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Scheduling tasks to e�ciently use the available processor resources is crucial to minimizing

the runtime of applications on shared-memory parallel processors. One factor that con-

tributes to poor processor utilization is the idle time caused by long latency operations,

such as remote memory references or processor synchronization operations. One way of tol-

erating this latency is to use a processor with multiple hardware contexts that can rapidly

switch to executing another thread of computation whenever a long latency operation oc-

curs, thus increasing processor utilization by overlapping computation with communication.

Although multiple contexts are e�ective for tolerating latency, this e�ectiveness can be lim-

ited by memory and network bandwidth, by cache interference e�ects among the multiple

contexts, and by critical tasks sharing processor resources with less critical tasks. This the-

sis presents techniques that increase the e�ectiveness of multiple contexts by intelligently

scheduling threads to make more e�cient use of processor pipeline, bandwidth, and cache

resources.

This thesis proposes thread prioritization as a fundamental mechanism for directing the

thread schedule on a multiple-context processor. A priority is assigned to each thread

either statically or dynamically and is used by the thread scheduler to decide which threads

to load in the contexts, and to decide which context to switch to on a context switch. We

develop a multiple-context model that integrates both cache and network e�ects, and shows

how thread prioritization can both maintain high processor utilization, and limit increases

in critical path runtime caused by multithreading. The model also shows that in order to

be e�ective in bandwidth limited applications, thread prioritization must be extended to

prioritize memory requests. We show how simple hardware can prioritize the running of

threads in the multiple contexts, and the issuing of requests to both the local memory and

the network.

Simulation experiments show how thread prioritization is used in a variety of applications.

Thread prioritization can improve the performance of synchronization primitives by min-

imizing the number of processor cycles wasted in spinning and devoting more cycles to

critical threads. Thread prioritization can be used in combination with other techniques

to improve cache performance and minimize cache interference between di�erent working

sets in the cache. For applications that are critical path limited, thread prioritization can

improve performance by allowing processor resources to be devoted preferentially to critical

threads. These experimental results show that thread prioritization is a mechanism that

can be used to implement a wide range of scheduling policies.

Thesis Supervisor: William J. Dally

Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 The Problem

Scheduling tasks to e�ciently use the available processor resources is crucial to minimizing

the runtime of applications on shared-memory parallel processors. One factor that con-

tributes to poor processor utilization is the idle time caused by long latency operations,

such as remote memory references or processor synchronization operations. One way of tol-

erating this latency is to use a processor with multiple hardware contexts that can rapidly

switch to executing another thread
1
of computation whenever a long latency operation oc-

curs, thus increasing processor utilization by overlapping computation with communication.

Although multiple contexts are e�ective for tolerating latency, this e�ectiveness can be lim-

ited by memory and network bandwidth, by cache interference e�ects among the multiple

contexts, and by critical tasks sharing processor resources with less critical tasks. This the-

sis presents techniques that increase the e�ectiveness of multiple contexts by intelligently

scheduling threads to make more e�cient use of processor pipeline, bandwidth, and cache

resources.

1.1.1 The Latency Tolerance Problem

Figure 1.1 shows a typical multiprocessor con�guration consisting of a collection of pro-

cessors connected to a high-performance network. Each processor has its own local cache

and local memory. Operations that read or write remote data, or that synchronize with

a remote processor, require the use of the network and give rise to long latencies. Even

high performance, low-latency networks with low overhead network interfaces have round

trip messages greater than 50 to 100 instruction cycles [76]. Processors that communicate

1In this thesis \task" and \thread" will be used interchangeably.
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Figure 1.1: General multiprocessor system con�guration.

often spend substantial amounts of time waiting for data, as shown in Figure 1.2a. With

the increasing ratio of processor speed to DRAM speed [43], the latency associated with ac-

cesses that require no remote communication but miss in the cache is becoming increasingly

important.

In order to e�ciently use processor resources it is necessary to �nd ways of tolerating long

latency data accesses and synchronization events.

1.1.2 Using Multiple Contexts to Tolerate Latency

A multiple-context processor as shown in Figure 1.3 multiplexes several threads over a pro-

cessor pipeline in order to tolerate long communication and synchronization latencies. A

straightforward implementation provides multiple register sets, including multiple instruc-

tion pointers, to allow the state of multiple threads to be loaded and ready to run at the

same time. Each time the currently executing thread misses in the cache or fails a synchro-

nization test, an opportunity exists to begin executing one of the other threads loaded in

one of the other hardware contexts. This is shown in Figure 1.2b.

In a multiple-context processor threads are either loaded or unloaded. A thread is loaded if its

register state is in one of the hardware contexts, and unloaded otherwise. Unloaded threads



1.1. THE PROBLEM 23

a)

Thread 1

Remote 
Access

Remote Access Latency

Thread 1

Thread 1

Remote 
Access

Remote Access Latency

Thread 1Thread 2 Thread 3 Thread 4

Execute IdleContext
Switch

b)

Figure 1.2: E�ect of long latency operations. a. Without multithreading long idle periods

are spent waiting for long latency operations to complete. b. With multithreading the

processor can context switch and overlap computation with communication.

wait to be activated in a software scheduling queue. To allow a traditional RISC pipeline

design, we assume a block multithreading model [5, 23], in which blocks of instructions are

executed from each context in turn. At any given time, the processor is executing one of

the loaded threads. On a context switch, the processor switches from executing one loaded

thread, to executing another loaded thread, an operation that can typically be done in 0 to

20 cycles depending on the processor design. Keeping the context switch overhead low is

necessary for multiple contexts to be e�ective in tolerating latency.

On a thread swap the processor switches a loaded thread with an unloaded thread from the

software queue. A thread swap costs one to two orders of magnitude more than a context

switch, because the processor must save and restore thread state, as well as modify the

thread scheduling queue. Since thread swaps are expensive, it is preferable that they occur

infrequently.

1.1.3 Problems with Multiple-Context Processors

Although having multiple contexts can improve processor utilization, and hence perfor-

mance, a number of factors limit this improvement. Assuming that there is su�cient par-

allelism in the application2, these factors include:

2In this thesis we do not deal with the problem of not having enough parallelism.
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� Bandwidth e�ects: the performance improvement with multiple contexts su�ers if

there is insu�cient memory and network capacity to service the increased number of

memory and network requests [2, 74]. Increasing the number of requests increases the

memory and network tra�c and hence the latency. Adding contexts is self-defeating

if the latency of requests increases faster than the amount of extra work available to

tolerate latency.

� Cache interference e�ects: Because the contexts share a cache, their working sets

can interfere with each other [2, 81, 105, 37, 95]. Techniques for improving cache

performance by intelligently placing threads on processors to share data in the cache

have proven ine�ective [96].

� Critical path e�ects: Multiple contexts can a�ect the runtime of the critical path if

a critical thread shares resources with other less critical tasks. This has not been

explicitly considered in the literature.

� Spin-waiting e�ects: When a thread spins while waiting for a synchronization event

to occur, many cycles can be wasted [112, 48, 67]. A multiple-context processor can

switch to executing another thread when it fails a synchronization test [67], but a

signi�cant number of cycles can still be wasted, and useful work delayed, especially if

several threads are spinning at once.

Naive sharing of the processor resources among the threads is one of the main causes of

the performance limiting problems associated with multiple-context processors. Virtually

all studies of multiple-context processors assume a round-robin scheduling of contexts [2,

81, 74, 105, 59, 37, 13, 95, 64]. If there are more threads than contexts, then the software

scheduler shares the available contexts among the threads so that they all make progress.

The hardware scheduler schedules the contexts themselves in round-robin fashion. Even if

one thread is more important than the others, it is not given special treatment. Even if

there are more than enough threads to tolerate the observed latency, the processor will still

run all the threads loaded in the contexts and the cache performance will su�er. Even if a

thread is spin-waiting and is not doing any useful work, the processor will still context switch

to that thread in the round-robin schedule. In this thesis, we show how more intelligent

hardware and software scheduling of threads alleviates these problems.

1.2 Thread Prioritization

In this thesis we introduce thread prioritization, a scheduling mechanism that allows the

processor to intelligently schedule threads on a multiple-context processor. Thread priori-

tization is a simple scheduling mechanism that allows the processor to schedule threads so

as to try and maintain high processor utilization, and minimize the execution time of the

critical path. Each thread is associated with a priority that can change dynamically as the

computation progresses, and that indicates the importance of the thread at any given time.
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The software uses this priority to decide which threads are loaded in the hardware contexts,

and the hardware uses this priority to decide which thread to execute next on a context

switch.

Thread prioritization addresses many of the problems caused by the strict round-robin

scheduling of contexts. By prioritizing the threads the processor can improve performance

by controlling how processor resources are allocated to the threads running in the multiple-

contexts. In particular, as we show in this thesis, thread prioritization can reduce the

negative cache interference e�ects due to having more contexts than necessary to tolerate

the observed latency, can reduce processor resources devoted to non-critical threads, and

can reduce the amount of cycles wasted spin-waiting.

It is important to stress that thread prioritization is a general scheduling mechanism that

can be used in many di�erent ways. Good scheduling mechanisms provide e�cient hardware

and software building blocks upon which di�erent scheduling policies or strategies can be

implemented. It is important to be able to implement di�erent strategies because di�erent

types of problems require di�erent strategies to achieve good performance e.g. one problem

may require dynamic load balancing, while another requires good cache performance. By

assigning priorities based on di�erent criteria, thread prioritization can implement schedul-

ing strategies that are aimed at improving synchronization performance, improving cache

performance, scheduling the critical path, or a combination of these.

1.3 Contributions

The main contributions we make in this thesis are:

1. Thread prioritization as a general purpose hardware and software scheduling mech-

anism in multiple-context processors. Thread prioritization is used to address many

of the problems associated with naive scheduling of threads on a multiple-context

processor by allowing more intelligent thread scheduling.

2. Analytical models that capture the e�ect of multiple contexts on both processor uti-

lization and the critical path runtime of an application, and that show how thread

prioritization can be used to improve performance. Our models incorporate cache

and network latency e�ects, and also show that both spin-waiting synchronization

and limited memory and network bandwidth hurt the performance of multiple-context

processors. The models show that it is important to extend prioritization so that it

prioritizes the use of memory and network bandwidth, because applications can be

bandwidth rather than computation limited. Although previous models do consider

network [2, 74] and cache e�ects [2, 81], they do not consider the e�ect of multiple-

contexts can have on the critical path execution time, and do not consider the e�ects

of spin-waiting synchronization.
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3. A detailed simulation study of how thread prioritization can be used to improve the

performance of di�erent types of benchmarks. Thread prioritization can be used to

be used to improve the performance of synchronization primitives, to reduce negative

cache e�ects, and to improve the scheduling of an application's critical path.

4. Data sharing techniques that closely coordinate the threads running in di�erent con-

texts so that they use common data in the cache at approximately the same time,

thus improving cache performance.

The main emphasis of this thesis is on presenting scheduling mechanisms and techniques

that exploit the strengths of multiple-context processors, and compensate for their weak-

nesses. We are concerned with possible bene�ts, as well as architectural and implementation

details. This work suggests important areas for further study including automatic priority

assignment, using prioritization in operating system scheduling, and the interaction of mul-

tiple contexts and prioritization with other latency tolerance techniques such as prefetching

and relaxed memory consistency models. We will touch on these various issues and suggest

possible approaches for future work in these areas.

1.4 Outline and Summary of the Thesis

Chapter 2 provides background on the scheduling problem, as well as on multiple-context

processors and other latency tolerance techniques. We present a classi�cation of thread

scheduling strategies used to improve the runtime of a variety of applications. Speci�cally,

scheduling can be divided into two parts: thread placement (i.e. where tasks run), and

temporal scheduling (i.e. when threads run). Within each of these sub-tasks many di�erent

approaches are possible. A thread scheduling mechanism's usefulness can be judged in

part by evaluating how many di�erent strategies it is useful in implementing. Thread

prioritization, the main mechanism we study in this thesis, is a general purpose temporal

scheduling mechanism.

Chapter 3 presents our multiple-context processor models with particular emphasis on how

multiple contexts can negatively e�ect the runtime of the critical path. We �rst develop the

model using traditional round-robin scheduling, and consider the e�ect of network, cache,

bandwidth, and spin-waiting synchronization. We then incorporate thread prioritization

into the model, and show how it helps solve these problems.

In Chapter 4 we evaluate several di�erent ways of implementing thread prioritization. An

e�cient hardware prioritization scheme can be used to prioritize the use of the processor

pipeline and of limited memory and network bandwidth.

In Chapters 5 through 8 we present our simulation results. Chapter 5 describes the simula-

tion environment and important simulation parameters, while Chapters 6 through 8 describe
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simulation results from di�erent types of scheduling benchmarks: Chapter 6 deals with syn-

chronization scheduling, Chapter 7 deals with scheduling for good cache performance, and

Chapter 8 deals with critical path scheduling. In particular we show that:

� Thread prioritization can be used to substantially improve synchronization perfor-

mance. For simple synthetic benchmarks such as Test-and-Test and Set, barrier syn-

chronization, and queue locks, performance improvement range from 10% to 91%

when using 16 contexts.

� Thread prioritization can help implement a number of techniques that improve the

cache performance of multiple-context processors. Data sharing involves closely co-

ordinating the threads running in each context so that they share common data in

the cache. Favored thread execution uses thread prioritization to dynamically allow

only the minimum number of contexts required to tolerate latency to be running.

Cache performance improves because the scheduling minimizes the number of work-

ing sets in the cache. Runtime improvements range up to 50% for bandwidth limited

applications using 16 contexts.

� Thread prioritization can help schedule threads based on the critical path. If perfor-

mance is critical path limited then prioritization can have a large impact, 37% for

one benchmark using 16 contexts. If performance is not critical path limited, or there

is insu�cient parallelism to keep the multiple contexts busy, prioritization has little

e�ect.

Chapter 9 brie
y looks at how multiple-contexts can be used to reduce software scheduling

overhead associated with scheduling threads in response to incoming messages.

Finally, Chapter 10 summarizes the main results of the thesis, and o�ers concluding remarks.



Chapter 2

Background

In this chapter we give background on both the general scheduling problem and the la-

tency tolerance problem in multiprocessor systems. The general scheduling problem is very

di�cult and as a result many di�erent heuristic strategies have been used. Scheduling

requires both a temporal scheduling strategy and a thread placement strategy in order to

decide when and where threads execute. A thread scheduling mechanism is a software

or hardware building block that can be used to implement di�erent scheduling strategies.

Many of the previously proposed mechanisms only address one particular aspect of either

the temporal scheduling problem or the thread placement problem. The mechanisms and

techniques proposed in this thesis are general temporal scheduling mechanisms, that can

be used to implement many di�erent temporal scheduling strategies. Although we do not

deal directly with the issue of thread placement in this thesis, for completeness we describe

thread placement strategies in this chapter as well.

Multithreading using multiple hardware contexts has been found to be an e�ective latency

tolerance technique. However, insu�cient parallelism and negative cache e�ects can limit its

e�ectiveness. Alternative techniques such as prefetching and non-blocking loads and stores

are also e�ective for latency tolerance, especially for applications with regular data reference

patterns, and little synchronization. Ultimately, the most e�ective latency tolerance will

most likely be achieved with some combination of several di�erent techniques, and this is

an interesting area for further research.

Section 2.1 describes the thread scheduling problem and Section 2.2 reviews the many

di�erent scheduling strategies that have been found useful in scheduling threads for di�erent

types of problems. Section 2.3 looks at thread scheduling mechanisms that have been

implemented in various commercial and experimental parallel processors both in hardware

and software. Section 2.4 discusses work done on multithreading and other latency tolerance

techniques, including prefetching, and non-blocking loads and stores.
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2.1 Thread Scheduling

2.1.1 An Application Model

In this thesis we are concerned with minimizing the runtime of a single application, and it

is convenient to think of the problem in terms of a simple application model. The execution

of any application can be viewed as a Directed Acyclic Graph (DAG), as illustrated in

Figure 2.1. Each node represents a task, and each edge represents a dependency between

tasks. Any task can execute only once its dependencies are satis�ed, i.e., once all its

predecessors have executed.

A task can be de�ned in many di�erent ways. At the most basic level, it can be an abstract

task that takes a given amount of time to execute. For the purposes of proving various

interesting scheduling theories, it is often assumed that these tasks are of unit or �xed time

delay. In practice a task might represent a computer instruction or group of instructions

that can take a variable time to execute depending on various system level conditions.

When considering a multithreaded computation, it is convenient to think in terms of a

simple model similar to the one presented by Blumofe [11]. In this model, each thread is a

group of tasks that are executed in sequential order, and edges going between tasks represent

di�erent types of dependencies between the threads and the tasks. Continue edges represent

the sequential ordering within a thread, spawn edges represent one thread creating another

thread, and data dependency edges represent the data being produced by one thread being

used by another. An example multithreaded computation is shown in Figure 2.2. As noted

by Blumofe, it is important to realize that this type of graph may represent a particular

unfolding of the program that is dependent both on the program threads as de�ned by the

user, and the input data.

2.1.2 The Thread Scheduling Problem

The thread scheduling problem involves deciding where each thread should run, and when

it should run. Solving the problem optimally is NP-complete [30, 83]. Thus all practical

scheduling algorithms are just heuristic strategies used to �nd a good (hopefully) approxi-

mation of the optimal solution. A number of non-ideal factors make it so that even these

heuristic strategies must use inexact information to make their decisions. These non-ideal

factors are all related to the dynamic nature of the DAG, and include:

� Variable or unknown task costs: The length of each task is variable. Even if each

task is broken down to a single instruction, there is a big di�erence between the cost

of a LOAD instruction which hits in the cache, one that misses in the cache but is

local to the processor, and one that misses in the cache and requires a shared memory

protocol to orchestrate the fetching of the data.
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ENDSTART

Figure 2.1: General DAG.

ENDSTART

Data dependency edge

Spawn edge

Continue edge

Thread

Figure 2.2: General DAG viewed as a set of threads.
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� Variable or unknown communication costs: The costs of the dependency edges are

non-zero, and depend on the edge type. A continue edge typically represents simply

a change in a program counter and is very cheap. A spawning edge on the other hand

represents the creation of a new thread, and requires that a context be allocated for the

new computation, and that the thread be scheduled in a scheduling queue. The data

dependency edges represent data communication between threads which introduces a

communication cost. Depending on thread placement, the cost of the edges changes.

If a thread is spawned on another processor, then the communication cost must be

added. If a data dependency exists between threads on di�erent processors, then this

data must be communicated, and the communication cost added in. A continue edge

can also have a variable cost if for instance threads can migrate between processors.

� Dynamic DAG generation: The DAG of a computation is often not known a priori,

but rather unfolds dynamically as a program executes. For dynamic programs, the

number of nodes in the DAG and their interdependence depends on the input data.

� Scheduling overhead: There is overhead associated with doing dynamic scheduling.

The scheduling algorithm thus has to be online, and must be e�cient. In some sense

the scheduling algorithm itself can be seen as adding tasks, edges, and costs to the

computation DAG.

Despite the NP-completeness of the scheduling problem, and the non-ideal nature of the

data available to make heuristic decisions, there are many di�erent approaches that have

been found to lead to good scheduling decisions. Some of the strategies that have been

found useful are discussed in the following sections.

2.2 Thread Scheduling Strategies

A complete scheduling algorithm requires that two di�erent types of strategies be de�ned:

a temporal scheduling strategy which decides when threads should run, and a thread place-

ment strategy that determines where threads should run. Temporal scheduling strategies

range from precomputed static thread schedules, to dynamically created priority queues.

Thread placement strategies range from complete static placement of threads to the use of

dynamic load balancing schemes. As we discuss in the next few sections, both the tem-

poral scheduling and the thread placement components of di�erent scheduling algorithms

are examined extensively in the literature. The general conclusion that can be drawn from

these studies is that di�erent temporal and placement strategies are appropriate for di�er-

ent types of applications. Ultimately then, the ideal is to have a general purpose parallel

processor that allows the e�cient implementation of all useful scheduling strategies. This

thesis focuses on general architectural mechanisms that are useful in implementing di�erent

temporal scheduling strategies.

A number of studies and survey papers have looked at classifying di�erent aspects of the
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scheduling problem, such as load balancing [104, 108], or the speci�c algorithms used to

determine the schedule [17]. Our survey in this chapter is more pragmatic, and provides a

reference from which to show that the mechanisms and techniques discussed in following

chapters address scheduling problems of interest. Also, any general scheduling mechanism

should facilitate the implementation of several of these di�erent scheduling strategies that

are appropriate for di�erent types of applications. For instance, we are not so much con-

cerned with the many di�erent possible heuristic strategies that are used to decide when

tasks should be scheduled, as with the few mechanisms that should be provided at the

hardware and software level that allow the easy speci�cation of a task schedule based on

whatever heuristic the user cares to use.

2.2.1 Temporal Scheduling Strategies

In this thesis we will principally be concerned with providing mechanisms that allow the

e�ective and e�cient speci�cation of when threads should run. There are a number of

program characteristics that can be used as the basis for deciding when threads should run.

These include the characteristics of the DAG, the desire to exploit temporal locality, the

type of synchronization being used, and the resource requirements of the application.

DAG scheduling

One strategy for deciding when to run di�erent threads is to analyze the program DAG

and try and minimize the execution time by carefully scheduling the critical path. Di�erent

heuristic strategies [31, 19] decide where tasks should run (see Section 2.2.2), and then given

this assignment, decide when each task should run.

If the DAG is dynamically generated at runtime then static DAG scheduling is not possible.

However, the user may know which tasks are more important, and want to schedule them

�rst. For instance, in a search problem such as the Traveling Salesman Problem, there

may be tasks that are speci�cally aimed at pruning the tree and reducing the search space.

Despite the fact that the exact DAG of the computation is not known, it may make sense

to schedule these tasks before tasks that are generating more work.

Temporal Locality

A thread exploits temporal locality in the cache when it brings data into the cache and

references it several times. The set of data that a thread needs over a speci�c period of

time constitutes its working set, and if the cache is large enough to hold the working set the

processor achieves good cache hit rates. Scheduling decisions can be based on an a�nity that

a task has for a speci�c processor because its data is likely to be loaded in the processor's
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cache [90, 26, 97]. Although this a�nity scheduling is largely a thread placement issue that

requires that a descheduled thread be rescheduled on the same processor (see section 2.2.2),

there is also a temporal component: if a task swaps out but soon begins to execute again

then some of its data is likely to still be in the cache and will not have to be reloaded, but

if the thread has not been run for a long time most of its data will have been removed from

the cache.

Di�erent threads can cooperate to exploit temporal locality as a group. If threads that

operate on the same data are run at approximately the same time, then they will share

data in the cache. If on the other hand threads with largely unrelated data are run at

approximately the same time, their data will destructively interfere with each other in the

cache. This is particularly important for multiple-context processors where several threads

are running at the same time.

Synchronization

Shared memory multiprocessors that use spin-waiting to implement synchronization prim-

itives such as mutual exclusion locks [8, 34, 36, 3, 71], barrier synchronization [111, 71],

and �ne-grain synchronization using Full/Empty bits [55] raise another set of scheduling

issues. The particular problem with spin-waiting types of synchronization is that tasks can

be active but not making progress, and thus be uselessly consuming resources [112, 67].

For instance it is typical to have tasks waiting for the release of a lock by spinning on a

synchronization variable. In this case it would be best to schedule the speci�c task that

currently controls the lock, or at least, not schedule those tasks that require acquisition of

the lock.

Two-phase algorithms have been studied as a method for deciding whether a thread should

spin or block (i.e. swap itself out and allow another thread to run) on a synchronization

failure [48, 67]. A two-phase algorithm �rst spins for a determined amount of time in the

hope that the synchronization condition will be satis�ed and the blocking overhead will be

avoided, and then blocks if this is not the case. In particular, Lim and Agarwal [67] study

two-phase algorithms in the context of a multiple-context shared memory multiprocessor.

Having multiple contexts allows additional strategies such as \switch-spinning", in which a

spinning thread can rapidly switch to other contexts, thus doing useful work while waiting

for the synchronization to complete.

Resource Utilization

It is important to be able to control the thread generation pattern of a program. Uncon-

trolled thread generation in problems that exhibit abundant parallelism can overwhelm a

parallel machine, exhausting memory or causing severe performance degradation [9, 41].

Conversely, not generating enough tasks can lead to starvation with not enough work for
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all the processors. Blumofe [11] uses a simple thread model and describes scheduling al-

gorithms that are provably time and space e�cient when certain dependency conditions

between threads are met.

An example of how scheduling can a�ect task generation is the expansion of an execution

tree in either depth �rst or breadth �rst fashion. Scheduling in depth �rst fashion tends to

limit parallelism since at any given time only one path is being followed (as would be done

in a serial execution). Scheduling in breadth �rst fashion tends to generate many tasks,

the number of which grows exponentially with the depth of the tree. Ideally, we would �rst

expand the tree in breadth �rst fashion until there was enough work for all the processors,

and then continue in a depth �rst manner.

2.2.2 Thread Placement Strategies

Although we will not be dealing directly with the issue of thread placement in this thesis, it

is the other important component of the thread scheduling problem and is included here for

completeness. The most important issues in determining the location of threads are trading

o� parallelism and communication overhead, load balancing the work across the nodes, and

exploiting spatial locality in the memory system.

Parallelism versus Communication

In an ideal system with no communication cost or overhead, the best thing to do is max-

imize parallelism. In a real system, tasks are on di�erent nodes and must share data and

communicate their results to each other. Depending on the communication cost, it may be

better to run threads serially in a single processor rather than run them in parallel on dif-

ferent processors. Given a DAG, a number of heuristics can be employed to decide whether

given tasks should be run on the same processor [31]. These heuristic approaches start

with a DAG that has a computation cost assigned with each node of the graph as well as

a communication cost associated with each edge that depends on thread placement. Based

on minimizing a cost function such as the parallel running time, they then use di�erent

heuristics to merge nodes together in clusters. Performance improvement is achieved be-

cause every time two nodes with a direct data dependency are merged, the communication

cost becomes 0, potentially decreasing the parallel runtime.

DAG clustering techniques typically make a number of idealistic assumptions to make the

problem more tractable. They assume that the tasks are constant length. They assume

that the architecture is a completely connected graph so that the communication costs are

una�ected by the particular network being used or the network tra�c. They assume an

unbounded number of homogeneous processors so that if there are fewer processors than

clusters, the clustering step must be followed by an assignment of clusters to processors,

another NP-complete problem [83].
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Despite these assumptions, the heuristic approaches to DAG scheduling can provide good

performance results. Also, even if the DAG is not static and depends on the input, it can

be advantageous to use these heuristic techniques to determine a good schedule at runtime.

This is particularly true if the same schedule can be reused many times [82, 19].

Load balancing

Load balancing involves distributing work across processors so as to minimize running time.

Load balancing techniques are either static or dynamic [104, 17]. Static load balancing

schemes assign tasks to processors before the program is run based on execution time and

communication pattern information. Once assigned to a given processor, a task remains

there for the duration of the computation.

In dynamic schemes, tasks are generated on processors or moved between processors at

runtime. Dynamic schemes are either centralized or distributed. Centralized dynamic load

balancing uses either a master process or a centralized data structure to distribute work

across the processors. The centralized approach often leads to bottlenecks in the task

distribution and is often not appropriate for large systems. Distributed schemes do not

have a single point of serialization, and the scheduling data structure and decision making

are distributed across all the processors.

Dynamic load balancing schemes di�er in the policies they adopt to implement load balanc-

ing. Willebeek-LeMair and Reeves [108] de�ne a 4-phase dynamic load balancing model:

� Processor load evaluation: Estimate the amount of work a processor has to do, and

use it in deciding whether to load balance.

� Load balancing pro�tability determination: Determine the degree of imbalance, and

decide whether it is worthwhile to do load balancing. The amount of information that

goes into making this decision can vary widely from using entirely local information, to

centralized schemes that use much more global information but may incur signi�cant

overhead.

� Task migration strategy: Determine the source and destination for task migration.

Policies include random selection, a �xed pattern such as a simple nearest neighbor

pattern, or other more complex patterns. How load balancing is initiated is an im-

portant characteristic of the strategy. Load balancing can be initiated at given time

intervals, or can be initiated by the producer or the consumer of tasks. If initiated

at given time intervals, all the processors cooperate to do the load balancing. In

producer-initiated load balancing, a processor with too much work initiates load bal-

ancing activity, whereas in consumer-initiated load balancing a processor that needs

work initiates the load balancing activity. Consumer-initiated load balancing has the

advantages of being more communication e�cient [12], and of having the less highly
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loaded processors incur most of the load balancing overhead while the highly loaded

processors continue executing tasks.

� Task selection strategy: Decide which tasks to exchange. An important issue is

whether task migration is allowed, meaning whether threads can migrate between

processors once they have begun executing. Migrating a task once it has begun exe-

cuting can be expensive as it requires that stack information be migrated as well [91].

Spatial Locality

Programs can exploit spatial locality at the cache level and at the local memory level. To

do this, data and thread placement policies can place data and threads operating on that

data on the same node.

Cache performance improves if di�erent threads use the same data and operate out of the

same cache. For instance, in the context of a multiprogramming operating system, space-

sharing the processors between applications rather than time sharing the entire machine may

result in better performance [98]. A number of studies have looked at a�nity scheduling,

which schedules tasks on processors to better exploit this locality in the cache [90, 26, 70,

97]. In attempting exploit this locality, tradeo�s are made with load balancing since load

balancing and a�nity scheduling often are in opposition to each other [69, 70, 91].

Programs can exploit spatial locality at the node memory level by co-locating a thread and

its data on the same node. If a thread's data is located in local memory rather than in

remote memory, remote memory references can be avoided. In particular, reorganizing data

between computation stages to maximize locality can be bene�cial [53, 52].

2.3 Thread Scheduling Mechanisms

The goal of thread scheduling mechanisms is to provide e�cient building blocks upon which

to implement the di�erent scheduling strategies described in the previous section. Hardware

mechanisms include such things as hardware support to schedule threads in response to

incoming messages, and to manipulate multiple hardware contexts. Software mechanisms

may de�ne threads and task queues in ways that allow the easy implementation of di�erent

scheduling policies.

2.3.1 Hardware Scheduling Mechanisms

Hardware mechanisms aim at reducing overhead of speci�c scheduling operations such as

scheduling the handling of incoming messages, or at managing the allocation and scheduling
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of the multiple contexts in a multiple-context processor. They typically lack the 
exibility

required to do general thread scheduling.

One important hardware mechanism is hardware support for handling incoming messages

from other nodes. The processor usually uses some form of automatic enqueuing and direct

dispatch to a message handler routine. For instance in the J-Machine [23] there is hardware

support for enqueuing tasks in memory as they arrive, without interrupting the processor
1
.

When a task arrives at the head of the queue, a direct dispatch mechanism jumps directly

to the correct message handler. There are two priority levels each with their own queue

of tasks. On the Alewife machine [4] the message interface generates an interrupt and the

message is handled in a hardware context reserved for that purpose. Alewife also has special

hardware that deals with shared memory protocol messages. In typical data
ow machines,

there is specialized hardware for scheduling support. Monsoon [78], for instance, has special-

ized hardware for dynamically synchronizing and scheduling individual instructions based

on the availability of operands. The *T architecture [75] is an example of how data
ow

architectures are evolving towards a more conventional multi-threaded approach: it pro-

vides special scheduling queues and co-processors for handling memory request messages

and synchronization request messages. Henry and Joerg [44] study hardware network inter-

face optimizations that improve the performance of dispatching, forwarding, and replying

to messages.

Multiple-context processors such as April [5] or Tera [6] provide mechanisms for managing

contexts. April uses the trap mechanism to do a context switch, with the context switch

done inside the trap handler. A special instruction changes the context that is executing

instructions. The Tera hardware provides special instructions and state for reserving, cre-

ating, and de-allocating thread hardware contexts, but the software must decide whether

to execute the thread in another hardware context or in the current one [7]. The software

generates new threads only when there are hardware contexts available to execute them,

otherwise the code executes in the current hardware context.

The hardware mechanisms described above are of limited use for general scheduling because

of their lack of 
exibility. The hardware message mechanisms aim speci�cally at reducing the

overhead of handling incoming messages, which although important, does not address the

larger problem of doing general thread scheduling. The context management mechanisms of

the April and Tera processors are useful for managing contexts but they do not address one

basic issue: on any given context switch, which context should execute next. The April trap

handler could make this type of decision in software, but this would greatly increase the

context switch time. Waldspurger [101] proposes a scheme that does the context switching

in software in just 4 to 6 cycles, but again it is not clear that scheduling contexts in a way

other than in round-robin fashion can be implemented cheaply. The mechanisms proposed

in this thesis are more general and are useful for deciding which of multiple available threads

should execute, and are not restricted to scheduling messages. The thread prioritization

mechanism we propose aims speci�cally at correctly deciding which context to execute next

1Although a memory cycle is stolen when the queue row bu�ers are written.
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in a single cycle.

2.3.2 Software Scheduling Mechanisms

Various scheduling mechanisms are implemented in software as well. These mechanisms

are more general then the hardware mechanisms because they allow di�erent scheduling

algorithms to be constructed on top of them.

Lazy task creation [72] is one example of a 
exible scheduling mechanism. Lazy tasks are

a means of allowing dynamic partitioning of tasks. New tasks are created at runtime only

as needed to keep all the processors busy, thus providing a mechanism for both increasing

the granularity of tasks and throttling excess parallelism. This mechanism is 
exible as it

allows the possibility of many di�erent load balancing strategies to be implemented on top

of the lazy task creation model.

Culler et al. [21] have proposed TAM, an execution model for �ne grained parallelism

that uses a multilevel software scheduling hierarchy. They follow the basic data
ow model

in which a thread does not execute until all its arguments are available, and a thread

always runs to completion. They provide a basic system for scheduling related threads as

a quantum: threads related to speci�c code block invocation are run at approximately the

same time so as to exploit locality. A higher level scheduler schedules these quanta on the

processors, and this higher level scheduler can implement di�erent scheduling policies.

At the operating system level, Waldspurger and Weihl's Lottery Scheduling [102] provides

a mechanism that allows 
exible control over the relative execution rates of di�erent tasks.

Further, this mechanism can be generalized to manage di�erent types of resources such as

I/O bandwidth and memory.

Thread prioritization as proposed in this thesis is also a software scheduling mechanism

that allows di�erent scheduling algorithms to be implemented on top of it. Rather than

aiming at dynamic load balancing like lazy tasks or locality improvement like TAM, it aims

at allowing a 
exible speci�cation of when threads should run relative to each other. Unlike

Lottery Scheduling, it is aimed speci�cally at scheduling the threads in a single application.

