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Abstract

Object and pattern detection is a classical computer vision problem with many potential
applications, ranging from automatic target recognition to image-based industrial inspection
tasks in assembly lines. While there have been some successful object and pattern detection
systems in the past, most such systems handle only speci�c rigid objects or patterns that
can be accurately described by �xed geometric models or pictorial templates.

This thesis presents a learning based approach for detecting classes of objects and pat-
terns with variable image appearance but highly predictable image boundaries. Some ex-
amples of such object and pattern classes include human faces, aerial views of structured
terrain features like volcanoes, localized material defect signatures in industrial parts, cer-
tain tissue anomalies in medical images, and instances of a given digit or character, which
may be written or printed in many di�erent styles.

The thesis consists of two parts. In part one, we introduce our object and pattern
detection approach using a concrete human face detection example. The approach �rst
builds a distribution-based model of the target pattern class in an appropriate feature space
to describe the target's variable image appearance. It then learns from examples a similarity
measure for matching new patterns against the distribution-based target model. We also
discuss some pertinent learning issues, including ideas on virtual example generation and
example selection. The approach makes few assumptions about the target pattern class
and should therefore be fairly general, as long as the target class has predictable image
boundaries. We show that this is indeed the case by demonstrating the technique on two
other pattern detection/recognition problems.

Because our object and pattern detection approach is very much learning-based, how well
a system eventually performs depends heavily on the quality of training examples it receives.
The second part of this thesis looks at how one can select high quality examples for function
approximation learning tasks. Active learning is an area of research that investigates how a
learner can intelligently select future training examples to get better approximation results
with less data. We propose an active learning formulation for function approximation, and
show for three speci�c approximation function classes, that the active example selection
strategy learns its target with fewer data samples than random sampling. Finally, we
simplify the original active learning formulation, and show how it leads to a tractable
example selection paradigm, suitable for use in many object and pattern detection problems.
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Chapter 1

Introduction

Vision is perhaps the most powerful perceptual sense that a human being or a machine

can have. As humans, we are able to gather a remarkable amount of detailed information

about things in our environment through our sense of vision, all without direct physical

contact. Our visual ability helps us perform many ordinary but essential daily routines, such

as recognizing people at work, walking through hallways without colliding into obstacles,

reading newspapers and magazines, etcetera. In the world of machines, one can expect

systems with visual sensors to be more versatile and robust than similar systems without

visual sensors. The former has access to visual data, which it can use as an additional

rich source of information for understanding its environment and interacting with the world

more intelligently.

Machine vision can be described as a process that converts a digitized image of sensor

values into a symbolic description of patterns and objects in the scene, suitable for subse-

quent use in a machine dependent task. One of the foremost goals in arti�cial intelligence

has been to develop algorithms and equip machines with the ability to process and \under-

stand" visual data in some meaningful fashion. Most current \image understanding" tasks

fall under one or more of the following categories:

1. Pattern Classi�cation. This category describes perhaps the widest range of ma-

chine vision tasks that researchers have been able to formulate algorithmically. A

pattern classi�cation problem involves assigning identities or labels to patterns in an

image, or sometimes to an entire image. Many classical computer vision problems like

image annotation, object recognition and object detection can be posed, at least in
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part, as a pattern classi�cation problem.

2. Registration. A registration problem involves establishing a match between an input

image and a reference image or model. An image registration system \understands"

the input image by explaining its appearance in terms of a transformed reference

image or model.

3. Reconstruction. Reconstruction problems \understand" an input image by creat-

ing a computer representation of surfaces and objects in the scene. An appropriate

representation scheme could be a depth map or a CAD model. In some reconstruction

problems, the goal may be to determine the imaging conditions under which the image

is taken, such as the distribution and color of light sources.

There are many potential areas for machine vision applications in the world today, rang-

ing from surveillance and census systems to process control and human-computer interfaces.

In industrial robotics, one can introduce vision sensors to help modern robots �nd and ma-

nipulate objects in their workspace. Vision systems can also be used to take over certain

mundane tasks currently performed by human workers in various settings. A computer-

ized camera that recognizes people can be used as a security system for access control. In

medical image analysis, one can reduce operating costs by having vision systems take over

certain tedious image screening and annotation tasks, like automatically segmenting MRI

scans into regions of di�erent anatomical parts for image-guided surgery | a technology

that is just beginning to emerge. In manufacturing, there is an expected need for more

sophisticated vision-based inspection systems in the twenty-�rst century to make processes

less labor intensive.

Although much work has been put into the �eld of machine vision over the past twenty

to thirty years, existing computer vision systems still fall far short of human abilities.

While there has been some successful computer vision systems in the past, especially object

recognition and localization systems based on pictorial templates and geometric models,

most such systems perform very speci�c tasks at best, and operate only under very heavily

constrained conditions. For example, in some systems, one can only deal with a very limited

library of objects and patterns made up of only rigid parts. In other cases, lighting must

be controlled and the imaging geometry must be �xed. Computer vision systems today

are still too in
exible for any widespread use beyond the speci�c tasks that they have been
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designed to perform.

Why is computer vision a di�cult problem? If one views vision as interpreting image

patterns in terms of objects and surfaces present in a scene, then perhaps the main reason is

that most real objects and surfaces can have very unpredictable image appearances. These

unpredictable image appearances can be extremely di�cult to encode, and hence interpret

with computer programs. The image appearance of objects and surfaces can depend on

many interacting factors, including pose, lighting conditions, surface re
ectance properties,

occlusion and sensor characteristics. Because there are many tightly coupled interacting

factors that a�ect image formation, even a simple perfectly rigid object with uniform surface

re
ectance properties, can still give rise to a very large and complex set of possible image

patterns. In general, a vision system may not even have prior information about some of the

key imaging factors needed to predict object appearances, which makes the image pattern

interpretation task even more ill-posed. So far, computer vision researchers have not been

able to derive a su�ciently comprehensive scheme that can reliably recover and account for

all the interacting factors contributing to the appearance of objects in an image.

When interpreting images with non-rigid objects, or when dealing with the notion of

object classes (for example the class of human faces), the vision problem becomes even more

complicated, because the system has to account for additional sources of pattern variation.

These pattern variations can be due to non-rigid transformations in the shape of an object,

or structural di�erences between individual objects from the same class. As an example of

the former, a snake when viewed in a curled posture can give rise to a very di�erent set of

image readings than when viewed in an extended posture. Ideally however, a vision system

should still be able to identify both sets of image readings as images of the same snake. In the

latter case, the faces of two di�erent people can appear very di�erent even under identical

imaging conditions, but ideally, a vision system should still identify both image patterns as

faces. At a more abstract level, there are classes of objects, like chairs, that are identi�ed

primarily by a common functional property, and to a much lesser extent by a particular

physical structure. To identify new objects as chairs, a vision system must not only be able

to recover physical structure from an image; it has to extract semantic information from

structure as well. As humans, our ability to understand images so e�ortlessly often leads

us to underestimate the di�culty of designing computer algorithms for similar tasks.

Example-based learning is an area of research that has captivated the interest of many
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scientists, mathematicians and technologists over the last decade. The �eld deals with

techniques of implementing and empirically discovering complex mappings between input

patterns and output values. The learning approach to building systems is fundimentally

di�erent from the traditional approach of writing programs to encode knowledge. In learn-

ing, the \programmer" trains a system using a set of representative input-output examples,

and the system adapts itself by modifying its state appropriately to perform the desired

information processing task. Knowledge about the desired task is encoded in the set of

examples provided by the \programmer". Existing example-based learning techniques have

been successfully used in a wide range of multi-variate problems characterized by complex

relationships between input and output variables, such as stock market prediction and pro-

cess control. We believe that the same learning techniques that have worked well in many

areas, can be similarly applied to a wide range of computer vision problems with comparable

success.

Because learning is essentially \programming" a system from examples, how well a

system eventually performs in its task depends heavily on the quality of examples it receives

during training. The problem of obtaining high quality examples that capture su�cient

information about a task, is therefore a very critical issue that should always be carefully

addressed in any non-trivial example-based learning application.

1.1 Problem De�nition

This thesis looks at a classical computer vision problem on detecting objects and patterns

in images. There has been some successful work on restricted versions of this problem in

the past. One set of simpli�cations allows for only speci�c rigid objects and patterns that

can be described by �xed geometric models or templates. An example problem in this class

is to recognize and locate (i.e. detect) telephones of a particular design in an o�ce scene.

The family of interpretation-tree based object recognition and localization algorithms [40]

[42] is a popular and well tested approach for solving problems in this class.

In general, the scope of object and pattern detection covers a wider range of object and

pattern types, including non-rigid bodies and classes of patterns. By non-rigid bodies, we

mean speci�c objects that can undergo non-rigid shape transformations, and hence cannot

be adequately described by a �xed geometric model. A speci�c snake or a particular person's
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face are examples of non-rigid bodies. Object and pattern classes refers to collections of

individual objects and patterns that share some common identity. One example is the

class of human faces, which includes faces of all people. Another example is the digit class

\2", which comprises many di�erent instances of machine printed styles and hand written

patterns of the digit \2". While a few di�erent approaches exist for dealing with the

more general case of detecting non-rigid objects and pattern classes under varied imaging

conditions, there has been limited success in this area to date.

1.1.1 Detecting Spatially Well-De�ned Pattern Classes

Ideally, an object and pattern detection approach should be able to deal with the full

spectrum of non-rigid, highly articulate and arbitrarily shaped objects, as well as highly

varied classes of objects and patterns in di�erent contextual settings. Unfortunately, we

believe that such a goal is still beyond our reach with current computer vision technology.

From a pattern interpretation standpoint, an approach that recognizes highly articulate

and arbitrarily shaped objects or pattern classes, such as humanoid forms, must not only

be able to correctly identify isolated image patterns as instances of some known object or

class. It must also be able to �rst extract patterns from their image backgrounds. In general,

pattern segmentation is still an unsolved computer vision problem, especially when there are

few constraints and little prior knowledge to spatially bound the patterns. An alternative

strategy that avoids explicitly segmenting complex patterns from images, is to de�ne simpler

sub-pattern classes that can be easily isolated and identi�ed in images. At some later stage,

the detection algorithm must analyze the global arrangement and composition of these sub-

patterns in the image to identify and locate the full target pattern. Unfortunately, this

approach is also unreliable at best because vision researchers today are still unclear about

the key processes behind integrating local and global image information for interpreting

scenes.

We shall instead explore a reduced version of the general object and pattern detection

problem, that deals only with image patterns whose spatial boundaries can be well esti-

mated a-priori. Because we have good prior boundary estimates for these image patterns,

one can simply extract them from the image using one of several �xed shape masks, with-

out having to actually perform the di�cult general image segmentation task. With these

simpli�cations, one can cast object and pattern detection as a classi�cation problem on
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image patches, where the classi�er's task is to determine the identity of each patch using

only spatially local image measurements from within the patch. For tractability reasons,

we shall also impose that each target pattern class can have only a small number of possible

boundary shapes and sizes, so one can search for these target patterns using only a few

masks and classi�cation routines.

A spatially local object and pattern detection framework has the following two desirable

characteristics:

1. Because the framework performs only local and spatially invariant image operations,

one can e�ciently implement applications within this framework on massively parallel

hardware and SIMD machine architectures for real-time performance.

2. Because all image operations within this framework are local in nature, one can expect

to gain a lot more insight from a successful application by analyzing and understanding

the problem in terms of only local image measurements.

Applications wise, the local framework is well suited for detecting classes of patterns

with minor but nevertheless signi�cant shape and texture variations. We shall henceforth

refer to pattern classes with these properties as spatially well-de�ned pattern classes. The

possible image appearances of a speci�c non-rigid object that can only undergo minor

shape deformations, such as a particular person's face, can be treated as a spatially well-

de�ned pattern class. Henceforth, we shall also refer to speci�c objects of this sort as

semi-rigid bodies. Other examples of spatially well-de�ned pattern classes include localized

material defect signatures in industrial parts, aerial images of structured terrain features

like volcanoes, anomalous tissue appearances in medical images and the set of all isolated

human face views.

Clearly, the proposed framework is not well suited for detecting arbitrarily shaped pat-

tern classes or extremely non-rigid and highly articulate objects, because one cannot obtain

good prior boundaries estimates to isolate these patterns for classi�cation. Nevertheless,

we argue that our work here still represents a notable improvement over current non-rigid

object and pattern detection approaches in terms of its generality and the good empirical

results it has produced.
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1.1.2 Formulation

We formulate our local object and pattern detection problem as one of learning to identify

target image patterns from examples. To deal with the unpredictable pattern variations

within the local pattern boundaries, we statistically model the distribution of target patterns

in an appropriate feature space. We also de�ne a set of distribution dependent distance

feature measurements which we use as a \di�erence" notion for matching new patterns

with our distribution-based model. Finally, we train a classi�er to separate target patterns

from distractor patterns using the distribution dependent distance feature measurements

as input.

A key issue in our learning-based approach is to maintain a comprehensive but tractable

training database of target and distractor patterns. Because learning is essentially \pro-

gramming" a system from examples, how well a pattern detection system eventually per-

forms in our approach depends heavily on the quality of examples it receives during training.

We introduce two newly developed techniques for managing training databases. The �rst

is the idea of exploiting prior domain dependent knowledge to generate virtual training

examples [73] from existing ones. We use these virtual examples to arti�cially enlarge our

training data set for a more comprehensive sampling of input patterns. Because the idea

of generating virtual examples has already been carefully addressed in several recent papers

[73] [10] [11], we shall not dwell too deeply on this topic other than to brie
y mention how

we have applied this idea in our sample pattern detection applications.

The second is the idea of selecting only useful patterns from among many redundant

ones for training, in order to keep the number of training patterns reasonably small and the

learning problem computationally tractable. We propose a \boot-strap" [89] [90] example

selection strategy that incrementally �nds highly informative new patterns between training

runs. We shall devote an entire chapter of this thesis to discuss the example selection issue

in depth, within the context of a related class of learning problems, called active learning.

We believe that good example selection strategies can make a huge di�erence in helping one

deal with very large learning problems that could otherwise be hopelessly unmanageable.
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1.1.3 Goals

Our work is an attempt to formalize and demonstrate a general technique for taking on a

restricted but fairly wide class of spatially well-de�ned object and pattern detection prob-

lems. The approach consists of: (1) a proposed system architecture to implement object and

pattern detection tasks, and (2) a set of operating guidelines and procedures for developing

applications using the given system architecture.

The individual components within the proposed system architecture are not new. In fact,

the subsequent chapters will show how individual components of our system architecture

relate to existing techniques in classical �elds like statistics, linear algebra, regularization

theory and pattern classi�cation. To the best of our knowledge however, our work is the

�rst attempt of integrating and understanding these separate components as parts of an

overall framework for modeling and detecting semi-rigid objects and patterns.

Much of this thesis focusus on interpreting the functions performed by the individual

system components, their underlying assumptions and limitations. We believe that an

intelligent understanding of the proposed technique, its components and rationale behind

the operating guidelines, will all be critical for successfully applying this framework to real

problems.

1.2 Pattern Detection, Recognition and Classi�cation

In this section, we shall look at pattern detection and a very closely related problem called

pattern recognition in greater detail. While the task descriptions of the two problems may

di�er considerably in certain domains, we shall argue that both problems are in fact in-

stances of a wider class of computer vision problems, called pattern classi�cation. We shall

also show that in some other problem domains, the distinction between a detection task

and a recognition task is somewhat arti�cial, and often merely a matter of terminology.

The issues in
uencing pattern detection and pattern recognition problems are therefore very

similar, and their solutions have a lot in common.

1.2.1 Pattern Detection and Recognition

The goal of pattern detection is to automatically locate, in an image, instances of objects

that a computer has been trained or programmed to identify. Given prior knowledge of
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some known objects or classes of objects and a digitized image of a scene to analyze, the

pattern detection task is to return an encoding of the location, spatial extent and possibly

pose of each known object in the scene. An example of a pattern detection task is human

face detection. The task involves analyzing a possibly heavily cluttered image with zero or

more human faces, and identifying portions of the image that correspond to faces. A very

closely related problem to pattern detection is pattern recognition, whose goal is to compare

a given image pattern against models in a library of known patterns, and to report the best

matching model if a match is found. Face recognition is a popular example of a pattern

recognition problem. Here, the task is to establish the identity of (i.e. recognize) a person

from an input image of an isolated human face. Most face recognition systems identify faces

by matching the input image against face models in a library of known people.

Many real world computer vision applications perform tasks that are both pattern de-

tection and pattern recognition in nature. In some applications, there can be a clear division

of work into a detection stage and a separate recognition stage. Returning to the domain

of human faces, let us consider an automatic surveillance problem of identifying people in

an arbitrary scene. One plausible approach divides the problem into a detection stage for

locating human faces in an input image, and a separate recognition stage for establishing

individual identities from the isolated faces.

In other computer vision applications, there may not be a clear division of work into a

distinct detection stage and a separate recognition stage. Nevertheless, these applications

still perform tasks that involve both locating objects and identifying them in images. The

following is an example from classical model-based \object recognition". Consider a typical

\object recognition" problem of �nding telephones of a particular design in cluttered o�ce

scenes, among other common desk top objects like books, pens and staplers. One popular

approach uses image features to �rst generate likely hypotheses about the locations and

poses of telephones in the image. Each hypothesis is then tested by matching an appro-

priately transformed telephone model to the image region containing the telephone. Notice

that in this approach, the �nal matching step ful�lls the role of both an object recognizer

and detector, because each successful match identi�es an image object as a telephone and

also locates the object in the scene. Notice also that although computer vision literature

commonly refers to problems like the above as \object recognition" problems, the actual

tasks performed in these problems are clearly both object recognition and detection in na-
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ture.

Algorithmically, a pattern detection problem can often be re-expressed as a pattern

recognition task within an appropriate driver framework. We provide one such example to

illustrate what we mean, and to argue that pattern detection and recognition are in fact

very similar problems in spirit. We shall consider again the example of face detection.

Computational e�ciency aside, one possible approach of �nding faces is to test all local

image windows over a range of sizes for \face-like" pattern properties, and to report the

location and scale of all successful matches. Notice that in this framework, the embedded

test procedure performs essentially a pattern recognition task. It identi�es face window

patterns from among all natural occuring background window patterns | i.e. it recognizes

the class of face patterns. Recall that the face recognition problem is to identify a person

from an input face image. The task can be organized as many single-person face recognizers

working in parallel, where each single-person face recognizer identi�es all instances of a given

person's face from an input domain of all isolated face images | i.e., each single-person face

recognizer recognizes the class of images corresponding to a given person's face, from among

the class of all face patterns. The face recognition and face detection problems are thus

fundementally very similar in spirit. They are perceived as being di�erent problems only

because they operate on di�erent input domains and assign di�erent output class labels.

1.2.2 Pattern Detection and Recognition as Classi�cation Problems

Both pattern detection and pattern recognition fall under a wider class of vision prob-

lems, called pattern classi�cation. Let X be the set of all input patterns and W =

fw1; w2; : : : ; wNg be the set of all possible output classes or labels. For each input pat-

tern x 2 X , let zx 2 W be the true class label for x. The goal of pattern classi�cation is

to construct a functional mapping, F : X 7! W , such that F(x) = zx for all input patterns

x 2 X . The function F is commonly known as a classi�er. When jWj =N= 2, we have a

special case called a 2-class pattern classi�cation problem. Many real world N -class pat-

tern classi�cation applications are implemented as N 2-class pattern classi�ers operating in

parallel, with a special arbitration stage to resolve output con
icts.

As an example of how pattern detection and recognition are related to pattern classi�-

cation, we shall show how both face detection and face recognition can be cast as pattern

classi�cation problems. For face detection, the task is to identify the class of face window
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patterns from an input domain, X , of all natural occuring background patterns. The set of

output class labels is W = fFace; Non� Faceg, and the face detector is simply a classi�er

that performs the following mapping: F(x) = Face if x 2 X is a face window pattern, and

F(x) = Non� Face otherwise.

For face recognition, we consider �rst the broader case of a database with N people.

The input class X is the set of all appropriately segmented human face images, and the

set of output class labels is W = fPerson1; : : : ; PersonN; Unknowng. The face recognizer

performs the following mapping: for all x 2 X , F(x) = Personi if x is a face image of the

ith person in the database, and F(x) = Unknown otherwise.

A N -person face recognizer can be implemented as N single-person face recognizers

operating in parallel, with a special arbitration stage to resolve class label con
icts. Each

single-person face recognizer identi�es all face images of a given person, from an input do-

main of all appropriately segmented human face images. It can therefore be cast as a 2-class

pattern classi�cation problem, whose input class X is the set of all appropriately segmented

face images, and whose output class labels are W = fKnownPerson; UnknownPersong. The
classi�er performs the following mapping: for all x 2 X , F(x) = KnownPerson if x is a face

image of the given person in the database, and F(x) = UnknownPerson otherwise.

1.2.3 Di�culty

As mentioned earlier, most successful object detection and pattern recognition systems

today still operate under heavily constrained imaging conditions, and handle only very

restricted classes of target objects (usually only speci�c rigid objects or speci�c rigid objects

with moving parts). The underlying techniques in these systems tend to perform poorly

for detecting non-rigid and semi-rigid objects, as well as classes of patterns under more

general imaging conditions. What makes object detection and pattern recognition di�cult

vision problems? Clearly, both object detection and pattern recognition inherit many of

the di�culties common to computer vision problems in general. In object and pattern

detection, perhaps the biggest problem is that non-rigid and semi-rigid 3D objects can have

very unpredictable appearances, when viewed under di�erent pose and imaging conditions.

That is, the same non-rigid or semi-rigid object can take on one of many very di�erent sets

of image values, when projected onto a 2D image plane. For classes of objects, one also

has to deal with physical variations between individual members of an object class that
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can be di�cult to quantify. Often, these image di�erences are signi�cant enough so that

traditional pictorial template-based matching techniques and geometric model-based object

recognition methods cannot fully capture all the permissible pattern variations.

A second and closely related problem is scene clutter. Scene clutter increases the variety

of image patterns that an object detector has to deal with, which in turn makes correct

classi�cation in an object detection task much harder. If the input scene were simple with

little or no clutter, then an object detection task can still be fairly straight forward, even

when dealing with highly complex objects or pattern classes. This is because even though

it may be di�cult to fully model all possible image appearances of a speci�c highly complex

object or pattern class, one can still rely on less comprehensive models and coarse image

measurements to correctly identify instances of the target from trivial background distractor

patterns. Unfortunately, most real world object detection applications deal with highly

cluttered scenes containing many objects in complex background texture. Even without

occlusion, the object detector has to correctly identify instances of the target from among

many other very similar looking image patterns. To do this, we need very precise modeling

schemes that correctly account for all possible image appearances of a target object or

pattern class, while correctly rejecting even very similar looking background patterns. This

brings us back to the �rst di�cult problem we were trying to address, which is the need for

better object and pattern representation schemes.

1.3 Previous Work in Recognizing and Detecting Spatially

Well-De�ned Patterns

As previously discussed, the key issue and di�culty in detecting non-rigid objects and large

pattern classes is to correctly account for the wide range of possible pattern variations that

these bodies can exhibit in images. There have been four main approaches for dealing with

variations in large pattern classes, namely the use of: (1) view-based correlation templates,

(2) sub-space methods, (3) deformable templates, and (4) image feature invariants. Most

of these techniques have been used for detecting either speci�c semi-rigid objects or classes

of spatially well-de�ned objects and patterns in images.
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1.3.1 View-based Correlation Templates

Fixed correlation templates are like matched �lters. In object detection, they compute a

di�erence measurement between a �xed reference pattern and candidate image locations,

and the output is thresholded for matches. While most semi-rigid objects and large object

classes are too complex to have all possible views modeled by a single �xed template, there

are some object detection techniques that use a bank of several correlation templates to

account for large image appearance variations. One simple and direct scheme is the view-

based approach. Here, variations in object appearance and structural di�erences between

individual members of a class are represented by simply storing many example 2D views

of the target. The views may be from a variety of poses, lighting conditions, shape de-

formations and any other sources of variability that one wishes to handle in the detection

problem. When analyzing a new image location, the detector simply tries to match the

input pattern against stored patterns that are su�ciently close in appearance.

Since pose, lighting and shape deformation are all multi-dimensional parameter spaces,

populating this space densely enough with sample views can require an intractably large

number of stored patterns. One key issue in view-based approaches is to determine a

reasonably small set of views necessary for acceptable detection performance.

The view sampling problem has been studied extensively for variations in pose space

of a speci�c object. If the viewing distance to the target object is �xed, then the problem

becomes one of sampling views from a spherical surface centered at the object (a.k.a. viewing

sphere), and the key issue is to determine an appropriate number and distribution of image

samples that would adequately cover all possible views of the object.

When dealing with simple objects or small variations in pose, one can possibly get by

with a tractable number of regularly spaced views. In the view-based system of Breuel [15],

two airplane toy models are represented by sampling only the upper half of the viewing

sphere. Only 32 views are used for one plane and 21 views for the other. In a pose

independent face recognition task, Beymer [12] showed that by making some �ne image

alignment adjustments during run-time, one can very reliably represent human faces over a

fairly wide range of poses with only 15 views for identi�cation purposes.

To handle more complex objects over a wider range of pose, a number of researchers

have used aspect graphs [52] to formally analyze the view sampling problem. An aspect

graph is roughly de�ned as an object view whose features are stable with respect to pose

21



perturbations. Each aspect carves out a patch of qualitatively similar views from the viewing

sphere. The aspect graphs are used to derive sets of similar views from models of 3D objects

[23] [53] [48]. These techniques have been successfully applied to polyhedral objects [87]

[37] and curved objects constructed with parametric surfaces [74].

A closely related extension of view-based correlation templates is the linear combination

approach for modeling object appearances [97]. This technique is best known in its original

formulation for dealing with image changes due to variations in pose of a speci�c object. It

can also be directly used to account for image appearance changes due to shape variations

or physical di�erences between objects in a target class. The linear combination approach

works as follows: Instead of storing a dense set of 2D views as isolated patterns for modeling

object appearances, it preserves only a small number of sample views as examples. To

generate intermediate reference \templates" for pattern matching, the approach interpolates

from the stored example views. Ullman and Basri have shown that any intermediate 2D

view of a speci�c object can be written as a linear combination of example 2D views under

orthographic projection and in the absence of occlusion. The approach has one major

drawback. It assumes that one has already established accurate point or contour feature

correspondances between the example views and the new pattern being identi�ed. This is a

di�cult problem even for moderately complex objects and pattern classes, which makes the

linear combination technique highly impractical for modeling pattern variations in object

detection tasks.

Overall, the view-based template techniques show that a su�ciently dense set of 2D

views is equivalent to having the 3D structure of a speci�c object. The underlying idea is

similar to binocular stereo and structure-from-motion algorithms, where multiple 2D views

of an object are used to compute 3D structure.

1.3.2 Sub-Space Methods

Another closely related approach to correlation templates is that of view-based eigenspaces

[85] [51] [69]. As in the view-based template and linear combination approaches, the tech-

nique collects a large set of views for the target object or pattern class, sampled under

all the varying conditions that one wishes to account for. To generalize about the target

object's appearance from the set of collected views, the approach assumes that the set of

all possible object views occupies a small and easily parameterizable linear sub-space of the
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high dimensional view space. So instead of storing all the sample views, the technique con-

structs a compressed representation of the sub-space of object views and uses this sub-space

representation as a reference \template" for detecting objects.

Typically, one recovers the sub-space of object views by performing principal components

analysis (PCA) [31] [35] on a large set of sample views, and preserving only the largest

few principal components. If one assumes that the principal components, or eigenvectors,

capture the di�erent causes of variation in object appearance, then the largest principal

components correspond to the key sources of variation. By using only the most signi�cant

principal components to describe the sub-space of object views, one can argue that the

technique is e�ectively preserving only the semantically meaningful sources of variation in

object appearance, without factoring into the description meaningless pattern variations

due to noise.

During object detection, the approach computes and thresholds a di�erence measure

which is the Euclidean distance between an input pattern and the sub-space of object views.

Because the approach assumes that the linear sub-space represents all possible target object

views, one can treat the Euclidean distance so computed as a di�erence indicator between

the input pattern and the target object class. It should therefore be reasonable to identify

image patterns as target objects based on such a distance metric.

Murase and Nayar [64] use a similar parameterizable sub-space approach for modeling

the 2D appearance of objects and pattern classes. Although they have only demonstrated

their technique on recognizing isolated speci�c objects under varying pose, one can apply

the same idea directly for detecting speci�c objects under semi-rigid shape deformation,

or for classes of patterns in images. As in the eigenspace approach, sample views are

represented by projecting them onto a small number of principal components, forming an

\eigenspace" representation. Murase and Nayar take the representaion one step further by

�tting a parameterized surface to the sample projections in the eigenspace. Given a new

pattern to identify, the technique �rst projects the new pattern onto the eigenspace, and

compares the projected location with the hypersurface of sample views.

So far, the sub-space approaches described above have only been used for identifying

speci�c isolated target objects, or for detecting object classes like human faces in images

with little scene clutter.
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1.3.3 Deformable Templates

Deformable templates work like classical correlation templates, except that the former has

some built-in non-rigidity component. It is this non-rigidity component that makes them

better suited for describing and detecting semi-rigid objects and classes of patterns in im-

ages. In pattern detection, the overall paradigm for �nding objects with deformable tem-

plates is very similar to that of classical correlation templates. One simply �ts a deformable

template to candidate image locations and thresholds the output for matches.

One common application of deformable templates has been in modeling the image ap-

pearance of large, spatially well-de�ned pattern classes like human faces. In one imple-

mentation, Yuille, Hallinan and Cohen [104] use hand constructed parameterized curves

and surfaces to model the non-rigid components of faces and facial sub-features, such as

the eyes, nose and lips. The parameterized curves and surfaces are �xed elasitcally to a

global template frame to allow for minor variations in position between facial features. To

locate faces in an image, one uses a matching process that aligns the template with one

or more pre-processed versions of the image, such as the peak, valley and edge maps. An

energy functional constrains the alignment process by attracting the parameterized curves

and surfaces to corresponding image features, while penalizing \deformation stress" in the

template. The best �t con�guration is found by minimizing the energy functional, and the

minimum value also serves as a closeness value for the match.

A related deformable template approach uses a global head model de�ned by tens of

individual feature locations [7] [27] [25] to represent the appearance of human faces. During

a match, the model is aligned to the image by varying individual feature locations. In

another related approach, Terzopoulos and Waters [92] have used an active contour model

of snakes to represent human facial features and track them across image sequences.

1.3.4 Image Feature Invariants

In the invariants approach, the key is to �nd a class representation that holds true even

as the target varies in shape, or as the target is viewed under di�erent pose and lighting

conditions. If such a representation exists, then the matching process in object detection is

quite simple. We compute the invariant representation at all candidate image locations and

report a match wherever the local image pattern satis�es the invariance condition. Clearly,
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this approach is only possible if one can �nd object features that are truly independent of

pose, shape deformation and imaging conditions. When such features do exist howeever, this

technique is often preferable to the view-based and deformable template-based approaches,

because an invariance-based representation tends to be much simpler than a view-based or

a deformable template-based model.

One example of pose-invariant features, useful for detecting only speci�c rigid objects, is

based on a relative distance idea called cross ratios. Consider four collinear points A, B, C

and D, let AB denote the planar distance between points A and B in the image, and so on.

It can be shown that the cross ratio AB
AC

� AD
BD

is invariant with respect to pose. Forsyth et.

al. [34] have generalized the above observation to develop geometric invariants of a similar


avor for 3D planar objects using contour and point features. The same idea, however,

does not extend well to more complicated and semi-rigid 3D objects. For instance, Clemens

and Jacobs (cite) have shown that for non-planar 3D objects de�ned by an arbitrary set of

feature points, there are no geometric invariants.

A closely related idea to geometric invariants on coutour and point features is that of

spatial invariants on image regions. One such scheme is based on image intensity invariants

between di�erent parts of a speci�c object or objects in a target class. The underlying

assumption is that while illumination, shape deformation and other variations can signif-

icantly alter image brightness values at di�erent parts of an object in a target class, the

local ordinal structure of brightness distribution remains largely unchanged. Sinha [84] has

applied this idea to the problem of detecting human faces under varying lighting conditions.

He showed empirically that pairs of regions exist on a human face, where the average bright-

ness of one region is consistantly brighter or darker than the other. For example, the eye

regions of a face are almost always darker than the cheeks and the forehead, except possibly

under some very unlikely lighting conditions. Similarly, the bridge of the nose is always

brighter than the two 
anking eye regions. To exploit these image intensity invariants for

�nding faces, Sinha encodes these obseerved brightness regularities as a ratio template which

he uses to pattern match an input image for faces. The ratio template is a coarse spatial

template of a face with a few appropriately chosen sub-regions that roughly correspond to

key facial features. The brightness constraints are captured by a set of pairwise brighter-

darker relationships between the corresponding sub-regions. An image pattern matches the

template if it satis�es all the pairwise brighter-darker constraints.
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The color distribution of a speci�c object can also be used as an invariant feature.

Swain and Ballard [91] use a histogram of image colors to perform indexing into a library

of objects. They use this stage to reduce the number of possible target object hypotheses

prior to more detailed matching.

1.4 Example-based Learning for Object and Pattern Detec-

tion

Example-based learning is an area of research that has captivated the interest of many

technologists, scientists and mathematicians over the last decade. The �eld deals with

models of memory retrieval and techniques for empirically discovering complex relation-

ships in sparse data. The learning approach to \software development" is fundimentally

di�erent from the traditional programmed computing approach. In example-based learning,

a \programmer" trains a system to perform an information processing task by providing

the system with input features measurements and corresponding output values of the task.

The system \learns" the task from the input-output examples the programmer provides

by adaptively modifying its state to implement an appropriate mapping. Example-based

learning techniques have been used in many areas ranging from stock market prediction and

signal processing to motor control in robots. It is this idea of training machines instead of

having to actually program them that makes learning especially appealing in areas where

general algorithms for dealing with problems are still relatively unavailable.

In this thesis, we formulate the detection problem for spatially well-de�ned objects and

pattern classes as learning to recognize instances of a target pattern class from example

image feature measurements. Here, we are using learning methods to complement human

knowledge for capturing complex variations in the image appearance of objects and patterns.

The learning task is performed in an appropriate feature space of image measurements. The

exact choice of image features depends largely on the particular problem at hand. For some

object classes, it may be most convenient to use view-based image features. For other

pattern classes, the learning problem may be much simpler with feature measurements

derived from a transformed image domain, such as a local 2D power spectrum. We shall

look at some reasonable heuristics for choosing appropriate feature measurements later in

Chapter 3.

26



The key idea behind our learning-based object and pattern detection approach is as

follows: Rather than trying to manually parameterize all the complex image variations of

a target pattern class, we simply collect a su�ciently large number of sample views for

the pattern class we wish to detect, covering all possible sources of image variation we

wish to handle. We then choose an appropriate feature space to represent the pattern

class as a distribution of all its permissible image appearances. Finally, we train a decision

procedure to correctly identify instances of the target pattern class from background image

patterns, based on a set of distance measurements between the input pattern and the

distribution-based class representation in the chosen feature space. During training, the

decision procedure learns from example target and background patterns a set of operating

thresholds and parameters that performs the desired classi�cation task.

