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Abstract

This thesis examines the problem of learning unknown target functions from examples.

In particular, we focus on the informational complexity of learning these classes, i.e., the

number of examples needed in order to identify the target with high accuracy and great

con�dence. There are a number of factors a�ecting the informational complexity, and we

attempt to tease them apart in di�erent settings, some of which are cognitively relevant.

1) We consider a wide class of pattern classi�cation and regression schemes known

as regularization networks. We investigate the number of parameters and the number of

examples that we need in order to achieve a certain generalization error with prescribed

co�dence. We show that the generalization error is due in part to the representational

inadequacy (�nite number of parameters) and informational inadequacy (�nite number of

examples), and bound each of these two contributions. In doing so, we characterize a) the

inherent tension between these two forms of error: attempting to reduce one, increases the

other b) the class of problems e�ectively solved by regularization networks c) how to choose

an appropriately sized network for such a class of problems.

2) Rather than drawing its examples randomly (passively), suppose a learner were al-

lowed to choose its own examples. Does this option allow us to reduce the number of

examples? We derive a sequential version of optimal recovery allowing the active learner

to adaptively choose points of maximum information. We compare this against the passive

case, and classical optimal recovery, indicating superior performance.

3) We investigate the problem of language learning within the principles and parameters

framework. We show how certain memoryless algorithms operating on �nite parameter

spaces can be e�ectively modeled as a Markov chain. This allows us to characterize the

learnability, and sample complexity of such linguistic spaces.

4) We consider a population of learners attempting to learn a target language using some

learning algorithm. We derive a dynamical system model (from the grammatical theory

and learning paradigm) characterizing the evolving linguistic composition of the population

over many generations. We examine the computational and linguistic consequences of this

derivation, and show that it allows us to formally pose an evolutionary criterion for the

adequacy of linguistic theories.
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Chapter 1

Introduction

Abstract

We introduce the framework in which learning from examples is to be studied. We develop a precise

notion of informational complexity and discuss the factors upon which this depends. Finally, we

provide an outline of the four problems discussed in this thesis, our major contributions, and their

implications.

Learning is the centerpiece of human intelligence. Consequently any attempt to un-

derstand intelligence in the human being or to replicate it in a machine (as the �eld

of arti�cial intelligence is committed to doing) must of necessity explain this remark-

able ability. Indeed a signi�cant amount of e�ort and initiative has gone into this

enterprise and a collective wisdom has emerged regarding the paradigms in which this

study is to be conducted.

Needless to say, learning can mean a variety of things. The ability to learn a

language, to recognize objects, to manipulate them and navigate through them, to

learn to play chess or to learn the theorems of geometry all touch upon di�erent sectors

of this multifaceted activity. They require di�erent skills, operate on di�erent spaces

and use di�erent procedures. This has naturally led to a spate of learning paradigms;

but most share one thing in common, i.e., learning as opposed to \preprogrammed"

or memorized behavior involves the updating of hypotheses on the basis of some kind

of experience: an adaptation if you will to the environment on the basis of stimuli

from it. The connection to complex adaptive systems springs to mind and later in

this thesis we will make this connection more explicit in a speci�c context.

How then does one begin to study such a multifaceted problem? In order to

meaningfully de�ne the scope of our investigations, let us begin by considering a

formulation by Osherson et al (1986). They believe (as do we) that learning typically

involves

1. A learner
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2. A thing to be learned.

3. An environment in which the thing to be learned is presented to the learner.

4. The hypotheses that occur to the learner about the thing to be learned on the

basis of the environment.

Language acquisition by children is a classic example which �ts well into this

framework. \Children are the learners; a natural language is the thing to be learned;

the corpus of sentences available to the child is the relevant environment; grammars

serve as hypotheses." (from Systems that Learn; Osherson et al 1986). In contrast,

consider an example from machine learning; the task of object recognition by the

computer. Here the computer (or the corresponding algorithm) is the learner, the

identity of objects (like chairs or tables, for example) are the things to be learned,

examples of these objects in the form of images are the relevant environment, and

the hypotheses might be decision boundaries which can be computed by a neural

network.

In this thesis we will concern ourselves with learning input-output mappings from

examples of these mappings; in other words, learning target functions which are as-

sumed to belong to some class of functions. The view of the brain as an information

processor (see Marr, 1982) suggests that in solving certain problems (like object recog-

nition, for example) the brain develops a series of internal representations starting

with the sensory (external) input; in other words, it computes a function. In some

cases, this function is hardwired (like detecting the orientations of edges in an image,

for example), in others the function is learned like learning to recognize individual

faces.1 As another example of an input-output function the brain has to compute,

consider the problem of speech recognition. The listener is provided with an acoustic

signal which corresponds to some underlying sentence, i.e., a sequence of phonetic

(or something quite like it) categories. Clearly the listener is able to uncover the

transformation from this acoustic space to the lexical space. Note also that this

transformation appears to be di�erent for di�erent languages, i.e., di�erent languages

have di�erent inventories of phonetic symbols. Further, they carve up the acoustic

space in di�erent ways; this accounts for why the same acoustic stimuli might be

perceived di�erently as belonging to di�erent phonetic categories by a native speaker

1Functions mapping images of faces to the identity of the person possessing them may of course
themselves be composed of more primitive functions, like edge detectors, which are hardwired. There
is a considerable body of literature devoted to identifying the hardwired and learned components
of this entire process from a neurobiological perspective. The purpose of this example was merely
to observe that the brain appears to learn functions of various kinds; consequently studying the
complexity of learning functions is of some value.
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of Bengali and a native speaker of English. Since children are not genetically predis-

posed to learn Bengali as opposed to English (or vice versa) one might conclude that

the precise nature of this transformation is learned.

Not all the functions we consider in this thesis can be psychologically well-motivated;

while some chapters of this thesis deal with languages and grammars which are linguis-

tically well motivated, Chapter 2, which concentrates in large part on Sobolev spaces,

can hardly seem to be interesting psychologically. However, the central strand run-

ning through this thesis is the informational complexity of learning from examples.

In other words, if information is provided to the learner about the target function

in some fashion, how much information is needed for the learner to learn the target

well? In the task of learning from examples, (examples, as we shall see later are really

often nothing more than (x; y = f(x)) pairs where (x; y) 2 X � Y and f : X �! Y )

how many examples does the learner need to see? This same question is asked of

strikingly di�erent classes of functions: Sobolev spaces and context free languages.

Certain broad patterns emerge. Clearly the number of examples depend upon the

algorithm used by the learner to choose its hypotheses, the complexity of the class

from which these hypotheses are chosen, the amount and type of noise and so on.

We will try in this thesis to tease apart the relative contributions of each in speci�c

settings in order to uncover fundamental constraints and relationships between oracle

and learner; constraints which have to be obeyed by nature and human in the process

of living.2

This then is our point of view. Let us now discuss some of the relevant issues in

turn, brie
y evaluate their importance in a learning paradigm, and the conceptual

role they have to play in this thesis.

1.1 The Components of a Learning Paradigm

1.1.1 Concepts, Hypotheses, and Learners

Concept Classes

We need to de�ne the \things" to be learned. In order to do this, we typically assume

the existence of identi�able entities (concepts) which are to be learned and which

belong perhaps to some set or class of entities (the concept class). Notationally, we

can refer to the concept class by C which is a set of concepts c 2 C: These concepts

2Even if we are totally unconcerned with human learning and are interested only in designing
machines or algorithms which can learn functions from examples, a hotly pursued subject in machine
learning, the issue of number of examples is obviously of considerable importance
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need to be described somehow and various representation schemes can be used. For

example, researchers have investigated concept classes which can be expressed as

predicates in some logical system (Michalski, Carbonell, and Mitchell; 1986). For our

purposes we concentrate on classes of functions, i.e., our concept classes are collections

of functions from X to Y where X and Y are sets. We will de�ne the speci�c nature

of these functions over the course of this thesis.

Information Sources

Information is presented to the learner about a target concept c 2 C in some fashion.

There is a huge space of possibilities ranging from a \divine" oracle simply enlight-

ening the learner with the true target concept in one fell sweep to adversarial oracles

which provide information in a miserly, deliberately malicious fashion. We have al-

ready restricted our inquiry to studying the acquisition of function classes. A natural

and well studied form of information transmission is to allow the learner access to an

oracle which provides (x; y) pairs or \labelled examples" perhaps tinged with noise.

In a variant of the face recognition problem (Brunelli and Poggio, 1992; where one

is required to identify the gender of some unknown person), for example, labelled

examples might simply be (image,gender) pairs. On the basis of these examples then,

the learner attempts to infer the target function.

We consider several variants to this theme. For example, in Chapter 2, we allow the

learner access to (x; y) pairs drawn according to a �xed unknown arbitrary probability

distribution on some space X � Y: This represents a passive learner who is at the

mercy of the unknown probability distribution, which could, in principle provide

unrepresentative data with high probability. In Chapter 3 we explore the possibility

of reconstructing functions by allowing the learner to choose his or her own examples,

i.e., an active collector rather than a passive recipient of examples. This is studied in

the context of trying to learn functional mappings of various sorts. Mathematically,

there are connections to adaptive approximation, a somewhat poorly studied problem.

Active learning (as we choose to call it) is inspired by various strategies of selective

attention that the human brain develops to solve some cognitive tasks. In Chapters

4 and 5 which concentrate on learning the class of natural languages, the examples

are sentences spoken by speakers of the target language. We assume again that

these sentences are spoken according to a probability distribution on all the possible

sentences; there are two further twists: 1) no negative examples occur and 2) typically

a bound on the length of the sentences is observed. In all these cases, the underlying

question of interest is: given the scheme of presenting examples to the learner, how

many examples does the learner need to see to learn well? This question will be

18



sharpened as we progress.

The Learner and Its Hypotheses

The learner operates with a set of hypotheses about reality. As information is pre-

sented to it, it updates its hypothesis, or chooses3 among a set of alternate hypotheses

on the basis of the experience (evidence, data depending upon your paradigm of think-

ing). Clearly then, the learner is mapping its data onto a \best" hypothesis which it

chooses in some sense from a set of hypotheses (which we can now call the hypothesis

class, H). This broad principle has found instantiations in many di�ering forms in

diverse disciplines.

Consider an example chosen from the world of �nance. A stockbroker might wish

to invest a certain amount of money on stock. Given the variation of share values over

the past few years (a time series) and given his or her knowledge or understanding

of the way the market and its players operate, he or she might choose to invest in a

particular company. As the market and the share prices unfold, he (or she) might vary

the investments (buying and selling stock) or updating the hypotheses. Cumulative

experience then might \teach" him/her (or in other words, he/she might \learn") to

play this game well.

Or consider another mini-example from speech recognition (speci�cally phonetic

recognition) mapping data to hypotheses. Among other things, the human learner

has to discriminate between the sounds /s/ and /sh/. He or she learns to to do

this by being exposed to examples (instances) of each phoneme. Over the course of

time, after exposure to several examples, the learner develops a perceptual decision

boundary to separate /s/ sounds from /sh/ sounds in the acoustic domain. Such

a decision boundary is clearly learned; it marginally di�ers from person to person

as evidenced by di�ering responses humans might have when asked to classify a

particular sound into one of the two categories. This decision boundary, h; can be

considered to be the learner's hypothesis of the s/sh distinction (which he or she

might in principle pick from a class of possible decision boundaries H on the basis of

the data).

As a matter of fact, the scienti�c enterprise itself consists of the development of

hypotheses about underlying reality. These hypotheses are developed by observing

patterns in the physical world and represented as models, schema or theories which

describe these patterns concisely.

3In arti�cial intelligence, this task of \searching" the hypothesis space has been given a lot of
attention resulting in a profusion of searching heuristics and characterizations of the computational
di�culty of this problem. In this thesis, we ignore this issue for the most part.
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If indeed the learner is performing the task of mapping data to hypotheses, it

becomes of interest to study the space of algorithms which can perform this task.

Needless to say, the operating assumption is that the human learner is also following

some algorithm; insights from biology or psychology might help the computer scientist

to narrow the space of algorithms and a biologically plausible computational theory

(Marr, 1982) might emerge. For our purposes then the learner is an algorithm (or a

partial recursive function) from data sets to hypothesis classes.

There is a further important connection between concepts and hypotheses which

should be highlighted here. In our scheme of things, concepts are assumed to be

the underlying reality; hypotheses are models of this reality. Clearly for successful

learning (we discuss learnability in the next section) to occur, the elements ofH should

be able to approximate the elements of C; in other words, H should have su�cient

power or complexity to express C: For learnability in the limit (Gold, 1967) or PAC-

style (Probably Approximately Correct; Valiant, 1984) models for learnability, this

notion can be made more precise. For example, if C is some class of real valued

functions, H should probably be dense in C:

1.1.2 Generalization, Learnability, Successful learning

In addition to the four points noted earlier, another crucial component of learning

is a criterion for success. Formally speaking, one needs to de�ne a metric on the

space of hypotheses in order to measure the distance between di�ering hypotheses, as

also between the target concept and the learner's hypothesis. It is only when such a

metric is imposed, that one can meaningfully decide whether a learner has \learned"

the target concept. There are a number of related notions which might be worthwhile

to introduce here.

First, there is the issue of generalization. It can be argued, that a key component

of learning is not just the development of hypotheses on the basis of �nite experience

(as experience must be), but the use of those hypotheses to generalize to unseen ex-

perience. Clearly successful generalization necessitates the closeness (in some sense)

of the learner's hypothesis and the target concept, for it is only then that unseen data

(consistent with the target concept) can be successfully modeled by the learner's hy-

pothesis. Thus successful learning would involve successful generalization; this thesis

deals with the informational complexity of successful generalization. The learnability

of concepts implies the existence of algorithms (learners) which can develop hypothe-

ses which would eventually converge to the target. This convergence \in the limit" is

analogous to the notion of consistency in statistical estimators and was introduced to

the learning community by Gold (1967) and remains popular to this day as a criterion
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for language learning.

In our case, when learning function classes, H and C contain functions from some

space X to some space Y; examples are (x; y) pairs consistent with some target func-

tion c 2 C: Let the learner's hypothesis after m such examples be hm 2 H: According
to some pre-decided criterion, we can put a distance metric d on the space of functions

to measure the distance between concept and hypothesis (this is our generalization

error) d(hm; c): Learnability in the limit would require d(hm; c) to go to zero as the

number of examples, m; goes to in�nity. The sense in which this convergence occurs

might depend upon several other assumptions; one might require this convergence to

hold for every learning sequence, i.e., for every sequence of examples, or one might

want this to be satis�ed for almost every sequence in which case one needs to assume

some kind of measure on the space according to which one might get convergence in

measure (probability).

Convergence in the limit measures only the asymptotic behavior of learning algo-

rithms; they do not characterize behavior with �nite data sets. In order to correct

for this it is required to characterize the rates of the above-mentioned convergence;

roughly speaking how many examples does the learner need to collect so that the gen-

eralization error will be small. Again depending upon individual assumptions, there

are several ways to formally pose this question. The most popular approach has been

to provide a probabilistic formulation; Valiant (1984) does this in his PAC model

which has come to play an increasingly important role in computational learning the-

ory. In PAC learning, one typically assumes that examples are drawn according to

some unknown probability distribution on X � Y and presented to the learner. If

there exists an algorithm A which computes hypotheses from data such that for every

� > 0 and 0 � � � 1; A collects m(�; �) examples and outputs a hypothesis hm satis-

fying d(hm; c) � � with probability greater than 1 � �; then the algorithm is said to

PAC-learn the concept c: If the algorithm can PAC-learn every concept in C then the

concept class is said to be PAC-learnable. Looking closely, it can be realized that PAC

learnability is essentially the same as weak convergence in probability of hypotheses

(estimators) to their target functions with polynomial rates of convergence. In any

case, PAC like formulations play a powerful role in characterizing the informational

complexity of learning; we have a great intellectual debt to this body of literature

and its in
uence in this thesis cannot be overemphasized.

Remark Sometimes, an obsession with proving the convergence of learning algorithms

might be counterproductive. A very good example of that considered in this thesis is

the problem of language learning and language change. We need to be able to explain

how children learn the language of their social environment on the basis of example
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sentences. In particular, researchers have postulated algorithms by means of which

they can do this; considerable e�ort has gone into showing that these algorithms suc-

cessfully converge to the target. However, this does not explain the simultaneously

confounding fact that languages change with time. If generation after generation,

children successfully converge to the language of their parental generation, then lan-

guages would never change. The challenge lies in constructing learning paradigms

which can explain both. In our thesis, we demonstrate this by moving into a model

for language change by starting out with a model for language learning. The lan-

guage change model is a dynamical system characterizing the historical evolution of

linguistic systems; a formalization of ideas in Lightfoot (1991) and Gell-Mann (1989).

1.1.3 Informational Complexity

We have discussed how the learner chooses hypotheses from H on the basis of data

and how one needs to measure the relative \goodness" of each hypothesis to set a

precise criterion for learning. We have also introduced the spirit of the Gold and

Valiant formulations of learning and their relationship to the issues of the number of

examples and successful generalization. We pause now to comment on some other

aspects of this relationship.

First, note that for a particular concept c 2 C; given a distance metric d; there

exists a best hypothesis in H given by

h1 = arg min
h2H

d(c; h)

Clearly, if H has su�cient expressive power, then d(h1; c) will be small (precise

learnability would actually require it to be 0). If H is a small class, then d(c; h1)

might be large for some c 2 C and even in the case of in�nite data, poor generalization
will result. This is thus a function of the complexity of the model class H and how

well matched it is to C; a matter discussed earlier as well.

Having established that h1 is the best hypothesis the learner can possibly pos-

tulate; it is consequently of interest to be able to characterize the convergence of the

learner's hypothesis hm to this best hypothesis as the number of data, m; goes to

in�nity. The number of examples the learner needs to see before it can choose with

high con�dence a hypothesis close enough to the best will be our notion of informa-

tional complexity. A crucial observation we would like to make is that the number

of examples depends (among other things, and we will discuss this soon) upon the

size of the class H: To intuitively appreciate this, consider the pathological case of H
consisting of just one hypothesis. In that case, hm 2 H is always equal to h1 2 H
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and the learner needs to see no data at all. Of course, the expressive power of such

a class H would be extremely limited. If on the other hand, the class H is very com-

plex and for a �nite data set has a large number of competing hypotheses which �t

the data but extend in very di�erent ways to the complete space, then considerably

more data would be needed to disambiguate between these hypotheses. For certain

probabilistic models (where function learning is essentially equivalent to statistical

regression) Vapnik and Chervonenkis studied this problem closely and developed the

notion of VC-dimension: a combinatorial measure of the complexity of the class H
which is related to its sample complexity (see also Blumer et al (1986) for applications

to computational learning theory).

Thus broadly speaking, the more constrained the hypothesis class H; the smaller

is the sample complexity (i.e. the easier it is to choose from �nite experience the

best hypothesis) but then again, the poorer is the expressive power and consequently

even h1 might be far away from the reality c: On the other hand, increasing the

expressive power of H might decrease d(h1; c) but increase the sample complexity.

There is thus an inherent tension between the complexity of H and the number of

examples; �nding the class H of the right complexity is the challenge of science. Part

of the understanding of biological phenomena involves deciding where on the tightrope

between extremely complex and extremely simple models the true phenomena lie. In

this respect, informational complexity is a powerful tool to help discriminate between

models of di�erent complexities to describe natural phenomena.

One sterling example where this information-complexity approach has startlingly

revised the kinds of models used can be found in the Chomskyan revolution in linguis-

tics. Humans develop a mature knowledge of language which is both rich and subtle

on the basis of example sentences spoken to them by parents and guardians during

childhood. On observing the child language acquisition process, it is remarkable how

few examples they need to be able to generalize in very sophisticated ways. Further

it is observed that children generalize in roughly the same way; too striking a coin-

cidence to be attributed purely to chance. Languages are in�nite sets of sentences;

yet on the basis of exposure to �nite linguistic experience (sentences) children gen-

eralize to the in�nite set. If it were the case that children operated with completely

unconstrained hypotheses about languages, i.e., if they were willing to consider all

possible in�nite extensions to the �nite data set they had, then they would never be

able to generalize correctly or generalize in the same manner. They received far too

few examples for that. This \poverty of stimulus" in the child language acquisition

process motivated Chomsky to suggest that children operate with hypotheses about

language which are constrained in some fashion. In other words, we are genetically

23



Concept Class 

Hypothesis Class 

Mechanism of Gathering
Examples

Algorithm used by learner
to choose best hypothesis
on the basis of examples

Noise

Distance Metric
to decide goodness
of hypothesis

Figure 1-1: The space of possibilities. The various factors which a�ect the informa-

tional complexity of learning from examples.

predisposed as human beings to choose certain generalizations and not others; we

operate with a set of restricted hypotheses. The goal of linguistics then shifted to

�nding the class H with the right complexity; something which had large enough

expressive power to capture the natural languages, and low enough to be learned by

children. In this thesis we spend some time on models for learning languages.

Thus we see that an investigation of the informational complexity of learning

has implications for model building; something which is at the core of the scienti�c

enterprise. Particularly when studying cognitive behavior, it might potentially allow

us to choose the right complexity, i.e., how much processing is already built into the

brain (the analog of Hubel and Wiesel's orientation-speci�c neurons or Chomsky's

universal grammar) and how much is acquired by exposure to the environment. At

this point, it would be worthwhile to point out that the complexity of H is only one

of the factors in
uencing the informational complexity. Recall that we have already

sharpened our notion of informational complexity to mean the number of examples

needed by the learner so that d(hm; h1) is small. There are several factors which

could in principle a�ect it and Figure 1.1 shows them as decomposed along several

di�erent dimensions in the space of possibilities.

Clearly, informational complexity might depend upon upon the manner in which
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examples are obtained. If one were learning to discriminate between the sounds

/s/ and /sh/, for example, one could potentially learn more e�ectively if one were

presented with examples drawn from near the decision boundary, i.e., examples of

sounds which were likely to be confused. Such a presentation might conceivably

help the learner acquire a sharper idea of the distinction between the two sounds

rather than if it were simply presented with canonical examples of each phoneme. Of

course, it might well be the case that our intuition is false in this case, but we will

never know unless the issue is formally addressed. In similar fashion, the presence

and nature of the noise corrupting the examples could a�ect sample complexity. In

the case of s/sh classi�cation, a lot of noise in high frequency bands of the signal

could a�ect our perception of frication and might delay learning; on the other hand

noise which only a�ects volume of the signal might have less e�ect. The algorithm

used to compute a best hypothesis hm from the data might a�ect both learnability

and sample complexity. A muddle-headed poorly motivated algorithm might choose

hypotheses at random or it might choose hypotheses according to some criterion which

has nothing to do with the metric d by which success is to be measured. In such cases,

it is possible that hm might not converge to h1 at all, or it might take a very long

time. Finally the metric d according to which success is to be measured is clearly a

factor.

These di�erent factors interact with each other; our central goal in this thesis is

to explore this possibility-space at many di�erent points. We will return to this space

and our points of exploration later. It is our hope that after seeing the interaction

between the di�erent dimensions and their relation to informational complexity, our

intuitions about the analysis of learning paradigms will be sharpened.

1.2 Parametric Hypothesis Spaces

We have already introduced the notion of hypotheses and hypothesis classes from

which these hypotheses are chosen. We have also remarked that the number of ex-

amples needed to choose a \best" hypothesis (or at any rate, one close enough to

the best according to our distance metric) depends inherently upon the complexity

of these classes. Another related question of some interest is: how do we represent

these hypotheses? One approach pervasive in science is to capture the degree of vari-

ability amongst the hypotheses in a parametric fashion. The greater the 
exibility

of the parameterization, the greater the allowed variability and the less is the inbuilt

constraints, i.e., the larger the domain and consequently the larger the search space.

One can consider several other examples from the sciences where parametric models
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Figure 1-2: The structure of a Hyper Basis Function Network (same as regularization

network).

have been developed for some task or other.

In our thesis, we spend a considerable amount of time and energy on two paramet-

ric models which are remarkably di�erent in their structural properties and analyze

issues of informational complexity in each. It is worthwhile perhaps to say a few

words about each.

Neural Networks

Feed-forward \neural networks" (Lippman, 1987) are becoming increasingly popular

in science and engineering as a modelling technique. We consider a class of feed-

forward networks known as Gaussian regularization networks (Poggio and Girosi,

1990). Essentially, such a network performs a mapping from <k to < given by the

following expression

y =
nX
i=1

ciG(
jx� tij

�i

)

Fig. 1-2 shows a diagrammatic (it is particularly popular in the neural net communi-

ties to show the diagrams or architecture and we see no need to break with tradition

here) representation of the network. The ci's are real-valued, G is a Gaussian func-

tion (activation function), the ti's are the centers, and the �i's are the spreads of the

Gaussian functions.

Clearly then, one can consider Hn to be the class of all functions which can be

represented in the form above. This class would consist of functions parameterized by
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3n parameters; corresponding to the free variables ci; ti; and �i: One can make several

alterations to the architecture; changing for example the number of layers, changing

the activation functions, putting constraints on the weights and so on thereby arriving

at di�erent kinds of parameterized families, e.g., the multilayer perceptrons with

sigmoidal units, hierarchical mixture of experts (Jacobs et al, 1991) etc. Such feed

forward networks have been used for tasks as diverse as discriminating between virgin

and non-virgin olive oil, speech recognition, predicting the stock market, robotic

control and so forth. Given the prevalence of such neural networks, we have chosen in

this thesis to investigate issues pertaining to informational complexity of networks.

Natural Languages

Natural languages can be described by their grammars which are essentially functional

mappings from strings to the set f0; 1g: According to conventional notation, there is
an alphabet set � which is a �nite set of symbols. In the case of a particular natural

language, like English, for example, this set is the vocabulary: a �nite set of words.

These symbols or words are the basic building blocks of sentences which are just

strings of words. �� denotes the set of all �nite sentences and a language L is a

subset of ��; i.e., some collection of sentences which belong to the language. For

example, in English,I eat bananas is a sentence (an element of ��), being as it is a

string of the three words (elements of �), I, eat, and bananas. Further, this sentence

belongs to the set of valid English sentences. On the other other hand, the sentence

I bananas eat, though a member of �� is not a member of the set of valid English

sentences.

The grammar GLassociated with the language L then is a functional description

of the mapping from �� to f0; 1g, all sentences belonging to �� which belong to L

are mapped onto 1 by GL; the rest are assigned to 0: According to current theories of

linguistics which we will consider in this thesis, it is pro�table for analysis to let the

set � consist of syntactic categories like verbs, adverbs, prepositions, nouns, and so

on. A sentence could now be considered to be a string of such syntactic categories;

each category then maps onto words of the vocabulary. Thus the string of syntactic

categoriesNoun Verb Nounmaps onto I eat bananas; the stringNoun Noun Verb

maps onto I bananas eat. A grammar is a systematic system of rules and principles

which pick out some strings of syntactic categories as valid, others as not. Most of

linguistic theory concentrates on generative grammars; grammars which are able to

build the valid sentences out of the syntactic components according to certain rules.

Phrase structure grammars build sentences out of phrases; and phrases out of other

phrases or syntactic categories.
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Over the last decade, a parametric theory of grammars (Chomsky, 1981) has

begun to evolve. According to this, a grammar G(p1; : : : ; pn) is parameterized by a

�nite (in this case, n) number of parameters p1 through pn: If these parameters are

set to one set of values, one would obtain the grammar of a speci�c language, say,

German. Setting them to another set of values would de�ne the grammar of another

language, say English. To get a feel for what parameters are like, consider an example

from X-bar theory; a subcomponent of grammars. According to X-bar theory, the

structure of an XP or X-phrase (where X could stand for adjective, noun, verb, etc.)

is given by the following context-free production rules which are parameterized by

two parameters p1 and p2:

XP �! Spec X 0(p1 = 0) or X 0 Spec (p1 = 1)

X
0 �! Comp X

0(p2 = 0) or X 0 Comp (p2 = 1)

X
0 �! Comp X(p2 = 0) or X Comp (p2 = 1)

Comp �! Y P

For example, English is a comp-�nal language (p2 = 1) while Bengali is a comp-

�rst language(p2 = 0). Notice how all the phrases (irrespective of whether it is a noun

phrase, verb phrase etc.) in English have their complement in the end, while Bengali

is the exact reverse. This is one example of a parameterized di�erence between the

two languages.

Also shown in �gures 1-4, and 1-5, we have the tree diagrams corresponding to

the sentence \with one hand" in English and Bengali. English is spec-�rst and comp-

�nal (i.e., p1 = 0 and p2 = 1); Bengali on the other hand is spec-�rst and comp-�rst

(p1 = 0 and p2 = 0).

1.3 The Thesis: Technical Contents and Major

Contributions

So far we have discussed in very general terms, the various components of a learning

paradigm and their relationship to each other. We have stated our intention of ana-

lyzing the informational complexity of learning from examples; we have thus de�ned

for ourselves the possibility space of Figure 1.1 that needs to be explored. In this

thesis, we look at a few speci�c points in this space; in doing so, the issues involved

in informational complexity can be precisely formalized and sharper results obtained.

Chapters 2 and 3 of this thesis are completely self contained. Chapters 4 and 5 should
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bananas

with one hand

house on  the hill

red with anger

VP

eat (V)

(P)

(N)

(Adj)

(Comp)

(Comp)

(Comp)

(Comp)

PP

NP

AdjP

VP

kola khay (eat)

ek haath diye (with)

bari (house)

rag−er chote lal (red)

(bananas)

PP

NP

AdjP

Bengali (Comp−first)English (Comp−final)

pahar−er upor

(one hand)

(on the hill)

(with anger)

Figure 1-3: Parametric di�erence in phrase structure between English and Bengali

on the basis of the parameter p2.
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PP

Spec

NP

Spec
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P’

P

with

N’

one

hand

Figure 1-4: Analysis of the English sentence \with one hand" according to its param-

eterized X-bar grammar.
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PP

Spec P’

PNP

Spec

N

N’

ek (one)

haath (hand)

diye (with)

Figure 1-5: Analysis of the Bengali sentence \ek haath diye" a literal translation of

\with one hand" according to its parameterizedX-bar grammar. Notice the di�erence

in word order.
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be read as a unit; together they form another stand-alone part of this thesis.

Chapter 2 of this thesis examines the use of neural networks of a certain kind

(the so called regularization networks) in solving pattern classi�cation and regression

problems. This corresponds to a point in the space of Figure 1.1 where the concept

class is a Sobolev space of functions, the hypothesis class is the class of all feed forward

regularization networks (with certain restrictions on their weights), the examples are

drawn according to a �xed, unknown, arbitrary probability distribution, the distance

metric is a L2(P ) norm on the space of functions, the algorithm used to choose the

best hypothesis is by training a �nite sized network on labelled examples according

to least-squares criterion. The concept class is in�nite-dimensional; on using a �nite

network and �nite amount of data, a certain amount of generalization error is made.

We observe that the generalization error can be decomposed into an approximation

error due to the �nite number of parameters of the network and an estimation error

due to the �nite number of data points. Using techniques from approximation theory

and VC theory, we obtain a bound on the generalization error in terms of the number

of parameters and number of examples. Our main contributions in this chapter

include:

� Formulation of the trade-o� between hypothesis complexity and sample com-

plexity when using Gaussian regularization networks.