Each thread has a priority that can be assigned and changed dynamically, and used by the

thread scheduler to decide which thread to run at any given time. This priority can also be

used to improve data locality as discussed in Chapter 7, and could potentially be useful in

making load balancing decisions.
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2.4 Multithreading and other Latency Tolerance Techniques

Di�erent techniques are useful for tolerating the long communication and synchroniza-

tion latencies that occur in parallel processors, including multithreading, multiple-contexts,

prefetching, non-blocking accesses, and relaxed consistency models. This thesis is specif-

ically concerned with the use of multithreading and multiple-context processors, but it is

probable that the ideal set of latency tolerance techniques involves some combination of all

of these.

2.4.1 Multithreading

Multithreading involves dividing a problem into multiple tasks and then running these tasks

in parallel to achieve better performance. Latency is tolerated by running a di�erent task

whenever a long latency operation occurs. Analytical [2, 81, 46, 74] and experimental [105,

59, 37, 13, 95, 64] studies show that it is a good technique for tolerating latency but that

lack of parallelism, as well as cache and network e�ects can limit performance.

The analytical models [2, 81, 46, 74] use processor utilization as a metric. They show

that network bandwidth limits performance because it limits the number of requests that

can be outstanding without seeing a substantial increase in the network latency. Cache

performance can su�er with multiple contexts because of increased cache miss rates that

occur when the working sets of di�erent threads are trying to occupy the cache at the same

time [2, 81]. Some of these studies [46, 74] consider the feedback that occurs between the

di�erent subsystems of the multiprocessor more carefully and show how this feedback can

limit the maximum message rate of the network. None of these models speci�cally consider

the e�ect of multithreading on the execution time of an application's critical path, or the

e�ect of spin-waiting synchronization latencies.

Simulation studies have also shown some of the bene�ts and weaknesses of multithread-

ing [105, 59, 37, 13, 95, 64]. These studies show that substantial performance improvements

are possible provided that certain conditions hold. Speci�cally, there must be su�cient par-

allelism in the application, the context switch time must be low, the run length to latency

ratio must be favorable, the distribution of run lengths must be favorable (in particular

clustered misses can reduce multithreading e�ectiveness), and the negative cache e�ects

must be minimal.

2.4.2 Multiple-Context Processors

Having multiple hardware contexts is one useful technique for supporting e�cient multi-

threading. Multiple-context processors come in several di�erent 
avors, depending on how

instructions from the di�erent contexts are issued. Block multithreaded processors run
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blocks of instructions from each context in turn [105, 5]. This allows a single thread to

fully use the processor pipeline, though the data dependencies within a single thread can

introduce pipeline bubbles. A context switch occurs on special interrupts or on long latency

operations such as a miss in the cache, or a synchronization event. Finelymultithreaded ar-

chitectures interleave instructions from di�erent contexts on a cycle-by-cycle basis. Some of

these architectures concentrate on eliminating pipeline dependencies by having each context

issue instruction only once every D cycles, where D is the pipeline depth [88, 42]. All the

instructions in the pipeline are independent from one another since they are from di�erent

contexts. The performance of these architectures su�ers when there are not enough threads

to fully use the pipeline. More aggressive designs provide pipeline interlocks which allow

any ready thread to issue an instruction provided it satis�es data and pipeline dependen-

cies [50, 64]. This dynamic interleaving of instructions hides pipeline stalls as well as long

latency operations.

The type of multithreading performed depends very much on the design philosophy and

budget for the processor. Block multithreading allows the most conventional processor

design, and only requires support for multiple register sets. For instance the April processor

is a commercial processor that has been modi�ed to provide 8 hardware registers sets to

support multithreading [5]. Other schemes for providing multiple register sets are possible,

including the mostly software scheme presented by Waldspurger and Weihl [101], and the

hardware intensive context cache presented by Nuth [77]. Cycle-by-cycle interleaving has a

signi�cant hardware cost to redesign the processor core and pipeline to allow the di�erent

contexts to issue instructions simultaneously [50, 64].

2.4.3 Other Latency Tolerance Techniques

Prefetching

Prefetching tolerates latency by requesting data before it is required. Latency is minimized

if the data has arrived before it is referenced, or is reduced if the data has not arrived

but is on its way. Prefetching schemes are either binding or non-binding [73]. A binding

prefetch is one in which the value of the requested data is bound at the time the prefetch

completes rather than when the actual load occurs. A non-binding prefetch is one in which

the requested data is brought close to the requesting processor (i.e. into its cache), but the

value is not bound until the actual reference occurs. Prefetching can be implemented in

hardware or software.

The fact that prefetched data may become stale if it is modi�ed between the prefetch and

the subsequent load [65] limits binding prefetch schemes. In the uniprocessor case this

can occur when a write to the same address occurs between the prefetch and the load. In

the multiprocessor case it can also occur when another processor modi�es the value. Non-

binding prefetches have the advantage that they are simply hints to the memory system and

do not have semantic signi�cance to the program. Thus they can be placed anywhere in the
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program and not a�ect correctness. When latencies become large, the 
exibility of being

able to place a prefetch well in advance of its subsequent reference becomes important.

The bene�ts of hardware prefetching are that it discovers the locations to prefetch dynam-

ically, and that it has no extra instruction overhead. However, the more e�ective schemes

are still only good at predicting very simple access patterns, require non-trivial hardware

modi�cations to do limited instruction lookahead, branch prediction, and stride prediction

[89, 10]. The amount of latency they can hide is limited by these factors. The bene�ts

of software prefetching [35, 16, 51, 85] are that it requires only the addition of a prefetch

instruction, the prefetching can be done selectively so as to reduce the bandwidth require-

ments, and the prefetches can be positioned to better tolerate long latencies (if non-binding).

The disadvantages are that there is extra overhead due to the prefetch instructions them-

selves, and due to the fact that addresses have to either be calculated twice (once at prefetch

time and once at load time), or have to be preserved in a register between the prefetch and

the load.

Non-Blocking Accesses and Relaxed Consistency Models

Another way to tolerate latency is to pipeline memory accesses, by allowing non-blocking

loads, and by bu�ering store operations. When a load operation misses in the cache or if

there is no cache for shared data, the processor continues executing code, including issuing

other loads, until it actually needs the data. Only if the data is needed and it still has not

arrived does the processor stall. The processor can pipeline write operations by using write

bu�ers.

To tolerate long latencies it is desirable to move a non-blocking load as far ahead of the

instructions that use the returned value as possible. However, non-blocking loads have

the same semantics as binding prefetches into registers, and just like binding prefetches,

memory disambiguation is required in order to guarantee that a non-blocking load is not

moved before a write to the same address. Furthermore, the non-blocking loads require the

use of a register to store the value until it is needed. This puts additional pressure on the

register �le, especially when the loads are moved far ahead of their use. Non-blocking loads

require a synchronization mechanism such as Full/Empty bits on the registers in order to

signal when a non-blocking load has been completed.

In multiprocessor systems, performing non-blocking accesses is more complicated. This

is because multiple processors are reading and writing the same data at the same time,

and if not restricted in some way, memory accesses can perform in unexpected orders.

The extent to which non-blocking loads and bu�ered writes can be used to hide latency

in multiprocessors is restricted by the memory consistency model used, which is the set

of allowable memory access orderings [62, 27, 33]. For instance a common model is the

Sequential Consistency [62] model which requires that the memory accesses appear as if

performed by some interleaving of the processes on a sequential machine. Unfortunately,
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this severely restricts the use of non-blocking loads and stores to tolerate latency [32].

Relaxed consistency models attempt to remove some of these restrictions, to allow better

use of non-blocking accesses, while still providing a reasonable programming model.

2.4.4 Comparison of Techniques

Di�erent latency tolerance techniques are appropriate in di�erent situations. Prefetching

and non-blocking accesses are good for improving the runtime of a single thread, but do not

provide any way of tolerating synchronization latencies. Multithreading requires su�cient

parallelism to be e�ective, does not improve single thread performance, but can be e�ective

in tolerating long synchronization latencies.

Gupta et. al. [37] study di�erent latency tolerance techniques in the context of a shared

memory multiprocessor. They conclude that non-blocking accesses in conjunction with

prefetching is the most e�ective in tolerating both read and write latencies. Non-blocking

and multithreading was also quite e�ective, because the non-blocking accesses allowed longer

run lengths between context switches, and fewer contexts were necessary to tolerate latency.

However, multithreading was not e�ective in some cases due to cache e�ects and limited

parallelism. They also found that multithreading and prefetching together could actually

hurt performance. First, because using both methods adds the overhead of both methods

even though only one may be needed to hide the latency. Second, the methods can a�ect

each other in the cache e.g. the time between when data is prefetched and when it is actually

used can become long due to intervening executing contexts, and the prefetched data has a

higher probability of being removed from the cache before it is used. They do note however

that the prefetch instructions were not added with the knowledge that multithreading was

also being used. It is hard to draw any general conclusions from this study since only a

small number of benchmarks are used, and these are fairly coarse grain benchmarks with

limited synchronization. It is clear however that these latency tolerance techniques can be

complementary, and this is an area where further research is needed.

2.5 Summary

Scheduling consists of two components: deciding when threads should run and deciding

where threads should run. Temporal scheduling strategies attempt to optimally schedule

threads based on the form of the DAG, to exploit temporal locality, to manage resource uti-

lization, and to optimize synchronization scheduling. Thread placement strategies attempt

to deal with the tradeo� of parallelism and communication, to do load balancing, and to ex-

ploit spatial locality. Which strategies are most appropriate depends on the characteristics

of the problem, the architecture, and the programming model. Thread scheduling mecha-

nisms are aimed at providing e�cient building blocks for implementing di�erent scheduling

strategies. A general purpose parallel processor should provide the mechanisms required to
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implement a wide range of these strategies. This thesis will present a number of scheduling

mechanisms aimed at implementing di�erent temporal scheduling strategies in a multiple-

context processor. Speci�cally, strategies that schedule tasks based on the program DAG,

that schedule threads to exploit temporal locality, and that schedule threads to improve

synchronization performance.

In large scale multiprocessors it is necessary to �nd ways of tolerating long latency op-

erations. Multithreading using multiple-context processors has been found to be a useful

technique for doing this, but performance can be limited by lack of parallelism, by network

bandwidth, and by cache performance degradation. Other latency tolerance methods, in-

cluding prefetching and relaxed consistency models, are also useful in tolerating latency.

An interesting topic of research is to determine which combinations of methods should be

used for any given problem.



Chapter 3

Thread Prioritization

In this chapter we introduce thread prioritization, a mechanism that allows the processor

to devote pipeline and bandwidth resources preferentially to high priority threads in order

to increase the utilization of the processor, and decrease the runtime of the critical path.

We use an analytical model to show how thread prioritization can be used to improve the

performance of multiple-context processors.

Our model is based on existing multiple-context scheduling models, and incorporates both

network and cache e�ects. Unlike other models, it considers not only how multiple contexts

a�ect processor utilization, but also how the multiple contexts can a�ect the runtime of the

critical path. Further, it considers the e�ect of spin-waiting synchronization and limited

memory and network bandwidth on multiple-context performance. The model shows that

with simple round-robin scheduling, both processor utilization and the runtime of a critical

thread can be hurt when the number of contexts exceeds the minimum number required to

tolerate latency. Processor utilization is hurt because the working sets of the cache interfere

with each other, leading to more cache misses, more network tra�c, and longer latencies.

The runtime of a critical thread can increase substantially if there are many contexts because

the execution of the critical thread can be delayed by other threads using the processor

pipeline, network, and memory resources. Spin-waiting decreases processor utilization and

increases the runtime of the critical path because spinning threads do no useful work even

when they are occupying the pipeline. Limited memory and network bandwidth can also

a�ect utilization and the critical path. Bandwidth requirements increase with an increasing

number of contexts and contexts can be delayed waiting for bandwidth resources.

Thread prioritization is a mechanism that allows contexts to be scheduled based on a priority

scheme rather than in round-robin fashion. Each thread is assigned a priority, and on each

context switch the context with the highest priority that is ready to execute is chosen next.

The model shows that in the case that there are more than enough contexts to tolerate the

observed latency, thread prioritization can be used to dynamically choose a minimum set

of contexts required to tolerate the observed latency to execute at any given time. This

45
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improves cache performance, and as a result processor utilization, because a smaller number

of working sets are trying to occupy the cache. Thread prioritization can also be used to

minimize the impact of multiple contexts on the runtime of a critical thread, by allowing

the critical thread to execute every time it is ready. We show that for bandwidth limited

applications we must prioritize the use of bandwidth. Thread prioritization can be used to

choose a minimum set of contexts necessary to saturate the available bandwidth, and it can

give priority to accesses by critical threads.

The model makes a number of simplifying assumptions having to do with run lengths

between context switches, the cache behavior, and network tra�c patterns. However sim-

ulations done in later chapters using real applications con�rm the trends predicted by the

model.

Section 3.1 introduces thread prioritization. Sections 3.2 and 3.3 develop our multiple-

context processor model without thread prioritization, and �nally Section 3.4 shows the

e�ect of thread prioritization on the model.

3.1 Thread Prioritization

Thread prioritization involves associating a priority with each thread based on knowledge

about how threads should be scheduled. It is a method for encapsulating in a hardware-

and-software-usable form the best guess at identifying the critical thread or threads. This

information is used to bias the allocation of processor resources to those threads.

Thread prioritization is dynamic, since which threads are critical can change as the com-

putation unfolds, especially in situations that use spin-waiting synchronization where the

critical thread is not known a priori, but only once the synchronization occurs. Further-

more, having many priorities allows more descriptive information to be encoded, such as

an estimate of the second most critical thread, and so on. Thread prioritization is a very


exible means of specifying the relative importance of di�erent threads.

3.1.1 Software and Hardware Priority Thread Scheduling

Prioritizing Execution

Consider an application that consists of a set T of threads on each processor, where each

processor has C contexts. Each thread ti 2 T has a priority pi, with a higher value of pi

indicating a higher thread priority. The hardware and software schedulers use the priority

to do the scheduling.
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First, the software scheduler uses the priority to decide which threads are loaded. Speci�-

cally, it chooses a set TL of threads to load into the C contexts, and a set TU of unloaded

threads to remain in a software scheduling queue. The scheduler chooses the loaded threads

such that pl � pu for all tl 2 TL and tu 2 TU . Threads of equal priority are scheduled in

round-robin fashion.

Second, at each context switch the hardware scheduler uses the priority to determine which

loaded thread to execute. At any given time some threads will be ready to execute and

others will be stalled waiting for a memory reference to be satis�ed. If TR is the set of

ready, loaded threads, the scheduler chooses a thread tx 2 TR such that px = maxfprg

for all tr 2 TR. If several loaded threads have the same priority, then these threads are

chosen in round-robin fashion. A context switch can occur on a cache miss, on a failed

synchronization test, or on a change of priority of one of the threads on the processor. Each

change in priority results in a re-evaluation of TU , TL, and tx. In this sense, the scheduling

is preemptive.

Prioritizing Bandwidth

The processor pipeline is only one of the important processor resources that can limit

performance. Limited memory and network bandwidth can also limit performance. Thus we

extend the notion of prioritization to include the prioritized use of both memory bandwidth

and network bandwidth. Any context's long latency transaction that is waiting for either the

memory resource or the network resource sits in a transaction bu�er waiting for that resource

to become available. In the case that the application is memory or network limited, there

can be several transactions waiting for either the memory or the network. With prioritized

scheduling, when the resource becomes available the highest priority transaction that needs

the resource is issued. Thus the priority of the thread extends to the use of the memory

and network bandwidth resources, as well as to the use of the processor pipeline.

3.1.2 Assigning Priorities: Deadlock and Fairness

In our benchmarks of later chapters, the user explicitly assigns a priority to each thread,

and changes this priority as the application requires. Although initially the use of thread

prioritization is likely to be limited to special runtime libraries (e.g. synchronization primi-

tives) and user-available program directives, we expect that it will eventually be possible to

have a compiler assign priorities to threads automatically. Automatic thread prioritization

is particularly straightforward when the program can be described as a static DAG.

Prioritizing threads incorrectly can lead to a number of deadlock situations. Speci�cally, if

thread A is waiting for another thread B to complete some operation, and thread B has a low

priority that does not allow it to be loaded, deadlock results. There are a number of ways of

overcoming this problem, including guaranteeing that the priorities of the threads respect
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the dependencies of the computation, implementing priority inheritance type protocols [86],

or guaranteeing that all threads will receive some amount of runtime even if they are lower

priority [102].

For our benchmarks we make sure that the thread priorities respect the dependencies of

the computation, and that scheduling is fair only between threads of the same priority.

This is the lowest cost alternative for avoiding deadlock, and avoids the overhead of more

complicated protocols. Also, as we will show in the examples, doing fair scheduling without

regard to priority, or not specifying the priority of threads as exactly as they could be, can

lead to a serious performance penalty. It is in our interest to prioritize threads as exactly

as possible.

3.1.3 Higher Level Schedulers

The thread scheduling as de�ned here is purely a local operation. Each processor has its own

set of threads, and schedules only these. The assigning of threads to processors is governed

by a higher level scheduler, for instance a scheduler that dynamically load balances work

between processors by moving threads between them. Note that the thread priorities may

be useful to the global scheduler for making its scheduling decisions.

It should also be noted that the thread scheduler uses the thread priority in a very di�erent

way than process scheduling in the UNIX operating system for instance, where the goals

and constraints are di�erent. The thread scheduler always executes the highest priority

ready thread, and is not concerned with fairness or guaranteeing progress of all the threads.

Operating system schedulers, on the other hand, aim at achieving good interactive per-

formance, at achieving time sharing between competing processes, and guaranteeing some

progress for all jobs [66]. The operating system schedulers also make decisions at a much

larger scheduling granularity: the scheduling algorithm can be fairly heavyweight since a

process will run for many thousands of cycles before the next process switch occurs. In

multiple-context scheduling a scheduling decision is made on every hardware context switch

that can take place every few cycles, and must be very inexpensive. The goal of thread

prioritization is to identify as exactly as possible which threads are most important and

devote as many resources as possible to these threads.

3.2 E�ect of Multiple Contexts on the Critical Path

In this section, we develop a simple model to gain intuition about the e�ect of multiple

contexts on processor utilization and critical path execution time. This simple model shows

that the processor utilization reaches a peak utilization once it has enough contexts to

completely tolerate latency. It also shows that if we increase the number of contexts beyond

the minimum required to tolerate all the latency, the runtime of a critical thread su�ers.
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We consider a number of important special case scenarios including cases where there are

threads spin-waiting, and cases in which the application is bandwidth limited. If threads are

spin-waiting then both the processor utilization and the critical path su�er because spinning

threads use processor cycles doing synchronization tests and generating unnecessary context

switches. Limited memory and network bandwidth limits the e�ectiveness of multithreading

when there is not su�cient bandwidth to handle the increased number of requests coming

from the multiple contexts.

The simple model neglects cache and network e�ects that occur when there are multiple

contexts. These e�ects are incorporated into the model in Section 3.3. Thread prioritization

is incorporated to the model in Section 3.4.

3.2.1 Total Work and the Critical Path

As discussed in Chapter 2, a general task graph can be viewed as a DAG in which the

nodes represent the tasks, and the edges represent the dependencies between tasks. The

total work in a DAG is simply de�ned as the total number of tasks, and the computation

depth is the length of the longest directed path in the DAG. Borrowing notation from

Blumofe [11], we de�ne TN as the time to execute the DAG with N processors using a

best case schedule. In this case T1 represents the total work of the computation, and T1

represents the computation depth. Trivially, it is clear that TN � T1=N , and that TN � T
1
.

Brent's theorem [14] shows further that TN � T1=N + T
1
. The important intuitive idea is

that the execution time is limited by two factors: �rst by the amount of work that has to

be done, and second by the critical path through the DAG.

3.2.2 Previous Models

Previous work on modeling the e�ects of multiple contexts has concentrated on the ability

of multiple contexts to increase processor utilization, and in this way execute more work in

a given amount of time [2, 81, 46, 74]. Agarwal [2] presents a model in which he considers

the e�ects of context-switch overhead, network contention, and cache interference due to

the multiple contexts. Saavedra-Barrera, Culler, and Eicken [81] develop a mathematical

model in which they identify three operation regimes for multithreaded contexts: a linear

region in which processor e�ciency is proportional to the number of threads, a transition

region, and a saturation region in which the e�ciency depends only on the run length

between context switches and the context switch overhead. This model takes into account

variable run lengths by assuming that the run length of a thread is a random variable

having a geometric distribution, and includes a �rst order model of the cache e�ects of

multiple contexts. They do not take into account the variation in memory latency due to

increased memory tra�c. A number of researchers including Johnson [46] and Nemawarkar

et. al. [74] have emphasized the importance of incorporating the feedback e�ects between the

subsystems of the multiprocessor, especially the feedback that occurs between the processor



50 CHAPTER 3. THREAD PRIORITIZATION

and the network. They show with a limited number of memory requests per processor,

latency and the maximum message rate are limited. Neither of these studies considers

cache e�ects.

The main emphasis of all these models is evaluating performance based on processor e�-

ciency or utilization. Thus, they address the issue of executing large amounts of work, but

do not address the issue of how the critical path is a�ected by the scheduling of the multiple

contexts. Also, they do not consider long synchronization latencies or the particular e�ects

of spin-waiting synchronization. The following sections examine these issues.

3.2.3 Metrics and Parameters

We consider two metrics when examining multiple context execution: the utilization U , and

the runtime of a critical thread Tc. U is the fraction of time that the processor spends doing

useful work, and Tc is the amount of time it takes a critical thread to complete execution.

In evaluating the e�ect of multiple contexts on Tc we will typically be interested in the

critical thread runtime ratio Tc=Tc1 where Tc1 is the runtime of the critical thread when

there is only one context. It is important to note that the lengthening of the runtime of

a critical thread does not necessarily translate into a lengthening of the application run

time. Consider for instance a computation in which all the threads have the same total

runtime. Although the run time of each individual thread is increased by the multithread-

ing, improving performance relies almost entirely on the processor maximizing processor

utilization. However, if the application is critical path limited, then the increased runtime

of a critical thread will have an e�ect on the overall application runtime.

The metrics U and Tc=Tc1 are quanti�ed in terms of a number of basic parameters shown in

Table 3.1. P is the number of contexts, R is the run length between context switches, C is

the context switch overhead, L is the memory latency, and Ic is the number of instructions

executed by the critical thread. The main parameters we will vary are the number of

contexts P and the run length R. We will �rst assume that R and L are independent of each

other and of P. The complete model of Section 3.3 takes into account their interdependence.

For the purpose of calculating the runtime of a critical thread we use the parameter Ic, the

number of instructions executed by a critical thread. The number of context switches done

by the critical thread is just Ic=R. Finally, when we consider spin-waiting, the parameter

Ps corresponds to the number of contexts that are spinning, and Rs corresponds to the time

for a spinning thread to do a synchronization test.

Note that a context switch occurs on every cache miss. In the case that a thread is spinning,

a context switch is performed explicitly by the spinning thread. Also note that we are

assuming that there is only one critical thread on a processor at any given time. The values

for the di�erent parameters shown in Table 3.1 will be used for illustrative purposes in the

following sections.
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Parameter Description Value

P Number of contexts 1-16

R Runtime between context switches 4-64 cycles

C Context switch time 5 cycles

L Latency 20-100 cycles

Lr Cycles required between memory requests 5-20 cycles

Ic Number of instr. executed by a critical thread 1024

Ps Number of spinning contexts 0-16

Rs Time to do a synchronization test 5 cycles

Table 3.1: Basic model parameters.

3.2.4 Basic Model

Figure 3.1 shows a simple diagram of how execution proceeds on a single processor, as-

suming there are P contexts, scheduled in round-robin fashion. There are 2 cases to be

considered. In the �rst case (Figure 3.1a), the computation is communication bound, mean-

ing that the latencies are long enough that there are not enough contexts to hide all the

latency ((P � 1)R+PC < L). In the second case (Figure 3.1b), the computation is compu-

tation bound meaning that there are enough threads to hide all the communication latency

((P � 1)R + PC > L). In general, assuming P threads executing at once, the processor

utilizations in the communication limited region (Ucomm) and in the computation limited

region (Ucomp) are given by the following equations:

Ucomm =
PR

R+ L

(3:1)

Ucomp =
R

R+ C

(3:2)

This tells us something about the processor utilization, but it does not tell us anything about

the critical path. To study this, suppose that thread 1 of the P threads being executed is

on the critical path, and consider how the other executing threads a�ect the performance

of this critical thread. If the computation is communication bound and we assume a thread

is ready to begin executing as soon as its long latency memory request is satis�ed1, then

to �rst order there will be no e�ect on the critical path. If however the computation is

computation bound, then on each cache miss the critical path will be increased by an

1This assumes a signaling mechanism in which contexts waiting for long latency operations are inactive,

and are woken up when the memory request is satis�ed. If contexts are polling instead of stalling, there is

extra delay due to extra context switching. The e�ect of polling is the same as the e�ect of spin-waiting

discussed in the next section.
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amount (P � 1)R + PC � L. In terms of the basic parameters, it is easy to show that

the execution time of the critical thread in the communication limited (Tc comm) and the

computation limited (Tc comp) regions is given by:

Tc comm = Ic + ((Ic=R)� 1)L (3.3)

� (Ic=R)(R+ L) (3.4)

Tc comp = Ic + ((Ic=R)� 1)((P � 1)R+ PC) (3.5)

� (Ic=R)P (R+ C) (3.6)

(Ic=R� 1) is the number of times the critical thread context switches, and the approxima-

tions in equations 3.4 and 3.6 hold when (Ic=R) >> 1.

Figure 3.2 shows the utilization U , and the ratio Tc=Tc1. With small values of R it takes

more threads for the processor to be working at its maximum utilization rate, and this

maximum utilization rate increases with increasing R. The runtime of the critical thread

remains una�ected until there are more contexts than necessary to tolerate latency at which

point it begins to increase. Thus Tc is made worse by increasing R and there is a tradeo�

between guaranteeing maximum U and minimizing Tc. Tc=Tc1 is also worse for L=20 than

for L=100 because the computation limited region is reached sooner, and the extra delay

due to the increased number of contexts is more important.

3.2.5 Spin-waiting Synchronization

When spin-waiting is used to do synchronization in a multiple-context processor, both pro-

cessor utilization and the critical path performance can su�er. Synchronization performance

is a very important parameter of any parallel processor, especially in terms of latency tol-

erance, because the latencies can be much longer than simple remote reference latencies.

Spin-waiting is an attractive, low overhead way of allowing threads to wait at a synchroniza-

tion point without incurring the overhead of swapping the thread out of the context [71].

The thread repeatedly checks a value in shared memory until it becomes equal to a certain

value, at which point the synchronization condition is satis�ed, and the thread can proceed

beyond the synchronization point.

In multiple-context processors, several threads may be spin-waiting in di�erent contexts on

the same processor. Processor utilization can su�er because each time a spinning thread

unsuccessfully checks a synchronization variable, it uses cycles to do the context switching

and to do the 
ag checking. These cycles could potentially be used by some other thread to
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Figure 3.1: Multithreading using P contexts. a. Communication bound ((P � 1)R+ PC <

L). b. Computation bound ((P � 1)R+ PC > L).
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Figure 3.2: U and Tc=Tc1 for di�erent values of R (4, 8, 16, 32) and L (20, 100).
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Figure 3.3: Multithreading assuming some threads are spin-waiting. D is the extra time

added to the execution of a critical thread. a. Communication bound ((P � Ps � 1)R +

PsRs + PC < L). b. Computation bound ((P � Ps � 1)R+ PsRs + PC > L).

do useful work. The runtime of a critical thread can also su�er because the critical thread

is delayed while other threads execute spin-wait cycles.

The e�ect on processor utilization and the critical path is illustrated in Figure 3.3. The

time D represents the extra delay in the critical path execution for each time the critical

thread context switches. A spinning thread checks its 
ag and if it is unsuccessful does a

context switch
2
. Some threads are shown as spin-waiting, and some threads are shown as

doing useful work. In this case we use two additional parameters to express the processor

utilization: the number of spinning threads, de�ned as Ps, and the time to do an unsuccessful

check of the synchronization variable, de�ned as Rs. The computation is communication

bound when there is su�cient latency for all spinning threads to check their synchronization

variable at least once, and all the non-spinning threads to take a cache miss. This is true if

(P � Ps � 1)R+ PsRs + PC < L. Otherwise, the computation is computation bound. The

resulting equations for the expected values of the processor utilization and the critical path

thread are shown in equations 3.7 through 3.10.

Ucomm �

(P � Ps)R

R+ L+ Ps(Rs + C)=2
(3:7)

2A number of di�erent policies are possible when spin-waiting that involve deciding on whether to spin,
to swap out the thread and free the context, or to spin multiple times before eventually swapping [67].
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Figure 3.4: U and Tc=Tc1 when threads are spin-waiting for di�erent values of R (4, 8,

16, 32, 64) and L (20, 50). a. Processor utilization U assuming that there are 16 threads

running and that an increasing number of these threads are spin-waiting. b. Critical thread

runtime ratio Tc=Tc1 assuming that only one thread is running and all the other threads are

spin-waiting.
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Ucomp =
(P � Ps)R

(P � Ps)R+ PsRs + PC

(3:8)

Tc comm � Ic + ((Ic=R)� 1)(L+ Ps(Rs + C)=2)

� (Ic=R)(R+ L + Ps(Rs + C)=2) (3.9)

Tc comp = Ic + ((Ic=R)� 1)((P � 1� Ps)R+ PsRs + PC)

� (Ic=R)((P � Ps)R+ PsRs + PC) (3.10)

Note that equations 3.7 and 3.9 assume that the processor will have to run through exactly

half the spinning contexts before resuming execution of the critical thread (Ps(Rs + C)=2

cycles).

Figure 3.4a shows U when there are 16 threads, and the number of these threads that

are spinning is gradually increasing from 1 to 16. Utilization drops o� as an increasing

number of spinning threads begin using cycles. The curves are the same when L=20 as

when L=100 because the processor is always in the computation bound region with this

number of threads.

Figure 3.4b shows Tc=Tc1 in a slightly di�erent situation: only one thread is running useful

instructions, and all the other threads are spinning. When the latency is only 20 cycles, there

is a very large impact on the runtime of a critical thread because the time to switch through

all the other spinning contexts is much longer than the 20 cycles for the critical reference

to be satis�ed. When the latency is 100 cycles, the time spent running through the other

contexts is not so important since the critical thread would have had to wait a long period

anyway. The discontinuity of the curves at 3 contexts for L=20, and at 11 contexts for L=100

represent transitions from the communication bound region to the computation bound

region, and are due to the simplifying assumptions we made regarding the communication

bound region. We assumed once the critical reference was ready the processor would still

have to on average run through half the spinning threads before resuming the critical thread.

In fact we expect the model to show several discontinuities in the communication bound

region as the number of spinning threads increases: in some cases the timing is such that

the processor has to switch through only a few of the spinning contexts before resuming the

critical thread, and in other cases the processor may have to switch through many spinning

threads.

These example shows that the spinning threads negatively a�ect both the utilization and

the runtime of the critical thread by consuming processor resources. As in the basic model,
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the runtime of a critical thread increases the most when latencies are short and there are

many contexts.

3.2.6 Memory Bandwidth E�ects

Memory bandwidth can limit the e�ectiveness of multiple-contexts, reducing processor uti-

lization and increasing the runtime of the critical path. The previous cases do not consider

the e�ects of limited memory bandwidth. All the memory requests are pipelined, and L

was taken to be independent of the number of contexts. It is useful to consider the other

extreme, in which all memory accesses are serialized. This case is shown in Figure 3.5. If

R+C < L the processor is communication bound and the multiple contexts will be ine�ec-

tive in tolerating latency. All contexts will have outstanding references and each of these

references has to wait until all the outstanding references that have been issued before it

are handled. If on the other hand R+C > L then the processor is computation bound and

utilization will be good with just two threads. At most one context will have an outstanding

reference at any given time. The processor utilization in each of these cases is:

Ucomm =
R

L

(3:11)

Ucomp =
R

R+ C

(3:12)

It is worth noting that in the second case, having more than two contexts can still be useful

in covering up transient variations in the run length R i.e. if there are sections of code in

which R + C < L so that the number of outstanding memory requests increases, followed

by sections of code in which R+C > L so that the number of outstanding memory requests

decreases. The runtime of the critical thread in each of these scenarios becomes:

Tc comm = ((Ic=R)� 1)PL+R

� (Ic=R)PL (3.13)

Tc comp = Ic + ((Ic=R)� 1)((P � 1)R+ PC)

� (Ic=R)P (R+ C) (3.14)

Figure 3.6 shows U and Tc=Tc1 for di�erent numbers of contexts assuming the memory
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Figure 3.5: Multithreading in a single processor multiple-context system, assuming memory

requests cannot be pipelined. a. Communication bound (R + C < L). b. Computation

bound(R + C > L).

requests cannot be pipelined. Maximum utilization is always reached with 2 contexts. When

L=100 the processor is always communication bound and utilization is low. Tc increases as

soon as there is more than 1 context per processor because either the thread is waiting for

other threads' requests to be issued and satis�ed, or it is waiting for other threads to �nish

executing.

This simple example shows that limiting memory bandwidth can seriously limit the e�ec-

tiveness of multiple contexts to tolerate latency related to local misses in the cache, and

can also cause a large increase in the runtime of a critical thread. In the case that memory

requests cannot be pipelined to a memory module, multiple contexts will provide very lim-

ited latency tolerance for local accesses. Note however that the multiple contexts will still

be useful in tolerating remote latencies since requests that have to go through the network

will typically be pipelined.

Pipelined Memory Systems

The large negative e�ect memory bandwidth can have on processor utilization and critical

thread execution time implies that in order to tolerate local misses using multiple contexts

there must be su�cient local bandwidth. This in turn implies the use of more complicated

memory systems, such as the use of interleaved memory banks in order to allow the pipelin-

ing of memory requests to a single memory module. Such a pipelined memory system is

characterized not only by its latency L, but also by its throughput or bandwidth. The

throughput determines how often the memory can accept a memory request. We de�ne Lr
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Figure 3.6: U and Tc=Tc1 assuming references cannot be pipelined, for di�erent values of R

(4, 8, 16, 32, 64) and L (20, 100).

as the minimum number of cycles between memory requests. For instance, a 4-way inter-

leaved memory might have a latency L of 20 cycles, and a throughput of 1 request every 5

cycles (Lr = 5). A non-pipelined system simply implies that Lr = L and a fully pipelined

system implies that Lr = 1.

