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Abstract

Enhanced reality visualization is the process of enhancing an image by adding
to it information which is not present in the original image. A wide variety of
information can be added to an image ranging from hidden lines or surfaces to
textual or iconic data about a particular part of the image. Enhanced reality
visualization is particularly well suited to neurosurgery. By rendering brain
structures which are not visible, at the correct location in an image of a patient’s
head, the surgeon is essentially provided with X-ray vision. He can visualize the
spatial relationship between brain structures before he performs a craniotomy
and during the surgery he can see what’s under the next layer before he cuts
through. Given a video image of the patient and a three dimensional model of
the patient’s brain, the problem enhanced reality visualization faces is to render
the model from the correct viewpoint and overlay it on the original image. The
relationship between the coordinate frames of the patient, the patient’s internal
anatomy scans and the image plane of the camera observing the patient must be
established. This problem is closely related to the camera calibration problem.
This report presents a new approach to finding this relationship and develops a
system for performing enhanced reality visualization in a surgical environment.
Immediately prior to surgery a few circular fiducials are placed near the surgical
site. An initial registration of video and internal data is performed using a
laser scanner. Following this, our method is fully automatic, runs in nearly
real-time, is accurate to within a pixel, allows both patient and camera motion,
automatically corrects for changes to the internal camera parameters (focal
length, focus, aperture, etc.) and requires only a single image.
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Chapter 1

Introduction

1.1 Computers in Medicine

The use of computers in medicine has increased dramatically over the last
decade [Bemmel et al., 1985, Reggia and Tuhrim, 1985, Miller, 1990, Chang,
1993]. As a result, nearly all aspects of medical care have seen improvement
from the introduction of computer-based tools. These tools range from auto-
mated patient record keeping to three dimensional visualization of internal
anatomy and from computer assisted diagnosis to automatic drug interaction
and allergy screening. The use of computers to assist physicians in the plan-
ning and execution of surgical procedures is also growing [Lemoine et al., 1991,
Smith et al., 1991, Pieper et al., 1992, Verbeeck et al., 1993]. One area which
could benefit greatly from more sophisticated computer-based tools is neuro-
surgery. The need to minimize collateral damage while removing diseased
tissue requires extreme precision. In addition, damage to certain critical brain
regions, such as the motor strip, must be avoided if at all possible. Planning
a surgical approach meeting all of the criteria is difficult and tedious. Identi-
fication of specific brain structures and modification of the planned approach
are often difficult during the surgical procedure, placing additional emphasis
on planning. Traditionally, precision neurosurgery requires the use of a stereo-
tactic frame which is rigidly attached to the patient’s skull. Figure 1-1 shows
some typical stereotactic frames. The frame is attached prior to and is visible
in presurgical imaging such as magnetic resonance (MR) or computed tomog-
raphy (CT) imaging. This allows surgical plans based on presurgical internal
anatomy scans to be transferred to the patient using the stereotactic frame
as a reference. Frequently the patient must wear the frame for several days
between imaging and surgery. The frames are a significant discomfort to the
patient and are cumbersome to the surgeon, possibly limiting his flexibility
during the procedure.

A system which improves surgical precision, enables identification of brain
structures, allows modification of the planned approach during the surgical
procedure and does not require the use of a stereotactic frame would be a vast
improvement over traditional neurosurgical procedures.

13
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Figure 1-1: Some typical stereotactic frames.
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1.2 What is Enhanced Reality Visualization?

Computer assisted surgery is a relatively new development which attempts
to provide the surgeon with a tool to assist in the planning and execution of
surgical procedures [Adams et al., 1990, Lavallee and Cinquin, 1990]. Image
guided surgery is a specific type of computer assisted surgery which uses ad-
vanced three dimensional visualization techniques to provide the surgeon with
a wealth of valuable information not normally available in the operating room
[Pelizzari et al., 1991, Wells et al., 1993, Black et al., 1993, Grimson et al., 1994 ].
In essence, a complex surgical procedure can be navigated visually with great
precision by overlaying on an image of the patient a color coded preoperative
plan specifying details such as the locations of incisions, areas to be avoided
and the diseased tissue. The process of aligning the preoperative plans with
and overlaying them on the patient is known as enhanced reality visualization.
Enhanced reality visualization is the process of enhancing an image by adding
information to it. The information added can be anything from text to icons or
color coding to three dimensional surfaces. Figure 1-2 shows an enhanced re-
ality visualization of a patient about to undergo neurosurgery. The area shown
in is the tumor to be removed and the ventricles are shown in .

Figure 1-2: Enhanced reality visualization showing a tumor and ventricles.
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1.3 A Scenario Which Utilizes Enhanced Reality
Visualization

1. A patient needing neurosurgery is scanned by one or more three dimen-
sional, high resolution, internal anatomy scanners, such as magnetic res-
onance (MR) or computed tomography (CT).

2. Each internal anatomy scan is segmented by tissue type (white matter,
gray matter, bone, etc). The various scans of the patient are also registered
with one another. The result is a three dimensional model of the patient’s
brain.

3. Tools which identify, classify and label brain structures such as motor
strip and speech centers are used to add the required detail to the model
of the patient’s brain.

4. Once the model of the patient’s brain has been constructed, enhanced re-
ality visualization is possible. Enhanced reality visualization can be used
to help plan the surgical procedure. Live video of the patient is mixed
with information generated from the brain model allowing the surgeon to
view the internal anatomy of the patient in a non-invasive manner. This
capability allows the surgeon to test the feasibility of various possible sur-
gical approaches on the actual patient. The enhanced reality visualization
may be presented to the surgeon using one of several methods, such as a
head-mounted display, a transparent projection screen or a surgical mi-
croscope. Details regarding the surgical approach and procedure can be
added to the brain model.

5. The surgical procedure is performed using enhanced reality visualization.
Enhanced reality enables the surgical site to be precisely located and
facilitates accurate transfer of surgical plans to the patient.

1.4 The Problem and Our Approach

Enhanced reality visualization is an integral part of the image guided surgery
paradigm, however compared with other aspects, little effort has been expended
on this area [Adams et al., 1990, Lavallee and Cinquin, 1990, Pelizzari et al.,
1991, Wells et al., 1993, Grimson et al., 1994]. In order to produce enhanced
reality visualizations we must be able to quickly and accurately align informa-
tion such as a brain model with an image. There are several other issues which
must be addressed before a full function enhanced reality visualization system
can be created. Some of these challenges are listed below.



1.4. THE PROBLEM AND OUR APPROACH 17

Display method The displays currently available for enhanced reality visu-
alization are less than optimal. Head mounted displays are still heavy,
awkward and have relatively low resolution. Conventional CRT’s have
better resolution but limit the applications of enhanced reality visualiza-
tion.

Rendering The complexity of information and the detail and realism with
which it can be rendered while updating at a reasonable frame rate are
limited.

Information acquisition Acquiring information and converting it to a form
suitable for use in enhanced reality visualization can be a difficult and
time consuming process.

Virtual reality faces many of the same issues as enhanced reality visual-
ization. There already exists a significant research effort in virtual reality
examining these problems. While there are many similarities, enhanced real-
ity differs fundamentally from virtual reality in that it is anchored in the real
world. Enhanced reality visualization must align the enhancement with a real
image quickly and accurately. The ability to perform this alignment quickly
and accurately is fundamental to enhanced reality visualization and will be the
focus of this report. Given a video image and a three dimensional model, the
problem is to render the model from the correct viewpoint and overlay it on the
original image. The relationship between the coordinate frames of the world,
the model and the image plane of the camera must be established. This prob-
lem is closely related to the camera calibration problem. Stated more precisely
the problem is to:

Determine the perspective transformation which maps model coordi-
nates to image coordinates in “real-time”, allowing the information
from the model to be added to an image in the correct location.

An overview of the problem is shown in Figure 1-3. We solve for the transforma-
tion which maps model coordinates to image coordinates directly. An alternate
approach solves for several transformations and then composes them into a
single transformation from model to image coordinates. For example, a refer-
ence coordinate system could be defined for the physical object(s). The first step
might be to find the transformation which aligns the model with the reference
coordinate system. Next, the transformation from reference coordinates to im-
age coordinates must be determined. Solving for intermediate transformations
can introduce error into the solution and is computationally more expensive.
Unless this data is needed there is no reason to break the problem into several
pieces.
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Figure 1-3: Overview of this report.

We will define several terms that will be used throughout this report. An
enhanced reality visualization is composed of a virtual image overlayed on a raw
image. A raw image is an image of the real world prior to any enhancement.
The coordinates of the raw image are referred to as image coordinates. The
information which will be added to the raw image to produce the enhancement is
referred to as the model. The coordinates of the model are referred to as model
coordinates. A virtual image is generated by rendering the model from a
particular view point. The view point captures the relative placement and
orientation between model and viewer. Finally, the term world coordinates
is used to refer to an arbitrary coordinate system attached to an object visible
in the raw image.

Figure 1-4 shows an overview of our method in the context of neurosurgery.
A novel formulation of the camera calibration problem allows us to quickly
and easily obtain the perspective transformation mapping model (MR or CT)
coordinates to image coordinates. The perspective transformation is then used
to generate the enhanced reality visualization. Our approach utilizes several
circular fiducials placed near the surgical site.

The circular fiducials enable us to recover a scale factor at each fiducial (the
focal length of the camera divided by the depth of the fiducial). Given the scale
factor as well as the image and model (MR or CT) coordinates for each fiducial,
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Figure 1-4: Overview of this report showing the circular fiducials.
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Figure 1-5: Determining the model (MR) coordinates of the fiducials.
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the problem of determining the perspective transformation which maps model
coordinates to image coordinates reduces to three sets of linear equations. In
general, the model coordinates of the fiducials are not known a priori, and they
must be calibrated. Figure 1-5 depicts the process of determining the model
(MR or CT) coordinates of the fiducials. During an initial calibration phase a
laser scanner is used to register the world coordinates of the fiducials with the
model coordinates of the MR or CT data. Once the initial calibration is complete,
our method is fully automatic and uses visual information exclusively. Some of
the additional characteristics of our approach which make it particularly well
suited to enhanced reality visualization are:

1. Requires only a single image with a few fiducials

2. Does not require internal calibration or known focal length

3. Accurate to within a pixel

4. Solution is non-iterative

The remaining chapters of this report are organized as follows: Chapter 2
reviews current enhanced reality visualization techniques. Chapter 3 devel-
ops a basic camera model and contains a brief discussion of current camera
calibration techniques. Chapter 4 presents our method and an overview of its
implementation. Chapter 5 provides the details (theory, error analysis and
empirical results) associated with circular fiducials. Chapter 6 discusses one
method of calibrating fiducials. Chapter 7 shows the results of our method for
a test object and a plastic skull. Finally, Chapter 8 presents our conclusions.



Chapter 2

Related Work

Several groups of researchers have recently been investigating enhanced real-
ity. The proposed applications for enhanced reality range from laser printer
repair to aircraft manufacture. Current research efforts in enhanced reality
visualization differ in many implementation details. The one thing they all
have in common is the requirement to align a model with an image of the real
world. In this chapter we will examine several different approaches.

2.1 Medical Applications

2.1.1 Aachen University of Technology

A group at the Aachen University of Technology in Germany has developed
a “Computer Assisted Surgery” module for use in ENT surgical procedures
[Adams et al., 1990]. A model of the patient is produced from presurgical CT
scans. Radiopaque markings are attached to the patient’s skull prior to the
presurgical scans for use as reference points. The system is calibrated using
a hand-guided electro-mechanical three dimensional coordinate digitizer. The
digitizer is used to measure the positions of several reference points. With
correspondence between digitizer and CT points the transformation from the
CT coordinates to digitizer coordinates can be calculated using 3D/3D matching.
During an operation the surgeon can use the digitizer to point at an unidentified
structure. Three perpendicular views of the CT data corresponding to the
location of the digitizer are then displayed on a nearby CRT. The system must
be recalibrated every time the patient moves with respect to the digitizer. The
reported accuracy is better than �1mm.

2.1.2 TIMB

A group at TIMB in Grenoble, France has developed a “Computer Assisted
Medical Intervention” module [Lavallee and Cinquin, 1990]. A model of the
patient’s internal anatomy is produced from presurgical imaging. This system

21
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uses a surgical robot or guidance system with modes that range from passive
to semi-autonomous. In passive mode the robot provides visual feedback by
overlaying the position of an instrumented probe on the presurgical scans. In
semi-autonomous mode some portions of the surgical procedure are performed
by the robot under the supervision of the surgeon. The system is calibrated us-
ing a special calibration cage made of four Plexiglas planes containing metallic
balls. The calibration cage is placed near the patient and a pair of X-ray im-
ages are taken. The relationship between the presurgical imaging, the X-ray
device and the surgical robot can be established using 3D/3D matching. Again
if the patient moves relative to the robot (or the X-ray device) the system must
be recalibrated. Accuracy for the instrumented probe is reported as �5mm.
Accuracies for other modes are not reported.

