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Abstract

The transformation from high level task speci�cation to low level motion control is a fundamental
issue in sensorimotor control in animals and robots. This thesis develops a control scheme called
virtual model control which addresses this issue.

Virtual model control is a motion control language which uses simulations of imagined mechanical
components to create forces, which are applied through joint torques, thereby creating the illusion
that the components are connected to the robot. Due to the intuitive nature of this technique,
designing a virtual model controller requires the same skills as designing the mechanism itself. A
high level control system can be cascaded with the low level virtual model controller to modulate
the parameters of the virtual mechanisms. Discrete commands from the high level controller would
then result in 
uid motion.

An extension of Gardner's Partitioned Actuator Set Control method is developed. This method
allows for the speci�cation of constraints on the generalized forces which each serial path of a parallel
mechanism can apply.

Virtual model control has been applied to a bipedal walking robot. A simple algorithm utilizing
a simple set of virtual components has successfully compelled the robot to walk eight consecutive
steps.

Thesis Supervisor: Gill A. Pratt
Title: Assistant Professor of Electrical Engineering and Computer Science
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Nomenclature

fAg, fAig virtual model reaction frames
fBg virtual model action frame
fOg virtual model reference frame
fA*g conglomerate virtual model reaction frame

~� robot joint angles and prismatic displacements
A
B
~X forward kinematic map from frame fAg to fBg

with reference to frame fAg
O(AB

~X) forward kinematic map from frame fAg to fBg
with reference to frame fOg

O
AR rotation matrix from frame fOg to frame fAg
A
OR rotation matrix from frame fAg to frame fOg
A
BJ Jacobian matrix from frame fAg to frame fBg

with reference to frame fAg
O(ABJ) Jacobian matrix from frame fAg to frame fBg

with reference to frame fOg
~� vector of joint torques and forces
A
B
~F generalized forces acting on action frame

fBg from reaction frame fAg with
reference to frame fAg

O(AB
~F ) generalized forces acting on action frame

fBg from reaction frame fAg with
reference to frame fOg

~v user de�ned parameters and variables
~s state vector of dynamic simulated entities
k virtual spring function
b virtual damper function
K parallel virtual model constraint matrix
n dimension of the generalized force to be applied
p number of individual serial links comprising a parallel

virtual component
l number of constraints in each serial path of a parallel

virtual component
d number of non-constrained degrees of freedom per serial path

of a parallel virtual component
r number of redundant serial path virtual force components
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G torque controller transfer function
Z torque controller impedance function
R robot admittance function
VM desired virtual model function
VM' actual virtual model function
E virtual model multiplicative error
T virtual model and robot function in parallel with

multiplicative error
CL desired closed loop admittance function of robot

and virtual model as seen by the environment
CL' actual closed loop admittance function of robot

and virtual model as seen by the environment
ENV environment impedance function
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Chapter 1

Introduction

Design and analysis of control systems for non-linear systems such as robots seems to be orders
of magnitude more di�cult than for linear systems. Despite these di�culties, researchers have
developed several powerful techniques for controlling several classes of non-linear systems. For
example, impedance control and adaptive controllers are two examples of powerful techniques for
controlling robot arms. The former is well-suited for controlling contact impedances of the arm as
seen by the environment. The latter is well suited for doing trajectory following while adapting to
robot parameters.

A class of robots which su�ers from lack of powerful techniques for its control is dynamic legged
locomoting robots. These robots are extremely di�cult to control since they

� Are nonlinear and operate throughout the range of their state space

� Act in a gravity �eld

� Interact with a semi-structured, complex environment

� Are nominally unstable

� Are Multi Input, Multi Output (MIMO)

� Exhibit time variant dynamics with zeroeth and �rst order discontinuities as support modes
are transitioned (e.g. single support, double support, ballistic phase, etc.)

� Require both continuous control and discrete control (for step-to-step transitions)

In addition, the performance measures of such robots are much di�erent than typical notions of
performance such as command following and disturbance rejection. Performance for these robots is

usually de�ned in some of the following terms:

� Biological similarity

� E�ciency, i.e. Distance traveled per unit energy input

� Locomotion smoothness

� Top speed

� Robustness to rough terrain

Because of these di�culties, the only acceptable tools for analyzing such systems is simulation
or experimentation and the only good design tools are often physical intuition, parameter iteration,
and \hand tweaking".

Despite these di�culties, robots have been developed at MIT's Leg Laboratory which can hop,
run, and perform gymnastic maneuvers [25]. The control algorithms employed are very simple and
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draw on physical intuition. Other factors contributing to the success of the robots include excellent
design and construction, conservative over-actuation, and a bit of luck. However, it is di�cult, if not
impossible, to perform an acceptable mathematical analysis of why the control algorithms employed
on these robots are successful in making them run.

If one wishes to expand the toolbox of analysis and design techniques for such a class of robots,
he or she must either make a quantum leap in control system design and analysis mathematics, or
else exploit physical intuition. In this thesis we present a control technique, dubbed virtual model
control, which attempts the latter.

1.1 Virtual Model Controllers

Virtual model control is a language for describing interactive force behaviors. This control technique
uses simulations of virtual mechanical components to generate actuator torques (or forces) thereby
creating the illusion that the simulated components are connected to the real robot. Because any
imaginable component can be used, virtual model control requires no loss of generality and traditional
control techniques can be utilized in the same context. For example, a proportional-derivative (PD)
servo at a joint can be implemented as a virtual torsional spring-damper with spring constant equal
to servo position gain, damping constant equal to derivative gain, and set point equal to desired
joint angle. Virtual components can even contain adaptive and learning elements [22].

One of the reasons virtual model control is being developed is because it is generally di�cult
to describe motion control. For example, how would one describe what he or she is doing when
performing deep knee bends and how would one control a robot to perform this task? A quick and
easy method would be to attach a virtual spring between the robot's feet and its waist and change
the rest-length in a sinusoidal fashion.

Another complex task which is di�cult to describe using traditional control methodologies is the
throwing of a punch by a robotic boxer. A simple virtual model controller might consist of a virtual
force source connected between the robot's chest (to throw a jab) and the end of its hand, producing
a virtual force in the direction of the opponent. Virtual components could be connected between
the feet and the body to help maintain balance (see Figure 1-1). If the robot wanted to throw a
knock-out upper-cut, using everything it has, virtual actuators could be attached to its hand from
its feet, hip, and chest. Whereas the jab controller would only cause chest and arm torques to be
exerted, the upper-cut controller would use every available joint torque in the robot's body.

Some bene�ts of virtual model control are that it is compact, requires a relatively small amount
of computation, and can be implemented in a distributed manner. These bene�ts are due to the
fact that no matrix or function inverses need be computed for serial links; all equations can be
precomputed in closed form and optimized; and multiple virtual components can be independently
computed and superposed since their outputs, joint torques, are linearly additive.

Furthermore, a high level controller could be implemented as a state machine which simply
changes virtual component connections or parameters at the state transitions. Even though a discrete
high level controller would be used, the overall motion would be 
uid as the virtual components would
be continuous.

Like any new idea, virtual model control draws from several techniques that are currently used in
practice. The following list contains six of these techniques and describes how virtual model control
compares and contrasts.

� Virtual Reality / Haptic Interfaces [28]. Virtual Reality is a means of creating the illusion
of virtual entities existing in a simulated environment. Haptic Interfaces are devices which
provide tactile and force feedback for Virtual Reality applications. Virtual model control is

similar to Virtual Reality and Haptic Interfaces in that it is used to emulate imaginary entities.
It is di�erent in that it emulates components which are connected to a robot in attempt to
persuade the robot to perform a certain task, rather than to create an illusion to a human
operator.

� Hybrid Position/Force Control [24]. Hybrid Position/Force Control is a method for com-
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Figure 1-1: Robotic Boxer with virtual components attached from the feet to the body to maintain
balance and from the body to the hand to throw a jab.

manding positions in an unconstrained cartesian subspace while commanding forces in the
orthogonal subspace. Virtual model control is similar to hybrid position/force control in that
both desired positions and forces can be controlled. However, with virtual model control the
space in which positions are controlled need not be orthogonal to the space in which forces are
controlled. In virtual model terms, a PD position controller is equivalent to a spring-damper
mechanism. There is no reason why a real spring-damper could not be attached in parallel
with a real force source, so there is no reason why both virtual components cannot be attached
to a robot and act in non-orthogonal spaces.

� Sti�ness Control [26]. Sti�ness Control is a method for controlling a robot so that its endpoint
cartesian sti�ness matches a given sti�ness matrix. Virtual model control can be used to
implement Sti�ness Control if linear virtual springs are used and connected to the robot in
the necessary manner.

� Impedance Control [13]. Impedance control is a method for controlling a robot so that its
impedance, as seen by the environment, matches a target impedance. In contrast, virtual
model control is used to simulate components, which can be modelled as impedances, between
two points on the robot. These two points can be attached anywhere on the robot, not just on
the base and end e�ector.

� Operational Space Formulation [15]. The Operational Space Formulation is a framework for the
analysis and control of manipulator systems with respect to the dynamic behavior of the end
e�ector. Virtual model control is similar to Operational Space Formulation in that coordinate
transformations are used in order to create a more intuitive space in which control is de�ned.
However, the virtual model coordinate systems can be attached to any part of the robot, not
just the end e�ector.

� Coordinated Jacobian Transpose Control [31], [2]. Coordinated Jacobian Transpose Control is
an algorithm for coordinated position and force control for autonomous multi-limbed mobile
robotic systems. Generalized control variables are de�ned with respect to a single inertial frame
and controlled to a commanded position via a set of linear springs and dampers. Virtual model
control allows for the use of multiple non-inertial frames for connecting components which
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aren't limited to springs and dampers. Also virtual model control allows for the speci�cation of
constraints (such as limp joints) and provides a framework for controlling parallel mechanisms.

Virtual model control is inspired by, and is a superset of the above control techniques. We stress
the following major points,

� Virtual model control is an intuitive language for describing complex motion control tasks.

� Virtual model control allows for the use of generalized variables and generalized force functions.

� Virtual model control can be implemented on any serial link or set of serial links on the robot
and not just between a base and end e�ector.

� Virtual model control can be implemented on serial or parallel, redundant or underactuated,
�xed or free-
ying robotic systems.

� Virtual model control allows one to specify mechanical constraints, such as unactuated joints,
or design constraints, such as force equalization.

� Adaptive and learning techniques can be implemented with virtual models, thereby creating
adaptive or learning virtual components.

