:3 and

attempt to estimate the parameter, a: State data is chosen from an orbit on the attractor

of the Henon map. Noisy measurement data is generated using a state orbit and adding

Gaussian noise with standard deviation 0:001 to each state value.

Applying the square root extended Kalman �lter to an orbit on the attractor results

in �gure 6.8. Observe that the �lter diverges after about 15,000 iterates and does not

recover. Note that the �gure represents data for only one run. However, the results in

�gure 6.8 are representative for other sequences of data that we have tried. Although

the performance of the Kalman �lter is quite sensitive to noise, the key point is that

divergence inevitably occurs, sooner or later, and the performance of the �lter is generally

unreliable.

Note in �gure 6.8 that the expected mean square error of the Kalman �lter tends to

change suddenly in jumps. In most cases these jumps probably correspond to sections

of orbits that are especially sensitive to parameters because of folding in state space.

The Kalman �lter has a tough time handling the folding and typically divergence occurs

during one of these jumps in the mean square error. This phenomenon is also apparent

in �gure 6.12. Note also that even after divergence, the parameter estimate sometimes

changes by many standard deviations, indicating that the state space error residual must

have been many deviations o�. This again re
ects the fact that the Kalman �lter does

not model folding well.

We now apply the algorithm described in section 5.6. We choose to examine the top-

level scan �lter every 20 iterates or so looking for covariance matrix drops of around a

factor of :7 or less. The algorithm is relatively insensitive to changes in these parameters

so their choice is not particularly critical.
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Figure 6.8: This graph depicts the performance of the Kalman �lter in estimating parameter

a for one sequence of noisy state data from the Henon map for a = 1:4 and b = 0:3: The data

was generated using the initial condition, (x0; y0) = (:633135448; 18940634);which is very close

to the attractor.
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Figure 6.9: Asymmetry in the parameter space of the Henon map (with a = 1:4; b = 0:3):

Here we graph the parameter merit function L(a) after 200000 iterates of an orbit with initial

condition on the attractor near x0 = (:423; :208). Note that this merit function is actually

based on only the most sensitive 931 data points, since the linear �lter threw out over 199,000

points.

As in the quadratic map, we �nd that the parameter merit function, L(a); is asym-

metrical in parameter space. Speci�cally, L(a) always has a sharp dropo� in its lower

bound, indicating that the Henon map favors higher parameters for parameter a (see

�gure 6.9). This property seems to be true for any orbit on the attractor. It also seems

to be true for all the parameter values of the Henon that have been tried. We thus take

advantage of the asymmetry in parameter space in order to estimate the parameters of

the system.

Figure 6.10 shows the estimation e�ort for data generated from several di�erent

initial conditions on the attractor. The tick marks on the traces of the graph denote

places where the top level scan �lter deferred to the Monte-Carlo analysis. Note that

as with the quadratic map, improvements in the estimate seem to be made suddenly.

Because relatively few numbers of points are analyzed by the Monte-Carlo technique,

and because the state samples scanned by the Kalman �lter do not contribute to the

parameter estimate, almost all the gain in parameter estimate must have been made

because of the dynamics.
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Figure 6.10: Graph of the actual error of the parameter estimate for a using the proposed

algorithm on the Henon map (with a = 1:4 and b = 0:3). This graph contains results for

four di�erent sets of data corresponding to four di�erent initial conditions, all chosen on the

attractor of the system. The tick marks on each trace denote places where the top level Kalman

�lter deferred to a Monte-Carlo-based approach for additional analysis.
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6.3 Standard map

We now discuss numerical experiments with the standard map:

xn+1 = (xn + yn +K sinx) mod 2� (6.4)

yn+1 = (yn +K sinx) mod 2� (6.5)

where K is the parameter of the system and the state, (xn; yn) 2 T
2
; lives on the 2-

torus, T 2
: The standard map is a Hamiltonian (area-preserving) system, and thus does

not have any attractors. Instead, for example, for K = 1; there is apparently a mixture

of invariant tori and seas of chaos where non-periodic orbits wander around. This is

illustrated in �gure 6.11. See Chirikov [13] for more discussion on the properties of the

standard map.

Figure 6.11: This picture shows various orbits of the standard map near K = 1: Note that

since the space is a torus, the sides of the square are actually overlapping. This picture shows

a number of di�erent orbits. Some orbits �ll out dark zones of chaotic behavior, while others

remain on circular tori.

In order to test the parameter estimation technique, we picked K = 1 and generated

data based on orbits chosen to be in a chaotic region. To each state, we added random

Gaussian measurement noise with standard deviation 0.001 to produce the data set. The

results of applying the square root extended Kalman �lter are shown in �gure 6.12. As

in the quadratic map and Henon map, we see that the Kalman �lter diverges.

In �gure 6.14 we show the result of applying the algorithm in section 5.6 to the

standard map. In particular we investigate data for �ve di�erent initial conditions in
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Figure 6.12: This graph depicts the performance of the square root extended Kalman �lter

for estimating parameter K using one sequence of noisy state data from the standard map

with K = 1: The data was generated using the initial condition, (x0; y0) = (0:05; 0:05): This

initial condition results in a trajectory that wanders around in a chaotic zone.
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Figure 6.13: Asymmetry in the parameter space of the standard map (with K = 1): Here

we graph the parameter merit function L(K) after 250000 iterates of an orbit with initial

condition x0 = (:423; :208):

the chaotic zone. In �gure 6.13 we see the e�ects of asymmetric shadowing in the

standard map. The algorithm used in these trials is exactly the same as the one used for

the experiments with the Henon map (not even the tunable parameters of the algorithm

were changed). This indicates that the algorithm is relatively 
exible and does not have

to be tuned precisely to generate reasonable results.

6.4 Lozi map

We now discuss numerical experiments with the Lozi map:

xn+1 = yn + 1 � ajxnj (6.6)

yn+1 = bxn (6.7)

where the state (xn; yn) 2 R2 and the parameter values, a and b; are invariant. The

Lozi map may be thought of as a piecewise linear version of the Henon map. Unlike

the Henon map, however, the Lozi map is uniformly hyperbolic where the appropriate

derivatives exist ([36]). For parameter values a = 1:7 and b = 0:5; the Lozi map has a

hyperbolic attractor ([36]) as shown in �gure 6.15.

For the purposes of testing out parameter estimation algorithms, we �x b = 0:5 and

attempt to estimate a: State data is chosen from an orbit on the attractor of the Lozi

map.

In �gure 6.16 we show the result of applying a square root extended Kalman �lter

to the Lozi map. Unlike with the quadratic, Henon, and standard maps, the Kalman
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Figure 6.14: This graph depicts the performance of the proposed algorithm for estimating

parameter K using one sequence of noisy state data from the standard map with K = 1:
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Figure 6.15: The Lozi attractor for a = 1:7; b = 0:5:

�lter applied to the Lozi map shows no signs of divergence, at least within 100,000

iterates. Note that the convergence of the expected mean square parameter estimation

error falls almost exactly at the 1p
n
rate indicated by pure stochastic convergence. Thus,

the dynamics makes no asymptotic contribution to the parameter estimate, as one would

expect with a uniformly hyperbolic system.

We cannot really apply the algorithm from section 5.6 to the Lozi map because there

are basically no sensitive orbit sections to investigate. The whole data set would pass

right through the top level scanning �lter without further review. However, even if we

did force the Monte-Carlo algorithm to consider all the data points, we should again

�nd purely stochastic convergence.
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Figure 6.16: This graph plots the performance of a square root extended Kalman �lter in

estimating the parameter, a; in the uniformly hyperbolic Lozi map. The data here represents

the average over �ve runs based on data with di�erent measurement noises bit generated

using the parameters a = 1:7; b = 0:5; and the same initial condition on the attractor, near

(x0; y0) = (�:407; :430): Note the lack of divergence, and the fact that convergence is purely

stochastic.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This report examines how to estimate the parameters of a chaotic system given obser-

vations of the state behavior of the system. This problem is interesting in light of recent

e�orts to use chaotic systems for control and signal processing applications, and because

of the possibilities for using parameter estimation in chaotic systems to develop ex-

tremely sensitive measurement techniques. In order to evaluate the possible application

of parameter estimation techniques to chaotic systems, we approached this report with

two main goals in mind: (1) to examine the extent to which it is theoretically possible

to estimate the parameters of a chaotic system, and (2) to develop an algorithm to do

the parameter estimation. Signi�cant progress was made on both objectives.

7.1.1 Theoretical considerations

In order to examine the theoretical possibilities of parameter estimation, we �rst broke

chaotic systems down into two categories: structurally stable systems and systems that

are not structurally stable. Structurally stable systems are probably not that interesting

for measurement applications, since small perturbations in the parameters of these sys-

tems do not result in qualitatively di�erent state orbits. Consequently, we cannot extract

asymptotic information about the parameters by observing the dynamics of structurally

stable systems.

The situation, however, is signi�cantly di�erent for systems that are not structurally

stable. It turns out that the accuracy of parameter estimates is closely related to how

orbits shadow each other for systems with slightly di�erent parameter values. Thus,

investigating the possibilities for parameter estimation required us to examine shadowing

orbits. We discovered two interesting properties of shadowing orbits for parameterized
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families of nonuniformly hyperbolic systems. First, we found that there is often an

asymmetrical shadowing behavior in the parameter space of these systems. That is, for

one-parameter families of systems, it is typically much easier for systems with slightly

higher parameter values to shadow orbits of systems with slightly lower parameter values

(or vice versa). To illustrate this property in at least one case, we proved a speci�c

shadowing result showing there truly is a preferred direction in parameter space for

certain maps of the interval with negative Schwarzian derivative satisfying a Collet-

Eckmann-like condition for state and parameter space derivatives.

In addition, we also found that given a typical orbit of a nonuniformly hyperbolic sys-

tem, most iterates of the orbit look locally hyperbolic, so that only a few rare stretches

of the orbit are sensitive to parameters and exhibit the asymmetrical shadowing behav-

ior in parameter space. These sensitive stretches of orbit seem to correspond to local

nonhyperbolic folding behavior in state space.

7.1.2 Parameter estimation algorithms

In designing the new parameter estimation algorithm, we took advantage of the two

theoretical observations described above. First, since most of the state data is apparently

insensitive to parameter changes, we chose a fast top-level �lter to scan through the

data before concentrating on data that might be especially sensitive. The observation

about asymmetrical shadowing behavior in parameter space is also extremely important,

since it means that we have only to investigate the sharp boundary in parameter space

between parameters that do and do not shadow the data in order to estimate what the

true parameters are.

The resulting algorithm is shown to perform signi�cantly better than standard pa-

rameter estimation algorithms like the extended Kalman �lter. The extended Kalman

�lter typically diverges for most problems involving parameter estimation of chaotic

systems. That is, the �lter's covariance matrix becomes too con�dent about the es-

timation error, e�ectively �xing the parameter estimate to an incorrect value without

accepting new information from additional data points. This occurs because most of

the information about the parameters of the system can be derived from observations

that experience local folding in state space, a phenomenon that is inherently di�cult to

model with the local linearization techniques used by the Kalman �lter.

Our algorithm, on the other hand, does not have the divergence problem of the

extended Kalman �lter. In several numerical experiments we demonstrated that the

algorithm described in this report achieved accuracies at least 3 to 4 orders of magnitude

better than the extended Kalman �lter before the experiment was stopped. Presumably,

we should be able to get even better accuracies with the proposed algorithm simply by

using more data points. Meanwhile, the divergence problem places a fairly strict bound

on the accuracy of the extended Kalman �lter.
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Furthermore, it appears that the estimation accuracy of the proposed algorithm

converges at a rate of 1
n
2 for certain systems (where n is the number of state samples

processed). This is interesting because it is signi�cantly better than the 1p
n
stochastic

convergence one might typically expect from most nonchaotic or structurally stable

systems. This indicates that the chaotic dynamics of a system can indeed help parameter

estimation to some extent, and opens the door to some interesting possible applications

like high precision measurement.

7.2 Future work

7.2.1 Theory

Many questions still remain unanswered. First of all, I would like to know how to really

characterize the ability of a system to shadow other systems. Is there a simple set

of properties of a parameterized family of mappings that guarantee the asymmetry in

parameter space shadowing behavior for a large class of mappings? How widespread

is this asymmetrical behavior in parameter space shadowing? It seems likely that the

situation is \generic" in some sense, but how can we make this statement more concrete?

Shadowing is particularly not well understood in higher dimensional systems. It

might be helpful to further investigate the invariant manifolds of nonuniformly hyper-

bolic systems in order to better understand shadowing results. In particular, it would

be interesting to investigate more quantitative results concerning the folding behavior

observed in this report and to specify how this phenomenon a�ects shadowing behavior

in general.

There is also work to be done in �guring out exactly what the rate of convergence

is likely to be for parameter estimation algorithms, in particular when those algorithms

are applied to multi-dimensional nonuniformly hyperbolic systems. This is important if

we would like to choose a system to optimize for parameter sensitivity. The conjectures

of section 3.5 seem to be a good place to start.

7.2.2 Parameter estimation algorithms

There are a number of ways in which the parameter estimation algorithm could probably

be improved. For instance, the biggest problem now seems to be in the behavior of the

top-level scanning Kalman �lter. Is there a better way of detecting where the parameter-

sensitive stretches of data occur? Perhaps a better solution would be to use some sort

of �xed-lag smoother so that data is taken from both forwards and backwards in time

in order to smooth out local stretches of parameter-sensitive data.
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Also, is there a nicer way of representing the state-parameter space probability den-

sities? It is clear that linear representations like those in the extended Kalman �lter

cannot do the job. I have tried a number of other representation forms without success,

and eventually resorted to a Monte-Carlo based method. Perhaps a more e�cient but

still e�ective representation form for the densities can be found.

7.2.3 Applications

Most importantly, there are still questions about how to apply parameter estimation

in chaotic time series to problems like high precision measurement, control, or other

possible applications. This report shows that many chaotic systems exhibit some special

properties that would aid someone who is interested in knowing the parameters of a

system based on state data. Now that we have a better theoretical base for understand-

ing what factors a�ect parameter estimation in chaotic systems, it should be easier to

understand how and when to apply the resulting algorithmic tools.

As for the possibility of high precision measurement applications, this idea certainly

merits additional research in light of the results in this report. The main problem here

would be to �nd a suitable application where the quantity to be measured is physically

interesting and the chaotic system involved satis�es all the right properties. For instance,

this technique would ideally be applied to a system that is well-modeled by a relatively

simple set of equations. The problem would be to �nd a suitable setup that would

make the application worthwhile, and/or to increase the sophistication of the parameter

estimation algorithms to handle a larger set of experimental situations.
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Appendix A

Proofs from Chapter 2

This appendix contains notes on three proofs from Chapter 2. Note that in the �rst two

theorems (sections A.1 and A.2), we reverse the names of the functions f and g from

the corresponding theorems in the text of this report. This is done to conform with the

notation used in Walters' paper, [62]. The notation in the appendix is the same as in

Walters, while the notation in the text is switched.

A.1 Proof of Theorem 2.2.3

Theorem 2.2.3: (Walters) Let f : M ! M be an expansive di�eomorphism with the

pseudo-orbit shadowing property. Suppose there exists a neighborhood, V � Di� 1(M) of

f that is uniformly expansive. Then f is structurally stable.

Proof: This is based on theorem 4 and 5 and the remark on page 237 in [62]. In theorem

4, Walters states that an expansive homeomorphism with the pseudo-orbit shadowing

property is "topologically stable." However, Walters' de�nition of topological stability is

weaker than our de�nition of structural stability. In particular, for topological stability

of f;Walters requires that there exist a neighborhood, U � Di�
1(M); of f such that for

each g 2 U; there is a continuous map h : M ! M such that hg = fh: For structural

stability, this h must be a homeomorphism. We can get the injectiveness of h from

the uniform expansiveness of nearby maps (apply theorem 5 of [62]). We can get the

surjectiveness of h from the compactness of M based on an argument from algebraic

topology (see Lemma 3.11 in [38], page 36). Since M is compact, and h is injective and

surjective, h must be a homeomorphism.
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A.2 Proof of Theorem 2.2.4

Theorem 2.2.4: Let f : M ! M be an expansive di�eomorphism with the function

shadowing property. Suppose there exists a neighborhood, V � Di� 1(M) of f such that

V is uniformly expansive. Then f is structurally stable.

Proof: The proof given here is similar to theorem 4 of [62] except that the e�ective roles

of f and g are reversed (where g denotes maps near f in Di�
1(M)). Instead of knowing

that all orbits of nearby systems can be shadowed by real orbits of f (pseudo-orbit

shadowing), here we are given that all orbits of f can be shadowed by real orbits of any

nearby system (function shadowing).

We shall prove that there is a neighborhood U � V of f in Di�
1(M) such that for

any g 2 U; there exists a continuous h such that hf = gh (note that the h we use here

is the inverse of the one in theorem 2.2.3). From this result we can use the arguments

outlined for theorem 2.2.3 to show that h is a homeomorphism because of the uniform

expansiveness of f and the compactness of M:

First we need to show the existence of a function h : M ! M such that hf = gh:

From the function shadowing property, given any � > 0; there exists a neighborhood,

U� � V of f such that any orbit of f is ��shadowed by an orbit of g 2 U�:

Now suppose that � <
1
2
infg2V e(g): In this case, we claim that there is exactly

one orbit of g that ��shadows any particular orbit of f: If this were not true then two

di�erent orbits of g; fxng and fyng; must shadow the same orbit of f: But because of

the expansiveness of g there must exist an integer, N; such that d(xN ; yN)) > 2�; so that

fxng and fyng clearly cannot �-shadow the same orbit of f: Thus we can see that there

must be a function h which maps each orbit of f to a shadowing orbit of g:

Consequently, for any � > 0; there exists a neighborhood U� such that for any g 2 U�;

we can de�ne a function h such that hf = gh and:

supx2Md(h(x); x) < �: (A.1)

We now need to show that this h is also continuous. To do this we �rst need the following

lemma from [62]:

Lemma A.2.1 (Lemma 2 in [62]) Let f be expansive with expansive constant e(f) > 0:

Given any � > 0; there exists N � 1 such that d(fn(x); fn(y)) � e(f) for jnj < N

implies d(x; y) < �:

Proof of Lemma: Given � > 0; suppose that the lemma is not true so that no such

N can be chosen. Then there are exists a sequence of points, fxig1i=1 and fyig1i=1 (not

orbits), such that for any N � 1; d(xN ; yN) � � and d(fn(xN); f
n(yN)) � e(f) for all

jnj < N: There exists a subsequence of points fxnig1i=0 and fynig1i=0 such that xni ! x
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and yni
! y as i ! 1 such that d(x; y) � �: By continuity of f this implies that

d(fn(x); fn(y)) � e(f) for all n; which is a direct contradiction of the expansiveness of

f: This completes the proof of lemma A.2.1.

Returning to the proof of theorem 2.2.4, we now want to show the continuity of h: In

other words, given any � > 0 we need to show there exists a � > 0 such that d(x; y) < �

implies d(h(x); h(y)) < �:

Our strategy is as follows: Since g is expansive, from lemma A.2.1 we know that

for any � > 0 we can choose N� such that if d(gn(h(x)); gn(h(y))) � e(g) for jnj < N�

then d(h(x); h(y)) < �: Thus suppose that for any � > 0 there exists � > 0 such that

d(x; y) < � implies d(gn(h(x)); gn(h(y))) � e(g) for all jnj < N�: Then d(h(x); h(y)) < �;

and h must be continuous. This is what we shall show.

Given � > 0; pick � > 0 such that d(fn(x); fn(y)) < � if jnj < N�: Set e(V ) =

supg2V e(g) and �x � = 1
3
e(V ): From equation ( A.1) we know that given this � > 0;

there exists a neighborhood, U� � V; of f in Di�
1(M) such that for any g 2 U�;

there exists h such that hf = gh and supx2Md(h(x); x) < �: Thus for any g 2 U� and

corresponding h :M !M; if d(x; y) < � then we have:

d(gn(h(x)); gn(h(y))) = d(h(fn(x)); h(fn(y)))

� d(h(fn(x)); fn(x)) + d(fn(x); fn(y)) + d(fn(y); h(fn(y)))

� �+
1

3
e(V ) + �

� e(V ) � e(g) for all jnj < N�

From the argument in the previous paragraph, this shows that h must be continuous

which completes the proof of theorem 2.2.4.