Given a �nite memory bandwidth, we �nd that an application will be communication limited

if R+C < Lr and will be computation limited if R+C > Lr. Figure 3.7a and 3.7b show each

of these scenarios starting from an initial state in which there are no outstanding memory

requests. It is obvious that the equations for the processor utilization and the runtime of a

critical thread will be the same as equations 3.11 through 3.14 with L replaced by Lr. Even

with a pipelined memory system the application can be limited by the memory bandwidth.

For the purposes of our simulations in later chapters, we will distinguish between the mem-

ory latency and the memory throughput or bandwidth, and we will explicitly take into

account the serialization of memory requests at each node. Assuming that the throughput

is su�cient, the memory latency tolerance properties of multiple contexts have a chance of

being e�ective.
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Figure 3.7: Multithreading in a single processor multiple-context system, assuming memory

requests can be pipelined at a rate of one request every Lr cycles with a latency of L. a.

Communication limited (R+ C < Lr). b. Computation limited (R+ C > Lr).

3.2.7 Network Bandwidth E�ects

To �rst order, the e�ect of limited network bandwidth is the same as the e�ect of limited

memory bandwidth. The network input and output port can only accept a message once

every Lr net cycles, and once a message is sent, it requires a latency of Lnet for a response

to come back. In practice, the situation is more complicated.

First of all, the latency through the network is dependent on the tra�c in the network, and

this depends on the activity of the other processing nodes. The next section discusses a

model that takes the network into account when calculating the network latency. Second,

there may be additional queuing delays at the remote processor's memory, especially if this

memory is not highly pipelined. This component of the latency depends on how busy the

remote memory module is. Third, the rate at which the network can accept messages or

the minimum number of cycles between message sends Lr net is variable because there can

be contention for the outgoing network channel, that can delay the launching of a message.

Though the dependencies are more complicated, the implications are the same as for the

memory bandwidth. If there is insu�cient network bandwidth, both U and Tc su�er.
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3.3 Network and Cache E�ects

Section 3.2 looked at a �rst order model in which the parameters R and L were considered

to be independent of the number of contexts P. In fact, the average run length R decreases

with P, and the latency L increases with P. The run length R decreases because the cache

miss rate increases when more contexts use the same cache. The latency L increases because

with an increasing number of contexts the number of outstanding requests to the network

increases, thus increasing the network load and latency. This section �rst considers these

e�ects independently, and then incorporates them into the multiple-context model.

3.3.1 Network Model

We consider a packet-switched, direct interconnection network, of the k-ary n-cube class.

A model for the latency associated with such a network was derived by Agarwal [1] and

we use the model in the same way as he uses it to estimate the expected response time

for a multiple context processor [2]. This model assumes cut-through, dimension ordered

routing. It also assumes in�nite bu�ering at the switch nodes, uniform tra�c rates from all

the nodes, and uniformly distributed and independent message destinations. This model

gives the following expression for the average remote latency:

L =

0
@1 + �B

1

kd

�
1�

1

kd

�
(1� �)

1
A
h+B +M � 1 (3:15)

� =
irBkd

2
(3:16)

In these equations, M is the memory access time, B is the message size, h is the number of

network switch delays and depends on n, the network dimension, and k, the network radix,

� is the network channel utilization, kd is the average distance traveled by a message in a

given dimension, and ir is the per node message injection rate. The delay L is the sum of

the memory access time (M), the pipeline delay (B-1), and the h switch delays, h=2 hops

for the request and reply respectively. The per hop contention delay is a function of the

channel utilization �, the message length B, and the average distance in a dimension kd
3.

The average number of hops kd in any given dimension assuming bi-directional channels

with no end-around connections can be shown to be kd =
k�1=k

3
�

k

3
. The expression for

the channel contention � assumes that there are separate channels in each direction, or 2n

channels per switch.

3A slightly more accurate result includes an extra (1 + 1=n) factor to the per hop queuing delay. The

expression shown is the same approximation used in [2].
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The channel utilization is a function of the injection rate ir. The injection rate depends on

the number of contexts and the regime of operation. Speci�cally, from Figure 3.1, ir in the

communication and computation limited regions is given by:

ir comm =
2P

R+ L

(3:17)

ir comp =
2

R+ C

(3:18)

The factor of two accounts for the fact that messages are generated both for requests and

for responses. The network delay without contention is de�ned as Lo = h +M + B � 1.

Using this expression, as well as kd = k=3 and h = 2nkd, we �nd two expressions for L

depending on whether the thread is communication bound or computation bound:

Lcomm =
Lo

2
+
BPk

6
�

R

2
+
1

2

s�
Lo �

BPk

3
+R

�
2

+ 8PB2
n

k

3

�
1�

3

k

�
(3.19)

Lcomp = Lo +
2nB2(

k

3
� 1)

C + R�B
k

3

(3.20)

The expected latency for the parameters of Table 3.2 and di�erent values of R are shown in

Figure 3.8. In the communication bound region, latency increases approximately linearly

with the number of contexts, and becomes constant if and when the computation bound

region is reached. As noted in other studies [46, 74], in the communication bound region

with a �nite number of outstanding transactions per processor, there is feedback between

the network and the processor such that the message injection rate and latency do not

become unbounded. The more outstanding references per processor there are, the higher the

injection rate, the longer the latencies become, which in turn causes the message injection

rate to decrease. Latency per hop does not become unbounded as in studies which decouple

the injection rate from the network [22, 1], but rather reaches a steady state at which

the injection rate is equal to the network service rate. Johnson [46] shows that the per

hop latency tends to a limiting constant when the network becomes very large (kd ! 1).

Nemawarkar et al. [74] shows that the rate at which each processor sends messages increases

with P only as long as the network remains unsaturated.

Once the computation bound region is reached, the latency becomes constant since the in-

jection rate is constant. In practice, increasing the number of contexts beyond the minimum

required will cause R to decrease because of increased cache interference. This is discussed
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Figure 3.8: Predicted latency for di�erent values of R (4, 8, 16, 32).

in more detail in the next section.

3.3.2 Cache Model

Intuitively, having multiple contexts will lead to decreased cache performance because the

cache will contain the working sets of multiple threads at once. The miss rate for each

thread will be larger than it would be if the thread were running with only its own working

set in the cache, resulting in lower values of R, and higher values of (Ic=R). This means

there will be more context switches and a longer critical path.

Determining an analytical model for how multiple contexts will a�ect cache performance

is a tricky problem. Cache behavior is highly problem and machine dependent, and cache

miss rates vary widely depending on the cache size, the working set size, and data reference

pattern. A number of di�erent models have been used to approximate these cache e�ects,

and found to be useful in predicting the e�ect of cache behavior.

Saavedra-Barrera et al. [81] use a simple approximation which divides the cache evenly

between the di�erent contexts, and then uses results from the uniprocessor domain to

estimate the e�ect of multiple contexts. Speci�cally, they note that the cache miss rate m

can in general be approximated as m = AS
�K

where S is the cache size, and A and K are

positive constants that depend on the workload. Using this relationship, they show that the

miss rate for P contexts m(P ), and the corresponding run length R(P) can be expressed as:
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m(P ) =

8>><
>>:

m1P
K

ifP �

j
m

�1=K

1

k

1 ifP >

j
m

�1=K

1

k (3:21)

R(P ) =

8>><
>>:

R1P
�K

ifP �

j
R

1=K

1

k

1 ifP >

j
R

1=K

1

k (3:22)

m1 and R1 are the miss rate and the run length for a single context. Typical values of K

range from 0.2 to 0.5. Note that this model does not take into account data sharing between

processors that can result in misses due to invalidations.

Agarwal [2] does a more detailed analysis, and considers a breakdown of the miss rate

in terms of its di�erent components. Speci�cally, the steady state miss rate consists of

the non-stationary component due to misses that bring blocks into the cache for the �rst

time, the intrinsic miss rate due to the size of the cache, the extrinsic interference due to

the multi-threading, and the invalidation miss rate due to coherence related invalidations.

Qualitatively, the model we use and Agarwal's models are similar. Both attempt to capture

the cache e�ects based on the problem characteristics, speci�cally working set size, cache

size, and data reference pattern. In the model we use, low values of K imply either a high

�xed miss rate, or a small working set size in Agarwal's model, resulting in small change in

the run length R with increasing P. Conversely, a large value of K implies a large intrinsic

miss rate and a large working set size. In Agarwal's model, the e�ects of �xed miss rate are

isolated from the e�ects of the intrinsic miss rate more clearly, rather than lumped together

into a single parameter.

3.3.3 Complete Model

The complete model incorporates the network model and the cache model into the basic

model of Section 3.2.4. Thus both the latency L and the runtime between context switches

R are now functions of the number of contexts P. For simplicity we will use the simple cache

model used by Saavedra-Barrera which gives the following expression for the runtime R:

R = R1P
�K

(3:23)

The calculation is communication bound when (P �1)R1P
�K +PC < L, and computation

bound when (P � 1)R1P
�K

+ PC > L. Note that L depends on P and the network

as determined by the latency equations 3.19 and 3.20. Substituting equation 3.23 into

equations 3.1 and 3.2 we �nd the following equations for the processor utilization:
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Parameter Description Value

M Memory latency 20 cycles

C Context switch time 5 cycles

B Message length 4

n Network dimension 3

k Network radix 8

Table 3.2: Baseline system parameters.

Ucomm =
PR1P

�K

R1P
�K + Lcomm

(3:24)

Ucomp =
R1P

�K

R1P
�K + C

(3:25)

Similarly, substituting into equations 3.4 and 3.6 we �nd the following equations corre-

sponding to the communication bound and the computation bound cases respectively:

Tc comm � (Ic=(RP
�K

))(R1P
�K

+ Lcomm) (3:26)

Tc comp � (Ic=(RP
�K

))P (R1P
�K

+ C) (3:27)

3.3.4 Discussion

Having developed a simple model for the e�ects of multiple contexts on both the processor

utilization and the critical path, we now look at the implications of this model. For this

purpose, we will use the parameters shown in Table 3.2.

Region of Operation

The �rst question of interest is whether the system is working in the communication or the

computation bound region. As we will show in Section 3.4, only in the computation bound

region are we able to in
uence the execution time of a critical thread. Figure 3.9 shows

curves that correspond to the work available for overlap minus the latency (P�1)R+PC�L.

Whenever the latency is smaller than the work available for overlap, the processor is in

the computation bound region, otherwise it is in the communication bound region. The
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Figure 3.9: Region of operation for di�erent values of R (8, 16, 32) and K (0.0, 0.2, 0.5).

The curves plot (P �1)R+PC�L which is just the work available to overlap with latency,

minus the latency. The processor is computation bound when the curve is above 0 and

communication bound when the curve is below 0.

curves are shown for di�erent single processor run lengths, and di�erent values of the cache

degradation index K.

For low values of R, the processor may never reach the computation bound region of oper-

ation due to the extra network tra�c causing latency to increase at a faster rate than the

extra work available to each processor. The lower bound on R for which the computation

bound region is reached increases as the cache degradation factor increases. Thus when K

= 0.2, the R = 8 curve no longer reaches the computation bound region, and when K =

0.5, neither does the R = 16 case. Increasing K both reduces the average run length R, and

increases the network latency.

Processor Utilization

Figure 3.10a shows the processor utilization for di�erent values of R and K. These curves

are much the same as the results found in [2, 81]. Initially utilization improves almost

linearly with the number of contexts, until it becomes computation bound at which point

adding more contexts decreases the utilization because of decreased cache and network

performance4. It should be noted that except in the case that cache e�ects are very high

(K = 0.5), the processor utilization remains quite close to its maximum value even when

4Saavedra-Barrera et.al. [81] also identify the transition region where utilization increases, but at a less

than linear rate. This transition region is caused by variations in the run length R. In the transition region
the processor is sometimes compute bound if there is a series of long run lengths, and sometimes latency
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Figure 3.10: U and Tc=Tc1 for di�erent values of R (8, 16, 32) and K (0.0, 0.2, 0.5).

there are more contexts than required. This is because in the computation bound case, the

message injection rate remains relatively constant, and increases only slightly due to cache

performance degradation.

Critical Thread Runtime

Figure 3.18b shows the increase in the runtime of a critical thread with multiple contexts.

The runtime of a critical thread now increases more than just linearly with the number of

contexts as it did in the basic model. The decreased cache performance causes the critical

thread to cache miss more often, and the increased number of contexts causes the network

latency to increase.

3.3.5 Cache and Network E�ects with Spin-Waiting and with Limited

Bandwidth

The cache and network e�ects can be incorporated into the spin-waiting models and band-

width limited models, with similar implications as when it is incorporated into the basic

model.

When there are threads spin-waiting, to �rst order the spinning threads do not generate any

limited if there is a series of short run lengths. Adding more contexts causes the processor to be more and

more in the computation bound region. With su�cient contexts it will be in this region with very high
probability.



68 CHAPTER 3. THREAD PRIORITIZATION

network tra�c since they repeatedly hit in the cache. Also, aside from the synchronization

variable the spinning threads' working sets do not have to be in the cache. As a result,

the cache e�ects and the network e�ects will not be as signi�cant as when all threads

are executing. With limited bandwidth, there is an additional constraint on the message

injection rate: the injection rate cannot exceed the maximum bandwidth of the memory

and network systems.

3.4 Thread Prioritization in the Multithreaded Model

In this section, we examine the e�ect of thread prioritization on the multithreading models

discussed in Sections 3.2 and 3.3. For the simple model, thread prioritization improves

the runtime of the critical thread by allowing it to proceed as soon as it is able, rather

than executing other ready threads. If spin-waiting is used, thread prioritization improves

both processor utilization and the runtime of a critical thread by avoiding unnecessarily

switching to threads when they are spinning. If the application is either memory or network

bandwidth limited, prioritizing the use of the available bandwidth also improves the runtime

of the critical thread.

The complete model shows that provided the processor reaches the computation limited

region, prioritizing threads appropriately can improve both processor utilization, and the

runtime of the critical thread. We can prioritize threads so as to avoid the negative cache

e�ects of having more contexts than needed to reach the computation limited region, thus

improving utilization. If a critical thread is given the highest priority, it will execute when-

ever it is able, and thus its runtime will improve.

3.4.1 Prioritizing Threads in the Basic Model

Consider the basic model of section 3.2.4. In the communication bound case, there is little

that can be done about reducing the critical path. In the computation bound case however,

the critical path is lengthened by the fact that there are more threads than necessary

to tolerate latency. If we are not restricted to round-robin scheduling, then the critical

thread could begin executing as soon as its memory request was satis�ed. This is shown in

Figure 3.11. In Figure 3.11a we assume that scheduling is non-preemptive so that the critical

thread only resumes execution on the next context switch. In Figure 3.11b we assume that

scheduling is preemptive so that the currently executing thread is interrupted as soon as the

critical thread memory reference is satis�ed. The expressions for the processor utilization

remain essentially the same as equations 3.1 and 3.2. Similarly, the expression for the

communication bound case, Tc comm, is still given by equation 3.4. However, the runtime

for the critical thread in the compute bound case changes to:
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Tc comp � Ic + ((Ic=R)� 1)(L+R=2 + C) with nonpreemptive scheduling

� (Ic=R)(3R=2+ L+ C) (3.28)

Tc comp = Ic + ((Ic=R)� 1)(L+ C) with preemptive scheduling

� (Ic=R)(R+ L+ C) (3.29)

In the �rst case
5
, the critical path is increased by an average amount of (Ic=R)(R=2+C) and

in the second case, (Ic=R)C. With the prioritized scheduling the increase in the runtime

of the critical thread no longer depends on the number of contexts executing as it does

with round-robin scheduling, but only on R and C. Note that the decision of whether it

is better to context switch immediately or whether it is better to wait until the currently

executing thread misses in the cache involves a tradeo� between processor utilization and

critical path length: switching immediately decreases the critical path length, but incurs

the cost of a premature and unnecessary context switch, whereas waiting until the next

cache miss increases the critical path length slightly, but does not incur the premature

context switch. Figure 3.12 shows Tc=Tc1 when threads are prioritized and when they are

unprioritized assuming preemptive scheduling. Tc=Tc1 increases slightly when the processor

becomes computation bound, but does not increase linearly with P when prioritized.

3.4.2 Prioritizing Threads for Spin-Waiting Threads

Giving a critical thread high priority can also prevent it from being needlessly delayed

by spinning threads. This is illustrated in Figure 3.13, assuming preemptive scheduling

with an immediate context switch upon completion of the long latency reference. When

threads are prioritized the de�nition of when the processor is communication bound and

when it is computation bound changes because now the processor no longer needs to execute

any of the spinning threads before resuming execution of a critical thread. The processor is

communication bound when there are not enough non-spinning threads to keep the processor

busy ((P �Ps�1)R+(P �Ps)C < L), and it is computation bound when there are enough

((P �Ps� 1)R+(P �Ps)C > L). The resulting equations for the processor utilization and

the critical path assuming preemptive scheduling are:

5This expression is approximate, and valid when C << R. A more exact expression assumes that the

critical reference can become satis�ed either during a context switch or while a thread is executing, and that

if it happens during a context switch, another context switch will be required in order to start executing the

critical thread. The expression in this case is (Ic=R)
�
R+ L+ R

R+C
(R=2 + C) + C

R+C
(R+ 3C=2)

�
.
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Figure 3.11: Multithreading with thread prioritization in the computation bound case.

Thread 1 is the critical thread. a. Non-preemptive scheduling. b. Preemptive scheduling.
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Figure 3.12: Comparison of Tc=Tc1 with prioritized (Pri) and unprioritized (Upri) scheduling

for di�erent values of R (4, 8, 16, 32) and L (20, 100).
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Ucomm =
(P � Ps)R

R+ L+ C

(3:30)

Ucomp =
R

R+ C

(3:31)

Tc comm = Ic + ((Ic=R)� 1)(L+ C)

� (Ic=R)(R+ L+ C) (3.32)

Tc comp = Ic + ((Ic=R)� 1)(L+ C)

� (Ic=R)(R+ L+ C) (3.33)

Figure 3.13 makes the assumption that all threads that are not spinning have higher priority

than threads that are. This clearly cannot be the case inde�nitely as the spinning threads

would never execute. The issue of how to prioritize threads in the context of this type

of synchronization depends on the application and we will look at a number of di�erent

scenarios in later chapters.

Figures 3.14 and 3.15 plot U and Tc=Tc1 respectively, when threads are prioritized and

when they are unprioritized. When threads are prioritized, utilization does not fall o�

due to spinning threads wasting cycles, but rather falls o� only once the processor leaves

the computation bound region. Tc=Tc1 increases slightly even when threads are prioritized

due to the overhead of switching to the critical thread once its long latency reference is

satis�ed, but does not increase linearly with the number of contexts as when threads are

not prioritized.

3.4.3 Prioritizing Bandwidth Utilization

In the case that memory or network bandwidth is the limiting factor, then prioritizing the

bandwidth utilization also helps the critical path. Figure 3.16 shows how in a bandwidth

limited situation the prioritization allows the most critical thread to proceed before less

critical threads. In this example thread 1 is critical and this thread's critical reference

will proceed as soon as the desired resource is available. Thread 2 and thread 3 have the

same priority and so they share equally whatever bandwidth remains. Note that though

the processor utilization remains unchanged, the runtime of the critical thread su�ers much

less. Thus when Lr � R + C, the expected value of the critical thread runtime given in
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Figure 3.13: Multithreading with thread prioritization assuming some threads are spin-

waiting. Thread 1 is the critical thread and preemptive scheduling is used. a. Com-

munication limited ((P � Ps � 1)R + (P � Ps)C < L). b. Computation limited

((P � Ps � 1)R+ (P � Ps)C > L).
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Figure 3.14: Comparison of U with prioritized (Pri) and unprioritized (Upri) scheduling

when threads are spin-waiting, for di�erent values of R (4, 8, 16, 32, 64) and L (20, 100).

Assumes that there are 16 threads running and that an increasing number of these threads

are spin-waiting.
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Figure 3.15: Comparison of Tc=Tc1 with prioritized (Pri) and unprioritized (Upri) scheduling

when threads are spin-waiting, for di�erent values of R (4, 8, 16, 32, 64) and L (20, 100).

Assumes that only one thread is running and all the other threads are spin-waiting.

equation 3.13 becomes:

Tc � Ic + ((Ic=R)� 1)(L+ Lr=2)

� (Ic=R)(R+ L+ Lr=2) (3.34)

This assumes that the critical thread has to wait Lr=2 cycles before it can issue its memory

request. Although the runtime still su�ers because the thread may have to wait until

the resource is next available, it no longer has to wait until all previous transactions are

processed. Tc=Tc1 is shown in Figure 3.17 for the case that L = Lr.

3.4.4 Prioritizing Threads in the Complete Model

The e�ect of thread prioritization in the model that takes into account network and cache

e�ects depends on the exact details of how threads are prioritized. For instance, if only a

single thread has a high priority, and all the other threads have the same lower priority,

then as in the basic model the only thing that changes is the expression for the critical

thread runtime in the computation bound case. Speci�cally, equation 3.27 becomes one of
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Figure 3.16: Multithreading with prioritization assuming a bandwidth limited application

(Lr > R+ C). Thread 1 is the critical thread.
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Figure 3.17: Comparison of Tc=Tc1 with prioritized (Pri) and unprioritized (Upri) scheduling

assuming references cannot be pipelined, for di�erent values of R (4, 8, 16, 32, 64) and L

(20, 50).



3.4. THREAD PRIORITIZATION IN THE MULTITHREADED MODEL 75

the following depending on whether the scheduling is preemptive or not:

Tc comp � (Ic=(RP
�K

))(3R1P
�K

=2 + Lcomp + C) with nonpreemptive scheduling (3:35)

Tc comp � (Ic=(RP
�K

))(R1P
�K

+ Lcomp + C) with preemptive scheduling (3:36)

Thus although the critical thread runtime is much better than it was without prioritization,

it is still a�ected by the number of messages in the network and by the negative cache

interference that occurs among all the contexts. By doing more detailed prioritization, it

is possible to minimize this e�ect by adaptively adjusting the number of contexts that are

running to the minimum necessary to tolerate latency. This is discussed in the next section.

E�ect of Prioritization on Processor Utilization

In Figure 3.10 we saw that processor utilization su�ers even when we are in the computa-

tion bound region, because of negative cache e�ects that occur with an increasing number

of contexts. These negative cache e�ects cause a decrease in the runtime between context

switches which in turn incurs more context switch overhead penalties, and causes increased

network tra�c and latency. Ideally, we want to minimize the contexts that are actually run-

ning instructions to the number required to achieve the maximum utilization. Provided the

maximum utilization occurs when the processor is in the computation bound region, we can

prevent the degradation of processor utilization by prioritizing the threads appropriately.

To stabilize the utilization, each thread is given a unique priority. If there are P contexts

available, but only Pn of them are necessary to reach the computation bound region, then

only the Pn highest priority threads will be executing. This is because on a context switch

it is always the highest priority unblocked thread that executes. Thus cache performance

improves because less than the total number of threads are issuing instructions. According

to our simple cache model the miss rate will be m = m1P
�K

n rather than m = m1P
�K

.

This prioritization of threads dynamically restricts the number of threads that are executing

to the minimum required to tolerate the observed latency. Note that when the number of

contexts actively executing instructions is limited to the minimum required, the average

latency L also decreases, since the run length R is longer and there is less network tra�c.

The e�ect on processor utilization is shown in Figure 3.18. Provided the processor reaches

the computation bound region, the processor utilization stabilizes and remains constant

even with an increased number of contexts. If the thread does not reach the computation

bound region, then the prioritization will not prevent the utilization from falling o� with

increasing contexts. In the case that we are communication limited it may be necessary to
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Figure 3.18: Comparison of U with prioritized (Pri) and unprioritized (Upri) scheduling

when loaded threads are uniquely prioritized, for di�erent values of R (8, 16, 32, 64) and K

(0.0, 0.2, 0.5).
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Figure 3.19: Utilization with R=8, K=0.5, and C=10. The peak utilization occurs during

the communication limited region.

statically limit the number of contexts that are executing instructions in order to achieve

the maximum utilization.

The utilization achieved by prioritizing threads in the computation limited region is not

necessarily the maximum achievable utilization rate. Consider for instance the case that 2

contexts executing are just 1 cycle short of being in the computation limited region. Adding

an additional context may put the processor into the computation limited regime, but may

decrease the run length R of all the threads by more than 1 cycle. If the context switch

overhead C were 0, then this still improves utilization to be 100%, but if C is not 0, the

utilization will fall o�. In general it is possible for the processor utilization to achieve its

peak in the communication limited region, and then have lower utilization when in the

computation bound region. An example of this is shown in Figure 3.19. The processor

only reaches the computation limited region with 11 contexts, and is in the communication

limited region before then. Reducing C, increasing R, and decreasing K will reduce this

e�ect since run lengths will su�er less with additional contexts, and C will present a smaller

overhead.

3.4.5 E�ect of Prioritization on the Critical Thread Runtime

Figure 3.20 shows the e�ect on the critical thread runtime when context prioritization

is used. Only one thread is given high priority and all others are given equal priority.
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 c. Critical Thread Runtime Ratio (Tc/Tc1) with R=32
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 d. Critical Thread Runtime Ratio (Tc/Tc1) with R=64
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Figure 3.20: Comparison of Tc=Tc1 with prioritized (Pri) and unprioritized (Upri) scheduling

when the critical thread is given high priority and all other threads equal priority, for

di�erent values of R (8, 16, 32, 64) and K (0.0, 0.2, 0.5).
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All the cases in which the threads are computation bound bene�t substantially from the

prioritization, whereas those that are communication bound do not.

3.5 Limits of the Model

The model described in this chapter is meant primarily to provide intuition about the

possible e�ects of thread prioritization, and makes a number of idealized assumptions.

These include:

1. Uniform run length R: In actuality the run length R is not a constant, and will vary

from a minimum value of 1 cycle to some maximum that is determined by the max-

imum number of cycles that one context can execute before releasing the pipeline.

Furthermore, some studies have shown that the e�ectiveness of multithreading in tol-

erating latency is negatively a�ected by clustered loads in which a rapid sequence

of closely spaced cache misses leads to very short run lengths, so many contexts are

stalled waiting for remote references. The practical consequence of this is that more

contexts are necessary to e�ectively tolerate latency. This situation is somewhat alle-

viated by allowing several memory references from a single context to be outstanding

at once because threads can run longer before context switching [13].

2. Divided cache assumption: The model assumes that the cache is divided evenly be-

tween all the available contexts, and does not consider the e�ects of the threads sharing

a cache. Negative cache e�ects are caused by the di�erent contexts invalidating each

other's data in the cache. Positive cache e�ects are caused by threads having overlap-

ping working sets so that some data in the cache is used by several threads at once.

If these e�ects occur, they tend to change the K parameter in the cache model, thus

a�ecting the run length R. If there are positive cache e�ects, the average latency can

be reduced if threads prefetch data for each other into the cache.

3. Idealized working set behavior: We assume that the cache miss rate is governed by

the relationship m = AS
K. Recent work by Rothberg, Singh, and Gupta [80] that

studies the cache performance based on working sets suggest that the performance

of the cache has a more step-like behavior. Speci�cally, for each thread there is a

hierarchy of working sets, and each time the cache becomes large enough to contain

another level of the hierarchy, cache performance increases in a step like fashion. For

instance if the number of contexts increases beyond the point where their �rst level

working sets all �t into the cache, the drop in cache performance can be substantially

larger than that suggested by the K parameter.

4. Uniform remote latencies: In the model all latencies are assumed to be equal. In fact,

latencies will vary from reference to reference based on locality, and on the type of

reference. For instance, a write operation may require invalidations to be sent and

acknowledged, adding substantially to the latency of the operation. Again this implies
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that the number of contexts required to tolerate latency will be di�erent at di�erent

points in the computation.

5. Constant number of messages per transaction: It was assumed that only a request

and reply message are required for each cache miss. Memory writes may require data

to be invalidated, thus requiring more than two messages per transaction. When more

than two messages are required the base latency increases as does the network tra�c.

6. Uniform tra�c: Real applications will not generate uniform tra�c. This can lead

to two e�ects. First, there can be hot spots in the network, as well hot nodes that

are getting an undue portion of the memory references. This will tend to increase

the latency of remote references. Second, by exploiting locality the latency of remote

memory references can be reduced by reducing the number of hops that each mes-

sage must make. This reduces both the contention free latency L0 and the channel

utilization, and thus the contention delay. By reducing the latency, fewer contexts

are required to tolerate latency, and both the processor utilization and the e�ect of

multiple contexts on the critical path will be reduced.

The main e�ect of incorporating more realistic assumptions into the model is to cause

changes in the basic parameters associated with the model: the number of contexts required

to reach the computation bound region, the cache miss rate, and the latency. Some e�ects

cannot be accounted for in the model. For instance the possibility of step-like behavior in the

cache performance is best examined by simulation. Also, hot spots are highly application

dependent and usually have to be eliminated in the program in order to achieve good

performance.

3.6 Conclusions

The general conclusions to be drawn from the model described in this chapter are the

following:

1. When the processor is computation bound, that is, there are more than enough con-

texts to fully tolerate latency given the average run length R, then prioritization can

substantially improve the runtime of a critical thread. It can also improve proces-

sor utilization by dynamically restricting the number of contexts that are actually

executing to the minimum required to fully tolerate latency.

2. When the processor is communication bound, prioritization is ine�ective in reducing

the run length of the critical path execution. In this case, the only way of reducing

it is to reduce the latency L, and increase the average run length R. The only ways

of doing this are to restrict the number of contexts, and to promote data sharing

between running threads so as to improve both cache and network performance.
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3. When there are spin-waiting threads, thread prioritization can be used to minimize

the cycles consumed by spinning threads.

4. When the application is bandwidth limited, thread prioritization can be used to pri-

oritize the use of bandwidth and substantially improve the runtime of a critical thread

by giving it priority to the available bandwidth. It can dynamically restrict the num-

ber of contexts that are actually executing to the minimum number required to fully

utilize the bandwidth.

The behavior of real programs will be examined in more detail in the following chapters

where a number of benchmarks are run in a simulation environment. These experiments

con�rm the general trends predicted by the model.



Chapter 4

Implementation

This chapter explores the di�erent software and hardware alternatives that are available

for implementing the thread prioritization mechanisms. We look at the performance and

cost of these alternatives to justify the range of cost assumptions made in the following

chapters. We conclude that for loaded threads, prioritizing in hardware is best because

it allows extremely fast context selection on a context switch. For unloaded threads, a

software queuing structure is appropriate, since the frequency of thread swapping is much

lower than the frequency of context switching.

Sections 4.1 and 4.2 examine implementation issues related to loaded thread prioritization,

which include fast implementations of context prioritization, thread stalling based on data

availability, memory request prioritization, and preemptive scheduling. How we implement

context prioritization is crucial because it a�ects performance on every context switch and

on every change of priority. In the case of frequent context switches or frequent changes

in a thread's priority, both these operations must be extremely e�cient. We show that a

simple hardware implementation can minimize the context selection time and the priority

change time, while software implementations can choose the next context e�ciently but

make changing a thread's priority costly.

The memory system must also participate in the thread prioritization for it to be e�ective.

Thread stalling means stalling a thread while it is waiting for data to be returned. Thread

stalling is crucial to multiple-context scheduling because it allows other contexts to use

the pipeline. An alternative to stalling a thread is to have it poll regularly for the data,

but in a multiple context system this leads to contexts consuming cycles doing polling

operations when other contexts could be doing useful operations. To prioritize memory

requests, transaction bu�ers are used. Transaction bu�ers store and track the multiple

outstanding references coming from the di�erent contexts. When several memory requests

that are waiting in transaction bu�ers require the same resource, the highest priority request

is issued.

82
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Finally, we must decide whether scheduling is going to be preemptive or not. Preemptive

scheduling involves forcing a context switch to a higher priority thread if it becomes ready

to execute while a lower priority thread is executing. The performance impact of allowing

preemption depends on the cost of context switching. If the cost is low, forcing an extra

context switch may be better, whereas if the cost is high, it may be better to wait until the

executing thread wants to context switch.

Section 4.3 examines unloaded thread prioritization. Unloaded thread prioritization is done

by software and consequently has considerable 
exibility. However, it can bene�t from

a mechanism to preempt a lower priority loaded thread when a higher priority unloaded

thread becomes available.

4.1 Context Prioritization

Context prioritization has two costs: the cost of selecting the next context to run on a

hardware context switch or the context selection cost, and the cost of changing the priority

of a loaded thread or the priority change cost.

The context selection cost is added to the hardware context switch time to determine the

total context switch time. Context switches are frequent, so this cost must be low. The

impact of the priority change cost depends on how frequently thread priorities change.

In the case that it occurs frequently, the cost must be low, but if priorities only change

infrequently, then a higher cost is acceptable.

A number of alternatives for implementing both context selection and priority changing are

possible. The alternatives range from very high performance, hardware intensive solutions,

to lower performance and lower cost software solutions. These options are described below.

4.1.1 Hardware

In this implementation, each context has a priority register which contains the priority of

the loaded thread, and these values feed into a combinational comparator circuit that selects

the next context to schedule. A diagram of this logic is shown in �gure 4.1. The comparator

logic takes as inputs the priorities of all the contexts, and for each context outputs a bit that

indicates whether the context has one of the highest priority loaded threads (implements a

MAX function). The round-robin selection logic takes these outputs as inputs and schedules

all the high priority threads in round-robin fashion.

A one bit slice of a 4-input MAX circuit is shown in �gure 4.2. For an N-bit priority, N slices

are needed to implement the complete comparison. A MAX circuit for a 4-bit priority is

shown in �gure 4.3. An output of the least signi�cant bit is a 1 if the given context contains
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Figure 4.1: Logic for selecting the next context on a context switch. The comparator logic

chooses all threads with the highest priority, and the round-robin selection logic chooses

among the highest priority threads.

a thread of the highest priority. The hardware cost of an individual bitslice grows as O(C),

where C is the number of contexts. Thus the size for the complete N-bit comparator is

O(NC). If a context is not loaded with a thread, the carry-in of the highest priority bit

for that context can be set to 0, thus guaranteeing that it will have lower priority than all

other contexts that are loaded.

For large N, this circuit will be slow due to the long carry-chain dependence and will

require several processor cycles to evaluate. An alternative is to use a tree of two-way

comparators rather than the single N-way comparator. The advantage of this is that the

this time can easily be reduced to time that is proportional to log(N)log(C) using carry-

select techniques [107] in each two-way comparator, and allowing comparisons to proceed

in parallel. This circuit is described in Appendix A.