Note that some of the above mentioned control techniques, along with other control schemes,
use dynamical inversion in attempt to alter the behavior of the robot. We like to call this technique
the \Virtual Robot" approach. Virtual model control can be used to simulate a virtual robot by
adding virtual forces to counter gravity and virtual mass (negative or positive) at the center of mass
of each link. However, this is not the intended application of virtual model control. We believe the
following,

The virtual robot approach (plant inversion) should only be used when high performance
requirements or other extreme situations dictate. This is because,

1. Plant inversion adds computational complexity.

2. Fighting the natural dynamics of the robot can be ine�cient.

3. Undesirable natural dynamics is an indication that the real robot was designed
improperly.

4. Overcompensation can lead to instability.

Also note that with virtual model control, we usually talk in terms of spring set points, for exam-
ple, and not commanded positions. Except for actuator non-idealities, we can perfectly implement
virtual components whereas very few control algorithms can perfectly track a commanded trajectory.
In this light we believe,

Robots cannot be commanded to perform a task; they can only be given hints and
suggestions.

1.2 Summary of Thesis Contents

This thesis is organized as follows:

Chapter 2 describes the notation and mathematics for implementing virtual models.

Chapter 3 explains several examples of virtual model formulation for various robot models.

Chapter 4 presents a simple example of when local control techniques, such as inverse kinematic
control, fails but virtual model control succeeds.
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Chapter 5 demonstrates, using Lyapunov analysis, that a passive robot with any number of passive
virtual component connected to it will remain passive.

Chapter 6 describes how non-ideal actuators may a�ect virtual model control and proposes the
relevant issues which must be addressed.

Chapter 7 de�nes the stability and performance requirement of virtual model controllers.

Chapter 8 analyzes a simple single input, single output (SISO), linear time-invariant (LTI) example
of a virtual model controller being implemented with a non-ideal actuator.

Chapter 9 describes the application of virtual model controllers to bipedal dynamic walking.

Virtual model control is currently being used to control a dynamic walking bipedal robot, as
described in Chapter 9. We have found that the robot can walk a number of steps using only a
simple set of virtual components. Future work will focus on using virtual model control to produce
more robust and e�cient walking.

15



16



Chapter 2

Virtual Model Implementation

The implementation of virtual components is fairly simple. There are �ve major steps: de�nition of
the virtual model reference frames; computation of the forward kinematics; calculation of a Jacobian
matrix, computation of the joint torques; and de�nition of the virtual model force function.

Since forward kinematics of serial links produces closed form solutions for any robot with pris-
matic and revolute joints and since di�erentiation of closed form functions produces closed form
functions, all the necessary equations will be relatively easy to derive and e�cient to compute.
For parallel virtual components, one must divide the generalized force amongst the individual se-
rial paths. This requires solving a system of equations (i.e. inverting a matrix). Subsection 2.6.1
describes an extenstion of Gardner's Partitioned Actuator Set Control Technique method which
minimizes the necessary computational requirements.

The derivation can all be done o�-line and future work will focus on automating this process.

2.1 De�nition of the Virtual Model Frames

Each virtual component requires three coordinate frames. These are denoted as

� Action Frame fBg

� Reaction Frame fAg

� Reference Frame fOg

where the frame symbols corresponds to those of Figure 2-1. The action frame de�nes the virtual
component connection upon which the generalized forces act. The reaction frame de�nes the second
attachment point of the virtual component. The reference frame is the coordinate system in which

all displacements, forces, etc are expressed.
Choosing the right reaction frame is very important. In most treatments of similar control

methods, the reaction frame is assumed to be �xed to ground and usually is not even mentioned.
However, one must remember Newton's Third Law. One cannot simply describe a force acting at a

point. One must describe forces acting between two points. Similarly, in the virtual model context,
one cannot simply de�ne a generalized force acting on a frame but must de�ne a generalized force
acting between two frames.

The action, reaction, and reference frames need not be inertial, nor cartesian, and none need to
be directly attached to parts of the physical robot. All three frames simply need to be well de�ned.
In most cases, however, all three frames will be cartesian, they will be connected to logical points
on the robot such as joints, links, or end e�ectors, and reference frame fOg will either be inertial or
coincide with fAg or fBg. In other words they will be connected where they make the most intuitive
sense.

In our use of the reference frame, fOg, we are not concerned about its location and in fact it
need not be speci�ed. All that is needed is the relative rotation between the reference frame and
the action and reaction frames.
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VC

A

B

O

Figure 2-1: Virtual Component Reference Frames. fBg is the action frame. fAg is the reaction
frame. fOg is the reference frame. VC represents the virtual component. The virtual component is
drawn schematically to show it acts between frames fAg and fBg. The forces exerted by the virtual
component can be in any admissible direction.

Choice of the virtual model frames is a major part of de�ning a virtual component and must be
done carefully if the desired results are to be obtained. For example, both the action and reaction
frames may be de�ned so that there is no relative rotation between them in any orientation of the
robot. This is perfectly valid but it then makes it impossible to produce a relative torque between
the two. The best tools for determining how to attach the virtual component's frames is physical
intuition, insight, and experience, i.e. the same tools required to design the robot mechanism itself.

2.2 Derivation of the Forward Kinematics

Computing the forward kinematic map, AB
~X, is relatively easy and well documented [7]. For any

serial manipulator with revolute and prismatic joints, AB
~X will be a closed form function of the joint

angles and prismatic displacements, ~�, lying between frames fAg and fBg. The robot link length
parameters will enter this function as constant coe�cients if frames fAg and fBg are rigidly attached
to the links of the robot. This is not true in general, however.

To express the kinematics between frames fAg and fBg with reference to frame fOg, we use the

rotation matrix between fOg and fAg

O(AB
~X) = O

AR
A
B
~X (2:1)

Note that we ignore the displacement between fOg and fAg. This is because we are concerned with
the relative kinematics between the reaction and action frames and not the absolute location of any
of the frames, with reference to fOg or World Coordinates.

All virtual components do not necessarily need to provide actuation. They can be used with the
forward kinematics alone and act simply as virtual sensors.

2.3 Derivation of the Jacobian Matrix

Let the Jacobian Matrix for a virtual component be de�ned in the following manner

A
BJ =

@

@�
A
B
~X (2:2)

18



The Jacobian will be in closed form if A
B
~X is in closed form. For the 2D case, the Jacobian can

easily be computed by partial di�erentiation of the forward kinematic map. If the link parameters
enter the forward kinematics as constant coe�cients, then they'll also be constant coe�cients in the
Jacobian.

The Jacobian can be used for several things. It can be used to calculate generalized velocities by

A
B
~_X = A

BJ
~_� (2:3)

which holds by de�nition. To express velocities with respect to the reference frame, we again use
the rotation matrix,

O(AB
~_X) = O

AR
A
B
~_X (2:4)

The Jacobian is also used to transform generalized forces to joint torques as discussed next.
There are several techniques to compute the Jacobian for the 3D case [19, 7]. One method

described in [7] is to recursively compute the joint to cartesian velocity relationship (Equation 2.3)
and extract the Jacobian Matrix.

2.4 Computation of the Joint Torques

To compute the joint torques which will successfully emulate the virtual component, we use the
following equation

~� = A
BJ

T A
B
~F (2:5)

where ~� is the vector of joint torques (or forces for prismatic joints) and A
B
~F is the generalized force

vector acting on action frame fBg from reaction frame fAg de�ned with respect to frame fAg. The
generalized force vector will typically consist of a force and moment vector.

Equation 2.5 can be easily derived starting from the energy balance ~�T �~� = ~FT � ~X [7]. It
requires that the generalized forces which act on action frame fBg be speci�ed in terms of reaction
frame fAg. If the forces are expressed in reference frame fOg, we must use the rotation matrix from
fAg to fOg to express them in fAg,

A
B
~F = A

OR
O(AB

~F ) (2:6)

We can combine Equations 2.5 and 2.6 to get

~� = A
BJ

T A
OR

O(AB
~F ) = O(ABJ)T O(AB

~F ) (2:7)

where O(ABJ)T = A
BJ

T A
OR.

One point of note is that \admissible" generalized forces lie in the row space of O(ABJ)T . By
admissible, we mean forces which can be realized using the available joint actuators. For example,

if no relative motion can be realized along a certain direction, then no matter how large a force is
produced along that direction in real life, no e�ect will result on the robot (assuming rigid links).
Similarly, any generalized forces which lie in the null space of O(ABJ)T will produce no torque at
the joints and hence have no e�ect on the robot. Whether or not such an inadmissible generalized
force should be allowed probably depends on the implementation. In any case, an inadmissible force
should be detectable. An easy test is to see if it lies in the row space of the Jacobian transpose. When
implementing parallel virtual components, as in Section 2.6, it is important that the inadmissible
force constraints be known for each of the serial paths of the virtual component so that the desired
generalized force can be accurately divided amongst the individual serial paths.

2.5 De�nition of the Generalized Forces

The �nal part of de�ning a virtual component is to �nd a relation between the relative displacement
and rotations of the action and reaction frames and the generalized forces to be applied to the action
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frame. In other words, we need to choose a generalized force function

O(AB ~F ) = O(AB ~F (O(AB ~X); ~v;~s)) (2:8)

where A
B
~F is the generalized forces acting on action frame fBg from reaction frame fAg, A

B
~X is

the generalized displacement of frame fBg from frame fAg computed in section 2.2, ~v are other
parameters and variables, and ~s is the state of dynamic simulated virtual entities such as masses
and inertias. The O superscripts denote that all measurements are de�ned with respect to reference
frame fOg. If virtual components which have state are used, then one must implement a real-time
dynamic simulation to update the component's state.

As an example, to implement a generalized spring-damper mechanism, one could use

O(AB
~F ) = k(O(AB

~~X)) � b(O(AB
~_X)) (2:9)

where O(AB
~~X) is the error between the spring set-point and the actual position and k and b are the

spring and damper functions.
Of course, the virtual component need not be just a spring or damper; any component which

can be expressed in terms of Equation 2.8 is valid. The simulated mechanism need not be linear,
monotonic, nor even physically realizable. In fact, one could simply treat the virtual component as

a virtual actuator and produce the virtual forces by any desired control method.

2.6 Parallel Mechanisms and Multi-Frame Virtual Compo-

nents

Up to this point we have only dealt with serial link manipulators. With a serial link structure all
the necessary equations are relatively simple to derive. With a parallel structure a matrix inversion
is necessary.

We start by de�ning one action frame fBg, one reference frame fOg and multiple reaction frames
fAig as in Figure 2-2. Frame fA�g is a construct used to represent all of the frames fAig and can
be viewed as the conglomerate reaction frame. The parallel virtual component structure can be
considered as multiple serial structures acting on the same action frame. Each serial sub-component
has a corresponding Jacobian which is calculated as in Section 2.3. We combine these to get

2
6666664
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~�p

3
7777775

=

2
6666664

O(A1

B J)T 0 � � � 0

0 O(A2

B J)T � � � 0

...
...

. . .
...

0 0 � � � O(
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B J)T

3
7777775

2
6666664

O(A1

B
~F )

O(A2

B
~F )

...

O(
Ap
B

~F )

3
7777775

(2:10)

We now have a mapping from sub-component generalized forces to joint torques. However,
we wish to specify a single generalized force to act on the action frame. Since the action frame
and reference frame are coincidental for all the sub-components, the vector sum of the individual
generalized forces must equal the desired generalized force,

pX
i=1

O(AiB
~F ) =O (A

�

B
~F ) (2:11)

We need to solve for O(AiB
~F ) in terms of O(A

�

B
~F ). To do this we must add a number of constraints.

