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Chapter 1

Introduction

In this chapter I de�ne the problem of optimization, explain the problems usually associated

with optimization, establish criteria for success for optimization algorithms, and introduce

several key heuristic ideas.

The goal of optimization is, given a system, to �nd the setting of its parameters that

yields optimal performance. The performance measure is given as an objective function.

The cases where the parameter space can be searched exhaustively or the objective func-

tion can be subjected to analytical methods are not considered in this thesis. Thus, it is

assumed that the only source of information available to an optimization algorithm is the

evaluation of the objective function at a limited number of selected points as in Figure 1-1.

What makes global optimization a challenging problem are the potential existence of

many local maxima, a high number of dimensions, uncooperative twists and turns in the

search space, and an objective function that is costly to compute. For a general introduction

to computational methods in optimization see [Polak, 1971], or [Dennis and Schnabel, 1983].

The work described in this thesis started with explorations with genetic-algorithms. Typ-

ical programs based on the genetic-algorithm idea su�er not only from all of the problems

that generally plague attempts at global optimization, but also from problems that are spe-

ci�c to the use of populations subject to survival pressures.

In particular, local optima attract populations like magnets. The right way to maintain
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Figure 1-1: The �rst �gure shows a typical objective function. The second shows the

information available to the optimization algorithm.

diversity is not clear. Most proposed solutions end up modifying the objective function,

which can result in the total loss of the global optimum [Winston, 1992], or are speci�c to

the particular problem at hand and di�cult to generalize [Hillis, 1990].

Also, the large number of individuals involved in the typical genetic program results

in a large number of function evaluations. Especially in problems with a high number of

parameters, this considerably slows the genetic algorithm down.

The search for a systematic approach to these problems and experiments with nu-

merous algorithms [Yuret, 1992, Yuret and de la Maza, 1993, de la Maza and Yuret, 1994]

�nally led to the following three key heuristics:

� Remember the locations of local maxima and restart the optimization program at a

place distant from previously located local maxima.

� Adjust the size of probing steps to suit the local nature of the terrain, shrinking when

probes do poorly and growing when probes do well.

� Keep track of the directions of recent successes, so as to probe preferentially in the

direction of most rapid ascent.

None of these three heuristics is new, and none of them are speci�c to optimization.

Nevertheless, the combination leads to a powerful optimization method. The generality of
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the ideas ensures the algorithm's adaptability to a wide range of problems. This is justi�ed

by the empirical evidence on several real-world problems, where the method outperformed

well established algorithms such as Powell's method and simulated annealing.

The next three chapters take each of these key ideas in turn, and analyze their contribu-

tion to the overall picture. This is followed by test results and analysis of related work on

several problems. The last chapter concludes with a summary of the thesis and discussion

of future work. Sample code is provided in the appendix.
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Chapter 2

Using the local maxima

This chapter will explain the application of the �rst key idea as a solution to the local

maxima problem:

� Remember the locations of local maxima and restart the optimization program at a

place distant from previously located local maxima.

I will argue that the locations of the local maxima discovered so far can be used to guide

further search in the space. The �rst section will introduce the problem of local maxima, and

describe the initial attempts to solve it. The second section is a discussion on the optimum

population size and the possible implementation on parallel computers. The third section

will explain how to use the local maxima, and introduce the top level procedure for our

method. The fourth section presents several solutions to the problem of �nding points with

high diversity. Finally the �fth section will conclude the chapter by a discussion of two other

approaches inspired by natural phenomena, Hillis's idea of \co-evolving parasites", and the

simulated annealing algorithm.

2.1 The problem of local maxima

Local maxima are a major problem not just for genetic algorithms, but any optimization

technique that sets out to �nd the global optimum. A genetic algorithm works nicely in
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Figure 2-1: The discovery of the local maxima at A and C result in a modi�cation of the

objective function such that the global maximum at B is no longer visible.

the exploration stage, with each of the individuals discovering pieces of the solution and

combining them together. However when a locally optimal point is achieved by a particular

individual, it manages to hold the lead for a number of iterations and all individuals start

looking alike. The leader survives through generations, and contributes in many crossovers,

distributing its genes to every other candidate. The distant explorers are outperformed and

gradually eliminated. Finally, progress comes to a halt when diversity ceases to exist.

The initial approach taken for this research was making diversity a part of the �tness

function [Winston, 1992, Yuret, 1992]. This works by populating the local maxima in order

to avoid them. When diversity is part of the �tness function, the individuals that are close

to an already populated local maxima are punished, and distant explorers are rewarded.

There are several di�culties with this approach. First, it is not clear how to combine �tness

with diversity, and experiments [Yuret, 1992] suggest that an implementation good for one

particular problem has di�culty with another. Second, as the number of discovered local

maxima increases, the size of the population has to increase also. Otherwise the population

\forgets" some of the local maxima and new generations keep falling into the old traps.

Finally, as with any method that permanently modi�es the objective function, there is the

danger of covering the actual global optimum, and making it impossible to �nd. An example

is given in Figure 2-1. An optimization algorithm should never lose the possibility of �nding

the global optimum.
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The problem of forgetting the local maxima is particularly interesting. It suggests a

dynamic population size that grows as more local maxima are discovered. However, this will

reduce e�ciency because simulating each generation will become more expensive. The next

section presents a way to get around this problem. The section after next will illustrate how

to use local maxima without modifying the evaluation function.

2.2 Parallel vs serial

\Mutation is a sideshow in nature and a sideshow in genetic algorithms. I usually
keep it turned o�."

John Koza, author of \Genetic Programming"

Using a large number of individuals in a genetic algorithm results in a large number of

function evaluations. A small number of individuals cannot keep track of the positions of

previously discovered local maxima. Thus new generations keep falling into the same traps.

If a particular individual is stuck at a local maximum, then one option is freezing it, and

removing it from the reproductive cycle. This way, the algorithm can keep the size of the

population in the reproductive cycle, thus the number of function evaluations, manageable.