A.3 Proof of Lemma 2.3.1

Lemma 2.3.1: Suppose that fp 2 Di� 1(M) for p 2 Ip � R; and let f(x; p) = fp(x) for

any x 2 M: Suppose also that f is C
1
and that fp0 is an absolutely structurally stable

di�eomorphism for some p0 2 Ip: Then there exists �0 > 0 and K > 0 such that for every

positive � < �0; any orbit of fp0 can be ��shadowed by an orbit of fp for p 2 B(p0;K�):

Proof: This follows from the de�nition of absolute structural stability. From that def-

inition, we know that there exists �0 > 0; K1 > 0; and conjugating homeomorphisms,

hp :M !M; such that if p 2 B(p0; �0); then:

sup
x2M

d(h�1
p
(x); x) � K1 sup

x2M
d(fp0(x); fp(x))):

where fp0 = hpfph
�1
p
: Given an orbit, fxng; of fp0 we claim that h�1

p
maps xn onto a

suitable shadowing orbit, zn(p) of fp for each n 2Z:Also, since f is C1 for (x; p) 2M�Ip;
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there exists a constant, K2 > 0; such that supx2Md(fp0(x); fp(x)) � K2jp � p0j for any
p 2 Ip: Thus, setting zn(p) = h

�1
p
(xn); for all n we see that:

sup
n2Z

d(zn(p); xn) � sup
x2M

d(h�1
p
(x); x)

� K1 sup
x2M

d(fp0(x); fp(x))

� K1K2jp� p0j

for all integer n. Now settingK = 1
2K1K2

; we have the desired result that supn2Zd(zn(p); xn) <
� if p 2 B(p0;K�); for all n and any positive � < �0: This completes the proof of

lemma 2.3.1.
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Appendix B

Proof of theorem 3.2.1

In this appendix, we present the proof for theorem 3.2.1.

B.1 Preliminaries

We �rst repeat the related de�nitions which are the same as those found in chapter 3.

Throughout this appendix we shall assume that I � R represents a compact interval of

the real line.

De�nitions: Suppose that f : I ! I is continuous. Then the turning points of f are

the local extrema of f in the interior I: C(f) is used to designate the set of all turning

points of f on I: C
r (I; I) is the set of continuous maps on I such that f 2 C r (I; I) if:

(a) f is Cr (for r � 0)

(b) f(I) � I; and

(c) f(Bd(I)) � Bd(I) (where Bd(I) denotes the boundary of I).

If f 2 C r (I; I) and g 2 C r (I; I); let d(f; g) = sup
x2I jf(x)� g(x)j:

De�nitions: A continuous map f : I ! I is said to be piecewise monotone if f have

�nitely many turning points. f is said to be a uniformly piecewise-linear mappings if it

can be written in the form:

f(x) = �i � sx for xi 2 [ci�1; ci] (B.1)

where s > 1; c0 < c1 < : : : < cq and q > 0 is an integer. (We assume s > 1 because

otherwise there will not be any interesting behavior).

Note that for this section, it is useful to de�ne neighborhoods, B(x; �); so that they

do not extend beyond the con�nes of I. In other words, let B(x; �) = (x� �; x+ �) \ I:

With this in mind, we use the following de�nitions to describe some relevant properties

of piecewise monotone maps.
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De�nition: A piecewise monotone map, f : I ! I; is said to be transitive if for any

two open sets U; V � I; there exists an n > 0 such that fn(U) \ V 6= ;:
De�nitions: Let f : I ! I be piecewise monotone. Then f satis�es the linking

property if for every c 2 C(f) and any � > 0 there is a point z 2 I such that z 2 B(c; �);

f
n(z) 2 C(f) for some integer n > 0; and jf i(c)� f

i(z)j < � for every i 2 f1; 2; : : : ; ng:
Suppose, in addition, that we can always pick z 6= c such that the above condition is

satis�ed. Then f is said to satisfy the strong-linking condition.

We are now ready to state the objective of this appendix:

Theorem 3.2.1 Transitive piecewise monotone maps satisfy the function shadowing

property in C
0(I; I) if and only if the satisfy the strong linking property.

We note Liang Chen [12] proves a similar result, namely that the pseudo-orbit shad-

owing property is equivalent to the linking property for maps topologically conjugate

to uniformly piecewise linear mappings. Some parts of the proof we describe below

are also similar to the work of Coven, Kan, and Yorke [17] for tent maps (uniformly

piecewise linear maps with one turning point). The main di�erence is that they prove

a pseudo-orbit shadowing property while we are interested in parameter and function

shadowing.

B.2 Proof

This section will be devoted to the proof of theorem 3.2.1 and related results. The basic

strategy of the proof will be as follows. First we relate piecewise monotone mappings to

piecewise linear mappings through a topological conjugacy (lemmas B.2.1 and B.2.2).

This provides for uniform hyperbolicity away from the turning points. Second we capture

the e�ects of \folding" near turning points and show how this leads to function shadowing

(lemmas B.2.4,B.2.5,B.2.6). Finally in lemma B.2.7 we show that the local folding e�ects

of lemmas B.2.4, B.2.5, or B.2.6 are satis�ed for the maps we are interested in.

Lemma B.2.1 : Let f : I ! I be a transitive piecewise-monotone mapping. Then f is

topologically conjugate to uniformly piecewise-linear mapping.

Proof: See Parry [51] and Coven and Mulvey [18].

The following lemma is necessary for the application of the topological conjugacy

result.

Lemma B.2.2 Let f : I ! I and g : I ! I be two topologically conjugate continuous

maps. If f has the linking or strong linking property then g must have these properties
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also. If f satis�es has the function shadowing property on C
0(I; I); then g must also

satisfy the function shadowing property on C
0(I; I):

Proof: Since f and g are conjugate, the orbits of f and g are connected through a

homeomorphism, h; such that g = h
�1
fh: Because h is continuous and one-to-one, the

of turning points of f and g must be preserved by the topological conjugacy. Thus if f

has the linking or strong linking properties, then g must have these properties also.

Now suppose that f has the function shadowing property on C 0(I; I): We want to

show that g also has this function shadowing property which means that for any � > 0;

there exists a neighborhood, V; of g in C 0(I; I) such that if g� 2 V then any orbit of g

is ��shadowed by an orbit of g�:

Since h is continuous, and I is compact, we know that given � > 0 there exists � > 0

such that jx� yj < � implies jh(x)� h(y)j < � if x; y 2 I: Given this � > 0; since f has

the function shadowing property, there is a neighborhood U � C
0(I; I) of f such that

if f� 2 U; then any orbit of f can be �-shadowed by an orbit of f�: Let V = h
�1
Uh:

Since g = h
�1
fh; V must contain a neighborhood of g in C 0(I; I): We now must show

if g� 2 V; then any orbit of g can be ��shadowed by an orbit of g�:

Suppose we are given an orbit, fxng; of g and any g� 2 V: Let fwng be the corre-

sponding orbit of f such that wn = h
�1(xn): Set f� = h

�1(g�): Since f� 2 U; there exists

an orbit, fyng; of f� that ��shadows fwng: Then if zn = h(yn); fzng must be an orbit

of g� that ��shadows fxng; since jh(x)�h(y)j < � if jx�yj < �: This proves the lemma.

Thus, combining lemmas B.2.1 and B.2.2, we see that the problem of proving the

function shadowing property for transitive piecewise-monotone maps with the strong

linking property reduces to proving the function shadowing property for uniformly piece-

wise linear maps with the strong-linking property.

We now introduce one more result that will be useful later on:

Lemma B.2.3 Let f : I ! I: Suppose f
n
satis�es the function shadowing property on

C
0(I; I) for some integer n > 0: Then f has the function shadowing property on C

0(I; I):

Proof: Given any � > 0 we need to show that there exists a neighborhood, U of f in

C
0(I; I) such that if g 2 U; then any orbit of f is ��shadowed by an orbit of g: Since f

is continuous and I is compact, there exists a � > 0 such that if jx� yj < �; then

jf i(x)� f

i(y)j < 1

2
� (B.2)

for any i 2 f0; 1; : : : ; ng and x; y 2 I: We also know that there exists a neighborhood,

V1 of f in C 0(I; I) such that if g 2 V1 :

jf i(x)� g
i(x)j < 1

2
� (B.3)
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for all x 2 I and i 2 f0; 1; : : : ; ng:
Combining (B.2) and (B.3) and using the triangle inequality we see that for any

� > 0 there exists a � > 0 and a neighborhood, V1; of f in C 0(I; I) such that if g 2 V1

and jx� yj < �; then:

jf i(x)� g

i(y)j < �: (B.4)

for all i 2 f0; 1; : : : ; ng if x; y 2 I: Given � > 0; �x � > 0 and V1 2 C 0(I; I) to satisfy

(B.4).

Using this � > 0; since fn has the function shadowing property, we know there exists

a neighborhood, V2; of f
n in C 0(I; I) such that if gn 2 V2; then any orbit of fn is

��shadowed by an orbit gn: Given this neighborhood, V2; of f
n
; we can always pick a

neighborhood, V3 � C 0(I; I) of f such that g 2 V3 implies that gn 2 V2: This is apparent,

since for any � > 0 there exists a neighborhood V3 of f in C 0(I; I) such that

d(fn; gn) = sup
x2I

jfn(x)� g
n(x)j < �:

if g 2 U: Thus, for any � > 0; if g 2 V3; then any orbit of fn is �-shadowed by an orbit

of gn:

Now set U = V1 \ V3: Note that U must be a contain neighborhood of f in C 0(I; I):

If we �x g 2 U; we �nd that given any orbit, fxig1i=0; of f; there is an orbit, fyig1i=0; of g

such that yi 2 B(xi; �) if i = kn for any k 2 f0; 1; : : : g: Thus, from (B.4), we know that

yi 2 B(xi; �) for all i � 0: Consequently, given any � > 0; there exists a neighborhood U

of f in C 0(I; I) such that if g 2 U; then any orbit of f can be ��shadowed by an orbit

of g: This is what we set out to prove.

We now examine the mechanism underlying shadowing in one-dimensional maps. In

the next three lemmas we look at how local \folding" can lead to shadowing.

Lemma B.2.4 Given f 2 C 0(I; I); suppose that for any � > 0 su�ciently small there

exists a neighborhood, U; of f in C
0(I; I) such that if g 2 U;

g(B(x; �)) � (B(f(x); �)) (B.5)

for all x 2 I: Then f has the function shadowing property in C
0(I; I):

Proof: Let fxng be an orbit of f and suppose that (B.5) is satis�ed. Then if g 2 U; for

any y1 2 I with y1 2 B(x1; �) we can choose a y0 2 I so that y0 2 B(x0; �) and y1 = g(y0):

Similarly for any y2 2 I with y2 2 B(x2; �); we can pick y1 and y0 within � distance of x1
and x0; respectively. Extending this argument for arbitrarily many iterates we see that

(B.5) implies that there exists an orbit, fyig; of g so that yi 2 B(xi; �) for all integer

i � 0: Thus, given any � > 0 su�ciently small, there exists a neighborhood, U; of f in

C
0(I; I) such that if g 2 U; then any orbit orbit of f can be ��shadowed by an orbit of

g:
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Lemma B.2.5 Let f 2 C 0(I; I): Suppose that for any � > 0 su�ciently small, there

exists N > 0 and a neighborhood, U; of f in C
0(I; I) such that for any g 2 U; there

exists a function n : I !Z
+
so that for each x 2 I :

fgn(x)(y) : jf i(x)� g

i(y)j < �; 0 � i � n(x)g � (B[fn(x)(x); �]) (B.6)

where 1 � n(x) < N for all x 2 I: Then f has the function shadowing property in

C
0(I; I):

Proof: The idea is very similar to lemmaB.2.4. Let fxng be an orbit of f: In lemmaB.2.4,

given su�ciently small � > 0 and g 2 U; we could always choose y0 2 B(x0; �) given a

y1 2 B(x1; �) so that y1 = g(y0): A similar thing applies here except that we have to

consider the iterates in groups. Suppose that the premise of lemma B.2.5 is satis�ed.

Given su�ciently small � > 0; �x g 2 U: Then, for any yn(x0) 2 B(xn(x0); �); there exists a

�nite orbit Y0 = fyign(x0)i=0 of g such that jxi� yij < �; for i 2 f0; 1; : : : ; n(x0)g: Similarly,

we can play the same trick starting with yn(x0) for the next n(xn(x0)) group of iterates

constructing another �nite orbit, Y1 = fyign(x0)+n(xn(x0))i=n(x0)
; of g: Since we are free choose

Y0 from any yn(x0) 2 B(xn(x0); �); it is clear that given any Y1 we can pick a Y0 belonging

to the same in�nite forward orbit of g, thereby allowing us to concatenate Y0 and Y1 to

construct a single �nite orbit of g; fyign(x0)+n(xn(x0))i=0 that ��shadows fxign(x0)+n(xn(x0))i=0 :

This process can be repeated inde�nitely for arbitrarily many groups of iterates, gluing

together each group of iterates as we go. Thus the function shadowing property holds.

Lemma B.2.6 Let f 2 C 0(I; I): Suppose that for any � > 0 su�ciently small, there

exists N > 0 and a neighborhood, U; of f in C
0(I; I) such that for any g 2 U; there

exists a function n : I !Z
+
so that for each x 2 I :

fgn(x)+1(y) : jx� yj < �; jf i(x)� g

i(y)j < 8�; 1 � i � n(x)g (B.7)

� g[B(fn(x)(x); �)]

where 1 � n(x) < N for all x 2 I: Then f has the function shadowing property in

C
0(I; I):

Proof: (compare with lemma 2.4 of [17]). We shall show that given su�ciently small

� > 0 and any g 2 U; if (B.7) is satis�ed, then for any orbit, fxig1i=0 of f; there exists

an orbit, fyig1i=0; of g such that jxi � yij < 8� for all integer i � 0: By condition (B.7),

given any y0
n(x0)+1 2 g(B[xn(x0); �]) we can choose a �nite orbit, Y0 = fy0

i
gn(x0)
i=0 ; of g that

8�-shadows fxign(x0)i=0 and satis�es g(y0
n(x)) = y

0
n(x)+1: Similarly, using the same trick with

the next n(xn(x0)) iterates, we can construct a �nite orbit, Y1 = fy1
i
gn(x0)+n(xn(x0))
i=n(x0)

; of g

that 8�-shadows fxign(x0)+n(xn(x0))i=n(x0)
and satis�es y1

n(x) 2 B(xn(x0); �):
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Also, notice that given Y1 we can always choose a Y0 so that g(y0
n(x0)

) = y
1
n(x0)+1:

This is because we know that y1
n(x0)

2 B[xn(x0); �] and because we are free to choose any

y
0
n(x0)+1 2 g(B[xn(x0); �]) to construct Y0: Consequently we can concatenate Y0 and Y1 to

form an orbit that 8�-shadows fxign(x0)+n(xn(x0))i=0 : We can continue this construction by

concatenating more groups of n(xi) iterates for increasingly large i. Thus given (B.7) it

is apparent that we can choose an orbit, fyig1i=0; of g that 8�-shadows any orbit of f if

g 2 U: This proves the lemma.

Now we must show that lemma B.2.6 is satis�ed for any uniformly piecewise-linear

map. Note that condition (B.6) in lemma B.2.5 in fact implies (B.7) in lemma B.2.6, so

it is su�cient to show that either (B.6) or (B.7) is true for any particular x 2 I: This

is done in lemma B.2.7 below. We can then combine lemma B.2.7 with lemma B.2.3 to

prove theorem 3.2.1.

First, however, we introduce the following notation, in order to state our results more

concisely.

De�nition: Given a map, f 2 C 0(I; I); de�ne:

Dk(x; g; �) = fgk(y) : y 2 I; jf i(x)� g
i(y)j < � for i 2 f0; 1; : : : ; kgg:

Ek(x; g; �) = fgk(y) : y 2 I; jx� yj < �; and jf i(x)� g

i(y)j < 8� for i 2 f1; 2; : : : ; kgg:
for any x 2 I; k 2 Z

+
; and � > 0 where g 2 C 0(I; I) is a C0 perturbation of f: Although

Dk(x; g; �) and Ek(x; g; �) also depend on f we leave out this dependence because f

will always refer to the uniformly piecewise linear map speci�ed in the statement of

lemma B.2.7 below.

Lemma B.2.7 : Let f : I ! I be a uniformly piecewise linear map with slope s > 9:

Suppose that f satis�es the strong linking property. Then for any � > 0 there exists

N > 0 and a neighborhood, U; of f in C
0(I; I) such that for any g 2 U at least one of

the following two properties hold for each x 2 I :

(I) Dn(x)(x; g; �) � B[fn(x)(x); �]

(II) g(En(x)(x; g; �)) � g(B[fn(x)(x); �])

where n : I !Z
+
and 1 � n(x) < N for all x 2 I:

Proof of lemma B.2.7: Let C(f) = fc1; c2; : : : ; cqg where c1 < c2 < : : : < cq: Assume

that � > 0 is small enough such that

jck � cij > 16�

for any k 6= i:
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We now utilize the strong linking property. For each j 2 f1; 2; : : : ; qg and k 2 Z+

de�ne wk(j; �) � I such that:

wk(j; �) = fgk(y) : y 2 I; jf i(cj)� f
i(y)j < 5

2
� for i 2 f0; 1; : : : ; kgg (B.8)

Given � > 0; for each j 2 f1; 2; : : : ; qg let mj be the minimum k such that

wk(j; �)
\

C(f) 6= ;: (B.9)

The strong linking property implies that such mj's exist and are �nite for each j 2
f1; 2; : : : ; qg and for any � > 0: From (B.8) and (B.9) we can also see that for each

j 2 f1; 2; : : : ; qg; there exists some r(j) 2 f1; 2; : : : ; qg such that

cr(j) 2 wk(j; �):

Now set:

�x =
1

10
min

j2f1;2;:::;qg
jfmj(cj)� cr(j)j (B.10)

and note that from (B.8) and (B.9):

jfmj(cj) � cr(j)j < 5

2
� (B.11)

for any j 2 f1; 2; : : : ; qg: Thus it is evident that:

�x <

1

4
�: (B.12)

Because of the strong linking property, we know that �x > 0:

Also, set M = maxj2f1;2;:::;qgmj; de�ne �x(g) : C
0(I; I)! R such that:

�x(g) = max
i2f1;2;:::;Mg

sup
x2I

jf i(x)� g

i(x)j; (B.13)

and choose U to be a neighborhood of f in C 0(I; I) such that �x(g) < �x for any g 2 U:

Thus for any g 2 U; any x 2 I; and any i 2 f1; 2; : : : ;Mg :

jf i(x)� g

i(x)j < 1

4
�: (B.14)

Now, let (a; b] indicate either the interval, (a; b]; or the interval, [b; a); whichever is

appropriate. Then, since s > 9; for any � > 0 we assert that:

Di(cj; f; �) = (f i(cj)� �i(cj)� ; f

i(cj)] (B.15)
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for each j 2 f1; 2; : : : ; qg and every i 2 f1; 2; : : : ;mjg where:

�i(c) =

(
+1 if f i has a a relative maximum at c 2 C(f)

�1 if f i has a a relative minimum at c 2 C(f):

Note that (B.9) guarantees that that Di(cj; f; �)\C(f) = ; for any i 2 f1; 2; : : : ;mj�1g:
Thus, since s > 9; (B.15) can be shown by a simple induction on i:

We now proceed to the main part of the proof for lemma B.2.7:

Given any g 2 U we must show that for each x 2 I either condition (I) or (II) holds

in the statement of the lemma for some n(x) < N . We now break up the problem into

two separate cases. Given some � > 0 �rst suppose that x is more than � distance away

from any turning point. In other words suppose that jx�cj j � � for all j 2 f1; 2; : : : ; qg:
Then we can set n(x) = 1 and it is easy to verify that condition (I) of the lemma holds:

D1(x; g; �) = g(B(x; �))
\
B(f(x); �)

= B(g(x); �)

since s > 9 and jf(x)� g(x)j < �

4
for all x 2 I:

The other possibility is that x is within � distance of one of the turning points, in

other words that x 2 V where:

V = fx 2 I : jx� cjj < � for j 2 f1; 2; : : : ; qgg:
Below we show that for all g 2 U , if x 2 V does not satisfy condition (I) then x satis�es

condition (II) of the lemma. This would complete the proof of lemma B.2.7.

