
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Technical Report No. 1574 March, 1996

Pose-Invariant Face Recognition Using
Real and Virtual Views

David Beymer
This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

The problem of automatic face recognition is to visually identify a person in an input image. This
task is performed by matching the input face against the faces of known people in a database of
faces. Most existing work in face recognition has limited the scope of the problem, however, by
dealing primarily with frontal views, neutral expressions, and �xed lighting conditions. To help
generalize existing face recognition systems, we look at the problem of recognizing faces under a
range of viewpoints. In particular, we consider two cases of this problem: (i) many example views
are available of each person, and (ii) only one view is available per person, perhaps a driver's license
or passport photograph. Ideally, we would like to address these two cases using a simple view-
based approach, where a person is represented in the database by using a number of views on the
viewing sphere. While the view-based approach is consistent with case (i), for case (ii) we need to
augment the single real view of each person with synthetic views from other viewpoints, views we
call \virtual views". Virtual views are generated using prior knowledge of face rotation, knowledge
that is \learned" from images of prototype faces. This prior knowledge is used to e�ectively rotate
in depth the single real view available of each person. In this thesis, I present the view-based face
recognizer, techniques for synthesizing virtual views, and experimental results using real and virtual
views in the recognizer.

Copyright c
 Massachusetts Institute of Technology, 1996

This thesis describes research done at the Arti�cial Intelligence Laboratory and within the Center for Biological and
Computational Learning. This research is sponsored by grants from the O�ce of Naval Research under contracts

N00014-91-J-1270 and N00014-92-J-1879; by a grant from the National Science Foundation under contract ASC-
9217041. Support for the A.I. Laboratory's arti�cial intelligence research is provided by ONR contract N00014-91-J-

4038. The author is supported by a Howard Hughes Doctoral Fellowship from the Hughes Aircraft Company.

ii

Pose-Invariant Face Recognition Using Real and
Virtual Views

by

David James Beymer

B.S., Computer Science

University of California, Berkeley

(1987)

S.M., Computer Science

Massachusetts Institute of Technology

(1989)

Revised version of a thesis submitted to the

Department of Electrical Engineering and Computer Science

in Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

September 1995

c
Massachusetts Institute of Technology 1996. All rights reserved.

iv

Pose-Invariant Face Recognition Using Real and
Virtual Views

by

David James Beymer

Abstract

The problem of automatic face recognition is to visually identify a person in an input

image. This task is performed by matching the input face against the faces of known people

in a database of faces. Most existing work in face recognition has limited the scope of the

problem, however, by dealing primarily with frontal views, neutral expressions, and �xed

lighting conditions. To help generalize existing face recognition systems, we look at the

problem of recognizing faces under a range of viewpoints. In particular, we consider two

cases of this problem: (i) many example views are available of each person, and (ii) only one

view is available per person, perhaps a driver's license or passport photograph. Ideally, we

would like to address these two cases using a simple view-based approach, where a person

is represented in the database by using a number of views on the viewing sphere. While the

view-based approach is consistent with case (i), for case (ii) we need to augment the single

real view of each person with synthetic views from other viewpoints, views we call \virtual

views". Virtual views are generated using prior knowledge of face rotation, knowledge that

is \learned" from images of prototype faces. This prior knowledge is used to e�ectively

rotate in depth the single real view available of each person. In this thesis, I present

the view-based face recognizer, techniques for synthesizing virtual views, and experimental

results using real and virtual views in the recognizer.

Thesis Supervisor: Dr. Tomaso Poggio

Title: Uncas and Helen Whitaker Professor, Dept. of Brain and Cognitive Sciences

v

Acknowledgments

I would like to thank my thesis advisor, Tommy Poggio, for being a constant source

of ideas and inspiration, both for my thesis topic and for related lines of work such

as applying example-based learning to image analysis and synthesis. I owe special

thanks to Amnon Shashua for suggestions early on in my thesis work, especially for

demonstrating how well optical
ow can be used for geometrically registering two face

images. I would also like to thank Professors Eric Grimson and Rod Brooks for being

on my thesis committee.

There are many students at the MIT AI Lab that I would like to thank. Jim

Hutchinson, one of my o�cemates, gave me a small education in neural networks

by answering a steady stream of questions from me on the subject. Brian Subirana,

another o�cemate, always loved to analyze and evaluate computer vision algorithms.

Jose Robles was very helpful in polishing my thesis defense. Kah-Kay Sung and I

discussed machine learning and techniques for automatically detecting faces. Other

students in the computer vision group at the AI Lab that I had interesting conversa-

tions with include Tao Alter and Gideon Stein. I also enjoyed interacting with Steve

Lines, Raquel Romano, and Tony Ezzat, fellow students in Tommy's group working

on faces.

I would like to thank a couple people at the Center for Biological and Computa-

tional Learning. Federico Girosi proofread a couple of my papers and answered some

of my general questions about machine learning. Marney Smyth edited a couple of

videotapes that demonstrated my thesis work and related applications.

While performing my thesis research, I was supported by the Hughes Aircraft

Company, and I gratefully acknowledge their support. Further, I would like to thank

Mike Daily at Hughes Research Laboratories for allowing me to continue my thesis

work while at Hughes in the summers of 1992 and 1993. Also at Hughes, Trish Keaton

also worked on a face recognition project, and I enjoyed discussing the topic with her.

I owe a big thanks to everyone at the MIT AI Lab and Hughes Research Labora-

tories who volunteered to be in my face database.

Finally, I am grateful to my parents for their constant moral support.

This thesis describes research done at the Arti�cial Intelligence Laboratory and within

the Center for Biological and Computational Learning. This research is sponsored

by grants from the O�ce of Naval Research under contracts N00014-91-J-1270 and

N00014-92-J-1879; by a grant from the National Science Foundation under contract

ASC-9217041. Support for the A.I. Laboratory's arti�cial intelligence research is

provided by ONR contract N00014-91-J-4038. The author is supported by a Howard

Hughes Doctoral Fellowship from the Hughes Aircraft Company.

vi

Contents

1 Introduction 1

1.1 Object Recognition : 3

1.1.1 Invariant features approach : : : : : : : : : : : : : : : : : : : 5

1.1.2 Model-based approach : 6

1.1.3 View-based approach : 7

1.2 Exploiting Prior Knowledge of Object Classes : : : : : : : : : : : : : 12

1.2.1 Virtual views using 3D models and symmetry : : : : : : : : : 13

1.2.2 An example-based approach to virtual views : : : : : : : : : : 14

1.2.3 Related work : 15

1.3 Application: Face recognition : 16

1.3.1 Recognition and related problems : : : : : : : : : : : : : : : : 17

1.3.2 Motivation and di�culties : 18

1.3.3 Prior work : 19

1.4 Our view-based, pose-invariant face recognizer : : : : : : : : : : : : : 23

1.4.1 View-based approach : 23

1.4.2 Our face recognition system : : : : : : : : : : : : : : : : : : : 25

1.5 Contributions : 28

1.5.1 Main contributions : 28

1.5.2 Secondary contributions : 29

1.6 Roadmap : 30

2 Previous Work 31

2.1 Face Recognition : 31

2.1.1 Input representation : 31

2.1.2 Invariance to imaging conditions : : : : : : : : : : : : : : : : : 35

2.1.3 Experimental issues : 36

2.1.4 Related work : 39

2.2 Synthesizing faces : 40

2.3 This thesis and prior work : 41

I Face Recognition Using Real Views 43

3 Feature detection and pose estimation 45

3.1 Previous work : 45

vii

3.2 Overview of our method : 46

3.3 Hierarchical processing : 49

3.4 Template matching : 50

3.5 Summary : 54

4 Face recognition using multiple views 55

4.1 O�-line template extraction : 56

4.2 On-line recognition algorithm : 60

4.3 Experimental results : 65

4.4 Summary : 69

II Face Recognition Using Virtual Views 71

5 A vectorized image representation 73

5.1 Vectorized shape and texture : 74

5.1.1 Shape : 75

5.1.2 Texture : 76

5.2 Computing the vectorized representation : : : : : : : : : : : : : : : : 78

5.2.1 A manual approach : 78

5.2.2 Optical
ow : 81

5.2.3 Face vectorizer : 83

5.3 Warping and shape manipulation operators : : : : : : : : : : : : : : : 84

5.3.1 Warping operators : 85

5.3.2 Shape manipulation operators : : : : : : : : : : : : : : : : : : 87

5.4 Summary : 88

6 Vectorizing face images 91

6.1 Standard shape : 92

6.1.1 Shape : 93

6.1.2 Texture : 93

6.1.3 Separation of shape and texture : : : : : : : : : : : : : : : : : 94

6.2 Shape/texture coupling : 95

6.2.1 Shape perspective : 95

6.2.2 Texture perspective : 97

6.2.3 Combining shape and texture : : : : : : : : : : : : : : : : : : 98

6.3 Basic Vectorization Method : 99

6.3.1 O�-line preparation of examples : : : : : : : : : : : : : : : : : 99

6.3.2 Run-time vectorization : 103

6.3.3 Pose dependence from the example set : : : : : : : : : : : : : 108

6.4 Hierarchical implementation : 109

6.4.1 Face �nding at coarse resolution : : : : : : : : : : : : : : : : : 110

6.4.2 Multiple templates at high resolution : : : : : : : : : : : : : : 110

viii

6.4.3 Example results : 111

6.5 Application to feature �nding : 111

6.6 Future work : 116

6.6.1 Existing vectorizer : 116

6.6.2 Parameterized shape model : : : : : : : : : : : : : : : : : : : 116

6.6.3 Multiple poses : 117

6.7 Summary : 117

7 Face recognition using one view 119

7.1 Introduction : 119

7.2 Prior knowledge of object class: prototype views : : : : : : : : : : : : 121

7.3 Virtual views synthesis techniques : 123

7.3.1 Linear Classes : 123

7.3.2 Parallel deformation : 126

7.3.3 Comparing linear classes and parallel deformation : : : : : : : 128

7.4 Generating virtual views : 128

7.4.1 Parallel deformation : 129

7.4.2 Linear Classes : 132

7.5 Experimental results : 136

7.6 Discussion : 139

7.6.1 Evaluation of recognition rate : : : : : : : : : : : : : : : : : : 139

7.6.2 Di�culties with virtual views generation : : : : : : : : : : : : 140

7.6.3 Transformations besides rotation : : : : : : : : : : : : : : : : 140

7.6.4 Future work : 142

7.7 Summary : 142

8 Discussion 145

8.1 Summary : 145

8.1.1 Multiple views per person : 145

8.1.2 Single view per person : 147

8.2 Contributions : 148

8.2.1 Main contributions : 148

8.2.2 Secondary contributions : 149

8.3 Future work : 149

8.3.1 Analysis by synthesis : 149

8.3.2 Linear classes without virtual views : : : : : : : : : : : : : : : 152

8.4 Closing remarks : 153

A Face Database 155

B Linear Classes: Shape and Texture 161

B.1 Shape : 161

B.2 Texture : 162

ix

x

Chapter 1

Introduction

Using our sense of vision, we are able to e�ortlessly and instantaneously recognize

among thousands of objects stored in our memory. This ability enables us to perform

such necessary but mundane tasks as recognize our family pet, avoid cars racing

down city streets, and �nd our co�ee mug at work. Looking beyond the human

ability, science �ction is full of futuristic androids and robots that can, among other

things, visually recognize objects in their environment. But can we actually endow

machines with this useful skill? This is the goal of researchers in the �eld of object

recognition, a �eld guided by the belief that this skill is an important link in making

machines exhibit intelligence.

Automatic techniques for object recognition attempt to identify instances of known

objects in a digitized image of a scene. Objects are made \known" to the computer in

a preliminary stage that may work, for example, by training the machine on example

2D images of objects or by developing a 3D CAD object model. After building up

a database of known objects, the computer recognizes instances of these objects in

2D images by matching object models to regions of the 2D image actually containing

objects. The pose of objects in the scene can be calculated from the results of the

matching process.

Object recognition is an interesting and challenging problem for researchers be-

cause of the possibility of building a machine that can interact intelligently with

its environment. Automatic object recognition could help provide the \eyes" for

a computer, enabling commercial applications like industrial parts inspection and

computer-assisted surgery, the latter of which is just beginning to emerge. Existing

systems for object recognition, however, fall far short of human abilities. The ease

in which the human brain can recognize objects often leads us to underestimate the

di�culty of the overall problem.

Why is object recognition a di�cult problem? The biggest problem is that object

image appearance depends on pose and lighting conditions. That is, a single 3D object

can take on one of a multitude of appearances when projected into the 2D image.

1

2 CHAPTER 1. INTRODUCTION

Another problem is scene clutter. If the image scene contains many objects, it may be

di�cult to isolate regions of the image that contain a single object. Furthermore, if

objects are allowed to partially occlude each other, then only incomplete information

is available to the recognizer. Finally, imaging devices such as cameras and human

eyes are imperfect: real lenses tend to blur the image, and the light measurement

process invariably adds noise to the image.

While di�erent approaches exist to the problem of object recognition, a simple

and direct one is the view-based approach. In this approach, variation in object

appearance due to changes in pose and lighting are represented simply by storing

many di�erent example 2D views of the object. When attempting to recognize a

new input view, the recognizer simply tries to match the input against an example

view that is su�ciently close in pose and lighting. Since pose-lighting parameter

space is multidimensional, populating this space densely enough with example views

could require a huge number of examples. Thus, one important issue in the view-based

approach is how many example views are necessary for good recognition performance.

The goal of this thesis is to explore the view-based approach in a real application

domain, face recognition, under di�erent extremes in terms of the number of available

example views per person. We will examine two cases:

1. many example views are available per person, and

2. only one example view is available.

The application problem itself, chosen to be a good candidate for the view-based

approach, will be pose-invariant face recognition. By \pose-invariant", we mean that

the pose of the input view is free to vary within a certain range. Since the input

pose is allowed to vary, applying the view-based approach naturally requires many

example views of each person, views in this case taken from di�erent poses. While

this is compatible with the �rst case above, what about the second scenario where

we only have one example view? Assuming that the single view is from a �xed pose

rstd, will the face recognizer be successful for input views at poses distant from pose

rstd? At �rst this may seem to be a problem with applying the view-based approach.

To assist the view-based approach in the single example view case, we try to exploit

properties of the generic class of object being recognized to generate additional virtual

examples. That is, even though we have a single view per object, prior knowledge

about the general class of objects may enable us to generate additional examples. In

the case of pose-invariant face recognition, the generic object class is the human face,

and virtual views are views as seen from poses di�erent from that of the single real

example. The prior knowledge of faces needed to generate these virtual views will be

of face rotation, representing how a face transforms when rotated. After presenting

1.1. OBJECT RECOGNITION 3

our technique for generating virtual views, their usefulness will be evaluated in a

view-based pose-invariant face recognizer.

In this thesis we make two main contributions. First, our view-based face recog-

nition work is the �rst to systematically explore the problem of pose-invariant face

recognition. As we will discuss in the prior work section, most existing work in face

recognition covers a small range of poses and uses at most a few example views per

person. In the case when multiple real views are available, we show that a simple

view-based approach yields good recognition rates. Second, in situations where only

one view per person is available, we show that the view-based approach is still viable

by developing techniques for synthesizing virtual views.

1.1 Object Recognition

The goal of object recognition is to automatically identify instances of objects that

the computer has been trained or programmed to recognize. That is, given prior

knowledge of a set of known objects and a digitized image of a scene to analyze,

object recognition systems attempt to locate, recognize, and estimate the orientation

of objects in the scene. For example, consider the problem of recognizing a telephone

in an input image of an o�ce desktop scene, an image perhaps cluttered with other

common desktop objects such as pens, books, etc. The object recognizer tries to

match a model of the telephone, perhaps a 3D CAD model, to the region of the

image containing the telephone.

There are three major approaches to object recognition, an invariant features

approach, a model-based approach, and a view-based approach. The basic di�er-

ence among the three approaches is how they deal with variation in object appear-

ance across di�erent image parameters such as pose and lighting. The invariant fea-

tures approach �nds object features that do not change as image parameters change,

sidestepping the problem of actually representing changing object appearance. The

model-based approach, the most popular approach, uses 3D object models to pre-

dict appearance under di�erent image parameters. Finally, the view-based approach

handles variation in appearance by simply storing many 2D views of the object.

Before going into more detail, let us introduce some relevant terms:

representation To manipulate object models mathematically or inside a computer,

we must represent them in terms of primitive elements. A very wide variety of

representations have been explored. Probably the simplest one is the template-

based representation, where 2D images, or templates, of the object are used to

represent appearance. In this pictorial representation, the pixels of the tem-

plate can be interpreted as the primitive elements. Going beyond the original

4 CHAPTER 1. INTRODUCTION

grey levels, some representations transform the image using the KL or Fourier

transforms, and some pass the image through �lters like Gabor �lters. Trans-

form coe�cients and �lter outputs are the primitives here. Moving to more

symbolic primitives, some systems use the geometrical con�guration of point,

line, or contour features. Even more abstract are the volumetric constructs of

superquadrics and generalized cylinders. The latter symbolic primitives are of-

ten de�ned in 3D and used in the model-based approach. Representations using

templates or transformed/�ltered versions of the image are inherently 2D and

are often paired with the view-based approach.

correspondence When recognizing objects in an input image, one of the �rst steps is

to locate the representation primitives in the image, a process known as feature

detection. Correspondence refers to the pairing of model primitives with image

features. A particular correspondence, or pairing, determines a matching of

the model and input, and is often used to specify a geometrical transformation

between the two.

The descriptive power of the model primitives and image features has an impact

on the number of admissible correspondences. For example, if the primitives

and features are rich and detailed, then the number of potential matchings may

be very small, or perhaps a unique correspondence may exist. On the other

hand, if features are generic, such as point features, then a large number of

potential correspondences may be explored by the recognizer.

pose Pose refers to the rotation and translation parameters that describe the ori-

entation and position of the image object with respect to the model. For 3D

objects, one also has to model the projection process from 3D to a 2D image,

so the overall mapping goes from a 3D object-centered coordinate system to

2D image pixel coordinates. Consider the simple scaled orthographic projection

model for transforming a 3D object-centered point p to its corresponding 2D

image location p0:

p0 = sPR p+ t: (1.1)

This transformation has six degrees of freedom: three rotations, one scale, and

two translations. First, the point p is transformed by a standard 3x3 rotation

matrix R. Then it is projected using a 2x3 orthographic projection matrix P ,

which simply drops the z coordinate. The overall scale of the object is then

determined by a scale factor s and then the object is translated in 2D by an

o�set vector t. This is an approximation of standard perspective projection, an

approximation that works well when the extent of the object in depth is small

when compared to the distance between the object and camera.

1.1. OBJECT RECOGNITION 5

In the case of 2D object models, a less complicated pose model is required, a

model that needs only to map the image plane back onto itself. The mathemat-

ical form is similar to equation (1.1)

p0 = sRp+ t; (1.2)

except that p is now 2D and the rotation matrix R is a simple 2x2 rotation

matrix that operates only in the image plane. There are four degrees of freedom:

one image-plane rotation, one scale, and two translation parameters.

Object recognition systems are usually divided into two stages, a model acquisition

or training stage and a matching stage. The model acquisition stage is an o�-line step

that builds an object representation for later use during the actual on-line matching

stage. For the view-based approach, this stage really builds a set of representations.

In the on-line matching stage, given an input image to process, the object recognizer

�nds a way to match a model representation with a subregion of the image containing

the object. The matching stage involves detecting image features and solving for

correspondence and pose either explicitly or implicitly. Let us now review how these

steps work in the three previously mentioned approaches to object recognition.

1.1.1 Invariant features approach

In the invariant features approach, the key is to �nd an object representation that

does not vary as image parameters such as pose and lighting are varied. The matching

process in the recognizer is then quite simple: compute the invariant representation in

the input image and compare against the stored model representation. This approach

is possible when one can �nd features where image parameters are decoupled from

object identity. When such features exist, this is clearly preferable to the model-

based and view-based approaches, where imaging parameters are factored into and

thus complicate the recognition process.

A simple example of the invariant features approach uses the so-called cross ratio.

Consider four collinear points A, B, C, and D and let AB denote the 2D distance

between A and B in the image. Then the ratio AC

BC
� AD

BD
is invariant with respect

to pose. Using methods from invariant theory, Forsyth, et al. [54] develop geometric

invariants of a similar
avor for 3D planar objects using contour and point features.

The color of an object is another invariant feature. Swain and Ballard [126] use a

histogram of image color values to perform indexing, roughly de�ned as the culling

of object models prior to more detailed matching. In an e�ort to detect faces under

varying lighting conditions, Sinha [122] �rst averages brightness values over a set of

facial regions including the eyes, nose, cheeks, mouth, chin, etc. He shows empirically

6 CHAPTER 1. INTRODUCTION

that pairs of regions exist where the average brightness of one region is consistently

greater than that of another (e.g. cheeks greater than eye region), and he represents

a face as a collection of such relative magnitude tests.

However enticing this approach may appear, it does have limitations when applied

to more complicated 3D objects. For instance, it has been shown (see Clemens and

Jacobs [41], Burns, Weiss, and Riseman [30]) that for a 3D object consisting of an

arbitrary set of points there are no geometric invariants. That is, when objects are

modeled as a 3D cloud of points { as contrasted with the special case of planar objects

before { there are no simple invariant functions such as the cross ratio.

1.1.2 Model-based approach

The model-based approach to object recognition uses geometric models, usually 3D

ones, to predict the appearance of the modeled object under arbitrary pose. Most

of the work in model-based recognition has been applied to rigid, man-made objects

such as machined parts, staplers, computer mice, etc. The popular representation in

the model-based approach are intensity edges or features derived from edges such as

corners, junctions, or edge normals. By focusing attention on the regions of intensity

discontinuities, the representation is fairly invariant to lighting conditions, so model-

based systems address the problem of varying pose.

Consider the typical case of a 3D object model and a 2D image. During the

model acquisition stage, a 3D model of geometric primitives is constructed, usually

built from point features or edge fragments. This model is de�ned in an object-

centered coordinate system. Given a particular pose, equation (1.1) can be used to

project the primitives into the image plane, where they can be compared with image

features.

At recognition time, the �rst step is to detect point and edge features, the instances

of model primitives. The matching procedure then solves for a correspondence and

pose that overlays the projected model onto the set of image features belonging to

the model. While many matching strategies exist, consider the popular alignment

scheme of Huttenlocher and Ullman [70]. Recall from our de�nition of terms how

correspondence and pose are linked. By specifying enough feature correspondences,

one determines a potential pose of the object. Thus, one way of exploring the possible

model-to-image transformations is to enumerate all possible feature correspondences,

a process that unfortunately grows exponentially with respect to the number of fea-

tures. The key observation of Ullman and Huttenlocher is to use a minimal number of

features in forming correspondence. They show that for the 3D problem, only three

point correspondences are su�cient for determining pose. That is, the recognizer

1.1. OBJECT RECOGNITION 7

only has to enumerate all correspondences of three model features to three image

features to examine all possible poses. The recognizer then enters a veri�cation phase

where it examines the pose speci�ed by each correspondence. Here the algorithm

returns to the full detail of the model representation, using the hypothesized pose to

project all features into the image plane. Matching is then performed in 2D between

the projected model features and the image features. Related systems include the

interpretation tree method of Grimson and Lozano-P�erez [62], the local feature focus

method of Bolles and Cain [22], and the SCERPO system by Lowe [89].

While the previous approaches organize the matching process as a search over cor-

respondences, another way to view the search is in pose space. From this viewpoint,

the matcher tries to �nd a pose that brings a large number of projected model features

into correspondence with image features. This is the basis of the Hough transform

technique (see Ballard and Brown [10], Chapter 4 for a good introduction). A mathe-

matically elegant way of relating correspondence space to pose space for the problem

of bounded error recognition was formulated by Baird [9]. The constraint of bounded

error means that projected model features fall within a certain bounded function cen-

tered around the image features. This idea was further developed theoretically and

algorithmically by Cass [36] and Breuel [24].

1.1.3 View-based approach

As previously discussed, the view-based approach to object recognition models 3D

object appearance simply by storing many example 2D views of the object. The

views may be from a variety of poses, lighting conditions, and for the case of faces,

expressions { basically whatever sources of variability that one wishes to handle in the

input views. Compared with the 3D model-based approach, it is often said that the

view-based approach trades memory for computation. That is, storing a number of

views takes more memory than a single 3D object model, but typically the matching

task is less computationally expensive since it is performed in 2D rather than 3D.

If we consider for a moment this trade-o� in terms of the human brain, the view-

based approach is often considered to be a more biologically plausible one than the

3D model-based approach since our brains have massive amounts of memory and

rather slow computational speed. In machine applications of object recognition, the

cheapness of digital memory may make the view-based approach practical in real

implementations.

8 CHAPTER 1. INTRODUCTION

y

xz

image plane
camera

Figure 1-1: In scaled orthographic projection, the object in the 3D object-centered

coordinate system (x; y; z) is rotated in 3D, translated in the x-y plane, orthographi-

cally projected along the z-axis, and then scaled in the image plane. The view-based

approach samples object views at di�erent pairs of rotation angles about the x- and

y-axes.

Application to pose problem

Consider applying the view-based approach to the problem of recognizing a 3D object

under varying pose. Following the prescribed approach, we need to take example views

of the object to capture changes in appearance as pose parameters vary. Referring

back to our discussion of scaled orthographic projection, there are six degrees of

freedom to pose, two translations, a scale factor, and three rotations. Do we actually

need to worry about all six of these dimensions? Fortunately, four of the parameters,

the two translations, scale, and image-plane rotation (rotation about the z-axis), do

not change image appearance in a fundamental way. For example, given an image of

an object, we can model changes in 2D translation simply by translating the image in

2D. In general, we can model change in appearance for those four parameters simply

by applying a planar transform to a single image. Thus, there is no need to take

example views along those pose dimensions.

To model object appearance with respect to pose, then, we are left with the pose

rotations \in depth", or the rotations about the x- and y-axes (see Fig. 1-1). These

pose parameters change object appearance in a manner that cannot be handled using

a simple planar transform. If one imagines the object as enclosed in a sphere and

1.1. OBJECT RECOGNITION 9

rotates the camera around this sphere instead of keeping it �xed on the z-axis, these

two rotational parameters describe where on the sphere one is viewing the object;

hence this imaginary sphere is often called the viewing sphere. Thus, the model

acquisition phase consists of obtaining a set of object views that sample poses from

the viewing sphere.

During the recognition of a new input view, the view-based approach typically

cycles through the example views, comparing each example view to the input using

a 2D matching algorithm. By going though the di�erent example views, the rotation

angles in depth are examined. The remaining pose parameters, the two translations,

scale, and image-plane rotation, are typically handled by the 2D matching algorithm.

The 2D matching step can be seen as a special 2D case of the model-based matching

approach, consisting of detecting features and then searching over correspondence or

pose space. The amount of search is determined by the descriptiveness of the features.

If the matching procedure is driven using generic features such as points and lines,

the matcher will have to search over a set of potential model-image correspondences.

On the other hand, if the features are distinctive, such as the eyes of a face, then

aligning the model and input views in 2D is straightforward. In this latter case image

features are used to geometrically normalize the input for the 2D aspects of pose.

Prior work

One of the key components of a view-based system is the manner in which the ex-

ample views are chosen. Basically, how is the viewing sphere sampled? One of the

simpler techniques is to sample the entire sphere or portions of it at regular intervals.

Goad [60] samples 216 points on the viewing sphere by imposing a 6x6 grid on the 6

faces of a unit cube and then radially projecting the cube onto the viewing sphere.

The object domain of Goad's system is industrial parts and the example views are

represented using 2D edges. In the view-based system of Breuel [23], toy models of

two airplanes are represented by sampling the upper half of the viewing sphere; 32

images were used for one plane and 21 for another. A 2D edge-based representation

is again used, and the 2D matching algorithm employed is Breuel's RAST algorithm,

an algorithm that searches pose space using an adaptive subdivision technique.

One of the problems of the regular sampling approach is determining an appropri-

ate number of examples. Sampling the viewing sphere too �nely may result in high

storage costs, while sampling too coarsely may accidentally miss a view with a unique

con�guration of features. The technique of aspect graphs attempts to �nd a compact

set of views that e�ectively covers all views of the object.

As introduced by Koenderink and van Doorn [78], an aspect is roughly de�ned

as an object view whose features are stable with respect to pose perturbations. An

10 CHAPTER 1. INTRODUCTION

aspect carves out a patch of qualitatively similar views from the viewing sphere. If

the pose is rotated enough, then the set of image features change, creating a new

aspect, and a visual event is said to have occurred. In an aspect graph, the nodes are

a collection of distinct aspects of an object, and there is an edge between two nodes

if the aspects are connected by a visual event. The theory behind aspect graphs

is developed using 3D solid shape and ignores object albedo, so image features are

edge-based and thus visual events refer to changes that occur in the con�guration of

edges and junctions.

The focus of aspect graphs is more on creating the set of aspects rather than

actually using it for recognition, although recognition is the assumed eventual goal.

Chakravarty and Freeman [37], working within the same framework but calling as-

pects characteristic views, develop a set of rules for manually generating a set of

characteristic views from a 3D object model. Later work has focused on automati-

cally computing the aspect graph. Korn and Dyer [81] and Ikeuchi and Kanade [71]

compute the aspect graph by �rst enumerating a large number of views and then

clustering similar views into aspects. However, the clustering approach is limited

by the �neness of the initial sampling; an aspect with small support on the viewing

sphere could still be missed. Exact methods for computing the aspect graph basically

work by mapping visual events onto the viewing sphere, partitioning it into aspects.

Stewman and Bowyer [123] and Gigus and Malik [58] have shown how to do this with

polyhedral objects; Ponce and Kriegman [111] with curved objects constructed from

parametric surfaces. It should be added that the systems in [37] and [71] also develop

recognition strategies using their aspect graph representation.

The linear combination approach to object recognition (see Ullman and Basri [130])

is related to the view-based approach in that a set of 2D views is collected in the model

acquisition phase. However, in linear combinations, instead of storing these views as

isolated examples, the example views are interpolated to generate new views of the

object. That is, Ullman and Basri show that any 2D view of an object can be written

as a linear combination of example 2D views. Only two example views are needed

for objects with \sharp edges" such as polyhedral objects (Poggio [105] also showed

this result), with more views being required if smooth surfaces or articulated objects

are allowed. The 2D view representation is shape-based and thus relies on point and

contour features. The technique requires these features to be in correspondence across

both the example views and new views being recognized, a correspondence that Ull-

man and Basri assume is externally supplied. The analysis assumes an orthographic

projection model; see Shashua [121] for more recent work on extending the linear

combinations approach to the perspective case.

Overall, the linear combinations technique shows that a set of 2D views is equiv-

1.1. OBJECT RECOGNITION 11

alent to having 3D structure. In this case 3D models can be bypassed by taking an

appropriate linear combination of 2D views. This is similar to binocular stereo and

structure-from-motion algorithms, where multiple 2D views of an object are used to

compute 3D structure.

Example-based learning techniques, when applied to the problem of object recogni-

tion, can be read as a view-based approach to the problem. Compared to the previous

approaches, the basic idea is to have the computer learn how to perform the recogni-

tion task rather than having to explicitly code a recognition strategy. This approach

has recently been explored by Poggio and Edelman [107] and Brunelli and Poggio [26].

Given a set of example 2D views of an object, example-based learning techniques try

to construct a mapping from the space of 2D views to some property of the object,

where that property may be an indicator variable (1 if the view is from the object,

0 otherwise) or an estimate of 3D object pose. Being able to learn mappings of this

type from a sparse set of examples is possible because these mappings are typically

smooth (i.e. the appearance of an object changes slowly when rotated). Similar to

the linear combinations approach, feature correspondence among the di�erent views

is assumed.

In this technique, �rst a mathematical form for the mapping is chosen, along

with an associated architecture that implements the mapping in terms of a network

of simple interconnected nodes. Next, in the network training procedure, which is

basically the model acquisition phase, example pairs (x; y) of input views x and

desired output y are presented to the network; the training procedure adjusts the

parameters of the network so the network \learns" a function f such that f(x) � y.

After training, at recognition time, a new view x is presented to the network and

the output y is computed by the network. When network output is taken to be an

indicator variable for the object, a frequent case, the network \recognizes" the object.

Both [107] and [26] use Radial Basis Functions to approximate f (see Poggio and

Girosi [109]), along with a simple accompanying three layer network. The object

domain is wire-frame \paperclip" objects, and inputs x are taken to be the (x; y)

coordinates of wire intersections. In the recognition experiments, a relatively small

number of objects is used (5 or 10) and the number of example views used to train

the network is in the tens (Poggio and Edelman [107] suggest 80-100).

In another learning approach, Murase and Nayar [98] have explored a matching

method based on the 2D appearance of an object. Instead of focusing on object

shape by looking at edge-based and point features, they represent object views by

the grey level appearance of the object, which includes factors like illumination and

object re
ectance as well as shape. As in the view-based approach, a large set of

views per object are collected that sample the viewing sphere and di�erent lighting

12 CHAPTER 1. INTRODUCTION

directions. But instead of storing all these views, they are compressed using principal

components analysis. Object views are represented by projecting them onto a small

number of the principal components, forming an \eigenspace" representation. Murase

and Nayar then represent an object by �tting a parametric surface to the projection of

its example views in this eigenspace. Given a new image to recognize, it is projected

into the eigenspace and compared with the hypersurfaces of the various modeled

objects. This technique as been tested with large numbers of example views (450) and

testing views (270) per object. Overall, the compression from principal components

allows an approximation to correlation with the entire original data set but at only a

fraction of the cost.

Overall, one of the important components in the view-based approach is the set of

example views used to sample the viewing sphere. Determining a small but complete

set of example views is the primary problem of aspect graphs. Systems that use

more systematic and dense sampling of the viewing sphere, such as the eigenspace

approach, spend much e�ort in collecting the example views. The number of example

views required by the view-based approach can be addressed mathematically using

error analysis (Breuel [23]). Poggio and Edelman [107] estimate that around 80-100

views may be su�cient for a network approach.

As previously mentioned, in this thesis we focus on two extreme cases in terms

of the number of available views. In the �rst case, where many views per object are

available, our approach uses a regular sampling of a portion of the viewing sphere.

In the second case, however, only one view is available, so we develop a technique

for generating additional views of the objects, or \virtual" views. We now examine

virtual views in more detail.

1.2 Exploiting Prior Knowledge of Object Classes

A general problem for the view-based approach to object recognition and more gen-

erally, example-based learning, is that not enough examples may be available for a

particular problem. A lack of examples may seriously limit the scope of inputs that a

learning network can properly generalize over. In the case of view-based face recog-

nition, having just one view per person, say at pose rstd, means that we would expect

recognition performance to drop as input pose di�ers more and more from rstd. Being

attracted by the simplicity of the view-based approach, though, we would like to know

if it is possible to address this problem within the view-based framework. Considering

that learning systems and object recognition systems are usually applied to speci�c

classes of objects, such as manufactured parts, faces, and characters (OCR), can we

use knowledge of this class of objects to leverage the example set? In this thesis we

1.2. EXPLOITING PRIOR KNOWLEDGE OF OBJECT CLASSES 13

explore using prior knowledge of the object class to expand the set of examples by

generating virtual examples, or virtual views.

1.2.1 Virtual views using 3D models and symmetry

Given a single view of an object at pose rstd, consider the problem of generating a

rotated virtual view of the object, say a view that has been rotated about the y-axis

by 15 degrees. To perform this task, the prior knowledge must say something about

the 3D shape of the object. Probably the most straightforward way to represent

knowledge of 3D shape is with an explicit 3D model. This approach works well when

the class of objects has a common, generic 3D model, which is certainly true for an

object class like faces. Researchers in computer graphics, low-bandwidth teleconfer-

encing, and performance-driven animation have already exploited 3D models in this

way to generate new views of a face when provided with just one view. First, the

single real view is texture mapped onto the 3D model, then the 3D model is rotated

to the new desired pose, and �nally the rotated 3D model is projected onto the image

plane. This technique will be discussed in more detail in the next chapter on prior

work.

Knowledge about symmetries of 3D shape can also be used to generate rotated

virtual views. In an early demonstration of the idea of virtual views, Poggio and

Vetter [110] showed that for bilaterally symmetric objects, knowledge of symmetry

allows one to synthesize a virtual view from a single view. The virtual view is simply

the mirror re
ection of the real view. Combining this with earlier ideas about linear

combinations leads to a surprising result. According to linear combination of views,

two views are su�cient for recognition. Since we can get a mirror view of a bilaterally

symmetric object essentially for free, it should be possible to recognize a symmetric

object using just one example view. Thus, while one view alone is not su�cient for

recognition, when paired with prior knowledge of symmetry it becomes possible.

Before applying this technique for recognition from one view, there are some

theoretical and practical issues to consider. First, the virtual view is degenerate {

equal to the original real view { when object pose is such that the plane of symmetry

is perpendicular to the image plane. For faces this occurs in frontal pose, so for virtual

views based on symmetry we need to use an \o�-center" view of the face. Second,

the linear combination of views result assumes correspondence between views, and

unfortunately the symmetry result does not supply correspondence. Thus, di�culty in

�nding correspondence will limit the ability to apply the virtual view to recognition.

Unfortunately these two considerations play o� one another in a negative way: to

the extent that one avoids degeneracy by choosing an o�-center view, one makes the

14 CHAPTER 1. INTRODUCTION

correspondence problem more di�cult since the poses of the two views will be further

apart.

1.2.2 An example-based approach to virtual views

In this thesis we consider using an example-based approach to representing prior

knowledge of 3D object shape. By example-based, we mean that prior knowledge

will be represented by a set of 2D views of prototype objects, where the prototype

objects are representative of the variation seen across the object class. For each

prototype object we assume that there are many available views, as opposed to non-

prototype objects for which just one view is available. In particular, let the single

view that is available for non-prototype objects be at a standard view rstd, and let the

frig
n

i=1 be a set of n poses of desired virtual views. The example-based approaches we

explore will then require (n+1) views per prototype at poses rstd and frig
n

i=1. Given

a view of a non-prototype, or novel, object at pose rstd, the example-based approach

will generate a view at one of the desired virtual poses.