This scheme was analyzed in previous work [Yuret and de la Maza, 1993]. The population

is separated into two groups; young and old. The size of the young population, which

contribute to reproduction, is held constant. Individuals that survive more than a maximum

number of generations are moved into the old population. This makes it likely that the old

are at local maxima. This way, the old population can grow and record an arbitrary number

of local maxima while the number of function evaluations per generation is held constant.

Next comes the question of the ideal size for the young population. Having a large number

has several advantages. But none of these advantages is enough to o�set the need for a large

number of function evaluations. In particular, it is claimed that di�erent groups in the

population can optimize di�erent parts of the gene, thereby solving di�erent subproblems.

Then, the results can be combined into a single individual via crossover. First, this presumes

that the representation for the gene separates di�erent pieces of the problem into di�erent

dimensions. In other words, the evaluation function needs to be additively separable, which
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is typically not the case in most numerical optimization problems. Furthermore, crossover

would be an advantage if these groups were searching the space in parallel. However on a

serial computer, solving a separable problem via crossover takes just as much time as solving

one subproblem �rst, and then solving the other. Note that no crossover is necessary in the

serial scheme. A favorable trait is immediately spread to all the individuals, so the individual

that solves the next subproblem will actually include the solution to both subproblems.

In this thesis, I will present an algorithm that has only one active individual. Experiments

suggest that, with an intelligent mutation scheme, this method is more e�cient than using

multiple individuals. The local maxima will be kept on a separate list, and the knowledge of

their location will be used to guide the search. On a parallel computer, every processor can

keep track of a separate individual searching a di�erent region in space. The information they

provide on the locations of local maxima can be combined and used to redirect individuals

who get stuck. Thus the algorithm naturally accepts a parallel implementation. One might

choose to focus the search into regions far away from previously discovered local maxima, or

concentrate it in a region where the local maxima are most dense. In the next section I will

explore the former strategy. However, there can be no one single strategy that will work well

on all problems. A combination of di�erent strategies can be the most e�ective solution.

2.3 How to use the local maxima

There is no way to avoid local maxima (after all, among them we may �nd the global one we

are looking for). Thus the optimization algorithm should make use of the information gained

by the ones discovered. The main objective of adding diversity to the evaluation function,

or modifying it, is to mark the discovered local maxima and avoid them. Doing this directly,

without modi�cations to the objective function, gives better results.

There are several di�erent ways to use the positions of local maxima. The algorithm

can keep them for use in future cross-overs. This will give good results in problems where

combining several good solutions leads to a better solution. However as the number of local
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Optimize(f)

1 X  f ~xmin; ~xmaxg

2 ~x Distant-Point(X)

3 X  X [ Local-Optimize(f; ~x)
4 goto 2

Procedure 2-1: The top level loop of the optimization. f is the objective function, ~x is
the starting point, X is the set of discovered local maxima. It is initialized to contain the
borders of the search space.

maxima increases, this results in a high number of function evaluations. Alternatively, the

algorithm can just use the locations of local maxima to avoid getting trapped in them again.

A simple approach would be to take a random step when stuck at a local maximum, much

like simulated annealing. Then one can hope that the search will evolve into a di�erent

region of the space instead of converging back to the same point. This has the advantage of

staying around good solutions. However, it is not clear how far to jump when stuck. This

approach also has the disadvantage of ignoring all but the last one of the local maxima. The

method I will describe in this section uses the locations of all local maxima in order to keep

away from them. This can be achieved by recording the local maxima as they are discovered,

and directing the search to unexplored regions of the space. This suggests Procedure 2-1.

Local-Optimize can be any popular optimization procedure that will converge to local

Figure 2-2: The idea of iterative deepening: The algorithm has a reasonable solution

whenever the user wants to terminate. When there is more time available, it keeps exploring

the space in ever increasing detail.

17



maxima. One such procedure is the subject of the next few chapters. Distant-Point

selects a new point in an unexplored region of the space using the local maxima discovered

so far that are stored in X. How this can be done e�ciently is the topic of the next section.

Note that this algorithm does not modify the evaluation function in any way. It just

restarts the search in unexplored regions of the space. Figure 2-2 shows how this results in

a uniform exploration of the search space.

There is one more little mystery in the algorithm. The loop between lines 2 and 4 never

terminates. This is reminiscent of the idea of iterative deepening in computer chess literature.

Contemporary chess programs are designed in such a way that they keep searching until the

time is up. Thus, they always have to have a reasonable move ready from what they have

discovered so far. Global optimization, like chess, is a problem of searching a very large

space. Thus one can never be sure of the answer until the whole space is exhausted. This

is practically impossible in many cases. A good search algorithm should save the reasonable

solutions it has found, and keep searching for better ones as time permits.

2.4 How to �nd distant points

In the previous section I basically stated the objective of the procedure Distant-Point.

More precisely, given a number of points in a bounded space, Distant-Point should �nd

a new point that has the maximum distance to its nearest neighbor. The known algorithms

tend to explode in high dimensional spaces. One of the motives behind the method proposed

in this thesis is being scalable to problems with high number of dimensions. Thus a simple

algorithm which has linear cost is proposed. Another approach is to choose a few random

points and pick the best one in diversity as the new starting point. It is shown that in very

high number of dimensions, the distance of a random point to its nearest neighbor is very

likely to be close to the maximum.

The problem is related to the nearest neighbor problem [Teng, 1994]. Thus it is no

surprise that Voronoi diagrams which are generally used in �nding nearest neighbors are
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also the key in solving the distant point problem. Figure 2-3 illustrates the basic principle

in two dimensions.

A Voronoi diagram consists of convex regions that enclose every given point. Each convex

region is the set of points that are closest to the given point in that region. Thus the distant

point has to lie on one of the borders. More speci�cally it will be on one of the corners of

the convex Voronoi regions. So a procedure that gives provably correct results, is to check

all corners exhaustively, and report the one that maximizes distance to its nearest neighbor.

However the number of corners in a Voronoi diagram increase very rapidly with the number

of dimensions. Thus this procedure is impractical if the number of dimensions exceed a few.