Using this implementation it takes zero cycles to choose the next thread to execute on

a context switch since the circuit continuously outputs the next choice. A single cycle

is needed to change the priority of a loaded thread. The principal cost of this hardware

implementation is the cost of the priority registers, one 64-bit register for each context, and

the cost of the comparator. If we require fewer priority levels, then we can use smaller

registers.
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Figure 4.2: Bit slice of the MAX circuit for 4 contexts.
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Figure 4.3: MAX circuit for 4 contexts with 4-bit priorities.
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4.1.2 Software

It is possible to do both context selection and priority changing using software with min-

imal hardware support. A fault occurs on a cache miss, and the fault routine selects the

next context. The April processor uses a 6 cycle trap routine to do round-robin context

switching [5]. Waldspurger and Weihl [101] present one scheme for doing this which uses

dedicated registers in each context to contain a thread queue data structure which the pro-

cessor uses to do software context switching. Each context has its own registers, three of

which are used to store an IP, a pointer to the next context, and a Processor Status Word

(PSW). On a context switch, 4 to 6 cycles are required to set up the processor to point to

the next context's registers, load the PSW, and jump to the new thread's IP
1
. These values

are kept in registers so that no memory data structures are being used. Although they

looked only at round-robin scheduling, they suggested adapting the scheme to implement

more complicated prioritized schemes.

A simple modi�cation to the Waldspurger and Weihl scheme would chain loaded contexts

into priority groups. A typical context switch from one context in a group to another context

in a group would require just their simple 4 to 6 cycle context selection cost, or less if the IP

and PSW registers are duplicated for each context. The cost of changing a priority however

would be much higher, in the range of 10's of instructions, as it would require deleting

the thread from one group and putting it in another. In this scheme instructions would

only be running from threads with the highest priority, and threads with lower priority in

other contexts would be idle. One can imagine more complicated data structures, but more

complicated data structure will either consume more resources if stored in registers, or have

to be stored in memory resulting in slower context switching. Also, as we will discuss in

Section 4.2, incorporating thread stalling with this software approach is di�cult.

4.1.3 Hardware/Software

To reduce the hardware cost, a combination of hardware and software can be used to

prioritize the contexts. Rather than maintaining a priority register for each context, the

runtime system maintains a software priority queue in memory, and uses a single hardware

context control register (HCCR). The hardware control register could consist of Clog2C bits,

log2C bits for each context, with each set of bits being a hardware priority for each loaded

thread. The software has the job of translating the N-bit software priorities into log2C bit

hardware priorities that maintain the same relative ordering of the loaded threads. The

hardware priorities of the contexts then determine which context to select on a context

switch using the same circuit as for the pure hardware case, except that a factor of
N

log2C

less register and comparator area is needed.

1Their scheme aims at having a 
exible number of contexts, and a 
exible number of registers per context.
This is not our goal here, but the method of context switching is still applicable.
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Alternative Context Selection Priority Change

Cost Cost

Hardware 0 cycles 1 cycle

Software 4-6 cycles O(C) cycles

Hardware/Software 0 cycles O(C) cycles

Table 4.1: Summary of context selection costs and priority change costs for di�erent imple-

mentation schemes, assuming C contexts.

Alternative Approximate Hardware Costs

Hardware C priority registers of N bits

O(NC) comparator area

Software none

Hardware/Software hardware control register of Clog2C bits

O(Clog2C) comparator area

Table 4.2: Summary of major hardware costs for the di�erent implementation schemes,

assuming C contexts, and N-bit priority. Note that this is the extra hardware required to

do prioritization in addition to the extra hardware required for the multiple contexts.

In this scheme, the context selection time is zero cycles, just like the hardware schemes,

since the HCCR hardware does the selection. However, the priority changing time is a

function of the software that updates the hardware control register. Changing the priority

of a loaded thread requires changing its position in the software queue, and determining

the new HCCR. In the best case, an application might use a number of priority levels less

than or equal to the number of contexts. In the worst case, an application might use many

more priority levels than the number of contexts. Maintaining the relative priorities of the

di�erent contexts on a thread priority change then becomes linear in the number of available

contexts.

Comparison of Alternatives

The relative performance and hardware costs for the di�erent implementation alternatives

are shown in tables 4.1 and 4.2. The hardware alternatives are more attractive because they

o�er high performance context selection and priority changing, for only a small incremental

increase in chip area.

The hardware alternative minimizes the number of cycles required for both context selection

and priority changing. The chip area cost of doing this is the area of the priority registers and

the comparator. Compared to the area cost of implementing a multiple-context processor

in the �rst place, this cost is low. If each context has 32 registers, then the extra priority
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register represents a 3% increase in total register area, with the comparator area being

considerably smaller than this. Current processors devote between 1% and 5% of their area

to registers [38, 40]. Assuming that we devote 20% of the chip area to general registers

because of the increased number of contexts
2
, the extra area cost will be less than 1% of

the total chip area.

The hardware/software option is the next best option as it o�ers the same minimum context

switch time, at a considerably smaller area. The di�culty arises in translating a software

priority into a hardware priority that maintains the same relative priority of the loaded

threads. Experiments are required to determine the impact of the increased number of

cycles required to change a thread's priority.

Finally, the software option is the least appealing of the options. Both the context switch

cost and the cost of changing a threads priority are non-negligible. In particular, the

minimum of 4 to 6 cycles required to choose the next context actually doubles the cost of a

context switch when added to the nominal 5 cycle cost of draining the pipeline. This may

be alright if the latencies being tolerated are su�ciently long, but it will limit the ability

of the multiple-contexts to tolerate shorter latencies (to local memory for instance), and

further, the context selection cost can easily rise above this if we try to implement a more

sophisticated scheduling policy. For instance, if we wish to incorporate thread stalling,

the software now has to include a check to see whether a context is stalled or not before

scheduling it. Finally, although the software option has no special hardware costs, it may

require that certain registers be reserved to contain a scheduling data structure.

4.2 Memory System Prioritization

As discussed in Chapter 3, the memory system must also participate in the prioritization

process in order for prioritization to be e�ective. It does this in several ways. First, it stalls

and unstalls contexts depending on whether their memory reference has been satis�ed or not.

Second, when bandwidth is limited and several contexts have memory references waiting to

be issued, the memory system issues the memory requests in highest priority order. Third,

we can optionally implement preemptive scheduling so that when a high priority thread is

unstalled the memory system will cause an interrupt and a context switch if a lower priority

thread is executing. This section describes a shared-memory system based on transaction

bu�ers that allows both of these functions to be performed in a straightforward manner.

2This is a pessimistic estimate since the area of a multi-ported register �le is typically dominated by the

area requirements of implementing the multiple ports rather than by the extra storage cells [39].
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4.2.1 Transaction Bu�er Implementation

Any system which allows multiple outstanding memory references requires a lock-up free

cache [56, 84, 92] that allows the cache to continue to accept new requests even if a memory

request misses in the cache. An essential component of such a system is some means of

tracking outstanding memory references. One way of doing this is by using transaction

bu�ers. When a miss in the cache occurs, an entry is made into one of the transaction

bu�ers that includes all the information necessary for completing the memory request: an

address, the type of request and other status bits, and space for data. When the requested

cache line arrives and a match is detected on one of the transaction bu�ers, the transaction

bu�er controller completes the memory operation which may require storing data in the

transaction bu�er, and updating the cache.

Figure 4.4 shows the transaction bu�er scheme we implemented in our simulator. Each

context has a transaction bu�er associated with it, and uses this transaction bu�er to

satisfy its requests. Transaction bu�ers work as follows to satisfy a memory request:

1. Memory Request: when a context makes a request, it sends the request to both the

cache logic and the transaction bu�er. The request is satis�ed immediately if there is

a hit in the cache, or if the transaction bu�er contains the valid data. Otherwise, an

entry is made in the transaction bu�er.

2. Request Issue: the transaction bu�er issues the memory request once the necessary

resource is available, and there are no other transaction bu�ers that have higher

priority requests. A request requires either the local memory system or the network

depending on whether the reference is a local or a remote reference. Note that if

several transaction bu�ers are waiting for the same cache line then the request will

only be issued once. The transaction bu�er logic performs an associative match on

the address �eld in order to merge memory requests to the same cache line.

3. Request Completion: upon reception of a return message, the transaction bu�ers and

the cache are updated. The transaction bu�er logic updates all the transaction bu�ers

that require the cache line with the appropriate status and data. The update occurs

as if each request executes sequentially on the cache line, and so the state of the cache

line can change. For instance one of the transaction bu�ers may execute a write,

and this would change the value of the cache line. The next transaction bu�er could

then read this word. Once all the transaction bu�ers are updated, the cache line is

inserted into the cache so that further references to the cache line will be satis�ed

from the cache. Note that the reference may or may not be successful depending on

the protocol message that is returned to the transaction bu�er. For instance, one

protocol message simply says that any requests must be tried again because the cache

line is busy being written in another processor.

This scheme can also be extended to handle multiple outstanding references per context,

as well as software prefetching. To do this, additional transaction bu�ers are used that
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Figure 4.4: Transaction bu�er interface to the cache system, the memory system, and the

network interface.
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allow additional memory requests to be outstanding. In the case that multiple requests

from a single context are allowed, the transaction bu�er must include information about

destination registers. If the memory request is a software prefetch, then the cache line is

simply stored in the cache and the transaction bu�er does not store the data in its data

�eld.

Comparison to Alewife Transaction Bu�ers

Note that this transaction bu�er scheme is di�erent than the one implemented in the Alewife

system [58] from which we take our shared memory protocol. In the Alewife machine the

transaction bu�ers store a complete cache line that continues to participate in the cache

coherence protocol as if it were another line in the cache. In addition to keeping track of

multiple outstanding memory requests, the transaction bu�ers are used as an aid to avoid

memory thrashing problems, as a fully-associative cache, as a 
ush queue to local memory,

and as storage for prefetched data. Of particular importance is its role as a means of

avoiding thrashing problems that occur in their system [57]. Because they rely on polling in

which memory requests must be retried until they are satis�ed, di�erent thrashing situations

can arise in which data arrives at a node but is invalidated by cache con
icts before the

memory request can be re-issued to use the data. If this happens repeatedly, the processor

can be fatally livelocked. Using a combination of transaction bu�ers, disabling interrupts,

and selective locking, the polling scheme can be made to avoid these situations.

Our implementation avoids the thrashing problem by using a signaling approach. When

a cache line arrives at a processor, all transaction bu�ers that are waiting for this cache

line commit before the cache line is allowed to be invalidated. Thus forward progress is

guaranteed without having to disable context switching. Note that to implement atomic

operations such as Fetch-and-Add in this way, there must also be an ALU associated with

the transaction bu�ers.

Which type of implementation is better is not an issue that we deal with in this thesis. The

best approach would probably be a combination of using a small fully-associative cache as

a victim cache and prefetch storage, along with a mechanism that would avoid thrashing by

having memory requests commit when their cache line becomes available. We implemented

the signaling approach to simplify the modi�cation of our simulator, and because modern

processors that use register scoreboards and allow multiple outstanding memory references

will necessarily use a signaling approach where values are returned directly into registers.

Finally, the e�ects of having such an associative store should be similar to increasing the

associativity of the main cache [47].
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4.2.2 Thread Stalling

Threads are stalled to prevent them from being scheduled as long as they cannot make any

forward progress. It is more useful to run a thread which is of lower priority but is not

stalled, then to remain waiting for a higher priority thread to be able to make progress
3
.

Stalling threads requires the tracking of which threads are waiting for references to be

satis�ed, and which are not.

In the simplest case where each context has at most one outstanding memory reference and

a single transaction bu�er associated with it, we implement stalling by disabling the context

on a miss, and re-enabling it when the memory reference is satis�ed. We can also do this if

there are multiple outstanding references per context, but only a single primary reference

on which the context can stall. This might be the case if we are doing software prefetching:

each context may have several prefetch requests in transaction bu�ers, but only a single

primary memory request on which it can stall.

In this single primary outstanding reference case, it is possible to use either polling or

signaling in order to detect the completion of a memory request. With polling, each context

must re-issue a memory reference until it succeeds. The stalling and unstalling of a context

prevents a context from polling without the data having �rst been returned. The advantage

of polling is that only the context selection logic has to be modi�ed, and not the processor

pipeline itself. Also, all the state of an unloaded thread is contained within the context

registers. Alternatively, a signaling approach can be used in which the processor does

not have to re-issue the memory request, but rather the data is returned directly to the

required register before the context is re-enabled. Kubiatowicz [58] points out a number of

the complications in implementing a signaling approach to context switching, including the

more complicated register �le and pipeline design, and additional complication in dealing

with memory operations that may trap.

If multiple memory requests are allowed per context, then it is necessary to return data

directly to registers. Modern superscalar processors typically allow multiple outstanding

memory requests, and out of order issue and completion of memory requests. Such proces-

sors use a scoreboard to keep track of which registers are present and ready for use, and

which are still outstanding. If the processor tries to use a register that is not yet available

it stalls. When a memory request returns it is sent directly to the register which unstalls

the processor. Thus stalling is a very straightforward operation that puts very little burden

on the processor design. However, there are some additional complications as the transac-

tion bu�er must keep track of the correct register to return data to, and control must be

provided to allow value to be inserted into the register �le.

3This is generally true, but not always true. For instance if running the lower priority thread removes

some of the critical thread's data from the cache, overall performance can still su�er.
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Stalling and Context Selection

We can easily incorporate stalling into both the hardware context selection scheme, or the

hardware scheme with software support. This can be done with a very simple addition to the

logic of �gure 4.3. We assume that for each context we have a thread presence bit indicating

whether the context is loaded with a thread, and stall bit that says whether thread can make

progress or not. The thread presence bit can be ORed with the complement of the stall

bit and this result can be used as an input to most signi�cant carry-in of the MAX logic.

The output of the MAX becomes the highest priority contexts that have a loaded thread

and are not stalled. For the purposes of the next context selection, the currently executing

context should be considered stalled. This means that the context selection will not choose

the executing context on a context switch, and the fact that the stall bit has just been set

for the currently executing context does not have to propagate through the MAX circuit.

If all the contexts are stalled, we must disable the issuing of all instructions.

Implementing stalling in the purely software case is less straightforward because without

explicit hardware support, the software must check to see whether a thread is stalled or

not and this adds additional cycles to the context switching. Also, instead of switching

immediately to an unstalled thread, the software may have to run through several contexts

before it �nds one that is unstalled.

4.2.3 Memory Request Prioritization

For prioritization to be e�ective the processor must issue memory requests in priority order

to both the local memory system, and to the network interface. The logic required to pri-

oritize the memory requests is the same as the logic required to prioritize context selection.

Whenever the local memory system is available the highest priority memory request requir-

ing the local memory system is issued, and whenever the network interface is available, the

processor issues the highest priority pending memory request in the transaction bu�ers.

Note that there is arbitration that is required for both the local memory system and the

network output resources. The local memory system must service requests coming from

the transaction bu�ers, as well as requests from the local cache (when a dirty line is being

written back for instance), and requests from remote nodes that come in from the network.

Similarly, the network interface must accept messages from the transaction bu�ers, the local

cache, the local memory system, as well as messages sent directly by the user.

Although the exact priority of access to these resources is an interesting issue, we have

de�ned the order somewhat arbitrarily. The local memory system gives �rst priority to

requests from the cache and from the network interface, and second priority to new requests

from the transaction bu�er. The reasons for doing this are that we want to service already

issued requests before issuing new requests into the system, and we want to minimize the

backup of messages into the network. Similarly, the output network interface gives �rst
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priority to the cache logic, the local memory system, and user messages, and second priority

to new requests from the transaction bu�ers. Independent of priority, any given request to

one of these resources will be delayed until the resource is free.

4.2.4 Preemptive Scheduling

Once stalling is introduced, one must decide whether scheduling will be preemptive or not.

Preemptive scheduling means that when a lower priority thread is executing and a higher

priority thread that is stalled becomes unstalled, then a context switch is forced even if there

is no cache miss or synchronization failure. In the non-preemptive case, the switch to the

higher priority thread will only occur on the next normal context switch. The preemptive

case minimizes the execution time of a potentially critical thread, but pays the cost of a

context switch. Also, the preemptive case requires that hardware be provided to force a

context switch when a higher priority thread becomes unstalled. The non-preemptive will

delay the execution of the higher priority thread until the next context switch.

Context switches usually occur frequently enough that this e�ect does not occur, and for

convenience reasons, our simulations used the non-preemptive approach. It should be noted

that the extra costs of the preemptive case are moot in architectures that provide cycle by

cycle context switching with instructions from di�erent threads being interleaved on a cycle

by cycle basis, since all the mechanisms for preemptive scheduling are already in place.

4.3 Unloaded Thread Prioritization

A software priority queue prioritizes the unloaded threads. Thus there is considerable 
ex-

ibility in how this is implemented. Preemptive scheduling however requires some hardware

support in order to force a loaded thread to swap out when a higher priority thread becomes

available.

Preemption may be desirable when a new thread is created, and its priority is higher than

the priority of one of the loaded threads. Preemptive scheduling at the unloaded thread

level is di�erent than in the loaded thread case. An interrupt must occur, and the context

with the lowest priority thread should run an interrupt routine that swaps its thread with

the higher priority thread. Whether preemptive scheduling is advantageous or not depends

on the particular situation. If all the loaded threads are long running threads, then it makes

sense to incur the overhead of a thread swap, and allow the more critical thread to proceed.

If on the other hand threads are short running, then a context will soon be free anyway,

perhaps in a shorter time then it takes to perform a thread swap, so that it is best to wait.

Implementing preemption in a multiple context processor is straightforward and can be

implemented as an asynchronous trap. The trap handler simply runs the code to swap the
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lowest priority thread with the new higher priority thread.

4.4 Summary

In this chapter, we looked at ways of implementing thread prioritization in a multiple-

context processor, both for loaded and unloaded threads, and show that it can done in a

straightforward manner.

The loaded thread prioritization must prioritize both the selection of contexts on a context

switch, and the memory requests going to the memory system. Simple hardware can im-

plement the context prioritization: one priority register per context and a multi-way MAX

circuit. Other schemes that use only software, or a combination of hardware and software

are also possible, but they increase the context selection time and/or the priority changing

time. All that is required to incorporate stalling into the hardware scheme is a bit indicating

if a context is still waiting for an outstanding memory request.

The memory system prioritization allows context stalling, prioritized memory requests, and

preemptive scheduling. Transaction bu�ers are used to issue and track memory requests.

When a context is waiting for a memory request it is stalled and cannot be chosen to execute.

When several requests are waiting in the transaction bu�ers to be issued, the highest priority

one is selected once the necessary resource is available using the same type of circuit that

is used to prioritize the context selection. When a memory transaction completes, the

corresponding context is unstalled. Preemptive scheduling can also be implemented by

having a trap generated when a higher priority thread becomes unstalled.

Finally, a software scheduler prioritizes unloaded threads and has considerable 
exibility

in its implementation. Preemptive scheduling is done by forcing a trap when a thread is

created that has a higher priority than a currently loaded thread.



Chapter 5

Simulation Parameters and

Environment

In the next few chapters we discuss the results from simulation studies of how prioritization

a�ects performance of several di�erent types of benchmarks. With these simulations we

accomplish two things: �rst, we show that the simple model of Chapter 3 correctly predicts

some of the important behavior that occurs in real programs, and we uncover e�ects that

occur in real programs but that were not brought out by the model due to the idealized

assumptions that were made. Second, we show that thread prioritization is a versatile

scheduling mechanism that can be used in many di�erent ways to implement the scheduling

strategies that are appropriate for di�erent types of problems.

In this chapter we list and discuss the important system assumptions and the parameters

that were varied in the studies, and we give an overview of the Proteus architectural sim-

ulator [15, 25] and the simulation methodology. The most important system parameters

are the multiple-context processor parameters, memory system parameters, and network

parameters. These parameters a�ect the extent to which latency can be tolerated, as well

as how much impact latency tolerance has on performance. Processor parameters include

the number of contexts, the hardware context switch time, the context selection time, and

the thread switch time. The number of contexts a�ects how much latency can be toler-

ated, whereas the hardware context switch time, the context selection time, and the thread

switch time are overhead components that can limit the e�ectiveness of multiple-context

processors as a latency tolerating mechanism. Memory system and network parameters

a�ect the latency of memory requests, and the bandwidth available to satisfy requests. A

shared memory protocol is used and this increases latency because the protocol can require

several messages to be sent and received before the data is available. The local memory

latency and bandwidth, as well as the network latency and bandwidth also have �rst order

e�ects on the latency of data requests.

The Proteus architectural simulator was modi�ed to simulate a multiple-context multipro-

96
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Parameter Typical Range

Number of Contexts - 1-16

Hardware Context Switch Time 5 cycles 1-10 cycles

Time to Unload Registers 32 cycles 4-200 cycles

Time to Reload Registers 32 cycles 4-200 cycles

Software Scheduling Cost 10 - 100 cycles -

Cache Latency 1 cycle -

Local Memory Latency 20 cycles 20-160 cycles

Memory Controller Throughput 4 cycles/request 4-20 cycles/request

Network Wire Delay 1 cycle -

Network Switch Delay 1 cycle -

Network Flit Size 16 bits -

Network Interface Input Bandwidth 1 
it/cycle -

Network Interface Output Bandwidth 1 
it/cycle -

Table 5.1: Important system parameters.

cessor. It provides a recon�gurable high-level substrate on which to write applications and

measure system performance. To achieve reasonable simulation times, it makes certain

simplifying assumptions such as only simulating shared memory for certain important data

structures, and assuming that all instructions and stack references hit in the cache. The

applications express parallelism explicitly, and are written in C with language extensions

for concurrency.

5.1 System Parameters

As discussed in Chapter 1, the simulated system consists of a collection of multiple context

processors, connected with a high performance interconnection network. Throughout the

simulations we vary di�erent system parameters to represent variations in the architecture

of the three main components of the machine: the processor datapath and pipeline, the

memory system, and the network architecture. We describe the important parameters

below, and summarize them in Table 5.1 along with the di�erent values used throughout

the simulations.
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5.1.1 Processor Parameters

Number of Contexts

The number of hardware contexts (register sets) is as key parameter. More contexts gen-

erally allow longer latencies to be tolerated and allows more 
exibility in the scheduling.

At the same time, more contexts also require more hardware. In our simulations, we vary

the number of contexts from 1 to 16 contexts. Our simulations con�rm previous results

that the optimal number of contexts varies depending on the application and the typical

latencies [105, 2, 81]. For the parameters we used, between 2 and 8 contexts typically gave

the best performance.

Hardware Context Switch Time

Hardware context switch time is the time from when one context is stalled due to a cache

miss or synchronization failure, to the time that a thread in another context begins ex-

ecution. For a block multithreaded processor with a conventional processor pipeline, the

minimum time to switch contexts is the time to drain the pipeline | all the instructions

following the stalled instruction are squashed. This cost increases if additional instructions

have to be executed to perform the context switch. For instance, to do context switching

in the April processor [5], a small trap routine executes to switch the registers being used

and save and restore status information.

With suitable modi�cations to the pipeline, speci�cally some way of saving the pipeline

state of any context that stalls, the context switch time can be reduced to zero cycles. This

requires signi�cant redesign of the processor pipeline [63]. When a pipeline does dynamic

cycle by cycle interleaving of instructions, the context switch time is by de�nition zero

cycles. However, at the time of a stall there may be several instructions from the stalled

thread that are in the pipeline and need to be squashed, resulting in a larger than zero cycle

cost for the stall. Once again however, if we store the pipeline state of a context, the cost

of thread stalling can be zero cycles.

In our simulations, we consider a range of 1 to 10 cycles, with the typical cost being 5 cycles.

Experiments in which we vary the context switch time show that the context switch time

can have a large impact on performance when context switching is frequent, and latencies

are short. Thread prioritization reduces the impact of the higher context switch time by

reducing the number of unnecessary context switches.



5.1. SYSTEM PARAMETERS 99

Context Selection Time

In addition to the hardware context switch time, there is overhead associated with selecting

the next context to be scheduled. This cost can be 0 cycles if a simple hardware scheme is

used, or it can be several cycles if the processor must determine in software which context

is to be chosen next. Our simulations merge this cost with the cost of the hardware context

switch.

Thread Swap Time

The thread swap time is the time it takes to remove one thread from a hardware context, and

load another thread into that hardware context for execution. For a conventional processor,

this typically requires unloading the state of the context registers into memory and loading

the state of the new thread into the context before execution can begin or continue. It

also requires manipulating the software scheduling data structures to insert and delete the

threads.

For the purposes of our simulation, we consider a range of 4 to 200 cycles to save or

restore the registers during a thread swap, with a typical value of 32 cycles. A 200 cycle

save/restore time might occur if restoring the context causes several misses in the cache. A

4 cycle save/restore time is achievable with hardware techniques such as the Named-State

Register �le [77], that dynamically manages a register �le that is shared between all the

contexts, and only one or two special registers, such as the instruction pointer and a status

word, have to be explicitly saved.

The time to manipulate the software scheduling queue is explicitly accounted for in our

simulations by having software routines that do the queue manipulation. Depending on the

implementation, this cost typically ranges from about 10 to 100 instructions.

5.1.2 Memory System

Local and Global Shared Memory

For our simulations we assume a machine which has both local and global memory. Local

memory is only visible to the processor which owns it, whereas global memory is visible to all

processors. We assume support for global shared memory in the form of a directory-based

cache coherence protocol. The shared memory protocol used is an invalidation protocol

based on an early version of the protocol used in the Alewife machine [18] modi�ed to

include transaction bu�ers as described in the previous chapter. This protocol provides a

sequentially consistent view of memory. Conceptually, the hardware used to support the

shared memory is in the form of a cache controller, and a memory controller. The cache
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controller handles all protocol requests which require action in the local processor cache,

whereas the memory controller handles all protocol messages which require action in the

local processor memory, including the management of the directory information.

A current limitation of the simulator as it is currently implemented is that it only al-

lows a single outstanding unsatis�ed reference per context. Allowing multiple outstanding

references per context would have several e�ects: �rst, it would improve single thread per-

formance since references from one thread can proceed in parallel. Second, it would allow

fewer contexts to tolerate a given amount of latency by increasing run lengths between

context switches, and reducing the number of contexts required to fully utilize the available

memory bandwidth. This limitation leads to a worst case scenario for multithreading as a

latency tolerance mechanism and for any given latency we �nd that a higher number of con-

texts is required to tolerate latency. The e�ect of allowing multiple references per context

can be approximated by reducing the average latency so that fewer threads are required to

tolerate latency.

Cache and Memory Latencies

The base cache latency is 1 cycle in the case of a hit, and the base memory latency is 20

cycles in the case that the data is in local shared memory, and no shared memory protocol

messages have to be sent. This 20 cycle latency corresponds roughly to a processor cycle

time of 5ns and a memory system access time of 100ns which is a reasonable baseline given

current technology [93]. Technology trends indicate that this di�erence between processor

speed and memory speed will further increase over the coming years [43].

The latency of any given memory reference is di�erent depending on whether the data is

in the cache, is not in the cache but is in local memory, or is not in the cache or the local

memory but on remote node. The memory reference time is also a�ected by the cache

coherence protocol, which may send out several messages per memory transaction, and

possibly have to wait for reply messages. Thus, in addition to the base cache and memory

latencies, the latency of a memory reference also depends on the performance of the network

and the network interface.

We will vary the memory latency between 20 and 160 cycles to simulate longer memory

latencies due to di�erences in processor and DRAM speed, and to simulate the long latencies

that occur when data is on a remote node.

Memory Controller Throughput

Another important parameter is the memory bandwidth associated with each node. In

our simulations this is modeled as the memory controller throughput, or the rate at which

the memory controller can handle incoming protocol messages. Speci�cally, although the
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local memory latency may be L cycles, the memory system of each node may be able to

accept requests more frequently, say every B cycles, thus pipelining the memory requests so

that L/B memory requests can potentially be outstanding at any given time. Pipelining of

memory requests in this fashion can be accomplished by having interleaved memory banks.

Note that in order for multiple contexts to be e�cient in tolerating latency, it is essential

to have su�cient memory bandwidth.

In our simulations the bandwidth is varied from a maximum possible local bandwidth of 1

word per cycle or 4 cycles per request for a 4 word cache line, to a minimum bandwidth of

1/5 words per cycle or 20 cycles per request.

5.1.3 Network Architecture

The nodes are assumed to be connected by a low latency, k-ary N-cube network that uses

wormhole routing [24]. The network interface consists of a network output interface and a

network input interface.

Network Flit Size

A 
it is the unit of 
ow control in the network. In our simulations this is 16 bits or half a

word.

Network Latencies

Associated with the network are a switch delay and a wire delay. The switch delay is the

time for a single 
it to be routed through the network switch located at each network node.

The wire delay is the time for a single 
it to cross from one network node to the other. Our

simulations assume a switch and wire delay of 1 cycle.

Network Interface

Although the shared memory view of the machine provides ease of use and programming,

it is often convenient to have direct access to the network interface in order to be able to

pass information directly via messages. Recent work has shown the bene�ts of having both

shared memory and message passing [54]. Speci�cally, if the data communication pattern

is known, explicit message passing can be used to bypass the shared memory interface

and protocol and thus optimize communication. Thus our simulations also assume direct

message passing capability, and this capability is used in a number of the benchmarks.
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The network interface consists of both a network output interface and a network input inter-

face both of which are tightly coupled to the processor and memory systems. Conceptually,

the processor does a message send by assembling a message then doing an atomic SEND

operation. Depending on the implementation, the message can either be assembled directly

in registers, or can be assembled by writing special memory mapped registers. Thus the

cost of sending a message is just the cost of assembling the message arguments. The shared

memory controller and cache controller access the network in similar fashion. The output

network interface bandwidth is limited to 1 
it per cycle, which is the same as the network

channel bandwidth. Messages coming from the cache controller, the memory controller, and

the processor are queued and serviced in a �rst come, �rst serve manner.

The network input is the more complicated part of the network interface because of its

interaction with the thread scheduling. The handling of a message which arrives at a

processor must be scheduled along with the threads that currently exist on the processor.

We assume that the response to messages is interrupt driven, and is in the style of active

messages [100]. This means that when a message arrives it generates a processor interrupt,

and runs a message handler which is guaranteed to run to completion in a short period of

time. In particular, a message handler can generate and schedule a new thread.

We assume that the cost of an interrupt is the same as the cost of a hardware context

switch.

5.2 Simulation Methodology

5.2.1 The Proteus Architectural Simulator

Proteus [15, 25] is a high-performance simulator for MIMD computer architectures. It

allows architectural parameters such as the network and the memory system to be varied.

Programs are written in C with language extensions for concurrency, and simulator calls

that support non-local interactions between processors including shared-memory operations,

spinlock operations, inter-processor interrupts, and message passing. Proteus is written in

a modular fashion so that certain components such as the network simulator or thread

scheduler can be easily modi�ed in order to perform architectural studies. Proteus also

has a 
exible accounting system that allows the user to modify the costs associated with

di�erent functions.

At the software level, Proteus estimates the software cost of the parallel code by compiling

it down to SPARC code. This code is run during simulation as if the multiprocessor node

were an actual SPARC processor and the simulator keeps track of the number of cycles

required to execute the code. It is also possible to change the cost of the code explicitly by

adding or subtracting cycles from it. Proteus also provides a number of nice features for

debugging applications, and collecting statistics.
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Memory Modeling

One of the simplifying assumptions that occurs in order to make the shared memory sim-

ulation tractable is to only simulate memory references to data items that are explicitly

declared as being shared. Thus references to important shared data structures will be simu-

lated, but instructions references and stack references are local references and are assumed

to hit in the cache. This approach is reasonable since instruction cache hit rates are typi-

cally very high, as are hit rates on scalar data and stack variables. Cache performance is

typically most a�ected references to large program data structures. To compensate for the

fact that all the data accesses are not explicitly being simulated, the size of the cache is

reduced.

Proteus Modi�cations

A number of changes were made to Proteus to re
ect the architectural features and assump-

tions, as well as to correct certain de�ciencies of the basic simulator. The most important

changes are listed below:

� Multiple Contexts: We extended Proteus to simulate multiple hardware contexts, and

to allow the changing of di�erent costs associated with hardware context switching

and thread swapping.

� System Routines: We replaced various system routines, speci�cally the routines that

have to do with thread creation, thread deletion, thread suspending, and thread

scheduling. We also wrote various system fault routines such as the �ne-grain syn-

chronization fault routines.

� Memory System: We changed the shared memory simulation to simulate a more re-

alistic shared memory implementation1. We also implemented set-associative caching

in the context of the directory based shared memory protocol, and implemented a

mechanism for stalling contexts based on data availability. We introduced memory

transaction bu�ers to hold the outstanding memory request from the multiple con-

texts.

� Network Interfaces: We modi�ed the network interface to re
ect the cost of sending a

message, and the limited network output bandwidth available to each processor. We

also made modi�cations to cause an interrupt only once a message has completely

arrived.

� Instrumentation: We wrote code to measure a variety of interesting parameters such

as the number of hits and misses over a given time period.

1Thanks to Kirk Johnson for providing us with his version of Proteus which re
ected the costs associated
with the Alewife shared memory implementation.
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5.2.2 Application Assumptions

This thesis discusses small applications that illustrate a variety of problem characteristics,

and their interaction with thread scheduling. Speci�cally, the benchmarks used are meant to

re
ect the importance of synchronization performance, critical path scheduling, cache per-

formance, and the interaction of thread scheduling with interprocessor interrupt scheduling.

Each benchmark will be described in the chapter in which it is �rst used.

In all the applications, the user explicitly generates parallelism by spawning threads. Each

thread is allocated storage that it uses as its stack space to do function calls. The appli-

cations use coarse-grained threads, where the thread runs many hundreds or thousands of

instructions. This reduces the overhead that comes with the spawning and the destroying

of threads.

The synchronization between threads is also explicit and we explore a variety of implemen-

tations of locks, barriers, join counters, and �ne grain synchronization using Full/Empty

bits. Although the threads are coarse-grain in the sense that each thread executes a large

number of instructions, they can be �ne-grain in the sense that they require frequent access

to remote data, and synchronization with remote threads.



Chapter 6

Synchronization Scheduling

In this chapter we show how assigning a priority to threads in a multithreaded computation

can improve the performance of synchronization primitives by reducing the number of cy-

cles wasted in spin-waiting, and by preventing spinning threads from slowing down critical

threads. Tolerating synchronization latencies is a critical issue since synchronization laten-

cies have the potential to be much longer than simple remote references. Multithreading is

the only latency tolerance mechanism that is e�ective in tolerating these latencies.

Three synthetic synchronization benchmarks are examined: a Test-and-Test and Set (TTSET)

lock benchmark, a combining tree barrier benchmark, and a queue lock benchmark. In most

cases spinning is used as a way of implementing synchronization primitives, but multiple

context versions su�er from the problem identi�ed in Chapter 3: spinning threads consume

processor resources and delay critical threads.