Suppose that jx�cjj < � for some j 2 f1; 2; : : : ; qg and suppose that x does not satisfy
condition (I) for any n(x) 2 f1; 2; : : : ;mjg: In qualitative terms, since f is expansive by

a factor of s > 9 everywhere except at the turning points, the only way for x not to

satisfy condition (I) is if x is close enough to cj so that Di(x; g; �) represents a \folded"

line segment for every i 2 f1; 2; : : : ;mjg:
More precisely, for each i 2 f1; 2; : : : ;mj if we let

Ji(x; g; �) = fy 2 I : jfk(x)� g

k(y)j < � for k 2 f0; 1; : : : ; igg:
so that Di(x; g; �) = g

i(Ji(x; g; �)); then following claim is true.

Claim: Given g 2 U; suppose that x 2 B(cj; �) does not satisfy condition (I) of

lemma B.2.7 for any n(x) 2 f1; 2; : : : ;mjg: Then for each j 2 f1; 2; : : : ; qg we claim

that the following three statements are true:

(1) For any i 2 f1; 2; : : : ;mjg; if we de�ne yi(j) 2 Ji(x; g; �) such that:

g

i(yi(j)) =

(
sup

z2Ji(x;g;�) g
i(z) if �i(cj) = +1

infz2Ji(x;g;�) g
i(z) if �i(cj) = �1 (B.16)
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then

Di(x; g; �) = (f i(x)� �i(cj)� ; g
i(yi(j))] (B.17)

and g
i(yi(j)) 2 (f i(x)� �; f

i(x) + �):

(2) For any i 2 f1; 2; : : : ;mj � 1g; Di(x; f; �) \ C(f) = ;:
(3) For any i 2 f1; 2; : : : ;mjg; yi(j) 2 Ji(x; f; �):

Proof of claim: We prove parts (1) and (2) of this claim by induction on i.

First we demonstrate that if conditions (1) and (2) above are true for each i 2
f1; 2; : : : ; kg where k 2 f1; 2; : : : ;mj � 1g; then condition (1) is true for i = k + 1: Thus

we assume that Dk(x; g; �) has the form given in (B.17), if x 2 B(x; �); so that:

Dk(x; g; �) � (fk(x)� �k(cj)� ; g

k(x)]:

Since jfk(x)� g
k(x)j < 1

4
�; this means:

Dk(x; g; �) � (fk(x)� �k(cj)� ; f
k(x)� 1

4
�k(cj)�]:

In particular (fk(x)� 1
2
�k(cj))� 2 Dk(x; g; �): SinceDk(x; f; �) � (fk(x)��k(cj)� ; f

i(x)]

and Dk(x; f; �) \ C(f) = ; (assuming that (2) is true for i = k) we know that [C(f) \
(fk(x)� 1

2
�k(cj)� ; f

i(x))] = ;: Thus, since s > 9 :

g(fk(x)� 1

2
�k(cj)�) 2 (fk(x)� 1

2
s�k+1(cj)�� �x ; f

k(x)� 1

2
s�k+1(cj)�+ �x)

Now suppose that cj is a relative maximum of the map fk+1 so that �k+1(cj) = +1 (the

case where �k+1(cj) = �1 is analogous). Then we �nd that:

g(fk(x)� 1

2
�k(cj)�) < f

k(x)� �

where g(fk(x)�1
2
�k(cj)�) 2 g(Dk(x; g; �)):Thus, sinceDk(x; g; �) and hence g(Dk(x; g; �))

are connected sets, this means that since

Dk+1(x; g; �) = g(Dk(x; g; �)) \B(fk+1(x); �)

we know that fk(x)� � must be the lower endpoint of Dk+1(x; g; �): Also we know that

Dk+1(x; g; �) � (fk+1(x)� � ; f
k+1(x) + �)

because otherwise condition (I) is satis�ed for n(x) = k + 1: Consequently by the de�-

nition of yk(j) in (B.16), we see that:

Dk+1(x; g; �) = (fk+1(x)� (cj)� ; g

k(yk+1(j))]:

127



where gk(yk+1(j)) 2 (fk+1(x)�� ; f
k+1(x)+�) if �k+1(cj) = +1: Combing this with the

corresponding result for �k+1(cj) = �1 proves that condition (1) is true for i = k + 1

given that (1) and (2) are true for i = k:

Next we show that if (1) and (2) are true for each i 2 f1; 2; : : : ; kg where k 2
f1; 2; : : : ;mj � 2g; then (2) is true for i = k+1: Suppose on the contrary that (2) is not

true for k = i + 1 so that Dk+1(x; f; �) \ C(f) 6= ;: Since Dk+1(x; f; �) � B(fk+1(x); �)

we know that:

f

k+1(x) 2 B(c; �) (B.18)

for some c 2 C(f): From (B.8) and (B.9) we also know that:

f

i(cj) 62 (c ; c+
5

2
�i(cj)�) (B.19)

for any c 2 C(f) if i 2 f1; 2; : : : ;mj � 2g:
We now address two cases. First suppose that there exists some t 2 f1; 2; : : : ; kg and

c 2 C(f) such that:

c 2 (f t(x) ; f

t(cj)) (B.20)

Let t be the minimum value for which (B.20) holds for any c 2 C(f): Since t is minimal

we know that f t must be monotone on (x; cj) so that:

�t(cj)(f
t(cj)� f

t(x)) � 0:

Combining this result with (B.20) and (B.19) we �nd that:

�t(cj)(f
t(cj)� f

t(x)) >
5

2
�: (B.21)

Now suppose there exists no i 2 f1; 2; : : : ; kg; such that:

c 2 (f i(x) ; f

i(cj))

for any c 2 C(f): Note that since we assume (2) is true for i � k; this means there exists

no i 2 f1; 2; : : : ; kg; such that:

c 2 (f i(x) ; f

i(cj)) [Di(x; f; �):

for any c 2 C(f): Then for any i 2 f1; 2; : : : ; k + 1g; we know that f i is monotone on

(x; cj) [ Ji(x; f; �): Thus, for any z 2 Di(x; f; �) we have:

�i(cj)(f
i(cj)� z) � 0
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and from (B.18) and (B.19):

�k+1(cj)(f
k+1(cj)� f

k+1(x)) >
3

2
�: (B.22)

From (B.21) and (B.22) we have shown that if (2) is satis�ed for any i 2 f1; 2; : : : ; kg
then there exists t � k + 1 such that:

�t(cj)(f
t(cj)� f

t(x)) >
3

2
�:

This implies that:

�t(cj)(g
t(cj)� f

t(x)) > �

so cj 62 Jt(x; g; �): Thus there exists some ` 2 f0; 1; : : : ; t � 1g such that cj 2 Ji(x; g; �)

for any i satisfying 1 � i � ` but cj 62 J`+1(x; g; �): Since Di(x; g; �) \ C(f) = ; for any
i 2 f1; 2; : : : ; `g we know that:

�`+1(cj)(f
`+1(cj)� f

`+1(x)) � 0:

Consequently, since cj 62 J`+1(x; g; �); it is apparent that:

�`+1(cj)(g
`+1(cj)� f

`+1(x)) > �:

Thus, since D`(x; g; �) is connected, and since g
`+1(cj) 2 g(D`(x; g; �); we know that

f
`+1(x) + �`+1(cj)� must be an endpoint of D`+1(x; g; �) = g(D`(x; g; �) \ B(f `(x); �)

where ` + 1 � t � k + 1: This contradicts (1) for i = ` + 1 � k + 1: But we have

already shown that if (1) and (2) are satis�ed for i 2 f1; 2; : : : ; kg; then (1) is satis�ed

for i = k + 1: Thus if (1) and (2) are satis�ed for i 2 f1; 2; : : : ; kg; then (2) is also

satis�ed for i = k + 1:

We now need to show that (1) is true for i = 1: By de�nition, we can write:

D1(x; g; �) = g[(x��; x+�)]\B(f(x); �): If condition (I) is not satis�ed, thenD1(x; g; �) �
(f(x)� �; f(x)+ �) and at least one endpoint of D1(x; g; �) has to correspond either to a

maximum or minimum point of g in the interior of J1(x; g; �): Since s > 9; and since all

the turning points of f are separated by at least 16�; we know that the other endpoint

of D1(x; g; �) must be f(x) � �1(cj)�: Thus D1(x; g; �) has the form given in (B.17).

Now we show that (2) is true for i = 1: Suppose that D1(x; g; �) \ C(f) 6= ;: Then
�1(cj)(f(x)�c) � � for some c 2 C(f): If x 2 B(cj; �) andmj > 1 then �1(cj)(f(cj)�c) �
5
2
� for any c 2 C(f): Thus �1(cj)(f(cj) � f(x)) � 3

2
� which means that �1(cj)(g(cj) �

f(x)) � �: This contradicts (1) for i = 1 and completes the proof of parts (1) and (2) of

the claim.

We now show that condition (3) of the claim holds. Suppose on the contrary that

there exists x 2 B(cj; �) for some j 2 f1; 2; : : : ; qg such that yi(j) 62 Ji(x; f; �) for
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some i 2 f1; 2; : : : ;mjg: Then there exists a k 2 f0; 1; : : : ; i � 1g such that yk+1(j) 62
Jk+1(x; f; �) but y`(j) 2 Jk(x; f; �) for any integer ` satisfying 1 � ` � k: We know that:

f

k+1(yi(j)) 62 (fk+1(x)� � ; f

k+1(x) + �);

g

k+1(yi(j)) 2 (fk+1(x)� � ; f

k+1(x) + �):

And, since jfk+1(yk+1(j))� g
k+1(yk+1(j))j < �x; we �nd that:

f

k+1(yi(j)) 2 (fk+1(x)� �� �x ; f

k+1(x)� �)S
(fk+1(x) + � ; f

k+1(x) + �+ �) (B.23)

g

k+1(yi(j)) 2 (fk+1(x)� � ; f

k+1(x)� �+ �x)S
(fk+1(x) + �� �x ; f

k+1(x) + �): (B.24)

Also, substituting f = g in part (1) of the claim, we can see that:

Di(x; f; �) = (f i(x)� �i(cj)� ; f

i(cj)] (B.25)

where f i(cj) 2 (f i(x)� � ; f
i(x) + �) for any i 2 f1; 2; : : : ;mjg provided condition (I)

of the lemma is not satis�ed. Now suppose �k+1(cj) = +1 (the other case is analogous).

Then, since yi(j) 2 Jk(x; f; �); we know that it cannot be true that f
k+1(yi(j)) �

f
k+1(x) + �; since that would contradict (B.25). Thus we can drop one of the intervals

in each the unions in (B.23) and (B.24). In particular we �nd that:

g

k+1(yi(j)) 2 (fk+1(x)� �k+1(cj) ; f

k+1(x)� �k+1(cj)(�� �x)): (B.26)

This implies i 6= k + 1 since:

if �k+1(cj) = +1: g

k+1(yk+1(j)) = sup
z2Jk+1(x;g;�)

g

k+1(z) � f

k+1(x) > g

k+1(yi(j))

if �k+1(cj) = �1: g

k+1(yk+1(j)) = inf
z2Jk+1(x;g;�)

g

k+1(z) � f

k+1(x) < g

k+1(yi(j)):

But since Dk+1(x; f; �) \ C(f) = ; for k + 1 < mj we know from (B.25) that:

(fk+1(x) + �k+1(cj)�) ; f

k+1(x))
\

C(f) = ;:
Thus from (B.26), since s > 9; it is clear that

g
k+2(yi(j)) 62 Dk+2(x; g; �):

This means that yi(j) 62 J`(x; g; �) for any ` � k + 2; so i � k + 1: But we have

already shown that i 6= k+1: Therefore i � k: But this contradicts our assumption that

k 2 f0; 1; : : : ; i� 1g: This proves condition (3) and completes the proof of the claim.

Returning to the proof of lemma B.2.7 we now assert that:

Emj
(x; g; �) � (fmj (x)� 8�mj

(cj)� ; g
mj (ymj

(j))]: (B.27)
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if x does not satisfy condition (I) of the lemma for any n(x) 2 f1; 2; : : : ;mjg: It is
clear that Di(x; g; �) � Ei(x; g; �) for each each i 2 f1; 2; : : : ;mjg: We also know that

jf(x)�g(x)j < 1
4
� for all x 2 I so that given the form of Di(x; g; �) in (B.17) and because

of the expansion factor, s > 9; we have that:

Ei+1(x:g; �) � g(Di(x; g; �)) \B(f i+1(x); 8�):

for any i 2 f1; 2; : : : ;mj � 1g: Setting i = mj � 1; and substituting Di(x; g; �) in the

equation above using (B.17), we get (B.27).

Now suppose that �mj
(cj) = +1 (the case where �mj

(cj) = �1 is analogous). Then,
from (B.10):

f

mj (cj)� cr(j) � 10�x: (B.28)

Also, if condition (I) is not satis�ed for some x 2 B(cj; �); then since ymj
(j) 2 Dmj

(x; f; �)

we know that fmj (cj) > f
mj (ymj

(j)) since Dmj�1(x; f; �) \ C(f) = ;: Thus, because
jfmj (x)� g

mj (x)j < �x :

g
mj (ymj

(j))� f
mj (cj) < (fmj (ymj

(j)) + �x)� f
mj (cj)

< (fmj (cj) + �x)� f
mj (cj)

< �x (B.29)

g

mj(ymj(j))� f

mj (cj) � g

mj (cj)� f

mj (cj) > ��x: (B.30)

Note that f has either a local maximum or a local minimum at cr(j): For de�niteness,

assume that f has a local maximum at cr(j) (the other case is again analogous). Then,

since jf(x) � g(x)j < �x for all x 2 I; there exists a local maximum of the map, g; at

y1(r(j)) such that:

g(y1(r(j))) = sup
x2B(cr(j);8�)

g(x) (B.31)

and y1(r(j)) 2 B(cr(j); 2
�x

s

): (B.32)

since the turning points of f are separated by at least 16� distance.

Consequently from (B.28), (B.30), (B.32), and since s > 9 we see that:

g

mj (ymj
(j))� y1(r(j))

= [cr(j) + (fmj (cj)� cr(j)) + (gmj (ymj
(j))� f

mj (cj))]� [cr(j) + (y1(r(j)) � cr(j))]

> [cr(j) + 10�x � �x]� [cr(j) + 2
�x

s

)]

> 0: (B.33)
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Also, from (B.29), (B.11), and (B.32) and since s > 9 and � <
1
4
�:

g

mj(ymj
(j))� y1(r(j))

= (gmj (ymj
(j))� f

mj (cj)) + (fmj (cj)� cr(j))� (cr(j))� y1(r(j)))

< �x +
5

2
�� 2

�x

s

< 3� (B.34)

Consequently, from (B.33), (B.34), and (B.27) we see that if x 2 B(cj; �) does not satisfy

condition (I), then

y1(r(j)) 2 Emj
(x; g; �): (B.35)

Furthermore, from (B.31) we also know that:

g(y1(r(j))) = sup
z2Emj (x;g;�)

g(z): (B.36)

If we assume �mj
(cj) = +1, then from (B.27), (B.29), (B.11), (B.32), and since s > 9

and �x <
1
4
� we have:

g

mj (x) � g

mj (ymj
(j))

< f

mj (cj) + �x

< cr(j) +
5

2
�+ �x

< y1(r(j)) + 2
�x

s

+
5

2
�+ �x

< y1(r(j)) + 3� (B.37)

Still assuming �mj
(cj) = +1; then from (B.27), (B.36), (B.37), and since �x <

1
4
�; and

jf(x)� g(x)j < �x for all x 2 I :

g(Emj
(x; g; �)) � (g(gmj(x)� 8�) ; g(y1(r(j))]

� (g(y1(r(j))� 5�) ; g(y1(r(j))]

� (g(y1(r(j)))� 5s�+ �x ; g(y1(r(j))]

� (g(y1(r(j)))� 9

2
s� ; g(y1(r(j))] (B.38)

Finally, if �mj
(cj) = +1; then since cr(j) < f

mj (cj) < cr(j)+
5
2
� and s > 9; we know from

(B.32) that cr(j) � 1
2
� < y1(r(j))) < cr(j) + 3�: Thus:

g(B[fmj(x); �]) � (g(y1(r(j)))� 4s�� �x ; g(y1(r(j)))]

� (g(y1(r(j)))� 9

2
s� ; g(y1(r(j)))] (B.39)
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Consequently, from (B.38) and (B.39), we have that if x 2 V does not satisfy condition

(I) of lemma B.2.7 for any n(x) 2 f1; 2; : : : ;mjg, then:

g(Emj
(x; g; �)) � g(B[fmj (x); �]);

satisfying condition II of the lemma. We already saw that condition I of the lemma is

satis�ed for n(x) = 1 if x 2 I n V: This proves lemma B.2.7.

Proof of theorem 3.2.1:

Strong linking condition ! Function shadowing: Note that (B.6) in lemma B.2.5 may

be rewritten as:

Dn(x)(x; g; �) � B[fn(x)(x); �]

and (B.7) in lemma B.2.6 may be rewritten as

g(En(x)(x; g; �)) � g(B[fn(x)(x); �])

so we can see these two statements are the same as conditions in lemma B.2.7.

For any x 2 I; condition (I) of lemma B.2.7 implies that condition (II) must also

be true, since clearly En(x)(x; g; �) � Dn(x)(x; g; �): Thus, combining lemmas B.2.7

and B.2.6, we see that if f : I ! I is uniformly piecewise linear with s > 9 and

the strong linking property, then f must satisfy the function shadowing property on

C
0(I; I): Furthermore, using lemma B.2.3, we can drop the requirement that s > 9:

We can do this since s > 1 for any uniformly piecewise linear map f; so there always

exists n > 0 such that fn is uniformly piecewise linear and satis�es s > 9: Thus, from

lemmas B.2.1 and B.2.2, we know that any transitive map f : I ! I with the strong

linking property must also satisfy a the function shadowing property on C 0(I; I):

Function shadowing ! Strong linking condition: Suppose that f is a piecewise linear

map that does not satisfy the strong linking condition. We shall �rst show that f does

not satisfy the function shadowing property on C 0(I; I):

If f does not satisfy the strong linking condition, then there is a c 2 C(f) and �0 > 0

such that there exists no z 2 fB(c; �) n cg and n 2 Z
+ satisfying f

n(z) 2 C(f) and

jf i(c)� f
i(z)j < �0 for every i 2 f1; 2; : : : ; ng: We will show that if � 2 (0; 1

2
�0); then for

any � > 0 there exists a g 2 C 0(I; I) that satis�es d(f; g) � � but has the property that

no orbit of g ��shadows the orbit, ff i(c)g1
i=0; of f:

Now given � > 0 and � <
1
2
�0; choose g to be any map that satis�es the following

properties:

(1) g 2 C 0(I; I)

(2) g(c) = f(c)� �1(c)�
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(3) g(x) = f(x) for any x 2 fI nB(c; �0)g:
(4) supx2B(c;�)[�1(c)g(x)] = �1(c)g(c)

(5) d(f; g) � �

Set xi = f
i(c) and let yi = g

i(c) so that fyig is an orbit of g: Suppose that k 2Z+ such

that �i(c)(xi � yi) < �0 for all i 2 f0; 1; : : : ; kg: We assert that

�i(c)(xi � yi) � s

i�1
� (B.40)

for any i 2 f1; 2; : : : ; k + 1g: It is not hard to show this assertion by induction. For any

i 2 f1; 2; : : : ; kg we have that C(f) \ (xi; yi) = ; and �i+1(c)(f(yi) � g(yi)) � 0: Thus,

since �i+1(c)(f(xi)� f(yi)) = s�i(c)(xi � yi); we have that

�i+1(c)(f(xi)� g(yi)) � �i+1(c)(f(xi)� f(yi)) = s�i(c)(xi � yi) (B.41)

so that if (B.40) is true for i; then it also must be true for i + 1; provided that i 2
f1; 2; : : : ; kg:

But fyigk+1
i=0 does not ��shadow fxigk+1

i=0 : We can see this from (B.40) and from our

choice of k; since � < 1
2
�0: Furthermore there is no orbit of g that more closely shadows

fxigk+1
i=0 than fyigk+1

i=0 : This is because for any u 2 I; if i 2 f1; 2; : : : ; kg and u 2 Ji(c; g; �);

then (gi(u);xi) \ C(f) = ; since � < 1
2
�0: Also, using property (4) of our choice of g;

we can show that supz2Ji(c;g;�)[�i(c)g
i(z)] = �i(c)g

i(c) for any i 2 f1; 2; : : : ; k + 1g by

induction on i:

Consequently, if f is a piecewise linear map that does not satisfy the strong linking

condition, then it cannot satisfy the function-shadowing in C 0(I; I): Since the function

shadowing property is preserved by topological conjugacy (lemma B.2.2) this implies

that a transitive piecewise monotone map cannot exhibit function shadowing in C 0(I; I)

if it does not satisfy the strong linking condition.