� Combining results from approximation theory and the theory of empirical pro-

cesses to obtain a speci�c bound on the total generalization error as a function

of the number of examples and number of parameters.

� Using the bound above to provide guidelines for choosing an optimal network

architecture to solve certain regression problems.

Chapter 3 explores the issue of active learning. We are speci�cally interested in

investigating whether allowing the learner to choose examples helps in learning with

fewer examples. This chapter consists of two parts which include several forays into

this question. The �rst part explores this issue in a function approximation setting.

It is not immediately clear that even if the learner were allowed to choose his/her

own examples, there exist principled ways of doing this. We develop a framework

within which meaningful adaptive sampling strategies can be obtained for arbitrary

function classes. As speci�c examples we consider cases where the concept classes

are real-valued classes like monotonic functions and functions with bounded �rst

derivative, hypothesis classes are spline functions, there is no noise, the learner chooses

an interpolating spline as a best hypothesis and examples are obtained passively
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(by random draw) or adaptively (according our strategy) by the active learner. We

obtain theoretical and empirical bounds on the sample complexity and generalization

error for this task. In the second part, we discuss the idea of epsilon-focusing; a

strategy whereby the learner can adaptively focus on smaller and smaller regions of

the domain to solve certain pattern classi�cation problems. We derive conditions

on function classes where epsilon-focusing would result in faster learning. Our main

contributions here include:

� A formulation of active learning in approximation theoretic terms as an adaptive

approximation problem.

� Development of active strategies for learning classes of real valued functions.

These active strategies di�er from traditional adaptive approximation strategies

in optimal sampling theory in that examples are adaptively selected on the basis

of previous examples as opposed to preselected on the basis of knowledge about

the concept class.

� Explicit computation of theoretical upper and lower bounds on the sample com-

plexity of PAC learning real classes using passive and active strategies. Sim-

ulations with some test target functions allows us to compare the empirical

performance against the theoretical worst case bounds.

� Introduction of the idea of epsilon-focusing which provides a theoretical mo-

tivation for pattern classi�cation schemes where more data is collected near

the estimated class boundary. The computation of explicit sample complexity

bounds for algorithms motivated by epsilon-focusing.

Chapters 4 and 5 of this thesis concentrate on a very di�erent region of the

possibility space of Figure 1.1. Here the concept class is a restricted subclass of

natural languages, the hypothesis class consists of parameterized grammars including

X-bar theory, verb movement and case theory, examples are assumed to be drawn

according to some distribution on the sentences of the target, there might or might

not be noise, there is a discrete distance metric which requires exact identi�cation of

the target, the algorithm used to choose the best hypothesis is the Triggering Learning

Algorithm (Gibson and Wexler, 1993).

The TLA was proposed recently by Gibson and Wexler as a possible mechanism

by which children set parameters and learned the language to which they were ex-

posed. Chapter 4 originated as an attempt to analyze the TLA from the perspective

of informational complexity and to derive conditions for convergence and rates of

convergence of the TLA to the target. We explore the TLA and its variants under
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the diverse in
uence of noise, distributional assumptions on the data, and explore the

linguistic consequences of this. In Chapter 5, we study another important facet of the

language learning puzzle. Starting with a set of grammars and a learning algorithm,

we are able to derive a dynamical system whose states correspond to the the linguistic

composition of the population, i.e., the relative percentage of people in a community

speaking a particular language. For the TLA, we give the precise update rules for the

states of this system, analyze conditions for stability and carry out several simula-

tions in linguistically plausible systems. This serves as a formal model for describing

the historical evolution of languages and formalizes ideas inherent in Lightfoot (1991)

and and Hawkins and Gell-Mann (1989) for the �rst time. These two chapters make

several important contributions including:

� The development of a mathematical framework (a Markov structure) to formally

study the issues relating to the learnability and sample complexity of the TLA.

� The investigation of variants of TLA, the e�ect of noise, distributional assump-

tions and parameterization of the space in a systematic manner on linguistically

natural spaces.

� The derivation of algorithm-independent bounds on the sample complexity us-

ing results from computational learning theory.

� The derivation of a linguistic dynamical system starting from the TLA operating

on parameterized grammars.

� Utilizing the dynamical system as a model for language change, running sim-

ulations on linguistically natural spaces and comparison of the results against

historically observed patterns.

� Introduction of the diachronic criterion for deciding the plausibility of any learn-

ing algorithm.

1.3.1 A Final Word

Over the last decade, there has been a explosion of interest in formal learning theory

(see the Proceedings of ACM COLT for a whi� of this). This has brought in its wake a

perspective on learning paradigms which we greatly share and this thesis re
ects that

perspective strongly. In addition, as with all interdisciplinary pieces of work, we have

an intellectual debt to many di�erent �elds. The areas of approximation theory and

statistics, particularly the part of empirical process theory beautifully worked out by
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Vapnik and Chervonenkis, model selection, pattern recognition, decision theory, and

nonparametric regression play an important role in Chapter 2. Ideas from adaptive

integration and numerical analysis play an important role in chapter 3. Chapters

4 and 5 have evolved from the application of our computational perspective to the

analysis of learning paradigms which are considered worthwhile in linguistic theory

(our decision of what is linguistically worthwhile has been in
uenced greatly by schol-

arly works in the Chomskyan tradition). Here, there is some use of Markov chain

theory and dynamical systems theory. In all of this, we have brought to bear well

known results and techniques from di�erent areas of mathematics to formally pose

and answer questions of interest in human and machine learning; questions previously

unposed or unanswered or both. In this strict sense, there is little new mathematics

here; though an abundant demonstration of its usefulness as a research tool in the

cognitive and computer sciences. This re
ects our purpose and our intended audi-

ence for this thesis, namely, all people interested in human or machine learning from

a computational perspective.
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Chapter 2

On the Relationship Between Generaliza-
tion Error, Hypothesis Complexity, and
Sample Complexity in Radial Basis Func-
tions

Abstract

Feedforward networks are a class of approximation techniques that can be used to learn to perform

some tasks from a �nite set of examples. The question of the capability of a network to generalize

from a �nite training set to unseen data is clearly of crucial importance. In this chapter, we bound the

generalization error of a class of Radial Basis Functions, for certain well de�ned function learning

tasks, in terms of the number of parameters and number of examples. We show that the total

generalization error is partly due to the insu�cient representational capacity of the network (because

of the �nite size of the network being used) and partly due to insu�cient information about the

target function because of the �nite number of samples. Prior research has looked at representational

capacity or sample complexity in isolation. In the spirit of A. Barron, H. White and S. Geman we

develop a framework to look at both. While the bound that we derive is speci�c for Radial Basis

Functions, a number of observations deriving from it apply to any approximation technique. Our

result also sheds light on ways to choose an appropriate network architecture for a particular problem

and the kinds of problems which can be e�ectively solved with �nite resources, i.e., with �nite number

of parameters and �nite amounts of data.

2.1 Introduction

Many problems in learning theory can be e�ectively modelled as learning an input

output mapping on the basis of limited evidence of what this mapping might be.

The mapping usually takes the form of some unknown function between two spaces

and the evidence is often a set of labelled, noisy, examples i.e., (x; y) pairs which are

consistent with this function. On the basis of this data set, the learner tries to infer

the true function.

We have discussed in Chapter 1, several examples from speech recognition, object

recognition, and �nance where such a scenario exists. At the risk of belaboring this
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point consider two more examples which illustrate this approach. In economics, it is

sometimes of interest to predict the future foreign currency rates on the basis of the

past time series. There might be a function which captures the dynamical relation

between past and future currency rates and one typically tries to uncover this relation

from data which has been appropriately processed. Similarly in medicine, one might

be interested in predicting whether or not breast cancer will recur in a patient within

�ve years after her treatment. The input space might involve dimensions like the age

of the patient, whether she has been through menopause, the radiation treatment

previously used etc. The output space would be single dimensional boolean taking on

values depending upon whether breast cancer recurs or not. One might collect data

from case histories of patients and try to uncover the underlying function.

The unknown target function is assumed to belong to some class F which using

the terminology of computational learning theory we call the concept class. Typi-

cal examples of concept classes are classes of indicator functions, boolean functions,

Sobolev spaces etc. The learner is provided with a �nite data set. One can makemany

assumptions about how this data set is collected but a common assumption which

would su�ce for our purposes is that the data is drawn by sampling independently

the input output space (X �Y ) according to some unknown probability distribution.

On the basis of this data, the learner then develops a hypothesis (another function)

about the identity of the target function i.e., it comes up with a function chosen from

some class, say H (the hypothesis class) which best �ts the data and postulates this to

be the target. Hypothesis classes could also be of di�erent kinds. For example, they

could be classes of boolean functions, polynomials, linear functions, spline functions

and so on. One such class which is being increasingly used for learning problems is

the class of feedforward networks ((Lippmann, 1987; Hertz, Krogh, and Palmer, 1991;

Girosi, Jones, and Poggio, 1993). A typical feedforward network is a parameterized

function of the form

f(x) =
nX
i=1

ciH(x;wi)

where fcigni=1 and fwigni=1 are free parameters and H(�; �) is a given, �xed function

(the \activation function"). Depending on the choice of the activation function one

gets di�erent network models, such as the most common form of \neural networks",

the Multilayer Perceptron (Rumelhart, Hinton, and Williams, 1986; Cybenko, 1989;

Lapedes, and Farmer, 1988; Hertz, Krogh, and Palmer, 1991; Hornik, Stinchcombe,

and White, 1989; Funahashi, 1989; Mhaskar, and Micchelli, 1992; Mhaskar, 1993;

Irie, and Miyake, 1988) , or the Radial Basis Functions network (Broomhead, and
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Lowe, 1988; Dyn, 1987; Hardy, 1971,1990; Micchelli, 1986; Powell, 1990; Moody,

and Darken, 1989; Poggio, and Girosi, 1990; Girosi, 1992; Girosi, Jones, and Poggio,

1993).

If, as more and more data becomes available, the learner's hypothesis becomes

closer and closer to the target and converges to it in the limit, the target is said to

be learnable. The error between the learner's hypothesis and the target function is

de�ned to be the generalization error and for the target to be learnable the gener-

alization error should go to zero as the data goes to in�nity. While learnability is

certainly a very desirable quality, it requires the ful�llment of two important criteria.

First, there is the issue of the representational capacity (or hypothesis complexity)

of the hypothesis class. This must have su�cient power to represent or closely approx-

imate the concept class. Otherwise for some target function f , the best hypothesis h

in H might be far away from it. The error that this best hypothesis makes is formal-

ized later as the approximation error. In this case, all the learner can hope to do is

to converge to h in the limit of in�nite data and so it will never recover the target.

Second, we do not have in�nite data but only some �nite random sample set from

which we construct a hypothesis. This hypothesis constructed from the �nite data

might be far from the best possible hypothesis, h, resulting in a further error. This

additional error (caused by �niteness of data) is formalized later as the estimation

error. The amount of data needed to ensure a small estimation error is referred to as

the sample complexity of the problem. The hypothesis complexity, the sample com-

plexity and the generalization error are related. If the class H is very large or in other

words has high complexity, then for the same estimation error, the sample complexity

increases. If the hypothesis complexity is small, the sample complexity is also small

but now for the same estimation error the approximation error is high. This point

has been developed in terms of the Bias-Variance trade-o� in (Geman, Bienenstock,

and Doursat, 1992) in the context of neural networks, and others (Rissanen, 1983;

Grenander, 1951; Vapnik, 1982; Stone, 1974) in statistics in general.

The purpose of this chapter is two-fold. First, we formalize the problem of learning

from examples so as to highlight the relationship between hypothesis complexity,

sample complexity and total error. Second, we explore this relationship in the speci�c

context of a particular hypothesis class. This is the class of Radial Basis function

networks which can be considered to belong to the broader class of feed-forward

networks. Speci�cally, we are interested in asking the following questions about radial

basis functions.

Imagine you were interested in solving a particular problem (regression or pattern

classi�cation) using Radial Basis Function networks. Then, how large must the net-
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work be and how many examples do you need to draw so that you are guaranteed with

high con�dence to do very well? Conversely, if you had a �nite network and a �nite

amount of data, what are the kinds of problems you could solve e�ectively?

Clearly, if one were using a network with a �nite number of parameters, then its

representational capacity would be limited and therefore even in the best case we

would make an approximation error. Drawing upon results in approximation theory

(Lorentz, 1986) several researchers (Cybenko, 1989; Hartman, Keeler, and Kowalski,

1989; Barron, 1991; Hornik, Stinchcombe, and White, 1989; Chui, and Li, 1990; Arai,

1989; Mhaskar, and Micchelli, 1992; Mhaskar, 1993; Irie, and Miyake, 1988; Chen,

Chen, and Liu, 1990) have investigated the approximating power of feedforward net-

works showing how as the number of parameters goes to in�nity, the network can

approximate any continuous function. These results assume in�nite data and ques-

tions of learnability from �nite data are ignored. For a �nite network, due to �niteness

of the data, we make an error in estimating the parameters and consequently have an

estimation error in addition to the approximation error mentioned earlier. Using re-

sults from Vapnik and Chervonenkis (Vapnik, 1982; Vapnik, and Chervonenkis, 1971,

1981, 1991) and Pollard (Pollard, 1984) , work has also been done (Haussler, 1989;

Baum, and Haussler, 1988) on the sample complexity of �nite networks showing how

as the data goes to in�nity, the estimation error goes to zero i.e., the empirically opti-

mized parameter settings converge to the optimal ones for that class. However, since

the number of parameters are �xed and �nite, even the optimal parameter setting

might yield a function which is far from the target. This issue is left unexplored by

Haussler (1989) in an excellent investigation of the sample complexity question.

In this chapter, we explore the errors due to both �nite parameters and �nite

data in a common setting. In order for the total generalization error to go to zero,

both the number of parameters and the number of data have to go to in�nity, and we

provide rates at which they grow for learnability to result. Further, as a corollary, we

are able to provide a principled way of choosing the optimal number of parameters

so as to minimize expected errors. It should be mentioned here that White (1990)

and Barron (1991) have provided excellent treatments of this problem for di�erent

hypothesis classes. We will mention their work at appropriate points in this chapter.

The plan of the chapter is as follows: in section 2.2 we will formalize the problem

and comment on issues of a general nature. We then provide in section 2.3 a precise

statement of a speci�c problem. In section 2.4 we present our main result, whose

proof is postponed to appendix 2-D for continuity of reading. The main result is

quali�ed by several remarks in section 2.5. In section 2.6 we will discuss what could

be the implications of our result in practice and �nally we conclude in section 2.7
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with a reiteration of our essential points.

2.2 De�nitions and Statement of the Problem

In order to make a precise statement of the problem we �rst need to introduce some

terminology and to de�ne a number of mathematical objects. A summary of the most

common notations and de�nitions used in this chapter can be found in appendix 2-A.

2.2.1 Random Variables and Probability Distributions

Let X and Y be two arbitrary sets. We will call x and y the independent variable and

response respectively, where x and y range over the generic elements of X and Y . In

most cases X will be a subset of a k-dimensional Euclidean space and Y a subset of

the real line, so that the independent variable will be a k-dimensional vector and the

response a real number. We assume that a probability distribution P (x; y) is de�ned

on X � Y . P is unknown, although certain assumptions on it will be made later in

this section.

The probability distribution P (x; y) can also be written as4:

P (x; y) = P (x)P (yjx) ; (2:1)

where P (yjx) is the conditional probability of the response y given the independent

variable x, and P (x) is the marginal probability of the independent variable given

by:

P (x) =

Z
Y

dy P (x; y) :

Expected values with respect to P (x; y) or P (x) will be always indicated by E[�].
Therefore, we will write:

E[g(x; y)] �
Z
X�Y

dxdy P (x; y)g(x; y)

and

E[h(x)] �
Z
X

dx P (x)h(x)

for any arbitrary function g or h.

4Note that we are assuming that the conditional distribution exists, but this is not a very restric-
tive assumption.
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2.2.2 Learning from Examples and Estimators

The framework described above can be used to model the fact that in the real world we

often have to deal with sets of variables that are related by a probabilistic relationship.

For example, y could be the measured torque at a particular joint of a robot arm,

and x the set of angular position, velocity and acceleration of the joints of the arm in

a particular con�guration. The relationship between x and y is probabilistic because

there is noise a�ecting the measurement process, so that two di�erent torques could

be measured given the same con�guration.

In many cases we are provided with examples of this probabilistic relationship,

that is with a data set Dl, obtained by sampling l times the set X � Y according to

P (x; y):

Dl � f(xi; yi) 2 X � Y gl
i=1 :

From eq. (2.1) we see that we can think of an element (xi; yi) of the data set Dl as

obtained by samplingX according to P (x), and then sampling Y according to P (yjx).
In the robot arm example described above, it would mean that one could move the

robot arm into a random con�guration x1, measure the corresponding torque y1, and

iterate this process l times.

The interesting problem is, given an instance of x that does not appear in the

data set Dl, to give an estimate of what we expect y to be. For example, given a

certain con�guration of the robot arm, we would like to estimate the corresponding

torque.

Formally, we de�ne an estimator to be any function f : X ! Y . Clearly, since the

independent variable x need not determine uniquely the response y, any estimator

will make a certain amount of error. However, it is interesting to study the problem of

�nding the best possible estimator, given the knowledge of the data set Dl, and this

problem will be de�ned as the problem of learning from examples, where the examples

are represented by the data set Dl. Thus we have a probabilistic relation between x

and y. One can think of this as an underlying deterministic relation corrupted with

noise. Hopefully a good estimator will be able to recover this relation.

2.2.3 The Expected Risk and the Regression Function

In the previous section we explained the problem of learning from examples and stated

that this is the same as the problem of �nding the best estimator. To make sense of

this statement, we now need to de�ne a measure of how good an estimator is. Suppose
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we sample X � Y according to P (x; y), obtaining the pair (x; y). A measure5 of the

error of the estimator f at the point x is:

(y � f(x))2 :

In the example of the robot arm, f(x) is our estimate of the torque corresponding to

the con�guration x, and y is the measured torque of that con�guration. The average

error of the estimator f is now given by the functional

I[f ] � E[(y � f(x))2] =

Z
X�Y

dxdy P (x; y)(y � f(x))2 ;

that is usually called the expected risk of f for the speci�c choice of the error measure.

Given this particular measure as our yardstick to evaluate di�erent estimators,

we are now interested in �nding the estimator that minimizes the expected risk.

In order to proceed we need to specify its domain of de�nition F . Then using the

expected risk as a criterion, we could obtain the best element of F . Depending on the
properties of the unknown probability distribution P (x; y) one could make di�erent

choices for F . We will assume in the following that F is some space of di�erentiable

functions. For example, F could be a space of functions with a certain number of

bounded derivatives (the spaces �m(Rd) de�ned in appendix 2-A), or a Sobolev space

of functions with a certain number of derivatives in Lp (the spaces H
m;p(Rd) de�ned

in appendix 2-A).

Assuming that the problem of minimizing I[f ] in F is well posed, it is easy to

obtain its solution. In fact, the expected risk can be decomposed in the following way

(see appendix 2-B):

I[f ] = E[(f0(x)� f(x))2] + E[(y � f0(x))
2] (2:2)

where f0(x) is the so called regression function, that is the conditional mean of the

response given the independent variable:

f0(x) �
Z
Y

dy yP (yjx) : (2:3)

From eq. (2.2) it is clear that the regression function is the function that minimizes

the expected risk in F , and is therefore the best possible estimator. Hence,

5Note that this is the familiar squared-error and when averaged over its domain yields the mean
squared error for a particular estimator, a very common choice. However, it is useful to remember
that there could be other choices as well.
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f0(x) = arg min
f2 F

I[f ] :

However, it is also clear that even the regression function will make an error equal

to E[(y � f0(x))
2], that is the variance of the response given a certain value for the

independent variable, averaged over the values the independent variable can take.

While the �rst term in eq. (2.2) depends on the choice of the estimator f , the second

term is an intrinsic limitation that comes from the fact that the independent variable

x does not determine uniquely the response y.

The problem of learning from examples can now be reformulated as the problem

of reconstructing the regression function f0, given the example set Dl. Thus we have

some large class of functions F to which the target function f0 belongs. We obtain

noisy data of the form (x; y) where x has the distribution P (x) and for each x, y is

a random variable with mean f0(x) and distribution P (yjx). We note that y can be

viewed as a deterministic function of x corrupted by noise. If one assumes the noise

is additive, we can write y = f0(x) + �x where �x
6 is zero-mean with distribution

P (yjx). We choose an estimator on the basis of the data set and we hope that

it is close to the regression (target) function. It should also be pointed out that

this framework includes pattern classi�cation and in this case the regression (target)

function corresponds to the Bayes discriminant function (Gish, 1990; Hampshire, and

Pearlmutter, 1990; Richard, and Lippman, 1991) .

2.2.4 The Empirical Risk

If the expected risk functional I[f ] were known, one could compute the regression

function by simply �nding its minimum in F , that would make the whole learning

problem considerably easier. What makes the problem di�cult and interesting is

that in practice I[f ] is unknown because P (x; y) is unknown. Our only source of

information is the data set Dl which consists of l independent random samples of

X � Y drawn according to P (x; y). Using this data set, the expected risk can be

approximated by the empirical risk Iemp:

Iemp[f ] � 1

l

lX
i=1

(yi � f(xi))
2
:

For each given estimator f , the empirical risk is a random variable, and under fairly

6Note that the standard regression problem often assumes �x is independent of x. Our case is
distribution free because we make no assumptions about the nature of �x.

43



general assumptions7, by the law of large numbers (Dudley, 1989) it converges in

probability to the expected risk as the number of data points goes to in�nity:

lim
l!1

PfjI[f ]� Iemp[f ]j > "g = 0 8" > 0 : (2:4)

Therefore a common strategy consists in estimating the regression function as the

function that minimizes the empirical risk, since it is \close" to the expected risk if

the number of data is high enough. For the error metric we have used, this yields

the least-squares error estimator. However, eq. (2.4) states only that the expected

risk is \close" to the empirical risk for each given f , and not for all f simultaneously.

Consequently the fact that the empirical risk converges in probability to the expected

risk when the number, l, of data points goes to in�nity does not guarantee that the

minimum of the empirical risk will converge to the minimum of the expected risk

(the regression function). As pointed out and analyzed in the fundamental work of

Vapnik and Chervonenkis the notion of uniform convergence in probability has to be

introduced, and it will be discussed in other parts of this chapter.

2.2.5 The Problem

The argument of the previous section suggests that an approximate solution of the

learning problem consists in �nding the minimum of the empirical risk, that is solving

min
f2F

Iemp[f ] :

However this problem is clearly ill-posed, because, for most choices of F , it will have
an in�nite number of solutions. In fact, all the functions in F that interpolate the

data points (xi; yi), that is with the property

f(xi) = yi 1; : : : ; l

will give a zero value for Iemp. This problem is very common in approximation theory

and statistics and can be approached in several ways. A common technique consists

in restricting the search for the minimum to a smaller set than F . We consider the

case in which this smaller set is a family of parametric functions, that is a family of

functions de�ned by a certain number of real parameters. The choice of a parametric

representation also provides a convenient way to store and manipulate the hypothesis

function on a computer.

We will denote a generic subset of F whose elements are parametrized by a number

7For example, assuming the data is independently drawn and I[f ] is �nite.
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of parameters proportional to n, by Hn. Moreover, we will assume that the sets Hn

form a nested family, that is

H1 � H2 � : : : � Hn � : : : � H:

For example,Hn could be the set of polynomials in one variable of degree n�1, Radial
Basis Functions with n centers, multilayer perceptrons with n sigmoidal hidden units,

multilayer perceptrons with n threshold units and so on. Therefore, we choose as

approximation to the regression function the function f̂n;l de�ned as:8

f̂n;l � arg min
f2Hn

Iemp[f ] : (2:5)

Thus, for example, if Hn is the class of functions which can be represented as f =P
n

�=1 c�H(x;w�) then eq. (2.5) can be written as

f̂n;l � arg min
c�;w�

Iemp[f ] :

A number of observations need to be made here. First, if the class F is small (typically

in the sense of bounded VC-dimension or bounded metric entropy (Pollard, 1984) ),

then the problem is not necessarily ill-posed and we do not have to go through the

process of using the sets Hn. However, as has been mentioned already, for most inter-

esting choices of F (e.g. classes of functions in Sobolev spaces, continuous functions

etc.) the problem might be ill posed. However, this might not be the only reason

for using the classes Hn. It might be the case that that is all we have or for some

reason it is something we would like to use. For example, one might want to use a

particular class of feed-forward networks because of ease of implementation in VLSI.

Also, if we were to solve the function learning problem on a computer as is typically

done in practice, then the functions in F have to be represented somehow. We might

consequently use Hn as a representation scheme. It should be pointed out that the

sets Hn and F have to be matched with each other. For example, we would hardly

use polynomials as an approximation scheme when the class F consists of indicator

functions or for that matter use threshold units when the class F contains continuous

8Notice that we are implicitly assuming that the problem of minizing Iemp[f ] over Hn has a
solution, which might not be the case. However the quantity

En;l � inf
f2Hn

Iemp[f ]

is always well de�ned, and we can always �nd a function f̂n;l for which Iemp[f̂n;l] is arbitrarily close
to En;l. It will turn out that this is su�cient for our purposes, and therefore we will continue,

assuming that f̂n;l is well de�ned by eq. (2.5)

45



functions. In particular, if we are to recover the regression function, H must be dense

in F . One could look at this matching from both directions. For a class F , one might

be interested in an appropriate choice of Hn. Conversely, for a particular choice of

Hn, one might ask what classes F can be e�ectively solved with this scheme. Thus,

if we were to use multilayer perceptrons, this line of questioning would lead us to

identify the class of problems which can be e�ectively solved by them.

Thus, we see that in principle we would like to minimize I[f ] over the large

class F obtaining thereby the regression function f0. What we do in practice is to

minimize the empirical risk Iemp[f ] over the smaller class Hn obtaining the function

f̂n;l. Assuming we have solved all the computational problems related to the actual

computation of the estimator f̂n;l, the main problem is now:

how good is f̂n;l?

Independently of the measure of performance that we choose when answering this

question, we expect f̂n;l to become a better and better estimator as n and l go to

in�nity. In fact, when l increases, our estimate of the expected risk improves and our

estimator improves. The case of n is trickier. As n increases, we have more parameters

to model the regression function, and our estimator should improve. However, at the

same time, because we have more parameters to estimate with the same amount of

data, our estimate of the expected risk deteriorates. Thus we now need more data and

n and l have to grow as a function of each other for convergence to occur. At what

rate and under what conditions the estimator f̂n;l improves depends on the properties

of the regression function, that is on F , and on the approximation scheme we are

using, that is on Hn.

2.2.6 Bounding the Generalization Error

At this stage it might be worthwhile to review and remark on some general features of

the problem of learning from examples. Let us remember that our goal is to minimize

the expected risk I[f ] over the set F . If we were to use a �nite number of parameters,

then we have already seen that the best we could possibly do is to minimize our

functional over the set Hn, yielding the estimator fn:

fn � arg min
f2Hn

I[f ] :

However, not only is the parametrization limited, but the data is also �nite, and we

can only minimize the empirical risk Iemp, obtaining as our �nal estimate the function

f̂n;l. Our goal is to bound the distance from f̂n;l that is our solution, from f0, that is
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the \optimal" solution. If we choose to measure the distance in the L2(P ) metric (see

appendix 2-A), the quantity that we need to bound, that we will call generalization

error, is:

E[(f0 � f̂n;l)
2] =

R
X
dx P (x)(f0(x)� f̂n;l(x))

2 =

= kf0 � f̂n;lk2L2(P )
There are 2 main factors that contribute to the generalization error, and we are going

to analyze them separately for the moment.

1. A �rst cause of error comes from the fact that we are trying to approximate an

in�nite dimensional object, the regression function f0 2 F , with a �nite number
of parameters. We call this error the approximation error, and we measure it by

the quantity E[(f0�fn)
2], that is the L2(P ) distance between the best function

in Hn and the regression function. The approximation error can be expressed

in terms of the expected risk using the decomposition (2.2) as

E[(f0 � fn)
2] = I[fn]� I[f0] : (2:6)

Notice that the approximation error does not depend on the data setDl, but de-

pends only on the approximating power of the class Hn. The natural framework

to study it is approximation theory, that abound with bounds on the approx-

imation error for a variety of choices of Hn and F . In the following we will

always assume that it is possible to bound the approximation error as follows:

E[(f0 � fn)
2] � "(n)

where "(n) is a function that goes to zero as n goes to in�nity if H is dense in

F . In other words, as shown in �gure (2-6), as the number n of parameters gets

larger the representation capacity ofHn increases, and allows a better and better

approximation of the regression function f0. This issue has been studied by a

number of researchers (Cybenko, 1989; Hornik, Stinchcombe, and White, 1989;

Barron, 1991, 1993; Funahashi, 1989; Mhaskar, and Micchelli, 1992; Mhaskar,

1993) in the neural networks community.

2. Another source of error comes from the fact that, due to �nite data, we minimize

the empirical risk Iemp[f ], and obtain f̂n;l, rather than minimizing the expected

risk I[f ], and obtaining fn. As the number of data goes to in�nity we hope that
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f̂n;l will converge to fn, and convergence will take place if the empirical risk

converges to the expected risk uniformly in probability (Vapnik, 1982) . The

quantity

jIemp[f ]� I[f ]j

is called estimation error, and conditions for the estimation error to converge

to zero uniformly in probability have been investigated by Vapnik and Cher-

vonenkis Pollard , Dudley (1987) , and Haussler (1989) . Under a variety of

di�erent hypothesis it is possible to prove that, with probability 1� �, a bound

of this form is valid:

jIemp[f ]� I[f ]j � !(l; n; �) 8f 2 Hn (2:7)

The speci�c form of ! depends on the setting of the problem, but, in general, we

expect !(l; n; �) to be a decreasing function of l. However, we also expect it to

be an increasing function of n. The reason is that, if the number of parameters

is large then the expected risk is a very complex object, and then more data

will be needed to estimate it. Therefore, keeping �xed the number of data and

increasing the number of parameters will result, on the average, in a larger

distance between the expected risk and the empirical risk.

The approximation and estimation error are clearly two components of the gen-

eralization error, and it is interesting to notice, as shown in the next statement, the

generalization error can be bounded by the sum of the two:

Statement 2.2.1 The following inequality holds:

kf0 � f̂n;lk2L2(P ) � "(n) + 2!(l; n; �) : (2:8)

Proof: using the decomposition of the expected risk (2.2), the generalization error

can be written as:

kf0 � f̂n;lk2L2(P ) = E[(f0 � f̂n;l)
2] = I[f̂n;l]� I[f0] : (2:9)

A natural way of bounding the generalization error is as follows:

E[(f0 � f̂n;l)
2] � jI[fn]� I[f0]j+ jI[fn]� I[f̂n;l]j : (2:10)
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In the �rst term of the right hand side of the previous inequality we recognize the

approximation error (2.6). If a bound of the form (2.7) is known for the generalization

error, it is simple to show (see appendix (2-C) that the second term can be bounded

as

jI[fn]� I[f̂n;l]j � 2!(l; n; �)

and statement (2.2.1) follows 2.