Two example-based approaches will be explored in this thesis for generating virtual

views:

1. Parallel deformation. Using just one prototype object, measure the 2D defor-

mation of object features going from the standard to virtual view. Then map

this 2D deformation onto the novel object and use the deformation to distort,

or warp, the novel image from the standard pose to the virtual one. The tech-

nique has been explored previously by Brunelli and Poggio [108] within the con-

text of an \example-based" approach to computer graphics and by researchers

in performance-driven animation (Williams [136][137], Patterson, Litwinowicz,

and Greene [102]).

2. Linear classes. Using multiple prototype objects, �rst write the novel object as

a linear combination of prototypes at the standard pose, yielding a set of linear

prototype coe�cients. Then synthesize the novel object at the virtual pose by

taking the linear combination of prototype objects at the virtual pose using the

same set of coe�cients. Using this approach, as discussed in Poggio [106] and

Poggio and Vetter [110], it is possible to \learn" a direct mapping from standard

pose to a particular virtual pose.

Why should we use the example-based approach over the 3D model and symmetry

approaches described above? Symmetry can only provide one additional view, which

will not be su�cient for our application to pose-invariant face recognition, as we will

see experimentally. The case of 3D models breaks down into two subcases. Some

1.2. EXPLOITING PRIOR KNOWLEDGE OF OBJECT CLASSES 15

systems for the 3D modeling of faces use person-speci�c 3D models taken with an

active sensor such as the Cyberware scanner. These types of individual 3D models

fall outside the scope of our recognition-from-one-view scenario, for the system has

much more than one 2D view { it can generate any 2D view it pleases. The second

case of 3D models is a generic 3D face model. The main problem of using generic 3D

models is adjusting the 3D model so that it matches the 2D novel object view. This

may work when a couple of di�erent novel object views are available, such as with a

pair of frontal and side views of a face (see Wallace [6]).

1.2.3 Related work

Hints have been proposed by Abu-Mostafa [1][2] as a method for incorporating prior

knowledge into the learning-from-examples framework. In the standard learning-

from-examples framework, the goal is to learn a function f from a set of hypothesized

functions G, where one can think of G as a class of functions implemented by a par-

ticular neural network architecture. A learning procedure, such as backpropagation,

chooses a particular function g 2 G based on a set of input-output examples of f ,

(xi; f(xi))
n

i=1, where xi is a member of the input space X. A hint is any prior knowl-

edge that reduces the size of G, thus making the learning task easier. Abu-Mostafa

introduces a couple of types of hints and discusses a method for incorporating hints

into the learning procedure.

For example, one type of hint is that the function f is invariant over partitions

of the input space X. That is, we can divide X into partitions X =
S
Xa such that

x;x0 2 Xa implies f(x) = f(x0). This concept of invariance could be used in learning-

from-examples approach to object recognition to represent the fact that recognition

is invariant to translations, scales, and rotations in the image plane. In this case, the

partitions of X are collections of images of a particular object under di�erent planar

transforms. How do we modify the learning procedure so that the invariance hint can

be \absorbed"? Keeping in the learning-from-examples framework, the invariance

hint itself is represented using examples. The method for learning from examples

of hints is discussed in the context of the standard backpropagation technique. For

the case of a normal input-output pair (x; f(x)), backpropagation measures network

output y(x) and feeds the error (y(x)� f(x))2 back through the network to modify

weights. An example of the invariance hint is a pair (x;x0) from the same partition,

and the error (y(x)� y(x0))2 is fed back through the net. We can keep on generating

examples of invariance hints as long as we can identify di�erent examples from the

same partition.

Mitchell and Thrun [95][128] have also developed a method for exploiting prior do-

16 CHAPTER 1. INTRODUCTION

main knowledge, a method called explanation-based neural network learning (EBNN).

Prior domain knowledge is learned from previous experience with the problem, and

is encoded as a neural network that is itself trained with input-output pairs. For

example, in [128] the general notion of invariance under pose and lighting is learned

for eventual use in training an object recognition system. Inputs to this network are

pairs of images: pairs of the same object are positive examples while pairs of di�erent

objects are negative examples. To use this prior knowledge to help learn a new prob-

lem, such as the recognition of a particular object, the domain knowledge is used to

help \explain" the input-output pairs (x; f(x)) for the new problem. By \explain",

the domain knowledge can be used to estimate, given x, both f(x) and the partial

derivatives of f with respect to the input x. The key improvement to the learning

procedure in EBNN lies in using the partials to speed up the learning, for learning

a function is easier when both function values and its derivatives are available. For

example, consider the invariance network with one of the two inputs �xed using the

input x of a training example. This network is an approximation of the network that

we wish to learn; we can di�erentiate to get the partials of f . Thus, the prior domain

knowledge gives us additional information to learn f , namely the partial derivatives.

In the area of object recognition, both hints and EBNN discuss how prior knowl-

edge of invariance can be used to assist in learning a particular object. Relative to our

own work, hints is closer since the construction of additional examples is suggested,

similar to our idea of creating virtual examples. The additional examples suggested

by Abu-Mustafa are generated by applying a planar transform to a given example, ba-

sically changing translation, scale, and image-plane rotation. Such virtual examples,

however, are not needed for our face recognition system since we explicitly normal-

ize for translation, scale, and image-plane rotation by detecting facial features. Our

virtual examples sample the remaining pose parameters, rotations \in depth". This

can still be interpreted within the hints framework { only it is much more di�cult to

generate new examples since objects must be rotated in depth.

Since the object domain in this thesis is faces, the prior knowledge we use to

generate virtual example views will be about the object class of faces. The resulting

virtual views will be used as examples in a view-based, pose-invariant face recognizer,

so let us now discuss the problem of face recognition in more detail.

1.3 Application: Face recognition

As already stated, the goal of this thesis is to explore the view-based approach to

object recognition in a real application domain, face recognition. As a special case

of object recognition, face recognition involves matching a new input face against a

1.3. APPLICATION: FACE RECOGNITION 17

database of stored faces. That is, we start with a database or gallery of images of

known faces. Given as input the image of an unknown face, which might be a digitized

signal from a video camera or a digitized photograph, the problem is to identify the

individual as someone in the database or to reject the input as unknown.

1.3.1 Recognition and related problems

The fact that face recognition specializes the recognition task to the class of faces

turns it into a discrimination task. Usually the inputs to recognize have either been

previously classi�ed as faces or are known a priori to be faces, so the problem is to

identify the individual from within the class of faces. This focuses the recognition

task on the �ne details needed to distinguish individuals from one another, on the dif-

ferences between individual faces. In the psychology literature, identifying individual

objects from a particular class is called recognition at the \subordinate" level.

The problem of face detection deals with the broader recognition task of distin-

guishing faces from non-faces. This is an example of the more abstract problem

of categorization, where the goal is to assign general categories to objects, to label

objects as faces, chairs, or cars, etc. In the psychology literature this is known as

recognition on the \basic" level. On the computational side in computer vision, this

is often cast as a detection task. The goal of object detection is to locate all instances

of a particular class of object, faces in our case, even when the scene is cluttered with

a variety of di�erent object classes.

While a system that identi�es faces in cluttered scenes should clearly employ a

face detection algorithm to focus its attention on actual faces, in this thesis we address

the identi�cation problem. The identi�cation problem is rich enough to allow us to

explore the use of real and virtual views in view-based recognition. The need for face

detection is avoided by taking face images against a uniform background and having

the face take up most of the image (see Fig. 1-2). But even if these images were not

available and we had to use cluttered scenes, there are existing face detection systems

(Sung and Poggio [125], Sinha [122], Moghaddam and Pentland [96]) that could be

used.

A related problem to face recognition is face veri�cation: given an input face image

and a proposed identity, verify that the face indeed belongs to the claimed person.

This problem is less computationally demanding than full-blown face recognition

since it does not require a sweep through the entire database of people. The focus is

on rejection characteristics of the system, which involves reliably rejecting intruders

while not falsely rejecting valid inputs.

18 CHAPTER 1. INTRODUCTION

Figure 1-2: The problem of face detection is avoided by taking images of the face

against a uniform background.

1.3.2 Motivation and di�culties

What makes face recognition an interesting problem? Consider the importance of the

face in human culture. The human face is central to social interaction, as it is one

of the cues we use to identify others, it displays our emotional state, and it is the

center of attention during conversation. Since face recognition is an important skill

used every day in normal social discourse, a natural question to ask is whether we

can endow machines with the same ability. Face recognition is one of the many basic

competencies that can be used to make computers behave intelligently.

To be more speci�c, consider the many applications of automatic face recogni-

tion. Virtually any application that currently requires badges, keys, or passwords

for authenticating a person's identity could potentially use face recognition, even if

only as a supplement to increase the security of current authentication measures. For

example, in building security, a face recognizer could be used at the front entrance

for automatic access control. They could be used to enhance the security of user

authentication at ATMs, where cameras are commonly already in use. In the area of

human-computer interaction, workstations with cameras would be able to recognize

users, perhaps automatically loading the user's environment when he sits down in

front of the machine. Finally, in law enforcement, face recognition could be used to

match mug shots against databases of known criminals.

The importance of faces in the human visual system is underscored by �ndings

in psychology and neurophysiology. Our pro�ciency with faces may be hardwired

into our brains, as neurophysiological evidence for \face" cells has been uncovered in

monkeys (Perrett, et al. [104], Desimone [48], Young and Yamane [143]). In a disorder

called prosopagnosia, patients with certain types of brain damage lose their ability to

recognize faces (Hanley, Young, and Pearson [65], Etco�, Freeman, and Cave [52]).

1.3. APPLICATION: FACE RECOGNITION 19

What makes face recognition di�cult? First, as with generic object recognition,

the appearance of a particular face varies due to changes in pose, lighting, expression,

and even factors like age and change in facial hair. Variation in pose and lighting

conditions is a di�culty shared with the more standard problem of rigid object recog-

nition, as faces are examples of 3D objects that change appearance when rotated in

depth or lit di�erently. While pose and lighting changes are fairly well understood in

the computer vision community, the nonrigidness of faces seen in expressions is only

now being modeled, and factors like aging, make-up, and changes in facial hair are

usually not even considered. Overall, the variability in appearance complicates the

modeling of faces, for the recognizer either needs a face representation that is invariant

to these factors, or it needs to model how these factors change facial appearance.

Stemming from the \subordinate" level nature of face recognition, a second di�-

culty is that faces form a class of fairly similar objects { all faces consist of the same

facial features in roughly the same geometrical con�guration. As a �ne discrimination

task, face recognition may require the use of subtle di�erences in facial appearance

or the con�guration of features.

1.3.3 Prior work

Prior work in face recognition has a history in the computer vision and pattern recog-

nition communities going back over 20 years. While many face recognition systems

have been proposed, most follow a typical sequence in terms of building the recog-

nition system and recognizing new inputs. In designing the recognizer, the key deci-

sions are choosing a representation for faces and an accompanying matching metric

for comparing faces. For a given face image I, let R(I) be its representation and

D(R(I1); R(I2)) be the distance between images I1 and I2. To acquire a database of

individuals known to the system, face images are taken of each person, converted to

the face representation, and stored. Let us say that a total of n model images Mi are

taken, where 1 � i � n and there may be more than one model image per person.

To recognize a new input view I, the input face representation R(I) is computed and

matched against the model representations

imin = arg min
1�i�n

D(R(I); R(Mi)):

The person identi�ed by the recognizer is the person in model image Mimin
. In

addition, some systems include the notion of rejecting the input if the best match

is not good enough. This is commonly implemented by requiring the distance of

the best match D(R(I); R(Mimin
)) to be below a certain threshold. In general, the

rejection threshold in classi�ers is either empirically determined or estimated by using

techniques from statistical pattern recognition.

20 CHAPTER 1. INTRODUCTION

Ideally, one wants a face recognition system to handle as much variation as possible

in terms of pose, lighting, and expression. However, in most prior work, especially

the early systems, the model views Mi and inputs I were restricted to frontal pose,

neutral expression, and �xed lighting conditions. This left some of the complexities

of the problem unexplored, such as the problem's 3D nature from rotations in depth

and nonrigidness from expressions. It has only been over the last few years that

these restrictions have begun to be lifted by looking at multiple view-based systems

and
exible matching procedures. Outside of the recognition problem, there have

been recent studies on analyzing faces under di�erent lightings (Hallinan [64]) and

expressions (Essa [51], Yacoob and Davis [142], Beymer, Shashua, and Poggio [19]).

While the prototypical face recognition system deals with intensity images of

frontal or near-frontal views, there are systems that are based on 3D range mea-

surements and others that utilize the facial pro�le seen in side views of the face.

More will be said about these systems in Chapter 2 on existing work.

In discussing the design and evaluation of existing face recognition systems, we

focus on the following important issues. We only give an overview of the issues here;

Chapter 2 provides a more thorough presentation and a listing of references.

1. Input representation. How are images of faces represented? Face representa-

tions, which to date have focused on viewer-based, 2D representations rather

than 3D ones, fall into two classes, a geometrical features approach and a picto-

rial approach. In the geometrical features approach, �rst a set of facial features

are detected, features such as the iris centers, nostrils, corners of the mouth,

outline of the chin, etc. From the feature locations, geometric measurements

are made and gathered into a feature vector. The resulting feature vectors have

been fairly low-dimensional, usually 10- to 20-D, and the geometric features

include measurements like point distances, angles, and curvatures.

The second approach to face representation is pictorial in nature; the represen-

tation primitives are fairly \close" to the original face images. The template-

based representation actually stores pixel intensity values from subimages, or

templates, around the major facial features such as the eyes, nose, and mouth.

The pixel values may be from the original intensity images or on versions of it

preprocessed by gradient or Laplacian �lters. A related �lter-based approach

applies �lters such as the Gabor or Gaussian functions to a sparse set of im-

age locations and represents images as a set of �lter outputs. Another class

of pictorial approach decomposes the grey level image as a linear combination

of \eigenimages", which are derived from a principal component analysis of an

ensemble of representative faces.

1.3. APPLICATION: FACE RECOGNITION 21

Comparing the geometric and pictorial approaches, recent momentum favors

the latter. Implementing the pictorial approach is certainly simpler than the

geometrical approach, which requires locating facial features. Recent systems

for face recognition [129][20] [28][103] have chosen pictorial representations over

geometrical ones. A comparative study by Brunelli and Poggio [28] favors the

template-based approach over a typical feature geometry approach when recog-

nition performance of both are compared on the same database. Indeed, the

geometric approach may be too impoverished to su�ciently discriminate faces,

especially as the database size gets large.

2. Invariance to imaging conditions. Is the recognizer designed to operate under

changes in pose, lighting, and expression? Di�erent approaches have been taken

to handle the resulting variation in facial appearance.

� Intensity �ltering. Preprocessing the image using di�erential operators

such as the gradient and Laplacian will introduce invariance to simple light-

ing changes. For example, changes that can be approximated by adding a

constant to the image, such as changing the ambient illumination, will be

factored out by di�erentiating. Using a normalized correlation metric, as

we will describe later, accomplishes the same thing. Handling more com-

plex changes, such as the lighting direction, requires more sophisticated

methods (for example, see Hallinan [64]).

� 2D geometrical invariants. Transforming the image using the Fourier

transform magnitude (Akamatsu, et al. [5]) or computing autocorrelation

features (Kurita, et al. [82]) provides a representation that is invariant to

2D translation. The Fourier-Mellin transform, which in addition to 2D

translation is also invariant to scale and image-plane rotation, has been

explored by Fuchs and Haken [55][56].

� 2D geometrical normalization. If a couple of facial features can be located,

such as the eyes, then the face image can be resampled using a similarity

transform to normalize for the e�ects of translation, scale, and image-

plane rotation. Since our face recognizer uses this method, more will be

said about this in the next section.

� Multi-view representations. As already mentioned with the view-based

approach, some face recognition store many views per person to handle a

range of rotations on the viewing sphere.

� Elastic matching. von der Malsburg and collaborators [83] [91][141] use an

elastic graph matching technique that is capable of matching model faces

22 CHAPTER 1. INTRODUCTION

with input faces even when they are separated by an out-of-plane rotation

or di�erence in expression.

3. Experimental issues. While the previous two issues dealt with the design of the

face recognizer, the following issues are central for its experimental evaluation.

� Recognition statistics. Face recognizers are evaluated on a set of test im-

ages, images which are usually distinct from the example views stored for

each person. These test images may contain people who are both in and

out of the database, with views of the latter ideally being rejected by the

recognizer as unknown. For the former group, the group of test images of

people in the database, the recognition rate is the fraction of those images

correctly identi�ed by the system. Relatively high recognition rates, rates

in the mid to upper 90%, have been reported on mid to large size databases

(see Baron [11], Brunelli and Poggio [28], Cannon, et al. [35], Pentland, et

al. [103]).

� Number of people in the face database. The more people there are in the

face database, the more di�cult the discrimination task becomes. Intu-

itively one can think of our input space for representing faces as becoming

more crowded with clusters of example views corresponding to each person.

Most prior work in face recognition has dealt with databases on the order

of tens of people. Recently, databases with hundreds and even thousands

of people have become available. Examples include the new database be-

ing collected under the Army FERET program and a database collected

by Pentland, et al. [103]. To be commercially viable for, say, security ap-

plications, it is generally agreed that face recognizers need to be proven on

these larger databases.

� Variation in image test set. As mentioned previously, face recognition is

di�cult because of the variability in appearance of a single face due to

changes in pose, lighting, expression, and even changes in facial hair or

the addition of paraphernalia such as hats or glasses. Most prior work

has limited the scope of the problem by drawing both example and test

views from a frontal pose, �xed lighting, and neutral expression. As we

will describe in Chapter 2, more recent work is expanding the variation

seen in test sets, thus demonstrating face recognition under more general

imaging conditions.

Overall, the important experimental question currently being explored in face

recognition research is whether the high recognition rates seen in earlier work

1.4. OUR VIEW-BASED, POSE-INVARIANT FACE RECOGNIZER 23

m10 m9 m8 m7 m6

m5 m4 m3 m2 m1

m15 m14 m13 m12 m11

Figure 1-3: The view-based face recognizer stores 15 example views per person.

can be sustained when the databases are expanded and the variation in the test

set is increased.

1.4 Our view-based, pose-invariant face recognizer

In this thesis we explore the problem of recognizing faces under varying pose. In other

words, the input views presented to the recognizer for identi�cation are not limited

in pose to a frontal view, as has been the case for most prior work in face recognition.

Input pose is allowed to fall within a range of acceptable poses, the di�cult part of

which is to handle rotations in depth. Our goal is to demonstrate that face recognizers

can be extended to handle a range of rotations in depth. This can be seen as part of

the longer term goal of building a face recognizer that works under a variety of poses,

lighting conditions, expressions, etc.

1.4.1 View-based approach

Our pose-invariant face recognizer will use the view-based approach for recognition.

Rotations in depth, or the rotations about the x- and y-axes in Fig. 1-1, will be han-

dled by sampling a number of views on the viewing sphere. The recognizer will store

15 example views per person (Fig. 1-3), including 5 rotations about the y-axis and

3 rotations about the x-axis. Recall from our discussion of the view-based approach

24 CHAPTER 1. INTRODUCTION

that a 2D matching algorithm is used to match input views against these stored

example views. Our face recognizer will solve this 2D matching task by matching

eyes and nose features between the input and example views. This will geometrically

normalize the input for the e�ects of translation, scale, and image-plane rotation.

The range of acceptable poses for our recognizer is determined by the sampling of

the viewing sphere in Fig. 1-3 and by the 2D geometrical normalization procedure.

First, the sampling of the viewing sphere determines the range of rotation angles in

depth, with rotations about the y-axis within the range �30� and rotations about the

x-axis within the range �20�. Keeping rotations about the y-axis within�30� ensures

that both eyes will be visible, which is important since the eye locations will be used

to geometrically normalize the input. Tolerance to the remaining pose parameters,

translation, scale, and image-plane rotation, is determined by the feature �nder used

to locate the eyes and nose for geometrical normalization. Our feature �nder, to be

described in detail in Chapter 3, can handle image-plane rotations within �45� and

any 2D translation. However, only minor variations in scale are currently allowed, a

range of �20% about an expected scale. The feature �nder could be extended in a

straightforward way, though, to extend its operable range of scales.

Besides the view-based approach, other approaches, namely the 3D model-based

approach, could have been taken to the problem of pose-invariant face recognition.

For example, textured 3D models of individual faces can be automatically constructed

using specialized equipment such as the Cyberware scanner. These 3D models can be

rendered under any desired pose using standard techniques from computer graphics.

Compared to the view-based approach, however, the 3D approach is more complex

since it requires

� specialized equipment for active depth sensing during the model acquisition

phase, and

� a 3D rendering step to synthesize 2D views of the face from the 3D model.

The view-based approach, on the other hand, requires more memory to store the

example views, so the question of the 3D model-based versus view-based approach

can be framed as a trade o� of complexity/computation versus memory. Overall,

we are attracted to the view-based approach because of its simplicity, even if it is a

relatively expensive one in terms of memory.

In this thesis we explore the view-based approach under two extremes in terms of

the number of available example views for each person:

1. multiple example views available, and

2. one example view available.

1.4. OUR VIEW-BASED, POSE-INVARIANT FACE RECOGNIZER 25

view m5 view m3 view m8

Figure 1-4: Faces are represented using templates of the eyes, nose, and mouth.

In the �rst case, we assume that the 15 views shown in Fig. 1-3 are available as

examples for each person. This corresponds to the typical scenario for the view-based

approach { lots of real data is available. But what if we only have one view per person,

perhaps a digitized drivers license photograph or a passport photograph. Can we still

use the view-based approach? In the second part of the thesis we assume that view

m4 is the single available view and we try to synthesize the remaining 14 views.

These synthetic views, or virtual views, will be generating using prior knowledge of

face rotation, knowledge that is represented in an example-based way from views of

a prototype face. The earlier introduced methods of parallel deformation and linear

classes will be the speci�c techniques we use to generate virtual views.

The two scenarios of the view-based approach, real views and virtual views, will

both be examined using the same face recognition algorithm and the same image test

set. We now give a quick overview of our speci�c face recognition algorithm.

1.4.2 Our face recognition system

The discussion of the details of our face recognition system is organized around the

same basic issues we raised previously when introducing prior work in face recognition.

These issues again are input representation, invariance to imaging conditions, and

experimental issues.

Input representation

Motivated by the success of recent face recognition work that uses templates (Burt[32],

Baron[11], Bichsel[20], Brunelli and Poggio[28]), we represent faces using templates of

the major facial features, the eyes, nose, and mouth (see Fig. 1-4). These templates

will be extracted and stored for each example view of each person in the database.

The matching metric used to compare these templates to an input image is normalized

26 CHAPTER 1. INTRODUCTION

correlation

r =
< TI > � < T >< I >

�(T)�(I)
;

where T is the template, I is the subportion of image being matched against, <>

is the mean operator, and �() measures standard deviation. Normalized correlation

is simply standard correlation < TI > normalized by subtracting o� the means and

dividing by standard deviation; the resulting coe�cient r varies from �1 to +1. This

normalization provides an invariance to grey level shifts of the template T of the form

aT+ b, where a is a constant scaling factor and b is an additive constant. This kind

of invariance may provide immunity to di�erences between template and image in the

overall ambient lighting level or camera contrast.

Some of the remaining design issues for using templates are grey level preprocess-

ing and overall template scale. For the issue of preprocessing, instead of using the in-

tensity values from the original example images, the example images are preprocessed

using �lters such as the gradient, Laplacian, or Gabor functions before extracting the

templates. Derivative-taking operators such as these assist with invariance to minor

lighting changes as they subtract out additive constants. In addition, the Laplacian

can help factor out the slowly varying low-pass characteristics of a local light source

that illuminates some parts of the scene more brightly than others. The second is-

sue, template scale, determines the resolution of the entire matching process, with

smaller templates keeping less detail but enabling faster computation times. We shall

evaluate the face recognizer for di�erent combinations of template scales and image

preprocessings.

Invariance to imaging conditions

How does our face recognizer handle variations in pose, lighting, and expression? The

emphasis of our face recognition system is handling variation in pose. As previously

mentioned, a view-based approach employing 15 example views per person is used to

cover di�erent views on the viewing sphere, or the rotations in depth. The remaining

pose parameters, 2D translation, scale, and image-plane rotation, are factored out

using a 2D geometrical registration procedure that is driven by the eyes and nose

features.

To provide feature locations for the 2D registration procedure, a person- and

pose-independent feature �nder is �rst run to locate the two irises and one nose lobe

feature. Fig. 1-5(a) shows an input view with the features detected by our feature

�nder. When using these features to register the input against an example view,

say the example view shown in Fig. 1-5(b), the input is resampled using an a�ne

transform that aligns the input eyes and nose features with those same features on

1.4. OUR VIEW-BASED, POSE-INVARIANT FACE RECOGNIZER 27

(a) (b) (c)

Figure 1-5: 2D registration step. Eyes and nose features in an input view (a) are

brought into correspondence with an example model view (b), producing the new

image (c) which is the original input resampled under an a�ne transform.

the example view (Fig. 1-5(c)). If the input and example views di�er by only a 2D

transform, the a�ne resampling will undo this transform. If the input and example

views additionally di�er by a rotation in depth, then the a�ne transform will use a

combination of shears and nonuniform scales to distort the input view. This treats

the input face as a textured planar object, where the plane is de�ned by the eyes and

nose features.

After the feature �nder locates the eyes and nose features, the face recognizer

e�ectively searches over the rotation parameters in depth by trying to match the

input against each example view of each person. The matching of the input to a

particular example view consists of two main steps, the 2D registration procedure

described above followed by a correlation step where example templates of the eyes,

nose, and mouth are matched against the a�ne resampled input using normalized

correlation.

While the emphasis of our face recognizer is pose-invariance, some parts of our

design provide for invariance to minor variations in lighting and expression. As just

mentioned for our template-based representation, some invariance to lighting con-

ditions is achieved by preprocessing the example and input images and by using

normalized correlation. But this is mostly for factors like overall illumination levels

and contrast, and does not extend to handle changes in lighting direction. For minor

variations in expression, our 2D registration procedure uses a secondary stage of pro-

cessing after the a�ne transform to provide a �ner registration based on optical
ow.

This secondary registration stage will be described in more detail in Chapter 4.

28 CHAPTER 1. INTRODUCTION

Figure 1-6: For each person, 10 test images are taken that sample random poses from

the viewing sphere.

Experimental issues

To evaluate the use of real and virtual views in our face recognizer, we have collected

an image data set of 10 test views per person. Shown in Fig. 1-6, the test views

are taken under a variety of rotation angles both in and out of the image plane in

order to test pose-invariant recognition. We currently have 62 people in the database,

which is larger or comparable to most face databases in terms of number of people,

although one recent database has thousands of people (Pentland, et al. [103]). To

give a quick preview of recognition rates, when using real views it is 98%, and the

best case scenario for virtual views is 85%.

1.5 Contributions

1.5.1 Main contributions

In the course of studying the problem of pose-invariant face recognition using real

and virtual views, we hope to make the following main contributions:

� View-based approach to pose-invariant face recognition. Our face recognition

system uses a strategy that combines geometrical normalization using a few

facial features with template matching using templates from multiple views on

the viewing sphere. Experimental results using real example views demonstrate

the success of this approach when multiple views are available per person. This

systematic study of pose-invariant face recognition helps to push forward the

state of the art in face recognition, which prior to this work had mostly dealt

with frontal or near-frontal views.

1.5. CONTRIBUTIONS 29

� Virtual views. In cases where only a limited number of example views per object

are available, but prior knowledge is available about the class of object, then

generating virtual views allows us to expand the example set. We demonstrate

the application of two techniques, parallel deformation and linear classes, to

the problem of generating virtual views of a face from just one example view.

Using the combined set of one real and multiple virtual views, one obtains a

higher recognition rate in our view-based face recognizer than using the single

real view alone. In general, virtual views should increase the generalization

performance of example-based learning techniques in the portions of the input

space populated by the virtual examples.

1.5.2 Secondary contributions

The secondary contributions of the thesis are motivated by the feature correspondence

requirements of the face recognizer and the process of generating virtual views:

� Person- and pose-independent feature �nder. Our facial feature �nder, which is

run prior to the face recognizer, locates the two eyes and a nose lobe feature.

As described in Chapter 3, it uses a large number of templates of the eyes and

nose region to achieve person- and pose-independence. While our face recogni-

tion system uses the feature locations for geometrical registration of input and

example views, the feature �nder will be useful in many applications that pro-

cess images of faces. For instance, the feature �nder could be used to initialize

a facial feature tracker, �nding the feature locations in the �rst frame. This

would be useful for applications like HCI and low-bandwidth teleconferencing.

� Face \vectorizer". In using images of prototype faces as prior knowledge for

generating virtual views of a novel person, the most di�cult requirement is to

�nd interperson correspondence, de�ned as correspondence between the images

of two di�erent people. For example, parallel deformation requires mapping the

face of the prototype onto the novel person. This mapping requires on the order

of tens of feature correspondences rather than the three features located by the

feature �nder. Our face \vectorizer", to be described in Chapter 6, computes a

dual representation of face shape and \texture", where shape refers to feature

locations and texture to the modeling of intensity values. The shape component

of the vectorizer will be used to �nd interperson correspondence.

30 CHAPTER 1. INTRODUCTION

1.6 Roadmap

The remainder of the thesis is organized as follows.

Chapter 2 on previous work gives a more detailed account of prior work in face

recognition. To cover related work in generating virtual views, we also explore meth-

ods that use 3D models for face synthesis. Compared with using 2D images of a

prototype, 3D models are an alternative way to express prior knowledge of faces.

The next two chapters, 3 and 4, discuss the face recognizer and the experimental

results with real views. Chapter 3 focuses on the facial feature �nder, which locates

the two eyes and a nose feature. Chapter 4 describes the view-based face recognizer.

Chapter 5 introduces a \vectorized" image representation that will be used in

generating virtual views. A novel, practical method for automatically computing the

vectorized representation for faces will be discussed next in Chapter 6.

Chapter 7 on virtual views describes how we generated rotated virtual views of

faces using the techniques of parallel deformation and linear classes. The results of

using these virtual views in the view-based recognizer of Chapter 4 are then presented.

Chapter 8 closes the thesis with a discussion of future work and conclusions.

Appendix A discusses the face database we collected for the face recognizer, and

Appendix B describes the mathematical details of the linear class approach for syn-

thesizing virtual views.

Chapter 2

Previous Work

Within the engineering realm, the human face has been studied in both the computer

vision and computer graphics communities over the last two decades. In computer

vision and pattern recognition, images containing faces are processed to perform tasks

like face detection and recognition. Computer graphics addresses the inverse problem,

that of rendering realistic faces from modeling parameters of the face.

Both the analysis and synthesis tasks are relevant for this thesis. Since the main

thesis topic is face recognition, the �rst part of this chapter explores face recognition

in more detail than provided in the introduction. The second half of this thesis con-

centrates mostly on synthesizing virtual views of faces, so this chapter also discusses

some prior work in the computer graphics synthesis of faces.

2.1 Face Recognition

In the introduction, we de�ned the problem of face recognition and gave an overview

of the major issues facing existing face recognition systems. These issues were input

representation, invariance to imaging conditions, and experimental issues. In this

section, we further explore these issues, providing a more extensive list of references.

While our discussion of existing work will focus on recognizers that use intensity

images of frontal views { the majority of face recognition work { there are some

systems that use 3D range data or pro�le images, and some examples of this work

will be listed at the end of this section.

2.1.1 Input representation

Comparing model and input faces boils down to performing distance measurements

in the space used to represent faces. As current face recognition systems use fairly

standard distance metrics like weighted norms and correlation, the main factor that

distinguishes di�erent approaches is input representation. There are two main ap-

31

32 CHAPTER 2. PREVIOUS WORK

proaches to input representation, a geometrical approach that uses the spatial con-

�guration of facial features, and a more pictorial approach that uses an image-based

representation.

There have been several feature geometry approaches, beginning with the seminal

work of Kanade[73], and including Kaya and Kobayashi[76], Craw and Cameron[46],

Wong, Law, and Tsang[139], Brunelli and Poggio[28], and Chen and Huang[38]. These

feature-based systems begin by locating a set of facial features, including such features

as the corners of the eyes and mouth, sides of the face and nose, nostrils, the contour

along the chin, etc. These features are usually located using specialized heuristic

procedures that are cued on edges, horizontal and vertical projections of the gradient

and grey levels, and deformable templates (see Yuille, Hallinan and Cohen[144]).

The spatial con�guration of facial features is captured by a feature vector whose

dimensions typically include measurements like distances, angles, and curvatures.

For the systems listed above, the dimensionality of the feature vector varies from

around 10 to 50. Craw and Cameron's system[46], which uses a novel feature vector,

represents feature geometry by displacement vectors from an \average" arrangement

of features, thus representing how a person di�ers from the norm. Once faces are

represented by feature vectors, the similarity of faces is measured simply by the

Euclidean distance or a weighted norm, where dimensions are usually weighted by

some measure of variance. To identify an unknown face, geometry-based recognizers

choose the model closest to the input image in feature space. So far, as we will

discuss more in section 2.1.2, this approach to face recognition has been limited to

frontal views, as the the geometrical measurements used in the feature vector are not

invariant to face rotations outside of the image plane.

The second major type of input representation is pictorial in nature, representing

faces by using �ltered images of model faces. In template-based systems, the simplest

pictorial representation, faces are represented either by images of the whole face

or by subimages of the major facial features such as the eyes, nose, and mouth.

Template images need not be taken from the original grey levels; some systems use

the gradient magnitude or gradient vector �eld in order to get invariance to lighting.

An input face is then recognized by comparing it to all of the model templates,

typically using correlation as an image distance metric. Baron[11] uses normalized

correlation on grey level templates. His system partially motivated the template-

based approach of Brunelli and Poggio[28], which uses normalized correlation on the

gradient magnitude. Gilbert and Yang[59] built a real time hardware implementation

of the Brunelli-Poggio system that features a custom-built correlation chip. Burt[32]

represents and matches templates using a hierarchical coarse-to-�ne structure, and

Bichsel's templates[20] uses the x and y components of the gradient.

2.1. FACE RECOGNITION 33

Principal components analysis has been explored as a means for both recognizing

and reconstructing face images. It can be read as an optimized pictorial approach,

reducing the dimensionality of the input space from the number of pixels in the

templates to the number of eigenpictures, or \eigenfaces" (Turk and Pentland[129]),

used in the representation. To apply principal components, one must assume that the

set of all face images is a linear subspace of all grey level images. The spanning set of

eigenfaces, called \face space" by Turk and Pentland, is found by applying principal

components to an ensemble of face images. Faces are represented by their projection

onto face space. Turk and Pentland were �rst at applying principal components to

face recognition. Akamatsu, et al.[5] �rst preprocesses the face image by the Fourier

transform magnitude to get translation invariance. Craw and Cameron[46] applied

principal components to \shape-free" faces, faces that have been warped to move

feature points to standardized locations. Dalla Serra and Brunelli[117] used principal

components on templates of the major facial features, achieving recognition rates

comparable to correlation but at a fraction of the computational cost. Pentland,

Moghaddam, and Starner [103] applied eigenfaces to a series of problems: recognition

on frontal views in a large database of over 3000 people, recognition under varying

left/right rotation, and detection of facial features using \eigentemplates". Kirby and

Sirovich[77] have demonstrated that faces can be accurately reconstructed from their

face space representation.

Besides principal components analysis, other analysis techniques have been applied

to images of faces, generating a new, more compact representation than the original

image space. Kurita, Otsu and Sato[82] represent faces by using autocorrelation on

the original grey level images. 25 autocorrelation kernels of up to 2nd order are

used, and the subsequent 25D representation is passed through a traditional Linear

Discriminant Analysis classi�er. Cheng, et al.[39] and Hong[67] have applied Singular

Value Decomposition (SVD) to the face image where the rows and columns of the

image are actually interpreted as a matrix. Cheng, et al. use SVD to de�ne a basis

set of images for each person, which is similar to \face space", but only that each

person has their own space. Hong creates a low dimensional coding for faces by

running the singular values from SVD through linear discriminant analysis. Ramsay,

et al.[113] have used vector quantization to represent faces; after a face is broken down

into its major facial features, the face is represented by a combination of indices of

best matching templates from a codebook. The primary issue here is how to choose

the codebook of feature templates. Nakamura, Mathur, and Minami [100] have used

\isodensity maps" to represent faces. The original grey level histogram of the face is

divided up into eight buckets, de�ning grey level thresholds for isodensity contours in

the image. Faces are represented by a set of binary isodensity lines, and face matching

34 CHAPTER 2. PREVIOUS WORK

is performed using correlation on these binary images.

Connectionist approaches to face recognition also use pictorial representations for

faces (Kohonen[80], Fleming and Cottrell [53], Edelman, Reisfeld, and Yeshurun[49],

Weng, Ahuja, and Huang[135], Fuchs and Haken[55] [56], Stonham[124], and Midorikawa[94]).

Since the networks used in connectionist approaches are just classi�ers, these ap-

proaches are similar to the ones described above. In multilayer networks of simple

summating nodes, inputs such as grey level images are applied at an \input layer", and

activity in the output layer, usually arranged as one node per object, determines the

object reported by the network. By presenting a \training set" of model face images,

the network is trained using a \learning" procedure that adjusts the network param-

eters. Among connectionist approaches to face recognition, the two most important

issues are input representation at the input layer and the overall network architec-

ture. As previously mentioned, the input representations are pixel-based, with [80],

[53], [55], and [94] using the original grey level images. [135] uses directional edge

maps, [124] uses a thresholded binary image, and [49] uses Gaussian units applied to

the grey level image. A variety of network architectures have been used. A vanilla

multilayer network trained by backprop, probably the most standard approach, has

been explored by [53] and [94]. In a similar approach, [49] trains a radial basis func-

tion network using gradient descent. [80] and [55] use a recurrent autoassociative

memory that \recalls" the pattern in memory closest to the applied input. [135] uses

a multilayer \Cresceptron" that is patterned after Fukushima's Neocognitron[57]. In

[124], which uses a binarized image as input, the network is a sum of a set of 4-tuple

AND functions.