2.1.3 University of Chicago

A group at the University of Chicago has developed a method for “Interactive
3D Patient - Image Registration” [Pelizzari et al., 1991]. The method is used to
position patients for radiation therapy. Again, a model of the patient’s internal
anatomy is produced from presurgical imaging. The model is used to plan the
geometry of radiation therapy beams. Because of the non-invasive nature of
radiation therapy it is difficult to transfer the beam geometry planned using the
model to the actual patient. A Polhemus 3Space tracker and localizer are used
as a magnetic 3D digitizer to measure the surface of the patient. The model and
the measured surface are then registered using 3D/3D surface fitting. Once the
registration has been performed, the magnetic digitizer is used again to mark
the patient for setup. The intersections of the three principle planes with the
patient are traced. These marks are then used as reference for positioning
the therapy machine. The therapy machine must be aligned manually. If
the patient moves the entire calibration need not be reperformed, however the
therapy machine must be realigned with the reference marks on the patient.
Accuracies of �1mm and �1� are reported.

2.1.4 Massachusetts Institute of Technology

A group at MIT’s Artificial Intelligence Laboratory has developed “An Auto-
matic Registration Method for Frameless Stereotaxy, Image Guided Surgery,
and Enhanced Reality Visualization” [Grimson et al., 1994]. As in the previous
work described, a model of the patient’s internal anatomy is produced from
presurgical imaging. A Technical Arts laser range scanner is used to collect a
set of 3D data points from the patient’s skin surface. The model and the laser
data are registered using 3D/3D surface matching. A special calibration object
is used to calibrate the laser scanner and calibrate the location of a camera on
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the laser scanner. Once the model is registered with the laser data and the
location of the laser scanner camera is calibrated, the model can be overlayed
with video of the patient. The calibration must be reperformed if the patient
or camera move and the overlay can only be generated for a single viewpoint.
The reported accuracy of this method is �1mm.

2.1.5 Stanford

A group at Stanford University has developed “Treatment Planning for a Ra-
diosurgical System with General Kinematics” [Schweikard et al., 1994]. The
method is used to plan and perform radiosurgery. A model of the patient’s
internal anatomy is produced from presurgical imaging. The radiosurgery is
planned using the model. In addition, the model is used to synthesize ra-
diographs from different view points. A total of over 400 such radiographs
are produced. During the radiosurgery, two nearly orthogonal X-ray images
of the patient are taken and compared with the precomputed radiographs to
determine the patient’s position and orientation with respect to the treatment
machine. The patient’s position and orientation can be determined about twice
per second. The treatment machine (X-ray system, radiation source, etc.) must
be calibrated separately using a special calibration routine. The accuracy of
this method is not reported.

2.1.6 University of North Carolina

A group at the University of North Carolina has developed a method for “Merg-
ing Virtual Objects with the Real World” [Bajura et al., 1992]. This system
allows the user to see ultrasound imagery overlaid on a patient in near real-
time. A six degrees of freedom (DOF) Polhemus 3Space tracker is mounted
on the probe used to acquire ultrasound images. A second 6DOF tracker is
attached to the head-mounted display (HMD) used to view the overlay. Images
from a camera also mounted on the HMD are combined with the ultrasound im-
ages to produce the overlay. Since both trackers report position and orientation
it is a simple matter to transform between ultrasound tracker coordinates and
HMD tracker coordinates. In order to transform ultrasound images into the
coordinate system of the HMD camera the relationships between ultrasound
images and the ultrasound tracker and the HMD camera and the HMD tracker
must be established. A special calibration jig is used to determine these trans-
formations periodically. This system allows for motion of both the user and the
patient. The accuracy of the overlay is not reported.
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2.2 Other Applications

2.2.1 Boeing

A group at Boeing has developed “An Application of Heads-Up Display Tech-
nology to Manual Manufacturing Processes” [Caudell and Mizell, 1992]. The
goal of this work is to overlay manufacturing instructions on images of the
manufacturing process and display them to a worker using an HMD. The in-
structions to be overlayed are derived from a CAD model. The system uses a
6DOF Polhemus 3D Isotrack magnetic tracking system attached to the HMD
to generate the overlay. A calibration jig is used to establish the relationship
between the HMD and the work site. Given the relationship between the HMD
and the work site an overlay can easily be generated. The accuracy of this
system is not reported.

2.2.2 Columbia University

A group at Columbia University has developed a method for “Knowledge-Based
Augmented Reality” [Feiner et al., 1993]. The goal of this work is to overlay
instructions for repairing a laser printer with images of the laser printer. The
instructions are derived from a knowledge-based system. A Logitech 3D ultra-
sonic tracking system and an Ascension Technology magnetic tracking system
are used to determine the position and orientation of an HMD and several key
parts of the laser printer. Using the position and orientation information from
the tracking system an instruction overlay is generated and displayed to the
user via the HMD. Frame rates of about 15hz are reported. Accuracy is not
reported.

2.3 Discussion

As discussed in Section 1.4 the transformation which maps model coordinates
to image coordinates can be divided into several pieces. All of the methods
discussed above take this approach and all of them calculate a transformation
which registers the model with some world (reference) coordinate system. Ini-
tially, our discussion will consider only this piece of the larger transformation.

Current methods of registering the model with the world coordinate system
are somewhat limited. Many of the approaches use magnetic trackers to deter-
mine the transformation which will align the two coordinate frames. Magnetic
trackers have several significant shortcomings which limit their effectiveness
for enhanced reality visualization. Magnetic trackers have a very short range,
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typically a few feet. Accuracies are limited to �6mm and �1:5�.1 Perhaps the
most significant limitation is that magnetic and metallic objects can severely
degrade the performance of magnetic trackers. This is a significant limitation
for surgical applications as most operating rooms are loaded with metallic and
magnetic objects. In addition, current advances in intra-operative imaging
have made it possible to obtain MR images of a patient’s internal anatomy
during surgery. This environment precludes the use of magnetic trackers.

Several other types of sensors are also used to determine the transformation
which will register the model with the world coordinate system. These sensors
also have limitations which make them less than desirable for enhanced reality
visualization. Ultrasonic trackers have range and accuracy limitations similar
to those of magnetic trackers. While they are not susceptible to magnetic
interference they are limited to line of sight operation. Mechanical digitizers
have good accuracy but are cumbersome and have limited range. The laser
scanner provides very accurate position information but also has a short range
and is limited to line of sight operation.

All of the methods cited above use active sensors to collect the data required
to register the model with the world coordinate system. This requires either a
special environment (mechanical digitizers, magnetic trackers and ultrasonic
trackers) or a cumbersome piece of equipment (laser scanner and X-ray). There
are also many situations where active emissions are not desirable.

The registration produced by most of the medical applications (the excep-
tions are the work being done by the groups at the University of North Carolina
and Stanford University), is limited to a fixed patient and sensor configuration.
They do not allow for patient motion. This is because the alignment between
the patient and the world coordinate system is implicitly determined during the
initial calibration phase and is not monitored. It is not clear that it is possible
to extend these methods to allow for motion. [Grimson et al., 1994] claim that
their method is extensible to cover patient motion, however it is not clear that it
is practical or possible to do so using a laser scanner. In a surgical environment,
with all but the surgical site hidden under sterile drapes, it is doubtful that
enough patient surface area will be visible to the scanner to allow registration
of the patient and model. In addition, using a laser in the operating room might
be distracting to the surgeons.

These methods also require a high degree of operator action to register the
model with the patient. Typically the operator must measure data points by
hand or edit data that was semi-automatically collected. At least one of the
methods requires about half an hour to produce a single registration.

While all of the medical applications register a model obtained from presur-
gical imaging to a world coordinate system, only two of the applications (Mas-
sachusetts Institute of Technology and University of North Carolina) actually

1These accuracies are for a sensor located between 10 and 70cm from the source.
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produce enhanced reality visualizations. Neither of these methods can handle
dynamic changes in focus, zoom or aperture of the camera used to obtain the
raw image for the enhanced reality visualization. And only the method pro-
duced by the group at the University of North Carolina allows the surgeon to
change the viewpoint of the enhanced reality visualization.

None of the current approaches to enhanced reality visualization are partic-
ularly well suited to a surgical environment. The sensors used are active and
are frequently cumbersome. A good solution for a surgical environment should
allow for patient motion and should allow the surgeon to see enhanced reality
visualizations from different view points. It should be fully automatic follow-
ing a straight forward initial calibration. And the method should allow for
dynamic changes in the camera parameters. We will consider optical sensors
for a number of reasons. Small, light weight and inexpensive video cameras
are readily available. Very accurate results can be achieved with these cameras
which can operate over long ranges. Further, we will obtain the information
required to register the model with the raw image entirely from the raw image.
This has the advantage of ensuring that registration information is available
exactly when raw images are available to produce an enhanced reality visual-
ization. Since the goal of enhanced reality visualization is to enhance an image,
the raw image will likely contain a lot of information valuable to performing
the enhancement. Almost all of the current approaches ignore the information
contained in the raw image opting for what is essentially a closed loop solution.

Recently [Wells et al., 1993] proposed a method of enhanced reality visualiza-
tion using video information exclusively, however the method requires manual
alignment of the model with the video image and in some cases requires mark-
ers to appear in both the MR image and video image. An optical tracker has also
been proposed by a group at the University of North Carolina [Wang et al., 1990,
Ward et al., 1992, Gottschalk and Hughes, 1993, Azuma and Biship, 1994]. This
method is essentially another active sensor not unlike a laser scanner. It uses
a “sea-of-lights” consisting of nearly 1000 LED’s mounted in the ceiling tiles
of 10’ by 12’ room. Three cameras mounted on an HMD are aimed at the ceil-
ing while the LED’s are flashed sequentially. This “optical tracker” requires a
special ceiling which must be calibrated and a significant amount of additional
hardware (3 extra cameras, LED control, etc). Neither of these, proposals are
suitable in our application for the reasons cited above.



Chapter 3

Camera Calibration

3.1 Camera Model

The pin-hole camera is frequently used to model the transformation from world
coordinates to image plane. The pin-hole model uses the perspective projection
model of image formation. Orthographic projection with scale or weak perspec-
tive is used in many computer vision applications, however it is not accurate
enough across the entire image for our application. For example consider an ob-
ject with 5cm of depth located 100cm away from the camera and 5cm off-axis,
see Figure 3-1. Under orthographic projection points a and b are collocated,
however in a real image (using a 25mm lens) the points are 5 pixels apart. The
effect is significant even with the object only slightly off center. The left side
of Figure 3-2 shows a camera centered Cartesian coordinate system. The optic
axis of the camera is coincident with the z axis. The image plane is parallel to
the xy plane and located a distance f from the origin. Even though the image
plane is not required to be parallel to the xy plane, most camera models do not
explicitly consider this possibility. Image plane pitch �x and tilt �y are usually
reflected in pose. We will start with the assumption that �x = �y = 0 and then
in Chapter 4 we will show how our method implicitly models image plane pitch
and tilt. The point where the image plane and the optic axis intersect is known
as the principal point. Under perspective projection a point Pc = [xc yc zc]

projects to point p = [x y] on the image plane by the following equations1:

x = f
xc

zc
(3.1)

y = f
yc

zc
(3.2)

Unfortunately, we are not able to directly access the image plane coordinates.
Instead we have access to an array of pixels in a frame buffer or computer

1We represent points as row vectors rather than column vectors. This means that points
will be premultiplied instead of postmultiplied when applying a transformation. This is the
exact opposite of what is typically used in computer vision, however it is the notation that the
author was first exposed to and what has stuck.
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Figure 3-1: Effect of orthographic projection assumption.
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ideal pin-hole camera.
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memory. In order to understand the relationship between image plane coor-
dinates and the array of pixels, we must examine the imaging process. The
image plane of a CCD camera is a rectangular array of discrete light sensitive
elements. The output of each of these elements is proportional to the amount
of light which falls on it. The values for each of these elements are read out one
element at a time row after row until the entire sensor array has been read.
This analog signal is processed by a frame grabber which converts the camera’s
output to digital values and stores them in the frame buffer. The result is an
array of digital values in the memory of the computer. The rows of the array
correspond to the rows of the image sensor. In general, this is not the case
for the columns. A synchronization signal is provided between rows, however
the frame grabber samples the signal within a row asynchronously and at an
independent frequency which may result in a different number of columns per
row than were present in the camera. Synchronization errors can also cause
the rows to not line up. This is known as pixel jitter and in extreme cases can
cause the x and y axes to appear non-orthogonal or skewed [Lenz and Tsai,
1988]. Most camera models omit skew angle �xy (the angle between the x and y
axes minus 90�). We will start with the assumption that �xy = 0 for simplicity
and then in Chapter 4 we will show how our method implicitly models skew
angle. A single element of the array in memory is commonly called a pixel2.
We will refer to the row and column number of a given pixel as y0 and x0 respec-
tively. Several parameters are defined to quantify the relationship between
the array in memory and the coordinate system of the image plane. x0 and y0

are the pixel coordinates of the principal point. sx and sy are the number of
pixels in memory per unit distance in the x and y direction of the image plane.
These parameters along with f , �x, �y and �xy are intrinsic or internal camera
calibration parameters. The projection of point Pc to point p0 = [x0 y0] in memory
is described by the following equations:

x0 � x0 = fsx
xc

zc
(3.3)

y0 � y0 = fsy
yc

zc
(3.4)

The right half of Figure 3-2 shows an arbitrary Cartesian coordinate system
which we will refer to as the world coordinate system. A point Pw in the world
coordinate system is transformed into the camera centered coordinate system

2As noted above pixels in memory can differ in size from the underlying image sensing
elements. Many of the measures of accuracy cited both in this work and in the literature
should actually be made relative to the image sensing elements. This is straight forward for a
calibrated camera. We are working with uncalibrated cameras and the relationship between
image sensing elements and pixels in memory is frequently not known. Thus for simplicity and
in spite of the preceding, we will express our measures in terms of pixels in memory.
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by the following equation:
Pc = PwR+ T (3:5)

where R is an orthonormal rotation matrix and T is a translation vector. R
and T together are commonly referred to as the extrinsic or external camera
parameters.