Some of these constraints will arise due to the inadmissibility of certain individual force directions.
These constraints can be determined by examining the row space of the individual O(AiB J)T . Others
will arise from constraints on the robot such as unactuated joints. The rest of the constraints can
be used as design degrees of freedom.

Once enough constraints have been determined, we will have a square invertible constraint matrix,
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Figure 2-2: Parallel Virtual Component Reference Frames. Frame fBg is the action frame. Frames
fAig are the reaction frames. Frame fOg is the reference frame. VC represents the conglomerate
virtual component which is comprised of the individual virtual components V Ci. Frame fA�g is an
imaginary construct which represents the reaction frame of the conglomerate virtual component.
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K, so that the constraints can be written in the form

"
O(A

�
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~F )
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#
= K

2
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B
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~F )
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~O(
Ap
B

~F )

3
777777775

(2:12)

and the individual sub-force vectors resolved as,

2
6666664
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B
~F )

O(A2

B
~F )

...
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B

~F )

3
7777775

= K�1

"
O(A

�

B
~F )

~c

#
(2:13)

where the elements of ~c can be extra control variables, such as individual interaction forces, or 0
for constraints which are solely a function of the forces O(AiB

~F ). Of course, we need not retain the
columns of K�1 which are multiplied by 0. We can now substitute Equation 2.13 into 2.10 to get
the �nal force to torque relationship.

2.6.1 Inverting the Constraint Matrix

Equation 2.13 requires inverting a potentially large sparse matrix. We show here a method for
taking advantage of the structure of the constraint matrix, K, in order to reduce computational
requirements. The method is an extension of Gardners's Partitioned Actuator Set Control Technique
[11, 10].

Gardner partitions the actuators into a MinimumActuator Set (MAS) and a Redundant Actuator
Set (RAS). We stress here that we are not dealing with actuators at this level but rather virtual
force distribution. Therefore we specify the Minimum Force Set (MFS) and the Redundant Force
Set (RFS). We extend Gardner's method by adding the Constrained Force Set (CFS) for dealing
with natural constraints, such as underactuated legs, point feet, and limp joints.

We assume that all the serial paths of the parallel virtual components are of the same structure,
with the same number of constraints. We do this only to simplify the following explanation. The
mathematics is easily extended to the general case.

We de�ne the following constants,
n dimension of the generalized force to be applied
p number of serial paths of the parallel virtual component
l number of constraints in each serial path
d = n-l number of non-constrained degrees of freedom per serial path
r = pd - n number of redundant serial path virtual force components

The number of force elements in the Minimum Force Set will be n; in the Constrained Actuator
Set l per serial path (pl total); in the Redundant Force Set r. How the forces are partitioned into
these sets depends on the design constraints one wishes to implement and the limitations placed
on these constraints by the extended partitioned force set method. These limitations are explained
below.

As an example, suppose we have a 100 leg millipede with 2 joints per leg and point feet. We
would have n = 6 for the 3 elements of the force vector and 3 elements of the moment vector which
we wish to exert; p = 100 for the 100 legs; l = 4 for the 3 constraints of no torques at the feet and
the 1 constraint provided by the underactuation of having only 2 joints per leg; d = 2 meaning each
leg can provide a 2 dimensional force vector from the 6 dimensional space; and r = 194 meaning we
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have 194 redundancies and therefore can specify up to 194 design constraints. The Minimum Force
Set would contain 6 elements; the Constrained Force Set 400; and the Redundant Force Set 194.

We �rst partition the virtual forces into the Constrained Force Set (CFS), f ib, and those not in
the CFS, f ia, and rearrange Equation 2.12 into the following form,
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(2:14)

where I is the identity matrix, 0 is the zero matrix, J ia , J ib are natural constraint matrices, and
Dia, Dib are design constraint matrices. The Constrained Force Set consists of the forces f ib while
the forces f ia belong in the Minimum and Redundant Force Sets. The subscript on each matrix

block show the size of the block. Equation 2.12 can always be written in the form of Equation 2.14
since the natural constraints for a given serial path will only be a function of the virtual forces on
that path.

We can reduce the size of the matrix in equation 2.14 by taking advantage of the sparseness of
the natural constraint blocks. Each natural constraint row can be written as

0 = J iaf ia + J ibf ib

Solving for f ib we have,

f ib = �(J ib)�1J iaf ia (2:15)

We can substitute this back into Equation 2.14 to get a reduced set of equations,
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(2:16)
We have now reduced the matrix size from np � np to dp � dp by eliminating the Constrained

Force Set (CFS). Note that Equation 2.16 is still in the general form, i.e. we have put no restrictions
on the design constraint equations. We could stop here and invert the new dp�dp matrix, if it were
computationally feasible. In order to further reduce the size of the matrix, we can eliminate the
Redundant Force Set (RFS) by specifying our design constraints in a proper manner.

Similar to [11], we specify the Redundant Force Set, fr , in terms of the Minimum Force Set, fm.

fr
r

= c
r
�B

r�n
fm
n

(2:17)

where fr is the Redundant Force Set, fm is the Minimum Force Set, c is a vector of variables or
constants, and B is the design constrain matrix.

Writing the design constraints in terms of Equation 2.17 requires that

Dib = 0 8i
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and Dia are restricted so that we can rearrange Equation 2.16 into the following form,"
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(2:18)

We can now eliminate the RFS, fr , from Equation 2.18 to by substituting Equation 2.17 into
2.18 to get

[f �Arc]
n

= [Am � ArB]
n�n

[fm
n

] (2:19)

To solve for the MFS, fm, we must invert the n � n matrix in Equation 2.19. The Redundant
Force Set is then computed by plugging back into equation 2.17. Finally, we can rearrange the
Minimum and Redundant Force Sets to get f ia and substitute back into Equation 2.15 to solve for
the Constrained Force Set.

We now describe how one partitions the virtual forces into the three sets. In order to use the
above method, one must write all the design constraints in the form of Equation 2.17. In writing
these constraints, one must specify the Redundant Force Set and the Minimum Force Set. The
remaining forces are the Constrained Force Set. One must make sure that the choice of design
constraints allows for a solution of Equation 2.19 to exist.

Examining Equations 2.16 to 2.19 we see that we take p [l� l], and 1 [n�n] matrix inversions in
solving for the virtual forces applied to each serial path. These inversions will take signi�cantly less
computational resources to perform than the original np � np inversion. Since the computational
complexity of matrix inversion scales with the cube of the matrix size, the above method isO(pl3+n3)
whereas inverting the original matrix is O(p3n3).

2.6.2 Pseudo-Inversion of the Constraint Matrix

The above discussion assumed that we speci�ed r design constraints. In some cases, we may not
wish to specify as many design constraints, and we may not wish to be limited to specifying all the
constraints in terms of Equation 2.18. Suppose we wish to specify only s design constraints, where
s < r. If we specify the design constraints in the form,

fr2
s

= c�B1fm � B2fr1 (2:20)

then instead of Equation 2.18, we will have,
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Utilizing the structure of this matrix, we get the following set of Equations,
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(2:22)

The above matrix is non-square. To solve the above equation for fm and fr1, we can use the
Moore-Penrose pseudo-inverse,

A+ = AT (AAT )�1 (2:23)

and then solve for fr2 by substituting back into Equation 2.20.
The pseudo-inverse still requires inverting an n � n matrix so our computational requirements

are about the same as the previous method.
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2.7 Summary

The implementation of a virtual component is relatively straightforward. The math may become
cumbersome but equation derivation need be done only once for a given mechanism. For a serial
mechanism, computational requirements are low as no functional or matrix inversions are required.
For a parallel mechanism, a matrix inversion is necessary. However, by taking advantage of the form
of the constraint matrix and by specifying the design constraints in the correct manner, the size of
the matrices which need to be inverted are reduced.

The most important part of creating a virtual component is that the virtual components be
de�ned properly via the three frames and the generalized force function. This can be accomplished
by using the same physical intuition and mechanism design approach used in constructing the robot.
Therefore, virtual model control is as suited for someone who is comfortable with robot design as
someone who is comfortable with control systems theory.
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Chapter 3

Examples

In this Chapter we present several robot examples in which virtual models are used. We do not
discuss the virtual components which are used but rather derive and discuss the relevant mathematics
for each of the examples. These examples will be used in later chapters at which point actual virtual
components will be used to do something interesting. For instance the foot example mathematics
is derived in Section 3.3 and used in Chapter 4 as a simple example in which virtual model control
works but blind application of inverse kinematics control fails.

3.1 Single Leg Example

Figure 3-1 shows a simple 2-D, four link, three joint, serial robot model which we use to represent a
single leg of our walking robot (See Chapter 9). We wish to connect a virtual component between
frame fAg, which is attached to the foot, and frame fBg, which is attached to the body. The angles
�a, �k, and �h are those of the ankle, knee, and hip. The lower link (tibia) is of length L1, while the

upper link (femur) is of length L2. In this example we assume that the foot is 
at on the ground,
so that O

AR = I.
The forward kinematic map from frame fAg to frame fBg of this example is as follows,

A
B
~X =

2
664
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z

�

3
775 =
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�L1 sin(�a)� L2 sin(�a + �k)
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��h � �k � �a

3
775 (3:1)

Partial di�erentiation produces the Jacobian,

A
BJ =

2
664
�L1 cos(�a) � L2 cos(�a + �k) �L2 cos(�a + �k) 0

�L1 sin(�a) � L2 sin(�a + �k) �L2 sin(�a + �k) 0

�1 �1 �1

3
775 (3:2)

The Jacobian relates the virtual velocity between frames A and B,

A
B
~_X =A

B J
~_� (3:3)

and the virtual force to joint torque,

~� = (ABJ)T (AB
~F ) (3:4)

The Jacobian is of full rank, indicating that all virtual force directions are admissible. This is the
typical setup for using the Jacobian to transfer from endpoint forces to joint torques. To keep things
interesting, we add the constraint that �a = 0. An unactuated ankle will constrain the direction in
which virtual forces can be applied. This constraint is equivalent to having a point foot since this
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Figure 3-1: Single Leg example. Reaction frame fAg is assumed to be in the same orientation as
reference frame fOg so that O

AR = I.

example is 2-D. With a limp ankle, Equation 3.4 is constrained,
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For our walking robot we are more concerned about applying forces in the vertical direction and
torques about the body then we are concerned about applying horizontal forces. Therefore, we
specify fz and f� and solve for fx

fx =
�1

L1 cos(�a) + L2 cos(�a + �k)

�
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� " fz

f�

#
(3:6)

Plugging this back into 3.5, we get
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(3:7)

We now have a simple set of equations for determining joint torques given virtual forces. Note
that the matrix in Equation 3.7 is of full rank for all values of ~� except for �k = 0. This corresponds
to a fully extended knee, during which no virtual forces can be applied in the z direction. If the
knee is not fully extended, all virtual forces are admissible. Also note that the denominator in
Equation 3.7, L1 cos(�a) + L2 cos(�a + �k), is A

Bz and hence is already computed in the forward
kinematics. Throughout this example we have assumed that the feet are 
at on the ground and that
we can measure all angles. In actuality, we use point feet and measure the body angle via a boom
or gyroscope, rather than the ankle. Therefore, we must make the substitution
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Figure 3-2: Dual Leg example. Reaction frames fAg and fCg are assumed to be in the same
orientation as reference frame fOg so that O

Al
R =O

Ar
R = I.