To cope with high dimensional spaces a more e�cient approximation algorithm is nec-

essary. Figure 2-4 demonstrates a solution in one dimension. Each time a new point is

required, the algorithm �nds the largest interval between the existing points. It then returns

a random point within that interval. A simple extension of this to high number of dimensions

is to repeat the same process independently for each dimension and construct the new point

from the values obtained. Although this scheme does not give the optimum answer, it is

observed to produce solutions that are su�ciently distant from remembered local maxima.

Procedure 2-2 is the pseudo-code for this algorithm.

Another option is to choose the new points randomly. Analysis shows that in a very high

dimensional space, the distance of a randomly selected point to its nearest neighbor will be

a b

c d

Figure 2-3: Voronoi diagrams: Each region consists of points that are closest to the point

inside that region.
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Figure 2-4: Execution of the distant point algorithm in one dimension. First the largest

interval between the existing points is found, then a random point within that interval is

returned.

Distant-Point(X)

1 ~x ~0
2 for each dimension d

3 Sort ~xi 2 X s.t. 8i ~xi�1[d] � ~xi[d]
4 Find ~xj 2 X s.t. 8i (~xj[d]� ~xj�1[d]) � (~xi[d]� ~xi�1[d])
5 ~x[d] Random( ~xj�1[d]; ~xj[d])

6 return ~x

Procedure 2-2: The distant point algorithm. ~x[d] is used to represent the d'th component
of the vector ~x. Random(x,y) returns a random value between x and y. Every component of
the new vector is set to a random value within the largest empty interval in that dimension.

close to maximum with very high probability. To simplify the argument, let us assume that

the search space has the shape of a sphere, and that we have found one local maximumat the

center. The question is, how far away a chosen random point will fall. Figure 2-5 compares

the radii of spheres in di�erent number of dimensions with their half sized spheres. Note how

the border of the half sized sphere approaches the large one as the number of dimensions

grow. The probability of a random point falling into a certain region is proportional to the

volume of that region. For example, if a random point is chosen in a ten dimensional space,

there is a 0.5 probability of it falling into the narrow strip between the two spheres. Thus,
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with high probability, it will be away from the center, and close to the border. We can extend

this argument to spaces of di�erent shapes with more local maxima in them. The important

conclusion is that, if a problem has many dimensions, it is not worthwhile to spend much

e�ort to �nd the optimal distant point. A point randomly chosen is likely to be su�ciently

distant.

In the results I present in this thesis, I preferred to use the Distant-Point algorithm

presented in Procedure 2-2 for low dimensional problems. For problems with a high number

of dimensions (e.g. the molecule energy minimization problem with 153 dimensions), I chose

random points instead.

2.5 How does nature do it

There are various other approaches to the problem of local maxima inspired by natural

phenomena. In this section Hillis' co-evolving parasites [Hillis, 1990] inspired by biology,

and the simulated annealing algorithm [Kirkpatrick et al., 1983] inspired by physics, will be

discussed.

Hillis used simulated evolution to study the problem of �nding optimum sorting net-

works. To tackle the local maxima problem he proposed to use co-evolving parasites. In his

implementation, the evolution is not limited to the sorting networks. The sorting problems

also evolve to become more di�cult. This is possibly how nature manages to keep its di-

1D 2D 3D 10D

Figure 2-5: The comparison of spheres and half spheres in di�erent number of dimensions
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versity. The problem facing each species is never constant, the environment keeps changing,

and more importantly the rival species keep adapting. When the predator develops a better

weapon, the prey evolves better defense mechanisms. As a result nature has an adaptive

sequence of problems and solutions. The domain Hillis chose is particularly suitable for this

approach, because it provides many problem instances. However, his method is not appli-

cable in general. For example, if we want to optimize the parameters for the design of an

aircraft, there is nothing corresponding to the multiple problem instances to evolve.

Simulated annealing is one of the popular methods for optimization in spaces with a

lot of local maxima. It allows non-optimal moves in a probabilistic fashion. Many other

algorithms for optimization belong to the class of greedy algorithms [Cormen et al., 1990].

The algorithms in this class always make the choice that looks best at the moment. They

hold on to the best point found so far and never step down when climbing a hill. This is

exactly the reason why greedy algorithms get stuck at local maxima. Simulated annealing,

on the other hand, by not taking the greedy approach, is able to jump out of local maxima.

However, this sacri�ces e�ciency. Probabilistically allowing non-optimal moves does not

seem like the best use of information gained from the search.

There is another interesting aspect to simulated annealing. It uses a schedule of temper-

ature which determines the gradual change in the probability. Optimization starts at a very

\hot" state, in which there is a high probability of making non-optimal moves. It slowly

\cools down" as the optimization proceeds, turning itself into a hill climbing algorithm in the

limit. This results in a gradual shift from a coarse-grained search in the beginning towards

a �ne-grained search in the end. The idea of moving from a coarse-grained to a �ne-grained

search is the key to the following chapter. However, this progression is achieved by decreas-

ing the size of the steps taken in the search space rather than allowing for steps that may

take the evaluation function down like simulated annealing.
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Chapter 3

Changing the scale

This chapter will explain the application of the second key idea as the backbone of the local

optimization algorithm:

� Adjust the size of probing steps to suit the local nature of the terrain, shrinking when

probes do poorly and growing when probes do well.

In the previous chapter we concluded by introducing the idea of moving from a coarse-grained

search to a �ne-grained search. In this chapter I will demonstrate how this can be achieved

by using a schedule of step sizes that start with large moves, then gradually shrink down

to smaller ones. Instead of using a pre-determined schedule, the algorithm will adapt its

own step size to the landscape according to the following principle: Expand when making

progress, shrink when stuck. We will see how this contributes to both the e�ciency and the

robustness of the optimization. The next chapter will illustrate how we can further improve

the e�ciency by adding a small memory of recent moves.