The pin-hole model assumes an ideal camera. Because of lens distortion,
real cameras deviate from ideal. The major categories of lens distortion are:

1. Radial distortion - the path of a light ray traveling from the object to the
image plane through the lens is not always a straight line.

2. Decentering distortion - the optic axis of individual lens components are
not always collinear.

3. Thin prism distortion - the optic axis of the lens assembly is not always
perpendicular to the image plane.

When it is necessary to explicitly model lens distortion it is typically sufficient
to model only radial distortion. Our method, developed in Chapter 4, implic-
itly models a linear approximation to lens distortion.3 Using a 25mm lens of
average quality we have not found it necessary to explicitly model lens distor-
tion. The maximum radial distortion at the extreme edge of the image for our
configuration is just a few pixels.

3.2 Current Camera Calibration Techniques

Research into the camera calibration problem has a long history originating in
the field of photogrammetry. For a more complete discussion of camera calibra-
tion techniques see [Slama, 1980, Tsai, 1987]. Camera calibration techniques
can be divided into three different categories:

1. Methods which recover only intrinsic parameters. These methods gen-
erally require a special calibration object or stand to allow the internal
parameter(s) to be measured independent of other parameters. Also,
these methods assume that the intrinsic parameters do not change. Un-
less extreme care is taken to ensure otherwise, it is almost certain that
the intrinsic parameters will change perhaps by a significant amount fol-
lowing calibration. Examples of these methods include [Brown, 1965,
Lenz and Tsai, 1988, Maybank and Faugeras, 1992].

3A discussion of this characteristic can be found in Appendix A.
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2. Methods which recover only extrinsic parameters (also known as geomet-
ric methods). These methods assume that the intrinsic camera param-
eters are precisely known. This is not always possible for the reasons
mentioned above. Examples of these methods include [Church, 1945,
Fischler and Bolles, 1981].

3. Methods which recover both intrinsic and extrinsic parameters. These
methods can be further divided into two categories:

(a) Nonlinear optimization methods. These methods are both nonlinear
and iterative. These methods typically produce the most accurate re-
sults but require a large number of features and a significant amount
of time. Further they are frequently not automatic and need a good
initial solution to ensure convergence. Finding an initial solution
can be a difficult problem. Examples of these methods include [Faig,
1975, Sobel, 1974].

(b) Linearization methods. These methods linearize the nonlinear pro-
jection equations by introducing additional constraints. The basic
difference between members of this category is how the problem is
linearized. If care is not taken when the equations are linearized
significant bias can be introduced. Many of these methods are it-
erative and under certain conditions fail to converge. These meth-
ods tend to be significantly faster than the nonlinear optimization
methods. They frequently do not require an initial solution or can
calculate one with relative ease. These methods still require a large
number of points for good results. Examples of these methods in-
clude [Faugeras and Toscani, 1987, Grosky and Tamburino, 1987,
Tsai, 1987, Goshtasby, 1987, Ganapathy, 1984].

None of the current solutions to the camera calibration problem are ide-
ally suited to enhanced reality visualization. The linearization methods come
closest to meeting the requirements of enhanced reality visualization, however
there is room for improvement.
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Chapter 4

Our Solution

We have developed a novel method for determining the relationship between
model and image coordinates. Figure 4-1 provides an overview of our method.
Two key insights lead to a significant simplification of the problem. These
insights are:

1. It is not necessary to separate the intrinsic and extrinsic parameters for
enhanced reality visualization.

2. It is possible to recover depth information from a single 2D image.

Utilizing these insights produces a solution that is particularly well suited
to enhanced reality visualization and meets the requirements discussed in
Chapters 1 and 2. Our solution is most closely related to the linearization
methods described in Chapter 3.
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Figure 4-1: Overview of this report showing the circular fiducials.
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4.1 A Perspective Transformation is Enough

The camera calibration problem is typically posed as follows:

I = MXC (4:1)

where:

X =

"
R
T

#

=

2
6664
r11 r12 r13

r21 r22 r23

r31 r32 r33

tx ty tz

3
7775

C =

2
64
sxf 0 0
0 syf 0
x0 y0 1

3
75

M is a matrix of model points of the form
�
X Y Z 1

�
, I is a matrix of image points

of the form [x y z] resulting from the projection of M onto the image plane, X is
an external camera calibration matrix,R is an orthonormal rotation matrix, T
is a translation vector, and C is an internal camera calibration matrix. Image
points are expressed in homogeneous coordinates to allow the perspective pro-
jection to be captured using linear equations [Duda and Hart, 1973]. The pixel
coordinates of an image point

�
x0 y0

�
are determined by the following relation-

ships: x0 = x=z and y0 = y=z. These relationships are very similar to (3.3) and
(3.4). In fact, x, y and z are analogous to the camera centered coordinates xc, yc

and zc.
The ultimate goal of most camera calibration is to enable the recovery of

metric 3D information, such as the pose (position and orientation) of an object,
from its two dimensional image. Clearly, to recover the pose of an object it
is necessary to separate the intrinsic and extrinsic parameters. Separating
the parameters is difficult [Ganapathy, 1984]. The problem is nonlinear and
several of the parameters are closely coupled. In the presence of noise a single
solution to the camera calibration problem does not exist, rather there exists
a set of solutions. These solutions can differ significantly and yet give rise
to nearly identical images. For example, in the presence of noise significant
trade offs can be made between tz and f . This can result in a solution which
looks good from one view point but where neither the intrinsic nor extrinsic
parameters are correct. The fact that the optimal solution for one view point
may not be the globally optimal solution is at the heart of what makes camera
calibration hard.
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Camera calibration is often performed as a preliminary step in many appli-
cations. A set of camera calibration parameters is recovered and the intrinsic
parameters are used for future images. This assumes that a globally optimal
set of intrinsic parameters has been recovered and that the parameters are
fixed. By using multiple images or multiple calibration planes the solution can
be improved in a global sense. However, in the presence of noise small errors
can lead to large errors for view points significantly different than those used
during calibration. Further, the intrinsic camera calibration parameters are
not fixed. They change with the focus and aperture settings. For example, the
principle point can shift by 8 pixels or more with adjustments to focus [Willson
and Shafer, 1993]. The effective focal length f also varies with focus and aper-
ture settings. Zoom lenses take this variability to an extreme, enabling large
changes to f . Lens distortion also varies with changes to focus and aperture
[Brown, 1965].

In enhanced reality visualization we are interested in the total transforma-
tion from model to image coordinates. We do not need to separate intrinsic and
extrinsic parameters to generate an enhanced reality image. All of the param-
eters comprising all of the intrinsic and extrinsic calibration parameters can be
composed into a single 3�4 matrix. This insight is not new, but how we apply
it is. The following matrix equation is equivalent to (4.1) and the combination
of (3.3), (3.4) and (3.5).

I = MP (4:2)

where:

P = XC

=

2
6664
r11sxf + r13x0 r12syf + r13y0 r13

r21sxf + r23x0 r22syf + r23y0 r23

r31sxf + r33x0 r32syf + r33y0 r33

txsxf + tzx0 tysyf + tzy0 tz

3
7775 (4.3)

For our purposes finding values for the elements of P is sufficient.
A more general internal calibration matrix can be defined as follows:

C =

2
64 c11 c12 c13

c21 c22 c23

c31 c32 c33

3
75 (4.4)

This new definition of C has 9 degrees of freedom. These degrees of freedom
correspond to x0, y0, sx, sy, f , �xy, �x, �y and �z. Only 5 of these 9 degrees
of freedom are unambiguous. sx, sy and f actually constitute 2 degrees of
freedom. This is equivalent to saying that C is only defined up to a scale factor.
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�x, �y and �z are redundant degrees of rotational freedom which are captured
in X . Therefore the internal calibration matrix used in (4.1) needs only slight
modification: the addition of a skew parameter �xy. The skew parameter is
added in the 1st column, 2nd row of C. The value of the skew parameter is
equal to tan �xy or change in the x coordinate based on the y coordinate. With
the addition of this parameter to C the perspective transformation (XC) matrix
becomes:

P =

2
6664
r11sxf + r12 tan �xy + r13x0 r12syf + r13y0 r13

r21sxf + r22 tan �xy + r23x0 r22syf + r23y0 r23

r31sxf + r32 tan �xy + r33x0 r32syf + r33y0 r33

txsxf + ty tan �xy + tzx0 tysyf + tzy0 tz

3
7775 (4.5)

P can exactly model non-orthogonal frame buffer axes (�xy 6= 0) and per-
spective projection with the image plane not perpendicular to the optic axis
(�x and=or �y 6= 0). A linear approximation of radial distortion can also be
obtained1. Notice that the revised definition of C has 5 degrees of freedom and
when combined with the 6 degrees of freedom contained in X accounts for all
11 degrees of freedom in P. Thus P implicitly models 5 intrinsic and 6 ex-
trinsic parameters. The modeling is implicit because the underlying physical
parameters are never actually computed. By formulating the problem in this
manner, we avoid the difficulties associated with decomposing the intrinsic and
extrinsic camera parameters. We solve (4.2) for each image we obtain. Thus we
do not need to worry about finding a globally optimal solution, optimal for this
view point is sufficient. Further, changes to the intrinsic camera parameters
are inherently captured.

4.2 Depth Information From a Single 2D Image

Even with the simplifications made so far, the problem of solving for the per-
spective transformation which maps model coordinates to image coordinates is
still nonlinear. While it is possible to solve for the elements of P using a mini-
mum of 6 point features and an iterative method, we can do better. Expanding
(4.2) produces:

x0 = x=z

=
p11X + p21Y + p31Z + p41

p13X + p23Y + p33Z + p43
(4.6)

1A discussion of this characteristic can be found in Appendix A.
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y0 = y=z

=
p12X + p22Y + p32Z + p42

p13X + p23Y + p33Z + p43
(4.7)

If we knew the value of z = p13X+p23Y +p33Z+p43 then solving for the elements
of P would reduce to 3 sets of linear equations. Using spatial features, rather
than point features, enables us to measure a quantity that is proportional
to z for each feature. We call this quantity the local scale factor. The local
scale factor is equal to the focal length of the camera divided by the depth of the
feature (syf=z). We use a circular fiducial as our spatial features [Landau, 1987,
Thomas and Chan, 1989, Hussain and Kabuka, 1990, Chaudhuri and Samanta,
1991, Safaee-Rad et al., 1992]. The exact nature of these fiducials will be
discussed in Chapter 5. In essence, by using a spatial feature we are able to
recover 21

2D information from a single video image. The idea of using spatial
features is not new, however our use of the information provided by spatial
features is. We will modify our matrix equation slightly by multiplying I and P
by 1

syf
. Since I is expressed in homogeneous coordinates, multiplying I and/orP

by an arbitrary constant has no effect on the solution ( 1
syf
P and P represent the

same solution). We will refer to the elements of 1
syf
P as pij and define I 0 = 1

syf
I.

I 0 is a matrix of image points of the form
�
x? y? 1=s

�
. s is the local scale factor at

the image point. The pixel coordinates of an image point
�
x0 y0

�
are determined

by x0 = sx? and y0 = sy?. x?, y? and 1=s are similar to the homogeneous image
coordinates defined in (4.1). The elements of P can be solved for using the
following three sets of linear equations and as few as four spatial features.

x?
i

= (p11Xi + p21Yi + p31Zi + p41) (4.8)
y?
i

= (p12Xi + p22Yi + p32Zi + p42) (4.9)
1=si = (p13Xi + p23Yi + p33Zi + p43) (4.10)

Where x?
i
, y?

i
and 1=si are the components of the ith image point and Xi, Yi and

Zi are the components of the ith model point.

4.3 Implementation

It should be noted that by using a spatial feature the problem of determining the
relationship between model coordinates and image coordinates becomes linear
and the solution can be found using as few as four features. Also, since all of
the calibration parameters (both intrinsic and extrinsic) are bundled into P we
are not required to make any assumptions about the stability of the intrinsic
parameters. This is important in dynamic environments because changes to the
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focus, aperture and/or zoom will likely be needed during the enhanced reality
visualization.