The results show that by correctly prioritizing threads, synchronization performance is sub-

stantially improved. Using the priority to determine which threads are loaded improves

runtime performance the most. With exactly prioritized threads, performance improve-

ments ranged up to 66% with 4 threads per processor, and up to 91% with 16 threads per

processor. Using the priority to choose among loaded threads is also important, in some

cases with runtime improvements up to 20% with just 4 contexts, and improvements of up

to 83% for 16 contexts. Unprioritized scheduling shows much higher sensitivity to changes

in the thread swap time and the context switch time because many more unnecessary thread

swaps and context switches take place than when threads are prioritized.

105
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6.1 Synchronization Scheduling

6.1.1 Synchronization Scenarios

For each benchmark in this chapter, three di�erent scenarios are considered:

1. SINGLE: There are several threads, but there is only one context so that only a

single thread is loaded at a time.

2. ALL: There are su�cient contexts so that all threads created can be loaded. We use

16 contexts in our simulations.

3. LIMITED: There are several contexts, but there are potentially more threads than

contexts so that only a limited number of the available threads are loaded. We use 4

contexts in our simulations.

Each of these situations represents a di�erent part of the scheduling space. The SINGLE

and LIMITED cases represent situations in which not all threads can be loaded at the

same time. These cases can arise in the context of data dependent thread spawning, runtime

dynamic partitioning, or in a multiprogramming environment. The ALL case is balanced

in the sense that all threads can be loaded at once. The SINGLE case illustrates how the

thread scheduler must keep the critical thread loaded and avoid unnecessary thread swaps

to achieve good performance. The ALL case illustrates how the thread scheduler must

also avoid unnecessary context switches for good performance. Finally, in the LIMITED

case the thread scheduler must both keep the critical thread loaded in a context, and avoid

unnecessary context switches.

6.1.2 Synchronization Scheduling Strategies

A number of di�erent scheduling strategies are possible when considering how to deal with

a failed synchronization test. The e�ect of spinning versus blocking has been studied in the

context of shared memory multiprocessors [48, 67], where blocking means suspending the

thread by swapping it out of its context and waking it up at a later time. These studies

have shown that it is possible to use competitive waiting algorithms in which on a failed

synchronization a thread �rst spends some �xed time spinning, and only swaps threads

after this spinning time has elapsed. For instance it is easy to show that if a thread �rst

spins for the amount of time it would take to block before swapping, then the cost of this

competitive strategy is no more than two times the cost of the optimal choice of swapping or

spinning. With multiple contexts it is also possible to switch-spin [67] rather than just spin

while using these 2-phase strategies. Switch-spinning means context switching and running

round-robin though all the other available contexts, potentially doing useful work rather
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than just spinning. All these strategies are heuristics that use only limited information

about the problem in order to decide what combination of spinning and blocking is best to

adopt.

Our approach to determining what synchronization strategy should be adopted is to use

extra information about the situation of the threads. A priority associated with each thread

gives a clue as to whether the thread should swap, or whether it should spin. The priority

is more useful with multiple hardware contexts where there are more choices than just

spinning or swapping: the processor can spin, it can do a context switch, it can swap, or it

can do both a swap and a context switch. The priority associated with each thread helps

make the correct decision.

The following sections describe di�erent synchronization benchmarks that illustrate di�erent

aspects of the synchronization scheduling problem, and show how prioritization can be used

to help make scheduling decisions. These benchmarks are shown in increasing order of

complexity. The Test-and-Test and Set benchmark shows how prioritization can be used

to prevent a thread owning a lock from being descheduled before it has released the lock.

The barrier synchronization benchmark shows how prioritization can be used to identify a

critical thread on a given processor and devote all processor resources to this critical thread.

The �nal benchmark, a queue lock benchmark, shows how thread prioritization can be used

to guarantee not only that a thread will not be descheduled when it owns a lock, but also

will cause critical threads to be ready and waiting to accept the lock when it is released. In

all cases the thread prioritization is used to minimize the number of unnecessary context

switches and thread swaps.

6.2 Test-and-Test and Set

Mutual exclusion is a means of ensuring that only one processor at a time is accessing

shared data. In shared memory multiprocessors, this is often implemented using spin locks,

in which threads wait for access to the lock by spinning on a variable waiting for it to be

changed to a certain value. Once this value changes, the thread can acquire the lock. Mellor-

Crummy and Scott [71] give a good overview of di�erent mutual exclusion algorithms and

of other spin lock studies [36, 8]. This section considers the simple Test-and-Test and Set

(TTSET) lock. Section 6.4 considers a more complex queue lock.

TTSET is a reasonable way of guaranteeing mutual exclusion in the case that there are

only a few processors trying to synchronize and the contention is low. Each processor

trying to acquire the lock �rst polls the synchronization variable until it becomes true (The

Test portion of Test-and-Test and Set). When the lock is released and becomes true, the

processor executes a Test and Set operation. If this operation succeeds the lock is set to

false and the thread has successfully acquired the lock, otherwise the thread must go back

to the polling phase.
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To benchmark TTSET mutual exclusion, a synthetic benchmark was run on Proteus. A

number of threads are created on each processor, and these threads all try to acquire a

single lock. Once the thread acquires the lock, it runs a critical section, releases the lock,

and then runs a non-critical section before attempting to re-acquire the lock again. With

multiple contexts, after each failed Test a context switch takes place. The length of the

critical section is �xed, and the length of the non-critical section is based on a uniformly

distributed random variable. Two cases are considered: a high contention case in which

the non-critical section is short, and a low contention case in which the non-critical section

is relatively long. In this test threads swap out of the hardware contexts at the end of

an operating system (OS) quantum, and unloaded threads swap in This OS quantum can

be considered as an OS scheduling quantum in a multi-programming system, or a slicing

quantum that is used to guarantee some scheduling fairness for the threads of a single

application. The evaluation criterion chosen is the number of times the lock is acquired in

a �xed time interval.

The test was run with just 4 processors, since TTSET mutual exclusion is most appropriate

for a small number of processors. The quantum was chosen to be 10000 cycles, and the

measurements were taken over a 10
7
cycle period. The critical section is approximately 100

cycles long when run to completion without context switching, but two potential context

switches are forced during its execution to simulate a cache miss. If the critical thread does

do a context switch while it is executing this section, then the time from when a thread

acquires a lock and then attempts to release it can be much longer than 100 cycles. For

the high contention case the length of the non-critical section varies from 50 to 150 cycles

with a uniform distribution, and for the low contention case the non-critical section varies

from 500 to 1500 cycles with a uniform distribution. While a thread runs a context switch

is forced approximately every 40 cycles, again to simulate a cache miss.

The following variations on the TTSET benchmark are run:

� Unprioritized: Threads all have the same priority. A thread context switches every

time there is a miss in the cache even if the critical section is being run. A context

switch also occurs every time the polling Test fails. Even if the thread owns the lock

the scheduler can swap it out at the end of a quantum.

� Prioritized: When a thread is spinning waiting for the acquisition of the lock (in the

Test part of Test-and-Test and Set), it has low priority. Once the Test succeeds, then

the thread becomes high priority for the Test and Set operation. If the Test and Set

succeeds, then the thread maintains its high priority until it has �nished executing its

critical section and released lock, after which it reduces its priority before executing

its non-critical section. If the Test and Set fails, then the thread again makes itself

low priority before returning to the Test phase. If a thread has high priority at the

expiration of a quantum, the scheduler will not swap it out.
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6.2.1 Results

Figure 6.1 shows the total number of lock acquisitions for the three scenarios SINGLE,

ALL, and LIMITED with a varying number of threads. For each case two sets of curves

are shown, one for the high contention case, and the other for the low contention case.

Figures 6.2 and 6.3 show the sensitivity of the benchmark to the thread swap time and the

context switch time respectively.

Results show that thread prioritization improves performance in the TTSET lock by re-

ducing the amount of time spent executing the critical section, and by preventing a thread

from swapping out if it owns the lock. We �nd further that performance of the lock is not

sensitive to thread save/restore time, because thread swaps are done infrequently, when an

OS quantum expires. Performance is sensitive to context switch time, particularly in the

unprioritized case with many threads, because it contributes directly to the run length of

the critical section. These results are discussed in detail below.

SINGLE

In the SINGLE scenario, performance falls o� dramatically in the unprioritized case as

the number of threads increases. This is because a thread owning the lock often swaps out

on a quantum expiration. Before the thread owning the lock can run again and release the

lock, all the other threads on the processor swap in and run ine�ectually for one quantum.

Performance drops slightly faster in the high contention case because the thread owning the

lock is more likely to swap out due to higher contention, and when the thread owning the

lock swaps out the other threads have less work to do.

When threads are prioritized, a thread never swaps out when it owns a lock, and as a result

the performance remains relatively constant for an increased number of threads, both in the

high and the low contention cases. If we consider the runtime required to acquire a certain

number of locks, for 4 threads per processor the prioritized case has 66% and 47% better

runtime performance than the unprioritized case, in the high contention and low contention

cases respectively. If the number of threads increases to 16, these numbers increase to 91%

and 82% respectively.

ALL

In the ALL scenario, performance again falls o� with increasing number of threads when

the threads are unprioritized, and remains approximately constant when the threads are

prioritized. The poor performance of the unprioritized case is due principally to the increase

in the amount of time a thread spends running its non-critical section. A thread spends

more time in its non-critical section because it context switches due to the simulated cache
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Figure 6.1: TTSET lock acquisitions. Unprioritized (U) and Prioritized (P) cases are shown

with both High Contention (HC) and Low Contention (LC).
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miss, and the processor must run through all the other contexts before again executing

the thread that is in the critical section. Performance falls o� slightly faster in the low

contention case than in the high contention case because the non-critical threads are more

often executing their non-critical sections as opposed to just spinning. A thread executing

its non-critical section occupies the pipeline for a longer period of time than a thread that

is just spinning, causing it to take longer for the critical thread to resume execution.

Prioritizing the threads solves the problem. A context switch occurs only if there is a thread

with higher or equal priority than the one that is currently running in one of the other con-

texts. Thus the thread will not context switch while running a critical section. Performance

remains approximately constant for 1 to 16 threads per processor. Again considering the

time required to acquire a certain number of locks, for 4 threads per processor the priori-

tized case has 11% and 19% better runtime performance than the unprioritized case, in the

high contention and low contention cases respectively. If the number of threads increases

to 16, these numbers increase to 58% and 62% respectively.

LIMITED

When a quantum expires in the LIMITED scenario, as many of the loaded threads as

possible swap with unloaded threads in the software queue. If there are no unloaded threads

available then nothing occurs, and if there are at least 4 unloaded threads then all the

loaded threads can potentially swap out. Thus the LIMITED scenario is similar to the

ALL scenario when there are 4 threads or less per processor because the thread owning the

lock never swaps out, and it is similar to the SINGLE scenario when there are more than 4

threads because the thread owning the lock can swap out on a quantum. Note however that

if a thread that owns the lock swaps out, it takes fewer quanta than in the SINGLE case

for it to swap back in because the threads swap in and out 4 threads at a time. Thus for

16 threads per processor, the prioritized case has 71% and 73% better runtime performance

than the unprioritized case, in the low contention and high contention cases respectively.

Sensitivity to Thread Swap Time

Figures 6.5a and 6.5b show the runtime for the SINGLE scenario with a 4 cycle save/restore

time, and with a 200 cycle save/restore time. Changing the thread swap time does not have

a big impact on performance because the thread swapping only takes place on quantum

expiration, and the quantum is relatively large. Also, the quantum can expire at slightly

di�erent times on the di�erent processors so that while one processor is swapping in new

threads, another processor is still actively acquiring the lock. The larger thread swap causes

a small but noticeable reduction in performance of the prioritized, low contention case. This

is because time that was previously devoted to running threads in their non-critical section

is now being used to do thread swapping.
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Figure 6.2: TTSET lock acquisitions. SINGLE scenario with register save/restore times

of 4 cycles and 200 cycles. Unprioritized (U) and Prioritized (P) cases are shown with both

High Contention (HC) and Low Contention (LC).

Sensitivity to Context Switch Time

Figure 6.3 shows the runtime for the ALL scenario with context switch times of 1 cycle

and 10 cycles. The unprioritized case is sensitive to the context switch time. Any increase

in the context switch time leads directly to an increase in the time it takes a thread to

execute its critical section. For instance, in the high contention case the performance of

the unprioritized test drops by 52% in going from 1 to 16 threads with a context switch

time of 1 cycle, whereas it drops by 69% when the context switch time is 10 cycles. The

prioritized case is also sensitive to context switch time, and an interesting reversal occurs

between Figures 6.3a and 6.3b. With a context switch time of 1 cycle, the low contention

case performs better than the high contention case, whereas with a context switch time of

10 cycles, it is the opposite. The reason for this is that with a context switch time of 1

cycle the low contention case has more cycles to devote to actually executing threads, while

at the same time having lower contention on the lock. The high contention also has these

extra cycles but since most of its threads are spinning, it cannot put them to good use. The

prioritized high contention case drops by about 3% when the context switch time increases

from 1 to 10 cycles, and the prioritized low contention case drops by 13%.
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Figure 6.3: TTSET lock acquisitions. ALL scenario with context switch times of 1 cycle and

10 cycles.Unprioritized (U) and Prioritized (P) cases are shown with both High Contention

(HC) and Low Contention (LC).

Conclusion

These three scenarios show that the prioritizing of both loaded and unloaded threads is

important for the performance of the TTSET lock. In particular:

� Using the priority at the software level prevents a thread that owns the lock from

swapping out when a quantum expires.

� Using the priority at the hardware level allows the thread owning the lock to quickly

execute its critical section and release the lock.

� The TTSET benchmark is not sensitive to the thread switch time because the thread

switch time is only a small fraction of the OS quantum.

� Using thread priorities reduces the sensitivity of the test to context switch time by

eliminating most unnecessary context switches.

6.3 Barrier Synchronization

Barrier synchronization is another important synchronization primitive. Mellor-Crummey

and Scott [71] provide a good overview of di�erent possible implementations of barriers in
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shared memory multiprocessors. A simple barrier uses a centralized shared counter. Each

thread increments this counter as it arrives at the barrier, and then spins on a 
ag. When

the last processor arrives at the barrier, it resets the 
ag, thus releasing all the spinning

processors. This simple barrier works well for a small number of processors, but for larger

numbers of processors causes a large amount of contention on the shared counter. More

scalable algorithms distribute the barrier so that processors do not spin on a single variable.

A software combining tree barrier [111] uses a k-ary tree structure, with the threads assigned

to the leaves of the tree. Each group of k threads �rst perform a simple shared counter

barrier. When the last thread in a group arrives at barrier, it proceeds up the tree and

another simple barrier is performed for each group of k leaves. This continues on up the

tree to the root, at which point all the processors have reached the barrier. To release

the processors, the thread that arrives at the root resets the 
ag on which its children are

spinning, and this propagates down the tree releasing all the threads. Other variations on

this distributed, scalable barrier theme include the Mellor-Crummey and Scott tree barrier

and tournament barriers [71]. These optimize the combining tree barrier idea, by including

a shorter critical path through the tree, and by guaranteeing that spinning is done only on

locally allocated variables.

We implemented a barrier benchmark using a shared memory combining tree. In this bench-

mark, a number of threads are spawned on each processor, and these threads repeatedly

perform a barrier synchronization. The �rst level of the combining tree has a fan-in equal

to the number of threads on each processor1. The threads on each processor �rst perform

a local combine, and then the last thread to combine on each local processor participates

in a global barrier using a radix-4 combining tree. The simulation uses 64 processors, with

a fully associative cache, so that only cache invalidation tra�c a�ects performance.

The following variations on the barrier benchmark are run:

� Unprioritized: Threads all have the same priority. When threads are waiting to be

released they repeatedly poll the node in the combining tree at which they are stalled

until it changes and releases them. A failed poll results in a context switch. If there

are more threads than contexts, then there is also a thread swap with an unloaded

thread.

� Prioritized: When a thread arrives at the barrier and it is not the last thread

in the leaf group, it decreases its priority in preparation for the next phase of the

computation, and begins to spin. The last thread to arrive at a leaf node maintains its

priority and proceeds up the combining tree. Thus on each node, only the thread that

is participating in the non-local barrier tree is actually using any cycles | it can either

be spinning at an intermediate node of the combining tree, or it can be proceeding

up or down the combining tree. Once a thread going back down the combining tree

reaches a leaf of the tree, it decreases its priority to the priority of the other spinning

leaf threads, and they can all proceed to the next phase of the computation. Note

1If there is only a single thread per processor, then this �rst level is eliminated.
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that the prioritization required for other tree-like barriers including the tournament

barriers and the MCS tree barriers [71], is qualitatively similar to the prioritization

of the combining tree barrier.

One prioritization scheme that does not work very well is to increase the priority of the

last thread that arrives at the barrier on each processor. This would allow a single thread

on each processor to participate in the non-local portion of the combining tree without

interference from the others. The problem with this scheme is that it does not di�erentiate

between threads spinning at the barrier, and threads that are still doing useful work to get

to the barrier. Making this di�erentiation is important to prevent spinning threads from

stealing cycles from threads that have not yet reached the barrier.

6.3.1 Results

Figure 6.4 shows the average barrier wait times for the three di�erent scenarios, SINGLE,

ALL, and LIMITED, where the barrier wait time is the time spent by a thread waiting at

the barrier. Figures 6.5 and 6.6 show the sensitivity of the benchmark to the thread swap

time and the context switch time respectively.

Results show that the threads prioritization improves performance by eliminating unneces-

sary thread swaps and context switches. Threads critical to the completion of the barrier

are given priority, and a minimum of time is spent on non-critical spinning threads. Elim-

inating unnecessary thread swaps and context switches also reduces the sensitivity to the

thread save/restore time and to the context switch time. These results are discussed in

detail below.

SINGLE

With unprioritized threads, performance of the barrier decreases as the number of threads

increases due to two factors. First, each thread that participates in the barrier must swap

into the context in order to reach the barrier. Second, when a thread that is spinning at

an intermediate node of the combining tree does an unsuccessful poll, the scheduler swaps

out this thread, and successively loads in all the other spinning threads on the local node.

It does this because it does not di�erentiate between the locally spinning threads and thus

treats them all fairly. In the prioritized case, the time to perform the barrier increases due

to the larger number of threads, but once the local barrier has been completed and one

thread has been chosen to represent the node in the global barrier, this thread never swaps

out regardless of how often the polling is unsuccessful. As a result, the second component

which contributed to poor performance in the unprioritized case is eliminated. For 4 threads

per processor performance improves by 18%, and for 16 threads per processor performance

improves 42%.
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Figure 6.4: Average barrier wait time for 64 processors. SINGLE, ALL, and LIMITED

scenarios. The Prioritized Queue case in the LIMITED scenario prioritizes the software

scheduling queue, but does round-robin scheduling of the hardware contexts.
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Note that for this benchmark we did not investigate 2-phase algorithms [48, 67] in which

a thread spins a certain number of times, and then if it is still unsuccessful, suspends and

is woken up later. Doing this makes the benchmark more complex because we must record

which threads have to be woken up and which processors they are on, as well as signal these

threads to wake up. Performance of this more complex approach is likely to be worse than

the unprioritized case with a small number of threads, and better when there are a large

number of threads and the thread swapping cost becomes more important. It will be worse

than the prioritized case in all cases because of the extra overhead and the extra spinning.

ALL

The unprioritized ALL scenario su�ers from a similar problem to the unprioritized SIN-

GLE scenario, except that no thread swapping is necessary since all threads are loaded,

only context switching. Although a context switch is much cheaper than a full thread swap,

the context switches happen more often in the ALL case than thread swaps in the SIN-

GLE case because they occur not only on failed synchronization tests, but also on cache

misses. Each time the thread participating in the global barrier misses in the cache or does

an unsuccessful polling operation, the processor runs through all the other contexts before

returning to the critical context. It is important to note that the time to switch between

the contexts is more than simply the number of cycles to switch between hardware contexts,

in this case 5 cycles. This is because once the actual context switch takes place, the new

thread issues some number of instructions, until it either misses in the cache, or tests its


ag unsuccessfully and context switches. The prioritized scheduling eliminates unneces-

sary context switching during the global barrier with performance improving by 15% for 4

threads, and by 60% for 16 threads.

LIMITED

The case of having more threads than contexts with multiple contexts can potentially su�er

from the worst of both the SINGLE, and the ALL scenarios. With unprioritized threads,

each time a non-critical spinning thread runs, it not only checks its 
ag but also does a thread

swap if there are other threads on the scheduling queue. Thus the time between when the

critical thread context switches to the time it is again the executing thread is increased by

the time to run through all the other loaded threads, where each is checking its 
ag and then

swapping itself with some other spinning thread on the software scheduling queue. Note that

this in e�ect represents a worst case scenario in terms of the amount of thread swapping that

is done when threads are unprioritized. The more complex 2-phase algorithms mentioned

previously will certainly perform better because they eliminate many unnecessary thread

swaps, although they will again be worse than the prioritized case because of the extra

complexity and extra spinning overhead. Figure 6.4c also shows the case when the thread

priorities are used only by the software scheduler, and not the hardware scheduler. In this

case the hardware scheduler does round-robin scheduling of the loaded threads rather than
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Figure 6.5: Average barrier wait time. SINGLE scenario with register save/restore times

of 4, 32, and 200 cycles.

priority scheduling and thus does some amount of unnecessary context switching. With 16

threads, software thread prioritization without hardware thread prioritization reduces the

barrier wait time by 54%, whereas doing both software and hardware thread prioritization

reduces the wait time by 59%.

Sensitivity to Thread Swap Time

Figure 6.5 shows the runtime for the SINGLE scenario with di�erent thread swap times.

In addition to the curves shown previously for a register save/restore cost of 32 cycles,

results are also shown for a save/restore time of 4 cycles and 200 cycles. Since both the

prioritized and the unprioritized cases must do some thread swaps to perform the barrier,

both are sensitive to the increase in thread swap time. However, since the unprioritized

case does many unnecessary thread swaps, it is much more sensitive than the prioritized

case. With 16 threads per processor, in going from a 4 cycle save/restore time to a 200

cycle save/restore time, the performance decreases by a factor of 4.6 in the unprioritized

case, and by a factor of 2.4 in the prioritized case. As expected, the prioritization has a

larger impact when the context switch cost is high.
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Figure 6.6: Average barrier wait time. ALL scenario with context switch times of 1, 5, and

10 cycles.

Sensitivity to Context Switch Time

Figure 6.6 shows the runtime for the ALL scenario with di�erent context switch times. In

addition to the curves shown previously for a context switch time of 5 cycles, results are

also shown for context switch times of 1 and 10 cycles. From this �gure we see that the

unprioritized case is more sensitive to the increased context switch time than the prioritized

case. In going from a 1 to 10 cycle context switch time the wait time for the unprioritized

case increases by 30%, whereas for the prioritized case it increases only by 9%. This is as

expected since the unprioritized case does many unnecessary context switches whereas the

prioritized case does not.

Conclusion

These three scenarios show that the prioritizing of both loaded and unloaded threads is im-

portant for the performance of the barrier synchronization. Prioritizing unloaded threads in

the thread queue is important because it guarantees that threads that still have to partici-

pate in the barrier are loaded, and it eliminates unnecessary thread swapping. Prioritizing

the loaded threads themselves guarantees that lower priority spinning threads do not steal

cycles from the higher priority threads, so that a critical thread can proceed as soon as it

is able. Prioritizing threads also substantially reduces the e�ect of both increased thread

swap time and increased context switch time.
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6.4 Queue Locks

A queue lock is a mutual exclusion mechanism that is appropriate for high contention

locks [71, 8]. Each thread inserts itself onto a queue, and then spins on its own 
ag so as

to not generate the hot spots and excess network tra�c that can be generated by simpler

Test and Set style locks. Our implementation of queue locks is inspired by the MCS lock of

Mellor-Crummey and Scott [71]. The MCS lock has the advantage that the 
ag on which

each thread spins while waiting in the queue is locally allocated and generates no global

tra�c while the thread is spinning.

Scheduling threads waiting for a lock raises a number of issues. Once a lock is acquired,

the thread owning the lock should not swap out [112, 67]. This is because all other threads

waiting for the lock will be unable to make progress until the lock is released, and so perfor-

mance can be seriously degraded. In the case of the queue lock, there is an additional factor

to be considered. The order in which threads are going to acquire the lock is determined

by the order in which threads are inserted into the queue lock. The priority of a spinning

thread should re
ect the position of the thread in the queue, so that when there are multi-

ple spinning threads on a processor, the processor gives priority to the thread earlier in the

queue.

The synthetic queue lock benchmark consists of an equal number of threads on each pro-

cessor that are trying to obtain a lock. Each thread repeatedly obtains the lock, runs a

critical section, releases the lock, and then runs a non-critical section. We consider both a

high contention and a low contention case. In the high contention case, the critical section

is about 100 cycles, and the non-critical section varies between 50 and 150 cycles, with a

uniform distribution. In the low contention case, the critical section is the same, but the

non-critical section varies between 5000 and 15000 cycles with a uniform distribution. The

total number of locks acquired over a sample period of 10
6
cycles was taken as the �gure of

merit. It should be noted that the latency tolerance properties of having multiple threads,

as well as possible cache interference between threads are not measured in this benchmark,

but rather only the e�ects of the thread scheduling. The simulation uses 16 processors,

with a fully associative cache so that only invalidation tra�c occurs.

The following variations on the queue lock benchmark are run:

� Priority1: The threads repeatedly poll a local variable to determine if they are at the

head of the queue. A failed poll results in a context switch. If there are more threads

than contexts, then there is also a thread swap with an unloaded thread. When a

thread acquires the lock, it increases its priority so that it does not swap out, and

when it releases the lock it decreases its priority.

� Priority2: If a thread owns the lock or is trying to determine its position in the

queue, it has the highest priority. If the thread is trying to insert itself into the queue,
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it has the next highest priority
2
. Threads that are spinning in the queue have a

priority based on their position in the queue
3
. Thus whenever a processor has several

threads waiting in the queue, it will give priority to the thread that will next acquire

the lock. Note that this requires the addition of a count �eld to the data structure in

order to keep track of the position in the queue, and slightly more complicated lock

acquisition code.

� Signaling1: In this version, after inserting itself into the queue a thread suspends

itself. A suspended thread is put into a suspended thread data structure until it is

explicitly woken up. When the thread currently owning the lock releases the lock, it

sends a message to wake up the next thread. This requires that the location and the

ID of each thread be available in the queue data structure. A thread owning the lock

has high priority.

� Signaling2: This version combines signaling and spinning. When a thread �rst

acquires the lock, it sends a message to the next thread in the queue to increase its

priority. It releases the lock by writing the shared memory location on which the

next thread in the queue is spinning. By doing this the next thread will get advanced

warning that it is about to receive the lock, allowing the processor to load the thread

if it is not already loaded.

6.4.1 Results

The results of the simulations for the three di�erent scenarios, SINGLE, ALL, and LIM-

ITED are shown in Figures 6.7, 6.8, and 6.9. Figures 6.10, 6.11, and 6.12 show the

sensitivity of the benchmark to the thread swap time and the context swap time respec-

tively.

The results show that prioritizing threads improves performance not only by giving high

priority to a thread that owns the lock so that the critical section is executed quickly as in

the TTSET benchmark, but also by making sure that the next thread in the lock's queue

gets the lock quickly once it is released. The results also show that the sensitivity to thread

save/restore time varies depending on the prioritization scheme. If the save/restore time is

in the critical path between when the lock is released and when it is next acquired, then

the results are sensitive to the save/restore time, otherwise they are not. The Priority1

case is also sensitive to the context switch time because it can context switch many times

before it reaches the next thread in the lock's queue. These results are discussed in more

detail below.

2There is a subtle issue here having to do with a thread trying to release the lock while the next element
in the queue is in the midst of inserting itself into the queue. The thread owning the lock has to drop its

priority temporarily to allow the insertion to take place before it can release the lock.
3Note that the priority only needs to be calculated once during insertion into the queue, and does not

have to be recomputed each time the lock is released.
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Figure 6.7: Queue Lock acquisitions. SINGLE scenario with high and low lock contention.
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Figure 6.8: Queue Lock acquisitions. ALL scenario with high and low lock contention.
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Figure 6.9: Queue Lock acquisitions. LIMITED scenario with high and low lock con-

tention.

SINGLE

Figures 6.7a and 6.7b show the results for the SINGLE scenario. The main problem is

making sure that the next thread to acquire the lock does so in a timely fashion. The

Priority1 scheme does not solve this problem because the next thread in the queue is still

likely to be in the software scheduling queue of another processor and the next acquisition

of the lock will be delayed until this thread is loaded. In both the high and low contention

cases the performance drops signi�cantly as the number of threads per processor goes from

1 to 16, by factors of 5.8 and 2.8 respectively. The Priority2 scheme deals with this

problem by prioritizing spinning threads such that their priority depends on their position

in the queue. On any given processor, the next thread that is to acquire the lock is loaded

and spins waiting for the lock to be released, which results in much better performance.

For 16 threads, the Priority2 case runtime performance is 83% and 64% better than the

Priority1 case, for the high and low contention cases respectively. The Signaling1 scheme

also performs consistently. Passing the lock requires a message send and the loading of the

receiving thread's state into a hardware context. This can require a full thread swap if

the receiving processor is already busy. It is never the case that the next thread is ready

and waiting to acquire the lock. Because of this, Signaling1 performs 8% worse than

Priority2 in the high contention case, and 14% worse in the low contention case when

there are 16 threads per processor and passing the lock nearly always requires a full thread

swap. Signaling2 performance drops o� as the number of threads increases because the

overhead of passing a lock has now increased. The length of the critical section increases

because the thread owning the lock must both send a message, and change the shared
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memory variable on which the remote thread is spinning. On the remote node, expensive

re-scheduling operations take place based on the new priorities. In the low contention case

the performance of Signaling1, and Signaling2 become similar because both typically

require a thread swap operation when the next thread is signaled to acquire the lock.

ALL

Figures 6.8a and 6.8b show the results for the ALL scenario. In the high contention case,

Priority1 performance su�ers because of unnecessary context switching when it should

wait for a critical reference to be satis�ed. Performance drops by 44% in going from 1 to

16 threads per processor. Priority2 performs best because it keeps all threads loaded and

executes them in the correct order. Signaling2 performs better than Signaling1 because

it never suspends a thread. In the low contention case with a low number of threads,

performance is no longer dominated by the performance of the lock, and all 4 scenarios

perform similarly up to 9 threads per processor.

LIMITED

Figures 6.9a and 6.9b show the results for the LIMITED scenario. In the high contention

case, Priority1 performance drops by a factor of 6 in going from 1 to 16 threads per

processor, with a dramatic drop occurring once there are more threads than contexts due

to all the thread swapping done on failed polling operations. The performance of the other

three cases is much the same as in the ALL scenario when there are 4 or less threads per

processor, and much the same as in the SINGLE scenario when there are more than 4

threads. Having more contexts helps the Signaling1 scenario in the low contention case,

because it is more likely that a context will be free when a thread's state has to be loaded

in order for it to acquire the lock.

Sensitivity to Thread Swap Time

Figures 6.10 and 6.11 shows the runtime for the SINGLE and ALL scenarios respectively,

using the high contention test with save/restore times of 4 and 200 cycles.

In the SINGLE scenario, a change in thread swap time in
uences all scenarios except

Priority2. It does not a�ect Priority2 because the thread that is going to next acquire

the lock is always loaded well before the lock is released. The thread swap time has a

large e�ect on the Signaling1 scenario because threads always suspend when they enter

the queue, and always have to be reloaded once they are next in line in the queue. When

the save/restore cost is just 4 cycles it performs slightly better than the Priority2 case,

but when the save/restore cost is increased to 200 cycles, its performance is about 42%
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Figure 6.10: Queue lock acquisitions. SINGLE scenario with high contention and register

save/restore times of 4 and 200 cycles.

worse than the Priority2 case. The performance of Priority1 and Signaling2 su�ers

the most from the increased thread swap time. For 16 threads per processor, when the

thread save/restore time increases from 4 to 200 cycles, performance drops by 76% and

62% respectively.

In theALL scenario, only the Signaling1 performance decreases with increased save/restore

time since it is still suspends and wakes up threads. Priority1 and Priority2 and Sig-

naling2 never do a thread swap operation since there are enough contexts to have all the

threads loaded.

Sensitivity to Context Switch Time

Figure 6.12 shows the runtime for the ALL using the high contention test with di�erent

context switch times. Priority2, Signaling1, and Signaling2 all su�er from 3% to 7%

when the context switch time goes from 1 to 10 cycles. This is because when the context

switch time increases the penalty for cache misses and inter processor interrupts increases.

The Priority1 case su�ers by as much as 14% because of the extra context switches that

are done.
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Figure 6.11: Queue lock acquisitions. ALL scenario with register save/restore times of 4

cycles and 200 cycles.
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Figure 6.12: Queue lock acquisitions. ALL scenario with context switch times of 1 cycle

and 10 cycles.



6.5. SUMMARY 127

Conclusion

Several general observations can be drawn from this queue lock study. First, some sort

of prioritization is helpful to make sure that threads acquire the lock in reasonable time,

without having to resort to polling threads by continuously swapping them in and out of

the loaded set to determine the next thread in the queue. Associating a priority with each

thread based on its position in the queue is one approach to solving the problem. It allows

the next thread that is to acquire the lock to be loaded and ready to accept the lock. Note

however that determining a prioritizing of threads that is both correct and performs well is

trickier than one would expect. Using a signaling mechanism to wake up the next thread in

the queue is also a reasonable approach, but incurs the extra overhead of swapping threads

in and out of contexts. Also, the relative performance of the three cases that prioritize

e�ectively, Priority2, Signaling1, and Signaling2, depends on the assumptions made

about thread swapping time, the length of the critical section, and the cost of message

sends. In particular, if the cost of waking up a suspended thread is assumed to be higher

than just the minimum time to load the context from the cache (due to cache misses for

instance), the relative advantage of Priority2 over Signaling1 will increase. Also, if the

cost of loading a thread is su�ciently high, and the length of the critical section is su�ciently

long then the Signaling2 will perform better than Signaling1.

6.5 Summary

In the context of multithreaded, multiple-context parallel processors, thread prioritization

can be successfully used to prevent the performance of spin-waiting synchronization op-

erations from degrading when the number of threads and/or the number of contexts is

increased. Speci�cally, software thread prioritization that decides which threads should be

loaded and which should be unloaded prevents critical threads from swapping out and be-

coming unloaded. Hardware prioritization of the loaded threads prevents spinning threads

from needlessly consuming cycles, and allows critical threads to proceed as quickly as pos-

sible.