Hybrid representations that combine the geometrical and pictorial approaches

have been explored. In Cannon, et al.[35], a 5D feature vector of feature distances

and intensities is used as a \�rst cut" �lter on the face database. The �nal matches

are done by using a least squares �t of eye templates. In another hybrid approach,

Lades, et al.[83] and Manjunath, Chellappa, and von der Malsburg[91] represent faces

as elastic graphs of local textural features. Feature geometry is captured in the graph's

edges, which store the distance between the two incident features. Pictorial informa-

tion is represented at graph vertices by storing the results of Gabor �lters applied

to the image at feature locations. During recognition, the input face graph is �rst

deformed to match the model graphs. Matches are evaluated by combining measures

of the geometrical deformation and the similarity of the Gabor �lter responses. While

described in terms of
exible graphs, this approach can be read as representing and

matching
exible templates.

Having explored the issue of input representation, let us now continue our dis-

cussion of existing face recognition systems by analyzing their invariance to imaging

2.1. FACE RECOGNITION 35

conditions and experimental issues such as recognition rates.

2.1.2 Invariance to imaging conditions

The wide variation in face appearance under changes in pose, lighting, and expression

makes face recognition a di�cult task. While existing systems do not allow much

exibility in pose, lighting, and expression, most systems do provide some
exibility

by using invariant representations or performing an explicit geometrical normalization

step.

Invariant representations, representations that do not change when the input pa-

rameters change, can handle variations in lighting to a limited degree. For instance, by

�ltering the face image with a bandpass �lter like the Laplacian, one can achieve some

invariance to lighting conditions. Assuming that the image content due to lighting

is lowpass, bandpass �ltering should remove the lighting e�ects while still preserving

the higher frequency texture information in the face. The assumption that lighting

e�ects are lowpass breaks down, however, when there are cast shadows on the face,

which usually happens when the face is illuminated from the periphery.

To provide shift invariance, some systems preprocess images using the Fourier

transform magnitude or autocorrelation. This only handles the translational pose

parameters, requiring other mechanisms to handle the rotations and scale parame-

ters. Using a standard approach used in optical processing systems for invariance

(e.g. ATR), Fuchs and Haken[55][56] factor out the image-plane rotation and scale

parameters in addition to the translational parameters. First, they take the Fourier

transform magnitude, which provides shift invariance. Next, the Cartesian image

representation is transformed into a complex logarithmic map, a new representa-

tion where scale and image-plane rotation in the original image become translational

parameters in the new space. Taking the Fourier transform magnitude again then

provides invariance to scale and image-plane rotation. Using invariant representa-

tions to handle the remaining pose parameters, rotations out of the image plane, on

complex 3D textured objects like faces has not yet been tried.

By �nding at least two facial features { usually the eyes in existing systems { the

face can be normalized for translation, scale, and image-plane rotation. In feature

geometry approaches, distances in the feature vector are normalized for scale by

dividing by a given distance such as the interocular distance or the length of the nose.

In template-based systems, faces are often geometrically normalized by rotating and

scaling the input image to place the eyes at �xed locations. These approaches, of

course, cannot handle rotations outside of the image plane. The normalization step

reduces pose space from its original 6D formulation to a 2D space of rotations out of

36 CHAPTER 2. PREVIOUS WORK

the image plane. In a recognizer that allows general pose, rotations on the viewing

sphere still need to be handled.

Most face recognition systems are not designed to handle changes in facial ex-

pression or rotations out of the image plane. By tackling changes in pose and light-

ing with the invariant representations and normalization techniques described above,

current systems treat face recognition mostly as a rigid, 2D problem. There are ex-

ceptions, however, as some systems have employed multiple views and
exible match-

ing strategies to deal with some degree of expression and out-of-plane rotations. In

Akamatsu[5], four slightly rotated model views (up, down, left, right) are used in

addition to a frontal view. In Otsu[82], up to 116 people with 50 images/person

are used in building a Linear Discriminant Analysis classi�er. These training images

are extracted from a videotaped session with each person and cover di�erent minor

head rotations. Flexible graph matching techniques have also been used ([91], [83])

to enable matching one frontal model view to rotated views and views with facial

expressions. What distinguishes my approach from these techniques will be a wider

allowed variation in viewpoint and the use of prototype face knowledge to generate

\virtual" model images.

2.1.3 Experimental issues

The evaluation of face recognition systems is largely empirical, requiring experimental

study on a set of test images. As we mentioned in the introduction, the important

issues in the experimental evaluation of face recognition systems are the recognition

rate, the number of people in the database, and the variation in the test views. In

this section we explore these issues in more detail.

Experimental studies in face recognition usually start by collecting a set of face

image data with more than one view per person and dividing it into modeling and

testing sets. The modeling data is processed to extract the system's representation for

faces, whether it be a geometry feature vector or a set of templates. In connectionist

approaches, the modeling images are used to train a network-based classi�er.

After models of the faces are so constructed, recognition statistics are compiled by

running the system on an image test set. There are two levels of testing, depending

on whether the system includes the notion of rejecting inputs that are a poor match

to the database.

1. No rejection ability. In the simpler case where rejection is not included, the

system is tested only on images of people in the database. The potential for

error here is a substitution error, mistaking one database person for another.

The relevant recognition statistics are the recognition rate, which is the fraction

2.1. FACE RECOGNITION 37

test image

answer reject

correct

false positive,
substitution

incorrect incorrect

false reject

test set: people in data base

correct
recognition

test image

answer reject

false access

incorrect correct

true reject

test set: imposters

Figure 2-1: If the face recognizer includes the notion of rejecting inputs that are poor

matches, it is evaluated on two test sets of images to collect recognition statistics: a

set of people inside the database and a set of imposters. Di�erent outcomes for these

two test sets are listed above.

of inputs correctly recognized, and the substitution rate, the fraction of inputs

falsely identi�ed by the system.

2. Poor matches rejected. If a rejection capability is included, then testing is

usually expanded to include imposters, or people from outside the database. As

shown in Fig. 2-1, recognition statistics are collected over two separate groups of

testing data, a group of database people and a group of imposters. For the test

group of database people, we add a new statistic called the false rejection rate,

which is the fraction of inputs that are falsely rejected by the system. Thus, the

system can now err by either making a substitution or a false reject. For the

second testing group of people outside the database, the relevant recognition

statistic is the false access rate, or the fraction of images that are not rejected

and hence mistakenly recognized as faces from the database.

One can trade o� the rejection and recognition statistics by varying how strict the

rejection criterion is. Using a stricter rejection criterion will increase the number of

rejections, as inputs now need to be a closer match to the database to be accepted.

Consequently, the false rejection rate will increase; the recognition rate, substitution

rate, and false access rates are expected to go down. Notice that as one makes the

rejection criterion more strict, the false access rate decreases, which is good. However,

the recognition rate also decreases, which makes the system less e�ective. How to

choose the proper rejection level for this trade o� depends on the application. For an

application like automated building access, one wants to minimize false accesses. Fur-

ther, one doesn't particularly mind the increased inconvenience of a lower recognition

38 CHAPTER 2. PREVIOUS WORK

rate (a user that is repeatedly rejected could call a guard for manual veri�cation), so

a strict rejection criterion should be used. Similarly, in systems that can grab several

images of the person to identify, the rejection rate is not so important because the

system has several attempts at recognition. On the other hand, for a lower security

application such as human-computer interaction, one is less concerned with false ac-

cesses. Further, the user does not wish to be annoyed by false rejections, so a more

liberal rejection criterion should be used.

Some face recognition systems have achieved good recognition rates. The early

template-based system of Baron[11] reached an impressive 100% recognition rate on

a database of 42 people. To test system rejection ability, the recognizer was tested on

108 faces from outside the database, with a resulting false access rate of 0%. Brunelli

and Poggio's template-based system[28] achieved a recognition rate of 100% on frontal

views of 47 people. The system of Cannon, et al.[35] was tested on a database of 50

people and reached a recognition rate of 96%. Turk and Pentland[129] report a 96%

recognition rate when their system, which uses a database of only 16 people, is tested

under varying lighting conditions. Akamatsu[5] reports 100% recognition, but on a

smaller size database of only 11 people. Pentland, Moghaddam, and Starner[103]

report a recognition rate of 95% on a database of over 3,000 people. Otsu[82] and

Bichsel[20] give plots of recognition rate versus false access rate, but the results are

not that impressive: to reach a recognition rate in the upper 90%'s, the false access

rate also climbs to unacceptable levels.

Needless to say, these recognition statistics are meaningful only if the database

of model faces is su�ciently large. Face recognizers that do well on small databases

do not necessarily scale up to larger databases. This is one area where many studies

in face recognition have been lacking; often, small databases of less than ten model

faces have been used. While there is no consensus on the su�cient size of the model

database, some of the more recent approaches ([82], [20], [91]) have used databases

on the order of 70 people or more. Pentland, Moghaddam, and Starner[103] have the

largest database in the research community { 7,562 images of over 3,000 people. A face

database is being collected under the Army FERET program on face recognition. As

of August, 1994, the database had over 500 people with up to several views per person.

If we take a cue from the potential applications of face recognition when considering

database size, databases on the order of 100's are certainly useful (e.g. automated

building access), but other applications (e.g. law enforcement) would probably need

larger databases on the order of tens of thousands.

Another important experimental issue is the variability of the test set. Since

there will always be some amount of variation in pose and expression in a real face

recognition system, experiments should ideally use a variety of test images per person

2.1. FACE RECOGNITION 39

sampling small changes in pose and expression. Existing face recognition work has

varied in this regard. [82] uses 50 testing views per person extracted from a videotaped

session where the subject was asked to rotate his head up, down, left, or right. The

database of von der Malsburg and collaborators [91][83] includes frontal views, views

rotated 15� to the right and views with varying expression. Pentland, Moghaddam,

and Starner's[103] database is fairly controlled for pose and lighting, but expression

and paraphernalia is allowed to vary. On the other hand, in [67], only one photograph

is used for both modeling and testing, with scans of the photo at di�erent o�sets

providing di�erent images. In my recognition experiments, I take 10 test shots per

person covering di�erent rotation angles on the viewing sphere.

2.1.4 Related work

While our discussion of existing work has focussed on the domain of frontal views

and intensity images, facial analysis and recognition has been tried with pro�le views

of the face (Kaufman and Breeding[75], Harmon, et al.[66], Wu and Huang[140],

Campos, Linney, and Moss[34]) and with other modalities, such as 3D depth data

(Lapreste, Cartoux, and Richetin[85], Lee and Milios[86], Nagamine, Uemura, and

Masuda[99], Gordon[61]).

In the pro�le view work, the face is imaged against a uniform background, making

detection of the pro�le simple. Next, the pro�le is represented by a low dimensional

(10-20D) vector of features extracted from the pro�le. In [75], vector components

are autocorrelation coe�cients on the binarized silhouette image. [66] uses a vector

of distances, angles, areas, and curvatures on a set of automatically located �ducial

points along the pro�le. In [140], after using a B-spline to segment the pro�le into

5 segments, the vector components measure segment lengths, angles, curvatures, and

symmetry. Finally, while not working on recognition, [34] uses in
ection points from

a scale space analysis to segment the pro�le.

In the 3D range work, a depth map of the face is acquired by scanning the face

with an active depth sensor. Face surface curvature is a key feature utilized by

these methods. [85] coverts the range data into a 9D feature vector, the components

of which measure distances between curvature features along the pro�le. In [86], the

extended Gaussian image is used for representing and matching convex feature regions

of the face. [99] represents faces by extracting portions of the range data along curves

of intersection with the 3D data. Horizontal and vertical lines, as well as circles, are

used as the intersection curves. Finally, [61] �rst �nds high level curvature features

such as the nose ridge and eye corner cavities and then creates a feature vector of

distance and curvature measures between the high level features.

40 CHAPTER 2. PREVIOUS WORK

2.2 Synthesizing faces

To motivate our discussion of synthesizing faces, let us review the introductory com-

ments about the second half of the thesis. The second half of this thesis addresses the

problem of pose-invariant face recognition when only one view of each person's face is

available. This problem is reduced to the multiple view scenario by synthesizing vir-

tual views of each person. That is, the augmented set of one real and multiple virtual

views will be used as example views in a view-based approach to the problem. Virtual

views are synthesized using prior knowledge of facial rotation in depth. In what ways

can one represent this kind of prior knowledge? While we use example images of a

prototypical faces undergoing rotations in depth, a more traditional approach would

have been to use a generic 3D model of the face. Since this method competes with

our example-based method, in this section we brie
y review 3D synthesis techniques

for faces.

3D models combined with texture mapping from real faces have been used to

synthesize images of faces under varying pose and expression. This has been explored

in the computer graphics and computer vision communities and by researchers in low

bandwidth teleconferencing (Essa and Pentland[51], Aitchison and Craw[3], Kang,

Chen, and Hsu[74], Akimoto, Suennaga, and Wallace[6], Anderson and Dippe[7], Oka,

et al.[101], Waters and Terzopoulos[127][134], Aizawa, Harashima, and Saito[4], Choi,

Harashima, and Takebe[40], andWilliams[136]). In these 3D modeling techniques, the

shape of the face is represented either by a polygonal model or by a more complicated

multilayer mesh that simulates tissue. After an example view of the face is texture-

mapped onto the 3D model, new views of the face under changes in pose can be

generated by rotating the 3D model and reprojecting to a 2D image. Faces are texture

mapped onto the 3D model in one of two ways, either by specifying corresponding

facial features in both the image and 3D model or by recording both 3D depth and

color image data simultaneously by using specialized equipment such as the digitizer

from Cyberware.

While some techniques use the 3D model to only generate di�erent views of the

face ([3], [74], [6]), others add mechanisms to alter facial expression as well. One

method for altering facial expression uses interpolation between di�erent views of

the face under di�erent expressions ([7], [101]). The other common approach for

changing expression deforms the 3D model. [127][134], who model the face in 3D with

a multilayer tissue model, translate expressions into muscle movements, which are

simulated in the tissue and deform the upper layers of the skin. The teleconferencing

systems of [4] and [40] and the animation system of [136] deform the 3D model simply

by moving vertices in ways that mimic or track facial muscles.

2.3. THIS THESIS AND PRIOR WORK 41

As these expression-generating approaches are designed with teleconferencing or

animation in mind, most of them track the expressions of a performer and then

synthesize the same (or di�erent) face with the same expressions. The tracking infor-

mation is either low-level information such as the locations of major facial features or

the \action units" of FACS (Facial Action Coding System) developed by Ekman and

Friesen[50]. FACS consists of \action unit" parameters like \cheek raiser" or \lip cor-

ner puller". The approaches of [7] and [134] are not performance-driven, generating

di�erent expressions by hand tweaking the 3D model.

2.3 This thesis and prior work

How should one place this thesis with regard to prior work in face recognition and face

synthesis? First, with regard to face recognition, our pose-invariant face recognizer

pushes the state of the art forward in terms of handling rotations both in and out

of the image plane. For each person in the database, rotations in depth are handled

using a view-based approach that samples a set of 15 views on the viewing sphere. The

representation for each example view in the database is template-based, thus building

on the success of prior template-based face recognizers for frontal views [11][28].

Second, for synthesizing virtual views, our technique uses 2D views of prototypical

faces rather than 3D models to express prior knowledge of facial rotations in depth.

The motivation for staying in 2D rather than working in 3D is the potential for

exploiting a shortcut that avoids the complexities of 3D modeling such as acquiring

3D models and texture mapping. One 2D approach we explore for virtual view

synthesis uses simple 2D warping operators.

42 CHAPTER 2. PREVIOUS WORK

Part I

Face Recognition Using Real

Views

43

Chapter 3

Feature detection and pose

estimation

The �rst stage of processing in the proposed face recognition architecture is a person-

independent feature �nding and pose estimation module. As mentioned in the intro-

duction, the kind of facial features sought by the feature �nder are the two eyes and

at least one nose feature. The locations of these features are used to bring input faces

into rough geometrical alignment with the database example views. Pose estimation

is used as a �lter on the database views, selecting only those views whose pose is

similar to the input's pose. By pose estimation we really mean an estimate of the

rotation angles out of the image plane since feature locations have already been used

to normalize for position, scale, and image-plane rotation. Pose estimation is really

an optimization step, for even in the absence of a robust pose estimator, the system

could still test the input against all example views of all people.

Before describing the details of our feature �nder, let us �rst review some of the

existing work in detecting facial features.

3.1 Previous work

Facial feature detection, for the most part, is the problem of locating the major facial

features such as the eyes, nose, mouth, and face outline. Some researchers have also

addressed the issue of characterizing facial features, usually with the parameters of a

model �t to the feature. While most feature detection e�orts are motivated by the

need to geometrically normalize a face image prior to recognition, other applications

of facial features include face tracking and detecting faces in cluttered images.

Most research to date has taken one of three major approaches, a parameterized

model approach, a pictorial approach, and the use of grey level interest operators. In

one parameterized model approach, deformable template models of individual facial

features are �t to the image by minimizing an energy functional (Yuille, Hallinan, and

45

46 CHAPTER 3. FEATURE DETECTION AND POSE ESTIMATION

Cohen[144], Hallinan[63], Shackleton and Welsh[118], Huang and Chen[69]). These

deformable models are hand constructed from parameterized curves that outline sub-

features such as the iris or a lip. An energy functional is de�ned that attracts portions

of the model to preprocessed versions of the image { peaks, valleys, edges { and model

�tting is performed by minimizing this functional. A related model-based approach

�ts a global head model constructed from tens of feature locations (Bennett and

Craw[15], Craw, Tock, and Bennett[47], Cootes, et al.[44]) to the image by vary-

ing individual feature locations. Terzopoulos and Waters [127] have used the active

contour model of snakes to track facial features in image sequences.

In the pictorial approach, a pixel-based representation of facial features is matched

against the image. This representation may be templates of the major facial features

(Bichsel[20], Baron[11], Burt[32], Poggio and Brunelli[28]), an \eigentemplate" de-

composition following the eigenface recognition approach (Pentland, et al. [103]), or

the weights of hidden layer nodes in neural networks (Vincent, Waite and Myers[133]).

For the template-based systems, correlation on preprocessed versions of the image is

the typical matching metric. The eigentemplate approach uses a \distance from fea-

ture space" metric, which measures the distance between a subimage being analyzed

and its projection onto the eigentemplate space. The neural network approaches con-

struct a network where implicit feature templates are \learned" from positive and

negative examples.

Another major approach to facial feature �nding is the use of low level intensity-

based interest operators. As opposed to the model-based and template-based ap-

proaches, this approach does not �nd features with semantic content as, say, an eye,

nose or mouth detector does. Instead, the features are de�ned by the local grey level

structure of the image, such as corners (Azarbayejani, et al. [8]), symmetry (Reisfeld

and Yeshurun[115]), or the \end-inhibition" features of Manjunath, Shekhar, Chel-

lappa, and von der Malsburg[92], which are extracted from a wavelet decomposition

of the image.

3.2 Overview of our method

While techniques already exist for �nding facial features, no existing system has been

demonstrated for our desired range of rotation angles, which includes rotations both

in and out of the image plane. Thus, we need to build a system that addresses this

issue. As just mentioned, existing methods for �nding facial features with semantic

content (i.e. the eyes or nose, as opposed to, say, a grey level interest operator) tend

to fall into one of two categories, a pictorial approach and a model-based approach.

In the model-based approach, however, the models and �tting procedures are usually

3.2. OVERVIEW OF OUR METHOD 47

ad hoc and require experimentation to �ne-tune the models. The amount of work is

manageable for one view but might become tedious as models and �tting rules for

di�erent views on the viewing sphere are developed. Thus, we chose to explore a

template-based approach for our feature �nder, primarily for its simplicity.

To serve as the front end of a pose independent face recognizer, the feature �nder

must, of course, handle varying pose and be person independent. The current system

addresses these requirements by using a large number of templates taken frommultiple

poses and from di�erent people. To handle rotations out of the image plane, templates

from di�erent views on the viewing sphere are used. Templates from di�erent scales

and image-plane rotations can be generated by using standard 2D rotation and scaling

operations. To make the feature �nder person independent, the templates must cover

identity-related variability in feature appearance (e.g. tip of nose slanted up versus

down, feature types speci�c to certain races). I use templates from a variety of

exemplar faces that sample these basic feature appearances. The choice of exemplars

was guided by a simple clustering algorithm that measures face similarity though

correlation.

Our feature �nder, then, entails correlation with a large number of templates

sampling di�erent poses and exemplars. To keep this search under control, we use a

hierarchical coarse-to-�ne strategy on a 5 level pyramid representation of the image.

In what follows, level 0 refers to the original image resolution while level 4 refers

to the coarsest level. The search begins by generating face location hypotheses at

level 4, where the pose parameters are very coarsely sampled and only one exemplar

is used. Exploring a level 4 hypothesis is organized as a tree search through the

�ner pyramid levels. As processing proceeds to �ner levels, the pose parameters are

sampled at a higher resolution and the di�erent exemplars are used. A branch at any

level in the search tree is pruned if the template correlation values are not above a

level-dependent threshold.

The tree searching strategy starts out as a breadth �rst search at the coarser levels

where the correlation scores are not entirely reliable. As processing reaches lower

levels in the pyramid, correlation scores become more reliable and the search strategy

switches to depth �rst. Search at levels 4 and 3 is breadth �rst: all possible level 3

hypotheses are generated from all level 4 hypotheses and then sorted by correlation

score. Then the search strategy switches to a depth �rst search of level 3 hypotheses.

If any leaves in the search tree (at level 0) pass the template correlation threshold

tests, then the search is terminated { no more level 3 hypotheses are explored {

and the leaf with the highest correlation scores is reported. Fig. 3-1 depicts the

hierarchical search process, where crossed out hypotheses have failed the correlation

threshold tests and the �nal answer is circled.

48 CHAPTER 3. FEATURE DETECTION AND POSE ESTIMATION

hierarchical coarse-to-fine approach

 survives
correlation tests

search in pose space
 - expand hypothesis
 and test

verification
 - register and test

subset of templates

full set of templates

4

level

3

2

1

0

Figure 3-1: Hierarchical processing in our template-based feature �nder. Search at

the two top levels is performed breadth �rst, with all level 4 and 3 hypotheses �rst

being generated and then sorted. The sorted level 3 hypotheses are then expanded

depth �rst. The �rst level 0 hypothesis to survive the correlation tests (circled) is

returned by the system. The �gure shows only one of the many level 4 hypotheses, so

the actual picture should have many of the above trees, one for each level 4 hypothesis.

3.3. HIERARCHICAL PROCESSING 49

3.3 Hierarchical processing

Search over di�erent poses and exemplars through the 5 levels of the pyramid is orga-

nized as follows. At the coarsest level, level 4, the system is trying to get an estimate

of the overall position of the face, so a bank of 30 di�erent whole-face templates are

correlated over the entire image. Because the resolution at this pyramid level is very

coarse { the interocular distance is only around 4 pixels { the pose parameters can

be sampled very coarsely, and only one exemplar is used. Currently, the system uses

5 left/right rotations (-30, -15, 0 15, 30), three image-plane rotations (-30, 0, 30),

and two scales (interocular distances of 3 and 3.75). Local maxima above a certain

threshold in the correlation scores generate face location hypotheses, which are ex-

plored by re�ning the search over pose parameters at the mid levels resolutions, levels

3 and 2.

When a pose hypothesis is being re�ned at level 3 or 2, pose space is explored

at a higher resolution in a small neighborhood around the coarser pose estimate of

the previous level. At level 3, for instance, the 5 left/right viewing sphere angles are

expanded to include 3 up/down rotations (-20, 0, 20), bringing up to 15 the number

of viewing sphere angles explored. Also at level 3 the image-plane rotation parameter

is sampled at twice the resolution of level 4, now including 7 di�erent rotations at

15 degree increments. The di�erent exemplars are also tested. As mentioned before,

pose space is explored in a small neighborhood around the coarse estimate of the

previous level, so a level 4 hypothesis is examined at level 3 by searching over 3

up/down rotations, 3 image-plane rotations, and the di�erent exemplars (currently

6) in a neighborhood around the level 4 correlation maxima. Pose hypotheses from

levels 3 through 0 keep track of how all exemplars match the image at that pose.

For each of these level 3 hypotheses, search at level 2 occurs only if the template

correlation is above a certain threshold. At level 2, the resolution of image-plane

rotations is doubled again to every 7.5 degrees (for a total of 15 rotations from -

52.5 to 52.5) and the search over the 3 up/down rotations is repeated. For level 2

hypotheses surviving the threshold test on the correlation values, the resolution of

the image is high enough to allow estimating the locations of features, in this case

the two irises and a nose lobe.

The repetition of the up/down rotation search on level 2 is done to increase the

exibility of the search { it is not always possible to make a choice on the up/down

rotation at level 3, but including the extra up/down rotation templates at that level

helps to assure that true positives are not rejected by the thresholding step. In

general, the level for which the decision for a pose parameter is made may either be

hard to estimate or person-dependent, so while repeating a search at two adjacent

50 CHAPTER 3. FEATURE DETECTION AND POSE ESTIMATION

Figure 3-2: Example templates of the eyes and nose used by the feature �nder.

levels may increase running time, it also increases system
exibility.

Processing at the �nest levels of the pyramid, levels 1 and 0, are essentially veri�-

cation steps. Level 2 hypotheses provide relatively good estimates of feature locations,

and the �ner levels use the eye locations to geometrically align the templates and im-

age before correlating with templates. No further search over pose space is performed.

The correlation tests at these levels serve to weed out any remaining false positives;

hypotheses surviving level 0, which is at the resolution of the original image, are

assumed to be correct and cause termination of the depth �rst search.

3.4 Template matching

Templates are manually chosen from 15 modeling images of the exemplars covering

the viewing sphere. A special mask-de�ning program is utilized to draw template

boundaries over the example modeling images. As templates are de�ned by these

binary masks, templates can be tailored to tightly encircle certain features, not being

limited to square regions. Actual templates used by the feature �nder vary according

to the level of processing. At level 4, the system is trying to get a general estimate

of the face position, so full face templates are used, templates that run from above

the eyebrows to below the chin. At �ner resolutions the feature �nder uses multiple

templates that cover smaller areas; see Fig. 3-2 for some example templates. At

level 3, to handle bangs vs. no bangs in the input, we use two types of templates with

slightly di�erent coverage above the eyes region. The second template from the left in

Fig. 3-2 handles cases where where bangs come down to the eyebrows and obscure the

skin above the eyebrows. The template on the far left handles cases where the bangs

do not come down to the eyebrows. At level 2, the same eye/nose masks at level 3 are

used, but the template is broken up into two eye and one nose subtemplates. At level

1, the same eye/nose masks are again used, but each eye and the nose are themselves

vertically divided into two subtemplates, which yields 6 subtemplates total. Level

0 uses the subtemplate set of level 1 augmented by a circular subtemplate centered

3.4. TEMPLATE MATCHING 51

around the iris center or nose lobe feature.

The correlation thresholding test is based on eye and nose features, their subtem-

plates, and the fact that a pose hypothesis keeps track of the di�erent exemplars. For

a particular exemplar eye or nose feature, the correlation thresholding test requires

that all subtemplates of the eyes and nose features exceed the threshold. For a pose

hypothesis to pass the thresholding test, there must be some combination of passing

eye and nose templates; the passing templates need not come from the same exem-

plar. This mixing of eye and nose templates across exemplars increases the
exibility

of the system, as a face whose eyes match only exemplar A and whose nose matches

only exemplar B will still be allowed.

Template matching is performed by using normalized correlation on processed

versions of the image and templates. Normalized correlation follows the form

r =
< TI > � < T >< I >

�(T)�(I)

where T is the template, I is the subportion of image being matched against, < TI >

is the normal correlation of T and I, <> is the mean operator, and �() measures

standard deviation. We hope that normalized correlation will give the system some

invariance to lighting conditions and the dynamic range of the camera, as the image

mean and standard deviation are factored out. Correlation is normally carried out on

preprocessed versions of the image and templates, again to provide for some invariance

to lighting. While we have explored the x and y components of the gradient, the

Laplacian, and the original grey levels, no preprocessing type has stood out as the

best. Performing correlation using these di�erent preprocessings and then summing

the result, however, empirically yields more robust performance than any single type

of preprocessing. Thus, the current system performs separate correlations using the

grey levels, x and y components of the gradient, and Laplacian, and then sums the

results.

At higher resolutions in the pyramid, the details of individual features emerge.

This might foil the matching process because the features in the input will not pre-

cisely match the templates due to di�erences in identity and pose. For instance, the

features in the input may not su�ciently close to any of the exemplar features, or the

input features may be from a novel pose that is in between the template modeling

views. In order to bring the input features into a better correspondence with the

templates, we apply an image warping algorithm based on optical
ow to \warp" the

input features to make them look like the templates. First, optical
ow is measured

between the input features and the template using the hierarchical gradient-based

scheme of Bergen and Hingorani[18]. This �nds a
ow �eld between the input feature

and template, which can be interpreted as a dense set of correspondences. The input

52 CHAPTER 3. FEATURE DETECTION AND POSE ESTIMATION

1) compute
 pixelwise
 correspondence

2) 2D warp input

3) warped input and
 template in
 correspondence

input template

warped input

Figure 3-3: In the feature �nding process, an extracted portion of the input (1) is

brought into pixel level correspondence with a template using an optical
ow algo-

rithm. The input is then warped (2) to make it mimic the geometry of the template

(3).

feature, as shown in Fig. 3-3, is then geometrically warped using the
ow �eld to

make the input feature mimic the shape of the template. This helps to compensate

for small rotational and identity-related di�erences between the input features and

templates. Correlation is performed after the image warping step.

Final feature locations are determined from a successful level 0 match returned by

the depth �rst search. Feature points at the center of the irises and the nose lobes,

which are manually located in the templates, are mapped to the corresponding points

in the input image using the correspondences from optical
ow. Fig. 3-4 shows the

features located in some example test images. It is interesting to note that because

correspondence from optical
ow is dense, we could actually detect more than three

feature points once we have brought our eye and nose templates into correspondence

with the image; all we have to do is manually specify more points in the exemplar

templates. We stop at three points because that is all that is needed to specify the

a�ne transform used by the geometrical alignment stage in the recognizer.

3.4. TEMPLATE MATCHING 53

Figure 3-4: Iris and nose lobe features located by the feature �nder in some example

test images.

To evaluate these feature �nder locations, the system was run on all 1550 images

in the database, the 15 modeling and 10 testing images of each of the 62 people. For a

particular test run, let dmax be the maximumdistance between a detected feature and

its manually chosen location. Four di�erent feature �nder outcomes were recorded:

good (dmax < tgood), marginal (tgood � dmax < tmarginal), bad (dmax � tmarginal),

and null (no features found; all hypotheses rejected). We chose tgood to be about

15% of the interocular distance d and tmarginal to be 20% of d. In our exhaustive

test of the database, the system achieved a good outcome in 99.3% of the images, a

marginal outcome in 0.3% of the images, and a bad outcome in 0.4%. No null cases

were reported. For the 99.6% of the good and marginal cases, the average distance

between the manually and automatically determined feature locations is 1.3 pixels,

or about 2% of the interocular distance. The feature locations in either the good or

marginal outcomes are su�cient for the geometrical alignment stage of the recognizer,

so the recognizer can be run on the vast majority of the test images.

54 CHAPTER 3. FEATURE DETECTION AND POSE ESTIMATION

In most of the error cases, the far eye in a rotated face is misplaced, perhaps being

located in a nearby dark region such as an eyebrow or a sliver of hair. Even in these

cases, however, the nearer eye and the nose are correctly located. In all 1550 database

images except one, the feature �nder returned at least two good features.

The pose estimated by the system is simply given by the out-of-plane rotation of

the best matching level 0 template. In the present system this estimate is not always

correct, primarily because the image warping based on optical
ow makes matching

a little too
exible. Sometimes the warping actually changes the pose of the input to

match templates from a di�erent pose. Since it is di�cult for the warping operation

to transform between leftward-looking poses and rightward-looking ones, the pose

estimate can reliably distinguish between these two cases. Thus, the pose estimate

passed on to the recognizer is currently \looking left" or \looking right". Even though

this is a very coarse estimate, since pose estimation is only used to index the example

views, we can compensate by simply letting more views get through the indexing

stage. Also, it should be possible to place a more re�ned pose estimation stage after

feature extraction, an estimation stage that would use �xed templates and no warping

operations.

Because of the large number of templates, the computation takes around 10-15

minutes on a Sun Sparc 2. Using fewer exemplars decreases the running time but

also reduces system
exibility and recognition performance.

3.5 Summary

In this chapter, we presented a pose- and person-independent system for automatically

locating the two eyes and a nose feature. The system is template-based, employing

templates of the eyes and nose region from di�erent \exemplar" people and poses.

The problem of feature �nding is cast as �nding a good match between the input

and one of the example templates. A hierarchical coarse-to-�ne implementation is

described, and the system correctly locates all three features in 99.6% of our 1550

database images.

The next step in our view-based face recognizer is to use the eyes and nose features

for geometrical registration in a template-based recognizer, which is the topic of the

next chapter.

Chapter 4

Face recognition using multiple

views

As mentioned in the introduction, the pictorial representation for face recognition has

been quite successful on frontal views of the face, with the template-based approach

being a good example (Baron[11], Brunelli and Poggio[28], Gilbert and Yang [59]).

In this chapter, our goal is to extend template-based systems to handle varying pose,

notably facial rotations in depth. Our approach is view-based, representing faces with

templates from many example images that cover the viewing sphere, the 15 views per

person shown in Fig. 1-3. In this chapter we describe the view-based recognizer and

experimental results when real views are used for the 15 example views per person.

The generation and use of virtual views for face recognition will be discussed in

Chapter 7.

The general outline of our view-based approach to the problem of pose-invariant

face recognition is shown in Fig. 4-1. First, in an o�-line step, 15 example images are

taken of everyone in the database, and templates are extracted and stored to disk.

As shown with the thick grey arrows, the on-line procedure uses these templates in

the geometrical registration and correlation steps.

To recognize the person in an input image, the system follows the on-line procedure

in Fig. 4-1. First, the person- and pose-independent feature �nder from Chapter 3

locates the iris and nose lobe features. Based on a coarse pose estimate from the

feature �nder, the face recognizer next culls the example views, selecting 9 of the 15

views. Then the recognizer loops through the example views of each person, matching

each to the input by geometrically registering the two and then correlating example

templates against the registered input image. Finally, the recognizer reports the

person who has the best set of matching example templates.

We now describe the details of the o�-line and on-line procedures, with the ex-

ception of the feature �nder, which was described in Chapter 3.

55

56 CHAPTER 4. FACE RECOGNITION USING MULTIPLE VIEWS

register
input and
example

select
example
views

feature
detection

correlation

report
best
match

 more
example
 views?

input
image

yes

no

extract
templates

example
views

on-line procedure

off-line procedure

Figure 4-1: The general outline for the o�-line and on-line procedures for our view-

based approach to pose-invariant face recognition.

4.1 O�-line template extraction

In the o�-line preparation of templates, the �rst step is to take the 15 example images

of each person. As discussed in more detail in Appendix A, a uniform set of poses

are taken for each person by �xing piece of foam core around the camera, where the

desired poses of the 15 views are indicated by dots on the foam core. Each person is

asked to rotate their face to point their nose at each one of the dots. After taking the

example views, a set of facial features are manually located on the face to center the

bounding boxes for the templates. These feature locations, which include the irises,

nose lobes, and corners of the mouth, are shown in Fig. 4-2 for an m3 view and are

denoted pm
i
; 0 � i � 5. The features are located manually since the desired feature

set includes more features than are returned by our automatic feature �nder.

The next step in preparing the templates is to resample the example images to

remove the e�ects of image-plane rotation and scale. This is done by applying a two

point similarity transform to place the irises at a pair of �xed locations (p0;p1). That

is, we solve for a similarity transform T that maps from the destination image img
sim

4.1. OFF-LINE TEMPLATE EXTRACTION 57

p1p0
p2

p3

p4
p5

m m

m

m

m

m

Figure 4-2: To place the template bounding boxes, the irises, nose lobes and corners

of the mouth are manually labeled.

to the original example image img

img
sim

(p) = img(T (p)):

The direction of this mapping is chosen to facilitate remapping the example image

img under the similarity transform: a pixel p in img
sim

fetches a grey level value

from img(T (p)). The similarity transform has the form

T (p) = s

cos � sin �

� sin � cos �

!
p+

tx

ty

!
;

where the scale s, image-plane rotation �, and 2D translation (tx; ty) are found by

solving

T (p0) = pm0 ; T (p1) = pm1 :

As long as the scale factor s is non-zero, we can invert T to get the transformation

from img to img
sim

. Then we can apply T�1 to the remaining nose and mouth

features, thus de�ning them in the resampled image img
sim

pi = T�1(pm
i
); 2 � i � 5:

The pi feature locations are measured relative to a coordinate frame de�ned by a

\whole face template" which will be discussed shortly.

After geometrically normalizing the example images for scale and image-plane

rotation, bounding boxes are de�ned for the eyes, nose, and mouth templates. The

placement and sizes of the bounding boxes are determined by the points pi and a

few geometrical measurements on the face, as shown in Fig. 4-3. The measurements

include the interocular distance d, the vertical distance n between the midpoint of

58 CHAPTER 4. FACE RECOGNITION USING MULTIPLE VIEWS

(x , y)0 0 (x , y)1 1

(x , y)2 2 (x , y)3 3

(x , y)4 4 (x , y)5 5

d

n

m

feature bounding box

upper left lower right

left eye (x0 � :4d; (x0 + :4d;

y0 � :3d) y0 + :3d)

right eye (x1 � :4d;) (x1 + :4d;

y1 � :3d) y1 + :3d)

nose (x2 � :1d; (x3 + :1d;

(y2 + y3)=2� :7n) (y2 + y3)=2 + :3n)

mouth (x4 � :1m; (x5 + :1m;

min(y4; y5) � :3m) max(y4; y5) + :3m)

Figure 4-3: Given the manually located points pi = (xi; yi); 0 � i � 5, the distances

d, n, and m are calculated, and then the bounding boxes for the eyes, nose, and

mouth templates are computed. The bounding box formulas are for view m3.

the irises and the midpoint of the nose lobes, and the horizontal distance m between

the corners of the mouth. The equations for the upper left and lower right corners

of the bounding boxes for an m3 view are shown in the table in Fig. 4-3. The other

views use slightly di�erent sets of constant factors for d, n, and m.