Given a model and an image containing at least four fiducials with known
model coordinates it is a relatively straightforward task to solve for P and
generate an enhanced reality image. The basic steps are as follows:

1. Grab an image
2. Locate the fiducials in the image and calculate the local scale factor
3. Establish correspondence between fiducials in the image and fiducials in

the model
4. Solve for P
5. Using P, project the model into the image
6. Display the enhanced reality image
7. Repeat

4.3.1 Image Acquisition

720� 480 pixel images are acquired using a Pulnix TMC-50 color CCD camera
or a Panasonic WV-CD50 monochrome CCD camera with either a 25mm or
16mm lens or a CIDTEK monochrome CID camera with a 29mm lens and a
Sun VideoPix frame grabber. Both the cameras and frame grabber are rela-
tively inexpensive commodity items. VideoPix is only capable of grabbing �4
monochrome or �1 color frame per second. This severely limits the update rate
of the enhanced reality visualization. Furthermore, VideoPix only provides 7�

bits of luminance information. Even though pixel values range from 0 to 255
the actual resolution is less than half of this range. We intend to upgrade to
a better camera/frame grabber combination in the future, however the current
combination is sufficient to demonstrate our method.

4.3.2 Fiducial Location

The location (centroid) and local scale factor (semi-major axis of the fiducial’s
image divided by the radius of the fiducial) are calculated using moments.
Chapter 5 describes these calculations in detail.

4.3.3 Correspondence

Once an initial correspondence has been established, it should be possible to
maintain correspondence by tracking the fiducials. The idea is that if images
can be processed fast enough the locations of the fiducials should not change
very much. Given the correspondence from the last image, we look for fiducials



4.3. IMPLEMENTATION 39

in the new image within a small region around each fiducial’s last location. If
exactly one fiducial is found in that region then the correspondence for that
fiducial is maintained. If at least some minimum number of correspondences
(� 4) are maintained, then the fiducials have been successfully tracked. If
correspondence is lost or no previous correspondence exists than an initial
correspondence must be established. The initial correspondence is performed
using a modified version of the alignment method [Huttenlocher, 1988]. The
alignment method is modified to use scale information as well as some orien-
tation constraints to significantly prune the search space. The three major
constraints used are listed below:

� Each fiducial is visible from only one side. Specifically, the dot product
of fiducial’s normal and the viewing direction must be negative or the
fiducial is definitely not visible.

� The local scale factor si establishes the relative depth of the fiducials up
to the accuracy of the measurement.

� The local scale factor si is used to effectively unproject the image point
[x0

i
y0
i
]. Recall that x0

i
= x?

i
si and y0

i
= y?

i
si. If C is close to a diagonal matrix

or if a reasonable guess exists for at least some of the intrinsic camera
parameters,2 then x?

i
and y?

i
can be treated as the x and y components

of the camera centered coordinates for the ith point. Since scaling is not
allowed between world coordinates and camera centered coordinates any
transformation between the two must have a scale factor close to unity.

The alignment method uses triples of model and image points to generate
possible transformations from model to image coordinates. There are a total
of
�

m

3

��
i

3

�
3! different sets of triples where m is the number of model points

and i is the number of image points. In general the alignment method pro-
duces 2 solutions for every set of model and image points. This is because the
alignment method assumes orthographic projection and is therefore unable to
resolve reflections about the xy plane. For an image and a model both con-
taining 7 points the alignment method generates � 15;000 possible solutions.
Utilizing the constraints listed above significantly reduces this number. For 20
random views of an object with 7 fiducials, the number of possible solutions was
reduced from 15,000 to an average of 100. For one of the views the constraints
reduced the number of possible solutions to 3. Some of these views are shown
in Chapter 7. The constraints are applied using only the set of three image and
model points and before the remaining model points are transformed or global
constraints are checked. This reduces the computational cost of establishing
correspondence for an object with 7 fiducials by over 2 orders of magnitude.

2In our experience only x0 and y0 need to be estimated and it is sufficient to use the geometric
center of the image plane as a fixed estimate of their values.
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Pseudo code for establishing correspondence follows:

1. If correspondences � minimum ) done.

2. If 0 < correspondences < minimum ) establish the required additional
correspondences.

3. Otherwise ) establish correspondences.

(a) Find candidate transformations from model to image points.

i. Take each possible triple of model points and pair it with each
permutation of three image points.

ii. For each group of model and image points check that the model
points are consistent and determine from which side they are
visible. Pi and ni are the location and normal of the ith model
point in the triple.
� Find the normal to the triple

np = (P2 � P1)� (P3 � P1)

� Verify that the model points can be visible simultaneously

SIGN(np � n1) = SIGN(np � n2) = SIGN(np � n3)

iii. Transform (rotate and translate) the model points of the triple
so that the first point is at the origin and the points lie in the xy

plane. There are two transformations which will accomplish this,
choose the one which will make the model points right side up as
determined in Step 3(a)ii. Call the transformed model points M?.

iv. Unproject the image points of the triple and translate so that the
first point is at the origin. Call the transformed image points I?.

v. Calculate the transformation(s) X which maps M? to I? using the
alignment method.

vi. Check that the solution computed in Step 3(a)v is consistent.
� Use relative depth constraints to eliminate one of the two

solutions.
� Verify that the solution does not turn the model points upside

down. Step 3(a)ii ensured that the model points were right
side up. As long as the transformation calculated in Step
3(a)v does not rotate more than 90� about any axis in the xy

plane the model points will remain right side up. ~z is the unit
vector in the z direction.

SIGN(k~zXk) > 0
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� Verify that the scale factor is close to unity
vii. If the transformation computed in Step 3(a)v is consistent, com-

pose the total transformation using the transformations from
Steps 3(a)iii and 3(a)v and the translation from Step 3(a)iv.

(b) For each consistent transformation determine correspondences be-
tween the remaining image and model points and calculate the cost.

i. Transform the remaining model points into camera centered co-
ordinates.

ii. For each transformed model point
A. Find the closest image point
B. If the closest image point is close enough, add the correspon-

dence to the match and add the Euclidean distance squared
to the total cost.

iii. Return a match consisting of a list of correspondences and the
total cost.

(c) Consolidate matches and find the best one.

i. For each unique list of correspondences create a consolidated
match consisting of:
� The list of correspondences.
� The number of matches containing the list of

correspondences.
� The minimum cost among the matches containing the list of

correspondences.
ii. Return the best consolidated match which is the one with the

largest number of correspondences or the largest number of
matches or the lowest cost, in that order.

The algorithm used in Step 2 to establish partial correspondences is very similar
to that described in Step 3. If less then three correspondences exist, additional
pairs of model and image points are combined with the existing correspondences
to form sets of three model and three image points. If three or more correspon-
dences exist then triples of the established correspondences are used to form
the sets. The rest of the algorithm is unchanged. The ability to perform partial
correspondence greatly simplifies the problem of reestablishing correspondence
when most but not all of the fiducials are temporarily occluded. If at least the
minimum number of correspondences are maintained partial correspondence
is not used to find correspondences for fiducials that were occluded but are now
visible. This case is handled nicely as part of locating the fiducials described in
Chapter 5.
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4.3.4 Solving for P

Equations (4.8), (4.9) and (4.10) are used to solve for the elements of P. If
correspondences have been established for more than four fiducials than an
over-determined system of linear equations exists. We solve this problem in
a least-squares fashion by minimizing the following error terms using House-
holder’s QR decomposition [Watkins, 1991].

kr1k2 =

nX
i=1

jx?
i
� (p11Xi + p21Yi + p31Zi + p41)j2 (4.11)

kr2k2 =

nX
i=1

jy?
i
� (p12Xi + p22Yi + p32Zi + p42)j2 (4.12)

kr3k2 =

nX
i=1

����� 1si � (p13Xi + p23Yi + p33Zi + p43)

�����
2

(4.13)

Householder’s method exhibits good stability and is relatively efficient. Com-
puting the QR decomposition requires approximately nm2 � m3=3 flops and
using the decomposition to solve for the unknowns requires approximately
2nm�m2=2 flops where n is the number of unknowns and m is the number of
equations. Splitting the problem into three sets of equations has a significant
computational advantage. Equations (4.8), (4.9) and (4.10) can be rewritten in
matrix form as follows:

X?
= MP1 (4.14)

Y ?
= MP2 (4.15)

S = MP3 (4.16)

X?, Y ? andS are column vectors whose ith components are x?
i
, y?

i
and 1=si respec-

tively. M is a m�4 matrix whose ith row is the ith model point [Xi Yi Zi 1]. Pi is
the ith column of P. Matrix M is decomposed into the matrices Q and R. Since
M is common to all three equations we need only perform the decomposition
once. We can simply reuse the decomposition for the remaining equations. In
essence, you pay for solving (4.14) and you get the solutions to (4.15) and (4.16)
for very little. Formulating the problem as three sets of linear equations each
with 4 unknowns reduces the complexity of computing the decomposition by an
order of magnitude and solving for the unknowns by half an order of magni-
tude compared to solving a single set of linear equations with 12 unknowns. In
fact the QR decomposition need not be recomputed until the correspondences
change, further increasing the computational savings.

4.3.5 Creating the Enhanced Reality Image

Creating the enhanced reality image consists of two steps: making a virtual
image (rendering the model) and combining the virtual image and the raw
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image. P is used to project the model into an initially empty virtual image.
Currently, models consist of either a collection of points or a collection of line
segments. Points are projected by multiplying byP and then rounding off to the
nearest pixel. Line segments are handled by using P to project the endpoints
into the virtual image and then drawing a line between them. No anti-aliasing
or z-buffering is performed. As a result, some edges are jagged and some
points which perhaps should not be visible are. Once the virtual image has
been generated it must be combined with the raw image to form the enhanced
reality image. Pixels in the virtual image have precedence over pixels in the
raw image. If a pixel in the virtual image is nonzero (zero being no information)
then its value is placed in the corresponding location in the enhanced reality
image. If a pixel in the virtual image is zero then the corresponding pixel in
the raw image is used. Both the rendering and combination routines are a
bit simplistic, but are sufficient to demonstrate our method. Rendering and
combination are important problems, however they are not the focus of this
work.

4.3.6 Displaying the Enhanced Reality Image

The enhanced reality image is displayed as a single image on a high resolution
CRT using the X window system. The size of the image to be displayed and
whether it is to be displayed on the local machine greatly affects the time it
takes to display an image. In the current implementation, about 20% of the
computation time is spent simply putting a half sized enhanced reality image
on the screen. Creating a stereo display or using a video see-through HMD are
straightforward extensions of our method.

4.3.7 Discussion

The current system is implemented in Lucid Common Lisp and runs on a
SparcStation 2. Currently, the two most limiting components are the frame
grabber and the rendering/display system. Depending on the complexity of the
model, the renderer may require a minute or more to perform the rendering.
Using a simple model, frame rates of �2hz can be achieved. Table 4.1 shows a
break down of the computational time required for the major functions. Low end
SGI machines such as the Indy are capable of grabbing a full size color image
and displaying it on the screen at> 30hz. The SGI machines are also capable of
rendering a fairly complex model and displaying it at > 30hz. If these times are
substituted for frame grabbing, rendering and displaying a frame rate of�10hz
results. The frame rate would be �20hz if the time requirements for frame
grabbing, rendering and displaying could be eliminated entirely. Little effort
has been put into optimizing the current implementation for speed. Recoding
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Function Time Required
Grab Frame 0.25s 50.3%
Find Fiducials and Calculate
Centroid and Local Scale Factor 0.03s 6.1%
Check Correspondences 0.007s 1.4%
Calculate Perspective
Transformation 0.01s 2.0%
Render Model and Create
Enhanced Reality Image 0.1s 20.1%
Display Image 0.1s 20.1%

Table 4.1: Time required for major functions running on a SparcStation 2 in
Common Lisp using a simple model and displaying a half sized enhanced reality
image.

some portions and using a C-30 digital signal processing board to grab and
process images should produce significant improvements in speed. We believe
frame rates of >30hz should be achievable with this modest hardware.

Assuming that we are given a model to be used in creating the enhanced
reality image is not unreasonable. In fact, it is a fundamental assumption of
enhanced reality visualization. The basic idea is to add information to an image.
This information in most cases is not visible from the current view point and
must come from some source other than the raw image (typically the model).
This is not to say that constructing a model is easy. Model building is simply
not the focus of this work. Assuming that we know the model coordinates of
the fiducials in some cases is unreasonable. This amounts to assuming that
the fiducials are part of the model. In Chapter 7 we present enhanced reality
visualizations of a test object and a plastic skull. The model for the test object
is a CAD-like model and the fiducials are part of it. This is not the case for the
skull. Here, the model is a CT scan of the skull. The fiducials are not present
in the CT data and are not part of the model. In this case, we need a method
of determining the model coordinates of the fiducials. Chapter 6 presents the
details of determining the model coordinates for the fiducials used on the skull.



Chapter 5

Feature Detection and
Localization

In the last chapter we described the theory behind our method. The success
of any method for enhanced reality visualization is inseparably tied to the
accuracy of the data used to determine to transformation which maps model
coordinates to image coordinates. In this chapter we will discuss the practical
details of finding fiducials and the accuracy with which their position and local
scale factor can be determined.