This concludes the proof of theorem 3.2.1.
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Appendix C

Proof of theorem 3.3.1

This appendix contains the proof for theorem 3.3.1. I have made an e�ort to make the

appendix as self-contained as possible, so that the reader should be able to �nd most of

the relevant de�nitions and explanations in this appendix. Naturally, this means that

the appendix repeats some material found elsewhere in this report.

C.1 De�nitions and statement of theorem

We �rst repeat the related de�nitions which are the same as those found in chapter 3.

Throughout this appendix we shall assume that I � R represents a compact interval of

the real line.

De�nitions: Suppose that f : I ! I is continuous. Then the turning points of f are

the local extrema of f in the interior I: C(f) is used to designate the set of all turning

points of f on I: Let C r (I; I) be the set of continuous maps on I such that f 2
C
r(I; I) if the following three conditions hold:

(a) f is Cr (for r � 0)

(b) f(I) � I:

(c) f(Bd(I)) � Bd(I) (where Bd(I) denotes the boundary of I),

If f 2 C r (I; I) and g 2 C r (I; I); let d(f; g) = sup
x2I jf(x)� g(x)j:

We will primarily restrict ourselves to maps with the following properties:

(C0) g : I ! I; is piecewise monotone.

(C1) g is C2 on I:

(C2) Let C(g) be the �nite set such that c 2 C(g) if and only if g has a local extremum

at c 2 I: Then g
00(c) 6= 0 if c 2 C(g) and g

0(x) 6= 0 for all x 2 I n C(g):
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Under the Collet-Eckmann conditions, there exist constants KE > 0 and �E > 1

such that for some c 2 C(g):

(CE1) jDgn(g(c))j > KE�
n

E

(CE2) jDgn(z)j > KE�
n

E
if gn(z) = c:

for any n > 0:

We consider one-parameter families of mappings, fp : Ix ! Ix; parameterized by

p 2 Ip; where Ix � R and Ip � R are closed intervals of the real line. Let f(x; p) = fp(x)

where f : Ix � Ip ! Ix: We are primarily interested in one-parameter families of maps

with the following characteristics:

(D0) For each p 2 Ip; fp : Ix ! Ix satis�es (C0) and (C1). We also require that C(fp)

remains invariant with respect to p for all p 2 Ip:

(D1) f : Ix � Ip ! Ix is C
2 for all (x; p) 2 Ix � Ip:

Note that the following notation will be used to express derivatives of f(x; p) with respect

to x and p:

Dxf(x; p) =
@f

@x

(x; p) (C.1)

Dpf(x; p) =
@f

@p

(x; p): (C.2)

The Collet-Eckmann conditions specify that derivatives with respect to the state,

x; grows exponentially. Similarly we will also be interested in families of maps where

derivatives with respect to the parameter, p; also grow exponentially. In other words,

we require that there exist constants Kp > 0; �p > 1; and N > 0 such that for some

p0 2 Ip; and c 2 C(fp0):

(CP1) jDpf
n(c; p0)j > Kp�

n

p

for all n � N: This may seem to be a rather strong constraint, but in practice it often

follows whenever (CE1) holds. We can see this by expanding with the chain rule:

Dpf
n(c; p0) = Dxf(f

n�1(c; p0); p0)Dpf
n�1(c; p0) +Dpf(f

n�1(c; p0); p0) (C.3)

to obtain the formula for Dpf
n(x; p0) :

Dpf
n(x; p0) = Dpf(f

n�1(c; p0); p0) +
n�2X
i=0

[Dpf(f
i(c; p0); p0)

n�1Y
j=i+1

Dxf(f
j(c; p0); p0)]:
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Thus, if jDxf
n(f(c; p0); p0)j grows exponentially, we expect jDpf

n(x; p0)j to also grow

exponentially unless the parameter dependence is degenerate in some way.

Now for any c 2 C(fp0) de�ne �n(c; p) recursively as follows:

�n+1(c; p) = sgnfDxf(f
n(c; p); p)g�n(c; p)

where

�1(c; p) =

(
1 if c is a relative maximum of fp
-1 if c is a relative minimum of fp

Basically �n(c; p) = 1 if fn
p
has a relative maximum at c and �n(c; p) = �1 if fn

p
has a

relative minimum at c: We can use this notion to distinguish a particular direction in

parameter space.

De�nition C.1.1 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings

satisfying (D0) and (D1). Suppose that there exists p0 2 Ip such that fp0 satis�es (CE1)

and (CP1) for some c 2 C(fp0): Then we say the that turning point c of fp0 favors higher

parameters if there exists N
0
> 0 such that

sgnfDpf
n(c; p0)g = sgnf�n(c; p)g (C.4)

for all n � N
0
: Similarly, the turning point, c; of fp0 favors lower parameters if

sgnfDpf
n(c; p0)g = �sgnf�n(c; p)g (C.5)

for all n � N
0
:

The �rst thing to notice about these two de�nitions is that they are exhaustive if

(CP1) is satis�ed. That is, if (CP1) is satis�ed for some p0 2 Ip and c 2 C(fp0); then

the turning point, c; of fp0 either favors higher parameters or favors lower parameters.

We can see this from (C.3). Since jDpf(x; p0)j is bounded for x 2 Ix; if jDpf
n(x; p0)j

grows large enough then its sign is dominated by the signs of Dxf(f
n�1(c; p0); p0) and

Dpf
n�1(c; p0); so that either (C.4) or (C.5) must be satis�ed.

Finally, if p0 2 Ip and c 2 C(fp0); then for any � � 0; de�ne ne(c; �; p0) to be the

smallest integer n � 1 such that jfn(c; p0) � c�j � � for any c� 2 C(fp0): We say that

ne(c; �; p0) =1 if no such n � 1 exists.

We are now ready to state main result of this appendix.

Theorem 3.3.1 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings

satisfying (D0) and (D1). Suppose that (CP1) is satis�ed for some p0 2 Ip and c 2
C(fp0): Suppose further that fp0 satis�es (CE1) at c; and that the turning point, c; favors

higher parameters under fp0 : Then there exists �p > 0; � > 1; K 0
> 0; and K � 1; such

that if p 2 (p0 � �p; p0); then for any � > 0; the orbit ffn
p0
(c)g1

n=0 is not ��shadowed by

any orbit of fp if jp� p0j > K
0
��

�ne(c;K�;p0)
:

The analogous result also holds if fp0 favors lower parameters.
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C.2 Proof

Lemma C.2.1 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings sat-

isfying (D0) and (D1). Then given p0 2 Ip; there exist constants K1 > 0; K2 > 0; and

K3 > 0 such that the following properties are satis�ed:

(1) jDxf(x1; p0)�Dxf(x2; p0)j < K1jx1 � x2j for any x1 2 Ix and x2 2 Ix:

(2) Let �x > 0 to be the maximal value such that jx�c�j < �x implies jD2
x
f(x; p0)j > 0

for any c� 2 C(fp0): Then jDf(x; p0)j > K2jx � cj if jx � cj < �x for some

c 2 C(fp0):

(3) Fix c 2 C(fp0): Then, jDxf(x; p)�Dxf(x; p0)j < K3jx� cjjp1� p2j for any x 2 Ix

and p 2 Ip:

Proof of (1): (1) is true since f(x; p) is C2 and Ix � Ip is compact.

Proof of (2): From (C2) we know that it is possible to choose a �x > 0 as speci�ed. Let

c 2 C(fp0) and x 2 Ix: By the mean value theorem:

jDxf(x; p0)j = jD2
x
f(y; p0)jjx� cj

for some y 2 [c;x]: Now set:

K2 =
1

2
inf

y2[c� 1
2
�x;c+ 1

2
�x]
jD2

x
f(y; p0)j:

From our choice of �x; we know K2 > 0: Thus if jx� cj < 1
2
�x; we have that:

jDf(x; p0)j > 2K2jx� cj:
But since jD2

x
f(y; p0)j > 0 if jx�cj < �x; it is evident that jDf(y; p0)j � jDf(x+ 1

2
�; p0)j

for any y 2 (c+ 1
2
�x; c+�x): Similarly jDf(y; p0)j � jDf(x� 1

2
�; p0)j if y 2 (c��x; c� 1

2
�x):

Thus:

jDf(x; p0)j > K2jx� cj

for any x satisfying jx� cj < �x:

Proof of (3): Fix c 2 C(fp0) and p0 2 Ip: Then for any x 2 Ix and p 2 Ip; let:

q(x; p) = Dxf(x; p)�Dxf(x; p0):

Since f is C2
; q must be C1

: It is clear that:

q(c; p) = 0 (C.6)
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for all p 2 Ip and

q(x; p0) = 0 (C.7)

for all x 2 Ix:

From (C.7) and since q(x; p) is C1
; q(x; p) satis�es a Lipschitz condition on Ix � Ip

so that there exists a constant C > 0 such that:

jq(x; p)j < Cjp� p0j: (C.8)

for any (x; p) 2 Ix � Ip: Now de�ne

r(x; p) =

(
q(x;p)

p�p0 if p 6= 0

Dpq(x; p0) if p = p0

(C.9)

Note that from (C.8), jr(x; p)j < CjIpj for any (x; p) 2 Ix�Ip such that p 6= p0: Since r is

bounded and q(x; p) is C1
; it is fairly easy to check that r(x; p) is C1 for all (x; p) 2 Ix�Ip:

From (C.9) and (C.7), we see that:

q(x; p) = r(x; p)(p� p0) (C.10)

for all (x; p) 2 Ix � Ip: Also from (C.6) we know r(c; p) = 0 for all p 2 Ip: Thus since

r(x; p) is C1
; there exists K3 > 0 such that jr(x; p)j < K3jx� cj for any (x; p) 2 Ix� Ip:

Substituting this into (C.10) we �nd that:

jq(x; p)j < K3jx� cjjp� p0j

for any (x; p) 2 Ix � Ip: This proves part (3) of the lemma.

Lemma C.2.2 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings sat-

isfying (C0) and (C1). Suppose that fp0 satis�es (CE1) for p0 2 Ip and some turning

point, c 2 C(fp0): Suppose that turning point c of fp0 favors higher parameters. Given

any �0 > �1 > 1; there exist constants K � 1; �p > 0 and �0 > 0 such that for any � < �0;

if jp� p0j < �p; jf i(c; p)� f
i(c; p0)j < �; and jf i(c; p0)� c�j > K� for all c� 2 C(fp0) and

1 � i � n then:

jDx(f
i(c; p); p)j

jDx(f i(c; p0); p0)j <
�1

�0

(C.11)

for all 1 � i � n:

Proof: We �rst describe possible choices for K � 1; �p > 0; and �0 > 0: We then show

that these choices in fact satisfy (C.11).
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Fix �x > 0 such that

D
2
x
f(x; p0) 6= 0 if jx� c�j < �x

for any c� 2 C(fp0): Then let:

Jx = fx 2 Ixj jx� c�j � �x for any c� 2 C(fp0)g:

Set Mx = infx2Jx jDxf(x; p0)j and de�ne:

�(a) = sup
x2Ix

sup
p2[p0�a;p0+a]

jDpf(x; p)�Dp(x; p0)j:

Now let K1 > 0; K2 > 0; and K3 > 0 be the constants from lemma C.2.1. Choose:

K =
2K1

K2(1 � �1

�0
)
: (C.12)

Note that since K1 � K2; we know that K � 1: Choose �p1 > 0 such that:

�(�p1) <
Mx

2
(1 � �1

�0

): (C.13)

Let �p2 =
K2

K3
(1� �1

�0
) and set

�p = minf�p1; �p2g: (C.14)

Finally, �x

�0 = minfMx

2K1

(1 � �1

�0

);
�x

K

g: (C.15)

In order to show (C.11) it is su�cient to show:

A(i; p; p0) � 1� �1

�0

(C.16)

where

A(i; p; p0) =
jDxf(f

i(c; p); p)�Dxf(f
i(c; p0); p0)j

jDxf(f i(c; p0); p0)j : (C.17)

For each 1 � i � n we now consider two possibilities:

(1) jf i(c; p) � c�j � �x for some c� 2 C(fp0)

(2) K� � jf i(c; p0)� c�j < �x for some c� 2 C(fp0):
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(Note that we know K� < �x from (C.15).)

From now on we assume that jp� p0j < �p; jf i(c; p)� f
i(c; p0)j < �; and jf i(c; p0)�

c�j > K� for all c� 2 C(fp0) and 1 � i � n:We wish to show that (C.16) is true for both

cases (1) and (2) above for each 1 � i � n:

In case (1) using (C.13), (C.14),(C.15), (C.17), and lemma C.2.1 we have:

A(i; p; p0) � 1

jDxf(f i(c; p0); p0)j(jDxf(f
i(c; p); p) �Dxf(f

i(c; p0); p)j

+jDxf(f
i(c; p0); p)�Dxf(f

i(c; p0); p0)j) (C.18)

� K1jf i(c; p)� f
i(c; p0)j

Mx

+�(jp� p0j)

<

K1�0

Mx

+
Mx

2
(1 � �1

�0

)

<

K1

Mx

Mx

2K1

(1 � �1

�0

) +
1

2
(1 � �1

�0

)

< 1� �1

�0

which proves the lemma for case (1).

In case (2), ifK� � jf i(c; p0)�c�j < �x; for some c� 2 C(fp0) then from lemma C.2.1,

(C.18), (C.15), and (C.12):

A(i; p; p0) <

K1jf i(c; p) � f
i(c; p0)j+K3jf i(c; p0)� c�jjp� p0j
K2jf i(c; p0) � c�j

<

K1�

K2(K�)
+
K3jp� p0j

K2

<

1

2
(1 � �1

�0

) +
1

2
(1� �1

�0

)

< 1� �1

�0

:

This proves the lemma.

Lemma C.2.3 Suppose that there exist constants C > 0; N0 > 0 and �0 > 1 such that

jDpf
i(c; p0)j > C�

i

0 (C.19)

for all i � N0 where p0 2 Ip: Suppose also that there exists �p > 0 and �1 2 (1; �0) such

that for some n � N0:

jDxf(f
i(c); p)j

jDxf(f i(c); p0)j >
�1

�0

(C.20)
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for all 1 � i � n if jp � p0j < �p: Then for any �2 2 (1; �1); there exists N1 > 0

(independent of n and �p) and �p1 > 0 (independent of n) such that

jDpf
i(c; p)j > C�

i

2

for all N1 � i � n+ 1 if jp � p0j < �p1:

Proof: Given �0 > 1; �x 1 < �2 < �1 < �0: Set Mp = sup
x2Ix jDpf(x; p0)j and de�ne:

z(i) = (
�2

�0

� 1)C0�
i+1
2 �Mp

�1

�2

(
�2

�0

)i+1 � 2Mp (C.21)

It is apparent that z(i)!1 as i!1: Thus, it is possible to choose N2 > 0 (indepen-

dent of n and �p) so that z(i) > K0jIpj for all i � N2 where K0 > 0 is the constant from

lemma C.2.1 such that:

jDpf(x; p)�Dpf(x; p0)j < K0jp� p0j

for any x 2 Ix and p 2 Ip: Let N1 = maxfN0; N2g:
We now prove the lemma by induction on i for N1 � i � n: From (C.19), and since

jDpf
i(c; p)j is continuous with respect to p; there exists �p2 > 0 such that

jDpf
N1(c; p)j > C�

N1
1 (C.22)

if jp � p0j < �p2: Set �p1 = minf�p; �p2g: Thus, since �p1 > 0 is independent of n; to

prove the lemma it is su�cient to show that:

jDpf
i(c; p)j

jDpf
i(c; p0)j > (

�2

�0

)i (C.23)

implies

jDpf
i+1(c; p)j

jDpf
i+1(c; p0)j > (

�2

�0

)i+1
:

for any jp� p0j < �p1 if N1 � i � n:

Let E =
jDpf

i+1(c;p)j
jDpf

i+1(c;p0)j and let A = jDxf(f
i(c; p0); p0)D

i

p
(c; p0)j: Then, expanding by

the chain rule:

E=
jDpf

i+1(c; p)j
jDpf

i+1(c; p0)j

>

jDxf(f
i(c; p); p)Dpf

i(c; p)j � jDpf(f
i(c; p); p)j

jDxf(f i(c; p0); p0)Dpf
i(c; p0)j+ jDpf(f i(c; p0); p0)j (C.24)
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Using (C.20) and (C.23):

jDxf(f
i(c; p); p)Dpf

i(c; p)j
=

�1

�0

jDxf(f
i(c; p0); p0)j(�2

�0

)ijDpf
i(c; p0)j

= (
�2

�0

)i+1�1

�2

A (C.25)

Also, we know for lemma C.2.1 that there exists K0 > 0 such that:

jDpf(f
i(c; p); p)j

� jDpf(f
i(c; p); p) �Dpf(f

i(c; p); p0)j+ jDpf(f
i(c; p); p0)�Dpf(f

i(c; p0); p0)j
� K0jp� p0j+ 2Mp (C.26)

Thus, substituting (C.25) and (C.26) into (C.24):

E>

(�2
�0
)i+1 �1

�2
A� (K0jp � p0j+ 2Mp)

A+Mp

> (
�2

�0

)i+1 +
(�2
�0
)i+1(�1

�2
� 1)A� (K0jp� p0j+ 2Mp)�Mp(

�2

�0
)i+1

A+Mp

: (C.27)

Since jDpf
i+1(c; p0)j < A+Mp and from (C.19) we have that

A > C0�
i+1
0 �Mp (C.28)

Substituting (C.28) into (C.27) and from (C.21) we have:

E> (
�2

�0

)i+1 +
(�2
�0
� 1)C0�

i+1
2 �Mp

�1

�2
(�2
�0
)i+1 � 2Mp �K0jp� p0j

A+Mp

> (
�2

�0

)i+1 +
z(i)�K0jp� p0j

A+Mp

Since z(i) > K0jp� p0j; for i � N1; we have that:

E > (
�2

�0

)i+1
;

if N1 � i � n which proves the lemma.

Lemma C.2.4 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings satis-

fying (C0) and (C1). Suppose that fp0 satis�es (CE1) and (CP1) for p0 2 Ip and some

c 2 C(fp0): Then there exist constants �0 > 0; K � 1, N1 > 0; � > 1; and �p > 0 such

that for any positive � < �0; if p 2 B(p0; �p) then for any n < ne(c; �; p0) the following

two conditions are true:
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(1) If jf i(c; p) � f
i(c; p0)j < � for every 1 � i � n; then

jDpf
j(c; p)j > C�

j

for any N1 � j � n+ 1:

(2)

max
N1�i�n

jf i(c; p) � f

i(c; p0)j � minf�; C�ijp� p0jg:

Proof: If f(x; p0) for c 2 C(fp0) then there exists C > 0; N0 > 0; and �0 > 0 such that:

jDpf
i(c; p0)j > C�

i

0

for all i � N0: Choose � and �1 such that 1 < � < �1 < �0: Then from lemma C.2.2

we know that there exists K � 1; �p1 > 0; and �1 > 0 such that for any � < �1; if

p 2 B(p0; �p1); n < ne(c;K�; p0); and jf i(c; p)� f
i(c; p0)j < � for 1 � i � n; then:

jDx(f
i(c; p); p)j

jDx(f i(c; p0); p0)j <
�1

�0

for any 1 � i � n: From lemma C.2.3, this implies that there exists �0 > 0; �p2 > 0;

and N1 > 0 such that for any � < �0; if p 2 B(p0; �p2) and jf i(c; p) � f
i(c; p0)j < � for

1 � i � n; then:

jDf j(c; p)j > C�

j (C.29)

for any j satisfying N1 � j � n + 1; provided that n < ne(c;K�; p0): This proves part

(1) of the lemma. It also implies that

jf i(c; p)� f

i(c; p0)j � C�

ijp � p0j (C.30)

for any N1 � i � n+ 1 if n < ne(c;K�; p0):

Now de�ne:

g(p) = max
1�i�N1

jf i(c; p)� f

i(c; p0)j

for any p 2 Ip: Since f(x; p) is C
2 and jDpf

N1(c; p0)j > C�

N1
0 ; there exists �p3 > 0 such

that g(p) is monotonically increasing in the interval [p0; p0 + �p3] and monotonically

decreasing in the interval [p0 � �p3; p0]: Choose �p = minf�p2; �p3g:
Now �x � < �0: For each n > 0; de�ne Jn to be the largest connected interval such that

p 2 Jn implies that jf i(c; p) � f
i(c; p0)j < � for 1 � i � n; p0 2 Jn; and Jn � B(p0; �p):

In order to prove part (2) of the lemma it is su�cient to show that for any p 2 B(p0; �p)

if N1 � n � ne(c;K�; p0); then either (a) p 2 Jn which implies jf i(c; p)�f
i(c; p0)j � C�

i
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for all N0 � i � n or (b) p 62 Jn which implies that jf i(c; p) � f
i(c; p0)j � � for some

N1 � i � n: Case (a) has already been proved above (see (C.30)). We now prove case

(b).

