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1.1 The Cognitive Challenge

As long as human beings ave existed on earth, we have aways attempted to decode or

understand our brains. Our brain is more advanced tan any other species which gives

us capabilities to communicate and learn. The skill of communication also gives us

the freedom to learn from others' experiences. Research in human cognition, formerly

limited to the fields neuroscience, cognitive science, philosophy and psychology, has

recently been extended to artificial itelligence where scientists attempt to recreate

what is ot known yet to our species.

In adults, almost I million motor neurons control our muscles[26], enabling ail

enormous range of complex activities. Te primary motor cortex is known to be

active when the body movements are detected. As shown in the soma-totopic maps in

Figure 1-1, disproportionally large sections of the motor cortex and the somatosensory

cortex are responsible for representing the fingers and te and. Tis results in our

capability for intricate movements and precise sensing with our fingers.

However, babies are born with only reflexive cpabilities for manipulative move-

ments. A reflex is an involuntary, stereotyped response to a, sensory input. For

example, abies curl their fingers when the alm is stimulated. This capability, in

15
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A
B

Figure 1-1: Human somatotopic mappings: left, motor cortex- right, somatosensory
cortex.

conjunction with babies' curiosity and visual feedback is the bases from which tey

learn to manipulate objects and results i the eventual large portion of cortex map-

ping. nfortunately it is still unclear h ad how these connections develop in our

brain. In neural and computer science, many learning strategies are developed based

on our learning properties. However, they are fll of assumptions and definitions tat

are not necessarily valid in the real orld, such as Markov chain condition. As one

of te steps, our approach to tis complex phenomena, is to reconstruct our behav-

ior and study the learning process using our faster than ever calculation power of

computersin order to provide insight ito the human's brain functionalities.

1.2 The Physical Challenge

Sensory iformation is first detected y the receptors which is routed and processed

within the nervous system to interacts with te brain. Mechanoreceptors, receptors

that respond to physical deformation, are responsible for touch and pain. The ridges
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on the fingers orient cutaneous mechanoreceptors called Meissner corpuscles, and they

are largely responsible for our ability to perform fine tctile discriminations with our

fingertips. The receptors monitor the environment and transduce the iformation

which is then propagated ad passed toward te spinal cord. The spinal cord, being

only about 42 cm long x I cm diameter, receives all the motor ad sensory inputs,

which are fed into multiple ascending sensorv pathways and local reflex circuits. U-

fortunately the current connector and wire technology does not allow us to build

such a system due to the size and inorganic material limitations. Even when only one

hundred 30 gauge stranded wires are run through a sall joint and repetitive' strain

is applied, the wires are prone to breakage due to the flexibility characteristics of

conductive materials.

The human body is adaptable to situations and tasks which can be learned through

training using the same physical body parts. To date, most mechanical hands and

grippers constructed are task driven and limited to performing a, very few specific

tasks. They may excel in their precision and strength for a particular task, but their

inflexibility to perform non-specified tasks make the existing hands nonhuman. The

human hand is an amazing device, capable of manipulating diverse objects and tasks,

yet its precision ad srength requires more external muscular assistance, feedback ad

training than we imagine. The challenge is to build a, system that is not preconfigured,

but is able to learn to accomplish any tasks like our hands.

L3 Tern-linology

Many parts of hands and fingers and discussed trough ot this tesis. For a, sim-

plicity, the terminolgies are based on the human anatomy terminologies shown in

Figure 1-2[24].

The mechanical hand constructed for this thesis ave three fingers, each having

two segments and two joints, ad a, tumb with one segment, and a joint, so the terms
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-pals

Figure -2: Human anatomy terminology.

are altered as shown in Table 1. .

1.4 Organization of Thesis

This thesis is organized into 4 additional chapters as follows:

Chaptcr 2 discusses the motivation for embodiment in this project. It introduces

the behavior of humans and related research previously done which leads to the cur-

rent humanoid research. It also argues the importance and difficulties of embodiment.

Embodiment is one of the best approaches i order to learn about human ognition,

but due to mechanical dufficulties, many constraints are considered.

Chaptei- 3 presents a detailed description of the hand built for this research It

covers te echanical design and iplementation icluding the structure of physical

hand, tendon cbling strategy, actuators, sensors ad computing tools.



Area Flail 'Rrniinology
fingers 2nd digit index finger

3rd digit middle finger
4th digit ring finger
segment frther away from palm Distal
segment, closer to palm Proximal
joint frther way from palm distal joint

joint closer to paIm proximal joint

thumb segment Proximal

j oint proximal joint

palm inside palm

outside dorsum

all segments phalanges

joints joints

Table 1.1: Terminologies of mechanical hand parts used.

1.4. ORGANIZATION OF THESIS 19

k-,,rfilapter,)t has two parts. The. first part describes the PID controller which is used

locally to incorporate the primitive motion of the and. Te second part presents

the learning strategies which is 'inspired y an infant's learning process. Strategies

such as competitive learning, back-propagation algorithm and reinforcement learning

are introduced and implemented. The experimental results are also shown in this

chapter.

Chapt(_,r reviews the research discussed in this tesis and concludes with a dis-

cussion of the future work.
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This chapter presents the motivation for embodiment ad illustrates its significance

to this thesis. Humans' cognitive and physical behavior is discussed, with focus on

infants'manipulation behavior. The hand built is a self-contained hman scaled non-

task- driven tool learning its own cognitive ad pysical behavior, differentiating this

research from previous work in manipulation tools. Te advantages and disadvantages

associated with building such a system are considered.

2.1 1\4otivation and Related VVork

2.1.1 Infants

Piaget was one of the first of the modern psychologists to recognize the infant's

manipulative exploratory behavior with te environment as a, vehicle of cognitive

stimulation[22]. Infancy is not only a time when muscles ai d the nervous s stem ma-

ture but also a, time of active and continuous learning hich allows a baby to establish

effective transactions with the environment and move toward a, greater degree of au-

tonomy. During this time, infants practice and perfect sensorimotor patterns that

become behavioral modules which will lie seriated ad imbedded in more complex

actions.

21
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Human motor control is a sequential process which is affected the order of

development of different regions of the brain and the nervous system. Since the control

of the central body areas matures before the outer areas, and development comes

later than for other parts of the body. Consequently arm motion controlled by a more

mature shoulder joint, causes accidental collisions with objects in the environment as

the ifants come in contact with an increasing number and variety of objects. Reflex is

the oly and motor control present at irth. When the skin of te palm is touched

by an object, the muscles of the and contract ad results in curling the fingers

whereas if a strong force is applied, the fingers open to alleviate pain y expanding

the muscles. The reflex is completely controlled ad pre-programmed at the spinal

cord and te summary of the reaction reaches the brain ong after the action has been

taken. When this process repeats itself, the nervous system makes the connection

between the stimulus and its corresponding actions, resulting in te first step of

manipulation learning. Through touching the objects, babies learn their shapes,

dimensions, slopes, edges, and textures. They also finger, grasp, push, and pull to

learn the material variables of heaviness, mass and rigidity, as ell as te changes

in isual and auditory stimuli that objects provide. Visual feedback is a crucial

piece in manipulation learning as seen in the infants of a, few days old extending their

hands toward a, visible object 28]. This instinctive motivating iformation is triggered

somewhere i the nervous system and allows explorative learning to initiate.

2.1.2 Mechanical Hand

Since te eighteenth century the mechanics of hands has been studied and as been

the model for various echanical constructions, primarily for protheses and telema-

nipulators, manipulators controlled remotely[21]. More recently, human hands have
been anal -1y of them are used reliabl

yzed for idustrial echanical grippers ad mal.

in assembly settings. They are built specifically for the environment in which the

grippers have to ork, and tey are so different for each application that a, standard
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industrial hand that satisfies every need cannot -be built. Teir functions are mostly

clamping, vacuum, and magnet which are activated by pneumatic, hydraulic, electric

and mechanical force.