3.1 The local optimizer

Procedure 3-1 is the pseudo-code for the primitive version of Local-Optimize. The pro-

cedure takes steps in random directions. If a step leads to a better point, the step size is

doubled. If the step fails, another one is tried. If too many steps fail in a row, the step size
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Local-Optimize(f; ~x)

1 initialize ~v
2 while j~vj � threshold

3 iter 0

4 while f(~x+ ~v) < f(~x) and iter < maxiter

5 ~v Random-Vector(~v)

6 iter iter+ 1

7 if f(~x+ ~v) < f(~x)

8 ~v ~v=2
9 else

10 ~x ~x+ ~v

11 ~v 2~v
12 return ~x

Procedure 3-1: The primitive local optimize algorithm. ~v is the step vector. Its size grows
or shrinks according to the recent progress made by the algorithm. Random-Vector(~v) is
just a procedure that returns a random vector with the same size as ~v. maxiter determines
how many iterations at each step size before shrinking the vector. threshold is the smallest
step size allowed.

is reduced to half. The best point is returned, when the step size shrinks below a certain

threshold.

With a typical genetic algorithm, it is not easy to tell whether the algorithm has located

an exact maximum. Procedure 2-1 is based on staying away from the local maxima. If

Local-Optimize is not able to give an exact location of a maximum, the search will be

pushed away from that region, and it will be a long time before the algorithm �nds the better

points nearby. Thus Local-Optimize, by ending with a �ne grained search with small step

sizes, aims at locating the maxima precisely.

It is advisable to shrink and expand rapidly when using large steps, and try out more

random directions when about to go below the threshold. This can be achieved by making

maxiter a function of the step size. The algorithm should try more random vectors at

smaller step sizes.

For high dimensional problems, choosing random vectors can be costly and not useful. In
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Figure 3-1: Starting with large steps is helpful for ignoring small local maxima at the initial

stage of the search.

that case the Random-Vector procedure can return vectors in unit directions. This is the

convention I adopted for the results chapter. More precisely, a vector in a unit direction and

its opposite were tried at all step sizes except for the smallest step size, where the algorithm

cycled through all the unit directions.

3.2 Why change the step size

Changing the step size according to recent performance adapts the scale of the search to

the local terrain in the search space. It does not only move from coarse grained search

to �ne grained search, but it is able to re-expand if the function becomes 
atter. There

are many situations in which, adapting step sizes helps the algorithm be more e�cient and

robust. First, by starting with large step sizes, the algorithm is able to ignore the small local

maxima at the initial stage of the search. Secondly, in simple functions, changing the step

size in multiples of 2, leads to logarithmic behavior in the distance to the maximum. This is

standard in typical line-search techniques, however my algorithm does not restrict itself to a

line and adapts its direction { as will be explained in the next chapter { simultaneously with

the step size. By not diving into detailed line minimizations, the algorithm is able to locate

promising regions faster. Finally, a smaller step size may help determine the right direction.

Once a good direction is found, the algorithm can move faster by expanding again.
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Figure 3-1 illustrates the advantage of adapting step sizes in the presence of many local

maxima. Taking di�erent sized steps from A, the algorithm can discover that the function

is decreasing in the immediate neighborhood (1), it is increasing in the medium scale (2), or

that the general direction is down (3). Starting with a coarse scale lets the algorithm ignore

the low level detail of the search space and discover general regions that are promising.

By ignoring the small peaks, the algorithm in e�ect performs gradient ascent on a much

smoothed function. As the scale becomes �ner grained, small step sizes give the exact

location of the peaks.

The number of steps it takes a hill climber to traverse a path, is linear in the length of

the path, if it is using constant step sizes. In contrast, Local-Optimize, by changing the

size of its steps in multiples of 2, requires logarithmic time. For problems where the solution

consists of traveling a certain distance in each dimension, this gives us a simple running time

of:

�(#dimensions� log2(distance))

However, this is not the main advantage. There are several algorithms in the literature

[Dennis and Schnabel, 1983, Polak, 1971] that do better under certain assumptions about

their objective function. Typical numerical optimization algorithms perform a sequence

of line optimizations when faced with high dimensional problems. The advantage of this

algorithm is the fact that it does not perform line optimizations. The best value of a certain

parameter might change with the settings of the other parameters. In the genetic algorithms

literature, this situation is referred to as \epistasis", which means the suppression of the e�ect

of a gene by a nonallelic gene. Mathematically, epistasis corresponds to the class of �tness

functions that are not additively separable. Such functions are common in optimization

problems. Thus, an early convergence of the optimization in order to �nd the exact maximum

on a line may prove useless. Performing a full line-search contradicts with the idea of moving

from coarse grained search to �ne grained search, and starts �ne tuning before the rough

picture is ready.
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Figure 3-2: The probability of success of a random step in two dimensions as a function of

the step size and the distance to the peak. Dashed circles are contour lines, the solid circle

is the potential points the step can take.

3.3 How to discover the right direction

Another common problem of complex search spaces is the existence of ridges. A ridge can be

de�ned as a region of the search space where only a small fraction of the possible directions

lead to a better value. How can a hill climber, with its limited number of steps, be sure

that it has arrived at a peak and is not stuck on top of a ridge? This problem is common to

any search algorithm that uses a �xed set of directions. This section will demonstrate how

adapting step sizes provide an answer to this problem.

Figure 3-2 illustrates the basic principle in two dimensions. The concentric circles to the

left of the �gure are the contour map of the objective function. It is a two-dimensional,

unimodal function. The maximum is at the center. The solid circle represents the step size.

The graph on the right shows the probability that a random step will succeed in moving

upward as a function of the ratio of r1, which is the size of the step, to r2, the distance to

the peak.

The important observation here is that the probability approaches 0.5 as the step size

goes to 0. Intuitively, as the radius gets smaller, the iso-curve starts looking like a straight

line (or a 
at surface in higher dimensions) that cut our circle exactly in half. This is a
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Figure 3-3: How shrinking helps on ridges. The heavy arcs show the points that are better

than the current point. When the radius is smaller, as shown in the blow-up on the right,

this arc gets larger.

general result that holds in any number of dimensions:

� When the step size gets smaller, the probability of a successful step approaches 0.5.

This assumes some smoothness in the objective function. Thus the choice of represen-

tation becomes important. There is a vast amount of work in genetic algorithms literature,

on how to choose the right representations for certain problems. Every optimization algo-

rithm has its ideal representation for a problem. The standard genetic algorithm favors the

representations that make the problem separable, i.e. di�erent parts of the solution can be

discovered independently, and combined together. The method presented here, requires a

representation in which one is able to use steps of various sizes. The larger step sizes should

be more likely to bring about larger changes, and the small ones should locate the exact

location of maxima. In most numerical problems this is natural. In combinatorial problems,

one has to have a way to measure step size, even though the space is not Euclidean. I will

present an example on the traveling salesman problem in the results chapter.