Thus we see that the generalization error has two components: one, bounded

by "(n), is related to the approximation power of the class of functions fHng, and is

studied in the framework of approximation theory. The second, bounded by !(l; n; �),

is related to the di�culty of estimating the parameters given �nite data, and is studied

in the framework of statistics. Consequently, results from both these �elds are needed

in order to provide an understanding of the problem of learning from examples. Figure

(2-6) also shows a picture of the problem.

F
f0

Hn

f n

fn l
^

?

Figure 2-6: This �gure shows a picture of the problem. The outermost circle repre-

sents the set F. Embedded in this are the nested subsets, the Hn's. f0 is an arbitrary

target function in F , fn is the closest element of Hn and f̂n;l is the element of Hn

which the learner hypothesizes on the basis of data.
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2.2.7 A Note on Models and Model Complexity

From the form of eq. (2.8) the reader will quickly realize that there is a trade-o�

between n and l for a certain generalization error. For a �xed l, as n increases, the

approximation error "(n) decreases but the estimation error !(l; n; �) increases. Con-

sequently, there is a certain n which might optimally balance this trade-o�. Note that

the classes Hn can be looked upon as models of increasing complexity and the search

for an optimal n amounts to a search for the right model complexity. One typically

wishes to match the model complexity with the sample complexity (measured by how

much data we have on hand) and this problem is well studied (Eubank, 1988; Stone,

1974; Linehart, and Zucchini, 1986, Rissanen, 1989; Barron, and Cover, 1989; Efron,

1982; Craven, and Wahba, 1979) in statistics.

Broadly speaking, simple models would have high approximation errors but small

estimation errors while complexmodels would have low approximation errors but high

estimation errors. This might be true even when considering qualitatively di�erent

models and as an illustrative example let us consider two kinds of models we might use

to learn regression functions in the space of bounded continuous functions. The class

of linear models, i.e., the class of functions which can be expressed as f = w �x+�, do

not have much approximating power and consequently their approximation error is

rather high. However, their estimation error is quite low. The class of models which

can be expressed in the form H =
P

n

i=1 ci sin(wi � x+ �i) have higher approximating

power (Jones, 1990) resulting in low approximation errors. However this class has an

in�nite VC-dimension and its estimation error can not therefore be bounded.

So far we have provided a very general characterization of this problem, without

stating what the sets F and Hn are. As we have already mentioned before, the set

F could be a set of bounded di�erentiable or integrable functions, and Hn could be

polynomials of degree n, spline functions with n knots, multilayer perceptrons with

n hidden units or any other parametric approximation scheme with n parameters. In

the next section we will consider a speci�c choice for these sets, and we will provide

a bound on the generalization error of the form of eq. (2.8).

2.3 Stating the Problem for Radial Basis Func-

tions

As mentioned before the problem of learning from examples reduces to estimating

some target function from a setX to a set Y . In most practical cases, such as character

recognition, motor control, time series prediction, the set X is the k-dimensional
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Euclidean space Rk, and the set Y is some subset of the real line, that for our purposes

we will assume to be the interval [�M;M ], where M is some positive number. In

fact, there is a probability distribution P (x; y) de�ned on the space Rk � [�M;M ]

according to which the labelled examples are drawn independently at random, and

from which we try to estimate the regression (target) function. It is clear that the

regression function is a real function of k variables.

In this chapter we focus our attention on the Radial Basis Functions approximation

scheme (also called Hyper-Basis Functions; Poggio and Girosi, 1990 ). This is the

class of approximating functions that can be written as:

f(x) =
nX
i=1

�iG(
kx� tik

�i

) (2:11)

where G is some given basis function (in our case Gaussian, speci�cally G(�) =

V e
��2) and the �i; ti; and �i are free parameters. We would like to understand what

classes of problems can be solved \well" by this technique, where \well" means that

both approximation and estimation bounds need to be favorable. It is possible to

show that a favorable approximation bound can be obtained if we assume that the

class of functions F to which the regression function belongs is de�ned as follows:

F � ff jf = � �Gm;m > k=2; j�jRk �Mg : (2:12)

Here � is a signed Radon measure on the Borel sets of Rk, Gm is the Bessel-Macdonald

kernel, i.e., the inverse fourier transform of

~
Gm(s) =

1

(1 + 4�2ksk2)m=2

The symbol � stands for the convolution operation, j�jRk is the total variation9 of

the measure � and M is a positive real number. The space F as de�ned in eq. 2.12 is

the so-called Liouville Space of order m: If m is even, this contains the Sobolev Space

H
m;1 of functions whose derivatives upto order m are integrable.

We point out that the class F is non-trivial to learn in the sense that it has in�nite

pseudo-dimension (Pollard, 1984).

In order to obtain an estimation bound we need the approximating class to have

bounded variation, and the following constraint will be imposed:

9A signed measure � can be decomposed by the Hahn-Jordan decomposition into � = �
+ � �

�
:

Then j�j = �
+ + �

� is called the total variation of �: See Dudley (1989) for more information.
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nX
i=1

j�ij �M :

This constraint does not a�ect the approximation bound, and the two pieces �t to-

gether nicely. Thus the set Hn is de�ned now as the set of functions belonging to L2

such that

f(x) =
nX
i=1

�iG(
kx� tik

�i

);
nX
i=1

j�ij �M ; ti 2 R
k
; �i 2 R (2:13)

Having de�ned the sets Hn and F we remind the reader that our goal is to recover

the regression function, that is the minimum of the expected risk over F . What we

end up doing is to draw a set of l examples and to minimize the empirical risk Iemp

over the set Hn, that is to solve the following non-convex minimization problem:

f̂n;l � arg min
��;t�;��

lX
i=1

(yi �
nX

�=1

��G(
kxi � t�k

��

))2 (2:14)

Notice that assumption that the regression function

f0(x) � E[yjx]

belongs to the class F correspondingly implies an assumption on the probability

distribution P (yjx), viz., that P must be such that E[yjx] belongs to F : Notice also
that since we assumed that Y is a closed interval, we are implicitly assuming that

P (yjx) has compact support.

Assuming now that we have been able to solve the minimization problem of eq.

(2.14), the main question we are interested in is \how far is f̂n;l from f0?". We give

an answer in the next section.

2.4 Main Result

The main theorem is:

Theorem 2.4.1 For any 0 < � < 1, for n nodes, l data points, input dimensionality

of k, and Hn;F ; f0; f̂n;l also as de�ned in the statement of the problem above, with

probability greater than 1 � �,

kf0 � f̂n;lk2L2(P ) � O

�
1

n

�
+O

0
@
"
nk ln(nl)� ln �

l

#1=21A

52



Proof: The proof requires us to go through a series of propositions and lemmas which

have been relegated to appendix (2-D) for continuity of ideas.2

2.5 Remarks

There are a number of comments we would like to make on the formulation of our

problem and the result we have obtained. There is a vast body of literature on

approximation theory and the theory of empirical risk minimization. In recent times,

some of the results in these areas have been applied by the computer science and

neural network community to study formal learning models. Here we would like to

make certain observations about our result, suggest extensions and future work, and

to make connections with other work done in related areas.

2.5.1 Observations on the Main Result

� The theorem has a PAC (Valiant, 1984) like setting. It tells us that if we

draw enough data points (labelled examples) and have enough nodes in our

Radial Basis Functions network, we can drive our error arbitrarily close to

zero with arbitrarily high probability. Note however that our result is not

entirely distribution-free. Although no assumptions are made on the form of

the underlying distribution, we do have certain constraints on the kinds of

distributions for which this result holds. In particular, the distribution is such

that its conditional mean E[yjx] (this is also the regression function f0(x))

must belong to a the class of functions F de�ned by eq. (2.12). Further the

distribution P (yjx) must have compact support 10.

� The error bound consists of two parts, one (O(1=n)) coming from approxima-

tion theory, and the other O(((nk ln(nl) + ln(1=�))=l)1=2) from statistics. It is

noteworthy that for a given approximation scheme (corresponding to fHng), a
certain class of functions (corresponding to F) suggests itself. So we have gone
from the class of networks to the class of problems they can perform as opposed

to the other way around, i.e., from a class of problems to an optimal class of

networks.

10This condition, that is related to the problem of large deviations , could be relaxed, and will be
subject of further investigations.
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� This sort of a result implies that if we have the prior knowledge that f0 belongs to

class F , then by choosing the number of data points, l, and the number of basis
functions, n, appropriately, we can drive the misclassi�cation error arbitrarily

close to Bayes rate. In fact, for a �xed amount of data, even before we have

started looking at the data, we can pick a starting architecture, i.e., the number

of nodes, n; for optimal performance. After looking at the data, we might be

able to do some structural risk minimization (Vapnik, 1982) to further improve

architecture selection. For a �xed architecture, this result sheds light on how

much data is required for a certain error performance. Moreover, it allows us

to choose the number of data points and number of nodes simultaneously for

guaranteed error performances. Section 2.6 explores this question in greater

detail.

2.5.2 Extensions

� There are certain natural extensions to this work. We have essentially proved

the consistency of the estimated network function f̂n;l: In particular we have

shown that f̂n;l converges to f0 with probability 1 as l and n grow to in�nity.

It is also possible to derive conditions for almost sure convergence. Further,

we have looked at a speci�c class of networks (fHng) which consist of weighted
sums of Gaussian basis functions with moving centers but �xed variance. This

kind of an approximation scheme suggests a class of functions F which can be

approximated with guaranteed rates of convergence as mentioned earlier. We

could prove similar theorems for other kinds of basis functions which would have

stronger approximation properties than the class of functions considered here.

The general principle on which the proof is based can hopefully be extended to

a variety of approximation schemes.

� We have used notions of metric entropy and covering number (Dudley, 1987;

Pollard, 1984) in obtaining our uniform convergence results. Haussler (1989)

uses the results of Pollard and Dudley to obtain uniform convergence results and

our techniques closely follow his approach. It should be noted here that Vapnik

deals with exactly the same question and uses the VC-dimension instead. It

would be interesting to compute the VC-dimension of the class of networks and

use it to obtain our results.

� While we have obtained an upper bound on the error in terms of the number

of nodes and examples, it would be worthwhile to obtain lower bounds on the
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same. Such lower bounds do not seem to exist in the neural network literature

to the best of our knowledge.

� We have considered here a situation where the estimated network i.e., f̂n;l is

obtained by minimizing the empirical risk over the class of functions Hn: Very

often, the estimated network is obtained by minimizing a somewhat di�erent

objective function which consists of two parts. One is the �t to the data and

the other is some complexity term which favors less complex (according to the

de�ned notion of complexity) functions over more complex ones. For example

the regularization approach (Tikhonov, 1963; Poggio and Girosi, 1992; Wahba,

1990) minimizes a cost function of the form

H[f ] =
NX
i=1

(yi � f(xi) + ��[f ]

over the class H = [n�1Hn: Here � is the so called \regularization parameter"

and �[f ] is a functional which measures smoothness of the functions involved.

It would be interesting to obtain convergence conditions and rates for such

schemes. Choice of an optimal � is an interesting question in regularization

techniques and typically cross-validation or other heuristic schemes are used. A

result on convergence rate potentially o�ers a principled way to choose �:

� Structural risk minimization is another method to achieve a trade-o� between

network complexity (corresponding to n in our case) and �t to data. However it

does not guarantee that the architecture selected will be the one with minimal

parameterization11. In fact, it would be of some interest to develop a sequential

growing scheme. Such a technique would at any stage perform a sequential

hypothesis test (Govindarajulu, 1975) . It would then decide whether to ask

for more data, add one more node or simply stop and output the function it

has as its �-good hypothesis. In such a process, one might even incorporate

active learning (Angluin, 1988) so that if the algorithm asks for more data,

then it might even specify a region in the input domain from where it would

like to see this data. It is conceivable that such a scheme would grow to minimal

parameterization (or closer to it at any rate) and require less data than classical

structural risk minimization.

11Neither does regularization for that matter. The question of minimal parameterization is related
to that of order determination of systems, a very di�cult problem!
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� It should be noted here that we have assumed that the empirical risk
P

l

i=1(yi�
f(xi))

2 can be minimized over the class Hn and the function f̂n;l be e�ectively

computed. While this might be �ne in principle, in practice only a locally

optimal solution to the minimization problem is found (typically using some

gradient descent schemes). The computational complexity of obtaining even

an approximate solution to the minimization problem is an interesting one and

results from computer science (Judd, 1988; Blum and Rivest, 1988) suggest that

it might in general be NP -hard.

2.5.3 Connections with Other Results

� In the neural network and computational learning theory communities results

have been obtained pertaining to the issues of generalization and learnability.

Some theoretical work has been done (Baum and Haussler, 1989; Haussler, 1989;

Ji and Psaltis, 1992) in characterizing the sample complexity of �nite sized net-

works. Of these, it is worthwhile to mention again the work of Haussler from

which this chapter derives much inspiration. He obtains bounds for a �xed

hypothesis space i.e. a �xed �nite network architecture. Here we deal with

families of hypothesis spaces using richer and richer hypothesis spaces as more

and more data becomes available. Later we will characterize the trade-o� be-

tween hypothesis complexity and error rate. Others (Levin, Tishby, and Solla,

1990; Opper, and Haussler, 1991) attempt to characterize the generalization

abilities of feed-forward networks using theoretical formalizations from statisti-

cal mechanics. Yet others (Botros, and Atkeson, 1991; Moody, 1992; Cohn and

Tesauro, 1991; Weigand, Rumelhart, and Huberman, 1991) attempt to obtain

empirical bounds on generalization abilities.

� This is an attempt to obtain rate-of-convergence bounds in the spirit of Barron's

work , but using a di�erent approach. We have chosen to combine theorems from

approximation theory (which gives us the O(1=n) term in the rate, and uniform

convergence theory (which gives us the other part). Note that at this moment,

our rate of convergence is worse than Barron's. In particular, he obtains a

rate of convergence of O(1=n + (nk ln(l))=l). Further, he has a di�erent set of

assumptions on the class of functions (corresponding to our F). Finally, the

approximation scheme is a class of networks with sigmoidal units as opposed to

radial-basis units and a di�erent proof technique is used. It should be mentioned

here that his proof relies on a discretization of the networks into a countable

family, while no such assumption is made here.
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� It would be worthwhile to make a reference to (Geman, Bienenstock, and Dour-

sat, 1992) which talks of the Bias-Variance dilemma. This is another way of

formulating the trade-o� between the approximation error and the estimation

error. As the number of parameters (proportional to n) increases, the bias

(which can be thought of as analogous to the approximation error) of the esti-

mator decreases and its variance (which can be thought of as analogous to the

estimation error) increases for a �xed size of the data set. Finding the right

bias-variance trade-o� is very similar in spirit to �nding the trade-o� between

network complexity and data complexity.

� Given the class of radial basis functions we are using, a natural comparison

arises with kernel regression (Krzyzak, 1986; Devroye, 1981) and results on the

convergence of kernel estimators. It should be pointed out that, unlike our

scheme, Gaussian-kernel regressors require the variance of the Gaussian to go

to zero as a function of the data. Further the number of kernels is always equal

to the number of data points and the issue of trade-o� between the two is not

explored to the same degree.

� In our statement of the problem, we discussed how pattern classi�cation could be

treated as a special case of regression. In this case the function f0 corresponds to

the Bayes a-posteriori decision function. Researchers (Richard, and Lippman,

1991; Hampshire, and Pearlmutter, 1990; Gish, 1990) in the neural network

community have observed that a network trained on a least square error criterion

and used for pattern classi�cation was in e�ect computing the Bayes decision

function. This chapter provides a rigorous proof of the conditions under which

this is the case.

2.6 Implications of the Theorem in Practice: Putting

In the Numbers

We have stated our main result in a particular form. We have provided a provable

upper bound on the error (in the k : kL2(P ) metric) in terms of the number of examples

and the number of basis functions used. Further we have provided the order of the

convergence and have not stated the constants involved. The same result could be

stated in other forms and has certain implications. It provides us rates at which

the number of basis functions (n) should increase as a function of the number of

examples (l) in order to guarantee convergence(Section 2.6.1). It also provides us

with the trade-o�s between the two as explored in Section 2.6.2.
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2.6.1 Rate of Growth of n for Guaranteed Convergence

From our theorem (2.4.1) we see that the generalization error converges to zero only

if n goes to in�nity more slowly than l. In fact, if n grows too quickly the estimation

error !(l; n; �) will diverge, because it is proportional to n. In fact, setting n = l
r, we

obtain

liml!+1 !(l; n; �) =

= liml!+1 O

�h
l
r
k ln(lr+1)+ln(1=�)

l

i1=2�
=

= liml!+1 l
r�1 ln l :

Therefore the condition r < 1 should hold in order to guarantee convergence to zero.

2.6.2 Optimal Choice of n

In the previous section we made the point that the number of parameters n should

grow more slowly than the number of data points l, in order to guarantee the consis-

tency of the estimator f̂n;l. It is quite clear that there is an optimal rate of growth of

the number of parameters, that, for any �xed amount of data points l, gives the best

possible performance with the least number of parameters. In other words, for any

�xed l there is an optimal number of parameters n�(l) that minimizes the general-

ization error. That such a number should exist is quite intuitive: for a �xed number

of data, a small number of parameters will give a low estimation error !(l; n; �), but

very high approximation error "(n), and therefore the generalization error will be

high. If the number of parameters is very high the approximation error "(n) will be

very small, but the estimation error !(l; n; �) will be high, leading to a large gener-

alization error again. Therefore, somewhere in between there should be a number of

parameters high enough to make the approximation error small, but not too high, so

that these parameters can be estimated reliably, with a small estimation error. This

phenomenon is evident from �gure (2-7), where we plotted the generalization error as

a function of the number of parameters n for various choices of sample size l. Notice

that for a �xed sample size, the error passes through a minimum. Notice that the

location of the minimum shifts to the right when the sample size is increased.

In order to �nd out exactly what is the optimal rate of growth of the network size

we simply �nd the minimum of the generalization error as a function of n keeping the

sample size l �xed. Therefore we have to solve the equation:
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l=50

l=100

l=500

Figure 2-7: Bound on the generalization error as a function of the number of basis

functions n keeping the sample size l �xed. This has been plotted for a few di�erent

choices of sample size. Notice how the generalization error goes through a minimum

for a certain value of n. This would be an appropriate choice for the given (constant)

data complexity. Note also that the minimum is broader for larger l; that is, an

accurate choice of n is less critical when plenty of data is available.
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@

@n

E[(f0 � f̂n;l)
2] = 0

for n as a function of l. Substituting the bound given in theorem (2.4.1) in the

previous equation, and setting all the constants to 1 for simplicity, we obtain:

@

@n

"
1

n

+ (
nk ln(nl)� ln(�)

l

)
1
2

#
= 0 :

Performing the derivative the expression above can be written as

1

n
2
=

1

2

"
kn ln(nl)� ln �

l

#� 1
2
k

l

[ln(nl) + 1] :

We now make the assumption that l is big enough to let us perform the approximation

ln(nl) + 1 � ln(nl). Moreover, we assume that

1

�

<< (nl)nk

in such a way that the term including � in the equation above is negligible. After some

algebra we therefore conclude that the optimal number of parameters n�(l) satis�es,

for large l, the equation:

n
�(l) =

"
4l

k ln(n�(l)l)

# 1
3

:

From this equation is clear that n
� is roughly proportional to a power of l, and

therefore we can neglect the factor n� in the denominator of the previous equation,

since it will only a�ect the result by a multiplicative constant. Therefore we conclude

that the optimal number of parameters n�(l) for a given number of examples behaves

as

n
�(l) /

"
l

k ln l

# 1
3

: (2:15)

In order to show that this is indeed the optimal rate of growth we reported in �gure

(2-8) the generalization error as function of the number of examples l for di�erent

rate of growth of n, that is setting n = l
r for di�erent values of r. Notice that the

exponent r = 1
3
, that is very similar to the optimal rate of eq. (2.15), performs better

than larger (r = 1
2
) and smaller (r = 1

10
) exponents.

While a �xed sample size suggests the scheme above for choosing an optimal network

size, it is important to note that for a certain con�dence rate (�) and for a �xed error

rate (�), there are various choices of n and l which are satisfactory. Fig. 2-9 shows n
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l (number of examples)

er
ro

r

-/
/-

n = l
1/3

n = l

n = l

n = l

1/2

1/10

Figure 2-8: The bound on the generalization error as a function of the number of

examples for di�erent choices of the rate at which network size n increases with

sample size l. Notice that if n = l, then the estimator is not guaranteed to converge,

i.e., the bound on the generalization error diverges. While this is a distribution free-

upper bound, we need distribution-free lower bounds as well to make the stronger

claim that n = l will never converge.
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n=200

n=300

n=1500

Figure 2-10: The generalization error as a function of number of examples keeping the

number of basis functions (n) �xed. This has been done for several choices of n. As

the number of examples increases to in�nity the generalization error asymptotes to

a minimum which is not the Bayes error rate because of �nite hypothesis complexity

(�nite n).
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Figure 2-11: The generalization error, the number of examples (l) and the number of

basis functions (n) as a function of each other.

2.7 Conclusion

For the task of learning some unknown function from labelled examples where we

have multiple hypothesis classes of varying complexity, choosing the class of right

complexity and the appropriate hypothesis within that class poses an interesting

problem. We have provided an analysis of the situation and the issues involved and in

particular have tried to show how the hypothesis complexity, the sample complexity

and the generalization error are related. We proved a theorem for a special set of

hypothesis classes, the radial basis function networks and we bound the generalization

error for certain function learning tasks in terms of the number of parameters and

the number of examples. This is equivalent to obtaining a bound on the rate at

which the number of parameters must grow with respect to the number of examples

for convergence to take place. Thus we use richer and richer hypothesis spaces as

more and more data become available. We also see that there is a tradeo� between

hypothesis complexity and generalization error for a certain �xed amount of data and

our result allows us a principled way of choosing an appropriate hypothesis complexity

(network architecture). The choice of an appropriate model for empirical data is a

problem of long-standing interest in statistics and we provide connections between
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our work and other work in the �eld.

2-A Notations

� A: a set of functions de�ned on S such that, for any a 2 A,

0 � a(�) � U
2 8� 2 S :

� A��: the restriction of A to the data set, see eq. (2.23).

� B: it will usually indicate the set of all possible l-dimensional Boolean vectors.

� B: a generic �-separated set in S.

� C(�;A; dL1): the metric capacity of a set A endowed with the metric dL1(P ).

� d(�; �): a metric on a generic metric space S.

� dL1(�; �); dL1(P )(�; �): L
1 metrics in vector spaces. The de�nition depends on

the space on which the metric is de�ned (k-th dimensional vectors, real valued

functions, vector valued functions).

1. In a vector space Rk we have

dL1(x;y) =
1

l

lX
�=1

jx� � y
�j

where x; y 2 R
k, x� and y

� denote their �-th components.

2. In an in�nite dimensional space F of real valued functions in k variables

we have

dL1(P )(f; g) =

Z
Rk

jf(x)� g(x)jdP (x)

where f; g 2 F and dP (x) is a probability measure on R
k.

3. In an in�nite dimensional space F of functions in k variables with values

in R
n we have

dL1(P )(f ;g) =
1

n

nX
i=1

Z
Rk

jfi(x)� gi(x)jdP (x)

where f(x) = (f1(x); : : : fi(x); : : : fn(x)); g(x) = (g1(x); : : : gi(x); : : : gn(x))

are elements of F and dP (x) is a probability measure on R
k.
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� Dl: it will always indicate a data set of l points:

Dl � f(xi; yi) 2 X � Y gl
i=1 :

The points are drawn according to the probability distribution P (x; y).

� E[�]: it denotes the expected value with respect to the probability distribution

P (x; y). For example

I[f ] = E[(y � f(x))2] ;

and

kf0 � fk2
L2(P ) = E[(f0(x)� f(x))2] :

� f : a generic estimator, that is any function from X to Y :

f : X ) Y :

� f0(x): the regression function, it is the conditional mean of the response given

the predictor:

f0(x) �
Z
Y

dy yP (yjx) :

It can also be de�ned as the function that minimizes the expected risk I[f ] in

U , that is

f0(x) � arg inf
f2 U

I[f ] :

Whenever the response is obtained sampling a function h in presence of zero

mean noise the regression function coincides with the sampled function h.

� fn: it is the function that minimizes the expected risk I[f ] in Hn:

fn � arg inf
f2Hn

I[f ]

Since
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I[f ] = kf0 � fk2
L2(P ) + I[f0]

fn it is also the best L
2(P ) approximation to the regression function in Hn (see

�gure 2-6).

� f̂n;l: is the function that minimizes the empirical risk Iemp[f ] in Hn:

f̂n;l � arg inf
f2Hn

Iemp[f ]

In the neural network language it is the output of the network after training

has occurred.

� F : the space of functions to which the regression function belongs, that is the

space of functions we want to approximate.

F : X ) Y

where X 2 R
d and Y 2 R. F could be for example a set of di�erentiable

functions, or some Sobolev space Hm;p(Rk)

� G: it is a class of functions of k variables

g : Rk ! [0; V ]

de�ned as

G == fg : g(x) = G(kx� tk); t 2 R
kg:

where G is the gaussian function.

� G1: it is a k + 2-dimensional vector space of functions from R
k to R de�ned as

G1 � spanf1; x1; x2; �; xk; kxk2g

where x 2 R
k and x

� is the �-th component of the vector x.

� G2: it is a set of real valued functions in k variables de�ned as

G2 = f�e�f : f 2 G1; � =
1p
2��

g
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where � is the standard deviation of the Gaussian G.

� HI : it is a class of vector valued functions

g(x) : Rk ! R
n

of the form

g(x) = (G(kx� t1k); G(kx� t2k); : : : ; G(kx� tnk))

where G is the gaussian function and the ti are arbitrary k-dimensional vectors.

� HF : it is a class of real valued functions in n variables:

f : [0; V ]n ! R

of the form

f(x) = � � x

where � � (�1; : : : ; �n) is an arbitrary n-dimensional vector that satis�es the

constraint

nX
i=1

j�ij �M :

� Hn: a subset of F , whose elements are parametrized by a number of parameters

proportional to n. We will assume that the sets Hn form a nested family, that

is

H1 � H2 � : : : � Hn � : : : :

For exampleHn could be the set of polynomials in one variable of degree n� 1,

Radial Basis Functions with n centers or multilayer perceptrons with n hidden

units. Notice that for Radial Basis Functions with moving centers and Multi-

layer perceptrons the number of parameters of an element of Hn is not n, but it

is proportional to n (respectively n(k+1) and n(k+ 2), where k is the number

of variables).
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� H: it is de�ned as H =
S1
n=1Hn, and it is identi�ed with the approximation

scheme. If Hn is the set of polynomials in one variable of degree n� 1, H is the

set of polynomials of any degree.

� H
m;p(Rk): the Sobolev space of functions in k variables whose derivatives up to

order m are in Lp(Rk).

� I[f ]: the expected risk, de�ned as

I[f ] �
Z
X�Y

dxdy P (x; y)(y� f(x))2 :

where f is any function for which this expression is well de�ned. It is a measure

of how well the function f predicts the response y.

� Iemp[f ]: the empirical risk. It is a functional on U de�ned as

Iemp[f ] � 1

l

lX
i=1

(yi � f(xi))
2
;

where f(xi; yi)gli=1 is a set of data randomly drawn fromX�Y according to the

probability distribution P (x; y). It is an approximate measure of the expected

risk, since it converges to I[f ] in probability when the number of data points l

tends to in�nity.

� k: it will always indicate the number of independent variables, and therefore

the dimensionality of the set X.

� l: it will always indicate the number of data points drawn from X according to

the probability distribution P (x).

� L
2(P ): the set of function whose square is integrable with respect to the measure

de�ned by the probability distribution P . The norm in L
2(P ) is therefore

de�ned by

kfk2
L2(P ) �

Z
Rk

dx P (x)f2(x) :

� �m(Rk)(M0;M1;M2; : : : ;Mm): the space of functions in k variables whose deriva-

tives up to order m are bounded:

jD�
f j �Mj�j j�j = 1; 2; : : : ;m
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where � is a multi-index.

� M : a bound on the coe�cients of the gaussian Radial Basis Functions technique

considered in this paper, see eq. (2.13).

� M(�;S; d): the packing number of the set S, with metric d.

� N (�;S; d): the covering number of the set S, with metric d.

� n: a positive number proportional to the number of parameters of the approx-

imating function. Usually will be the number of basis functions for the RBF

technique or the number of hidden units for a multilayer perceptron.

� P (x): a probability distribution de�ned on X. It is the probability distribution

according to which the data are drawn from X.

� P (yjx): the conditional probability of the response y given the predictor x. It

represents the probabilistic dependence of y from x. If there is no noise in the

system it has the form P (yjx) = �(y � h(x)), for some function h, indicating

that the predictor x uniquely determines the response y.

� P (x; y): the joint distribution of the predictors and the response. It is a prob-

ability distribution on X � Y and has the form

P (x; y) � P (x)P (yjx) :

� S: it will usually denote a metric space, endowed with a metric d.

� S: a generic subset of a metric space S.

� T : a generic �-cover of a subset S � S.

� U : it gives a bound on the elements of the class A. In the speci�c case of the

class A considere in the proof we have U = 1 +MV .

� U : the set of all the functions from X to Y for which the expected risk is well

de�ned.

� V : a bound on the Gaussian basis function G:

0 � G(x) � V ; 8x 2 R
k
:
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� X: a subset of Rk, not necessarily proper. It is the set of the independent

variables, or predictors, or, in the language of neural networks, input variables.

� x: a generic element of X, and therefore a k-dimensional vector (in the neural

network language is the input vector).

� Y : a subset of R, whose elements represent the response variable, that in the

neural networks language is the output of the network. Unless otherwise stated

it will be assumed to be compact, implying that F is a set of bounded functions.

In pattern recognition problem it is simply the set f0; 1g.

� y: a generic element of Y , it denotes the response variable.

2-B A Useful Decomposition of the Expected Risk

We now show that the function that minimizes the expected risk

I[f ] =
Z
X�Y

P (x; y)dxdy(y � f(x))2 :

is the regression function de�ned in eq. (2.3). It is su�cient to add and subtract the

regression function in the de�nition of expected risk:

I[f ] =
R
X�Y dxdyP (x; y)(y� f0(x) + f0(x)� f(x))2 =

=
R
X�Y dxdyP (x; y)(y� f0(x))

2+

+
R
X�Y dxdyP (x; y)(f0(x)� f(x))2 +

+ 2
R
X�Y dxdyP (x; y)(y� f0(x))(f0(x)� f(x))

By de�nition of the regression function f0(x), the cross product in the last equation

is easily seen to be zero, and therefore

I[f ] =

Z
X

dxP (x)(f0(x)� f(x))2 + I[f0] :

Since the last term of I[f ] does not depend on f , the minimum is achieved when the

�rst term is minimum, that is when f(x) = f0(x).