Before using the bounding boxes to extract the templates from the example im-

age img
sim

, we �lter img
sim

with a preprocessing �lter. This is to support later

experiments that test the face recognizer with di�erent types of grey level prepro-

cessing. The preprocessing �lters include the original grey levels I, the gradient

magnitude krIk, the x and y components of the gradient @xI and @yI, and the

Laplacian @xxI + @yyI. After preprocessing the image with a �lter, the eye, nose, and

mouth templates are extracted using the computed bounding boxes. Fig. 4-4 shows

some example templates under the various types of preprocessing.

Besides image preprocessing, the overall scale of the templates, as measured by

the interocular distance d, is another template design parameter we examined. Scale

was varied by changing the distance between the \destination" eye locations p0 and

p1 in the transformation T . Three di�erent interocular distances d were evaluated:

15, 30, and 60 pixels, with the latter being close to the original image resolution

(Fig. 4-5). To avoid problems with aliasing for the 15 and 30 pixel cases, the example

image was smoothed before downsampling. The experiments with preprocessing and

scale will be described in section 4.3, the experimental results section.

4.1. OFF-LINE TEMPLATE EXTRACTION 59

I ∂ Ix ∂ Iy ∂ I + ∂ Ixx yy❘❘ ∇ I ❘❘

Figure 4-4: Feature templates under di�erent types of preprocessing.

d

d = 60d = 30d = 15

Figure 4-5: Feature templates under di�erent scales, as determined by d, the interoc-

ular distance.

At this point, templates for each example image have been created for a variety of

image preprocessings and scales. As shown in Fig. 4-6(a), let us denote the individual

feature templates as templ
j
; 0 � j � 3. These templates form the basis for the corre-

lation step in the on-line recognition procedure in Fig. 4-1. Additional information,

however, is stored with the templates for the on-line geometrical registration step and

is shown in Fig. 4-6(b). First, to bring the input view into rough correspondence with

the example view, the feature points pi are stored. To drive the second part of the

geometrical registration, a �ne, pixelwise correspondence step, a grey level whole face

template face-templ is stored. The feature locations pi are de�ned relative to this

whole face template. The use of the pi and face-templ will be described in the next

section.

60 CHAPTER 4. FACE RECOGNITION USING MULTIPLE VIEWS

p0
p1

p2 p3

p4 p5

face-templ & p i
templ0 templ1

templ2

templ3

(a) (b)

Figure 4-6: The information stored for an example view: (a) templates templ
j
of

the eyes, nose, and mouth, and (b) information used to assist �nding correspondence

prior to correlation, a whole face template face-templ and a set of feature points pi.

4.2 On-line recognition algorithm

In this section, we describe the details of our view-based approach to pose-invariant

face recognition. Processing in our face recognizer follows the
ow diagram for the

\on-line" procedure in Fig. 4-1, and pseudocode sketching the steps of our recognizer

is given in Fig. 4-7.

Overall, our view-based face recognizer takes as input a view of an unidenti�ed

person, compares it against all the people in the database, and returns the best

match. The notation for recognizer input, output, and the database is as follows,

where person is a person from the database and view is one of the 15 example views.

input a view img
input

of an unknown person to identify.

database Faces from the database, as described in the previous section, are repre-

sented by a set of templates templ
j
of the eyes, nose, and mouth regions. In

addition, for geometrically registering the input with example views, the feature

points pi and whole face templates face-templ are stored for each view of each

person. These templates and feature points are organized in 2D arrays indexed

by person and view:

1. Templates. templ
j
[person][view]; 0 � j � 3:

2. Feature locations. pi[person][view]; 0 � i � 5:

3. Whole face template. face-templ[person][view]

output the closest matching person in the database.

4.2. ON-LINE RECOGNITION ALGORITHM 61

Template-based recognizer

(1) p
f

0 ;p
f

1;p
f

2j3
 feature �nder (img

input
)

(2) selected views left or right group of views, from feature �nder

(3) for person 1 to NUM PEOPLE /* for all people in database */

(4) forall view 2 selected views /* for all views to search */

(5) geometrical registration

a�ne transform: img
aff

(p) img
input

(T (p))

optical
ow: (�x;�y) optical-
ow(face-templ[person][view]; img
aff

)

imgwarp(x; y) imgaff(x+�x(x; y); y+�y(x; y))

(6) correlation

for j 0 to 3 /* loop over eyes, nose, mouth */

corj [person][view] norm-correlation (img
warp

; templ
j
[person][view])

(7) score[person]
3X

j=0

(max
view2selected views

(corj [person][view]))

(8) return arg max
person

score[person]

Figure 4-7: Pseudocode for our template-based recognizer.

To serve as a running example of the algorithm, consider the pair of input and example

images shown in Fig. 4-8. Let the example image be view viewex of person personex.

Step (1) locates a set of facial features that will be used later in step (5), the

geometrical registration step. The feature �nder, which is described in Chapter 3,

locates the left iris pf0 , right iris p
f

1 , and one of the two nose lobes pf2j3. The notation

2j3 means that either the left or right nose lobe feature is returned, which depends

on the left/right rotation of the input. Fig. 4-9(a) shows the features detected for the

input image in Fig. 4-8.

The left vs. right rotation information provided by the feature �nder is used in

step (2) to �lter the example views. The left vs. right distinction, while quite coarse,

provides an estimate of the out-of-plane rotation of the input. This can be used as

a �lter on the example views: only those example views that are similar in view

direction to the input will be selected. The views selected by the recognizer are either

the left three columns or right three columns of Fig. 1-3

selected-views (left) = fm10;m9;m8;m5;m4;m3;m15;m14;m13g

selected-views (right) = fm8;m7;m6;m3;m2;m1;m13;m12;m11g:

Ideally, one would want a more re�ned estimate of out-of-plane rotation, which would

allow the recognizer to further winnow down the number of example views it needs

62 CHAPTER 4. FACE RECOGNITION USING MULTIPLE VIEWS

Figure 4-8: We demonstrate the recognition algorithm matching the example input

image (left) with the example view (right). The example view is view viewex of person

personex.

to test for each person.

Next, in steps (3) and (4) the recognizer loops over the selected example views of

all people, matching each in turn against the input. To record the template correlation

scores for the selected example views, a multidimensional array corj[�][�] is established,

which parallels templ
j
[�][�] in being indexed by feature index j, person, and view.

The main part of the recognizer, steps (5) and (6), compares the input image

against a particular example view. This comparison consists of geometrical registra-

tion (step (5)) followed by correlation (step (6)). The geometrical alignment step

brings the input and example images into close spatial correspondence in preparation

for the correlation step. To geometrically align the input image against the example

image, �rst an a�ne transform is applied to the input to align three feature points,

the two eyes and a nose lobe feature

img
aff

(p) = img
input

(T (p)):

The a�ne transform has the form

T (p) =

a00 a01

a10 a11

!
p+

tx

ty

!
;

where the a�ne parameters a00, a01, a10, a11, tx, and ty are found by solving

T (p0) = p
f

0 ; T (p1) = p
f

1 ; T (p2j3) = p
f

2j3:

This three point a�ne transform essentially models the face as a planar object passing

through the three feature points. This transformation can correctly compensate for

the 2D aspects of pose: scale, image-plane rotation, and 2D translation. For rotations

4.2. ON-LINE RECOGNITION ALGORITHM 63

img
input

(a)

img
aff

(b)

face-templ[personex][viewex]

(c)

Figure 4-9: The features detected in the input image (a) are used to a�ne transform

the input (b) so that the features brought into correspondence with the same features

in the example view (c).

in depth, the accuracy of the compensation for a given point on the face deteriorates

the further the point is from the plane de�ned by the feature points. For the interior

portion of the face, this typically a�ects the tip of the nose more than the other

features. Fig. 4-9(b) shows the result of a�ne transforming the input image (a) to

align its features with those of the example image in (c).

The second part of the geometrical alignment step attempts to compensate for any

small remaining geometrical di�erences between the a�ne transformed input img
aff

(Fig. 4-9(b)) and the whole face template face-templ[personex][viewex] (Fig. 4-9(c)).

These remaining di�erences may be due to factors such as out-of-plane rotation,

expression, gaze direction, or errors in the feature detection module. A dense set of

pixelwise correspondences between the a�ne transformed input and the whole face

template is computed using a hierarchical, gradient-based optical
ow algorithm [18]

(�x;�y) = optical-
ow(face-templ[personex][viewex]; img
aff

):

The vector �eld (�x;�y) speci�es for each pixel (x; y) in the whole face template

a relative o�set (�x(x; y);�y(x; y)) to the corresponding pixel in the a�ne trans-

formed input. Thus, by applying a 2D warp operation driven by the optical
ow,

the a�ne transformed input can be brought into pixel-level correspondence with the

whole face template

img
warp

(x; y) = img
aff

(x+�x(x; y); y+�y(x; y)):

Basically, pixels in the a�ne transformed input are \pushed" along the
ow vectors to

their corresponding pixels in the whole face template. Fig. 4-10 shows the pixelwise

correspondence process for the input and example images of Fig. 4-8.

64 CHAPTER 4. FACE RECOGNITION USING MULTIPLE VIEWS

(∆x, ∆y)
imgaffface-templ[⋅][⋅]

2D warp

imgwarp

(a)

(b)

Figure 4-10: The pixelwise correspondence part of the geometrical registration step:

(a) pixelwise correspondences are computed between face-templ[personex][viewex] and

img
aff

using an optical
ow algorithm, and (b) the correspondences are used to drive

a 2D warp of img
aff

to produce img
warp

. Images face-templ[personex][viewex] and

img
warp

are now in pixelwise correspondence.

When the input and example are the same person, optical
ow generally succeeds

in �nding correspondence and can compensate for small rotation, scale, and expres-

sion di�erences between the a�ne transformed input and example image. When the

input and example are from di�erent people, optical
ow can fail to �nd correct cor-

respondence, in which case the 2D warp distorts the image and the eventual template

match will be poor. This failure case, however, does not matter since we want to

reject the match anyway.

Overall, this two-stage geometrical registration technique of aligning a set of points

followed by optical
ow is related to the topic of a�ne shape (see Koenderink and

van Doorn [79] and Shashua [119] [120]).

Now that the input and example images have been geometrically registered, in step

(6) the eye, nose, and mouth templates from the example image are correlated against

the input img
warp

. First, to match the preprocessing used for the example templates,

the input img
warp

is �ltered using the same preprocessing �lter. The di�erent prepro-

cessing �lters were described in the previous section on template extraction. Next,

4.3. EXPERIMENTAL RESULTS 65

each example template is correlated over a small region (e.g. 5x5) centered around its

expected location in img
warp

. Normalized correlation is the matching metric

r =
< TI > � < T >< I >

�(T)�(I)
;

where T is the template, I is the subportion of image being matched against, <>

is the mean operator, and �() measures standard deviation. As mentioned in the

introduction, normalized correlation provides an invariance to grey level shifts of

the template T of the form aT + b, where a is a constant scaling factor and b is

an additive constant. This kind of invariance may provide immunity to di�erences

between template and image in the overall ambient lighting level or camera contrast.

When scoring a person in step (7), the system takes the sum of correlations from

the best matching eye, nose, and mouth templates. Note that we maximize over the

views separately for each template, so the best matching left eye could be from view 1

and the best matching nose from view 2, and so on. We found that switching the order

of the sum and max operations { �rst summing template scores and then maximizing

over views { gives slightly worse performance, probably because the original sum/max

ordering is more
exible.

After comparing the input against all people in the database, the recognizer in step

(8) returns the person with the highest correlation score { we have not yet developed

a criterion on how good a match has to be to be believable. A �rst step in studying

this problem could be to compare the correlation score statistics for correct matches

against those for incorrect matches. Considering a task like face veri�cation, having

the ability to reject inputs is important and is something we plan under future work.

4.3 Experimental results

Our view-based face recognizer was evaluated on a test set of 620 images. Described

in the introduction and Appendix A, the test set contains 10 views each of 62 people.

When taking the test set, subjects in the database were asked to present their face at

a series of random poses to the camera, where the pose is constrained to lie within the

overall range of example view poses. In addition, the subjects are encouraged to rotate

their face in the image plane for half the images, so all three rotation parameters are

varied in the test set. Example sets of test images are shown in Figs. 1-6 and A-2.

On this test set our face recognizer basically achieves a recognition rate of 98%.

To explore the e�ects of changing the template scale and preprocessing �lter on

this recognition rate, we have performed a series of recognition experiments, where

each experiment runs through the entire test set of 620 images. The recognition

66 CHAPTER 4. FACE RECOGNITION USING MULTIPLE VIEWS

performance { 620 test images

preprocessing correct 2nd place 3rd place >3rd place bad features

dx+dy 98.71% (612) 0.32% (2) 0.48% (3) 0.16% (1) 0.32% (2)

mag 98.23% (609) 0.81% (5) 0.32% (2) 0.32% (2) 0.32% (2)

lap 98.07% (608) 0.81% (5) 0.32% (2) 0.48% (3) 0.32% (2)

grey 94.52% (586) 1.94% (12) 0.48% (3) 2.74% (17) 0.32% (2)

Table 4.1: Face recognition performance versus preprocessing. Best performance is

from using the gradient magnitude (mag), Laplacian (lap), or the sum of separate

correlations on the x and y gradient components (dx+dy). An intermediate scale was

used, with an interocular distance of 30.

rate in these experiments counts errors in both the feature �nder and template-based

recognition. That is, if the feature �nder fails, then the template-based recognizer is

not executed and an error is recorded. Our feature �nder failed to �nd the eyes and

nose locations in two test images, so the experiments with preprocessing and template

scale begin with a handicap of 2 images. These error cases are listed in the rightmost

column of tables 4.1 and 4.2.

Table 4.1 summarizes our recognition results for the preprocessing experiments.

The types of preprocessing we tested include the gradient magnitude (mag), Laplacian

(lap), sum of separate correlations on x and y components of the gradient (dx+dy),

and the original grey levels (grey). For these preprocessing experiments we used an

intermediate template scale, an interocular distance of 30. In table 4.1, we list the

number of correct recognitions and the number of times the correct person came in

second, third, or past third place. Best performance was had from dx+dy, mag,

and lap, with dx+dy yielding the best recognition rate at 98.7%. Preprocessing

with the gradient magnitude performs nearly as well, a result in agreement with the

preprocessing experiments of Brunelli and Poggio[28]. Given that using the original

grey levels produces the lower rate of 94.5%, our results indicate that preprocessing

the image with a di�erential operator gives the system a performance advantage. We

think the performance di�erences between dx+dy, mag, and lap are too small to say

that one preprocessing type stands out over the others.

Table 4.2 summarizes our recognition results for the template scale experiments,

where scale is measured by the interocular distance of a frontal view. The preprocess-

ing was �xed at dx+dy. The intermediate and �ne scales perform the best, indicating

that at least for our input representation, the coarsest scale may be losing detail

needed to distinguish between people. Since the intermediate scale has a computa-

4.3. EXPERIMENTAL RESULTS 67

interocular performance { 620 test images

distance correct 2nd place 3rd place >3rd place bad features

15 96.13% (596) 2.26% (14) 0.32% (2) 0.97% (6) 0.32% (2)

30 98.71% (612) 0.32% (2) 0.48% (3) 0.16% (1) 0.32% (2)

60 98.39% (610) 0.81% (5) 0.16% (1) 0.32% (2) 0.32% (2)

Table 4.2: Face recognition performance versus scale, as measured by interocular

distance (in pixels). The intermediate scale performs the best, a result in agreement

with Brunelli and Poggio[28]. For preprocessing, separate correlations on the x and

y components of the gradient were computed and then summed (dx+dy).

tional advantage over the �ner scale, we would recommend operating a face recognizer

at the intermediate scale.

One additional experimental question to ask is how necessary optical
ow is to the

geometrical registration step. To evaluate the impact of optical
ow in the recognizer,

we removed optical
ow and tested the recognizer under the di�erent types of prepro-

cessing. Fig. 4-11 shows the result, where the light bars indicate the original result

using optical
ow, and the dark colored bars without optical
ow. Template scale for

this experiment was �xed at an interocular distance of 30 pixels. As evident from the

bar graph, excluding optical
ow results in a drop in the recognition rate of roughly

3% for the original grey levels to 10% for the Laplacian. This di�erence between the

Laplacian and the grey levels may be due to the fact that the Laplacian uses higher

frequency information, which may make it more susceptible to slight misregistrations.

Overall, these experiments show that the optical
ow step does indeed improve our

view-based recognizer.

Getting back to the results from tables 4.1 and 4.2, consider the errors made for

the best combination of preprocessing and scale: dx+dy at an intermediate scale. Of

the 8 errors, 2 were due to the feature �nder and 6 were recognition errors. In the

one recognition error where the correct person was not even among the top three,

the correspondences from optical
ow were poor. For the other errors, the correct

person came in either second or third place. For these false positive matches, using

optical
ow to warp the input to the model may be contributing to the problem. If

two people are similar enough, the optical
ow can e�ectively \morph" one person

into the other, making the matcher a bit too
exible at times.

The problem with optical
ow sometimes making the matcher too
exible suggests

some extensions to the recognizer. Since we only want to compensate for rotational,

scale, or expression changes and not allow \identity-changing" transforms, perhaps

68 CHAPTER 4. FACE RECOGNITION USING MULTIPLE VIEWS

||84.0

|86.0

|88.0

|90.0

|92.0

|94.0

|96.0

|98.0

|100.0

 Effect of optical flow step on recognizer

 preprocessing

 r
ec

og
. r

at
e

grey mag dx+dy lap

94.5%

98.2% 98.7% 98.1%

91.1%

93.2% 93.7%

87.6%

Figure 4-11: How much does the recognition rate drop when the optical
ow step

is removed? In this �gure, we compare the recognition rates with optical
ow (light

bars) to the recognition rates without optical
ow (dark bars) for the di�erent types of

preprocessing. Thus, optical
ow does have an noticeable impact on the registration

step.

the optical
ow can be interpreted and the match discarded if the optical
ow is not

from the allowed class of transformations. Another approach would be to penalize

a match using some smoothness measure of optical
ow. The new matching metric

would have a regularized
avor, being the sum of correlation and smoothness terms

kI(x+�x(x; y); y +�y(x; y))� Tk2 + ��(�x;�y);

where I(x+�x(x; y); y+�y(x; y)) is the input warped by the
ow (�x;�y), T is

the template, � is a smoothness functional including derivatives, and � is a parameter

controlling the trade o� between correlation and smoothness. This functional has an

interpretation as the combination of a noise model on the intensity image and priors

on the
ow.

Another way to constrain the
ow-based matching procedure would be to in-

troduce a model for the types of allowable deformations and replace the optical
ow

routine with a \model-based matching" routine. One possible model for deformations

is a linear combination of example deformations

(�x;�y) =
nX
i=1

�i(�xi;�yi);

4.4. SUMMARY 69

where the (�xi;�yi) are example deformations such as small expression, scale, and

rotation changes. This is related to the shape models of Cootes, et al. [44], Blake

and Isard [21], Baumberg and Hogg [12], and Jones and Poggio [72]. The example

deformations may be captured, for instance, by collecting images of a prototype face

undergoing those types of transformations. Model-based matching constrains the

matching task because aligning and image I with a template T now involves solving

for �i that satisfy

I(x+
nX
i=1

�i�xi(x; y); y +
nX
i=1

�i�yi(x; y)) = T:

This equation only has n unknown parameters, probably on the order of 10 or 20.

This is opposed to the optical
ow calculation, which has twice the number of pixels as

unknowns. Ideally, with this kind of model for deformations, nonsensical or identity-

transforming deformations can be avoided, but this remains to be demonstrated for

the recognition task.

Besides adding constraints on the
ow-based correspondences, another technique

for increasing the overall discrimination power of the face representation would be to

add information about face geometry. A geometrical feature vector of distances and

angles that is similar to current feature geometry approaches could be tried, but the

representation would have to be extended to deal with varying pose.

In terms of execution time, our current system takes about 1 second to do each

input/model comparison on a Sun Sparc 1. The computation time is dominated by

resampling the image during the a�ne transform, optical
ow, and correlation. On

our unoptimized CM-5 implementation, it takes about 10 seconds for the template-

based recognizer to run since we can distribute the database so that each processor

compares the input against one person. Specialized hardware, for example correlation

chips[59], can be used to further speed up the computation.

4.4 Summary

In this chapter we presented a view-based approach for recognizing faces under varying

pose. Motivated by the success of recent template-based approaches for frontal views,

our approach models faces with templates from 15 views that sample di�erent poses

from the viewing sphere. The recognizer consists of two main stages, a geometrical

alignment stage where the input is registered with the model views and a correlation

stage for matching. Our recognizer has achieved a recognition rate of 98% on a

database 62 people. The database consists of 930 model views and 620 testing views

covering a variety of poses, including rotations in depth and rotations in the image

plane.

70 CHAPTER 4. FACE RECOGNITION USING MULTIPLE VIEWS

In the �rst part of the thesis, we have looked at the problem of pose-invariant face

recognition when multiple views of each database person are available. The view-

based system described in this chapter has shown that template-based face recognition

systems can be extended in a straightforward way to handle the problem of varying

pose. But what if only one view is available of each person in the database? Is pose-

invariant face recognition still possible? This is the topic of the second half of the

thesis.

Part II

Face Recognition Using Virtual

Views

71

Chapter 5

A vectorized image representation

In the �rst half of the thesis, our view-based face recognizer used templates to repre-

sent faces, a representation that proved to be su�cient for the matching task faced by

the recognizer. However, the second half of the thesis, virtual views, places a heav-

ier burden on our face representation. Our example-based techniques for generating

virtual views use a vectorized face representation, which is an ordered vector of im-

age measurements taken at a set of facial feature points. These features can run the

gamut from sparse features with semanticmeaning, such as the corners of the eyes and

mouth, to pixel level features that are de�ned by the local grey level structure of the

image. By an ordered vector, we mean that the facial features have been enumerated

f1; f2; : : : ; fn, and that the vector representation �rst contains measurements from f1,

then f2, etc. The measurements at a given feature will include its (x; y) location {

a measure of face \shape" { and local image color or intensity { a measure of face

\texture". The key part of this vectorized representation is that the facial features

f1; f2; : : : ; fn are e�ectively put into correspondence across the face images being \vec-

torized". For example, if f1 is the outer corner of the left eye, then the �rst three

elements of our vector representation will refer to the (x1; y1; intensity-patch(x1; y1))

measurements of that feature point for any face being vectorized.

Establishing feature correspondence among a set of face images is important for

our techniques for synthesizing virtual views of a novel face. Once corresponding

features have been found for a set of face images, it makes sense to speak of things

like taking linear combinations of faces or computing a geometrical distortion between

two face shapes. For example, for the idea of linear classes, the space of face shapes

and textures is modeled using linear combinations of the prototype faces. In the

technique of parallel deformation, the vectorized shape component can be used to

create a geometric mapping between the prototype face and the novel face. The use

of the vectorized representation for virtual views will be discussed in Chapter 7.

Computing the vectorized representation is essentially a feature detection or cor-

respondence �nding task. The di�culty of the correspondence task depends of the

73

74 CHAPTER 5. A VECTORIZED IMAGE REPRESENTATION

set of face images being vectorized, and here we distinguish between the two cases

of interperson and intraperson correspondence. In the former case of interperson

correspondence, the set of face images being vectorized contains images of di�erent

people. For our purposes, the face images will be at the same pose-expression-lighting

parameters, so the main di�culty is handling the variability in facial appearance seen

across di�erent people. That is, the set of feature correspondences need to be com-

puted even when faces appear quite di�erent due to di�erences in race, age, gender,

facial hair, etc. This is distinguished from the simpler problem of intraperson corre-

spondence, which involves �nding correspondence between images of the same person.

As opposed to the interperson correspondence case, the images here will di�er by a

slight rotation or expression. For this problem, a relatively simple correspondence

algorithm such as optical
ow is usually su�cient for locating corresponding features.

In this chapter, we introduce notation for the vectorized image representation

and overview techniques for computing the correspondences required to drive the

representation. Probably on the order of tens of feature correspondences need to be

located to su�ciently characterize face shape, so a technique more advanced than our

feature �nder of Chapter 3 is required. This chapter discusses three correspondence

techniques, a manual approach by Beier and Neely [13], optical
ow, and a novel

approach that we call an \image vectorizer". The last approach is described in detail

in Chapter 6. The vectorized notation and correspondence techniques are discussed

here in preparation for the virtual views synthesis techniques of Chapter 7, which

draw heavily on this chapter and the next.

Before moving on, it is important to note that the necessity for feature corre-

spondence in synthesizing virtual views is not an artifact of using the example-based

approach. In a general setting, one can consider our use of vectorization within virtual

views as \registration" of the novel view with our prior knowledge of faces. In the

competing approach of using a generic 3D models for prior knowledge, one faces the

similar task of �nding correspondence between points in the image data and the 3D

model. As mentioned in Chapter 2 on previous work, this registration task is usually

accomplished either by acquiring the 3D range data and image data simultaneously

using specialized equipment such as the Cyberware scanner, or corresponding points

on the image and 3D model are automatically or manually determined.

5.1 Vectorized shape and texture

As previously mentioned, there are two components in the vectorized image repre-

sentation, face shape and texture. The �rst component, face shape, is a measure of

the locations of facial features. The second component, face texture, is a measure of

5.1. VECTORIZED SHAPE AND TEXTURE 75

color or intensity values at the feature points de�ning face shape. These two com-

ponents will be represented and processed as separate vectors. In this section, we

introduce notation and discuss the computation of the vectorized shape and texture

components.

5.1.1 Shape

Given the locations of features f1; f2; : : : ; fn, shape is represented by a vector y of

length 2n consisting of the concatenation of the x and y coordinate values

y =

0BBBBBBBB@

x1

y1
...

xn

yn

1CCCCCCCCA
:

In our notation, if an image being vectorized has an identifying subscript (e.g. ia),

then the vector y will carry the same subscript, ya. The coordinate system used for

measuring x and y will be one normalized by using the eye locations to �x interocular

distance and remove head tilt. By factoring out the 2D aspects of pose, the remaining

variability in shape vectors will be caused by expressions, rotations out of the image

plane, and the natural variation in the con�guration of features seen across people.

This vectorized representation for 2D shape has been widely used, including

network-based object recognition (Poggio and Edelman [107]), the linear combina-

tions approach to recognition (Ullman and Basri [130], Poggio [105]), active shape

models (Cootes and Taylor [42], Cootes, et al. [44]) and face recognition (Craw and

Cameron [45][46]). In these shape vectors, a sparse set of feature points, on the order

of 10's of features, are either manually placed on the object or located using a feature

�nder. For a face, example feature points may include the inner and outer corners of

the eyes, the corners of the mouth, and points along the eyebrows and sides of the

face.

In this thesis we use a dense representation of one feature per pixel, a represen-

tation originally suggested to us by the object recognition work of Shashua [119].

Compared to a sparser representation, the pixelwise representation increases the dif-

�culty of �nding correspondences. However, we have found that a standard optical

ow algorithm [18], preceded by normalization based on the eye locations, can do a

good job at automatically computing dense pixelwise correspondences. After de�n-

ing one image as a \reference" image, the (x; y) locations of feature points of a new

image are computed by �nding optical
ow between the two images. Thus the shape

76 CHAPTER 5. A VECTORIZED IMAGE REPRESENTATION

iaib

y a-b
b

Figure 5-1: In relative shape, yb
a�b denotes feature correspondence between ib and ia

using ib as a reference.

vector of the new image, really a \relative" shape, is described by a
ow or a vector

�eld of correspondences relative to a standard reference shape. Our face vectorizer

from Chapter 6, which uses optical
ow as a subroutine, is also used to automatically

compute the vectorized representation.

Optical
ow matches features in the two frames using the local grey level structure

of the images. As opposed to a feature �nder, where the \semantics" of features is

determined in advance by the particular set of features sought by the feature �nder,

the reference image provides shape \semantics" in the relative representation. For

example, to �nd the corner of the left eye in a relative shape, one follows the vector

�eld starting from the left eye corner pixel in the reference image.

Correspondence with respect to a reference shape, as computed by optical
ow, can

be expressed in our vector notation as the di�erence between two vectorized shapes.

Let us chose a face shape yb to be the reference. Then the shape of an arbitrary face

ya is represented by the geometrical di�erence ya � yb, which we shall abbreviate

ya�b. This is still a vector of length 2n, but now it is a vector �eld of correspondences

between images ia and ib. In addition, we keep track of the reference frame by using

a superscript, so we add the superscript b to the shape yb
a�b. The utility of keeping

track of the reference image will become more apparent when describing operations

on shapes. Pictorially, we visualize the shape yb
a�b in Fig. 5-1 by drawing an arrow

from ib to ia. This relative shape representation has been used by Beymer, Shashua,

and Poggio [19] in an example-based approach to image analysis and synthesis.

5.1.2 Texture

Given a set of features f1; f2; : : : ; fn driving an image vectorization, the texture vector

t is a sampling of image intensity or color patches at the feature points. A key point

in the texture vector is that features are registered across all faces being vectorized;

a given o�set in the texture vector t[i] contains an intensity or color value from the

same point fi on all faces.

Given an image ia to vectorize, previous work in vectorizing textures has used

two methods for representing the texture vector ta. First, a \feature-based" method

5.1. VECTORIZED SHAPE AND TEXTURE 77

forms ta out of small patches of intensities ta;i centered around the features

ta =

0BBBBB@
ta;1

ta;2
...

ta;n

1CCCCCA ;

where the vector ta;i is some function of the local image patch ia(x + xi; y + yi).

The template-based approach to face recognition (e.g. Baron [11], Brunelli and Pog-

gio [28], Bichsel [20]) can be seen as a very coarse vectorization where the function

ta;i is a lexicographical scan of the patch. In the active shape models of Cootes and

Taylor [43], feature points are grouped along boundaries, and the vector ta;i is a 1D

set of grey-levels sampled along a line perpendicular to the boundary. In the face

recognition work of Manjunath, et al. [91], the function ta;i is a set of �lter responses

to Gabor �lters of di�ering scales and orientations centered at feature point fi. The

spatial extent of the local patch depends on the density of the features, with sparser

features using larger patches. A pixelwise shape representation would only require a

patch consisting of one pixel.

The second textural representation creates a geometrically normalized version of

the image ia. That is, the geometrical di�erences among face images are factored out

by warping the images to a common reference shape. This strategy for represent-

ing texture has been used, for example, in the face recognition works of Craw and

Cameron [45], and Shackleton and Welsh [118]. If we let shape ystd be the reference

shape, then the geometrically normalized image ta is given by the 2D warp

ta(x; y) = ia(x+�xstd
a�std(x; y); y +�ystd

a�std(x; y));

where �xstd
a�std and �ystd

a�std are the x and y components of the pixelwise mapping

between ya and the standard shape ystd. These pixelwise correspondences are derived

from the shape components ya and ystd, or basically the relative shape y
std

a�std. If shape

is sparsely de�ned, then texture mapping or sparse data interpolation techniques can

be employed to create the necessary pixelwise level representation. Example sparse

data interpolation techniques include using splines (Litwinowicz and Williams [87],

Wolberg [138]), radial basis functions (Reisfeld, Arad, and Yeshurun [114]), and in-

verse weighted distance metrics (Beier and Neely [13]). If a pixelwise representation

is being used for shape in the �rst place, such as one derived from optical
ow, then

texture mapping or data interpolation techniques can be avoided.

For a pixelwise shape representation, the two approaches converge, with the

feature-based approach essentially becoming geometrical normalization. That is, each

vector ta;i is really just one pixel, so the entire collection of n pixels can be viewed as

78 CHAPTER 5. A VECTORIZED IMAGE REPRESENTATION

an image if the pixels are arranged in 2D using a reference face shape. This points to

the advantage of using a dense, pixelwise representation. Texture processing is simpli-

�ed over the sparse case since we avoid texture mapping and sparse data interpolation

techniques, instead employing a simple 2D warping algorithm. Additionally, though,

using a pixelwise representation makes the vectorized representation very simple con-

ceptually: we can think of three measurements being made per feature (x; y; I(x; y)).

The price we pay for this simplicity is a di�cult correspondence problem. In the next

section we describe three correspondence techniques we explored for computing the

vectorized image representation.

5.2 Computing the vectorized representation

As mentioned previously, when vectorizing a group of images the correspondence

problem breaks down into two subcases of di�ering di�culty, interperson correspon-

dence and intraperson correspondence. The former is more di�cult than the latter

since the former must handle the variation in facial appearance seen across di�erent

people while the latter deals with images of just one person. Since both of these

cases are encountered in virtual views, we have investigated three correspondence

techniques: optical
ow for intraperson correspondence, and for interperson corre-

spondence, a manual method and a novel automatic technique that we call an image

vectorizer. This section brie
y covers these three techniques, and Chapter 6 provides

a more thorough description of our image vectorizer.

The pixelwise correspondence algorithms discussed in this section compute a rel-

ative shape yb
a�b, i.e. the shape ya of image ia with respect to a reference image ib.

This computation will be denoted using the vect operator

yb
a�b = vect(ia; ib):

Of course, given this relative shape yb
a�b, our original \absolute" de�nition of shape

yb
a
can be computed by simply adding the shape yb

b
, which is simply the x and y

coordinate values of each pixel in ib. This vect operator notation will be used later

in Chapter 7 on synthesizing virtual views.

5.2.1 A manual approach

The manual correspondence technique we used for interperson correspondence was

borrowed from Beier and Neely's morphing technique in computer graphics [13]. In

their technique, a dense correspondence map between two images is created by apply-

ing a sparse data interpolation technique to a set of manual feature correspondences.

5.2. COMPUTING THE VECTORIZED REPRESENTATION 79

qb,i

xb

pb,i

u
vi

i

ui

vi

ib ia

pa,i

qa,i

xa

Figure 5-2: The correspondence technique of Beier and Neely interpolates the dis-

placements of corresponding line segment features. Here we want to compute xa given

the point xb. Figure after Beier and Neely [13].

The image features are line segments, and the generated correspondence map inter-

polates the displacements between corresponding line segment features.

Consider the displacement �eld created by a single pair of segment features. As

shown in Fig. 5-2, let the ith pair of segment features be pa;iqa;i from image ia and

pb;iqb;i from image ib. The displacement �eld, indicated by the two grids, resembles

a similarity transform except that there is no scaling perpendicular to the segment,

just scaling along it. To compute the contribution of this displacement �eld to the

correspondence �eld yb
a�b, we need to compute the point xa from its corresponding

point xb. This places the reference frame of the correspondence �eld in image ib,

allowing the correspondences to be used in a geometrically normalizing transform

from image ia to the reference image ib. To compute the location xa, �rst in the

image ib we compute the coordinates (ui; vi) of xb with respect to the segment pb;iqb;i

ui =
(xb � pb;i) � (qb;i � pb;i)

kqb;i � pb;ik2

vi =
(xb � pb;i) � Perpendicular(qb;i � pb;i)

kqb;i � pb;ik
:

80 CHAPTER 5. A VECTORIZED IMAGE REPRESENTATION

Figure 5-3: Manually entered line segments driving correspondence for the sparse

data interpolation method of Beier and Neely [13].

The point xa in image ia is then placed relative to the line segment pa;iqa;i

xa = pa;i + ui(qa;i � pa;i) +
vi Perpendicular(qa;i � pa;i)

k(qa;i � pa;i)k
;

so the computed displacement at xb due to the ith line segment pairing is

�i(xb) = xa � xb:

The displacement �eld �i is computed for a set of n segment correspondences (1 �

i � n); the feature set we use for a frontal view is shown in Fig. 5-3.

The �nal correspondence �eld yb
a�b is a weighted average of the n displacements

�i

yb
a�b(xb) =

P
n

i=1 wi(xb)�i(xb)P
n

i=1 wi(xb)
;

where the weighting function wi(xb) is inversely proportional to the distance from xb

to the segment pb;iqb;i

wi(xb) =

kqb;i � pb;ik

c1

c2 + disti(xb)

!
c3

for c1, c2, c3 constants

disti(xb) =

8>><>>:
jvij; 0 � ui � 1

kxb � pb;ik; ui < 0

kxb � qb;ik; ui > 1:

The weighting function also favors longer segments over shorter ones by incorporating

the length of segment pb;iqb;i. We have used constant values of c1 = 0:5, c2 = 2:0, and

c3 = 1:5 (as suggested by Beier and Neely [13]). Overall, the weighting makes the

�nal correspondence �eld a sum of n local transforms, each one exerting an in
uence

in the regions surrounding pb;iqb;i in ib and pa;iqa;i in ia.

5.2. COMPUTING THE VECTORIZED REPRESENTATION 81

5.2.2 Optical
ow

Optical
ow originates from a sub�eld of computer vision called motion vision. Given

a sequence of image frames containing moving objects and taken from an observer

that is perhaps moving itself, the goal of motion vision is to interpret the motion of

scene objects and the observer. While one class of motion methods, known as \direct"

methods, estimate object motion directly from the images and their spatiotemporal

derivatives, another popular class of motion methods begins with the computation of

a low level, image-based measurement called optical
ow. Optical
ow, a quantity de-

�ned on two successive image frames, is an estimate of the local translations between

corresponding grey-level intensity patches in the two frames. These low-level corre-

spondences are typically represented as a vector mapping between pixels in images

at time t and t+ 1.

The basic mathematical assumption underlying the computation of optical
ow is

that the intensity value of a moving point in the scene does not change between two

frames. Following the development in Horn and Schunk [68], if we consider the image

sequence to be a function I(x; y; t) of spatial locations x and y and time t, then the

brightness constraint can be expressed at a point (x; y; t) as

I(x+ �x; y + �y; t+ �t) = I(x; y; t): (5.1)

Expanding the left hand side using the Taylor expansion

I(x+ �x; y + �y; t+ �t) = I(x; y; t) + �x
@I

@x
+ �y

@I

@y
+ �t

@I

@t
+ higher order terms;

neglecting the higher order terms, and plugging back into equation (5.1) yields

�x
@I

@x
+ �y

@I

@y
+ �t

@I

@t
= 0:

If we divide through by �t and make the substitutions Ix =
@I

@x
; Iy =

@I

@y
; It =

@I

@t
; u =

�x

�t
; v = �x

�t
, then we get

u Ix + v Iy + It = 0: (5.2)

In this equation for point (x; y), the optical
ow (u; v) are the unknowns, and mea-

surements Ix, Iy, and It are the computed spatial and temporal derivatives of the

function I(x; y; t). The fact that this equation is underconstrained { two unknowns

and one equation { leads to a problem known as the \aperture problem". This is

typically addressed by introducing a spatial smoothness constraint to regularize the

solution of optical
ow.