The first dexterous mechanical hand that resembled a, human hand was the Utah/MIT

Dextrous Hand built about 10 years ago[14]. The hand itself was approximately an-

thropomorphic in size including three tendon operated fingers and a thumb with

multichannel touch sensing capability. Each finger included three parallel axis Joints

and a proximal joint which are independently controlled using a, tendon system to-

talling eight tendons and actuators per finger. 38 actuators are mounted in the

forearm for controlling the tendon, and a, peumatic approach is used due to its low

weight and compactness. Optical fibers and bireffingent aterials ere used for their

touch sensing system. The control system simply delivered joint angle commands to

servo systems at each joint so tat the and assumed various desired configurations

integrating touch sensors and tendons. This work was significant in a, way that it

could be used for multiple purposes in research, giving the capability to inegrate ad-

ditional systems such as learning algorithms or more sensors in an athropomorphic

way.

2.1.3 Humanoid

Attempts

Originally, most humanoid robots were clever adaptations of existing industrial robots

or specialized mechanical arms. Later there were explicit aftempts to make robots

anthropomorphical in appearance ad capabilities. �!NTabot ws exhibited at the

Japanese Expo in 1985 and it played a, piano, ith its precise and fast finger works[32].

It had a human ppearance ad if examined briefly, it could visually fool people that

it had a cognitive system. Though this robot design was ispired by the human

hand otor sstem, it was not practical in any sense of the word. It was bolted in

front of a, piano, and the only capablility it had is to la a piano. No other tasks,
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Figure 21 A picture of C/og.

even just, to manipulate objects, could have been done y the robot. '"Thile various

engineering enterprises have modeled their artifacts after humans to one degree or

another, nobody seriously tried to couple human like cognitive processes to these

systems methodologically.

Cog

At the MIT Artificial Intelligence Laboratory, a research group headed by professors
Rodney A. Brooks and nn Andrea, Stein' ntl

is curre y developing an integrated phys

ical humanoid robot named og 3 shown in Figure 21. This system will iclude
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vision, sound input and output, and dextrous manipulation all controlled by a, con-

tinuously operating parallel MTMD computer as the brain. The processors are 16Mhz

Motorola 68332s in standard boards which plug 16 to a, backplane. The backplane

provides each processor with six communications ports and a peripheral processor

port. It has the capability to connect up to 256 processors by stacking 16 backplanes.

to a single front end processor. Each 68332 communicates up to 16 Motorola 11s

which re single chip processor with onboard memory, timer, SPI, analog to digital

convertor, and some 1/0 ports. The motor skills that are handled at the spinal level

for humans are processed by 6811 motor boards to act like spinal cords. The goals of

this project are to build a prototype general purpose autonomous robot ad to un-

derstand human cognition. This is the first time anvone has attempted to construct

an embodied autonomous humanoid intelligent robot.

Currently we are at a primitive building and integrating stage in hardware and

software including arms, hands, ears ad eyes. As we put the pieces together we

will be forced to understand the physical constraints which can lead to a, better

understanding of ow we should build the pieces. Wen all tbe parts are itegrated

to our oe front end processor, e will be able to treat Cog as a, wole to ttack

problems that require coordinating the wole bodv. A simple operation, such as

picking up a, bell requires sound localization torso control isual feedback and arm

and hand manipulation skills. This kind of task may only be done at the cognitive

level using a, stem like what we are building right now. Cognitively, this project is

important because studying the way Cog decides to execute certain actions may lead

to an uderstanding of our own cognition.
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2.2 En-ibodirnent of Hand

2.2.1 Overview

Why?

The importance of embodiment in order to uderstand human cognition is a contro-

versy in the artificial intelligence community. Many argue that a simulation of such a

system can satisfy the need, and would not waste the time needed to build a complex

hardware creature. We live in a noisy environment ad e are capable of learning

to ignore irrelevant, noise. For example, we can recognize a telephone even when the

edges are dirty or chipped, which cannot be easily done with the current computer

vision technology. We, are restricted by the limited technology that allows us to build

such a'system, but also limited by what we kow about uman biological systems.

Another example to show the importance of embodiment is the study of bird

wings. The physics of bird wings have been studied to embody in a human scale with

our dream to fly since the 16th century. With a solid understanding of aerodynamics,

a computer simulation can be built to understand the fuctionality of the wings better.

Even for a simulating such a simple environment as air, many assumptions suc as

wind and pressures need to be made in order for the simulation to work consistently.

While studying such a, system can show important points in the flying mechanism,

the system still need to be physically built to understand other constraints that occur

only in the real world setting.

The attempt to understand huma fnctionality is much more complicated than

studying bird ings. Many assumptions robably including some that are not valid

in the real environment, are necessary because e do not know enough about how

we process iformation that e receive from te evironment. Therefore, it is more

crucial to build such a system pysically to understand its constraints ad limitations.

As we build the system, still with any assumptions and using existing technology,

we may realize uman's functionalities, that simulations have ot been able to teach
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Figure 22: A picture of Cog's hand.

us. By attempting to build an anthropomorphic and, many physical limitations

and constraints are realized, and those realizations are requisite to unraveling the

questions of human physical and cognitive functions.

Physical Setting

This project uses an nthropomorphic scale hand which has three fingers and an

opposing thumb shown in Figure 22. Each finger has to coupled joints that are

controlled by a miniature steel cable. Due to the nature of a. coupled cabling strat-

egy, it is compliant. There are four motors controlling each fger, generating a

maximum torque equivalent to holding a, 0.5 pound object at the tip of a finger.

Motors are integrated with rotational potentiometers to detect the motor positions.

Force/pressure sensors cover the surface of all fingers. A finger has two phalanges

and each of it has two force sensors. The thumb has two force sensors and te palm

has four position sensors in addition to a force sensor. All the sensory readings are

multiplexed and converted to digital signals at a, otorola 6811 microcontroller which
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is integrated on the top of the dorsum. The 6811 has four analog-digital converter

ports, four pulse width modulator ports which are connected to the motor drivers and

all four motors. The microcontroller acts like a spinal cord, containing a, PID control

loop ad handling reflexive reactions. A larger microcontroller 68332 is iterfaced for

higher operations such as learning and coordinating with other features such as eyes

and ears.

2.2.2 Constraints

Strength and Precision

Many researchers have successfully created hands that are reasonably small and

strong, interfaced ith large forearms i order to carry many high-powered motors,

precision encoders, and gears 2 30, 31]. However, in creating a human scale model,

it is crucial to minimize the weight and the size of the hand. As a trade off, increas-

ing the strength and the precision becomes complex. Minimizing wires and cables is

achieved b placing actuators close to the joints, ad local processors close to all te

sensors and motors. Optimally everything should be contained within the fingers and

the palm. In order to contain motors in the hand, both the number and the size of

motors need to be decreased significantly from all the existing mechanical hands. To

reduce the number, all the joints in a finger are coupled with a, tendon cable which is

pulled from both directions for curling and expanding by a sngle motor. Tis strategy

limits the strength of the hand due to te conciseness of the motors, the compliancy

of the cabling strategy, and the material of cables. To avoid using large ecoders,

rotational potentiometers are used at the expense of reducing the accuracy frorn 16

bits to bits of information. Needless to say, small parts are difficult to construct,

which increases the complexity of these constraints Tough, hen the human hand

mechanism is alyzed for infants, each finger as minimal torque and it is impossible

to een estimate the angles of the joints without visual feedback or external applied

force. Thus studying ifants' learning skills oly requires the strength of industrially
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available miniature motors and the precision of potentiometers read through bit

analog to digital converters.

Stability and Orientation

For multi-finger manipulators, stablizing the grasp is a, critical issue. According to

some investigations done in the past, a four finger manipulator can handle 99% of the

parts that a, five finger manipulator or human hand can handle, a three fingers can

handle 90"A and two fingers 40'Y. For the humanoid hand, a, three finger with a thumb

configuration is used to reinforce the stabilit3-r for various shaped object manipulation

[30]. For example, the last finger can e sed as the base to hold a small object.