�a = �� � �h � �k

These equations will be used in Chapter 9 in the control of a bipedal walking robot during single

support phase.

3.2 Dual Leg Example

The previous example discussed a serial chain manipulator. Here we examine a parallel mechanism
representing a simple, 2-D, bipedal robot (See Figure 3-2). As discussed in Chapter 2, we can
attach single-frame virtual components across any serial link or we can create a multi-frame virtual

component with a common action frame. We describe the latter here.
Our model consists of the previous single leg example plus another leg. We wish to connect a

multi-frame virtual component between the reaction frames fAlg and fArg which are connected to
the feet, and the action frame fBg which is connected to the body. The individual leg parameters
and joint angles are identical to those of the single leg example with the l subscript denoting the
left leg and the r subscript denoting the right leg. Again, we assume that the feet are 
at on the
ground so that O

Al
R =O

Ar
R = I.

We already have the kinematics for each leg from the previous example. To calculate the body
kinematics, we choose to use the average of these,

~X =
Al
B
~X +Ar

B
~X

2

~_X =
Al
B

~_X +Ar
B

~_X

2
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One could also choose the minimum, maximum, etc. or simply keep them separate.
We have computed the Jacobian for each serial link of this parallel mechanism in the previous

example. We now combine them in the following manner,"
~�l

~�r

#
=

"
Al
B JT 0

0 Ar
B JT

# "
~Fl

~Fr

#
(3:8)

This expands to 2
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0 0 �1 0 0 0

0 0 0 C D �1

0 0 0 S T �1

0 0 0 0 0 �1

3
777777777775

2
666666666664

fxl

fzl

f�l

fxr

fzr

f�r

3
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(3:9)

where

A = �L1 cos(�la)� L2 cos(�la + �lk)

B = �L1 sin(�la) � L2 sin(�la + �lk)

C = �L1 cos(�ra) � L2 cos(�ra + �rk)

D = �L1 sin(�ra)� L2 sin(�ra + �rk)

Q = �L2 cos(�la + �lk)

R = �L2 sin(�la + �lk)

S = �L2 cos(�ra + �rk)

T = �L2 sin(�ra + �rk)

Equation 3.9 maps the virtual forces from each leg to the required joint torques, whereas we wish
to specify a single virtual force. We therefore need to solve the individual leg forces in terms of the
combined virtual force subject to several constraints.

Since the action frame fBg is coincidental, we have the compatibility relation that the force
vector must equal the vector sum of the forces produced by each serial chain,2

664
fx

fz

f�

3
775 =

2
664

fxl

fzl

f�l

3
775+

2
664
fxr

fzr

f�r

3
775 (3:10)

Since we have six joints and wish to control three force directions, we require three constraints.
Unactuated ankles provide two constraints,

�la = 0 (3.11)

�ra = 0 (3.12)

The third constraint provides us with a design degree of freedom. We could choose it to maximize
some performance criterion, etc. Here we simply choose to match the hip torques,

�lh = �rh =) f�l = f�r (3:13)
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Putting the above constraints in vector form we have,2
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3
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(3:14)

We must now perform a 6 by 6 matrix inversion to solve for the individual leg forces. We drop
the terms which are multiplied by zero. The result is a 6 by 3 matrix relating the single vector of
virtual forces to the individual leg virtual forces,2
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where

E = CB �AD (3:16)

Plugging Equation 3.15 into Equation 3.9 and simplifying, we get the virtual force to joint torque
relation 2
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D V
E

�V�QD+RC
2E

� 1
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fx
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where

V = QB �RA = �L1 L2 sin(�lk)

W = SD � TC = �L1 L2 sin(�rk)

Once again, we have a simple set of equations for relating virtual forces to joint torques. In-
tuitively, the matrix in Equation 3.17 should be of full rank for all � except when a knee is fully
extended or the two feet and hip are colinear. In all other con�gurations, all virtual forces are
admissible. Again, we will use point feet and measure the body angle via a boom or gyroscope,
rather than the ankle angles. Therefore, we must make the substitutions

�la = �� � �lh � �lk

�ra = �� � �rh � �rk

These equations will be used in Chapter 9 in the control of a bipedal walking robot during double
support phase.
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Figure 3-3: Foot example. �t is the toe angle, �a is the ankle angle, �f is the angle of the foot with
respect to frame fOg, and �b is the angle of the body with respect to frame fOg.

3.3 Foot Example

Figure 3-3 shows a simple 2-D, three link, two joint, serial robot model which represents a foot.
Unlike the previous examples, we do not assume that the last link is 
at on the ground. We wish to
reference all vectors to inertial frame fOg.

The kinematics between frames fAg and fBg are easily calculated"
A
Bx

A
Bz

#
=

"
�L2 cos(�t + �a)� L1 cos(�t)

�L2 sin(�t + �a)� L1 sin(�t)

#
(3:18)

Partial di�erentiation produces the Jacobian,

A
BJ =

"
L2 sin(�t + �a) + L1 sin(�t) L2 sin(�t + �a)

�L2 cos(�t + �a)� L1 cos(�t) �L2 cos(�t + �a)

#
(3:19)

We use the rotation matrix between frames fOg and fAg to transform the kinematics,

O
AR =

"
cos(�f ) sin(�f )

� sin(�f ) cos(�f )

#
(3:20)

O(AB
~X) = O

AR
A
B
~X =

"
�L2 cos(�f � �a � �t)� L1 cos(�f � �t)

L2 sin(�f � �a � �t) + L1 sin(�f � �t)

#
(3:21)
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O(AB
~_X) = O

AR
A
BJ

~_�

=

"
�L2 sin(�f � �a � �t)� L1 sin(�f � �t) �L2 sin(�f � �a � �t)

�L2 cos(�f � �a � �t)� L1 cos(�f � �t) �L2 cos(�f � �a � �t)

#
~_� (3.22)

We use the rotation matrix between frames fAg and fOg to transform the virtual forces,

A
OR =

"
cos(�f ) � sin(�f )

sin(�f ) cos(�f )

#
(3:23)

~� = A
BJ

T A
OR

O(AB
~F )

=

"
�L2 sin(�f � �a � �t)� L1 sin(�f � �t) �L2 cos(�f � �a � �t)� L1 cos(�f � �t)

�L2 sin(�f � �a � �t) �L2 cos(�f � �a � �t)

#
O(AB ~F )

(3.24)

The determinant of the matrix in Equation 3.24 is L1L2 sin(�a). Therefore, all forces will be
admissible until the ankle joint is fully extended, which makes intuitive sense. Since the body
angle, rather than the foot angle, will be measured via a boom or a gyroscope we need to make the
substitution

�f = �b + �t + �a

This simple example will be used in Chapter 4 as a case when inverse kinematics fails while virtual
models succeed.
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3.4 3D Hexapod Example

The previous examples have all been two dimensional. This section presents a three dimensional
example of a hexapod robot alternately being supported by a tripod composed of three of its six
legs. Using three legs for support allows the hexapod to be statically stable and is a typical snapshot

of the tripod walking gait.
In the two dimensional examples, the Jacobians were computed by di�erentiation of the kine-

matics. In contrast, the Jacobian for this three dimensional example is computed using a technique
found in [7]. In this technique, the mapping between joint velocity and virtual model frame velocity
is directly computed. The Jacobian is then extracted from this mapping.

Since the multiple legs operate as a parallel mechanism, techniques described in Section 2.6
applicable and thus used to determine the force distribution among the three supporting legs.

Figure 3-4: Drawing of hexapod, used in the 3D example, standing on three of its six legs. The
other three legs are not shown for clarity.

Figure 3-4 shows the hexapod model standing on three legs. Leg 1 is in the middle of one side
of the body while legs 2 and 3 are in the front and back of the opposite side of the body. The other
three legs of the hexapod are not shown. Figure 3-5 shows a close up view of one of the legs. There
is one actuated degree of freedom at the knee and two at the hip. The knee angle is �ki and the hip
angles are �h1i and �h2i . If the joint angles are all zero, the leg will point straight down from the
body. Each leg is comprised of an upper and lower link, both of length L. The location of the leg
with respect to the action frame fBg is (Px; Py; 0). We assume that we can measure only the angles
of the three joints of each of the three legs.

We wish to specify a generalized force, B(A
�

B F ) which acts on the body from the three legs. As
described in Chapter 2, we must determine the mapping from virtual forces to joint torques and the
mapping from a generalized force to the individual virtual forces applied by each leg.

The Jacobian from the reaction frame to the action frame for a given leg, B(AiB J) is determined
via an iterative computation of the joint velocity to cartesian velocity mapping, as described in [7].
This Jacobian maps the virtual model generalized forces to joint torques for the ith leg,
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Figure 3-5: Diagram of a single leg of the hexapod example. There is one actuated degree of freedom
at the knee and two at the hip. The knee angle is �k and the hip angles are �h1 and �h2. The leg
links are both of length L. The location of the leg with respect to frame fBg is (Px, Py, 0).
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�Lsh2ich1i L ch2ich1i Lsh1i � Pxi sh2i + Pyi ch2i �ch2i �sh2i 0

0 0 �Pxi sh2i + Pyi ch2i �ch2i �sh2i 0

�Pyi +Pxi 0 0 0 �1

3
775

2
666666666664

fxi

fyi

fzi

nxi

nyi

nzi

3
777777777775

(3:25)
where cx = cos(�x) and sx = sin(�x).

Since no moments can be applied at the point feet each leg has three natural constraints. Fol-
lowing the method in Section 2.6.1 we have

n = 6 (3.26)

p = 3 (3.27)

l = 3 (3.28)

d = 3 (3.29)

r = 3 (3.30)

To reduce the size of the matrix to be inverted, we must partition the individual components of
the virtual forces into the Minimum Force Set (6 elements), Redundant Force Set (3 elements), and
Constrained Force Set (9 elements). For our 3 design constraints, we decide to match the horizontal
forces of legs 2 and 3 and match the lateral force of leg 1 with the sum of the vertical forces of legs
2 and 3,

fx3 = fx2 (3.31)

fy3 = fy2 (3.32)

fy1 = 2fy2 (3.33)

These design constraints are written in the terms of Equation 2.17 if we partition the virtual
forces as follows,

MFS = ffx1; fz1; fx2; fy2; fz2; fz3g

RFS = ffx3; fy3; fy1g

CFS = fnx1; ny1; nz1; nx2; ny2; nz2; nx3; ny3; nz3g

The constraint equation (2.12) can now be written in expanded form,
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(3:34)

The �rst six rows of the constraint matrix state that the sum of the virtual force and moment
vectors for each of the individual legs equals the total virtual force and moment vector acting on the
body at frame fBg. The next three sets of three rows de�ne the natural constraints of zero torque
at each foot. The last three rows are the design constraints chosen in Equation 3.33.