In the case in which the data come from randomly sampling a function f in

presence of additive noise, �; with probability distribution P(�) and zero mean, we

71



have P (yjx) = P(y � f(x)) and then

I[f0] =

Z
X�Y

dxdyP (x; y)(y � f0(x))
2 = (2.16)

=
Z
X

dxP (x)
Z
Y

(y � f(x))2P(y � f(x)) = (2.17)

=

Z
X

dxP (x)

Z
Y

�
2P(�)d� = �

2 (2.18)

where �2 is the variance of the noise. When data are noisy, therefore, even in the most

favourable case we cannot expect the expected risk to be smaller than the variance

of the noise.

2-C A Useful Inequality

Let us assume that, with probability 1 � � a uniform bound has been established:

jIemp[f ]� I[f ]j � !(l; n; �) 8f 2 Hn :

We want to prove that the following inequality also holds:

jI[fn]� I[f̂n;l]j � 2!(l; n; �) : (2:19)

This fact is easily established by noting that since the bound above is uniform, then

it holds for both fn and f̂n;l, and therefore the following inequalities hold:

I[f̂n;l] � Iemp[f̂n;l] + !

Iemp[fn] � I[fn] + !

Moreover, by de�nition, the two following inequalities also hold:

I[fn] � I[f̂n;l]

Iemp[f̂n;l] � Iemp[fn]

Therefore tha following chain of inequalities hold, proving inequality (2.19):

I[fn] � I[f̂n;l] � Iemp[f̂n;l] + ! � Iemp[fn] + ! � I[fn] + 2! :

An intutitive explanation of these inequalities is also explained in �gure (2-12).
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Figure 2-12: If the distance between I[fn] and I[f̂n;l] is larger than 2�, the condition

Iemp[f̂n;l] � Iemp[fn] is violated.

2-D Proof of the Main Theorem

The theorem will be proved in a series of steps. Conceptually, there are four major

steps in the proof outlined in the proof structure below.

Structure of Proof

Step 1

The total generalization error is decomposed into its approximation and estimation

components. Using the derivations outlined in appendices 2-B, and 2-C, we are able

to show that the decomposition has the form of statement 2.2.1 of section 2.2, viz.,

with probability 1 � �,

kf0 � f̂n;lk2L2(P ) � "(n) + 2!(l; n; �) : (2:20)

We now need to compute "(n) and !(l; n; �) and these constitute steps 2 and 3 of the

proof structure.

Step 2

We obtain a bound on "(n) (the approximation error) in section 2-D.1. The funda-

mental lemma used here is the Maurey-Jones-Barron lemma (Lemma 2-D.1) and the

approximation bound is obtained.

Step 3

We obtain a bound on the estimation error !(l; n; �) in section 2-D.2. Recall that we

need to be able to prove a uniform law of large numbers of the form:

8f 2 Hn; jI[f ]� Iemp[f ]j � !(l; n; �)
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with probability greater than 1 � �:

Starting with a uniform law of the form stated in Claim 2-D.1 and re�ning it

further we arrive at Claim 2-D.3. In doing this, we introduce notions of covering

numbers and metric entropy. The form of this re�ned uniform law of large numbers

is:
P (8h 2 Hn; jIemp[h]� I[h]j � �) �

� 1� 4C(�=16;A; dL1)]e�
1

128U4
�
2
l
:

In order to let 1�4C(�=16;A; dL1 )]e�
1

128U4
�
2
l be greater than 1� �; we need to obtain

an expression for C(�=16;A; dL1)] in terms of the number of parameters. Claims 2-D.4

through 2-D.9 go through this computation.

Finally, in claim 2-D.10, we show how to use this result to compute an expression

for !(l; n; �) which is what we originally set out to do.

Step 4

Putting together the approximation and estimation bounds of steps 2 and 3, we

obtain in section 2-D.3 how the expression for the total generalization error in the

appropriate form in order to prove the main theorem.

2-D.1 Bounding the approximation error

In this part we attempt to bound the approximation error. In section 2.3 we assumed

that the class of functions to which the regression function belongs, that is the class

of functions that we want to approximate, is

F � ff jf = � �Gm;m > k=2; j�jRk �Mg :

where � is a signed Radon measure on the Borel sets of Rk, Gm is the Bessel-

Macdonald kernel as de�ned in section 2.3 and M is a positive real number. Our

approximating family is the class:

Hn = ff 2 L2jf =
nX
i=1

�iG(
kx� tik

�i

);
nX
i=1

j�ij �M ; ti 2 R
kg

It has been shown in [49, 50] that the class Hn uniformly approximate elements of F ,
and that the following bound is valid:

E[(f0 � fn)
2] � O

�
1

n

�
: (2:21)

This result is based on a lemma by Jones [71] on the convergence rate of an

iterative approximation scheme in Hilbert spaces. A formally similar lemma, brought
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to our attention by R. Dudley [38] is due to Maurey and was published by Pisier

[105]. Here we report a version of the lemma due to Barron [8, 9] that contains a

slight re�nement of Jones' result:

Lemma 2-D.1 (Maurey-Jones-Barron) If f is in the closure of the convex hull

of a set G in a Hilbert space H with kgk � b for each g 2 G, then for every n � 1

and for c > b
2 � kfk2 there is a fn in the convex hull of n points in G such that

kf � fnk2 � c

n

:

In order to exploit this result one needs to de�ne suitable classes of functions which

are the closure of the convex hull of some subset G of a Hilbert space H. One way

to approach the problem consists in utilizing the integral representation of functions.

Suppose that the functions in a Hilbert space H can be represented by the integral

f(x) =
Z
M
Gm(x; t)d�(t) (2:22)

where � is some measure on the parameter set M, and Gm(x; t) is a function of H

parametrized by the parameter t, whose norm kGm(x; t)k is bounded by the same

number for any value of t. In particular, if we let Gm(x; t) be translates of Gm by

t; i.e., Gm(x � t); and � be a �nite measure, the integral (2.22) can be seen as an

in�nite convex combination of translates of Gm:

We now make the following two observations. First, it is clear that elements of

F have an integral representation of the type (2.22) and are members of the Hilbert

spaceH: Second, since � is a �nite measure (bounded byM) elements of F are in�nite

convex combinations of translates of Gm:We now make use of the important fact that

convex combinations of translates of Gm can be represented as convex combinations

of translates and dilates of Gaussians (in other words sets of the form of Hn for some

n).

This allows us to de�ne G of lemma2-D.1 to be the parametrized set G = fgjg(x) =
G(kx�tk

�
)g: Clearly, elements of F lie in the convex hull of G as de�ned above and

therefore, applying lemma (2-D.1) one can prove ([49, 50]) that there exist n coe�-

cients ci; n parameter vectors ti; and n choices for �i such that

kf �
nX
i=1

ciG(x; ti;�i)k2 � O(
1

n

)

Notice that the bound (2.21), that is similar in spirit to the result of A. Barron

on multilayer perceptrons [8, 10], is interesting because the rate of convergence does
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not depend on the dimension d of the input space. This is apparently unusual in

approximation theory, because it is known, from the theory of linear and nonlinear

widths [122, 104, 88, 89, 32, 31, 33, 92], that, if the function that has to be approxi-

mated has d variables and a degree of smoothness s, we should not expect to �nd an

approximation technique whose approximation error goes to zero faster than O(n�
s

d ).

Here \degree of smoothness" is a measure of how constrained the class of functions

we consider is, for example the number of derivatives that are uniformly bounded, or

the number of derivatives that are integrable or square integrable. Therefore, from

classical approximation theory, we expect that, unless certain constraints are imposed

on the class of functions to be approximated, the rate of convergence will dramatically

slow down as the number of dimensions increases, showing the phenomenon known

as \the curse of dimensionality" [13].

In the case of class F we consider here, the constraint of considering functions

that are convolutions of Radon measures with Gaussians seems to impose on this

class of functions an amount of smoothness that is su�cient to guarantee that the

rate of convergence does not become slower and slower as the dimension increases. A

longer discussion of the \curse of dimensionality" can be found in [50].

We notice also that, since the rate (2.21) is independent of the dimension, the

class F , together with the approximating class Hn, de�nes a class of problems that

are \tractable" even in a high number of dimensions.

2-D.2 Bounding the estimation error

In this part we attempt to bound the estimation error jI[f ]� Iemp[f ]j. In order to do

that we �rst need to introduce some basic concepts and notations.

Let S be a subset of a metric space S with metric d. We say that an �-cover with

respect to the metric d is a set T 2 S such that for every s 2 S; there exists some

t 2 T satisfying d(s; t) � �. The size of the smallest �-cover is N (�;S; d) and is called

the covering number of S. In other words

N (�;S; d) = min
T �S

jT j ;

where T runs over all the possible �-cover of S and jT j denotes the cardinality of T .
A set B belonging to the metric space S is said to be �-separated if for all

x; y 2 B, d(x; y) > �. We de�ne the the packing number M(�;S; d) as the size of the
largest �-separated subset of S. Thus

M(�;S; d) = max
B�S

jBj ;
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where B runs over all the �-separated subsets of S. It is easy to show that the covering

number is always less than the packing number, that is N (�;S; d) �M(�;S; d).
Let now P (�) be a probability distribution de�ned on S, and A be a set of real-

valued functions de�ned on S such that, for any a 2 A,

0 � a(�) � U
2 8� 2 S :

Let also �
� = (�1; ::; �l) be a sequence of l examples drawn independently from S ac-

cording to P (�). For any function a 2 A we de�ne the empirical and true expectations

of a as follows:

Ê[a] =
1

l

lX
i=1

a(�i)

E[a] =
Z
S

d�P (�)a(�)

The di�erence between the empirical and true expectation can be bounded by the

following inequality, whose proof can be found in [110] and [62], that will be crucial

in order to prove our main theorem.

Claim 2-D.1 ([110], [62]) Let A and �
� be as de�ned above. Then, for all � > 0,

P

�
9a 2 A : jÊ[a]�E[a]j > �

�
�

� 4E
h
N ( �

16
;A��; dL1)

i
e

� 1

128U4
�
2
l

In the above result, A�� is the restriction of A to the data set, that is:

A�� � f(a(�1); : : : ; a(�l)) : a 2 Ag : (2:23)

The set A�� is a collection of points belonging to the subset [0; U ]
l of the l-dimensional

euclidean space. Each function a in A is represented by a point in A��, while every

point in A�� represents all the functions that have the same values at the points

�1; : : : ; �l. The distance metric dL1 in the inequality above is the standard L
1 metric

in R
l, that is

dL1(x;y) =
1

l

lX
�=1

jx� � y
�j

where x and y are points in the l-dimensional euclidean space and x� and y� are their

�-th components respectively.
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The above inequality is a result in the theory of uniform convergence of empirical

measures to their underlying probabilities, that has been studied in great detail by

Pollard and Vapnik, and similar inequalities can be found in the work of Vapnik

[126, 127, 125], although they usually involve the VC dimension of the set A, rather
than its covering numbers.

Suppose now we choose S = X � Y , where X is an arbitrary subset of Rk and

Y = [�M;M ] as in the formulation of our original problem. The generic element of

S will be written as � = (x; y) 2 X � Y . We now consider the class of functions A
de�ned as:

A = fa : X � Y ! R j a(x; y) = (y � h(x))2; h 2 Hn(R
k)g

where Hn(R
k) is the class of k-dimensional Radial Basis Functions with n basis func-

tions de�ned in eq. 2.13 in section 2.3. Clearly,

jy � h(x)j � jyj+ jh(x)j �M +MV;

and therefore

0 � a � U
2

where we have de�ned

U �M +MV :

We notice that, by de�nition of Ê(a) and E(a) we have

Ê(a) =
1

l

lX
i=1

(yi � h(xi))
2 = Iemp[h]

and

E(a) =

Z
X�Y

dxdy P (x; y)(y � h(x))2 = I[h] :

Therefore, applying the inequality of claim 2-D.1 to the set A, and noticing that the

elements of A are essentially de�ned by the elements of Hn, we obtain the following

result:
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P (8h 2 Hn; jIemp[h]� I[h]j � �) �

� 1� 4E[N (�=16;A��; dL1)]e
� 1

128U4
�
2
l
:

(2:24)

so that the inequality of claim 2-D.1 gives us a bound on the estimation error. How-

ever, this bound depends on the speci�c choice of the probability distribution P (x; y),

while we are interested in bounds that do not depend on P . Therefore it is useful to

de�ne some quantity that does not depend on P , and give bounds in terms of that.

We then introduce the concept of metric capacity of A, that is de�ned as

C(�;A; dL1) = sup
P

fN (�;A; dL1(P ))g

where the supremum is taken over all the probability distributions P de�ned over S,

and dL1(P ) is standard L
1(P ) distance12

induced by the probability distribution P :

dL1(P )(a1; a2) =
Z
S

d�P (�)ja1(�) � a2(�)j a1; a2 2 A :

The relationship between the covering number and the metric capacity is showed in

the following

Claim 2-D.2

E[N (�;A��; dL1)] � C(�;A; dL1) :

Proof: For any sequence of points �� in S, there is a trivial isometry between (A��; dL1)

and (A; dL1(P��)) where P�� is the empirical distribution on the space S given by
1
l

P
l

i=1 �(� � �i). Here � is the Dirac delta function, � 2 S, and �i is the i-th el-

ement of the data set. To see that this isometry exists, �rst note that for every

element a 2 A, there exists a unique point (a(�1); : : : ; a(�l)) 2 A��: Thus a simple

bijective mapping exists between the two spaces. Now consider any two elements g

and h of A. The distance between them is given by

12Note that here A is a class of real-valued functions de�ned on a general metric space S: If we
consider an arbitrary A de�ned on S and taking values in R

n
; the dL1(P ); norm is appropriately

adjusted to be

dL1(P )(f ;g) =
1

n

nX
i=1

Z
S

jfi(x) � gi(x)jP (x)dx

where f (x) = (f1(x); : : : fi(x); : : : fn(x)); g(x) = (g1(x); : : : gi(x); : : : gn(x)) are elements of A and
P (x) is a probability distribution on S. Thus dL1 and dL1(P ) should be interpreted according to the
context.
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dL1(P��)
(g; h) =

Z
S

jg(�) � h(�)jP��(�)d� =
1

l

lX
i=1

jg(�i)� h(�i)j:

This is exactly what the distance between the two points (g(�1); ::; g(�l)) and (h(�1); ::; h(�l)),

which are elements of A��, is according to the dL1 distance. Thus there is a one-to-one

correspondence between elements of A and A�� and the distance between two elements

in A is the same as the distance between their corresponding points in A��. Given

this isometry, for every �-cover in A, there exists an �-cover of the same size in A��,

so that

N (�;A��; dL1) = N (�;A; dL1(P�)) � C(�;A; dL1):

and consequently E[N (�;A��; dL1)] � C(�;A; dL1). 2

The result above, together with eq. (2.24) shows that the following proposition holds:

Claim 2-D.3
P (8h 2 Hn; jIemp[h]� I[h]j � �) �

� 1� 4C(�=16;A; dL1)]e�
1

128U4
�
2
l
:

(2:25)

Thus in order to obtain a uniform bound ! on jIemp[h]� I[h]j, our task is reduced to

computing the metric capacity of the functional class A which we have just de�ned.

We will do this in several steps. In Claim 2-D.4, we �rst relate the metric capacity of

A to that of the class of radial basis functions Hn. Then Claims 2-D.5 through 2-D.9

go through a computation of the metric capacity of Hn.

Claim 2-D.4

C(�;A; dL1) � C(�=4U;Hn; dL1)

Proof: Fix a distribution P on S = X�Y . Let PX be the marginal distribution with

respect to X. Suppose K is an �=4U -cover for Hn with respect to this probability

distribution PX , i.e. with respect to the distance metric dL1(PX) on Hn. Further let

the size of K be N (�=4U;Hn; dL1(PX )). This means that for any h 2 Hn, there exists

a function h
� belonging to K, such that:

Z
jh(x)� h

�(x)jPX(x)dx � �=4U

Now we claim the set H(K) = f(y� h(x))2 : h 2 Kg is an � cover for A with respect

to the distance metric dL1(P ). To see this, it is su�cient to show that
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R j(y � h(x))2 � (y � h
�(x))2jP (x; y)dxdy �

� R
2j(2y � h� h

�)jj(h� h
�)jP (x; y)dxdy �

� R
2(2M + 2MV )jh� h

�jP (x; y)dxdy � �

which is clearly true. Now

N (�;A; dL1(P )) � jH(K)j =

= N (�=4U;Hn; dL1(PX)) �

� C(�=4U;Hn; dL1)

Taking the supremum over all probability distributions, the result follows. 2

So the problem reduces to �nding C(�;Hn; dL1), i.e. the metric capacity of the class

of appropriately de�ned Radial Basis Functions networks with n centers. To do this

we will decompose the class Hn to be the composition of two classes de�ned as follows.

De�nitions/Notations

HI is a class of functions de�ned from the metric space (Rk
; dL1) to the metric space

(Rn
; dL1). In particular,

HI = fg(x) = (G(
kx� t1k

�1

); G(
kx� t2k

�2

); : : : ; G(
kx� tnk

�n

))g

where G is a Gaussian and ti are k-dimensional vectors.

Note here that G is the same Gaussian that we have been using to build our Radial-

Basis-Function Network. Thus HI is parametrized by the n centers ti and the n

variances of the Gaussians �2
i
, in other words n(k + 1) parameters in all.

HF is a class de�ned from the metric space ([0; V ]n; dL1) to the metric space

(R; dL1). In particular,

HF = fh(x) = � � x; x 2 [0; V ]n and
nX
i=1

j�ij �Mg

where � � (�1; : : : ; �n) is an arbitrary n-dimensional vector.

Thus we see that
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Hn = fhF � hI : hF 2 HF and hI 2 HIg

where � stands for the composition operation, i.e., for any two functions f and g,

f � g = f(g(x)). It should be pointed out that Hn as de�ned above is de�ned from

R
k to R.

Claim 2-D.5

C(�;HI; dL1) � 2n
�
2eV

�

ln

�
2eV

�

��n(k+2)

Proof: Fix a probability distribution P on R
k. Consider the class

G = fg : g(x) = G(
kx� tk

�

); t 2 R
k;� 2 Rg:

Let K be an N (�;G; dL1(P ))-sized � cover for this class. We �rst claim that

T = f(h1; ::; hn) : hi 2 Kg

is an �-cover for HI with respect to the dL1(P ) metric.

Remember that the dL1(P ) distance between two vector-valued functions g(x) =

(g1(x); ::; gn(x)) and g
�(x) = (g�1(x); ::; g

�
n
(x)) is de�ned as

dL1(P )(g;g
�) =

1

n

nX
i=1

Z
jgi(x)� g

�
i
(x)jP (x)dx

To see this, pick an arbitrary g = (g1; : : : ; gn) 2 HI . For each gi, there exists a g
�
i
2 K

which is �-close in the appropriate sense for real-valued functions, i.e. dL1(P )(gi; g
�
i
) �

�. The function g = (g�1; ::; g
�
n
) is an element of T . Also, the distance between

(g1; ::; gn) and (g�1; ::; g
�
n
) in the dL1(P ) metric is

dL1(P )(g;g
�) � 1

n

nX
i=1

� = � :

Thus we obtain that

N (�;HI ; dL1(P )) � [N (�;G; dL1(P ))]n

and taking the supremum over all probability distributions as usual, we get

C(�;HI ; dL1) � (C(�;G; dL1))n :

Now we need to �nd the capacity of G. This is done in the Claim 2-D.6. From this

the result follows. 2
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De�nitions/Notations

Before we proceed to the next step in our proof, some more notation needs to be

de�ned. Let A be a family of functions from a set S into R. For any sequence

�
� = (�1; ::; �d) of points in S, let A�� be the restriction of F to the data set, as per

our previously introduced notation. Thus A�� = f(a(�1); : : : ; a(�d)) : a 2 Ag. If there
exists some translation of the set A��, such that it intersects all 2d orthants of the

space Rd, then �
� is said to be shattered by A: Expressing this a little more formally,

let B be the set of all possible l-dimensional boolean vectors. If there exists a trans-

lation t 2 R
d such that for every b 2 B, there exists some function ab 2 A satisfying

ab(�i)� ti � bi , bi = 1 for all i = 1 to d, then the set (�1; ::; �d) is shattered by A:
Note that the inequality could easily have been de�ned to be strict and would not

have made a di�erence. The largest d such that there exists a sequence of d points

which are shattered by A is said to be the pseudo-dimension of A denoted by pdimA.
2

In this context, there are two important theorems which we will need to use. We give

these theorems without proof.

Theorem 2-D.1 (Dudley) Let F be a k-dimensional vector space of functions from

a set S into R. Then pdim(F ) = k.

The following theorem is stated and proved in a somewhat more general form by

Pollard. Haussler, using techniques from Pollard has proved the speci�c form shown

here.

Theorem 2-D.2 (Pollard, Haussler) Let F be a family of functions from a set

S into [M1;M2], where pdim(F ) = d for some 1 � d < 1. Let P be a probability

distribution on S. Then for all 0 < � �M2 �M1,

M(�; F; dL1(P )) < 2

�
1

�

2e(M2 �M1) log
1

�

2e(M2 �M1)

�d

Here M(�; F; dL1(P )) is the packing number of F according to the distance metric

dL1(P ).

Claim 2-D.6

C(�;G; dL1) � 2

�
2eV

�

ln

�
2eV

�

��(k+2)
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Proof: Consider the k+2-dimensional vector space of functions fromR
k to R de�ned

as

G1 � spanf1; x1; x2; �; xk; kxk2g

where x 2 R
k and x

� is the �-th component of the vector x. Now consider the class

G2 = fV e�f : f 2 G1g

We claim that the pseudo-dimension of G denoted by pdim(G) ful�lls the following
inequality,

pdim (G) � pdim (G2) = pdim (G1) = (k + 2):

To see this consider the fact that G � G2. Consequently, for every sequence of points

�x = (x1; : : : ;xd), G�x � (G2)�x. Thus if (x1; : : : ;xd) is shattered by G, it will be
shattered by G2. This establishes the �rst inequality.

We now show that pdim(G2) � pdim(G1). It is enough to show that every set shat-

tered by G2 is also shattered by G1: Suppose there exists a sequence (x1;x2; : : : ;xd)

which is shattered by G2. This means that by our de�nition of shattering, there

exists a translation t 2 R
d such that for every boolean vector b 2 f0; 1gd there

is some function gb = V e
�f
b where fb 2 G1 satisfying gb(xi) � ti if and only if

bi = 1, where ti and bi are the i-th components of t and b respectively. First notice

that every function in G2 is positive. Consequently, we see that every ti has to be

greater than 0, for otherwise, gb(xi) could never be less than ti which it is required

to be if bi = 0. Having established that every ti is greater than 0, we now show

that the set (x1;x2; : : : ;xd) is shattered by G1. We let the translation in this case be

t0 = (log(t1=V ); log(t2=V ); : : : ; log(td=V )): We can take the log since the ti=V 's are

greater than 0. Now for every boolean vector b, we take the function �fb 2 G1 and

we see that since

gb = V e
�fb � ti , bi = 1:

if follows that

�fb � log(ti=V ) = t0i , bi = 1:

Thus we see that the set (x1;x2; : : : ;xd) can be shattered by G1: By a similar argu-

ment, it is also possible to show that pdim(G1) � pdim(G2):

Since G1 is a vector space of dimensionality k+2; an application of Dudley's Theorem
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[37] yields the value k+ 2 for its pseudo-dimension. Further, functions in the class G
are in the range [0; V ]. Now we see (by an application of Pollard's theorem) that

N (�;G; dL1(P )) �M(�;G; dL1(P )) �

� 2
�
2eV
�
ln
�
2eV
�

��pdim(G) �

� 2
�
2eV
�
ln
�
2eV
�

��(k+2)

Taking the supremum over all probability distributions, the result follows.2

Claim 2-D.7

C(�;HF ; dL1) � 2

�
4MeV

�

ln

�
4MeV

�

��n

Proof: The proof of this runs in very similar fashion. First note that

HF � f� � x : x; � 2 R
ng:

The latter set is a vector space of dimensionality n and by Dudley's theorem[37], we

see that its pseudo-dimension pdim is n. Also, clearly by the same argument as in the

previous proposition, we have that pdim(HF ) � n. To get bounds on the functions

in HF , notice that

j
nX
i=1

�ixij �
nX
i=1

j�ijjxij � V

nX
i=1

j�ij �MV:

Thus functions in HF are bounded in the range [�MV;MV ]. Now using Pollard's

result [62], [110], we have that

N (�;HF ; dL1(P )) �M(�;HF ; dL1(P )) �

� 2
�
4MeV

�
ln
�
4MeV

�

��n
:

Taking supremums over all probability distributions, the result follows. 2

Claim 2-D.8 A uniform �rst-order Lipschitz bound of HF is Mn.

Proof: Suppose we have x; y 2 R
n such that

dL1(x;y) � �:
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The quantity Mn is a uniform �rst-order Lipschitz bound for HF if, for any element

of HF , parametrized by a vector �, the following inequality holds:

jx � � � y � �j �Mn�

Now clearly,

jx � � � y � �j = jPn

i=1 �i(xi � yi)j �

� P
n

i=1 j�ijj(xi � yi)j �

�M

P
n

i=1 j(xi � yi)j �Mn�

The result is proved. 2

Claim 2-D.9

C(�;Hn; dL1) � C(
�

2Mn

;HI ; dL1)C(
�

2
;HF ; dL1)

Proof: Fix a distribution P on R
k. Assume we have an �=(2Mn)-cover for HI with

respect to the probability distribution P and metric dL1(P ). Let it be K where

jKj = N (�=2Mn;HI ; dL1(P )):

Now each function f 2 K maps the space Rk into R
n, thus inducing a probability

distribution Pf on the space Rn. Speci�cally, Pf can be de�ned as the distribution

obtained from the measure �f de�ned so that any measurable set A � R
n will have

measure

�f (A) =

Z
f�1(A)

P (x)dx :

Further, there exists a cover Kf which is an �=2-cover for HF with respect to the

probability distribution Pf . In other words

jKf j = N (�=2;HF ; dL1(Pf )):

We claim that

H(K) = ff � g : g 2 K and f 2 Kgg
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is an � cover for Hn. Further we note that

jH(K)j = P
f2K jKf j �P

f2K C(�=2;HF ; dL1) �

� N (�=(2Mn);HI ; dL1(P ))C(�=2;HF ; dL1)

To see that H(K) is an �-cover, suppose we are given an arbitrary function hf � hi 2
Hn. There clearly exists a function h

�
i
2 K such that

Z
Rk

dL1(hi(x); h
�
i
(x))P (x)dx � �=(2Mn)

Now there also exists a function h
�
f
2 Kh�

i
such that

R
Rk jhf � h�i (x)� h

�
f
� h�

i
(x)jP (x)dx =

=
R
Rn jhf (y)� h

�
f
(y)jPh�

i
(y)dy � �=2 :

To show that H(K) is an �-cover it is su�cient to show that

Z
Rk

jhf � hi(x)� h
�
f
� h�

i
(x)jP (x)dx � �:

Now

R
Rk jhf � hi(x)� h

�
f
� h�

i
(x)jP (x)dx �

� R
Rkfjhf � hi(x)� hf � h�i (x)j+

+jhf � h�i (x)� h
�
f
� h�

i
(x)jP (x)dxg

by the triangle inequality. Further, since hf is Lipschitz bounded,

R
Rk jhf � hi(x)� hf � h�i (x)jP (x)dx �

� R
Rk MndL1(hi(x); h

�
i
(x))P (x)dx �Mn(�=2Mn) � �=2 :

Also,

R
Rk jhf � h�i (x)� h

�
f
� h�

i
(x)jP (x)dx =

=
R
Rn jhf (y)� h

�
f
(y)jPh�

i
(y)dy � �=2 :

Consequently both sums are less than �=2 and the total integral is less than �. Now

we see that
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N (�;Hn; dL1(P )) � N
�
�=(2Mn);HI ; dL1(P )

�
C(�=2;HF ; dL1):

Taking supremums over all probability distributions, the result follows. 2

Having obtained the crucial bound on the metric capacity of the class Hn, we can

now prove the following

Claim 2-D.10 With probability 1� �, and 8h 2 Hn, the following bound holds:

jIemp[h]� I[h]j � O

0
@
"
nk ln(nl) + ln(1=�)

l

#1=21A

Proof: We know from the previous claim that

C(�;Hn; dL1) �

� 2n+1
h
4MeVn

�
ln
�
4MeV n

�

�i
n(k+2) h

8MeV

�
ln
�
8MeV

�

�i
n �

�
h
8MeV n

�
ln(8MeVn

�
)
i
n(k+3)

:

From claim (2-D.3), we see that

P (8h 2 Hn; jIemp[h]� I[h]j � �) �

� 1� �

(2:26)

as long as

C(�=16;A; dL1)e�
1

128U4
�
2
l � �

4

which in turn is satis�ed as long as (by Claim 2-D.4)

C(�=64U;Hn; dL1)e
� 1

128U2
�
2
l � �

4

which implies

�
1
�
256MeV Un ln

�
1
�
256MeV Un

��
n(k+3) �

�e� 1

128U2
�
2
l � �

4

In other words,
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�
An

�

ln

�
An

�

��n(k+3)

e
��2l=B � �

4

for constants A;B. The latter inequality is satis�ed as long as

(An=�)2n(k+3)
e
��2l=B � �

4

which implies

2n(k + 3)(ln(An)� ln(�))� �
2
l=B � ln(�=4)

and in turn implies

�
2
l > B ln(4=�) + 2Bn(k + 3)(ln(An)� ln(�)):

We now show that the above inequality is satis�ed for

� =

 
B [ln(4=�) + 2n(k + 3) ln(An) + n(k + 3) ln(l)]

l

!1=2

Putting the above value of � in the inequality of interest, we get

�
2(l=B) = ln(4=�) + 2n(k + 3) ln(An) + n(k + 3) ln(l) �

� ln(4=�) + 2n(k + 3) ln(An)+

+2n(k + 3)1
2
ln
�

l

B[ln(4=�)+2n(k+3)ln(An)+n(k+3) ln(l)]

�
In other words,

n(k + 3) ln(l) �

� n(k + 3) ln
�

l

B[ln(4=�)+2n(k+3)ln(An)+n(k+3) ln(l)]

�
Since

B [ln(4=�) + 2n(k + 3) ln(An) + n(k + 3) ln(l)] � 1

the inequality is obviously true for this value of �: Taking this value of � then proves

our claim. 2
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2-D.3 Bounding the generalization error

Finally we are able to take our results in Parts II and III to prove our main result:

Theorem 2-D.3 With probability greater than 1� � the following inequality is valid:

kf0 � f̂n;lk2L2(P ) � O

�
1

n

�
+O

0
@
"
nk ln(nl)� ln �

l

#1=21A

Proof: We have seen in statement (2.2.1) that the generalization error is bounded

as follows:

kf0 � f̂n;lk2L2(P ) � "(n) + 2!(l; n; �) :

In section (2-D.1) we showed that

"(n) = O

�
1

n

�

and in claim (2-D.10) we showed that

!(l; n; �) = O

0
@
"
nk ln(nl)� ln �

l

#1=21A
:

Therefore the theorem is proved putting these results together. 2
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Chapter 3

Investigating the Sample Complexity of
Active Learning Schemes

Abstract

In the classical learning framework of the previous chapter (akin to PAC) examples were randomly

drawn and presented to the learner. In this chapter, we consider the possibility of a more active

learner who is allowed to choose his/her own examples. Our investigations can be divided into two

natural parts. The �rst, is in a function approximation setting, and develops an adaptive sampling

strategy (equivalent to adaptive approximation) motivated from the standpoint of optimal recovery

(Micchelli and Rivlin, 1976). We provide a general formulation of the problem. This can be regarded

as sequential optimal recovery. We demonstrate the application of this general formulation to two

special cases of functions on the real line 1) monotonically increasing functions and 2) functions

with bounded derivative. An extensive investigation of the sample complexity of approximating

these functions is conducted yielding both theoretical and empirical results on test functions. Our

theoretical results (stated in PAC-style), along with the simulations demonstrate the superiority of

our active scheme over both passive learning as well as classical optimal recovery. The second part

of this chapter is in a concept learning framework and discusses the idea of �-focusing: a scheme

where the active learner can iteratively draw examples from smaller and smaller regions of the input

space thereby gaining vast improvements in sample complexity.