Our learning-based approach has the following advantages over existing object and pat-

tern detection techniques: First, the distribution-based modeling scheme does not rely much

on domain speci�c knowledge or special hand-craft techniques to accurately parameterize

the patterns we wish to describe. This immediately eliminates one potential source of mod-

eling error | that due to incomplete or incorrect knowledge. Unlike deformable template

approaches or image invariance techniques whose object models are based heavily on prior

knowledge and assumptions, our modeling scheme essentially builds models that describe

an empirical distribution of sample patterns. So as long as we provide our scheme with a

su�ciently comprehensive sample of training views, we can expect our distribution-based

models to be more accurate and more descriptive than the manually synthesized represen-

tations examined earlier.

Second, unlike most non learning-based object detection approaches that typically ob-

tain their operating parameters and thresholds manually from a few trial cases, our scheme

derives its classi�er parameters and thresholds automatically from a large number of input-

output training examples. This makes our scheme potentially superior in two ways: (1)

Given any decision procedure with free thresholds and parameters to learn, we can expect

our scheme to arrive at a statistically more reliable set of operating values because it is

able to process a wider sample of training data automatically. (2) Because our scheme

automatically learns thresholds and parameters, it can be easily made, if necessary, to learn

high-dimensional and non-linear relationships on feature measurements for identifying the

target class from background patterns. These relationships, even if they do exist, may be
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too complex for human observers to discover manually.

Third, our approach is better suited for building increasingly robust and arbitrarily

complex pattern detection systems. Because our approach uses an example-based repre-

sentation scheme and training methodology, one can, in principle, make existing detection

systems more robust in our approach by simply increasing the number and variety of train-

ing examples. Both false positive and false negative detection errors can be easily corrected

by further training an existing system with the patterns it wrongly classi�es. The same may

not be true for systems based on other classical object detection techniques, whose perfor-

mance is often limited by �nite human knowledge and concepts that can be conveniently

expressed as computer algorithms. Functionality wise, systems based on our approach can

also be highly extensible. To detect objects and patterns over a wider range of conditions,

one can, in principle, re-train a system with a larger example database that covers all the

new sources of image variation one wishes to handle.

We now review some key issues and ideas from example-based learning, which we shall

utilize in our local object and pattern detection approach.

1.4.1 Example-based Learning and Function Approximation

Learning from examples is a common supervised-learning paradigm that hypothesizes a

target concept given a stream of input-output examples that describes the concept. In

the domain of real numbers, the task of learning an input-output \concept" from a set of

examples is essentially equivalent to approximating a multivariate function that (1) maps

input examples onto their respective output values, and (2) reasonably interpolates between

output values at regions of the input space where no examples are available [71].

The learning problem can thus be more formally stated as follows: Let D = f(~xi; yi) 2
<d � <ji = 1; : : : ; ng be a set of n data points sampled from an unknown multivariate

function f(~x), possibly in the presence of noise. The task is to recover the function f(~x), or

at least a reasonable estimate of it, by means of an approximation function from a function

class F (~w; ~x), parameterized by the vector ~w. For a �xed function class F , the problem

is then to �nd the set of parameters ~w that best approximates f(~x) based on information

from the set of \examples" D.
Clearly, how well one can approximate an unknown target function f(~x) depends heavily

on the following two factors:
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1. The function class F (~w; ~x). Needless to say, it is very important to choose an

approximation function class F that can represent the unknown target function f

su�ciently well. There would be little point in trying to recover f(~x), if the chosen

approximation function class F (~w; ~x) only gives a very poor representation of f(~x)

even with optimal parameter values. The choice of which function class, F , to use

is known as a representation problem. Some popular network-based function classes

with universal approximation properties include multilayer perceptron nets [67] [77]

and radial basis function nets [62] [71]. A closely related issue is the complexity of

the approximation function class, which is often measured by the number of free

parameters in ~w. A more complex function class usually has a better chance of

approximating an unknown target function well. However, it also requires a larger

number of data samples to arrive at a reasonable approximation for predicting unseen

data (see [66] for the case of radial basis function nets).

2. The data sample D. The accuracy of an approximation also depends on the quality
of data in D, i.e. the quality of available information about the unknown target

function f . A larger data sample charts the output value of f at more input locations,

and hence conveys more information about f . It is well known in learning theory that

as the complexity of the approximation function class F increases, one must also

increase the number of data samples in D to avoid large approximation errors due to

over�tting. The distribution of data samples is another critical aspect of D that has

often been overlooked in example-based learning. Ideally, we want a well distributed

data sample that provides a balanced representation of f . If the learning objective

is to closely approximate the unknown target function f at all input locations, then

there is little point in collecting a lot of data at one input location while ignoring

other input locations. Similarly, there is no point in collecting a lot of data at input

locations where the chosen function class F is slowly changing.

We shall pay very close attention to the problem of obtaining high quality data samples in

our learning-based object and pattern detection approach.
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1.4.2 Pattern Classi�cation as a Function Approximation Problem

We have argued that an object detection task can be formulated as a pattern classi�cation

problem. One can approach pattern classi�cation as learning an approximation function for

predicting the class identities of input patterns. Consider a 2-way classi�cation task that

operates on input domain X with output classes W = fw0; w1g. For each input pattern

x 2 X , let zx 2 W be the true class label for x. Recall that the goal of pattern classi�cation

is to construct a functional mapping, F : X 7! W , such that F(x) = zx for all input

patterns x 2 X .
The classi�er F can be implemented as a real-value target function f that computes the

following conditional probability density: f(x) = P (zx = w1jx). We have:

F(x) =

8><
>:
w1 if f(x) = P (zx = w1jx) > 0:5

w0 otherwise

To construct F , we simply learn the conditional probability density function f from ex-

amples. In practice, it may not even be necessary to learn the full conditional probability

distribution function f(x) = P (zx = w1jx). Any regression function that interpolates rea-

sonably between the available data samples should su�ce. The training data set D consists

of (x; y) pairs in X � [0:0; 1:0]. Each x 2 X is an example input pattern in the original

problem domain. The corresponding output y value is 1:0 if zx = w1, and 0:0 if zx = w0.

1.4.3 Exploiting Prior Knowledge in Learning

A common pitfall in example-based object detection approaches, and more generally example-

based learning problems, is that there may not enough training examples available to learn

the problem well. Recall that in order to accurately represent an unknown target function

f(~x), one must use an approximation function class F(~w; ~x) of su�cient complexity. In

doing so however, one also needs a su�ciently large number of data samples to avoid large

approximation errors due to over�tting. With too few training examples, an object detec-

tion scheme may not generalize properly, and hence may not be able to identify variations

of the target object that appear too di�erent from the training views. To overcome this

potential pitfall, we explore ways of using domain dependent prior knowledge to arti�cially

expand the training data set by generating virtual examples [73] of the target object. Here,
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we are assuming that with the addition of virtual training examples, we have a denser

sample of training data which helps an object detector generalize better.

Some recent pieces of work have used the idea of virtual examples to generate novel image

views of objects and patterns. In an early demonstration, Poggio and Vetter [73] showed

that for bilaterally symmetric objects, one can use knowledge of symmetry to generate a

virtual view of an object from a single real view. The virtual view is simply the mirror image

of the real view. Since then, Beymer and Poggio [11] have further developed the virtual

views idea in a variable-pose face recognition approach that builds models using only one

example view of each person. They show that one can learn mappings that transform faces

from a standard pose to one of many virtual poses. One can think of these learned mappings

as prior information about the structure of faces. By using these mappings, they are able

to generate enough example views of a face from a single view to perform pose-independent

face recognition. In hand-printed digit recognition, Simard et. al. [83] showed that one

can greatly improve the correct classi�cation rate of digit recognizers by training with

additional virtual examples of hand-printed digits. To generate virtual examples of digit

patterns, they use a set of simple a�ne transformations and morphological operations, based

on prior knowledge that the identity of digits do not change under these transformations.

The idea of virtual examples is closely related to hints, a framework proposed by Abu-

Mostafa [2] [3] for exploiting prior knowledge in example-based learning. In example-based

learning, the goal is to represent an unknown target function f by means of an approxima-

tion function from the class F . A hint is any prior information that helps reduce the size

of F , thus making the learning task easier with fewer functions to consider.

One type of hint which best describes the idea of virtual examples, assumes that the

function f is invariant over known partitions of the input space. That is, if ~x and ~x0 are two

input patterns belonging to the same partition, then f(~x) = f(~x0). Abu-Mostafa showed

that the invariance hint can be easily incorporated into a standard backpropagation mul-

tilayer perceptron net training algorithm as follows: For each input-output pair (~x; f(~x)),

backpropagation computes the current network output F(~w; ~x) and feeds back the error

(f(~x)�F(~w; ~x))2 through the network to modify weights ~w. Suppose ~x0 belongs to the same
invariance partition as ~x, then the modi�ed algorithm uses the error (F(~w; ~x)�F(~w; ~x0))2

to update weights as well. In generating virtual examples, one is essentially treating the

operations being used as a set of transformations that de�ne an invariance partition.
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Most learning researchers today would agree that the availability of training examples

is perhaps the most critical constraint in an example-based learning problem. Because

a learner essentially extracts information about its task from training examples, a task

may not be learnable at all if there are too few examples available, and hence too little

information to be extracted. In certain real world scenarios, it may not be practical to

collect a su�ciently large number of training examples due to sampling costs and other

constraints. Sometimes, there may not even be any new examples available at all. Virtual

example generation is thus a very powerful idea, which in extreme scenarios, could even make

an otherwise impractical problem learnable. Because the idea has already been carefully

developed in several recent papers [73] [10] [11], this thesis will only describe brie
y how we

have used the idea in our sample pattern detection applications.

1.4.4 Selecting Useful Examples

In example-based learning, how well a learner eventually turns out depends heavily on the

quality of training examples it receives. Ideally, one would like to have available as large a set

of training examples as possible, in order to guarantee a dense and comprehensive sampling

of the input space. Unfortunately, there are real world constraints that can seriously limit

the size of training databases.

One obvious constraint is that all real computer systems have only a �nite amount

of storage space for data. This means that even for moderately sized learning problems

with an input feature space of a few tens of dimensions, it quickly becomes impossible

to densely sample the input space for training examples. Another major limitation is

the �nite amount of time and computation resource available for training real systems.

Most learning algorithms, including standard backpropagation and other gradient descent-

based optimization schemes, converge in an amount of time that grows at least linearly

in proportion to the number of training examples used. This quickly limits the number

of training examples one can have in a real learning problem. To keep training databases

tractably small while maintaining a representative sample of the input space, we look at

ways of explicitly selecting only useful examples with high information value for training.

Here, we are assuming that one can still generalize comparably well using only a reasonable

amount of computation time and memory resource, by replacing a dense example database

with a smaller but well distributed sample of training patterns.
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Active learning is an area of research that has dealt with the question of how one can

intelligently select useful examples for a learning problem. In active learning, a learner

is allowed to pose queries to a teacher about how the target function behaves in speci�c

regions of the input space. With the additional power of generating intelligent queries,

one can expect active learning techniques to have faster learning rates and better approx-

imation results than traditional example-based learning algorithms. The active learning

idea extends beyond function approximation learning and has appeared in various forms

throughout knowledge engineering and machine learning literature. In computational learn-

ing literature, the �eld also looks at the di�erent types of queries that can be de�ned (see for

example [6]), and how their learning convergence rates compare with traditional random

sampling data selection techniques in a probably approximately correct (PAC) framework

[98].

Our main interest is in connectionist and function approximation approaches toward

active learning. Here, the focus has been on developing principled ways of sampling the

input space for di�erent classes of networks and approximation functions. Some existing

ideas include: selective attention heuristics for training networks [4], boundary hunting

schemes that generate queries near classi�cation boundaries [47] [65] and Bayesean methods

cast in an optimal experiment design framework [58] [24] [88] [86].

In our learning-based object detection approach, we shall look at how one can adapt

these function approximation based active learning techniques, to sieve through extremely

large training databases for useful examples relavant to the learning problem. We shall

devote an entire chapter of this thesis to formulate and discuss the active example selec-

tion idea in depth. Active example selection a�ects the tractability of learning problems.

Although most learning researchers may agree that tractability is usually less of a concern

than learnability in many situations, we shall describe, in this thesis, a real learning scenario

on human face detection, whereby the training data set can grow hopelessly large without

reasonable example selection schemes. In fact, it should be clear from our particular human

face detection scenario, that the example selection issue a�ects learning based approaches

to other similar object and pattern detection tasks as well. Example selection is thus a very

general and pertinent problem, if part of one's goal is to train working systems in reasonable

amounts of time with limited memory and computation resource.
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1.5 Thesis Outline and Contributions

The rest of this thesis describes and analyzes our learning-based technique for detecting

spatially well-de�ned objects and pattern classes. We begin in Chapter 2 by presenting a

human face detection system we have developed using this approach. Human faces make

up a natural and challenging class of spatially well-de�ned 3D objects, and the problem

of �nding them is further complicated if one has to deal with varied lighting conditions.

Here, our goal is twofold. We introduce the key elements of our object detection technique

using a concrete example from a speci�c pattern detection application. We also quickly

demonstrate the power of our approach by showing how well it performs on a reasonably

complex real world problem.

Chapter 3 generalizes from our human face detection system and presents the underlying

framework as a scheme for detecting spatially well-de�ned objects and pattern classes. We

attempt to understand the overall approach in terms of its individual components, their

functionality, limitations and underlying assumptions. Much of our analysis here will be

based an e�ort to identify the critical components of our face detection system, which

includes an empirical study on how the system's performance varies as one changes the

architecture of the various components.

We also show three new applications of our pattern detection approach to demonstrate

its generality and estensibility. The �rst is a direct extension of our human face detection

system to handle a wider range of poses. We present a new but identically structured

system, trained with additional examples covering a wider range of views. The second

application detects a di�erent class of spatially well-de�ned objects | human eyes, to show

that the approach works well for more than just human faces. Although there is less pattern

variability between human eyes than between human faces, the problem is still challenging

because there can be a much wider range of isolated background patterns that resemble

human eyes than human faces. The third application is somewhat di�erent in spirit from

the detection problems considered so far. We look at the problem of recognizing isolated

hand-printed digits using our underlying object and pattern class identi�cation approach.

There has been a lot of work in hand-printed digit recognition over the past twenty to thirty

years, with current state-of-art systems achieving recognition rates comparable to humans.

Our goal in this third application is not an attempt to better the state-of-art performance

34



in isolated hand-printed digit recognition systems. Rather, we wish to demonstrate that

our underlying approach is truly general enough to model and capture localized pattern

variations, even in a totally di�erent problem domain, and on a task that is essentially

pattern recognition and not detection in nature.

In Chapter 4, we take a formal look at one very critical aspect of our learning-based

object and pattern class detection approach | the problem of selecting high utility exam-

ples for training a system. We argue that the example selection task is essentially an active

learning problem, and we propose a function approximation based active learning formula-

tion to show that one can indeed select useful training data in a principled and \optimal"

fashion. While the formulation we propose is computationally intractable in its original

form for a wide range of approximation function classes, we see it as a possible benchmark

for evaluating other active example selection schemes. We then consider a reduced version

of the original active learning formulation that essentially hunts for new data where ap-

proximation \error bars" are high. Furthermore, we show how such a scheme, with minor

modi�cations, can lead to a practical \boot-strap" example selection strategy that we have

adopted in our object detection training methodology. Although the \boot-strap" strategy

loses some of the original active learning 
avor, and may thus be \sub-optimal" in its choice

of new examples, it is nevertheless a very e�ective means of sieving through unmanageably

large sets of potential training data to make learning problems tractable.

Finally, in Chapter 5, we discuss two extensions to our object and pattern detection

technique. The �rst looks at how one can combine the output results of several pattern

detectors to achieve better detection rates with fewer false alarms. Recently, Rowley et.

al. [76] have applied some simple arbitration techniques to a few face detection networks

trained with our example selection methods, and have reported very impressive face de-

tection results. We shall discuss about a more powerful arbitration scheme, called network

boosting [30], that can potentially lead to systems with arbitrarily high correct classi�cation

rates. The second extension is about building hierarchical architectures for dealing with

occlusion, and for detecting pattern classes with less well-de�ned boundaries. Recall from

an earlier discussion that one can detect pattern classes with moderately variable bound-

aries, by de�ning simpler sub-pattern classes that can be easily isolated and identi�ed in

an image. One main di�culty in this approach is to reliably identify and locate full target

patterns from the spatial distribution and composition of these sub-patterns in an image.
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We shall look at some possible techniques for performing such a task.

The contributions of this thesis are as follows:

1. A new framework for detecting spatially well-de�ned objects and pattern classes with

image variations that are di�cult to parameterize. While most of the individual

components within the proposed system architecture are not new, our work is the

�rst attempt at integrating and understanding these separate components as parts of

an overall framework for detecting spatially well-de�ned objects and image patterns.

2. An implementation of a very robust human face detection system, based on our pro-

posed pattern detection scheme. At its time of conception, our system was probably

the state of art implementation for correctly �nding human faces with extremely few

false alarm errors, even in highly cluttered images. We currently know of two later

systems [61] [76] that are based on ideas developed in our face detection approach.

Both systems have have also reported very impressive classi�cation results.

3. A \boot-strap" paradigm for selecting useful training examples and for incrementally

training object and pattern detection systems to arbitrary levels of robustness. Our

object detection approach uses the \boot-strap" paradigm as part of its recommended

example selection and training procedure. We have successfully demonstrated the

paradigm in building our human face detection system, and have shown that the

paradigm is vital for making an otherwise unmanageably complex learning problem

tractable. The \boot-strap" idea is very general and is suitable for training most

highly complex learning architectures and approximation function classes.

4. A highly robust 2-Value distance metric for measuring directionally dependent dis-

tances to a Gaussian mixture sample distribution model. The individual components

of our 2-Value metric correspond to di�erent classi�cation measures that have been

used recently. As far as we know, our work is the �rst attempt to combine the two

measures for pattern classi�cation. We also show how the 2-Value distance metric

relates to classical measures like the Mahalanobis distance and probabilistic models

in a Bayesean framework.

5. The idea of explicitly modeling the distribution of highly informative negative ex-

amples to create additional features for classi�cation. We show empirically that a
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well chosen negative example distribution of a learning problem gives rise to a very

discriminative set of additional classi�cation features for pattern detection. We also

propose two possible interpretations of a negative example distribution in the context

of building distribution-based models for representing large pattern classes.

6. An active learning formulation for example-based function approximation learning.

We propose an optimality criterion for measuring the marginal utility of new data

samples in a function approximation learning problem. We also derive a principled

strategy for sampling new data in an \optimal" fashion based on our proposed utility

measure. Finally, we show how simplifying the original formulation leads to practical

example selection strategies like the \boot-strap" paradigm used by our object and

pattern detection training approach.
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Chapter 2

Learning an Object Detection

Task | Human Face Detection

This chapter introduces our distribution-based modeling cum example-based learning scheme

for detecting spatially well-de�ned objects and pattern classes in images. To help make our

account concrete, we shall focus on a speci�c problem of �nding human faces in cluttered

scenes. We describe the construction of a generic human face detection system based on our

proposed object and pattern detection technique. The system detects vertically oriented

and unoccluded frontal views of human faces in grey-level images. It handles faces over a

wide range of scales and works under di�erent lighting conditions, even with moderately

strong shadows. We stress again, however, that our goal here is to present a general ap-

proach for taking on spatially well-de�ned object and pattern detection tasks in multiple

domains, including hand-printed character recognition, industrial inspection, medical image

analysis and terrain classi�cation. In Chapter 3, we complete the presentation by general-

izing from this speci�c face detection example to highlight again the key components that

make up our object and pattern detection scheme.

2.1 The Face Detection Problem

We begin by brie
y de�ning the human face detection problem. Given as input an arbitrary

image, which could be a digitized video signal or a scanned photograph, determine whether

or not there are any human faces in the image, and if there are, return an encoding of the

location and spatial extent of each human face in the image. An example encoding might
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be to �t each face in the image with a bounding box, and return the image co-ordinates of

the box corners.

A closely related problem to face detection is face recognition. Given an input image of a

face, compare the input face against models in a library of known faces and report if a match

is found. In recent years, the face recognition problem has attracted much attention because

of its many possible applications in automatic access control systems and human-computer

interfaces.

Another very similar problem to face detection is face localization. In this problem, the

input image contains exactly one human face, and the task is to determine the location and

scale of the face, and sometimes also its pose. There are some existing face \detection"

systems that have only been demonstrated on face localization tasks according to our def-

initions of detection and localization (see for example [61] and [55]). In many localization

approaches, the key idea is simply to return the best matching location and scale between

a face model and the input image. These approaches assume that in any image containing

a face, the face region should match the face model best. We believe that face detection

can be a much harder problem than face localization, because in the former, one must not

only have a reasonable face model to describe faces, one also needs an absolute set of match

thresholds to determine whether or not a given image pattern \resembles" the model enough

to be labeled a face.

2.1.1 Motivation

Why is automatic face detection an interesting problem? Applications wise, face detection

has direct relevance to the face recognition problem, because the �rst important step of

a fully automatic human face recognizer is usually one of identifying and locating faces

in an unknown image. So far, the focus of face recognition research has been mainly on

distinguishing individual faces from others in a database. The task of �nding faces in an

arbitrary background is usually avoided by either hand segmenting the input image, or by

capturing faces against a known uniform background.

Face detection also has potential applications in human-computer interfaces and surveil-

lance systems. For example, a face �nder can make workstations with cameras more user

friendly by turning monitors on and keeping them active whenever there is someone in front

of the terminal. In some security and census systems, one could determine the number of
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people in a scene by counting the number of visible human faces.

From the standpoint of this thesis, we are interested in face detection because faces make

up a natural and challenging class of spatially well-de�ned image patterns for demonstrating

and testing our object detection methodology. There are many other object classes and

phenomena in the real world that share similar characteristics, for example di�erent machine

printed and handwritten styles of the character `A', tumor anomalies in MRI scans and

structural defects in manufactured parts. A successful methodology for �nding faces should

generalize well for other spatially well-de�ned pattern and feature detection problems.

2.1.2 Di�culty

Like most object detection problems, face detection is di�cult because there can be signif-

icant face pattern variations that are hard to parameterize analytically. We have identi�ed

three common sources of pattern variations in face images:

1. Di�erences in Facial Appearance and Expression. Although most faces are

similarly structured with the same facial features arranged in roughly the same spatial

con�guration, there can be signi�cant shape and textural di�erences among faces. For

the most part, these elements of variability are due to the basic di�erences in \facial

appearance" between individuals | person `A' has a larger nose than person `B',

person `C' has eyes that are farther apart than person `D', while person `E' has a

darker skin complexion than person `F'. Even between images of the same person's

face, there can still be signi�cant geometrical or textural di�erences due to changes

in expression and the presence or absence of facial makeup.

2. Presence or Absence of Common Structural Features. Face detection is also

made di�cult because certain common but signi�cant features, such as glasses or a

moustache, can either be present or totally absent from a face. Furthermore, these

features, when present, can cloud out other basic facial features (eg. the glare in one's

glasses may de-emphasize the darkness of one's eyes) and have a variable appearance

themselves (eg. glasses come in many di�erent designs). All this adds more variability

to the range of permissible face patterns that a comprehensive face detection system

must handle.
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Figure 2-1: (a): A \canonical" face pattern. (b): A 19 � 19 mask for eliminating near-boundary
pixels of canonical face patterns. (c): The resulting \canonical" face pattern after applying the mask.

3. External Imaging Factors. Face detection can be further complicated by un-

predictable imaging conditions in an unconstrained environment. Because faces are

essentially 3-dimensional structures, a change in light source distribution, for instance,

can cast or remove signi�cant shadows from a particular face, hence bringing about

even more variability to 2D images of face patterns.

Clearly, one of the most critical issues in face detection is to devise a reliable scheme that

can accurately account for the wide range of permissible variations in face patterns.

2.2 Approach and System Overview

In this section, we outline our approach for detecting faces in images. Faces are a highly

structured class of image patterns that can be detected by examining only local image

information from within a spatially well-de�ned boundary. We present an overview of a

face detection system, based on a technique that represents and detects image patterns

using only local image measurements.

The detection paradigm works by testing candidate image locations for local patterns

that appear like faces. At the heart of the paradigm is a classi�cation procedure that

determines whether or not a given local image pattern is a face. Our approach formulates the

classi�cation problem as learning to identify faces from annotated examples of face and non-

face patterns. Here, we use learning methods to help capture complex face pattern variations

that may otherwise be di�cult to parameterize by classical programming techniques.

2.2.1 Detecting Faces by Local Pattern Matching
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Figure 2-2: The system's task at each scale. The image is divided into many possibly overlapping
windows. Each window pattern gets classi�ed as either \a face" or \not a face", based on a set of local

image measurements.

Human faces are a highly structured class of objects, with the same key features geo-

metrically arranged in roughly the same fashion. One can treat human faces as a target

class of spatially well-de�ned patterns with very stable boundaries in the image domain.

To detect faces, one can therefore de�ne a �xed shaped semantically stable \canonical"

face notion in the image domain, and use a \template-like" matching paradigm to search

for similar face-like patterns in an image. Figure 2-1(a) shows the canonical face structure

used by our approach. It corresponds to a square portion of the human face whose upper

boundary lies just above the eyes and whose lower boundary falls just below the mouth.

The face detection task thus becomes one of appropriately representing the class of all such

\face-like" image patches, and �nding instances of these patterns in a scene.

The overall search paradigm for faces works as follows: We exhaustively scan an image

for these \face-like" window patterns at all image locations over a range of scales. Figure 2-2

depicts the system's task at one �xed scale. The image is divided into multiple, possibly

overlapping sub-images of the current window size. At each window, the system attempts

to classify the enclosed image pattern as being either \a face" or \not a face". Each time

a \matching" window pattern is found, the system reports a face at the window location,

and also returns the scale as given by the current window size. We handle multiple scales
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Figure 2-3: The key components of the face pattern identi�cation procedure in greater detail. The face

pattern identi�cation procedure classi�es new patterns as \faces" or \non-faces". The algorithm uses
a distribution-based model to represent the space of all possible canonical face patterns. For each new

pattern to be classi�ed, it computes a set of \di�erence" measurements between the new pattern and

the canonical face model. A trained classi�er identi�es the new pattern as being either \a face" or \not
a face", based on the set of \di�erence" measurements.

by testing window patterns of di�erent sizes for these \face-like" properties. The actual

search procedure works by matching a pyramidal representation of the image with a �xed

size \template". To detect faces at a larger scale than the \template" size, our system �rst

resizes the input image by sub-sampling, so that the desired scale corresponds to the �xed

\template" dimensions before searching through the image for matches.

2.2.2 The Face Classi�cation Procedure

Clearly, the most critical and di�cult part of our approach is the algorithm for identifying

window patterns as \faces" or \non-faces". A good identi�cation procedure must not only

correctly label all valid face patterns as faces. It must also reject all background window

patterns as non-faces. The task becomes especially complex if one has to deal with both a

wide variety of faces and background patterns.

The rest of this chapter focuses on the identi�cation procedure which makes up the crux

of our detection scheme for spatially well-de�ned objects and pattern classes. Figure 2-3

shows the key components of the procedure. Basically, the approach is one of appropriately

modeling the distribution of canonical face patterns in a reasonably chosen image feature

space, and learning a functional mapping of input feature measurements to output classes
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from a representative set of \face" and \non-face" window patterns. More speci�cally, our

approach works as follows:

1. Choosing an appropriate feature space for representing and detecting faces.

Because face patterns are relatively stable in the image domain, we choose to represent

and detect faces directly in a normalized and appropriately masked 19 � 19 pixel

image feature space (see Figure 2-1). All window patterns of di�erent dimensions

must �rst be re-scaled to this size and masked before further processing. Matching

with a �xed sized window simpli�es our algorithm because it allows us to use the

same classi�cation procedure for all scales. The masking operation applies some prior

domain knowledge to the matching problem by ignoring certain near-boundary pixels

that may fall outside the spatial boundaries of a face.

2. Building a distribution-based model to represent faces. Using a database

of canonical \face" window patterns and a similar database of \non-face" window

patterns, we construct a distribution-based model of canonical face patterns in the

masked 19�19 dimensional normalized image vector space. Our modeling scheme uses
a few \face" pattern prototypes to piece-wise approximate the distribution manifold

of canonical face patterns in the masked 19� 19 dimensional image feature space. It

also uses a few \non-face" pattern prototypes to help capture the concavities in the

distribution manifold more accurately. Together, these \face" and \non-face" pattern

prototypes serve as a distribution-based model for the class of canonical face views.

The \face" pattern prototypes are synthesized o�ine by performing clustering on the

example database of \face" window patterns, and the \non-face" prototypes are sim-

ilarly synthesized from the database of \non-face" window patterns. The prototypes

are hard-wired into the face detection system at compile time. Each prototype is a

multi-dimensional Gaussian cluster with a centroid location and a covariance matrix

that describes the local data distribution around the centroid.

3. De�ning a set of measurements for comparing new patterns with the

distribution-based face model. For each new window pattern to be classi�ed,

we compute a set of image measurements as input to a \face" or \non-face" deci-

sion procedure. Each set of image measurements is a vector of distances from the

new window pattern to the window pattern prototypes in the masked 19 � 19 pixel
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image feature space. To compute our vector of distances, we de�ne and use a new

\Mahalanobis-like" distance metric for measuring the distance between the input win-

dow pattern and each prototype center. The distance metric takes into account the

shape of each prototype cluster, in order to penalize distances orthogonal to the local

data distribution. The resulting vector of distances coarsely encodes the new window

pattern's location relative to the overall distribution of canonical face patterns in the

image feature space. It serves as a notion of \di�erence" between the new window

pattern and the class of all canonical face patterns.

4. Learning a set of classi�cation thresholds for identifying face patterns. We

train a multi-layer perceptron (MLP) net to identify new window patterns as \faces"

or \non-faces" based on their vector of distance measurements to the window pattern

prototypes. When trained, the multi-layer perceptron net takes as input a vector of

distance measurements and outputs a `1' if the vector arises from a face pattern, and

a `0' if otherwise.

The remaining sections in this chapter will look at the window pattern identi�cation ap-

proach in greater detail.

2.2.3 More E�cient Search Strategies

A �nal remark about our overall face detection approach: We see a \template" based match-

ing approach like ours as having two highly important but nevertheless very independent

parts. The �rst is an algorithm for identifying window patterns as \faces" or \non-faces",

which is the main focus of this thesis and our proposed object and pattern detection ap-

proach. This component is critical for generating correct face detection results. The second

is a search strategy that uses the window pattern identi�cation scheme to look for faces in

images. This component is important primarily for e�ciency reasons.

For the second component, our current implementation uses a very naive search paradigm

that exhaustively scans an image for faces over all possible locations and scales. Compu-

tational e�ciency aside, our exhaustive search paradigm is an excellent test framework for

the window identi�cation procedure. Basically, the results we get from exhaustive testing

show the outcome of applying the identi�cation test at all locations and scales in an in-

put image. To obtain good detection results, the test procedure must not only correctly
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label face patterns; it must also correctly reject a very wide variety of non-face background

patterns.

A more e�cient search paradigm will be vital for building real applications with limited

computation resource. For the purpose of this thesis however, we shall not dwell any deeper

into the issue of smarter search strategies, other than to highlight some existing ideas used

in similar object and pattern detection problems. Su�ce to say, our work will only bene�t

from smarter search paradigms in terms of producing the same correct results with less

computation, as long as these \smarter" paradigms only reduce the number of irrelevant

background patterns to consider, without wrongly discarding any face patterns.

We now look at two main approaches for implementing smarter object detection search

strategies. Both approaches act as focus of attention mechanisms that quickly highlight

image locations likely to contain the target object, hence reducing the total amount of irrel-

evant search. Clearly, these techniques would only be useful if they are also computationally

inexpensive. In particular, the amount of overhead they incur should be negligible when

compared to the amount of computation they save by not performing exhaustive search.

1. Data driven techniques. In this class of approaches, one extracts simple structural

or textural features from an input image, and uses their distribution or spatial ar-

rangement to hypothesize likely image locations containing the target object. Some

examples of work in this area can be found in classical geometric model-based object

recognition and localization literature, such as the interpretation tree based algorithms

by Grimson and Lozano-P�erez [39] [38] [41] [42]. To detect objects, these algorithms

use edge-based features to quickly generate a small number of likely image locations

containing the object, before applying more expensive test procedures to verify their

presence. Reisfeld et. al. [75] have used cheap local symmetry measurements to focus

on image regions likely to contain faces. Yang and Huang [103] have a multi-staged

face �nding approach in which the �rst stage quickly isolates smooth and compact

image regions as candidate locations for further testing. Where color information is

available, one can also limit search to image regions whose colors are consistent with

faces.

2. Gradient descent techniques. These techniques sample an image on a sparse grid

and look for better matches by performing gradient descent in the local search space if
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the initial match is reasonable. Betke and Makris [9] have demonstrated a stochastic

version of this approach on locating tra�c signs in noisy images. Gradient descent

techniques are useful only if their match procedures have large capture zones in the

search space.

When dealing with image sequences in a stationary background, one can take advantage

of additional simplifying assumptions to reduce search, such as using motion cues to infer

the location and scale of faces in an image.

2.3 De�ning a Stable Feature Space

We now examine the key components of our window pattern identi�cation procedure. The

�rst step of desigining a window pattern identi�cation procedure is to de�ne an appropriate

feature space for representing faces and performing matches. Ideally, we want a feature

space in which the target pattern class (i.e. the class of \canonical" face patterns) has a

continuous and smoothly varying distribution. As we shall see later, our entire pattern

detection approach assumes strongly that we are indeed working in such a feature space.

Because faces are highly structured in the image domain, and face patterns with minor

spatial or grey-level variations still look like valid face patterns, we choose a view-based

feature space to model and detect faces. Our view-based feature space is a space of appro-

priately masked and normalized 19 � 19 pixel image patterns. Masking eliminates a �xed

set of pixels from each 19 � 19 pattern. Each unmasked pixel can thus be viewed as an

independent vector dimension, and the dimensionality of the full feature space equals the

number of unmasked pixels. Normalization compensates for certain sources of image vari-

ation that do not a�ect the identity of window patterns. It reduces that range of possible

window patterns the subsequent stages have to consider, thus making the window pattern

identi�cation task easier.

The following sequence of image operations maps an arbitrarily sized square window

pattern into our view-based feature space:

1. Window Resizing. We use a �xed sized 19�19 view-based feature space to represent
and identify face patterns. This operation re-scales square window patterns of di�erent

sizes to 19 � 19 pixels. We choose a 19 � 19 standard window size to keep the
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dimensionality of the resulting feature space manageably small, but also large enough

to preserve structural details that distinguish face patterns from non-face patterns.