Figure 3-3 shows how adapting step sizes can help the algorithm not get stuck near ridges.

This time the contours have the shape of narrow ellipses. Thus a large step size has a low
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probability of success. However after failing several times, the Local-Optimize starts to

shrink its step size. The blow-up on the right shows how the picture looks when the step size

gets smaller. The sharp edges of the contours look 
atter, so the arc of points with better

values than the current point, approaches a half circle.

Although shrinking down saves the algorithm from getting stuck, it also makes it slower.

In search spaces where the direction of the ridge is changing, the local optimizer has to move

with a lot of small zig-zags. However, augmenting it by adding by adding a small memory of

recent moves that were successful, the performance increases dramatically. This is the topic

of the next chapter.
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Chapter 4

Using the successful moves

This chapter will explain the application of the third key idea as a means of improving

e�ciency:

� Keep track of the directions of recent successes, so as to probe preferentially in the

direction of most rapid ascent.

Last chapter, we introduced the di�culty of traversing narrow ridges in the search space. In

objective functions for which the gradient information is not available, �nding a favorable

direction to move is a hard problem. I propose an adaptive solution, where the algorithm

uses its best guess for the gradient direction, and updates this guess after successful moves.

This approach improves e�ciency substantially|sometimes by an order of magnitude|and

is scalable to high dimensional problems.

4.1 The ridge problem

Figure 4-1 gives a closer look at the ridge problem. Hill climbing algorithms typically take

orthogonal steps, e.g. they might move in one dimension at a time. The objective function

in the �gure has a long, narrow ridge with a tilted axis of symmetry. The optimum direction

of change has components in both dimensions. The arrows show the behavior of a procedure

restricted to use two orthogonal vectors. Unless the ridge is optimally oriented, this procedure

30



Figure 4-1: The ridge problem: The concentric ellipses are the contour map of an objective

function. A hill-climbing algorithm restricted to moves in a single dimension has to go

through many zig-zags to reach the optimum.

is very ine�cient, taking many small steps to get to the maximum. The local optimizer

presented in the previous chapter su�ers from this problem. Although it is not restricted to

orthogonal directions and chooses its steps randomly, without a memory of previous steps,

it is unable to keep the right direction.

Figure 4-2 illustrates the problem with trying to use systematic combinations of the

main directions. In one dimension we only have a +1 direction and a -1 direction. In two

dimensions, in addition to the four main directions, we have 4 more secondary directions

that are combinations of the main ones. In three dimensions the total number goes up to 26.

The step has n components in n dimensions, and each of them can take one of three values,

f-1,1,0g. We subtract away the origin and we have 3n � 1 directions in n dimensions.

dims

1
2
3
4
...
n

2
4
6
8
...
2n n

2
8
26
80
...
3  −1

primary total

Figure 4-2: The number of combinations of main directions increase exponentially with the

number of dimensions.
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4.2 How to walk on ridges

Real evolution �nds the right direction by trying and eliminating many wrong ones. It

is not known to have a memory of the previous changes that were successful. Instead,

many individuals are generated that have particular characteristics in di�erent dimensions.

The individuals that have moved in the wrong direction are simply eliminated. There is an

excessive number of individuals at nature's disposal, and there is nothing wrong with wasting

a few. However, for an optimization algorithm of practical value, every time step is valuable.

Instead of wasting resources by using a large population, I propose gaining e�ciency with a

short term memory.

Note that in Figure 4-1, the right direction to move could be discovered by summing a

few successful steps. This is exactly the approach that will be taken.

Adding up too many vectors, however, is dangerous. In Figure 4-1, things would have

worked �ne, because there is one right direction to go, but for a function like Rosenbrock's

saddle in Figure 4-3, the right direction is constantly changing. Experiments with high

dimensional optimization problems suggest that, the turning ridge problem is a common

one. Thus, the algorithm should be able to adapt itself to the local terrain it is moving

through.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 4-3: Rosenbrock's saddle. The function has a ridge along y = x2 that rises slowly
as it is traversed from (-1, 1) to (1, 1). The arrows show the steps taken by the improved

Local-Optimize. Note how the steps shrink in order to discover a new direction, and grow

to speed up once the direction is established.
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Local-Optimize(f; ~x)

1 initialize ~v; ~u ~0

2 while j~vj � threshold

3 iter 0

4 while f(~x+ ~v) < f(~x) and iter < maxiter

5 ~v Random-Vector(~v)

6 iter iter+ 1

7 if f(~x+ ~v) < f(~x)

8 ~v ~v=2

9 else if iter = 0

10 ~x ~x+ ~v; ~u ~u+ ~v; ~v 2~v
11 else if f(~x+ ~u+ ~v) > f(~x)
12 ~x ~x+ ~u+ ~v; ~u ~u+ ~v; ~v 2~u
13 else

14 ~x ~x+ ~v; ~u ~v; ~v 2~v

15 return ~x

Procedure 4-1: The local optimize algorithm with short term memory. ~v is the step vector,
~u is the accumulator of the moves made in the same direction. Figure 4-4 illustrates how
the two vectors are updated.

v u

u

v

u

v

u

v u

v

A B C

Figure 4-4: An illustration of how Procedure 4-1 uses the vectors ~u and ~v. In (A) the step

vector ~v keeps growing in the same direction as long as better points are found. ~u accumulates

the moves made in this direction. Once ~v fails, the algorithm tries new directions. In (B)

a new direction has been found. The combination ~u + ~v is tried and found to give a better

point. In this case ~u starts accumulating moves in this new direction. In (C) ~u + ~v did not

give a better point. Thus we start moving in the last direction we know that worked, in this

case ~v.
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The Local-Optimize in Procedure 3-1 of the previous section, is able to adapt its step

sizes to the local terrain. Procedure 4-1 gives an improved version which is able to adapt its

direction also. The local optimizer moves along its best estimate of the gradient direction.