5.1 Details

The circular fiducials used in our method are detected using pattern matching
and are localized using moment calculations. An actual size fiducial is shown
in Figure 5-1. A chord passing near the center of the fiducial will exhibit
transitions from light to dark, dark to light, light to dark and dark to light.
Figure 5-2 shows a blow-up of an image of a fiducial and the intensity profile
of a chord line. Constraints such as the steepness of the transition, the length
of the transition and the separation between transitions eliminate nearly all
detections which do not come from actual fiducials. By checking the rows and
columns of an image for collocated occurrences of this transition pattern the
presence of an fiducial can be further validated and a rough position can be
efficiently found. The time required is linear in the size of the image. In
addition, a bounding box (x1, x2, y1 and y2) and an upper and lower threshold
(tupper and tlower) for each fiducial can be readily obtained from this process.
The bounding box, with vertices [x1 y1], [x1 y2], [x2 y1] and [x2 y2], is slightly
larger than the smallest rectangle aligned with the axes which can contain the
fiducial. The upper and lower thresholds are used to rescale the pixel values.
These values are needed because we use grey scale moments to find the centroid
and local scale factor of the fiducial. The local scale factor is the semi-major axis
of the fiducial’s image divided by the radius of the fiducial. The bounding box
and thresholds for one fiducial are completely independent from those of the
other fiducials. This produces an extremely robust detection and localization

45
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Figure 5-1: Actual size
fiducial.

Figure 5-2: Enlarged image of a fiducial with
pixel values for a chord shown to the side.

algorithm. For example, large gradients in average image intensity, such as
might be caused by shadows, have little effect on detecting and localizing the
fiducials.

Fiducials are detected by looking for occurrences of intensity profiles such
as the one shown in Figure 5-2. The location and the maximum and minimum
values of these profiles are used to determine a bounding box and an upper and
lower threshold for the fiducial. Once a fiducial has been detected moments
are used to calculate the centroid and local scale factor of the fiducial. Detailed
pseudo code used to locate fiducials follows:

1. Grab a fresh image.

2. For each fiducial present in the last image:

(a) Define a window centered at the last location [x0old y0old] with dimen-
sions equal to 2kr. k is a window size scale factor and r is equal to
the fiducial’s local scale factor si in the last image times the fiducial’s
radius in model coordinates.1

(b) Scan the window for fiducials.

i. For each horizontal and vertical scan line in the region collect
possible fiducial detects.
A. Initialize the following parameters: l1 through l4 (location

of transition 1–4), lmin and lmax (the minimum and maximum
1
sx=y is the ratio of pixel spacing in the x and y directions (sx=sy). This quantity is used to

correct for the fact that pixels generally are not square. The x dimension of the window must
be scaled by 1=sx=y.
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separation between transitions),w1 through w4 (width of tran-
sition 1–4), wmax (the maximum width of a transition), s1

through s4 (slope of transition 1–4), smin (the minimum in-
tensity change to be considered above noise), tupper and tlower

(upper and lower thresholds).
B. Scan across or down the scan line until the change in pixel in-

tensity < �smin. Scan back several pixels, take the minimum
value and if it is less than tupper store it in tupper. Update l1, w1

and s1.
C. Continue scanning until the change in pixel intensity is no

longer< �smin. Scan ahead several pixels, take the maximum
value and if it is less than tlower store it in tlower. Update l1, w1

and s1. If w1 > wmax go to Step 2(b)iA.
D. Continue scanning until the change in pixel intensity is >

smin. Scan back several pixels, take the maximum value and
if it is greater than tlower store it in tlower. Update l2, w2 and s2.

E. Continue scanning until the change in pixel intensity is no
longer > smin. Scan ahead several pixels, take the minimum
and if it is less than tupper store it in tupper. Update l2, w2 and
s2. If lmin � l2 � l1 � lmax or s1 6� s2 go to Step 2(b)iA.

F. Repeat Steps 2(b)iB and 2(b)iC except update l3, w3 and s3. If
w3 > wmax or 2(l2 � l1) 6� (l3 � l2) or s3 6� s2 � s1 go to Step
2(b)iA.

G. Repeat Steps 2(b)iD and 2(b)iE except update l4, w4 and s4. If
w4 > wmax or (l4� l3) 6� 2(l2� l1) � (l3� l2) or s4 6� s3 � s2 � s1

go to Step 2(b)iA.
H. Add the detection (location, size and thresholds) to a list of

detections.
I. Go to Step 2(b)iA

ii. Consolidate detections. Detections from adjacent scan lines are
combined if they overlap by at least 50%. Detections from or-
thogonal scan lines are combined if the detections intersect. All
consolidations retain the maximum bounding box, the minimum
tupper and the maximum tlower.

iii. Expand the bounding box as necessary to ensure the fiducial is
fully enclosed. This is required because if the fiducial is elliptical
in shape and is at an angle to the x and y axes, the bounding box
generated by the detections may under estimate the size of the
fiducial.

(c) Calculate the 0th, 1st and 2nd moments of inertia as well as the Euler
number of the window using grey scale values.
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(d) If the Euler number is zero return the the location and local scale
factor [x0 y0 1=s] for the fiducial.

3. If there was a valid solution for the last image, predict the location and
size of each model point for which a correspondence did not exist using
this solution. Perform Steps 2a through 2d.

4. If the number of correspondences maintained in Step 2 plus the number
established in Step 3 is less than the minimum, scan the entire image for
fiducials and establish correspondences for any new fiducials found using
the algorithm presented in Section 4.3.3.

The zeroth, first and second order moments of a region bounded by x1, x2, y1

and y2 can easily be calculated using the following formulas:

m0 =

x2X
x=x1

y2X
y=y1

�(x; y) (5.1)

mx =

x2X
x=x1

y2X
y=y1

�(x; y)x (5.2)

my =

x2X
x=x1

y2X
y=y1

�(x; y)y (5.3)

mx2 =

x2X
x=x1

y2X
y=y1

�(x; y)
�
y2

+ ix
�

(5.4)

mxy =

x2X
x=x1

y2X
y=y1

�(x; y)
�
xy + ixy

�
(5.5)

my2 =

x2X
x=x1

y2X
y=y1

�(x; y)
�
x2

+ iy
�

(5.6)

x and y are image coordinates and �(x; y) is a weight based on the value v(x; y)

of the pixel at image coordinates x, y. ix, ixy and iy are the moments of inertia for
an individual pixel about the center of the pixel. The weights are determined
by the following function.

�(x; y) =

8>><
>>:

0 if v(x; y) � tupper

1 if v(x; y) � tlower
tupper�v(x;y)

tupper�tlower
otherwise

(5:7)

The Euler number of the region can be used to verify that only a single object
with a single hole is present. By using an upper and lower threshold we can
ensure that noisy pixels which are not on the fiducial do not contribute to the
moment calculations and that noisy pixels which are entirely on the fiducial
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contribute fully. Euler numbers can also be used to verify that the thresholds
have been properly chosen. From (5.1) through (5.6) the centroid of the region
and the moment about the axis of greatest inertia can be calculated.2

x̄ = sx=y
mx

m0
(5.8)

ȳ =
my

m0
(5.9)

Imax =

�
mx2 �m0ȳ

2
�

sin2� + 2
�
sx=ymxy �m0x̄ȳ

�
cos � sin � +�

s2
x=ymy2 �m0x̄

2
�

cos2� (5.10)

� =
1
2

arctan
 

2mxy

sx=ymy2 �mx2=sx=y

!

It is well known that the perspective projection of a circle is an ellipse. The
semi-major axis of the ellipse can be calculated using the following equation:3

a =

vuut 4Imax

m0
�
1 + r2

i =r
2
o
� (5:11)

For now we will assume that orthographic projection is a reasonable model for
the area immediately surrounding a fiducial, see Figure 5-3. Later we will
consider the error introduced by this assumption, Figure 5-4. This error is
sometimes referred to as perspective distortion. Given this assumption, the
centroid of the circle Cc projects onto the centroid of the ellipse Ce and the
diameter d0 projects onto the major axis of of the ellipse, a0. The diameter d0 is
parallel to the image plane so it is not foreshortened. The following equations
relate the fiducial to its projection.

a0 =
f

z?
d0 =) s =

a0

d0
=

f

z?
(5.12)

x̄ = sx?
= x0 (5.13)

ȳ = sy? = y0 (5.14)

It should be noted that s, x0, y0, x? and y? are the same parameters as in (4.8)
through (4.10). x0, y0 and s can be easily calculated requiring time linear in the
number fiducials and their size. At first, the need to use sx=y in recovering s

2The quantity shown for Imax should actually be multiplied by an additional factor of sx=y.
We have omitted it for simplicity sake because it cancels with the same factor for m0 in (5.11).

3Our fiducials have holes in them and the additional factor of (1+ r
2
i =r

2
o) in the denominator

corrects for this. ri is the inner radius and ro is the outer radius.
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Figure 5-3: Orthographic projection
of a circle.
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Figure 5-4: Perspective projection of
a circle.

would appear to a significant limitation. This is not the case because sx=y is easy
to calibrate and it does not change [Lenz and Tsai, 1988, Penna, 1991]. sx=y is
a function of the aspect ratio of the image sensor and the ratio of camera and
frame grabber clock frequencies. The physical properties of the image sensor
cannot change and modern clocks have extremely stable frequencies. Therefore
it is very reasonable to calibrate sx=y once and then forget about it. sx=y could
also be determined via self-calibration removing any burden to the user.

5.2 Error Analysis

There are several sources of error associated with processing digital images.
One of the more significant sources is quantization errors [Kamgar-Parsi and
Kamgar-Parsi, 1989]. These errors are the result of taking a continuous signal
and converting it to digital values. First, we will examine errors caused by
the fact that pixel values are only available at discrete locations in a lattice.
Consider a row of pixels such as those shown in Figure 5-5. The grid represents
the pixel lattice. Pixels have just two states, on and off, with shaded squares
representing on pixels. Using the centroid calculation described above both
rows have the same centroid. The maximum error in the horizontal position
of the centroid is 0.5 pixels. In the vertical direction the maximum is also 0.5
pixels so the maximum distance between the calculated centroid and the actual
centroid is 1=

p
2.

The maximum error can be reduced significantly by using a circular shape
[Bose and Amir, 1990, Efrat and Gotsman, 1993]. Figure 5-7 shows a digital
approximation of a circle. The improvement which results from using a circular
shape is caused by the fact that the error for a given row or column is dependent
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Figure 5-5: The effect of quanti-
zation errors on the centroid of a
row of pixels.

Figure 5-6: The effect of quanti-
zation errors on the length of a
row of pixels.

Figure 5-7: A digital approxima-
tion of a circle.

Figure 5-8: Model for grey scale
pixel values.
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Figure 5-9: Error in the centroid of a circular fiducial. Error is the distance
in pixels between the actual centroid and that of a digital approximation. The
radius is also expressed in pixels.

upon the errors of the other rows or columns. In short, the errors tend to cancel
out. For a circle of radius r and centroid [x0 y0] the maximum error in the
calculated centroid �(r) is given by the following expression.

�(r) = max
x0 y0 dr

�k[x0 y0]� CENTROID (x0; y0; r; dr)k
�

(5:15)

CENTROID() is a function which calculates the centroid of a digital approxi-
mation of a circle using (5.1) through (5.3), (5.8) and (5.9). �(x; y) is replaced
with INSIDE?() which returns a 1 if (x� x0)

2
+ (y � y0)

2 � (r + dr)2 otherwise
it returns 0. Figure 5-9 shows the maximum error in the centroid calculation
�(r). The circles are the result of evaluating (5.15) for 0:0 � x0; y0; dr � 1:0 with
0.01 increments. The crosses are the result of a stochastic sampling method to
find the maximum over the same region. 1=

p
2r is also plotted on the axes. The

curve fits the data well and is a good estimate of �(r).
The radius calculations described above are subject to errors similar to

those seen for the centroid. The maximum error in the length is 1 pixel, see
Figure 5-6. Using a circular shape will also reduce the error in the calculated
radius for the same reasons as above. For a circle of radius r and centroid
[x0 y0] the maximum error in the calculated radius �(r) is given by the following
expression.

�(r) = max
x0 y0 dr

�kr � RADIUS (x0; y0; r; dr)k
�

(5:16)

RADIUS() is a function which calculates the radius of a digital approximation
of a circle using (5.1) through (5.6), (5.8) through (5.10) and (5.11). Again,
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Figure 5-10: Error in the radius of a circular fiducial. Error is the difference
in pixels between the actual radius and that of a digital approximation. The
radius is also expressed in pixels.

�(x; y) is replaced with INSIDE?() which returns a 1 if (x � x0)
2
+ (y � y0)

2 �
(r + dr)2 otherwise it returns 0. Figure 5-10 shows the maximum error in
the radius calculation �(r). The circles are the result of evaluating (5.16) for
0:0 � x0; y0; dr � 1:0 with 0.01 increments. The crosses are the result of a
stochastic sampling method to find the maximum over the same region.

q
2=3r

is also plotted on the axes.4 The curve fits the data well and is a good estimate
of �(r).