Three synthetic benchmarks were studied: A TTSET benchmark, a barrier synchronization

benchmark, and a queue lock benchmark. In all cases performance su�ered when threads

were unprioritized, and did not su�er when threads were prioritized. Prioritization also

reduced the sensitivity to the thread swap cost and the context switch cost because many

unnecessary thread swaps and context switches are avoided.



Chapter 7

Scheduling for Good Cache

Performance

Cache memory plays a key role in improving the performance of modern processors by

signi�cantly reducing the average latency of memory requests. The increasing ratio of pro-

cessor speed to DRAM speed makes the cache even more critical, since loads and stores that

miss in the cache require a larger number of cycles before they can be satis�ed. Multiple-

context processors allow the latency of cache misses to be tolerated, but can also lead to

reduced cache hit rates due to negative cache e�ects: the di�erent working sets interfere

with each other causing misses that would not normally occur if only a single thread was

executing [2, 105, 37, 81]. It is also possible for the threads in the multiple contexts to

have signi�cant overlap in their working sets, leading to positive cache e�ects. In this sce-

nario, one context can make a reference that brings data into the cache, and when other

loaded threads refer to the same data it is already in the cache. In this way di�erent con-

texts prefetch data for each other. This data sharing also reduces invalidation misses since

threads using the same data may be on the same processor.

Several studies conclude that negative cache e�ects dominate over positive cache e�ects

[105, 37]. These studies however made little or no e�ort to schedule threads so that the

working sets of the di�erent running threads are overlapped. Thekkath and Eggers [96]

studied the e�ect of thread placement on cache performance and runtime and conclude

that sharing-based placement has no positive impact. One or more factors contributed to

this being true: the threads accessed shared data in a sequential manner referring several

times to the data before it is invalidated, the shared data was uniformly shared across

the processors so that no placement of threads was clearly superior, and the shared data

references were an insigni�cant part of the overall number of references. This study does

not make any special e�ort to de�ne threads in a way that will lead to positive cache

e�ects, and does not attempt to closely coordinate their execution so that they are using

shared data at the same time. Another study by Thekkath and Eggers [95] concludes that

multiple-contexts are much more e�ective when the application has threads that have been

128
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optimized for locality. Again however, the threads are optimized individually, and not as a

whole.

In this chapter we present a number of techniques for improving the cache performance of

multiple-context parallel processors, in particular data sharing and favored thread execution.

Data sharing makes the working sets of the loaded threads overlap as much as possible, by

tightly coupling their execution so that they use much of the same data, at approximately

the same time. This technique is particularly useful in the context of blocked algorithms

where there is considerable sharing of data between loop iterations. Favored thread exe-

cution requires assigning a priority to the threads so that in the case that there are more

contexts than necessary to tolerate latency, the processor favors the execution of high pri-

ority threads. This can lead to better cache behavior because the cache favors the working

sets of the high priority threads.

We show a number of simple experiments that illustrate the bene�ts of data sharing and

favored thread execution. These experiments concentrate on parallel loops for which cache

performance is critical. We show that depending on how threads are de�ned and how work is

distributed to the threads, they can have signi�cant overlap of their working sets, or almost

no overlap. We show that distributing work to the di�erent contexts dynamically a single

iteration at a time rather than statically provides good load balance between the contexts,

and guarantees that latency tolerance is provided throughout most of the computation.

Using favored thread execution, the minimum number of threads required to tolerate latency

is selected to execute at any given time. This minimizes the hit rate degradation as the

latency increases. We also show that though favored thread execution can improve hit rate,

it can still in some cases have worse runtime than round-robin execution. This is caused by

the load imbalance that occurs when some threads �nish well ahead of others, leaving those

few remaining threads without any means to tolerate latency. This e�ect can be minimized

however by distributing work dynamically in small chunks. The results also show that

favored execution has a much bigger e�ect on performance when the memory bandwidth

is limited, because fewer threads are required to saturate the available bandwidth, and the

penalty for additional cache misses is much higher.

Performance improvements depend on the number of contexts, the cache parameters, the

memory latency, and the memory throughput. For the range of parameters and cache sizes

simulated, multiple context versions of the benchmarks that use both techniques yield cache

hit rates that are 25 to 50 percentage points higher than versions of the benchmarks that

did not. Runtime improvement due to the improved cache performance depends on the

memory throughput available. With high memory throughput the e�ect of low cache hit

rate is not so important, and improvements range from almost none to about 16% with 16

contexts. If memory throughput is limited, than the improved cache performance has a big

impact, with runtime improvements up to 50% with 16 contexts.
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7.1 Data Sharing

Data sharing requires that the threads executing in the di�erent contexts use common

data, so as to maximize positive cache e�ects, and minimize negative cache e�ects. We

will examine these e�ects principally in the context of parallel loop constructs. The key

observation in this context is that the most data sharing typically occurs between successive

iterations of a loop i.e. threads that are working on successive iterations of a loop are likely

to share data. In the case of nested loops, there is typically one loop across which the

most sharing occurs, and if di�erent threads execute interleaved iterations of this loop then

signi�cant sharing will occur. The discussion of data sharing in the next section in the

context of a blocked matrix multiply algorithm serves to clarify these points.

7.1.1 Blocked Algorithms

Blocked algorithms attempt to exploit data locality by operating on small blocks of data

that �t into the cache, so that data loaded into the cache is reused [61, 109]. A simple

example is matrix multiply that computes the matrix Z = XY , shown in unblocked form

in Figure 7.1, and in blocked form in Figure 7.2.

To understand the e�ects of blocking, consider each loop of the code starting from the

innermost loop. In the unblocked case, the only reuse over the iterations of the innermost

k loop is the register allocated X array element. In the next innermost loop, the j loop, an

entire row of the Z matrix is reused on each iteration. Provided there is su�cient room in

the cache, this will lead to reuse of this data among the j loop iterations. If there is not

enough room in the cache, then the entire Z row will have to be read in at each j iteration.

In the outermost i loop, the entire NxN Y matrix is reused on each iteration. Provided the

cache is large enough, there is the potential to reuse the Y matrix data. If the cache is not

large enough, the entire Y matrix is likely to have to be read in at each i iteration.

Now consider the blocked case. The three innermost loops are the same as the unblocked

case, except that we change the bounds so that for reuse in the j loop, only B (the blocking

factor) elements of the Z row have to �t into the cache in order to have reuse, although

it should be noted that due to the change in the number of j iterations, we use the data

only B times rather than N times as in the unblocked case. Similarly, in the i loop, we

reuse a BXB portion of the Y matrix N times provided it �ts in the cache. Table 7.1 shows

the amount of data the processor must bring into the cache for the blocked and unblocked

algorithm, depending on the amount of reuse that can be exploited.

A couple of important notes should be made about this blocked algorithm. First, there is

a tradeo� between data reuse, the blocking factor B, and loop overhead. To get the reuse,

B must be chosen small enough so that the data �ts in the cache, but large enough so that

the data is reused as many times as possible, and so that the loop overhead is reduced.
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for (i = 0 ; i < N ; i++)

for (j = 0 ; j < N ; j++) {

r = X[i][j]; /* register allocated */

for (k = 0 ; k < N ; k++)

Z[i][k] += r*Y[j][k];

}

Figure 7.1: Straightforward matrix multiply code.

for (jj = 0 ; jj < N ; jj += B)

for (kk = 0 ; kk < N ; kk += B)

for(i = 0; i < N ; i++)

for (j = jj ; j < MIN(jj+B,N) ; j++) {

r = X[i][j]; /* register allocated */

for (k = kk ; k < MIN(kk+B,N) ; k++)

Z[i][k] += r*Y[j][k];

}

Figure 7.2: Blocked matrix multiply code.

Reuse Pattern Words Fetched Into Cache

Unblocked Blocked

No data reused 2N3 +N
2 2N3 +N

2

Z data reused N
3
+ 2N

2
N

3
+

N
3

B
+N

2

Z and Y data reused 3N2 2N3

B
+N

2

Table 7.1: Data that must be fetched into the cache depending on reuse patterns.
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Lam, Rothberg, and Wolf [61] found that it is important to consider the amount of cache

interference that occurs, which is highly sensitive to the matrix size, the blocking factor, and

the stride. They found that the blocking factor B that leads to the least cache interference

depends heavily on the matrix size and should be tailored accordingly.

7.1.2 Reuse Patterns in Blocked Algorithms

Wolf and Lam identify a number of di�erent types of reuse in blocked algorithms [109].

These include:

1. self-temporal reuse: A reference in a loop accesses the same location in di�erent

iterations.

2. self-spatial reuse: A reference accesses the same cache line in di�erent iterations.

3. group-temporal reuse: Di�erent references access the same location.

4. group-spatial reuse: Di�erent references access the same cache line.

Looking at the di�erent references in the blocked matrix multiply code, and assuming that

there are 2 double words per line, and that we store the arrays in row major order, we can

identify the types of reuse that we can exploit for each reference. Z[i][k] has self-spatial

reuse in the k loop since successive iterations use successive elements in the row. It has

self-temporal reuse in the j loop because the same portion of the Z row is reused at each

iteration. Similarly, Y[k][j] has self-spatial reuse in the k loop, and self-temporal reuse in

the i loop. Finally, X[i][j] has self-spatial reuse in the j loop, and self-temporal reuse in the

kk loop.

In a blocked algorithm, there is typically one loop in which the most reuse takes place.

Consider the blocked matrix multiply loops beginning with the innermost loop, and with

a blocking factor B. In the k loop, we can exploit only the self-spatial reuse of the Z and

Y references. In the j loop, self-temporal reuse of the Z reference occurs as well. In the i

loop, we can exploit the self-temporal reuse of the Y reference. Finally, each new iteration

of the outermost loops kk and jj requires that we bring in a new set of data into the cache.

Thus, assuming that the cache can hold a BxB Y matrix block, as well as B elements of the

Z matrix, the loop in which most of the reuse occurs is the i loop. This fact can be used to

maximize positive cache e�ects as described in the next section.

7.1.3 Loop Distribution to Achieve Positive Cache E�ects

In order to exploit positive cache e�ects we want to have loop iterations that use common

data execute in di�erent contexts at the same time. In the matrix multiply example, the
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ideal loop to distribute across the multiple contexts is the i loop because these iterations

are independent in the sense that they update (write) di�erent sections of the Z matrix, and

because threads executing di�erent i iterations will share signi�cant amounts of data in the

cache. Since the i iterations are independent, several iterations of the i loop can proceed at

once in di�erent hardware contexts. To get good reuse the thread should hold the BxB Y

matrix block that all the iterations are using, as well as B elements of the Z array for each

context.

Distributing loops other than the i loop leads to a number of di�erent problems. Distribut-

ing the k loop iterations to di�erent contexts incurs a large amount of overhead because

each iteration performs only a single multiply accumulate. Distributing the j loop has

higher granularity but is problematic because di�erent iterations update the same Z matrix

locations, and some form of synchronization is required1. Distributing the kk or jj loops

to the di�erent contexts means that the di�erent contexts have no overlap at all between

their working sets. Each context requires a separate BxB Y matrix block, and a separate

set of B elements of the Z array. This can lead to signi�cant negative cache e�ects, and a

resulting degradation in performance.

E�cient Local Loop Distribution

The simple technique we use for distributing multiple iterations to di�erent contexts on

a single processor is to have each thread running in a context dynamically acquire the

next iteration by using an atomic Fetch-and-Increment instruction. Distributing the loop

iterations one at a time leads to several good e�ects in the multiple-context processor:

� Di�erent contexts are working on closely spaced iterations that tend to share data. As

will be shown in the benchmarks later in this chapter, this can lead to better spatial

and temporal locality in the cache as compared to schemes where the threads are not

working on closely spaced iterations at the same time.

� Distributing work a single iteration at a time means that contexts will be load balanced

and provide maximum latency tolerance for each other. If work is distributed statically

in big chunks, there can be a load imbalance if some threads have lots of work to do,

while others have very little.

Our implementation of local loop distribution to multiple-contexts is similar to a multiple

processor loop distribution scheme described by Weiss, Morgan, and Fang [106]. The loop is

scheduled using a shared structure that contains two values, one shared counter for acquiring

an iteration, and one shared counter for signaling the end of an iteration. A thread acquires

an iteration by atomically incrementing the acquire variable, executes the iteration, and

1This could be accomplished with Full/Empty bits, locks, or a 
oating point Fetch-and-Add instruction.
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then signals the end of the iteration by incrementing the end counter. An easy optimization

to this scheme counts the number of contexts that have completed, rather than the number

of iterations that have completed: once there are no more iterations to acquire, each context

increments a counter to signal that it has �nished execution. This e�ectively represents a

software barrier performed by all the threads. If the loop being distributed across the

contexts is contained within other loops, then the last processor updates the outer loop

indices, resets the acquire and the end counters, before releasing the barrier.

To give a concrete example, the case of the matrix multiply would work as follows. Each

context atomically increments a shared variable to determine the i iteration that it is to

execute. If no more i iterations are left, the thread atomically increments the end counter,

and enters a local barrier. The last thread to �nish an i iteration updates the jj and kk

iteration variables in preparation for the next i loop, resets the shared counters, and then

releases the barrier. Note that hardware prioritization of threads plays an important role

in optimizing this local barrier: when there are no more iterations to be executed, a thread

arrives at the barrier and drops its priority, so that threads that are spinning at the barrier

do not steal cycles from threads that are still executing iterations.

Comparison to Multiprocessor Loop Distribution Techniques

The problem of distributing iterations to the threads running in the contexts of a multiple-

context processor has a number of similarities and di�erences with the more general problem

of distributing loops to multiple processors that have been discussed in the literature [79,

68, 99, 70]. The similarities are that the distribution can be done statically or dynamically,

and there can be a load imbalance problem. The major di�erence is that �ne-grain loop

distribution is much cheaper with multiple contexts that share a cache, than with multiple

contexts that do not.

Multiprocessor loop distribution studies compare static loop distribution in which iterations

are statically assigned to multiple processors, and dynamic distribution using a shared

iteration counter. All the studies of multiprocessor loop distribution lead to the same basic

results:

� The static distribution of loops can lead to serious load imbalance when the amount of

work in each iteration is unknown or variable. Dynamic distribution schemes achieve

much better load balance.

� Dynamic distribution schemes su�er from a bottleneck on the iteration variable as

the number of processors increases. To relieve this bottleneck various schemes are

possible. More than a single iteration can be obtained at each iteration variable

access [79, 68, 99]. Deciding how many iterations should be acquired requires a tradeo�

between reducing the contention on the iteration variable, and achieving good load

balance between the processors. Alternatively, one can start by statically allocating
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iterations to processors and then do load balancing if a load imbalance occurs [70].

Similarly to the distribution of loops to multiprocessors, the distribution of loops to multiple

contexts can be done either statically or dynamically. A static distribution to the multiple

contexts can lead to a load imbalance. This imbalance can cause threads with less work

to �nish well before others, so that not all the contexts will be running at the same time.

Although the processor will never be completely idle until all the contexts have �nished

executing their work, there can be signi�cant periods of time where there are not enough

contexts running to completely tolerate latency.

The main di�erence between distributing iterations to multiple processors and distributing

iterations to multiple contexts is the cost of dynamic loop distribution: it is much cheaper

to use a Fetch-and-Increment instruction to acquire an iteration in the multiple-context case

than in the multiprocessor case. This is because all the contexts share a cache and no global

operations have to take place to invalidate remote copies of the iteration variable. Typically

the iteration variable will always be available in the cache. Complicated schemes to avoid

contention on iteration variables are not needed, and further this �ne-grain distribution of

threads has the data sharing advantages mentioned in the previous section.

Note that the loop distribution to multiple contexts we have described is done at a purely

local level, and thus requires a method for distributing work at a global level to the multiple

processors. In some cases we can distribute the global work statically. Alternatively, we can

distribute a loop to the processors using any one of the multiple processor loop distribution

schemes, and then redistribute iterations locally to the multiple contexts using the local

scheme.

7.1.4 Data Prefetching and Data Pipelining E�ects

In addition to the reuse of data that occurs when multiple contexts share data, two other

e�ects can impact performance. First, a reference in one context often acts as a prefetching

mechanism for another context. This can increase the cache hit rate and decrease the

latency penalty. This is a form of implicit prefetching, which avoids the complications and

overhead associated with doing explicit prefetching.

Second, even if the working set of data does not �t in the cache, data can be pipelined

through the cache and be used by each context as it executes a single iteration. Consider

again the blocked matrix multiply example, and consider a blocking factor B for which the

BxB portion of the Y matrix does not �t in the cache. The di�erent iterations running in

the di�erent contexts all request the Y data in the same order. Elements of the Y block

are brought gradually into the cache, and are used by each context in turn. We achieve a

reuse factor of C, where C is the number of contexts, where normally we would not achieve

any reuse because the data block was too big. These e�ects are observable in the matrix

multiply example as described next.
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16 X 16

Cache Size Single Context Four Contexts

Speedup HR Speedup HR

64 bytes 1.00 0.65 1.35 0.46

512 bytes 1.17 0.77 1.55 0.69

1 Kbytes 1.22 0.80 1.74 0.89

2 Kbytes 1.24 0.81 1.77 0.92

4 Kbytes 1.65 0.96 1.81 0.96

Table 7.2: 16X16 single processor matrix multiply using a fully-associative cache. Speedup

is given relative to the single context case with a 64 byte cache.

Example Hit Rates for Matrix Multiply

We can easily calculate analytically the e�ect of data reuse on the hit rate for the matrix

multiply example. We consider a fully-associative cache, and assume two double words per

cache line, a 16x16 block, and consider only the matrix data references. The worst hit rate,

assuming that we exploit only the temporal and spatial locality in one cache line, is 65%.

If we exploit the self-temporal locality of the Z references, then the hit rate increases to

81%. The best hit rate is when we exploit the self-temporal locality of both the Z and the

Y references, and is 97%. Finally, if we assume we can exploit the self-temporal locality of

the Z references but not the self-temporal locality of the Y references, and that the i loop

is being distributed to 4 contexts and that these contexts are exploiting the data pipelining

e�ect (i.e each Y value is used by all 4 contexts before being removed from the cache), then

we calculate the hit rate to be 93%.

Table 7.2 shows the results for a 16x16 matrix multiply for 1 and 4 contexts, with various

cache sizes. In this case it is the i loop that is being distributed across the contexts.

Initially, for small cache sizes, negative cache e�ects dominates, and the cache hit rate for

the multiple context case is worse than the single context case. Note that performance

is still better for the multiple context case, because of the latency tolerance provided by

the multiple contexts. For moderate size caches, the cache hit rate is actually better for

the multiple context version of the code than the single context version due to the data

pipelining that occurs. With a large cache the hit rate of both examples are very similar,

and because the hit rate is so high in both cases, the bene�ts provided by the latency

tolerance of the cache are small.

7.2 Favored Thread Execution

Favored thread execution requires prioritizing threads so that they are executed preferen-

tially in a certain order. The main bene�t of this prioritization is that the cache will have a
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tendency to contain more of the working set of the higher priority threads, and less of the

working set of the lower priority threads. Consider for instance the case where there are 4

threads executing in 4 contexts. If only 2 and sometimes 3 threads are necessary to hide

the processor latency, and the cache is not big enough to contain the working sets of all 4

threads, then the prioritization can make it so that the working set of the 2 high priority

threads are loaded, some portion of the third thread's working set is loaded, and virtually

none of the working set of the fourth, and lowest priority thread.

The big advantage of this scheme is that the number of loaded threads that are using

processor cycles can be dynamically chosen to be the minimum required to tolerate the

observed latency. If the average latency increases, lower priority threads will begin executing

to tolerate the additional latency. If the average latency decreases, then some of the lower

priority threads will stop receiving processor cycles. Choosing the minimum number of

loaded threads to execute means that the minimum required number of working sets will

be in the cache, leading to overall better hit rates.

There are also a number of disadvantages of prioritizing threads in this way including:

� Insu�cient loaded threads: Favored thread execution is most e�ective when there are

more than enough contexts to fully tolerate latency. If there are not, then all the

contexts will be executing in an attempt to tolerate the long latencies, and so all their

working sets will want to be loaded. The only e�ective way of in
uencing the cache

ratio in this case may be to limit the number of loaded threads.

� Load balancing: Favored thread execution may exacerbate the load balancing problem

mentioned in the previous section. Consider for example the case that 3 contexts are

required to tolerate latency, and 4 threads are created with decreasing priority. The

lowest priority will not begin to execute a signi�cant number of cycles until at least one

of the other threads completes. If all the three other threads �nish at approximately

the same time, the one remaining thread will �nd itself executing alone, without any

other threads available to tolerate latency.

We can solve the insu�cient loaded thread problem and the load balancing problem by

distributing work in small enough chunks so that many threads can be loaded, and no one

thread has an unduly large piece of work that will cause it to run a long time beyond when

other threads have no more work. Distributing work in small chunks has extra overhead,

which is usually compensated for by better cache performance and better latency tolerance.

7.3 Experiments

In this section we quantify the e�ects of data sharing and favored execution by examining in

detail three benchmarks: matrix multiply, Successive Over-Relaxation (SOR), and sparse-
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matrix vector multiply. We wrote di�erent versions of each code that show di�erent levels of

data sharing and favored execution, and simulate them on a single processor with multiple

contexts, varying the latency and memory bandwidth.

The results con�rm that de�ning threads so that they share data in the cache, and closely

coordinating their execution, leads to better cache hit rates. Runtime performance improves

as well, especially when memory bandwidth is limited and cache performance is critical. Fa-

vored execution can also improve performance especially when latencies are short, memory

throughput is low, and the data sets of threads do not share much data. When these condi-

tions hold, favored execution is the most successful in reducing the amount of data that has

to be in the cache. However when latencies are long and work is statically distributed in

big chunks, favored execution can make the load balancing problem worse by causing high

priority threads to �nish early, leaving low priority threads without any means of tolerating

the long latencies.

For these benchmarks the default memory latency is 20 cycles, and the default memory

throughput is 1 request every 4 cycles. We simulate the long latencies that might occur

with slower DRAM and in multiple processors by increasing the memory latency of the

single processor to 80 and 160 cycles. We also vary the memory throughput available, and

consider what happens when the memory throughput is a much lower 1 request per 20

cycles.

7.3.1 Matrix Multiply

We simulate the following versions of the matrix multiply benchmark:

1. mm: Single context version that runs the straightforward blocked matrix multiply

code.

2. mm i: Multiple context version that does �ne-grain distribution of the i loop across

multiple contexts.

3. mm kk: Multiple context version that does �ne-grain distribution of the kk loop

across multiple contexts. Note that in this case, essentially no data reuse is exploited

between the di�erent contexts. When this is done for large block sizes, there can be

fewer iterations than contexts.

4. mm kk i: Multiple context version that does �ne-grain distribution of both the kk

and the i loops as a unit by coalescing the loops [79]. A single shared counter is

incremented, and the value of kk and i are computed from the result. The goal of

doing this is to reduce the synchronization overhead due to synchronizing the di�erent

contexts at the end of each group of i iterations.
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Data Sharing E�ects

Data sharing between contexts varies depending on the version of the code being run, and

on the block and cache sizes. Figure 7.3 show the results for a blocked matrix multiply

with a matrix size of 36, a blocking factor of 9, and a range of cache parameters. The

multiple context versions of the benchmark all use 4 contexts. All the threads that use

multiple contexts perform better than the single context case due to the latency tolerance

provided. The cache hit rates for both mm i and mm kk i are about the same as formm

despite the larger aggregate working set size because of the sharing of data between contexts.

They are a bit worse for the direct-mapped cache where there is more interference between

references, and a bit better for a fully-associative cache where there is less interference and

the pipelining and prefetching are more e�ective. The di�erences in performance between

mm i and mm kk i are minor, with the extra cost of synchronization in mm i o�set by

the extra work required to calculate i and kk from the coalesced loop index in mm kk i.

The mm kk benchmark which only distributes the kk loop has considerably worse cache

performance for smaller cache sizes because the working sets of the 4 threads do not share

any data. This lower hit rate translates to lower performance due to the extra context

switching. However, once the cache is large enough, the hit rates for all the cases are about

equal.

Systematic interference can sometimes be a problem, particularly with direct-mapped caches.

Due to the relationship between the cache size, the matrix size, and the blocking factor,

many values in the block map to the same cache lines so that di�erent references within

a block systematically interfere with each other [61]. For instance, Figure 7.4 shows the

results for a blocked matrix multiply with a matrix size of 32 and a blocking factor of 8. In

all cases the direct-mapped hit rates are less than for the 36X36 matrix using a blocking

factor of 9. The problem is worse in the mm i and mm kk i cases because they have

several references outstanding to the same block. When the cache is fully-associative the

hit rates show similar behavior to the 36X36 matrix with a blocking factor of 9. In general,

we must choose blocking factors carefully to avoid this systematic cache interference [61].

In general, assuming the absence of systematic cache interference, the considerable overlap

in the working sets of di�erent iterations in the case of mm i and mm kk cause them to

have comparable cache hit rates to the single contextmm example, and better performance

than the mm kk scenario in which their is little overlap of the threads working sets.

Favored Thread Execution E�ects

Using favored thread execution rather than round-robin execution of contexts improves

cache hit rates and performance in the case that there are more than enough contexts

to tolerate the observed latency. Figure 7.5 shows the runtime and the cache hit rate

for mm kk i as the number of loaded threads increases, using a 36X36 matrix size, a

blocking factor of 9, and di�erent memory latencies and memory system throughputs. Two
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Figure 7.3: Hit rates and speedups for a 36X36 matrix multiply with a blocking factor

of 9. Multiple-context versions of the code use 4 contexts. Fully-associative (FA) and

direct-mapped (DM) caches are simulated.
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Figure 7.4: Hit rates and speedups for a 32X32 matrix multiply with a blocking factor of

8. Multiple-context versions of the code use 4 contexts. Fully-associative (FA) and direct-

mapped caches (DM) are simulated. In the DM case, systematic cache interference leads

to poor hit rates.
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scheduling schemes are shown, one in which the multiple threads have equal priority, so

that threads run in round-robin fashion, and one in which threads have a priority based on

the iteration that they are calculating, so that they execute in a favored order.

With round-robin scheduling the cache hit rate decreases uniformly as the number of loaded

threads increases independent of the latency. With the favored thread scheduling the hit

rate decreases, but eventually reaches a stable value. This is because the favored execution

dynamically chooses the minimum required number of contexts to tolerate the observed

latency, and stabilizes the hit rate at the value corresponding to this number of contexts

executing at once.

The impact of the improved hit rate is small for both high and low memory throughput

because the hit rates are high, leading to long run lengths and an application that is

not bandwidth limited. The only performance penalty is the cost of the extra context

switching. The largest performance di�erence occurs with a memory latency of 20 cycles

and 16 contexts. The favored execution scheduling increases the hit rate from 65% to 82%,

and leads to a 9% reduction in runtime.

7.3.2 SOR

Figures 7.6 and 7.7 show an unblocked version and a blocked version respectively, of code

for 2D red/black successive over-relaxation (SOR). This SOR code divides the domain into

red and black points layed out in a checkerboard pattern, and at each iteration updates

�rst the red points, and then the black points [29].

Looking at the di�erent references in the SOR code, and assuming that there are 2 double

words per cache line, and that we store the arrays in row major order, we can identify

the types of reuse exploited by each reference. A[i][j], A[i][j-1], and A[i][j+1] have group-

temporal and group-spatial reuse within the j loop, such that each iteration requires only

one new element from the i row. All the references have group-temporal reuse within the i

loop, since we use values from the current row in the calculation of the next row.

We simulate three versions of the benchmark:

1. sor sing: Single context version of the blocked code.

2. sor dyn: Multiple context version with �ne-grain distribution of the i loop to the

di�erent contexts.

3. sor sta: Multiple context version with static distribution of blocks of rows to the

di�erent threads. The code does blocking within each thread if there are su�cient

rows.
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Figure 7.5: Performance ofmm kk i comparing round-robin and favored execution for dif-

ferent memory latencies and throughputs. A 36x36 matrix multiply is done with a blocking

factor of 9 and a 1Kbyte direct-mapped cache.
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for (t = 0 ; t < T ; t++) {

for (i = 1 ; i < N ; i++)

for (j = (odd(i) ? 1 : 2) ; j <= N-1 ; j += 2) {

A[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i][j+1] +

A[i-1][j] + A[i+1][j]);

}

for (i = 1 ; i < N ; i++)

for (j = (even(i) ? 1 : 2) ; j < N-1 ; j += 2) {

A[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i][j+1] +

A[i-1][j] + A[i+1][j]);

}

}

Figure 7.6: Straightforward 2D red/black SOR code.

for (t = 0 ; t < T ; t++) {

for (ii = 1 ; ii < N ; ii += B)

for (jj = 1 ; jj < N ; jj += B)

for (i = ii ; i < MIN(ii+B,N) ; i++)

for (j = (odd(i) ? (jj):(jj+1)); j < MIN(jj+B,N-1) ; j+=2) {

A[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i][j+1] +

A[i-1][j] + A[i+1][j]);

}

for (ii = 1 ; ii < N ; ii += B)

for (jj = 1 ; jj < N ; jj += B)

for (i = ii ; i < MIN(ii+B,N) ; i++)

for (j = (even(i) ? (jj):(jj+1)); j < MIN(jj+B,N-1) ; j+=2) {

A[i,j] = 0.2 * (A[i][j] + A[i][j-1] + A[i][j+1] +

A[i-1][j] + A[i+1][j]);

}

}

Figure 7.7: Blocked 2D red/black SOR Code.
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Data Sharing E�ects

Figure 7.8 shows the performance of the di�erent versions for a variety of blocking factors.

In the case that there is no blocking (blocking factor = 80), the performance of sor sing

su�ers due to poor data reuse. For each i iteration data from 3 rows is needed, and if these

rows do not �t in the cache, there will be little reuse on the next i iteration. sor dyn cache

performance is much better in this case, due to data pipelining. Four threads progress at

once and share their row data, giving a hit rate of 74% as opposed to 53% for sor sing.

As the blocking factor decreases, the cache hit rate of sor sing and sor dyn increase with

the best performance at a blocking factor of 10 or 20 when most of the shared row data

between i iterations is reused. The cache hit rate of sor sta su�ers because of the disjoint

working sets. As a result, the hit rate increases uniformly as the blocking factor decreases

and the working set sizes of the loaded threads decrease.

It is interesting to note that for the relatively small latency of 20 cycles, the best performing

cases are not the ones with the best hit rate. This is due to the increased overhead that

occurs with smaller block sizes. This is particularly bad in the sor dyn case, since a barrier

is performed after each block is calculated. The overhead can be estimated by removing the

calculations from the innermost loop and rerunning the code. For instance, at a blocking

factor of 80 the overhead corresponds to about 17% of the computation in the sor dyn

case. At a blocking factor of 5, overhead has increased by a factor of 3.7 and corresponds to

42% of the computation time. By contrast, overhead increases by only a factor of 1.7 over

the same range of blocking factors for both sor sing and sor sta. At a blocking factor of

5, sor sta performs better than sor dyn because of less overhead, despite having a smaller

hit rate. As the latency increases and the memory bandwidth is restricted, the e�ect of the

hit rate becomes more important on performance, and the tradeo� of decreasing overhead

versus improving hit rate will change.

Favored Thread Execution E�ects

The e�ect of favored execution on the SOR cache hit rate and runtime varies depending

on how data is divided up between the threads. It has a small e�ect on the cache hit rate

when the threads are working on common data, and a large e�ect when threads are working

on disjoint data. The e�ect on the runtime varies depending on whether the application is

bandwidth limited or not. Figures 7.9 and 7.10 show the runtime and the cache hit rate

for sor dyn and sor sta respectively, as the number of loaded threads increases, using

a blocking factor of 20 and di�erent memory latencies and throughputs. Two scheduling

schemes are shown, one in which the multiple threads have equal priority, so that thread

are scheduled in round-robin fashion, and one in which threads have a priority based on the

iteration that they are calculating, so that threads are executed in a favored order.

For the sor dyn case shown in Figure 7.9, favored thread execution has a small e�ect on

the hit rate and on the runtime, compared to the round-robin execution. This is because



146 CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

80 40 20 10 5
Block ing Factor

0

50

100

H
it

 R
at

e 
(%

)
82  X  82  r e d / b l a c k S O R

sor_ sing

sor_ dy n

sor_ sta

 H I T  R A T E

80 40 20 10 5
Block ing Factor

0.0

1.0

2.0

Sp
ee

du
p

  

sor_ sing

sor_ dy n

sor_ sta

S P E E D U P

Figure 7.8: Hit rates and speedups for an 82X82 red/black SOR with a 1Kbyte direct-

mapped cache. Multiple-context versions of the code use 4 contexts.
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Figure 7.9: Performance of sor dyn comparing round-robin and favored execution for dif-

ferent memory latencies and throughputs. An 82X82 SOR is done using a blocking factor

of 20 and a 1Kbyte direct-mapped cache.
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Figure 7.10: Performance of sor sta comparing round-robin and favored execution for

di�erent memory latencies and throughputs. An 82X82 SOR is done using a blocking

factor of 20 and a 1Kbyte direct mapped cache.
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the threads are closely coordinated and are working on closely related rows and columns so

that there is signi�cant overlap in the working sets.

For the sor sta case shown in Figure 7.10 the situation is much di�erent as threads have

only a limited amount of overlap in their working sets. As a result, with round-robin

scheduling the cache hit rate decreases with increasing loaded threads independent of the

latency. Going from 1 to 2 contexts gives the biggest drop in hit rate as 2 working sets

are immediately too much for the cache to handle, though the runtime is better due to the

latency tolerance provided by the multiple threads. With the favored thread scheduling,

the hit rate also decreases, but then stabilizes approximately at the value corresponding to

the minimum number of loaded threads required to tolerate the observed latency, just as it

did in the matrix multiply example. The e�ect of the better hit rate on runtime depends

on the memory throughput. If memory throughput is high, the only runtime penalty is

due to the extra context switching and it is small. If memory throughput is low however,

bandwidth becomes the limiting factor, and the penalty is not only a context switch, but

also a penalty due to using more bandwidth. With low memory throughput and 16 threads,

favored scheduling is better than the round-robin case by 42%, 25%, and 11% for latencies

of 20, 80, and 160 cycles respectively.

Doing favored execution can lead to a load imbalance problem when work is distributed

statically in large chunks and the latency is long. When threads have about the same work

to do between barrier operations, and they are scheduled in round-robin fashion, they tend

to arrive at the barrier at about the same time. This means that the multiple contexts

e�ectively provide latency tolerance for each other throughout most of the computation.