Young ifants do not use the thumb as an opposing finger, ad use all fingers like a

one degree of freedom compliant gripper. As learning proceeds, the opposing thumb

becomes the most important finger -for manipulation and slowly increases the degrees

of freedom to more than twenty-five, though many are coupled by the nature of the

ligament structure and location of tendon insertions. For our embodied hand, all four

fingers have a, designated motor which gi,,,,es each one degree of freedom. However

three fingers have two coupled joints yielding a, total of seven degrees of freedom

visually. From the construction of te hand, various objects can be manipulated

within the torque limit of the arm ad te and.

The orientation of the hand during reaching is an important, part of a grasping

procedure. Babies iitial reaches are awkward, but learn to coordinate ad turn it

into a sooth movement within a, few months[34]. Te initial reaction dring reaching

is to orient the palin toward the desired point of contact, and preshape the fingers

according to the sape of te object. Unfortunately, without \isual feedback or arm

movement coordinating with the and, tose precedures eed to be ignored. For this

research te orientation of the hand is fixed to ave the paIm perpendicular to te

ground for simplicity.
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2.2.3 Sensorimotor System

Meissner corpuscles are elongated encapsulated endings that are oriented with teir

long axis perpendicular to the suface of the skin. Tey are quite numerous in te

skin of fingertips, and they are largely responsible for our ability to perform fine

tactile discriminations with our finger tips. Unfortunately, this system is still not well

enough understood to implement it to an inorganic form. Tactile sensing researc is

an ongoing field where any commercially available skin is ot good enough yet to be

interfaced to achieve human like precision. For creating a uman like system, many

constraints need to e considered to find a optimal solution ithin our existing

technology. First, te skin needs to be flexible to adopt the shape of the surface of

fingers and palm. Second, the size and the number of wires eeds to be minimized

for creating a human scaled hand. The phalanges are hollowed to allow wires to run

through them, but it is still a very limited space.

One of the ain goals of this project is to learn from building a, cognitive system

and learn how such a system should be built. For this purpose, we can start off using

a, tactile system that is not as accurate as human finger skin. If the cognitive system

we build tells us in the future that more precise tactile sensors play a crucial role for

learning, we ill try to add such a, system. Since the most important information

needed is the force iformation followed by the position of contact, many force sensors

and several positions sensors are used for the hand.

2.2.4 Learning

Learning anipulation in an unpredictable, changing environment, is a complex task.

It requires a nonlinear controller to respond in a nonlinear system that contains

significant amount of sensory inputs and noise[23]. Investigating te human manip-

ulation learning system and implementing it in a physical system has not been done

due to its complexity and too many unkno-�JTn parameters. lonventional adaptive

control heory assumes too many parameters that are constantly changing i a real
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environment 33, 37]. For an embodied hand, even te sin-iplest form of learning pro-

cess requires more intelligent control network. Wiener 36] has proposed the idea of

"Connectionism" wich suggests that a, muscle is controlled by affecting the gain of

the "efferent-nerve - muscle - kinesthetic-end-body - fferent nerve - central-spinal-

synapse - efferent-nerve" loop. Each system within te loop such as efferent nerve

contains its own feedback loop system. This kind of loop is iherently nonlinear

with the capability to take mny noisy inputs and may be implemented in a, physi-

cal hand. It is still very limited to what kind of learning strategies can be used for

an implementation, but as an individual system, standard competitive learning and

backpropagation algorithms are used. To connect the whole system, a, connectionist

implementation of reinforcement learning is sed for the embodied hand.
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This chapter presents the hardware design of Cog's hand. The hand is made of

aluminum and designed to minimize weight and size. It has a, microprocessor ad

sensor interface circuit on top of the dorsum and has 36 total sensors on the surface

and joints.

3A A4echanical Design

3.1.1 The Structure of Hand

The hand has a 40 inch x 40 ich palm ith three fingers and an opposing thumb

where the dameter of fingers is 1.0 inch. To minimize the weight and allow for space

to run cables ad wires, each phalange is hollowed out using a, lathe to 002 inch

thickness. Joint design is done as in Figure 31 by setting,

max(O = 9115' (3-1)

max(o = 90' (3.2)

where is the angle for the proximal joint and for the distal joint. There are

physical limits at the proximal joint ad the dstal joint as shown in Figure 32 so

33
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Figure 3- 1:
view (right) 

A diagram of joint with a, ending angle: frontal view(left), side

that wen fingers are fully open,

(3-3)

(3.4)

min(O) -5'

0min(O) -to 

Within a joint, there is a, mniature steel pulley of diameter 0.5 inches and a shaft

that is fixed to te phalange above the joint(i.e.,the pulley in distal joint is fixed to

Distal), and friction is minimized using miniature ball bearings. ables are run in

such a way that both curling and expanding are controlled using oe continuous cable

and oe motor as shown in Figure 33. This cabling mechanism works because the

rotational force applied by a -otor results in a tension in the cable that causes the

friction force of the pulleys to move the joints(Figure 34.). The steps of applied ad

induced force effects of this mechanism are illustrated using a, finger curling example:

1. Motor applies a tension to the inner cable.

2. Friction2 becomes strong enough to rotate the pulley i the proximal joint.
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Physical
Limit
Contact

Physical 
Limit
Contact

Figure 32: Physical limits for a, proximal joilit(left) and a, distal joint(right).

lor

.I

ji,---IVimotor '

Opening Motion Closing Motion

Figure 33: Cabling configurations of curling ad expanding motion.
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Figure 34: Theory of cabling echanism with applied ad induced forces.

3. Proximal comes in a, contact with an object or reaches a physical limit causing

a resistive force.

4. The resistive force from step 3 overcomes friction2 causing the cable to slip over

the pulley in the proximal joint applying tension i te cable i Proximal.

5. Frictiont is induced to rotate the pulley in te distal joint.

6. Distal comes in a contact with an object or reaches a physical limit causing a

resistive force.

7. The cable reaches its maximum tension and stops. This is an optimal grasping

configuration for this finger.

To achieve such a coupling eect for the joints, the tension of the cable and the

potential friction for the surface of pulleys need to be considered in detail. If the

pulley potential friction is too high, the resistive force at step 3 cannot, overcome te

friction and te distal joint could not be controlled. When the cable tension is higher

than required as the finger curls, te proximal oint is controllable whereas the distal

joint cannot be moved. The proximal joint is still controllable ecause the tensio of

the inner cable applied by the motor is larger compared to the force against it de

to a, minor slip of outer cable tat occurs within te proximal joint to aflev'ate the
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Figure 35: A free-body diagram for a. distal joint pulley.

tension between te motor and the proximal joint. Due to this eect, the tension of

the outer cable between the distal joint and the proximal joint icreases and induces

the frictional force against the direction of friction that cuses the joint movement

as shown in Figure 35. As a result, there is not eough friction to move the dstal

joint. When the tension is too low, te compliance becon-les too large to weaken the

grasping force. The optimal total cable length is calculated sing the formula,

L
�� = 2Distal + Proximal + ) + -X d (3-5)
1.04 2

where L is the total cable length, 1, is the length of rn, z is the length between

the distal joint to the cable terminal point and is the diameter of pulleys. 0.04L

is added to achieve a optimal tension and compliancy. Te material of the cable,

nonstretching nylon coated steel is chosen for its durable characteristics, ut it still

stretches over time. A tension cranker is designed as shown in Figure 36 so tat

tension can be ajusted to a optimal strength whe te cable is stretched over time.

The cable is terminated using cable locks wthin Distal as shown in Figure 37.

At the palm, the fingers are separated y 0. iches ad the outer fingers are fixed

to the palm at III-) degrees away from the middle finger. Ech finger as two phalanges



�

III

38 CHAPTER 3. HARDWARE DESIGN

cable lock cable lock

cable threaded rod cable

Figure 36: Tension cranker design for adjusting the stretched cable length.

cable cable lock

pulley

0. in

Figure 37: able termination using cable locks.
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and their lengths are chosen to avoid colliding with other fingers, yet allowing the

tips of all fingers to meet t one point when tey are fully closed, which is shown in

Figure 38. Using this figure, Distal ad Proximal lengths are calculated using,

Figure 38: Diagram of hand used to determine the length of palanges: sideview(left)
and froi-ttview(right).