In Chapter 2, we considered a learning paradigm where the learner's hypothesis

was constrained to belong to a class of functions which can be represented by a

sum of radial basis functions. It was assumed that the examples ((x; y) pairs) were

drawn according to some �xed, unknown, arbitrary, probability distribution. In this

important sense, the learner was merely a passive recipient of information about

the target function. In this chapter, we consider the possibility of a more active

learner. There are of course a myriad of ways in which a learner could be more active.

Consider, for example, the extreme pathological case where the learner simply asks for

the true target function which is duly provided by an obliging oracle. This, the reader

will quickly realize is hardly interesting. Such pathological cases aside, this theme of

activity on the part of the learner has been explored (though it is not always conceived

91



as such) in a number of di�erent settings (PAC-style concept learning, boundary-

hunting pattern recognition schemes, adaptive integration, optimal sampling etc.) in

more principled ways and we will comment on these in due course.

For our purposes, we restrict our attention in this chapter to the situation where

the learner is allowed to choose its own examples13, in other words, decide where

in the domain D (for functions de�ned from D to Y ) it would like to sample the

target function. Note that this is in direct contrast to the passive case where the

learner is presented with randomly drawn examples. Keeping other factors in the

learning paradigm unchanged, we then compare in this chapter, the active and passive

learners who di�er only in their method of collecting examples. At the outset, we are

particularly interested in whether there exist principled ways of collecting examples

in the �rst place. A second important consideration is whether these ways allow the

learner to learn with a fewer number of examples. This latter question is particularly

in keeping with the spirit of this thesis, viz., the informational complexity of learning

from examples.

This chapter can be divided into two parts which are roughly self-contained. In

Part I, we consider active learning in an approximation-theoretic setting. We develop

a general framework for collecting examples for approximating (learning) real-valued

functions. We then demonstrate the application of these to some speci�c classes

of functions. We obtain theoretical bounds on the sample complexity of the active

and passive learners, and perform some empirical simulations to demonstrate the

superiority of the active learner. Part II discusses the idea of �-focusing{a paradigm

in which the learner iteratively focuses in on speci�c \interesting" regions of the input

space to collect its examples. This is largely in a concept learning (alternatively,

pattern classi�cation) setting. We are able to show how using this idea, one can get

large gains in sample complexity for some concept classes.

Part I: Active Learning for Approximation of Real
Valued Functions

13This can be regarded as a computational instantiation of the psychological practice of selective
attention where a human might choose to selectively concentrate on interesting or confusing regions
of the feature space in order to better grasp the underlying concept. Consider, for example, the
situation when one encounters a speaker with a foreign accent. One cues in to this foreign speech by
focusing on and then adapting to its distinguishing properties. This is often accomplished by asking
the speaker to repeat words which are confusing to us.
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3.1 A General Framework For Active Approxi-

mation

3.1.1 Preliminaries

We need to develop the following notions:

F : Let F denote a class of functions from some domain D to Y where Y is a subset

of the real line. The domain D is typically a subset of Rk though it could be more

general than that. There is some unknown target function f 2 F which has to be

approximated by an approximation scheme.

D: This is a data set obtained by sampling the target f 2 F at a number of points

in its domain. Thus,

D = f(xi; yi)jxi 2 D; yi = f(xi); i = 1 : : : ng

Notice that the data is uncorrupted by noise.

H: This is a class of functions (also from D to Y ) from which the learner will choose

one in an attempt to approximate the target f . Notationally, we will use H to refer

not merely to the class of functions (hypothesis class) but also the algorithm by means

of which the learner picks an approximating function h 2 H on the basis of the data

set D: In other words, H denotes an approximation scheme which is really a tuple

< H; A > : A is an algorithm that takes as its input the data set D; and outputs an

h 2 H:
Examples: If we consider real-valued functions from R

k to R; some typical examples

of H are the class of polynomials of a �xed order (say q), splines of some �xed order,

radial basis functions with some bound on the number of nodes, etc. As a concrete

example, consider functions from [0; 1] to R: Imagine a data set is collected which

consists of examples, i.e., (xi; yi) pairs as per our notation. Without loss of generality,

one could assume that xi � xi+1 for each i: Then a cubic (degree-3) spline is obtained

by interpolating the data points by polynomial pieces (with the pieces tied together

at the data points or \knots") such that the overall function is twice-di�erentiable at

the knots. Fig. 3-13 shows an example of an arbitrary data set �tted by cubic splines.

dC : We need a metric to determine how good the approximation learner's approxi-

mation is. Speci�cally, the metric dC measures the approximation error on the region
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Figure 3-13: An arbitrary data set �tted with cubic splines

C of the domain D: In other words, dC ; takes as its input any two functions (say f1

and f2) from D to R and outputs a real number. It is assumed that dC satis�es all

the requisites for being a real distance metric on the appropriate space of functions.

Since the approximation error on a larger domain is obviously going to be greater

than that on the smaller domain, we can make the following two observations: 1) for

any two sets C1 and C2 such that C1 � C2; dC1(f1; f2) � dC2
(f1; f2); 2) dD(f1; f2) is

the total approximation on the entire domain; this is our basic criterion for judging

the \goodness" of the learner's hypothesis.

Examples: For real-valued functions fromR
k toR; the Lp

C
metric de�ned as dC(f1; f2) =

(
R
C
jf1 � f2jpdx)1=p serves as a natural example of an error metric.

C: This is a collection of subsets C of the domain. We are assuming that points in the

domain where the function is sampled, divide (partition) the domain into a collection

of disjoint sets Ci 2 C such that [n
i=1Ci = D:

Examples: For the case of functions from [0; 1] to R; and a data set D; a natural

way in which to partition the domain [0; 1] is into the intervals [xi; xi+1); (here again,

without loss of generality we have assumed that xi � xi+1). The set C could be the

set of all (closed, open, or half-open and half-closed) intervals [a; b] � [0; 1]:

The goal of the learner (operating with an approximation schemeH) is to provide
a hypothesis h 2 H (which it chooses on the basis of its example set D) as an
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approximator of the unknown target function f 2 F : We now need to formally lay

down a criterion for assessing the competence of a learner (approximation scheme).

In recent times, there has been much use of PAC (Valiant 1984) like criteria to assess

learning algorithms. Such a criterion has been used largely for concept learning but

some extensions to the case of real valued functions exist (Haussler 1989). We adapt

here for our purposes a PAC like criterion to judge the e�cacy of approximation

schemes of the kind described earlier.

De�nition 3.1.1 An approximation scheme is said to P-PAC learn the function f 2
F if for every � > 0 and 1 > � > 0; and for an arbitrary distribution P on D;

it collects a data set D; and computes a hypothesis h 2 H such that dD(h; f) < �

with probability greater than 1 � �: The function class F is P-PAC learnable if the

approximation scheme can P-PAC learn every function in F : The class F is PAC

learnable if the approximation scheme can P-PAC learn the class for every distribution

P.

There is an important clari�cation to be made about our de�nition above. Note

that the distance metric d is arbitrary. It need not be naturally related to the distri-

bution P according to which the data is drawn. Recall that this is not so in typical

distance metrics used in classical PAC formulations. For example, in concept learning,

where the set F consists of indicator functions, the metric used is the L1(P ) metric

given by d(1A; 1B) =
R
D
j1A � 1BjP (x)dx: Similarly, extensions to real-valued func-

tions typically use an L2(P ) metric. The use of such metrics imply that the training

error is an empirical average of the true underlying error. One can then make use of

convergence of empirical means to true means (Vapnik, 1982) and prove learnability.

In our case, this is not necessarily the case. For example, one could always come up

with a distribution P which would never allow a passive learner to see examples in

a certain region of the domain. However, the arbitrary metric d might weigh this

region heavily. Thus the learner would never be able to learn such a function class for

this metric. In this sense, our model is more demanding than classical PAC. To make

matters easy, we will consider here the case of P � PAC learnability alone, where

P is a known distribution (uniform in the example cases studied). However, there is

a sense in which our notion of PAC is easier |the learner knows the true metric d

and given any two functions, can compute their relative distance. This is not so in

classical PAC, where the learner cannot compute the distance between two functions

since it does not know the underlying distribution.

We have left the mechanism of data collection unde�ned. Our goal here is the

investigation of di�erent methods of data collection. A baseline against which we will
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compare all such schemes is the passive method of data collection where the learner

collects its data set by sampling D according to P and receiving the point (x; f(x)): If

the learner were allowed to draw its own examples, are there principled ways in which

it could do this? Further, as a consequence of this 
exibility accorded to the learner

in its data gathering scheme, could it learn the class F with fewer examples? These

are the questions we attempt to resolve in this chapter, and we begin by motivating

and deriving in the next section, a general framework for active selection of data for

arbitrary approximation schemes.

3.1.2 The Problem of Collecting Examples

We have introduced in the earlier section, our baseline algorithm for collecting ex-

amples. This corresponds to a passive learner that draws examples according to the

probability distribution P on the domain D: If such a passive learner collects ex-

amples and produces an output h such that dD(h; f) is less than � with probability

greater than 1 � �; it P -PAC learns the function. The number of examples that a

learner needs before it produces such an (�-good,�-con�dence) hypothesis is called its

sample complexity.

Against this baseline passive data collection scheme, lies the possibility of allowing

the learner to choose its own examples. At the outset it might seem reasonable to

believe that a data set would provide the learner with some information about the

target function; in particular, it would probably inform it about the \interesting"

regions of the function, or regions where the approximation error is high and need

further sampling. On the basis of this kind of information (along with other infor-

mation about the class of functions in general) one might be able to decide where to

sample next. We formalize this notion as follows:

Let D = f(xi; yi); i = 1 : : : ng be a data set (containing n data points) which the

learner has access to. The approximation scheme acts upon this data set and picks an

h 2 H (which best �ts the data according to the speci�cs of the algorithm A inherent

in the approximation scheme). Further, let Ci; i = 1; : : : ;K(n)14 be a partition of the

domain D into di�erent regions on the basis of this data set. Finally let

FD = ff 2 Fjf(xi) = yi 8(xi; yi) 2 Dg

14The number of regions K(n) into which the domain D is partitioned by n data points depends
upon the geometry of D and the partition scheme used. For the real line partitioned into intervals
as in our example, K(n) = n + 1: For k-cubes, one might obtain Voronoi partitions and compute
K(n) accordingly.
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This is the set of all functions in F which are consistent with the data seen so far.

The target function could be any one of the functions in FD:
We �rst de�ne an error criterion eC (where C is any subset of the domain) as

follows:

eC(H;D;F) = sup
f2F

D

dC(h; f)

Essentially, eC is a measure of the maximum possible error the approximation

scheme could have (over the region C) given the data it has seen so far. It clearly

depends on the data, the approximation scheme, and the class of functions being

learned. It does not depend upon the target function (except indirectly in the sense

that the data is generated by the target function after all, and this dependence is

already captured in the expression). We thus have a scheme to measure uncertainty

(maximumpossible error) over the di�erent regions of the input spaceD: One possible

strategy to select a new point might simply be to sample the function in the region

Ci where the error bound is the highest. Let us assume we have a procedure P to

do this. P could be to sample the region C at the centroid of C; or sampling C

according to some distribution on it, or any other method one might fancy. This can

be described as follows:

Active Algorithm A

1. [Initialize] Collect one example (x1; y1) by sampling the domain D once ac-

cording to procedure P:

2. [Obtain New Partitions] Divide the domain D into regions C1; : : : ; CK(1) on

the basis of this data point.

3. [Compute Uncertainties] Compute eCi for each i:

4. [General Update and Stopping Rule] In general, at the jth stage, suppose

that our partition of the domain D is into Ci; i = 1 : : :K(j): One can compute

eCi
for each i and sample the region with maximumuncertainty (say Cl) accord-

ing to procedure P: This would provide a new data point (xj+1; yj+1): The new

data point would re-partition the domain D into new regions. At any stage, if

the maximum uncertainty over the entire domain eD is less than � stop.

The above algorithm is one possible active strategy. However, one can carry the

argument a little further and obtain an optimal sampling strategy which would give us
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a precise location for the next sample point. Imagine for a moment, that the learner

asks for the value of the function at a point x 2 D: The value returned obviously

belongs to the set

FD(x) = ff(x)jf 2 FDg

Assume that the value observed was y 2 FD(x): In e�ect, the learner now has one

more example, the pair (x; y); which it can add to its data set to obtain a new, larger

data set D0 where

D0 = D [ (x; y)

Once again, the approximation scheme H would map the new data set D0 into a

new hypothesis h0: One can compute

eC(H;D0
;F) = sup

f2F
D
0

d(h0; f)

Clearly, eD(H;D0
;F) now measures the maximum possible error after seeing this

new data point. This depends upon (x; y) (in addition to the usual H;D, and F): For
a �xed x; we don't know the value of y we would observe if we had chosen to sample

at that point. Consequently, a natural thing to do at this stage is to again take a

worst case bound, i.e., assume we would get the most unfavorable y and proceed.

This would provide the maximum possible error we could make if we had chosen to

sample at x: This error (over the entire domain) is

sup
y2F

D
(x)

eD(H;D0
;F) = sup

y2F
D
(x)

eD(H;D [ (x; y);F)

Naturally, we would like to sample the point x for which this maximum error is

minimized. Thus, the optimal point to sample by this argument is

xnew = argmin
x2D

sup
y2F

D
(x)

eD(H;D [ (x; y);F) (3:27)

This provides us with a principled strategy to choose our next point. The following

optimal active learning algorithm follows:

Active Algorithm B (Optimal)

1. [Initialize]Collect one example (x1; y1) by sampling the domainD once accord-

ing to procedure P: We do this because without any data, the approximation

scheme would not be able to produce any hypothesis.
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2. [Compute Next Point to Sample] Apply eq. 3.27 and obtain x2: Sampling

the function at this point yields the next data point (x2; y2) which is added to

the data set.

3. [General Update and Stopping Rule] In general, at the jth stage, assume

we have in place a data set Dj (consisting of j data). One can compute xj+1

according to eq. 3.27 and sampling the function here one can obtain a new hy-

pothesis and a new data set Dj+1: In general, as in Algorithm A, stop whenever

the total error eD(H;Dk;F) is less than �:

By the process of derivation, it should be clear that if we chose to sample at some

point other than that obtained by eq. 3.27, an adversary could provide a y value and

a function consistent with all the data provided (including the new data point), that

would force the learner to make a larger error than if the learner chose to sample at

xnew: In this sense, algorithm B is optimal. It also di�ers from algorithm A, in that it

does not require a partition scheme, or a procedure P to choose a point in some region.

However, the computation of xnew inherent in algorithm B is typically more intensive

than computations required by algorithm A. Finally, it is worthwhile to observe that

crucial to our formulation is the derivation of the error bound eD(H;D;F): As we
have noted earlier, this is a measure of the maximumpossible error the approximation

scheme H could be forced to make in approximating functions of F using the data

set D: Now, if one wanted an approximation scheme independent bound, this would

be obtained by minimizing eD over all possible schemes, i.e.,

inf
H
eD(H;D;F)

Any approximation scheme can be forced to make at least as much error as the above

expression denotes. Another bound of some interest is obtained by removing the

dependence of eD on the data. Thus given an approximation scheme H; if data D is

drawn randomly, one could compute

PfeD(H;D;F) > �g

or in an approximation scheme-independent setting, one computes

Pfinf
H
eD(H;D;F) > �g

The above expressions would provide us PAC-like bounds which we will make use of

later in this chapter.
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3.1.3 In Context

Having motivated and derived two possible active strategies, it is worthwhile at this

stage to comment on the formulation and its place in the context of previous work in

similar vein executed across a number of disciplines.

1) Optimal Recovery: The question of choosing the location of points where the

unknown function will be sampled has been studied within the framework of opti-

mal recovery (Micchelli and Rivlin, 1976; Micchelli and Wahba, 1981; Athavale and

Wahba, 1979). While work of this nature has strong connections to our formulation,

there remains a crucial di�erence. Sampling schemes motivated by optimal recovery

are not adaptive. In other words, given a class of functions F (from which the target

f is selected), optimal sampling chooses the points xi 2 D; i = 1; : : : ; n by optimizing

over the entire function space F : Once these points are obtained, then they remain

�xed irrespective of the target (and correspondingly the data set D): Thus, if we
wanted to sample the function at n points, and had an approximation schemeH with

which we wished to recover the true target, a typical optimal recovery formulation

would involve sampling the function at the points obtained as a result of optimizing

the following objective function:

arg min
x1;:::;xn

sup
f2F

d(f; h(D = f(xi; f(xi))i=1:::ng)) (3:28)

where h(D = f(xi; f(xi))i=1:::ng) 2 H is the learner's hypothesis when the target is

f and the function is sampled at the xi's. Given no knowledge of the target, these

points are the optimal to sample.

In contrast, our scheme of sampling can be conceived as an iterative application

of optimal recovery (one point at a time) by conditioning on the data seen so far.

Making this absolutely explicit, we start out by asking for one point using optimal

recovery. We obtain this point by

arg min
x1

sup
f2F

d(f; h(D1 = f(x1; f(x1))g))

Having sampled at this point (and obtained y1 from the true target), we can now

reduce the class of candidate target functions to F1; the elements of F which are

consistent with the data seen so far. Now we obtain our second point by

arg min
x2

sup
f2F1

d(f; h(D2 = f(x1; y1); (x2; f(x2))g))

Note that the supremum is done over a restricted set F1 the second time. In this
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fashion, we perform optimal recovery at each stage, reducing the class of functions

over which the supremum is performed. It should be made clear that this sequential

optimal recovery is not a greedy technique to arrive at the solution of eq. 3.28. It

will give us a di�erent set of points. Further, this set of points will depend upon the

target function. In other words,the sampling strategy adapts itself to the unknown

target f as it gains more information about that target through the data. We know

of no similar sequential sampling scheme in the literature.

While classical optimal recovery has the formulation of eq. 3.28, imagine a sit-

uation where a \teacher" who knows the target function and the learner, wishes to

communicate to the learner the best set of points to minimize the error made by

the learner. Thus given a function g; this best set of points can be obtained by the

following optimization

arg min
x1;:::;xn

d(g; h(f(xi; g(xi))gi=1:::n)) (3:29)

Eq. 3.28 and eq. 3.29 provide two bounds on the performance of the active learner

following the strategy of Algorithm B in the previous section. While eq. 3.28 chooses

optimal points without knowing anything about the target, and, eq. 3.29 chooses

optimal points knowing the target completely, the active learner chooses points opti-

mally on the basis of partial information about the target (information provided by

the data set).

2) Concept Learning: The PAC learning community (which has traditionally fo-

cused on concept learning) typically incorporates activity on the part of the learner

by means of queries, the learner can make of an oracle. Queries (Angluin, 1988)

range from membership queries (is x an element of the target concept c) to statistical

queries (Kearns, 1993 ; where the learner can not ask for data but can ask for esti-

mates of functionals of the function class) to arbitrary boolean valued queries (see

Kulkarni etal for an investigation of query complexity). Our form of activity can be

considered as a natural adaptation of membership queries to the case of learning real-

valued functions in our modi�ed PAC model. It is worthwhile to mention relevant

work which touches the contents of this chapter at some points. The most signi�cant

of these is an investigation of the sample complexity of active versus passive learning

conducted by Eisenberg and Rivest (1990) for a simple class of unit step functions. It

was found that a binary search algorithm could vastly outperform a passive learner

in terms of the number of examples it needed to (�; �) learn the target function. This

chapter is very much in the spirit of that work focusing as it does on the sample com-

plexity question. Another interesting direction is the transformation of PAC-learning

algorithms from a batch to online mode. While Littlestone etal (1991) consider online
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learning of linear functions, Kimber and Long (1992) consider functions with bounded

derivatives which we examine later in this chapter. However the question of choosing

one's data is not addressed at all. Kearns and Schapire (1990) consider the learn-

ing of p-concepts (which are essentially equivalent to learning classes of real-valued

functions with noise) and address the learning of monotone functions in this context.

Again, there is no active component on the part of the learner.

3)Adaptive Integration: The novelty of our formulation lies in its adaptive nature.

There are some similarities to work in adaptive numerical integration which are worth

mentioning. Roughly speaking, an adaptive integration technique (Berntsen et al

1991) divides the domain of integration into regions over which the integration is

done. Estimates are then obtained of the error on each of these regions. The region

with maximum error is subdivided. Though the spirit of such an adaptive approach is

close to ours, speci�c results in the �eld naturally di�er because of di�erences between

the integration problem (and its error bounds) and the approximation problem.

4) Bayesian and other formulations: It should be noted that we have a worst-case

formulation (the supremum in our formulation represents the maximumpossible error

the scheme might have). Alternate bayesian schemes have been devised (Mackay,

1991; Cohn, 1994) from the perspective of optimal experiment design (Fedorov).

Apart from the inherently di�erent philosophical positions of the two schemes, an

indepth treatment of the sample complexity question is not done. We will soon

give two examples where we address this sample complexity question closely. In a

separate piece of work (Sung and Niyogi, 1994) , the author has also investigated such

bayesian formulations from such an information-theoretic perspective. Yet another

average-case formulation comes from the information-complexity viewpoint of Traub

and Wozniakovski (see Traub etal (1988) for details). Various interesting sampling

strategies are suggested by research in that spirit. We do not attempt to compare

them due to the di�culty in comparing worst-case and average-case bounds.

5) Generating Examples and \Hints": Rather than choosing its new examples,

the learner might generate them by virtue of having some prior knowledge of the

learning task. For example, prior knowledge that the target function is odd would

allow the learner to generate a new (symmetric) example: for every (x; f(x)) pair,

the learner could add the example (�x;�f(x)) to the training set. For vision tasks,

Poggio and Vetter (1992) use similarity transformations like rotation, translation and

the like to generate new images from old ones. More generally, Abu-Mostafa (1993)

has formalized the approach as learning from hints showing how arbitrary hints can

be incorporated in the learning process. Hints induce activity on the part of the

learner and the connection between the two is worth investigating further.
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Thus, we have motivated and derived in this section, two possible active strategies.

The formulation is general. We now demonstrate the usefulness of such a formulation

by considering two classes of real-valued functions as examples and deriving speci�c

active algorithms from this perspective. At this stage, the important question of

sample complexity of active versus passive learning still remains unresolved. We

investigate this more closely by deriving theoretical bounds and performing empirical

simulation studies in the case of the speci�c classes we consider.

3.2 Example 1: A Class of Monotonically Increas-

ing Bounded Functions

Consider the following class of functions from the interval [0; 1] � < to < :

F = ff : 0 � f �M; and f(x) � f(y)8x � yg

Note that the functions belonging to this class need not be continuous though they

do need to be measurable. This class is PAC- learnable (with an L1(P ) norm, in

which case our notion of PAC reduces to the classical notion) though it has in�nite

pseudo-dimension15(in the sense of Pollard (1984)). Thus, we observe:

Observation 1 The class F has in�nite pseudo-dimension (in the sense of Pollard

(1984); Haussler (1989),).

Proof: To have in�nite pseudo-dimension, it must be the case that for every n > 0;

there exists a set of points fx1; : : : ; xng which is shattered by the class F : In other

words, there must exist a �xed translation vector t = (t1; : : : ; tn) such that for every

boolean vector b = (b1; : : : ; bn); there exists a function f 2 F which satis�es f(xi)�
ti > 0, bi = 1: To see that this is indeed the case, let the n points be xi = i=(n+1)

for i going from 1 to n: Let the translation vector then be given by ti = xi: For an

arbitrary boolean vector b we can always come up with a monotonic function such

that f(xi) = i=(n + 1) � 1=3(n + 1) if bi = 0 and f(xi) = i=(n + 1) + 1=3(n + 1) if

bi = 1: 2

We also need to specify the terms H; dC ; the procedure P for partitioning the

domain D = [0; 1] and so on. For our purposes, we assume that the approximation

scheme H is �rst order splines. This is simply �nding the monotonic function which

15Finite pseudo-dimension is only a su�cient and not necessary condition for PAC learnability as
this example demonstrates.
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interpolates the data in a piece-wise linear fashion. A natural way to partition the

domain is to divide it into the intervals [0; x1); [x1; x2); : : : ; [xi; xi+1); : : : ; [xn; 1]: The

metric dC is an Lp metric given by dC(f1; f2) = (
R 1
0 jf1 � f2jpdx)1=p:

Note that we are speci�cally interested in comparing the sample complexities of

passive and active learning. We will do this under a uniform distributional assump-

tion, i.e., the passive learner draws its examples by sampling the target function

uniformly at random on its domain [0; 1]: In contrast, we will show how our gen-

eral formulation in the earlier section translates into a speci�c active algorithm for

choosing points, and we derive bounds on its sample complexity. We begin by �rst

providing a lower bound for the number of examples a passive PAC learner would

need to draw to learn this class F :

3.2.1 Lower Bound for Passive Learning

Theorem 3.2.1 Any passive learning algorithm (more speci�cally, any approxima-

tion scheme which draws data uniformly at random and interpolates the data by any

arbitrary bounded function) will have to draw at least 1
2
(M=2�)p ln(1=�) examples to

P -PAC learn the class where P is a uniform distribution.

Proof: Consider the uniform distribution on [0; 1] and a subclass of functions which

have value 0 on the region A = [0; 1 � (2�)p] and belong to F . Suppose the passive
learner draws l examples uniformly at random. Then with probability (1�(2�=M)p)l,

all these examples will be drawn from region A. It only remains to show that for

the subclass considered, whatever be the function hypothesized by the learner, an

adversary can force it to make a large error.

Suppose the learner hypothesizes that the function is h. Let the value of

(
R
(1�(2�=M)p;1) jh(x)jpdx)1=p be �: Obviously 0 � � � (Mp(2�=M)p)1=p = 2�: If � < �,

then the adversary can claim that the target function was really

g(x) =

8<
: 0 for x 2 [0; 1� (2�=M)p]

M for x 2 (1� (2�=M)p; 1]

If, on the other hand � � �; then the adversary can claim the function was really

g = 0:

In the �rst case, by the triangle inequality,

d(h; g) = (
R
[0;1] jg � hjpdx)1=p � (

R
[1�(2�=M)p;1] jg � hjpdx)1=p

� (
R
(1�(2�=M)p;1)M

p
dx)1=p � (

R
(1�(2�=M)p;1) jhjpdx)1=p = 2�� � > �
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In the second case,

d(h; g) = (

Z
[0;1]

jg � hjpdx)1=p � (

Z
(1�(2�=M)p;1)

j0� hjpdx)1=p = � > �

Now we need to �nd out how large l must be so that this particular event of

drawing all examples in A is not very likely, in particular, it has probability less than

�.

For (1�(2�=M)p)l to be greater than �, we need l < 1
� ln(1�(2�=M)p)

ln(1
�
): It is a fact

that for � < 1=2; 1
2�
� 1

� ln(1��)
:Making use of this fact (and setting � = (2�=M)p; we

see that for � < (M
2
)(1

2
)1=p; we have 1

2
(M=2�)p ln(1=�) < 1

� ln(1�(2�=M)p)
ln(1

�
): So unless

l is greater than 1
2
(M=2�)p ln(1=�); the probability that all examples are chosen from

A is greater than �: Consequently, with probability greater than �; the passive learner

is forced to make an error of atleast �; and PAC learning cannot take place. 2

3.2.2 Active Learning Algorithms

In the previous section we computed a lower bound for passively PAC learning this

class for a uniform distribution16. Here we derive an active learning strategy (the

CLA algorithm) which would meaningfully choose new examples on the basis of in-

formation gathered about the target from previous examples. This is a speci�c in-

stantiation of the general formulation, and interestingly yields a \divide and conquer"

binary searching algorithm starting from a di�erent philosophical standpoint. We for-

mally prove an upper bound on the number of examples it requires to PAC learn the

class. While this upper bound is a worst case bound and holds for all functions in

the class, the actual number of queries (examples) this strategy takes di�ers widely

depending upon the target function. We demonstrate empirically the performance of

this strategy for di�erent kinds of functions in the class in order to get a feel for this

di�erence. We derive a classical non-sequential optimal sampling strategy and show

that this is equivalent to uniformly sampling the target function. Finally, we are able

to empirically demonstrate that the active algorithm outperforms both the passive

and uniform methods of data collection.

Derivation of an optimal sampling strategy

Consider an approximation scheme of the sort described earlier attempting to ap-

proximate a target function f 2 F on the basis of a data set D: Shown in �g. 3-14

16Naturally, this is a distribution-free lower bound as well. In other words, we have demonstrated
the existence of a distribution for which the passive learner would have to draw at least as many
examples as the theorem suggests.
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Figure 3-14: A depiction of the situation for an arbitrary data set. The set FD consists

of all functions lying in the boxes and passing through the datapoints (for example,

the dotted lines). The approximating function h is a linear interpolant shown by a

solid line.

is a picture of the situation. We can assume without loss of generality that we start

out by knowing the value of the function at the points x = 0 and x = 1: The points

fxi; i = 1; : : : ; ng divide the domain into n + 1 intervals Ci (i going from 0 to n)

where Ci = [xi; xi+1](x0 = 0; xn+1 = 1):The monotonicity constraint on F permits us

to obtain rectangular boxes showing the values that the target function could take

at the points on its domain. The set of all functions which lie within these boxes as

shown is FD:
Let us �rst compute eCi(H;D;F) for some interval Ci: On this interval, the func-

tion is constrained to lie in the appropriate box. We can zoom in on this box as

shown in �g. 3-15.

The maximum error the approximation scheme could have (indicated by the

shaded region) is clearly given by

(
Z
Ci

jh� f(xi)jpdx)1=p = (
Z

B

0
(
A

B

x)pdx)1=p = AB
1=p
=(p + 1)1=p

where A = f(xi+1)� f(xi) and B = (xi+1 � xi):

Clearly the error over the entire domain eD is given by

e

p

D
=

nX
i=0

e

p

Ci
(3:30)

The computation of eC is all we need to implement an active strategy motivated

by Algorithm A in section 3.1. All we need to do is sample the function in the interval

with largest error; recall that we need a procedure P to determine how to sample this

interval to obtain a new data point. We choose (arbitrarily) to sample the midpoint
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Figure 3-15: Zoomed version of interval. The maximum error the approximation

scheme could have is indicated by the shaded region. This happens when the adver-

sary claims the target function had the value yi throughout the interval.

of the interval with the largest error yielding the following algorithm.