The elements of the natural constraints, J ia and J ib are extracted from the Jacobian Transpose.
The Minimum and Redundant Force Sets are acted on by J ia where

(J ia) =

2
664

�Lsh2i (cki+h1i
+ ch1i ) Lch2i(cki+h1i

+ ch1i) Lski+h1i
+ Lsh1i + Pyi ch2i � Pxi sh2i

�Lch2i (1 + cki)� Pyi ski+h1i
�Lsh2i (1 + cki) + Pxi ski+h1i

�Pyi sh2icki+h1i
� Pxi ch2icki+h1i

Lch2iski � Pyi cki+h1i
Lsh2i ski + Pxi cki+h1i

Pyi sh2iski+h1i
+ Pxi ch2iski+h1i

3
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(3:35)
while the Constrained Force Set is acted on by J ib where

(J ib) =

2
664

�ch2i �sh2i 0

sh2icki+h1i �ch2icki+h1i �ski+h1i

�sh2iski+h1i ch2iski+h1i �cki+h1i

3
775 (3:36)

Note that the angles the foot makes with frame fAig do not appear in any of the previous
equations. In order to derive these equations, X-Y-Z Euler angles were used at the feet. The foot
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angles did not appear in the torque-force relationship 3.25. However, they did appear in the natural
constraints, J ia and J ib. The natural constraint equations de�ne a 3 dimensional subspace of the 6
dimensional virtual force space. This subspace is the space in which \admissible" virtual forces can
be applied. We veri�ed that this subspace is the same for any foot angles. Therefore we were able
to arbitrarily set the foot angles to zero.

An intuitive explanation for why the foot angles do not matter is that virtual forces are being
applied from frame fAig to frame fBg with respect to frame fBg. How we de�ne frame fAig therefore
doesn't matter, as long as we can specify the foot angles in some way. Therefore, it is arbitrary what
the foot angles are and we can set them to zero in order to eliminate them from our equations.

The submatrix, J ib, happens to be orthonormal so that its inverse is simply its transpose,

(J ib)�1 =

2
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3
775 (3:37)

We eliminate the Constrained Force Set from Equation 3.34 using Equations 2.15 and 2.16,
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where,

� (J ib)�1J ia =

2
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(3:39)
Equation 3.38 is now rearranged so that it is in the form of Equation 2.18.
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Now Am is the upper left 6� 6 submatrix, Ar is the upper right 6� 3 submatrix, B is the lower
left 3� 6 submatrix, and the 3� 3 identity matrix is in the lower right corner.

We can now eliminate the Redundant Force Set as in Equations 2.18 and 2.19, to get2
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where,

s
4;2

= Py1 + Lch21 (sh11+k1 + sh11)

s
4;4

= �2Lsh11sk1 � Lsh12sk2 � Lsh13sk3 + Lch12(ck2 + 1) + Lch13(ck3 + 1) + 2L ch11(ck1 + 1)

s
4;5

= Py2 + Lch22 (sh12+k2 + sh12)

s
4;6

= Py3 + Lch23 (sh13+k3 + sh13)

s
5;1

= �Lch11+k1 � Lch11

s
5;2

= �Px1 + Lsh21 (sh11+k1 + sh11 )

s
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= Lch12(�ck2 � 1) + Lch13(�ck3 � 1) + Lsh12sk2 + Lsh13sk3

s
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= �Px2 + Lsh22 (sh12 (ck2 + 1) + ch12sk2)
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= �Px3 + Lsh23 (sh13+k3 + sh13 )

s
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= �Py1 � Lch21 (sh11+k1 + sh11 )

s
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= �Py2 � Py3 � Lch22(sh12+k2 + sh12 )� Lch23(sh13+k3 + sh13 )

s
6;4

= +2Px1 + Px2 + Px3 � 2Lsh21 (sh11+k1 + sh11) � Lsh22 (sh12+k2 + sh12 )� Lsh23 (sh13+k3 + sh13)

To solve for the Minimum Force Set, we need to invert the 6� 6 matrix in Equation 3.41. This
inversion is shown in Appendix A. We next use Equation 2.17 to solve for the Redundant Force Set
in terms of the Minimum Force Set,
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Finally Equation 2.15 is used to solve for the Constrained Force Set in terms of the Minimum
and Redundant Force Sets,
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We now have a relatively small set of equations for coordinating three legs of a hexapod robot. To

implement virtual model control, one needs only to de�ne a generalized force function as described
in Section 2.5. The above equations can then be used to compute the required joint torques for the
three legs.
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Chapter 4

Virtual Models vs. Local Control

Techniques

In this Chapter, we describe a simple example in which virtual model control works but blind
application of local control techniques, such as inverse kinematics, fail. The example is that of a
simple 2-D foot which is modelled by three links and two joints. We wish to make the foot perform
several maneuvers. These include moving to a desired con�guration and transitioning from being
supported by its heel to being only on its toes.

The mathematics required for implementing virtual components on this robot was described in
Section 3.3. We attempt to provide an intuitive description of why virtual model control works with
this example and inverse kinematics fails. Simulations were performed which veri�ed the technique.

4.1 Intuitive Explanation

Figure 4-1 shows the foot model in a hypothetical position. The solid �gure shows the current
position of the foot. We wish to control the foot so that it moves towards the desired position,
indicated by the dashed �gure. To do this we can connect a virtual spring between frames fAg
and fBg which will push the foot toward the desired position. Another option is to use inverse
kinematics control to servo the individual joints to the corresponding desired angles.

A virtual spring will produce the force Fvm as in the �gure. Transformation to joint torques
will produce a toe torque Tt which would seem to cause the toe angle to increase. This is opposite

to the direction which we desire it to travel! However, the joint will indeed travel against the
applied torque (decrease in angle), thereby producing negative work. This has been demonstrated
via simulation which we discuss below. In contrast, inverse kinematic control will produce a toe
torque which opposes the joint angle error and thus will be opposite in sign of the torque generated
via virtual model control. This torque will indeed cause the angle error to decrease but instead of
the foot pushing on the ground it will simply lift its toes. Therefore, the blind application of inverse
kinematics control will produce undesirable results with this example.

One can demonstrate the above result by standing on his or her toes and pushing up and down
while keeping one's knees locked. To go up, one must push harder on his or her toes which results
in the toe joint rotating against the applied torque. At �rst it may take some e�ort to determine
exactly what is happening. Although the virtual force (push down) and cartesian movement (move
up) is easily understandable, the actual joint torques and joint motion takes some e�ort to properly
observe. This suggests that the joint angles and torques in this task don't even enter ones conscious.
If so, then coordinate transformations similar to those used in virtual models must occur outside
ones conscious in order to perform this task.

One fundamental di�erence between the two methods is that virtual model control utilizes infor-
mation from all the joints and is thus a global method. In contrast, inverse kinematics is generally
a local method. Once the desired joint angles are determined, each joint independently attempts to
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Figure 4-1: Simple foot example showing virtual model forces, FVM and required toe torque, Tt.

servo to that position.
It is possible that a non-local variant of inverse kinematics could work with this example. For

instance, if we examine the error of the virtual angle between the toes and the body and produce
a toe torque which opposes this error, then the torque will at least have the desired sign. However,
this would be a global technique, since it would require knowledge of both joint angles and would
require the use of a virtual sensor (measurement of the angle between the toe joint and the body).

Another di�erence between the two methods is that intuition can be easily applied to virtual
model control while it is not clear how to apply it to local techniques. With our foot example,
intuition helps us decide where to place the virtual model frames and which components to use.
Blindly applying a technique such as inverse kinematics doesn't even allow one to exploit the fact
that the foot is not rigidly attached to the ground. If the foot were attached to the ground, inverse
kinematics would work. However, it is not clear how to exploit this knowledge to alter the inverse
kinematic technique for application to our foot example.

4.2 Foot Simulation

Simulations were performed to demonstrate that virtual model control can be used to successfully
control the robot foot example. The following components were used: a virtual spring-damper acting
in the horizontal (x) direction; a separate virtual spring-damper acting in the vertical (z) direction;
and a virtual vertical force to help counter gravity. We stress that gravity cancellation was probably
not necessary but was used so that the virtual vertical spring could have a lower spring constant and
hence be a \less demanding" virtual component in terms of bandwidth requirements (see Chapter
6).

Figure 4-2 shows the results of a particular simulation in which the foot, initially in a \back on
its heels" position, moved to a desired \up on its toes" position. The actual x and z values (solid)
are plotted along with the virtual spring set-points (dotted) in the �rst two graphs. The resultant
virtual horizontal and vertical forces are shown in the next two graphs. The applied joint torques
are plotted in the bottom two graphs. On the right is a graphical representation of the foot going
\up on its toes."

When the foot is \back on its heel", we place the virtual model reaction frame at the ankle
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Figure 4-2: Simple foot example simulation. The top two graphs show the x and z positions of the
top of the upper link with respect to the toe joint. The middle two graphs show the forces applied
in the x and z directions due to the virtual components. The bottom two graphs show the resultant
toe and ankle torques. On the right is a graphical representation of the foot simulation.
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joint rather than at the toe joint. This is accomplished simply by applying no toe torque, which
e�ectively projects the virtual forces unto the line perpendicular to the upper leg link. Once the
center of pressure passes the toe joint, which is sensed via ground contact interaction, then toe
torque is applied. We do this because toes are not needed to support the foot if the heel is doing so
and can therefore remain unactuated.

This simulation exhibits rather oscillatory behavior. This is because we chose a low virtual
damper constant. Although the tracking error is relatively low for the x value, we are not interested
in tracking error here. We are more interested that the simulation works and that it behaves as
though the virtual components were actually connected to the foot. This simulation demonstrates
that a few simple virtual components can be used to perform a somewhat complex task that a
non-global controller such as blind application of inverse kinematics can not perform.
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Chapter 5

Developing Lyapunov Functions

for the Stability Analysis of

Virtual Model Controllers

There are two powerful methods for deriving Lyapunov functions for a given virtual component.
The �rst method draws from physical intuition and results in energy-based Lyapunov functions.
The second method involves designing the component so that it forces a certain Lyapunov function
to decrease. Both methods have their own niche and neither allows for the analysis of an arbitrary
virtual component. Therefore, it is best to keep Lyapunov stability analysis in mind while designing
virtual components rather than apply it after the components are designed. We brie
y describe both
methods below and in section 5.3 we use energy-based Lyapunov Functions to demonstrate that a
passive robot controlled with any number of passive virtual spring-damper mechanisms remains
passive.