First of all note that by our choice of �p and Jn; if p 2 B(p0; �p); then either p 2 JN1

or jf i(c; p) � f
i(c; p0)j � � for some 1 � i � N1: Now �x p1 2 B(p0; �) and suppose

that p1 62 Jn; for some n satisfying N1 � n � ne(c;K�; p0): Then, since Ji � Ji+1 for

all i � N1; we know that if there exists k < n such that p1 2 Jk n Jk+1 where N1 �
k < ne(c;K�; p0): But for any p 2 Jk we know (see (C.29)) that jDfk+1(c; p)j > C�

k+1
:

Thus (fk+1(c; p) � f
k+1(c; p0)) must be monotone with for all p 2 Jk: Consequently if

p1 2 Jk n Jk+1 then jfk+1(c; p1) � f
k+1(c; p0)j � � where N1 � k < ne(c;K�; p0): This

proves the lemma.

Lemma C.2.5 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings satis-

fying (C0) and (C1). Suppose that fp0 satis�es (CE1) for some p0 2 Ip and c 2 C(fp0):

For any p 2 Ip and n � 0 de�ne:

Vn(p; �) = fx 2 Ixj jf i(x; p)� f

i(c; p0)j � �; for all 0 � i � ng
Then there exists �0 > 0 such that for any positive � < �0; and any 1 � n � ne(c; �; p0) :

sup
x2Vn(p;�)

f�n(c; p0)fn(x; p)g � �n(c; p0)f
n(c; p): (C.31)

Proof: Proof by induction. Suppose that the elements of C(fp0) are c1 < c2 < : : : < cm;

for some m � 1: Assume that

�0 < min
i2f1;2;::: ;m�1g

jci+1 � cij

In this case, (C.31) clearly holds for n = 1 since �1(c; p0) = 1 implies that c is relative

maximum of fp0 and �1(c; p0) = �1 implies that c is relative minimum of fp0: Now

assuming that (C.31) holds for some n = k where 1 � k < ne(c; �; p0); we need to show

that (C.31) holds for n = k + 1:

Since k < n�(�); jfk(c; p0) � cij > � for any i 2 f1; 2; : : : ;mg: Consequently, since
jfk(x; p)�fk(c; p0)j � � for any x 2 Vk(p; �); we see that there exists i 2 f1; 2; : : : ;m�1g
such that ci < x < ci+1 for every x 2 Vk(p; �): In other words, all elements of Vk(p; �)

must lie on one monotone branch of fp and:

sgnfDf(fk(x; p); p)g = sgnfDf(fk(c; p0); p0)g (C.32)

for all x 2 Vk(p; �):

From our speci�cation of �k(c; p0) we have that:

�k+1(c; p0) = sgnfDf(fk(c; p0); p0)g�k(c; p0): (C.33)
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We can consider four cases: sgnfDf(fk(c; p0); p0)g = �1 and �k(c; p0) = �1: Suppose
that �k(c; p0) = 1: By assumption, if �k(c; p0) = 1; then

sup
x2Vn(p;�)

f

n(x; p) � f

n(c; p): (C.34)

Thus, if sgnfDf(fk(c; p0); p0)g = 1; then, from (C.33), �k+1(c; p0) = 1: Also, from

(C.32), we know that sgnfDf(fk(x; p); p)g = 1 for all x 2 Vk(p; �); and we know that

all elements of Vk(p; �) lie on a monotonically increasing branch of fp: Combining this

result with (C.34) implies that:

sup
x2Vk+1(p;�)

f

k+1(x; p) � f

k+1(c; p):

On the other hand, if sgnfDf(fk(c; p0); p0)g = �1; then �k+1(c; p0) = �1 and
inf

x2Vk+1(p;�)
f

k+1(x; p) � f

k+1(c; p):

In both cases above we can see that (C.31) is satis�ed for n = k + 1. Similarly we can

verify that (C.31) is also satis�ed for n = k + 1 in the two cases where �k(c; p0) = �1:
This proves the lemma.

Proof of theorem 3.3.1:

We are given that fp0 satis�es (CE1) for some p0 2 Ip and c 2 C(fp0): Then, from

part (1) of lemma C.2.4, there exist constants K � 1; C > 0; N2 > 0; �0 > 0; �p > 0;

and � > 1 such that for any � < �0; if p 2 B(p0; �p); and jf i(c; p) � f
i(c; p0)j < � for all

i satisfying 1 � i � n� 1; then:

jDpf
n(c; p)j > C�

n (C.35)

for any n such that N2 � n � ne(c;K�; p0):

Now suppose that there exists c 2 C(fp0) that favors higher parameters. Then there

exists N3 > 0 such that for any n � N3 :

sgnfDpf
n(c; p0)g = �n(c; p0): (C.36)

Set N1 = maxfN2; N3g: From (C.35) and since f is C2 it is clear that Dpf
n(c; p) can

not change signs for any p 2 B(p0; �p) if N2 � n � ne(c;K�; p0): Consequently, from

(C.36) we have that:

sgnfDpf
n(c; p)g = �n(c; p0)

for any N1 � n � ne(c;K�; p0) if p 2 B(p0; �p) and jf i(c; p) � f
i(c; p0)j < � for 1 � i �

n� 1: In this case:

sgnffn(c; p)� f

n(c; p0)g = �n(c; p0)sgnfp � p0g: (C.37)
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Now suppose that p < p0: Then from (C.37) if �n(c; p0) = 1; then fn(c; p) � f
n(c; p0)

and if �n(c; p0) = �1; then fn(c; p) � f
n(c; p0) for any p 2 B(p0; �p) such that jf i(c; p)�

f
i(c; p0)j < � for 1 � i � n � 1; provided that N1 � n � ne(c;K�; p0): Combining this

result with lemma C.2.5 we �nd that:

sup
x2Vn(p;�)

f

n(x; p) � f

n(c; p0) if �n(c; p0) = 1

inf
x2Vn(p;�)

f

n(x; p) � f

n(c; p0) if �n(c; p0) = �1

which implies that

inf
x2Vn(p;�)

jfn(x; p) � f
n(c; p0)j � jfn(c; p)� f

n(c; p0)j (C.38)

for any p 2 [p0 � �p; p0]; if N1 � n � ne(c;K�; p0) (where Vn(p; �) is as de�ned in the

statement of lemma C.2.5).

Finally, from lemma C.2.4 we also know that

max
N1�i�n

jf i(c; p) � f
i(c; p0)j � minf�; C�ijp� p0jg: (C.39)

if N1 � n � ne(c;K�; p0) and p 2 B(p0; �p): Combining (C.38) and (C.39) we �nd that:

inf
x2Vn(p;�)

jfn(x; p) � f

n(c; p0)j � minf�; C�ijp � p0jg: (C.40)

if N1 � n � ne(c;K�; p0) and p 2 [p0� �p; p0]: Clearly the orbit ff i(c; p0)g1i=0 cannot be

��shadowed by an orbit of fp if

inf
x2Vn(p;�)

jfn(x; p)� f

n(c; p0)j > � (C.41)

for any �nite value of n. Consequently from (C.40) and (C.41) we see that for any � < �0;

the orbit, ff i(c; p0)g1i=0; cannot be �-shadowed by fp if

jp� p0j > 1

C

��

�n�(K�) (C.42)

and p 2 [p0 � �p; p0]: Setting K
0 = 1

C
; this proves the theorem.
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Appendix D

Proof of theorem 3.3.2

This appendix contains the proof for theorem 3.3.2. I have made an e�ort to make the

appendix as self-contained as possible, so that the reader should be able to �nd most of

the relevant de�nitions and explanations in this appendix. Naturally, this means that

the appendix repeats some material found elsewhere in this report.

D.1 De�nitions and statement of theorem

De�nition: Suppose that g : I ! I is C3 and I � R: Then the Schwarzian derivative,

Sg; of g is given by the following:

Sg(x) =
g
000(x)

g
0(x)

� 3

2
(
g
00(x)

g
0(x)

)2:

where g0(x); g00(x); g000(x) here indicate the �rst, second, and third derivatives of x:

In this section we will primarily restrict ourselves to mappings with the following

properties:

(A0) g : I ! I; is C3(I) where I = [0; 1]; with g(0) = 0 and g(1) = 0:

(A1) g has one local maximum at x = c; g is strictly increasing on [0; c] and strictly

decreasing on [c; 1];

(A2) g
00(c) < 0; jg0(0)j > 1:

(A3) The Schwarzian derivative of g is negative, Sg(x) < 0, over all x 2 I (we allow

Sg(x) = �1):

Under the Collet-Eckmann conditions, there exist constants KE > 0 and �E > 1

such that for some c 2 C(g):
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(CE1) jDgn(g(c))j > KE�
n

E

(CE2) jDgn(z)j > KE�
n

E
if gn(z) = c:

for any n > 0:

We will be investigating one-parameter families of mappings, f : Ix � Ip ! Ix;

where p is the parameter and Ix; Ip � R are closed intervals. Let fp(x) = f(x; p) where

fp : Ix ! Ix: We are primarily be interested in one-parameter families of maps with the

following characteristics:

(B0) For each p 2 Ip; fp : Ix ! Ix satis�es (A0), (A1), (A2), and (A3) where Ix = [0; 1]:

For each p; we also require that fp has a turning point at c; where c is constant

with respect to p:

(B1) f : Ix � Ip ! Ix is C
2 for all (x; p) 2 Ix � Ip:

Another concept we shall need is that of the kneading invariant. Kneading invariants

and many associated topics are discussed in Milnor and Thurston [34].

De�nition: If g : I ! I is a piecewise monotone map with exactly one turning point

at c, then the kneading invariant, D(g; t); of g is de�ned as follows:

D(g; t) = 1 + �1(g)t+ �2(g)t+ : : : + �n(g)t
n + : : :

where

�n(g) = �1(g)�2(g) : : : �n(g)

�n(g) = lim
x!c+

sgn(Dg(gn(x)))

for n � 1: If c is a relative maximum of g; then one interpretation of �n(g) is that it

represents whether gn+1 has a relative maximum(�n(g) = +1) or minimum(�n(g) = �1)
at c:

We can also order these kneading invariants in the following way. We will say that

jD(g; t)j < jD(h; t)j if �i(g) = �i(h), for 1 � i < n; but �n(g) < �n(h): A kneading

invariant, D(fp; t); is said to be monotonically decreasing with respect to p if p1 > p0

implies jD(fp1; t)j � jD(fp0 ; t)j:
We are now ready to state the main result of this appendix:

Theorem 3.3.2 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings

satisfying (B0) and (B1). Suppose that p0 2 int(Ip)
1
such that fp0 satis�es (CE1).

1Henceforth, if A � R; let int(A) denote the interior of A:
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Also, suppose that the kneading invariant, D(fp; t); is monotonically decreasing with

respect to p in some neighborhood of p = p0: Then there exists �p > 0 and C > 0 such

that for every x0 2 Ix there is a set, W (x0) � Ix�Ip, satisfying the following conditions:

(1) W (x0) = f(�x0(t); �x0(t))jt 2 [0; 1]g where �x0 : [0; 1]! Ix and �x0 : [0; 1]! Ip are

continuous and �x0(t) is monotonically increasing with respect to t with �x0(0) = p0

and �x0
(1) = p0 + �p:

(2) For any x0 2 Ix; if (x; p) 2 W (x0) then jfn(x; p)� f
n(x0; p0)j < C(p� p0)

1
3 for all

n � 0:

D.2 Tools for maps with negative Schwarzian deriva-

tive

There has been a signi�cant amount of interest in recent years into one-dimensional

maps, particularly maps with negative Schwarzian derivative. Below we state some

useful properties and analytical tools that have been developed to analyze these maps.

For the most part, the results are only stated here, and references provided to appropriate

proofs. We do not attempt to trace the history of the development of these results.

The only results in this section that are new are contained in lemmas D.2.11, D.2.12,

and D.2.13.

Lemma D.2.1 If g satis�es (A0), (A1), and (A2) then there exist constants K0 > 0;

and K1 > 0 such that for all x 2 I :

(1) K0jx� cj < jDg(x)j < K1jx� cj
(2)

1
2
K0jx� cj2 < jg(x)� g(c)j < 1

2
K1jx� cj2

Proof: This is clear, since g00(c) 6= 0:

Lemma D.2.2 If f(x; p) satis�es (B0) and (B1), then there exist constants K0 > 0;

and K1 > 0 such that for any x 2 Ix, y 2 Ix; p0 2 Ip; and p1 2 Ip :

(1) jDxf(x; p0)�Dxf(y; p0)j < K0jx� yj
(2) jDxf(x; p0)�Dxf(x; p1)j < K1jp0 � p1j

Proof: This is clear, since f(x; p) is C2 and Ix � Ip is compact.
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Lemma D.2.3 (Minimum Principle). Suppose that g has negative Schwarzian deriva-

tive. Let J = [x0; x1] be an interval on which g is monotone. Then

jDg(x)j � minfjDf(x0)j; jDf(x1)jg
for all x 2 J:

Proof: See, for example, page 154 of [33].

De�nition: Given map g : I ! I; we say that x is in the basin of attraction of an orbit,

fyig1i=0; of g if there exists an m � 0 such that limi!1(gi+m(x)� yi) = 0:

Lemma D.2.4 (Singer) If g : I ! I is C
3
and has negative Schwarzian derivative,

then the basin of attraction of any stable periodic orbit contains either a critical point

or one of the boundary points of I:

Proof: See Singer [58].

De�nition D.2.1 We will say that a piecewise monotone map, g : I ! I; has a sink

if there exists an interval J � I such that that g is monotone on J
n
and g

n(J) � J for

some n > 0:

Lemma D.2.5 If g : I ! I satis�es (A0), (A1), (A2), (A3), and (CE1). Then g has

no sinks.

Proof: It is relatively simple to show that the existence of such a sink implies the

existence of a stable periodic point (see for example Collet and Eckmann [14], lemma

II.5.1). From Singer's theorem, we know that g : [0; 1] ! [0; 1] does not have a stable

periodic orbit unless x = 0; x = c; or x = 1 is in the basin of attraction of that periodic

orbit. From (CE1) we know that the critical point does not tend to a stable orbit and

from (A2) we know that x = 0 and x = 1 do not tend to a stable periodic orbit. Thus

g has no sinks.

Lemma D.2.6 (Koebe Inequality). Suppose that g : I ! I has negative Schwarzian

derivative. Let T = [a; b] be an interval on which g is a di�eomorphism. Given x 2 T;

let L and R be the components of T n fxg: If there exists � > 0 such that:

jg(L)j
jg(T )j � � and

jg(R)j
jg(T )j � �

then there exists K(� ) > 0 such that:

jDg(x)j � K(� ) sup
z2T

jDg(z)j

where K(� ) depends only on �:
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Proof: See, for example, theorem 3.2 in van Strien [60].

Lemma D.2.7 Let g : I ! I satisfy (A0), (A1), (A2), (A3) and (CE1). Then g

satis�es (CE2).

Proof: See Nowicki [44].

Lemma D.2.8 Let g : I ! I satisfy (A0), (A1), (A2), (A3) and (CE1). There exists

K > 0 and �1 > 1 such that for any n > 0; if gn(x) = c then jx� cj > K�

�n
1 :

Proof: From lemmaD.2.1, we know there existsK0 > 0 such that jDg(x)j < K0jx�cj
for any x 2 I: Now set a = sup

x2I jDg(x)j. Then we have:

jDgn(x)j � a

n�1
K0jx� cj

However, by lemma D.2.7, we also know that g satis�es (CE2), so that Dgn(x) >

KE�
n for some constants KE > 0 and � > 1: Thus an�1K0jx� cj < KE�

n which implies

that jx� cj < aKE

K0
(�
a
)n: This proves the lemma if we set K = aKE

K0
and �1 = (�

a
):

Lemma D.2.9 Let g : I ! I satisfy (A0), (A1), (A2), (A3) and (CE1). Let Jn � ofI

be any interval such that g
n
is monotone on Jn: Then there exist constants K > 0 and

�2 > 1 such that for any n � 0:

jJnj < K�

�n
2

Proof: See Nowicki [44].

Lemma D.2.10 Let g : I ! I satisfy (A0), (A1), (A2), (A3) and (CE1). Suppose that

g
n
is monotone on J = [a; b] where J � I and g

n(a) = c for some n � 0: Then there

exist a constant, K > 0; such that for any n � 0:

jgn(J)j
jJ j � K

Proof: See lemma 6.2 in Nowicki [45].

Lemma D.2.11 Suppose that g : I ! I satis�es (A0), (A1), (A2), (A3), and (CE1).

Let x 2 I such that jgi(x) � cj > � for 0 � i < n: Then, for any � > 0 there exist

constants C > 0 and � > 1 (independent of x) such that:

jDgi(x)j > C�
2
�
i

for 0 � i � n:
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Proof: For any i � 0, let �i(x) be the maximal interval such that x 2 �i(x) and g
i is

monotone on �i(x): The proof of the lemma is based on the following claim:

Claim: Let x 2 I; and suppose that there exists b 2 �n(x) such that g
n(b) = c for some

n � 0: If jgi(x)� cj > � for 0 � i � n; then there exist C0 > 0 and � > 1 (independent

of x) such that:

jDgn+1(x)j > C0�
2
�

n+1
:

We shall now describe the proof of the lemma using this claim, leaving the proof of

the claim for later.

Fix x 2 I and i � n: Suppose that �i(x) = [a; a0] and let xi = f
i(x); ai = f

i(a);

and a
0
i
= f

i(a0): For de�niteness, assume that jxi � aij < ja0
i
� xij (the other case is

analogous). Since �i(x) is maximal, each endpoint of �i(x) must map either into (1)

the critical point, or (2) into the boundary of I: If case (2) is true, there must exists

k < i such that gk(a) = 0; or gk(a) = 1 (since I = [0; 1] by (A2)). This means either

a = 0; a = 1 or gj(a) = c for some j < k: If gj(a) = c then case (1) is also satis�ed.

Otherwise, if a = 0 or a = 1; then f
i(�i(x)) \ fcg 6= ;; and the lemma may be proved

by a direct application of the claim described above.

Otherwise, if case (1) is true, there must exist k < i such that gk(a) = c: By (CE1),

we know there exist constants, KE > 0 and �E > 1 (independent of i and k) such that:

jDgi�k�1(gk+1(a))j > KE�
i�k�1
E

(D.1)

Now set y 2 [a; a0] so that yi = g
i(y) = 1

2
(ai + a

0
i
): By the Koebe Inequality, since

jyk � akj < ja0
k
� ykj; there exists K0 = K(� = 1

2
) > 0 such that:

jDgi�k�1(gk+1(y))j > K0jDgi�k�1(gk+1(a))j
Combining this with (D.1) we have:

jDgi�k�1(gk+1(y))j > K0KE�
i�k�1
E

(D.2)

Also, since jxi � aij < ja0
i
� xij; we know xi 2 [ai; yi] (where [a; b] means either [a; b] or

[b; a] whichever is appropriate). Thus by using the minimum principle with (D.1) and

(D.2) we �nd that there exists K1 > 0 such that:

jDgi�k�1(gk+1(x))j > K1�
i�k�1
E

: (D.3)

We are now ready to apply the claim. It is clear that a 2 �k(x): Since g
k(a) = c;

the claim implies that there exists C0 > 0; and �0 > 1 such that:

jDgk+1(x)j > C0�
2
�

k+1
0 (D.4)
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Figure D.1: The interval gk(�(x)) = [ak; a
0

k
] and associated variables are shown. The �gure

is drawn assuming that a0
k
> ak; b 2 (a; a0); and that x 2 [a; b]:
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Applying the minimum principle to this interval and using (D.5) and (D.6), we �nd

that there exists K3 > 0 such that:

jDgk(y0)j > K3�
k

E
: (D.7)

Also, for any � > 0, we know from lemma D.2.1 that there exists K4 > 0 such that

jDg(y0
k
)j > 1

2
K4�: (D.8)

From (D.7) and (D.8) and setting K5 =
1
2
K3K4; we have:

jDgk+1(y0)j > K5��
k+1
E

: (D.9)

Also, since gk(a) = c; from (CE1) we know that jDgn�k�1(gk+1(a))j > KE�
n�k�1
E

.