2. Masking. We use the 19� 19 binary pixel mask in Figure 2-1(b) to eliminate some

near-boundary pixels of each window pattern. For \face" patterns, these masked

pixels usually correspond to background pixels irrelevant to the description of a face

(see Figure 2-1(c)). Eliminating these pixels ensures that our subsequent modeling

scheme does not wrongly encode any unwanted background structure in our canonical

face representation. It also reduces the dimensionality of our image feature space,

which helps to make the modeling and face pattern identi�cation tasks a little more

tractable.

3. Illumination gradient correction: This is a normalization operation that subtract

a best-�t brightness plane from the unmasked window pixels. For face patterns, it

does a fair job at reducing the strength of heavy shadows caused by extreme lighting

angles.

4. Histogram equalization: This is another normalization operation that adjusts

for several geometry independent sources of window pattern variation. Some e�ects

it accounts for include changes in illumination brightness and di�erences in camera

response curves.

2.4 A Distribution-based Face Model

Our window classi�cation algorithm identi�es faces by transforming new window patterns

into our view-based feature space and comparing the transformed window patterns with a

canonical face model. A window pattern is declared a \face" if the match is good. This

section describes our canonical face model. We use a distribution-based modeling scheme

that tries to represent frontal faces as the set of all masked and normalized 19 � 19 pixel

patterns that are canonical face views. More speci�cally, our distribution-based modeling

scheme works as follows: Recall that we are operating in a view-based feature space of

masked and normalized 19 � 19 pixel patterns. Suppose we treat each 19 � 19 image

pattern as a point in our view-based feature space, then the set of all 19�19 pixel canonical
face patterns maps to a �xed region in this space. So, in theory, one can model the class of
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all canonical face views by identifying the portion of this multi-dimensional feature space

that corresponds to canonical face patterns, and representing the region in some tractable

fashion.

2.4.1 Identifying the Canonical Face Manifold

In practice, one does not have the set of all 19� 19 pixel canonical face patterns to recover

the sub-space of canonical face views exactly. Figure 2-4 explains how we localize and repre-

sent the region of canonical face patterns with limited data. Basically, we use a reasonably

large example database of canonical face patterns and a carefully chosen database of non-

face patterns to infer the spatial extent of canonical face views in the multi-dimensional

view-based feature space. We assume that our \face" database contains a su�ciently rep-

resentative sample of canonical face patterns that adequately populates the actual vector

sub-space of canonical face views. So by building a model of the \face" sample distribution,

one can still obtain a coarse but fairly reliable representation of the actual canonical face

manifold.

Our \non-face" data samples are specially selected patterns that lie near the boundaries

of the canonical face manifold. We use the \non-face" patterns to help localize and re�ne

the boundaries of the canonical face manifold by explicitly carving out regions around the

\face" sample distribution that do not correspond to canonical face views. We shall explain

how we synthesize our special database of \non-face" patterns in Section 2.6.2.

2.4.2 Representing the Face Distribution

A Single Linear Sub-Space Representation | A Poor Model

One can model the \face" pattern distribution by �tting the face data sample with a single

multi-dimensional Gaussian cluster, consisting of a centroid location and a full covariance

matrix. The view-based eigen-space approach to face detection by Pentland et. al. [69]

is a special case of this modeling technique. The eigen-space approach assumes that all

face patterns occupy a low dimensional linear sub-space in the 19 � 19 pixel view-based

feature space, and penalizes test patterns according to their Euclidean distance to the lin-

ear sub-space. This linear sub-space description is equivalent to a single multi-dimensional

Gaussian cluster approximation with in�nitely large eigenvalues in a few eigenvector di-
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Figure 2-4: Our distribution-based canonical face model. Top Row: We use a representative sample of

canonical face patterns to approximate the volume of canonical face views in a masked 19� 19 pixel image
vector space. We model the \face" sample distribution with 6 multi-dimensional Gaussian clusters. Center

Row: We use a selection of non-face patterns to help re�ne the boundaries of our Gaussian mixture

approximation. We model the \non-face" sample distribution with 6 Gaussian clusters. Bottom Row:

Our �nal model consists of 6 \face" clusters and 6 \non-face" clusters. Each cluster is de�ned by a centroid

and a covariance matrix. The 12 centroids are shown on the right. Note: All the distribution plots are

�ctitious and are shown only to help with our explanation. The 12 centroids are real.

50



Figure 2-5: (a): An illustration to show that a singleGaussian cluster can be a very poor representation
for an arbitrarily shaped \face" pattern distribution. (b): The two distance components we use in our

scatter plots. The �rst component D1 is a distribution dependent distance between a test pattern and

the multi-dimensional Gaussian centroid in a subspace of the cluster's larger eigenvectors. The second
component D2 is the Euclidean distance between the test pattern and the subspace of larger eigenvectors.

rections (those spanning the linear sub-space of faces) and equal �nite eigenvalues in the

remaining eigenvector directions.

As illusrated by our hypothetical example in Figure 2-5(a), a single Gaussian cluster

can be a very poor representation for the \face" pattern distribution if the actual distribu-

tion is not unimodal. We conducted the following experiment to show that this is indeed

the case | i.e., a single Gaussian distribution poorly describes the space of canonical face

views. Using a face sample of 4150 patterns, we modeled the \face" distribution as a single

multi-dimensional Gaussian cluster. We then chose a small number of the cluster's largest

eigenvectors as basis vectors for spanning a \face space", similar in spirit to the eigen-space

approach for representing faces by Pentland et. al. [69]. For each face pattern in the

sample, we resolved its displacement vector from the cluster centroid into two complemen-

tary components (see Figure 2-5(b)). The �rst component is a Distance within Face Space

measure, described in [69]. This component is computed by projecting the face pattern

onto the subspace of larger eigenvectors (i.e. the \face space"), and taking a distribution

dependent distance between its projection and the cluster centroid. The second component

is a Distance from Face Space measure, also descibed in [69]. We use a Euclidean distance
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Figure 2-6: Scatter plots to show that a single Gaussian cluster approximation poorly describes the
space of canonical face views.

between the face pattern and the subspace of larger eigenvectors. We also collected some

non-face patterns and similarly resolved their displacement vectors from the \face" cluster

centroid into the same two distance components.

Finally, we plotted the face and non-face sample distributions in a feature space of the

two distance components. Figure 2-6 shows that there is a signi�cant amount of overlap

between the face and non-face distributions in this two distance feature space. The huge

overlapping region suggests that a single Gaussian cluster poorly represents the face distri-

bution, because one cannot separate the face and non-face pattern classes well using simple

feature measurements derived from the representation scheme. We repeated the experiment

by varying the number of eigenvectors spanning the \face space". The distribution scatter

plots were qualitatively very similar for all cases.

A Piecewise Smooth Gaussian Mixture Representation

Our approach approximates the \face" pattern distribution in a piecewise smooth fashion

using a few multi-dimensional Gaussian clusters (6 in our case). This model is reasonable

as long as the actual face pattern distribution is locally linear, even though its global shape

may be arbitrarily complex. Qualitatively, one can view the six \face" clusters as a coarse

distribution-based representation of the canonical face manifold. We also use six \non-face"

clusters to help de�ne boundaries in and around the manifold by carving out nearby regions

in the vector space that do not correspond to face patterns. Each prototype cluster is a

multi-dimensional Gaussian with a centroid location and a covariance matrix that describes
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the local data distribution.

We believe our piecewise smooth modeling scheme is reasonable because the actual

face pattern manifold appears continuous and smoothly varying in our multi-dimensional

image feature space. More often than not, a face pattern with minor spatial and/or grey-

level perturbations still looks like another valid face pattern. Similarly, a non-face pattern

with minor variations would most likely still appear as a non-face pattern. The piecewise

smooth modeling scheme serves two important functions. First, it performs generalization

by applying a prior smoothness assumption to the observed data sample distribution. This

results in a stored data distribution function that is well de�ned even in regions of the image

vector space where no data samples have been observed. Second, it serves as a tractable

scheme for representing an arbitrary data distribution by means of a few Gaussian basis

functions.

The bottom right image of Figure 2-4 shows the 12 cluster centroids in our canonical face

model. The six \face" prototypes are synthesized by clustering the database of canonical

face patterns, while the six \non-face" prototypes are similarly derived from the database

of non-face patterns.

2.4.3 Modeling the Distribution of \Face" Patterns | Clustering for

Positive Prototypes

We use a database of 4150 normalized canonical \face" patterns to synthesize 6 \face"

pattern prototypes in our multi-dimensional image vector space. The database consists

of 1067 real face patterns, obtained from several di�erent image sources. We arti�cially

enlarge the original database by adding to it slightly rotated versions of the original face

patterns and their mirror images. This helps to ensure that our �nal database contains a

reasonably dense and representative sample of canonical face patterns.

Each pattern prototype is a multi-dimensional Gaussian cluster with a centroid location

and a covariance matrix that describes the local data distribution around the centroid.

Our modeling scheme approximates the observed \face" sample distribution with only a

small number of prototype clusters because the sample size is still very small compared

to the image vector space dimensionality (4150 data samples in a 283 dimensional masked

image feature space). Using a large number of prototype clusters could lead to over�tting

the observed data distribution with poor generalization results. Our choice of 6 pattern
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prototypes is somewhat arbitrary. The system's performance, i.e. its face detection rate

versus the number of false alarms, does not change much with slightly fewer or more pattern

prototypes.

We use a modi�ed version of the k-means clustering algorithm to compute 6 face pattern

centroids and their cluster covariance matrices from the enlarged database of 4150 face

patterns. Our clustering algorithm di�ers from the traditional k-means algorithm in that it

�ts directionally elongated (i.e. elliptical) Gaussian distributions to the data sample instead

of isotropic Gaussian distributions. We adopt a non-isotropic mixture model because we

believe the actual face data distribution may in fact be locally more elongated along certain

vector space directions than others.

To implement our elliptical k-means clustering algorithm, we use an adaptively changing

normalized Mahalanobis distance metric instead of a standard Euclidean distance metric to

partition the data sample into clusters. The normalized Mahalanobis distance metric returns

a directionally dependent distance value between a new pattern ~x (in column vector form)

and a Gaussian cluster centroid ~� (also as a column vector). It has the form:

Mn(~x; ~�) =
1

2
(d ln 2� + ln j�j+ (~x� ~�)T��1(~x� ~�));

where � is the covariance matrix that encodes the cluster's shape and directions of elonga-

tion. The normalized Mahalanobis distance di�ers from the Euclidean distance in that it

reduces the penalty of pattern di�erences along a cluster's major directions of data distri-

bution. This penalty adjustment feature allows the clustering algorithm to form elliptical

clusters instead of spherical clusters where there is a non-isotropic local data distribution.

Section 2.5.2 explains the normalized Mahalanobis distance metric in greater detail.

The following is a crude outline of our elliptical k-means clustering algorithm:

1. Obtain k (6 in our case) initial pattern centers by performing vector quantization

with euclidean distances on the enlarged face database. Divide the data set into k

partitions (clusters) by assigning each data sample to the nearest pattern center in

euclidean space.

2. Initialize the covariance matrices of all k clusters to be the identity matrix.

3. Re-compute pattern centers to be the centroids of the current data partitions.
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4. Using the current set of k pattern centers and their cluster covariance matrices, re-

compute data partitions by re-assigning each data sample to the nearest pattern center

in normalized Mahalanobis distance space. If the data partitions remain unchanged

or if the maximum number of inner-loop (i.e. Steps 3 and 4) iterations has been

exceeded, proceed to Step 5. Otherwise, return to Step 3.

5. Re-compute the covariance matrices of all k clusters from their respective data parti-

tions.

6. Using the current set of k pattern centers and their cluster covariance matrices, re-

compute data partitions by re-assigning each data sample to the nearest pattern center

in normalized Mahalanobis distance space. If the data partitions remain unchanged or

if the maximum number of outer-loop (i.e. Steps 3 to 6) iterations has been exceeded,

proceed to Step 7. Otherwise, return to Step 3.

7. Return the current set of k pattern centers and their cluster covariance matrices.

The inner loop (i.e. Steps 3 and 4) is analogous to the traditional k-means algorithm.

Given a �xed distance metric, it �nds a set of k pattern prototypes that stably partitions

the sample data set. Our algorithm di�ers from the traditional k-means algorithm because

of Steps 5 and 6 in the outer loop, where we try to iteratively re�ne and recover the cluster

shapes as well.

2.4.4 Modeling the Distribution of \Non-Face" Patterns | Clustering

for Negative Prototypes

There are many naturally occuring \non-face" patterns in the real world that look like faces

when viewed in isolation. Figure 2-7 shows one such example. In our multi-dimensional

image window feature space, these \face-like" patterns lie along the boundaries of the canon-

ical face manifold. Because we are coarsely representing the canonical face manifold with

6 Gaussian clusters, some of these face-like patterns may even be located nearer the \face"

cluster centroids than some real \face" patterns. This may give rise to misclassi�cation

problems, because in general, we expect the opposite to be true, i.e. face patterns should

lie nearer the \face" cluster centroids than non-face patterns.

In order to avoid possible misclassi�cation, we try to obtain a comprehensive sample of

these face-like patterns and explicitly model their distribution using 6 \non-face" prototype
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Figure 2-7: An example of a naturally occuring \non-face" pattern that resembles a face. Left: The
pattern viewed in isolation. Right: The pattern viewed in the context of its environment.

clusters. These \non-face" clusters carve out negative regions around the \face" clusters

that do not correspond to face patterns. Each time a new window pattern lies too close

to a \non-face" prototype, we favor a \non-face" hypothesis even if the pattern also lies

near a \face" prototype. Our choice of using exactly 6 pattern prototypes to model the

\non-face" distribution is also somewhat arbitrary, as in the case of modeling the \face"

pattern distribution. The system's face detection rate versus false alarm ratio does not

change much with slightly fewer or more \non-face" pattern prototypes.

We use our elliptical k-means clustering algorithm to obtain 6 \non-face" prototypes and

their cluster covariance matrices from a database of 6189 face-like patterns. The database

was incrementally generated in a \boot-strap" fashion by �rst building a reduced version of

our face detection system with only \face" prototypes, and collecting all the false positive

patterns it detects over a large set of random images. Section 2.6.2 elaborates further on

our \boot-strap" data generation technique.

2.4.5 Summary and Remarks

One of the key di�culties in face detection is to account for the wide range of permissible

face pattern variations that cannot be adequately captured by geometric models, correlation

templates and other classical parametric modeling techniques. Our approach addresses this

problem by modeling the distribution of frontal face patterns directly in a �xed 19 � 19

pixel image vector space. We infer the actual distribution of face patterns in the image

vector space from a su�ciently representative set of face views, and a carefully chosen set of

non-face patterns. The distribution-based modeling scheme statistically encodes observable

face pattern variations that cannot otherwise be easily parameterized by classical modeling
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Figure 2-8: An illustration on how \negative" prototypes can help model concavities in a distribution with

fewer Gaussian basis functions. Left: A hypothetical data distribution in 2 dimensions with a concave
surface. Center: The distribution can be reasonably approximated with one positive Gaussian prototype

encircling the distribution and one negative prototype carving out the concave region. Right: To model

the same distribution with only positive prototypes, one has to use more Gaussian basis functions. The
di�erence in number of basis functions can be a lot larger in a higher dimensional space.

techniques. To generalize from the slow varying nature of the face pattern distribution in

the image vector space, and to construct a tractable model for the face pattern distribution,

we interpolate and represent the observed distribution in a piecewise-smooth fashion using

a few multi-dimensional Gaussian clusters.

Our �nal distribution-based model consists of 6 \face" clusters for coarsely approximat-

ing the canonical face pattern manifold in the image vector space, and 6 \non-face" clusters

for representing the distribution of a specially selected \non-face" data sample. The non-

face patterns come from non-face regions in the image vector space near the canonical face

manifold. We propose two possibly related ways of reasoning about the 6 \non-face" pattern

clusters:

1. The 6 \non-face" clusters explicitly model the distribution of face-like patterns that

are not actual faces | i.e. \near miss" patterns that the face detection system should

classify as \non-faces". They de�ne and represent a separate \near-miss" pattern

class in the multi-dimensional vector space, just like how the 6 \face" clusters encode

a \canonical face" pattern class. Test patterns that fall under this \near-miss" class

are classi�ed as non-faces.

2. The 6 \non-face" clusters carve out regions in and around the \face" clusters that

should not correspond to face patterns. They help shape the boundaries in our Gaus-

sian mixture model of the canonical face manifold. More interestingly, they can also
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help one model concavities in the canonical face manifold with fewer Gaussian basis

functions (see Figure 2-8). This advantage of using \non-face" clusters becomes espe-

cially critical when one has too few face data samples to model a concave distribution

region with a large number of Gaussian \face" clusters.

2.5 Matching Patterns with the Model

To detect faces, our system �rst matches each candidate window pattern in an input image

against our distribution-based canonical face model. Each match returns a set of feature

measurements that captures a notion of \similarity" or \di�erence" between the test pattern

and the face model. At a later stage, a trained classi�er determines, based on the set of

feature measurements, whether or not the test pattern is a canonical frontal face view.

This section describes the set of feature measurements we compute for each new window

pattern. Each set of measurements is a vector of 12 distances between the test window

pattern and the model's 12 cluster centroids in our multi-dimensional image feature space

(see Figure 2-9(a)). One way of interpreting our vector of distances is to treat each distance

measurement as the test pattern's actual distance from some key reference location on or

near the canonical face pattern manifold. The set of all 12 distances can then be viewed as

a crude \di�erence" notion between the test pattern and the entire \canonical face" pattern

class.

2.5.1 A 2-Value Distance Metric

We now de�ne a new metric for measuring distance between a test pattern and a prototype

cluster centroid. Ideally, we want a metric that returns small distances between face patterns

and the \face" prototypes, and either large distances between non-face patterns and the

\face" prototypes, or small distances between non-face patterns and the \non-face" centers.

We propose one such measure that normalizes distances by taking into account both the local

data distribution around a prototype centroid, and the reliability of the local distribution

estimate. The measure scales up distances orthogonal to a cluster's major axes of elongation,

and scales down distances along the cluster's major elongation directions. We argue that

such a distance measure should meet our ideal goals reasonably well, because we expect

most face patterns on the face manifold to lie along the major axes of one or more \face"
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clusters, and hence register small distances with one or more \face" prototypes. Similarly,

we expect most non-face patterns to lie either far away from all the \face" clusters or along

the major axes of one or more \non-face" clusters, and hence either register large distances

with all the \face" prototypes or small distances with some \non-face" prototypes.

Our proposed distance measure consists of two output components (see Figure 2-9(b)).

The �rst value is a Mahalanobis-like distance between the test pattern and the prototype

centroid, de�ned within a lower-dimensional sub-space of our masked 19 � 19 pixel image

vector space. The sub-space is spanned by the 75 largest eigenvectors of the prototype

cluster. This distance component is directionally weighted to re
ect the test pattern's

location relative to the major elongation directions in the local data distribution around

the prototype center. The second value is a normalized Euclidean distance between the test

pattern and its projection in the lower-dimensional sub-space. This is a uniformly weighted

distance component that accounts for pattern di�erences not included in the �rst component

due to possible modeling inaccuracies. We elaborate further on the two components below.

2.5.2 The Normalized Mahalanobis Distance

We begin with a brief review of the Mahalanobis distance. Let ~x be a column vector test

pattern, ~� be a column vector prototype centroid, and � be the covariance matrix describing

the local data distribution near the centroid. The Mahalanobis distance between the test

pattern and the prototype centroid is given by:

M(~x; ~�) = (~x� ~�)T��1(~x� ~�):

Geometrically, the Mahalanobis distance can be interpreted as follows. If one models the

prototype cluster with a best-�t multi-dimensional Gaussian distribution, then one gets a

best-�t Gaussian distribution centered at ~� with covariance matrix �. All points at a given

Mahalanobis distance from ~� occupy a constant density surface in this multi-dimensional

vector space. This interpretation of the Mahalanobis distance leads to a closely related

distance measure, which we call the normalized Mahalanobis distance, given by:

Mn(~x; ~�) =
1

2
(d ln 2� + ln j�j+ (~x� ~�)T��1(~x� ~�)):
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Here, d is the vector space dimensionality and j�j means the determinant of �.
The normalized Mahalanobis distance is simply the negative natural logarithm of the

best-�t Gaussian distribution described above. It is normalized in the sense that it originates

directly from a probability density distribution that integrates to unity. Our modi�ed k-

means clustering algorithm in Section 2.4.3 uses the normalized Mahalanobis distance metric

instead of the standard form because of stability reasons. Notice that for a given spatial

displacement between a test pattern and a prototype centroid, the standard Mahalanobis

distance tends to be smaller for long clusters with large covariance matrices than for small

clusters. So, if one uses a standard Mahalanobis distance metric to perform clustering,

the larger clusters will constantly increase in size and eventually overwhelm all the smaller

clusters.

As a distance metric for establishing the class identity of test patterns, the Mahalanobis

distance and its normalized form are both intuitively pleasing for the following reason: They

both measure pattern di�erences in a distribution dependent manner, unlike the Euclidean

distance which measures pattern di�erences in an absolute sense. More speci�cally, the

distances they measure are indicative of how the test pattern ranks relative to the overall

location of other known patterns in the pattern class. In this sense, they capture very well

the notion of \similarity" or \dis-similarity" between a test pattern and a pattern class.

2.5.3 The First Distance Component | Distance within a Normalized

Low-Dimensional Mahalanobis Subspace

As mentioned earlier, our distance metric consists of 2 output values as shown in Fig-

ure 2-9(b). The �rst value, D1, is a Mahalanobis-like distance between the test pattern

and the prototype center. This distance is de�ned within a 75-dimensional sub-space of

our masked 19 � 19 pixel image vector space, spanned by the 75 largest eigenvectors of

the current prototype cluster. Geometrically, we can interpret the �rst distance value as

follows: The test pattern is �rst projected onto the 75 dimensional vector sub-space. We

then compute the normalized Mahalanobis distance between the test pattern's projection

and the prototype center as the �rst output value. Like the standard Mahalanobis distance,

this �rst value locates and characterizes the test pattern relative to the cluster's major

directions of data distribution.

Mathematically, the �rst value is computed as follows: Let ~x be the column vector test
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Figure 2-9: The measurements returned from matching a test pattern against our distribution-based
model. (a): Each set of measurements is a vector of 12 distances between the test pattern and the model's

12 cluster centroids. (b): Each distance measurement between the test pattern and a cluster centroid

is a 2-value distance metric. The �rst component is a Mahalanobis distance between the test pattern's
projection and the cluster centroid in a subspace spanned by the cluster's 75 largest eigenvectors. The

second component is the Euclidean distance between the test pattern and its projection in the subspace. So,

the entire set of 12 distance measurements is a vector of 24 values.

pattern, ~� be the prototype pattern, E75 be a matrix with 75 columns, where column i is

a unit vector in the direction of the cluster's ith largest eigenvector, and W75 be a diagonal

matrix of the corresponding 75 largest eigenvalues. The covariance matrix for the cluster's

data distribution in the 75 dimensional subspace is given by �75 = (E75W75E
T
75), and the

�rst distance value is:

D1(~x; ~�) =
1

2
(75 ln 2� + ln j�75j+ (~x� ~�)T��175 (~x� ~�)):

We emphasize again that this �rst value is not a \complete" distance measure in our

masked 19 � 19 pixel image vector space, but rather a \partial" distance measure in a

subspace of the current cluster's 75 most signi�cant eigenvectors. The measure is not \com-

plete" in the sense that it does not account for pattern di�erences in certain image vector

space directions, namely di�erences orthogonal in direction to the cluster's 75 most signi�-

cant eigenvectors. We omit the smaller eigenvectors in this directionally dependent distance

measure because we believe that their corresponding eigenvalues may be signi�cantly inac-

curate due to the small number of data samples available to approximate each cluster. For

instance, we have, on the average, fewer than 700 data points to approximate each \face"
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Figure 2-10: Graphs of eigenvalues in decreasing order of magnitude. Left: Decreasing eigenvalues for

6 \Face" clusters. Right : Decreasing eigenvalues for 6 \Non-Face" clusters.

cluster in a 283 dimensional masked image vector space. Using the smaller eigenvectors

and eigenvalues to compute a distribution dependent distance can therefore easily lead to

meaningless results.

Figure 2-10 plots the eigenvalues of our 12 prototype clusters in decreasing order of mag-

nitude. Notice that for all 12 curves, only a small number of eigenvectors are signi�cantly

larger than the rest. We use the following criterion to arrive at 75 \signi�cant" eigenvectors

for each cluster: We eliminate from each cluster the maximum possible number of trailing

eigenvectors, such that the sum of all eliminated eigenvalues is still smaller than the largest

eigenvalue in the cluster. This criterion leaves us with approximately 75 eigenvectors for

each cluster, which we standardize at 75 for the sake of simplicity.

2.5.4 The Second Distance Component|Distance from the Low-Dimensional

Mahalanobis Subspace

The second output value of our distance metric is a standard Euclidean distance between

the test pattern and its projection in the 75 dimensional sub-space. This distance compo-

nent accounts for pattern di�erences not captured by the �rst component, namely pattern

di�erences in the smaller eigenvector directions. Because we may not have a reasonable

estimate of the smaller eigenvalues, we simply assume an isotropic Gaussian sample data

distribution in the smaller eigenvector directions, and hence a Euclidean distance measure.

Using the notation from the previous sub-section, we can show that the second com-
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ponent is simply the L2 norm of the displacement vector between ~x and its projection

~xp:

D2(~x; ~�) = jj(~x� ~xp)jj = jj(I �E75E
T
75)(~x� ~�)jj:

Notice that on its own, the second distance value is also not a \complete" distance

measure in our masked 19� 19 pixel image vector space. Speci�cally, it does not account

for pattern di�erences in the subspace of the cluster's 75 most signi�cant eigenvectors. It

complements the �rst output value to form a \complete" distance measure that captures

pattern di�erences in all directions of our masked 19� 19 pixel image vector space.

2.5.5 Relationship between our 2-Value Distance and the Mahalanobis

Distance

There is an interesting relationship between our 2-Value distance metric and the \complete"

normalized Mahalanobis distance involving all 283 eigenvectors of a prototype cluster 1.

Recall from Section 2.5.2 that the Mahalanobis distance and its normalized form arise from

�tting a multi-dimensional full-covariance Gaussian to a sample data distribution. For

high dimensional vector spaces, modeling a distribution with a full-covariance Gaussian is

often not feasible because one usually has too few data samples to recover the covariance

matrix accurately. In a d dimensional vector space, each full-covariance Gaussian requires

d parameters to de�ne its centroid and another d(d + 1)=2 more parameters to de�ne its

covariance matrix. For d = 283, this amounts to 40469 parameters!

One way of reducing the number of model parameters is to use a restricted Gaussian

model with a diagonal covariance matrix, i.e., a multi-dimensional Gaussian distribution

whose elongation axes are aligned to the vector space axes. In our domain of 19 � 19

pixel images, this corresponds to a model whose individual pixel values may have di�erent

variances, but whose pair-wise pixel values are all uncorrelated. Clearly, this is a very poor

model for face patterns which are highly structured with groups of pixels having very highly

correlated intensities.

An alternative way of simplifying the Gaussian model is to preserve only a small number

of \signi�cant" eigenvectors in the covariance matrix. One can show that a d dimensional

1See [45] for a similar interpretation and presentation. Our explanation here is adapted from theirs.
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Gaussian with h principal components has a covariance matrix of only h(2d � h + 1)=2

free parameters. This can easily be a tractable number of model parameters if h is small.

Geometrically, the operation corresponds to projecting the original d dimensional Gaussian

cluster onto an h dimensional subspace, spanned by the cluster's h most \signi�cant" elon-

gation directions. The h dimensional subspace projection preserves the most prominent

correlations between pixels in the target pattern class. To exploit these pixel-wise correla-

tions for pattern classi�cation, one computes a directionally weighted Mahalanobis distance

between the test pattern's projection and the Gaussian centroid in this h dimensional sub-

space | D1 of our 2-Value distance metric.

The orthogonal subspace is spanned by the d� h remaining eigenvectors of the original

Gaussian cluster. Because this subspace encodes pixel correlations that are less promi-

nent and possibly less reliable due to limited training data, we simply assume an isotropic

Gaussian distribution of data samples in this subspace, i.e. a diagonal covariance matrix

Gaussian with equal variances along the diagonal. The isotropic Gaussian distribution re-

quires only 1 free parameter to describe its variance. To measure distances in this subspace

of isotropic data distribution, we use a directionally independent Euclidean distance | D2

of our 2-Value distance metric.

We can thus view our 2-Value distance metric as a robust approximate Mahalanobis

distance that one uses when there is insu�cient training data to accurately recover all the

eigenvectors and eigenvalues of a Gaussian model. The approximation degrades gracefully

by using its limited degrees of freedom to capture the most prominent pixel correlations

in the data distribution. Notice that as the data sample size increases, one can preserve a

larger number of principal components in the Gaussian model. This results in D1 becom-

ing increasingly like the \complete" Mahalanobis distance with D2 vanishing in size and

importance.

2.5.6 Relationship to Probabilistic Models

Let �i be the ith largest eigenvalue of an unsimpli�ed d dimensional Gaussian model for

a local data distribution, and let h be the number of signi�cant eigenvectors preserved in

the simpli�ed model. The two components of our resulting 2-Value distance metric, D1 and

D2, can be combined into a single \robust" Mahalanobis distance measure,Mh, by taking

their weighted sum as follows:
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Mh = D1 +
d� hPd
i=h+1 �i

D2: (2:1)

The weighting factor, (d�h)=(Pd
i=h+1 �i), can be derived by assuming an isotropic Gaussian

distribution in the orthogonal subspace, spanned by the remaining d � h less signi�cant

eigenvectors. This isotropic Gaussian distribution has a \regularized " variance whose

magnitude is simply the mean of the corresponding d�h smaller eigenvalues. One can also

argue, from an information theoretic point of view, that the weighting factor given above is

an optimal choice that minimizes a Kullback-Leibler divergence cost function between the

unsympli�ed Gaussian model and its robust estimate [61].

The \robust" Mahalanobis distance, Mh, gives rise to a convenient probabilistic in-

terpretation for our 2-Value distance metric. Recall from Section 2.5.2 that the standard

Mahalanobis distance is simply the negative natural logarithm of the best-�t full covariance

Gaussian density approximation for a sample data distribution. The robust Mahalanobis

distance is thus the negative natural logarithm of a best-�t simpli�ed Gaussian approxima-

tion for the same data distribution.

Let A be the object sub-class that generates the local data distribution modeled by

our best-�t Gaussian approximation. Given a new window pattern ~x, the best-�t Gaussian

distribution function computes the likelihood of pattern ~x arising from sub-class calA, i.e.

P (~xjA). Our 2-Value distance metric, when expressed as a single value robust Mahalanobis

distance, can thus be viewed as a negative logarithmic likelihood measure of the test pattern

arising from the local pattern class represented by the underlying Gaussian model.

In a very recent demonstration of a probabilistic learning-based face localization tech-

nique, Moghaddam and Pentland [61] discusses about an optimal estimate for high dimen-

sional Gaussian densities, whose form is the product of two lower-dimensional and inde-

pendent Gaussian densities. This estimate is exactly a re-expression of Equation 2.1 as a

probabilistic likelihood measure.

2.5.7 Relationship between our 2-Value Distance and some PCA-based

Classical Distance Measures

Our 2-Value distance metric is also closely related to the classical distance measures used

by principal components analysis (PCA, also called Karhunen-Loeve expansion) based clas-
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Figure 2-11: The eigen-image model of faces by Turk and Pentland [96] [69]. The approach represents the

space of all face views (i.e. the \Face Space") as a linear combination of several orthonormal eigen-images.

The eigen-images are computed by performing PCA on an example database of face patterns. The modeling
scheme assumes that all face views lie within the \face space", and each face view corresponds to a set

of coe�cients that describes its appearance as a linear combination of the eigen-images. One can use the

coe�cients as features to recognize faces of di�erent individuals. One can also determine whether or not a
test pattern is a face by computing and thresholding d, a measure of how badly the eigen-images reconstruct

the test pattern.

si�cation schemes [32] [35] [93]. We examine two such distance measures below.

A standard way of modeling a 3D object for pattern recognition is to represent its

space of 2D views using a few basis images, obtained by performing principal components

analysis on a comprehensive set of 2D views. The modeling approach assumes that all

possible 2D views of the target object lie within a low dimensional sub-space of the original

high dimensional image space. The low dimensional sub-space is linearly spanned by the

principal components. Each new view of the target object can be represented by a set of

coe�cients that describes the view as a linearly weighted superposition of the principal

components.

Kirby and Sirovich [85] [51] have used principal components analysis methods to build

low-dimensional models for characterizing the space of human faces. As a representative

recent example, let us consider Turk and Pentland's application of PCA techniques to face

recognition [96] and facial feature detection [69]. To optimally represent their \face space",

Turk and Pentland compute an orthonormal set of eigen-images from an example database

of face patterns to span the space. New face views are represented by projecting their image

patterns onto the set of eigen-images to obtain their linear combination coe�cients. Because
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the technique assumes that all face patterns actually lie within the \face space", one can

use the set of linear combination coe�cients as features to parameterize and recognize faces

of di�erent individuals (see Figure 2-11). Similarly, one can determine whether or not a

given pattern is a face by measuring how well or poorly the eigen-images reconstruct the

pattern | i.e., the pattern's distance (d in Figure 2-11) from the \face space" [69].

In another recent application of classical techniques, Burl et. al. [22] have used a di�er-

ent PCA based approach for a terrain classi�cation task on �nding volcanos in SAR images

of Venus. Their system builds a low dimensional view-based volcano model, parameter-

ized by a small number of the largest principal component vectors from an example set of

volcano images (see Figure 2-12). Within this low-dimensional model space, Burl et. al.

further observe that not all reconstructible patterns are actual volcano views; i.e., not all

linear combinations of principal component images are volcano patterns. Thus, to detect

volcanos, they use the set of linear combination coe�cients as classi�cation features, and

learn from examples the range of coe�cient values, i.e. distances within the volcano model

space, that actually correspond to volcano patterns.

One can relate our 2-Value distance metric to the above PCA based classi�cation tech-

niques as follows: Suppose we treat each Gaussian cluster in our distribution-based model

as locally representing a sub-class of \face" or \non-face" patterns, then the cluster's 75

largest eigenvectors can be viewed as a set of basis images that linearly span the sub-class.

Each new pattern in the sub-class corresponds to a set of 75 coe�cients in the model space.

Our distance component D2 is the Euclidean distance between a test pattern and the

cluster's 75 largest eigenvector subspace. Assuming that the 75 eigenvectors are the \basis

views" that span our target sub-class, this distance component measures how poorly the

basis views reconstruct the test pattern, and hence how \di�erent" the test pattern is

relative to the entire target sub-class. This distance is analogous to Turk and Pentland's

distance to \face space" metric (i.e. d in Figure 2-11), which quanti�es the \di�erence"

between a test pattern and the class of face views.