Vector ~u is used to accumulate moves made along this direction. When this direction fails,

vector ~v enters its random probing mode, and searches until it can �nd a new direction that

works. When a new direction is found, the algorithm tries ~u + ~v as a new estimate of the

gradient direction. Either this succeeds, and ~u starts accumulating moves along ~u+ ~v, or it

fails and the new ~v becomes the new estimate. Figure 4-4 explains the algorithm in pictures.

As shown in the �gure, the algorithm keeps adapting its estimate of the gradient vector

according to the local terrain.

The performance of the algorithm improved by an order of magnitude better in complex

spaces. Figure 4-3 is the result of running this algorithm on Rosenbrock's saddle. The

function has a ridge along the y = x2 parabola that gradually rises from (-1,1) to (1,1). The

global maximum is at (1,1) and the algorithm was started on the other end of the ridge, so

that it had to traverse the whole parabola. As illustrated in Figure 4-5 the more adaptive

Procedure 4-1 is more than an order of magnitude e�cient than Procedure 3-1 of the last

chapter.
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Figure 4-5: Comparison of the two versions of Local-Optimize from chapter 3 and

chapter 4 on Rosenbrock's saddle. Note that both axes are logarithmic. The old version

converges in 8782 iterations, the new version �nds a better value in 197 iterations.
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Chapter 5

Results and related work

5.1 De Jong's test suite

In this section I will present the performance of various optimization algorithms on De

Jong's �ve function test suite. De Jong �rst suggested this set in his work \An analysis

of the behaviour of a class of genetic adaptive systems" [De Jong, 1975]. He chose these

functions because they represent the common di�culties in optimization problems in an

isolated manner. By running the comparisons on these functions, one can make judgments

about the strengths and weaknesses of particular algorithms. Also, De Jong's functions are

quite popular in genetic algorithms literature, so it is possible to make direct comparisons.

I should emphasize that all these results are only obtained from particular implementa-

tions of these algorithms. In particular the GENEsYs package [B�ack and Ho�meister, 1992]

was used for the genetic algorithms, the ASA package [Ingber, 1993] was used for simulated

annealing, and the programs from \Numerical Recipes in C" [Press et al., 1992] were used

for implementations of Powell's method and downhill simplex. Other implementations, or

other parameter settings may give di�erent results. Furthermore, the topic of optimization

has a vast literature. I discovered that the M.I.T. library has 1240 volumes on the subject,

when I tried to do a literature search. Thus it was impossible to run comparison tests with

all known methods. Instead I compared my program to a subset of well known, widely used
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Sphere Model:

f1(~x) =

nX
i=1

x2
i

�5:12 � xi � 5:12

min(f1) = f1(0; : : : ; 0) = 0

Generalized Rosenbrock's Function:

f2(~x) =

n�1X
i=1

(100 � (xi+1 � x2
i
)2 + (xi � 1)2

�5:12 � xi � 5:12

min(f2) = f2(1; : : : ; 1) = 0

Step Function:

f3(~x) = 6 � n +

nX
i=1

bxic

�5:12 � xi � 5:12

min(f3) = f3([�5:12;�5); : : :; [�5:12;�5)) = 0

Quartic function with noise:

f4(~x) =

nX
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ix4
i
+ gauss(0; 1)

�1:28 � xi � 1:28

min(f4) = f4(0; : : : ; 0) = 0
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Figure 5-1: De Jong's functions. The graphs are rotated and modi�ed by order preserving

transforms for clarity.
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methods.

Figure 5-1 shows the graphs and equations for the �ve De Jong functions. Below are

their brief descriptions, and the problems they represent:

� Sphere is the dream of every optimization algorithm. It is smooth, it is unimodal, it

is symmetric and it does not have any of the problems we have discussed so far. The

performance on Sphere is a measure of the general e�ciency of the algorithm.

� Rosenbrock is the nightmare. It has a very narrow ridge. The tip of the ridge is

very sharp, and it runs around a parabola. Algorithms that are not able to discover

good directions underperform in this problem.

� Step is the representative of the problem of 
at surfaces. Flat surfaces are obstacles

for optimization algorithms, because they do not give any information as to which

direction is favorable. Unless an algorithm has variable step sizes, it can get stuck on

one of the 
at plateaus.

� Quartic is a simple unimodal function padded with noise. The gaussian noise makes

sure that the algorithm never gets the same value on the same point. Algorithms that

do not do well on this test function will do poorly on noisy data.

� Foxholes is an example of many (in this case 25) local optima. Many standard

optimization algorithms get stuck in the �rst peak they �nd.

Figure 5-2 gives comparative results of my program to four well known algorithms, the

standard genetic algorithm [Holland, 1975], simulated annealing [Kirkpatrick et al., 1983],

Powell's method [Powell, 1964], and downhill simplex [Nelder and Mead, 1965].

Note that the standard genetic algorithm is the least e�cient of all. It usually does

the most number of function evaluations. The numerical algorithms, Powell's method and

downhill simplex, do well in terms of e�ciency. However they are not robust in the existence

of 
at surfaces (step function), or local optima (shekel's foxholes). Adaptive simulated

annealing is able to solve all the problems consistently, although it is not as e�cient as the
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numerical algorithms. My program, not only �nds the global optimum in all �ve cases, its

e�ciency is comparable, if not better, than the other ones.
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Figure 5-2: Comparison of �ve algorithms on De Jong's functions. The vertical bars repre-

sent the number of function evaluations to �nd the global optimum. The scale is logarithmic

and the numbers are averaged over ten runs. No bar was drawn when an algorithm could

not �nd the global optimum consistently.

39



Figure 5-3: The coordinate registration problem in image guided surgery. The �gures show

two examples of the laser scan data (horizontal lines) overlaid on the MRI data (the skulls).

The problem is to �nd the transformation that will align these two data sets.