X = III COS 01 + 121 COS(� + 0 I b

b = a + 05
tan 150

0.5
a -- sin 7 0

X = 0. T 5 + 0. T5 + c
tan 150

C = 0.75,sin 5 .

ot ,,
0-0)

(3-7)

(3-81)

(3-9)

(3-10)
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and having a, total finger length to be 45 inches, a set of linear equations can be

formulated to

11 12 - 4.50 (3-11)

0.0871, + 099612 - 1-999 (3-12)

which gives the length of Distal to be 275 ad te length of Proximal to be 175 ad

the phalanges are built accordingly. The tip of a finger is made of polyethylene ad

covered with vinyl. An opposing thumb has one degree of freedom and te length is

chosen to meet with other finger tips for the purpose of fine manipulation. It is fixed

to the palm and te proximal joint is controlled ith a, steel cable as in the other

joints. Because this joint is not coupled, the torque exerted for the thumb is larger

than for the other fingers.

3.1.2 Motor Selection

There are four motors controlling each finger and they are contained within the palm

(see Figure 39) to inimize the size. The motors and gearboxes were chosen by

calculating the required torque and speed. At no load, the desired maximum angular

velocity of the joints is 2 rps 120 rpm, permitting te finger to open and close

fully in 0.5 seconds. Considering finger's own weight and applied force, it is assumed

that the overestimated maximum load is 1/2 pound centered one ich away from the

motor. With this assumption, the stall torque is

7 05lbs x lin 16.Ooz-in = 0.12Nm. (3.13)

Therefore the required power of the motor assuming 60 percent efficiency is

P =TW 0.12(47) = 1.5Watts. (3. t 4)
0.60



Maximum itermittent power output(NN,,,"atts) 2. 7
Maximum continuous power output(watt . '). 0

Maximum efficiency(//c,) `176

No load speed(RPM) 111300

Stall torque(oz-in.) 1.25

Maximum continuous torque(oz-in.) 0.35

Wei ght (oz) 0.71

Table 3: The characteristics of MicroMo's DC MicroMotor 1331.
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aSteel Cable

�ulley

Figure 39: Inside the palm.

To meet these criteria nd to minimize weight ad size, ocroAjo's DC motor series

133t with a 5/5 76:1 gearbox was chosen. Te characteristics of the motor and the

gearbox are sho-A,,n in able 31 and Table 32.

3.1.3 Grasping Capability

The size of ojects to be manipulated is largely determined by the length of the

phalanges. By taking advantage of the four fingered hand, large or non-trivial shaped

objects maY e grasped. For example, ring finger can be sed as a, base to hold a, large

object tat other fingers cannot wrap all the ivay around. Te manipulability is also



Reduction ratio 76 I
Maximum continuous output torque(oz-in.) 14.2
Maximum intermittent output torque(oz-in.) 42.4
Efficiency(%) 68
Weight oz) 0.61

Table 32: The characteristics of MicroMo's gearhead 15/5.

dependent on the material of the object grasped. Te surface of the hand is covered

with a thin'layer of vinyl to increase friction. When the static friction between the

skin and the object overcomes te gravitational force, te object does not slip off.

To analyze te friction, one point of contact with an object is considered. Te static

friction between the object ad the skin is given by,

f y, N (3-15)

where f is the frictional force, P. is te coefficient of static friction, and Al is the

magnitude of the- normal force. Figure 310 shows the object at te moment that

sliding is about to take place. The forces that act o the object are the normal force,

NI that is the grasping force applied b fingers pushing into the object, the weight

of the object W, and the frictional force, f. Because the object is in equilibrium, the

resultant external force acting on it must be zero,

EF f + W + N = . (3-16)

The x component of this vector equation gives,

EFx IV 0. (3.17)

At equilibrium, the static frictional force as its maximum value. Using Equation 35

and Equation 316, e get

f it, N IV. (3.18)
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Figure 310: A free-body diagram of object on skin.

When an object is grasped, the finger is positioned using PID control such tat a

firm grasp is achieved by having a constant, N. it, is a, combination of [II, y, of latex

and y, p, of the object, and T/V is object dependent, therefore, a relationship,

FSI Pso - constant
IIV

(3-19)

can be achieved. When a, learning tool is available such as described in Capter 4,

various graspina positions can e considered to improve the skill as infants do during

their anipulation exploratory stage.
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Figure 311: A picture of the dorsum with a motor oard and sensor interface board
mounted.

EPR,01\1� 640 bytes of EEPROM, 768 tes of RAM, four 8-bit pulse-width modu-

lators, channel 8-bit analog-to-digital converters, and other C6811 features. The

K4 has een chosen specifically to take advantage of onboard PIVM pulsors with

frequency ad duty-cycle variations wich allows the -\�Thole hand to be controlled y

only one MC6811 chip and eliminate a complex sequence of latches ad flip-flops.

PWM frequency can be specified using two bytes between 0.05Hz to 40KHz using

an 8N4Hz external crystal clock. The overall picture of te otor board design is

3.2 Computation Tools

3.2.1 Spinal Cord Level Computation

A motor board with a 6811 and a, sensor interface board are mounted oil a dorsum

as shown in Figure 3-It. They function like a, spinal cord by controlling finger move-

ments such as reflexes. The Motorola, MC68HC71IK4 includes CPU, 24 Kbytes of
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motor Board
- - - - - - - - - - - - I

I
I

Figure 312: An overall picture of the motor board design using Motorola, MC6811.

shown in Figure 3")... The board is designed in a, way that optoisolaters are sed

to isolate motor signals from analog/digital signals. A otor driver L293E takes a

duty-cycled PWM signal and a direction, nd sends a, processed signal to a motor.

The chip is also capable of sensing the load current whic bcomes part of the sensory

information. The potentiometer outputs and the rest of the sensory information are

multiplexed and fed to the analog-to-digital converter ports. Te serial line is used to

communicate with a, CPU and download programs to EPROM and EEPR-OM, and

the 68332 interface module decodes and connects to a, SBC332 board that handles

the rain level computation.
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Figure 313: A backplane interfacing 16 processors.

3.2.2 Brain Level Computation

The computation done at this level is the massively parallel system consisted of par-

allel processing system and an interface between a Macintosh computer acting as a

front end processor(FEP) and a processor. The design is done in a, VjTay that the

whole process can be expanded to 16 backplanes and each backplane consisting of

16 processing elements as shown in Figure 313[15]. A commercially available Vesta

SBC332 Board is used as the basic processing element, each dedicated to control a

specific. subsystem of the whole robot. Each board contains a Motorola MC68332

microcontroller and onboard RAM and EPROM up to I Mbyte each. Those inde-

pendentl3" controlled processors communicate trough dual port RAAIs(DPRAMs'),

IIT ---
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which allow two processors to share the memory spa-ce within it, permitting informa-

tion exchange with other processors to complete tasks such as hand-eye coordination.

Viewing from this point, the MC6811 motorboard acts as a, slave of this system. The

FEP is interfaced entailing the use of a, Motorola, MC6833'2, to act as an intermediate

front end processor(InterFEP). FEP and InterFEP are interfaced with a SCSI bus and

InterFEP and the backplanes are interfaced through a serial port. The programming

environment is based on the Macintosh and in particular runs in Macintosh Common

Lisp. L, developed by Brooks[4] is a downwardly compatible subset of Common Lisp

and it is run o each MIMD machine node. L is used to program the high level

learning routines that are introduced in the next chapter.

3.3 Sensors

3.3.1 Exteroceptors

Manipulation learning does not occur without fully utilizing exteroceptor and propri-

oceptor sensory feedback. As exteroceptors, force sensing resistor(FSR) devices which

resemble membrane switches a-re used. The sensors are less than 015 mm thick film

that are wrapped around the surface of te fingers and the palm. The construction

of the sensor is based on two polymer films of sheets as sown in Figure 34 A

conducting pattern is deposited on one polymer in the form of a, set of interdigita-ting

electrodes and a proprietary semiconductive polymer is deposited on the other sheet.