Since gn(b) = c; we know from (CE2) that jDgn�k�1(gk+1(b))j > KE�
n�k�1
E

: Thus, by

the minimum principle, jDgn�k�1(gk+1(y0))j > KE�
n�k�1
E

: Combining this with (D.9) we

�nd:

jDgn(y0)j > K5KE��
n

E
: (D.10)

From (CE2) we also know that

jDgn(b)j > KE�
n

E
: (D.11)

In addition, since jxk � akj > �; we know that xk 2 [y0
k
; bk] so that x 2 [y0; b]: Thus,

from the (D.10), (D.11), and the minimum principle, we can conclude that there exists

K6 > 0 such that:

jDgn(x)j > K6��
n

E
:

Finally, since jgn(x) � cj > �; we can use lemma D.2.1 to bound jDg(gn(x))j < K4� for

K4 > 0: Consequently there exists C1 > 0 such that:

jDgn+1(x)j > C1�
2
�

n

E
(D.12)

which proves the claim for the case where gk(a) = c for some k < n:

The other possibility is that gk(a) 2 Bd(I) for some k < n where Bd(I) denotes

the boundary of I: But this implies that either a 2 Bd(I) or possibly that gk�1(a) = c:

The possibility where gk�1(a) = c has already been covered by the previous case. On

the other hand, if a 2 Bd(I) then by (A2) there exists �0 > 1 such that jDgn(a)j > �
n

0 :

From (CE2) we also know that jDgn(b)j > KE�
n

E
: Thus, by the minimum principle,

there exists K7 > 0 and �1 > 0 such that jDgn(x)j > K7�
n

1 for any x 2 [a; b]: Then,

since jgn(x)� cj > � we can use lemma D.2.1 to bound jDg(gn(x))j so that there exists
C2 > 0 satisfying:

jDgn+1(x)j > C2��
n

1 (D.13)

Combining (D.12) and (D.13) shows that we can pick C > 0 and � > 1 to prove the

claim.
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Lemma D.2.12 Let g : I ! I satisfy (A0), (A1), (A2), (A3), and (CE1). Suppose

there exists a 2 I and n � 0 such that g
n(a) = c: Given any � > 0 su�ciently small,

either min0�i<n jgi(a) � cj � � or there exists b 2 I; n
0 � 0; and constants K > 0 and

K
0
> 0 such that g

n
0

(b) = c; jb� aj < K�; and n
0
< n�K

0 log 1
�
:

Proof: Suppose that min0�i<n jgi(a) � cj < �: Then there exists m < n such that

jgm(a)� cj < � and jgi(a)� cj � � for 0 � i < m:

Since gm(y0) approaches close to c; we can bound m away from n using lemma D.2.8:

n�m � log 1
�

log �1
(D.14)

where �1 > 1 is a constant dependent only on g:

We now consider two possibilities: (1) there exists b 2 I such that gm(b) = c and g
m

is monotone on [a; b] or (2) there exists b 2 I and k < m such that gm is monotone on

[a; b]; gk(b) = c; and g
m(b) 2 [gm(a); c]: One of these two cases must be true.

Let ai = g
i(a) and bi = g

i(b) for i > 0: In the �rst case, from lemma D.2.10, there

exists K3 > 0 such that:

jb� aj < 1

K3

jbm � cj < �

K3

: (D.15)

Also, from (D.14) we know m � n� log 1
�

log�1
. Thus, in this case the lemma is proved if we

set K = 1
K3
; K

0 = 1
log�1

and n
0 = m:

Now we address the second case. From lemma D.2.1 we know there exists K0 > 0

and K1 > 0 such that K0jx� cj2 � jf(x)� f(c)j � K1jx� cj2: Thus if we set K2 =
K1

K0

we see that for any � > 0 and �
�
> K2� we have that:

g([c� �; c]) � g([c; c� �

�]) (D.16)

where the � notation means that the relation holds for all four possible combinations.

Also note that since bk = c and bm 2 [am; c] we have:

[ak+1; bk+1] = g([ak; bk]) = g([ak; c]) (D.17)

[am+1; bm+1] = g([am; bm]) � g([am; c]): (D.18)

We now assert that jak�bkj < K2�: Suppose to the contrary that jak�cj = jak�bkj �
K2� > K2jam � cj: Then, combining this with (D.16), (D.17), and (D.18) implies that:

[am+1; bm+1] � [ak+1; bk+1]: (D.19)
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However, since g satis�es (CE1), it cannot have any sinks (from lemma D.2.5). In

particular this means:

[am+1; bm+1] 6� [ak+1; bk+1]

if k < m since gm+1 is monotone on [a; b] if � > 0 is su�ciently small. Thus, (D.19)

cannot be true so we conclude that:

jak � bkj � K2�:

Finally, since bk = c; we can use D.2.10 to show that there exists K3 > 0 such that:

jb� aj < 1

K3

jak � bkj = 1

K3

K2� (D.20)

Thus combining (D.14) and (D.20) we see that the lemma is satis�ed if we set K = K2

K3
;

K
0 = 1

log�1
and n

0 = k < m � n� log 1
�

log�1
:

Thus, combining the results from (D.15) and (D.20), proves the lemma.

Lemma D.2.13 Suppose g : I ! I satis�es (A0), (A1), (A2), (A3), and (CE1).

Then there exists C > 0 and �0 > 0 so that given any positive � < �0; and any x 2
I such that x + � 2 I; then there is a y 2 (x; x + �) such that N(y; g) < 1 and

min0�i<N(y;g) jgi(y)� cj � C�: Similarly if x� � 2 I; then there exists y
0 2 (x� �; x) such

that N(y0; g) <1 and min0�i<N(y0;g) jgi(y)� cj � C�:

Proof: We show the proof for y 2 (x; x + �): The proof for y0 2 (x � �; x) is exactly

analagous.

Our plan is to apply lemmaD.2.12 as many times as necessary to �nd an appropriate

y to satisfy the lemma. In other words, lemma D.2.12 implies that given any yi 2 I such

that ni = N(yi; g) <1 and min0�i<ni jgi(yi)� cj � �; then there exists a yi+1 2 I such

that jyi+1 � yij < K� and

ni+1 = N(yi+1; g) < ni �K
0 1

�

(D.21)

for positive constants K and K
0. Thus given y0; we can generate a sequence fyigi=mi=0 in

this manner for increasing i until i = m such that

min
0�i<nm

jgi(ym)� cj � �: (D.22)

For example, given any � > 0; and any x0 2 I we know from lemma D.2.9 that if

x0 + � 2 I; then there exists y0 2 (x0; x0 + �) such that gn0(y0) = c for some integer

satisfying:

n0 � log 1
�

log �2
+ 1 (D.23)
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where �2 > 0 is a constant dependent only on g: If we generate fyigi=mi=0 from the y0
speci�ed above, then from (D.21) and (D.23) we �nd that:

ni � (
1

log �2
� iK

0)(log
1

�

) + 1 (D.24)

for all 0 � i � m: Set M = 1
K

0 log�2
+ 1: Then for su�ciently small � > 0 we �nd that

m < M because otherwise (D.24) would imply that ni < 0 for i > m:

So given x 2 I and positive � < �0 from the statement of the lemma, set x0 =

x + KM� and � = 1
2KM+1

�: Note that we can choose �0 > 0 to insure that � > 0 is

su�ciently small so that the above arguments work. Also, note that since x0 + � =

x+ KM+1
2KM+1

� < x+ �; if x+ � 2 I then x0 + � 2 I: From our choice of y0 2 (x0; x0 + �);

we also know that since jyi+1 � yij < K�; we have jym � y0j < Km�: Consequently

ym > x+KM��Km� > x and ym > x+KM�+�+Km� > x+(2KM+1)� � x+�:

Thus ym 2 (x; x + �) and from (D.22), we have that min0�i<nm jgi(ym) � cj � � = C�

where C = 1
2KM+1

: Setting y = ym; this proves the lemma.

D.3 Analyzing preimages

In this section we will investigate one-parameter family of mappings, ffpjp 2 Ipg; that
satisfy (B0) and (B1). Our discussion depends on an examination of the preimages of

the critical point, x = c in Ix � Ip space. We �rst need to introduce some notation in

order to describe the relevant concepts.

For the remainder of this section, ffpjp 2 Ipg will refer to a given one-parameter

family of mappings satisfying (B0) and (B1). We will consider the set of preimages,

P (n) 2 Ix � Ip satisfying:

P (n) = f(x; p)jf i(x; p) = c for some 0 � i � ng:

First of all, it will be useful to have a way of specifying particular \sections" of

preimages, R(n; x0; p0); extending from a particular point (x0; p0) 2 Ix � Ip. So let

R(n; x0; p0) � Ix� Ip denote the set of path-connected elements, consisting of all points

(x0; p0) 2 Ix � Ip such that there exists a continuous function g : Ip ! Ix satisfying

g(p0) = x0; g(p
0) = x

0, and

f(x; p)jx = g(x0;p0)(p); p 2 [p0; p
0]g � P (n):

where [p0; p
0] may denote either [p0; p

0] or [p0; p0]; whichever is appropriate.

A roadmap of the development in this section is as follows. In lemma D.3.1 we show

that P (n) cannot have isolated points or curve segments. Instead, each point in P (n)
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must be part of a path-connected set of points in P (n) that stretches for the length of the

parameter space, Ip: In lemmaD.3.2 we demonstrate that if the kneading invariant of fp;

D(fp; t); is monotonically decreasing (or increasing), then P (n) must have a branching

tree-like structure. As we travel along one direction in parameter space, branches of P (n)

must either always merge or always split away from each other. For example if D(fp; t)

is monotonically decreasing, then branches of P (n) can only split away from each other

as we increase the parameter p: Thus in this case, R(n; y�; p0) and R(n; y+; p0) cannot

intersect each other for p � p0 if y+ 6= y�; and y+; y� 2 Ix:

In lemmas D.3.3,D.3.4, D.3.5, and D.3.6 we develop bounds on the derivatives for

di�erentiable branches of R(n; x; p0): The basic idea behind lemma D.3.7 is that we

can use these bounds to demonstrate that for maps, fp; with kneading invariants that

decrease monotonically in parameter space, there exist constants C > 0 and �p > 0 such

that if x0 2 Ix and

U(p) = fxj jx� x0j < C(p� p0)
1
3g (D.25)

for any p 2 Ip; then for any p
0 2 [p0; p0 + �p]; there exists x0+ 2 U(p0) such that

(x0+; p
0) 2 R(n+; y+; p0) for some y+ > x0 and n+ > 0 assuming that fn+(y+; p0) = c:

Likewise there exists x0+ 2 U(p0) such that (x0�; p
0) 2 R(n�; y�; p0) for some y� < x0 and

n� > 0 where fn�(y�; p0) = c:

However, setting n = maxfn+; n�g; since R(n; y�; p0) and R(n; y+; p0) do not inter-

sect each other for p � p0 and y� 6= y+; we also know that for any y� < y+; there is

a region in Ix � Ip space bounded by R(n; y�; p0); R(n; y+; p0); and p � p0: Given any

x0 2 Ix; take the limit of this region as y� ! x

�
0 ; y+ ! x

+
0 ; and n ! 1: Call the

resulting region S(x0): Observe that S(x0) is a connected set that is invariant under f

and is nonempty for every parameter value p 2 Ip such that p � p0: Thus since S(x0) is

bounded from (D.25), there exists a set of points, S(x0); in combined state and param-

eter space that \shadow" any trajectory, ffn
p0
(x0)g1n=0 of fp0: Finally we observe that a

subset of S(x0) can be represented by the form given for W (x0):

We are now ready to examine these arguments more formally.

Lemma D.3.1 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings sat-

isfying (B0) and (B1). Suppose that x0 2 Ix satis�es n = N(x0; fp0) < 1 for some

p0 2 int(Ip): Then the following statements hold true:

(1) There exists a closed interval Jp(x0; p0) � Ip; and a C
2
function h(x0;p0) : Jp(y; p0)!

Ix such that p0 2 int(Jp(x0; p0)); hy;p0(p0) = p0, and f
n(hy;p0(p); p) = c for all

p 2 Jp(y; p0): Also, if Jp(y; p0) = [a; b] then a is either an endpoint of Ip or

f
i(hy;p0(a); a) = c for some i < n; and similarly for b:

(2) There exists a continuous function, g(x0;p0) : Ip ! Ix such that g(x0;p0)(p0) = x0 and

f(x; p)jx = g(x0;p0)(p); p 2 Ipg � P (n):
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Proof: Suppose that fm0(x0; p0) = c for m0 � n and f
i(x0; p0) 6= c for 0 � i < m0: Then

de�ne the set S(x0; p0) � Ix � Ip to be the maximal path-connected set satisfying the

following conditions:

(1) (x0; p0) 2 S(x0; p0)

(2) (x; p) 2 S(x0; y0) if p 2 Ip and f
i(x; p) 6= c for every 0 � i < m0:

Note that S(x0; p0) must contain an open neighborhood around (x0; p0) because of the

continuity of f:

Now let S(x0; p0)g be the closure of of S(x0; p0); de�ne Q(x0;p0)(p) = fxj(x; p) 2
S(x0; p0)g; and let

Jp(x0; p0) = [ inf
(x;p)2S(x0;p0)

p; sup
(x;p)2S(x0;p0)

p] (D.26)

We claim that Q(x0;y0)(p) 2 Ix must consist of a single connected interval for every

p 2 Jp(x0; p0): Otherwise if there existed x1 < x2 < x3 such that x1 2 Q(x0;p0)(p);

x2 62 Q(x0;p0)(p); and x3 2 Q(x0;p0)(p) then there would exist i < m0 such that c 2
[f i(x0; p); f

i(x3; p)]: But since (x1; p) 2 S(x0; p0) and (x3; p) 2 S(x0; p0) there exists a

connected path, f(x(t); p(t))jt 2 [0; 1]g � S(x0; p0); joining (x1; p) and (x3; p); where

where x(t) : [0; 1]! Ix and p(t) : [0; 1]! Ip are continuous functions. Along this path,

f
i(x(t); p(t)) is continuous and f

i(x(t); p(t)) 6= c for any t 2 [0; 1]: This contradicts the

assertion that c 2 [f i(x0; p); f
i(x3; p)] and proves the claim that Q(x0;y0)(p) must consist

of a single interval for all p 2 Jp(x0; p0):

Returning to the proof of the lemma we �nd that, since (x; p) 2 S(x0; p0) implies

f
i(x; p) 6= c for every 0 � i < m0; we know that fm0

p
(x) must be strictly monotonic

on Q(x0;y0)(p) for each p 2 Jp(x0; p0): Thus for each p 2 [p0; p1) there is exactly one

x 2 Q(x0;y0)(p) such that fm0(x; p) = c: Consequently there exists a function h(x0;p0) :

Ip ! Ix such that fm0(h(x0;p0)(p); p) = c and h(x0;p0)(p) 2 Q(x0;y0)(p) if p 2 Jp(x0; p0):

Furthermore, the function, h(x0;p0); must be C
2 for p 2 int(Jp(x0; p0)) since f(x; p) is

C
2 and f

m0
p

(x) is strictly monotonic in for x 2 Q(x0;y0)(p): Finally, from our choice of

S(x0; p0) and h(x0;p0)(p), it is clear that (h(x0;p0)(p); p) 2 P (n) for all p 2 Jp(x0; p0): This

proves property (1) of the lemma.

We now have to construct a continuous g(x0;p0)(p) that is valid over the entire range

of Ip: Suppose that Jp(x0; y0) = [p�1; p1]: Let g(x0 ;p0)(p1) = x1: From our speci�cation

of S(x0; p0) it is clear that f
j(x1; p1) = c for some j < m0: Thus there exists m1 <

m0 such that fm1(x1; p1) = c and f
i(x1; p1) 6= c for 0 � i < m1: Consequently, we

can use the same arguments as before to consider the set S(x1; p1); and generate a

continuous function, h(x1;p1)(p) such that (h(x1;p1)(p); p) 2 P (n) for all p 2 Jp(x1; p1)

where Jp(x1; y1) � [p1; p2] for some p2 > p1: This argument can be carried out repeatedly

for m0 > m1 > m2; : : : and so forth. However, since f
mi(xi; pi) = c; we see that
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sup(Ip) 2 Jp(xi; pi) for some i � n: Similarly we can also use the same arguments for

p < p0; working in the opposite direction in parameter space in order to successively

generate (h(x�i;p�i)(p); p) 2 P (n) for increasing values of i: Consequently, there exists

�n � a � 0 and 0 � b � n such that Ip = [b
i=aJp(xi; pi): Now if we set h : Ip ! Ix to be

g(x0;p0)(p) = h(xi;pi)(p) if p 2 Jp(xi; pi); (D.27)

we can see that g(x0;p0)(p) is continuous since h(xi;pi)(p) is C
2 if p 2 int(Jp(xi; pi)); and

h(xi;pi)(pi) = h(xi�1;pi�1)(pi) for all a < i � b: Finally, since (h(xi;pi)(p); p) 2 P (n) for all

a � i � b we see that g(x0 ;p0)(p) has all the properties guaranteed by the lemma.

Lemma D.3.2 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings satis-

fying (B0) and (B1). Suppose that there exists �p > 0 such that the kneading invariant

D(fp; t) is monotonically decreasing for p 2 [p0; p0 + �p]: Then

R(n; y0; p0) \R(n; y1; p0) \ (Ix � [p0; p0 + �p]) = ; (D.28)

for any y0 6= y1 and any n � 0 such that y0 2 Ix and y1 2 Ix:

Proof: Suppose that there exists y0 2 Ix and y1 2 Ix such that

R(n; y0; p0) \ R(n; y1; p0) \ (Ix � [p0; p0 + �p]) 6= ;: (D.29)

for some n � 0 where N(y0; fp0) < n and N(y1; fp0) < n: It is su�cient to show that

this statement contradicts the condition that D(fp; t) is monotonically decreasing for

p 2 [p0; p0 + �p]:

Let p0 > p0 be the smallest value such that there exists a pair of points y2 2 Ix and

y3 2 Ix with y2 < y3 satisfying:

R(n; y2; p0) \ R(n; y3; p0) \ (Ix � [p0; p
0]) 6= ;: (D.30)

Assuming that (D:29) is true, we know that p
0
< p0 + �p: Now �x y2 in the right

hand side of (D.30) and let y3 take on all values such that y3 > y2 and y3 2 Ix: Let

y4 be the smallest possible value of y3 that satis�es (D.30) and set x0 2 Ix such that

(x0; p0) 2 R(n; y2; p0) and (x0; p0) 2 R(n; y4; p0):

Let G2 be the set of all continuous functions, ~g2 : Ip ! Ix; such that ~g2(p
0) = x

0 and
f(~g2(p); p) 2 R(n; y2; p0) for all p 2 Ip: By lemma D.3.1, there exist at least one element

in G2: Set

g2(p) = sup
~g22G2

~g2(p): (D.31)

Clearly g2(x) must be also be continuous function that satis�es g2(p
0) = x

0 and f(g2(p); p) 2
R(n; y2; p0) for all p � p0 if p 2 Ip: Similarlywe can de�ne g4(x) in analagous way, making

g4(x) = inf
~g42G4

~g4(x) (D.32)

161



where G4 is the set of all functions ~g4 : Ip ! Ix; satisfying ~g4(p
0) = x

0 and f(~g4(p); p) 2
R(n; y4; p0) for all p satisfying p 2 Ip and p � p0:

Because of our choice of p0; we know that g2(p) 6= g4(p) if p 2 [p0; p
0): Now let

J2 = f(f(g2(p); p); p)jp 2 Ipg
J4 = f(f(g4(p); p); p)jp 2 Ipg:

And letM 2 Ix� Ip be the interior of the region bounded by J2 [J4[ (Ix�fp0g): From
our choice of p0 we know that

J2 \R(n; y; p0) \ (Ix � [p0; p
0)) = ;

J4 \R(n; y; p0) \ (Ix � [p0; p
0)) = ;

for any y 6= y2 and y 6= y4: From our choice of y4 we also know that (x0; p0) 62 R(n; y; p0)

for any y 2 (y2; y4): Thus we conclude that no R(n; y; p0) intersects M for any y 2 Ix

satisfying y 6= y2, y 6= y4; and N(y; fp0) � n: Finally, from our choice of of g2(x) and g4(x)

it is also apparent that neither R(n; y2; p0) nor R(n; y4; p0) intersects M: Consequently,

we see that:

M \ P (n) = ;: (D.33)

Now let

Mx(p) = fxj(x; p) 2Mg
where M denotes the closure of M: From (D.33) we know that f i

p
is strictly monotonic

on Mx(p) for any 0 � i � n: Note in particular that this implies that there can exist no

0 � i � n such that

g

i

2(p) = g

i

4(p) = c (D.34)

for any p 2 [p0; p
0):

Now let fakg1k=0 be a monotonically increasing sequence such that a0 = p0 and

ak ! p
0 as k ! 1: We know that for any p 2 [p0; p

0]; there exists an k � n such that

f
k(g2(p); p) = c: Thus consider the sequence fbkg1k=0 where bk = N(g2(ak); fak): Since bk

can only take on a �nite number of values (0 � bk � n), we know there exists an in�nite

subsequence fkig1i=0 such that bki = b if i � 0 for some 0 � b � n: This implies that

f
b(g2(aki); aki) = c for all i � 0: Also, since f is continuous and aki

! p
0 as i! 1; we

can also conclude that

f

b(g2(p
0); p0) = f

b(x0; p0) = c: (D.35)

We also play the same game with g4 instead of g2: Consider the sequence fdig1i=0

where di = N(g4(aki); faki ): We know that di can only take on a �nite number of values,
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so there exists an in�nite subsequence, fijg1j=0 and a number 0 � d � n such that dij = d

for all j � 0: In this case, fd(g2(akij ); akij ) = c for all j � 0: Since akij ! p
0 as j !1

this implies that

f

d(g4(p
0); p0) = f

d(x0; p0) = c: (D.36)

However, from (D.34) we also know that di 6= bki
for all i � 0: Thus d 6= b: For

de�niteness assume b < d: There exists �p1 > 0 such that if p 2 [p0 � �p1; p
0] then

g
i

2(p) 6= c whenever gi2(p
0) 6= c for any i satisfying b < i < d: Choose p� = akij

for some

j � 0 large enough such that p� > p
0� �p1: Note that by this choice of p

�
; we know that

f
b(g2(p

�); p�) = c and f
d(g4(p

�); p�) = c:

Now recall the de�nition of the kneading invariant:

D(fp; t) = 1 +
1X
i=1

�k(fp)t
i
:

where

�i(fp) = �1(fp)�2(fp) : : : �i(fp)

�i(fp) = lim
x!c+

sgn(Df(f i(c; p)))

We claim that

j1 +
d�b�1X
i=1

�k(fp0)t
ij � j1 +

d�b�1X
i=1

�k(fp�)t
ij (D.37)

If this claim is true, the rest of the lemma follows. At this point we shall �nish the proof

of the lemma before coming back to the proof of the claim.