When favored execution is used, the favored threads tend to �nish �rst, and a situation can

arise in which only a few threads have work remaining, but not enough threads are doing

work to e�ectively tolerate latency. The graph of the sor sta runtime shows a number of

cases in which the round-robin scheduling performs better than the favored scheduling due

to this problem. This is the case for instance with a latency of 160 cycles, and high memory

throughput. With 16 threads, a 160 cycle memory latency, and round-robin scheduling,

threads arrived at the barrier in a span of about 32000 cycles. When favored scheduling

was used, the threads arrived at the barrier in a span of about 324000 cycles, a span that

is over a factor of 10 longer. Note that sor sta is particularly susceptible to this problem

because the work is divided up statically into large chunks. The sor dyn does not su�er

from this problem because work is dynamically acquired in small chunks, and threads always

arrive at the barrier fairly close in time.

7.3.3 Sparse-Matrix Vector Multiply

Figure 7.11 shows the code for multiplying a vector with a sparse matrix. Figure 7.12 shows

the compressed storage format used for the sparse matrix. This format stores the non-zero

elements of the matrix in a linear data array, and uses index arrays to denote the start and

the end of the each matrix row, as well as the column position of each row element.
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for (row = 0 ; row < num_rows ;row++) {

index_start = rowstart[row];

index_end = rowstart[row+1];

partial = 0.0;

for (index = index_start; index < index_end ; index++)

partial += x[columnpos[index]] * a[index];

result[row] = partial;

}

Figure 7.11: Sparse-matrix vector multiply code.

M a t r i x

R o w  S t a r t  I n d e x  A r r a y :  

3 4 5 7 8 9D a t a  A r r a y : 2

0 2 4

1    2    0    0    0
3    4    0    0    0
0    5    6   0    0
0    0    0    0    0
0    7    0    8   9

6 0

6 7 1 0

S i z e =  ( #  r o w s)  +  1

S i z e =  ( #  N o n − Z er o  E l em en ts) + ( #  Z er o  R o w s)

1

0 1 0 1 1 2 4 1 3 4C o l u m n  P o s i t i o n s  A r r a y :

Figure 7.12: Example of sparse matrix storage format using row indexing.
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The data reuse patterns in sparse matrix code are less clear than for regular dense matrix

code. We can exploit self-spatial reuse in the sparse matrix references, as di�erent values

are read linearly from the index and the data arrays. There can also be self-temporal reuse

of vector elements because several rows of the sparse matrix will have non-zero elements

in the same columns, and will need to read the same vector elements. In typical sparse

matrices, rows that have non-zero elements in the same column are close to one another in

the matrix.

We simulate three di�erent versions of the sparse matrix code:

1. smvm sing: Single context version of the code.

2. smvm dyn: Multiple context version with �ne-grain distribution of the row itera-

tions to the multiple contexts.

3. smvm sta: Multiple context version that statically assigns contiguous blocks of rows

to each context.

Data Sharing E�ects

Results for di�erent matrices taken from the Harwell/Boeing sparse matrix set [28], a col-

lection of matrices taken from a variety of scienti�c disciplines, are shown in Figure 7.13.

The general trend is that multiple context versions perform better than the single context

version due to the latency tolerance provided by the multiple contexts. Furthermore, the

multiple context version in which the contexts dynamically acquire row iterations performs

better than the version that assigns contiguous blocks of threads to the contexts, due to

improved cache performance. This improved cache performance is due to the fact that

threads tend to be working on row numbers that are contiguous, these rows have a number

of the same columns that have non-zero entries, and so share vector data.

Favored Thread Execution E�ects

Figures 7.14 and 7.15 show the cache hit rate and the runtime for smvm dyn and smvm sta

respectively, with an increasing number of contexts, and di�erent memory latencies and

throughputs. The sherman2 test matrix is used as a representative example. Two cases are

shown, one in which threads have equal priority, so that threads are scheduled in round-

robin fashion, and one in which threads have a priority based on the iteration they are

calculating so that threads execute in a favored order.

The curves show much the same trends as the curves for the SOR benchmark. For the

smvm dyn case shown in Figure 7.14, data sharing minimizes the drop in cache perfor-

mance even with round-robin scheduling. Though the favored execution minimizes the drop
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Figure 7.13: Hit rates and speedups for the Sparse-Matrix Vector Multiply using di�erent

sparse matrices. Multiple-context versions of the code use 4 contexts. A 1Kbyte direct-

mapped cache is used.
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Figure 7.14: Performance of smvm dyn comparing round-robin and favored execution for

di�erent memory latencies and throughputs. The sherman2 matrix is used as an example,

using a 1Kbyte direct-mapped cache.
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Figure 7.15: Performance of smvm sta comparing round-robin and favored execution for

di�erent memory latencies and throughputs. The sherman2 matrix is used as an example,

using a 1Kbyte direct-mapped cache.
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in the cache hit rate, there is almost no gain in performance in the high memory throughput

case, and a small gain in performance in the low memory throughput case. For 16 threads,

the performance is better by about 11% independent of the latency.

For the smvm sta case, data sharing is not so good, and with round-robin execution cache

performance drops o� dramatically. Favored execution minimizes the drop in cache hit

rate. If there is more than su�cient bandwidth then the better hit rate again has little

impact on performance, and the load balancing problem can cause the favored execution

to perform worse than round-robin execution. If bandwidth is limited, favored execution

has a signi�cant impact on performance. With 16 threads, performance was better by 33%,

20%, and 11% for latencies of 20, 80, and 160 cycles respectively.

7.4 Summary

In this chapter we examined the e�ects of multithreading on cache performance using a

multiple-context processor. Previous studies show that cache performance su�ers as the

number of threads executing increases, and that this can limit the bene�ts of multithreading.

We present two techniques that limit the negative e�ects of multithreading on the cache:

� Data sharing: We de�ne threads so that they share common data, and we closely

coordinate thread execution so that they use common data at approximately the

same time. When the threads share data they can both prefetch data for each other,

and data can be pipelined through the cache and be used by each thread in turn.

A key component of maximizing data sharing is the dynamic distribution of work in

small chunks to the di�erent threads so that they remain closely synchronized. In the

context of loop iterations, we can do this very e�ciently since the contexts share a

cache, and we can use a simple Fetch-and-Increment to distribute loop iterations at a

very �ne grain.

� Favored Execution: We use thread prioritization to make the threads execute in a

preferred order. In this way the minimum number of threads needed to tolerate

latency can be executing, thus minimizing the number of working sets that are in the

cache, and maximizing the hit rate. Favored execution allows the number of threads

executing to adjust dynamically to the observed latency, provided there are more than

enough threads to tolerate latency.

Several simple experiments illustrate the bene�ts of data sharing and favored execution as

well as the following interesting points:

� Thread de�nition is very important. For the di�erent applications it is possible to

de�ne threads so that they have considerable working set overlap, or so that there is

much less working set overlap.
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� Dynamic distribution of iterations is very important because it minimizes the load

balancing problem, and allows the close coordination of threads. The versions of the

benchmarks that distribute the work in small chunks avoid the load balancing problem

in which several threads �nish their execution and leave other threads to execute for

long periods without the bene�t of latency tolerance. Also, when work is dynamically

distributed to the threads they work on closely spaced iterations which leads to better

data sharing.

� Barrier overhead can still be an issue. If a local barrier is being done between groups of

iterations (to exploit blocking for instance) then the amount of work between barriers

has to be large enough to compensate for this extra overhead. Since this overhead is

quite small due to the contexts sharing a cache, it only becomes an issue when barriers

are very frequent as in the sor dyn case with a blocking factor of 5.

� Favored execution succeeds in choosing the minimum number of threads required to

tolerate the observed latency. As the latency increases an increasing number of threads

execute, but only just enough to tolerate the latency. As a result, although the cache

performance decreases with increased latency because more contexts are executing,

the hit rate stabilizes once enough contexts are available to fully tolerate latency.

� Favored execution has a greater impact when the threads have less overlap in their

working sets because each additional thread that is executing adds a greater amount

of data that has to be in the cache than if the threads have more overlap.

� Favored execution can make the load balancing problem worse. It does this by caus-

ing some threads to �nish well before others, leaving insu�cient threads to tolerate

latency.

� The e�ect of favored execution on runtime depends on the memory bandwidth avail-

able. If lots of memory bandwidth is available, then the impact of the improved cache

performance will be reduced, because the only penalty for an extra cache miss is

the cost of a context switch. If memory bandwidth is limited, favored execution can

have a large impact on performance since the increased hit rate reduces bandwidth

requirements.

The performance improvements due to data sharing and favored execution depend on the

number of contexts, the memory latency, and the memory throughput. For our three simple

benchmarks, versions of the code written to exploit data sharing have better cache hit rates

and runtimes than versions that are not. With 4 contexts, round-robin scheduling, and a

1Kbyte direct-mapped cache, the cache hit rate was better by 1 to 26 percentage points.

Favored execution is also useful in improving cache hit rate, especially when there are many

threads that do not share much data. For 16 threads, favored execution had better hit rates

than round-robin execution by 7 to 24 percentage points. The runtime improvement due to

better cache hit rates depends on the cost of a context switch, and the memory throughput.

Combining both data sharing and favored execution, runtime improvements range up to

16% for the high memory throughput case, and up to 50% for the low memory throughput

case.



Chapter 8

Critical Path Scheduling

In this chapter we concentrate on showing how thread prioritization can be used to guide

the scheduling based on the critical path. This may be an actual critical path determined

from a static program graph, or the path that the user or compiler heuristically chooses as

being the most important. Many programs can be analyzed by the compiler to determine

which threads are most critical. In some dynamic cases where it is not possible to determine

a good schedule at compile time, it is possible to determine a schedule at runtime using a

pre-processing step which examines the task graph. We use a number of simple benchmarks

to study how prioritization a�ects performance.

The experiments show how the e�ect of the prioritization depends very much on the charac-

teristics of the problem. In particular, the problem must be critical path limited, and there

must be su�cient parallelism. For this type of problem, performance of the prioritized cases

is as much as 37% better than the unprioritized case. When the problem is not critical path

limited, or there is insu�cient parallelism, prioritization has a negligible e�ect.

We also examine the e�ects of memory latency and memory throughput. The most impor-

tant parameter is the memory latency. As the latency increases, hardware prioritization

is less e�ective in improving performance because more of the contexts are stalled at any

given time, and the choice of which context to execute next is reduced. Memory throughput

a�ects the overall performance if the application is memory bandwidth limited or there is

a memory bottleneck. The impact of prioritization tends to increase when the application

is memory bandwidth limited.

157
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8.1 Benchmarks

In this chapter we use both regular and irregular problems that bene�t from scheduling

threads based on an estimate of the critical path.

The �rst two benchmarks are a dense triangular solve and a sparse triangular solve that

evaluate the bene�ts of hardware prioritization of the contexts. The number of threads

generated is always less then the number of contexts. The dense triangular solve is a

regular problem with a well de�ned DAG and it is easy to statically distribute the work

across processors. The sparse triangular solve has a much more irregular DAG that depends

on the sparsity pattern of the matrix, and that can only be determined at runtime. This

represents a class of problem which can bene�t from an inspector-executor approach [82] in

which the inspector analyzes the dependencies at runtime, and based on this analysis, places

and schedules tasks on the processors. The executor then executes these tasks. Provided

the same pattern of computation is performed many times, the cost of doing the scheduling

analysis can be amortized over many computations. Since we are not primarily interested in

the load-balancing aspect of these problems, we use a speci�c approach to load balancing,

and then concern ourselves with the e�ects of prioritizing threads and contexts.

The next two examples are dense matrix Lower-Upper Decomposition (LUD) and sparse

matrix LUD that evaluate the bene�ts of both hardware and software prioritization. In

these examples we adopt a more dynamic approach to task generation, and there can be

more threads than contexts. As with the two triangular solve algorithms, the dense LUD is

a regular problem which can be statically load balanced, and the sparse LUD is an irregular

problem that bene�ts from runtime DAG analysis and scheduling.

These 4 benchmarks are described in more detail below.

8.1.1 Dense Triangular Solve

A dense triangular solve �nds a vector x such that Tx = b, where T is an upper or lower

triangular matrix. For instance, given the LUD of a matrix A such that Ax = LUx = b,

we can solve for the vector x by �rst doing a forward substitution step to �nd the vector y

such that Ly = b, and then a backward substitution step Ux = y to �nd x.

Figure 8.1 shows the code for the forward substitution. Each element of the result vector

x[i] depends on all the previous elements x[j] where j < i. Assuming we create a thread

to calculate each element, the prioritization is such that earlier i iterations have higher

priority.

The benchmark does forward substitution using a 256x256 triangular matrix that is dis-

tributed in blocks of rows across the processors. Processors are responsible for calculating
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for (i = 0 ; i < N ; i++) {

result = b[i] ;

for ( j = 0 ; j < i ; j++) {

result -= x[j] * T[i][j] ;

}

x[i] = result/T[i][i] ;

}

Figure 8.1: Serial dense triangular solve code.

interleaved elements of the result vector. There is some inherent load imbalance both in

the problem itself, and in the way of dividing up the work across the processors. The load

imbalance within the problem comes from the fact that there is a di�erent amount of work

required for calculating the �nal value of each element, and the calculation of these elements

is distributed in an interleaved fashion across the processors. Each processor spawns a cer-

tain number of threads into its di�erent contexts, and each thread acquires an element x[i]

to update by incrementing a counter local to each processor. Each processor has its own

copy of the x vector and when a processor writes an element to the x vector it explicitly

sends messages to update the vectors on all the other processors. Fine-grain synchronization

using Full/Empty bits is used to make sure that a processor does not use an element of the

x vector before it has been calculated. A thread that tries to read an empty location does

a context switch and attempts to read the location again at a later time. Three di�erent

prioritization schemes are used:

1. Unprioritized: Threads are run in round-robin order.

2. Write Prioritized: Threads writing a �nal value to the x vector are given high priority.

3. Level Prioritized: Threads are prioritized based on the index of the element that they

are calculating. Lower indices have higher priority.

The benchmark uses 16 processors. Each processor has an 8Kbyte, 4-way set-associative,

16 bytes per line cache.

8.1.2 Sparse Triangular Solve

The sparse triangular solve benchmark does forward elimination using a sparse triangular

matrix. The overall calculation is the same as for dense triangular solve, except that it

exploits the sparse nature of the matrix to eliminate unnecessary computations associated

with the 0 elements of the matrix. The sparse matrix format is the same as used in Chap-

ter 7, and is shown again in Figure 8.2 for convenience. Figure 8.3 shows the code for the
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M a t r i x

R o w  S t a r t  I n d e x  A r r a y :  

3 4 5 7 8 9D a t a  A r r a y : 2

0 2 4

1    2    0    0    0
3    4    0    0    0
0    5    6   0    0
0    0    0    0    0
0    7    0    8   9

6 0

6 7 1 0

S i z e  =  ( #  r o w s )  +  1

S i z e  =  ( #  N o n−Z e r o  E l e m e n t s ) + ( #  Z e r o  R o w s )

1

0 1 0 1 1 2 4 1 3 4C o l u m n  P o s i t i o n s  A r r a y :

Figure 8.2: Example of sparse matrix storage format using row indexing.

for (i = 0 ; i < N ; i++) {

result = b[i] ;

for ( j = rowstart(i) ; j < rowstart(i+1) ; j++) {

result -= x[j] * T[columnpos[j]] ;

}

x[i] = result/T[columnpos[i]] ;

}

Figure 8.3: Serial sparse triangular solve.

sparse forward elimination. Each element of the result vector x[i] depends on only some of

the previous elements x[j] where j < i. Depending on the pattern of the sparse matrix, the

dependencies can be quite complex.

It is important to perform some amount of pre-scheduling and load balancing [82, 19]. In the

prescheduling phase, the depth of each element x[i] is calculated. The depth of element i is

the length of the longest dependency chain of x elements that begin with x[i]. The elements

are sorted in order of decreasing depth and assigned round-robin to the processors. Each

processor will calculate its x vector elements starting with those of greatest depth.

The code is parallelized by having each processor spawn a given number of threads into

di�erent contexts, and each thread acquires an element x[i] to update by incrementing a

counter local to each processor and accessing the next element in the pre-calculated schedule.

Fine-grain synchronization with Full/Empty bits and spinning is used to prevent threads

from using elements of the x vector before they have been calculated.

We used two di�erent prioritization schemes, and various sparse input sparse matrices:
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Matrix Description n nonzeros

bcspwr07 Power Network 1612 3718

mat6 Circuit Simulation 687 6449

adjac25 Adjacency Matrix 625 22797

Table 8.1: Sparse matrices used in the benchmarks.

1. Unprioritized: Threads are run in round-robin order.

2. Level Prioritized: Threads are prioritized based on their distance from the outputs

of the DAG that describes the dependencies between x[i] elements. Threads that are

further from the outputs have higher priority.

We used the three di�erent sparse matrices described in Table 8.1 as input to the benchmark,

representing very di�erent sparsity patterns. bcspwr07 is a very sparse matrix from the

Harwell-Boeing Sparse Matrix suite and comes from the sparse matrix representation of

a power network. mat6 is from the circuit simulation domain, and represents the �ll-in

pattern for a direct sparse LUD solve as will be discussed in more detail in section 8.1.4.

adjac25 comes from a grid adjacency matrix, and again represents the �ll-in pattern that

occurs during direct sparse LUD.

It should be noted that the ordering of thread execution is di�erent from the approach taken

by Saltz et. al. in [82]. In their case they divide the computation into wavefronts, where

each wavefront consists of those tasks that can be calculated independently assuming that

all previous wavefronts have completed. Barriers can be performed between each wavefront

calculation phase. Our use of �ne-grain synchronization allows the emphasis to be placed

on scheduling the critical path. Also, our benchmark depends on the multiple contexts to

tolerate latency rather than taking a data driven approach as done by Chong et. al. [19].

Note that only the runtime of the compute phase is measured, not the time for the schedul-

ing, which is done serially. The benchmark uses 16 processors. Each processor has an

8Kbyte, 4-way set-associative, 16 bytes per line cache.

8.1.3 Dense LUD

One way of solving a system of linear equations Ax = b is to �rst �nd the LUD of the

A matrix, followed by forward and backward substitution steps to �nd the vector x [49].

The decomposition phase of the algorithm is O(n3) where n is the size of the matrix,

and represents the major portion of the computation for large problems. This phase of

the algorithm uses Gaussian elimination to �nd the lower triangular matrix L and upper

triangular matrix U such that A = LU .
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P P P

F i n d  P i v o t  R o w

P P P

S w a p  R o w s

P P P

M

M

P P P

M

M

U U

U U

c o l
  k

r o w  k

c o l
  k

c o l
  k

c o l
  k

C a l c u l a t e  M u l t i p l i e r s

M [ i , k ]  =  M [ i , k ] / P [ k , k ]

U p d a t e  E l e m e n t s

U [ i , j ]  =  U [ i , j ]  −  P [ k , j ]  M [ i , k ]

Figure 8.4: LUD with partial pivoting.

The algorithm with partial pivoting is shown pictorially in Figure 8.4. At each step of the

computation one row and one column of the �nal LUD matrix is determined. Each iteration

requires the following 4 steps to be taken:

1. Search all elements in the leftmost column of the current submatrix for the element

with the largest absolute value. This element is the pivot and its row is the pivot row.

2. Switch all the elements of the pivot row and the topmost row of the current submatrix.

3. Calculate the multiplier column by dividing all the elements below the pivot by the

pivot.

4. Update all elements in the new submatrix which excludes the topmost row and left-

most column of the current submatrix, by subtracting the product of the multiplier

corresponding to the element's row and the element in the pivot row from the same

column.

The benchmark does a 64X64 LUD with matrices distributed in a column interleaved fashion

across the processors. Processors are responsible for calculating all values related to the

columns that they own. Note that there is some inherent load imbalance both in the problem

itself, and in the way of dividing up the work across the processors. The load imbalance

within the problem comes from the fact that there is a di�erent amount of work required

for calculating the �nal value of each column and that the work for each column is statically

allocated across the processors. Two di�erent versions of the benchmark were used
1
:

1Though a simple LUD example has been chosen here for illustration purposes, it should be noted

that there is generally enough easily exploitable parallelism in LUD to achieve good performance without

resorting to �ne-grain synchronization. The real bene�ts of �ne-grain synchronization are only obvious in

more complex wavefront computations such as the preconditioned conjugate gradient computation discussed
by Yeung and Agarwal [110].
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P / M 1

P / M 2

P / M 3

U 2

U 3

U 4

U 3

U 4 U 4

P / M  x  =  P i v o t  a n d  M u l t i p l i e r
            c a l c u l a t i o n  f o r  c o l u m n  x
U  x  =  U p d a t e  o f  c o l u m n  x

P r i  =  1

P r i  =  9

P r i  =  7

P r i  =  5

P r i  =  5

P r i  =  6

P r i  =  4

P r i  =  2

P r i  =  3

Figure 8.5: Critical path prioritization of LUD tasks for a 4 column problem.

1. Unprioritized: The �ne-grain synchronization version of the program uses the fact

that it is not necessary to wait for all the processors to �nish before calculating the

next pivot and multiplier column. At each stage, each processor generates one thread

to update each column it owns. Also, the processor responsible for generating the

next multiplier column generates a thread to do so. Thus stages of the computation

related to di�erent multiplier columns can proceed at the same time. Threads are

scheduled in FIFO manner on the scheduling queue, and loaded threads are run in

round-robin fashion. If a synchronization fault occurs, a new thread is switched in if

one is available.

2. Prioritized: In this version the threads are prioritized so that at any given stage the

thread that is updating the �rst column is given higher priority than the threads

calculating the other columns, as is the thread that is responsible for generating

the next multiplier column for use in the next stage. In this way, two stages of

the computation are nearly always loaded, and the calculation of the next multiplier

column is e�ectively overlapped with the updating of the submatrix. An example of

this prioritization is shown in Figure 8.5 for a simple 4 column problem.

The benchmark uses 16 processors. Each processor has a small 1Kbyte, 4-way set-associative,

16 bytes per line cache.

8.1.4 Sparse LUD

The sparse LUD benchmark performs LUD on a sparse matrix. Instead of the O(n
3
)

operations required by the dense algorithm, O(n�) operations are required, where � depends

on the sparsity of the matrix. For instance, for a grid problem � is equal to 1.5, and typically

smaller for other circuit simulation problems.

Telichevesky [94] provides a good overview of the di�erent steps involved in the sparse LUD

which are the following:
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1. Reordering: interchange rows and columns of the matrix to minimize the number

of �ll-ins. A �ll-in is a given element aij that was originally 0, but becomes non-

zero during the decomposition. A given source row will create a �ll-in in any target

row that has a 0 in the same column that the source row has a non-zero. Although

computationally expensive, this step can typically be performed on symbolic data

once at the beginning of the computation.

2. Load balancing and scheduling: load balance the work across the processors and their

scheduling priority. Because the work per row can vary signi�cantly, and because the

dependencies between rows can be very irregular, the simple row interleaved load-

balancing done in the dense LUD case does not perform well. Telichevesky [94] uses

a simple load balancing scheme that estimates the amount of work associated with a

row, and then assigns the rows to the processors in round-robin order. Furthermore,

a priority is associated with each row update based on remaining completion time,

or the minimum time for completion of all the tasks that depend on the current row

update.

3. Data structure creation: Create data structures which allow easy access to the required

matrix elements both along rows and along columns.

4. Decomposition: Using the special data structures, perform the decomposition.

The benchmark assumes a re-ordered matrix, as well as an assignment of rows to processors

based on a load balancing heuristic similar to the one used by Telichevesky. The data

structures used to represent the matrix are shown in Figure 8.6. An Overlapped Scattered

Array (OSA) is used to represent the sparse array. OSA is a vector representation of a sparse

matrix in which the distance between two non-zero elements in the same row is preserved,

and no pair of non-zero elements occupy the same physical location in the vector. An o�set

array indicates the starting position of each row within the OSA vector. To easily identify

target rows for a given source row, and non-zero entries for a row update, a special diag data

structure is used. This data structure has an entry for each diagonal element, and along

with the r in c and the c in r vectors, identi�es all rows with non-zero elements below the

diagonal, and all columns with non-zero elements to the right of the diagonal. Speci�cally,

each diag entry contains 4 values: the �rst is the number of elements below the diagonal,

the second is an o�set into r in c identifying where the row numbers of the elements in

the diagonals column are stored, the third is the number of elements to the right of the

diagonal, and the fourth is the o�set into c in r identifying where the column numbers of

the elements in the diagonals row are stored. Using this data structure, the serial code for

the LUD is shown in Figure 8.7.

The code is parallelized by assigning rows to processors, and having each processor spawn

a thread for each target row that it is responsible for updating. Each one of these threads

updates their target row by taking each source row that has to update the target row, and

performing the appropriate calculation. The source rows that have to update a target row

are all those rows for which the target row has a non-zero element to the left of the diagonal.

An additional data structure, lc in r keeps track of all non-zero elements to the left of the
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Figure 8.6: Data structures for the sparse LUD representation.
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for(i=0; i<nrows; i++) {

diag_val = 1.0/matrix[offset[i]+i];

elim_row_num = diag[4*i];

elim_row_index = diag[4*i+1];

elim_col_num = diag[4*i+2];

elim_col_index = diag[4*i+3];

for(j=elim_row_num; j > 0; j--, elim_row_index++) {

index_i = i;

index_j = r_in_c[elim_row_index];

/* Normalize elements in the i column */

matrix[offset[index_j] + i] *= diag_val;

for(k=elim_col_num; k > 0; k--, elim_col_index++) {

index_k = c_in_r[elim_col_index];

matrix[offset[index_j] + index_k] -=

matrix[offset[index_j] + index_i] *

matrix[offset[index_i] + index_k];

}

}

}

Figure 8.7: Serial sparse LUD code.

diagonal of any given row so that the appropriate source rows can easily be identi�ed. Each

thread starts with the lowest numbered source row, and proceeds to the highest numbered

source row
2
. Fine-grain synchronization is used to detect whether the next source row is

available yet, and if it is not, then the thread suspends and is woken up when the desired

source row becomes available. Two di�erent prioritization schemes were used:

1. Unprioritized: Threads are scheduled in FIFO order in the scheduling queue, and

loaded threads are run in round-robin order.

2. Prioritized by Remaining Work: Threads are prioritized based on estimate of the

remaining work. Remaining work corresponds to the work that the thread itself has

to do, plus the length of the longest chain of work that depend on this row being

completed.

Note that we measure only the runtime for the decomposition step in this benchmark, as

the other steps run serially. The benchmark uses 16 processors. Each processor has an

8Kbyte, 4-way set-associative, 16 bytes per line cache.

2This represents a more restrictive DAG than the true data dependency DAG because in some cases the

order in which a row is updated by two di�erent source rows can be interchanged. Detecting this dependency
requires a more detailed analysis of the DAG however, and was not done in our case.
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8.2 Results

8.2.1 Dense Triangular Solve

Figure 8.8 shows runtimes of the triangular solve for di�erent latencies and memory through-

puts. This benchmark is critical path limited since at any given time the thread responsible

for calculating the next element of the x vector is the most important, and any delay in this

calculation decreases the overall performance. Because this speci�c problem is so highly

critical path limited, threads spend most of their time spinning and waiting for the next

element x to be calculated, and there is little advantage to having more than 3 or 4 contexts

even at high latencies. With more contexts, it is essential to prevent the spinning threads

from slowing down the writing of the arriving x element. It is also essential to allow the

thread calculating the xi with the lowest index value to proceed �rst since the other pro-

cessors use this value �rst. As seen in all the �gures, giving high priority to the writing of

the x vector array elements improves performance slightly over the unprioritized case for

large number of contexts. The completely prioritized case further improves performance by

allowing the highest priority thread to proceed �rst when a new xi has been written.

There are a number of anomalous points on the unprioritized curve, for instance the sudden

increase in runtime in the case of an 80 cycle memory latency and 15 loaded threads. This

is due to the round-robin scheduling being particularly bad during several portions of the

computation i.e., the needed element is written just as the processor is context switching

out of the thread that would otherwise be the critical thread, and the processor executes all

the other threads before coming back to the critical one. It is also interesting to note that in

the unprioritized case the incremental decrease in performance due to having an additional

loaded thread per processor decreases with increasing threads. This is because although

each processor may begin with 16 loaded threads (since there are 16 processors, and 256

elements to calculate in the x array, 16 is the maximum number of threads that a processor

can have), this number rapidly decreases as elements of the x array are calculated. Thus

the performance when starting with 16 threads per processor is much the same as when

starting with 14 or 15 threads per processor.

The best performance improvement due to prioritization ranges from 27% for a 20 cycle

latency, to 37% for a 160 cycle latency. Since the application is not bandwidth limited,

decreasing the memory throughput has only a small e�ect on performance and on the

improvements due to prioritization.

8.2.2 Sparse Triangular Solve

Figures 8.9 through 8.10 show the runtimes of the di�erent versions of the sparse triangular

solve running on di�erent sparse matrices. The e�ect of the prioritization varies from

a performance improvement of 20% for the adjac25 matrix, to virtually no gain for the
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Figure 8.8: Performance of the dense triangular solve for di�erent memory latencies and

throughputs.
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bcspwr07, and even a slight decrease in performance for mat6 matrix. This di�erence is due

to their di�erent sparsity patterns, and is explained below.

Figure 8.9 shows the runtime of the sparse triangular solve using the adjac25 matrix. Pri-

oritization prevents performance from degrading as the number of contexts increases. The

calculation is such that there are only a few of the x array elements that can be calculated

immediately, and towards the end of the computation the matrix becomes quite dense and

the dependency pattern between threads is much the same as for the dense triangular solve.

Thus the dependency chains are quite long, and it is important to correctly schedule the

critical path. For high memory throughput the prioritized version was better than the

unprioritized version by 18% for a 20 cycle latency and high memory throughput, and by

8% for a 160 cycle memory latency. This adjac25 case is also the case in which limiting

the memory bandwidth has the most e�ect because of the memory contention on certain

modules when many threads are trying to read the same x vector element. Overall runtime

increased by up to 20%. Prioritizing the threads became slightly more important because of

this: the prioritized version was better than the unprioritized version by 20% for a latency

of 20 cycles, and by 14% for a latency of 160 cycles.

Figure 8.10 shows the runtime of the triangular solve using the bcspwr07 matrix, and shows

very little di�erence between the prioritized and unprioritized cases. The bcspwr07 matrix

is a very sparse matrix, and the dependency chains are very short. For the bcspwr07 matrix

there are 1612 result elements, and the maximum depth is 14. 1096 of the 1612 have a

depth of 3 or less. Only 23 elements have a depth greater or equal to 10. This computation

resembles most a bunch of largely independent threads with limited interdependency. As a

result, this computation bene�ts the most from the multiple contexts showing performance

improvements all the way up to 8 to 10 contexts for the case of a 160 cycle memory latency.

On the other hand, this problem bene�ts the least from the detailed prioritization since the

threads are largely independent. The decreased memory bandwidth also has little e�ect

since memory references are well distributed.

Figure 8.11 shows the runtime of the sparse triangular solve using the mat6 matrix. In this

case the prioritized version in some cases even performs slightly worse than the unprioritized

version. The computation proceeds by �rst having many short threads run �rst, and then

tails o� towards the end of the computation with a very few long running threads. The

initial threads are short and numerous because the graph is sparse, and many elements of

the x array depend on only a few of the other elements. Only a few threads depend on

many elements, and these are calculated last. Note that having only a few long running

threads is bad because there is not enough threads to e�ectively tolerate latency. Generally,

the higher the level of an element, the smaller the number of accumulate operations that

have to be done to calculate its value i.e. the level is also a good indicator of the number

of other elements an element depends on. The mat6 matrix has many elements that have

a high level number, and only a few with a low level number. There are a total of 687

elements and a maximum depth of 38. 536 of the elements have a depth of 28 or greater.

Only 42 elements have a depth of 10 or less. Prioritization does not help at the beginning

because most of the running threads are of the same priority. Prioritization does not help
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Figure 8.9: Performance of the sparse triangular solve using the adjac25 matrix, for di�erent

memory latencies and throughputs.



8.2. RESULTS 171


 
 Unprioritized
� � Level Prioritized

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0

|25000

|50000

|75000

|100000

|125000

|150000

|175000

|200000

|225000

|250000

 20 cycle latency, high memory throughput

 Active Threads

 R
u

n
ti

m
e 










 
 
 
 
 
 
 
 
 
 
 
 


�

�
�

� � � � � � � � � � � � �


 
 Unprioritized
� � Level Prioritized

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0
|25000

|50000

|75000

|100000

|125000

|150000

|175000

|200000

|225000

|250000

 20 cycle latency, low memory throughput

 Active Threads

 R
u

n
ti

m
e 










 
 
 
 
 
 
 
 
 
 
 
 


�

�
�

� � � � � � � � � � � � �


 
 Unprioritized
� � Level Prioritized

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0
|25000

|50000

|75000

|100000

|125000

|150000

|175000

|200000

|225000

|250000

 80 cycle latency, high memory throughput

 Active Threads

 R
u

n
ti

m
e 











 
 
 
 
 
 
 
 
 
 
 
 


�

�

�
�

� � � � � � � � � � � �


 
 Unprioritized
� � Level Prioritized

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0

|25000

|50000

|75000

|100000

|125000

|150000

|175000

|200000

|225000

|250000

 80 cycle latency, low memory throughput

 Active Threads

 R
u

n
ti

m
e 













 
 
 
 
 
 
 
 
 
 
 


�

�

�

�
� � � � � � � � � � � �


 
 Unprioritized
� � Level Prioritized

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0

|25000

|50000

|75000

|100000

|125000

|150000

|175000

|200000

|225000

|250000

 160 cycle latency, high memory throughput

 Active Threads

 R
u

n
ti

m
e 
















 
 
 
 
 
 
 
 
 
 


�

�

�

�
�

� � � � � � � � � � �


 
 Unprioritized
� � Level Prioritized

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|0

|25000

|50000

|75000

|100000

|125000

|150000

|175000

|200000

|225000

|250000

 160 cycle latency, low memory throughput

 Active Threads

 R
u

n
ti

m
e 
















 
 
 
 
 
 
 
 
 
 


�

�

�

�

�
� � � � � � � � � � �

Figure 8.10: Performance of the sparse triangular solve using the bcspwr07 matrix, for

di�erent memory latencies and throughputs.
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Figure 8.11: Performance of the sparse triangular solve using the mat6 matrix, for di�erent

memory latencies and throughputs.
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at the end of the computation because only a few threads are running. Further, because the

prioritized version concentrates on executing some of the short threads, it can hurt latency

tolerance, and can actually perform worse than the unprioritized version.