The sheets are faced and laminated together with a combination adhesive spacer ma-

terial. With no applied force, the resistance between the electrodes is high, and the

resistance drops as the force icreases, following a. power law relationship. Two 2 inch

x 2 inch square FSRs are wrapped around each phalange. For the palm, four posi-

tion sensing resistors(PSRs) and a, large FSR. N�Thich covers the entire palm are sed.

A linear potentiometer, a kind of PSR, shown in Figure 315, easures the position

of an applied force along its sensing strip. A voltage. generally 5 ilolts, is applied



� I . II]

48 CHAPTER 3 HARDWARE DESIGN

Semi-conducting
Polymer

ON-

Interdigitating
Electrodes

Figure 314: Commercial Force Sensing Resistor structure.

force sensing layer

wiper

xed resistor
"Ground" end

"Hot" end

Figure 3-t5: Commercial Position Sensing Resistor structure.
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Hot force

position . wiper

Ground

Figure 316: PSR equivalent circuit.

between the Hot and Ground ends of the fixed resistor strip. When force is applied

to the force sensing layer, the wiper contacts are shunted through that layer to one of

the conducting fingers of the resistor strip. The voltage read from te wiper is tus

proportional to the distance along the strip that the force is applied. An equivalent

circuit for tis arrangement is shown in Figure 316. Position sensing resolution can

be approximated by
2w28-A, X (3.20)
UV

where W. is the width of the conductive fingers, normally 0.5 mm, and wf is the width

of the applied force with an assumption of a constant, force across the force footprint.

One drawback of this material is that the force measurement is of one point only.

If multiple locations are stimulated, the barycentric position, a, positional average

weighted over the force distribution,

hu t xF(X)dx
Xave - yr0und (3.21)

h U-t F(x)dx
f'.ground

where x is the positions of contact and F(x) is the force distribution, is measured.

Since these measurements are processed at a, sensor interface board on the dorsum,

wires must go through the inside of the palanges and te constantl moving joints.

To accommodate the situation, the sensor is modified by eliminating an interface strip

and attaching commercially available durable and flexible wires to the surface of the
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Figure 317: A block diagram of a sensor interface board.

film using a conductive adhesive epoxy. The epoxy is chosen so that it, solidifies in

room temperature, avoiding to melt te film of the sensor, and the hardness value

is low when solidifies. All the wires are connected to a, sensor interface board where

the sensed resistance values, RFSRs and RpsRs, are processed. The lock diagram of

the interface oard is shown in Figure 317. The FSR, signals are interfaced using a

simple force to voltage conversion as shown in Figure 3-18. The output is described

by the equation,

+
out (3.22)

1 + RFSRIR-A/

where out is the output voltage, is the supply voltage, and R is te measuring

resistor value. According to the equation, the voltage output increases proportional

to increasing force. R is cosen to maximize the desired force sensitivity range and

4.7 K is used for the hand. For the PSRs a output can e read through a, simple

voltage follower as a buffer as shown in Figure 319. In order to prevent the high

current from flowing through the sensor during te measurement, it is important to
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FSP

Vout

RI

Figure 318 A FSR iterface: force to voltage conversion circuit.

+

V V Utin

Figure 319 A PSR, interface: A voltage follower.
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cable potentiometer
shaft

pulley
I II nntp-ntinmp-tpr

motor shaft connector

Figure 320: A rotational potentiometer measuring the position of a, motor.

incoporate a buffer because a low-resistance, load is driven by a source with a high

resistance requiring isolation.

3.3.2 Proprioceptors

Proprioceptors respond to changes in te position of the ody or its parts. Funda.-

mentally, te use of motors is not anthropomorphical since joints for hman are not

controlled by rotational forces, but a force applied by uscles. Muscles receive an

abundant supply of nerve endings acting as proprioceptors, while their functionality

is still not very clear. Since muscles are still impossible to implement i the way our

muscles work, te usage of actuators is not avoidable. With an implementation using

motors, it is possible to measure the rotational position of the motors. To minimize

size and weight, rotational potentiometers are used instead of optical encoders as

shown in Figure 320. The nformation gathered is filtered through an RC circuit

and processed to an bit digital signal at a M6811 analog-to-digital converter port.
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This gives a 2 resolution per a rotation of a, motor, which accounts to 180' resolution

between curled and expanding configuration of a, finger, which is much more precise

than wat humans are capable of measuring without visual feedback.

Another proprioceptor used is a, current sensor that is a built in capability of a

L293E motor driver. A load current which can be as high as two volts, is converted

to voltage information with a resistor avoiding a. high current flow to the microcon-

troller. This information both protects the motor from overheating, and permits a

measurement of how hard a, finger is at work at each instance of a grip.
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earnin -rocess

Learning, storing past experience in te brain to guide fture action is an effective

way of refining hand movements. I the early ..Oth entury, van Pavlov argued that

conditioned reflexes form a basis for all learned ehavior. In the 1930's Burrhus F.

Skinner argued that only outcomes such as rewards and punishments caused learning,

though many psychologists argued against it. As of today, the nature of learning is

still not clear.

This chapter presents two nervous systems that have been implemented for this

thesis. One is a system that is normally controlled at the spinal cord level suc as

reflex, and the other is a higher le-,-el learning sstem that utilizes neural network

theorv. The overall nervous control system is shown in Figure 41.

4.1 Low Level Controller

The low level calculations are all done in te MC6811 mounted on the paIm and

programmed using Assembly language.

55
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Figure 41 A block diagram of overall nervous control system implemented. 
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(1) d . (D out

Figure 42: A simple block diagram of feedback control system.

4.1.1 PID Control

The control structure for the finger movement needs to be a, closed loop to compensate

for noise from the environment and to let the system converge at all times. The

dynamics of a, DC motor in a, control loop shown in Figure 49 can be expressed as

T� + K� + = K, (Ci, + KT) (4.1)

where T is the time constant, 4) is the motor rotational position, Cin is the input

from a controller, T is the load torque, ad the K,'s are constants related to the

motor characteristics. T is determined by the characteristics of the motor and when

it becomes smaller, the closed loop system becomes faster ad more desirable. From

Equation 4, using Laplace Transform, the motor process can e written as

Motor = K, (4.2)
T82 1�0',; +

For this system, a proportional plus integral pus derivative(PID) controller is chosen

because of its ability to provide an acceptable degree of error reduction hile simulta.-

neously providing sufficient stability and damping[9]. For tis sstem. the controller

can e written as

Controller G( + + T �,)E (4-3)
Tis I
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T.

Figure 43: A block diagram of finger position control system.

where G is the feedback gain, TT is constant called integral time, TD is a constant

called derivative time, and E is the error. For the sensor, potentiometer reading

(D is used, so the gain for the sensor is . The system described above is shown in

Figure 43, and the output is calculated to be

(D -- KEGTDTs 2 -EGT + K2TIT11-EG),,; + EG
Tjs(T 2+ Kos + t)

(4.4)

where E is AD containing no term. Therefore, this system converges with time at

all time.

4.1.2 Reflex

Reflex is a system that is controlled at the spinal cord. A curling reflex, oly exists

for infants, and allows the fingers to curl when the inner surface of palm is touched A

releasing reflex reaction occurs when a intolerable aount of stimulus is applied to

the skin. A releasing reflex is useful for both avoiding te pysical damage of the hand

and to learn the limit of its capability. A curling reflex is important at the learning

stage, but it can be eliminated eventually. Based on these ideas a, ery simple reflex
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system is implemented using force sensing resistor(FSR,) sensory feedback. When an

FSR, senses a signal higher than its threshold resistance, the joints are commanded

in a way that the finger moves in te opposite direction from where the stimulus is

applied. The normal command sent to motors are overwritten by te reflex signals.