While many algorithms exist for estimating optical
ow, we have used a hierar-

chical, gradient-based algorithm (Lucas and Kanade [90], Bergen and Adelson [16],

82 CHAPTER 5. A VECTORIZED IMAGE REPRESENTATION

Bergen and Hingorani [18], Bergen, et al. [17]). Since factors such as noise makes an

exact solution of equation (5.2) at a point (x; y) impractical, a solution is found by

minimizing the quadratic error

min(u Ix + v Iy + It)
2:

To implement the smoothness constraint, we assume that (u; v) is constant over a

small image region R centered around (x; y) (e.g. 5x5 pixels) and thus integrate the

squared error term over a region R

min
X
R

(u Ix + v Iy + It)
2:

Di�erentiating with respect to u and v and setting each partial derivative to zero

yields the 2x2 system" P
R I

2
x

P
R IxIyP

R IxIy
P

R I
2
y

"
u

v

#
=

"
�
P

R IxIt

�
P

R IyIt

#
:

To solve for this system robustly, one must look at the rank of the matrix" P
R I

2
x

P
R IxIyP

R
IxIy

P
R
I2
y

#
;

which can be estimated by inspecting its eigenvalues. Bergen and Hingorani [18]

describe a robust solution based on the magnitudes of the eigenvalues. In addition,

the con�dence of the optical
ow (u; v) can be estimated by the magnitude of the

smaller eigenvalue.

Since the brightness constraint equation (5.2) is derived from a local Taylor se-

ries expansion of the image function I(x; y; t), this optical
ow algorithm is only

designed to handle small pixel displacements, on the order of a single pixel. In order

to e�ciently handle optical
ow correspondences across multiple pixel displacements,

the above algorithm is applied in a hierarchical coarse-to-�ne approach. First, the

Laplacian pyramids (see Burt and Adelson [33]) of the two images are formed, and

processing begins at the coarsest level. Reducing the image to a coarse resolution

makes large displacements at the original image resolution smaller at the reduced

scale, allowing the
ow algorithm to �nd correct correspondences at the reduced

scale. As processing moves to the next �ner scale, the
ow from the previous level

is used to compensate for the motion between the two images by warping the �rst

image to bring it closer to the second image. The remaining di�erences between the

warped �rst image and the second image should be on the order of a pixel. Thus, the

residual
ow can be computed using the above gradient-based technique and added

to the
ow estimate from the previous level.

5.2. COMPUTING THE VECTORIZED REPRESENTATION 83

Getting back to the original problem of computing vectorized shape, we can apply

the optical
ow algorithm to the problem of �nding intraperson correspondence. One

image of the person is chosen as a \reference" image, and other images are vectorized

with respect to it by computing optical
ow. To assist the correspondence process,

the two images are registered to compensate for any di�erences in 2D translation,

scale, and image-plane rotation. This registration is performed using a similarity

transform to align the eyes of the image being vectorized with those of the reference

image. The eye locations, speci�ed by the center of the irises, can be automatically

or manually located.

A key limitation with this technique, however, is that the optical
ow algorithm

will fail to �nd correct correspondences when the two faces are dissimilar enough

in appearance. For example, �nding interperson correspondence often breaks down

when the two people are from di�erent races. Even with intraperson correspondence,

correspondence will fail if the images are separated by a large enough rotation in

depth. Thus, when covering an out-of-plane rotation of more than several degrees,

we use a sequence of images at intermediate poses to assist the correspondence process;

this is described in more detail in Chapter 7.

5.2.3 Face vectorizer

Our face vectorizer, to be described in detail in Chapter 6, is an automatic technique

for computing both the shape and texture components of our vectorized representa-

tion. While optical
ow is used as a subroutine in the vectorizer, the vectorizer is

capable of handling the di�cult case of interperson correspondence that sometimes

foils optical
ow. What makes the face vectorizer superior to optical
ow alone is the

explicit modeling of the texture component. Texture is modeled using linear combi-

nations of example textures as in the eigenimage approach to face recognition (Turk

and Pentland [129], Pentland, et al. [103]).

Here we brie
y sketch the process of vectorizing the shape and texture of an

image ia. Shape is measured by �nding pixelwise correspondence ystd
a�std relative to

a standard face shape. This is done by �nding the optical
ow between ia and

a \reference" image at standard face shape, an image that is produced from the

texture model. Standard face shape will be de�ned as the average of many example

prototype face shapes. Face texture is modeled using the assumption that the space of

face images is linearly spanned by a prototypical set of example face images. That is,

the texture of ia is modeled by taking a linear combination of a set of n geometrically

84 CHAPTER 5. A VECTORIZED IMAGE REPRESENTATION

normalized example prototype textures tpj ; 1 � j � n

ta =
nX

j=1

�jtpj : (5.3)

The �j coe�cients are computed by projecting a geometrically normalized version of

ia onto the space spanned by the tpj .

The key to our vectorization procedure is to link the computation steps of shape

and texture so that each one depends on the other. Thus, improving the estimate of

one improves the other, and we can iterate back and forth between shape and texture

steps until the vectorized representation converges. For example, the shape ystd
a�std

is used in the texture step to geometrically normalize the input ia before projecting

onto the texture examples tpj

iwarp = ia(x+�xstd
a�std(x; y); y+�ystd

a�std(x; y));

where �xstd
a�std and �y

std

a�std are the x and y components of ystd
a�std. This assists the

texture step by aligning the facial features in iwarp with the features in the geomet-

rically normalized textures. Going in the other direction, the texture computation

assists shape by reconstructing a geometrically normalized grey level version of the

input (equation (5.3)). This synthesized \reference" image can be used to compute

shape correspondences using a simple algorithm like optical
ow. Overall, the vec-

torization procedure iteratively solves for a
ow (�xstd
a�std;�y

std

a�std) and coe�cients

�j that solve

ia(x+�xstd
a�std(x; y); y +�ystd

a�std(x; y)) =
nX

j=1

�jtpj :

Correspondence between two arbitrary images can thus be found by vectorizing

both, as now both images are in correspondence with the average shape. After vector-

izing both images, one
ow is \inverted", and the two
ows are then \concatenated".

Shape operations such as inversion and concatenation are the subject of the next

section.

5.3 Warping and shape manipulation operators

In this section we describe operators on the vectorized representation that will be

useful in describing our methods for synthesizing virtual views in Chapter 7.

5.3. WARPING AND SHAPE MANIPULATION OPERATORS 85

iaib

y a-b
b

forward warp

backward warp

Figure 5-4: A forward warp moves pixels from ib to ia using the shape yb
a�b. A

backward warp is the inverse, moving pixels from ia to ib.

5.3.1 Warping operators

2D warping operations locally distort the arrangement of pixel intensities in an im-

age by following the correspondence vectors in a relative shape vector yb
a�b. Using

nomenclature from the computer graphics community, we de�ne two types of warping

operations, backward and forward warping (Fig. 5-4). The di�erence between the two

lies in the direction that pixel values travel between shapes ya and yb. A backward

warp \retrieves" pixels from an image at shape ya and places them at their corre-

sponding locations in reference shape yb. Inversely, a forward warp \pushes" pixels

in an image at shape yb forward along the correspondence vectors to the shape ya.

Backward warp

In an example backward warp, let ia be an arbitrary image at shape ya that we wish

to warp to the shape yb, producing ib. Since the correspondences yb
a�b are de�ned

relative to yb, pixels in ib can simply use the correspondence �eld to \index" into

image ia

ib(qb) = ia(qb + yb
a�b(qb)); (5.4)

where qb is a 2D pixel location in yb and qa = qb + yb
a�b(qb) is the corresponding

point in ya. Since in general qa will not be at an integral pixel location in ya, bilinear

interpolation is used to sample an intensity value from ia. As shown in Fig. 5-5, we

interpolate ia at the set of four pixels fpa;ig
3
i=0 neighboring qa

ib(qb) =
3X

i=0

wi(�; �)ia(pa;i);

where

(�; �) = qa � pa;0

86 CHAPTER 5. A VECTORIZED IMAGE REPRESENTATION

pa,0 pa,1

pa,2
pa,3

qa

pb,0 pb,1

pb,2 pb,3

qb

pixel gridyb pixel gridya

pa,0 pa,1

pa,2 pa,3

qaqb

pixel gridyb pixel gridya

backward warp forward warp

Figure 5-5: Interpolation for backward and forward warping. In a backward warp,

point qb retrieves a value from qa. In a forward warp, �rst the correspondences yb
a�b

are inverted to produce ya
b�a, as depicted by the arrow from qa to qb. Then point qa

retrieves a value from qb as in a backward warp. See text for more details.

and

w0(�; �) = (1� �)(1 � �) w1(�; �) = �(1 � �)

w2(�; �) = (1� �)� w3(�; �) = ��:
(5.5)

When refering to backward warping in the future chapters, we will either use the

mathematical form in equation (5.4) or the notation ib = bwarp(ia;y
b

a�b).

Forward warp

Given an arbitrary image ib at shape yb, a forward warp sends a pixel value ib(qb)

to the point qa, its corresponding location in shape ya, where qa = qb + yb
a�b(qb).

Since the point qa may not be at an integral location, it is not immediately clear

how to store the grey level value in ia, the warped version of ib. We approach this

problem by �rst inverting the shape yb
a�b to produce y

a

b�a. By reversing the directions

of the correspondence �eld, the forward warping thus becomes a backward warping,

so the previously described backward warping algorithm can be applied. The key

part is inverting the correspondences. Referring to Fig. 5-5, our goal is to construct

the correspondence from a pixel qa to qb given that the correspondences are de�ned

in opposite direction.

Inverting the correspondences yb
a�b is solved using the idea of four corner mapping

(see Wolberg[138]). We repeat the following steps for every square source patch of

four adjacent pixels fpb;ig
3
i=0 in ib. Map the source patch to a quadrilateral fpa;ig

3
i=0

in the shape ya

pa;i = qb;i + yb
a�b(qb;i); 0 � i � 3:

5.3. WARPING AND SHAPE MANIPULATION OPERATORS 87

For each pixel qa inside this quadrilateral, we estimate its position inside the quadri-

lateral treating the sides of the quadrilateral as a warped coordinate system. The

parametric position (�; �) within the quadrilateral is estimated by solving the 2x2

nonlinear system for bilinear interpolation

qa =
3X

i=0

wi(�; �)pa;i

using a Newton-Raphson method (see section 9.6 of [112]), where the wi are as de�ned

in equation (5.5). Note that the (�; �) position lies within the unit square. This

position is then used to map to a location qb in the original source patch

qb = pb;0 + (�; �)

and the correspondence �eld ya
b�a has been determined at a point

ya
b�a(qa) = qb � qa:

Processing now proceeds as with a backward warping.

The notation fwarp will be used in Chapter 7 to denote the forward warping

procedure. Forward warping image ib to ia will be written as ia = fwarp(ib;y
b

a�b).

In general, we can push pixels along any arbitrary
ow x, yielding the more general

form of ib+x = fwarp(ib;y
b

x
). The only restriction is that the subscript of the image

argument must match the superscript of the shape argument, implying that the image

must be in the reference frame of the shape.

5.3.2 Shape manipulation operators

In this section, we introduce shape manipulation operators that generate new shapes

from shape arguments.

First, shapes can be combined using binary operations such as addition and sub-

traction. In adding and subtracting shapes, the reference frames of both shapes must

be the same, and the subscripts of the shape arguments are added/subtracted to yield

the subscripts of the results: yb
u�v = yb

u
� yb

v
.

The reference frame of a shape yb
x
can be changed from ib to ia by applying a

forward warp with the shape yb
a�b. Shown pictorially in Fig. 5-6(a), the operation

consists of separate 2D forward warps on the x and y components of yb
x
interpreted

for the moment as images instead of vectors. Instead of pushing grey level pixels in

the forward warp, we push the x and y components of the shape. The operation in

Fig. 5-6(a) is denoted ya
x
= fwarp-vect(yb

x
;yb

a�b). The inverse operation, shown in

88 CHAPTER 5. A VECTORIZED IMAGE REPRESENTATION

iaib

y a-b
b

y x
b y x

a

iaib

y a-b
b

y x
b y x

a

(a) (b)

Figure 5-6: (a) To change the reference frame of
ow yb
x
from ia to ib, the x and y

components are forward warped along yb
a�b, producing the dotted
ow ya

x
. In (b),

backward warping is used to compute the inverse.

ibia
y b-a

a y c-b
b

ic

y c-a
a

Figure 5-7: In
ow concatenation, the
ows ya
b�a and y

b

c�b are composed to produce

the dotted
ow ya
c�a.

Fig. 5-6(b), is computed using two backward warps instead of forward ones: yb
x
=

bwarp-vect(ya
x
;yb

a�b).

Finally, two
ows �elds ya
b�a and y

b

c�b can be concatenated or composed to produce

pixelwise correspondences between ia and ic, y
a

c�a. Concatenation is shown pictori-

ally in Fig. 5-7 and is denoted ya
c�a = concat(ya

b�a;y
b

c�b). The basic idea behind

implementing this operator is to put both shapes in the same reference frame and

then add. This is done by �rst computing ya
c�b = bwarp-vect(yb

c�b;y
a

b�a) followed

by ya
c�a = ya

b�a + ya
c�b.

5.4 Summary

In this chapter, we �rst introduced a vectorized image representation, a feature-based

representation where correspondence has been established with respect to a reference

image. Two image measurements are made at the feature points. First, feature

geometry, or shape, is represented by the (x; y) feature locations relative to some

standard face shape. Second, grey levels, or texture, is represented by mapping

image grey levels onto the standard face shape.

Next, we discussed three methods for computing this vectorized representation

for face images. The problem is basically one of �nding feature correspondence with

5.4. SUMMARY 89

respect to the standard reference shape. The �rst technique was the sparse data

interpolation method of Beier and Neely [13], which relies on a set of manually placed

features. Second, optical
ow can automatically �nd correspondences when the two

face images are not too far separated in pose, lighting, expression, etc. Finally, our

face vectorizer is a novel automatic approach that outperforms optical
ow by virtue

of incorporating an appearance-based model for face grey levels. The vectorizer is

described in more detail in the next chapter.

Finally, the chapter closed with a discussion of backwards and forwards warping

operators as well as miscellaneous shape operators such as addition and concatenation.

These operators will be useful in Chapter 7 on synthesizing virtual views.

90 CHAPTER 5. A VECTORIZED IMAGE REPRESENTATION

Chapter 6

Vectorizing face images

The previous chapter de�ned a vectorized representation to be a feature-based

representation where correspondence has been established relative to a �xed reference

object or reference image. In this chapter, we introduce an algorithm for comput-

ing the vectorized representation for faces. Computing the vectorized representation

can be thought of as arranging the feature sets into ordered vectors so that the ith

element of each vector refers to the same feature point for all objects. Given the cor-

respondences in the vectorized representation, applications such as feature detection

and pose and expression estimation are possible.

As mentioned in the previous chapter, the two primary components of the vec-

torized representation are shape and texture. Previous approaches in analyzing faces

have stressed either one component or the other, such as feature localization or decom-

posing texture as a linear combination of eigenfaces (see Turk and Pentland [129]).

The key aspect of our vectorization algorithm, or \vectorizer", is that the two pro-

cesses for the analysis of shape and texture are coupled. That is, the shape and

texture processes are coupled by making each process use the output of the other.

The texture analysis uses shape for geometrical normalization, and shape analysis

uses texture to synthesize a reference image for feature correspondence. Empirically,

we have found that this links the two processes in a positive feedback loop. Iterating

between the shape and texture steps causes the vectorized representation to converge

after several iterations.

Our vectorizer is similar to the active shape model of Cootes, et al. [44] [43] in

that both iteratively �t a shape/texture model to the input. But there are interesting

di�erences in the modeling of both shape and texture. In our vectorizer there is

no model for shape; it is measured in a data-driven manner using optical
ow. In

active shape models, shape is modeled using a parametric, example-based method.

First, an ensemble of shapes are processed using principal component analysis, which

produces a set of \eigenshapes". New shapes are then written as linear combinations

of these eigenshapes. Texture modeling in their approach, however, is weaker than in

91

92 CHAPTER 6. VECTORIZING FACE IMAGES

Figure 6-1: To de�ne the shape of the prototypes o�-line, manual line segment features

are used. After Beier and Neely [13].

ours. Texture is only modeled locally along 1D contours at each of the feature points

de�ning shape. Our approach models texture over larger regions { such as eyes, nose,

and mouth templates { which should provide more constraint for textural analysis.

In the future we intend to add a model for shape similar to active shape models, as

discussed ahead in section 6.6.2.

In this chapter, we �rst explore the description of the vectorized representation

in more detail, focusing on the de�nition of standard shape. Then the basic coupling

of the shape and texture computations is motivated, followed by a description of the

vectorization algorithm. A hierarchical coarse-to-�ne implementation is described, an

application to feature detection is presented, and we close with a discussion of future

work.

6.1 Standard shape

Since the vectorized representation is relative to a 2D reference, �rst we de�ne a

standard feature geometry for the reference image. The features on new faces will

then be measured relative to the standard geometry. In this chapter, the standard

geometry for frontal views of faces is de�ned by averaging a set of line segment features

over an ensemble of \prototype" faces. Fig. 6-1 shows the line segment features for a

particular individual, and Fig. 6-2 shows the average over a set of 14 prototype people.

Features are assigned a text label (e.g. \c1") so that corresponding line segments can

be paired across images. As we will explain later in section 6.3.1, the line segment

features are speci�ed manually in an initial o�-line step that de�nes the standard

feature geometry.

The two components of the vectorized representation, shape and texture, can now

6.1. STANDARD SHAPE 93

c1
c2

c3 c4

c5 c6

c7 c8
c9 c10

c11 c12s1

s2

s3
s4

s5

s6

s7

m1 m2

n1

n2 n3

Figure 6-2: Manually de�ned shapes are averaged to compute the standard face shape.

be de�ned relative to this standard shape.

6.1.1 Shape

The shape vector of an image ia, denoted y
std

a�std, could be sparsely de�ned, perhaps

recording (x; y) locations of ia's segment features relative to the standard shape in

Fig. 6-2. However, to facilitate shape and texture operators in the run-time vec-

torization procedure, shape is spatially oversampled. That is, we use a pixelwise

representation for shape, de�ning a feature point at each pixel in a subimage con-

taining the face. The shape vector ystd
a�std can then be visualized as a vector �eld of

correspondences between a face at standard shape and the given image ia being rep-

resented. If there are n pixels in the face subimage being vectorized, then the shape

vector consists of 2n values, a (�x; �y) pair for each pixel. Fig. 6-3 shows the shape

representation ystd
a�std for the image ia. As indicated by the grey arrow, correspon-

dences are measured relative to the reference face istd at standard shape. (Image istd

in this case is mean grey level image; modeling grey level texture is discussed more

in section 6.3.1.) Overall, the advantage of using a dense representation is that it

allows a simple optical
ow calculation to be used for computing shape and a simple

2D warping operator for geometrical normalization.

6.1.2 Texture

As mentioned in the previous chapter, our texture vector is the grey level image ia

that has been warped onto standard shape. If we let shape ystd be the reference

shape, then the geometrically normalized image ta is given by the 2D warp

ta(x; y) = ia(x+�xstd
a�std(x; y); y +�ystd

a�std(x; y));

94 CHAPTER 6. VECTORIZING FACE IMAGES

i istd a

stdya-std t a

Figure 6-3: Our vectorized representation for image ia with respect to the reference

image istd at standard shape. First, pixelwise correspondence is computed between

istd and ia, as indicated by the grey arrow. Shape y
std

a�std is a vector �eld that speci�es

a corresponding pixel in ia for each pixel in istd. Texture ta consists of the grey levels

of ia mapped onto the standard shape.

where �xstd
a�std and �ystd

a�std are the x and y components of ystd
a�std. Fig. 6-3 in the

lower right shows an example texture vector ta for the input image ia in the upper

right.

6.1.3 Separation of shape and texture

How cleanly have we separated the notions of shape and texture in the 2D represen-

tations just described? Ideally, the ultimate shape description would be a 3D one

where the (x; y; z) coordinates are represented. Texture would be a description of

local surface albedo at each feature point on the object. Such descriptions are com-

mon for the modeling of 3D objects for computer graphics, and it would be nice for

vision algorithms to invert the imaging or \rendering" process from 3D models to 2D

images.

6.2. SHAPE/TEXTURE COUPLING 95

What our 2D vectorized description has done, however, is to factor out and ex-

plicitly represent the salient aspects of 2D shape. The true spatial density of this

2D representation depends, of course, on the density of features de�ning standard

shape, shown in our case in Fig. 6-2. Some aspects of 2D shape, such as lip or eye-

brow thickness, will end up being encoded in our model for texture. However, one

could extend the standard feature set to include more features around the mouth and

eyebrows if desired. For texture, there are non-albedo factors confounded in the tex-

ture component, such as lighting conditions and the z-component of shape. Overall,

though, remember that only one view of the object being vectorized is available, thus

limiting our access to 3D information. We hope that the current de�nitions of shape

and texture are a reasonable approximation to the desired decomposition.

6.2 Shape/texture coupling

One of the main results of this chapter is that the computations for the shape and

texture components can be algorithmically coupled. That is, shape can be used

to geometrically normalize the input image prior to texture analysis. Likewise, the

result of texture analysis can be used to synthesize a reference image for �nding

correspondences in the shape computation. The result is an iterative algorithm for

vectorizing images of faces. Let us now explore the coupling of shape and texture in

more detail.

6.2.1 Shape perspective

Since the vectorized representation is determined by an ordered set of feature points,

computing the representation is essentially a feature �nding or correspondence task.

Consider this correspondence task under a special set of circumstances: we know who

the person is, and we have prior example views of that person. In this case, a simple

correspondence �nding algorithm such as optical
ow should su�ce. As shown in the

left two images of Fig. 6-4, �rst a prior example ia of the person's face is manually

warped in an o�-line step to standard shape, producing a reference image ta. A new

image of the same person can now be vectorized simply by running an optical
ow

algorithm between the image and reference ta.

If we have no prior knowledge of the person being vectorized, the correspondence

problem becomes more di�cult. In order to handle the variability seen in facial

appearance across di�erent people, one could imagine using many di�erent example

reference images that have been pre-warped to the standard reference shape. These

reference images could be chosen, for example, by running a clustering algorithm

96 CHAPTER 6. VECTORIZING FACE IMAGES

ia ta bta
Figure 6-4: Vectorizing face images: if we know who the person is and have prior

example views ia of their face, then we can manually warp ia to standard shape,

producing a reference ta. New images of the person can be vectorized by computing

optical
ow between ta and the new input. However, if we do not have prior knowledge

of the person being vectorized, we can still synthesize an approximation to ta, bta, by
taking a linear combination of prototype textures.

on a large ensemble of example face images. This solution, however, introduces the

problem of having to choose among the reference images for the �nal vectorization,

perhaps based on a con�dence measure in the correspondence algorithm.

Going one step further, in this chapter we use a statistical model for facial tex-

ture in order to assist the correspondence process. Our texture model relies on the

assumption, commonly made in the eigenface approach to face recognition and de-

tection (Turk and Pentland [129], Pentland, et al. [103]), that the space of grey level

images of faces is linearly spanned by a set of example views. That is, the geometri-

cally normalized texture vector ta from the input image ia can be approximated as a

linear combination of n prototype textures tpj ; 1 � j � n

bta = nX
j=1

�jtpj ; (6.1)

where the tpj are themselves geometrically normalized by warping them to the stan-

dard reference shape. The rightmost image of Fig. 6-4, for example, shows an approx-

imation bta that is generated by taking a linear combination of textures as in equation

(6.1). If the vectorization procedure can estimate a proper set of �j coe�cients, then

computing correspondences should be simple. Since the computed \reference" im-

age bta approximates the texture ta of the input and is geometrically normalized, we

are back to the situation where a simple correspondence algorithm like optical
ow

should work. In addition, the linear �j coe�cients act as a low dimensional code for

representing the texture vector ta.

This raises the question of computing the �j coe�cients for the texture model.

Let us now consider the vectorization procedure from the perspective of modeling

6.2. SHAPE/TEXTURE COUPLING 97

texture.

6.2.2 Texture perspective

To develop the vectorization technique from the texture perspective, consider the

simple eigenimage, or \eigenface", model for the space of grey level face images. The

eigenface approach for modeling face images has been used recently for a variety of

facial analysis tasks, including face recognition (Turk and Pentland [129], Akamatsu,

et al. [5], Pentland, et al. [103]), reconstruction (Kirby and Sirovich [77]), face de-

tection (Sung and Poggio [125], Moghaddam and Pentland [96]), and facial feature

detection (Pentland, et al. [103]). The main assumption behind this modeling ap-

proach is that the space of grey level images of faces is linearly spanned by a set of

example face images. To optimally represent this \face space", principal component

analysis is applied to the example set, extracting an orthogonal set of eigenimages

that de�ne the dimensions of face space. Arbitrary faces are then represented by the

set of coe�cients computed by projecting the face onto the set of eigenimages.

One requirement on face images, both for the example set fed to principal com-

ponents and for new images projected onto face space, is that they be geometrically

normalized so that facial features line up across all images. Most normalization meth-

ods use a global transform, usually a similarity or a�ne transform, to align two or

three major facial features. For example, in Pentland, et al. [103], the imaging appa-

ratus e�ectively registers eyes, and Akamatsu, et al. [5] register the eyes and mouth.

However, because of the inherent variability of facial geometries across di�erent

people, aligning just a couple of features { such as the eyes { leaves other features

misaligned. To the extent that some features are misaligned, even this normalized

representation will confound di�erences in grey level information with di�erences in

local facial geometry. This may limit the representation's generalization ability to new

faces outside the original example set used for principal components. For example, a

new face may match the texture of one particular linear combination of eigenimages

but the shape may require another linear combination.

To decouple texture and shape, Craw and Cameron [45] and Shackelton and

Welsh [118] represent shape separately and use it to geometrically normalize face

texture by deforming it to a standard shape. Shape is de�ned by the (x; y) locations

of a set of feature points, as in our de�nition for shape. In Craw and Cameron [45],

76 points outlining the eyes, nose, mouth, eyebrows, and head are used. To geomet-

rically normalize texture using shape, image texture is deformed to a standard face

shape, making it \shape free". This is done by �rst triangulating the image using the

features and then texture mapping.

98 CHAPTER 6. VECTORIZING FACE IMAGES

However, they did not demonstrate an e�ective automatic method for computing

the vectorized shape/texture representation. This is mainly due to di�culties in

�nding correspondences for shape, where probably on the order of tens of features

need to be located. Craw and Cameron [45] manually locate their features. Shackelton

and Welsh [118], who focus on eye images, use the deformable template approach of

Yuille, Cohen, and Hallinan [144] to locate eye features. However, for 19/60 of their

example eye images, feature localization is either rated as \poor" or \no �t".

Note that in both of these approaches, computation of the shape and texture

components have been separated, with shape being computed �rst. This di�ers from

our approach, where shape and texture computations are interleaved in an iterative

fashion. In their approach the link from shape to texture is present { using shape

to geometrically normalize the input. But using a texture model to assist �nding

correspondences is not exploited.

6.2.3 Combining shape and texture

Our face vectorizer consists of two primary steps, a shape step that computes vec-

torized shape ystd
a�std and a texture step that uses the texture model to approximate

the texture vector ta. Key to our vectorization procedure is linking the two steps in

a mutually bene�cial manner and iterating back and forth between the two until the

representation converges. First, consider how the result of the texture step can be

used to assist the shape step. Assuming for the moment that the texture step can

provide an estimate bta using equation (6.1), then the shape step estimates ystd
a�std by

computing optical
ow between the input and bta.
Next, to complete the loop between shape and texture, consider how the shape

ystd
a�std can be used to compute the texture approximation bta. The shape ystd

a�std is

used to geometrically normalize the input image using the backward warp

ta(x) = ia(x+ ystd
a�std(x));

where x = (x; y) is a 2D pixel location in standard shape. This normalization step

aligns the facial features in the input image with those in the textures tpj . Thus,

when ta is approximated in the texture step by projecting it onto the linear space

spanned by the tpj , facial features are properly registered.

Given initial conditions for shape and texture, our proposed system switches back

and forth between texture and shape computations until a stable solution is found.

Because of the manner in which the shape and texture computations feed back on

each other, improving one component improves the other: better correspondences

mean better feature alignment for textural analysis, and computing a better tex-

6.3. BASIC VECTORIZATION METHOD 99

tural approximation improves the reference image used for �nding correspondences.

Empirically, we have found that the representation converges after several iterations.

Now that we have seen a general outline of our vectorizer, let us explore the details.

6.3 Basic Vectorization Method

The basic method for our vectorizer breaks down into two main parts, the o�-line

preparation of the example textures tpj , and the on-line vectorization procedure ap-

plied to a new input image.

6.3.1 O�-line preparation of examples

The basic assumption made in modeling vectorized texture is that the space of face

textures is linearly spanned by a set of geometrically normalized example face tex-

tures. Thus, in constructing a vectorizer we must �rst collect a group of representative

faces that will de�ne face space. Before using the example faces in the vectorizer, they

are geometrically normalized to align facial features, and the grey levels are processed

using principal components or the pseudoinverse to optimize run-time textural pro-

cessing.

Geometric normalization

To geometrically normalize an example face, we apply a local deformation to the

image to warp the face shape into a standard geometry. This local deformation

requires both the shape of the example face as well as some de�nition of the standard

shape. Thus, our o�-line normalization procedure needs the face shape component for

our example faces, something we provide manually. These manual correspondences

are averaged to de�ne the standard shape. Finally, a 2D warping operation is applied

to do the normalization. We now go over these steps in more detail.

First, to de�ne the shape of the example faces, a set of line segment features

are positioned manually for each. The features, shown in Fig. 6-1, follow Beier and

Neely's [13] manual correspondence technique for morphing face images (also see

section 5.2.1). Pairing up image feature points into line segments gives one a natural

control over local scale and rotation in the eventual deformation to standard shape,

as we will explain later when discussing the deformation technique.

Next, we average the line segments over the example images to de�ne the standard

face shape (see Fig. 6-2). We don't have to use averaging { since we are creating a

de�nition, we could have just chosen a particular example face. However, averaging

100 CHAPTER 6. VECTORIZING FACE IMAGES

Figure 6-5: Examples of o�-line geometrical normalization of example images. Tex-

ture for the normalized images is sampled from the original images { that is why the

chin is generated for the second example.

shape should minimize the total amount of distortion required in the next step of

geometrical normalization.

Finally, images are geometrically normalized using the local deformation technique

of Beier and Neely [13]. This deformation technique is driven by the pairing of line

segments in the example image with line segments in the standard shape. Consider a

single pairing of line segments, one segment from the example image lex and one from

the standard shape lstd. This line segment pair essentially sets up a local transform

from the region surrounding lex to the region surrounding lstd. The local transform

resembles a similarity transform except that there is no scaling perpendicular to the

segment, just scaling along it. The local transforms are computed for each segment

pair, and the overall warping is taken as weighted average. Some examples of images

before and after normalization are shown in Fig. 6-5.

Texture processing

Now that the example faces have been normalized for shape, they can be used for

texture modeling. Given a new input ia, the texture analysis step tries to approximate

the input texture ta as a linear combination of the example textures. Of course, given

a linear subspace such as our face space, one can choose among di�erent sets of basis

vectors that will span the same subspace. One popular method for choosing the basis

set, the eigenimage approach, applies principal components analysis to the example

set. Another potential basis set is simply the original set of images themselves. We

now discuss the o�-line texture processing required for the two basis sets of principal

6.3. BASIC VECTORIZATION METHOD 101

components and the original images.

Principal components analysis is a classical technique for reducing the dimension-

ality of a cluster of data points, where the data are assumed to be distributed in an

ellipsoid pattern about a cluster center. If there is correlation in the data among the

coordinate axes, then one can project the data points to a lower dimensional sub-

space without losing information. This corresponds to an ellipsoid with interesting

variation along a number of directions that is less than the dimensionality of the data

points. Principal components analysis �nds the lower dimensional subspace inherent

in the data points. It works by �nding a set of directions ei such that the variance in

the data points is highest when projected onto those directions. These ei directions

are computed by �nding the eigenvectors of the of the covariance matrix of the data

points.

In our ellipsoid of n geometrically normalized textures tpj , let t
0
pj

be the set of

textures with the mean tmean subtracted o�

tmean =
1

n

nX
j=1

tpj

t0
pj

= tpj � tmean; 1 � j � n:

If we let T be a matrix where the jth column is t0
pj

T =
h
t0
p1
t0
p2
� � � t0

pn

i
;

then the covariance matrix is de�ned as

� = TT t:

Notice that T is a m�n matrix, wherem is the number of pixels in vectorized texture

vectors. Due to our pixelwise representation for shape, m� n and thus �, which is

a m�m matrix, is quite large and may be intractable for eigenanalysis. Fortunately,

one can solve the smaller eigenvector problem for the n � n matrix T tT . This is

possible because an eigenvector ei of T
tT

T tT ei = �iei

corresponds to an eigenvector Tei of �. This can be seen by multiplying both sides

of the above equation by matrix T

(TT t) Tei = �iTei:

Since the eigenvectors (or eigenimages) ei with the larger eigenvalues �i explain the

most variance in the example set, only a fraction of the eigenimages need to be

102 CHAPTER 6. VECTORIZING FACE IMAGES

tmean

e0 e1 e2

e3 e4 e5

Figure 6-6: Mean image and eigenimages from applying principal components analysis

to the geometrically normalized examples.

retained for the basis set. In our implementation, we chose to use roughly half the

eigenimages. Fig. 6-6 shows the mean face and the �rst 6 eigenimages from a principal

components analysis applied to a group of 55 people.

Since the eigenimages are orthogonal (and can easily be normalized to be made

orthonormal), analysis and reconstruction of new image textures during vectorization

can be easily performed. Say that we retain N eigenimages, and let ta be a geo-

metrically normalized texture to analyze. Then the run-time vectorization procedure

projects ta onto the ei

�i = ei � (ta � tmean) (6.2)

and can reconstruct ta, yielding bta
bta = tmean +

P
N

i=1 �iei: (6.3)

Another potential basis set is the original example textures themselves. That is,

we approximate ta by a linear combination of the n original image textures tpi

bta =P
n

i=1 �itpi: (6.4)

While we do not need to solve this equation until on-line vectorization, previewing the

solution will elucidate what needs to be done for o�-line processing. Write equation

(6.4) in matrix form bta = T �; (6.5)

where bta is written as a column vector, T is a matrix where the ith column is tpi, and

� is a column vector of the �i's. Solving this with linear least squares yields

� = T y ta (6.6)

= (T tT)�1T t ta (6.7)

6.3. BASIC VECTORIZATION METHOD 103

Figure 6-7: Example textures processed by the pseudoinverse T y = (T tT)�1T t. When

using the original set of image textures as a basis, texture analysis is performed by

projection onto these images.

where T y = (T tT)�1T t is the pseudoinverse of T . The pseudoinverse can be computed

o�-line since it depends only on the example textures tpi. Thus, run-time vectorization

performs texture analysis with the columns of T y (equation (6.6)) and reconstruction

with the columns of T (equation (6.5)). Fig. 6-7 shows some example images processed

by the pseudoinverse where n was 40.

Note that for both basis sets, the linear coe�cients are computed using a simple

projection operation. Coding-wise at run-time, the only di�erence is whether one

subtracts o� the mean image tmean. In practice though, the eigenimage approach

will require fewer projections since not all eigenimages are retained. Also, the or-

thogonality of the eigenimages may produce a more stable set of linear coe�cients

{ consider what happens for the pseudoinverse approach when two example images

are similar in texture. Yet another potential basis set, one that has the advantage of

orthogonality, would be the result of applying Gram-Schmidt orthonormalization to

the example set.

Most of our vectorization experiments have been with the eigenimage basis, so the

notation in the next section uses this basis set.

6.3.2 Run-time vectorization

In this section we go over the details of the vectorization procedure. The inputs

to the vectorizer are an image ia to vectorize and a texture model consisting of N

eigenimages ei and mean image tmean. In addition, the vectorizer takes as input a

planar transform P that selects the face region from the image ia and normalizes it for

104 CHAPTER 6. VECTORIZING FACE IMAGES

all face images
geometrically normalized
 textures

texture model ∑ β tj pj

t texture step

s shape step

s
t

ia

true ta

ta ta
final ta

final ta

initial ta

Figure 6-8: Convergence of the vectorization procedure with regards to texture. The

texture and shape steps try to make bta and ta converge to the true ta.

the e�ects of scale and image-plane rotation. The planar transform P can be a rough

estimate from a coarse scale analysis. Since the faces in our test images were taken

against a solid background, face detection is relatively easy and can be handled simply

by correlating with a couple face templates. The vectorization procedure re�nes the

estimate P , so the �nal outputs of the procedure are the vectorized shape ystd
a�std, a

set of �i coe�cients for computing bta, and a re�ned estimate of P .

As mentioned previously, the interconnectedness of the shape and texture steps

makes the iteration converge. Fig. 6-8 depicts the convergence of the vectorization

procedure from the perspective of texture. There are three sets of face images in the

�gure, sets of (1) all face images, (2) geometrically normalized face textures, and (3)

the space of our texture model. The di�erence between the texture model space and

the set of geometrically normalized faces depends on the prototype set of n example

faces. The larger and more varied this set becomes, the smaller the di�erence becomes

between sets (2) and (3). Here we assume that the texture model is not perfect, so

the true ta is slightly outside the texture model space.

The goal of the iteration is to make estimates of ta and bta converge to the true

ta. The path for ta, the geometrically normalized version of ia, is shown by the curve

from ia to the �nal ta. The path for bta is shown by the curve from initial bta to �nal

6.3. BASIC VECTORIZATION METHOD 105

bta. The texture and shape steps are depicted by the arrows jumping between the

curves. The texture step, using the latest estimate of shape to produce ta, projects

ta into the texture model space. The shape step uses the latest bta to �nd a new set

of correspondences, thus updating shape and hence ta. As one moves along the ta

curve, one is getting better estimates of shape. As one moves along the bta curve,

the �i coe�cients in the texture model improve. Since the true ta lies outside the

texture model space, the iteration stops at �nal bta. This error can be made smaller

by increasing the number of prototypes for the texture model.

We now look at one iteration step in detail.