The problems that arise in the mat6 case are artifacts of how we have de�ned and prior-

itized threads. Speci�cally, a given element of the x array is calculated sequentially by a

single thread, and the prioritization does not take into account the number of accumulates

that are required to calculate each element. What is required is to divide the accumulation

operations for certain elements across several threads, so as to increase parallelism towards

the end of the computation and allow better latency tolerance. This requires more compli-

cated code since now a single element is being updated by several threads, but it allows the

multiple contexts to be used more e�ectively. In the limit, each accumulate operation can

be considered and scheduled independently.

The results of running the sparse triangular solve using these three di�erent matrices il-

lustrates a range of e�ects of both the number of contexts and the prioritization. For the

adjac25 matrix, the computation can be critical path limited, and it bene�ts from the hard-

ware prioritization of threads. The bcspwr07 case bene�ts from multiple contexts, but not

from the prioritization since its task graph is very short and synchronization is minimal.

The mat6 matrix generates a thread pattern that causes prioritization to be ine�ective, and

also negatively a�ects the ability to tolerate latency towards the end of the computation.

8.2.3 Dense LUD

Figure 8.12 shows the running time of the LUD benchmark for a varying number of contexts.

The unprioritized case performs worse because it does not give special treatment to the

threads responsible for generating the next multiplier column. When it spawns threads to

update the submatrix it begins to execute these threads, and they occupy all the contexts.

The critical thread responsible for �nding the pivot and the multiplier column is typically

sitting in the thread queue, and waits until a context is free before it executes. This delays

the calculation of the next pivot column to the point that it cannot be completely overlapped

with the update phase. The prioritized version prioritizes the threads in such a way that

generating the next multiplier column is given priority over updating the current submatrix.

As a result, the update threads for the next stage are generated before the current update

stage has completed. Figure 8.13 shows the lifelines for both cases with 1 context per

processor. The unprioritized version shows signi�cant idle periods as the multiplier column

is calculated. In the prioritized case on the other hand, these idle times are reduced. Except

at the very last portion of the calculation when the size of the remaining matrix becomes

very small, the processor with the most work to do, in this case processor 15, is kept busy

most of the time. Thus, we see that the processors are as busy as expected given the

inherent load imbalance of the computation.

For a single context, only software prioritization comes into play. In this case the perfor-
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Figure 8.12: Performance of the 64X64 LUD benchmark for di�erent memory latencies and

throughputs.
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mance improvement ranges from 30% for a latency of 20 cycles, to 20% for a latency of 160

cycles. Once there are 4 contexts or more the performance improvement is due to hardware

prioritization since there are rarely any threads in the software queue. A third curve shown

in Figure 8.12 that prioritizes the software queue, but uses round-robin scheduling for the

contexts shows the e�ect of hardware prioritization. For 1 or 2 contexts the round-robin

scheduling performs approximately the same as the fully prioritized case. However, perfor-

mance becomes similar to the unprioritized case when the number of contexts increases to

4. Hardware prioritization leads to performance improvements ranging from 15% for a 20

cycle latency, to 9% for a 160 cycle latency. Improvements decrease with increasing latency

since more contexts are needed to tolerate latency, and on any given context switch many

contexts will be stalled.

Finally, it is interesting to note the e�ect of decreased memory controller throughput. Be-

cause at each stage of the computation one column of the row is read by all the processors to

update their columns, the processor owning this row is a bottleneck. Reducing the memory

controller throughput has an e�ect on performance, with runtimes increasing by about up

to 45% for a latency of 20 cycles, 20% for a latency of 80 cycles, and only 4% for a latency

of 160 cycles. The e�ect decreases as the latency increases because the increase in latency

due to the memory bottleneck is a smaller percentage of the overall delay. The e�ect of

prioritization remains approximately the same despite the decreased throughput.

8.2.4 Sparse LUD

Figures 8.14 and 8.15 show the results for the Sparse LUD benchmark for a varying number

of contexts, using the mat6 and adjac25 matrices respectively. The mat6 shows modest 5%

to 16% improvement for 1 to 4 contexts, but the improvement falls of once there are many

contexts. The adjac25 case shows similar improvements of 6% to 15%, but only in the case

that memory throughput is limited. Also, for a single context the prioritized case can be

slightly worse due to worse cache performance, without the bene�t of latency tolerance.

The results of this benchmark are rather inconclusive as to the bene�ts of prioritization.

One of the main reasons for this is that the application is not critical path limited, and there

are lots of threads with the same importance. There are however a couple of interesting

points to note.

The performance improvement due to hardware prioritization falls o� as the number of

contexts increases, rather than increasing as has been the case in nearly all previous bench-

marks. There are two factors that contribute to this. First, as the number of contexts

increases, many threads can make progress, and a critical thread is less likely to be stuck in

the software queue not making any progress. Second, because we are only prioritizing the

issue of memory requests to the local memory or to remote memory modules, the prioritiz-

ing becomes ine�ective when there are many non-local references and lots of memory and

network tra�c. Thus a request sent by a critical thread does not receive special treatment
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Figure 8.13: Processor lifelines for di�erent versions of the LUD benchmark, 16 processors,

1 context per processor. a. Unprioritized. b. Prioritized.
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Figure 8.14: Performance of the sparse LUD benchmark using the mat6 matrix, for di�erent

memory latencies and throughputs.
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Figure 8.15: Performance of the sparse LUD benchmark using the adjac25 matrix, for

di�erent memory latencies and throughputs.
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in the network nor at the remote memory modules, and can easily be delayed by requests

from less critical threads. The prioritization of messages in the network and the of incom-

ing remote requests represents another level at which prioritization might have a possible

impact, though this is not studied in this thesis.

Another interesting point to note is that the priority is based on a heuristic that does not

take into account data placement and complex cache interactions. In particular, the OSA

representation of the matrix is distributed across the processors without regards to which

processors are going to be using which rows of the matrix. This data structure leads to

many non-local references, and in particular many non-local write operations, which can

have long and unpredictable delays. There are also numerous instances of false sharing. As

a result, one path that has many fewer operations than another path can easily take much

longer to execute that a path with fewer operations just by having better cache performance.

It is clear that in order to correctly assign priorities to threads based on the critical path,

the means of estimating relative path length must be accurate. In particular, it requires

algorithms with well behaved cache behavior and data structures that do not lead to wildly

di�erent thread running times based on bad cache behavior.

8.3 Summary

The results from this chapter show that thread prioritization can have a large impact on

runtime performance for certain problems, with runtime performance improvements ranging

up to 37%. A number of characteristics of the program determine whether prioritization

will have an impact on performance:

� Critical path characteristics: The problem must be critical path limited in order for

prioritization to make a di�erence. Programs with lots of mostly independent, short

threads, do not bene�t much from prioritization.

� Available parallelism: If there is not enough parallelism, then the choice of threads is

reduced, and the prioritization will have no e�ect. Note that insu�cient parallelism

also reduces the ability of multiple contexts to tolerate latency. Insu�cient parallelism

is sometimes a product of how the program is expressed, as in the Sparse Triangular

Solve, rather than a lack of parallelism in the problem. This can often be solved with

�ner grain partitioning.

� Unpredictable memory reference patterns and execution times: If there are lots of

threads all making remote references, then the e�ectiveness of prioritization of the

processor pipelines and memory request issuing can be made ine�ective by FIFO

queuing in the network and at remote memory modules. Also, if the memory behavior

causes the thread runtime to be very unpredictable, it is hard to assign priorities

correctly to threads and thus the prioritization is less e�ective.
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Finally, system characteristics can, but do not necessarily a�ect the impact of the prioriti-

zation:

� Long memory latencies: Long memory latencies typically decrease the impact of hard-

ware prioritization because more contexts are needed to tolerate latency, and on any

given context switch less contexts are ready to run.

� Memory throughput: Decreases memory throughput decreases overall performance

for those applications that are bandwidth limited, or for which there is a memory

bottleneck. Prioritization tends to be more important when the application is memory

bandwidth limited.



Chapter 9

Reducing Software Scheduling

Overhead

Thread scheduling overhead is the cost associated with inserting and deleting threads in

scheduling queues, storing and retrieving thread arguments from memory, and allocating

stack space for the thread. Reducing this overhead is important, and can be done by

providing hardware support to do scheduling without software intervention, by minimizing

the movement of data back and forth to memory, and by minimizing scheduling queue

operations.

In this chapter we discuss the use of specialized hardware for reducing the overhead of

scheduling message handlers (a thread scheduled in response to a message), as well as more

general threads. Reducing the overhead of scheduling message handlers is important since

they are often very short, and scheduling overhead can be a signi�cant part of their runtime.

Although specialized hardware works well for scheduling message handlers, it is not appro-

priate for general thread scheduling because it lacks 
exibility. However, if the processor

provides support for spawning a thread directly into another available context, it can reduce

software scheduling overhead by avoiding the cost of software queue manipulation.

Section 9.1 discusses message handler scheduling and how hardware support can be used

to reduce scheduling overhead to just a few cycles, provided these message handlers meet

certain requirements that allow them to avoid deadlock. Section 9.2 discusses the more

general requirements of thread scheduling that make software scheduling desirable despite

the extra overhead involved. Finally, section 9.3 illustrates how multiple contexts can be

used to reduce overhead of software scheduling using a radix sort example. Multiple contexts

can reduce scheduling overhead by allowing the processor to avoid the cost of inserting and

deleting threads from the software queue.

181
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9.1 Message Handler Scheduling

In order to implement high performance message passing, a parallel processing node must

have a network interface that allows a processor to both send and receive messages e�ciently.

For each message received a node must execute a message handler
1
corresponding to the

type of message being received. A message handler can either directly execute the action

required, or it can create and schedule a separate thread to execute the action at a later

time. Thus each message requires a scheduling decision.

Executing the code directly in the message handler rather than scheduling a separate thread

is preferable as it eliminates much of the overhead associated with creating and scheduling a

thread. Very often the action required is a simple write operation, or a write, an increment,

and a test in the case that the handler is delivering an argument and checking whether all the

arguments have arrived [75, 21]. It is much quicker and more e�cient to simply execute the

operations, rather than going through the overhead of scheduling a task to do them | the

cost of scheduling such a task can be many times the cost of doing the operations themselves.

Furthermore, numerous hardware proposals allow very e�cient message handling and reduce

the overhead of handling messages to just a few cycles [23, 4, 78, 44]. Unfortunately, there

are a number of situations in which a task may not be able to run to completion quickly.

This can happen if:

1. The handler is a long task which takes many cycles to execute.

2. The handler requires a synchronization action to take place and this takes a long time.

For instance, it has to acquire a lock, and the lock is unavailable.

3. The handler takes an exception that takes a long time to resolve (e.g a TLB miss).

4. The handler needs to use the network resources, and they are unavailable. In the case

of shared memory, a write or read of shared memory can require the network, and

can take a long time due to the required remote communication. In general, the task

may need to send messages and the network output port may be busy.

Long running message handlers can cause network congestion and even network deadlock.

If messages do not run to completion quickly, then messages can get backed up into the

network and severely hurt network as well as overall performance. More seriously, deadlock

may occur if a message handler has to send a message, since the availability of the output

network interface for sending a message usually depends on all the processors continuously

emptying their input network interfaces.

Using software scheduling in conjunction with hardware scheduling can eliminate many of

the disadvantages of hardware scheduling on its own. For instance, the active message

1The message handler is usually in software, but can also be hardwired.
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system [100] adopts a software convention that says that all handlers must be short and

must run to completion. In particular, if a handler must send out a reply message, then

it must not busy-wait if the outgoing message channel is unavailable. With Optimistic

active messages [103], methods are run directly as handlers rather than going through the

overhead of creating a thread, and if the method is unable to run to completion quickly

then it is aborted and a separate thread is created to do the computation. The code is

compiled specially to detect conditions in which an abort is required.

9.2 General Thread Scheduling

It may be tempting to try and use the hardware message handler scheduling mechanisms as

a more general means to schedule threads. Taking the J-Machine [23] as an example, it is

very e�cient for a node to create another thread by sending a message to itself. The message

is automatically sent, enqueued in memory, and scheduled in hardware. The overhead of

creating such a thread in this way is just a few instructions. There are a number of problems

with this approach, including the previously mentioned problems with running code inside

message handlers, as well as the limited scheduling 
exibility that can be implemented in

hardware.

The same reasons that prevent all code from being run inside message handlers also prevent

it from being easy to use the message scheduling hardware as a more general scheduler:

threads may take a long time to run, they may require long latency synchronization opera-

tions, they make take an exception, and they may require the use of the network.

Hardware implementations limit the 
exibility of the scheduling that can be done. For

instance, whereas it is easy to design a small input queue to deal with some small number

of incoming messages, it is more di�cult to design a large queue that is more general and

that will contain all the threads generated in the system. The later requires a general

interface to the processor memory. Another limitation is that only FIFO or LIFO type

scheduling policies are easily implementable. FIFO scheduling is particularly easy since the

threads at the head of the queue can be executed as additional messages arrive at end of the

queue. FIFO and LIFO scheduling is clearly inadequate or non-optimal for many problems.

For instance, any sort of recursive program that schedules threads in FIFO manner will

expand the call tree in breadth �rst fashion leading to excessive parallelism, and possible

exhaustion of the memory of the machine [41, 45]. On the other hand, LIFO scheduling

leads can unnecessarily restrict parallelism. With both FIFO and LIFO scheduling, critical

threads can sit in the queue while threads at the head of the queue are executed.

As an example of the problems with simple scheduling schemes, consider a Traveling Sales-

man Problem, that �nds the optimal tour in which the nodes of a graph with weighted

edges can be traversed. For the purposes of this example we use a simple branch and bound

algorithm. An exhaustive search is done, but the search tree is pruned by not looking at

paths that have a cost that is greater than the best solution found so far. There are two
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Figure 9.1: Number of active threads running an 8-city traveling salesman problem on 64

processors.

major parts to the program. The �rst part generates the next part of the search space to

visit. New partial paths are created by adding each unvisited node to the current partial

path, with a resulting increase in the partial cost of each tour. If the cost of a partial tour

is higher than the best tour found so far, the path is pruned. Otherwise, a new thread is

generated on a random node to continue the search using the new partial tour. Distributing

threads to random nodes provides a primitive form of load balancing. The second major

part of the program updates the best path found so far, and the bounds variable found on

each of the processors. Whenever a tour is found that has a cost better than the current

bound, the new path is saved, and the new cost bound is propagated to all the processors.

Note that the bound on a processor may be out of date due to a pending update. The

processor may do some extra work because its copy of the bound is stale, but the correct

tour will still be found.

Figure 9.1 shows the runtime and the number of active threads as a function of time for

two di�erent scheduling strategies on a small 8 city problem. For the unprioritized case,

a simple FIFO scheduling strategy is used that does not di�erentiate between the type of

thread being run. For the prioritized case, threads were prioritized as follows: the threads

that are responsible for propagating and updating the cost bound used for pruning at each

processor have the highest priority, and the threads that are generating the search space

have a priority equal to the number of nodes visited so far in the tour.

Two things are immediately noticeable. First, the runtime of the prioritized version is

roughly half the runtime of the unprioritized version. Second, the maximum number of

active threads, which corresponds to the peak memory utilization of the machine, is roughly

5 times less for the prioritized version than the unprioritized version. The improved runtime

is due to two factors. First, in the prioritized case the processors typically have a more recent
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copy of the best cost bound found so far. The thread that updates the cost bound at each

processor is run at top priority and is not sitting in the scheduling queue behind many

other threads. Second, because threads that have visited more nodes have higher priority

than those with fewer nodes, the search tends to proceed in depth �rst manner, rather than

breadth �rst, which means that complete tours are found more quickly, bounds on the cost

are found more quickly, and pruning is more e�ective. The improved memory utilization

is also principally due to the prioritization of the search threads by the number of nodes

visited so far. The computation tends to proceed in more of a depth �rst manner, resulting

in more e�cient memory utilization. It should be noted that the implementation is by no

means ideal. The search thread priority could also take into account the current cost of the

partial tour rather than just the depth. The policy of sending search threads to a random

processor is non-optimal since it often sends work to processors who already have lots of

work, and generates unnecessary network tra�c | a more sophisticated load balancing

technique would be helpful. However, this example illustrates the bene�ts of even fairly

simple prioritization of threads.

The main point is that for general scheduling to be 
exible it must be controllable in

software. Simple FIFO and LIFO schemes that are relatively easy to implement in hardware,

are not adequate for general scheduling. At best, hardware features allow certain important

optimizations to take place. For instance, the direct dispatch to message handlers, and direct

execution of code inside message handlers rather than creating and scheduling a thread, is

an important optimization for message handlers that will run quickly and to completion, as

in active messages. Having multiple hardware contexts allows further optimizations which

are discussed in the next section.

9.3 Using Multiple Contexts

For certain types of computations, multiple contexts provide a unique opportunity for gain-

ing most of the bene�ts of hardware scheduling and software scheduling at once. Having

multiple contexts can allow potentially longer running message handlers to execute without

the risk of deadlock, and without the larger overhead associated with software scheduling.

Speci�cally, for each message one of the following actions is taken depending on the type of

message:

1. The work is done directly in the handler if the thread is short and is guaranteed to

run to completion.

2. If there is a free context, a thread is spawned directly into this context.

3. If there are no free contexts, a thread is inserted into the software scheduling queue

and is run at a later time.
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The more contexts are available for message handling, the more often a thread will be able

to avoid option 3, and forego the overhead associated with running the software thread

scheduler.

Two con�gurations are shown in Figure 9.2 that allow this to be possible. In the �rst

con�guration, each context can directly access the message queue. As long as there is

more than one free context, the message handler can execute immediately without software

queue overhead. Once there is only a single free context, we must be more conservative,

and any thread that will not run quickly and to completion has to be scheduled in the

software scheduling queue. The advantage of this system is that messages can be spawned

to any context with a very small cost. The disadvantage is the complexity associated with

determining when it is safe to execute the thread directly. For instance threads may be

spawned on the node itself such that all the contexts become full, leaving no context to

handle incoming messages. Thus the general scheduler must be aware that one context

must always be available for handling messages.

In the second con�guration, a single context handles messages as they arrive and carries

out one of the three actions. One advantage of this is that the context aimed at handling

incoming messages can be specially designed to be extremely e�cient. In particular, the

network interface can include a co-processor with a completely separate pipeline, and can

be optimized to handle certain types of messages such as read request messages, or shared

memory protocol messages [44, 75, 60]. The disadvantage is that when the message interface

does decide to spawn a thread to an available context, it must copy arguments to the context

before initiating execution. This is a relatively small cost to pay for the simpli�ed network

interface implementation and message handling optimizations, and this con�guration is

likely the more desirable of the two con�gurations.

9.3.1 Radix Sort Example

The radix sort algorithm sorts an array of integers one digit at a time, starting from the

least-signi�cant digit to the most signi�cant, where a digit is represented by a �eld of b-bits

digit [20]. One phase of the operation, the scan phase, requires 2b parallel scan operations,

one for each possible digit value. The data structure used is a distributed tree structure,

distributed in a balanced fashion across the nodes so that each node contains a leaf node,

and at most one internal node of the tree. For a single scan operation, messages �rst 
ow

up the tree in a combine operation, and then back down the tree to distribute results to

all the processors. For the purposes of the radix sort code, there are dependencies between

the scan operations at the root node: a scan of a given index must wait at the root until

all the previous indices have reached the root of the tree.

Tasks in the scan phase of radix sort are quite short, and consist in doing some small number

of operations and tests, and sending o� new messages to parent nodes or children nodes.

The number of instructions for each task going up the tree is about 50 cycles, and for each
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Figure 9.2: Message interface con�gurations. a. All contexts have equal access to the input

message queue. b. One context has access to the input queue allowing certain message

interface optimizations.
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Figure 9.3: Radix sort scan phase for di�erent numbers of contexts running on 64 processors.

The digit size is six bits, requiring 64 parallel scans.

task going down the tree is about 35 cycles. Although the tasks are short, they do use the

network, and thus these threads can take much longer to execute if the network interface is

unavailable. if the code is implemented directly as a message handler, there is the risk of

deadlock.

The scheduling of threads using multiple contexts is done as follows. A message handler

reads the message from the network interface. If there is an available context, it spawns a

thread directly into this context, otherwise a thread is put into the scheduling queue to be

run at a later time. This corresponds to the message interface con�guration of Figure 9.2b.

If the processor had a free context it can spawn the thread directly into the context, and

the cost is just the cycles required to copy the arguments and dispatch to the code. If no

context is available, then the processor puts the thread into the scheduling queue to be run

at a later time. The cost of scheduling a thread is the cost of inserting the thread into a

software queue, including the copying of the arguments, later removing the thread from the

queue, and reading the arguments into the context. On the order of about 50 extra cycles

are required to do this software scheduling, about the same length as the minimum running

time of the tasks themselves.

Figure 9.3 shows the results for an increasing number of contexts, and di�erent scheduling

schemes. For this problem FIFO scheduling achieves the best results. The prioritized version

of the code attempts to ensure that the scans �nish in order so as to avoid synchronization

faults at the root, but this is already achieved by doing FIFO scheduling, and at a reduced

scheduling cost. What is more interesting in this case is the performance increase that

occurs as the number of contexts increases. Note that in this benchmark this is not due

to any latency tolerance e�ects since shared memory is not simulated, but rather is due

to avoided software scheduling costs. The software scheduling costs involved are important
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because the cost of scheduling is close to the cost of the task themselves. If each task was

much longer, than the cost of scheduling it in software would be less signi�cant. In the

example shown, when there are su�cient contexts to avoid ever having to put a thread in

the software queue, the multiple contexts lead to an 18% increase in performance in the

unprioritized case, and a 34% increase in performance for the higher overhead prioritized

case.

It is interesting to note that for this example, the runtime does not decrease uniformly with

increasing contexts. For example, the runtime with 4 contexts is higher than the runtime

with 2 or 3 contexts. This is because when the number of contexts changes, the thread

generation pattern changes: some nodes may receive more messages faster, causing them

to have to put more threads into their thread queue, leading to both higher scheduling

overhead and imbalance in the amount of work each node has to do. Having su�cient

contexts for all nodes to avoid using their software queue eliminates the problem.

9.3.2 General Problem Characteristics

In general, using multiple contexts in the scheduling of arriving messages will help per-

formance when the tasks being scheduled are fairly small so that the scheduling overhead

would be a substantial portion of their execution time, but have characteristics that make

them risky to execute as active messages because of the risk of deadlock, or the possibility of

backing up the network. In the case of the radix sort example, the tasks created are sending

out messages into a network that is congested, and deadlock may result if the messages are

sent directly from the message handlers. Furthermore, the handling of incoming messages

is done faster if the message handlers can simply hand o� the thread to a waiting context

to execute, rather than execute it itself. This type of thread pattern occurs in many global

type operations, such as scan, accumulate, broadcast, and barriers.

Finally, it is best if the number of threads on each processor remains below the number

of contexts. This is because the contexts act as a thread cache, and as long as there are

less threads than contexts, the processor never has to do insert or remove threads from a

software queue.

9.4 Summary

This chapter brie
y discusses issues related to hardware scheduling of messages and threads,

and how multiple contexts can be used in certain situations to help eliminate overhead

associated with the software scheduling of threads. In general, hardware scheduling does

not allow the 
exibility that is required for general thread scheduling. FIFO and LIFO

scheduling policies that are easy to implement in hardware are generally not optimal for

general thread scheduling and can lead to such problems as excessive memory utilization,
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and poor performance because critical threads are not given priority. For threads that

are generally short but may be risky to execute directly as a message handler due to the

possibility of long execution time or network resource requirements, using multiple contexts

can improve performance by allowing threads to be spawned into separate contexts. Doing

this eliminates most of the overhead incurred if the thread is put into a software scheduling

queue, while making the thread safe to run since its execution has been decoupled from the

handling of incoming messages.



Chapter 10

Conclusion

10.1 Summary

Multiple-context processors tolerate latency by rapidly switching between di�erent threads

of execution when a long latency operation takes place. This allows the processor to perform

useful work in what would otherwise be idle cycles, thus increasing processor utilization

and decreasing application runtime. Tolerating latency using a multiple-context processor

requires a number of di�erent scheduling decisions. First, we must decide which threads

are loaded in contexts and eligible to execute instructions, and which are unloaded and

waiting in a software scheduling queue. Second, we must decide which thread to execute

next on each context switch. This thesis shows that both decisions are important for good

performance.

Previous work on multiple-context processors considers round-robin context scheduling and

uses processor utilization as a performance metric. This work has identi�ed a number of

factors that limit the performance of multiple-context processors, including network e�ects,

and cache interference between multiple working sets. Other important performance limit-

ing factors include the e�ect on critical path execution time, the e�ect of spin-waiting, and

the e�ect of limited memory bandwidth. The naive sharing of processor resources among

the threads due to round-robin scheduling is one of the main causes of the performance

limiting problems associated with multiple-context processors.

In this thesis we propose thread prioritization as general scheduling mechanism that allows

the user to easily and dynamically specify the preferred order in which threads should be

executed, thus allocating processor resources more intelligently. we show that it is important

to consider the e�ects that multiple contexts have not only on processor utilization, but

also on the critical path. We show that thread prioritization is useful in addressing some of

the limitations of multiple-context processors, including bad spin-waiting e�ects, negative

cache interference e�ects, and critical path runtime e�ects.

191
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The principal results of the thesis include the following:

� Analytical models: We develop analytical models that show how multiple contexts

a�ect both processor utilization and the execution of the critical path of an appli-

cation. Both processor utilization and critical path can a�ect overall performance.

The models consider the e�ect of cache performance, network latency, spin-waiting

synchronization, and limited memory and network bandwidth. Processor utilization

su�ers when there are too few contexts, but also when there are too many causing

cache e�ects to become important. Having many contexts can lengthen the critical

path execution time because a critical thread is delayed while other threads execute.

Both spin-waiting and limited bandwidth reduce the e�ectiveness of multiple contexts.

� Thread prioritization: We present thread prioritization as a general thread schedul-

ing mechanism which can help solve many of the problems associated with multiple-

context processor thread scheduling. Thread prioritization is a temporal scheduling

mechanism which helps decide when threads should run. Software prioritization al-

lows us to decide which threads should be loaded and which should remain unloaded.

Hardware prioritization allows us to choose a loaded thread on any given context

switch. Hardware implementations can do context selection in a single cycle. Soft-

ware implementations are more di�cult to implement e�ciently and can make the

cost of thread selection unacceptably high.

� Scheduling for good synchronization performance: We show that thread prior-

itization can be used to substantially improve the performance of synchronization that

uses spin-waiting. For simple synthetic benchmarks such as Test-and-Test and Set,

barrier synchronization, and queue locks, runtime performance improvement range

from 10% to 91% using 16 contexts.

� Scheduling for good cache performance: We present a number of techniques

that improve the cache performance of multiple-context processors. Data sharing

involves closely coordinating the threads running in each context so that they share

common data in the cache. Favored thread execution uses thread prioritization to

dynamically allow only the minimum number of contexts required to tolerate latency

to be running. Cache performance improves because the scheduling minimizes the

number of working sets in the cache. Runtime improvements range up to 50% for

bandwidth limited applications using 16 contexts.

� Scheduling for good critical path performance: We show how thread prioriti-

zation can help schedule threads based on the critical path. If the problem is critical

path limited then prioritization can have a large impact, 37% for one benchmark us-

ing 16 contexts. If the problem is not critical path limited, or there is not su�cient

parallelism to keep the multiple contexts busy, prioritization will have little e�ect.

� Using multiple contexts to reduce software scheduling overhead: We show

how in certain situations multiple contexts can be used to eliminate software schedul-

ing overhead associated with safely scheduling threads in response to incoming mes-

sages.
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These results show that by carefully controlling the allocation of processor resources to the

di�erent threads, including pipeline resources, bandwidth resources, and cache resources,

some of the de�ciencies of multiple-context processors can be overcome, thus making them

an even more e�ective latency tolerance and performance enhancing mechanism.

10.2 Future Work

As in any PhD Thesis, answering interesting questions raises a host of related questions.

A number of directions that should be explored include the e�ect of prioritization on a

more extensive set of applications, automating the thread prioritization process, exploring

other uses of thread prioritization including ways in which it could be used by the operating

system, and determining how di�erent latency tolerance techniques can be used together to

o�er the best possible latency tolerance.

10.2.1 Applications

Most of the applications in this thesis are micro-benchmarks that are either synthetic in

nature, or represent a computationally intensive kernel of a real application. Each one is

carefully chosen to have characteristics that illustrate a speci�c type of scheduling problem

in as much isolation as possible, while at the same time representing characteristics that are

found in real programs. Doing this allows us to see how e�ectively our thread scheduling

techniques and mechanisms deal with speci�c scheduling problems.

Complete applications present a combination of interacting e�ects that may not arise in

small kernels or synthetic benchmarks and that it is important to understand. A number

of these e�ects were observed in some of our larger benchmarks such as LUD, and sparse

LUD. Improving the performance of complete applications lends weight to the conclusion

that the mechanisms are indeed generally useful. A variety of benchmarks have gained

popularity over the past few years, in particular the Splash benchmarks from Stanford [87],

and it would be useful to port and modify these benchmarks for a multithreaded prioritized

system.

10.2.2 Automated Thread Prioritizing

Tools to automatically assign priorities to threads, rather than have the user specify the

priority with program annotations and library calls, would be very useful. In many cases

this type of prioritization is easy to do. In the case that the program can be represented as

a static DAG, a compiler can easily use heuristics to assign static priorities to the threads.

Similarly, it is straightforward to automate some of the techniques used to improve cache
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performance in parallel loop code. Priorities can easily be assigned automatically to achieve

good cache performance using favored thread execution. The general problem of prioritizing

threads in an arbitrary program is more di�cult.

10.2.3 Other Uses of Thread Prioritization

This thesis presented and evaluated thread prioritization as a temporal scheduling mecha-

nism used to decide when a thread should run on a single processor. However, many other

potential uses of thread prioritization are possible. The priorities could be used to make

certain thread placement decisions. For instance, a load balancer might use the priorities

to decide which threads to migrate. The load balancer may decide to migrate lower priority

threads so that higher priority threads would not be delayed by the migration overhead.

In this context the priority might be an indication of the importance of the thread to the

critical path, or may be an indicator of the a�nity of the thread for a given processor.

It is also possible that the thread prioritization could be used by the operating system.

If space sharing is used, threads from a given application may have to be moved o� one

node and on to another. The priority can help make decisions about how threads should

be redistributed across the processors, and how the schedule should be reorganized on the

remaining processors. Further, the multiple contexts and thread prioritization could be

used to run operating system tasks in parallel with user code running other tasks, or even

to have multiple user tasks running at the same time at di�erent priorities. Further study

is needed to determine how prioritization might help operating system scheduling.

10.2.4 Combining Latency Tolerance Strategies

Multithreading is only one method of tolerating latency. Others include prefetching and re-

laxed memory consistency models. Gupta el. al. showed that allowing multiple outstanding

references per thread helps the performance of both prefetching and multithreading [37].

In particular in the context of multithreading it allows longer run lengths between context

switches and it allows more memory bandwidth resources to be devoted to a single thread.

This reduces the number of contexts required to tolerate latency, and improves single thread

performance. Gupta's study also showed that using both prefetching and multithreading

at the same time can in fact hurt performance if done naively. It is clear however that both

prefetching and multithreading have the potential to be complementary: multithreading

can do a good job of tolerating synchronization latencies and irregular memory reference

patterns, whereas prefetching can do a good job in tolerating regular reference patterns. De-

termining the optimal combination of latency tolerance techniques for any given application

remains an open problem.
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10.3 Epilogue

Although commercial microprocessor developers have not yet embraced the concept of hav-

ing multiple hardware contexts, there are ever more compelling reasons for them to seriously

think about the bene�ts multiple contexts provide: tolerating long latencies, providing more

instructions to keep multiple functional units and long pipelines busy, and supporting fast

interrupts and fast multiprocessor network interfaces. Studying the impact of multiple

contexts on computer architecture, on application performance, on compilers, and on sys-

tem software will continue to demonstrate these bene�ts, and lead to the acceptance of

multiple-context processors as a commercially viable approach to enhancing performance.



Appendix A

A Fast Multi-Way Comparator

To choose a context to execute based on priorities, a multiple-context processor must com-

pare the priorities of all the contexts and �nd out which are the highest priority ready

threads. This appendix presents the schematic design of a circuit that compares C, N-

bit priorities using carry-select techniques. This is faster than the simpler C-way ripple

comparator presented in Section 4.1.

Figures A.1 through A.4 show the design of the circuit. Figure A.1 shows a bit-slice of

a ripple-compare circuit that compares two priorities. If the two priorities are equal then

both outputs, Co0 and Co1, are 1. Otherwise the output corresponding to the higher

priority thread is 1, and the other is 0. Cascading N single-bit comparators forms an N-bit

comparator.

The delay of a ripple comparator grows linearly with the number of bits and it is desirable

to use carry-select techniques [107] to reduce delay when N becomes large. We use the

COMPARE/SELECT circuit of Figure A.2 in our carry-select comparator. This circuit

takes as input an F-bit wide �eld of each priority, as well as the results Ci0, and Ci1,

from the comparison of the higher order bits of the two priorities. If the comparison of the

higher order bits has already determined the larger priority then this result goes directly to

the output, otherwise the result of comparing the next F-bits of the priorities goes to the

output. This circuit also outputs the F-bits of the larger priority so that this larger priority

can be used in additional comparisons. Figure A.3 shows a 16 bit comparator using three

carry-select stages, of length 5, 5, and 6. This increases speed because the �elds of the

priority are compared in parallel in each of the three stages, and the result selected based

on these results. To �rst order, the carry 16-bit carry-select comparator has about half the

delay of a ripple comparator, based on counting the logic levels that the signals have to

propagate through.

The circuit of Figure A.4 compares priorities from 4 contexts. It has an output for each

context, Co0 through Co3, and an output is a 1 if the corresponding context has the highest
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p 0  =  p 1 p 0  >  p 1p 0  <  p 1

Figure A.1: Bit-slice of a ripple-compare circuit. Cascading N bit-slices forms an N-bit

RIPPLE-COMPARE circuit.

priority. The �rst level of comparators compares P0 with P1, and P2 with P3. The second

level then compares the highest priorities from the �rst level. For more than 4 contexts the

structure is easily generalizable to a tree of comparators. If C is the number of contexts,

we need log2C levels of comparators. Note that the second level comparator does not

have to wait until the �rst level of comparators has completed, but can immediately begin

comparing the high order bits as they become available.



198 APPENDIX A. A FAST MULTI-WAY COMPARATOR
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Figure A.2: F-bit COMPARE/SELECT circuit used in the carry-select comparator.
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Figure A.3: 16-bit carry-select COMPARATOR circuit using 3 COMPARE/SELECT com-

parators of length 5, 5, and 6.
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Figure A.4: 4-priority comparison circuit.
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