The distance component D1 is a Mahalanobis distance between the cluster centroid

and a test pattern's projection in the 75 largest eigenvector subspace. Here, we implicitly

assume, like Burl et. al., that not all reconstructible patterns in our 75 eigenvector model

space are views of the target sub-class, and that all views of the target sub-class are located

within a certain Mahalanobis distance from the cluster centroid. This constrains the range
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Figure 2-12: The view-based model of volcanos by Burl et. al. [22]. The approach assumes that the set

of all volcano patterns lies within a low dimensional model space, spanned by a small number of the largest

principal component vectors from a volcano image database. Each pattern in the model space corresponds
to a set of coe�cients that describes the pattern's appearance as a linear combination of the principal

component images. Not all linear combinations of principal component images are volcano patterns, so one

can detect volcanos by learning from examples the range of coe�cient values that corresponds to volcanos.

of model coe�cients that correspond to actual target patterns, just like how Burl et. al.

constrain by learning their range of model parameters that correspond to actual volcano

views.

Thus, our D1 and D2 distance measurements correspond to di�erent classical classi�ca-

tion criteria used also recently. As far as we know, our work, as reported in an earlier paper

[89], presents the �rst attempt at combining these two measures for pattern classi�cation.

2.6 The Classi�er

The classi�er's task is to identify \face" test patterns from \non-face" patterns based on

their match feature vectors of 12 distance measurements. Our approach treats the classi�-

cation stage as one of learning a functional mapping from input feature distance vectors to

output classes using a representative set of training examples.

2.6.1 A Multi-Layer Perceptron Classi�er

We use a Multi-Layer Perceptron (MLP) net to perform the desired classi�cation task. The

net has 12 pairs of input terminals, one output unit and 24 hidden units. Each hidden and

output unit computes a weighted sum of its input links and performs sigmoidal thresholding

on its output. During classi�cation, the net is given a vector of the current test pattern's
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Figure 2-13: One of the multi-layer perceptron (MLP) net architectures we trained to identify face

patterns from our vector of distance measurements. The net has 12 pairs of input units to accept the
12 pairs of distance values from our matching stage. When trained, the output unit returns a 1 for face

patterns and a 0 otherwise. Notice that this net has one special layer of hidden units that combines

each 2-Value distance pair into a single distance value. Our experiments show that the detailed net
architecture is really not crucial in this application.

distance measurements to the 12 prototype centers. Each input terminal pair receives the

distance values for a designated prototype pattern. The output unit returns a `1' if the

input distance vector arises from a \face" pattern, and a `0' otherwise.

In our current system, the hidden units are partially connected to the input terminals

and output unit as shown in Figure 2-13. The connections exploit some prior knowledge

of the problem domain. Notice in particular that there is one layer of hidden units that

combines each 2-Value distance pair into a single distance value. Our experiments in the

next chapter will show that the number of hidden units and network connectivity structure

do not signi�cantly a�ect the classi�er's performance.

We train our multi-layer perceptron classi�er on feature distance vectors from a database

of 47316 window patterns. There are 4150 positive examples of \face" patterns in the

database and the rest are \non-face" patterns. The net is trained with a standard back-

propagation learning algorithm [77] until the output error stabilizes at a very small value.

For the particular multi-layer perceptron net architecture in Figure 2-13, we actually get

a training output error of 0. Because we have many more positive and negative training

examples than free parameters in our multi-layer perceptron net, we believe that this low

training error rate is not a result of over�tting the training data. Rather, we believe it shows
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Figure 2-14: Arti�cially generating virtual examples of face patterns. For each original face pattern in our

training database, we can generate a few new face patterns using some simple image transformations. We

arti�cially enlarge our face database in this fashion to obtain a more comprehensive sample of face patterns.

that our \di�erence" notion of 2-Value distances is a very discriminative set of classi�cation

features for separating face and non-face image patterns.

2.6.2 Generating and Selecting Training Examples

In many example-based learning applications, how well a learner eventually performs on

its task depends heavily on the quality of examples it receives during training. An ideal

learning scenario would be to give the learner as large a set of training examples as possible,

in order to attain a comprehensive sampling of the input space. Unfortunately, there are

some real-world considerations that could seriously limit the size of training databases, such

as shortage of free disk space and computation resource constraints.

How do we build a comprehensive but tractable database of \face" and \non-face""

patterns? For \face" patterns, the task at hand seems rather straight forward. We simply

collect all the frontal views of faces we can �nd in mugshot databases and other image

sources. Because we do not have access to many mugshot databases and the size of our

mugshot databases are all fairly small, we do not encounter the problem of having to deal

with an unmanageably large number of \face" patterns. In fact, to make our set of \face"

patterns more comprehensive, we even arti�cially enlarged our data set by adding virtual

examples [73] of faces to the \face" database. These virtual examples are mirror images
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Figure 2-15: Some false detects by an earlier version of our face detection system, marked by solid squares
on the two images above. We use these false detects as new negative examples to re-train our system in a

\boot-strap" fashion.

and slightly rotated versions of the original face patterns, as shown in Figure 2-14.

For \non-face" patterns, the task we have seems more tricky. In essence, every square

non-face window pattern of any size in any image is a valid training example. Collecting

a \representative" set of non-face patterns is di�cult because there are simply too many

possibilities to consider. Even by choosing only non-face patterns from a few source images,

our set of \non-face" examples can still grow intractably large if we are to include all valid

\non-face" patterns in our training database.

To constrain the number of \non-face" examples in our database, we use a \boot-strap"

strategy that incrementally selects only those \non-face" patterns with high information

value. This \boot-strap" strategy reduces the number of \non-face" patterns needed to

train a highly robust face detector. The idea works as follows:

1. Start with a small and possibly highly non-representative set of \non-face" examples

in the training database.

2. Train the multi-layer perceptron classi�er with the current database of examples.

3. Run the face detector on a sequence of images with no faces. Collect all the \non-face"

patterns that the current system wrongly classi�es as \faces" (see Figure 2-15). Add
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these \non-face" patterns to the training database as new negative examples.

4. Return to Step 2.

At the end of each iteration, the \boot-strap" strategy enlarges the current set of \non-

face" patterns with new \non-face" patterns that the current system classi�es wrongly. We

argue that this strategy of collecting wrongly classi�ed patterns as new training examples is

reasonable, because we expect these new examples to improve the classi�er's performance

by steering it away from the mistakes it currently commits. Notice that if necessary, we

can use the same \boot-strap" technique to enlarge the set of positive \face" patterns in

our training database. Also, notice that at the end of each iteration, we can re-cluster our

\face" and \non-face" databases to generate new prototype patterns that might model the

distribution of face patterns more accurately.

In Chapter 4, we shall discuss the example selection issue in greater depth. Active learn-

ing is an area of research that investigates how one can select new training data in a princi-

pled and \optimal" fashion. We propose one such formulation for function approximation-

based learning, and show how such a formulation, with some minor simpli�cations, can lead

to a \boot-strap" example selection strategy like ours. We also present some empirical re-

sults suggesting that a face detection system actually generalizes better when trained with

examples selected by \boot-strapping".

2.7 Experimental Results

We implemented and tested our face detection system on a wide variety of images. Figures 2-

16 to 2-23 show some sample results. The system detects faces over a fairly large range of

scales, beginning with a window size of 19 � 19 pixels and ending with a window size of

100�100 pixels. Between successive scales, the window width is enlarged by a factor of 1:2.

The system writes its face detection results to an output image. Each time a \face"

window pattern is found in the input, an appropriately sized dotted box is drawn at the

corresponding window location in the output image. Notice that many of the face patterns in

Figure 2-16 are enclosed by multiple dotted boxes. This is because the system has detected

those face patterns either at a few di�erent scales or at a few slightly o�set window positions

or both.
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The upper and middle left images of Figure 2-16 show that our system works reliably

without making many false positive errors (none in this case), even for fairly complex scenes.

Notice that the current system does not detect Geordi's face. This is because Geordi's face

di�ers signi�cantly from the notion of a \typical" face pattern in our training database of

faces | his eyes are totally occluded by an opaque metallic visor. The upper and middle

right images demonstrate that system �nds faces successfully across di�erent scales. Finally,

the bottom two images show the system detecting real faces and face drawings.

To quantitatively measure our system's performance, we ran our system on two test

databases and counted the number of correct detections versus false alarms. All the face

patterns in both test databases are new patterns not found in the training data set. The �rst

test database consists of 301 frontal and near-frontal face mugshots of 71 di�erent people.

All the images are high quality digitized images taken by a CCD camera in a laboratory

environment. There is a fair amount of lighting variation among images in this database,

with about 10 images having very strong lighting shadows. We use this database to obtain

a \best case" detection rate for our system on high quality input patterns. Notice that even

though this �rst database contains mostly face images with simple background patterns, we

believe that it is still a good test for gauging our system's ability to successfully recognize

face patterns, because this operation does not depend on the image background appearance.

On the other hand, the database is a poor test set for measuring our system's ability to

correctly reject non-face patterns, because it clearly does not contain a representative sample

of background patterns in real images.

The second database contains 23 images with a total of 149 face patterns. There is

a wide variation in quality among the 23 images, ranging from high quality CCD camera

pictures to low quality newspaper scans. Most of these images have complex background

patterns with faces taking up only a very small percentage of the total image area. This

second database serves two purposes. First, because the images vary greatly in quality,

we use this database to obtain an \average case" successful face detection measure for our

system. Second, because the images are of complex scenes, we also view this database as a

more reliable test for how well our system correctly rejects non-face background patterns.

For the �rst database, our system correctly �nds 96:3% of all the face patterns and makes

only 3 false detects. All the face patterns that it misses have either strong illumination

shadows or fairly large o�-plane rotation components or both. Even though this high
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Figure 2-16: Some face detection results by our system. The upper and middle left images show that

the system �nds faces in complex scenes without making many false detects. The upper and middle right

images show the system working successfully across di�erent scales. The lower two images show that the
same system detects real faces and face drawings equally well.
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Figure 2-17: The system �nds faces successfully without making any false detects in images with highly

textured background patterns.
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Figure 2-18: More face detection results by our system.
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Figure 2-19: More face detection results by our system.
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Figure 2-20: More face detection results by our system.
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Figure 2-21: More face detection results by our system.
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Figure 2-22: The systems �nds every face in this image. It makes four false detects: (1): Near upper
image border directly above second player from the left (top row). (2): Near upper image border directly

above third player from the right (top row). (3): Lower image border between second and third player from

the left. (4): Lower image border beside soccer ball further to the right.
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Figure 2-23: The system misses one face (middle row, second person from the right). It also makes two

false detects: (1): Top row, third person from the right. (2): Lower right image corner on soccer ball.

81



Figure 2-24: Some example images and detection results from the �rst test database. Even though this

database contains mostly face images with simple background patterns, it is still a good test set for gauging

our system's ability to successfully identify face patterns, because this operation does not depend on the
image background appearance.

detection rate applies only to high quality input images, we still �nd the result encouraging

because often, one can easily replace poorer sensors with better ones to obtain comparable

results. For the second database, our system achieves a 79:9% detection rate with only 5

false positives. The face patterns it misses are mostly either from low quality newspaper

scans or hand drawn pictures. We consider this behavior acceptable because the system is

merely degrading gracefully with poorer image quality.

In Chapter 3, we investigate how modifying certain parts of our face detection system

architecture a�ects the system's performance in terms of its face detection rate versus false

alarm ratio. The study is part of an e�ort to identify and characterize the key components

of our face detection system, and more generally, our approach for detecting spatially well-

de�ned objects and pattern classes.

2.8 Other Systems

We conclude this chapter by comparing our work with three other face detection systems.

Like ours, all three systems pass a test window over the input image to determine whether

or not a face exists at each window location. The key di�erence is in the way each system

tests its window patterns for faces.

2.8.1 Sinha

In an early window-based approach for �nding faces, Sinha [84] uses a small set of spatial

image invariants to describe the space of face patterns. He notes that even though windows
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containing face patterns may vary considerably in appearance for a variety of reasons, there

are some spatial image relationships common and possibly unique to all face window pat-

terns. To detect faces, the idea is to compile an appropriate set of these spatial relationships

as invariants, and test for window patterns that satisfy these relationships.

Sinha's image invariance scheme is based on a set of observed brightness invariants

between di�erent parts of a human face. The underlying observation is that that while

illumination and other changes can signi�cantly alter brightness levels at di�erent parts

of a face, the local ordinal structure of brightness distribution remains largely unchanged.

For example, the eye regions of a face are almost always darker than the cheeks and the

forehead, except possibly under some very unlikely lighting conditions. Similarly, the bridge

of the nose is always brighter than the two 
anking eye regions. The scheme encodes these

observed brightness regularities as a ratio template, which it uses to pattern match for faces.

A ratio template is a coarse spatial template of a face with a few appropriately chosen sub-

regions, roughly corresponding to key facial features. The brightness constraints between

facial parts are captured by an appropriate set of pairwise brighter-darker relationships

between corresponding sub-regions. An image pattern matches the template if it satis�es

all the pairwise brighter-darker constraints.

So far, Sinha's invariance-based approach has only been demonstrated on images with

little background clutter. Even though it is unclear how well the approach actually avoids

false positive errors in cluttered scenes, we still �nd the spatial face representation scheme

promising, and were encouraged to pursue a window-based face detection approach.

2.8.2 Moghaddam and Pentland

In a later system after ours, Moghaddam and Pentland [61] present a learning-based object

�nding technique that also models pattern classes by performing density estimation in a high

dimensional space using eigenvector decomposition. These probability densities are then

used to formulate a maximum-likelihood (ML) estimation framework for �nding objects in

images.

Their approach shares some common features with ours. Unlike an earlier scheme [69]

that uses a unimodal Gaussian distribution to model data, their approach, like ours, uses

a multimodel Gaussian mixture to approximate the target data distribution more tightly.

To estimate high dimensional Gaussian densities with limited data, they also use a regu-

83



larization approach that decomposes displacement vectors from a Gaussian centroid into

two complementary components, identical to D1 and D2 of our 2-Value distance metric.

Their approach, however, combines the two distances into a single value robust estimate for

high dimensional Gaussian densities, whose form is the product of two lower-dimensional

and independent Gaussian densities. This robust estimate is exactly a re-expression of

Equation 2.1 as a probabilistic likelihood measure.

So far, Moghaddam and Pentland's approach has only been demonstrated on localiza-

tion problems for human faces and hands. Recall that a localization problem di�ers from

a detection problem in that the input image contains exactly one target object. Because a

localization problem assumes exactly one target object, many localization approaches sim-

ply treat the localization task as searching an image for the location and scale that best

matches a target model. The approaches assume that in any image containing a target

object, the region containing the target object should match the model best. Moghaddam

and Pentland's formulation for their object �nding problem is exactly an object localization

formulation. They cast the object �nding problem as a visual search that returns only the

best matching location and scale between a target model and an input image in a proba-

bilistic maximum likelihood sense. We believe that a detection problem can be much harder

than a localization problem, because in the former, one requires more than just a reasonable

model to describe target patterns. One also needs reliable thresholds to determine whether

or not a match is close enough to be accepted as a target object.

2.8.3 Rowley, Baluja and Kanade

In another recent piece of work after ours, Rowley et. al. [76] report a window-based face

detecion approach that uses a highly constrained retinally connected multi-layer perceptron

net to classify local image patches. Networks with similar architectures and connection

schemes have been previously used in character recognition tasks [28]. To improve perfor-

mance over a single network, the system arbitrates between the output of multiple networks

to obtain a more reliable class prediction for each window pattern. The authors report that

even simple arbitration schemes, like ANDing the output of two networks, helps greatly in

reducing the number of false positives, with perhaps only a small penalty in the number of

missed faces. They argue that this is because individual networks tend to detect roughly

the same set of faces, but generally make di�erent false positive errors. So the number of
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additional missed faces due to an ANDing operation should be small.

Like our technique, their network training procedure also requires a comprehensive but

tractable set of prototypical \non-face" images. They use a \bootstrapping" method like

ours to selectively add non-face patterns to the training set as training progresses. The

\bootstrapping" method helps them reduce the non-face data set to only 9000 examples,

which is a very small and tractable number.

In preparing their database of face patterns, Rowley et. al. also introduces additional

normalization procedures which we neglected when preparing our own face database. They

normalize each original face pattern so that both eyes appear on a horizontal line, and scale

the image precisely so that the distance from a point between the eyes to the upper lip is

�xed for all images. By normalizing the original face patterns, they were able to generate

vitrual face patterns in a more principled fashion.

The individual networks they trained missed only one third the number of face patterns

our system missed on a common test database. However, they each had about an order of

magnitude more false positives than our system. After arbitration with several schemes,

their resulting systems had slightly better detection and false alarm rates than ours.
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Chapter 3

Generalizing the Object and

Pattern Detection Approach

In this chapter, we generalize our frontal-view human face detection approach into a scheme

for detecting spatially well-de�ned objects and pattern classes in images. We begin by re-

viewing the key components of our face detection system architecture within the framework

of a general object and pattern class detection paradigm. The review attempts to under-

stand the overall system design in terms of its individual components, their functionality,

limitations and underlying assumptions. Much of our analysis here will be based on an

e�ort to identify the key components of our face detection system, and design issues that

signi�cantly a�ect the system's performance. We perform this analysis mainly empirically,

by studying how the system's performance varies as one changes the architecture of the

individual components.

To demonstrate that the underlying pattern detection approach in our face detection

system is indeed fairly general, we show three new applications based on the proposed

approach. The �rst is a direct extension of our frontal human face detection system to

handle a wider range of poses. We present a new but identically structured system, trained

with additional face patterns covering a wider range of views. This application suggests

that the approach is well suited for building highly extensible systems, where in principle,

one can simply re-train a system with a larger example database to cover new sources of

image pattern variations that one wishes to handle.

The second application is about detecting a di�erent class of spatially well-de�ned ob-
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jects | human eyes. Our goal here is to show that our proposed object and pattern

detection approach works well for more than just human faces. Although there is less pat-

tern variation between human eyes than between human faces, the eye detection problem is

still challenging because there can be a lot more random background patterns that resemble

eyes than faces, and a successful eye detector must correctly reject these patterns.

The third application deals with a pattern recognition task instead of a pattern detection

problem like those seen so far. Pattern recognition and pattern detection are both instances

of a wider class of computer vision problems, called pattern classi�cation. The issues in-


uencing both recognition and detection tasks can be very similar, and their solutions may

have a lot in common. In this third application, we demonstrate that our proposed ob-

ject and pattern detection approach can be a viable solution for certain pattern recognition

problems as well. Speci�cally, we look at the task of recognizing isolated hand-printed digits

using our underlying object and pattern class identi�cation scheme. There has been a lot of

research in hand-printed digit recognition over the past twenty to thirty years, with current

state-of-art systems achieving recognition rates comparable to humans. We stress again that

our goal here is not an attempt to better the state-of-art performance of hand-printed digit

recognition systems. Rather, we wish to demonstrate that our proposed pattern detection

approach is truly general enough to even model and capture localized pattern variations in

a task that is essentially pattern recognition in spirit.

3.1 Overview of the General Object and Pattern Detection

Approach

In Chapter 2, we introduced our distribution-based modeling cum example-based learning

technique for detecting spatially well-de�ned objects and pattern classes in images, using

a speci�c example problem on human face detection. In this section, we examine once

again the key ideas and components of the underlying approach and system architecture, as

a general scheme for detecting spatially well-de�ned objects and pattern classes. We shall

focus exclusively on the pattern identi�cation procedure within the overall search paradigm,

which we consider as the most critical and di�cult part of our pattern detection approach.

Recall that the pattern identi�cation procedure's task is to correctly label all target input

patterns and reject all background patterns. The task can be extremely complex if one has
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to deal with a wide variety of both target and background patterns. One key di�culty

in dealing with highly varied target and background pattern classes is that often, pattern

variations within each class can be too complex and signi�cant to be adequately captured

by geometric models, correlation templates and other well understood classical parametric

modeling techniques. Our approach addresses this problem by modeling the distribution of

target patterns directly in an appropriately chosen feature space, using a su�ciently large

target pattern sample that covers all the main sources of image variation we wish to account

for. The distribution-based modeling scheme statistically encodes observable target pattern

variations that may not otherwise be easily parameterized by classical modeling techniques.

We then use example-based function approximation schemes to learn a \similarity" measure

between new patterns and the distribution-based target model in the chosen feature space.

Basically, our approach is to synthesize a pattern identi�cation procedure that computes

and thresholds a measure that re
ects the \similarity" between a new test pattern and the

entire class of target patterns.

We now review the key issues and components of our generic object and pattern class

detection approach in greater detail:

3.1.1 De�ning a Suitable Feature Space for Representing Target Patterns

The �rst step in designing a pattern identi�cation procedure is to de�ne an appropriate fea-

ture space for modeling the target pattern distribution and classifying new image patterns.

What makes a feature space suitable for representing and matching image patterns? Since

our ultimate goal is to facilitate pattern classi�cation in an object detection task, an ideal

feature space should be one that maps all target image patterns onto an easily identi�able

region, and all relevant background patterns onto a di�erent region well separated from the

former. A well separated and easily identi�able target pattern distribution can be easily

and accurately represented by simple models. With a tractable representation scheme, the

classi�cation task becomes one of simply determining whether each new image pattern falls

within the target region of the feature space.

For our purpose, we consider a feature space suitable if the target pattern class maps onto

a continuous and smoothly varying sample distribution. One can then use existing density

estimation techniques to obtain a tight but still fairly simple representation of the target

pattern class in the chosen feature space. Because our entire object detection approach is
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based on representing and performing matches with pattern distributions, we believe that

its success depends heavily on the feature space we choose to work in, and in particular,

on whether the target pattern class is indeed continuously and smoothly distributed in the

feature space, as our modeling schemes would assume.

Given a new detection task, how then can one �nd a suitable feature space for modeling

the target pattern distribution? In general, we believe this can be a very di�cult problem

that involves understanding the key image attributes that characterize the target pattern

class, and having available the types of image feature measurements, if any, that best

describe the relevant attributes. Fortunately, we also believe it is often still possible to

deduce reasonable feature spaces for many problems, with only some prior knowledge of the

task. For example, most pattern classes that are recognized primarily by their structure,

such as human faces and the digit class \2", can usually be well represented in a view-based

feature space. Similarly, texture-based pattern classes, like roughness defects in lumber

and certain tissue anomalies in medical images, can often be adequately represented in a

frequency domain based feature space, where the transformed target patterns appear more

stable.

In our face detection system, we used a view-based feature space of appropriately masked

and normalized 19 � 19 pixel image window patterns to represent our face distribution.

Because faces are highly structured in the image domain, and face patterns with minor

spatial or grey-level variations still appear like valid face patterns, one can safely assume

that the face pattern distribution is indeed continuous and smoothly varying in our chosen

feature space. Similarly, most non-face patterns with minor variations still look like other

non-face patterns, which suggests that the non-face pattern distribution is also continuous

and smoothly varying in the image domain. For now, we shall assume that in most pattern

detection problems, one can at least approach the feature space selection issue reasonably

in an empirical fashion.

3.1.2 Modeling the Target Pattern Distribution

Given a suitable feature space to represent image patterns, the next step in designing a

pattern identi�cation procedure is to model the target pattern class as a data distribution.

During detection, the pattern identi�cation procedure matches new patterns against the

distribution-based model to determine whether each new pattern belongs to the target
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class.

Ideally, we want an exact model that represents the actual target pattern distribution

in the chosen feature space. In practice, this is often not possible because one usually

does not have available all the target image patterns needed to recover the exact target

pattern distribution. Our distribution-based modeling scheme addresses this problem by

attempting to localize and approximate the region of target patterns with limited data.

Basically, we use a reasonably large sample of target image patterns and a carefully chosen

database of distractor patterns to bound the target region in the chosen feature space.

We assume that the target pattern sample is su�ciently representative, and covers all the

key sources of pattern variation we wish to account for. So, by building a model of this

empirical target pattern distribution, one can still obtain a coarse but nevertheless fairly

reliable representation of the actual target pattern distribution. We select our distractor

pattern sample using the \bootstrap" example selection strategy introduced in the previous

chapter. These distractor patterns are negative examples of the target class that lie near

the target region boundary in the chosen feature space. We use these distractor patterns to

help localize and re�ne the boundaries of the target model by explicitly carving out regions

around the target sample distribution that do not correspond to target image patterns. In

Chapter 4, we shall examine the \boot-strap" example selection strategy in greater detail.

Our approach uses a piecewise smooth Gaussian mixture density estimation technique to

represent the empirical target pattern distribution in the chosen feature space. The pattern

identi�cation procedure uses the resulting distribution-based description as a model for the

target pattern class. The piecewise smooth modeling scheme serves two important functions.

First, it performs generalization by applying an assumed prior smoothness constraint to the

empirical target sample distribution. This results in a stored data distribution function that

is well de�ned even in regions of the feature space where no data samples have been observed.

Notice however that this modeling scheme is only reasonable if the actual target pattern

distribution is indeed locally continuous and smoothly varying as we have assumed. Second,

the modeling scheme serves as a tractable means of representing an arbitrarily shaped

data distribution using a few Gaussian basis functions. Speci�cally, our distribution-based

Gaussian mixture modeling technique works as follows: We coarsely outline the target

pattern sample with a few multi-dimensional Gaussian clusters. We also build a similar

Gaussian mixture model for the distractor pattern sample to help localize and re�ne the
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boundaries of the actual target pattern distribution. There are two possibly related ways

of reasoning about the distractor pattern clusters:

1. One can interpret the distractor pattern clusters as an explicit model for a \near-miss"

pattern class in the chosen feature space. \Near misses" are background image pat-

terns that can be easily mistaken as target patterns, often due to certain similarities

in image appearance. The \near miss" distribution model provides the pattern iden-

ti�cation procedure with additional knowledge to correctly distinguish these patterns

from actual target patterns.

2. One can also view the distractor pattern clusters as an explicitly carved out set of

regions in and around the target pattern distribution that should not correspond to

target patterns. These carved out regions help shape the boundaries of the target

pattern distribution by representing concavities in the Gaussian mixture model.

Our �nal distribution-based model thus consists of a few \positive" example clusters

that coarsely approximate the target pattern region in the chosen feature space, and a

few \negative" example clusters that help bound the target pattern region. Notice that

although our approach uses a Gaussian mixture density estimation technique to model the

target pattern class, we believe most piecewise smooth data representation schemes should

also lead to satisfactory models that tightly approximate the target pattern distribution.

This is true as long as our initial modeling assumptions are valid, i.e., the target pattern

distribution is indeed continuous and smoothly varying in our chosen feature space.

3.1.3 Learning a SimilarityMeasure between New Patterns and the Distribution-

based Target Model

The �nal task in designing a pattern identi�cation procedure is to derive a suitable simi-

larity measure for comparing new image patterns with the distribution-based target model.

We approach this problem by: (1) de�ning a set of distance measurements that coarsely

locates each test pattern with respect to the distribution-based target model in the chosen

feature space; and (2) learning from examples an approximation function that combines

the proposed distance measurements into an empirical similarity measure for matching

test patterns against the target pattern class. During detection, one simply computes and

thresholds this similarity measure to determine whether a new test pattern belongs to the
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target pattern class. One can view the empirical similarity function as a class identity pre-

dictor for input patterns. From a probabilistic standpoint, the similarity measure can also

be interpreted as a conditional probability density, P (Class(~x) = Targetj~x), where ~x is the
input test pattern.

We describe �rst the distance measurements we use for comparing test patterns against

our Gaussian mixture target model. Ideally, we want a set of measurements that clearly

re
ects the test pattern's location relative to the target pattern distribution as represented

by the Gaussian mixture model. Such a set of measurements can serve as a highly discrimi-

native set of input features for distinguishing between target and distractor image patterns.

The actual measurements we use is a vector of distances between the input test pattern and

all the Gaussian model's cluster centroids in the chosen feature space. One way of inter-

preting the vector of distances is to treat each distance measurement as the test pattern's

actual displacement from some reference location along the target pattern distribution. The

entire set of all distances can thus be viewed as a crude model-centered reference system

that encodes an overall \di�erence" notion between the test pattern and the entire target

pattern class.

Our approach uses a distribution dependent 2-value metric to represent individual dis-

tances between test patterns and each model centroid. For each Gaussian cluster in our

mixture model, the �rst distance component is a directionally dependent Mahalanobis dis-

tance between the test pattern and the cluster centroid, in a vector sub-space spanned by

the cluster's larger eigenvectors. This component computes a normalized pattern di�erence

along the main elongation directions of the local data distribution represented by the cur-

rent cluster. The normalized distance measure penalizes pattern di�erences less severely

along the local data distribution, and more heavily against the local data distribution. This

results in a distance value that better re
ects the notion of \di�erence" between a test

pattern and the local target pattern class. The second distance component is a standard

Euclidean distance between the test pattern and its projection in the sub-space of larger

eigenvectors. This distance component is a robust measure that accounts for pattern di�er-

ences in the smaller eigenvector directions, not captured by the �rst distance component.

We use a directionally independent distance measure for the second component because we

believe the eigenvectors spanning this orthogonal sub-space may have signi�cantly inaccu-

rate eigenvalues. Normalizing pattern di�erences in this sub-space can therefore lead to
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meaningless if not adverse results. Our full set of measurements between each test pattern

and the target model is thus a vector of several 2-value distances, whose dimensionality is

twice the number of Gaussian clusters in our target model.

Given a set of 2-value distance measurements as input features, our approach uses a

trained multi-layer perceptron net to implement a similarity function for comparing new

test patterns against the target pattern class. We train the multi-layer perceptron net on

distance measurements from a comprehensive but tractable set of target and distractor

image pattern to perform the desired similarity computation. During training, we teach the

net to output a similarity value of \1" for input distance measurements arising from target

patterns, and a \0" otherwise. During detection, the net outputs a continuous similarity

value in the [0; 1] range, which can be interpreted as the probability of the test pattern

belonging to the target class. One of the most critical issues in any non-trivial learning task

is the problem of obtaining high quality example patterns for training. In Chapter 4, we

shall examine in greater detail some principled techniques of selecting only useful training

examples from among redundant ones to keep the learning task tractable.

In closing, we brie
y discuss why we believe multi-layer perceptron nets are suitable,

as an approximation function class, for combining our proposed intermediate distance mea-

surements into an empirical indicator function for identifying target patterns. Multi-layer

perceptron nets are non-local approximators that partition the input space with hyperplanes

into regions of di�erent output classes. We have argued that one can view the intermediate

distance measurements we compute as a new model-centered co-ordinate system, where

each axis represents the test pattern's distance from one of the model's several Gaussian

clusters. In this new model-centered co-ordinate system, one can expect most target and

background image patterns to occupy very distinctive regions that can be well separated

by a small number of multi-layer perceptron hyperplanes. This is because in the original

distribution-based modeling feature space, most target patterns tend to be located near

the \positive" model clusters, which, in our new model-centered co-ordinate system, corre-

sponds to a characteristic set of small distance values along certain axes. Most background

patterns, on the other hand, tend to be located either near the \negative" clusters, or far

away from the entire Gaussian model, which, in the new co-ordinate system, corresponds to

a very di�erent characteristic set of distance values. In fact, we shall see in the next section

that for our human face detection example, even a single perceptron hyperplane does an
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almost perfect job at partitioning the space of model-centered distance measurements into

separate target and background pattern regions.

3.2 Analyzing the System's Components

We continue our analysis of the proposed object and pattern class detection approach by

examining some key design options that can signi�cantly a�ect the resulting system's per-

formance. We perform this part of the analysis empirically by studying how our human

face system's detection and false alarm rates vary as one changes the architecture of cer-

tain system components. Speci�cally, we look at the following three aspects of the existing

system design: (1) The classi�er architecture, (2) our 2-Value distance metric versus other

distance metrics for computing distance feature measurements, and (3) the importance of

including negative (i.e. \non-face") clusters in our distribution-based model.

3.2.1 The Existing Human Face Detection System

To begin, we brie
y summarize the relevant design features of our original human face

detection system as presented in the previous chapter. The system models the face pattern

distribution in an appropriately masked and normalized 19� 19 pixel image feature space.

We use 6 \positive" Gaussian clusters to approximate an empirical face distribution from

an example database of 4150 face patterns, and another 6 \negative" Gaussian clusters

to model an empirical \near-miss" distribution from a similar database of 6189 carefully

chosen non-face patterns.

To match new test patterns against the piecewise smooth Gaussian mixture face model,

the system �rst computes a set of 12 distances between each test pattern's location and the

model's 12 cluster centroids in the 19 � 19 pixel image feature space. One can view the

set of 12 distances as a crude \di�erence" notion between each test pattern and the entire

\canonical face" pattern class. Each distance measurement between a test pattern and a

cluster centroid is a robust and distribution dependent 2-Value metric presented earlier in

Section 2.5.1.

Finally, the system uses a trained multi-layer perceptron net classi�er to combine the

12 pairs of distance measurements into a single thresholdable similarity value that indicates

whether or not a given test pattern is a face. The current multi-layer perceptron net

94



architecture is as shown in Figure 2-13.

3.2.2 The Experiments

We now describe the experiments we perform to analyze the following three aspects of our

system design.

Classi�er Architecture

The �rst experiment investigates how varying the classi�er's architecture a�ects our human

face system's overall performance. To do this, we create two new systems with di�erent

classi�er architectures, and compare their face detection versus false alarm statistics with

those of our original system. Our two new classi�er architectures are:

1. A single perceptron unit. We replace the original multi-layer perceptron net in

Figure 2-13 with a single perceptron unit connected directly to the 12 pairs of input

terminals. The single perceptron unit computes a sigmoidally thresholded weighted

sum of its input feature distance vector. It represents the simplest possible architecture

in the family of multi-layer perceptron net classi�ers, and its purpose here is to provide

an \extreme case" performance �gure for multi-layer perceptron net classi�ers in this

overall pattern detection framework.

2. A nearest neighbor classi�er. We perform nearest neighbor classi�cation in the

vector space of 12 2-Value distances to identify new test patterns. The nearest neigh-

bor classi�er works as follows: For each training pattern, we compute and store its

24 value distance feature vector and output class at compile time. When classifying

a new test pattern, we compute its 24 value distance feature vector and return the

output class of the closest stored pattern in Euclidean space. The nearest neighbor

classi�er provides us with a performance �gure for a di�erent classi�er type in our

proposed pattern detection framework.

The Distance Metric

The second experiment investigates how using di�erent distance metrics for computing dis-

tance feature vectors in the matching stage a�ects the system's performance. We compare
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our 2-Value distance metric with three other distance measures: (1) the normalized Maha-

lanobis distance within a 75 dimensional vector subspace spanned by the prototype cluster's

75 largest eigenvectors | i.e. the �rst component only (D1) of our 2-Value distance metric,

(2) the Euclidean distance between the test pattern and its projection in the 75 dimen-

sional subspace | i.e. the second component only (D2) of our 2-Value distance metric, and

(3) the standard normalized Mahalanobis distance (Mn) between the test pattern and the

prototype centroid within the full image vector space.

To conduct this experiment, we repeat the previous set of classi�er experiments three

additional times, once for each new distance metric we are comparing. Each new set of

experiments di�ers from the original set as follows: During the matching stage, we use

one of the three distance measures above instead of the original 2-Value distance metric to

compute feature distance vectors between new test patterns and the 12 prototype centroids.