The maximum error for both the centroid and radius can be further reduced
by using grey scale values rather than binary values [Chiorboli and Vecchi,
1993]. Grey scale values can be modeled as the sum of a number of binary
sub-pixels. Figure 5-8 shows a pixel with a dynamic range of 122 and a value
of 25. This effectively increases the pixel resolution by the square root of the
dynamic range,

q
tupper � tlower + 1. This increase in the resolution increases the

effective radius of the circle.
Another class of quantization error is caused by the fact that pixel values are

the result of a spatial process. The value of a particular pixel is not the intensity
at some infinitesimal point, rather it is the average intensity within the area
of the pixel. Figure 5-8 shows a model of a grey scale pixel. If the shaded and
unshaded portions of the pixel represents maximum and minimum intensity

4The factor of
p

2=3 results because (5.11) assumes a elliptical shape and our digital ap-
proximations are not truly ellipses. This error is most pronounced at small radii however some
error will always be present.
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Figure 5-11: A pixel partially
covered by a larger figure.

Figure 5-12: Effect on a circular
figure.

respectively, then the pixel has a value of 0.2 or 25 on a scale from 0 to 121. If
the shaded portion is produced by a larger rectangular figure for which we are
calculating moments, the correct values for x and y to use in (5.2) through (5.6)
are the x and y components of the centroid of the shaded region. The centroid
of the shaded region is not the center of the pixel, however (5.2) through (5.6)
assume that it is, in essence treating the pixel as if it were homogeneous. The
fact that the centroid of the region which produces a pixel’s value may not be
the center of the pixel introduces error into the moment calculations. Figure
5-11 shows a pixel only partially covered by a larger figure. p is fraction of the
pixel covered by the larger figure. The calculated and actual contribution to the
first moment, m1calculated and m1actual , as well as their difference,4m1, are given by
the following equations:

m1calculated = py (5.17)

m1actual = p

 
y � 1� p

2

!
(5.18)

4m1 = m1calculated �m1actual

= p (1� p) =2 (5.19)

A maximum4m1 of 1=8 occurs when p = 1=2. 4m1 cannot be negative therefore
the maximum error results when 4m1 = 1=8 along one side of the figure and
4m1 = 0 along the other. We will assume that 4m1 = 1=8 along the half circle
shown in Figure 5-12.5 The circle has a radius of r and 4m1 is towards the

5This assumption overestimates the error on two counts. First 4m1 cannot equal 1=8
everywhere along the hemi-circle. Second 4m1 assumes that the partial figure is aligned with
the pixel grid. If it is not, the maximum error is reduced.
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Figure 5-13: Error in the centroid
resulting from the homogeneous as-
sumption. Both the error and radius
are expressed in pixels

Figure 5-14: Error in the radius re-
sulting from the homogeneous as-
sumption. Both the error and radius
are expressed in pixels.

center of the circle producing the following expression for the contribution to
the y component of the centroid:

4m1y(x) =

p
r2 � x2

8r
: (5.20)

Integrating this expression from �r to r and dividing by the area results in a
maximum error in the centroid of 4ȳmax = 1=16r as shown in Figure 5-13.

An analysis of the error in the second moment is similar. The calculated
and actual contribution to the second moment, m2calculated and m2actual, as well as
their difference, 4m2, are given by the following equations:

m2calculated = p
�
y2

+ 1=12
�

(5.21)

m2actual = p

 
y � 1� p

2

!2

+ p3=12 (5.22)

4m2 = m2calculated �m2actual

= py (1� p)� 2p
12

�
1� 3p+ 2p2

�
(5.23)
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Figure 5-15: The ideal intensity pro-
file for a cross section of a circular disk.
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Figure 5-16: The effect of bleeding on
the disk in the figure to the left.

The maximum 4m2 and the value of p at which it occurs are functions of y. We
will assume that pmax = 1=2 and 4m2max = y=4.6 The maximum error results
when 4m2 = y=4 around the entire circumference of the circle. Doubling 4m2

and correcting for the orientation produces

4m2(x) =
r2 � x2

2r
: (5.24)

Integrating this expression from �r to r and substituting into (5.11) results in
a maximum error in the radius of 4rmax = r �

q
r2 + 8=3� as shown in Figure

5-14.
Next we will consider image formation errors. These errors include noise

and nonlinearities in the image sensor [Dinstein et al., 1984, Healey and Kon-
depudy, 1994]. For our purposes the most significant phenomenon is the
smoothing of high contrast edges. We will refer to this as bleeding. Figure
5-15 shows the ideal intensity profile for a cross section of a circular disk and
Figure 5-16 shows the effect of bleeding on the same disk. We have shown the
transition from maximum intensity to minimum intensity as linear. This is
almost certainly not the case, however it makes little difference for our analy-
sis. As long as the transition has the same shape all along the circumference
of the circle, bleeding has no effect on the centroid. The inertia of the two
disks shown in Figures 5-15 and 5-16, however are not the same, therefore the
radius calculation is effected by bleeding. In order to explore this effect we will
consider the ellipse produced by the following function

f(x; y) = min (max (v;0) ;1) (5.25)

v =
1� x2=a2 � y2=b2

1� (a� w)2 =a2
: (5.26)

a and b are the semi-major and semi-minor axis of the ellipse andw is the length
of the transition. v was chosen because it is a good approximation to a linear
transition and is easily integrable. The ellipse is shown in Figure 5-17. The

6Actually pmax = 1=2 � y �
p
y2 + 1=12. This function rapidly approaches an asymptotic

value of 1=2. For y = 4:2 the actual 4m2max is within 2% of 1=2.
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Figure 5-17: Intensity profile for an ellipse.

zeroth and second moments (about the axis of greatest inertia) for f(x; y) are
as follows.

m0 =
�b

2a

�
w2 � 2aw+ 2a2

�
(5.27)

m2max =
�b

12a

�
w4 � 4w3a+ 7w2a2 � 6a3w + 3a4

�
(5.28)

We will assume that the actual edge occurs at a � w=2 along the major axis.
The calculated semi-major axis can be found by substituting m0 and m2max into
(5.11). The ratio of the actual edge location to the calculated semi-major axis
�(a; b; w) is a measure of the error introduced by bleeding and is shown below.

�(a; b; w) =
�
a� w=2

�vuut 3
�
w2 � 2aw + 2a2

�
2
�
w4 � 4w3a+ 7w2a2 � 6a3w + 3a4

� (5.29)

Figure 5-22 shows a plot of �(a; b; w). The transition lengths we have encoun-
tered are typically less than one pixel.

So far in our discussion of errors (with the exception of bleeding) we have
considered circles not ellipses. The analysis extends easily to cover ellipses.
Two effects are seen as the figure becomes an ellipse. First the effective radius
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Figure 5-18: The effect of quanti-
zation errors on the centroid for
a rectangular figure at an angle
to the pixel lattice.

Figure 5-19: The effect of quan-
tization errors on the radius for
a rectangular figure at an angle
to the pixel lattice.

is the semi-minor axis b. Second, additional error is introduced when the major
axis is not aligned with the pixel lattice. Figures 5-18 and 5-19 show two
examples of the latter effect. By modifying (5.15) slightly we obtain:

�(r; b=a) = max
x0 y0 dr �

�k[x0 y0]� CENTROID
�
x0; y0; r; dr; b=a; �

�k� (5:30)

b=a is the ratio of the minor axis to the major axis. CENTROID() and INSIDE?()
are modified appropriately to handle ellipses at any angle � relative to the x

axis. Figure 5-20 shows the maximum error in the centroid calculation �(r; b=a).
A stochastic sampling method was used to find the maximum of (5.30) over the
region 0:0 � x0; y0; dr � 1:0, 0 � � � � and r = 10. 1+(

p
2�1)(1�b=a)p

2b
is also plotted

on the axes. The curve fits the data well and is a good estimate of �(r; b=a). By
modifying (5.16) slightly we obtain:

�(r; b=a) = max
x0 y0 dr �

�kr �RADIUS
�
x0; y0; r; dr; b=a; �

�k� (5:31)

RADIUS() is modified appropriately to handle ellipses at any angle � relative
to the x axis. Figure 5-21 shows the maximum error in the radius calculation
�(r; b=a). A stochastic sampling method was used to find the maximum of (5.31)

over the region 0:0 � x0; y0; dr � 1:0, 0 � � � � and r = 10. 1+(
p

2�1)
p

1�b=ap
3b=2

is

also plotted on the axes. The curve fits the data well and is a good estimate of
�(r; b=a).
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Figure 5-20: Centroid error for an el-
liptical fiducial with a radius of 10.
The error is expressed in pixels and
b=a is the ratio of minor and major
axis.
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Figure 5-21: Radius error for an ellip-
tical fiducial with a radius of 10. The
error is expressed in pixels and b=a is
the ratio of minor and major axis.

Finally we will consider the errors introduced by our assumption of ortho-
graphic projection for a fiducial. As shown in Figure 5-4, some error is intro-
duced in the centroid as well as the semi-major axis. Consider a plane rotated
by an angle of � about an axis passing through [X0 Y0 Z0] in camera centered
coordinates which is parallel to the x axis. Let [X Y ] represent a point on the
plane and let the origin of the plane be [X0 Y0 Z0]. Points on the plane project
on to the image plane by the following relationships

x0 =
f (X +X0)
Y sin�+ Z0

(5.32)

y0 =
f (Y cos�+ Y0)
Y sin�+ Z0

: (5.33)

Next, consider a circle in the plane and centered at the origin with a radius of
r. We can determine the effects of perspective distortion on the centroid and
radius calculation by evaluating following continuous versions of (5.1) through
(5.6).
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m0 =

Z
r

�r

Z p
r2�y2

�
p

r2�y2
�x0�y0 (5.34)

mx =

Z
r

�r

Z p
r2�y2

�
p

r2�y2
x0�x0�y0 (5.35)

my =

Z
r

�r

Z p
r2�y2

�
p

r2�y2
y0�x0�y0 (5.36)

mx2 =

Z
r

�r

Z p
r2�y2

�
p

r2�y2
y02�x0�y0 (5.37)

mxy =

Z
r

�r

Z p
r2�y2

�
p

r2�y2
x0y0�x0�y0 (5.38)

my2 =

Z
r

�r

Z p
r2�y2

�
p

r2�y2
x02�x0�y0 (5.39)

The error in the x component of the centroid � is the difference between the
projection of X0 and mx=m0. The error in the y component � is defined similarly

� =
fZ0X0

Z2
0 � r2sin2�

� fX0

Z0
(5:40)

� =

f
�
Z3

0r
2sin3�+ Y0r

2 cos �sin2�� Z0r
2 sin �� Y 2

0 Z0 sin �+ Z2
0Y0 cos �

�
�
Z2

0 � r2sin2�
�

(Z0 cos s�� Y0 sin�)
� fY0

Z0
:

The equation quantifying the effect of our orthographic projection assumption
on the semi-major axis is as follows.


 =
aZ0

fr
(5:41)

The full version is much too messy to include here. a is the semi-major axis
of the projection and can be solved for using (5.34) through (5.39), (5.10) and
(5.11). Figures 5-23 through 5-27 show plots of �, � and 
 for typical values:
R0 = 10cm, Z0 = 100cm, r = 0:5cm and f = 2000 pixels. X0 and Y0 are
converted to polar coordinates such that R0 =

q
X2

0 + Y 2
0 . R0 is fixed and � is

one of the axes plotted. Although we have not found it necessary, estimates of
the transition length and the minor axis length can be easily obtained from the
image and used to improve the calculated centroid and semi-major axis.
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Figure 5-22: The effect of bleeding
on the radius calculation. Error is
expressed as the ratio of the actual
radius and the calculated semi-major
axis, d0=a0. The transition length and
radius are expressed in pixels.
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Figure 5-23: Perspective error in the
centroid parallel to the major axis.
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Figure 5-24: Perspective error in the
centroid perpendicular to the major
axis. The error is expressed in pixels.
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Figure 5-26: Perspective error in the
semi-major axis for R0 = 10cm. Error
is expressed as the ratio of the calcu-
lated value and the actual radius.
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Figure 5-27: Perspective error in the
semi-major axis for R0 = 10cm. Error
is expressed as the ratio of the calcu-
lated value and the actual radius.

5.3 Experiments

In the absence of noise, two images of a fiducial taken from the same position
should produce the same centroid and semi-major axis. If our calculations
were exact, a series of images taken from positions displaced only in a direction
perpendicular to the optic axis should produce centroids that vary linearly with
position. Similarly, a series of images taken from positions displaced only in
a direction parallel to the optic axis should produce semi-major axes that vary
linearly with the inverse of position. The degree to which real data deviate
from these ideals is an empirical measure of the accuracy of our calculations.

Two sets of experiments were conducted using an optical bench. The first
set of experiments examined the centroid calculations, the second set the semi-
major axis calculations. A rail with a precision positioner runs along one side
of the optical bench. For the first set of experiments, a camera was mounted
on the positioner with its optic axis perpendicular to the rail. This setup
allows camera motion only in the x direction. Motion in the y direction is
achieved by rotating the camera 90� in its mounting. A Klinger DCS-750
motor controller with UE-72CC positioner was used to precisely position the
camera. The controller/positioner combination is accurate to a few microns.
On the optical bench roughly a meter away a fiducial was mounted so that it
appeared near the center of the camera’s field of view, see Figures 5-28 and
5-29. Experiments were performed for the following cases:
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positioner
and camera

Figure 5-28: Top view of experimental
setup for centroid.