If the inner skin is weakly stimulated, all the fingers are commanded to curl until the

sensor reading reaches 30. This pressure is not strong enough to hold an object, but

it simulates babies' reflex systems. This curling reflex initiates the learning process

described i the next section.

4,2 High Level Neural Networks

Due to the lack of visual and auditory feedback, only te primitive learning processes

that occur locally for the hand are considered in tis thesis. For infants, different

learning processes occur interactively ad simultaneously. For example, think of a

situation where an infant tries to lift an object off the ground, grasping, lifting the

hand, and failing to lift up the object. From visual feedback, the infant recognizes

that the object has slipped off the hand. By repeating this process, they learn to

connect te visual "slip" with their sensory information. Adults can apply the right

amount of force to hold an ob ect by apply-ing enough y not excessive force to an

object without slipping. This operation is possible due to repeated practice at the

initial grasping learning stage. Simultaneously, when the infant touches and drops the

object, joint proprioceptors and exteroceptors on the skin react in a certain way. After

some repetitions, te infants connect the relationship of sensory information with

objects' hardness, texture and weight. All those separate learning processes merge to

create our consistent stable manipulation skills. For tis thesis I implemented three

learning processes separately, each utilizing neural networks sing different strategies.

First object hardness recognition learning is conducted sing a, competitive learning

strategy. Second, a three layered backpropagation a1goritlim is used to train the shear
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detection. By applying those two trained networks, the optimal grasping action is

searched by a reinforcement learning strategy (that, is somewhat similar to Qearning

technique) 

4.2.1 Hardness Recognition Network

Theory of Competitive Learning

Topologically, there is substantial evidence for the spatial self-organization of brain

areas that contain sensory or motor maps [8]. For some stimuli, there is some form of

competition between activities of neurons on the neural surface. The idea of compet-

itive learning was originally proposed by Rosenblatt 29], and implemented by any

[17] successfully. Competitive learning contains lateral feedback, which depends on

the lateral distance from the point of its application. From biological inspiration,

lateral feedback is described by a Mexican hat functions show i Figure 44. A short

% I20)U

io -

)o -

io

0

.1 I I I I I

15

1 0

5

-Du - --6 -4 -2 0 2 4 6

Figure 44: The Mexican hat function of competitive learning lateral connections.

range lateral feedback has an excitatory effect and a penumbra, lateral feedback has

an inhibitory effect. The output signal of neuron t', yi, at time step n I can be

III
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expressed in a following difference equation:

P K

Mn + ) V1(J: ZV-'X'+,3 1: CIOZ+k (77)), fo r 1 2 .... N (4.5)
k=-K

where �b(f) is some nonlinear fnction to ensure -,?ji 0, wi is the synaptic weight of

th feedforward connection, p is te umber of input terminals, x is the 'th input

signal, is the feedback factor that controls te rate of convergence of te relaxation

process, K is the radius of the lateral interaction, Cik is the lateral feedback weight

connected to neuron 1, and N is te number of neurons i te network.

Application

Utilizing competitive learning theory, the hardness of objects can be categorized over

time. The experiment is conducted with eight different objects of same size and

different compressibilities. Each oject is touched by curling one finger around the

object very slowly. Precisely taking three seconds to fold fingers fully, hold for two

seconds, and straighten te finger taking three seconds. The sensory readings are

taken from oth force sensors on the finger ad te potentiometer reading of the motor

controlling te finger which are converted to an eight bit digital iformation. The

program is written in 6811 in a way that the readings are recorded every 014 seconds.

The raw data extracted from a finger is shown in Figure 45. The potentiometer

reading, p(t), indicates the position of the finger. The derivative of p(t) has three

distinct characteristics.

C, Ci - constant 0

M -C2(t - tI) + C3 (4.6)
dt

0

As the finger curls, the motor moves at te constant rate when the finger does not

contact, the object surface. At tis stage, dp(t)ldt is a, non zero constant. When
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raw data from force sensor raw data from potentimeter
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Figure 45: Hardness recognition raw data, extracted from a meduim hardness object
during the finger folding stage.

the object is firmly grasped, the finger stops curling and results in p(t)ldt --+ 0.

The significant difference between different hardness object can e seen in the stage

where dp,t)ldt is not constant. Tis stage signifies that the object and te finger

are in contact, but the object's compliancy is letting the finger continue to move.

Objects have a constant compliance factor, C2, which is proportional to the hardness

of the object. The comparison of to objects with different hardness are shown in

Figure 46. It seems as if the hardness of objects can be categorized using only this

information. However, repeated experiments with the fger sows some unexpected

results hich may not be relevant to humans ecause of our superior tactile sensory

system. Due to the nature of the force sensors, they are not cpable of sensing a force

smaller than 20 granis. When a, very spongy object is grasped, the sensor cannot

detect the contact until the object, is squashed enough to give some force back to the

finger. Therefore, a very spongy object gives a, similar response as a hard object.

One sensory difference i those two ojects is te force reading when the object is

completely compressed ad held. Since the spongy object has the resistance force

orthogonal to the finger surface, the force reading is much higher than for the harder

object. These aalysis show why both potentiometer and force sensor information

M
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dp(t)/dt for a soft object dp(t)/dt for a hard object

time(second)

Figure 46: dt comparison for soft ad hard ojects.

are crucial in distinguishing the oject ardness.

Experimental Results

For each curling experiment, two numbers are extracted and recorded. The first is

the duration of dp(t)Idt non cnstant time, At. It is expressed in digital units where

one unit is 014 seconds. The other is the maximum force sensor reading expressed

in a, seven bit digital number. Eight it information is shifted one to the right to

eliminate small noise. Eight different objects are tested ten times each and the results

are plotted in Figure 47. Using tose data, as inputs, a 2 layer, neuron competitive

network is constructed with random initial synaptic weights and trained. Figure 4-

8 shows the trained neurons over the input map as hey get trained. Since this is

unsupervised learning, the iitial randomness can confuse the neurons to categorize

somewhat different from what was intended when the training session is too short or

the learning rate is too high(a confused neuron is shown in Figure 49). Een with

bad initial random weights, such as the one causing the confused neuron, the result

converges after 500 epochs. Once te network is trained, different iputs can be fed

to the network to find the category of the touched object. This strategy works well

for this purpose since there is no clear cut wa,,; to categorize ojects. The trained
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Competitive Learning input data
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Figure 47: Competitive learning input data.

network was tested with data taken from objects not used for training and shown in

Figure 410. With very diverse test objects, the sensory readings fell closely to the

trained neurons. Initially training te network ith six diverse hardness categories

gives a, good distribution of graspable objects. Even if an object witL dramatically

different compliancy is found, it only takes roughly 10 experiments to take data and

500 epochs to retrain, all of which takes less tan one minute to do.

4.2.2 Shear Detection Network

Theory of Back-Propagation Algorithm

The back-propagation algorithm is te most popular application of multilayer percep-

trons for supervised learning. The process consists of a, forward pass and a, backward

pass with kown desired output signals d(n) where n is the instance of the number

of training. The inputs is applied to the forward pass etwork and fed through layer

by layer. The net nternal activity level v ) n) for neuron i in layer I isi

p �1-1)
v � ) n) - E w (9 n) yI 13 , 3 (n)

,7=0

(4.7)

IV'
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where wO(n) is te synaptic weight, of neuron i in the layer I that is fed from neuron

3 y J (n is the fnction signal of neuroiin la er I - t at iteration 77, and in the

layer I - 1. At the output of each neuron in all the layers there is nonlinear smoothing

function a sigmoid,

(n) (4.8)
+

to make the function differentiable. At the output layer, L, the set of outputs is

compared to the desired value giving a error signal,

(4.9)

which is propagated backward layer by layer against the direction of synaptic con-

nections adjusting te synaptic weights in the following manner:

tt)�O(n + zvY)(n) + a(ttl n + (4-.10)�3 13 13 1. I I 3

where is the learning rate a is the momentum constant, and the local gradient, 

is

L) Y (4

(5�') (77) +1)k k (4.12)

The algorithm is to iterate these omputations until the etwork stablizes within. the

bounds of targeted error.