Notice that because the three new distance measures are all single-value measurements, our

new distance feature vectors have only 12 values instead of 24 values. This means that

we have to modify the classi�er architectures accordingly by reducing the number of input

terminals from 24 to 12.

Negative Clusters

This experiment looks at how di�erently the system performs with and without \near-miss"

clusters in the distribution-based model. We compare results from our original human face

system, whose face model contains both \face" and \non-face" clusters, against results from

two new systems whose internal models contain only \face" clusters. The two new systems

are:

1. A system with 12 \face" clusters and no \non-face" clusters. In this system,

we �x the total number of pattern clusters in the canonical face model, and hence the

dimensionality of the feature distance vector the matching stage computes. We obtain

the 12 \face" clusters by performing elliptical k-means clustering with 12 centers on our

enlarged canonical face database of 4150 patterns (see Section 2.4.3). The matching

stage computes the same 2-Value distance metric that our original system uses; i.e.,

for each Gaussian cluster, D1 is the normalized Mahalanobis distance in a subspace of

the 75 largest eigenvectors, and D2 is the Euclidean distance between the test pattern

and the subspace.
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Classi�er Architecture
Distance Metric Multi-Layer Single Unit Nearest Nbr

2-Value 96.3% 3 96.7% 3 65.1% 1
79.9% 5 84.6% 13

D1 91.6% 21 93.3% 15 97.4% 208
(�rst component) 85.1% 114 85.1% 94

D2 91.4% 4 92.3% 3 53.9% 1
(second component) 65.1% 5 68.2% 5

Mn 84.1% 9 93.0% 13 71.8% 5
(Std. Mahalanobis) 42.6% 5 58.6% 11

Table 3.1: Summary of performance �gures from Experiments 1 (Classi�er Architecture) and 2 (Dis-

tance Metric). Detection rates versus number of false positives for di�erent classi�er architectures and
distance metrics. The four numbers for each entry are: Top Left: detection rate for �rst database. Top

Right: number of false positives for �rst database. Bottom Left: detection rate for second database.

Bottom Right: number of false positives for second database. Notice that we did not test the nearest

neighbor architecture on the second database. This is because the test results from the �rst database

already show that the nearest neighbor classi�er is signi�cantly inferior to the other 2 classi�ers in this
problem domain.

2. A system with only 6 \face" clusters. In this system, we preserve only the

\face" clusters from the original system. The matching stage computes the same 2-

Value distances between each test pattern and the 6 \face" centroids. Notice that the

resulting feature distance vectors have only 6 pairs of values.

We generate two sets of performance statistics for each the two new systems above. For

the �rst set, we use a trained multi-layer perceptron net with 12 hidden units to classify new

patterns from their distance feature vectors. For the second set, we replace the multi-layer

perceptron net classi�er with a trained single perceptron unit classi�er.

3.2.3 Performance Statistics and Interpretation

Table 3.1 summarizes the performance statistics for both the classi�er architecture and

distance metric experiments, while Table 3.2 shows how the system performs with and

without modeling the \near-miss" distribution.

Classi�er Architecture

The horizontal rows of Table 3.1 show how di�erent classi�er architectures a�ect the human

face system's detection rate versus false alarm occurrences. Quantitatively, the two network-

based classi�ers have very similar performance �gures, while the nearest neighbor classi�er

produces rather di�erent performance statistics. Depending on the distance metric being
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used, the nearest neighbor classi�er has either a somewhat higher face detection rate with a

lot more false alarms, or a much lower face detection rate with somewhat fewer false alarms

than the other two classi�ers. Because we do not have a reasonable measure of relative

importance between face detection rate and number of false alarms, we empirically rank

the performance �gures by visually examining their corresponding output images. In doing

so, we �nd that the two network-based classi�ers produce results that are a lot more visually

appealing than the nearest neighbor classi�er.

It is interesting that the two network-based classi�ers we tested produce very similar

performance statistics, especially on the �rst test database. The similarity here suggests that

the system's performance depends most critically on the classi�er type, i.e. a perceptron

net, and not on the speci�c net architecture. It is also somewhat surprising that one can get

very encouraging performance �gures even with an extremely simple single perceptron unit

classi�er, especially when using our 2-Value metric to compute distance feature vectors.

This suggests that the distance measurements we get with our 2-Value metric are a linearly

very separable set of features for \face" and \non-face" patterns. We shall see from the new

applications we present later in this chapter that this observation extends to other target

pattern classes as well.

Why does the nearest neighbor classi�er have a much lower face detection rate than

the other two network-based classi�ers when used with our 2-Value distance metric? We

believe this has to do with the much larger number of non-face patterns in our training

database than face patterns (43166 non-face patterns versus 4150 face patterns). The good

performance �gures from the single perceptron classi�er suggest that the two pattern classes

are linearly highly separable in our 24 value distance feature vector space. Assuming that

roughly the same fraction of face and non-face patterns lie along the linear class boundary,

we get a boundary population with 10 times more non-face samples than face samples.

A new face pattern near the class boundary will therefore have a very high chance of

lying nearer a non-face sample than a face sample, and hence be wrongly classi�ed by a

nearest neighbor scheme. Notice that despite the huge di�erence in number of face and

non-face training patterns, a perceptron classi�er can still locate the face versus non-face

class boundary accurately if the two pattern classes are indeed linearly highly separable,

and hence still produce good classi�cation results.
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Composition of Clusters
Classi�er 6 Face & 12 Face 6 Face

Architecture 6 Non-Face

Multi-layer Perceptron 96.3% 3 85.3% 21 59.7% 17
79.9% 5 69.6% 74 60.9% 41

Single Perceptron 96.7% 3 52.1% 6 66.6% 25
84.6% 13 49.7% 16 55.4% 56

Table 3.2: Summary of performance �gures for Experiment 3 (The e�ect of \Near-Miss" Clusters).

Detection rates versus number of false positives for di�erent classi�er architectures and composition of
clusters in distribution-based model. The four numbers for each entry are: Top Left: detection rate for

�rst database. Top Right: number of false positives for �rst database. Bottom Left: detection rate

for second database. Bottom Right: number of false positives for second database.

The Distance Metric

The vertical columns of Table 3.1 show how the human face system's performance changes

with di�erent distance metrics in the pattern identi�cation stage. Both the multi-layer

perceptron net and single perceptron classi�er systems produce better performance statistics

with our 2-Value distance metric than with the other three distance measures, especially on

images from the second test database. The observation should not at all be surprising. Our

2-Value distance metric consists of both D1 and D2, two of the three other distance measures

we are comparing against. A system that uses our 2-Value distance should therefore produce

performance �gures that are at least as good as a similar system that uses either D1 or D2

only. In fact, since our 2-Value distance systems actually produce better classi�cation results

than the systems using only D1 or D2, one can further a�rm that the two components D1

and D2 do not mutually contain totally redundant information.

Our 2-Value distance metric should also produce classi�cation results that are at least

as good as those obtained with a Mahalanobis distance metric. This is because both metrics

treat and quantify distance in essentially the same way | as a \di�erence" notion between

a test pattern and a local data distribution. Furthermore, the \di�erence" notions they use

are based on two very similar Gaussian generative models of the local data distribution.

In our experiments with perceptron-based classi�ers, the 2-Value distance metric actually

out-performs the Mahalanobis distance metric consistently. We suggest two possible rea-

sons for this di�erence in performance: (1) As discussed in Section 2.5.5, we have too few

sample points in our local data distribution to accurately recover a full Gaussian covariance

matrix for computing Mahalanobis distances. By naively trying to do so, we get a distance

99



measure that poorly re
ects the \di�erence" notion we want to capture. (2) The local data

distribution we are trying to model may not be truly Gaussian. Our 2-Value distance met-

ric provides an additional degree of freedom that better describes a test pattern's location

relative to the local non-Gaussian data distribution.

It is interesting that even a network-based classi�er with a \partial" D2 distance metric

almost always out-performs a similar classi�er with a \complete" Mahalanobis distance

metric. At �rst glance, the observation can be surprising because unlike the \complete"

Mahalanobis distance, the D2 metric alone does not account for pattern di�erences in certain

image vector space directions. More speci�cally, the D2 metric only measures a pattern's

Euclidean distance from a cluster's 75 most signi�cant eigenvector subspace, and does not

account for pattern di�erences within the subspace. We believe this comparison truly

reveals that without su�cient data to accurately recover a full Gaussian covariance matrix,

the resulting Mahalanobis distance can be a very poor notion of \pattern di�erence".

\Near-Miss" Clusters

Table 3.2 summarizes the performance statistics for comparing systems with and with-

out a \near-miss" distribution model. As expected, the systems with \non-face" clusters

clearly out-perform those without \non-face" clusters. Our results suggest that not only

do the \near-miss" clusters provide an additional set of distance measurements for pattern

detection, the resulting measurements are in fact a very discriminative set of additional

classi�cation features.

3.3 New Application 1: Variable Pose Human Face Detec-

tion

We conclude this chapter by showing three new vision related applications based on our

proposed object and pattern class detection scheme, to demonstrate that the approach is

indeed fairly general and extensible. The �rst example is a direct extension of our frontal

view human face detection system to handle a wider range of poses. The new system we

present is structurally almost identical to our original frontal view face detection system,

with some minor design di�erences described below. We use the same distribution-based

modeling cum learning-based training techniques to construct the new system. Functionally,

100



Figure 3-1: (a): A 19 � 19 pixel mask that approximates an \average" silhouette of a left o�-plane

rotated face view. (b): The mask does a reasonable job at eliminating background pixels in both
left-rotated and frontal face patterns.

this new application detects vertically oriented human faces with o�-plane rotation angles

of up to �45�.

3.3.1 Implementation Details

Our approach deals with a wider range of face views by using a larger example database that

includes both frontal and non-frontal face patterns. The non-frontal face patterns in the

database account for pattern variations due to changes in pose. We use this enlarged face

database for two purposes: (1) to approximate a new target class distribution of frontal

and non-frontal face patterns; and (2) as additional training examples to synthesize an

appropriate similarity function for matching test patterns against the extended distribution-

based model. In our actual implementation, we consider a smaller target pattern class of

only frontal to left o�-plane rotated face views. Because there is less pattern variation in this

smaller target pattern class, one can still tightly approximate the target distribution with

fewer data samples and fewer Gaussian model clusters. To detect right o�-plane rotated face

views as well, the system matches both an input image pattern and its mirror view against

the simpli�ed target model, and accepts the pattern as a face if either match responds

positively.

As in our original frontal-view face detection system, the distribution-based modeling

stage here also uses an appropriately masked and intensity normalized view-based feature
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space of �xed-sized image patches to model the extended face distribution. This is possible

because we believe the extended target class of frontal and non-frontal face patterns is

still continuous and smoothly distributed in a view-based feature space, where incremental

changes in object pose also correspond to minor displacements in feature space location.

Our chosen feature space is an illumination corrected and histogram equalized 19 � 19

pixel image space with a slightly di�erent mask pattern as shown in Figure 3-1(a). The

new mask pattern approximates an \average" silhouette of left-rotated face views, which

eliminates background pixels of both frontal and left-rotated face patterns fairly well. We

acknowledge, however, that there are more robust methods for eliminating background

pixels of non-frontal face patterns. We shall only brie
y describe one possible approach

below.

Our �nal distribution-based target model contains 10 multi-dimensional Gaussian \face"

clusters and 10 similar \near-miss" clusters. We obtain the 10 \face" clusters by performing

elliptical k-means clustering on a combined database of 6845 frontal and left-rotated face

patterns, without �rst partitioning the data set into pattern sub-classes of di�erent pose.

Processing all the target patterns together allows the resulting model clusters to generalize

across pose as well as other sources of image pattern variation. We obtain our 10 \near-miss"

clusters in a similar fashion from a specially chosen database of 11810 face-like patterns,

generated by our \boot-strap" example selection and training strategy described in the

previous chapter. In building this system, we simply guessed an appropriate number of

model clusters to use, by taking the original frontal-view face detection system as a design

reference. Our extended system has almost twice as many face data samples as the original

system which contains 6 \face" and 6 \non-face" clusters, so we simply increased the current

number of model clusters proportionately. One can also argue that our extended system

needs a larger number of model clusters because it detects faces over a wider range of pose,

and hence requires a more complex model to approximate a larger target pattern class.

The �nal pattern identi�cation stage uses a trained multi-layer perceptron net with

20 input unit pairs to classify test patterns from their computed distance feature vectors.

Each input unit pair receives a 2-value distance measurement between the test pattern's

view-based feature space location and one of the model centroids. We train the multi-

layer perceptron net on an example database of over 42000 distance feature vectors and

their corresponding output classes. The training database includes vectors from all the
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\face" and \near-miss" patterns used for building our distribution-based model, as well as

a random sample of non-face patterns from a large number of natural images.

3.3.2 Results

We have implemented a preliminary variable pose face detection system using the proposed

approach and design choices described above. Figures 3-2 to 3-4 show some sample results.

Notice that there are still a small but signi�cant number of missed faces and false alarms

in the last two images. Because our goal here is merely to demonstrate the extensibility of

our pattern detection approach through an example domain of faces, we were satis�ed with

the current results and have not attempted to further improve the existing system.

Despite having used a larger number of \relevant" training examples and a more complex

Gaussian mixture model for estimating the target pattern distribution in this application,

our current variable pose system still performs more poorly than our original frontal-view

face detection system in terms of classi�cation correctness. We suggest two possible factors

contributing to its poorer performance and ways of improving the current results.

1. The extended target class of frontal and o�-plane rotated face patterns is signi�cantly

more complex than the original frontal face pattern class, such that the number of

additional \face" examples we have gathered for modeling is still insu�cient with

respect to the increase in target class complexity. Although one can reduce general-

ization errors due to over�tting by constraining model complexity, one will still get

signi�cant empirical errors with too little data to capture all the key variations in a

highly complex target class (see for example [65]). One can overcome the problem

of insu�cient data by collecting more real and virtual face image patterns over the

range of rotation angles we wish to handle. Recently, Beymer et. al. [13] [11] have

demonstrated a useful technique for learning complex transformations and generating

multiple virtual views of an arbitrary human face from a single face view.

2. The mask pattern we are using to eliminate irrelevant background pixels in \face"

window patterns (see Figure 3-1(a)) matches only an \average" silhouette of all the

left-rotated face views in our training database. There can be many valid face pat-

terns, even among those in our training database, whose individual silhouettes di�er

signi�cantly from the mask outline. When masked, these face patterns can still con-
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Figure 3-2: Non frontal face detection results. The middle set of 5 pictures shows the system detecting
faces successfully over a range of o�-plane rotated angles. The other images show non-frontal faces

detected in a complex scene.
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Figure 3-3: More images with frontal and o�-plane rotated faces successfully detected.

105



Figure 3-4: Top: Image with one false detect on the soccer ball. Bottom: Image with two missed faces

(top row second from right, and bottom row �rst from left) and one false detect (arms of bottom row third

from right).
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tain background pixels that contribute to unwanted structure encoded in the model.

To \unlearn" this irrelevant knowledge, we require a much larger number of training

samples with the same foreground appearance to reveal that the background pixel

values do not a�ect the example pattern's identity. One can use several mask shapes

instead of a single mask pattern to help reduce unwanted background structure intro-

duced into our distribution-based model. During training, we choose the best �tting

mask to eliminate irrelevant background pixels from each face pattern in the example

database. We then appropriately align each masked face pattern with a �xed outline

to model the face distribution in a common view-based feature space. During detec-

tion, we try all mask patterns and their corresponding alignment transformations on

each test pattern and choose the best output as the match result.

3.4 New Application 2: Human Eye Detection

We present next an application for �nding a di�erent class of spatially well-de�ned objects |

human eyes, to demonstrate that our proposed object and pattern class detection approach

works well for more than just human faces. Although human eyes appear less varied as a

target class than human faces, eye detection is still a challenging problem because even at

moderate resolution, there can be a lot more natural background patterns that resemble

eyes than faces. To detect human eyes independent of more global structures like human

faces, a successful eye �nder must not only correctly identify all isolated eye patterns, it

must reject a wide range of distractor patterns as well.

We built an eye detection system using the same distribution-based modeling cum

learning-based techniques described in our original face detection example. Structurally,

the two systems are very similar. Like the original face system, the eye �nder uses a

\convolution-like" matching paradigm to search the input image for human eye patterns

over multiple scales. The embedded pattern identi�cation procedure represents the target

pattern class and a \near-miss" distractor class with a Gaussian mixture distribution-based

model. The �nal pattern identi�cation stage uses a trained multi-layer perceptron net to

combine feature vectors of 2-value distances into a single similarity measure for classify-

ing target and background patterns. Functionally, our system detects isolated and upright

oriented human eye patterns in cluttered scenes independent of other facial features.
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Figure 3-5: The \canonical eye" structure our system uses for �nding human eye patterns. It corre-
sponds to a �xed aspect-ratio rectangular patch of the human face, tightly enclosing the left or right

eye. We model the distribution of canonical eye patterns in a normalized 13� 9 pixel view-based feature

space.

3.4.1 Implementation Details

Figure 3-5 shows the \canonical" eye structure our system uses for pattern matching. It

corresponds to a �xed aspect-ratio rectangular patch of the human face, tightly enclosing

the left or right eye. Because isolated left and right eye patches are structurally almost

identical in the image domain, our implementation uses a common model for both pattern

classes. To approximate the target class, we collect a data sample of 1114 real eye patterns

from images in our frontal face training database. We further increase the number of target

examples by arti�cially generating 5 virtual views from each real eye pattern in our data

sample as follows: Each real eye pattern is rotated in-plane by �5� to produce 2 virtual

views, and the same is done for its mirror image to produce another 3 virtual views. Our

�nal human eye data set contains altogether 6684 left and right eye patterns, which we use

(1) as empirical data to approximate the target class in our distribution-based modeling

scheme, and (2) as training examples to synthesize an appropriate similarity function for

matching test patterns against the target model, as we had done earlier in both our face

detection systems.

Like faces, human eyes are highly structured and relatively stable image patterns. One

can therefore reasonably assume that our \canonical" eye target class is continuous and

smoothly varying in a view-based feature space, which makes such a feature space suitable

for tightly modeling the target distribution. In order to detect human eyes in cluttered

scenes where even human faces are fairly small, we choose a moderate resolution intensity

normalized image feature space of 13 � 9 pixels to represent our \canonical eye" target

distribution. We decided not to use a lower resolution feature space for modeling, because
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further scale reduction can obscure essential details that distinguish isolated human eyes

from other distractor patterns. In this example, one does not need to mask away \irrelevant"

pixels in our chosen view-based feature space, because every pixel in a \canonical" eye patch

corresponds to a predictable part of the human face, and contributes to the local image

description of a human eye.

Our distribution-based target model contains 16 Gaussian \eye" clusters and 8 \near-

miss" clusters. As before, we obtain the 16 \eye" clusters by performing elliptical k-means

clustering on the enlarged training database of 6684 human eye patterns. In building this

system, we arrived at 16 \eye" clusters by increasing the number of Gaussians in our target

distribution model, until the classi�cation error rate on an initial training database of \eye"

and \non-eye" patterns fell to within 5%. We obtain the 8 \near-miss" Gaussians also

by clustering a specially chosen database of 8335 \eye-like" patterns, generated using our

\boot-strap" example selection strategy. In modeling our \near-miss" pattern distribution,

we were able to achieve an almost perfect classi�cation rate using only 8 model clusters,

on a �nal training set which includes the additional \non-eye" patterns selected by \boot-

strapping".

The �nal pattern identi�cation stage also uses a trained multi-layer perceptron net with

24 input unit pairs to classify test patterns from their computed distance feature vectors.

Each input unit pair receives a 2-value distance measurement between the test pattern's

view-based feature space location and one of the model centroids. We train the multi-

layer perceptron net on an example database of over 19000 distance feature vectors and

their corresponding output classes. The training database includes vectors from all the

\eye" and \near-miss" patterns used for building our distribution-based model, as well as a

random sample of \non-eye" distractor patterns from a few highly textured natural images.

3.4.2 Results

We have implemented a very preliminary eye �nding system by applying only one \boot-

strap" cycle to select relevant \non-eye" examples from a few highly textured natural images

for training. Figures 3-6 to 3-9 show some sample result the current system produces.

Notice that there are still a number of missed eyes and false alarms in several test images,

especially among those images with dense background texture. We believe this is partly

because even at moderate spatial resolution, one can still lose �ne details that are essential
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Figure 3-6: Eye detection results. The 5 pictures on the left show the system detecting eyes on frontal and
o�-plane rotated faces. Because we trained the system with only frontal eye patterns, the system fails at

large rotation angles. The other pictures show the system �nding eyes successfully in more complex images.
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Figure 3-7: (a): The system successfully �nds Kelly's eyes without any false detects on her textured

blouse. (b): The system misses Kirk's right eye and makes one false detect on his phaser ri
e. (c): The

system makes only one false detect in this fairly complex scene (bottom left edge of bowl). (e): One false
detect in this image where the system mistakes a button on the girl's sleeve for an eye.
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Figure 3-8: (a): The system misses Dylan's partly occluded right eye. (d): The system makes one

false detect and misses the right eye of the two people on the right. (f): Misses Deanna Troi's right
eye. (g): Brenda's nostril is mistaken for an eye. Notice that the system still detects Brenda's eyes

successfully even though her head is signi�cantly tilted.
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Figure 3-9: A reasonably complex image with potentially confusing textures on the carpet, Dan

Quayle's shirt and the wooden door. There is only one false detect on the white dog's ear. The system

does not detect the black dog's eye.
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for distinguishing isolated eye patterns from very similar looking distractor image patterns.

The system otherwise performs reasonably well on high quality frontal illuminated face

images, and even detects eyes on vertical faces that are slightly rotated away from the image

plane. Because our goal here is to show that our pattern detection approach generalizes to

other target pattern domains other than faces, we were satis�ed with the current results

and have not attempted to improve the existing system with further training.

3.5 New Application 3: Hand Printed Digit Recognition

Our �nal example application deals with a pattern recognition task instead of a pattern

detection problem like those described so far. We have argued in Chapter 1 that pattern

recognition and pattern detection are both instances of a wider class of computer vision

problems, called pattern classi�cation. In fact, the pattern identi�cation procedure within

our object and pattern detection approach essentially performs a pattern classi�cation task,

by determining whether or not each test pattern belongs to the target class.

In this application, we demonstrate that the same pattern identi�cation framework

used by our object and pattern detection approach, can also be a viable solution for certain

pattern recognition problems. Speci�cally, we look at the task of recognizing isolated hand-

written digits in images. Recognizing hand-written digits by computer is a di�cult pattern

classi�cation problem because even though each digit class has a common structural descrip-

tion, di�erent hand-written instances of the same digit can still vary signi�cantly in image

appearance. Some factors in
uencing a particular hand-printed digit's appearance include

the writer's writing style, the writer's mood, the writing instrument and environmental

conditions.

Over the past few decades, there has been a lot of research in isolated hand-printed digit

recognition techniques, with current state-of-art systems achieving near human-level recog-

nition rates. Most of the best digit recognition results today are produced by learning-based

systems [28] [54] [60] trained on extremely large hand-written digit databases, such as the

National Institute of Standards and Technology (NIST) digit database which contains more

than 200000 patterns. Recently, Simard et. al. [83] have also proposed a very successful

learning-based technique for digit recognition that uses a new distance measure (tangent

distance) which can be made locally invariant to any speci�ed set of transformations on the

114



input pattern. Their new learning technique simulates the e�ect of training the system with

an enlarged digit database, consisting of the original database patterns and virtual examples

generated by applying the speci�ed invariant transformations on the original digits.

Although our task here involves building and experimenting with isolated hand-printed

digit recognizers, we stress again that our primary goal is not to improve the state-of-

art performance of isolated hand-written digit recognition systems. Rather, we wish to

demonstrate that the underlying pattern identi�cation framework in our object detection

approach is indeed general enough to model and capture localized pattern variations, in a

task that is essentially pattern recognition in spirit.

3.5.1 The United States Postal Service Digit Database

We perform our experiments using a hand-written digit database compiled by the United

States Postal Service (USPS) for digit recognition research. The database contains 9298

digits extracted from the zip-code �elds of hand-written postal addresses. Figure 3-10 shows

some sample patterns from each of the 10 digit classes. Each digit is hand segmented from

its zip-code �eld and normalized in size to �t within a 16 � 16 pixel bounding box. The

individual digit images are also intensity normalized to fall within a [�1; 1] range, where a
�1 value corresponds to a \white" background.

In preparing the digit database, the USPS researchers have also divided the full database

into a training sample of 7291 digits and a non-overlapping test set of 2007 digits. Both

the training and test data samples are obtained from a di�erent distribution of writers to

make the learning task more challenging. In both data sets, each digit class makes up

approximately one tenth the total number of digit samples.

3.5.2 Design of the Digit Recognizer

The digit recognition problem involves constructing a 10-class pattern classi�er for identify-

ing new input patterns as one of the 10 digit classes. We have argued in Chapter 1 that one

can implement an N -way pattern classi�er as N single-class pattern recognizers operating

in parallel, with a special arbitration stage to resolve class label con
icts. In this applica-

tion, we adopt a similar design approach by implementing our 10-class digit recognizer as

10 single-class digit recognizers. Each single-class digit recognizer identi�es one of the 10

digit patterns from among the other 9 digit classes. Our arbitration scheme assumes that
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Figure 3-10: Some sample handwritten digit patterns from the United States Postal Services training

database.
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all input patterns belong to exactly one of the 10 digit classes, and simply returns the class

label for the single digit recognizer with the strongest response.

We now describe how we build the individual single-class digit recognizers in our 10-class

digit recognition system. Basically, we treat each single-class digit recognizer as a 2-way

pattern classi�er, similar in spirit to the pattern identi�cation stage within our proposed

object and pattern class detection framework. In this approach, the key design issue is to

appropriately model the target pattern distribution of each digit class in a suitable feature

space for pattern matching purposes. Because each digit class has a common overall image

structure with minor shape variations between individual patterns, one can reasonably

assume that the target pattern distribution for each digit class is continuous and smoothly

varying in a view-based feature space. Our implementation models each target digit class

directly in the original 16� 16 pixel image feature space of normalized digit patterns. For

our particular task, we do not need to mask away \irrelevant" pixels in our chosen view-

based feature space, because all the hand-segmented digit patterns we are dealing with do

not contain unwanted background structure.

In the distribution-based modeling stage, each single-digit recognizer approximates its

target distribution with patterns from the USPS training database that belong to its target

digit class. Because the USPS training database contains, on the average, fewer than 1000

pattern samples per digit class in a 256 dimensional view-based feature space, our actual

distribution-based model represents each target pattern class with only 4 multi-dimensional

Gaussian clusters to avoid over-�tting the available data with too complex a model. So,

each single-class digit recognizer in our overall system has a distribution-based model that

contains only 4 Gaussian mixture clusters for representing its target digit class.

We use a slightly di�erent \boot-strap" procedure to obtain \near-miss" pattern sam-

ples, and to synthesize \near-miss" distribution models for the 10 single-class digit recog-

nizers. Recall that in this demonstration, we only have available 7291 positive and negative

training examples from the USPS training database to construct each single-digit classi�er.

Because we are using the USPS training database as our sole data source, one can expect to

�nd only a very small number of \useful" distractor patterns to approximate the \near-miss"

distribution for each digit class. In fact, there may not even be enough \useful" distractor

patterns for each digit class to reasonably construct a Gaussian mixture \near-miss" distri-

bution model. One solution is to have each single-digit recognizer treat all its non-target
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Figure 3-11: Design overview of our 10-class digit recognizer. We implement our 10-class digit recog-

nizer as 10 single-class digit recognizers, each separating a given digit from the other 9. For each digit

class, we construct a distribution-based model with 4 multi-dimensional Gaussian clusters. The MLP
classi�er for each digit recognizer receives 2-value distances from all 4 model clusters belonging to its

target digit class. It also receives 2-value distance measurements from \relevant" clusters in the other

9 digit classes that help model its \near-miss" distribution. When classifying new digit patterns, the
arbitration stage returns the class label of the recognizer with the strongest response.
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digits in the USPS training database as \useful" distractor patterns. Each single-digit rec-

ognizer can then have a \near-miss" distribution model with 36 Gaussian clusters, obtained

directly from the target class models of the other 9 single-digit recognizers. Unfortunately,

such an approach leads to a set of very high dimensional learning problems in the �nal

pattern classi�cation stage, where we must now train each digit recognizer to identify its

target digit class from input feature vectors of 40 2-value distance measurements.

We instead adopt an intermediate approach that also uses additional non-target digit

patterns from the USPS training database to help approximate the \near-miss" pattern

distribution for each digit class, without indiscriminately using the entire set of non-target

patterns. Basically, the idea is to use only those non-target pattern samples near each actual

\useful" distractor pattern to help locally approximate the \near miss" distribution. The

intermediate technique for re�ning each single-digit recognizer works in two steps. In step

one, we collect all the false positive mistakes each initial single-digit recognizer (i.e. whose

distribution-based model contains only positive clusters describing the target class distri-

bution) makes on the USPS training digit database. This step is identical to the example

selection phase in our original \boot-strap" procedure. In step two, we approximate the

local \near-miss" distribution near every false positive example obtained from step one,

using only a \relevant" subset of Gaussian clusters from the other 9 target class models.

We determine which Gaussian clusters are \relevant" for the given single-digit recognizer as

follows: For each false positive example from step one, we look up its actual digit class and

pick the nearest Gaussian cluster from its digit class model to approximate the local \near-

miss" distribution. The set of all clusters so chosen approximates the particular recognizer's

overall \near-miss" distribution, and the �nal distribution-based model contains Gaussian

clusters that describe both the recognizer's target digit distribution and its \near-miss"

distribution.

In the �nal pattern identi�cation stage, each single-digit recognizer uses a trained multi-

layer perceptron net to identify instances of its target digit class, based on distance feature

measurements between the input digit pattern and the recognizer's �nal distribution-based

model. Each input feature vector is an ordered set of 2-value distances between the given

test pattern's location and all the recognizer's model centroids in the normalized 16 � 16

pixel view-based feature space. We train each single-digit recognizer on distance feature

vectors with appropriate output class labels from all the digit patterns in the USPS training
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database.

3.5.3 Comparison with Other Techniques

As indicated earlier, our primary goal in this third application is to show that our object

detection framework also generalizes well to pattern recognition tasks. To do this, we com-

pare our �nal system's digit recognition performance against two other systems based on

more traditional digit recognition techniques. Like the original system we implemented,

both new systems are also organized as 10 single-digit recognizers with an arbitration stage

that simply returns the digit class whose recognizer responds most strongly. The �rst sys-

tem uses a classical radial-basis function network with spherical Gaussian centers for each

individual digit recognizer. We compute the system's spherical Gaussian centers and their

corresponding variances by separately performing k-means clustering on each digit class in

the USPS training database. Our approach is similar to Moody and Darken's algorithm

for �nding RBF centers [62] in a multi-class data sample. The second system is also Gaus-

sian RBF based with a di�erent method for computing RBF centers. We use a recently

developed technique, called Support Vector Algorithms [26], to determine the number and

location of Gaussian centers for each RBF digit classi�er. In building both systems, we

use the USPS training database as our only source of digit patterns, without arti�cially

enlarging the database with virtual examples. We shall describe the two system in greater

detail below.

Classical Spherical Gaussian RBFs

We begin by �rst describing the classical Gaussian RBF system. A d-dimensional spherical

Gaussian RBF network with K centers has the mathematical form:

g(~x) =
KX
i=1

wiGi(~x)� b

=
KX
i=1

wi
1

(2�)d=2�di
exp(�jj~x� ~cijj

2�2i
)� b

where Gi is the ith Gaussian basis function with center ~ci and variance �2i . The weight

coe�cients wi combine the Gaussian terms into a single output value and b is an arbitrary
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bias term. In general, building a Gaussian RBF network for a given learning task involves

(1) determining the total number of Gaussian basis functions to use for each output class and

for the entire system, (2) locating the Gaussian basis function centers, (3) computing the

cluster variance for each Gaussian basis function, and (4) solving for the weight coe�cients

and bias in the summation term. One can implement a 2-way pattern classi�er on input

vectors ~x as a Gaussian RBF network by de�ning an appropriate output threshold that

separates the two pattern classes.

In this �rst system, we implement each individual digit recognizer as a spherical Gaussian

RBF network, trained with a classical RBF algorithm. Given a speci�ed number of Gaussian

basis functions for each digit class, the algorithm separately computes the Gaussian centers

and variances for each of the 10 digit classes to form the system's RBF kernels. The

algorithm then solves for an optimal set of weight parameters between the RBF kernels

and each output node to perform the desired digit recognition task. Our actual training

process constructs all 10 digit recognizers in parallel so one can re-use the same Gaussian

basis functions among the 10 digit recognizers. To avoid over�tting the available training

data with an overly complex RBF classi�er connected to every Gaussian kernel, we use a

\boot-strap" like operation that selectively connects each recognizer's output node to only

a \relevant" subset of basis functions. The idea is similar to how we choose relevant \near-

miss" clusters for each individual digit recognizer in the original system. The full training

procedure proceeds as follows:

1. The �rst training task is to determine an appropriate number of Gaussian kernels

for each digit class. This information is needed to initialize our clustering procedure

for computing Gaussian RBF kernels. Because the support vector algorithm in the

second system automatically computes an \optimal" number of RBF kernels for each

digit class, we simply use the same �gures from the second system to initialize our

clustering procedure (see Table 3.3).

2. Our next task is to actually compute the desired number of Gaussian kernels for each

digit class. We do this by separately performing classical k-means clustering on each

digit class in the USPS training database. Each clustering operation returns a set of

Gaussian centroids and their respective variances for the given digit class. Together,

the Gaussian clusters from all 10 digit classes form the system's RBF kernels.
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Digit Class 0 1 2 3 4 5 6 7 8 9

Number of Kernels 172 77 217 179 211 231 147 133 194 166

Table 3.3: Number of Gaussian kernels in each digit class used for initializing the classical RBF digit

recognition system. These are the number of distinct example patterns from each class that the second

system chooses as support vectors.

3. For each single-digit recognizer, we build an initial RBF network using only Gaussian

kernels from its target class. We then separately collect all the false positive mistakes

each initial digit recognizer makes on the USPS training database.

4. In the �nal training step, we augment each initial digit recognizer with additional

Gaussian kernels from outside its target class to help reduce mis-classi�cation errors.

We determine which Gaussian kernels are \relevant" for each recognizer as follows: For

each false positive mistake the initial recognizer makes during the previous step, we

look up the mis-classi�ed pattern's actual digit class and include the nearest Gaussian

kernel from its class in the \relevant" set. The �nal RBF network for each single-

digit recognizer thus contains every Gaussian kernel from its target class, and several

\relevant" kernels from the other 9 digit classes. Because our �nal digit recognizers

have fewer weight parameters than a naive system that fully connects all 10 recognizers

to every Gaussian kernel, we expect our system to generalize better on new data.