From (D.35) and (D.36) we know that

�d�b(fp0) = +1 (D.38)

Also, since g2(p) 6= g4(p) for p 2 [p0; p
0); and fd(g4(p�); p�) = c; we know f

d(g2(p
�); p�) =

f
d�b(c; p�) 6= c: Combining this result with the fact that fd

p�
is monotone on Mx(p

�) we
see that if fd�b(c; p�) > c then fd�b has a maximum at x = c; which implies that fd�b+1

must have a minimum at x = c: Otherwise, if fd�b(c; p�) < c then f
d�b has a minimum

at x = c; and again f
d�b+1 has a minimum at x = c: Thus we conclude that:

�d�b(fp0) = �1: (D.39)

Finally, combining (D.38) with (D.39) with the claim above we �nd that jD(fp0 ; t)j >
jD(fp�; t)j: But since p0 > p

�
; this contradicts the assumption that the kneading invariant

of fp is monotonically decreasing with respect to p: This proves the theorem, except for

the proof of the claim which we give below:
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We now prove the claim given in (D.37) by induction on i: Suppose that �i�1(fp0) =
�i�1(fp�): We shall show that �i(fp0) � �i(fp�):

Since f b(g2(p
0); p0) = f

b(g2(p
�); p�) = c; we can see that

sgn(Df(f i(c; p))) = sgn(Df(f b+i(g2(p); p); p))

for either p = p
0 or p = p

�
: Since R(n; y; p0) does not cross the boundary of M for any

y 2 Ix; we can see that either both f
b+i(g2(p

0); p0) � c and f
b+i(g2(p

�); p�) � c or both

f
b+i(g2(p

0); p0) � c and f
b+i(g2(p

�); p�) � c since both (g2(p
0); p0) and (g2(p

�); p�) are
on the boundary of M: Furthermore from our choice of p� and �p1 > 0 we know that

if gi(c; p0) 6= c then g
i(c; p�) 6= c for 0 < i � b � d: Consequently we can see that if

g
i(c; p0) 6= c then

�i(fp0) = �i(fp�): (D.40)

This in turn implies �i(fp0) = �i(fp�) since �i(fp) = �i(fp)�i�1(fp): On the other hand, if

g
i(c; p0) = c; then �i(fp0) = +1 so we automatically know that �i(fp0) � �i(fp�):

Finally, note that the �i(fp0) � �i(fp�) is satis�ed for i = 1 since we have �1(fp0) =

�1(fp�) from (D.40) if g(c; p0) = c and �1(fp0) � �1(fp�) if g(c; p
0) = c: This completes the

proof of the claim.

Lemma D.3.3 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings sat-

isfying (B0) and (B1). Let p0 2 int(Ip) and Mp = supx2Ix(Dpf(x; p0)): Given x0 2 Ix

such that n = N(x0; fp0) <1; then for each p 2 J(x0; p0):

jh0(x0;p0)(p)j �
Mp

jDxf(fn�1(h(x0;p0)(p); p); p)j
n�1X
i=0

j 1

Dxf
i(h(x0;p0)(p); p)

j

Proof: In order to prove the lemma, we �rst need the following result (which can be

found, for example, on page 417 of [33]).

Claim: For any x 2 Ix and n � 1 :

jDpf
n(x; p)j �Mp

n�1X
i=0

jDxf
n�1�i(f i(x; p); p)j (D.41)

Proof of claim: Proof by induction on n: For n = 1 the claim is clearly true. By the

chain rule, for any n � 1 :

Dpf
n(x; p) = Dpf(f

n�1(x; p); p) +Dxf(f
n�1(x; p); p)Dpf

n�1(x; p)
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Thus we have the following

jDpf
n(x; p)j � Mp + jDxf(f

n�1(x; p); p)jjDpf
n�1(x; p)j

� Mp + jDxf(f
n�1(x; p); p)jMp

n�2X
i=0

jDxf
n�2�i(f i(x; p); p)j

� Mp +Mp

n�2X
i=0

jDxf
n�1�i(f i(x; p); p)j

� Mp

n�1X
i=0

jDxf
n�1�i(f i(x; p); p)j

This completes the induction argument and proves the claim.

Returning to the proof of the lemma, we know that since fn(h(x0;p0)(p); p) = c for

p 2 J(x0; p0): Consequently

@

@p

[fn(h(x0;y0)(p); p)] = 0 (D.42)

By the chain rule:

@

@p

[fn(h(x0;y0)(p); p)] = (h0(x0;p0)(p))(Dxf
n(h(x0;p0)(p); p)) +Dpf

n(h(x0;p0)(p); p) (D.43)

Thus, combining (D.42) and (D.43), we have:

jh0(x0;p0)(p)j =
jDpf

n(h(x0;p0)(p); p)j
jDxf

n(h(x0;p0)(p); p)j
(D.44)

Let xp = h(x0;p0)(p): Then, combining (D.41) and (D.44) we have:

jh0(x0;p0)(p)j � Mp

P
n�1
i=0 jDxf

n�1�i(f i(xp; p); p)j
jDxf

n(xp; p)j

� Mp

jDxf
n(xp; p)j

n�1X
i=0

jDxf
n�1(f i(xp; p); p)j

jDxf
i(f i(xp; p); p)j

� Mp

jDxf(fn�1(xp; p); p)j
n�1X
i=0

1

jDxf
i(f i(xp; p); p)j :

provided p 2 J(x0; p0): This proves the lemma.

Lemma D.3.4 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings satis-

fying (B0) and (B1). Suppose that p0 2 int(Ip); and fp0
satis�es (CE1). Also, suppose

that x0 2 Ix such that n = N(x0; fp0) < 1; and min0�i<n jf i(x0; p0) � cj = �x0
> 0:

Then there exist constants C1 > 0 (independent of x0) such that

jh0(x0;p0)(p0)j � C1

1

�
2
x0
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Proof: From lemma D.3.3 :

jh0(x0;p0)(p0)j �
Mp

jDxf(fn�1(x0; p0); p0)j
n�1X
i=0

1

jDxf
i(x0; p0)j (D.45)

From lemmaD.2.7, we also know that fp0 satis�es condition (CE2). Thus, since f
n(x0; p0) =

c; we know there exists KE > 0 such that jDxf(f
n�1(x0; p0); p0)j > KE : Substituting

this into (D.45) we have:

jh0(x0;p0)(p0)j �
Mp

KE

n�1X
i=0

1

jDxf
i(x0; p0)j (D.46)

From lemma (D.2.11) we know that there exists C > 0 and � > 0 such that:

jDgi(x)j > C�
2
x0
�
i

Then from (D.46),

jh0(x0;p0)(p0)j �
Mp

KE

n�1X
i=0

1

C�
2
x0
�
i
� Mp

KEC�
2
x0

(
1

1 � �
�1 ) � C1

1

�
2
x0

if we set C1 =
Mp

KEC
( 1
1���1 ): This proves the lemma.

Lemma D.3.5 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings satis-

fying (B0) and (B1). Let p0 2 Ip and suppose that x0 2 Ix such that n = N(x0; fp0) <1
and min0�i<n jf i(x0; p0)� cj = �x0

> 0: Then for any 0 < � < 1 there exists 0 < C2 <
1
2

such that if x1 2 Ix and p1 2 Ip satisfy:

(1) jp1 � p0j � C2�x0:

(2) jf i(x1; p1)� f
i(x0; p0)j � C2�x0 for 0 � i < n

then

jDxf
i(x1; p1)j

jDxf
i(x0; p0)j � �

i
:

for 0 � i � n:

Proof: Combining lemmas D.2.1 and D.2.2 with conditions (1) and (2) above we �nd

that there exists K0 > 0; K1 > 0; and K2 > 0 such that:

jDxf(f
i(x1; p1); p1)�Dxf(f

i(x1; p1); p0)j
< K0jp1 � p0j < K0C2�x0 (D.47)

jDxf(f
i(x1; p1); p0)�Dxf(f

i(x0; p0); p0)j
< K1jf i(x1; p1)� f

i(x0; p0)j < K1C2�x0 (D.48)

jDxf(f
i(x0; p0); p0)j

< K2jf i(x0; p0)� cj < K2�x0 (D.49)
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for all 0 � i < n:

From (D.47) and (D.48) we have:

jDxf(f
i(x1; p1); p1)�Dxf(f

i(x0; p0); p0)j
� jDxf(f

i(x1; p1); p1)�Dxf(f
i(x1; p1); p0)j

+ jDxf(f
i(x1; p1); p0) �Dxf(f

i(x0; p0); p0)j
< K0C2�x0 +K1C2�x0 = C2(K0 +K1)�x0 (D.50)

for all 0 � i < n:

Now set C2 = minf1
2
;

K2

K0+K1
(1� �)g: Then from (D.50) and (D.49):

jDxf(f
i(x1; p); p1)j

jDxf(f i(x0; p0); p0)j � 1 � jDxf(f
i(x1; p1); p1)�Dxf(f

i(x0; p0); p0)j
jDxf(f i(x0; p0); p0)j

> 1 � C2(K0 +K1)�x0
K2�x0

� 1 � (
K2

K0 +K1

)(1 � �)(
K0 +K1

K2

) = �

for all 0 � i < n: Thus we have:

jDxf
i(x1; p1)j

jDxf
i(x0; p0)j =

i�1Y
j=0

jDxf(f
j(x1; p1); p1)j

jDxf(f j(x0; p0); p0)j > �

i

if 0 � i � n; which proves the lemma.

Lemma D.3.6 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings sat-

isfying (B0) and (B1). Suppose that p0 2 int(Ip); and fp0
satis�es (CE1). Let x0 2 Ix

such that n = N(x0; fp0) <1 and min0�i<n jf i(x0; p0) � cj = �x0
> 0: Then there exist

C3 > 0 and C4 > 0 (independent of x0) such that

jh0(x0;p0)(p)j < C3

1

�
2
x0

if p 2 V (x0; p0) where V (x0; p0) = [p0; p0+�p1]; �p1 = C4�
3
x0
; and h(x0;p0) : V (x0; p0)! Ix

is a C
2
function satisfying h(x0;p0)(p0) = x0 and f

n(h(x0;p0)(p); p) = c for all p 2 V (x0; p0):

From lemma D.3.1 we know that there exists a C
2 function h(x0;p0)(p) such that

h(x0;p0)(p0) = x0 and f
n(h(x0;p0)(p); p) = c if p 2 J(x0; p0) where J(x0; p0) � Ip is a

interval containing p0: Also from lemma D.3.1 we know that there exists a continuous

function g(x0;p0)(p) satisfying g(x0;p0)(p0) = x0 and f
n(g(x0;p0)(p); p) = c for all p 2 Ip:
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By lemma D.2.11, there exists C > 0 and � > 0 such that:

Dxf
i(x0; p0) > C�

2
x0
�

i
: (D.51)

for any 0 � i � n:

Now �x �1 = 1+�
2

> 1 and let � = �1

�
< 1: Then given g(x0;p0)(p); we know from

lemma D.3.5 that there exists a constant 0 < C2 <
1
2
(dependent only on �) such that

if V (x0; p0) � Ip is the maximal interval satisfying the following conditions:

(1) If p 2 V (x0; p0); then jp� p0j � C2�x0:

(2) If p 2 V (x0; p0); then jf i(g(x0;p0)(p); p) � f
i(x0; p0)j � C2�x0 for 0 � i < n;

then p 2 V (x0; p0) implies that:

jDxf
i(g(x0;p0)(p); p)j

jDxf
i(x0; p0)j � �

i (D.52)

for any 0 � i � n: Note that by setting �1 > 0; we have also set the constants 0 < � < 1

and 0 < C2 <
1
2
; so these constants are �xed for the discussion that follows.

Note, also, that from condition (2) above it is apparent that g(x0;p0) 6= c for any p 2
V (x0; p0): From lemma D.3.1, this implies that V (x0; p0) � J(x0; p0) so that g(x0;p0)(p) =

h(x0;p0)(p) is C
2 when p 2 V (x0; p0):

Now consider the sequence fy�igni=0 where y�i = f
n�i(x0; p0) so that y�n = x0 and

y0 = c: Then, from (D.51), (D.52), and our choice of �; we know that:

jDxf
i(h(y�i;p0)(p); p)j � jDxf

i(y�i; p0)j�i � C�

2
x0
�

i
�

i � C�

2
x0
�

i

1

if p 2 V (y�i; p0) for any 0 < i � n: Substituting this into lemma D.3.3 we �nd that if

p 2 V (x0; p0) :

jh0(y�i;p0)(p)j �
Mp

jDxf(z(p); p); p)j
iX

j=0

1

jDxf
j(h(y�i;p0)(p); p)j

(D.53)

Where z(p) = f
n�1(h(x0;p0)(p); p): Since fp0 satis�es (CE2) and f(z(p); p) = c; we can

bound jDf(z(p0); p0)j > KE for some constant KE > 0 independent of x0: Consequently

from condition (2) above and lemma D.2.1 there must exist K 0
E
> 0 (independent of x0)

such that jDf(z(p); p0)j > K
0
E
if p 2 V (x0; p0): Substituting this into (D.53) we have:

jh0(y�i ;p0)(p)j � Mp

K
0
E

iX
j=0

1

C�
2
x0
�
i

1

� (
Mp

K
0
E
C�

2
x0

)(
1

1 � �

�1
1

):
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Thus setting C3 =
Mp

K
0

E
C(1���1

1
)
; we have that

jh0(y�i;p0)(p)j � C3

1

�
2
x0

(D.54)

for 0 < i � n if p 2 V (x0; p0): Of course, since x0 = y�n; this also implies that

jh0(x0;p0)(p)j � C3

1

�
2
x0

if p 2 V (x0; p0):

This places the proper bound on the derivative h0(x0;p0)(p). Now we need to �nd a

proper bound on the size of V (x0; p0): Set

�p = minf C2

2C3

�

3
x0
; C2�x0; sup(Ip)� p0g: (D.55)

We claim that if [p0; p0 + �p] � V (y�(i�1); p0); then [p0; p0 + �p] � V (y�i; p0): Also,
it is clear that [p0; p0 + �p] � V (c; p0) = V (y0; p0): So, by induction on i; this claim

implies that [p0; p0 + �p] � V (y�n; p0) = V (x0; p0): Thus if the claim is true, then

from (D.55), and since �x0 is bounded above, we know there exists C4 > 0 such that

[p0; p0 + �p1] � V (x0; p0) where �p1 = C4�
3
x0
: This proves the lemma. Thus, all that is

left to do is to prove the claim.

Suppose that the claim were not true. This means there exists p1 2 [p0; p0 + �p]

such that p1 62 V (y�i; p0): From our speci�cation of V (x0; p0) and the intermediate

value theorem, it is apparent that the only way this can happen is if there exists some

p2 2 [p0; p1] such that

jh(y�i;p0)(p2)� y�ij = C2�x0 (D.56)

and [p0; p2] � V (y�i; p0):

However, by the mean value theorem, we know that

jh(y�i;p0)(p2)� y�ij = jh(y�i;p0)(p2)� h(y�i;p0)(p0)j
= jh0(y�i;p0)(p3)jjp2 � p0j (D.57)

for some p3 2 [p0; p2] � V (y�(i�1); p0): But from (D.54):

jh0(y�i;p0)(p3)j � C3

1

�
2
x0

(D.58)

Combining (D.57), (D.58), and our choice of �p we �nd that

jh(y�i;p0)(p2)� y�ij � C3

1

�
2
x0

jp2 � p0j

� C3

1

�
2
x0

�p

� 1

2
C2�x0
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which contradicts (D.56) and proves the claim.

Lemma D.3.7 Let ffp : Ix ! Ixjp 2 Ipg be a one-parameter family of mappings sat-

isfying (B0) and (B1). Given any p0 2 int(Ip), x0 2 Ix; p1 2 int(Ip);, and x1 2 Ix;

suppose that W (x0) � Ix� Ip, is a connected set that can be represented in the following

way:

W (x0) = f(�x0(t); �x0(t))jt 2 [0; 1]g

where �x0 : [0; 1]! Ix and �x0
: [0; 1]! Ip satisfy the following properties:

1. �x0(t) and �x0
(t) are continuous.

2. �x0(t) is monotonically increasing with respect to t:

3. �x0(0) = x0; �x0(1) = x1:

4. �x0(0) = p0; �x0(1) = p1:

Then there exists constants �p > 0 and C > 0 (independent of x0) such that if jx1�x0j �
Cjp1 � p0j 13 and jp1 � p0j < �p; then

W (x0) \R(n; y; p0) \ (Ix � [p0; p0 + �p]) 6= ;

for some n � 0 and y 2 Ix such that y 6= x0:

Proof: We assume that x1 > x0 and p1 > p0 (the other cases are similar). From

lemma D.2.13, we know that there exist constants K0 > 0 and �0 > 0 so that for any

positive � < �0; there is a y 2 (x0; x0+�) such that fn(y; p0) = c and min0�i<n f i(y; p0) >
K0� for some n � 0: From lemma D.3.6, we know that there exist constants K1 > 0 and

K2 > 0 such that if

�p� = K1(K0�)
3 (D.59)

then for all p 2 [p0; p0 + �p�] :

jh0(y;p0)(p)j < K2(
1

K0�
)2: (D.60)

Thus given x0 2 Ix; x1 2 Ix; p0 2 int(Ip); and p1 2 int(Ip) choose

� =
1

K0

(
p1 � p0

K1

)
1
3 : (D.61)
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Also, set �p = K1(K0�0)
3
: Note that this means p1� p0 < �p implies that � < �0; so that

the results of the previous paragraph hold.