5.1 Energy Based Lyapunov Functions

If physically realizable virtual components are implemented, a good candidate for a Lyapunov func-
tion is the virtual energy stored in the components. For example, if virtual mass-spring-damper
mechanisms are used, the Lyapunov function can contain the kinetic energy of the mass plus the
potential energy of the spring. If several such virtual components are used, one can simply sum these
virtual energies with the kinetic energy of the robot itself (1

2
_�TH _� in the case of a serial robot).

The derivative of the Lyapunov function will then be the power dissipation of the virtual dampers.
This is demonstrated in 5.3.

5.2 Design Based Lyapunov Functions

A second method for deriving Lyapunov functions is to develop a control law such that a given
Lyapunov function decreases. Such an approach is used in sliding controllers and adaptive controllers.
It is probably possible to use such techniques to develop \virtual adaptive controllers". This is not
explored in this thesis however. Learning virtual components have been implemented previously
using CMAC neural networks [22] but no Lyapunov analysis was performed.
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5.3 Demonstration of Energy Based Lyapunov Functions

for Virtual Spring-Damper Mechanisms

Energy methods can be used to develop Lyapunov function candidates for virtual mechanisms applied
to a robot. Below we demonstrate, using Lyapunov analysis, that a passive robot, with passive
spring-damper mechanisms connected to it, remains passive. In the analysis, we assume that the
virtual components are perfectly implemented. Intuitively, if we had a passive robot with real
versions of the passive components attached to it, then the system would remain passive.

The dynamic equation of a robot arm can be written

H(�) �� + C(�; _�) _� + g(�) = � (5:1)

where H is the inertia matrix, C contains gyroscopic and coriolis terms, g contains gravity terms,
and � is the joint torques. Assume that the arm is operating in the horizontal plane so that g(�) = 0.

Suppose we have a virtual component with action frame fBg, reaction frame fAg, and reference
frame fOg and the following force function

O(ABF ) = �k1(
O(AB

~X))� b1(
O(AB

_X)) (5:2)

were O(AB
~X) is the stretch of the virtual spring, O(AB

_X) is the velocity of the virtual damper, k1
is the virtual spring function, and b1 is the virtual damper function. Neither the spring, nor the
damper is assumed linear. We use O(AB

_X) for the argument to the virtual damper equation in this
case because the damper is connected between frames fAg and fBg and not connected to the spring

set point. If it were, we would use O(AB
_~X). However, in this analysis, the spring set point isn't

changing and hence O(AB
_X) =O (AB

_~X). Assume that the spring is passive, which implies that

~XT k1( ~X) > 0 8 ~X (5:3)

and that the damper is dissipative, which implies that

_XT b1( _X) > 0 8 _X (5:4)

A good choice of Lyapunov function is the energy in the virtual spring

V =

Z O(AB
~X)

0

k1( ~X)� ~X (5:5)

We now add this to the robot energy to get

V =
1

2
_�TH _� +

Z O(A
B

~X)

0

k1( ~X)� ~X (5:6)

V will be positive de�nite and radially unbounded if the passive spring condition (Equation 5.3)
holds. Taking the derivative we get,

_V = _�TH �� +
1

2
_�T _H _� + k1(

O(AB
~X))O(AB

_~X)

Expanding H �� using equation 5.1, using the fact that _H � 2C is skew symmetric, and _~X = _X, this
becomes

_V = _�T (O(ABJ)T O(ABF )) + k1(
O(AB

~X))O(AB
_X)

Taking the transpose of Equation 2.3 we get

_�T O(ABJ)T =O (AB
_X)T
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Using this equation, and substituting in the virtual component force function, we get

_V =O (AB
_X)T (�k1(O(AB

~X))� b1(
O(AB

_~X))) + k1(
O(AB

~X))O(AB
_X)

which becomes

_V = �O(AB
_X)T b1(O(AB

_X)) (5:7)

_V will be negative de�nite as long as the assumption of equation 5.4 holds.
Notice that this demonstration says nothing about where the virtual components are attached

nor makes any assumptions about linearity. Thus this analysis holds for all passive virtual spring-
damper mechanisms connected to a robot arm with no gravity present. If gravity is present, one can
add virtual vertical forces at the center of mass of each link to compensate for it. This is equivalent
to adding g(�) to the applied torque vector. Our analysis then reduces to the present one and all
results hold.

Because energy is a scalar, and hence adds, if we attach a number of virtual spring-dampers to
the robot with action, reaction, and reference frames fBig, fAig and fOig and virtual spring and
damper functions ki and bi, we can use the Lyapunov function and derivative

V =
1

2
_�TH _� +

X
i

Z Oi (
Ai
Bi

~X)

0

ki( ~X)� ~X (5:8)

_V = �
X
i

Oi(AiBi
_X)T bi(

Oi (AiBi
_X)) (5:9)

Thus we have shown that a passive robot arm remains passive when any number of passive
virtual spring-damper mechanisms are attached to it.
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Chapter 6

Virtual Model Limitations Due to

Non-Ideal Actuators

The implementation and analysis of virtual components to this point has assumed that the desired
joint torques required to implement the virtual component could be directly applied, i.e. that
perfect torque sources existed at the joints. Actuator limitations can severely a�ect the stability
and performance of a virtual model controller. In this chapter, we attempt to quantify the actuator
limitations and determine where they come into play. I use series elastic actuator techniques [34]
in this analysis since it is the actuator method used on our bipedal walking robot. The concepts
presented below hold for any actuation technique however.

6.1 Virtual Actuator Saturation

If we ignore dynamic forces, we can solve for Fmax in the following static equation to compute the
steady-state virtual actuator saturation limits,

�max =O (ABJ)TO(ABFmax) (6:1)

To solve Equation 6.1, one must take the inverse of the Jacobian transpose. Near singularities large
virtual forces can be exerted with small motions. This takes place, for example, with an almost
straight knee. Away from singularities (large knee bend, for example), the maximum allowed virtual
forces may be much smaller. Equation 6.1 gives us the static limitations of the virtual components.
The next section discusses dynamic limitations.

6.2 Series Elastic Actuators

Robot force control has proven to be a di�cult endeavor due mainly to actuator limitations. Since
most actuator technologies deliver high speed and low torque, speed reduction has to take place in
order to generate high torques at low speeds which is desirable in most robotic applications. Various
methods of speed reduction exist, but the most common method involves gear trains. Geared
transmissions su�er from friction, backlash, and non-collocation, all which are undesirable e�ects.
Therefore, the most successful force controlled robots have used large pulleys for reduction and
cable transmissions, thereby eliminating gears [27]. The drawbacks of this technique are the space
requirements of the large pulleys and the need for low friction motors.

Series Elastic Actuation is a technique which allows one to perform force control with non-ideal
actuators and transmissions. An elastic element (represented by ks in Figure 6-1) is intentionally
placed between the motor mass and the load. Since the force on the load is a function of the
spring stretch, the force control problem e�ectively reduces to position control of the motor end of
the spring [34, 21]. Although we examine Series Elastic Actuation limitations here, the following
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Figure 6-1: Series elastic actuator model. Mm is the motor mass. Ks and Bs are the spring constant
and damping constant. Kc(s) is the compensator. Fd is the desired force while Fl is the actual force
applied to the load. Xm and Xl are the motor and load displacements.

analysis will hold for any non-ideal torque control scheme. We use Series Elastic Actuation in the
control of our bipedal robot (see Chapter 9).

6.3 System Block Diagram

Figure 6-2 shows two system block diagrams. Figure 6-2 a) is the desired system, achievable if we
had perfect actuators while Figure 6-2 b) is the entire system, including non-ideal actuators. VM
represents the virtual model, an impedance which takes as input the generalized positions of the
robot, �R and produces joint torques �d. R is the robot itself, an admittance which takes in joint
torques, �R and outputs it's joint positions, �R. G represents the actuator transfer function matrix
from desired torque to actual torque and Z represents the actuator impedance matrix.

Using series elastic actuation with linear elements and implementing a PD compensator, Kc(s),
we get the following actuator transfer function matrices

G(s) =
2�n!ns+ !2

n

s2 + 2�n!ns + !2
n

I (6:2)

Z(s) =
�kss

2

s2 + 2�n!ns+ !2
n

I (6:3)

Bode diagrams of these transfer functions for the SISO case are shown in Figure 6-3 for ks = 10:0,
�n = 0:7071, !n = 30:0. Ideally we want G(s) = 1 and Z(s) = 0. From the bode diagrams, we see
that this is a good approximation at low frequencies, but above the actuator bandwidth frequency,
G(s) ! 0 at �20 dB/dec and Z(s) approaches the impedance of the spring, �ks. This is because at
high frequencies, the motor mass cannot be accelerated quickly enough and to the load, the system
appears as the spring connected to ground.

6.4 Discussion

The bandwidth limitations of G(s) are typical of any force control actuation scheme. The impedance
transfer function Z(s) is also typical except that with Series Elastic Actuation, the impedance at
high frequencies is relatively low due to the elastic element. For this reason, Series Elastic Actuation
successfully handles shock loads.

Due to the bandwidth limitations of the actuators, the implementable virtual components are
limited. Intuitively, we can only use \low frequency" virtual components. In order to quantify this
better, we must develop a method to analyze the e�ects of the non-ideal actuators. Several issues
to consider are
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Figure 6-2: Block diagrams of a) Virtual Model (VM) and Robot (R) with perfect torque controllers
and b) with non-ideal controllers. G is the torque controller transfer function matrix and Z is the
torque controller impedance matrix.
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Figure 6-3: Typical bode diagrams of G(s) and Z(s) for Series Elastic Actuation. Ideally G(s) = 1
(0 db Gain, 0 deg Phase) and Z(s) = 0 (- 1 Gain, 0 deg Phase). This is a good approximation at
low frequencies but poor at high frequencies. At high frequencies G(s) � 0 and Z(s) � Ks.
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� Stability of the virtual model and robot with ideal actuators (Figure 6-2, (a))

� Stability of the complete system including the non-ideal actuators (Figure 6-2, (b))

� Deviation of the complete system from the desired system

� Design of the virtual model controller such that the result of it and the non-ideal actuators
better represents the desired virtual model.

Chapter 5 discussed Lyapunov methods to address the �rst issue. Tools to explore the second
and third issues are discussed in Chapter 7.

We conjecture that the fourth issue is moot. We believe that it is not bene�cial to attempt to
modify the virtual model implementation, in light of the actuator limitations, so that the resultant
e�ect is closer to that desired. At low frequencies, the actuators exhibit desirable behavior and hence
there is no reason to attempt compensation. At high frequencies, the actuator performance is poor.
However, the reasons for which the performance is poor are the same reasons which prevent successful
compensation. These reasons include sampling rate, unmodelled dynamics, actuator saturation,
etc. Therefore, given an actuator plant and force controller which are already tuned (G and Z of
Figure 6-2 are �xed), we conjecture that no performance increases can be achieved by modifying the
virtual model implementation. Therefore, one should take into account actuator and force controller

limitations when choosing virtual components but assume perfect actuators when implementing
them.
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Chapter 7

Stability and Performance

Analysis

In this chapter we examine stability and performance issues in implementing virtual model con-
trollers. In doing so, we �rst de�ne what we mean by these terms and then examine the available
tools for analyzing stability and performance properties.