Support Vector Gaussian RBFs

In the classical RBF system, we used a clustering technique that computes Gaussian kernels

irrespective of the exact recognition task to be solved. One can view the clustering operation

as building a separate distribution-based model for each digit class using spherical Gaussian

clusters. The RBF digit recognizers classify new digit patterns by determining how \similar"

they are to each of the 10 digit manifolds, based on distance measurements to the Gaussian

kernels. In this second system, we build a similar Gaussian RBF-based 10 class digit

recognizer using a di�erent initialization technique, called the support vector algorithm [26],

that concentrates Gaussian kernels at feature space locations critical for the recognition task

at hand. The support vector algorithm is a general procedure that sieves through example

databases for useful data subsets relevant to a given learning task. The algorithm works

for many di�erent learning machine architectures, and the resulting data subsets (i.e. the

122



Digit Recognizer 0 1 2 3 4 5 6 7 8 9

# Support Vectors 274 104 377 361 334 388 236 235 342 263

Table 3.4: Number of support vectors for each each digit recognizer. Notice that for each digit

recognizer, the support vector set contains both positive and negative example patterns, i.e. patterns

from within and outside the target class. The same digit pattern can be a support vector for two or more
recognizers. Table 3.3 shows the number of distinct patterns from each digit class selected as support

vectors.

support vector sets) for di�erent architectures are often almost identical. Interestingly, for

RBF networks, the support vector sets also serve well as locations for Gaussian centers. We

shall only brie
y describe the support vector algorithm with particular emphasis on its role

as a mechanism for de�ning and locating Gaussian kernels in RBF networks. The interested

reader should refer to the following papers for further details: [102] [14] [26].

The support vector algorithm is based in part on the idea of structural risk mini-

mization [102], whose motivation can be summarized follows: In example-based function-

approximation learning, the goal is to synthesize an approximation function that (1) maps

input examples onto their respective output values, and (2) reasonably predicts output val-

ues at input locations where no examples are available. This second property is commonly

known as the learner's generalization ability. Together, one can quantify the above two

constraints in terms of a risk measure that depends on the number of training examples

and the VC-dimension [100] [101] [1] (i.e. complexity) of the approximation function class.

We refer the reader to [80] for a more detailed and mathematical treatment of structural

risk minimization and function-approximation learning.

When available training data is limited, one must constrain the learning machine's

structural complexity in order to minimize risk and generalize reasonably. Structural risk

minimization chooses the function of \optimal" complexity from an approximation function

class so that the resulting risk is minimal. The support vector algorithm essentially performs

structural risk minimization on an approximation function class whose structure is a set

of hyperplanes. For spherical Gaussian RBF networks, the algorithm minimizes risk by

determining the number of Gaussian kernels that leads to best generalization. In our current

RBF support vector algorithm formulation, we deal with a structure in which all Gaussian

kernels must have the same �xed user-speci�ed variance.

We use the support vector algorithm to construct 10 RBF-based single-digit recognizers

with �xed Gaussian variances of �2 = 38:4, each trained to separate a given digit from
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Classi�cation Error Rate
USPS Database Original Classical RBF Support Vector RBF

Training (7291 patterns) 0.33% 1.73% 0.01%

Test (2007 patterns) 5.33% 6.73% 4.88%

Table 3.5: 10-class digit recognition error rates for three di�erent system architectures. The �rst system
is based on the pattern identi�cation framework within our proposed object and pattern class detection

approach. The other two are the Gaussian RBF-based systems we trained, one with a classical RBF

algorithm and the second with the support vector algorithm. The test results show that our proposed
pattern identi�cation framework compares reasonably well against classical digit recognition architec-

tures, hence suggesting that it is indeed general enough to even model and capture pattern variations in

problem domains that are essentially pattern recognition in spirit.

the other 9. We experimented with several �2 values and chose the setting with the best

recognition result on the USPS test database. For each single-digit recognizer, the support

vector algorithm selects a set of positive and negative example digit patterns from the USPS

training database as Gaussian kernel centers. Table 3.4 shows the number of support vectors

selected for each recognizer. Notice that the same digit pattern can be chosen as a support

vector for two or more digit recognizers. In Table 3.3, we show the number of distinct

patterns from each digit class that have been selected as support vectors. We use these

�gures in the �rst classical RBF system as an appropriate number of Gaussian kernels for

each digit class.

3.5.4 Results

We ran our original 10-class digit recognizer and the two spherical Gaussian RBF-

based systems described above on the USPS test digit database. For each test pattern, the

arbitration procedure in all three systems simply returns the digit class whose recognizer

gives the strongest response. Table 3.5 shows the 10-class digit recognition error rates for

our original system and the two RBF-based systems. The results should also be compared

with values achieved on the same test database by a �ve-layer multi-layer perceptron net,

5:1% [29], a two-layer multi-layer perceptron net, 5:9%, and human performance, 2:5% [16].

On the whole, the test results show that our proposed pattern identi�cation framework

compares reasonably well against classical digit recognition architectures in classifying digit

patterns, hence suggesting that our framework is indeed general enough to even model and

capture pattern variations in problem domains that are essentially pattern recognition in

spirit.
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Chapter 4

Active Example Selection for

Function Approximation Learning

One key feature in our proposed object and pattern detection approach is the \boot-strap"

idea of sieving through extremely large training data sets for useful examples relevant to

the learning problem. We have seen in our face and eye detection scenarios that it can

be very di�cult to manually obtain a small and representative sample of \non-face" and

\non-eye" patterns as training examples. Without a reasonable example selection strategy,

the negative example sets in both these scenarios can grow hopelessly large, making the

learning problems intractable.

In this chapter, we take a more formal look at the problem of selecting high utility

examples for training pattern detection systems. The example selection problem falls under

a newly emerging general area of research, called active learning, that investigates how

learners can pose intelligent queries to teachers under various learning scenarios, to achieve

\better" learning results. Active learning di�ers from traditional example-based learning

paradigms in the following way: Rather than passively accepting training examples that

randomly describe a target concept, an active learner uses information derived from its

current state and prior knowledge about the target concept to intelligently gather useful

examples from speci�c input space locations for further training. By carefully generating

intelligent queries instead of performing random sampling, one can expect active learning

techniques to have faster learning rates and better approximation results than traditional

example-based learning algorithms.
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Our main focus in this chapter is on active example selection strategies for a func-

tion approximation based learning framework. Speci�cally, we address the following three

questions:

1. Given a function approximation based learning task and some prior information about

the target function, are there principled strategies for selecting useful training data in

some \optimal" fashion?

2. Assuming such principled data selection strategies do exist, do these active strate-

gies require fewer examples than classical learning techniques to approximate target

functions to the same degree of accuracy?

3. Can one directly apply these active example selection strategies to real-world function

approximation learning tasks like our pattern detection scenarios, or easily adapt them

into more feasible forms without losing too much of their original 
avor?

We begin by proposing an active example selection formulation for function approxima-

tion learning to show that one can indeed select high utility examples for a given task in

a principled and \optimal" fashion. While the formulation we propose is computationally

intractable in its original form for a wide range of approximation function classes, we see

it as a possible benchmark for evaluating other active example selection schemes. We next

show how the general formulation can be used to derive precise data selection algorithms

for three speci�c approximation function classes: (1) unit step functions, (2) polynomial ap-

proximators and (3) Gaussian radial basis function networks. For all three function classes,

we provide either theoretical or empirical results suggesting that the active strategy learns

the target function with fewer data examples than random sampling. Finally, we consider

a reduced version of the original active learning formulation that essentially hunts for new

data where approximation \error bars" are high. We show how such a scheme, with mi-

nor modi�cations, leads to the \boot-strap" example selection strategy we have adopted in

our object and pattern class detection approach. Although the \boot-strap" strategy loses

some of the original active learning 
avor and may thus be \sub-optimal" in its choice of

new examples, we show empirically that it still outperforms random sampling in training

a frontal face detection system, and is therefore still an e�ective means of dealing with

unmanageably large data sets to make learning tasks tractable.
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4.1 Background and Approach

We start with an overview of active learning and related work. Active learning has appeared

in various forms throughout knowledge engineering and machine learning literature. One

early implementation can be found in certain expert systems, where an important com-

ponent of learning relies on issuing queries to the instructor. For example, Sammut and

Banerji [78] use queries about speci�c examples as part of a strategy for e�ciently learning

a target concept. Shapiro's Algorithmic Debugging System prompts the user with a variety

of query types to locate errors in Prolog programs [82]. In computational learning theory,

several types of active learning queries have also been de�ned (see for example [6]) and com-

pared with Valiant's probably approximately correct (PAC) model of concept identi�cation

under random sampling [99]. Angluin [5], for example, has shown that there are concept

classes that can be e�ciently learnt with membership and equivalence queries, but not with

random sampling in Valiant's PAC model.

Some early connectionist approaches toward active learning include: Ahmad and Omo-

hundro [4] on training networks by selective attention; Hwang et. al. [47] on a query-based

neural network learning scheme that generates queries near classi�cation boundaries; Plu-

towski and White [70] on an e�cient feedforward network training technique that selects

new training examples with maximum potential utility from among available candidate ex-

amples. Both Hwang et. al. [47] and Plutowski et. al. [70] choose new training examples

according to information derived from a partially trained network.

Plutowski and White [70] examines the learning task from a more general function ap-

proximation standpoint, viz., approximating a target function, g(~x), using a network output

function, F (~w; ~x), parameterized by weights ~w. They design their criteria for selecting new

examples to meet two objectives: (1) to maximize the accuracy of �t between network

output, F (~w; ~x), and the target function, g(~x), and (2) to minimize the approximation's

unreliability in the presence of noise. The paper quanti�es the above two considerations by

proposing an Integrated Mean Squared Error (IMSE) measure to be minimized:

IMSE(xn) =
Z Z

[g(~x)� F (ln(xn;yn); ~x)]2
n(dynjxn)�(d~x)

=

Z
E[(g(~x)� F ( ~wn; ~x))

2jxn]�(d~x);
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where xn;yn are the current n pairs of input-output training examples, ln(x
n;yn) = ~wn is

the learning rule that begets network weights ~wn from the training examples, 
n(ynjxn) is
the conditional probability of output distribution yn given input distribution xn, E[�jxn] is
conditional expected network output mean squared error given input distribution xn, and �

is the probability distribution over the input space ~x. To select the next training example,

the learning algorithm samples at the next input location ~xn+1 that maximally decreases

the IMSE. Unfortunately, an obvious problem with the approach is that both the IMSE

and the analytic expression for its decrement (not shown) assume a known target function

g(~x). This is seldom a reasonable assumption in real learning scenarios where the target

function is unknown.

4.1.1 Regularization Theory and Function Approximation | A Review

Our main focus in this chapter is on function approximation based active learning. We

brie
y review regularization theory as a lead in to our active learning formulation.

Let Dn = f(~xi; yi) 2 <d�<ji = 1; : : : ; ng be a set of n data points obtained by sampling

a function g, possibly in the presence of noise, where d is the input dimensionality. The

function approximation task is to recover g, or at least obtain a reasonable estimate of it,

by means of an approximator ĝ. Clearly, the problem is ill-posed [43] because there can be

an in�nite number of functions that pass through those data points. Some constraints are

thus needed to transform the problem into a well-posed one. The regularization approach

[94] [95] [63] [8] selects a function ĝ that minimizes the following functional:

H [ĝ] =
nX
i=1

(yi � ĝ(~xi))2 + � k Pĝ k2 : (4:1)

The �rst term of Equation 4.1 penalizes discrepancies between the solution, ĝ, and the

observed data. The second term, usually called a stabilizer, embodies a priori knowledge

about the smoothness of the solution. P is a constraint operator, usually a linear di�erential

operator, and k � k stands for a norm on the function space containing ĝ, usually the L2

norm. Together, they favor functions that do not vary too quickly on <d. The regularization

parameter, �, determines the trade-o� between the two terms | data reliability and prior

beliefs. Poggio and Girosi have shown that the solution to Equation 4.1 has the following

simple form:
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ĝ(~x) =
nX
i=1

ciG(~x; ~xi) + p(~x); (4:2)

where G, p and the coe�cients ci, can all be derived from the constraint operator P , the n

data points (~xi; yi), the stabilizer and some boundary conditions (see [71] for details).

For our purpose, it is convenient to adopt a probabilistic interpretation of regularization

that treats the function ĝ and the data set Dn as random, dependent variables (see [72]).

Using Bayes rule, we can express the conditional probability of the function ĝ given examples

Dn, P(ĝjDn), in terms of the prior probability of ĝ, P(ĝ), and the conditional probability

of Dn given ĝ, P(Dnjĝ):

P(ĝjDn) / P(Dnjĝ)P(ĝ): (4:3)

Equation 4.3 relates to the regularization functional of Equation 4.1 as follows: Suppose

noise at each of the n data points is identically independently Gaussian distributed with

variance �2. The conditional probability, P(Dnjĝ), can be written as:

P(Dnjĝ) / exp

 
�

nX
i=1

1

2�2
(yi � ĝ(~xi))2

!
:

Similarly, if ĝ is a stochastic process [59] [36], we can write P(ĝ) as:

P(ĝ) / exp
�
�l k Pĝ k2

�
;

where l is some �xed constant, P and k � k are as de�ned earlier. Equation 4.3 thus becomes:

P(ĝjDn) = Ke
�
Pn

i=1

1

2�2
(yi�ĝ(~xi))2 exp

�
�l k Pĝ k2

�

= K exp

 
�[

nX
i=1

1

2�2
(yi � ĝ(~xi))2 + l k Pĝ k2]

!

where K is some �xed constant. Taking natural logarithms on both sides and performing

some additional algebra yields:

�2�2 lnP(ĝjDn) + lnK =
nX
i=1

(yi � ĝ(~xi))2 + 2�2l k Pĝ k2;

which is identically Equation 4.1 with � = 2�2l and H [ĝ] = �2�2 lnP(ĝjDn) + lnK. So,

by choosing a function ĝ that minimizes H [ĝ], regularization essentially maximizes the
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conditional probability P(ĝjDn). In other words, it chooses:

ĝ 2 argmin
f
H [f ] = argmax

f
P(f jDn)

= argmax
f
P(Dnjf)P(f);

that is, an a-posteriori most probable function ĝ given the set of examples Dn.

4.1.2 A Bayesian Framework

The active learning problem for function approximation can be posed as follows: Let Dn =

f(~xi; yi) 2 <d � <ji = 1; : : : ; ng be a set of n data points sampled from an unknown target

function g, possibly in the presence of noise, where d is the input dimensionality. Given an

approximation function concept class, F , where each f 2 F has prior probability PF(f),
one can use regularization techniques to approximate g from Dn (in the Bayes optimal sense)

by means of a function ĝ 2 F . We want a strategy to determine at what input location

one should sample the next data point, ( ~xn+1; yn+1), in order to obtain the \best" possible

Bayes optimal approximation of the unknown target function g with our concept class F .
One can use ideas from optimal experiment design [33] to approach the active data

sampling problem in two stages:

1. De�ne what we mean by the \best" possible Bayes optimal approximation

of an unknown target function. We propose an optimality criterion for evaluating

the \goodness" of a solution with respect to an unknown target function, similar in

spirit to the cost function, Equation 4.1, for a known target.

2. Formalize mathematically the task of determining where in input space to

sample the next data point. We express the above mentioned optimality criterion

as a cost function to be minimized, and the task of choosing the next sample as one

of minimizing the cost function with respect to the input space location of the next

sample point.

Earlier work by Cohn [24] and MacKay [58] have tried using similar optimal experiment

design techniques to collect data with maximum information about the target function.

Our work here di�ers from theirs in two respects. First, we use a di�erent, and perhaps
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more general, optimality criterion for evaluating solutions to an unknown target function.

Speci�cally, our optimality criterion considers both bias and variance components in the

solution's output generalization error. In contrast, both MacKay and Cohn use a \less

complete" optimality criterion that favors solutions with only small variance components

in model parameter space. Second, we also examine the important sample complexity issue,

i.e., does the active strategy require fewer examples than random sampling to approximate

the target to the same degree of accuracy? After completion of this work, we learnt that

Sollich [86] had also recently developed a similar formulation to ours, but his analysis is

conducted in a statistical physics framework.

4.2 The Active Learning Formulation

In order to optimally select examples for a learning task, one should �rst have a clear notion

of what an \ideal" learning goal is for the task. One can then measure an example's utility

in terms of how well the example helps the learner achieve the goal, and devise an active

sampling strategy that selects examples with maximum potential utility. In this section,

we propose one such learning goal | to �nd an approximation function ĝ 2 F that \best"

estimates the unknown target function g. We then derive an example utility cost function

for the goal and �nally present a general procedure for selecting examples.

4.2.1 An Optimality Criterion for Learning an Unknown Target Function

Let g be the target function that we want to estimate by means of an approximation function

ĝ 2 F . If the target function g were known, then one natural measure of how well (or badly)

ĝ approximates g would be their Integrated Squared Di�erence (ISD) over the input space,

<d, or over some appropriate region of interest:

�(ĝ; g) =

Z
~x2<d

(g(~x)� ĝ(~x))2d~x: (4:4)

In most function approximation tasks, the target g is unknown, so we clearly cannot

express the quality of a learning result in terms of g. We propose an alternative scheme

for characterizing probabilistically the quality of an approximation result that takes into

account only ĝ, the approximation function itself, and the example data points it approxi-

mates, without actually having to know g. Here, our objective notion is similar in spirit to
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ĝ

x

(b)

Figure 4-1: (a): Two approximation functions, ĝ1 and ĝ2, for the same set of data points sampled from

an unknown target function. ĝ1 oscillates less between the data points, so one would normally guess that
it is a more probable hypothesis for the unknown target function. (b): An approximation function, ĝ,

for two sets of data points sampled from two (possibly di�erent) unknown target functions. Although ĝ

�ts both sets of data points exactly, one might still expect it to more closely resemble the unknown target
function of the top system than of the bottom system. This is due to the uneven example distribution

in the bottom system.

the integrated squared di�erence \mis�t" criterion described above. We elaborate further

on what we mean below:

Figure 4-1(a) shows two approximation functions, ĝ1 and ĝ2, for a set of data points,

D, from an unknown target function g. Without further knowledge of the target function,

g, one would normally guess that ĝ1 is a more probable (and hence better) hypothesis

for g, because it oscillates less between the data points. This aspect of an approximation

function's \goodness" has been fully captured by regularization, which assigns P(ĝ1jD) a
higher likelihood value than P(ĝ2jD).

Figure 4-1(b) shows a function, ĝ, that approximates two unknown target functions

g1 and g2, sampled at D1 and D2 respectively. Notice that in this example, the ap-

proximator ĝ �ts both data sets exactly, so we have ĝ = argmaxf2F P(f jD1) and ĝ =

argmaxf2F P(f jD2). Intuitively however, one might still expect the actual mis�t between

g1 and ĝ to be smaller than the actual mis�t between g2 and ĝ. This is because D1 is a

more representative data sample for g1 than D2 is for g2, and in both systems, ĝ is directly

derived from D1 and D2 respectively. One can view this expected mis�t notion between an
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unknown target g and its approximation function ĝ, as a sense of \uncertainty" that one

has in the current solution. The notion is not captured by the regularization framework,

and as we shall see, depends instead on the distribution of training examples over the input

space.

Since our active learning task is to determine the best input space location for sampling

next, a reasonable learning goal would be to sample at locations that minimize the expected

mis�t notion between the unknown target g and the resulting approximation ĝ.

4.2.2 Evaluating a Solution to an Unknown Target | The Expected In-

tegrated Squared Di�erence

We now formalize the above expected mis�t notion as a mathematical functional to be

minimized. The general idea is as follows: Let F be the approximation function class in our

learning task. Suppose we treat the unknown target function g as a random variable in F ,
then one way of determining the expected mis�t between the regularized solution, ĝ, and the

unknown target function, g, would be to compute an expected version of some di�erence

measure between them, such as their integrated squared di�erence, �(ĝ; g) (see Equation 4.4).

Taking into account Dn, the n data points seen so far, and PF (g), the prior probability of

g in F , we have the following a-posteriori likelihood for g: P(gjDn) / PF (g)P(Dnjg).
The expected integrated squared di�erence (EISD) between an unknown target, g, and its

estimate, ĝ, given Dn, is thus:

EF [�(ĝ; g)jDn] =
Z
g2F

P(gjDn)�(ĝ; g)dg =
Z
g2F

PF(g)P(Dnjg)�(ĝ; g)dg: (4:5)

The EISD is intuitively pleasing as an \uncertainty" measure for evaluating a solution

to an unknown target, because its value decreases with better distributed data samples.

The following example illustrates how the measure agrees well with \human intuition".

We return to the two function approximation problems described in Figure 4-1(b). In the

�rst system, one intuitively expects a smaller discrepancy between the unknown target and

its approximation function than in the second system, even though the same regularized

estimate ĝ �ts both data sets equally well. This is because the data samples D1 in the �rst

system are more evenly (and hence better) distributed than the samples D2 in the second

system. We now argue that the EISD measure in the �rst system should indeed be smaller

than the EISD measure in the second system.
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Figure 4-2: Top Row: A regularized solution, ĝ, for two unknown target functions, g1
(left graph) and g2 (right graph). The curve ĝ0 is an alternative hypothesis for the two
unknown target functions. There is more evidence against ĝ0 being a true hypothesis for
g1 than for g2 because the �rst system has a data point near the center of the input space
where ĝ0 di�ers considerably from ĝ and the data point. Bottom Row: Graphs depicting
the a-posteriori probability distribution of the unknown target in approximation function
space for the two systems. Because there is more evidence against alternative hypotheses
like ĝ0 in the �rst system than in the second system, we get a sharper peak for the a-
posteriori distribution at ĝ in the �rst system than in the second system.
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Consider the same two systems in the top row of Figure 4-2, where ĝ is the regular-

ized solution for the two unknown target functions g1 and g2. The two unknown tar-

gets are sampled at D1 and D2 respectively, and both data sets contain the same num-

ber of data points. Consider next an alternate hypothesis ĝ0 for g1 and g2, that di�ers

slightly from the regularized solution ĝ over some region of the input space. Because the

�rst system has better distributed data points than the second system, there is more ev-

idence against most alternative hypotheses like ĝ0 being a viable solution for g1 than for

g2. Mathematically, this means that for most alternative hypotheses like ĝ0, the ratio

P(g1 = ĝ0jD1)=P(g1 = ĝjD1) is smaller than the ratio P(g2 = ĝ0jD2)=P(g2 = ĝjD2). One

can therefore expect EF [�(ĝ; g1)jD1] < EF [�(ĝ; g2)jD2], which agrees well with \human in-

tuition". The bottom row of Figure 4-2 depicts the di�erence between the two systems

graphically. Because most alternative hypotheses are poor solutions for the �rst data set

D1, the �rst unknown target g1 has an a-posteriori probability distribution that is heavily

weighted around ĝ in approximation function space. The same is less true about the a-

posteriori probability distribution for g2 in the second system. Thus, ĝ is a more \stable",

and hence a more \certain" solution for g1 than for g2.

4.2.3 Selecting the Next Sample Location

Let g be the unknown target function that we want to learn, Dn = f(~xi; yi) 2 <d �
<ji = 1; : : : ; ng be the set of n examples seen so far, and ĝn be the current regularized

approximation for g. We now formalize the task of determining the best input space location

to sample next. Since our learning goal is to minimize the expected mis�t between g and its

regularized solution, a reasonable sampling strategy would be to choose the next example

from the input location ~xn+1 2 <d that minimizes the EISD between g and its new estimate

^gn+1.

How does one predict the new EISD that results from sampling the next data point at

location ~xn+1? Suppose we also know the target output value (possibly noisy), yn+1, at

~xn+1. The EISD between g and its new estimate ĝn+1 would then be EF [�( ^gn+1; g)jDn [
( ~xn+1; yn+1)], where ^gn+1 can be recovered from Dn [ ( ~xn+1; yn+1) via regularization. In

reality, we do not know yn+1, but we can derive its conditional probability distribution from

Dn, the data samples seen so far. Once again, let F be the approximation function class

for our learning task and PF(f) be the prior probability of f in F , then:
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P(yn+1j ~xn+1;Dn) /
Z
f2F

P(Dn [ ( ~xn+1; yn+1)jf)PF(f)df: (4:6)

Because yn+1 is a random variable and not a �xed value as we had assumed earlier, this

leads to the following expected value for the new EISD, if we sample our next data point at

~xn+1:

U(ĝn+1jDn; ~xn+1) =
Z 1

�1
P(yn+1j ~xn+1;Dn)EF [�( ^gn+1; g)jDn [ ( ~xn+1; yn+1)]dyn+1: (4:7)

Notice from Equation 4.5 that EF [�( ^gn+1; g)jDn [ ( ~xn+1; yn+1)] in the above expression is

actually independent of the unknown target function g, and so U(ĝn+1jDn; ~xn+1) (henceforth

referred to as the total output uncertainty) is fully computable from available information

in the learning model. Clearly, the optimal input location to sample next is the location

that minimizes U(ĝn+1jDn; ~xn+1), i.e.:

~̂xn+1 = argmin
~xn+1
U(gn+1jDn; ~xn+1): (4:8)

4.2.4 Summary of the Active Learning Procedure

We summarize the key steps involved in our active learning strategy for �nding the optimal

next sample location:

1. Compute P(gjDn). This is the a-posteriori likelihood of the di�erent functions g given

Dn, the n data points seen so far.

2. Assume a new point ~xn+1 to sample.

3. Assume a value yn+1 for this ~xn+1. One can compute P(gjDn [ ( ~xn+1; yn+1)) and

hence the expected integrated squared di�erence (EISD) between the target and its new

estimate ^gn+1. This is given by EF [�( ^gn+1; g)jDn [ ( ~xn+1; yn+1)] (see Equation 4.5).

4. At the assumed ~xn+1, yn+1 has a probability distribution given by Equation 4.6.

Averaging the resulting EISD over all yn+1's, we obtain the total output uncertainty

for ~xn+1, given by U( ^gn+1jDn; ~xn+1) in Equation 4.7.
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5. Sample at the input location ~̂xn+1 that minimizes the total output uncertainty cost

function U( ^gn+1jDn; ~xn+1).

Some �nal remarks about our example selection strategy: Intuitively, a reasonable selec-

tion criterion should choose new examples that provide dense information about the target

function g. Furthermore, the choice should also take into account the learner's current state,

namely Dn and ĝn, so as to maximize the net amount of information gained. Our scheme

treats an approximation function's expected mis�t with respect to the unknown target g (i.e.

their EISD) as a measure of uncertainty in the current solution. It selects new examples,

based on the data that it has already seen, to minimize the expected value of the resulting

EISD measure. In doing so, it essentially maximizes the net amount of information gained

with each new example.

Our main results in this active learning formulation are:

1. a cost function that captures the expected mis�t optimality criterion (Equation 4.5)

for evaluating the solution to an unknown target function, and

2. a formal speci�cation for the task of selecting new training examples with maximum

potential utility (Equation 4.8).

These results may, in themselves, be interesting from a theoretical standpoint, but in prac-

tice, another fundamental concern must also be addressed | the computational complexity

issue. Both Equations 4.5 and 4.8, though theoretically computable from available informa-

tion in the learning model, are clearly intractable in their current form. Nevertheless, we

maintain the formulation still serves as a possible \optimal" benchmark for evaluating other

active example selection schemes. Later in this chapter, we shall consider a reduced version

of the original function approximation based active learning formulation that essentially

hunts for new data where approximation \error bars" are high. We also show how such a

scheme, with minor modi�cations, leads to the \boot-strap" example selection strategy we

have adopted in our object and pattern class detection approach.

4.3 Comparing Sample Complexity

To demonstrate the usefulness of the above active learning procedure, we show analytically

and empirically that the active strategy learns target functions with fewer data examples
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Figure 4-3: Diagram showing the notation used for our unit-step example.

than random sampling for three speci�c approximation function classes: (1) unit step func-

tions, (2) polynomial approximators and (3) Gaussian radial basis function networks. For

all three function classes, one can derive exact analytic data selection algorithms following

the key steps outlined in Section 4.2.4.

4.3.1 Unit Step Functions

We �rst consider the following simple class of one-dimensional unit-step functions described

by a single parameter a which takes values in [0; 1]: Let us denote the unit-step function by:

u(x� a) =

8><
>:

1 if x � a

0 otherwise

The target and approximation function class for this problem is given by:

F = fu(x� a)j0 � a � 1g

Assuming a has an a-priori uniform distribution on [0; 1], we obtain the following prior

distribution on the approximation function class:

PF (g = u(x� a)) =

8><
>:

1 if 0 � a � 1

0 otherwise

Suppose we have a noiseless data set, Dn = f(xi; yi); i = 1; ::ng, consistent with some

unknown target function g = u(x � a) that the learner has to approximate. We want

to �nd the best input location to sample next, x 2 [0; 1], that would provide us with

maximal information. Let xR be the right most point in Dn whose y value is 0, i.e.,
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xR = maxi=1;::nfxijyi = 0g (see Figure 4-3). Similarly, let xL = mini=1;::nfxijyi = 1g and
w = xL � xR. Following the general procedure outlined in Section 4.2.4, we go through the

following steps:

1. Derive P(gjDn). One can show that:

P(g = u(x� a)jDn) =

8><
>:

1
w

if a 2 [xR; xL]

0 otherwise

2. Suppose we sample next at a particular x 2 [0; 1], we would obtain y with the distri-

bution:

P (y = 0jDn; x) =

8>>>><
>>>>:

(xL�x)
xL�xR = (xL�x)

w
if x 2 [xR; xL]

1 if x � xR

0 otherwise

P (y = 1jDn; x) =

8>>>><
>>>>:

(x�xR)
xL�xR = (x�xR)

w
if x 2 [xR; xL]

1 if x � xL

0 otherwise

3. For a particular y, the new data set would be Dn+1 = Dn[(x; y) and the corresponding
EISD can be easily obtained using the distribution P(gjDn+1). Averaging this over

P(yjDn; x) as in step 4 of the general procedure, we obtain:

U( ^gn+1jDn; x) =

8><
>:

w2

12
if x � xR or x � xL

1
12w

((xL � x)3 + (x� xR)3) otherwise

4. Clearly the new input location that minimizes the total output uncertainty, U( ^gn+1jDn; x),

measure is the midpoint between xL and xR:

^xn+1 = arg min
x2[0;1]

U( ^gn+1jDn; x) =
xL + xR

2
:

Thus, by applying the general procedure to this trivial case of one-dimensional unit-step

functions, we get a binary search learning algorithm that queries the midpoint of xR and

xL. For this function class, one can show analytically in PAC-style [98] that our active data
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sampling strategy takes fewer examples to learn an unknown target function to a given

level of total output uncertainty than randomly drawing examples according to a uniform

distribution in x.

Theorem 1 Suppose we want to collect examples so that we are guaranteed with high prob-

ability (i.e. probability > 1 � �) that the total output uncertainty is less than �. Then

a passive learner would require at least 1p
48�

ln(1=�) examples while the active strategy de-

scribed earlier would require at most (1=2) ln(1=12�) examples.

4.3.2 Polynomial Approximators

We consider next a univariate polynomial target and approximation function class with

maximum degree K, i.e.:

F = fg(x;~a) = g(x; a0; : : : ; aK) =
KX
i=0

aix
ig:

The model parameters to be learnt are ~a = [a0 a1 : : : aK ]
T and x is the input variable.

We obtain a prior distribution for F by assuming a zero-mean Gaussian distribution with

covariance �F on the model parameters ~a:

PF(g(�;~a)) = PF(~a) = 1

(2�)(K+1)=2j�F j1=2
exp(�1

2
~aT��1F ~a): (4:9)

Our task is to approximate an unknown target function g 2 F within the input range

[xLO; xHI] on the basis of sampled data. Let Dn = f(xi; yi = g(xi) + �)ji = 1; : : : ; ng be

a noisy data sample from the unknown target in the input range [xLO; xHI], where � is an

additive zero-mean Gaussian noise term with variance �2s . We compare two di�erent ways

of selecting the next data point: (1) sampling the function at a random point x according to

a uniform distribution in [xLO; xHI] (i.e. passive learning), and (2) using our active learning

framework to derive an exact algorithm for determining the next sampled point.

The Active Strategy

Here, we go through the general active learning procedure outlined in Section 4.2.4 to derive

an exact expression for ^xn+1, the next query point. We summarize the key derivation steps

below:
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1. Let �xi = [1xi x
2
i : : : x

K
i ]

T be a power vector of the ith data sample's input value. One

can show (see Appendix A.1.1) that the a-posteriori approximation function class

distribution, P(~ajDn), is a multivariate Gaussian centered at ~̂a with covariance �n,

where:

~̂a = �n(
1

�2s

nX
i=1

�xiyi)

and:

��1n = ��1F +
1

�2s

nX
i=1

�
�xi �xi

T
�
: (4:10)

2. Deriving the total output uncertainty expression U( ^gn+1jDn; xn+1) requires several

steps (see Appendix A.1.2 and A.1.3). Taking advantage of the Gaussian distribution

on both the parameters ~a and the noise term, we eventually get:

U( ^gn+1jDn; xn+1) = j�n+1Aj / j�n+1j; (4:11)

where A is a constant (K +1)� (K+ 1) matrix of numbers whose (i; j)th element is:

Ai;j =

Z x
HI

xLO

t(i+j�2)dt

�n+1 has the same form as �n and depends on the previous data, the priors, noise

and the next sample location xn+1. When minimized over xn+1, we get ^xn+1 as the

maximum utility location where the active learner should next sample the unknown

target function.

Simulations | Error Rate versus Number of Examples

We perform some simulations to compare the active strategy's sample complexity with that

of a passive learner which receives uniformly distributed random training examples on the

input domain [xLO; xHI]. In this experiment, we investigate whether our active example

selection strategy learns an unknown target to a smaller average error rate than the passive

strategy for the same number of data samples. The experiment proceeds as follows:

We randomly generate 1000 target polynomial functions using a �xed Gaussian prior

on the model parameters ~a = [a0 a1 : : : aK ]T. For each target polynomial, we collect data
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sets with noisy y values ranging from 3 to 50 samples in size, using both the active and

passive sampling strategies. We then assume the same Gaussian priors on the approxima-

tion function class to obtain a regularized estimate of the target polynomial for each data

set. Because we know the actual target polynomial for each data set, one can compute

the actual integrated squared di�erence between the target and its estimate as an approx-

imation error measure. We compare the two sampling strategies by separately averaging

their approximation error rates for each data sample size over the 1000 di�erent target

polynomials.

In our simulations, we use polynomials of maximum degree K = 9, distributed ac-

cording to the following independent Gaussian priors on model parameters: for each aj in

~a = [a0 a1 : : : a9]T, we have:

P(aj) = 1

�j
p
2�

exp

 
� a2j

2�2j

!
;

where �j = 0:9j+1. In other words, �F of Equation 4.9 is a 10 � 10 diagonal covariance

matrix such that:

�F(i; j) =

8><
>:
�2i�1 = 0:92i if i = j

0 otherwise
(4:12)

Qualitatively, our priors favor smooth functions by assigning higher probabilities to poly-

nomials with smaller coe�cients, especially for higher powers of x. We also �x the input

domain to be [xLO; xHI ] = [�5; 5].
Figure 4-4 shows the average integrated squared di�erence between the 1000 randomly

generated target polynomials and their regularized estimates for di�erent data sample sizes.