The Choose and Learn Algorithm (CLA)

1. [Initial Step] Ask for values of the function at points x = 0 and x = 1: At this

stage, the domain [0; 1] is composed of one interval only, viz., [0; 1]: Compute

E1 =
1

(p+1)1=p
(1 � 0)1=pj(f(1) � f(0))j and T1 = E1: If T1 < �; stop and output

the linear interpolant of the samples as the hypothesis, otherwise query the

midpoint of the interval to get a partition of the domain into two subintervals

[0; 1=2) and [1=2; 1].

2. [General Update and Stopping Rule] In general, at the kth stage, suppose

that our partition of the interval [0; 1] is [x0 = 0; x1),[x1; x2); : : : ; [xk�1; xk = 1].

We compute the normalized error Ei =
1

(p+1)1=p
(xi � xi�1)

1=pj(f(xi) � f(xi�1))j
for all i = 1; ::; k. The midpoint of the interval with maximum Ei is queried

for the next sample. The total normalized error Tk = (
P

k

i=1E
p

i
)1=p is computed

at each stage and the process is terminated when Tk � �. Our hypothesis h

at every stage is a linear interpolation of all the points sampled so far and our

�nal hypothesis is obtained upon the termination of the whole process.

Now imagine that we chose to sample at a point x 2 Ci = [xi; xi+1] and received

the value y 2 FD(x) (i.e., y in the box) as shown in the �g. 3-16. This adds one

more interval and divides Ci into two subintervals Ci1 and Ci2 where Ci1 = [xi; x] and

Ci2 = [x; xi+1]: We also correspondingly obtain two smaller boxes inside the larger
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Figure 3-16: The situation when the interval Ci is sampled yielding a new data point.

This subdivides the interval into two subintervals and the two shaded boxes indicate

the new constraints on the function.

box within which the function is now constrained to lie. The uncertainty measure eC

can be recomputed taking this into account.

Observation 2 The addition of the new data point (x; y) does not change the un-

certainty value on any of the other intervals. It only a�ects the interval Ci which got

subdivided. The total uncertainty over this interval is now given by

eCi
(H;D0

;F) = ( 1
p+1

)1=p ((x� xi)(y � f(xi))
p + (xi+1 � x))((f(xi+1)� f(xi))� y)p)

1=p
=

= G (zrp + (B � z)(A� r)p)
1=p

where for convenience we have used the substitution z = x � xi; r = y � f(xi); and

A and B are f(xi+1) � f(xi) and xi+1 � xi as above. Clearly z ranges from 0 to B

while r ranges from 0 to A:

We �rst prove the following lemma:

Lemma 3.2.1

B=2 = arg min
z2[0;B]

sup
r2[0;A]

G (zrp + (B � z)(A� r)p)
1=p

Proof: Consider any z 2 [0; B]: There are three cases to consider:
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Case I z > B=2 : let z = B=2 + � where � > 0: We �nd

sup
r2[0;A]

G (zrp + (B � z)(A� r)p)
1=p

=

 
sup
r2[0;A]

G (zrp + (B � z)(A� r)p)

!1=p

Now,

sup
r2[0;A]G (zrp + (B � z)(A� r)p) =

sup
r2[0;A]G ((B=2 + �)rp + (B=2 � �)(A� r)p)

= G sup
r2[0;A]B=2(r

p + (A� r)p) + �(rp � (A� r)p)

Now for r = A; the expression within the supremumB=2(rp+(A�r)p)+�(rp�(A�r)p)
is equal to (B=2 + �)Ap

: For any other r 2 [0; A]; we need to show that

B=2(rp + (A� r)p) + �(rp � (A� r)p) � (B=2 + �)Ap

or

B=2((r=A)p + (1 � (r=A))p) + �((r=A)p � (1� r=A)p) � B=2 + �

Putting � = r=A (clearly � 2 [0; 1]; and noticing that (1��)p � 1��
p and �p� (1�

�)p � 1 the inequality above is established. Consequently, we are able to see that

sup
r2[0;A]

G (zrp + (B � z)(A� r)p)
1=p

= G(B=2 + �)1=pA

Case II Let z = B=2 � � for � > 0: In this case, by a similar argument as above, it

is possible to show that again,

sup
r2[0;A]

G (zrp + (B � z)(A� r)p)
1=p

= G(B=2 + �)1=pA

Case III Finally, let z = B=2: Here

sup
r2[0;A]

G (zrp + (B � z)(A� r)p)
1=p

= G(B=2)1=p sup
r2[0;A]

(rp + (A� r)p)
1=p

Clearly, then for this case, the above expression is reduced toGA(B=2)1=p: Considering

the three cases, the lemma is proved.2

The above lemma in conjunction with eq. 3.30 and observation 2 proves that if we

choose to sample a particular interval Ci then sampling the midpoint is the optimal
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thing to do. In particular, we see that

minx2[xi;xi+1] supy2[f(xi);f(xi+1)] eCi(H;D [ (x; y);F) =

( 1
p+1

)1=p(xi+1�xi
2

)1=p(f(xi+1)� f(xi)) = eCi
(H;D;F)=21=p

In other words, if the learner were constrained to pick its next sample in the interval

Ci; then by sampling the midpoint of this interval Ci; the learner ensures that the

maximum error it could be forced to make by a malicious adversary is minimized. In

particular, if the uncertainty over the interval Ci with its current data set D is eCi;

the uncertainty over this region will be reduced after sampling its midpoint and can

have a maximum value of eCi=2
1=p
:

Now which interval must the learner sample to minimize the maximum possible

uncertainty over the entire domain D = [0; 1]: Noting that if the learner chose to

sample the interval Ci then

min
x2Ci=[xi;xi+1]

sup
y2F

D

eD=[0;1](H;D[ (x; y);F) =
0
@ nX
j=0;j 6=i

e

p

Cj
(H;D;F) + e

p

Ci
(H;D;F)

2

1
A

1=p

From the decomposition above, it is clear that the optimal point to sample according

to the principle embodied in Algorithm B is the midpoint of the interval Cj which

has the maximum uncertainty eCj(H;D;F) on the basis of the data seen so far, i.e.,

the data set D: Thus we can state the following theorem

Theorem 3.2.2 The CLA is the optimal algorithm for the class of monotonic func-

tions

Having thus established that our binary searching algorithm (CLA) is optimal,

we now turn our e�orts to determining the number of examples the CLA would need

in order to learn the unknown target function to � accuracy with � con�dence. In

particular, we can prove the following theorem.

Theorem 3.2.3 The CLA converges in at most (M=�)p steps. Speci�cally, after col-

lecting at most (M=�)p examples, its hypothesis is � close to the target with probability

1.

Proof Sketch: The proof of convergence for this algorithm is a little tedious. How-

ever, to convince the reader, we provide the proof of convergence for a slight variant

of the active algorithm. It is possible to show (not shown here) that convergence

times for the active algorithm described earlier is bounded by the convergence time
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for the variant. First, consider a uniform grid of points (�=M)p apart on the domain

[0; 1]: Now imagine that the active learner works just as described earlier but with a

slight twist, viz., it can only query points on this grid. Thus at the kth stage, instead

of querying the true midpoint of the interval with largest uncertainty, it will query

the gridpoint closest to this midpoint. Obviously the intervals at the kth stage are

also separated by points on the grid (i.e. previous queries). If it is the case that the

learner has queried all the points on the grid, then the maximum possible error it

could make is less than �: To see this, let � = �=M and let us �rst look at a speci�c

small interval [k�; (k + 1)�]. We know the following to be true for this subinterval:

f(k�) = h(k�) � f(x); h(x) � f((k + 1)�) = h((k + 1)�)

Thus

jf(x)� h(x)j � f((k + 1)�) � f(k�)

and so over the interval [k�; (k + 1)�]

R (k+1)�

k�
jf(x)� h(x)jpdx � R (k+1)�

k�
(f((k + 1)�) � f(k�))pdx

� (f((k + 1)�)� f(k�))p�

It follows that

R
[0;1] jf � hjpdx =

R
[0;�) jf � hjpdx+ : : :+

R
[1��;1] jf � hjpdx �

� ((f(�) � f(0))p + (f(2�) � f(�))p + : : :+ (f(1) � f(1 � �))p) �

�(f(�) � f(0) + f(2�) � f(�) + : : :+ f(1) � f(1� �))p �

� �(f(1) � f(0))p � �M
p

So if � = (�=M)p, we see that the Lp error would be at most
�R

[0;1] jf � hjpdx
�1=p � �:

Thus the active learner moves from stage to stage collecting examples at the grid

points. It could converge at any stage, but clearly after it has seen the value of the

unknown target at all the gridpoints, its error is provably less than � and consequently

it must stop by this time. 2
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Figure 3-17: How the CLA chooses its examples. Vertical lines have been drawn to

mark the x-coordinates of the points at which the algorithm asks for the value of the

function.

3.2.3 Empirical Simulations, and other Investigations

Our aim here is to characterize the performance of CLA as an active learning strat-

egy. Remember that CLA is an adaptive example choosing strategy and the number

of samples it would take to converge depends upon the speci�c nature of the target

function. We have already computed an upper bound on the number of samples it

would take to converge in the worst case. In this section we try to provide some

intuition as to how this sampling strategy di�ers from random draw of points (equiv-

alent to passive learning) or drawing points on a uniform grid (equivalent to optimal

recovery following eq. 3.28 as we shall see shortly). We perform simulations on ar-

bitrary monotonic increasing functions to better characterize conditions under which

the active strategy could outperform both a passive learner as well as a uniform

learner.

Distribution of Points Selected

As has been mentioned earlier, the points selected by CLA depend upon the speci�c

target function.Shown in �g. 3-5 is the performance of the algorithm for an arbitrarily

constructed monotonically increasing function. Notice the manner in which it chooses

its examples. Informally speaking, in regions where the function changes a lot (such
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Figure 3-18: The dotted line shows the density of the samples along the x-axis when

the target was the monotone-function of the previous example. The bold line is a

plot of the derivative of the function. Notice the correlation between the two.

regions can be considered to have high information density and consequently more

\interesting"), CLA samples densely. In regions where the function doesn't change

much (correspondingly low information density), it samples sparsely. As a matter of

fact, the density of the points seems to follow the derivative of the target function as

shown in �g. 3-18.

Consequently, we conjecture that

Conjecture 1 The density of points sampled by the active learning algorithm is pro-

portional to the derivative of the function at that point for di�erentiable functions.

Remarks:

1. The CLA seems to sample functions according to its rate of change over the

di�erent regions. We have remarked earlier, that the best possible sampling

strategy would be obtained by eq. 3.29 earlier. This corresponds to a teacher

(who knows the target function and the learner) selecting points for the learner.

How does the CLA sampling strategy di�er from the best possible one? Does

the sampling strategy converge to the best possible one as the data goes to

in�nity? In other words, does the CLA discover the best strategy? These are

interesting questions. We do not know the answer.
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Figure 3-19: The situation when a function f 2 F is picked, n sample points (the

x's) are chosen and the corresponding y values are obtained. Each choice of sample

points corresponds to a choice of the a's. Each choice of a function corresponds to a

choice of the b0s.

2. We remarked earlier that another bound on the performance of the active strat-

egy was that provided by the classical optimal recovery formulation of eq. 3.28.

This, as we shall show in the next section, is equivalent to uniform sampling.

We remind the reader that a crucial di�erence between uniform sampling and

CLA lies in the fact that CLA is an adaptive strategy and for some functions

might actually learn with very few examples. We will explore this di�erence

soon.

Classical Optimal Recovery

For an L1 error criterion, classical optimal recovery as given by eq. 3.28 yields a

uniform sampling strategy. To see this, imagine that we chose to sample the function

at points xi; i = 1; : : : ; n: Pick a possible target function f and let yi = f(xi) for each

i:We then get the situation depicted in �g. 3-19. The n points divide the domain into

n+1 intervals. Let these intervals have length ai each as shown. Further, if [xi�1; xi]

corresponds to the interval of length ai; then let yi � yi�1 = bi: In other words we

would get n+ 1 rectangles with sides ai and bi as shown in the �gure.

It is clear that choosing a vector b = (b1; : : : ; bn+1)
0 with the constraint thatP

n+1
i=1 bi = M and bi � 0 is equivalent to de�ning a set of y values (in other words,

a data set) which can be generated by some function in the class F : Speci�cally, the
data values at the respective sample points would be given by y1 = b1; y2 = b1 + b2

and so on. We can de�ne Fb to be the set of monotonic functions in F which are

consistent with these data points. In fact, every f 2 F would map onto some b; and
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thus belong to some Fb: Consequently,

F = [fb:bi�0;P bi=MgFb

Given a target function f 2 Fb; and a choice of n points xi; one can con-

struct the data set D = f(xi; f(xi))gi=1:::n and the approximation scheme generates

an approximating function h(D): It should be clear that for an L1 distance metric

(d(f; h) =
R 1
0 jf � hjdx); the following is true:

sup
f2F

b

d(f; h) =
1

2

n+1X
i=1

aibi =
1

2
a:b

Thus, taking the supremum over the entire class of functions is equivalent to

sup
f2F

d(f; h(D)) = sup
fb:bi�0;

P
bi=Mg

1

2
a:b

The above is a straight forward linear programming problem and yields as its solution

the result 1
2
M maxfai; i = 1; : : : ; (n+ 1)g:

Finally, every choice of n points xi; i = 1; : : : ; n results in a corresponding vector

a where ai � 0 and
P
ai = 1: Thus minimizing the maximum error over all the choice

of sample points (according to eq. 3.28) is equivalent to

arg min
x1;:::;xn

sup
f2F

d(f; h(D = f(xi; f(xi))gi=1:::n) = arg min
fa:ai�0;

P
ai=1g

maxfai; i = 1 : : : n+1g

Clearly the solution of the above problem is ai =
1

n+1
for each i:

In other words, classical optimal recovery suggests that one should sample the

function uniformly. Note that this is not an adaptive scheme. In the next section, we

compare empirically the performance of three di�erent schemes to sample. The pas-

sive, where one samples randomly, the non-sequential \optimal", where one samples

uniformly, and the active which follows our sequentially optimal strategy.

Error Rates and Sample Complexities for some Arbitrary Functions: Some

Simulations

In this section, we attempt to relate the number of examples drawn and error made

by the learner for a variety of arbitrary monotone increasing functions. We begin

with the following simulation:

Simulation A:
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Function No. Average Random/CLA Average Uniform/CLA

1 7.23 1.66

2 61.37 10.91

3 6.67 1.10

4 8.07 1.62

5 6.62 1.56

Table 3.1: Shown in this table is the average error rate of the random sampling and

the uniform sampling strategies when as a multiple of the error rates due to CLA.

Thus for the function 3 for example, uniform error rates are on an average 1.1 times

CLA error rates. The averages are taken over the di�erent values of N (number of

examples) for which the simulations have been done. Note that this is not a very

meaningful average as the di�erence in the error rates between the various strategies

grow with N (as can be seen from the curves)if there is a di�erence in the order of

the sample complexity. However they have been provided just to give a feel for the

numbers.

are shown in Fig. 3-22 and Table 3.2.3. Notice that the active strategy (CLA) far

outperforms the passive strategy and clearly has the best error performance. The

comparison between uniform sampling and active sampling is more interesting. For

functions like function-2 (which is a smooth approximation of a step function), where

most of the \information" is located in a small region of the domain, CLA outperforms

the uniform learner by a large amount. Functions like function-3 which don't have

any clearly identi�ed region of greater information have the least di�erence between

CLA and the uniform learner (as also between the passive and active learner). Finally

on functions which lie in between these two extremes (like functions 4 and 5) we see

decreased error-rates due to CLA which are in between the two extremes.

In conclusion, the active learner outperforms the passive learner. Further, it is

even better than classical optimal recovery. The signi�cant advantage of the active

learner lies in its adaptive nature. Thus, for certain \easy" functions, it might con-

verge very rapidly. For others, it might take as long as classical optimal recovery,

though never more.

3.3 Example 2: A Class of Functions with Bounded

First Derivative

Here the class of functions we consider are from [0; 1] to R and of the form

F = ff jf(x) is di�erentiable and j df
dx

j � dg
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Notice a few things about this class. First, there is no direct bound on the values

that functions in F can take. In other words, for every M > 0, there exists some

function f 2 F such that f(x) > M for some x 2 [0; 1]. However, there is a bound

on the �rst derivative, which means that a particular function belonging to F cannot

itself change very sharply. Knowing the value of the function at any point, we can

bound the value of the function at all other points. So for example, for every f 2 F ,
we see that jf(x)j � dxf(0) � df(0).

We observe that this class too has in�nite pseudo-dimension. We state this without

proof.

Observation 3 The class F has in�nite pseudo-dimension in the sense of Pollard.

As in the previous example we would like to investigate the possibility of devising

active learning strategies for this class. We �rst provide a lower bound on the number

of examples a learner (whether passive or active) would need in order to � identify this

class. We then derive in the next section, an optimal active learning strategy (that is,

an instantiation of the Active Algorithm B earlier). We also provide an upper bound

on the number of examples this active algorithm would take.

We also need to specify some other terms for this class of functions. The approxi-

mation schemeH is a �rst order spline as before, the domain D = [0; 1] is partitioned

into intervals by the data [xi; xi+1] (again as before) and the metric dC is an L1 metric

given by dC(f1; f2) =
R
C
jf1(x)�f2(x)jdx: The results in this section can be extended

to an Lp norm but we con�ne ourselves to an L1 metric for simplicity of presentation.

3.3.1 Lower Bounds

Theorem 3.3.1 Any learning algorithm (whether passive or active) has to draw at

least 
((d=�)) examples (whether randomly or by choosing) in order to PAC learn the

class F :

Proof Sketch: Let us assume that the learner collects m examples (passively by

drawing according to some distribution, or actively by any other means). Now we

show that an adversary can force the learner to make an error of atleast � if it draws

less than 
((d=�)) examples. This is how the adversary functions.

At each of the m points which are collected by the learner, the adversary claims

the function has value 0. Thus the learner is reduced to coming up with a hypothesis

that belongs to F and which it claims will be within an � of the target function.

Now we need to show that whatever the function hypothesized by the learner, the

adversary can always come up with some other function, also belonging to F ; and
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agreeing with all the data points, which is more than an � distance away from the

learner's hypothesis. In this way, the learner will be forced to make an error greater

than �.

The m points drawn by the learner, divides the region [0; 1] into (at most) m+ 1

di�erent intervals. Let the length of these intervals be b1; b2; b3; :::; bm+1. The \true"

function, or in other words, the function the adversary will present, should have value

0 at the endpoints of each of the above intervals. We �rst state the following lemma.

Lemma 3.3.1 There exists a function f 2 F such that f interpolates the data and

Z
[0;1]

jf jdx > kd

4(m+ 1)

where k is a constant arbitrarily close to 1.

Proof: Consider �g. 3-23. The function f is indicated by the dark line. As is shown,

f changes sign at each x = xi: Without loss of generality, we consider an interval

[xi; xi+1] of length bi: Let the midpoint of this interval be z = (xi + xi+1)=2: The

function here has the values

f(x) =

8>><
>>:

d(x� xi) for x 2 [xi; z � �]

�d(x� xi+1) for x 2 [z + �; xi+1]
d(x�z)2

2�
+ d(bi��)

2
for x 2 [z � �; z + �]

Simple algebra shows that

Z
xi+1

xi

jf jdx > d(
bi � �

2
)2 + �d(

bi � �

2
) = d(b2

i
� �

2)=4

Clearly, � can be chosen small, so that

Z
xi+1

xi

jf jdx > kdbi

2

4

where k is as close to 1 as we want. By combining the di�erent pieces of the function

we see that Z 1

0
jf jdx > kd

4

m+1X
i

b
2
i

Now we make use of the following lemma,

Lemma 3.3.2 For a set of numbers b1; ::; bm such that b1 + b2 + :: + bm = 1, the

following inequality is true

b
2
1 + b

2
2 + ::+ b

2
m
� 1=m
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Proof: By induction. 2

Now it is easy to see how the adversary functions. Suppose the learner postulates

that the true function is h: Let
R
[0;1] jhjdx = �: If � > �; the adversary claims that

the true function was f = 0: In that case
R 1
0 jh� f jdx = � > �: If on the other hand,

� < �; then the adversary claims that the true function was f (as above). In that

case, Z 1

0
jf � hjdx �

Z 1

0
jf jdx �

Z 1

0
jhjdx =

kd

4(m+ 1)
� �

Clearly, if m is less than kd

8�
� 1; the learner is forced again to make an error greater

than �: Thus in either case, the learner is forced to make an error greater than or

equal to � if less than 
(d=�) examples are collected (howsoever these examples are

collected). 2

The previous result holds for all learning algorithms. It is possible to show the

following result for a passive learner.

Theorem 3.3.2 A Passive learner must draw at least max(
((d=�);
q
(d=�) ln(1=�)))

to learn this class.

Proof Sketch: The d=� term in the lower bound follows directly from the previous

theorem. We show how the second term is obtained.

Consider the uniform distribution on [0; 1] and a subclass of functions which have

value 0 on the region A = [0; 1 � �] and belong to F . Suppose the passive learner

draws l examples uniformly at random. Then with probability (1 � �)l, all these

examples will be drawn from region A. It only remains to show that for this event,

and the subclass considered, whatever be the function hypothesized by the learner,

an adversary can force it to make a large error.

It is easy to show (using the arguments of the earlier theorem) that there exists

a function f 2 F such that f is 0 on A and
R 1
1�� jf jdx = 1

2
�
2
d: This is equal to 2�

if � =
q
(4�=d): Now let the learner's hypothesis be h: Let

R 1
1�� jhjdx = �: If � is

greater than �; the adversary claims the target was g = 0: Otherwise, the adversary

claims the target was g = f: In either case,
R jg � hjdx > �:

It is possible to show (by an identical argument to the proof of theorem 1), that

unless l � 1
4

q
(d=�) ln(1=�); all examples will be drawn fromA with probability greater

than � and the learner will be forced to make an error greater than �: Thus the second

term appears indicating the dependence on � in the lower bound.2
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3.3.2 Active Learning Algorithms

We now derive in this section an algorithm which actively selects new examples on

the basis of information gathered from previous examples. This illustrates how our

formulation of section 3.1.1 can be used in this case to e�ectively obtain an optimal

adaptive sampling strategy.

Derivation of an optimal sampling strategy

Fig. 3-24 shows an arbitrary data set containing information about some unknown

target function. Since the target is known to have a �rst derivative bounded by d; it is

clear that the target is constrained to lie within the parallelograms shown in the �gure.

The slopes of the lines making up the parallelogram are d and �d appropriately. Thus,
FD consists of all functions which lie within the parallelograms and interpolate the

data set. We can now compute the uncertainty of the approximation scheme over

any interval,C; (given by eC(H;D;F)); for this case. Recall that the approximation

scheme H is a �rst order spline, and the data D consists of (x; y) pairs. Fig. 3-25

shows the situation for a particular interval (Ci = [xi; xi+1]). Here i ranges from 0 to

n: As in the previous example, we let x0 = 0; and xn+1 = 1:

The maximum error the approximation scheme H could have on this interval is

given by (half the area of the parallelogram).

eCi
(H;D;F) = sup

f2F
D

Z
Ci

jh� f jdx =
(d2B2

i
�A

2
i
)

4d

where Ai = jf(xi+1) � f(xi)j and Bi = xi+1 � xi: Clearly, the maximum error the

approximation scheme could have over the entire domain is given by

eD=[0;1](H;D;F) = sup
f2F

D

nX
j=0

Z
Cj

jf � hjdx =
nX
j=0

eCj
(3:31)

The computation of eC is crucial to the derivation of the active sampling strategy.

Now imagine that we chose to sample at a point x in the interval Ci and received

a value y (belonging to FD(x)). This adds one more interval and divides Ci into

two intervals Ci1 and Ci2 as shown in �g. 3-26.. We also obtain two correspondingly

smaller parallelograms within which the target function is now constrained to lie.

The addition of this new data point to the data set (D0 = D[(x; y)) requires us to
recompute the learner's hypothesis (denoted by h0 in the �g. 3-26). Correspondingly,

it also requires us to update eC; i.e., we now need to compute eC(H;D0
;F): First

we observe that the addition of the new data point does not a�ect the uncertainty
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measure on any interval other than the divided interval Ci: This is clear when we

notice that the parallelograms (whose area denotes the uncertainty on each interval)

for all the other intervals are una�ected by the new data point.

Thus,

eCj
(H;D0

;F) = eCj
(H;D;F) = 1

4d
(d2B2

j
�A

2
j
) for j 6= i

For the ith interval Ci; the total uncertainty is now recomputed as (half the sum of

the two parallelograms in �g. 3-26)

eCi
(H;D0

;F) = 1
4d
((d2u2 � v

2) + (d2(Bi � u)2 � (Ai � v)2))

= 1
4d
((d2u2 + d

2(Bi � u)2)� (v2 + (A� v)2))

(3:32)

where u = x � xi; v = y � yi; and Ai and Bi are as before. Note that u ranges

from 0 to Bi; for xi � x � xi+1: However, given a particular choice of x (this �xes

a value of u), the possible values v can take are constrained by the geometry of the

parallelogram. In particular, v can only lie within the parallelogram. For a particular

x; we know that FD(x) represents the set of all possible y values we can receive. Since
v = y � yi; it is clear that v 2 FD(x) � yi: Naturally, if y < yi; we �nd that v < 0;

and Ai � v > Ai: Similarly, if y > yi+1; we �nd that v > Ai:

We now prove the following lemma:

Lemma 3.3.3 The following two identities are valid for the appropriate mini-max

problem.

(1)B
2
= argminu2[0;B] supv2fF

D
(x)�yig

((d2u2 + d
2(B � u)2)� (v2 + (A� v)2))

(2) 1
2
(d2B2�A

2) = minu2[0;B] supv2fF
D
(x)�yig

((d2u2 + d
2(B � u)2)� (v2 + (A� v)2))

Proof: The expression on the right is a di�erence of two quadratic expressions and

can be expressed as q1(u) � q2(v). For a particular u; the expression is maximized

when the quadratic q2(v) = (v2+(A�v)2) is minimized. Observe that this quadratic

is globally minimized at v = A=2: We need to perform this minimization over the set

v 2 FD(x)�yi (this is the set of values which lie within the upper and lower boundaries
of the parallelogram shown in �g. 3-27). There are three cases to consider.

Case I: u 2 [A=2d;B �A=2d]

First, notice that for u in this range, it is easy to verify that the upper boundary

of the parallelogram is greater than A=2 while the lower boundary is less than A=2:

Thus we can �nd a value of v (viz. v = A/2) which globally minimizes this quadratic

because A=2 2 FD(x)� yi: The expression thus reduces to d2u2+ d
2(B� u)2�A

2
=2:

Over the interval for u considered in this case, it is minimized at u = B=2 resulting
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in the value

(d2B2 �A
2)=2

Case II: u 2 [0; A=2d]

In this case, the upper boundary of the parallelogram (which is the maximum value

v can take) is less than A=2 and hence the q2(v) is minimized when v = du: The total

expression then reduces to

d
2
u
2+d2(B�u)2�((du)2+(A�du)2) = d

2(B�u)2�(A�du)2 = (d2B2�A2)�2ud(dB�A)

Since, dB > A; the above is minimized on this interval by choosing u = A=2d resulting

in the value

dB(dB �A)

Case III: By symmetry, this reduces to case II.

Since (d2B2�A
2)=2 � dB(dB �A) (this is easily seen by completing squares), it

follows that u = B=2 is the global solution of the mini-max problem above. Further,

we have shown that for this value of u; the sup term reduces to (d2B2 �A
2)=2 and

the lemma is proved.2

Using the above lemma along with eq. 3.32, we see that

min
x2Ci

sup
y2F

D
(x)

eCi
(H;D [ (x; y);F) = 1

8d
(d2B2

i
�A

2
i
) =

1

2
eCi

(H;D;F)

In other words, by sampling the midpoint of the interval Ci; we are guaranteed to

reduce the uncertainty by 1=2: As in the case of monotonic functions now, we see

that using eq. 3.31, we should sample the midpoint of the interval with largest un-

certainty eCi(H;D;F) to obtain the global solution in accordance with the principle

of Algorithm B of section 3.1.

This allows us to formally state an active learning algorithm which is optimal in

the sense implied in our formulation.

The Choose and Learn Algorithm - 2 (CLA-2)

1. [Initial Step] Ask for values of the function at points x = 0 and x = 1: At this

stage, the domain D = [0; 1] is composed of one interval only, viz., C1 = [0; 1]:

Compute eC1
= 1

4d
(d2 � jf(1) � f(0)j2) and eD = eC1

: If eD < �; stop and

output the linear interpolant of the samples as the hypothesis, otherwise query

the midpoint of the interval to get a partition of the domain into two subintervals

[0; 1=2) and [1=2; 1].

2. [General Update and Stopping Rule] In general, at the kth stage, suppose
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that our partition of the interval [0; 1] is [x0 = 0; x1),[x1; x2); : : : ;

[xk�1; xk = 1]. We compute the uncertainty eCi =
1
4d
(d2(xi � xi�1)

2 � jyi � yi�1j2)
for each i = 1; : : : ; k. The midpoint of the interval with maximum eCi

is queried

for the next sample. The total error eD =
P

k

i=1 eCi is computed at each stage

and the process is terminated when eD � �. Our hypothesis h at every stage is

a linear interpolation of all the points sampled so far and our �nal hypothesis

is obtained upon the termination of the whole process.

It is possible to show that the following upperbound exists on the number of

examples CLA would take to learn the class of functions in consideration

Theorem 3.3.3 The CLA-2 would PAC learn the class in at most d

4�
+ 1 examples.

Proof Sketch: Following a strategy similar to the proof of Theorem 3, we show how

a slight variant of CLA-2 would converge in at most (d=4� + 1) examples. Imagine a

grid of n points placed 1=(n� 1) apart on the domain D = [0; 1] where the kth point

is k=(n � 1) (for k going from 0 to n � 1). The variant of the CLA-2 operates by

con�ning its queries to points on this grid. Thus at the kth stage, instead of querying

the midpoint of the interval with maximum uncertainty, it will query the gridpoint

closest to this midpoint. Suppose it uses up all the gridpoints in this fashion, then

there will be n � 1 intervals and by our arguments above, we have seen that the

maximum error on each interval is bounded by

1

4d
(d2(

1

n� 1
)2 � jyi � yi�1j2) � 1

4d
d
2(

1

n� 1
)2

Since there are n� 1 such intervals, the total error it could make is bounded by

(n� 1)
1

4d
d
2(

1

n� 1
)2 =

1

4d
(

1

n� 1
)

It is easy to show that for n > d=4� + 1; this maximum error is less than �: Thus

the learner need not collect any more than d=4� + 1 examples to learn the target

function to within an � accuracy. Note that the learner will have identi�ed the target

to � accuracy with probability 1 (always) by following the strategy outlined in this

variant of CLA-2. 2

We now have both an upper and lower bound for PAC-learning the class (under

a uniform distribution) with queries. Notice that here as well, the sample complexity

of active learning does not depend upon the con�dence parameter �: Thus for �

arbitrarily small, the di�erence in sample complexities between passive and active

learning becomes arbitrarily large with active learning requiring much fewer examples.
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3.3.3 Some Simulations

We now provide some simulations conducted on arbitrary functions of the class of

functions with bounded derivative (the class F): Fig. 3-28 shows 4 arbitrary selected
functions which were chosen to be the target function for the approximation scheme

considered. In particular, we are interested in observing how the active strategy

samples the target function for each case. Further, we are interested in comparing

the active and passive techniques with respect to error rates for the same number of

examples drawn. In this case, we have been unable to derive an analytical solution to

the classical optimal recovery problem. Hence, we do not compare it as an alternative

sampling strategy in our simulations.