In particular, if we substitute (D.61) into (D.59), we �nd that �p� = K1(K0�)
3 =

p1 � p0 so that from (D.60) we have that for all p 2 [p0; p1] :

jh0(y;p0)(p)j < K2(
1

K0�
)2

for some y 2 (x0; x0 + �): Consequently:

h(y;p0)(p1) < h(y;p0)(p0) + (p1 � p0) inf
p2[p0;p1]

jh0(y;p0)(p)j

< y +K2(
1

K0�
)2(p1 � p0)

� (x0 + �) +K2(
1

K0�
)2(p1 � p0)

= x0 +
1 +K0K1K2

K

1
3
1 K0

(p1 � p0)
1
3

= x0 + C(p1 � p0)
1
3 (D.62)

where C = 1+K0K1K2

K

1
3
1
K0

:

Now suppose that (x1; p1) 2 W (x0) where x1�x0 � Cjp1�p0j 13 : From (D.62) we know

that there exists a continuous function, h(y;p0)(p) such that (h(y;p0)(p); p) 2 R(n; y; p0)

for all p 2 [p0; p1] where h(y;p0)(p0) = y > x0 and h(y;p0)(p1) < x1: We are also given that

W (x0) can be represented asW (x0) = f(�x0(t); �x0(t))jt 2 [0; 1]g:Using the Intermediate

Value Theorem, it can be shown that h(y;p0)(�(t1)) = �x0
(t1) for some t1 2 [0; 1]: This

implies that

W (x0) \R(n; y; p0) \ (Ix � [p0; p0 + �p]) 6= ; (D.63)

which proves the lemma.

Proof of Theorem 3.3.2: Note that the theorem is trivial if x0 = Bd(Ix) (where Bd(Ix)

denotes the boundary of Ix). Otherwise, �x p0 2 int(Ip) such that fp0 satis�es (CE1)

and suppose there exists �p1 > 0 such that D(fp; t) is monotonically decreasing for

p 2 [p0; p0 + �p1]: Given any x0 2 int(Ix) let:

X

�
n
(x0) = fxjN(x; fp0) � n and x < x0g

X

+
n
(x0) = fxjN(x; fp0) � n and x > x0g

De�ne the following functions a�
n;x0

: Ip ! Ix and a
+
n;x0

: Ip ! Ix :

a
�
n;x0

(p) = sup
x02X�

n (x0)

fxj(x; p) 2 R(n; x0; p0); p 2 Ipg (D.64)

a
+
n;x0

(p) = inf
x02X+

n (x0)

fxj(x; p) 2 R(n; x0; p0); p 2 Ipg (D.65)
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It is apparent from our speci�cation of R(n; x; p0) that a
�
n;x0

(p) and a
+
n;x0

(p) must be

continuous with respect to p:

First of all note that a�
m;x0

(p) � a
�
n;x0

(p) if m > n: Furthermore, we claim that for

any n � 0 there exists m > n such that a�
m;x0

(p) > a
�
n;x0

(p) for all p 2 [p0; p0 + �p1]: By

lemma D.3.2 we know that if D(t; fp) is monotonically decreasing for p 2 [p0; p0 + �p1]

then R(n; x; p0) and R(n; x0; p0) do no intersect in the region Ix� [p0; p0+ �p1] provided

x 6= x
0
: This is implies that we can rewrite (D.64) as:

a
�
n;x0

(p) = supfxj(x; p) 2 R(n; x�
n
; p0)g (D.66)

where x
�
n
= supfX�

n
(x0)g. Also we know from lemma D.2.9 that given any n � 0

there exists some m > n such that x�
m
> x

�
n
: This proves the claim. Similarly, we also

can show that for any n � 0 there exists m > n such that a+
m;x0

(p) < a
+
n;x0

(p) for all

p 2 [p0; p0 + �p1]:

Returning to the lemma, we note that since a�
n;x0

(p) is monotonically increasing with

respect to n; and bounded above by sup Ix = 1; there exists a function, a�
x0
(p); such that

the limit

a

�
x0
(p) = lim

n!1 a

�
n;x0

(p) (D.67)

converges pointwise. Now set

b
�
x0
(p) = lim sup

t!p

a
�
x0
(t) (D.68)

and de�ne

S
�(x0) = f(x; p)j lim inf

t!p

b
�
x0
(t) � x � lim sup

t!p

b
�
x0
(t)g: (D.69)

Similarly we can also de�ne S+(x0) as follows:

a

+
x0
(p) = lim

n!1 a

+
n;x0

(p)

b

+
x0
(p) = lim inf

t!p

a

+
x0
(t)

S

+(x0) = f(x; p)j lim inf
t!p

b

+
x0
(t) � x � lim sup

t!p

b

+
x0
(t)g:

The next step is to show that

S

�(x0) \R(n; x; p) \ (Ix � [p0; p0 + �p1]) = ; (D.70)

for any x 6= x0 and any n � 0: This will be done in two parts. First we address the case

where x < x0:We claim that (D.70) is true if x < x0: Suppose the claim is not true. Then

from (D.64) there must exist some (x0; p0) 2 S
�(x0) and n � 0 such that a�

n;x0
(p0) � x

0
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where p0 2 [p0; p + �p1]: But we have already seen that for any n � 0 there exists an

m > n such that a�
m;x0

(p) > a
�
n;x0

(p) for all p 2 [p0; p0 + �p1]: Thus a
�
x0
(p) > a

�
n;x0

(p) for

any n � 0 if p 2 [p0; p0 + �p1]: Consequently since a�
n;x0

(p) is continuous:

x

0 � a

�
n;x0

(p0) = lim inf
t1!p0

lim sup
t!t1

a

�
n;x0

(t)

< lim inf
t1!p

0

lim sup
t!t1

a
�
x0
(t) = lim inf

t!p
0

b
�
x0
(t)

which from (D.69) implies that (x0; p0) 62 S
�(x0): This is a contradiction which proves

the claim.

We now claim that S�(x0)\R(n; x; p)\(Ix� [p0; p0+�p1]) = ; if x > x0: If this claim

is not true, then from (D.65) we can see that there must exist some (x0; p0) 2 S
�(x0)

and n � 0 such that a+
n;x0

(p0) � x
0 where p0 2 [p0; p0 + �p1]: Furthermore there exists

m > n such that a+
m;x0

(p) < a
+
n;x0

(p) for p 2 [p0; p0 + �p1]: Thus there exists � > 0 such

that a+
m;x0

(p0) � x
0�2�. Since a+

m;x0
(p) is continuous, this implies that there exists � > 0

such that

a

+
m;x0

(p) � x

0 � �: (D.71)

for any p such that jp� p
0j < �: But since (x0; p0) 2 S

�(x0),

lim sup
t1!p0

lim sup
t!t1

lim
n!1 a

�
n;x0

(t) � x

0
:

Since a�
n;x0

(p); is continuous, this implies that for any � > 0 and � > 0 there is an n � 0

and p1 with jp1� p
0j < � such that a�

n;x0
(p1) > x

0� �: Combining this with (D.71) we see

that there exists p2 such that a
�
n;x0

(p2) = a
+
n;x0

(p2): But this is impossible by lemmaD.3.2

because it implies that (x0; p0) 2 R(m;x1; p0) and (x0; p0) 2 R(n; x2; p0) for some n � 0;

m � 0; x1 6= x2; and p
0 2 [p0; p0 + �p1]: This contradiction proves the claim.

The next step is to show that S�(x0) [ S
+(x0) is invariant under f: We claim that

if (x; p) 2 S
�(x0) then either (f(x; p); p) 2 S

�(f(x0; p0)) or (f(x; p); p) 2 S
+(f(x0; p0)):

For any x0 2 int(Ix); there exists an � > 0 such that (x0 � �; x0) � (Ix n fcg): Let
J = (x0� �; x0): Then, since fp0 is a di�eomorphism on J; for any y1 2 f(J; p0) such that

n(y1) = N(y1; fp0) < 1; there exists y0 2 J such that y1 = f(y0; p0) and N(y0; fp0) =

n(y1) + 1: Consequently, from (D.66) we know that there exists N > 0 such that for all

n > N :

f(a�
n;x0

(p); p) =

(
a

�
n;f(x0;p0)

(p) if Dxf(x; p0) > 0 on J

a

+
n;f(x0;p0)

(p) if Dxf(x; p0) < 0 on J

for any p 2 [p0; p0 + �p1] if x 2 int(Ix): This result combined with our speci�cation of

S
�(x0) in (D.67), (D.68), and (D.69) proves the claim. Using the analogous result for

S
+(x0) gives us that S

�(x0) [ S+(x0) is invariant under f:
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Finally, from the formulation of S�(x0) in (D.69), it is apparent that there exists a

W
�(x0) � S

�(x0) such that W�(x0) can be represented in the following way:

W

�(x0) = f(�x0(t); �x0(t))jt 2 [0; 1]g

where �x0
: [0; 1] ! Ix and �x0

: [0; 1] ! Ip are continuous functions and �x0
(t) is

monotonically increasing with respect to t with �x0
(0) = p0 and �x0

(1) = p0 + �p1: Of

course, a similar W+(x0) � S
+(x0) also exists.

Putting it all together, we have now shown that: (1) S�(x0) [ S
+(x0) is invariant

under f and (2) (S�(x0) [ S+(x0)) \R(n; x; p0) \ (Ix � [p0; p0 + �p1]) = ; for any n � 0

and any x 6= x0: From property (2) above, lemma D.3.7, and since W�(x0) � S
�(x0); it

is apparent that there exists �p2 > 0 and C > 0 (independent of x0) such that if (x; p) 2
W

�(x0) then jx�x0j � C(p�p0)
1
3 : Set �p = minf�p1; �p2g and letW (x0) =W

�(x0) for
p 2 [p0; p0+�p]: Then property (1) implies that given any x0 2 int(Ix); if (x; p) 2 W (x0)

and p 2 [p0; p0+ �p]; then jfn(x; p)�f
n(x0; p0)j < C(p�p0)

1
3 for any n � 0: This proves

the theorem.
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Appendix E

Proof of theorem 3.4.2

This appendix contains the proof for theorem 3.4.2. For reference, the conditions, (CE1)

and (CE2), can be found in the beginning of appendix D.

Theorem 3.4.2 Let Ip = [0; 4]; Ix = [0; 1]; and fp : Ix ! Ix be the family of quadratic

maps such that fp(x) = px(1 � x) for p 2 Ip: Then there exist constants � > 0; C > 0;

K > 0; and set E(
) � Ip with positive Lebesgue measure for every 
 > 1 such that:

(1) If 
 > 1 and p0 2 E(
); then fp0
satis�es (CE1).

(2) If fp0 satis�es (CE1), then for any � > 0 su�ciently small, any orbit of fp0 can be

��shadowed by an orbit of fp for p 2 [p0; p0 + C�
3]:

(3) If 
 > 1 and p0 2 E(
); then for any � > 0, almost no orbits of fp0 can be

��shadowed by any orbit of fp for p 2 (p0 � �; p0 � (K�)
):

That is, the set of possible initial conditions, x0 2 Ix; such that the orbit ff ip0(x0)g1i=0

can be ��shadowed by some orbit of fp comprises at most a set of Lebesgue measure

zero on Ix if p 2 (p0 � �; p0 � (K�)
):

Proof of Theorem 3.4.2: We �rst address parts (1) and (3) of theorem and come back

to part (2) at the end of the proof.

The basic idea behind parts (1) and (3) is to apply theorem 3.3.1 to theorem 3.4.1.

There are four major steps. We �rst set lower bounds on the return time of the orbit of

the turning point, c = 1
2
; to neighborhoods of c: Next we show that fp satis�es (CP1)

and favors higher parameters on a positive measure of parameter values. This allows us

to apply theorem 3.3.1. Finally we show that almost every orbit of these maps approach

arbitrarily close to c so that if the orbit, ff i
p0
(c)g1

i=0; cannot be shadowed then almost

all other orbits of fp0 cannot be shadowed either.

175



We �rst show that there is a set of parameters of positive measure such that orbits

of the turning point, ff i
p
(c)g1

i=0; do not return too quickly to neighborhoods of c: This

can be seen from the construction used to prove theorem 3.4.1. In [5] it is shown that

for any � > 0; if S(�) � Ip; is the set of parameters such that fp0 satis�es both (CE1)

and:

jf i
p0
(c)� cj > e

��i (E.1)

for all i 2 f0; 1; 2; : : : g; then S(�) has a density point at p = 4:

We now show that (CP1) is also satis�ed on a positive measure of parameter values.

First consider what happens if p = 4 :

Dpf(c; p = 4) =
1

4
(E.2)

Dpf(f
n(c; p = 4); p = 4) = 0 for any n > 1 (E.3)

jDxf(f
n(c; p = 4); p = 4)j = 4 for any n � 1 (E.4)

jDxf
n(c; p = 4)j = 4n�2 for any n � 1: (E.5)

It also a simple matter to verify that fp favors higher parameters at p = 4: Note that

from the chain rule we have that:

Dpf
n(c; p) = Dxf(f

n�1(c; p); p)Dpf
n�1(c; p) +Dpf(f

n�1(c; p); p) (E.6)

for any n � 1 and any p 2 Ip: Consequently, using continuity arguments we can see that

for any N > 0 and � > 0 there exists �1 > 0 such that p 2 [4 � �1; 4] implies that both

of the following hold:

jDp(c; p)j >

1

4
� � (E.7)

jDp(f
n(c; p))j < � for any n 2 f2; 3; : : : ; Ng. (E.8)

From (E.6) we can see that:

Dpf
n(x; p) = Dpf(f

n�1(c; p); p) +
n�2X
i=0

[Dpf(f
i(c; p); p)

n�1Y
j=i+1

Dxf(f
j(c; p); p)]

=
n�1Y
j=1

Dxf(f
j(c; p); p)[

Dpf(f
n�1(c; p); p)Q

n�1
j=1 Dxf(f j(c; p); p)

+Dpf(c; p) +

n�2X
i=1

Dpf(f
i(c; p); p)Q

i

j=1Dxf(f j(c; p); p)
]

=
n�1Y
j=1

Dxf(f
j(c; p); p)[Dpf(c; p) +

n�1X
i=1

Dpf(f
i(c; p); p)Q

i

j=1Dxf(f j(c; p); p)
] (E.9)
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for any n � 1: But from theorem 3.4.1, we also know that there exists KE > 0 and

�E > 1 and a set E � Ip of positive measure such that if p 2 E; then (CE1) is satis�ed

for fp :

j
nY
j=1

Dxf(f
j(c; p); p)j = jDxf

n(f(c; p); p)j > KE�
n

E
:

Substituting this into (E.9) we have:

jDpf
n(x; p)j > KE�

n�1
E

[jDpf(c; p)j �
n�1X
i=1

jDpf(f
i(c; p); p)j

KE�
i

E

]

Substituting (E.7) and (E.8):

jDpf
n(x; p)j > KE�

n�1
E

[(
1

4
� �)�

NX
i=1

�

KE�
i

E

�
n�1X

i=N+1

1

4KE

�
i

E
]

> KE�
n�1
E

[
1

4
� � � �

KE(1 � �

�1
E
)
� �

�(N+1)

E

4KE(1� �

�1
E
)
]

for any n � 1: Now if if we set

CE = [
1

4
� � � �

KE(1� �

�1
E
)
� �

�(N+1)
E

4KE(1 � �

�1
E
)
]

we see that CE > 0 if � > 0 is su�ciently small and N > 0 is su�ciently large. From

(E.7) and (E.8) we know that we have full control of � > 0 and N > 0 with our choice

of �1: So choose �1 > 0 small enough so that CE > 0 for any p 2 [4 � �1; 4]: Then we

have that:

jDpf
n(x; p)j > KECE�

n�1
E

(E.10)

for all n � 1 if p 2 [4 � �1; 4] and fp satis�es (CE1) (ie, jDxf
n(f(c; p); p)j > KE�

n

E
for

all n � 1). Looking at (E.6), it is also apparent that if (E.10) is satis�ed, then since

jDpf(f
n�1(c; p); p)j < 1

4
; the sign ofDpf

n(x; p) is governed by the signs ofDxf(f
n�1(c; p); p)

and Dpf
n�1(c; p) for n � 1 su�ciently large. Thus, since fp favors higher parameters

at p = 4; there exists some � > 0 with � < �1 such that fp favors higher parameters if

p 2 [4� �; 4] and fp satis�es (CE1).

Consequently, (CP1) must be satis�ed and fp0
favors higher parameters for any

p0 2 [4 � �; 4] such that fp0
satis�es (CE1). But recall that for any � > 0; S(�)

has a density point at p = 4 and p0 2 S(�) implies that fp0 satis�es (CE1). So let

S�(�) = S(�) \ [4 � �; 4]: Then for any � > 0 we can see that if p0 2 S(�); then

condition (E.1) is satis�ed, fp0 satis�es (CE1), and fp satis�es (CP1) and favors higher

parameters at p = p0: Furthermore, S�(�) has a density point at p = 4:
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Now recall from section 3.3.1 that ne(c; �; p0) is de�ned to be the smallest integer

n � 1 such that jfn(c; p0)� cj � �: Thus, if (E.1) is satis�ed, then

ne(c; �; p0) > � 1

�

log �: (E.11)

But from theorem 3.3.1, we know that if fp0 satis�es (CE1) and fp satis�es (CP1) and

favors higher parameters at p = p0 2 Ip; then there exist constants � > 0; K0 > 0; K1 > 0

and � > 1 such that there are no orbits of fp which ��shadow the orbit, ff i
p0
(c)g1

i=0; if

p 2 (p0 � �; p0 �K0��
�ne(c;K1�;p0)): Substituting in the condition (E.11) we �nd that:

K0��
�ne(c;K1�;p0) = K0(K1�)

1+ 1
�
log�

: (E.12)

Now suppose we are given any 
 > 1: We can see that if � <
1


�1 log � then

1 +
1

�

log � > 
: (E.13)

So let E(
) = S( 1
2(
�1) log �): Note that E
 has positive Lebesgue measure and a density

point at p = 4: For any 
 > 1; we also see that if p0 2 E(
) then fp satis�es (CP1)

and (CE1) at p = p0. Thus by theorem 3.3.1 and from (E.12) and (E.13) we have

that if p0 2 E(
) then no orbits of fp ��shadow the orbit, ff i
p0
(c)g1

i=0; for any p 2
(p0� �; p0�K0(K1�)


): But since 
 > 1; if we set constant K = maxfK0K1;K1g > 0 we

see that p0�K0(K1�)


> p0� (K�)
 for any � > 0: Thus, no orbits of fp may ��shadow

ff i
p0
(c)g1

i=0; if p 2 (p0 � �; p0 � (K�)
):

The �nal step is to show that almost any orbit of fp comes arbitrarily close to c: This

can be seen from the following two lemmas:

Lemma E.0.8 Let U be a neighborhood of c: For any p 2 Ip; if EU = fx j fn
p
(x) 2

I n U for all n � 0g contains no non-trivial intervals, then the Lebesgue measure of EU

is zero.

Proof of lemma E.0.8: See Theorem 3.1 in Gukkenheimer [26].

Lemma E.0.9 If p0 2 Ip and fp0
satis�es (CE1), then the set of preimages of c; Cp =

[i�0f�ip0
(c); is dense on Ix:

Proof of lemma E.0.9: See corollary II.5.5 in Collet and Eckmann [14].

From these two lemmas we can see that for almost all x0 2 Ip; the orbit, ff ip0(x0)g1i=0;

approaches arbitrarily close to c if p 2 E(
); for any 
 > 1: Thus for almost all x0 2
Ip; there are arbitrarily long stretches of iterates where the orbit, ff i

p0
(x0)g1i=0; looks

arbitrarily close to the orbit, ff i
p0
(c)g1

i=0: This means that if there are no orbits of fp

178



that can shadow ff i
p0
(c)g1

i=0; there can be no orbits of fp that can shadow ff i
p0
(x0)g1i=0:

Consequently for any 
 > 1 if p0 2 E(
) then fp0
satis�es (CE1) and almost no orbits

of fp0 can be shadowed by any orbit of fp if p 2 (p0 � �; p0 � (K�)
): This proves parts

(1) and (3) of theorem 3.4.2.

Part (2) of theorem 3.4.2 is a direct result of Corollary 3.3.1, Theorem 3.4.1, and the

following result, due to Milnor and Thurston:

Lemma E.0.10 The kneading invariant, D(fp; t); is monotonically decreasing with re-

spect to p for all p 2 Ip:

Proof of lemma E.0.10: See theorem 13.1 in [34].

Thus if p0 2 E(
) satis�es (CE1), there exists constant C > 0 such that if p0 2 E(
)

then any orbit of fp0 can be ��shadowed by an orbit of fp if p 2 [p0; p0 + C�
3]: This is

exactly part (2) of the theorem.

This concludes the proof of theorem 3.4.2.
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