Application

Visually, it is obvious when an object slips from a. hand. rom repeated shear expe-

rience, the relationship between the sensory information on the fingers ad the result

develops for infants. Shear is locally detectable sensory information if there exist
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multiple rows of pressure sensors perpendicular to the direction of slip. With the way

the robot and for this research is oriented, the palm is perpendicular to the ground

and fingers are horizontal, which akes the three fgers orthogonal to te direction

of slip. I order to simulate the shear learning process, sensory data from the fingers

are used as inputs ad the visual feedback about the existence of sear is used as

the desired output to train a feedforward network. Since shear is a time dependent

process, the input signals have to contain multiple time space sensor readings. Te

size of the input signal vector is defined as

(rozv co/) (tf I Mf (4.13)

where t is the number of discrete time steps, f is the number of finger sensors used

and M i S the number of sensory reading levels. This size needs to be inimized in

order to speed up the learning operation. Straight out of te microcontroller, tere

are m -- 2 7sensory reading levels. Obviously seen from equation 41,3, it ill take all

day to just feed forward an input of this size. Also for a noisy environment, this is

not an optimal implementation. As a solution, m is reduced to two numbers, and ,

as the maximum and te minimum inputs. Back-propagation classifier can generalize

the numbers between maximum and minimum well with an optimal number of layers

and without overtraining. When the data, is overtrained, the inputs are overfitted and

cannot adapt the values between 4 and 1. Reducing r to two still contains enough

information conserving the physics of shear and makes the calculation much simpler

and faster. Since slipping is not a, reversible operation ithout a eternal force

applied, recording two discrete time steps with an optimal step size is satisfactory' If

the step is too small, most of te calculation will be wasted detecting o changes in

the readings. However, if the step is too large, the sear ill not be detected quickly

enough. To calculate the aximum speed of ob ect slipping, assuming no friction,

in --- -- -�i - - --
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the equation

t2
X - X = Vot + -a (4.14)

2

can be used. Since vo = time it takes for a point of an object to slip from one

finger to the other is 006 seconds. Therefore a, step size of 028 seconds is chosen.

With those assumptions, the input vector has the size of 6, 64). hen the columns

of the vector are examined, there are 10 columns of iputs that are not realistic or

are ambiguous so the size can be reduced even more to 6, 54). Te desired output

data is oe bit information I eing sear detected ad being no shear.

Experimental Results

Having six input nodes ad one output neuron, a, four layer with two hidde lyer

feedforward network is constructed. Because of te simplification made for the sensory

inputs, by rounding up the data. and reducing the i77, to smaller numbers as following,

81 - 127 ---+ 5

61 80 -- 4

41 - 60 -- 3
(4.15)

21 - 40 --- 2

2 -- I

0 -- * 0

a four layer network was found most optimal for te generalization to occur well. The

inputs a-re taken from the sensors o the three fingers as the fingers curled around the

given object, a. paper cup. Since the hardware is not ready to run the and completely

autonomously, some external force as applied to reach the grasping figure. Wen

slip is not, detected the computer is given a, default signal which signifies the non-

slip stage. When it is detected, a I is manually typed i through the serial port as a,

visual fedback signal overwriting the default input. Again, since the visual system
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nctu7ork learning rate

2 neuron hidden layer network 1.58

6 neuron hidden layer etwork 1.01

15 neuron hidden ayer netowork 0.65

Table 41: Te optimal learning rate for each etwork.

is not at te stage where it can cooperate with the hand, the experimenter has input

the signal when the visually obvious slip is detected. After eough cases of slip were

introduced, all the sensory data as recorded and the etwork was trained separately

from the hardware. Eventually I ould like to trai te network oil line, but without

having the real isual feedback, manual labor is overwhelming. To record one set of

input vector to run one epoch, about 50 different slips are manually inputed. And

to train the etworks, at least, 500 epochs are required. I the training session, the

number of hidden layer neurons and the learning rate ere varied to find the optimal

back-propagated networks. The number of eurons in the first hidden layer was fixed

to 6 to atch the umber of input nodes. Te number of neurons in the second

hidden layer is deviated to 2 6 and 15 eurons. Setting the desired sum-squared

network error,
t

E (n) 6' (n) (4. t 6)
2 i C C

to 0006 1 ave trained the networks with different learning rates. If the desired

error was not reached within 500 epochs, the training as stopped. The results are

graphed and shown in Figure 4 1, Figure 412 and Figure 413. Since the iitial

random weights give different, sum-squared error initially, comparing the speed of

convergence etween different networks is not relevant. Ituitively, all the networks

converges faster when the learning rate is increased. However, as soon as the learning

rate exceeds the fastest convergent point, the systems never converge and seem to get

stuck in a local minimal at E(n) t9.00. The optimal learning rate for each network

is shown in Table 4. Even if te system converges at the end, the error does ot

stabl.y, decrease when the learning rate is igher. This makes te system unreliable

IV
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Input Diffcrcncc h'? Outpid
5 yes 0.9863
4 yes 0.9863
3 yes 0.9861,
2 yes 0.9905
1 yes 0.9903
0 no 0.0007
-1 110 0.0002
-2 no 0.0003
-3 no 0.0003
-4 no 0.0003
-5 110 0.00

Table 42: Trained slip detection etwork output with testing inputs.

I 
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since depending on the inputs, te system has a possibility of finding a local minima

and ever converging. Even though this problem may be solved when it is run on line

with some noticable noise which can disturb away from local minima, it does make

the system more reliable picking a, good middle ground learning rate. As far as the

number of hidden neurons are concerned, the calculation time icreases significantly

as more neurons are added. ve tough te network ontaining larger idden layers

can take higher learning rate stably, if each epoch takes longer to calculate, the

advantage is diminished. For this specific experiment, six hidden neurons for both

hidden layers and having 1.0 learning rate seems to be the most optimal solution,

though tis may change as te sstem is trained o line i the future. Aerage

outputs of a trained network taken uder many operations containing slips are shown

in Table 42, where input difference is the ost significant sensor reading difference

between to readings. The output is well categorized even for the inputs that are not

used for training such as I to 4.

In
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4.2.3 Grasping Action Network

Theory of Reinforcement Learning

Reinforcement learning is based on a common sense idea, that if an action is fol-

lowed by a, satisfactory state of affairs, then the tendency to produce that action is

strengthened[33]. This idea was initially studied in psychology y Pavlov in learning

work with animals. In neural networks, the studies are focused on actor-criti-c learning

algorithm or Qearning, both based oil te temporal difference method[33 3, 37].

An actor-critic system has two subsystems oe is a evaluation network which esti-

mates the long term utility for each state and the other is a, olic3i network which learn

to choose the optimal action in each state. A Qearning system maintains estimates

of utilities of all state-action pairs and utilizes them to select a suitable action. The

object of Qearning is to estimate a, real-valued function, Q, of states and actions

where Q(x, a) is the expected discounted sum of fture reward for performing action

a in state x and performing optimally thereafter. This relationship can be expressed

as:

Q(Xn� an) E fr, + y,i1Jax(Q(x-,,+1,.y') I (4.17)

where r, is an immediate reward at step n, -� is a, discount factor, < < and 

is te next state. The estimation of Q, Q,,t is pdated at each time step,

Qest(Xn a Q6St(,,ni 71

n) + 3n(r1fl + -�A-1ax(QCSt(Xn+1-.Y)) QeSt(Xn a)) (4-18)

where �,, is a gain sequence, and all the estimation is maintained within the fnction.

A gain sequence as a characteristic such that < 3P < 1 o a d

J:" 1,t < xD. Q-tearning has been proven to con-verge at all tinie[35].
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Grasping Action Network
r- - - - - - - - - -.