Distribution of points selected

The active algorithm CLA-2 selects points adaptively on the basis of previous ex-

amples received. Thus the distribution of the sample points in the domain D of the

function depends inherently upon the arbitrary target function. Consider for exam-

ple, the distribution of points when the target function is chosen to be Function-1 of

the set shown in �g. 3-28.

Notice (as shown in �g. 3-29) that the algorithm chooses to sample densely in

places where the target is 
at, and less densely where the function has a steep slope.

As our mathematical analysis of the earlier section showed, this is well founded.

Roughly speaking, if the function has the same value at xi and xi+1; then it could

have a variety of values (wiggle a lot) within. However, if, f(xi+1) is much greater (or

less) than f(xi); then, in view of the bound, d; on how fast it can change, it would

have had to increase (or decrease) steadily over the interval. In the second case, the

rate of change of the function over the interval is high, there is less uncertainty in the

values of the function within the interval, and consequently fewer samples are needed

in between.

In example 1, for the case of monotone functions, we saw that the density of

sample points was proportional to the �rst derivative of the target function. By

contrast, in this example, the optimal strategy chooses to sample points in a way

which is inversely proportional to the magnitude of the �rst derivative of the target

function. Fig. 3-30 exempli�es this.

Error Rates:

In an attempt to relate the number of examples drawn and the error made by the

learner, we performed the following simulation.
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Simulation B:

1. Pick an arbitrary function from class F .

2. Decide N; the number of samples to be collected. There are two methods of

collection of samples. The �rst (passive) is by randomly drawing N examples

according to a uniform distribution on [0; 1]: The second (active) is the CLA-2.

3. The two learning algorithms di�er only in their method of obtaining samples.

Once the samples are obtained, both algorithms attempt to approximate the

target by the linear interpolant of the samples (�rst order splines).

4. This entire process is now repeated for various values of N for the same target

function and then repeated again for the four di�erent target functions of �g. 3-

28

The results are shown in �g. 3-31. Notice how the active learner outperforms the

passive learner. For the same number of examples, the active scheme having chosen

its examples optimally by our algorithm makes less error.

We have obtained in theorem 6, an upper bound on the performance of the active

learner. However, as we have already remarked earlier, the number of examples the

active algorithm takes before stopping (i.e., outputting an �-good approximation)

varies and depends upon the nature of the target function. \Simple" functions are

learned quickly, \di�cult" functions are learned slowly. As a point of interest, we

have shown in �g. 3-32, how the actual number of examples drawn varies with �: In

order to learn a target function to �-accuracy, CLA-2 needs at most nmax(�) = d=4�+1

examples. However, for a particular target function, f; let the number of examples it

actually requires be nf (�): We plot
nf (�)

nmax(�)
as a function of �: Notice, �rst, that this

ratio is always much less than 1. In other words, the active learner stops before the

worst case upper bound with a guaranteed �-good hypothesis. This is the signi�cant

advantage of an adaptive sampling scheme. Recall that for uniform sampling (or

classical optimal recovery even) we would have no choice but to ask for d=4� examples

to be sure of having an �-good hypothesis. Further, notice that that as � gets smaller,

the ratio gets smaller. This suggests that for these functions, the sample complexity

of the active learner is of a di�erent order (smaller) than the worst case bound. Of

course, there always exists some function in F which would force the active learner

to perform at its worst case sample complexity level.
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3.4 Conclusions, Extensions, and Open Problems

This part of the chapter focused on the possibility of devising active strategies to

collect data for the problem of approximating real-valued function classes. We were

able to derive a sequential version of optimal recovery. This sequential version, by

virtue of using partial information about the target function is superior to classical

optimal recovery. This provided us with a general formulation of an adaptive sam-

pling strategy, which we then demonstrated on two example cases. Theoretical and

empirical bounds on the sample complexity of passive and active learning for these

cases suggest the superiority of the active scheme as far as the number of examples

needed is concerned. It is worthwhile to observe that the same general framework

gave rise to completely di�erent sampling schemes in the two examples we consid-

ered. In one, the learner sampled densely in regions of high change. In the other,

the learner did the precise reverse. This should lead us to further appreciate the fact

that active sampling strategies are very task-dependent.

Using the same general formulation, we were also able to devise active strategies

(again with superior sample complexity gain) for the following concept classes. 1)

For the class of indicator functions f1[a;b] : 0 < a < b < 1g on the interval [0; 1];

the sample complexity is reduced from 1=� ln(1=�) for passive learning to ln(1=�) by

adding membership queries. 2) For the class of half-spaces on a regular n-simplex, the

sample complexity is reduced from n=� ln(1=�) to n
2 ln(s=�) by adding membership

queries. Note that similar gains have been obtained for this class by Eisenberg (1992)

using a di�erent framework.

There are several directions for further research. First, one could consider the

possibility of adding noise to our formulation of the problem. Noisy versions of

optimal recovery exist and this might not be conceptually a very di�cult problem.

Although the general formulation (at least in the noise-free case) is complete, it might

not be possible to compute the uncertainty bounds eC for a variety of function classes.

Without this, one could not actually use this paradigm to obtain a speci�c algorithm.

A natural direction to pursue would be to investigate other classes (especially in more

dimensions than 1) and other distance metrics to obtain further speci�c results. We

observed that the active learning algorithm lay between classical optimal recovery and

the optimal teacher. It would be interesting to compare the exact di�erences in a more

principled way. In particular, an interesting open question is whether the sampling

strategy of the active learner converges to that of the optimal teacher as more and

more information becomes available. It would not be unreasonable to expect this,

though precise results are lacking. In general, on the theme of better characterizing

the conditions under which active learning would vastly outperform passive learning
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for function approximation, much work remains to be done. While active learning

might require fewer examples to learn the target function, its computational burden

is signi�cantly larger. It is necessary to explore the information/computation trade-

o� with active learning schemes. Finally, we should note, that we have adopted in

this part, a model of learning motivated by PAC but with a crucial di�erence. The

distance metric, d; is not necessarily related to the distribution according to which

data is drawn (in the passive case). This prevents us from using traditional uniform

convergence (Vapnik, 1982) type arguments to prove learnability. The problem of

learning under a di�erent metric is an interesting one and merits further investigation

in its own right.

Part II: Epsilon Focusing: A Strategy for Active
Learning

In Part I, we discussed a principled strategy by means of which an active learner

could choose its own examples, thereby potentially reducing the informational com-

plexity of learning real-valued functions. The formalization adopted ideas from op-

timal recovery, and active learning reduced to a sequential version of the optimal

recovery problem. In this part of the chapter, we discuss another possible scheme for

choosing examples.

Recall that according to the PAC criterion for learning, we need to learn the

target function to � accuracy (according to some distance metric d on the space of

functions, F), with con�dence greater than 1 � �: Sometimes, knowledge that the

function lies within some �-ball (in function space) might directly translate (due to

locality properties) into knowledge about the regions of the domain X over which the

target function values are uncertain. The learner can then zoom (epsilon-focus) in on

this region of uncertainty, and sample there. As a motivating real, world example, one

could imagine that in a pattern classi�cation task, the knowledge that the learner is

within � of the optimal discriminant boundary, might inform the learner about which

regions of the feature space are worth sampling to a greater degree. Intuitively, one

might think that regions close to the decision boundary are such worthwhile regions.

We formally illustrate this idea with a simple example in the next section. In all

the cases we consider, the concept class (class of indicator functions) have bounded

VC dimension. Consequently, they are learnable, and upper and lower bounds on

the sample complexity of passive learning exist for these function classes. Roughly

speaking, instead of learning to (�; �) accuracy at one shot by collecting the requisite

number of examples, the learner attempts to obtain a loose estimate of the target.
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Making use of locality properties, then, the learner obtains a loose estimate of the

regions of the domain to sample more closely. On the basis of these fresh samples, the

learner tightens its estimate of the target, thereby reducing the region of uncertainty.

It then freshly samples this new, reduced, region of uncertainty and carries on in this

fashion. The learner can arbitrarily reduce the sample complexity of learning by this

scheme.

After our motivating example, we provide some generalizations, and �nally end

with some open questions.

3.5 A Simple Example

Suppose we want to PAC-learn (with (�; �) accuracy) the following class of indicator

functions from [0; 1] to f0; 1g:

F = f1[a;1] : 0 � a1g

Further suppose the distribution P on [0; 1] according to which data is drawn is known

and is uniform. It is known that a passive learner would take atleast 
((1=�) ln(1=�))

examples to do so. We suggest the following k-step strategy which seeks examples

from successively smaller well-focused regions of the domain to learn this class in


((k=�2k) ln(k=�) examples.

The �-focusing Algorithm (1)

The learning occurs over k (k can be arbitrarily chosen) stages.

1. Draw enough examples to learn the target with �
1=k accuracy with �=k con�-

dence. Obtain hypothesis 1[â1; 1]:

2. Now ask for examples drawn uniformly at random from the region [â1��1=k; â1+
�
1=k] and try to learn the target function with �

1=k
=2 accuracy with �=k con�-

dence (with respect to this new distribution over the smaller region). Obtain

hypothesis 1[â2;1]:

3. Repeat like step 2, i.e., ask for enough examples drawn uniformly at random

from the region [â2 � �
2=k
; â2 + �

2=k] in order to learn the target function to

�
1=k
=2 accuracy with �=k con�dence. Obtain hypothesis 1[â3;1]: In general at

the jth step, ask for examples drawn uniformly at random from the region

[ ^aj�1��
(j�1)=k

; ^aj�1+�
(j�1)=k] to learn the target to within �1=k=2 accuracy with

�=k con�dence. Obtain hypothesis 1[âj ;1]:
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4. Stop with hypothesis 1[âk;1]:

Proof of Correctness: Let the target be 1[at;1]:At the end of the �rst step, the target

is within �
1=k of the hypothesis with probability greater than 1 � �=k: This means

that with high probability jat� â1j � �
1=k or in other words â1� �

1=k � at � â1+ �
1=k
:

We now draw examples only from the region [â1��
1=k
; â1+�

1=k]: Let this distribu-

tion be P2: By a theorem of Vapnik and Chervonenkis, we need to draw 4=�2=k ln(k=�)

examples to learn the target to within �
1=k
=2 with �=k con�dence (for an arbitrary

distribution) at this stage. This means that

dP2
(1[at;1]; 1[â2;1]) = 1=(2�1=k)jat � â2j � �

1=k
=2

In other words,

jat � â2j � �
2=k

Thus after two steps, the above inequality is true. We now draw examples only

from the region [a2 � �
2=k

; a2 + �
2=k]:

In general, at the jth step, if we draw 4=�2=k ln(k=�) examples, we would have

learnt the target to �1=k=2 accuracy with �=k con�dence. The distribution (Pj) accord-

ing to which examples are drawn at this stage is uniform over [ ^aj�1� �
(j�1)=k

; ^aj�1 +

�
(j�1)=k]: Thus,

dPj
(1[at;1]; 1[âj;1]) = 1=(2�(j�1)=k)jat � âjj � �

1=k
=2:

So we have,

jat � âjj � �
j=k
:

This happens with probability greater than 1� �=k: Thus with high probability, from

the (j � 1)th stage to the jth stage, we have \focused" more closely onto at: If this

is true at every stage, we would eventually have after k steps ensured that

jâk � atj � �

which would mean that we have learnt the target to within an � width.

If we fail at any stage, the eventual hypothesis ak is not necessarily within an �

width of the target. The probability of failing at each stage is less than than �=k so the

probability of failing in at least one stage is less than k:�=k = �: Thus the probability

of failing is less than � or in other words with greater than 1�� probability, we would

have learnt the target to within an � width which was our goal.

The total number of examples drawn at each stage is 4=�2=k ln(k=�) and since

there are k stages in all, the total number of examples in the whole process is
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4k=(�2=k) ln(k=�):2

3.6 Generalizations

This general strategy can be extended to several other scenarios. We introduce the

notion of localized function classes. These classes which have a local focusing property

can be learned faster by the method of �-focusing. We mention some concrete results

obtained by using this scheme for n-dimensional cases, and for the case of noisy

examples. No proofs or formal arguments are provided for these extensions. We

hope, though, that the reader will appreciate the spirit of this idea.

3.6.1 Localized Function Classes

The previous sections showed how to use the �-focusing strategy to obtain superior

sample complexity results for some simple concept classes. It is of interest to charac-

terize general conditions on function classes for which the �-focusing strategy would

yield such a superior performance. It is noteworthy that the previous function class

had the property that knowledge of the distance between any two functions f and g

in F (in the dP metric) allowed us to focus in on a region of interest in the domain

X = [0; 1] where f and g di�er. We formalize this notion to derive a general bound

on sample complexity for the �-focusing strategy.

Let F be a concept class (i.e. class of indicator functions) on some compact

domain X: Let P be the uniform distribution on this domain, i.e., the distribution

which corresponds to the normalized Lebesgue measure on it. We de�ne the usual

L1(�) distance metric on the space functions by

d�(f; g) =

Z
X

jf � gjd�

(where � is a probability measure on the set X:)

We de�ne the local focusing property of such an arbitrarily de�ned concept class

as follows:

De�nition 3.6.1 For a given f belonging to some concept class F on X; and for

any given � > 0; its �-region of interest, R�(f) is given by

fx 2 Xjf(x) 6= g(x) for some g 2 F such that dP (f; g) � �g

De�nition 3.6.2 The concept class F is said to be locally focused with focusing bound
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g (g is a real valued function taking values on [0; 1]) if for every � > 0;

sup
f2F

V olume(R�(f)) � g(�)

Here, V olume(s) for any set s � X; is simply the volume17 of that set. We assume

that V olume(X) = 1:

Clearly, locally focused classes are those with bounded � regions of interest into

which we can focus in the iterative manner of Algorithm 1.

3.6.2 The General �-focusing strategy;

The general algorithm to learn such �-focused classes is as follows:

Algorithm 2

1. Begin with the entire class F ; draw examples according to the uniform distri-

bution P on X; (call this P1) and attempt to learn the target (ft 2 F) to �1=k
with probability at least 1��=k: Obtain hypothesis f̂1: Also obtain the reduced

set of candidate target functions (version space),

F1 = ff 2 FjdP1(f; f̂1) � �
1=kg

Finally, also obtain the �-region of interest:

R1 = R�1=k (f̂1):

2. Draw examples according to a uniform distribution on R1 (call this distribution

P2) and learn the target to �
2=k
=g(�1=k) (according to P2) with probability greater

than 1� �=k: Now obtain hypothesis f̂2 2 F1; the reduced version space:

F2 = ff 2 F1jdP2(f; f̂2) �
�
2=k

g(�1=k)
g;

and R2 = R�2=k (f̂2):

3. Repeat step 2. In general, at the jth step, learn the target to �
j=k

g(�(j�1)=k)
(according

to distribution Pj), and obtain f̂j ;Fj; and Rj in the obvious way.

17From a more formal perspective, one should really replace V olume(s) by the measure on the set
s; i.e., P (s): Clearly, P (X) = 1: In our case, we assume that V olume(X) = 1: Since P is a uniform
distribution, i.e., any point in this set is as likely as any other point, it follows that P (s) is simply
V olume(s): We will continue to use this notation, but the reader will easily see that P can be used
in general, and in fact, need not even be uniform.
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4. Stop at the kth step and output hypothesis f̂k:

Proof of Learnability:

Recall that our eventual goal is to learn the unknown target ft within � accuracy

(according to the distance metric dP ) with probability greater than 1 � �:

Consider the �rst step. The target has been learned to �
1=k accuracy with high

con�dence. The learner's hypothesis is f̂1: Clearly, with high probability (greater

that 1 � �), the target lies within in an �
1=k ball around f̂1 (this is denoted by F1).

According to our de�nition, all functions in F1 agree on the region outside of R1: So

we only need to sample the region R1 which is what we do in the second step.

In the second step, we learn the target to �
2=k
=g(�1=k): This is according to a

distribution P2 (uniform on the region R1). Again, the target, is within an �
2=k
=g(�1=k)

ball of the hypothesis at this stage (f̂2). Thus,

dP2
(f̂2; ft) =

V olume(fx 2 R1jf̂2(x) 6= ft(x)g)
V olume(R1)

� �
2=k
=g(�1=k)

But, V olume(R1) = g(�1=k): Therefore,

V olume(fx 2 R1jf̂2(x) 6= ft(x)g) � �
2=k

Clearly, then,

dP (f̂2; ft) = V olume(X nR1)(0) + V olume(fx 2 R1jf̂2(x) 6= ft(x)g) � �
2=k

Thus, after the second step, we see that the target ft is within �
2=k accuracy

(with respect to our original distribution P ). By our de�nition of the local focusing

property, we know that ft 2 F2; and the points on which ft and f̂2 disagree must lie

within R2:

In general, before the jth step, the points on which the target and the (j�1)th hy-
pothesis disagree must lie within Rj�1: Since, we sample according to a uniform distri-

bution on this (Pj), and attempt to learn the target to an accuracy of �j=k=g(�(j�1)=k);

by a similar argument,

dPj
(f̂2; ft) =

V olume(fx 2 Rj�1jf̂j(x) 6= ft(x)g)
V olume(Rj�1)

� �
j=k
=g(�(j�1)=k)

But, V olume(Rj�1) = g(�(j�1)=k): Therefore,

V olume(fx 2 Rj�1jf̂j(x) 6= ft(x)g) � �
j=k
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and,

dP (f̂j; ft) = V olume(X nRj�1)(0) + V olume(fx 2 Rj�1jf̂j(x) 6= ft(x)g) � �
j=k

Thus, after the jth step, the learner has learned the target to �j=k accuracy. Fur-

ther, according to our de�nition of the local focusing property, the points on which

the learner and target disagree must lie within the set Rj = R
�j=k

(f̂j):

Clearly, after the kth step, the learner will have learned the target to � accuracy.

The only way, in which the learner could have made a mistake, is if it made a mistake

on any one of the steps. The probability of making a mistake in each step is �=k: The

probability of making a mistake in any one is bounded by �: Thus, the learner would

have identi�ed the target to � accuracy with con�dence greater than 1 � �:

Sample Complexity: By the standard Vapnik Chervonenkis theorem, we see that

at the jth stage, the learner will have to draw at most O(g
2(�(j�1)=k)

�2j=k
ln(k=�)) examples

to satisfy the learnability requirement of that stage. The total number of examples

the learner needs would be

O(
kX

j=1

g
2(�(j�1)=k)

�
2j=k

ln(k=�))

3.6.3 Generalizations and Open Problems

Now we are in a position to re-evaluate our simple example from this general per-

spective. It is easy to see that

1. Opening Example: For an arbitrary fa = 1[a;1]; we see that

R�(fa) = [a� �; a+ �]

Clearly, g(�) = 2�: The sample complexity is O((k=�2=k) ln(k=�)):

2. Box Functions: Consider the following class of indicator functions on [0; 1]:

F = f1[a; b] : 0 � a � b � 1g

For an arbitrary fa;b = 1[a;b]; we see that

R�(fa;b) = [a� �; a+ �] [ [b� �; b+ �]

Clearly, g(�) = 4�: The sample complexity O((k=�2=k) ln(k=�)) follows.
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Some other generalizations should be noted. We do not attempt to provide any

formal arguments.

1. Extensions to n-dimensions: It is possible to extend the � focusing strategy of

our opening example to an n-dimensional situation. A concrete example includes the

PAC learning of a concept class of hyperplanes dividing an n-simplex into two regions.

Essentially, the hyperplane cuts the simplex at its edges. Consequently, along each

edge, the points on one side of the cut are labelled 0; while the points on the other

side are labelled 1: Thus, if one con�nes oneself to �nding the intersection of the

hyperplane with the simplex edge, the problem reduces to a single dimensional case

exactly like our opening example. If n such edge-intersection problems are solved,

then the total n-dimensional problem can be solved.

In view of the fact that we have an e�ective �-focusing strategy for box functions,

we can even address concept classes represented by multilayer perceptrons with two

hidden layers. In such a case, there are at most two hyperplanes intersecting each

edge. The single-dimensional problem associated with each edge is like a box function.

2. Handling misclassi�cation noise: The �-focusing strategy in this part has been

developed for a noise-free case. Extensions to cover a situation with a bound on the

misclassi�cation noise (the label of the example can be 
ipped with probability at

most �) can easily be considered as well.

Finally, some natural questions arise at this stage. First, what kinds of concept

classes have the locally focusing property? Second, given the existence of the locally

focusing property, how easy is it to compute the �-region of interest R� for such

concept classes. Further research on these questions is awaited.
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Figure 3-23: Construction of a function satisying Lemma 2.
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Figure 3-24: An arbitrary data set for the case of functions with a bounded derivative.

The functions in FD are constrained to lie in the parallelograms as shown. The slopes

of the lines making up the parallelogram are d and �d appropriately.
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Figure 3-25: A zoomed version of the ith interval.
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Figure 3-26: Subdivision of the ith interval when a new data point is obtained.
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Figure 3-27: A �gure to help the visualization of Lemma 4. For the x shown, the set

FD is the set of all values which lie within the parallelogram corresponding to this x,

i.e., on the vertical line drawn at x but within the parallelogram.
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Figure 3-29: How CLA-2 chooses to sample its points. Vertical lines have been drawn

at the x values where the CLA queried the oracle for the corresponding function

value.
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Figure 3-30: How CLA-2 chooses to sample its points. The solid line is a plot of

jf 0(x)j where f is Function-1 of our simulation set. The dotted line shows the density

of sample points (queried by CLA-2) on the domain.
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Chapter 4

Language Learning Problems in the
Principles and Parameters Framework

Abstract

This chapter considers a learning problem in which the hypothesis class is a class of parameterized

grammars. After a brief introduction to the \principles and parameters" framework of modern

linguistic theory, we consider a speci�c learning problem previously analyzed in a seminal work

by Gibson and Wexler (1994). With our informational-complexity point of view developed in this

thesis, we reanalyze their learning problem. This puts particular emphasis on the sample complexity

of learning, in contrast to previous research in the inductive inference, or Gold frameworks (see

Osherson andWeinstein, 1986). We show how to formally characterize this problem in particular, and

a class of learning problems in �nite parameter spaces in general, as a Markov structure. Important

new language learning results follow directly: we explicitly compute sample complexity bounds under

di�erent distributional assumptions, learning regimes, and grammatical parameterizations. Brie
y,

we may view this as a precise way to model the \poverty of stimulus" children face in language

acquisition. Our reanalysis alters several conclusions made by Gibson and Wexler. We therefore

consider this chapter as a useful application of learning-theoretic notions to natural languages, and

their acquisition. Finally, we describe several directions for further research.

In Chapters 2 and 3, we considered the problem of learning target functions

(belonging to certain classes) from examples. Particular emphasis was given to the

sample complexity of learning such functions, and we have seen how it depends upon

the complexity of the hypothesis classes concerned. The classes of functions we have

investigated, have arguably, very little cognitive relevance. However, the investiga-

tions have helped us to develop a point of view crucial to the analysis of learning

systems|a point of view which allows us to appreciate the inherent tension between

the approximation error, and the estimation error, in learning from examples. In

particular we have seen how the hypothesis classes used by the learner must be large

to reduce the approximation error, and small to reduce the estimation error. In the

rest of the thesis (Chapters 4 and 5), we remedy our cognitive irrelevance by con-

sidering some classes of functions which linguists and cognitive scientists believe the
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brain must compute. As we shall soon see, there is a learning-theoretic argument

at the heart of the modern approach to linguistics|hence our choice of linguistic

structures for analysis. The origin of the research presented in this chapter lies in the

paper \Triggers" (Gibson and Wexler, 1994; henceforth GW) which marks a seminal

attempt to formally investigate language learning within the \principles and parame-

ters" framework (Chomsky, 1981). The results presented in this chapter emerged out

of a reanalysis of \Triggers" using more sophisticated mathematical techniques, than

had previously been used in this context. One can, thus, regard this as a demonstra-

tion, of how our information-theoretic point of view, and the arguments and tools of

current learning theory, can help us to sharpen certain important questions, and lead

to insightful analysis of relevant linguistic theories.

In the next section, we provide a brief account of the learning-theoretic considera-

tions inherent in the modern approach to linguistics. We then give a brief account of

the principles and parameters framework, and the issues involved in learning within

this framework. This sets the stage for our investigations, and we use as a start-

ing point the Triggering Learning Algorithm (TLA) working on a three-parameter

syntactic subsystem �rst analyzed by Gibson and Wexler. The rest of the chapter

analyzes the TLA from the perspective of learnability and sample complexity. Issues

pertaining to parameter learning in general, and the TLA in particular, are discussed

at appropriate points. Finally, we suggest various directions for further research|

this chapter marks only the opening of our research on this theme. Very little work

has been done on the formal, computational, aspects of parameter setting, and we

attempt here to pose questions which we think are of importance in the �eld.

4.1 Language Learning and The Poverty of Stim-

ulus

The inherent tension between having large hypothesis classes, for greater expressive

power, and small ones, for better learnability, is beautifully instantiated in the human

language system. Humans develop a mature knowledge of language that is both rich

and subtle, on exposure to fairly limited number (the so called \poverty of stimulus")

of example sentences spoken by parents and guardians in childhood. Languages are

in�nite sets of sentences18. Yet on exposure to a �nite number of them (during the

18There are an in�nite number of sentences in the English language. You haven't heard all of
them, yet you can judge the grammaticality of sentences you have not heard before. In the view of
many linguists, you have internalized a grammar{a set of rules, a theory, or schema, by means of
which you are able to generalize to unseen sentences (examples).
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language acquisition phase in childhood) children correctly generalize to the in�nite

set. Further, they generalize in exactly the same way: too striking a coincidence to

be attributed to chance. This motivated Chomsky (1965) to argue that children must

operate with constrained hypotheses about language|constraints which restrict the

sorts of generalizations that they can make. These constrained hypothesis classes

which children operate with, in the language context, are classes of grammars. Chil-

dren choose one particular grammar19 from this class, on the basis of the examples

they have seen. Thus, a child born in a Spanish speaking environment would choose

the grammar which appropriately describes the data it has seen (Spanish sentences),

and, similarly, a child born in a Chinese speaking environment chooses a di�erent

grammar, and so on. Of course, children might make mistakes, and they do. These

mistakes are often resolved as more data becomes available to the child. Sometimes

(when this happens, is undoubtedly, of great interest), these mistakes might never be

resolved|a possibility which we explore in the next chapter.

Thus, we see, that if we were totally unconstrained in the kinds of hypotheses we

could make, then, on the basis of a �nite data set, we would all generalize in wildly

di�erent ways, implying, thereby, that we would never be able to learn languages.

Yet, we learn languages, apparently with e�ortless ease as children. This realization is

crucial to linguistics. Humans, thus, are predisposed to choose certain generalizations

over others, they are predisposed to choose hypotheses belonging to a constrained

class of grammars|this predisposition is the essence of the innatist view of language;

the universal constraints on the class of grammars belong to universal grammar.

Furthermore, such a class of grammars must be large enough to capture the richness

of language, yet small enough to be learned| exemplifying the tension discussed

previously. The thrust thus shifted to �nding the right constraints incorporated

in such a class of grammars, in other words, �nding the class of grammars of the

right complexity. Notice, here, the similarity in spirit to the problem of �nding a

regularization network of the right complexity. Consequently, we see that an analysis

19It should be pointed out that there are various components of a language. There is its syntax,
that concerns itself with syntactic units like verbs, noun phrases, etc. and their appropriate com-
binations. Further, there is its phonology that deals with its sound structure, its morphology that
deals with word structure, and �nally, the vocabulary or \words" which are the building blocks out
of which sentences are ultimately composed. Acquisition of a language involves the acquisition of
all of this. We have been using the term grammar in a loose sort of way|it is a system of rules and
principles which govern the production of acceptable sentences of the language. The grammar too
could be broken into its syntactic parts, its phonological parts and so on. Some readers, recalling
vivid memories of stu�y English school teachers, might have a natural resistance to the idea of rigid
rules of grammaticality. For such people, we note, that while there is undoubtedly greater 
exibility
in word order than such teachers would suggest, it is a fact, that no one speaks \word salad"|with
absolutely no attention to word order combinations at all.
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of the complexity of language learning coupled with a computational view of the

language acquisition device is crucial to the theoretical underpinnings of modern

linguistics (see Wexler and Culicover (1980) for an excellent formal exposition of this

idea).

4.2 Constrained Grammars{Principles and Param-

eters

Having recognized the need for constraints on the class of grammars (this can be

regarded as an attempt to build a hypothesis class with �nite learnability dimension20)

researchers have investigated several possible ways of incorporating such constraints

in the classes of grammars to describe the natural languages of the world. Examples

of this range from linguistically motivated grammars such as Head-driven Phrase

Structure Grammars (HPSG), Lexical-Functional grammars, Optimality theory for

phonological systems, to bigrams, trigrams and connectionist schemes suggested from

an engineering consideration of the design of spoken language system. Note that

every such grammar suggests a very speci�c model for human language, with its own

constraints and its own complexity. Model-free, unconstrained, tabula rasa learning

schemes correspond to hypothesis classes with in�nite dimension, and these can never

be learned in �nite time. An important program of research consists of computing

the sample complexity of learning each of these diverse classes of grammars.

In this chapter, we conduct our investigations within the purview of the principles

and parameters framework (Chomsky, 1981). Such a framework attempts to capture

the \universal" principles common to all the natural languages of the world, (part of

our biological endowment as human beings possessed of the unique language faculty)

and the parameters of variation across languages of the world. Roughly speaking,

there are a �nite number of principles governing the production of human languages.

These abstract principles, can take one of several (�nite) speci�c forms|this spe-

ci�c form manifests itself as a rule, peculiar to a particular language (or classes of

languages). The speci�c forms that such an abstract principle can take is governed

by setting an associated parameter to one of several values. In typical versions of

theories constructed within such a framework, one ends up with a parameterized

20In previous chapters, we have utilized the notion of VC-dimension, and pseudo-dimension to
characterize the complexity of learning real-valued function classes. It is not immediately clear,
what complexity measure should be used for characterizing classes of grammars{the development
of a suitable measure, in tune with the demands of the language acquisition process, is an open
question.
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class of grammars. The parameters are boolean valued{setting them to one set of

values, de�nes the grammar of German (say), setting them to another set of values,

de�nes the grammar, perhaps, of Chinese. Speci�c examples of theories within such

a framework could include Government and Binding, Head-driven Phrase Structure

Grammar, Optimality Theory, varieties of lexical-functional grammars and so forth.

The idea is best illustrated in the form of examples. We provide, now, two examples,

drawn from syntax, and phonology, respectively.