We repeated the same simulations three times, each with a di�erent output noise variance

in the data samples: �s = 0:1; 1:0 and 5:0. Notice that the active strategy has a lower

average error rate than the passive strategy particularly for smaller data samples. From

this experiment, one can conclude empirically that our active sampling strategy learns with

fewer data samples than random sampling even when dealing with noisy data.

Simulations | Incorrect Priors

We next investigate how the active learning strategy behaves if the approximation func-

tion class F di�ers slightly from the actual target class. Speci�cally, we consider the fol-
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Figure 4-4: Comparing active and passive learning average error rates at di�erent output noise levels for

polynomials of maximum degree K = 9. We use the same priors on the target and approximation function

classes. The three graphs above plot log error rates against number of samples. See text for detailed

explanation. The dark and light curves are the active and passive learning error rates respectively.
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Figure 4-5: Comparing active and passive learning average error rates for slightly di�erent priors between

the target and approximation function classes. Top: Results for the �rst case. The approximation function
class uses a higher degree polynomial with larger Gaussian variances on its coe�cients (K = 9 and �j =

0:9j+1) versus (K = 8 and �j = 0:8j+1). Middle: The approximation function class uses a lower degree

polynomial with smaller Gaussian variances on its coe�cients (K = 7 and �j = 0:7j+1) versus (K = 8 and
�j = 0:8j+1). Bottom: The approximation and target polynomial function classes have smoothness priors

that di�er in form. In all three cases, the active learning strategy still results in lower approximation error

rates than random sampling for the same number of data points.
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lowing three cases:

In the �rst case, the active learner assumes a higher polynomial degree with similar

but slightly larger Gaussian variances than the true target priors. We use a 9th degree

(i.e. K = 9) polynomial function class with Gaussian priors �j = 0:9j+1 to approximate

an unknown 8th degree (i.e. K = 8) target polynomial with Gaussian priors �j = 0:8j+1.

Qualitatively, the approximation function class is more complex and favors smooth estimates

less strongly than the target class.

The second case deals with the exact opposite scenario. The active learner uses a

lower degree polynomial with similar but slightly smaller Gaussian variances (K = 7 and

�j = 0:7j+1) to approximate an unknown 8th degree (i.e. K = 8) target with Gaussian

priors �j = 0:8j+1. Here, the approximation function class is less complex and favors smooth

estimates more strongly than the target class.

In the third case, we consider a polynomial approximation function class F whose prior

distribution has a di�erent form from that of the target class. Let p 2 F be a polynomial

in the approximation function class. One can quantify the overall \smoothness" of p by

integrating its squared �rst derivative over the input domain [xLO; xHI]:

Q(p(�;~a)) =
Z xHI

xLO

�
dp(x;~a)

dx

�2
dx: (4:13)

The \smoothness" measure above leads to a convenient prior distribution on F that favors

smoothly varying functions:

PF (p) / exp(�Q(p(�;~a))) exp(� a20
2�20

):

Here, a0 is the constant term in the polynomial p, whose coe�cients are ~a = [a0 a1 : : : aK ]
T.

Although a0 does not a�ect the \smoothness" measure in Equation 4.13, we impose on it

a Gaussian distribution with variance �20 so PF(p) integrates to 1 over all polynomials in

F like a true probability density function. One can show (see Appendix A.1.4 for detailed

derivation) that PF(p) has the following general form similar to Equation 4.9, the priors on

polynomials with independent Gaussian distributed coe�cients:

PF(p(�;~a)) = PF(~a) = 1

(2�)(K+1)=2j�F j1=2
exp(�1

2
~aT��1F ~a):

The new covariance term �F is as given below:
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Figure 4-6: Distribution of the �rst 50 data points the active learner selects as the
polynomial degree K of the approximation function class varies from 5 to 9. In all 5
cases, we assume a �xed data output noise level of �s = 0:5. Notice that for polynomials
of degree K, the active learner clusters its data samples typically around K+1 locations.

��1F (i; j) =

8>>>><
>>>>:

1=�20 if i = j = 1

2 (i�1)(j�1)
i+j�3 (xi+j�3

HI
� xi+j�3

LO
) if 2 � i � K + 1 and 2 � j � K + 1

0 otherwise

(4:14)

For this third case, we use an 8th degree (i.e. K = 8) polynomial function class with

�0 = 0:8 in its \smoothness" prior to approximate a target polynomial class of similar

degree with Gaussian priors �j = 0:8j+1. Although the approximation and target function

classes have prior distributions that di�er somewhat in form, both priors are qualitatively

similar in that they favor smoothly varying polynomials.

For all three cases of slightly incorrect priors described above, we compare our active

learner's sample complexity with that of a passive learner which receives random samples

according to a uniform distribution on [xLO; xHI]. We repeat the active versus passive func-

tion learning simulations performed earlier by generating 1000 target polynomials, collecting

noisy data samples (�s = 0:5), computing regularized estimates, averaging and comparing

their approximation errors in the same way as before. Figure 4-5 plots the resulting average
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Figure 4-7: Distribution of the �rst 50 data points the active learner selects for a 9th

degree polynomial approximation function class (i.e. K = 9), as the assumed data output
noise level �s varies from 0.1 to 5.0. At higher noise levels, there is less pressure for the
active learner to �t the data closely, and so it favors polynomials with small coe�cients.
For such \lower order" polynomials, one gets better \leverage" from data by sampling
away from the origin.

integrated squared di�erence error rates over a range of data sample sizes for all three cases.

Despite the incorrect priors, we see that the active learner still outperforms the passive

strategy.

Distribution of Data Points

Notice from Equations 4.10, 4.11, 4.12 and 4.14 that the total output uncertainty mea-

sure U( ^gn+1jDn; ~xn+1) for polynomial approximators (i.e., Equation 4.11) does not depend

on the previous y data values actually observed, but only on the previous input locations

sampled. In other words, the previously observed y data values do not a�ect ^xn+1, the

optimal location to sample next. One can show that this behavior is common to all approx-

imation function classes that are linear in their model parameters [58] [86].

Given a polynomial approximation function class of maximum degree K, one can thus

pre-compute the sequence of input locations that our active learner will sample to gain
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maximum information about the unknown target. There are two sampling trends that are

noteworthy here. First, the active strategy does not simply sample the input domain on a

uniform grid. Instead, it chooses to cluster its data samples typically aroundK+1 locations.

Figure 4-6 shows the �rst 50 input locations the active learner selects as K varies from 5

to 9, for a �xed data noise level of �s = 0:1. One possible explanation for this clustering

behavior is that it takes only K + 1 data points to recover a Kth degree target polynomial

in the absence of noise.

Second, as the data noise level �s increases, although the number of data clusters remains

�xed, the clusters tend to be distributed away from the input origin. Figure 4-7 displays the

�rst 50 input locations the active strategy selects for a 9th degree polynomial approximation

function class, as �s increases from 0.1 to 5.0. One can explain the observed behavior as

follows: For higher noise levels, there is less pressure on the active learner to �t the data

closely. Consequently, the prior assumption favoring polynomials with small coe�cients

dominates. For such \lower order" polynomials, one gets better \leverage" from data by

sampling away from the origin. In the extreme case of linear regression, one gets best

\leverage" by sampling data at the extreme ends of the input space.

4.3.3 Gaussian Radial Basis Functions

Our �nal example looks at an approximation function class F of d-dimensional Gaussian

radial basis functions with K �xed centers. Let Gi be the ith basis function with a �xed

center ~ci and a �xed covariance Si. The model parameters to be learnt are the weight

coe�cients denoted by ~a = [a1 a2 � � � aK ]T. An arbitrary function r 2 F in this class can

thus be represented as:

r(~x;~a) =
KX
i=1

aiGi(~x)

=
KX
i=1

ai
1

(2�)d=2jSij1=2
exp(�1

2
(~x� ~ci)TS�1i (~x� ~ci))

We impose a prior PF() on the approximation function class F by putting a zero-centered

Gaussian distribution with covariance �F on the model parameters ~a. Thus, for an arbitrary

function r(�;~a):
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Figure 4-8: Gaussian radial basis function (RBF) model with K �xed centers. The
learner's task is to recover the weight coe�cients ~a = [a1 a2 � � � aK ]T.

PF(r(�;~a)) = PF(~a) = 1

(2�)K=2j�F j1=2
exp(�1

2
~aT��1F ~a):

Lastly, the learner has access to noisy data of the form Dn = f(~xi; yi = g(~xi) + �) : i =

1; : : : ; ng, where g is an unknown target function and � is a zero-mean additive Gaussian

noise term with variance �2s . Thus for every candidate approximation function r(�;~a) 2 F ,
P(Dnjr(�;~a)) has the form:

P(Dnjr(�;~a)) / exp

 
� 1

2�2s

nX
i=1

(yi � r(~xi;~a))
2

!

= exp

0
@� 1

2�2s

nX
i=1

(yi �
KX
t=1

at
exp

�
�1

2
(~xi � ~ct)TS�1t (~xi � ~ct)

�
(2�)d=2jStj1=2

)2

1
A

= exp

 
� 1

2�2s

nX
i=1

(yi �
KX
t=1

atGt(~xi))2
!

Given a set of n data points Dn, one can obtain a maximum a-posteriori (MAP) so-
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lution to the learning problem by �nding a set of model parameters ~̂a that maximizes

P(r(�;~a)jDn) = PF (r(�;~a))P(Dnjr(�;~a)). Let:

�zi = [G1(~xi) G2(~xi) : : : GK(~xi)]T

be a vector of RBF kernel output values for the ith input value. One can show (see Ap-

pendix A.2.1), as in the polynomial case, that the a-posteriori RBF approximation function

class distribution P(r(�;~a)jDn) is a multivariate Gaussian centered at ~̂a with covariance �n,

where:

��1n = ��1F +
1

�2s

nX
i=1

( �zi �zi
T) (4:15)

~̂a = �n (
1

�2s

nX
i=1

�ziyi) (4:16)

Notice that ~̂a of Equation 4.16 is also the MAP solution the learner proposes on the basis of

the data set Dn, regardless of how the data points are selected. We now describe an active

strategy for selecting the data optimally.

The Active Strategy

Recall that our goal is to derive an analytical expression for U( ^gn+1jDn; ~xn+1) in Equa-

tion 4.7, the total output uncertainty cost function to minimize that yields the optimal

location for sampling next. As before, we go through the general active learning procedure

outlined in Section 4.2.4 to derive an exact expression for ^xn+1, the optimal next query

point.

The �rst derivation step is to obtain an analytical expression for P(~ajDn), the a-

posteriori RBF approximation function class distribution. This is exactly P(r(�;~a)jDn)

which we introduced in the series of equations above leading to Equation 4.16.

Deriving the RBF total output uncertainty cost function U( ^gn+1jDn; ~xn+1) requires sev-

eral steps (see Appendix A.2.2 and A.2.3). We eventually get:

U( ^gn+1jDn; ~xn+1) / j�n+1j: (4:17)

�n+1 has the same form as �n in Equation 4.16 and depends on the previous data sample

locations f~xi : i = 1; : : : ; ng, the model priors �F , the data noise variance �2s , and the next
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sample location ~xn+1. When minimized over ~xn+1, we get ~̂xn+1 as the maximum utility

location where the active learner should next sample the unknown target function.

Like the polynomial class example, our RBF approximation function class F is also

linear in its model parameters. As such, the optimal new sample location ~̂xn+1 does not

depend on the y data values in Dn, but only on the previously sampled ~x values.

Simulations | Error Rate versus Number of Examples

Does the active strategy for our RBF approximation function class take fewer examples to

learn an unknown target than a passive learner that draws random samples according to a

uniform distribution on the input domain? We compare sample complexities for the active

and passive learners under the following two conditions:

1. The approximation and target function classes have identical priors. For

simplicity, we perform our simulations in a one-dimensional input domain [xLO; xHI] =

[�5; 5]. The approximation and target function classes are RBF networks with K = 8

�xed centers, arbitrarily located within the input domain. Each RBF kernel has a

�xed 1-dimensional Gaussian \covariance" of Si = 1:0. Finally, we assume identical

independent Gaussian priors on the model parameters ~a, i.e. �F = IK = I8, where

IK stands for a K �K identity covariance matrix.

2. The approximation and target function classes have slightly di�erent pri-

ors. We use a similar RBF approximation function class with K = 8 �xed centers

and a similar 1-dimensional Gaussian kernel \covariances" of Si = 1:0 for the centers.

Each center is slightly displaced from its true location (i.e. its location in the target

function class) by a random distance with Gaussian standard deviation � = 0:1. The

learner's priors on model parameters (�F = 0:9I8) are also slightly di�erent from that

of the target class (�F = I8).

The two simulations proceed as follows: We randomly generate 5000 target RBF func-

tions according to the target model priors described above. For each target function, we

collect data sets with noisy y values (�s = 0:1) ranging from 3 to 50 samples in size, using

both the active and passive sampling strategies. We then obtain a regularized estimate of

the target function for each data set using Equation 4.16, and �nally, we compute the actual

integrated squared di�erence between the target and its estimate as an approximation error
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Figure 4-9: Comparing active and passive learning average error rates for Gaussian RBF
approximators with K = 8 centers. Top graph: We use the same priors on the target
and approximation function classes. Bottom graph: The target and approximation
function classes have slightly di�erent center locations and priors on model parameters.
In both cases, the active learner has a lower average error rate than the passive learner
for the same number of data points.
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measure. The graphs in Figure 4-9 plot the average error rates (over the 5000 di�erent

target functions) for both the active and passive learners as a function of data sample size.

The upper graph shows the learner using exact priors, i.e, that of the target class, while

the lower graph is for the case of slightly incorrect priors. In both cases, the active learner

has a lower average error rate than the passive learner for the same number of data points.

This is especially true for small data sets.

4.4 Active Example Selection and the \Boot-strap" Paradigm

Recall from Section 4.2.3 that our active learning strategy chooses its next sample location

by minimizing the total output uncertainty cost function in Equation 4.7. For convenience,

we reproduce the relevant expressions below:

U(ĝn+1jDn; ~xn+1) =
Z 1

�1
P(yn+1j ~xn+1;Dn)EF [�( ^gn+1; g)jDn [ ( ~xn+1; yn+1)]dyn+1: (4:18)

where:

EF [�(ĝ; g)jDn] =
Z
g2F

P(gjDn)�(ĝ; g)dg =
Z
g2F

PF(g)P(Dnjg)�(ĝ; g)dg:

and:

P(yn+1j ~xn+1;Dn) /
Z
f2F

P (Dn [ ( ~xn+1; yn+1)jf)PF(f)df:

Clearly, from the three equations above, the cost function U(ĝn+1jDn; ~xn+1) may not have a

simple analytical form for many approximation function classes. The current active learn-

ing formulation may therefore be computationally intractable for arbitrary approximation

function classes in general.

One way of making the active learning task computationally tractable is to de�ne sim-

pler but less \complete" cost functions for measuring the potential utility of new sample

locations. To conclude this chapter, we look at one such simpli�cation approach and show

how it leads to the \boot-strap" example selection strategy we used for training object and

pattern detection systems. We also show empirically that even though the \boot-strap"

strategy may be \sub-optimal" in its choice of new examples, it still outperforms random

sampling in training a frontal face detection system. As such, we maintain that the \boot-
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strap" strategy is still an e�ective means of sifting through unmanageably large data sets

that would otherwise make learning intractable.

4.4.1 A Simpler Example Utility Measure

Let g be an unknown target function that we want to estimate by means of an approximation

function in F , Dn = f(~xi; yi) 2 <d � <ji = 1; : : : ; ng be the set of n data points seen so

far, and ĝn 2 F be the current regularized estimate for g. Recall from Section 4.2.3 that

our learning goal is to minimize an expected mis�t notion between g and its regularized

solution, and our optimal sampling strategy chooses the next input location ~xn+1 2 <d that

best minimizes EF [�( ^gn+1; g)jDn [ ( ~xn+1; yn+1)], the EISD between g and its new estimate

^gn+1.

We now describe a di�erent example selection heuristic, based on a simpler but less

comprehensive example utility measure, that also attempts to e�ciently reduce the expected

mis�t between g and ^gn+1. Let L(ĝnjDn; ~x) be a local \uncertainty" measure for the current

estimate ĝn at ~x:

L(ĝnjDn; ~x) =
Z
g2F

P(gjDn)(ĝn(~x)� g(~x))2dg (4:19)

Notice that unlike the EISD which globally characterizes an entire approximation function,

L(ĝnjDn; ~x) is just a local \error bar" measure between g and ĝn only at ~x. In a loose

sense, one can view the local \error bar" L(ĝnjDn; ~x) as information that the learner lacks

at input location ~x for an exact solution. Given such an interpretation, one can also regard

L(ĝnjDn; ~x) as an example utility measure, because the learner essentially gains the infor-

mation it lacks at ~x by sampling there. The new example selection heuristic can thus be

formulated as choosing the next sample where the new example's utility value is greatest,

i.e., sampling next where the learner lacks most information:

~xn+1 = argmax
~x2<d

L(ĝnjDn; ~x) = argmax
~x2<d

Z
g2F

P(gjDn)(ĝn(~x)� g(~x))2dg (4:20)

We stress again that the new example selection heuristic di�ers from our original active

learning formulation only in the example utility cost function it uses. The new heuristic

uses a simpler example utility measure, based on the current estimate's local uncertainty

properties instead of the new estimate's expected global uncertainty properties. In doing
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so, it implicitly assumes the following:

1. The learning goal is still to minimize the expected mis�t, i.e., the total output uncer-

tainty between g and its estimate ĝ.

2. One can bring about a proportionate decrease in the new estimate's global output

uncertainty level by locally reducing the current estimate's output uncertainty at some

arbitrary location.

3. There is a better chance of signi�cantly reducing the local output uncertainty at a

point whose current uncertainty level is high. Furthermore, one can best reduce the

local uncertainty level at a point by sampling directly at the point.

4. It follows from the previous assumptions that one can most e�ciently minimize the

new estimate's global uncertainty level by gathering new data where the current esti-

mate's local output uncertainty level is highest.

Although the above assumptions appear intuitively reasonable, one should still be able to

�nd approximation function classes that do not meet the above assumptions. This suggests

that in general, the new heuristic may still be a \sub-optimal" sampling strategy with

respect to the active learning goal of maximally reducing the expected mis�t between g and

ĝ with each new data point. Nevertheless, Equation 4.19 is clearly a much simpler example

utility cost function than Equation 4.18, which makes the new heuristic computationally

tractable for a much larger range of approximation function classes.

Are there approximation function classes for which the new heuristic and the original

active example selection strategy are functionally equivalent? MacKay [58] has shown that

if one approximates the current a-posteriori model parameter distribution, i.e. P(~ajDn) �
P(g(�;~a)jDn), as a multi-dimensional Gaussian probability density centered at ~̂a, the optimal

model parameter estimate, then minimizing the new estimate's global uncertainty level

reduces to sampling where the current estimate's \error bars" are greatest. MacKay has

also observed that for linear approximation function classes (i.e., one for which g(~x;~a) =PK
i=1 ai i(~x)) with quadratic penalty functions, P(~ajDn) is exactly a multi-dimensional

Gaussian probability density centered at ~̂a, which in turn suggests that the two sampling

strategies are computationally equivalent for such approximation function classes. We refer

the interested reader to MacKay's work [58] for further details.
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4.4.2 Example Selection in a Real Pattern Detection Training Scenario

We now discuss a variant of the simpli�ed example selection heuristic, used for training

a frontal view human face detection system. Recall from Section 2.6.2 that in order to

train a face detection system with �nite computation resource, one must �rst acquire a

comprehensive but tractably small database of \face" and \non-face" example patterns.

For \face" patterns, one can simply collect all frontal face views from mugshot databases

and other image archives, and still have a manageably small data set. For \non-face"

patterns, the task is more tricky. In essence, any normalized window pattern that does

not tightly contain a frontal human face is a valid \non-face" training example. Clearly,

our \non-face" example set can grow intractably large if we should include every available

\non-face" image patch in our training database.

Notice that our learning scenario for face detection di�ers slightly from the original

active learning scenario presented earlier. In the original setting, one assumes that data

measurements are relatively expensive or slow, and we seek the next sample location that

best maximizes the expected amount of information gained. In our current scenario, we

have an immense amount of available \non-face" data from which we wish to select a small

training sample most useful for our learning task. The learner in our face detection scenario

also has an added advantage: it already knows the actual output value (i.e., class label) of

every candidate \non-face" data point even before they are selected.

Clearly, the current learning scenario reduces to the original active learning setting if we

ignore output values (i.e., class labels) of the candidate data points when deciding which new

patterns to select. Despite apparent di�erences in form, both learning scenarios address the

same central issue, namely how a learner can select new examples intelligently by estimating

the utility of candidate data points. In fact, we shall see shortly that one can still borrow

ideas developed for the original active learning scenario to approach example selection in

the face detection scenario.

4.4.3 The \Boot-strap" Paradigm

To constrain the number of \non-face" patterns in our training database, we introduced

in Section 2.6.2 a \boot-strap" paradigm that incrementally selects \non-face" patterns

highly relevant to the learning problem. The \boot-strap" strategy reduces the number of
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\non-face" patterns needed to train a highly robust face detector. We reproduce the idea

below:

1. Start with a small and possibly highly non-representative set of \non-face" examples

in the training database.

2. Train a face classi�er to output a value of `1' for face examples and `0' for non-face

examples using patterns from the current example database.

3. Run the trained face detector on a sequence of images with no faces. Collect all (or a

random subset of) the \non-face" patterns that the current system wrongly classi�es

as \faces" (i.e., an output value of > 0:5). Add these \non-face" patterns to the

training database as new negative examples.

4. Return to Step 2.

More generally, one can use the \boot-strap" paradigm to select useful training examples

from either pattern class in an arbitrary pattern detection problem:

1. Start with a small and possibly highly non-representative example set in the training

database.

2. Train a pattern classi�er to output a value of `1' for positive examples and `0' for

negative examples using patterns from the current example database.

3. Run the trained pattern classi�er on a sequence of images. Collect all (or a random

subset of) the wrongly classi�ed patterns and add them to the training database as

new correctly labeled examples.

4. Return to Step 2.

At the end of each iteration, the \boot-strap" paradigm augments the current data set with

new patterns that the current system classi�es wrongly. We argue that this strategy of

collecting wrongly classi�ed patterns as new training examples is reasonable, because one

can expect these new examples to improve the classi�er's performance by steering it away

from its current mistakes.
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One can reason about the \boot-strap" paradigm as a variant of the previously discussed

simpli�ed example selection heuristic. First, as in the original active learning spirit, \boot-

strapping" attempts to select only high utility examples for training. During, each example

selection step, if \boot-strapping" were to follow the active learning procedure exactly, then

it should select only the highest utility example available and continue the training process.

Instead, we make the \boot-strap" paradigm less restrictive by allowing the learner to

select one or more \high utility" examples between training cycles. Notice that the highest

utility example may not even be among those selected. Second, the simpli�ed heuristic

estimates an example's utility by computing L(ĝnjDn; ~x), the local \error bar" measure

of Equation 4.19. In \boot-strapping", we take advantage of the already available output

value (i.e., class label) at each candidate location to implement a coarse but very simple local

\error bar" measure for selecting new examples. Points that are classi�ed correctly have low

actual output errors. We assume that these points also have low uncertainty \error bars"

and so we ignore them as examples containing little new information. Conversely, points

that are wrongly classi�ed have high actual output errors. We conveniently assume that

these points also have high local uncertainty \error bars" and are therefore \high utility"

examples suitable for the learning task. We stress again that we are assuming actual output

errors and local uncertainty \error bars" are highly correlated measurements, which may

not always be a valid assumption.

4.4.4 The \Boot-strap" Paradigm and Epsilon Focusing

The \boot-strap" paradigm is also closely related to a recently developed active example

selection technique, called epsilon-focusing [65]. We brie
y highlight their similarities and

di�erences below:

Let F be a function class on some input domain X , and hF : [0; 1] 7! [0; 1] be a real

valued non-decreasing function characterizing a local focusing property of the concept class

F . Suppose we want to PAC learn [98] an unknown target g 2 F to within an � normalized

error rate (i.e., 0 � � � 1) at (1� �) con�dence, then by the standard Vapnik-Chervonenkis

theorem [102], the learner has to draw at most O
�
(1=�2) ln(1=�)

�
training examples.

The Epsilon-focusing idea works as follows: Rather than PAC learning g in one step

by collecting the requisite number of examples for � and �, we split the learning task into

k stages. During the �rst stage, the learner collects a smaller number of examples to
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make a looser (�1=k error) estimate of g, but with higher con�dence (1 � �=k). Based on

the intermediate hypothesis, the learner then derives an input region of interest where it

collects more examples for further training. In general, during the jth stage, the learner

estimates g to an �j=k=hF (�(j�1)=k) error rate with con�dence (1 � �=k) by drawing new

examples from the region of interest derived during the previous stage. In so doing, the

learner keeps re�ning its estimate by drawing examples from successively smaller input

regions and eventually converges onto the target function. Niyogi [65] has shown that the

sample complexity for a k-stage epsilon-focusing task is:

E(�; �; k) = O

0
@ kX
j=1

(
hF(�(j�1)=k)

�j=k
)2 ln(k=�)

1
A ;

which is smaller than the sample complexity for a one step learning task.

There are some striking similarities between the \boot-strap" paradigm and the epsilon-

focusing idea. First, like epsilon-focusing, the \boot-strap" paradigm also breaks the train-

ing process into several stages. During each training cycle, the \boot-strap" learner attempts

to better estimate its unknown target by collecting new examples that the current system

classi�es wrongly. One can view these mis-classi�ed examples as data samples from an input

region of interest where the current estimate di�ers from the target. Because the learner

improves its estimate with each training cycle, the region of interest in \boot-strapping" also

becomes successively smaller, and so like epsilon focusing, the learner eventually converges

onto the target function.

Unlike epsilon-focusing, the \boot-strap" paradigm does not work towards a speci�ed

error bound � and con�dence measure �. In fact, for many real world learning problems like

our face detection scenario, it may be di�cult if not impossible to actually determine � and

�. Instead, the \boot-strap" learner only seeks to reduce � with each training cycle, and

like epsilon-focusing, it improves its estimate more quickly than passive learning because it

only draws subsequent examples from successively smaller regions of interest.

4.4.5 Sample Complexity of \Boot-strapping"

Does the \boot-strap" strategy yield better classi�cation results with fewer training ex-

amples than a passive learner that receives randomly drawn patterns? We show empirically

that this is indeed the case for our frontal face detection learning scenario. Using our pro-
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Figure 4-10: Comparing face detection results for two systems: one trained without \boot-strapping"

and the other with \boot-strapping". The system trained without \boot-strapping" does a poorer job

at discarding non-face patterns. Top pair: The system without \boot-strapping" �nds the frontal face
correctly but also makes four false detects | three near the top-left image corner and one near Mia Hamm's

left knee. Bottom pair: The system without \boot-strapping" makes two false detects in the complex

background, left of Iolaus' face.
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posed object and pattern class detection approach presented in Chapter 2, we trained a

frontal view face detection system in two \boot-strap" cycles. The �nal training database

contains 4150 \face" patterns and over 40000 \non-face" patterns, of which about 6000 were

selected during the second \boot-strap" cycle. As a control, we trained a second system

without \boot-strapping". The second training database contains the same 4150 \face" pat-

terns and another 40000 randomly selected \non-face" patterns. We used the same \face"

and \non-face" Gaussian clusters from the �rst system to model the target and near-miss

pattern distributions in the second system.

We ran both systems on a test database of 23 cluttered images with 147 frontal faces.

The �rst system missed 23 faces and produced 13 false detects, while the second system

had 15 missed faces and 44 false alarms. Notice that the �rst system trained with \boot-

strapping" has a lower total mis-classi�cation rate than the control trained without \boot-

strapping". The \boot-strap" system misses more faces but has a much smaller false alarm

rate for non-faces. This is because we have used \boot-strapping" to only select better \non-

face" patterns while leaving the total number of \face" patterns unchanged. Consequently,

the system is better able to reject non-face patterns at a slight expense of correctly detecting

faces.

Notice also that we have in fact helped the control by modeling its \near-miss" dis-

tribution with \non-face" clusters from the �rst system. In Section 3.2, we demonstrated

that \non-face" clusters of near-misses found by \boot-strapping" give rise to a very dis-

criminative set of additional features for separating face and non-face patterns. Because

the control does not have a well chosen \near-miss" data set, we argue that it could not

have independently produced such a highly discriminative set of additional classi�cation

features. As such, one can reasonably expect even higher mis-classi�cation rates from a non

\boot-strapped" system.

Our comparison suggests that even though the \boot-strap" strategy may be \sub-

optimal" in choosing new training patterns, it is still a very simple and e�ective technique

for sifting through unmanageably large data sets for useful examples.
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Chapter 5

Extensions

In this thesis, we presented a learning based approach for detecting classes of objects and

patterns with spatially well de�ned boundaries in images. The approach �rst builds a

distribution-based model of the target pattern class in an appropriate feature space to de-

scribe the target's variable image appearance. It then learns from examples a similarity

measure for matching new patterns against the distribution-based target model. The ap-

proach makes few assumptions about the target pattern class and should therefore be fairly

general, as long as the target class has predictable image boundaries. We showed that this is

indeed the case by demonstrating the technique on a few pattern detection and recognition

problems.

We conclude this thesis by considering two possible extensions to our proposed object

and pattern detection approach. The �rst looks at how one can combine output results from

several pattern detectors to achieve better detection rates with fewer false alarms. Recently,

Rowley et. al. [76] have applied some simple arbitration techniques to a few face detection

networks trained with \boot-strapping", and have reported very impressive face detection

results. We shall discuss a more powerful network combination and arbitration scheme,

called network boosting [79] [30], that can potentially lead to systems with arbitrarily high

correct classi�cation rates. The second extension is about building hierarchical architectures

for dealing with occlusion, and for detecting pattern classes with less predictable boundaries.

Recall from an earlier discussion in Chapter 1 that one can detect pattern classes with

moderately variable boundaries by de�ning simpler sub-pattern classes that can be easily

isolated and identi�ed in an image. One of the main di�culties in this approach is to reliably
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identify and locate full target patterns from the spatial distribution and composition of these

sub-patterns in an image. In this chapter, we shall brie
y explore some possible techniques

for performing such a task.

5.1 Improving Detection Rates by Combining Classi�ers

One way of building more accurate and reliable decision procedures is to combine multiple

classi�ers for the given task. Individual classi�ers tend to have their own advantages and

de�ciencies. A collective decision made by a classi�er ensemble should therefore be more

reliable than one made by any individual classi�er alone.

Network boosting [79] [30] is a classi�er combination technique, based on the probably

approximately correct (PAC) learning framework [98], that converts a learning architecture

with �nite error rate into an ensemble of learning machines with an arbitrarily low error

rate. The idea works as follows:

Suppose we have three classi�ers with almost identical error rates that produce inde-

pendent classi�cation results on a given task. One can obtain a lower error rate decision

procedure by passing each new pattern through all three classi�ers and using the follow-

ing output voting scheme: If the �rst two classi�ers agree, then return the common label;

otherwise, return the label as given by the third classi�er. Notice that what we have just

described is simply a majority voting scheme on the three classi�er output labels. In the-

ory however, one can repeatedly embed this voting process to obtain ensembles of 32 = 9

classi�ers, 33 = 27 classi�ers, 34 = 81 classi�ers and so on, with decreasingly small error

rates.

Recently, Drucker et. al. [30] have applied this classi�er combination idea to optical

character recognition (OCR) problems. They constructed an ensemble of three OCR neural

networks and reported a signi�cant overall improvement in character recognition results. We

believe one can similarly combine multiple pattern recognizers like ours to build arbitrarily

robust object detection systems.

5.1.1 Network Boosting

We now derive the boosting procedure which arises from a variant of the PAC learning

framework, known as the weak learning model [50]. Let the three classi�ers in the above
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Figure 5-1: Top: A 3-classi�er ensemble has a lower error rate �3 than a single classi�er
� over a wide range of individual classi�er error rates 0 < � < 0:5. Note: a perfect
classi�er has � = 0 while random guessing has � = 0:5. Boosting does not improve
performance in these two cases. Bottom: The actual di�erence in error rates between
a single classi�er and a 3-classi�er ensemble over the same range of individual classi�er
error rates.
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example have independent error rates � < 0:5. Using the output voting scheme described

earlier, the resulting classi�er ensemble makes a mistake only when:

1. Both the �rst and second classi�ers mis-label the input pattern. This occurs with

probability �2.

2. The �rst and second classi�ers disagree (with probability 2�(1 � �)), and the third

classi�er wrongly labels the input pattern (with probability �). This occurs with joint

probability 2�2(1� �).

Adding probabilities for the two cases above, we arrive at the following error rate �3 =

3�2� 2�3 for the classi�er ensemble, which can be signi�cantly smaller than the individual

classi�er error rate for 0 < � < 0:5.

Figure 5-1 plots the di�erence in performance between a 3-classi�er ensemble and a

single classi�er over a range of individual classi�er error rates 0 < � < 0:5. The graphs

con�rm that in order to construct an arbitrarily robust system with boosting, the learner

only has to produce a su�ciently large number of independent classi�ers whose individual

error rates are slightly better than random guessing (� = 0:5).

5.1.2 Maintaining Independence between Classi�ers

One major assumption in weak learning and boosting, is that all classi�ers being combined

make independent errors on new input patterns. When two or more classi�ers in an ensemble

make correlated predictions, one can show that boosting reduces the combined error rate

less signi�cantly. Furthermore, if the �rst two classi�ers produce fully correlated results,

both classi�ers will always assign identical labels to new patterns, and boosting does not

improve the ensemble error rate at all. Hence, when applying boosting to any non-trivial

learning problem, one should always try to maintain a reasonable degree of independence

between individual classi�ers.

Drucker et. al. [30] have proposed a network ensemble training procedure that helps

maintain output independence between individual classi�ers. Their idea is to train each

network classi�er with a di�erent example distribution.

1. Assume that the learner has access to an \in�nite" stream of training patterns.
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2. Draw from the stream a requisite number of data samples and train the �rst network

classi�er.

3. Use the �rst network classi�er together with the \in�nite" example stream to generate

a second training set as follows: Flip a fair coin. If the coin is heads, draw examples

from the data stream until the �rst network mis-classi�es a pattern and add this

pattern to the second training set. If the coin is tails, draw examples until the �rst

network correctly classi�es a pattern and add the pattern to the second training set.

When the second data set is su�ciently large, use it to train the second network

classi�er.

4. Generate a third training set using the �rst two classi�ers as follows: Propagate

examples from the \in�nite" data stream through the �rst two classi�ers. Add each

new pattern to the third training set only if the two classi�ers disagree on the output

label. When the third data set is su�ciently large, use it to train the third network

classi�er.