Optical Bench

fiducial
positioner
and camera

Figure 5-29: Side view of experimen-
tal setup for centroid.

� 10 micron and 100 micron steps

� Motion in both the x and y directions

� Fiducial parallel to the image plane and at a 45� angle

� Light and dark images

For each experiment, data was collected at 26 camera positions along the rail.
At each position, 100 images were collected. The mean and standard devia-
tion were calculated for each position. The results are shown in Figures 5-30
through 5-41. The mean at each position is marked by an “x”. The error bars
are 1 standard deviation above and below the mean. The line is the least
squares best fit to the means. Table 5.1 shows both the theoretical and empir-
ical accuracy of the centroid calculation for three conditions. The theoretical
and empirical results are in good agreements.

Condition Dynamic Major Empirical Theoretical
Range Axis Accuracy Accuracy

Bright, flat 80 17.5 0.065 0.087
Dark, flat 6 17.5 0.15 0.16
45� Angle 40 17.5 0.22 0.16

Table 5.1: Empirical and theoretical accuracy for centroid calculations.
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Figure 5-30: Data for bright image,
camera motion in the x direction with
100 micron steps and fiducial parallel
to the image plane.
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Figure 5-31: Data for bright image,
camera motion in the x direction with
10 micron steps and fiducial parallel
to the image plane.
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Figure 5-32: Data for bright image,
camera motion in the y direction with
100 micron steps and fiducial parallel
to the image plane.
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Figure 5-33: Data for bright image,
camera motion in the y direction with
10 micron steps and fiducial parallel
to the image plane.
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Figure 5-34: Data for dark image,
camera motion in the x direction with
100 micron steps and fiducial parallel
to the image plane.
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Figure 5-35: Data for dark image,
camera motion in the x direction with
10 micron steps and fiducial parallel
to the image plane.
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Figure 5-36: Data for dark image,
camera motion in the y direction with
100 micron steps and fiducial parallel
to the image plane.
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Figure 5-37: Data for dark image,
camera motion in the y direction with
10 micron steps and fiducial parallel
to the image plane.
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Figure 5-38: Data for bright image,
camera motion in the x direction with
100 micron steps and fiducial 45� to
the image plane.

−5 0 5 10 15 20 25 30
59.25

59.3

59.35

59.4

59.45

59.5

59.55

59.6

59.65

59.7

Camera Position (1 unit = 10 microns)

C
en

tr
oi

d 
P

os
iti

on
 (

in
 p

ix
el

s)

Figure 5-39: Data for bright image,
camera motion in the x direction with
10 micron steps and fiducial 45� to the
image plane.
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Figure 5-40: Data for bright image,
camera motion in the y direction with
100 micron steps and fiducial 45� to
the image plane.
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Figure 5-41: Data for bright image,
camera motion in the y direction with
10 micron steps and fiducial 45� to the
image plane.
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Optical Bench

fiducial
positioner
and camera

Figure 5-42: Top view of experimental
setup for semi-major axis.

Optical Bench

fiducial
positioner
and camera

Figure 5-43: Side view of experimen-
tal setup for semi-major axis.

A similar set of experiments were conducted for the semi-major axis. For
this set of experiments, the camera was mounted with its optic axis parallel to
the rail. This setup allows camera motion only in the z direction. As before
a fiducial was mounted on the optical bench roughly a meter away so that it
appeared near the center of the camera’s field of view, see Figures 5-42 and
5-43. Experiments were performed for the following cases:

� Fiducial parallel to the image plane and at a 45� angle

� Light and dark images

For each experiment, data was collected at 26 camera positions along the rail.
At each position, 100 images were collected. The mean and standard deviation
were calculated for the major axis at each position. The least squares best fit to
the means was also found. The results are shown in Figures 5-44 through 5-46.
Table 5.2 shows both the theoretical and empirical accuracy of the semi-major
axis calculation for three conditions. The theoretical and empirical results are
in good agreements.

Condition Dynamic Major Empirical Theoretical
Range Axis Accuracy Accuracy

Bright, flat 40 17.5 0.15 0.16
Dark, flat 4 17.5 0.23 0.24
45� Angle 50 16.8 0.24 0.23

Table 5.2: Empirical and theoretical accuracy for semi-major axis calculations.
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Figure 5-44: Data for bright image,
camera motion in the z direction with
2000 micron steps and fiducial parallel
to the image plane.
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Figure 5-45: Data for dark image,
camera motion in the z direction with
2000 micron steps and fiducial paral-
lel to the image plane.
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Figure 5-46: Data for bright image,
camera motion in the z direction with
2000 micron steps and fiducial 45� to
the image plane.
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5.4 Discussion

An accurate, efficient and robust method of locating fiducials has been de-
scribed. A thorough error analysis of the method has been provided including
both theoretical and empirical data. This data confirms that in the worst case
fiducials can be located to within 0.25 pixels and the local scale factor can be
determined to within 1.5%.
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Chapter 6

Initial Calibration

Before our fiducials can be used to perform enhanced reality visualizations,
their model coordinates must be known. In cases were the model coordinates of
the fiducials are not known a priori, an initial calibration must be performed.
An initial alignment is performed using data from a laser scanner [Grimson et
al., 1994]. This initial alignment along with an image showing the fiducials is
then used to lookup the model (MR or CT) coordinates of the fiducials. Figure
6-1 shows an overview of this process. Once the coordinates of the fiducials
have been established the laser scanner is no longer needed and any camera
which can view the fiducials can be used for enhanced reality visualization. In
this chapter we provide a general discussion of how the laser scanner works
and then give the details of fiducial calibration.

Video Image of Patient
with Fiducials Attached

Initial
Calibration

Model of Patient’s
Brain and Fiducials

Model of Patient’s
Brain Obtained from
MR and/or CT Data

Laser Scanner Alignment

Figure 6-1: Determining the model (MR) coordinates of the fiducials.
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z

x

Laser Video
Camera

Object being scanned

z

Object being scanned

y

Laser

Figure 6-2: Side view of scanner. Figure 6-3: Object and laser light
plane from video camera perspec-
tive.

6.1 Laser Scanner

For the skull data shown in Chapter 7, the initial calibration was performed
with the aid of a laser range scanner produced by Technical Arts Corporation.
It produces a planar sheet of light which is scanned using an oscillating mirror.
A video camera is placed at an angle to the plane of light, see Figure 6-2.
The x axis is parallel to the line segment joining the laser and video camera.
The laser is oriented so that the line of illumination formed when the laser’s
plane of light strikes an object is perpendicular to the x axis. The y axis is
parallel to the line of illumination, see Figure 6-3. The z axis is orthogonal
to both the x and y axes. The y axis in Figure 6-2 is into the page and the x
axis in Figure 6-3 is out of the page. The three dimensional coordinates of an
object’s surface can be determined if it is placed so that it can be simultaneously
illuminated by the laser and viewed by the video camera. The y coordinate of a
data point is determined directly from the horizontal displacement measured
by the video camera. The x and z coordinates are recovered using the vertical
displacement and the scan angle of the laser beam. A single scan produces 240
three dimensional measurements with accuracies up to 0.003”.

Surface points on the patient’s head near the surgical site are measured
with the scanner. These data points are aligned with a model of the patient’s
head and brain obtained from previous MR and/or CT scans [Grimson et al.,
1994]. The registration is produced by minimizing the sum of the squared
distance between the laser data and the model. The model is sampled at several
resolutions to speed convergence and random perturbations are used to avoid
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z′

y′

Laser Video
Camera

Figure 6-4: Model of patient’s brain
with coordinate axes.

Figure 6-5: Patient, scanner and coor-
dinate axes.

Laser Video
Camera

x′

z′

y′

Figure 6-6: Model of patient’s brain
aligned with patient (valid only for the
scanner).

Figure 6-7: Model of a skull.
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Top view Side view End view

Figure 6-8: Laser data from skull.

Figure 6-9: Video of skull being scanned.
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Figure 6-10: Laser data aligned
with skull.

Figure 6-11: Model aligned with
video of the same skull.

local minima. This produces a transformation from the coordinate frame of the
model to that of the patient. Figure 6-4 shows a brain model and its coordinate
system. Figure 6-5 shows the patient, scanner and their coordinate system.
Figure 6-6 shows the result of aligning the model and the patient coordinate
systems. It should be noted that Figure 6-6 is valid only from the perspective
of the camera attached to the laser scanner.

Figure 6-7 shows a model obtained from CT imaging of a plastic skull. Figure
6-8 shows the three dimensional data obtained from laser scanning the same
skull. Figure 6-9 shows two images of the skull containing laser scan lines.
Figure 6-10 shows the laser data aligned with the skull. Figure 6-11 shows the
model of the skull aligned with and superimposed upon video of the skull. The
accuracy of this registration is believed to be on the order of the resolution of
the MR or CT data (� 1mm).

6.2 Calibration Routine

The transformation used to produce Figure 6-11 essentially maps model coor-
dinates to image coordinates. This is exactly the inverse of what we need to
calibrate our fiducials. What we would like to be able to do is measure the im-
age coordinates of the fiducials and then use an inverse mapping to determine
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their model coordinates. The inverse mapping is not in general a one to one
mapping. The image coordinates of a fiducial determine the ray in three space
along which the model coordinates of the fiducial must lie. By intersecting
this ray with the model and Z-buffering the result we can determine the model
coordinate of the fiducial.

The initial calibration is limited by the accuracy of the registration per-
formed using the laser scanner. The laser scanner registration produce results
which are both repeatable and good for the single view in question. It is not
clear how accurate the registration is in an absolute sense. Absolute accuracy
is important for calibrating the fiducials. For example, small errors which are
imperceptible from one point of view frequently lead to large errors from dif-
ferent view points. Perturbing the laser scanner solution by less than 1� can
change a fiducial’s location by over 6mm. The uncertain accuracy of the fiducial
calibration bears significantly on the quality of enhanced reality visualizations
which can be produced. In spite of this issue, the results shown in Chapter 7
are promising. The exact source and nature of the errors in the initial calibra-
tion needs to be explored further. The method of initial calibration presented
here, while it requires the use of a laser scanner, has the advantage that it can
be made fully automatic. Of course, other methods of initial calibration could
be used. The only requirement is that the fiducial locations be determined
accurately. How this information is obtained does not matter.



Chapter 7

Results

7.1 Test Object

To determine the accuracy of our method we performed several experiments
using a special test object. A three dimensional object with seven fiducials
was made. The relative positions of the fiducials were accurately measured.
Figure 7-1 shows the basic test object. The large pillar near the center is used
to measure the accuracy of the enhanced reality visualization. A wire frame
corresponding to the edges of the pillar is displayed in the enhanced reality
image. The difference between the actual edges and wire frame is a measure
of the accuracy of the visualization. For comparison purposes a wire frame is
also superimposed on a shorter pillar. Experiments were performed with four
slightly different fiducial configurations. The first configuration consists of 6
coplanar fiducials plus a single fiducial 1cm above the plane. The enhanced
reality visualizations produced from this configuration are not consistently ac-
curate. Figures 7-2 through 7-5 are typical of the results for this configuration.
Notice that the wire frame on the smaller pillar matches in all of the images.
Errors occur only significantly away from the volume enclosed by the fiducials.
The second configuration moves one of the 6 coplanar fiducials so that it is also
1cm above the plane. Figures 7-6 through 7-8 show typical results for this
configuration. The accuracy is greatly improved with the addition of a second
noncoplanar fiducial, however occasional slight errors do occur. The next config-
uration adds a third noncoplanar fiducial. Typical results for this configuration
are shown in Figures 7-9 and 7-10. With this configuration, errors rarely occur
and when they do they are small. The final configuration is similar to the first
except that the noncoplanar fiducial is 4cm out of the plane. Results for this
configuration are shown in Figures 7-11 and 7-12. The accuracy of this config-
uration is comparable to that of the last. Some depth in the model is required
to accurately recover the third dimension. Once sufficient depth is present in
the model, it appears that the solution is accurate over a large volume.

As shown in Figures 7-2 through 7-12, under reasonable conditions our
method produces good results. These figures provide only a subjective measure
of accuracy. Next we will attempt to provide a more quantitative measure.
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Figure 7-1: Test object. Figure 7-2: Test object view 1.

Figure 7-3: Test object view 2. Figure 7-4: Test object view 3.
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Figure 7-5: Test object view 4. Figure 7-6: Test object view 5.

Figure 7-7: Test object view 6. Figure 7-8: Test object view 7.
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Figure 7-9: Test object view 8. Figure 7-10: Test object view 9.

Figure 7-11: Test object view
10.

Figure 7-12: Test object view
11.



7.1. TEST OBJECT 81

Average RMS Maximum Median Number of
Distance Distance Distance Distance Points
1.35 1.46 2.94 1.38 848

Table 7.1: Distance between edge-based and enhanced reality vertices.

Average RMS Maximum Median Number of
Misalignment Misalignment Misalignment Misalignment Points
0.88 0.91 1.77 0.87 212

Table 7.2: Misalignment between edge-based and enhanced reality polygons.