Set of

action

World

Figure 4-t4: Grasping Action Network block diagram

Application

The Qearning algorithm assumes that te system can observe an input vector at

nth iteration, XI,,, action chosen at Stochastic Action Selector at, nth eteration, a,,,,,

reinforcement value� rn� and the next input vector, x+,, at each time step. However,

since grasping is a one ay operation(meaning open --4 close, not open ++ close), x,+,

cannot be seen at the end of the iteration, n. Moreover� Xn is already analyzed and

categorized using competitive learning networks. Implementing with a connectionist.

idea, internal self reinforcement system was built using to components as shown

in Figure 414. The first system is a Reinforced Probability Net, RPN wich takes

the classified information, H(x), from hardness recognition network and a, set of

actions A a,, a2, ... , az I a( a set of actuator inputs of jth actionj. It outputs

an action merit vector, 114'(A), that, assigns a value to each action. The second system

is Stochastic Action Selector that takes I(A) and selects an action and sends the
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information to the actuators. According to the action given, the shear detection

network gives an output which can be converted to an immediate payoff value, r.

RPN is reinforced using TD methods, back-propagating a reinforced correction vector,

RC(n). The simplified algorithm is as follows:

1. H(x) �-- current hardness class; for each action a('), 11(a(')) +- RPN(H(x), a('));

2 a - A,5(!IJ(A));

3. Perform action a;

4. Send new sensory iformation to hardness recognition etwork and shear de-

tection network; (H(x),,5(x)) -- new hardness class and sear value;

5 r = -2S(x) + 1;

6. RC = M(A) + (�r) were is a, damping constant.

7. Adjust the RPN by back-propagating R.C;

8. Go to ;

There are two ways of implementing RPN. Classified RPN is shown in Figure 4-

15. There are only two layers in the etwork with an additional euron selector af

the output. This allows the il,,I(A) to onverge faster for each class, though when a

new hardness category is added, it has to relearn y adding unattached neurons ito

the network and start from a, scratch. The other implementation is Mutiple Layer

RPN which uses more hidden lavers and feed H(x) with the action vector as shown in

Figure 416. For this system, only snaptic weight adjustment is made for the existing

neurons. Tis method varies in the time of retraining depending on the newly ven1.1�

ob'ect. For this experiment, te classified RPN is cosen to se de to the calculation

speed and limited oject hardness categories.
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Figure 4-t5: Classified RPN(Back-propagated on the solid lines)
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Figure 416: Multiple hidden layer RPN
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Experimental Results

Six set classified RPN as been constructed with six categories from the hardness

recognition network. Since each set gives a, similar training result, oly one class,

H(x = 3 is shown in tis section. The set of actions has een determined to have

eight cases of grasping potential positions. The initial ,-eights are set in a way that

each action has equal probability of being chosen at the beginning. It is a timely

operation since, as mentioned efore, the hardware is not, functional enough to operate

autonomously, when the grasping action signal is received, external force needs to e

applied to achieve the grasping position and the slip is detected ad input b the

experimenter. For the Classified RPN method, the number of epochs can be quite

small to achieve an optimally trained network. There are two variable constants,

learning rate and damping constant, to change to achieNTe different ways of training

the network. The learning graphs with different constant values in a sort period of

training are plotted in Figure 417 ad the longevity taining results a-re shown in

Figure 418. A'hen is too small, the network never get trained as desired because

the system is not reinforced strongly enough. Though as long as is large, does

not need to e large to learn quickly and correctly. Wben both and are too large,

the system falls into a local minimum ad does ot converge. The advantage of this

system is that once the networks are trained within te desired square-sum errors, as

long as the damping constant and learning rate are optimally small, the system can

adapt to ay new objects that are to e grasped. To simulate the trained network,

the action chosen was output to a, computer monitor through a, serial port so that

some external force can e applied to achieve the desired action. For a, well trained

network, 15 iterations were conducted ad it hose one ctio tat can achieve the

stable grasp every time as shown in Tble 43. If multiple actions can accomplish the

grasp desired, the output actions are equally divided among them.
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O
/onc usions

5.1 Review of Thesis

For this thesis, a, self-contained anthropomorphic scaled non-task driven tool which

learns its on cognitive and physical ehavior is constructed. The physical challenge

was minimizing size and iveight of the and which has enough strength and precision

to anipulate objects. Commercially available actuators and sensors a-re chosen, and

motor and sensor controllers are designed and constructed. The controller boards are

mounted on the dorsum, controlling all te motors and sensors of the hand. I/Vhen

the whole system was integrated, te overall weight of the hand was less tha 19

pounds. The arm wich is under construction, is capa.ble of exerting about three

pound torque at the tip of the and, without te weight of hand, resulting in one

pound maximum load torque.

The cognitive challenge is more complex ecause the problem itself is not well-

stated. With or existing technology ad iological facts, -�Ter3T limited implementa,-

tion was made. Utilizing our knowledge of nervous system organization, low level

operation is executed locally at an MC6811 controller, which simulates the spinal

cord. It contains a, feedback controller which stablizes ad minimizes the error of

finger positions, and a reflex system for the fingers. Te higher level learning schema.

83
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is designed, trained ad tested on MATLAB and later will be implemented on an

MC68332 controller for autonomy. It learns to distinguish object, hardness using a

competitive learning strategy, learns to detect shear using backpropagation algorithm,

and learned overall simple grasping using reinforcement learning. All the strategies

used are defined with the ispiration of human neural system and human response

to given stimuli, but the implementation of them is not, necessarily a direct model.

This stem simulates te surface level learning strategy shown i infants, but may

not coincide with human's actual learning process.

5.2 The Future

5.2.1 Physical'Work

By building a system, many improvements that can be made are realized.

STRUCTURE: The whole structure of hand can be made een smaller. The pieces

are made larger than absolutely necessary for building simplicity. When a, part

is smaller, the error ratio becomes higher for te same error caused in machining.

The diameter of fingers can be cut in half if the pulleys can be machined to fit

the eed. Motors can be organized as shown in Figure 5-1 so that the size of

the palm can be also minimized. For ore compliancy, spring loaded joints for

proximal joints could be considered to give another degree of freedom of an axis

perpendicular to the existing rotation at a, proximal joint. The A�Teight can be

minimized significantly if the number of screws are reduced by building more

complicated parts instead of bolting two simple pieces together using screws.

SENSORS: Tactile sensor technology needs to leap a, big step. Sensors need to be

aligned at te slicon level, giving a high resolution array of force sensors. The

fundamental idea of wires and connectors eeds to be improved or canged to

adopt a tactile stem that can be integrated in a, human form.

III
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Figure 5-1 A diagram of motor alignment improvement.

COMPUTING: If the motor controller and sensor interface boards design does

not require y change, it may be implemented on a chip containing all the

capabilities needed. This sould significantly reduce the size and -Weight of the

system. Eventually this should be mounted in te spine.

The hand will be soon interfaced with the arm, connecting to the whole body.

With arm manipulation capability and the existence of visual and auditory feedback,

a door will be opened for uilding a, more complex system that triggers many new

constraints and limitations.

Biology has its own amazing system which allows organisms to live and fnction.

It is the duty of scientists to attempt to decode the organic system for a deeper

understanding of nature.

5.2.2 Cognitive AVork

Neural networks have allowed scientists to take a, ig step in being adaptive and

flexible to the environment, which is rapidly canging nd is fll of noise. However,

all the learning theories that are implementable today unfortunately contain many

assumptions that my not be true in te real world. For example, the)T all assume a
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perfect Markov decision world; the complete set of state iformation can e accessed

by the agent any time.

Human cognition is still a, black box that neuroscientists, philosophers, computer

scientists and many more are required to keep tackling and investigating. As a tiny

step, the attempt to understand the infants manipulation learning by implementating

a physical hand was described in tis tesis. Babies may not use a learning mechanism

close to what is described, but when the whole body is integrated, we may discover a,

phenomena that could not be obvious before. Stud�ring infants learning system seems

to be a suitable starting point since te development of cognition is initiated by the

social interactions and learning that occurs during ifancy. To get a closer look at

cognition itself, a much simpler physical system with inimal cognitive assumptions

may need to be build to tackle even lower level cognitive problems.

Afterall, the project to understand human cognition has just started.
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