Drucker et. al. have successfully applied the above procedure to train independent

OCR networks for their boosting experiment. Clearly, the procedure makes a very strong

assumption that the learner has access to an \in�nite" data stream. For an OCR scenario,

this assumption might still be reasonable because there are very large digit and charac-

ter databases available that can serve as an almost \in�nite" example source. Recently,

Simard et. al. [83] have also derived some useful transformations for arti�cially generating

additional digit and character patterns from existing database examples.

In other object and pattern detection problems, the learner may not have access to

much data, so the training paradigm outlined above may not be feasible. This is because

after training the �rst classi�er, there may not be enough remaining examples to generate

independent training sets for the second and third classi�ers, unless the individual classi�er

error rates are all very high. We suggest three possible ways of training several independent

classi�ers with limited data:

1. Choose a classi�er architecture with multiple plausible solutions for a given data set.

A highly connected multi-layer perceptron net can be one such architecture. When

trained with a backpropagation algorithm, a multi-layer perceptron net initialized with
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a di�erent set of parameters can converge onto a di�erent set of weights (i.e. a di�erent

solution). Assuming that nets with di�erent weights make relatively independent

classi�cation errors, one can still perform boosting using several multi-layer perceptron

nets trained on the same data set.

2. Build each classi�er using a di�erent machine architecture. Because each machine

architecture implements a di�erent approximation function class, one can expect each

classi�er to generalize di�erently between existing training examples, and hence make

di�erent classi�cation mistakes.

3. Train each classi�er on a di�erent set of input features. Feature measurements help

enhance certain image properties that can act as useful cues for distinguishing between

pattern classes. Classi�ers that use di�erent feature measurements are thus relying

on di�erent image attributes to identify patterns, and should therefore make di�erent

classi�cation mistakes. In Chapters 2 and 3, our face and eye detection systems

perform classi�cation in a view-based feature space. To improve detection results

with boosting, one can train and combine additional face and eye pattern recognizers

that operate on di�erent input image representations, such as a gradient based map

or other �ltered versions of the input pattern.

5.2 Building Hierarchical Architectures from Simple De-

tectors

We consider next another classi�er combination scheme that builds hierarchical pattern de-

tection architectures using multiple simple pattern recognizers. One classical object mod-

eling paradigm represents complex bodies and patterns in terms of simpler parts. An early

example of such a paradigm by Brooks et. al. [18] uses generalized cylinders to describe

arbitrarily shaped articulate objects. More recently, Brunelli and Poggio [19] have also pro-

posed a similar face recognition approach that decomposes face patterns into more \rigid"

sub-features suitable for template matching.

In this study, we examine a hierarchical scheme that uses multiple spatially well-de�ned

pattern recognizers like ours to take on more complex pattern detection tasks. The overall

idea works as follows: We recursively divide a complex target pattern class into several
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simpler sub-pattern classes that can each be further divided or individually detected in an

image. Each sub-pattern class may correspond to some meaningful part of the original target

object, such as an eye on a human face or an arm of a humanoid body. At a later stage, we

analyze the spatial arrangement of these sub-pattern classes in the image to identify and

locate instances of the full target.

We see two advantages in pursuing such a pattern representation and detection scheme:

1. Handling partial occlusion. The face and eye systems we presented earlier re-

spond poorly to partially occluded target patterns, because we have trained each

system only on full target objects without occlusion. One can account for partial

occlusion by adding occluded target examples to the training set. Unfortunately, such

an approach can be extremely cumbersome and memory intensive, because one essen-

tially has to collect or generate new target examples with a representative distribution

of occluding mask patterns and foreground textures. An alternative approach to oc-

clusion uses a hierarchical paradigm like the above, which divides target patterns into

several smaller components that can each be independently detected in an image. The

approach assumes one can still successfully �nd a su�cient number of sub-patterns

on a partially occluded target to infer its presence. Computationally, this second ap-

proach appears more tractable because it only involves training several independent

sub-pattern detectors and an additional stage for integrating their output results.

2. Detecting articulate pattern classes with less predictable boundaries. Hu-

man faces and eyes are target classes with highly predictable spatial boundaries. Hu-

man bodies, on the other hand, are an example of an articulate pattern class with less

predictable spatial boundaries. Our proposed object and pattern detection approach

does not handle articulate pattern classes with arbitrarily shaped boundaries well,

because one cannot simply \segment" these patterns from their variable background

images using one of several �xed shape masks. In general, pattern segmentation is still

an unsolved computer vision problem, so one may not even have a reliable means of

extracting entire articulate patterns from an image for a \template" based detection

approach like ours. For some time, vision researchers have considered a hierarchical

approach, similar to the classi�er combination scheme above, for detecting arbitrar-

ily shaped pattern classes without explicitly performing segmentation. The approach
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represents an arbitrarily shaped target class as simpler components with predictable

spatial boundaries. One can then use our proposed object and pattern detection

scheme to deal with these simpler components, and later analyze the detection results

to identify and locate instances of the complex target.

Clearly, the key issue in this hierarchical pattern detection approach is one of integrating

intermediate output results for identifying full target patterns. In general, implementing an

output combination stage involves: (1) �nding sets of individual sub-patterns that arise from

the same target; (2) devising a scheme for representing geometric relationships between the

individually detected sub-patterns; and (3) determining the signi�cance of each sub-pattern

and co-occurrences of sub-patterns as cues for identifying and locating the full target. We

now look at some useful tools for implementing an output combination stage.

5.2.1 Combining Sub-Pattern Detection Results with Multi-Layer Per-

ceptron Nets

Multi-layer perceptron nets are a convenient machine architecture for learning and encoding

complex relationships between individual features or sets of features in a classi�cation task.

For a highly structured and relatively inarticulate target class like human faces, there is

usually very little variation in the position and orientation of its sub-pattern components.

When detecting such target classes, one can simply take advantage of their highly pre-

dictable spatial structure to search for sub-patterns only at speci�c image locations; i.e.,

the �rst problem of �nding and grouping together sub-patterns from the same target is

trivial.

To identify instances of the target from its sub-pattern components, one can train an

appropriately structured multi-layer perceptron net whose input features are all the output

values from the individual sub-pattern detectors. Because we are applying each sub-pattern

detector at a �xed spatially o�set image location, there is no need to recover position and

orientation values for each image sub-pattern as input features to the multi-layer perceptron

net classi�er. Hence, the classi�er training process takes care of the third output combi-

nation task above, while the second task is usually irrelevant for highly structured and

relatively inarticulate target pattern classes.
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5.2.2 Handling Sub-Patterns with Variable Position and Orientation

Unlike human faces, human bodies are an example of an articulate pattern class with less

predictable spatial boundaries. One can still represent an articulate target class as simpler

components with predictable spatial boundaries that can each be independently detected

in an image. However, there can be a signi�cant amount of variation in the position and

orientation of each sub-pattern component. So, to identify and locate these arbitrarily

shaped target patterns from their simpler components, one must also deal with the �rst and

second output combination issues described above; i.e., the problems of �nding sub-patterns

in an image that belong to the same target, and representing geometric relationships between

them as additional cues for identifying the target.

We shall �rst address the second and simpler issue by introducing position and orien-

tation attributes for each sub-pattern as additional classi�cation features. If one uses a

\template matching" like detection paradigm that tests for the target at candidate image

locations and orientations, then one can represent each sub-pattern's position in a transla-

tionally invariant fashion as its spatial o�set from the hypothesized target center. Similarly,

one can also describe the orientation of each sub-pattern in a rotationally invariant fashion:

de�ne a �xed reference direction for each sub-pattern class, and compute for each image

sub-pattern its angular displacement with respect to the hypothesized target orientation.

Thus, for an articulate target class, we recover for each of its components, a set of out-

put combination features that includes a detection output value, and an additional vector

of translationally and rotationally invariant position and orientation attributes. The ad-

ditional position and orientation attributes help capture geometric relationships between

the individually detected sub-patterns, which the output combination stage relies on as

additional cues for identifying the target.

5.2.3 Finding Sets of Sub-Patterns from an Articulate Target

The discussion in Section 5.2.2 assumes a reasonable scheme for �nding and grouping to-

gether sub-patterns in an image that belong to the same articulate target object. Unfor-

tunately, we believe existing techniques for performing such a task in general are still very

much ad hoc and unreliable at best. We conclude this thesis by referring to two current

areas of research that may lead to feasible and robust search paradigms for image sub-
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patterns. Our discussion here will, however, only be speculative and brief, since current

research trends in both these areas still appear open and highly exploratory in nature.

Grouping

Grouping [57] [49] is a process that identi�es sets of features in a cluttered image likely to

have arisen from a single object. It serves mainly as a pre-processing stage that speeds

up object recognition by reducing the number of di�erent image feature combinations the

recognition stage has to consider while testing for the target. Lowe [57] �rst demonstrated

the idea on an early computational recognition system that makes explicit use of group-

ing. Jacobs [49] later extended the idea to a geometric model-based object recognition

domain. Typical grouping schemes operate on simple low-level image features that their

object recognition systems use, such as intensity edges, junctions and corners. Often, these

schemes rely heavily on prior assumptions about feature con�gurations that make them

likely target candidates. Such assumptions may be based on domain speci�c knowledge,

like common features that tend to co-exist in the target, or \general" observations like

certain image feature con�gurations being more \salient" in real scenes.

In the hierarchical pattern detection scheme we are considering here, one can treat the

sub-pattern components of an articulate target class as highly speci�c and sophisticated

model features, similar in spirit to the simpler features used by current object recognition

and grouping systems. We have argued earlier that one can reliably detect these sophisti-

cated features using our proposed object and pattern detection approach from Chapter 2.

We believe one can also develop similar grouping based techniques to identify salient sets of

these sophisticated image features that are likely parts from the same target.

Knowledge-based Methods for Directing Search

Over the past twenty to thirty years, knowledge-based systems or expert systems have been

used on a wide range of decision problems, including problems in medical diagnosis [20],

molecular structure prediction [56] and software maintenance [81] [82]. In computer vision,

researchers have also used rule-based expert systems with rigid object models to direct

search for additional image features, based on structures that have already been detected

in the scene [18] [17]. The idea works as follows: when the recognition module detects and

identi�es an image feature as some part of the target, the knowledge-based search module

171



uses the object model to predict new image locations where the recognizer may �nd other

target features. When a su�cient number of target features have been found and \grouped"

together in this fashion, the recognizer declares the target present in the scene. We believe

one can use the same general techniques developed in this area to also constrain search for

the sub-pattern components of an articulate target class.

Like grouping, knowledge-based systems also rely heavily on domain speci�c knowledge,

such as common geometric con�gurations between target components, to predict new image

locations for �nding additional target features. Recently, researchers have developed a

graphical representation for learning structured domain knowledge with statistical data,

known as Bayesian Networks [46] [68]. Bayesian Nets are especially suitable for learning

and encoding uncertain domain speci�c knowledge in expert systems. One can construct

a Bayesian Net that learns the variable geometric structure of an articulate target class as

follows: First, we encode existing information about the articulate target class as a set of

graphical nodes and directed arcs. Each graphical node could represent the distribution of

some relative location or orientation variable between a pair of sub-pattern components. The

directed arcs specify dependencies between the relative position and orientation variables.

Next, we use a database of real target examples to update the Bayesian Net, which includes

the probability distribution of each node variable and values along each directed arc. Hence,

even if our initial domain knowledge about the target class structure may be unreliable or

incomplete, one can still improve it through the statistical learning process.

In summary, learning with Bayesian Nets combines the advantages of exploiting existing

domain knowledge as in a classical knowledge-based system, and the ability to re�ne existing

knowledge with statistical data as in a traditional connectionist learning-based approach.

Research in this area is new and still evolving, and a detailed discussion on applying Bayesian

Nets to hierarchical pattern detection is beyond the scope of this thesis. The interested

reader should refer to the following papers and others for a more comprehensive guide to

the literature [46] [68] [21] [44].

172



Appendix A

The Active Learning Procedure

This appendix derives the active example selection procedures for polynomial approximators

and Gaussian radial basis functions presented in Chapter 4. Speci�cally, we show the

steps leading to Equations 4.11 and 4.17, i.e., the total output uncertainty cost functions

U(ĝn+1jDn; ~xn+1) for polynomial approximators and Gaussian RBFs respectively.

A.1 Polynomial Approximators

Let F be a univariate polynomial approximation function concept class with maximum

degree K:

F = fg(x;~a) = g(x; a0; : : : ; aK) =
KX
i=0

aix
ig:

The model parameters to be learnt are ~a = [a0 a1 : : : aK ]T and x 2 [xLO; xHI] is the input

variable . The prior distribution on F is a zero-mean Gaussian distribution with covariance

�F on the model parameters ~a:

PF(g(�;~a)) = PF(~a) = 1

(2�)(K+1)=2j�F j1=2
exp(�1

2
~aT��1F ~a): (A:1)

Our task is to approximate an unknown target function g 2 F within the input range

[xLO; xHI] on the basis of noisy sampled data: Dn = f(xi; yi = g(xi) + �)ji = 1; : : : ; ng,
where � is an additive zero-mean Gaussian noise term with variance �2s .
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A.1.1 The A-Posteriori Function Class Distribution

We �rst derive the a-posteriori distribution on function class F given dataDn, i.e., P(~ajDn) /
PF(~a)P(Dnj~a). Since Dn is sampled under additive zero-mean Gaussian noise with variance

�2s , we have:

P(Dnj~a) / exp

0
@� 1

2�2s

nX
j=1

(yj � g(xj;~a))
2

1
A

= exp

0
@� 1

2�2s

nX
j=1

(yj �
KX
t=0

atx
t
j)

2

1
A (A.2)

Let �xj = [1 xj x
2
j : : : x

K
j ]

T be a power vector of the jth input value. One can expand the

exponent term in Equation A.2 as follows:

 
yj �

KX
t=0

atx
t
j

!2

= y2j +

 
KX
t=0

atx
t
j

!2

� 2yi

KX
t=0

atx
t
j

= y2j + ~a
T( �xj �xj

T)~a� yj �xjT~a � ~aT �xjyj

So:

1

�2s

nX
j=1

 
yj �

KX
t=0

atx
t
j

!2

=
1

�2s

nX
j=1

y2j + ~a
T

0
@ 1

�2s

nX
j=1

( �xj �xj
T)

1
A~a

� (
1

�2s

nX
j=1

yj �xj
T)~a� ~aT( 1

�2s

nX
j=1

�xjyj)

The polynomial prior distribution PF (~a) is given in Equation A.1. The a-posteriori

distribution is thus:

P(~ajDn) / PF (~a)P(Dnj~a)

/ exp

�
�1
2
~aT��1F ~a

�
exp

0
@� 1

2�2s

nX
j=1

(yj �
KX
t=0

atx
t
j)

2

1
A

= exp

2
4�1
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0
@~aT��1F ~a+

1
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�2s

nX
j=1

( �xj �xj
T)
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�( 1
�2s

nX
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= exp

2
4�1

2

0
@ 1

�2s
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j=1
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Completing the square in Equation A.3 yields:

P(~ajDn) / exp

2
4�1

2

0
@(~a� ~̂a)T��1n (~a� ~̂a)� ~̂aT��1n ~̂a+

1

�2s

nX
j=1

y2j

1
A
3
5 (A:4)

where:

��1n = ��1F +
1

�2s

nX
j=1

( �xj �xj
T) (A:5)

~̂a = �n(
1

�2s

nX
j=1

�xjyj) (A:6)

Notice that neither of the two terms ~̂a
T

��1n ~̂a and 1
�2s

Pn
j=1 y

2
j in Equation A.4 depend

on the polynomial model parameters ~a. This means that we can rewrite Equation A.4 as:

P(~ajDn) / exp

�
�1
2

�
(~a� ~̂a)T��1n (~a� ~̂a)

��
(A:7)

Clearly, Equation A.7 is multivariate Gaussian in form. To express P(~ajDn) as a standard

probability distribution on ~a that integrates to 1, we simply introduce into Equation A.7

the appropriate normalizing constants:

P(~ajDn) =
1

(2�)(K+1)=2j�nj1=2
exp

�
�1
2

�
(~a� ~̂a)T��1n (~a� ~̂a)

��
(A:8)

Thus, the polynomial a-posteriori function class distribution is a multivariate Gaussian

centered at ~̂a (Equation A.6) with covariance �n (Equation A.5).

A.1.2 The Polynomial EISD Measure

Recall from Section 4.2.3 that the total output uncertainty cost functions U(ĝn+1jDn; ~xn+1)

is simply the expected EISD measure between g and its new estimate ^gn+1, if the learner

samples next at ~xn+1. We now derive an expression for the EISD between g and its

current estimate ĝn given Dn. We shall use this result later to derive an expression for

U(ĝn+1jDn; ~xn+1).

The expected integrated squared di�erence (EISD) between an unknown target g and its
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estimate ĝ given Dn is:

EF [�(ĝ; g)jDn] =

Z
g2F

P(gjDn)�(ĝ; g)dg

where �(ĝ; g) is a standard integrated squared di�erence measure between two functions

over the input space <d or some appropriate region of interest:

�(ĝ; g) =
Z
~x2<d

(g(~x)� ĝ(~x))2d~x:

For our polynomial approximation function class, the optimal estimate for g given Dn has

model parameters ~̂a (Equation A.6), since this is where P(~ajDn) has a global maximum. Let

~̂a = [â0 â1 : : : âK ]
T and �x = [1 x x2 : : : xK ]T, one can rewrite �(ĝ; g) in terms of polynomial

model parameters as:

�(~̂a;~a) =
Z xHI

x
LO

[g(x;~a)� g(x; ~̂a)]2dx =
Z xHI

x
LO

"
(
KX
i=0

aix
i)� (

KX
i=0

âix
i)

#2
dx

=

Z x
HI

xLO

"
KX
i=0

(ai � âi)xi
#2
dx =

Z x
HI

xLO

(~a� ~̂a)T�x�xT(~a� ~̂a)dx

= (~a� ~̂a)T
 Z xHI

xLO

�x�xTdx

!
(~a� ~̂a)

= (~a� ~̂a)TA(~a� ~̂a) (A.9)

where A is a constant (K + 1)� (K + 1) matrix of numbers whose (i; j)th element is:

A(i; j) =
Z xHI

xLO

x(i+j�2)dx

Substituting Equations A.8 and A.9 into the EISD expression, we get:

EF [�(ĝ; g)jDn] = EF [�(~̂a;~a)jDn] =

Z
~a2<K+1

P(~ajDn)�(~̂a;~a)d~a

=

Z
~a2<K+1

1

(2�)(K+1)=2j�nj1=2
exp

�
�1
2

�
(~a� ~̂a)T��1n (~a� ~̂a)

��

(~a� ~̂a)TA(~a� ~̂a) d~a (A.10)

Making the following change of variables: ~q = A
1

2 (~a � ~̂a), and noting that the integration

bounds on ~q is still <K+1, Equation A.10 becomes:
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EF [�(ĝ; g)jDn] = EF [�(~̂a;~a)jDn]

=

Z
~q2<K+1

1

(2�)(K+1)=2jAj1=4j�nj1=2jAj1=4

exp

�
�1
2

�
~q TA� 1

2��1n A� 1

2 ~q
��
~q T~q d~q

=

Z
~q2<K+1

1

(2�)(K+1)=2j�nAj1=2

exp

�
�1
2

�
~q TA� 1

2��1n A� 1

2 ~q
��
~q T~q d~q

= j�nAj / j�nj (A.11)

since A is just a constant matrix of numbers.

Notice from Equation A.5 that �n depends only on the polynomial function class priors

�F , the output noise variance �2s and the previously sampled input locations fx1; x2; : : : ; xng.
It does not depend on the previous y data values actually observed. In other words, the

previously observed y data values in Dn do not a�ect the EISD measure (Equation A.11)

for this polynomial function concept class!

A.1.3 The Total Output Uncertainty Measure

The total output uncertainty cost function resulting from sampling next at ~xn+1 is given by

Equation 4.7. We rewrite the expression below in terms of our polynomial model parameters:

U(ĝn+1jDn; xn+1) =
Z
yn+12<

P(yn+1jxn+1;Dn)EF [�(~̂a;~a)jDn [ (xn+1; yn+1)] dyn+1: (A:12)

where:

P(yn+1jxn+1;Dn) /
Z
~a2<K+1

P(Dn [ (xn+1; yn+1)j~a)PF(~a) d~a:

It is clear from Equation A.12 that U(ĝn+1jDn; xn+1) is merely the expected EISD value

between g and its new estimate, weighted and averaged over all possible values of yn+1 at

xn+1. Recall from Equation A.5 however, that for this polynomial function class, the EISD

between g and its estimate ĝ depends only on the input xi values in Dn and not on the

observed yi values. This means that EF [�(~̂a;~a)jDn [ (xn+1; yn+1)], the new EISD resulting
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from sampling next at xn+1, does not depend on yn+1! Equation A.12 can therefore be

further simpli�ed, which leads to the following closed form expression for the total output

uncertainty cost function, given also in Equation 4.11:

U(ĝn+1jDn; xn+1) = EF [�(~̂a;~a)jDn [ (xn+1; yn+1)]

Z
yn+12<

P(yn+1jxn+1;Dn) dyn+1

= EF [�(~̂a;~a)jDn [ (xn+1; yn+1)]

= j�n+1Aj / j�n+1j (A.13)

Here, �n+1 has exactly the same form as �n in Equation A.5, and depends only on the poly-

nomial function class priors �F , the output noise variance �2s and the data input locations

fx1; x2; : : : ; xn; xn+1g.

A.1.4 The Polynomial Smoothness Prior

For our polynomial function class, we have assumed the following multi-dimensional Gaus-

sian prior distribution on model parameters ~a = [a0 a1 : : : aK ]
T:

PF(~a) = 1

(2�)(K+1)=2j�F j1=2
exp(�1

2
~aT��1F ~a);

where �F is a (K+1)�(K+1) covariance matrix. If one assumes an independent Gaussian

distribution with variance �2i on each parameter ai, then �F is simply a diagonal matrix

with the independent variance terms f�2i ji = 0; : : : ; Kg on its principal diagonal.

Let p 2 F be a polynomial function in the approximation concept class. We consider

here a slightly di�erent prior distribution on F based on a global \smoothness" measure:

PF(~a) / exp(�Q(p(�;~a))) exp(� a20
2�20

)

= exp

"
�1
2

 
2Q(p(�;~a)) + a20

�20

!#
(A.14)

where the \smoothness" term is:

Q(p(�;~a)) =
Z x

HI

xLO

�
dp(x;~a)

dx

�2
dx:

We shall show that despite the apparent di�erence in general form, PF(~a) still simpli�es
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to a multi-dimensional Gaussian distribution, whose new covariance term �F is given by

Equation 4.14. First we express Q(p(�;~a)) in terms of the polynomial model parameters ~a:

p(x) =
KX
t=0

atx
t

d p(x)

dx
=

KX
t=1

attx
t�1

�
d p(x)

dx

�2

=

2
666666666664

a1

a2

a3
...

aK

3
777777777775

T 2
666666666664

1 2x 3x2 � � � KxK�1

2x 4x2 6x3 2KxK

3x2 6x3 9x4
...

...
. . .

KxK�1 2KxK � � � K2x2K�2

3
777777777775

2
666666666664

a1

a2

a3
...

aK

3
777777777775

Q(p(�;~a)) =

Z xHI

xLO

�
d p(x)

dx

�2
dx = [a1 a2 : : : aK ]N [a1 a2 : : : aK ]

T

N is a constant K �K matrix of numbers whose (i; j)th element is:

N(i; j) =
ij

i+ j � 1
(xi+j�1

HI
� xi+j�1

LO
)

Next, we substitute the above result into the exponent of Equation A.14. We get:

2Q(p(�;~a)) + a20
�20

= [a0 a1 : : : aK ]

2
64 1=�20 ~0

T

~0 2N

3
75 [a0 a1 : : : aK ]

T (A.15)

= ~aT��1F ~a

PF(~a) / exp

"
�1
2

 
2Q(p(�;~a)) + a20

�20

!#

= exp

�
�1
2
~aT��1F ~a

�
(A.16)

where the K�K matrix N is as de�ned above. Thus, from Equation A.16, we see that the

new prior distribution PF(~a) is indeed multi-dimensional Gaussian in form with covariance

�F as given below and in Equation 4.14:
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��1F (i; j) =

8>>>><
>>>>:

1=�20 if i = j = 1

2 (i�1)(j�1)
i+j�3 (xi+j�3

HI
� x

i+j�3
LO

) if 2 � i � K + 1 and 2 � j � K + 1

0 otherwise

(A:17)

A.2 Gaussian Radial Basis Functions

Our next example is a d-dimensional Gaussian Radial Basis Function class F with K �xed

centers. The analysis here is very similar to the polynomial case presented in the previ-

ous section. Let Gi be the ith basis function with a �xed center ~ci and a �xed covari-

ance Si. The model parameters to be learnt are the RBF weight coe�cients denoted by

~a = [a1 a2 : : : aK ]T. An arbitrary function r 2 F in this class can be represented as:

r(~x;~a) =
KX
i=1

aiGi(~x)

=
KX
i=1

ai
1

(2�)d=2jSij1=2
exp(�1

2
(~x� ~ci)TS�1i (~x� ~ci))

The prior distribution on F is a zero-mean Gaussian distribution with covariance �F on

the model parameters:

PF(r(�;~a)) = PF(~a) = 1

(2�)K=2j�F j1=2
exp(�1

2
~aT��1F ~a): (A:18)

Lastly, the learner has access to noisy data of the form Dn = f(~xi; yi = g(~xi) + �) : i =

1; : : : ; ng, where g 2 F is an unknown target function and � is a zero-mean additive Gaussian

noise term with variance �2s . The learning task is to recover g from Dn.

A.2.1 The A-Posteriori Function Class Distribution

We �rst derive the a-posteriori distribution on function class F given dataDn, i.e., P(~ajDn) /
PF(~a)P(Dnj~a). Since Dn is sampled under additive zero-mean Gaussian noise with variance

�2s , we have:
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P(Dnj~a) / exp

0
@� 1

2�2s

nX
j=1

(yj � r( ~xj;~a))
2

1
A

= exp

0
@� 1

2�2s

nX
j=1

(yj �
KX
t=1

at
exp

�
�1

2
( ~xj � ~ct)

TS�1t ( ~xj � ~ct)
�

(2�)d=2jStj1=2
)2

1
A

= exp

0
@� 1

2�2s

nX
j=1

(yj �
KX
t=1

atGt( ~xj))2
1
A (A.19)

Let �zj = [G1( ~xj) G2( ~xj) : : : GK( ~xj)]T be a vector of kernel output values for the jth input

value. One can expand the exponent term in Equation A.19 as follows:

(yj �
KX
t=1

atGt( ~xj))2 = y2j +

 
KX
t=1

atGt( ~xj)
!2

� 2yj

KX
t=1

atGt( ~xj)

= y2j + ~a
T( �zj �zj

T)~a� yj �zj
T~a� ~aT �zjyj

So:

1

�2s

nX
j=1

 
yj �

KX
t=1

atGt( ~xj)
!2

=
1

�2s

nX
j=1

y2j + ~a
T

0
@ 1

�2s

nX
j=1

( �zj �zj
T)

1
A~a

� (
1

�2s

nX
j=1

yj �zj
T)~a� ~aT( 1

�2s

nX
j=1

�zjyj)

The Gaussian RBF prior distribution PF(~a) is as given in Equation A.18. The a-

posteriori distribution is thus:

P(~ajDn) / PF(~a)P(Dnj~a)

/ exp

�
�1
2
~aT��1F ~a

�
exp

0
@� 1

2�2s

nX
j=1

(yj �
KX
t=1

atGt( ~xj))2
1
A

= exp

2
4�1

2

0
@~aT��1F ~a +

1

�2s

nX
j=1

y2j + ~a
T

0
@ 1

�2s

nX
j=1

( �zj �zj
T)

1
A~a

� (
1

�2s

nX
j=1

yj �zj
T)~a� ~aT( 1

�2s

nX
j=1

�zjyj)

1
A
3
5
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= exp

2
4�1

2

0
@ 1

�2s

nX
j=1

y2j + ~a
T

0
@��1F +

1

�2s

nX
j=1

( �zj �zj
T)

1
A~a

� (
1

�2s

nX
j=1

yj �zj
T)~a� ~aT( 1

�2s

nX
j=1

�zjyj)

1
A
3
5 (A.20)

Completing the square in Equation A.20 yields:

P(~ajDn) / exp

2
4�1

2

0
@(~a� ~̂a)T��1n (~a� ~̂a)� ~̂aT��1n ~̂a+

1

�2s

nX
j=1

y2j

1
A
3
5 (A:21)

where:

��1n = ��1F +
1

�2s

nX
j=1

( �zj �zj
T) (A:22)

~̂a = �n (
1

�2s

nX
j=1

�zjyj) (A:23)

Notice that as in the polynomial case (see Appendix A.1.1), neither of the two terms

~̂a
T

��1n ~̂a and 1
�2s

Pn
j=1 y

2
j in Equation A.21 depend on the RBF model parameters ~a. This

means we can simply remove the two \constant" terms from the exponent and introduce

into Equation A.21 the appropriate normalizing constants so P(~ajDn) becomes a standard

probability distribution on ~a:

P(~ajDn) =
1

(2�)K=2j�nj1=2
exp

�
�1
2

�
(~a� ~̂a)T��1n (~a� ~̂a)

��
(A:24)

Thus, the RBF a-posteriori distribution is a multivariate Gaussian centered at ~̂a (Equa-

tion A.23) with covariance �n (Equation A.22).

A.2.2 The RBF EISD Measure

We now derive an expression for the expected integrated squared di�erence (EISD) between

an unknown RBF target g and its current estimate given Dn. We shall use this result later to

derive U(ĝn+1jDn; ~xn+1), the total output uncertainty cost function for RBF approximators.

The expected integrated squared di�erence (EISD) between an unknown target g and its

estimate ĝ given Dn is:

EF [�(ĝ; g)jDn] =

Z
g2F

P(gjDn)�(ĝ; g)dg
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where �(ĝ; g) is a standard integrated squared di�erence measure between two functions

over the input space <d or some appropriate region of interest:

�(ĝ; g) =

Z
~x2<d

(g(~x)� ĝ(~x))2d~x:

For our RBF approximation function class, the optimal estimate for g given Dn has model

parameters ~̂a (Equation A.23), since this is where the a-posteriori distribution P(~ajDn)

has a global maximum. Let ~̂a = [â0 â1 : : : âK ]
T and �z = [G1(~x) G2(~x) : : : GK(~x)]T, one can

rewrite �(ĝ; g) in terms of RBF model parameters as:

�(~̂a;~a) =
Z
~x2<d

[r(x;~a)� r(x; ~̂a)]2 d~x =
Z
~x2<d

"
(
KX
i=1

aiGi(~x))� (
KX
i=1

âiGi(~x))
#2

d~x

=

Z
~x2<d

"
KX
i=1

(ai � âi)Gi(~x)
#2

d~x =

Z
~x2<d

(~a� ~̂a)T�z�zT(~a� ~̂a) d~x

= (~a� ~̂a)T
�Z

~x2<d
�z�zT d~x

�
(~a� ~̂a)

= (~a� ~̂a)TA(~a� ~̂a) (A.25)

where A is a constant K �K matrix of numbers whose (i; j)th element is:

A(i; j) =

Z
~x2<d

Gi(~x)Gj(~x) d~x

Substituting Equations A.24 and A.25 into the EISD expression, we get:

EF [�(ĝ; g)jDn] = EF [�(~̂a;~a)jDn] =
Z
~a2<K

P(~ajDn)�(~̂a;~a) d~a

=
Z
~a2<K

1

(2�)K=2j�nj1=2
exp

�
�1
2

�
(~a� ~̂a)T��1n (~a� ~̂a)

��

(~a� ~̂a)TA(~a� ~̂a) d~a (A.26)

Making the following change of variables as in the polynomial case: ~q = A
1

2 (~a � ~̂a), and
noting that the integration bounds on ~q is still <K , Equation A.26 becomes:

EF [�(ĝ; g)jDn] = EF [�(~̂a;~a)jDn]

=

Z
~q2<K

1

(2�)K=2jAj1=4j�nj1=2jAj1=4
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exp

�
�1
2

�
~q TA� 1

2��1n A� 1

2 ~q
��
~q T~q d~q

=
Z
~q2<K

1

(2�)K=2j�nAj1=2

exp

�
�1
2

�
~q TA� 1

2��1n A� 1

2 ~q
��
~q T~q d~q

= j�nAj / j�nj (A.27)

since A is just a constant matrix of numbers.

Notice from Equation A.22 that �n depends only on the RBF function class priors �F ,

the K �xed Gaussian RBF kernels fGi(�)ji = 1; : : : ; Kg, the output noise variance �2s and

the previously sampled input locations fx1; x2; : : : ; xng. Like the polynomial case, it does
not depend on the previous y data values actually observed. In other words, the previously

observed y data values in Dn do not a�ect the EISD measure (Equation A.27) for this

Gaussian RBF concept class!

A.2.3 The RBF Total Output Uncertainty Measure

The total output uncertainty cost function is simply the expected EISD between g and its

new estimate ^gn+1, if the learner samples next at ~xn+1. The cost function is given by

Equation 4.7. We rewrite the expression below in terms of our RBF model parameters:

U(ĝn+1jDn; ~xn+1) =
Z
yn+12<

P(yn+1j ~xn+1;Dn)EF [�(~̂a;~a)jDn [ ( ~xn+1; yn+1)] dyn+1: (A:28)

where:

P(yn+1j ~xn+1;Dn) /
Z
~a2<K

P(Dn [ ( ~xn+1; yn+1)j~a)PF(~a) d~a:

It is clear from Equation A.28 that U(ĝn+1jDn; ~xn+1) is merely the new EISD weighted

and averaged over all possible values of yn+1 at ~xn+1. Recall from Equation A.22 however,

that for this RBF concept class, the EISD between g and its estimate ĝ depends only on the

input ~xi values in Dn and not on the observed yi values. This means that EF [�(~̂a;~a)jDn [
( ~xn+1; yn+1)], the new EISD resulting from sampling next at ~xn+1, does not depend on

yn+1! Equation A.28 can therefore be further simpli�ed, which leads to the following closed

form expression for the total output uncertainty cost function, given also in Equation 4.17:
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U(ĝn+1jDn; ~xn+1) = EF [�(~̂a;~a)jDn [ ( ~xn+1; yn+1)]

Z
yn+12<

P(yn+1j ~xn+1;Dn) dyn+1

= EF [�(~̂a;~a)jDn [ ( ~xn+1; yn+1)]

= j�n+1Aj / j�n+1j (A.29)

Here, �n+1 has exactly the same form as �n in Equation A.22, and depends only on the

polynomial function class priors �F , theK �xed Gaussian RBF kernels fGi(�)ji = 1; : : : ; Kg,
the output noise variance �2s and the data input locations

f ~x1; ~x2; : : : ; ~xn; ~xn+1g.
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