7.1 Stability

In Chapter 5 we discussed methods for constructing Lyapunov functions to show that a robot
controlled with a particular virtual model controller is stable. This analysis, however, assumed
perfect actuators. We require a method which will determine stability when non-ideal actuators are
used assuming the system is stable when perfect actuators are used. Unfortunately, it is not clear
how to construct Lyapunov functions for the case with non-ideal actuators. Hence, the non-linear
case is not considered here. We hope that by considering the linear case, we can gain insight into
the issues.

Figure 7-1 shows that the error due to non-ideal actuators can be expressed as a multiplicative
error, E. If the actuator diagram of Figure 6-2 is used, we get

E(s) = [�G(s) + I] + Z(s)V M (s)�1 (7:1)

The virtual model and robot can then be lumped into T (s),

T (s) = �V M (s)R(s)[I + VM (s)R(s)]�1 (7:2)

We can now invoke the Small Gain Theorem which states that the system in Figure 7-1 b) is stable
if T (s) is stable and

�max[T (jw)] <
1

�max[E(jw)]
8 ! (7:3)

This is a su�cient, but not necessary condition and hence is conservative. It is very useful, however,
since one only needs an upper bound on �max[E(jw)] and doesn't need to know E(s) exactly.

7.2 Performance

As stated in Chapter 1, it is often very di�cult to express a performance requirement for an in-
teractive robot. In this light, we instead de�ne the performance of the virtual model controller as
how well it implements the desired virtual model while using non-ideal actuators. This is similar
to the analysis in [6]. In other words, we wish to quantify how much VM 0 in Figure 7-2 will di�er
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Figure 7-1: a) Virtual model error expressed as a multiplicative error (E). b) VM and R are combined
into T for the linear case so that the Small Gain Theorem can be employed.
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Figure 7-2: Actual virtual model implemented (VM') will di�er from desired virtual model (VM).

from VM in Figure 6-2 a) or how much CL0 in Figure 7-3 will di�er from the desired closed loop
response.

We can calculate the actual virtual model, V M 0, the desired closed loop response, CL, and the
actual closed loop response as

V M 0(s) = G(s)V M (s) � Z(s) (7:4)

CL(s) = R(s)[I + R(s)V M (s)]�1 (7:5)

CL0(s) = R(s)[I + R(s)V M 0(s)]�1 (7:6)

We can now de�ne two performance speci�cations, namely that the maximumand minimumsingular
values of the actual virtual model are within the spread, �VM , of those of the desired virtual model,

Abs[�max[VM (jw)]� �max[VM 0(jw)]] � �V M 8 ! � !b
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Figure 7-3: Robot (R) and virtual model controller (VM') as seen by the environment (ENV). In b)
CL' is the closed loop admittance of the system as seen by the environment.

Abs[�min[VM (jw)]� �min[VM 0(jw)]] � �VM 8 ! � !b

and that the maximum and minimum singular values of the actual closed loop system are within
�CL of those of the desired closed loop system,

Abs[�max[CL(jw)]� �max[CL0(jw)]] � �CL 8 ! � !b

Abs[�min[CL(jw)]� �min[CL0(jw)]] � �CL 8 ! � !b

where !b is the break frequency below which we desire good performance.

7.3 Robustness

Finally, we may wish to analyze how the robot with virtual model controller will behave in the
presence of environmental disturbances as depicted in �gure 7-3. To this end, we can utilize pas-
sivity theory which states that a passive robot will be stable when in interaction with any passive
environment [6]. The closed loop system will be passive if

jwCL0(jw) + jwCL0T (�jw) > 0 8 ! � 0 (7:7)

We add the jw terms since CL0 is de�ned as �r

�env
while passivity requires it to be in the form

_�r

�env
.

For a single input - single output (SISO) system, equation 7.7 reduces to

0o < phase[CL0(jw)] < 180o 8 ! � 0 (7:8)

Note that if Equation 7.7 holds, the closed loop system will be stable when in contact with any

passive environment. If we know that the environment will be compliant and damped to a minimum
extent, then we can relax this requirement to CL0 being passive below the \roll-o� frequency", wenv,
of the environment [4], i.e.

jwCL0(jw) + jwCL0T (�jw) > 0 8 ! � wenv (7:9)

7.4 Discussion

This section has presented stability and performance requirements for linear robots controlled with
linear virtual model controllers. It is not clear how to perform such analysis with non-linear systems.
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We hope that by examining a few linear systems we may gain insight into the relevant issues. In
Chapter 8 we present a simple SISO LTI example.
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Chapter 8

Example of a Simple SISO, LTI

Plant and Virtual Model

Controller

In this chapter we examine a simple SISO LTI plant with a linear spring-damper virtual model
controller. Although this is far from the non-linear MIMO case which we wish to analyze, it should
still give insight into the relative control issues and may possibly provide some design guidelines.

In this example, the plant is simply a point mass robot with mass of Mr and the virtual model is
a spring-damper mechanism with spring constant kv and damping constant bv. The desired virtual
model, VM , and the robot, R, of Figure 6-2 are then,

VM (s) = bvs+ kv (8:1)

R(s) =
1

Mrs2
(8:2)

The desired closed loop system is thus

CL(s) =
R(s)

1 + R(s)V M (s)
=

1

Mrs2 + bvs+ kv
=

1

Mr(s2 + 2�vwvs +w2
v)

(8:3)

where �v and wv are used to represent the desired damping ratio and natural frequency.
Using Series Elastic Actuators, as in Chapter 6, we have the following force Transfer Function

and impedance Transfer Function

G(s) =
2�n!ns+ !2

n

s2 + 2�n!ns + !2
n

(8:4)

Z(s) =
�kss

2

s2 + 2�n!ns + !2
n

(8:5)

The apparent impedance to the robot is

V M 0(s) = �Z(s) +G(s)V M (s) (8:6)

=
(�ks +Mr(2�nwn)(2�vwv))s

2 +Mr(2�vwvw
2
n + 2�nwnw

2
v)s + Mrw

2
vw

2
n

s2 + 2�nwns +w2
n

resulting in a multiplicative error

E(s) =
s2(Mr(2�vwv +w2

v)� ks)

(s2 + 2�nwns+ w2
n)Mr(2�vwv + w2

v)
(8:7)
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The transfer function used in invoking the small gain theorem, T (s) in Figure 7-1, will then be

T (s) =
2�vwv +w2

v

Mr(s2 + 2�vwvs+ w2
v)

(8:8)

and the actual closed loop system,

CL0(s) =
s2 + 2�nwns + w2

n

Mrs4 + 2�nwnMrs3 + (�ks +Mr((2�nwn)(2�vwv) + w2
n))s

2 + Mr(2�vwvw2
n + 2�nwnw2

v)s + Mrw2
vw

2
n

(8:9)

The denominator of CL0(s) is the characteristic polynomial of the entire system and its roots
are the closed loop poles. In Figures 8-1 to 8-3 we show bode diagrams for these transfer functions,
closed loop impulse response, and pole-zero diagrams of the desired and actual closed loop system
for three di�erent values of wv. In Figure 8-4 we show the locus of closed loop poles of the system
as we vary wv from 1.0 to 60.0, with

ks = 10:0

wn = 30:0

�n = 0:7071

Mr = 10:0

�v = 0:7071

8.1 Results

In Figure 8-1, we use a value of wv which is 1
6

that of wn. In other words, the bandwidth of the
force controller is much higher than the bandwidth of the robot with virtual controller. Because of
this, �max[T (s)] is well below 1

�max [E(s)]
thereby guaranteeing stability by the small gain theorem

(Equation 7.3). We see that the bode magnitude plot of VM 0(s) resembles that of V M (s) up to
about 30.0 rad/sec and CL0(s) and CL(s) are similar over all frequencies. The actual and desired
impulse response are nearly identical and the pole-zero diagram shows that the desired poles are
placed well, while the extra poles due to the actuator dynamics are faster and nearly cancelled by
near-by zeros. We see that phase[CL0(jw)] stays between 0o and 180o, thereby guaranteeing stability
when in contact with any passive environment by Equation 7.8.

In Figure 8-2, we use a value of wv which is 1
3

that of wn. Stability margins begin to decrease
and performance begins to degrade but may still be acceptable. Phase[CL0(jw)] still stays below
180o.

In Figure 8-3, we use a value of wv which is 5
6

that of wn. The system is still stable but
performance is unacceptable. The actuator dynamics are more pronounced than the virtual model
dynamics. Also, Phase[CL0(jw)] begins to go beyond 180o. Therefore the system will not be stable
for contact with all passive environments.

From Figure 8-4 we see that the actual closed loop poles match the desired ones for low wv but
start to diverge at higher wv. The poles due to the actuator dynamics are fast and less signi�cant
for low wv but move toward the jw axis as wv is increased, dominating the system dynamics for
wv > 25 rad

sec
, and �nally cross into the right hand plane, making the system unstable.

8.2 Discussion

From this simple example we see that even though the nominal system may be stable, as soon as
actuator dynamics are considered, stability and performance may be compromised if the virtual
model and robot have components at high frequencies compared to the actuator bandwidth. This
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Figure 8-1: Simple SISO example with !v = 5:0
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analysis holds for any non-ideal actuator scheme. We used Series Elastic Actuators here because it
is the method we use for our bipedal walking robot.

For more complex systems, it may be di�cult to perform such an analysis. However, we can con-
clude from this example that a higher bandwidth force controller will allow more accurate emulation
of virtual components.
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Chapter 9

Bipedal Walking Robot

Figure 9-1: Photograph of Spring Turkey, our bipedal walking robot. There are four actuators
attached to the body. Power is transmitted to the hips and knees via cables. The unactuated feet
consist of a strip of rubber. A boom is used to prevent motion in the lateral, roll, and yaw directions.
Note the spring packs which are used to implement series elastic actuation.

Two applications of virtual model control have been applied to Spring Turkey, our bipedal
walking robot. The �rst application is deep knee bends which veri�es the use of multi-frame virtual
components for parallel mechanisms. The second application is simple walking. In both applications
only a simple set of virtual components is used.

65



9.1 Spring Turkey

Figure 9-1 is a photograph of Spring Turkey, our bipedal walking robot. Spring Turkey was de-
signed and built by Peter Dilworth in 1994. It has an actuated hip and knee on each leg. An
unactuated boom constrains Spring Turkey's roll, yaw, and lateral motion thereby reducing it to
a two dimensional robot. All of Spring Turkey's motors are located in its upper body, with power
being transmitted to the joints via cable drives. Series Elastic Actuation [21] is employed at each
degree of freedom, allowing for accurate application of torques and a high degree of shock tolerance.
The maximum torque that can be applied to the hips is approximately 12 Nm while approximately
18 Nm can be applied to the knees. The force control bandwidth we achieve is approximately 20
Hz. Spring Turkey weighs in at approximately 22 lbs (10 kg) and stands 2 ft (60 cm) tall.