One iteration

In examining one iteration of the texture and shape steps, we assume that the previous

iteration has provided an estimate for ystd
a�std and the �i coe�cients. For the �rst

iteration, an initial condition of ystd
a�std = ~0 is used. No initial condition is needed for

texture since the iteration starts with the texture step.

In the texture step, �rst the input image ia is geometrically normalized using

the shape estimate ystd
a�std, producing ta

ta(x) = ia(x+ ystd
a�std(x)); (6.8)

where x = (x; y) is a pixel location in the standard shape. This is implemented as a

backwards warp using the
ow vectors pointing from the standard shape to the input.

As discussed in section 5.3.1, bilinear interpolation is used to sample ia at non-integral

(x; y) locations. Next ta is projected onto the eigenimages ei using equation (6.2) to

update the linear coe�cients �i. These updated coe�cients should enable the shape

computation to synthesize an approximation bta that is closer to the true ta.

In the shape step, �rst a reference image bta is synthesized from the texture coef-

�cients using equation (6.3). Since the reference image reconstructs the texture of the

input, it should be well suited for �nding shape correspondences. Next, optical
ow is

computed between bta, which is geometrically normalized, and ia, which updates the

pixelwise correspondences ystd
a�std. For optical
ow, we used the gradient-based hier-

archical scheme of Bergen and Adelson [16], Bergen and Hingorani [18], and Bergen,

et al. [17]. The new correspondences should provide better geometrical normalization

in the next texture step.

Overall, iterating these steps until the representation stabilizes is equivalent to

iteratively solving for the ystd
a�std and �i which best satisfy

ta = bta;

106 CHAPTER 6. VECTORIZING FACE IMAGES

or

ia(x+ ystd
a�std(x)) = tmean +

P
n

i=1 �iei:

Adding a global transform

We introduce a planar transform P to select the image region containing the face and

to normalize the face for the e�ects of scale and image-plane rotation. Let i0
a
be the

input image ia resampled under the planar transform P

i0
a
(x) = ia(P (x)): (6.9)

It is this resampled image i0
a
that will be geometrically normalized in the texture step

and used for optical
ow in the shape step.

Besides selecting the face, the transform P will also be used for selecting subimages

around individual features such as the eyes, nose, and mouth. As will be explained

in the next section on our hierarchical implementation, the vectorization procedure

is applied in a coarse-to-�ne strategy on a pyramid structure. Full face templates are

vectorized at the coarser scales and individual feature templates are vectorized at the

�ner scales.

Transform P will be a similarity transform

P (x) = s

cos � sin �

� sin � cos �

!
x+

tx

ty

!
;

where the scale s, image-plane rotation �, and 2D translation (tx; ty) are determined

in one of two ways, depending on the region being vectorized.

1. Two point correspondences. De�ne anchor points qstd;1 and qstd;2 in standard

shape, which can be done manually in o�-line processing. Let qa;1 and qa;2 be

estimates of the anchor point locations in the image ia, estimates which need to

be performed on-line. The similarity transform parameters are then determined

such that

P (qstd;1) = qa;1; P (qstd;2) = qa;2: (6.10)

This uses the full
exibility of the similarity transform and is used when the

image region being vectorized contains two reliable feature points such as the

eyes.

2. Fixed s, �, and one point correspondence. In this case there is only one anchor

point qstd;1, and one solves for tx and ty such that

P (qstd;1) = qa;1: (6.11)

6.3. BASIC VECTORIZATION METHOD 107

This is useful for vectorizing templates with less reliable features such as the

nose and mouth. For these templates the eyes are vectorized �rst and used to

�x the scale and rotation for the nose and mouth.

While the vectorizer assumes that a face �nder has provided an initial estimate

for P , we would like the vectorizer to be insensitive to a coarse or noisy estimate

and to improve the estimate of P during vectorization. The similarity transform P

can be updated during the iteration when our estimates change for the positions of

the anchor points qa;i. This can be determined after the shape step computes a new

estimate of the shape ystd
a�std. We can tell that an anchor point estimate is o� when

there is nonzero
ow at the anchor point

kystd
a�std(qstd;i)k > threshold:

The correspondences can be used to update the anchor point estimate

qa;i = P (qstd;i + ystd
a�std(qstd;i)):

Next, P can be updated using the new anchor point locations using equation (6.10)

or (6.11) and ia can be resampled again using equation (6.9) to produce a new i0
a
.

Entire procedure

The basic vectorization procedure is now summarized. Lines 2(a) and (b) are the

texture step, lines 2(c) and (d) are the shape step, and line 2(e) updates the similarity

transform P .

procedure vectorize

1. initialization

(a) Estimate P using a face detector. For example, a correlational face �nder

using averaged face templates can be used to estimate the translational

component of P .

(b) Resample ia using the similarity transform P , producing i0
a
(equation

(6.9)).

(c) ystd
a�std = ~0.

2. iteration: solve for ystd
a�std, �i, and P by iterating the following steps until the

�i stop changing.

108 CHAPTER 6. VECTORIZING FACE IMAGES

(a) Geometrically normalize i0
a
using ystd

a�std, producing ta

ta(x) = i0
a
(x+ ystd

a�std(x)):

(b) Project ta onto example set ei, computing the linear coe�cients �i

�i = ei � (ta � tmean); 1 � i � n:

(c) Compute reference image bta for correspondence by reconstructing the ge-

ometrically normalized input

bta = tmean +
P

n

i=1 �iei:

(d) Compute the shape component using optical
ow

ystd
a�std = optical-
ow(i0

a
; bta):

(e) If the anchor points are misaligned, as indicated by optical
ow, then:

i. Update P with new anchor points.

ii. Resample ia using the similarity transform P , producing i0
a
(eqn (6.9)).

iii. ystd
a�std = optical-
ow(i0

a
; bta):

Fig. 6-9 shows snapshot images of i0
a
, ta, and bta during each iteration of an example

vectorization. The iteration number is shown in the left column, and the starting

input is shown in the upper left. We deliberately provided a poor initial alignment

for the iteration to demonstrate the procedure's ability to estimate the similarity

transform P . As the iteration proceeds, notice how (1) improvements in P lead to a

better global alignment in i0
a
, (2) the geometrically normalized image ta improves, and

(3) the image bta becomes a more faithful reproduction of the input. The additional

row for i0
a
is given because when step 2(e) is executed in the last iteration, i0

a
is

updated.

6.3.3 Pose dependence from the example set

The example images we have used in the vectorizer so far have been from a frontal

pose. What about other poses, poses involving rotations out of the image plane?

Because we are being careful about geometry and correspondence, the example

views used to construct the vectorizer must be taken from the same out-of-plane

image rotation. The resulting vectorizer will be tuned to that pose, and performance

is expected to drop as an input view deviates from that pose. The only thing that

6.4. HIERARCHICAL IMPLEMENTATION 109

i0
a

ta bta
1

2

3

Figure 6-9: Snapshot images of i0
a
, ta, and bta during the three iterations of an example

vectorization. See text for details.

makes the vectorizer pose-dependent, however, is the set of example views used to

construct face space. The iteration step is general and should work for a variety

of poses. Thus, even though we have chosen a frontal view as an example case, a

vectorizer tuned for a di�erent pose can be constructed simply by using example

views from that pose.

In section 6.5 on applying the vectorizer to feature detection, we demonstrate

two vectorizers, one tuned for a frontal pose, and one for an o�-frontal pose. Later,

in section 6.6.3, we suggest a multiple-pose vectorizer that connects di�erent pose-

speci�c vectorizers through interpolation.

6.4 Hierarchical implementation

For optimization purposes, the vectorization procedure is implemented using a coarse-

to-�ne strategy. Given an input image to vectorize, �rst the Gaussian pyramid (Burt

and Adelson [33]) is computed to provide a multiresolution representation over 4

scales, the original image plus 3 reductions by 2. A face �nder is then run over the

coarsest level to provide an initial estimate for the similarity transform P . Next, the

vectorizer is run at each pyramid level, working from the coarser to �ner levels. As

processing moves from a coarser level to a �ner one, the coarse shape correspondences

are used to initialize the similarity transform P for the vectorizer at the �ner level.

110 CHAPTER 6. VECTORIZING FACE IMAGES

Figure 6-10: Face �nding templates are grey level averages using two populations, all

examples (left) plus people with beards (right).

6.4.1 Face �nding at coarse resolution

For our test images, face detection is not a major problem since the subjects are shot

against a uniform background. For the more general case of cluttered backgrounds,

see the face detection work of Reisfeld and Yeshurun [115], Ben-Arie and Rao [14],

Sung and Poggio [125], Sinha [122], and Moghaddam and Pentland [96]. For our test

images, we found that normalized correlation using two face templates works well.

The normalized correlation metric is

r =
< TI > � < T >< I >

�(T)�(I)
;

where T is the template, I is the subportion of image being matched against, < TI >

is normal correlation, <> is the mean operator, and �() measures standard deviation.

The templates are formed by averaging face grey levels over two populations, an

average of all examples plus an average over people with beards. Before averaging,

example face images are �rst warped to standard shape. Our two face templates for a

frontal pose are shown in Fig. 6-10. To provide some invariance to scale, regions with

high correlation response to these templates are examined with secondary correlations

where the scale parameter is both increased and decreased by 20%. The location/scale

of correlation matches above a certain threshold are reported to the vectorizer.

6.4.2 Multiple templates at high resolution

When processing the di�erent pyramid levels, we use a whole face template at the

two coarser resolutions and templates around the eyes, nose, and mouth for the

two �ner resolutions. This template decomposition across scales is similar to Burt's

pattern tree approach [31] for template matching on a pyramid representation. At

a coarse scale, faces are small, so full face templates are needed to provide enough

spatial support for texture analysis. At a �ner scale, however, individual features {

eyes, noses { cover enough area to provide spatial support for analysis, giving us the

6.5. APPLICATION TO FEATURE FINDING 111

option to perform separate vectorizations. The advantage of decoupling the analysis

of the eyes, nose, and mouth is that it should improve generalization to new faces

not in the original example set. For example, if the eyes of a new face use one set

of linear texture coe�cients and the nose uses another, separate vectorization for the

eyes and nose provides the extra
exibility we need. However, if new inputs always

come from people in the original example set, then this extra
exibility is not required

and keeping to whole-face templates should be a helpful constraint.

When vectorizing separate eyes, nose, and mouth templates at the �ner two res-

olutions, the template of the eyes has a special status for determining the scale and

image-plane rotation of the face. The eyes template is vectorized �rst, using 2 iris

features as anchor points for the similarity transform P . Thus, the eyes vectorization

estimates a normalizing similarity transform for the face. The scale and rotation

parameters are then �xed for the nose and mouth vectorizations. Only one anchor

point is used for the nose and mouth, allowing only the translation in P to change.

6.4.3 Example results

For the example case in Fig. 6-11, correspondences from the shape component are

plotted over the four levels of the Gaussian pyramid. These segment features are

generated by mapping the averaged line segments from Fig. 6-2 to the input image.

To get a sense of the �nal shape/texture representation computed at the highest

resolution, Fig. 6-12 displays the �nal output for the Fig. 6-11 example. For the eyes,

nose and mouth templates, we show i0
a
, the geometrically normalized templates ta,

and the reconstruction of those templates bta using the linear texture coe�cients. No

images of this person were used among the examples used to create the eigenspaces.

We have implemented the hierarchical vectorizer in C on an SGI Indy R4600 based

machine. Once the example images are loaded, multilevel processing takes just a few

seconds to execute.

Experimental results presented in the next section on applications will provide a

more thorough analysis of the vectorizer.

6.5 Application to feature �nding

Once the vectorized representation has been computed, how can one use it? The linear

texture coe�cients can be used as a low-dimensional feature vector for face recogni-

tion, which is the familiar eigenimage approach to face recognition [129][5][103]. Our

application of the vectorizer, however, has focused on using the correspondences in

the shape component. In this section we describe experimental results from applying

112 CHAPTER 6. VECTORIZING FACE IMAGES

level 3

level 2

level 1

level 0

Figure 6-11: Evolution of the shape component during coarse-to-�ne processing. The

shape component is displayed through segment features which are generated by map-

ping the averaged line segments from Fig. 6-2 to the input image.

6.5. APPLICATION TO FEATURE FINDING 113

i0
a ta bta

Figure 6-12: Final vectorization at the original image resolution.

these correspondences to the problem of locating facial features. Chapter 7 discusses

how the shape correspondences can be used for synthesizing virtual views.

After vectorizing an input image ia, pixelwise correspondence in the shape com-

ponent ystd
a�std provides a dense mapping from the standard shape to the image ia.

Even though this dense mapping does more than locate just a sparse set of features,

we can sample the mapping to locate a discrete set of feature points in ia. To ac-

complish this, �rst, during o�-line example preparation, the feature points of interest

are located manually with respect to the standard shape. Then after the run-time

vectorization of ia, the feature points can be located in ia by following the pixelwise

correspondences and then mapping under the similarity transform P . For a feature

point qstd in standard shape, its corresponding location in ia is

P (qstd + ystd
a�std(qstd)):

For example, the line segment features of Fig. 6-2 can be mapped to the input by

mapping each endpoint, as shown for the test images in Fig. 6-13.

In order to evaluate these segment features located by the vectorizer, two vectoriz-

ers, one tuned for a frontal pose (viewm3, see Fig. 1-3) and one for a slightly rotated

pose (viewm4), were respectively tested on them3 and m4 example views from our

database. This image set consists of 62 people, 2 views per person { a frontal and

slightly rotated pose { yielding a combined test set of 124 images. Example results

from the rotated m4 view vectorizer are shown in Fig. 6-14. Because the same views

were used as example views to construct the vectorizers, a leave-6-out cross validation

procedure was used to generate statistics. That is, the original group of 62 images

from a given pose were divided into 11 randomly chosen groups (10 of 6 people, 1 of

the remaining 2 people). Each group of images is tested using a di�erent vectorizer;

the vectorizer for group G is constructed from an example set consisting of the origi-

nal images minus the set G. This allows us to separate the people used as examples

from those in the test set.

114 CHAPTER 6. VECTORIZING FACE IMAGES

Figure 6-13: Example features located by sampling the dense set of shape correspon-

dences ystd
a�std found by the vectorizer.

Figure 6-14: Example features located by the vectorizer.

6.5. APPLICATION TO FEATURE FINDING 115

average distances

feature detection rate point metric edge metric

endpt. dist. angle perpend. dist.

(pixels) (degrees) (pixels)

left eye 100% (124/124) 1.24 - -

right eye 100% (124/124) 1.23 - -

left eyebrow 97% (121/124) - 5:1� 1.06

right eyebrow 96% (119/124) - 4:8� 1.06

nose 99% (123/124) 1.45 3:2� 0.66

mouth 99% (123/124) - 2:2� 0.53

Table 6.1: Detection rates and average distances between computed and \ground

truth" segments. Qualitatively, the eyebrow and nose errors were misalignments,

while the mouth error did involve a complete miss.

Qualitatively, the results were very good, with only one mouth feature being

completely missed by the vectorizer (it was placed between the mouth and nose). To

quantitatively evaluate the features, we compared the computed segment locations

against manually located \ground truth" segments, the same segments used for o�-line

geometrical normalization. To report statistics by feature, the segments in Fig. 6-2

are grouped into 6 features: left eye (c3, c4, c5, c6), right eye (c9, c10, c11, c12), left

eyebrow (c1, c2), right eyebrow (c7, c8), nose (n1, n2, n3), and mouth (m1, m2).

Two di�erent metrics were used to evaluate how close a computed segment came

to its corresponding ground truth segment. Segments in the more richly textured

areas (e.g. eye segments) have local grey level structure at both endpoints, so we

expect both endpoints to be accurately placed. Thus, the \point" metric measures

the two distances between corresponding segment endpoints. On the other hand,

some segments are more edge-like, such as eyebrows and mouths. For the \edge"

metric we measure the angle between segments and the perpendicular distance from

the midpoint of the ground truth segment to the computed segment.

Next, the distances between the manual and computed segments were thresholded

to evaluate the closeness of �t. A feature will be considered properly detected when

all of its constituent segments are within threshold. Using a distance threshold of

10% of the interocular distance and an angle threshold of 20�, we compute detection

rates and average distances between manual and computed segments (Table 6.1). The

eyebrow and nose errors are more of a misalignment of a couple points rather than a

complete miss (the mouth error was a complete miss).

116 CHAPTER 6. VECTORIZING FACE IMAGES

6.6 Future work

In this section, �rst we discuss some shorter-term work for the existing vectorizer.

This is followed by longer-term ideas for extending the vectorizer to use parameterized

shape models and to handle multiple poses.

6.6.1 Existing vectorizer

So far the vectorizer has been tested on face images shot against a solid background.

It would be nice to demonstrate the vectorizer working in cluttered environments. To

accomplish this, both the face detection and vectorizer should be made more robust to

the presense of false positive matches. To improve face detection, we would probably

incorporate the learning approaches of Sung and Poggio [125] or Moghaddam and

Pentland [96]. Both of these techniques model the space of grey level face images

using principal components analysis. To judge the \faceness" of a image, they use

a distance metric that includes two terms, \distance from face space" (see Turk and

Pentland [129])

kta � btak
and the Mahalanobis distance P

N

i=1
�
2

i

�i
;

where the �i are the eigenspace projection coe�cients and �i are the eigenvalues from

principal component analysis. This distance metric could be added to the vectorizer

as a threshold test after the iteration step has converged.

Our current coarse-to-�ne implementation does not exploit potential constraints

that could be passed from the coarser to �ner scales. The only information currently

passed from a coarse level to the next �ner level are feature locations used to initialize

the similarity transform P . This could be expanded to help initialize the shape and

texture components at the �ner level as well.

6.6.2 Parameterized shape model

In the current vectorizer, shape is measured in a \data-driven" manner using optical

ow. However, we can explicitly model shape by taking a linear combination of

example shapes

ystd
a�std =

P
n

i=1 �iy
std

pi�std
;

where the shape of the ith example image, ystd
pi�std

, is the 2D warping used to geometri-

cally normalize the image in the o�-line preparation step. This technique for modeling

shape is similar to the work of Cootes, et al. [44], Blake and Isard [21], Baumberg

6.7. SUMMARY 117

and Hogg [12], and Jones and Poggio [72]. The new shape step would, given i0
a
and

reference bta, try to �nd a set of coe�cients �i that minimizes the squared error of

the approximation

i0
a
(x+

P
n

i=1 �iy
std

pi�std
(x)) = bta:

This involves replacing the optical
ow calculation with a model-based matching pro-

cedure; one can think of it as a parameterized \optical
ow" calculation that computes

a single set of linear coe�cients instead of a
ow vector at each point. One advan-

tage of modeling shape is the extra constraint it provides, as some \illegal" warpings

cannot even be represented. Additionally, compared to the raw
ow, the linear shape

coe�cients should be more amenable for shape analysis tasks like expression analysis

or face recognition using shape.

Given this new model for shape in the vectorizer, the set of � shape coe�cients

and � texture coe�cients could be used as a low-dimensional representation for faces.

An obvious application of this would be face recognition. Even without the modi�ed

vectorizer and the � coe�cients, the � coe�cients alone could be evaluated as a

representation for a face recognizer.

6.6.3 Multiple poses

The straightforward way to handle di�erent out-of-plane image rotations with the

vectorizer is simply to use several vectorizers, each tuned to a di�erent pose. However,

if we provide pixelwise correspondence between the standard shapes of the di�erent

vectorizers, their operations can be linked together through image interpolation. The

main idea is to interpolate among the bta images of the di�erent vectorizers to produce

a new image that reconstructs both the grey levels and the pose of the input image

(see Beymer, Shashua and Poggio [19] for examples of interpolation across di�erent

poses). Correspondence is then found between the input and this new interpolated

image using optical
ow. This correspondence, in turn, gives us correspondence

between the input and the individual vectorizers, so the input can be warped to each

one for a combined textural analysis. This procedure requires adding pose to the

existing state variables of shape, texture, and similarity transform P . The output of

this multi-pose vectorizer would be useful for pose estimation and pose-invariant face

recognition.

6.7 Summary

This chapter explored an automatic technique for computing the vectorized repre-

sentation that was introduced in the previous chapter. To design an algorithm for

118 CHAPTER 6. VECTORIZING FACE IMAGES

vectorizing images, or a \vectorizer", we observed that the shape and texture com-

ponents of the representation can be linked. That is, for textural analysis, the shape

component can be used to geometrically normalize an image so that features are prop-

erly aligned. Conversely, for shape analysis, the linear coe�cients from the textural

analysis can be used to create a reference image reconstructing the input. We then

compute shape by �nding correspondence between the reference image, which is at

standard shape, and the input. The main idea of our vectorizer is to exploit the natu-

ral feedback between the texture and shape computations by iterating back and forth

between the two until the shape/texture representation converges. We have demon-

strated an e�cient implementation of the vectorizer using a hierarchical coarse-to-�ne

strategy.

An application of the shape component to facial feature detection was explored. In

our feature �nding experiments, eyes, nose, mouth, and eyebrow features were located

in 124 test images of 62 people at two di�erent poses, and only one mouth feature

was missed by the system. In the next chapter, we explore a second application of

the shape component, the application of synthesizing virtual views.

Chapter 7

Face recognition using one view

As mentioned in the introduction, this thesis investigates two cases of the problem

of pose-invariant face recognition: (i) multiple example views are available for each

person, and (ii) only one example view per person is available. Chapter 4 discussed

the �rst case, in which a simple view-based approach was taken to the problem. In this

chapter we examine the second case, where, for example, perhaps just a driver's license

photograph is available for each person in the database. If we wish to recognize new

images of these people under a range of viewing directions, some of the new images

will di�er from the single view by a rotation in depth. Is recognition still possible?

7.1 Introduction

In general, there are a few potential approaches to the problem of face recognition

from one example view. For example, the invariant features approach records fea-

tures in the example view that do not change as pose-expression-lighting parameters

change, features such as color or geometric invariants. While not yet applied to face

recognition, this approach has been used for face detection under varying illumina-

tion (Sinha [122]) and for indexing of packaged grocery items using color (Swain and

Ballard [126]).

In the
exible matching approach (von der Malsburg and collaborators [91][83],

also see Chapter 2), the input image is deformed in 2D to match the example view.

In [91], the deformation is driven by a matching of local \end-stop" features so that

the resulting transformation between model and input is like a 2D warp rather than a

global, rigid transform. This enables the deformation to match input and model views

even though they may di�er in expression or out-of-plane rotations. A deformation

matching the input with a model view is evaluated by a cost functional that measures

both the similarity of matched features and the geometrical distortion induced by

the deformation. In this method, the di�culties include (a) constructing a generally

valid cost functional, and (b) the computational expense of a non-convex optimization

119

120 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

problem at run-time. However, since this matching mechanism is quite general (it

does not take into consideration any prior model of human facial expression or 3D

structure), it may be used for a variety of objects.

In the approach we explore in this thesis, prior knowledge of the object class

(i.e. faces) is used to expand the limited example set by synthesizing virtual views.

That is, given a single view of an object O and prior knowledge of the object class,

additional views of O from other virtual viewpoints can be generated using the prior

knowledge. As mentioned in sections 1.2 and 2.2, one example of representing this

prior knowledge is a generic 3D model of the human face, which can be used to predict

the appearance of a face under di�erent pose-expression-lighting parameters. Once

a 2D face image is texture mapped onto the 3D model, the face can be treated as a

traditional 3D object in computer graphics, undergoing 3D rotations or changes in

light source position.

In this thesis, we investigate representing prior knowledge of faces in an example-

based manner, using 2D views of prototype faces. Since we address the problem of

recognition under varying pose, the views of prototype faces will sample di�erent

rotations out of the image plane. In principle, though, di�erent expressions and

lightings can be modeled by sampling the prototype views under those parameters.

Given one view of a person and the prototype views, we will propose in this chapter

two methods for synthesizing virtual views of the person, linear classes and parallel

deformation.

Our motivation for using the example-based approach is its potential for being

a simple alternative to the more complicated 3D model-based approach. Using an

example-based approach to bypass 3D models for 3D object recognition was �rst

explored in the linear combinations approach to recognition (Ullman and Basri [130],

Poggio [105]). In linear combinations, one can show that a 2D view of an object

under rigid 3D transformation can be written as a linear combination of a small set

of 2D example views, where the 2D view representation is the vectorized shape vector

y. This is valid for a range of viewpoints in which a number of feature points are

visible in all views and thus can be brought into correspondence for the vectorized

representation. This suggests an object may be represented using a set of 2D views

instead of a 3D model.

Poggio and Vetter [110] have discussed this linear combinations approach in the

case where only one example view is available for an object, laying the groundwork for

virtual views. Normally, with just one view, 3D recognition is not possible. However,

any method for generating additional object views would enable a recognition system

to use the the linear combinations approach. This motivated Poggio and Vetter to

introduce the idea of using prior knowledge of object class to generate virtual views.

7.2. PRIOR KNOWLEDGE OF OBJECT CLASS: PROTOTYPE VIEWS 121

Two types of prior knowledge were explored, knowledge of 3D object symmetry and

example images of prototypical objects of the same class. In the former, the mirror

re
ection of the single example can be generated (also see section 1.2), and the latter

leads to the idea of linear classes, which we will explain and use later in this chapter.

After discussing methods for generating virtual views, we evaluate their usefulness

in the view-based, pose-invariant face recognizer from Chapter 4. Assuming that

example view m4 in Fig. 7-2 is the only real example view available for each person,

we will synthesize the remaining set of 14 rotated virtual views. The combined set of

one real and multiple virtual views will be used as example views in the view-based

face recognizer. Recognition performance will be reported on the same set of testing

images used in Chapter 4, which cover a range of rotations both in and out of the

image plane.

Independent from our work, Lando and Edelman [84] have recently investigated

the same overall question { generalization from a single view in face recognition {

using a similar example-based technique for representing prior knowledge of faces.

In addition, Maurer and von der Malsburg [93] have investigated a technique for

transforming their \jet" features across rotations in depth. Their technique is more

3D than ours, as it uses a local planarity assumption and knowledge of local surface

normals.

7.2 Prior knowledge of object class: prototype

views

In our example-based approach for generating virtual views, prior knowledge of face

transformations such as changes in rotation or expression are represented by 2D views

of prototypical faces. Let there be N prototype faces pj ; 1 � j � N , where the

prototypes are chosen to be representative of the variation in the class of faces. Unlike

non-prototype faces { for which we only have a single example view { many views are

available for each prototype pj .

Given a single real view of a novel face at a known pose, we wish to transform

the face to produce a rotated virtual view. Call the known pose of the real view the

standard pose and the pose of the desired virtual view the virtual pose. Images of the

prototype faces are then collected for both the standard and virtual poses. As shown

in Fig. 7-1, let

ipj = set of N prototype views at standard pose,

ipj;r = set of N prototype views at virtual pose,

122 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

N p
ro

tot
yp

es

standard pose virtual pose

, 1 ≤ j ≤ Nipj
, 1 ≤ j ≤ Nip ,rj

Figure 7-1: To represent prior knowledge of a facial transform (rotation upwards in

the �gure), views of N prototype faces are collected at the standard and virtual poses.

where 1 � j � N . Since we wish to synthesize many virtual views from the same

standard pose, sets of prototype views at the virtual pose will be acquired for all the

desired virtual views.

The techniques we explore for generating virtual views work with the vectorized

image representation introduced in Chapter 5. That is, the prototype images ipj and

ipj;r have been vectorized, producing shape vectors ypj and ypj;r and texture vectors

tpj and tpj;r. The speci�c techniques we used to vectorize images will be discussed in

section 7.4.

In the vectorized image representation, a set of images are brought into corre-

spondence by locating a common set of feature points across all images. Since the

set of prototype views contain a variety of both people and viewpoints, our de�nition

of the vectorized representation implies that correspondence needs to be computed

across di�erent viewpoints as well as di�erent people. However, the two techniques

for generating virtual views, parallel deformation and linear classes, have di�erent

requirements in terms of correspondence across viewpoint. Parallel deformation re-

quires these correspondences, so the prototype views are vectorized as one large set.

On the other hand, linear classes does not require correspondence across viewpoints,

so the set of images is partitioned by viewpoint and separate vectorizations de�ned for

each viewpoint. In this latter case, vectorization is simply handling correspondence

across the di�erent prototypes at a �xed pose.

7.3. VIRTUAL VIEWS SYNTHESIS TECHNIQUES 123

7.3 Virtual views synthesis techniques

Let in be the single real view of the novel face in standard pose. In this section, we

discuss how to synthesize the virtual view in;r using the techniques of linear classes

and parallel deformation.

7.3.1 Linear Classes

Because the theory of linear classes begins with a modeling assumption in 3D, let

us generalize the 2D vectorized image representation to a 3D object representation.

Recall that the 2D image vectorization is based on establishing feature correspondence

across a set of 2D images. In 3D, this simply becomes �nding a set of corresponding

3D points for a set of objects. The feature points are distributed over the face in 3D

and thus may not all be visible from any one single view. Two measurements are

made at each 3D feature point:

1. Shape. The (x; y; z) coordinates of the feature point. If there are n feature

points, the vector Y will be a vector of length 3n consisting of the x, y, and z

coordinate values.

2. Texture. If we assume that the 3D object is Lambertian and �x the lighting

direction ~l = (lx; ly; lz), we can measure the intensity of light re
ected from each

feature point, independent of viewpoint. At the ith feature point, the intensity

T[i] is given by

T[i] = �[i] (~�[i] �~l); (7.1)

where �[i] is the albedo, or local surface re
ectance, of feature i and ~�[i] is the

local surface normal at feature i.1

The texture vector T is not an image; one can think of it as a texture that is mapped

onto the 3D shape Y given a particular set of lighting conditions ~l. One helpful way

to visualize of the texture vector T is a sampling of image intensities in a cylindrical

coordinate system that covers feature points over the entire face. This is similar to

that produced by the Cyberware scanner.

Consider the relationship between 3D vectorized shape Y and texture T and their

counterpart 2D versions y and t. The projection process of going from 3D shape Y to

1Actually, it is not strictly necessary for the object to be Lambertian; equation (7.1) could be a

di�erent functional form of �, ~�, and ~l. What is necessary is that T[i] is independent of lighting and

viewing direction, which may be achieved by �xing the light source and assuming that the object is

Lambertian.

124 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

2D shape y consists of a 3D rotation, occlusion of a set of non-visible feature points,

and orthographic projection. Mathematically, we model this using a matrix L

y = LY; (7.2)

where matrix L is the product of a 3D rotation matrix R, an occlusion matrix D that

simply drops the coordinates of the occluded points, and orthographic projection O

L = ODR:

Note that L is a linear projection operator.

Creating a 2D texture vector t at a particular viewpoint ~v involves in some sense

\projecting" the 3D texture T. This is done by selecting the feature points that are

visible in the standard shape at viewpoint ~v

t = DT; (7.3)

where D is a matrix that drops points occluded in the given viewpoint. Thus, view-

point is handled in D; the lighting conditions are �xed in T. Like operator L, D is a

linear operator.

The idea of linear classes is based on the assumption that the space of 3D object

vectorizations for objects of a given class is linearly spanned by a set of prototype

vectorizations. That is, the shape Y and texture T of a class member can be written

as

Y =
NX
j=1

�jYpj
and T =

NX
j=1

�jTpj
(7.4)

for some set of �j and �j coe�cients.

While the virtual views methods based on linear classes do not actually compute

the 3D vectorized representation, the real view in is related to the destination virtual

view in;r through the 3D vectorization of the novel object. First, a 2D image analysis

of in at standard pose estimates the �j and �j in equation (7.4) by using the prototype

views ipj . Then the virtual view in;r can be synthesized using the linear coe�cients

and the prototype views ipj;r. Let us now examine these steps in detail for the shape

and texture of the novel face.

Virtual shape

Given the vectorized shape of the novel person yn and the prototype vectorizations

ypj and ypj;r; 1 � j � N , linear classes can be used to synthesize vectorized shape

yn;r at the virtual pose. This idea was �rst developed by Poggio and Vetter [110].

7.3. VIRTUAL VIEWS SYNTHESIS TECHNIQUES 125

In linear classes, we assume that the novel 3D shape Yn can be written as a linear

combination of the prototype shapes Ypj

Yn =
P

N

j=1 �jYpj
: (7.5)

If the linear class assumption holds and the set of 2D views ypj are linearly indepen-

dent, then we can solve for the �j's at the standard view

yn =
P

N

j=1 �jypj (7.6)

and use the prototype coe�cients �j to synthesize the virtual shape

yn;r =
P

N

j=1 �jypj;r: (7.7)

This is true under orthographic projection. The mathematical details are provided

in Appendix B.

While this may seem to imply that we can perform a 3D analysis based on one

2D view of an object, the linear class assumption cannot be veri�ed using 2D views.

Thus, from just the 2D analysis, the technique can be \fooled" into thinking that

it has found a good set of linear coe�cients when in fact equation (7.5) is poorly

approximated. That is, the technique will be fooled when the actual 3D shape of the

novel person is di�erent from the 3D interpolated prototype shape in the right hand

side of equation (7.5).

In solving equations (7.6) and (7.7), the linear class approach can be interpreted

as creating a direct mapping from standard to virtual pose. That is, we can derive a

function that maps from y's in standard pose to y's in the virtual pose. Let Y be a

matrix where column j is ypj , and let Yr be a matrix where column j is ypj;r. Then if

we solve for equation (7.6) using linear least squares and plug the resulting �'s into

equation (7.7), then

yn;r = YrY
yyn; (7.8)

where Y y is the pseudoinverse (Y tY)�1Y t.

Another way to formulate the solution as a direct mapping is to train a network to

learn the association between standard and virtual pose (see Poggio and Vetter [110]).

The (input, output) pairs presented to the network during training would be the

prototype pairs (ypj, ypj;r). A potential architecture for such a network is suggested

by the fact that equation (7.8) can be implemented by a single layer linear network.

The weights between the input and output layers are given simply by the matrix

YrY
y.

126 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

Virtual texture

In addition to generating the shape component of virtual views, the prototypes can

also be used to generate the texture of virtual views. Given the texture of a novel

face tn and the prototype textures tpj and tpj;r; 1 � j � N , the concept of linear

classes can be used to synthesize the virtual texture tn;r. This synthesized grey level

texture is then warped or texture mapped onto the virtual shape to create a �nished

virtual view. The ideas presented in this section were developed by the author and

also independently by Vetter and Poggio [132].

To generate the virtual texture tn;r, we propose using the same linear class idea of

approximation at the standard view and reconstruction at the virtual view. Similarly

to the shape case, this relies on the assumption that the space of grey level textures

T is linearly spanned by a set of prototype textures. The validity of this assumption

is borne out by recent successful face recognition systems (e.g. eigenfaces, Pentland,

et al. [103]). First, assume that the novel texture Tn can be written as a linear

combination of the prototype textures Tpj

Tn =
P

N

j=1 �jTpj
: (7.9)

The analog of linear classes for texture, presented in Appendix B, says that if this

assumption holds and the 2D textures tpj are linearly independent, then we should

be able to decompose the real texture tn in terms of the example textures tpj

tn =
P

N

j=1 �jtpj (7.10)

and use the same set of coe�cients to reconstruct the texture of the virtual view

tn;r =
P

N

j=1 �jtpj;r: (7.11)

Note that the texture T and hence the �j coe�cients are dependent on the light-

ing conditions. Thus, by computing di�erent views t using the D operator, we are

e�ectively rotating the camera around the object. The geometry between object and

light source is kept �xed.

We have synthesized textures for rotations of 10 to 15 degrees between standard

and virtual poses with reasonable results; see section 7.4 for example tn;r images and

section 7.5 for recognition experiments. In terms of computing tn;r from tn, we can

use the same linear solution technique as for shape (equation (7.8)).

7.3.2 Parallel deformation

While the linear class idea does not require the y vectors to be in correspondence

between the standard and virtual views, if we add such \cross view" correspondence

7.3. VIRTUAL VIEWS SYNTHESIS TECHNIQUES 127

then the linear class idea can be interpreted as �nding a 2D deformation from yn to

yn;r. Having shape vectors in cross view correspondence simply means that the y

vectors in both poses refer to the same set of facial feature points. The advantage

of computing this 2D deformation is that the texture of the virtual view can be

generated by texture mapping directly from the original view in. This avoids the

need for additional techniques to synthesize virtual texture at the virtual view.

To see the deformation interpretation, subtract equation (7.6) from (7.7) and move

yn to the other side, yielding

yn;r = yn +
P

N

j=1 �j(ypj;r � ypj): (7.12)

Bringing shape vectors from the di�erent poses together in the same equation is legal

because we have added cross view correspondence. The quantity�y
j
= ypj ;r�ypj is

a 2D warp that speci�es how prototype j's feature points move under the prototype

transformation. Equation (7.12) modi�es the shape yn by a linear combination of

these prototype deformations. The coe�cients of this linear combination, the �j 's,

are given by Y yyn, the solution to the approximation equation (7.6).

Consider as a special case the deformation approach with just one prototype. In

this case, the novel face is deformed in a manner that imitates the deformation seen

in the prototype. This is similar to performance-driven animation (Williams [136]),

and Poggio and Brunelli [108], who call it parallel deformation, have suggested it as

a computer graphics tool for animating objects when provided with just one view.

Specializing equation (7.12) gives

yn;r = yn + (yp;r � yp); (7.13)

where we have dropped the j subscripts on the prototype variable p. The deformation

�y = yp;r � yp essentially represents the prototype transform and is the same 2D

warping as in the multiple prototypes case.

By looking at the one prototype case through specializing the original equations

(7.6) and (7.7), we get yn = yp and yn;r = yp;r. This seems to say that the virtual

shape yn;r is simply that of the prototype at virtual pose, so why should equation

(7.13) give us anything di�erent? However, the specialized equations, which approxi-

mate the novel shape by prototype shape, are likely to be poor approximations. Thus,

we should really add error terms, writing yn = yp+yerror1 and yn;r = yp;r+yerror2.

The error terms are likely to be highly correlated, so by subtracting the equations {

as is done by parallel deformation { we cancel out the error terms to some degree.

128 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

7.3.3 Comparing linear classes and parallel deformation

What are some of the relative advantages of linear classes and parallel deformation?

First, consider some of the advantages of linear classes over parallel deformation.