Given that the goal of enhanced reality visualization is to produce an enhanced
image, the proper way to assess accuracy is to consider the deviation of the
enhanced image from the ideal image. For various reasons we do not have
access to the ideal image. However, we can compare the deviation between
the image of a physical object and the enhancement produced from a model of
the same physical object. For example, we could compare the wire frame to
the edges of the test object’s central pillar. This is essentially what we will do.
Figure 7-13 shows the same test object used above with one change, the top of
the central pillar had been darkened to provide high contrast edges. Edge pixels
are extracted and chained together using a Canny edge detector. A line is fitted
to the chains by minimizing the distance between the edge pixels and the line.
These lines are used to compute two measures of accuracy. The first measure is
the distance between the vertices of the darkened region as determined by our
method (enhanced reality visualization) and those determined by intersecting
the lines recovered above. The second measure is the area of misalignment
divided by the perimeter or the average distance between the two polygons, see
Figure 7-14.

A sequence of 212 images of the test object rotating through 360� was used.
The first measure was computed for each of the four vertices in each image.
The distance between the vertices in each image are shown in Figures 7-15
through 7-18. The second measure was computed for the darkened polygon
in each image and the average distance between the polygons for each image
is shown in Figure 7-19. Tables 7.1 and 7.2 summarize these results. The
edge-based positions agree well with those produced by our method. It should
be noted that edges and vertices recovered using the Canny edge detector are
not without error. The most significant source of error is the fact that the
implementation used only localizes the edge to the nearest pixel. As a result of
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Figure 7-13: Test object used to
quantify accuracy.

Figure 7-14: Misalignment of
edge-based rectangle and en-
hanced reality rectangle.
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Figure 7-15: Distance in pixels be-
tween edge-based and enhanced real-
ity positions for vertex 1.
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Figure 7-16: Distance in pixels be-
tween edge-based and enhanced real-
ity positions for vertex 2.
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Figure 7-17: Distance in pixels be-
tween edge-based and enhanced real-
ity positions for vertex 3.
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Figure 7-18: Distance in pixels be-
tween edge-based and enhanced real-
ity positions for vertex 4.
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Figure 7-19: Average distance be-
tween edge-based and enhanced real-
ity polygons.
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this, the first measure probably over estimates the difference between the edge
image and the enhanced image. A signed measure of the distance from point to
line1 was also computed to check for correlation in the errors. The average for
the first measure was 0.09 pixels and for the second measure was 0.04 pixels
making it unlikely that the errors in edge-based positions are correlated with
those in the enhanced reality positions. The average difference between the
two perimeters is likely the better measure of accuracy and using this measure
our method is accurate to within a pixel.

7.2 Skull

After calibrating the fiducials as described in Chapter 6, enhanced reality vi-
sualizations were performed from several different view points. Figure 7-20
shows the initial view of a plastic skull. Figure 7-21 shows the results of the
registration using the laser scanner. The white dots are CT data points for the
skull superimposed upon an image of the skull. Figure 7-22 shows the results
of our method using the initial view point. Note that as expected the error in
the Figures 7-21 and 7-22 are comparable. Figures 7-23 through 7-32 show the
results of our method using ten novel view points. The exact source of the mis-
alignment present in some of the figures is not known. Two likely sources are
the initial calibration and the fact that the fiducials are nearly coplanar. The
errors are largest for view points significantly different from that used during
the initial calibration which suggests that at least some of the misalignment
is caused by errors introduced during the initial calibration. Also, as noted in
Chapter 6 small perturbations in the laser scanner alignment cause relatively
large variations in the calibrated positions of the fiducials. A more robust initial
calibration and a method of handling coplanar fiducials, which together should
eliminate these errors, are currently being investigated.

1The sign indicates which side of the line the point is on.
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Figure 7-20: Plastic skull. Figure 7-21: Initial registra-
tion using the laser scanner.

Figure 7-22: Skull initial view.
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Figure 7-23: Skull view 1. Figure 7-24: Skull view 2.

Figure 7-25: Skull view 3. Figure 7-26: Skull view 4.



7.2. SKULL 87

Figure 7-27: Skull view 5. Figure 7-28: Skull view 6.

Figure 7-29: Skull view 7. Figure 7-30: Skull view 8.
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Figure 7-31: Skull view 9. Figure 7-32: Skull view 10.



Chapter 8

Conclusions

8.1 Future Work

There are many improvements and extensions which can be made to the basic
method presented in this report. Several of them have been alluded to in
previous chapters.

8.1.1 Auto calibration

The current implementation requires knowledge of the ratio of pixel spacing in
the x and y directions, sx=y in order to recover s. While sx=y is extremely stable
and determining its value is straight forward, it would be nice to eliminate
this requirement. Given enough noncoplanar fiducials it should be possible to
solve for sx=y. Solving for sx=y might be fairly time consuming but it should only
need to be performed once. Similarly, it would be nice to be able to handle lens
distortion (although we have not found it necessary). It is a simple matter to
add a lens distortion model as a preprocessor. The fiducial locations are simply
corrected by the amount specified by the model. In some cases considering dis-
tortion would surely improve the results. Unfortunately this requires finding
the proper distortion model. There are several well established methods for
determining lens distortion. Ideally, the model would be determined automat-
ically. Lens distortion changes with several of the other camera parameters
such as aperture, focus and zoom. Even so, given several data sets consisting
of image points, model points, perspective transformation, aperture, focus and
zoom settings we should be able to construct a model which takes into account
the effect of changes to aperture, focus and zoom. It should be necessary to
construct a new model or modify an old model only occasionally. Our method
as it is currently implemented models a linear approximation to lens distor-
tion implicitly. Automatically determining a value for sx=y and a model for lens
distortion are two examples of auto calibration. Auto calibration would bridge
the gap between what is implicitly modelable and other required or desired
parameters. The parameters which are implicitly modeled are those which
can change from one image to the next. The parameters which are candidates
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for auto calibration are either fixed or vary on much longer time scales. This
makes it possible to run an auto calibration routine in the background updating
parameters as necessary but certainly not every frame. Auto calibration would
enable a completely uncalibrated camera with a poor quality lens to be used to
produce very accurate enhanced reality visualizations.

8.1.2 General Features and Self Extending Models

Where auto calibration enables camera parameters to be recovered, self ex-
tending models allow recovery of model parameters. Given a partial model and
several solutions from different view points it should be possible to recover the
three dimensional location of points not in the model but which are visible.
This effectively extends the model. The ability to use general features in place
of fiducials would be a significant improvement for many potential applications
and makes self extending models truly useful. The circular fiducial currently
used facilitates recovery of depth information. The same kind of size informa-
tion can potentially be recovered from naturally occuring spatial features such
as patches of texture, etc. Another possible option is to use stereo to recover
depth information. Since relative depth is all that is required the stereo cam-
eras need not be calibrated. Using a stereo setup would eliminate the need to
know sx=y and would facilitate a stereo display.

8.1.3 Miscellaneous

Several other more modest improvements or extensions also exist. As noted in
Chapters 4 and 7, noncoplanar points significantly improve the results of our
method. With a slight modification to our method it should be possible to use
planar data exclusively. The modification involves solving a quartic equation.
The ability to function when all of the fiducials are coplanar would certainly be
an asset. It is not clear what accuracy can be achieved by this approach. As
noted in Chapter 6 there is room for improvement in the initial calibration of
fiducials. At a minimum a better understanding of the source and nature of
errors is needed. A more robust method of calibrating fiducials would also be
very useful. Finally, the current implementation can be optimized significantly
for speed.

8.2 Applications

Neurosurgery is just one application for enhanced reality visualization. There
are numerous other potential applications both inside and outside the medical
field. These applications range from manufacturing and repair to navigation
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and rescue. Enhanced reality visualization can be most readily applied in
domains where models either already exist or are easily obtainable. In the
medical field models are easily obtained using internal anatomy scanners such
as MR and CT. Models already exist for many repair and manufacturing en-
vironments. Before enhanced reality visualization will be accepted for routine
use an accurate and robust method of performing the visualization must be
developed. Our method makes significant progress towards this goal. Better
methods of generating models will make it practical to apply enhanced reality
visualization to many more situations. Because it is anchored in the real world
it has the potential to affect our everyday lives. For example, enhanced reality
visualization can be used to transcend the limitations of computer monitors. By
moving the display off the desk and into a visor or pair of goggles the display
becomes much more useful. Multiple virtual screens can be defined. These
virtual screens are anchored in the real world so the user, rather than fumbling
with a mouse to expose the desired window, can simply look around and exam-
ine the contents of the various virtual screens. In effect the size of the display
becomes unlimited. Since the virtual screens are anchored in the real world
they are spatially organized which is a powerful organizational metaphor. For
example, you can define a virtual screen containing a phone list and attach it
to your bulletin board. Whenever you need to check a phone number on the list
all that need be done is look at the bulletin board. The phone list will always
be where you posted it.

8.3 Discussion

A new method for performing enhanced reality visualization has been devel-
oped. The method achieves good results using just a few fiducials placed near
the volume of interest. Noncoplanar fiducials yield better results. Our method
allows for motion and automatically corrects for changes to the internal cam-
era parameters (focal length, focus, aperture, etc.) making it particularly well
suited to enhanced reality visualization in dynamic environments. In a surgical
application, we place a few fiducials placed near the surgical site immediately
prior to surgery. An initial calibration is performed using a laser scanner. Af-
ter the calibration is performed, our method is fully automatic, runs in nearly
real-time and is accurate to a fraction of a pixel and requires only a single
image.
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Appendix A

Effects of Radial Distortion

As discussed in previous chapters, our method only models a linear approxima-
tion to radial distortion. In this appendix we will consider the consequences of
this approximations. Radial distortion is typically modeled as follows [Slama,
1980]:

x0u = x0d + �x (A.1)
y0u = y0d + �y (A.2)

�x =
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Where x0u and y0u are the undistorted pixel coordinates, x0d and y0d are the dis-
torted pixel coordinates with r02d = (x0d � x0)2

+
�
y0d � y0

�2, and K1 and K2 are
the radial distortion coefficients. If K1 and K2 are known, it is quite simple
to use this radial distortion model to correct the data before passing it to our
method. However, what if K1 and K2 are not known? The linear approximation
contained in our method works well if radial distortion is not too great. It also
works well if the fiducials are near the location of the enhancement.

As a preliminary step, we measured the radial distortion for our camera
setup. Radial distortion was measured using the plumb-line method [Brown,
1971, Stein, 1993] for a 16mm and 25mm lens. The results are summarized in
Table A.1. Plots of the distortion are also shown in Figures A-1 and A-2.

In order to gain some insight into the effect of radial distortion on our method
we will attempt to quantify the difference between the radial distortion model

Lens x0 y0 K1 K2

16mm 336 246 2.0e-8 2.0e-13
25mm 332 248 -4.0e-8 1.0e-13

Table A.1: Radial distortion parameters for a 16mm and 25mm lens.

93



94 APPENDIX A. EFFECTS OF RADIAL DISTORTION

described above and the linear approximation included in our method. To quan-
tify the difference, a set of 5 three dimensional control points K were selected
and a perspective transformation P (composed of a rigid transformation and a
camera calibration matrix as described in Chapter 4) was defined. The control
points were then projected onto the image plane using (4.2) producing a set of
undistorted image points Iu. The undistorted image points were then distorted
by �d = [�x �y] based on the radial distortion measured above producing a set of
distorted image points Id. Now we have a set of control (model) points and a set
of distorted image points. This is exactly the information that our method uses
to compute a perspective transformation. We compute a new perspective trans-
formation P 0 using (4.8) through (4.10). The effect of the linear approximation
on an arbitrary three dimensional point M can be expressed as follows:

5 = k(MP + �d)�MP 0k2 (A.5)

Figures A-3 and A-4 show two plots of 5 for a plane parallel to the image
plane and passing through the control points. The five spikes mark the image
locations of the five control points. Notice that globally5 is no worse than the
raw radial distortion. Further, 5 is small in the vicinity of the control points
even when the control points are located at the edge of the image. These two
characteristics were true for all of the simulations that we ran. This confirms
the claim that our method works well if the radial distortion is not too great or
the enhancement is close to the fiducials.

Finally, we performed an experiment using a lens with significant distortion.
Figure A-5 shows an image taken using a 4.8mm lens. The test object is the
same one which appeared in earlier figures. The distortion is readily apparent.
Figures A-6 through A-8 show the results of our method without correcting for
distortion.

In general, a more accurate model produces more accurate results. Correct-
ing for radial distortion undoubtedly would improve the results of our method.
However, as shown in this appendix for enhanced reality visualization using
reasonable cameras in realistic viewing situations the improvement is almost
insignificant.
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Figure A-1: Radial distortion in pixels
for a 16mm lens.
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Figure A-2: Radial distortion in pixels
for a 25mm lens.
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Figure A-3: Effect of radial distortion
on our method with the fiducials near
the center of the image.
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Figure A-4: Effect of radial distortion
on our method with the fiducials near
the edge of the image.
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Figure A-5: Image with signifi-
cant distortion.

Figure A-6: Distorted image
view 1.

Figure A-7: Distorted image
view 2.

Figure A-8: Distorted image
view 3.
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