Rotary potentiometers at the hips, knees, and boom measure joint angles and body pitch. Linear
springs are used at the hips and knees to implement Series Elastic Actuation. Rotary potentiometers
measure hip spring stretch while linear potentiometers measure knee spring stretch.

9.2 Deep Knee Bends

Virtual model control was applied to Spring Turkey to make it perform deep knee bends using a

very simple set of virtual components. A virtual spring-damper mechanism was simulated in the
vertical direction. The rest position of the spring was modulated in a sinusoidal fashion to cause the
body to move up and down. A virtual force source was applied in parallel with the vertical spring
to help counter gravity. A separate virtual spring-damper mechanism was applied in the horizontal
direction to regulate the body position to be midway between the two feet. A torsional virtual
spring-damper mechanism was applied to regulate the body pitch to zero.

Figure 9-2 shows experimental data from Spring Turkey while performing deep knee bends. The
top three graphs show the body's horizontal position (x), vertical position (z), and pitch (theta),
and the corresponding spring set points (dotted). The next three graphs show the virtual forces
applied to the body due to the virtual components. The resultant torques which are applied to each
of the joints are plotted in the bottom graphs along with the position of the joints.

We have demonstrated that deep knee bends can be performed using only a simple set of virtual
components. Although this might not be the \best" algorithm for implementing knee bends, it
is easy to implement and hence a good start. The main issue is that the robot behaves as if the
virtual components are really connected to the robot. We are less interested in \performance" in
the traditional sense.

9.3 Stupid Walking

Virtual model control was applied to Spring Turkey to make it perform simple walking. We
attempted to develop the simplest possible algorithm which would successfully allow Spring Turkey
to take several steps before stopping or falling down. Simply stated the algorithm is as follows:

� Maintain a constant height and pitch.

� Transition from double support to single support if the body's x position becomes close to that
of a foot.

� Transition from single support to double support if the body's x position becomes far away
from the support foot.

� Servo the swing leg so that the foot is placed the nominal stride length away from the support
foot when transitioning to double support.

� During double support, push in the direction of desired travel with a constant virtual force.
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Figure 9-2: Knee bends experimental data. The top row of graphs show Spring Turkey's position
and the virtual spring set points. The second row shows the virtual forces applied due to the virtual
components. The bottom left column of graphs show the resultant torques applied to the joints
while the bottom right column shows the position of the joints.
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Figure 9-3: Spring Turkey with virtual components during single support phase. We use a virtual
vertical spring-damper, a virtual vertical force source, and a torsional spring-damper connected
between the body and support foot to maintain balance and height. The * indicates that these
components are connected to the support foot. We use virtual spring-damper mechanisms on the
swing leg for foot placement.

Because of the simplicity of this algorithm and the lack of any speed control or robustness
mechanism, we dub it \Stupid Walking". We are not interested in the speci�c aspects of the
algorithm here. Rather, we are interested in examining the e�ort required to implement it using
virtual components and a simple state machine. We only hoped to achieve a few consecutive steps
with this algorithm. Future work will concentrate on developing more robust algorithms.

To implement Stupid Walking, we use a simple set of virtual components. Figure 9-4 shows the
state machine used for the Stupid Walking algorithm. Table 9.1 lists the trigger and branch events
and the virtual components which are utilized in each state. During both double support and single
support, a virtual spring-damper mechanism in the vertical (z) direction with a constant set point
maintains a constant height. A virtual vertical force is applied to help counter gravity. Also, during
both double and single support a virtual torsional spring-damper mechanism regulates the pitch
angle to zero. During double support, we apply a constant virtual force in the forward horizontal (x)
direction to help push Spring Turkey in the desired direction of travel. The swing leg is controlled via
a local virtual spring-damper mechanism at each individual joint, thereby implementing an inverse
kinematic algorithm. The set point of these springs are modulated so that the foot of the swing leg
stays a given height o� the ground during the swing phase and sets down at the nominal stride length
distance when transitioning to double support. States LEFT SUPPORT2 and RIGHT SUPPORT2
are used as bu�er states between single and double support. Because Spring Turkey has no foot
switches, in these states the swing leg is simply made limp (zero torque applied to the joints) for a
set delay time, allowing for the swing leg to fall to the ground before the large forces which double
support require are applied.

The various virtual spring, damper, and force variables and walking parameters were chosen using
physical insight and a manual search. The virtual vertical force matched the weight of the robot;
the various virtual spring-damper constants were experimentally varied while physically examining
their e�ects (resistance to being pushed on, decay rate, etc.) until the desired e�ects were achieved;
the walking parameters and virtual horizontal force were changed through trial and error until
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Figure 9-4: State machine used in the Stupid Walking algorithm.

Table 9.1: Details of Stupid Walking state machine.

State Trigger Event Virtual Components

1 Double Support Delay after Vertical Spring-Damper
left or right Vertical Force

support2 Torsional Spring-Damper
Horizontal Force

2 Left Support Body nearly Vertical Spring-Damper
over left foot. Vertical Force

Torsional Spring-Damper
Local Spring-Dampers on Right Leg

3 Left Support2 Body away Vertical Spring-Damper
from left foot. Vertical Force

Torsional Spring-Damper

4 Right Support Body nearly Vertical Spring-Damper
over right foot. Vertical Force

Torsional Spring-Damper
Local Spring-Dampers on Left Leg

5 Right Support2 Body away Vertical Spring-Damper
from right foot. Vertical Force

Torsional Spring-Damper
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the robot successfully walked. These walking parameters consisted of nominal stride length and
percent of stride length spent in single support. Because of the lack of speed control or robustness
mechanisms in the Stupid Walking algorithm, an experimental search through the space of walking
parameters had to be performed whenever the slightest mechanical changes were made to the robot
or environment.

Walking was initiated in the single support phase. A slight push was applied to the robot to
propel it forward. After the push, no external intervention occured.

Figure 9-6 shows experimental data from Spring Turkey while performing Stupid Walking. The
top three graphs show the body's horizontal position (x), vertical position (z), and pitch (theta),
and the corresponding spring set points (dotted). The next three graphs show the virtual forces
applied to the body due to the virtual components. The resultant torques which are applied to each
of the joints are plotted in the bottom graphs along with the position of the joints. The set points
(dotted) of the springs used for the swing leg are plotted with the joint positions (solid). The state
of the state machine is plotted in the middle graph.

The data in Figure 9-6 is plotted in graphical form in Figure 9-5 and also on the bottom of this
document. The snapshots in Figure 9-5 are approximately 0:5 seconds apart. Lines are drawn to
show the path of the tips of the feet and the center of the body. The graphics on the bottom of this
document are spaced approximately 0:18 seconds apart. By 
ipping through the document, one can
see an animation of the walking data of Figure 9-6.

Figure 9-5: Elapsed time snapshot of the bipedal walking data in Figure 9-6. The drawings of the
robot are spaced approximately 0:5 seconds apart. The left leg is dotted while the right leg is solid.
Lines show the path of the tips of the foot and the center of the body.

Spring Turkey walked approximately 3 meters in 5 seconds for an average speed of approximately
0:6 m/s (1:35 mph). It took 8 steps (left to right or right to left support transitions), giving a step

time of 0:6 seconds. It deviated a maximum of 4 cm from the nominal height of 52 cm and pitch
was con�ned to �0:15 radians (�8:6 deg). The hip actuators and torque controllers performed well
while the knee actuators occasionally became saturated. Swing leg tracking was rather poor since
the virtual spring constants were kept low.

9.4 Discussion

Spring Turkey performed deep knee bends and walked eight steps using a simple set of virtual
components. We stress here that we augmented the natural dynamics of the robot with passive
virtual components, rather than attempted to cancel the natural dynamics. In no case did we
assume linear dynamics.

In both knee bends and walking, the state trajectory converges to a stable limit cycle for an
appropriate choice of initial conditions. However, the knee bends experiment was more robust in
response to variations in initial conditions and disturbances than walking. The stupid walking
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Figure 9-6: Spring Turkey walking data generated using virtual model control. The �rst row of
graphs display the x, z, and � positions and virtual spring set points, indicated with the dashed
lines. The second row of graphs display the resultant forces applied to the body due to the virtual
components. The graph in the third row shows the steady, periodic nature of the state machine.
The bottom left column of graphs show the resultant desired and actual torques applied to the
joints. The bottom right column of graphs display the position of the joints and the spring set point
positions when the given leg is in the swing phase.

71



algorithm contains no speed control or robustness mechanisms and therefore is extremely dependent
on initial conditions, ground conditions, etc. We have not attempted to perform an analysis on why
the stupid walking algorithm converges to a limit cycle for the appropriate initial conditions. We
only speculate that mechanisms similar to those present in McGeer's passive dynamic walker [17]
are in force.

In order to perform more robust walking, a speed control mechanism is necessary. This could
be accomplished either through foot placement during single support or through modulating the
virtual feed-forward horizontal (x) force during double support. Future work will focus on using
virtual model controllers to implement walking algorithms which others have found successful and
on developing new algorithms.
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Chapter 10

Conclusions

We can draw the following conclusions from this project,

1. Implementation of virtual model controllers is relatively straightforward and computationally
e�cient.

2. Virtual model control may be successful in some instances in which blind application of a local
control technique, such as inverse kinematics, fails.

3. A passive robot, controlled with any combination of passive virtual components, will remain
passive, assuming perfect actuators.

4. A number of tools exist for analyzing the stability and performance of linear virtual model
controllers, connected to linear plants, utilizing non-ideal actuators.

5. It is not clear how to analyze stability and performance of a non-linear robot, connected with
non-linear virtual components, while utilizing non-ideal actuators.

6. The higher the bandwidth of the actuator controllers, the more likely a stable virtual model
controller will remain stable and the more likely it will implement the desired virtual model.

7. Simple bipedal walking can be achieved by utilizing a simple set of virtual components.

The ease of implementing virtual model controllers is promising. One of the major incentives of
developing virtual model controllers is to make designing robot control algorithms easier and more

intuitive. The algorithm designer will be given additional incentive to use virtual model controllers
since they require minimal computational resources and are straightforward to derive. One of our
goals is to automate this process.

The lack of non-linear analysis tools for the non-ideal actuator case is disappointing but was
expected. One can only use the general guidelines that analysis of the linear case provides, including
the rule of thumb that the higher the bandwidth of the actuator controller, the better and if the
bandwidth is limited, one must use \less demanding" virtual components.

It is quite promising that simple bipedal walking was easy to achieve using simple virtual com-
ponents. We are hopeful that virtual model control will be useful in producing more robust walking.
Future work will focus on developing such algorithms.

73



74



Appendix A

Matrix Inversion for 3D Example

To solve for the Minimum Force Set for the 3D hexapod example, we must invert the matrix in
Equation 3.41, 2
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We then can solve the Minimum Force Set in terms of the generalized virtual forces,2
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