Parallel deformation works well when the 3D shape of the prototype matches the 3D

shape of the novel person. If the two 3D shapes di�er enough, the virtual view gen-

erated by parallel deformation will appear geometrically distorted. Linear classes, on

the other hand, e�ectively tries to construct a prototype that matches the novel shape

by taking the proper linear combination of example prototypes. Another advantage

of linear classes is that correspondence is not required between standard and virtual

poses. Thus, linear classes may be able to cover a wider range of rotations out of the

image plane as compared to parallel deformation.

One advantage of parallel deformation over linear classes is its ability to preserve

peculiarities of texture such as moles or birthmarks. Parallel deformation will preserve

such marks since it samples texture from the original real view of the novel person's

face. For linear classes, it is most likely that a random mark on a person's face will

be outside the linear texture space of the prototypes, so it will not be reconstructed

in the virtual view.

7.4 Generating virtual views

In our approach to recognizing faces using just one example view per person, we �rst

expand the example set by generating virtual views of each person's face. The full set

of views that we would ultimately like to have for our view-based face recognizer are

the set of 15 example views shown in Fig. 7-2 and originally used in the recognizer

from Chapter 4. These views evenly sample the two rotation angles out of the image

plane.

While Fig. 7-2 shows 15 real views, in virtual views we assume that only view

m4 is available and we synthesize the remaining 14 example views. For the single

real view, an o�-center view was favored over, say, a frontal view because of the

recognition results for bilaterally symmetric objects of Poggio and Vetter [110]. When

the single real view is from a nondegenerate pose (i.e. mirror re
ection is not equal

to original view), then the mirror re
ection immediately provides a second view that

can be used for recognition. The choice of an o�-center view is also supported by

the psychophysical experiments of Schyns and B�ultho� [116]. They found that when

humans are trained on just one pose and tested on many, recognition performance is

better when the single training view is an o�-center one as opposed to a frontal pose.

In completing the set of 15 example views, the 8 views neighboring m4 will be

7.4. GENERATING VIRTUAL VIEWS 129

m10 m9 m8 m7 m6

m5 m4 m3 m2 m1

m15 m14 m13 m12 m11

Figure 7-2: The view-based face recognizer uses 15 views to model a person's face.

For virtual views, we assume that only one real view, view m4, is available and we

synthesize the remaining 14.

generated using our virtual views techniques. Using the terminology of the theory

section, view m4 is the standard pose and each of the neighboring views are virtual

poses. The remaining 6 views, the right two columns of Fig. 7-2, will be generated by

assuming bilateral symmetry of the face and taking the mirror re
ection of the left

two columns.

We now describe how parallel deformation and linear classes were used to expand

the example set with virtual views. Recognition results with these virtual views are

summarized in the next section.

7.4.1 Parallel deformation

The goal of parallel deformation is to map a facial transformation observed on a

prototype face onto a novel, non-prototype face. There are three steps in implement-

ing parallel deformation: (a) recording the deformation yp;r � yp on the prototype

face, (b) mapping this deformation onto the novel face, and (c) 2D warping the novel

face using the deformation. We now go over these steps in more detail, using as an

example the prototype views and single novel view in Fig. 7-3.

First, we collect prototype views ip and ip;r and compute the prototype deforma-

130 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

ip

ip,r

yp,r-p
p

in

in,r in + (p,r-p)=

yn-p
p

yp,r-p
n

B

CA

Figure 7-3: In parallel deformation, (A) the prototype
ow y
p

p;r�p is �rst measured

between ip;r and ip, (B) the
ow is mapped onto the novel face in, and (C) the novel

face is 2D warped to the virtual view.

tion

y
p

p;r�p = vect(ip;r; ip)

using optical
ow. Shown overlayed on the reference image on the left of Fig. 7-3,

this 2D deformation speci�es how to forward warp ip to ip;r and represents our \prior

knowledge" of face rotation. To assist the correspondence calculation, a sequence of

four frames from standard to virtual pose is used instead of just two frames. Pairwise

optical
ows are computed and concatenated to get the composite
ow from �rst to

last frame.

Next, the 2D rotation deformation is mapped onto the novel person's face by

changing the reference frame of y
p

p;r�p from ip to in. First, interperson correspondences

between ip and in are computed

y
p

n�p = vect(in; ip)

and used to change the reference frame

yn
p;r�p = fwarp-vect(y

p

p;r�p;y
p

n�p):

The
ow yn
p;r�p is the 2D rotation deformation mapped onto the novel person's stan-

dard view. As the interperson correspondences are di�cult to compute, we evaluated

7.4. GENERATING VIRTUAL VIEWS 131

proto A proto B proto C

Figure 7-4: The prototypes used for parallel deformation. Standard poses are shown.

two techniques for establishing feature correspondence: labeling features manually on

both faces, and using the vectorizer from Chapter 6 to automatically locate features.

More will be said about these two approaches shortly.

Finally, the texture from the original real view in is 2D warped onto the rotated

face shape, producing the �nal virtual view

in;r = in+(p;r�p) = fwarp(in;y
n

p;r�p):

Referring to our running example in Fig. 7-3, the �nal virtual view is shown in the

lower right.

In this procedure for parallel deformation, there are two main parameters that

one may vary:

1. The prototype. As mentioned previously, the accuracy of virtual views generated

by parallel deformation depends on the degree to which the 3D shape of the

prototype matches the 3D shape of the novel face. Thus, one would expect

di�erent recognition results from di�erent prototypes. We have experimented

with virtual views generated using the three di�erent prototypes shown in Fig. 7-

4. In general, given a particular novel person, it is best to have a variety of

prototypes to choose from and to try to select the one that is closest to the

novel person in terms of shape.

2. Approach for interperson correspondence. In both the manual and automatic

approaches, interperson correspondences are driven by the line segment features

shown in Fig. 7-5. The automatic segments shown on the right were located

using our face vectorizer from Chapter 6. The manual segments on the left in-

clude some additional features not returned by the vectorizer, especially around

the sides of the face. Given these sets of correspondences, the interpolation

method from Beier and Neely [13] (see section 5.2.1) is used to interpolate the

correspondences to de�ne a dense, pixelwise mapping from the prototype to

132 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

example

manual segments

example

automatic segments

Figure 7-5: Parallel deformation requires correspondences between the prototype and

novel person. These correspondences are driven by the segment features shown in the

�gure. The features on the left were manually located, and the features on the right

were automatically located using the vectorizer.

novel face. For the automatic case, we did try to use the dense y shape vectors

directly to avoid the Beier and Neely interpolant. However, the vectorizer limits

correspondence to areas around the eyes, nose, mouth, which means that virtual

views are de�ned only in those regions. This, in turn, made the optical
ow

correspondence step in the recognizer itself more di�cult. The Beier and Neely

interpolation method provides a simple way to extrapolate the correspondences

de�ned over the center part of the face to the face periphery.

Figures 7-6 and 7-7 show example virtual views generated using prototype A with

the real view in the center. Manual interperson correspondences were used in Fig. 7-6

and the image vectorizer in Fig. 7-7. To compare views generated from the di�erent

prototypes, Fig. 7-8 shows virtual views generated from all three prototypes. For

comparison purposes, the real view of each novel person is shown on the right.

7.4.2 Linear Classes

We use the linear class idea to analyze the novel texture in terms of the prototypes

at the standard view and reconstruct at the virtual view. In the analysis step at the

standard view, we decompose the shape free texture of the novel view tn in terms of

the N shape free prototype views tpj

tn =
P

N

j=1 �jtpj ; (7.14)

which results in a set of �j prototype coe�cients. But before solving this equation

for the �j, the novel view in and prototype views ipj must be vectorized to produce

7.4. GENERATING VIRTUAL VIEWS 133

Figure 7-6: Example virtual views using parallel deformation. Prototype A was used,

and interperson correspondence y
p

n�p was speci�ed manually.

Figure 7-7: Example virtual views using parallel deformation. Prototype A was used,

and interperson correspondence y
p

n�p was computed automatically using the image

vectorizer.

134 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

proto A proto B proto C

m3

m9

m15

real view

Figure 7-8: Example virtual views as the prototype person is varied. The correspond-

ing real view of each novel person is shown on the right for comparison.

the geometrically normalized textures tn and tpj ; 1 � j � N . Since the tpj 's can

be put into correspondence manually in an o�-line step (using the Beier and Neely

approach discussed in section 5.2.1), the primary di�culty of this step is in converting

in into its shape free representation tn. Since in is an m4 view of the face, this step

means �nding correspondence between in and view m4's standard face shape. Let

this standard shape be denoted as ystd.

Our image vectorizer, which we describe in Chapter 6, is used to solve for the

correspondences ystd
n�std between in and standard shape ystd. These correspondences

can then be used to geometrically standardize in

tn(x) = in(x+ ystd
n�std(x));

where x is an arbitrary 2D point (x; y) in standard shape. Fig. 7-9 on the left shows

an example view in with some features automatically located by the vectorizer. The

right side of the �gure shows templates tn of the eyes, nose, and mouth that have

been geometrically normalized using the correspondences ystd
n�std.

Next, the texture tn is decomposed as a linear combination of the prototype

textures, following equation (7.14). First, combine the �j terms into a column vector

� and de�ne a matrix T of the prototype textures, where the jth column of T is tpj.

7.4. GENERATING VIRTUAL VIEWS 135

in tn

Figure 7-9: Using correspondences from our face vectorizer, we can geometrically

normalize input in, producing the \shape free" texture tn.

Then equation (7.14) can be rewritten as

tn = T�:

This can be solved using linear least squares, yielding

� = T ytn;

where T y is the pseudoinverse (T tT)�1T t.

The synthesis step assumes that the textural decomposition at the virtual view is

the same as that at the standard view. Thus, we can synthesize the virtual texture

tn;r =
NX
j=1

�jtpj;r;

where tpj;r are the shape free prototypes that have been warped to the standard shape

of the virtual view. As with the tpj 's, the tpj;r's are put into correspondence manually

in an o�-line step. If we de�ne a matrix Tr such that column j is tpj;r, the analysis

and synthesis steps can be written as a linear mapping from tn to tn;r

tn;r = TrT
ytn:

This linear mapping was previously discussed in section 7.3.1 for generating virtual

shapes.

Fig. 7-10 shows a set of virtual views generated using the analysis of Fig. 7-9. Note

that the prototype views must be of the same set of people across all nine views. We

used a prototype set of 55 people, so we had to specify manual correspondence (see

136 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

Figure 7-10: Example virtual views for linear classes.

Fig. 6-1) for 9 views of each person to set up the shape free views. When generating

the virtual views for a particular person, we would, of course, remove him from the

prototype set if he were initially present, following a cross validation methodology.

Notice from Fig. 7-10 that by using the shape free textural representation, the

virtual views in this experiment are decoupled from shape and hence all views are

in the standard shape of the virtual pose. The only di�erence between the views of

di�erent people at a �xed pose will be their texture.

7.5 Experimental results

In this section we report the recognition rates obtained when virtual views were used

in our view-based recognizer from Chapter 4. The recognizer is essentially the same

registration followed by correlation mechanism. For testing linear classes, there are

some minor changes to the optical
ow step since the whole face template is not

available. In this case, optical
ow is performed over individual templates rather

than the entire face.

To test the recognizer, a set of 10 testing views per person were taken to randomly

sample poses within the overall range of poses in Fig. 7-2. Roughly half of the test

views include an image-plane rotation, so all three rotational degrees of freedom are

tested. There are 62 people in the database, including 44 males and 18 females,

7.5. EXPERIMENTAL RESULTS 137

interperson prototype

correspondence A B C

manual 84.5% 83.9% 83.9%

auto 85.2% 84.0% 83.4%

Table 7.1: Recognition rates for parallel deformation for the di�erent prototypes and

for manual vs. automatic features.

people from di�erent races, and an age range from the 20s to the 40s. Lighting for

all views is frontal and facial expression is neutral.

Table 7.1 shows recognition rates for parallel deformation for the di�erent pro-

totypes and for manual vs. automatic features. As with the experiments with real

views in Chapter 4, the recognition rates were recorded for a forced choice scenario

{ the recognizer always reports the best match. In the template-based recognizer,

template scale was �xed at an intermediate scale (interocular distance = 30 pixels)

and preprocessing was �xed at dx+dy (the sum of separate correlations on the x and

y components of the gradient). These parameters had yielded the best recognition

rates for real views in Chapter 4. The results were fairly consistent, with a mean

recognition rate of 84.1% and a standard deviation of only 0.6%. Automatic feature

correspondence on average was as good as the manual correspondences, which was

a good result for the face vectorizer. In the manual case, though, it is important to

note that the manual step is at \model-building" time; the face recognizer at run

time is still completely automatic.

Fig. 7-11 summarizes our experiments with using real and virtual views in the

recognizer. Starting on the right, we repeat the result from Chapter 4 where we

use 15 real views per person. This recognition rate of 98.7% presents a \best case"

scenario for virtual views. The real views case is followed by parallel deformation,

which gives a recognition rate of 85.2% for prototype A and automatic interperson

correspondences. Next, linear classes on texture yields a recognition rate of 73.5%. To

put these two recognition numbers in context, we compare them to a \base" case that

uses only two example views per person, the real view m4 plus its mirror re
ection.

A recognition rate of 70% was obtained for this two view case, thus establishing a

lower bound for virtual views. Parallel deformation at 85% falls midway between the

benchmark cases of 70% (one view + mirror re
ect.) and 98%, (15 views) so it shows

that virtual views do bene�t pose-invariant face recognition.

In addition, the leftmost bar in Fig. 7-11 (one view) gives the recognition rate

when only the view m4 is used. This shows how much using mirror re
ection helps

138 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

0

10

20

30

40

50

60

70

80

90

100

recog.
 rate
 (%)

1 view
 +
mirror
relfect.

15 real
 views

parallel
deform.

 linear
classes
(texture)

1 view

"best"
 case

"base"
 case

virtual views

32.1%

70.2%
73.5%

85.2%
98.7%

Figure 7-11: Face recognition performance for real and virtual views.

in the single real view case: without the view generated by mirror re
ection, the

recognition rate is roughly cut in half from 70% to 32%. This low recognition rate is

caused by winnowing of example views based on the coarse pose estimate (looking left

vs. looking right) of the input. If the input view is \looking right", then the system

does not even try to match against the m4 example view, which is \looking left". In

this (one view) case, 62% of the inputs are rejected, and 6% of the inputs give rise to

substitution errors.

Linear classes for virtual texture was a disappointment, however, only yielding

a recognition rate a few percentage points higher than the base case of 70%. This

may have been due to the factoring out of shape information. We also noticed that

the linear reconstruction has a \smoothing" e�ect, reproducing the lower frequency

components of the face better than the higher frequency ones. One di�erence in the

experimental test conditions with respect to parallel deformation was that correlation

was performed on the original grey levels instead of dx+dy; empirically we obtained

much worse performance after applying a di�erential operator.

7.6. DISCUSSION 139

7.6 Discussion

7.6.1 Evaluation of recognition rate

While the recognition rate using virtual views, ranging from 85% for parallel defor-

mation to 73% for linear classes, is much lower than the 98% rate for the multiple

views case, this was expected since virtual views use much less information. One way

to evaluate these rates is to use human performance as a benchmark. To test human

performance, one would provide a subject with a set of training images of previously

unknown people, using only one image per person. After studying the training images,

the subject would be asked to identify new images of the people under a variety of

poses. Moses, Ullman, and Edelman [97] have performed this experiment using testing

views at a variety of poses and lighting conditions. While high recognition rates were

observed in the subjects (97%), the subjects were only asked to discriminate between

three di�erent people. Bruce [25] performs a similar experiment where the subject is

asked whether a face had appeared during training, and detection rates go down to

either 76% or 60%, depending on the amount of pose/expression di�erence between

the testing and training views. Schyns and B�ultho� [116] obtain a low recognition

rate, but their results are di�cult to compare since their stimuli are Gouraud shaded

3D faces that exclude texture information. Lando and Edelman [84] have recently

performed computational experiments to replicate earlier psychophysical results in

[97]. A recognition rate of only 76% was reported, but the authors suggest that this

may be improved by using a two-stage classi�er instead of a single-stage one.

Direct comparison of our results to related face recognition systems is di�cult

because of di�erences in example and testing views. The closest systems are those

of Lando and Edelman [84] and Maurer and von der Malsburg [93]. Both systems

explore a view transformation method that e�ectively generates new views from a

single view. The view representation, in contrast to our template-based approach, is

feature-based: Lando and Edelman use di�erence of Gaussian features, and Maurer

and von der Malsburg use a set of Gabor �lters at a variety of scales and rotations

(called \jets"). The prior knowledge Lando and Edelman used to transform faces

is similar to ours, views of prototype faces at standard and virtual views. They

average the transformation in feature space over the prototypes and apply this average

transformation to a novel object to produce a \virtual" set of features. As mentioned

above, they report a recognition rate of 76%. Maurer and von der Malsburg transform

their Gabor jet features by approximating the facial surface at each feature point as

a plane and then estimating how the Gabor jet changes as the plane rotates in 3D.

They apply this technique to rotating faces about 45� between frontal and half-pro�le

views. They report a recognition rate of 53% on a subset of 90 people from the FERET

140 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

database.

Two other comparable results are from Manjunath, et al. [91], who obtain 86% on

a database of 86 people, and Pentland, et al. [103], whose extrapolation experiment

with view-based eigenspaces yields 83% on a database of 21 people. In both cases, the

system is trained on a set of views (vs. just one for ours) and recognition performance

is tested on views from outside the pose-expression space of the training set. One

di�erence in example views is that they include hair and we do not. In the future,

the new Army FERET database should provide a common benchmark for comparing

recognition algorithms.

7.6.2 Di�culties with virtual views generation

Since we know that the view-based approach performs well with real example views,

making the virtual views closer in appearance to the \true" rotated views would

obviously improve recognition performance. What di�culties do we encounter in

generating \true" virtual views? First, the parallel deformation approach for shape

essentially approximates the 3D shape of the novel person with the 3D shape of the

prototype. If the two 3D shapes are di�erent, the virtual view will not be \true" even

though it may still appear to be a valid face. The resulting shape is a mixture of the

novel and prototype shapes. Using multiple prototypes and the linear class approach

may provide a better shape approximation.

In addition, for parallel deformation we have problems with areas that are visible

in the virtual view but not in the standard view. For example, for the m4 pose,

the underside of the nose is often not visible. How can one predict how that region

appears for upward looking virtual views? Possible ways to address this problem

include using additional real views or having the recognizer exclude those regions

during matching.

7.6.3 Transformations besides rotation

While the theory and recognition experiments in this paper revolve around generat-

ing rotated virtual views, one may also wish to generate virtual views for di�erent

lighting conditions or expressions. This would be useful for building a view-based

face recognizer that handles those kinds of variation in the input. Here we suggest

ways to generate these views.

7.6. DISCUSSION 141

Lighting

For changes in lighting conditions, the prototype faces are �xed in pose but the

position of the light source is changed between the standard and virtual views. Un-

fortunately, changing the direction of the light source violates an assumption made

for linear classes that the lighting conditions are �xed. That assumption had allowed

us to ignore the fact that surface albedo and the local surface normal are confounded

in the Lambertian model for image intensity.

However, the idea of parallel deformation can still be applied. Parallel deformation

assumes that the 3D shape of the prototype is similar to the 3D shape of the novel

person. Thus, corresponding points on the two faces should have the same local

surface normal. The following analysis focuses on the image brightness of the same

feature point on both the prototype and novel face. The two feature points may have

been brought into correspondence through a vectorization procedure. Let

� = surface normal for both the prototype

and novel faces

lstd = light source direction for standard lighting

lvirtual = light source direction for virtual lighting

�proto = albedo for the prototype face

�nov = albedo for the novel face

The prior knowledge of the lighting transformation can be represented by the ratio

of the prototype image intensities under the two lighting directions

�proto(� � lvirtual)

�proto(� � lstd)
:

Simply by multiplying by the image intensity of the novel person �nov(� � lstd) and

cancelling terms, one can get

�nov(� � lvirtual);

which is the image intensity of the novel feature point under the virtual lighting.

Overall, the novel face texture is modulated by the changes in the prototype lighting,

an approach that has been explored by Brunelli [27].

Expression

In this case, the prototypes are �xed in pose and lighting but di�er in expression,

with the standard view being, say, a neutral expression and the virtual view being a

smile, frown, etc. When generating virtual views, we need to capture both nonrigid

142 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

shape deformations and the subtle texture changes such as the darkening e�ect of

dimples or winkles. Thus, virtual views generation techniques for both shape and

texture are required.

Predicting virtual expressions, however, seems more di�cult than the rotation

or lighting case. This is because the way a person smiles or frowns is probably

decoupled from how to decompose his neutral face as a linear combination of the

prototypes. To the extent that they are decoupled, the approaches we have suggested

for generating virtual shapes and textures will be an approximation. Our problems

show up mathematically in the nonrigidness of the transformation; the linear class

idea for shape assumes a rigid 3D transform. The implication of these problems is that

the expense of multiple prototypes is probably not justi�ed; one is probably better

o� using just one or a few prototypes. In earlier work aimed primarily at computer

graphics [19], we demonstrated parallel deformation for transformations from neutral

to smiling expressions.

7.6.4 Future work

For future work on our approach to virtual views, we plan to use multiple prototypes

for generating virtual shape. Vetter and Poggio [132] have already done some work

in applying the linear class idea to both shape and texture. It would be interesting

to test some of their virtual views in a view-based recognizer. In the longer term,

one can test the virtual views technique for face recognition under di�erent lighting

conditions or expressions.

7.7 Summary

In this chapter we have addressed the problem of recognizing faces under di�erent

poses when only one example view of each person is available. Given one real view

at a known pose, we use prior knowledge of faces to generate virtual views, views

of the face as seen from di�erent poses. Rather than using a more traditional 3D

modeling approach, prior knowledge of faces is expressed in the form of 2D views of

rotating prototype faces. Given the 2D prototype views and a single real view of a

novel person, we demonstrated two techniques for e�ectively rotating the novel face in

depth. First, in parallel deformation, a facial transformation observed on a prototype

face in mapped onto a novel face and used to warp the novel view. Second, in linear

classes, the single novel view is decomposed as a linear combination of prototype

views at the same pose. Then these same linear coe�cients are used to synthesize a

virtual view of the novel person by taking a linear combination of the prototype views

7.7. SUMMARY 143

at virtual pose. We demonstrated this for the grey level, or textural, component of

the face.

To evaluate virtual views, they were then used as example views in a view-based,

pose-invariant face recognizer. On a database of 62 people with 10 test views per

person, a recognition rate of 85% was achieved in experiments with parallel deforma-

tion, which is well above the base recognition rate of 70% when only one real view

(plus its mirror re
ection) is used. Also, our recognition rate is similar to other face

recognition experiments where extrapolation from the pose-expression range of the

example views is tested. Overall, for the problem of generating new views of an object

from just one view, these results demonstrate that the 2D example-based technique,

similarly to 3D object models, may be a viable method for representing knowledge of

object classes.

144 CHAPTER 7. FACE RECOGNITION USING ONE VIEW

Chapter 8

Discussion

8.1 Summary

This thesis has addressed the problem of automatic face recognition, the task of

visually identifying a person in an input image. While this problem has been studied

in the computer vision and pattern recognition communities for over two decades,

most existing work in face recognition has limited the scope of the problem by dealing

primarily with frontal views, neutral expressions, and �xed lighting conditions. To

help generalize existing face recognition systems, this thesis has looked at the problem

of recognizing faces under a range of viewpoints. The di�cult part of this is to handle

the two rotations out of the image plane, or rotations \in depth". In particular, we

considered two cases of this problem:

1. many example views are available of each person, and

2. only one view is available per person.

In the latter case, perhaps the single available view per person is from a driver's

license or passport photograph.

8.1.1 Multiple views per person

In the multiple views case, a simple view-based approach is taken to build a pose-

invariant face recognition system. Each person in the database is represented using 15

views that sample a range of viewpoints on the viewing sphere. The 15 views include 5

rotations left/right (covering the range [�30�; 30�]) and 3 rotations up/down (covering

the range [�20�; 20�]). Each view is represented using templates of the eyes, nose,

and mouth, which is motivated by the prior success of template-based recognition

systems for frontal views of faces [11][28][59].

Given a new input image to recognize, the view-based recognizer follows a basic

strategy of �rst geometrically registering the input image with stored example views

145

146 CHAPTER 8. DISCUSSION

and then using normalized correlation to evaluate the match. To perform the geo-

metrical registration, the �rst step is to automatically locate the two irises and a nose

feature in the input. This feature detection module needs to be both person- and

pose-invariant since it is the �rst thing that is run in the system. To satisfy these

requirements, we use a simple template-based strategy for locating the eyes and nose,

using hundreds of templates of the eyes-nose region from a variety of \exemplar"

people and di�erent poses. The feature detection problem becomes one of �nding a

good match between the input and one of the eyes-nose templates. To help keep the

amount of computation under control, a hierarchical coarse-to-�ne template-matching

strategy is used.

Once the eyes and nose features are located, the input image is registered and

matched against the example views in the face database. Based on a coarse pose

estimate of the out-of-plane image rotation from the feature �nder, only 9 views of

the original 15 views are tested for each person. The matching procedure between

the input image and a particular example view is as follows. First, the input image

is registered with the example view in two steps

1. Coarse registration using an a�ne transform. The input image is resampled

under an a�ne transform to align the eyes and nose features in the input image

with the same features in the example view.

2. Fine registration using optical
ow. Pixelwise correspondence is established be-

tween the a�ne-transformed input and the example view using optical
ow.

Then the a�ne-transformed input is warped using the correspondences to reg-

ister the two images at the pixel-level.

The next step is to correlate the eyes, nose, and mouth templates from the example

view against the registered input image. A normalized correlation metric is used

to help provide some invariance to di�erences in lighting conditions between the two

images. After performing this matching procedure for all 9 example views per person,

the recognizer returns the best match.

When evaluated on a database of 62 people and 10 test views per person, our view-

based recognizer attains a recognition rate of 98%. The test views cover the same

range of viewpoints as the 15 example views, and the poses are randomly chosen by

each person in the database. In addition, half of the test views include a rotation in

the image plane, so all three rotational degrees of freedom were tested. The lighting

conditions in the database are �xed, and people are asked to show a neutral expression.

8.1. SUMMARY 147

8.1.2 Single view per person

In the second case of pose-invariant face recognition, we assume that only a single

example view of each person is available in the database. In this case, is it still

possible to recognize these people under a variety of poses, especially when new

input views di�er from the single available example by a rotation in depth? In

this thesis, we reduced this case to the multiple views case by synthesizing virtual

views [106][110]. Virtual views are new views of an object as seen from di�erent

poses, lighting conditions, or expressions. For our problem of pose-invariant face

recognition, we are interested in virtual views under di�erent rotations in depth.

How does one synthesize virtual views of an object? If the object belongs to a

speci�c class of objects { such as the class of faces { then one may be able to take

advantage of modeling assumptions on the class level to synthesize virtual views. That

is, if one has prior knowledge about the object class, then one may be able to apply

that knowledge to a single view of a \novel" object to synthesize virtual views of it.

For instance, if one knows how faces change appearance under some transformation

(e.g. rotation in depth, expression change), then that transformation can be applied

to the single view available of a \novel" face. In this thesis, prior knowledge of face

rotation in depth was encoded by using 2D views of prototype faces. Let the pose of

the single novel object be de�ned as standard pose, and let the pose of the desired

virtual view be virtual pose. Then the required views of the prototype faces are at

both standard and virtual poses.

Two techniques were presented for synthesizing virtual views. First, the tech-

nique of parallel deformation (also see [108]) maps a transformation observed on a

prototype object onto the novel object. The prior knowledge of the transformation is

represented by a 2D deformation of feature locations on the prototype face. This 2D

deformation records feature correspondence between the standard and virtual poses of

the prototype, and we measure it using optical
ow. Next, the prototype deformation

is mapped onto the novel object, which requires feature correspondence between the

standard poses of the prototype and novel objects. In this thesis, we explored both

manual and automatic techniques for establishing these feature correspondences, the

latter of which is based on our face \vectorizer". Finally, the mapped prototype de-

formation is used to 2D warp the novel object to synthesize the virtual view. Overall,

the accuracy of the virtual view depends on the degree to which the 3D shapes of the

prototype and novel objects match.

The second technique for synthesizing virtual views uses the concept of linear

classes (see [106][110]). The main idea behind linear classes is that the novel object

can be decomposed as a linear combination of a set of prototype objects. This de-

composition is performed separately for object shape (locations of a set of feature

148 CHAPTER 8. DISCUSSION

points) and object texture (grey level values at a set of feature points). To synthesize

a virtual view, one �rst computes the linear decomposition at the standard pose,

which produces a set of linear coe�cients. These coe�cients are then transferred to

the virtual pose, where virtual shape and texture of the novel object are computed

by taking proper linear combinations of the shapes and textures of the prototypes.

In this thesis, we explored this idea for synthesizing virtual textures.

The virtual views generated using parallel deformation and linear classes were

evaluated by plugging them into our view-based recognizer for pose-invariant face

recognition. Starting with a database with just one view per person, virtual views

were used to augment the database to 15 views per person, the number of views used

in the original view-based recognizer. The resulting face recognizer was tested on the

same test set as with the real views case: 62 people, 10 views per person. Parallel

deformation performed better than linear classes, achieving a recognition rate of 85%.

To compare this recognition rate against a \base case", we ran another test of the

view-based recognizer using only two views per person: the standard pose plus its

mirror re
ection. This yielded a recognition rate of only 70%. Thus, virtual views

brought the recognition rate roughly halfway from the base case of 70% to the best

case of 98% (using real views).

8.2 Contributions

8.2.1 Main contributions

The main contributions stem from the two subcases of pose-invariant face recognition:

multiple views available and only one view available.

1. View-based approach for pose-invariant face recognition. When multiple ex-

ample views from the viewing sphere are available of each person, we demon-

strated that a simple view-based approach can be taken for the problem of

pose-invariant face recognition. Our view-based face recognizer is the �rst face

recognizer to handle a wide range of angles for all three rotational degrees of

freedom. When comparing the input to stored example views, it follows a simple

register-and-correlate strategy.

2. Virtual views. By showing that the addition of virtual views can boost the

recognition rate of a view-based face recognizer, we demonstrated the usefulness

of the concept of virtual views. In general, virtual views may be useful for using

prior knowledge of object class to leverage a small example set. Besides object

8.3. FUTURE WORK 149

recognition, this may be helpful for increasing the number of training examples

in a learning-from-examples framework.

8.2.2 Secondary contributions

The secondary contributions stem from the feature �nding requirements of the view-

based recognizer and our techniques for synthesizing virtual views.

1. Person- and pose-independent feature �nder. We developed a template-based

system for automatically locating the two irises and a nose feature. The system

works under a range of rotation angles both in and out of the image plane. While

it was used in this thesis as a preliminary step in the face recognizer, it could

also be used for applications like human-computer interaction or low-bandwidth

videoconferencing, if only to initialize a tracking system.

2. Face \vectorizer". The face vectorizer is an automatic and person-independent

technique for (i) locating a dense set of facial features, and (ii) modeling the

grey levels of the face as a linear combination of prototype faces. The vectorizer

works by exploiting a positive feedback loop between the feature correspondence

process and the grey-level texture model which uses linear combinations. While

the primary use of the vectorizer is to �nd feature correspondence between two

arbitrary faces, the representation returned by the vectorizer is fairly general

and could be used for tasks such as feature detection, expression analysis, and

face recognition.

8.3 Future work

8.3.1 Analysis by synthesis

In dealing with varying pose, our face recognizer uses a simple view-based approach

that stores many example views per person. Recognizing an input view boils down

to retrieving an example view that is a close match. One problematic feature of

this approach happens when one tries to recognize an input view whose pose falls

midway between the poses of the closest example views. Our current system tries to

compensate for this by resampling the input under an a�ne transform and warping

the result using optical
ow. The latter optical
ow step, however, is ad hoc and

could be improved.

A cleaner but slightly more complicated approach for the pose-invariant recogni-

tion problem is analysis by synthesis. The basic idea behind this approach is to try

150 CHAPTER 8. DISCUSSION

to resynthesize the input view using a face synthesis module. On an abstract level,

one can think of the face synthesis module as a parameterized face model

M(p) = face-model (p)

that can assume di�erent facial appearances with di�erent settings of the multidi-

mensional vector p. The elements of p may include parameters like rotation angles,

expression parameters, or eigenface coe�cients. The process of recognizing an input

view I or estimating its pose can now be phrased as an optimization problem: try to

�nd the best p that minimizes the di�erence kI �M(p)k2.

A simple iteration between analysis and synthesis is one technique for solving for

the vector p. Pseudocode for a generalized version of the algorithm is as follows.

algorithm: analysis-by-synthesis

input: image I

output: parameter vector p

(1) p = initial estimate

(2) loop until p stabilizes

(3) M(p) = face-model (p)

(4) measure di�erence D = I �M(p)

(5) use D to update p

The algorithm maintains an estimate for p, which at the beginning needs to be

initialized with some good guess. In the analysis-synthesis loop, �rst the face model is

used to synthesizeM(p), which hopefully is close to the input I being analyzed. Next,

the di�erence between I and M(p) is measured and used to update the parameter

vector p so that M(p) is brought closer to I in the next iteration. When this iterative

approach is tested in the future, there is the issue of convergence to be addressed.

The convergence properties of the algorithm are probably dependent on factors such

as the initial conditions for p and the convexity of the functional kI �M(p)k2.

Since we are interested in the problem of recognition under varying pose, the

parameter vector p should include the rotation angles out of the image plane (r1; r2).

Given our current database, the synthesis module would interpolate between the 15

example views of each person to synthesize intermediate poses. As shown in Fig. 8-

1, the space of out-of-plane rotations could be divided into 8 cells, with each cell

containing four views. Within a particular cell, the face model would interpolate the

four views as a function of (r1; r2), the amount of rotation up/down and left/right.

Thus, instead of looping over all the views as in the current view-based approach,

the new analysis-synthesis system tries to �nd an optimal (r1; r2) by interpolating the

examples.

8.3. FUTURE WORK 151

m5 m4 m3 m2 m1

m15 m14 m13 m12 m11

m10 m9 m8 m7 m6

cell 1 cell 2 cell 3 cell 4

cell 5 cell 6 cell 7 cell 8

r

r

1

2

cell 2

Figure 8-1: In our proposed analysis-synthesis system for varying pose, we interpolate

between the 15 example views of each person. The 15 views are divided into 8 cells

of 4 views each, and p = (r1; r2).

This analysis by synthesis approach can be applied in three di�erent areas of this

thesis.

1. Recognition using multiple views. This is the scenario where all 15 views per

person are available in the database. The current view-based system compares

an input against a particular person by iteratively matching the input against

9 of the 15 views. The new analysis-synthesis system would �rst interpolate

the views to try to reconstruct the input. Then this reconstruction would be

correlated against the input.

2. Multi-view vectorizer. The current vectorizer is tuned to the particular out-of-

plane rotation of the prototype \training" views. It should be possible to link

a set of vectorizers as shown in Fig. 8-1 by de�ning correspondence between

the standard shapes of vectorizers in the same cell. In this new multi-view

vectorizer, the parameter vector p would not only include (r1; r2), but also the

linear texture coe�cients from the vectorizer �i. The similarity transform P

and correspondences ystd
a�std would be auxiliary variables. For correspondence,

there would be a set of standard shapes, one standard shape per cell.

3. Recognition using one view. This is the scenario addressed by the second part

of the thesis, where only one view of each person is available in the database.

Instead of synthesizing a set of virtual views o�-line before recognition, a single

152 CHAPTER 8. DISCUSSION

virtual view is synthesized at run-time for each person. The face model in

this case synthesizes views using (a) the single view of each database person

and (b) \prior knowledge" of face rotation from the prototype views. Hence,

the techniques we discussed for synthesizing virtual views are bundled with

the face synthesis module. A similar approach called the visualization route to

recognition was discussed in Vetter, Hurlbert, and Poggio [131]. First, the pose

of the face is estimated, and then prototype knowledge is used to normalize

the input for out-of-plane rotations. The normalized input is then compared

against the single view of each person in the database.

8.3.2 Linear classes without virtual views

For the problem of recognizing faces from just one example view, it should be possible

to use the idea of linear classes without actually synthesizing virtual views. Consider

the following proposal. Assume that we had a face vectorizer that computed a shape

and a textural decomposition of an input image img
a
in terms of linear combinations

of prototype faces fimg
pj
gN
j=1

ya =
P

N

j=1 �jypj ta =
P

N

j=1 �jtpj :

This was discussed in section 6.6.2 as a possible future direction for the existing face

vectorizer. Since the vectorizer is tuned for a speci�c view, let us assume that we have

a collection of view-tuned vectorizers each built using the same set of prototype people

for each view. The latter constraint will allow us to use ideas from linear classes to

relate linear coe�cients across di�erent views.

The basic idea behind linear classes without virtual views is to compare faces based

on sets of (�j; �j) coe�cients rather than using correlation in an image space. Given

the single real view per person at standard pose, we vectorize each view and store

the set of coe�cients (�j; �j)
std for each person in the database. When recognizing a

new view at run-time, we vectorize the input by either

1. estimating the pose and choosing the correct view-tuned vectorizer, or

2. building a multi-pose vectorizer (see above) that links a group of vectorizers.

The vectorization parameters and out-of-plane rotation are simultaneously com-

puted.

The result is a set of linear coe�cients (�j ; �j)
input which have been computed using

a set of prototype views that match the pose of the input.

According to linear classes, the (�j; �j) decomposition for a speci�c individual

should be invariant to pose. As explained in Chapter 7, linear classes is based on the

8.4. CLOSING REMARKS 153

assumption that the 3D shape vector of the input Y and the 3D texture vector T

are linear combinations of the shapes and textures of prototype faces. Under certain

conditions, the linear coe�cients (�j; �j) of the 3D decomposition are computable

from an arbitrary 2D view. Thus, the coe�cients should be invariant to pose since

they are derived from a 3D representation. It follows that the (�j; �j) coe�cients

should themselves be an e�ective representation for faces. The coe�cients of the

unidenti�ed input view (�j; �j)
input can be directly matched against the database

coe�cients of each person at standard pose (�j; �j)
std. Note that the linear coe�cients

are not a true invariant because the recognizer at run-time needs to have an estimate

of the out-of-plane image rotation of the input.