5.2 Image guided surgery

There is recent study on frameless guidance systems to aid neurosurgeons in planning opera-

tions [Grimson et al., 1994]. A method has been developed for registering clinical data, such

as segmented MRI or CT reconstructions, with the actual head of the patient, for which po-

sition and orientation information is provided by a laser scanning device. The data obtained

from the scanning device is much coarser than that from MRI or CT. Figure 5-3 illustrates

the two data sets overlaid. The detailed picture of the skull is obtained from its MRI scan,

and the horizontal lines are the result of the laser scan. Furthermore, the coordinate frame

of the laser device is di�erent from the MRI device. To be able to register the two data

sets, one needs to �nd the appropriate 3-dimensional transformation that will map them.

At this point the problem can be seen as an optimization problem with six parameters. The

parameters are the three distances and three angles of the transformation. The objective

function measures the distance of the points in the laser scan data to their closest neighbors

in the MRI data. The value returned is the mean squared distance.
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In the project, Powell's method has been used for optimization. Figure 5-4 shows a

comparison between Powell's method and Procedure 2-1. Powell's method fails to �nd a

good solution if the initial con�guration is too far from the global optimum. Procedure 2-1

not only �nds better points, but also is able to do so from con�gurations that are further

away.
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Figure 5-4: The comparison of Procedure 2-1 with Powell's method on the coordinate

registration problem. The y axis shows the root mean squared distance in millimeters, the

x axis is the number of function evaluations. The results are averaged over ten runs.
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Figure 5-5: The Cycloheptadecane molecule has 51 atoms. The three coordinates for each

atom are the input to the objective function. Thus the problem has 153 dimensions.

5.3 Molecule energy minimization

The conformation of a molecule is a description of its 3-dimensional structure. The phys-

ical properties and biological functions of organic molecules are intimately related to their

conformations. Thus computing energetically stable conformations of organic molecules is

an important problem. One way to compute the conformations is to minimize an energy

function, but unfortunately, the energy function typically has many local minima.

Procedure 2-1 was tried on a small instance of this problem. Cycloheptadecane is a

macrocyclic molecule. It consists of a chain of 17 carbons, where each carbon is connected

to two hydrogen atoms as well as two other neighbor carbons. Figure 5-5 illustrates this

structure. There are a total of 51 atoms in the molecule. Treating their x, y and z coordinates

as separate parameters of the energy function, we have an optimization problem of 153

dimensions.

Recently, a novel method to solve this problem e�ciently was proposed [Wang, 1994].

First, approximate solutions are found by combining smaller chains together. Then, these

approximate solutions are further re�ned in an optimization loop. Figure 5-6 contains the

comparison of Procedure 2-1 with Powell's method in this loop as well as a sample run

starting from a random initial conformation.

Note that the gradient of the energy function typically can be computed. In that case

42



an algorithm that can use this information such as conjugate gradient [Press et al., 1992,

Polak, 1971], will be more e�cient. The comparison is made with Powell's method because

it is known as one of the most e�cient algorithms among the ones that do not use the

gradient.
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Figure 5-6: Comparison of Procedure 2-1 with Powell's method on the molecule energy

minimization problem. The �rst example starts from a near optimal con�guration. The sec-

ond example starts with a random con�guration. The lower lines are the traces of Procedure

2-1.
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Figure 5-7: The problem of non-separability in refraction tomography. The variation in

just the value at node A e�ects a part of the domain for one source and the remaining part

for the other.

5.4 Refraction tomography

There is recent study in mathematical geophysics, on assessing the structure of sedimentary

deposits using refraction seismic data [Williamson, 1990]. The synthetic example we have

worked on is a rectangular section of earth that is 8000 meters long and 500 meters deep.

There are 15 sources and 41 receivers for a total of 615 seismic rays. The path a ray follows

depends on the seismic velocity structure in the 2-D section. The domain is divided into

a rectangular grid and a seismic velocity value is de�ned at each node of this grid. In our

example we used a grid of 9 by 5 nodes. The 45 seismic velocity values are the parameters

of the objective function. The objective function is a ray-tracing algorithm. The algorithm

simulates the propagation of the seismic rays from the sources to the receivers. The squared

di�erence in time between the travel times of the simulated rays and a real data set is the

output of the objective function.

This problem is a nice example of non-separability. A change in just one of the parameters

will a�ect all of the domain on the other side of the source. This is illustrated in Figure 5-7.

In this example, the sources are located at the extremities of the domain, thus a variation

in just one parameter a�ects a part of the domain for one source and the remaining part for
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Figure 5-8: Two possible uses of Local-Optimize. In the �rst example it is used to re�ne

the search after the genetic algorithm was stuck. In the second example it is started after

the genetic algorithm found a good region in a few hundred iterations

the other.

Several variations of genetic algorithms were tested on this problem. A genetic algorithm

with a number of problem-speci�c modi�cations was found to give the best results. When

my program was applied to the problem, it did not converge to points as good as the

genetic algorithm in its �rst few iterations. This is probably due to the domain speci�c

knowledge used in the other program. However, when the Local-Optimize algorithm

given in Procedure 4-1 was started at the points where the genetic algorithm got stuck,

it was able to improve the solutions substantially. Furthermore, when Local-Optimize

was started after the genetic algorithm was run for a few hundred function evaluations, it

was able to �nd better points more e�ciently. Thus, a hybrid of the program with the

domain-speci�c knowledge, and Local-Optimize was found to give the best results.

The two examples shown in Figure 5-8 are di�erent runs of the Local-Optimize al-

gorithm. The starting point for the �rst graph is the best solution found by the genetic

algorithm with problem-speci�c modi�cations. The genetic algorithm discovered this solu-

tion in 13175 function evaluations and later got stuck. Local-Optimize was started at

that point and it was able to improve the error value about more than an order of mag-

nitude. This example illustrates the di�culty with locating exact optima with the genetic

algorithms. From the point the genetic algorithm got stuck, Local-Optimize was able to
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�nd a way further down in the error space. This demonstrates the importance of being able

to do a �ne grained search by shrinking the step sizes.

For the second graph, the genetic algorithm was run for a few hundred iterations. At

that point it was stopped, and Local-Optimize was started from the best point discovered

so far. After about a thousand more function evaluations, the error was reduced to 370.

This value is better than what the genetic algorithm got by itself in 13175 iterations.