8.4 Closing remarks

This thesis has studied the problem of recognizing faces under varying pose. By

addressing the issue of pose, our immediate goal was to help bring face recognition

one step closer to the ultimate goal of recognition under general imaging conditions.

Beyond pose, the other major sources of variation that need to be addressed are

lighting conditions and expressions. But even if building a system that handles all

these sources of variation proves elusive, there are still some applications where it is

safe to assume restricted imaging conditions (e.g. veri�cation for building access).

Beyond recognizing faces, there are many interesting tasks that involve processing

images of faces. Take, for example, the problem of detecting faces in cluttered scenes

or the problem of estimating facial parameters such as pose, expression, mouth ar-

ticulation, and lighting conditions. Solutions to these problems will be be useful in

applications like model-based coding for low-bandwidth videoconferencing, human-

computer interaction, and performance-driven animation systems.

The success of our view-based face recognizer has an impact not only in the study

of faces, but also lends some computational support to the use of the view-based ap-

proach in object recognition. Our experimental results supplements recent support for

the view-based approach from psychophysics (B�ultho�, Edelman, and Tarr [29]), neu-

rophysiology (Logothetis and Pauls [88]), and object recognition experiments (Poggio

and Edelman [107]).

Within the larger context of object recognition, this thesis has addressed a dis-

crimination task using a view-based approach. The recognition strategy developed

in this thesis may be useful in other subordinate-level recognition tasks, such as the

identi�cation of animals like dogs and cats, or the identi�cation of cars. One area

that has not been addressed is the more general problem of basic-level recognition or

categorization. The view-based approach may be useful here as well, but so may other

154 CHAPTER 8. DISCUSSION

approaches such as parts-based representations or 3D models. More study certainly

needs to be done in this area, and there is probably not just one answer. In tackling

the recognition problem, the human brain could use a variety of representations and

approaches; we would be surprised if the view-based approach were not one of them.

Appendix A

Face Database

The face database contains 62 people, 25 views per person. So that we can explore

the issue of pose, the di�erent views of each person cover a variety of poses, including

rotation angles both in and out of the image plane.

The database is divided into two parts, a set of example views and a set of testing

views.

1. Example views. In our view-based approach for face recognition under varying

pose, faces are represented using 15 example images that cover the viewing

sphere. Shown in Fig. A-1, these views sample 5 left/right rotations and 3

up/down rotations. When a subject is added to the database of faces, example

and test image data is taken with a camera perched on top of a workstation

monitor. To help collect the example views, we �t a large piece of foam core

around the monitor with dots indicating the viewing sphere locations being

sampled. When taking the example views, the subject is asked to rotate his

head to point his nose at each of the 15 dots. No mechanisms are used to make

the subjects poses accurate relative to the ideal \dot" poses other than our

oral instructions �ne tuning the subject's pose. This �eld of dots sample the 5

left/right rotations at approximately -30, -15, 0, 15, and 30 degrees and the 3

up/down rotations at approximately -20, 0, and 20 degrees. The two rotation

parameters are restricted so that the two eyes are always visible; this is why

the left/right rotation parameter is not sampled beyond 30 degrees.

2. Test views. In addition to the 15 example views, 10 test views are taken per

person. For these test views, the subject is instructed to choose 10 points at

random within the rectangle de�ned by the outer border of dots. The test poses

can fall close to example poses or in between them. The 10 views are divided

into two groups of 5. The �rst group is similar to the example views in that

only the left/right and up/down rotational parameters are allowed to vary. For

the second group of 5, the subject is allowed to introduce image-plane rotation.

See Fig. A-2 for example test views.

155

156 APPENDIX A. FACE DATABASE

Figure A-1: The view-based face recognizer uses 15 example views per person.

Figure A-2: For each person, 10 test images are taken that sample random poses from

the viewing sphere.

We currently have 62 people in the database for a total of 930 example and 620

testing views. The collection of people is fairly varied, including 44 males and 18

females, people from di�erent races, and an age range from the 20s to the 40s. The

frontal views of everyone in the database are shown in Figs. A-3 and A-4.

For both the example and test views, the lighting conditions are �xed and consist

of a 60 watt lamp near the camera supplemented by background lighting fromwindows

and overhead lights. Facial expression is also �xed at a neutral expression.

After taking the example and test images, we manually specify the locations of

the two irises, nose lobes, and corners of the mouth (see Fig. A-5). These manual

feature locations are used for four purposes:

1. During batch evaluations of the feature �nder, they serve as ground truth data

for validating the locations returned by the feature �nder.

157

Figure A-3: An exhaustive listing of people in the database, part 1 of 2.

158 APPENDIX A. FACE DATABASE

Figure A-4: An exhaustive listing of people in the database, part 2 of 2.

Figure A-5: The irises, nose lobes, and corners of the mouth are manually labeled for

each image in the database.

2. Also in the feature �nder, the manual locations de�ne the exact (x; y) loca-

tions of the irises and nose lobes features within the eyes-nose templates. As

explained in Chapter 3, these (x; y) locations are mapped to the input image

using correspondences from optical
ow in order to locate the irises and nose

lobes in the input image.

3. For the recognizer itself, the feature locations are used to automatically de�ne

the bounding boxes of facial feature templates in the example images, as is

discussed in Chapter 4.

4. Lastly, during the geometrical alignment step between input and example im-

ages, the recognizer registers the automatically located input features to the

159

manually located example image features.

160 APPENDIX A. FACE DATABASE

Appendix B

Linear Classes: Shape and Texture

As explained in section 7.3.1, linear classes is a technique for synthesizing new views of

an object using views of prototypical objects belonging to the same object class. The

basic idea is to decompose the novel object as a linear combination of the prototype

objects. This decomposition is performed separately for the shape and texture of

the novel object. In this appendix, we explain the mathematical detail behind the

linear class approach for shape and texture. Please refer to sections 7.2 and 7.3.1 for

de�nitions of the example prototype images, mathematical operators, etc.

B.1 Shape

In this section, we reformulate the description of linear classes for shape that originally

appeared in Poggio and Vetter [110]. The development here makes explicit the fact

that the vectorized y vectors need not be in correspondence between the standard

and virtual poses.

Linear classes begins with the assumption that a novel object is a linear combi-

nation of a set of prototype objects in 3D

Yn =
P

N

j=1 �jYpj
: (B.1)

From this assumption, it is easy to see that any 2D view of the novel object will be

the same linear combination of the corresponding 2D views of the prototypes. That

is, the 3D linear decomposition is the same as the 2D linear decomposition. Using

equation (7.2) which relates 3D and 2D shape vectors, let yn;r be a 2D view of a novel

object

yn;r = LYn (B.2)

and let ypj;r be 2D views of the prototypes

ypj;r = LYpj
1 � j � N: (B.3)

161

162 APPENDIX B. LINEAR CLASSES: SHAPE AND TEXTURE

Apply the operator L to both sides of equation (B.1)

LYn = L(
P

N

j=1 �jYpj
): (B.4)

We can bring L inside the sum since L is linear

LYn =
P

N

j=1 �jLYpj
: (B.5)

Substituting equations (B.2) and (B.3) yields

yn;r =
P

N

j=1 �jypj;r:

Thus, the 2D linear decomposition uses the same set of linear coe�cients as with the

3D vectorization.

Next, we show that under certain assumptions, the novel object can be analyzed

at standard pose and the virtual view synthesized at virtual pose using a single set

of linear coe�cients. Again, assume that a novel object is a linear combination of a

set of prototype objects in 3D

Yn =
P

N

j=1 �jYpj
: (B.6)

Say that we have 2D views of the prototypes at standard pose ypj , 2D views of the

prototypes at virtual pose ypj;r, and a 2D view of the novel object yn at standard

pose. Additionally, assume that the 2D views ypj are linearly independent. Project

both sides of equation (B.6) using the rotation for standard pose, yielding

yn =
P

N

j=1 �jypj :

A unique solution for the �j exist since the ypj are linearly independent. Now, since

we have solved for the same set of coe�cients in the 3D linear class assumption, the

decomposition at virtual pose must use the same coe�cients

yn;r =
P

N

j=1 �jypj;r:

That is, we can recover the �j's from the view at standard pose and use the �j 's to

generate the virtual view of the novel object.

B.2 Texture

Virtually the same argument can be applied to the geometrically normalized texture

vectors t. The idea of applying linear classes to texture was thought of by the author

and independently by Vetter and Poggio [132].

B.2. TEXTURE 163

With the texture case, assume that a novel object texture Tn is a linear combi-

nation of a set of prototype textures

Tn =
P

N

j=1 �jTpj
: (B.7)

As with shape, we show that the 3D linear decomposition is the same as the 2D linear

decomposition. Using equation (7.3) which relates 3D and 2D texture vectors, let tn;r

be a 2D texture of a novel object

tn;r = DTn (B.8)

and let tpj;r be 2D textures of the prototypes

tpj;r = DTpj
1 � j � N: (B.9)

Apply the operator D to both sides of equation (B.7)

DTn = D(
P

N

j=1 �jTpj
): (B.10)

We can bring D inside the sum since D is linear

DTn =
P

N

j=1 �jDTpj
: (B.11)

Substituting equations (B.8) and (B.9) yields

tn;r =
P

N

j=1 �jtpj;r:

Thus, as with shape, the 2D linear decomposition for texture uses the same set of

linear coe�cients as with the 3D vectorization.

Next, we show that under certain linear independence assumptions, the novel

object texture can be analyzed at standard pose and the virtual view synthesized at

virtual pose using a single set of linear coe�cients. Again, assume that a novel object

texture T is a linear combination of a set of prototype objects

Tn =
P

N

j=1 �jTpj
: (B.12)

Say that we have 2D textures of the prototypes at standard pose tpj , the 2D prototype

textures at virtual pose tpj;r, and a 2D texture of the novel object at standard pose

tn. Additionally, assume that the 2D textures tpj are linearly independent. Project

both sides of equation (B.12) using the rotation for standard pose, yielding

tn =
P

N

j=1 �jtpj :

164 APPENDIX B. LINEAR CLASSES: SHAPE AND TEXTURE

A unique solution for the �j exist since the tpj are linearly independent. Now, since

we have solved for the same set of coe�cients in the 3D linear class assumption, the

decomposition at virtual pose must use the same coe�cients

tn;r =
P

N

j=1 �jtpj;r:

That is, we can recover the �j's from the view at standard pose and use the �j's to

generate the virtual view of the novel object.

Bibliography

[1] Y. Abu-Mostafa. A method for learning from hints. In S. J. Hanson, Jack D.

Cowan, and C. Lee Giles, editors, Advances in Neural information processings

systems 5, pages 73{80, San Mateo, CA, 1992. Morgan Kaufmann Publishers.

[2] Y.S. Abu-Mostafa. Hints and the VC-dimension. Neural Computation, 5:278{

288, 1993.

[3] Andrew C. Aitchison and Ian Craw. Synthetic images of faces { an approach

to model-based face recognition. In Proc. British Machine Vision Conference,

pages 226{232, 1991.

[4] K. Aizawa, H. Harashima, and T. Saito. Model-based analysis synthesis im-

age coding (MBASIC) system for a person's face. Signal Processing: Image

Communication, 1:139{152, 1989.

[5] Shigeru Akamatsu, Tsutomu Sasaki, Hideo Fukamachi, Nobuhiko Masui, and

Yasuhito Suenaga. An accurate and robust face identi�cation scheme. In

Proceedings Int. Conf. on Pattern Recognition, volume 2, pages 217{220, The

Hague, The Netherlands, 1992.

[6] Takaaki Akimoto, Yasuhito Suenaga, and Richard S. Wallace. Automatic cre-

ation of 3D facial models. IEEE Computer Graphics and Applications, 13(5):16{

22, 1993.

[7] Scott E. Anderson and Mark A.Z. Dippe. A hybrid approach to facial animation.

Technical Report 1026, Industrial Light and Magic, San Rafael, California,

January 1990.

[8] A. Azarbayejani, T. Starner, B. Horowitz, and A. Pentland. Visually controlled

graphics. Technical Report No. 180, MIT Media Lab, Vision and Modeling

Group, 1992.

[9] Henry S. Baird. Model-Based Image Matching Using Location. The MIT Press,

Cambridge, MA, 1985.

[10] Dana H. Ballard and Chrisopher M. Brown. Computer Vision. Prentice-Hall,

Englewood Cli�s, NJ, 1982.

165

166 BIBLIOGRAPHY

[11] Robert J. Baron. Mechanisms of human facial recognition. International Jour-

nal of Man Machine Studies, 15:137{178, 1981.

[12] Adam Baumberg and David Hogg. Learning
exible models from image se-

quences. In Proceedings of the European Conference on Computer Vision, pages

299{308, Stockholm, Sweden, 1994.

[13] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis. In

SIGGRAPH '92 Proceedings, pages 35{42, Chicago, IL, 1992.

[14] Jezekiel Ben-Aire and K. Raghunath Rao. On the recognition of occluded shapes

and generic faces using multiple-template expansion matching. In Proceedings

IEEE Conf. on Computer Vision and Pattern Recognition, pages 214{219, New

York, NY, 1993.

[15] Alan Bennett and Ian Craw. Finding image features using deformable templates

and detailed prior statistical knowledge. In Proc. British Machine Vision Con-

ference, pages 233{239, 1991.

[16] James R. Bergen and Edward H. Adelson. Hierarchical, computationally e�-

cient motion estimation algorithm. J. Opt. Soc. Am. A, 4(13):P35, 1987.

[17] James R. Bergen, P. Anandan, Keith J. Hanna, and Rajesh Hingorani. Hierar-

chical model-based motion estimation. In Proceedings of the European Confer-

ence on Computer Vision, pages 237{252, Santa Margherita Ligure, Italy, June

1992.

[18] J.R. Bergen and R. Hingorani. Hierarchical motion-based frame rate conversion.

Technical report, David Sarno� Research Center, Princeton, New Jersey, April

1990.

[19] D. Beymer, A. Shashua, and T. Poggio. Example based image analysis and

synthesis. A.I.MemoNo. 1431, Arti�cial Intelligence Laboratory, Massachusetts

Institute of Technology, 1993.

[20] Martin Bichsel. Strategies of Robust Object Recognition for the Automatic Iden-

ti�cation of Human Faces. PhD thesis, ETH, Zurich, 1991.

[21] Andrew Blake and Michael Isard. 3D position, attitude and shape input using

video tracking of hands and lips. In SIGGRAPH '94 Proceedings, pages 185{

192, Orlando, FL, 1994.

[22] R.C. Bolles and R.A. Cain. Recognizing and locating partially visible objects:

The local{feature{focus method. International Journal of Robotics Research,

1(3):57{82, 1982.

BIBLIOGRAPHY 167

[23] Thomas M. Breuel. Geometric aspects of visual object recognition. Technical

Report AI{TR 1374, Arti�cial Intelligence Laboratory, Massachusetts Institute

of Technology, 1992.

[24] Thomas M. Breuel. An e�cient correspondence based algorithm for 2D and 3D

model based recognition. A.I.Memo No. 1259, Arti�cial Intelligence Laboratory,

Massachusetts Institute of Technology, 1993.

[25] Vicki Bruce. Changing faces: Visual and non-visual coding processes in face

recognition. British Journal of Psychology, 73:105{116, 1982.

[26] R. Brunelli and T. Poggio. Hyberbf networks for real object recognition. In

Proceedings IJCAI, Sydney, Australia, 1991.

[27] Roberto Brunelli. Estimation of pose and illuminant direction for face pro-

cessing. A.I. Memo No. 1499, Arti�cial Intelligence Laboratory, Massachusetts

Institute of Technology, 1994.

[28] Roberto Brunelli and Tomaso Poggio. Face recognition: Features versus tem-

plates. IEEE Transactions on Pattern Analysis and Machine Intelligence,

15(10):1042{1052, 1993.

[29] Heinrich H. B�ultho�, Shimon Y. Edelman, and Michael J. Tarr. How are three-

dimensional objects represented in the brain? Cerebral Cortex, 3:247{260,

May/June 1995.

[30] J. Brian Burns, Richard Weiss, and Edward M. Riseman. View variation of

point set and line segment features. In Proceedings Image Understanding Work-

shop, pages 650{659, Pittsburgh, PA, September 1990.

[31] Peter J. Burt. Smart sensing within a pyramid vision machine. Proceedings of

the IEEE, 76(8):1006{1015, August 1988.

[32] Peter J. Burt. Multiresolution techniques for image representation, analysis, and

'smart' transmission. In SPIE Vol. 1199, Visual Communications and Image

Processing IV, pages 2{15, 1989.

[33] Peter J. Burt and Edward H. Adelson. The laplacian pyramid as a compact

image code. IEEE Trans. on Communications, COM-31(4):532{540, April 1983.

[34] J.C. Campos, A.D. Linney, and J.P. Moss. The analysis of facial pro�les using

scale space techniques. Pattern Recognition, 26(6):819{824, 1993.

[35] Scott R. Cannon, Gregory W. Jones, Robert Campbell, and Neil W. Morgan.

A computer vision system for identi�cation of individuals. In Proc. IECON,

pages 347{351, Milwaukee, WI, 1986.

168 BIBLIOGRAPHY

[36] Todd A. Cass. Polynomial-time object recognition in the presence of clutter,

occlusion, and uncertainty. In Proceedings of the European Conference on Com-

puter Vision, pages 834{842, 1992.

[37] Indranil Chakravarty and Herbert Freeman. Characteristic views as a basis for

three-dimensional object recognition. In SPIE Vol. 336, Robot Vision, pages

37{45, 1982.

[38] Chin-Wen Chen and Chung-Lin Huang. Human face recognition from a single

front view. International Journal of Pattern Recognition and Arti�cial Intelli-

gence, 6(4):571{593, 1992.

[39] Yong-Qing Cheng, Ke Liu, Jing-Yu Yang, and Hua-Feng Wang. A robust alge-

braic method for human face recognition. In Proceedings Int. Conf. on Pattern

Recognition, volume 2, pages 221{224, The Hague, The Netherlands, 1992.

[40] Chang Seok Choi, Hiroshi Harashima, and Tsuyosi Takebe. Analysis and syn-

thesis of facial expressions in knowledge-based coding of facial image sequences.

In Proceedings of the International Conference on Acoustics, Speech, and Signal

Processing, pages 2737{2740, 1991.

[41] David Clemens and David Jacobs. Model-group indexing for recognition. In

Proceedings Image Understanding Workshop, pages 604{613, Pittsburgh, PA,

September 1990.

[42] T.F. Cootes and C.J. Taylor. Active shape models - `Smart snakes'. In David

Hogg and Roger Boyle, editors, Proc. British Machine Vision Conference, pages

266{275. Springer Verlag, 1992.

[43] T.F. Cootes and C.J. Taylor. Using grey-level models to improve active shape

model search. In Proceedings Int. Conf. on Pattern Recognition, volume 1, pages

63{67, Jerusalem, Israel, 1994.

[44] T.F. Cootes, C.J. Taylor, A. Lanitis, D.H. Cooper, and J. Graham. Building

and using
exible models incorporating grey-level information. In Proceedings

of the International Conference on Computer Vision, pages 242{246, Berlin,

May 1993.

[45] Ian Craw and Peter Cameron. Parameterizing images for recognition and recon-

struction. In Proc. British Machine Vision Conference, pages 367{370, 1991.

[46] Ian Craw and Peter Cameron. Face recognition by computer. In David Hogg and

Roger Boyle, editors, Proc. British Machine Vision Conference, pages 498{507.

Springer Verlag, 1992.

BIBLIOGRAPHY 169

[47] Ian Craw, David Tock, and Alan Bennett. Finding face features. In Proceedings

of the European Conference on Computer Vision, pages 92{96, 1992.

[48] Robert Desimone. Face-selective cells in the temporal cortex of monkeys. Jour-

nal of Cognitive Neuroscience, 3(1):1{8, 1991.

[49] Shimon Edelman, Daniel Reisfeld, and Yechezkel Yeshurun. Learning to rec-

ognize faces from examples. In Proceedings of the European Conference on

Computer Vision, pages 787{791, 1992.

[50] P. Ekman and W.V. Friesen. Facial Action Coding System. Consulting Psy-

chologists Press, Inc., Palo Alto, CA, 1977.

[51] Irfan A. Essa and Alex Pentland. A vision system for observing and extracting

facial action parameters. In Proceedings IEEE Conf. on Computer Vision and

Pattern Recognition, pages 76{83, Seattle, WA, 1994.

[52] Nancy L. Etco�, Roy Freeman, and Kyle R. Cave. Can we lose memories

of faces? content speci�city and awareness in a prosopagnosic. Journal of

Cognitive Neuroscience, 3(1):25{41, 1991.

[53] Michael K. Fleming and Garrison W. Cottrell. Categorization of faces using

unsupervised feature extraction. In Proceedings of the International Joint Con-

ference on Neural Networks, volume 2, pages 65{70, 1990.

[54] David Forsyth, Joseph L. Mundy, Andrew Zisserman, Chris Coelho, Aaron

Heller, and Charles Rothwell. Invariant descriptors for 3-D object recognition

and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(10):971{991, 1991.

[55] A. Fuchs and H. Haken. Pattern recognition and associative memory as dy-

namical processes in a synergetic system; I. translational invariance, selective

attention, and decomposition of scenes. Biological Cybernetics, 60:17{22, 1988.

[56] A. Fuchs and H. Haken. Pattern recognition and associative memory as dy-

namical processes in a synergetic system; II. decomposition of complex scenes,

simultaneous invariance with respect to translation, rotation, scaling. Biological

Cybernetics, 60:107{109, 1988.

[57] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model

for a mechanism of pattern recognition una�ected by shift in position. Biological

Cybernetics, 36:193{202, 1980.

[58] Ziv Gigus and Jitendra Malik. Computing the aspect graph for line drawings

of polyhedral objects. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12(2):113{122, February 1990.

170 BIBLIOGRAPHY

[59] Je�rey M. Gilbert and Woody Yang. A real-time face recognition system using

custom VLSI hardware. In IEEE Workshop on Computer Architectures for

Machine Perception, pages 58{66, December 1993.

[60] Chris Goad. Special purpose automatic programming for 3D model-based vi-

sion. In Proceedings Image Understanding Workshop, pages 94{104, Arlington,

VA, June 1983.

[61] Gaile G. Gordon. Face recognition based on depth and curvature features. In

Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pages

808{810, 1992.

[62] W. Eric L. Grimson and Tomas Lozano-P�erez. Localizing overlapping parts by

searching the interpretation tree. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 9(4):467{482, 1987.

[63] Peter W. Hallinan. Recognizing human eyes. In SPIE Vol. 1570, Geometric

Methods in Computer Vision, pages 214{226, 1991.

[64] Peter W. Hallinan. A low-dimensional representation of human faces for arbi-

trary lighting conditions. In Proceedings IEEE Conf. on Computer Vision and

Pattern Recognition, pages 995{999, Seattle, WA, 1994.

[65] J. Richard Hanley, Andrew W. Young, and Norma A. Pearson. Defective recog-

nition of familiar people. Cognitive Neuropsychology, 6(2):179{210, 1989.

[66] L.D. Harmon, M.K. Khan, Richard Lasch, and P.F. Ramig. Machine identi�-

cation of human faces. Pattern Recognition, 13(2):97{110, 1981.

[67] Zi-Quan Hong. Algebraic feature extraction of image for recognition. Pattern

Recognition, 24(3):211{219, 1991.

[68] B. K. P. Horn and B. G. Schunck. Determining optical
ow. Arti�cial Intelli-

gence, 17:185{203, 1981.

[69] Chung-Lin Huang and Chin-Wen Chen. Human facial feature extraction for face

interpretation and recognition. Pattern Recognition, 25(12):1435{1444, 1992.

[70] Daniel P. Huttenlocher and Shimon Ullman. Recognizing solid objects by align-

ment with an image. International Journal of Computer Vision, 5(2):195{212,

1990.

[71] Katsushi Ikeuchi and Takeo Kanade. Applying sensor models to automatic

generation of object recognition programs. In Proceedings of the International

Conference on Computer Vision, pages 228{237, Tampa, FL, December 1988.

BIBLIOGRAPHY 171

[72] Michael J. Jones and Tomaso Poggio. Model-based matching of line draw-

ings by linear combinations of prototypes. In Proceedings of the International

Conference on Computer Vision, pages 531{536, Boston, Massachusetts, June

1995.

[73] Takeo Kanade. Picture processing by computer complex and recognition of

human faces. Technical report, Kyoto University, Dept. of Information Science,

1973.

[74] Chii-Yuan Kang, Yung-Sheng Chen, and Wen-Hsing Hsu. Mapping a lifelike

2.5D human face via an automatic approach. In Proceedings IEEE Conf. on

Computer Vision and Pattern Recognition, pages 611{612, New York, NY, June

1993.

[75] Gerald J. Kaufman and Kenneth J. Breeding. The automatic recognition of

human faces from pro�le silhouettes. IEEE Transactions on Systems, Man,

and Cybernetics, SMC-6(2):113{121, February 1976.

[76] Y. Kaya and K. Kobayashi. A basic study on human face recognition. In Satosi

Watanabe, editor, Frontiers of Pattern Recognition, pages 265{289. Academic

Press, New York, NY, 1972.

[77] M. Kirby and L. Sirovich. Application of the Karhunen-Loeve procedure for

the characterization of human faces. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 12(1):103{108, 1990.

[78] J. J. Koenderink and A. J. van Doorn. The internal representation of solid

shape with respect to vision. Biological Cybernetics, 32:211{216, 1979.

[79] Jan J. Koenderink and Andrea J. van Doorn. A�ne structure from motion. J.

Opt. Soc. Am. A, 8(2):377{385, 1991.

[80] T. Kohonen. Self-organization and Associative Memory. Springer-Verlag,

Berlin, 1989.

[81] Matthew R. Korn and Charles R. Dyer. 3-D multiview object representations

for model-based object recognition. Pattern Recognition, 20(1):91{103, 1987.

[82] T. Kurita, N. Otsu, and T. Sato. A face recognition method using higher order

local autocorrelation and multivariate analysis. In Proceedings Int. Conf. on

Pattern Recognition, volume 2, pages 213{216, The Hague, The Netherlands,

1992.

[83] Martin Lades, Jan C. Vorbruggen, Joachim Buhmann, Jorg Lange, Christoph

v.d. Malsburg, Rolf P. Wurtz, and Wolfgang Konen. Distortion invariant object

recognition in the dynamic link architecture. IEEE Transactions on Computers,

42(3), March 1993.

172 BIBLIOGRAPHY

[84] Maria Lando and Shimon Edelman. Generalization from a single view in face

recognition. In Proceedings, International Workshop on Automatic Face- and

Gesture-Recognition, pages 80{85, Zurich, 1995.

[85] J.T. Lapreste, J.Y Cartoux, and M. Richetin. Face recongition from range data

by structural analysis. In G. Ferrate and et al., editors, Syntactic and Structural

Pattern Recognition, pages 303{313. Springer-Verlag, Berlin, 1988.

[86] John C. Lee and Evangelos Milios. Matching range images of human faces. In

Proceedings of the International Conference on Computer Vision, pages 722{

726, Dec 1990.

[87] Peter Litwinowicz and Lance Williams. Animating images with drawings. In

SIGGRAPH '94 Proceedings, pages 409{412, Orlando, FL, 1994.

[88] N.K. Logothetis and J. Pauls. Psychophysical and physiological evidence for

viewer-centered object representations in the primate. Cerebral Cortex, 3:270{

288, May/June 1995.

[89] David G. Lowe. Three-dimensional object recognition from single two-

dimensional images. Arti�cial Intelligence, 31:355{395, 1987.

[90] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique

with an application to stereo vision. In Proceedings IJCAI, pages 674{679,

Vancouver, 1981.

[91] B.S. Manjunath, R. Chellappa, and C. von der Malsburg. A feature based

approach to face recognition. In Proceedings IEEE Conf. on Computer Vision

and Pattern Recognition, pages 373{378, 1992.

[92] B.S. Manjunath, Chandra Shekhar, R. Chellappa, and C. von der Malsburg. A

robust method for detecting image features with application to face recognition

and motion correspondence. In Proceedings Int. Conf. on Pattern Recognition,

volume 2, pages 208{212, The Hague, The Netherlands, 1992.

[93] Thomas Maurer and Christoph von der Malsburg. Single-view based recognition

of faces rotated in depth. In Proceedings, International Workshop on Automatic

Face- and Gesture-Recognition, pages 248{253, Zurich, 1995.

[94] H. Midorikawa. The face pattern identi�cation by back-propagation learning

procedure. In Abstracts of the First Annual INNS Meeting, page 515, Boston,

1988.

[95] Tom M. Mitchell and Sebastian B. Thrun. Explanation-based neural network

learning for robot control. In S. J. Hanson, Jack D. Cowan, and C. Lee Giles,

editors, Advances in Neural information processings systems 5, pages 287{294,

San Mateo, CA, 1992. Morgan Kaufmann Publishers.

BIBLIOGRAPHY 173

[96] Baback Moghaddam and Alex Pentland. Probabilistic visual learning for object

detection. In Proceedings of the International Conference on Computer Vision,

pages 786{793, Cambridge, MA, June 1995.

[97] Yael Moses, Shimon Ullman, and Shimon Edelman. Generalization to novel

images in upright and inverted faces. Technical Report CC93-14, TheWeizmann

Institute of Science, 1993.

[98] Hiroshi Murase and Shree K. Nayar. Learning object models from appearance.

In Proceedings AAAI, pages 836{843, Washington, DC, 1993.

[99] Takashi Nagamine, Tetsuya Uemura, and Isao Masuda. 3D facial analysis for

human identi�cation. In Proceedings Int. Conf. on Pattern Recognition, vol-

ume 1, pages 324{327, The Hague, The Netherlands, 1992.

[100] Osamu Nakamura, Shailendra Mathur, and Toshi Minami. Identi�cation of

human faces based on isodensity maps. Pattern Recognition, 24(3):263{272,

1991.

[101] Masaaki Oka, Kyoya Tsutsui, Akio Ohba, Yoshitaka Kurauchi, and Takashi

Tago. Real-time manipulation of texture-mapped surfaces. In SIGGRAPH '87

Proceedings, pages 181{188, Anaheim, CA, July 1987.

[102] Elizabeth C. Patterson, Peter C. Litwinowicz, and Ned Greene. Facial anima-

tion by spatial mapping. In Computer Animation '91, pages 31{44. Springer-

Verlag, Tokyo, 1991.

[103] Alex Pentland, Baback Moghaddam, and Thad Starner. View-based and mod-

ular eigenspaces for face recognition. In Proceedings IEEE Conf. on Computer

Vision and Pattern Recognition, pages 84{91, Seattle, WA, 1994.

[104] D.J. Perrett, P.A.J. Smith, D.D. Potter, A.J. Mistlin, A.S. Head, A.D. Milner,

and M.A. Jeeves. Neurones responsive to faces in the temporal cortex: studies

of functional organization, sensitivity to identity and relation to perception.

Human Neurobiology, 3:197{208, 1984.

[105] T. Poggio. 3D object recognition: on a result by Basri and Ullman. Technical

Report # 9005{03, IRST, Povo, Italy, 1990.

[106] T. Poggio. 3D object recognition and prototypes: one 2D view may be su�cient.

Technical Report 9107{02, I.R.S.T., Povo, Italy, July 1991.

[107] T. Poggio and S. Edelman. A network that learns to recognize three-dimensional

objects. Nature, 343(6255):263{266, January 1990.

174 BIBLIOGRAPHY

[108] Tomaso Poggio and Roberto Brunelli. A novel approach to graphics. A.I.

Memo No. 1354, Arti�cial Intelligence Laboratory, Massachusetts Institute of

Technology, 1992.

[109] Tomaso Poggio and Federico Girosi. Networks for approximation and learning.

Proceedings of the IEEE, 78(9):1481{1497, Sept 1990.

[110] Tomaso Poggio and Thomas Vetter. Recognition and structure from one 2D

model view: Observations on prototypes, object classes, and symmetries. A.I.

Memo No. 1347, Arti�cial Intelligence Laboratory, Massachusetts Institute of

Technology, 1992.

[111] Jean Ponce and David J. Kriegman. Computing exact aspect graphs of curved

objects: Parametric surfaces. In Proceedings AAAI, pages 1074{1079, 1990.

[112] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-

terling. Numerical Recipes in C: The Art of Scienti�c Computing. Cambridge

University Press, Cambridge, England, 1988.

[113] C.S. Ramsay, K. Sutherland, D. Renshaw, and P.B. Denyer. A comparison of

vector quantization codebook generation algorithms applied to automatic face

recognition. In David Hogg and Roger Boyle, editors, Proc. British Machine

Vision Conference, pages 508{517. Springer Verlag, 1992.

[114] Daniel Reisfeld, Nur Arad, and Yehezkel Yeshurun. Normalization of face im-

ages using few anchors. In Proceedings Int. Conf. on Pattern Recognition, vol-

ume 1, pages 761{763, Jerusalem, Israel, 1994.

[115] Daniel Reisfeld and Yehezkel Yeshurun. Robust detection of facial features

by generalized symmetry. In Proceedings Int. Conf. on Pattern Recognition,

volume 1, pages 117{120, The Hague, The Netherlands, 1992.

[116] Phillipe G. Schyns and Heinrich H. B�ultho�. Conditions for viewpoint invari-

ant face recognition. A.I. Memo No. 1432, Arti�cial Intelligence Laboratory,

Massachusetts Institute of Technology, 1993.

[117] M. Dalla Serra and R. Brunelli. On the use of the Karhunen-Loeve expansion

for face recognition. Technical Report 9206-04, I.R.S.T., 1992.

[118] M.A. Shackleton and W.J. Welsh. Classi�cation of facial features for recogni-

tion. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition,

pages 573{579, Lahaina, Maui, Hawaii, 1991.

[119] A. Shashua. Correspondence and a�ne shape from two orthographic views:

Motion and Recognition. A.I.Memo No. 1327, Arti�cial Intelligence Laboratory,

Massachusetts Institute of Technology, December 1991.

BIBLIOGRAPHY 175

[120] A. Shashua. Geometry and Photometry in 3D visual recognition. PhD thesis,

M.I.T Arti�cial Intelligence Laboratory, AI-TR-1401, November 1992.

[121] Amnon Shashua. Algebraic functions for recognition. A.I. Memo No. 1452, Ar-

ti�cial Intelligence Laboratory, Massachusetts Institute of Technology, January

1994.

[122] Pawan Sinha. Object recognition via image invariances. Investigative Ophthal-

mology and Visual Science, 35(4):1626, 1994.

[123] John Stewman and Kevin Bowyer. Creating the perspective projection aspect

graph of polyhedral objects. In Proceedings of the International Conference on

Computer Vision, pages 494{500, Tampa, FL, December 1988.

[124] T.J. Stonham. Practical face recognition and veri�cation with WISARD. In

M. Jeeves, F. Newcombe, and A. Young, editors, Aspects of Face Processing,

pages 426{441. Martinus Nijho� Publishers, Dordrecht, 1986.

[125] Kah-Kay Sung and Tomaso Poggio. Example-based learning for view-based hu-

man face detection. In Proceedings Image Understanding Workshop, volume II,

pages 843{850, Monterey, CA, November 1994.

[126] Michael J. Swain and Dana H. Ballard. Color indexing. International Journal

of Computer Vision, 7(1):11{32, 1991.

[127] Demetri Terzopoulos and Keith Waters. Analysis of facial images using physi-

cal and anatomical models. In Proceedings of the International Conference on

Computer Vision, pages 727{732, Osaka, Japan, December 1990.

[128] Sebastian Thrun and Tom M. Mitchell. Learning one more thing. Technical

Report CMU-CS-94-184, Carnegie-Mellon University, 1994.

[129] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of Cog-

nitive Neuroscience, 3(1):71{86, 1991.

[130] Shimon Ullman and Ronen Basri. Recognition by linear combinations of models.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(10):992{

1006, 1991.

[131] Thomas Vetter, Anya Hurlbert, and Tomaso Poggio. View-based models of

3D object recognition: Invariance to imaging transformations. Cerebral Cortex,

3:261{269, May/June 1995.

[132] Thomas Vetter and Tomaso Poggio. Linear object classes and image synthe-

sis from a single example image. A.I. Memo No. 1531, Arti�cial Intelligence

Laboratory, Massachusetts Institute of Technology, 1995.

176 BIBLIOGRAPHY

[133] J.M. Vincent, J.B. Waite, and D.J. Myers. Location of feature points in images

using neural networks. BT Technology Journal, 10(3):7{15, July 1992.

[134] Keith Waters and Demetri Terzopoulos. Modelling and animating faces using

scanned data. The Journal of Visualization and Computer Animation, 2:123{

128, 1991.

[135] John J. Weng, N. Ahuja, and T.S. Huang. Learning recognition and segmen-

tation of 3-D objects from 2-D images. In Proceedings of the International

Conference on Computer Vision, pages 121{128, Berlin, May 1993.

[136] Lance Williams. Performance-driven facial animation. In SIGGRAPH '90 Pro-

ceedings, pages 235{242, Dallas, TX, August 1990.

[137] Lance Williams. Living pictures. In Models and Techniques in Computer Ani-

mation, pages 2{12. Springer-Verlag, Tokyo, 1993.

[138] George Wolberg. Digital Image Warping. IEEE Computer Society Press, Los

Alamitos, California, 1990.

[139] K.H. Wong, Hudson H.M. Law, and P.W.M. Tsang. A system for recogniz-

ing human faces. In Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, pages 1638{1642, 1989.

[140] Chyuan Jy Wu and Jun S. Huang. Human face pro�le recognition by computer.

Pattern Recognition, 23(3/4):255{259, 1990.

[141] Rolf P. W�urtz. Multilayer Dynamic Link Networks for Establishing Image Point

Correspondences and Visual Object Recognition. PhD thesis, Bochum Univer-

sity, Germany, 1994.

[142] Yaser Yacoob and Larry Davis. Computing spatio-temporal representations

of human faces. In Proceedings IEEE Conf. on Computer Vision and Pattern

Recognition, pages 70{75, Seattle, WA, 1994.

[143] Malcolm P. Young and Shigeru Yamane. Sparse population coding of faces in

the inferotemporal cortex. Science, 256:1327{1331, May 1992.

[144] Alan L. Yuille, Peter W. Hallinan, and David S. Cohen. Feature extraction from

faces using deformable templates. International Journal of Computer Vision,

8(2):99{111, 1992.