The genetic algorithm is able to �nd good regions of the search space quickly by using

problem-speci�c knowledge. However it is very ine�cient in �nding the optimum point in

that region. The approach this suggests is to use problem-speci�c knowledge to locate the

good regions in the space, and then to run Local-Optimize to �nd the exact location of

the optima.
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Figure 5-9: The performance of my algorithm compared to simulated annealing on the trav-

eling salesman problem averaged over ten runs. The x axis shows the number of operations

tried and the y axis shows the distance of the best discovered path.

5.5 The traveling salesman problem

The traveling salesman problem is the problem of �nding the shortest cyclical itinerary for

a traveling salesman who must visit each of N cities in turn. This problem has a very

di�erent nature from the above problems, it is an example of combinatorial optimization.

There is an objective function to be minimized, but the search space is the discrete space

of all permutations of N cities. The combinatorial optimization problems are challenging

because the number of elements in the search space is factorially large, thus they cannot be

exhaustively searched. Also it is hard to de�ne a concept of \direction" in a permutation

space.

The representation one chooses to use might make it possible to de�ne concepts of \dis-

tance" and \direction" in non-cartesian spaces. One can carefully de�ne various mutations

such that \moving further in the same direction" is meaningful. It is also possible to de�ne

a notion of \size" in carefully selected operations. I will not present a detailed study of the

application of my program on combinatorial problems. However, I thought it desirable to
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include one example, to show that the same key ideas apply even when one does not have a

cartesian space.

I compared the results I obtained from a very simple implementation of my algorithm

with results from simulated annealing. The simulated annealing program [Press et al., 1992]

uses an e�cient set of moves suggested by Lin [Lin, 1965]. The moves consist of two types:

(a) A section of path is removed and then replaced with the same cities running in the

opposite order; or (b) a section of path is removed and then replaced in between two cities

on another, randomly chosen, part of the path. The objective function is the total length of

the journey.

The implementation of Procedure 2-1 only uses the �rst type move, i.e. reversing a

section of the path. The size of a step is de�ned as the width of the section reversed. The

same principles of adjusting the step size are used.

Although this is a very di�erent problem, the results of Procedure 2-1 are comparable

to that of simulated annealing. Figure 5-9 shows the average over 10 runs for problems of

10 randomly selected city coordinates. These demonstrate that the main ideas presented

in this thesis are not speci�c to numerical problems, but are general principles useful for

optimization in general.
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Chapter 6

Summary and future work

This thesis has described an optimization method that was designed to be robust and ef-

�cient. The ideas that built the method came from an inquiry into the nature and use of

optimization programs based on genetic algorithms. The method uses information about the

discovered local maxima to guide the search. The step sizes used are adaptive to the local

terrain of the search space. Finally, the direction of most rapid ascent is computed from

recent successful moves.

The method was tested on several problems and compared to other successful optimiza-

tion algorithms. It has actively improved the solutions for real world problems selected from

science, medicine and engineering. Its advantage is demonstrated on problems with high

number of dimensions and many local maxima.

Theoretical work on the assumptions and performance of the method is required and the

application to combinatorial problems need more study. Most importantly, more problems

from di�erent �elds need to be found and studied in the context of the ideas presented in

this thesis.
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Appendix A

Sample code for Procedure 4.1

The procedure in the following page is the C implementation of the local optimization proce-

dure given in Chapter 4. It has a probing vector that adapts its size and direction according

to the local properties of the objective function. The constant ndim is the number of dimen-

sions, threshold is the minimum step size, init size is the initial step size. The variable

count keeps the number of the calls to the objective function. The two arguments to the

procedure are the objective function f and the initial starting point x. The procedure prints

out successively better solutions and leaves the �nal solution in the argument vector x.
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void local_optimize(double (*f)(), double x[])

{

double u[NDIM], v[NDIM], xv[NDIM];

double fx, fxv, vr;

int vi, vvec, i, iter, maxiter;

for(i=0; i<NDIM; i++) u[i] = v[i] = 0;

vi = -1; vvec = 1; vr = -INIT_SIZE;

fx = f(x); fxv = 1E10;

printf("%d. %.4f <= ", count, fx);

for(i=0; i<NDIM; i++) { printf("%.4f ", x[i]); }; printf("\n");

while(fabs(vr) >= THRESHOLD) {

maxiter = ((fabs(vr) < 2*THRESHOLD) ? 2*NDIM : 2);

iter = 0;

while((fxv >= fx) && (iter < maxiter)) {

if(iter == 0) { for(i=0; i<NDIM; i++) xv[i] = x[i]; }

else xv[vi] -= vr;

if(vvec) vvec = 0;
vr = -vr;

if(vr > 0) vi = ((vi+1) % NDIM);

xv[vi] += vr;

fxv = f(xv);

iter++;

}

if(fxv >= fx) {
fxv = 1E10;

vr /= 2;

} else {

fx = fxv; printf("%d. %.4f <= ", count, fx);

for(i=0; i<NDIM; i++) { x[i] = xv[i]; printf("%.4f ", x[i]); }

printf("\n");

if(iter == 0) {

if(vvec) {

for(i=0; i<NDIM; i++) { u[i] += v[i]; v[i] *= 2; xv[i] += v[i]; }

vr *= 2;

} else {

u[vi] += vr; vr *= 2; xv[vi] += vr;

}

fxv = f(xv);

} else {

for(i=0; i<NDIM; i++) xv[i] += u[i];

xv[vi] += vr;

fxv = f(xv);

if(fxv >= fx) {

for(i=0; i<NDIM; i++) { u[i] = 0; xv[i] = x[i]; }

u[vi] = vr; vr *= 2;

xv[vi] += vr; fxv = f(xv);

} else {

for(i=0; i<NDIM; i++) x[i] = xv[i]; fx = fxv;

u[vi] += vr;

for(i=0; i<NDIM; i++) v[i] = 2*u[i]; vvec = 1;

for(i=0; i<NDIM; i++) xv[i] += v[i]; fxv = f(xv);

for(vr=0,i=0; i<NDIM; i++) vr += v[i]*v[i];

vr = sqrt(vr);

}}}}}
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