4.2.1 Example: A 3-parameter System from Syntax

Two X-bar parameters: A classic example of a parametric grammar for syntax

comes from X-bar theory (Chomsky, 1981; Haegeman, 1991). This describes a param-

eterized phrase structure grammar, which de�nes the production rules for phrases,

and ultimately sentences in the language. The general format for phrase structure is

summarized by the following parameterized production rules:

XP ! SpecX
0(p1 = 0) or X 0

Spec(p1 = 1)

X
0 ! CompX

0(p2 = 0) or X 0
Comp(p2 = 1)

X
0 ! X

XP refers to an X-phrase, where X; or the \head", is a lexical category like N

(Noun), V (Verb), A (Adjective), P (Preposition), and so on. Thus, one could gen-

erate NP; or Noun Phrases, V P; or Verb Phrases, and other phrases in this fashion.

Spec refers to speci�er, in other words, that part of the phrase that \speci�es" it,

roughly like the old in the old book . Comp refers to the complement, roughly a phrase's

arguments, like an ice-cream in the Verb Phrase ate an ice-cream, or with envy in the

Adjective Phrase green with envy. Both Spec and Comp can themselves be phrases

with their own speci�ers and complements. Furthermore, in a particular phrase, the

spec-position, or the comp-position might be blank (in these cases, Spec ! ;; or
Comp ! ; respectively). Applying these rules recursively, one can thus generate

embedded phrases of arbitrary length in the language. Further, these rules are pa-

rameterized. Languages can be spec-�rst (p1 = 0) or spec-�nal (p1 = 1). Similarly,

they can be comp-�rst, or comp-�nal. For example, the parameter settings of English

are (spec-�rst,comp-�nal). Shown in �g. 4-33 is an embedded phrase which demon-

strates the use of the X-bar production rules (with the English parameter settings)

to generate an arbitrary English phrase.

In contrast, the parameter settings of Bengali are (spec-�rst,comp-�rst). The
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VP

V’

PP

V’

ran

V

Spec

(Comp)

(Comp)

(empty)

XP −−> Spec X’

X’ −−> X’ Comp

P’

NP

N’

P’

with his money

P

Spec

Spec

(Comp)

(empty)

P’

N

PP

Spec P’

P’ NP (Comp)

N’Spec
P

N

therefrom

(empty)

(empty)

Figure 4-33: Analysis of an English sentence. The parameter settings for English are

spec-�rst, and comp-�nal.

translation of the same sentence is provided in �g. 4-34. Notice, how a di�erence in

the comp-parameter setting causes a di�erence in word orders. It is claimed that as far

as basic, underlying word order is concerned, X-bar theory covers all the possibilities

for natural languages21. Languages of the world simply di�er in their parameter

settings.

One transformational parameter (V2): The two parameters described above de-

�ne generative rules to obtain basic word-order combinations permitted in the world's

languages. As mentioned before, there are many other aspects which govern the for-

mation of sentences. For example, there are transformational rules which determine

the production of surface word order from the underlying (base) word-order structure

obtained from the production rules above. One such parameterized transformational

rule that governs the movement of words within a sentence is associated with the

V 2 parameter. It is observed that in German and Dutch declarative sentences, the

relative order of verbs and their complements seem to vary depending upon whether

the clause in which they appear is a root clause or subordinate clause. Consider, the

21There are a variety of other formalisms developed to take care of �ner details of sentence struc-
ture. This has to do with case theory, movement, government, binding and so on. See Haegeman
(1991).
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XP −−> Spec X’

Spec

(empty)

(Comp)PP

VP

V’

V’

V

Spec

(empty)

P’

(Comp)NP

N’Spec

N

P’

P

Spec P’

P’

P

(empty)

NP (Comp)

N’Spec

N
(empty)

or niyepaisa

(Comp)PP

X’  −−> Comp X’

shekhan theke douralo

(his) (money) (with) (there) (from) (ran)

Figure 4-34: Analysis of the Bengali translation of the English sentence of the earlier

�gure. The parameter settings for Bengali are spec-�rst, and comp-�rst.
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following German sentences:

(1)...dass (that) Karl das (the) Buch (book) kauft (buys).

...that Karl buys the book.

(2)...Karl kauft das Buch.

...Karl buys the book.

This seems to present a complication in that from these sentences it is not clear

whether German is comp-�rst (as example 1 seems to suggest) or comp-�nal (as

example 2 seems to suggest). It is believed (Haegeman, 1991) that the underlying

word-order form is comp-�rst (like Bengali, and unlike English, in this respect); how-

ever, the V 2 parameter is set for German (p3 = 1). This implies that �nite verbs must

appear in the exact second position in root declarative clauses (p3 = 0 would mean

that this need not be the case). This is a speci�c application of a transformational

rule Move-�: For details and analysis, see (Haegeman, 1991).

Each of these three parameters can take one of two values. There are, thus, 8

possible grammars, and correspondingly 8 languages by extension, generated in this

fashion. At this stage, the languages are de�ned over a vocabulary of syntactic cat-

egories, like N; V etc. Applying the three parameterized rules, one would obtain

di�erent ways of combining these syntactic categories to obtain sentences. Appendix

A is a list of the set of unembedded (degree-0) sentences obtained for each of the lan-

guages, L1 through L8 in this parametric system. The vocabulary has been modi�ed

so that sentences are now de�ned over more abstract units than syntactic categories.

4.2.2 Example: Parameterized Metrical Stress in Phonol-

ogy

The previous example dealt with a parameterized family for syntax. As we mentioned

before, syntax is only one component of language. Here we consider an example from

phonology; in particular, our example deals with metrical stress which describes the

possible ways in which words in a language can be stressed.

Consider the English word, \candidate". This is a three syllable word, com-

posed of the three syllables, /can/,/di/,and, /date/. A native speaker of American

English typically pronounces this word by stressing the �rst syllable of this word.

Similarly, such a native speaker would also stress the �rst syllable of the tri-syllabic

word, \/al/-/pha/-/bet/" so that it almost rhymes with \candidate". In contrast, a

French speaker would stress the �nal syllable of both these words|a contrast which

is perceived as a \French" accent by the English ear.

For simplicity, assume that stress has two levels, i.e., each syllable in each word
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can be either stressed, or unstressed22. Thus, an n-syllable long word could have,

in principle, as many as 2n di�erent possible ways of being stressed. For a particu-

lar language, however, only one of these ways is phonologically well-formed. Other

stress patterns sound accented, or awkward. Words could potentially be of arbitrary

length23. Thus one could write phonological grammars|a functional mapping from

these words to their correct stress pattern. Clearly, this is another example of a

functional mapping the brain must compute. Further, di�erent languages correspond

to di�erent such functions,i.e., they correspond to di�erent phonological grammars.

Within the principles and parameters framework, these grammars are parameterized

as well.

Let us consider a simpli�ed version of two principles associated with 3 boolean

valued parameters which play a role in the Halle and Idsardi metrical stress system.

These principles describe how a multisyllable word can be broken into its constituents

(recall how sentences were composed of constituent phrases in syntax) before stress

assignment takes place. This is done by a bracketing schema which places brackets

at di�erent points in the word, thereby marking (bracketing) o� di�erent sections as

constituents. A constituent is then de�ned as a syllable sequence between consecutive

brackets. In particular, a constituent must be bounded by a right bracket on its right

edge, or, a left bracket on its left edge (both these conditions need not be satis�ed

simultaneously). Further, it cannot have any brackets in the middle. Finally, note

that not all syllables of the word need be part of a constituent. A sequence of

syllables might not be bracketed by either an appropriate left, or right bracket|

such a sequence, cannot have a stress-bearing head, and might be regarded as an

extra-metrical sequence.

1) the edge parameters: there are two such parameters.

a) put a left (p1 = 0) or right (p1 = 1) bracket

b) put the above mentioned bracket exactly one syllable after the left (p2 = 0) edge

or before the right (p2 = 1) edge of the word.

2) the head parameter: each constituent (made up of one or more syllables) has a

22While we have not provided a formal de�nition of either stress, or syllable, it is hoped, that at
some level, the concepts are intuitive to the reader. It should, however, be pointed out that linguists
di�er on their characterization of both these objects. For example, how many levels can stress have?
Typically, (Halle and Idsardi, 1991) three levels are assumed. Similarly, syllables are classi�ed into
heavy and light syllables. We have discounted such niceties for ease of presentation.

23One shouldn't be misled by the fact that that a particular language has only a �nite number
of words. When presented with a foreign word, or a \non-sense" word one hasn't heard before, one
can still attempt to pronounce it. Thus, the system of stress assignment rules in our native language
probably dictates the manner in which we choose to pronounce it. Speakers of di�erent languages
would accent these non-sense words di�erently.
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\head". This is the stress bearing syllable of the constituent, and is in some sense,

the primary, or most important syllable of that constituent (recall how syntactic

constituents, the phrases, had a lexical head). This phonological head could be the

leftmost (p3 = 0), or, the rightmost (p3 = 1) syllable in the constituent.

Suppose, the parameters are set to the following set of values: [p1 = 0; p2 =

0; p3 = 0]: Fig. 4-35 shows how some multisyllable words would have stress assigned

to them. In this case, any n-syllable word would have stress in exactly the second

position (if such a position exists) and no other. In contrast, if [p1 = 0; p2 = 0; p3 =

1]; the corresponding language would stress the �nal syllable of all multi-syllable

words. Monosyllabic words are unstressed in both languages.

X   X   X   X   X   X

X   X   X   X   X

X   

X   X   X   X   X   X

X   X   X   X   X

X   (

(

(

(

(

(
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H H

p  = 0
2

p  = 0
3

p   = 0
1 p   = 0

1
p  = 0

2 3
p  = 1

Figure 4-35: Depiction of stress pattern assignment to words of di�erent syllable

length under the parameterized bracketing scheme described in the text.

These 3 parameters represent a very small (almost trivial) component of stress

pattern assignment. There are many more parameters which describe in more com-

plete fashion, metrical stress assignment. At this level of analysis, for example, the

language Koya has p3 = 0; while Turkish has p3 = 1; see Kenstowicz (1992) for more

details. The point of this example was to provide a 
avor or how the problem of

stress-assignment can be described formally by a parametric family of functions. The

analysis of parametric spaces developed in this chapter can be equally well applied to

such stress systems.

4.3 Learning in the Principles and Parameters

Framework

Language acquisition in the principles and parameters framework reduces to the set-

ting of the parameters corresponding to the \target" language. A child is born in an

arbitrary linguistic environment. It receives examples in the form of sentences it hears
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in its linguistic environment. On the basis of example sentences it hears, it presum-

ably learns to set the parameters appropriately. Thus, referring to our 3-parameter

system for syntax, if the child is born in a German speaking environment, and hears

German sentences, it should learn to set the V2 parameter, and the spec-parameter

to spec-�rst. Similarly, a child hearing English sentences, should learn to set the

comp-parameter to comp-�nal. In principle, the child is thus solving a parameter

estimation problem|an unusual class of parameter estimation problems, no doubt,

but in spirit, little di�erent from the parameter estimation problem associated with

the regularization networks of Chapter 2. One can thus ask a number of questions

about such problems. What sort of data does the child need in order to set the target

parameters? Is such data readily available to the child? How often is such data made

available to the child? What sort of algorithms does the child use in order to set the

parameters? How e�cient are these algorithms? How much data does the child need?

Will the child always converge to the target \in the limit" ??

Language acquisition, in the context of parameterized linguistic theories, thus,

gives rise to a class of learning problems associated with �nite parameter spaces.

Furthermore, as emphasized particularly by Wexler in a series of works (Hamburger

and Wexler, 1975; Culicover and Wexler, 1980; and Gibson and Wexler, 1994), the

�nite character of these hypothesis spaces does not solve the language acquisition

problem. As Chomsky noted in Aspects of the Theory of Syntax (1965), the key point

is how the space of possible grammars{ even if �nite{is \scattered" with respect to

the primary language input data. It is logically possible for just two grammars (or

languages) to be so near each other that they are not separable by psychologically

realistic input data. This was the thrust of Wexler and Hamburger, and Wexler and

Culicover's earlier work on the learnability of transformational grammars from simple

data (with at most 2 embeddings). More recently, a signi�cant analysis of speci�c

parameterized theories has come from Gibson and Wexler (1994). They propose the

Triggering Learning Algorithm|a simple, psychologically plausible algorithm which

children might conceivably use to set parameters in �nite parameter spaces. Inves-

tigating the performance of the TLA on the 3-parameter syntax subsystem shown

in the example yields the surprising result, that the TLA cannot achieve the target

parameter setting for every possible target grammar in the system. Speci�cally, there

are certain target parameter settings, for which the TLA could get stuck in local

maxima from which it would never be able to leave, and consequently, learnability

would never result.

We are interested, both in the learnability, and the sample complexity of the �nite

hypothesis classes suggested by the principles and parameters theory. An investi-
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gation of this sort requires us to de�ne the important dimensions of the learning

problem|the issues which need to be systematically addressed. The following �gure

provides a schematic representation of the space of possibilities which need to be

explored in order to completely understand and evaluate a parameterized linguistic

theory from a learning perspective. The important dimensions are as follows:

Parametrization

Noise

Learning Algorithm

Memory Requirements

Distribution of
Data

Figure 4-36: The space of possible learning problems associated with parameterized

linguistic theories. Each axis represents an important dimension along which spe-

ci�c learning problems might di�er. Each point in this space speci�es a particular

learning problem. The entire space represents a class of learning problems which are

interesting.

1) the parameterization of the language space itself: a particular linguistic theory

would give rise to a particular choice of universal principles, and associated param-

eters. Thus, one could vary along this dimension of analysis, the parameterization

hypothesis classes which need to be investigated. The parametric system for metrical

stress (Example 2) is due to Halle and Idsardi. A variant, investigated by Dresher

and Kaye (1990), can equally well be subjected to analysis.

2)the distribution of the input data: once a parametric system is decided upon,

one must, then, decide the distribution according to which data (i.e., sentences gener-

ated by some target grammar belonging to the parameterized family of grammars) is

presented to the learner. Clearly, not all sentences occur with equal likelihood. Some

are more likely than others. How does this a�ect learnability? How does this a�ect
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sample complexity? One could, of course, attempt to come up with distribution-

independent bounds on the sample complexity. This, as we shall soon see, is not

possible.

3) the presence, and nature, of noise, or extraneous examples: in practice, children

are exposed to noise (sentences, which are inconsistent with the target grammar) due

to the presence of foreign, or idiosyncratic speakers, dis
uencies in speech, or a variety

of other reasons. How does one model noise? How does it a�ect sample complexity

or learnability or both?

4) the type of learning algorithm involved: a learning algorithm is an e�ective

procedure mapping data to hypotheses (parameter values). Given that the brain has

to solve this mapping problem, it then becomes of interest, to study the space of

algorithms which can solve it. How many of them converge to the target? What is

their sample complexity? Are they psychologically plausible?

5) the use of memory: this is not really an independent dimension, in the sense,

that it is related to the kind of algorithms used. The TLA, and variants, as we shall

soon see, are memoryless algorithms. These can be modeled by a Markov chain.

This is the space which needs to be explored. By making a speci�c choice along

each of the �ve dimensions discussed (corresponding to a single point in the 5-

dimensional space of �g. 4-36, we arrive at a speci�c learning problem. Varying

the choices along each dimension (thereby traversing the entire space of �g. 4-36)

gives rise to the class of learning problems associated with parameterized linguistic

theories. For our analysis, we choose as a concrete starting point the Gibson and

Wexler Triggering Learning Algorithm (TLA) working on the 3-parameter syntactic

subsystem in the example shown. In our space of language learning problems, this

corresponds to (1) a 3-way parameterization, using mostly X-bar theory; (2) a uni-

form sentence distribution over unembedded (degree-0) sentences; (3) no noise; (4) a

local gradient ascent search algorithm; and (5) memoryless (online) learning. Follow-

ing our analysis of this learning system, we consider variations in learning algorithms,

sentence distribution, noise, and language/grammar parameterizations.

4.4 Formal Analysis of the Triggering Learning

Algorithm

Let us start with the TLA. We �rst show that this algorithm and others like it is

completely modeled by a Markov chain. We explore the basic computational conse-

quences of this fundamental result, including some surprising results about sample

complexity and convergence time, the dominance of random walk over gradient as-
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cent, and the applicability of these results to actual child language acquisition, and

possibly language change.

Background. Following Gold (1967) the basic framework is that of identi�cation in

the limit. We assume some familiarity with Gold's assumptions. The learner receives

an (in�nite) sequence of (positive) example sentences from some target language.

After each, the learner either (i) stays in the same state; or (ii) moves to a new state

(change its parameter settings). If after some �nite number of examples the learner

converges to the correct target language and never changes its guess, then it has

correctly identi�ed the target language in the limit; otherwise, it fails.

In the GW model (and others) the learner obeys two additional fundamental

constraints: (1) the single-value constraint|the learner can change only 1 parameter

value each step; and (2) the greediness constraint|if the learner is given a positive

example it cannot recognize and changes one parameter value, �nding that it can

accept the example, then the learner retains that new value. The TLA can then be

precisely stated as follows. See Gibson and Wexler (1994) for further details.

� [Initialize] Step 1. Start at some random point in the (�nite) space of possible

parameter settings, specifying a single hypothesized grammar with its resulting

extension as a language;

� [Process input sentence] Step 2. Receive a positive example sentence si at time

ti (examples drawn from the language of a single target grammar, L(Gt)), from

a uniform distribution on the degree-0 sentences of the language (we shall be

able to relax this distributional constraint later on);

� [Learnability on error detection] Step 3. If the current grammar parses (gener-

ates) si, then go to Step 2; otherwise, continue.

� [Single-step gradient-ascent] Select a single parameter at random, uniformly

with probability 1=n, to 
ip from its current setting, and change it (0 mapped

to 1, 1 to 0) i� that change allows the current sentence to be analyzed ; otherwise

go to Step 2;

Of course, this algorithm never halts in the usual sense. GW aim to show under

what conditions this algorithm converges \in the limit"|that is, after some number,

n; of steps, where n is unknown, the correct target parameter settings will be selected

and never be changed. They investigate the behavior of the TLA on the linguistically

natural 3-parameter syntactic subsystem of example 1. Note that a grammar in this

space is simply a particular n-length array of 0's and 1's; hence there are 2n possible
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grammars (languages). Gibson and Wexler's surprising result is that the simple 3-

parameter space they consider is unlearnable in the sense that positive-only examples

can lead to local maxima{ incorrect hypotheses from which a learner can never escape.

More broadly, they show that learnability in such spaces is still an interesting problem,

in that there is a substantive learning theory concerning feasibility, convergence time,

and the like, that must be addressed beyond traditional linguistic theory and that

might even choose between otherwise adequate linguistic theories.

Triggers: Various researchers (Lightfoot, 1991; Clark and Roberts, 1993; Gibson

and Wexler, 1994; Frank and Kapur, 1992) have explored the notion of triggers as a

way to model parameter space language learning. Intuitively, triggers are supposed to

represent evidence which allows the child to set the parameter for the target language.

Concretely, Gibson and Wexler de�ne triggers to be sentences from the target which

allow a parameter to be correctly set. Thus, global triggers for a particular parameter

are sentences from the target language which force the learner to set that parameter

correctly (irrespective of the learner's current hypothesis about the target parameter

settings). On the other hand, local triggers for a particular parameter depend upon

the learner's hypothesis. Given values for all parameters but one (the parameter in

question), local triggers are sentences which force the learner to correctly set the value

of that parameter.

Gibson and Wexler suggest that the existence of local triggers for every (hypoth-

esis,target) pair in the space su�ces for TLA learnability to hold. As we shall see

later, one important corollary of our stochastic formulation shows that this condition

does not su�ce. In other words, even if a triggered path exists from the learner's hy-

pothesis language to the target, the learner might, with high probability, not take this

path, resulting in non-learnability. A further consequence is that many of Gibson and

Wexler's proposed cures for nonlearnability in their example system, such as \matu-

rational" ordering imposed on parameter settings, simply do not apply. On the other

hand, this result reinforces Gibson and Wexler's basic point that seemingly simple

parameter-based language learning models can be quite subtle|so subtle that even a

super�cially complete computer simulation can fail to uncover learnability problems.

4.4.1 The Markov formulation

From the standpoint of learning theory, GW leave open several questions that can be

addressed by a more precise formalization of this model in terms of Markov chains (a

possible formalization suggested but left unpursued in footnote 9 of GW).

Consider a parameterized grammar (language) family with n parameters. We can

picture the hypothesis space, of size 2n, as a set of points, each corresponding to
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one particular array of parameter settings (languages, grammars). Call each point

a hypothesis state or simply state of this space. As is conventional, we de�ne these

languages over some alphabet � as a subset of ��. One of them is the target language

(grammar). We arbitrarily place the (single) target grammar at the center of this

space. Since by the TLA the learner is restricted to moving at most 1 binary value

in a single step, the theoretically possible transitions between states can be drawn

as (directed) lines connecting parameter arrays (hypotheses) that di�er by at most 1

binary digit (a 0 or a 1 in some corresponding position in their arrays). Recall that

this is the so-called Hamming distance.

We may further place weights on the transitions from state i to state j: These

correspond to the probabilities that the learner will move from hypothesis state i to

state j. In fact, as we shall show below, given a distribution over L(Gt), we can

further carry out the calculation of the actual transition probabilities themselves.

Thus, we can picture the TLA learning space as a directed, labeled graph V with 2n

vertices.24 More precisely, we can make the following remarks about the TLA system

GW describe.

Remark. The TLA system is memoryless, that is, given a sequence s of sentences up

to time ti, the selection of hypothesis h(ti+1) depends only on sentence s(ti), and not

(directly) on previous sentences, i.e.,

pfh(ti+1) = hjh(t); s(t); t � tig = Pfh(ti+1) = hjh(ti); s(ti)g

In other words, the TLA system is a classical discrete stochastic process, in par-

ticular, a discrete Markov process or Markov chain. We can now use the theory

of Markov chains to describe TLA parameter spaces (Isaacson and Masden, 1976).

For example, as is well known, we can convert the graphical representation of an

n-dimensional Markov chain M to an n� n matrix T , where each matrix entry (i; j)

represents the transition probability from state i to state j. A single step of the

Markov process is computed via the matrix multiplication T � T ; n steps is given by

T
n. A \1" entry in any cell (i; j) means that the system will converge with probability

1 to state j, given that it starts in state i.

As mentioned, not all these transitions will be possible in general. For example,

by the single value hypothesis, the system can only move 1 Hamming bit at a time.

Also, by assumption, only di�erences in surface strings can force the learner from one

hypothesis state to another. For instance, if state i corresponds to a grammar that

24GW construct an identical transition diagram in the description of their computer program for
calculating local maxima. However, this diagram is not explicitly presented as a Markov structure; it
does not include transition probabilities. Of course, topologically both structures must be identical.
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generates a language that is a proper subset of another grammar hypothesis j, there

can never be a transition from j to i, and there must be one from i to j. Further,

by assumption and the TLA, it is clear that once we reach the target grammar there

is nothing that can move the learner from this state, since all remaining positive

evidence will not cause the learner to change its hypothesis. Thus, there must be a

loop from the target state to itself and no exit arcs. In the Markov chain literature,

this is known as an Absorbing State (AS). Obviously, a state that only leads to an AS

will also drive the learner to that AS. Finally, if a state corresponds to a grammar

that generates some sentences of the target there is always a loop from that state to

itself, that has some nonzero probability.

Example.

Consider the 3-parameter syntax subsystem of Example 1. Its binary parameters are:

(1) Spec(i�er) �rst (0) or last (1); (2) Comp(lement) �rst (0) or last (1); and Verb

Second (V2) does not exist (0) or does exist (1). As discussed in the example, the

3 parameters give rise to 8 distinct grammars. Further, these grammars generate

di�erent combinations of syntactic categories.

Rather than considering categories of the form Noun, Adjective, and so on, one

could use more abstract constituents to de�ne the vocabulary of the language. One

possible approach is to allow the usage of phrases as possible \words" in the language.

This is what GW choose to do. The net result is that the grammars are now de�ned

over a vocabulary, � = fS, V, O, O1, O2, Adv, Auxg; corresponding to Subject, Verb,
Object, Direct Object, Indirect Object, Adverb, and Auxiliary verb. See Haegeman

(1991) for an account of such a transformation. Sentences in �� now correspond to

concatenations of these basic \words"{which are really phrases.

For instance, parameter setting (5) corresponds to the array [0 1 0]= Speci�er �rst,

Comp last, and �V2, which works out to the possible basic English surface phrase

order of Subject{Verb{Object (SVO). As shown in GW's �gure (3), the other possible

arrangements of surface strings corresponding to this parameter setting include SV

(as in John runs); SV O1 O2 (two objects, as in give John an ice-cream); S Aux

V (as in John is running; S Aux V O; S Aux V O1 O2; Adv S V (where Adv is

an Adverb, like quickly; Adv S V O; Adv S V O1 O2; Adv S Aux V; Adv S Aux

V O; and Adv S Aux V O1 O2. Shown in appendix A of this chapter are all the

possible degree-0 (unembedded) sentences generated by the 8 possible grammars of

this parametric system.

Suppose SOV (setting #5=[0 1 0]) is the target grammar (language). With the

GW 3-parameter system, there are 23 = 8 possible hypotheses, so we can draw this

as an 8-point Markov con�guration space, as shown in �g. 4-37. The shaded rings
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represent increasing Hamming distances from the target. Each labeled circle is a

Markov state, a possible array of parameter settings or grammar, hence extensionally

speci�es a possible target language. Each state is exactly 1 binary digit away from

its possible transition neighbors. Each directed arc between the points is a possible

(nonzero) transition from state i to state j; we shall show how to compute this

immediately below. We assume that the target grammar, a double circle, lies at the

center. This corresponds to the (English) SOV language. Surrounding the bulls-

eye target are the 3 other parameter arrays that di�er from [0 1 0] by one binary

digit each; we picture these as a ring 1 Hamming bit away from the target: [0, 1, 1],

corresponding to GW's parameter setting #6 in their �gure 3 (Spec-�rst, Comp-�nal,

+V2, basic order SVO+V2); [0 0 0], corresponding to GW's setting #7 (Spec-�rst,

Comp-�rst, �V2), basic order SOV; and [1 1 0], GW's setting #1 (Spec-�nal, Comp-

�nal, �V 2], basic order VOS.
Around this inner ring lie 3 parameter setting hypotheses, all 2 binary digits away

from the target: [0 0 1], [1 0 0], and [1 1 1] (grammars #2, 3, and 8 in GW �gure

3). Note that by the Single Value hypothesis, the learner can only move one grey

ring towards or away from the target at any one step. Finally, one more ring out,

three binary digits di�erent from the target, is the hypothesis [1 0 1], corresponding

to target grammar 4.

Using this picture, we can also now readily interpret some of the terminological

notions in GW's article. A local trigger is simply a datum that would allow the

learner to move along an ingoing link in the �gure. This is because an ingoing link is

associated with sentences which allow the learner to move 1 bit closer to the target

in parameter space, and consequently, set one parameter correctly. For example, the

link from grammar state 3 to grammar state 7 does correspond to a local trigger,

as does the link from 4 to 2; however, the link from grammar 3 to 4 is not a local

trigger. Also, because of the Single Value and Greediness constraints, the learner can

only either (i) stay in its current state; (ii) move 1 step inwards (a local trigger); or

(iii) move 1 step outwards (note that this also happens given data from the target,

just as in Case (ii)). These are the only allowed moves; one cannot move to another

state within the same ring.

One can also describe the learnability properties of this space more formally.

In this Markov chain, certain states have no outgoing arcs; these are among the

Absorbing States (AS) because once the system has made a transition into one of

these states, it can never exit. More generally, let us de�ne the set of closed states

CS to be any proper subset of states in the Markov chain such that there is no arc

from any of the states in CS to any other state in the Markov chain.
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Figure 4-37: The 8 parameter settings in the GW example, shown as a Markov structure.

Directed arrows between circles (states, parameter settings, grammars) represent possible

nonzero (possible learner) transitions. The target grammar (in this case, number 5, setting

[0 1 0]), lies at dead center. Around it are the three settings that di�er from the target

by exactly one binary digit; surrounding those are the 3 hypotheses two binary digits away

from the target; the third ring out contains the single hypothesis that di�ers from the target

by 3 binary digits. Note that the learner can either cycle or step in or out one ring (binary

digit) at a time, according to the single-step learning hypothesis; but some transitions are

not possible because there is no data to drive the learner from one state to the other under

the TLA. Numbers on the arcs denote transition probabilities between grammar states;

these values are not computed by the original GW algorithm.
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Note that in the systems under discussion the target state is always an Absorbing

State (once the learner is at the target grammar, it can never exit), so the Markov

chains we will consider always have at least one AS. In the example 3-parameter sys-

tem, state 2 is also an Absorbing State. Given this formulation, one can immediately

give a very simple criterion for the learnability of such parameter spaces operated

upon by the TLA25.

Theorem 4.4.1 Given a Markov chain C corresponding to a parameter space, a

target parameter setting, and a GW TLA learner that attempts to learn the target

parameters, 9 exactly 1 AS (corresponding to the target grammar) and every CS

includes the target state i� target parameters can be correctly set by the TLA in the

limit (with probability 1).

Proof. (. By assumption, C is learnable. Now assume for sake of contradiction

that there is some CS that does not include the target state. If the learner starts in

some state belonging to this CS, it can never reach the target AS, by the de�nition

of a closed state. This contradicts the assumption that the space was learnable.

). Assume that there exists exactly 1 AS in the Markov chain M and no closed

states CS that do not include the target. There are two cases. Case (i): at some time

the learner reaches the target state. Then, by de�nition, the learner has converged

and the system is learnable. Case (ii): there is no time at which the learner reaches the

target state. Then the learner must move forever among a set of nontarget states. But

this by de�nition forms a closed set of states distinct from the target, a contradiction.

The argument can be made more rigorous by taking a canonical decomposition of the

chain C into equivalence classes of states, noting that the target is in an equivalence

class by itself, and therefore all other states must be transient ones. Consequently,

the learner must eventually end up at the target state (the only recurrent state) with

probability 1.

It is also of interest to be able to compute the set of inital states from which the

TLA learner is guaranteed to converge to the target state. The following corollary

describes these states.

Corollary 4.4.1 Given a Markov chain C corresponding to a GW TLA learner, the

set of learnable initial states is exactly the set of states that are connected to the target

and unconnected to the nontarget closed states of the Markov chain.

25Any memoryless algorithm operating on this �nite parameter space can be modeled as a �rst-
order Markov chain. See appendix B of this chapter. The theorem is true for all such algorithms,
not just the TLA
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It is easy to see from inspection of the �gure that there are exactly 2 absorbing

states in this Markov chain, that is, states that have no exit arcs. One AS is the

target grammar (by de�nition). The other AS is state 2. Correspondingly, by our

theorem above, the target is not learnable by the TLA. This is correctly noted by

Gibson and Wexler. In an attempt to obtain a list of initial states from which the

learner is unable to reach the target, Gibson and Wexler, list only states 2, and 4.

State 2, as we have seen is an additional AS, clearly the learner will not reach the

target from here. State 4 is unconnected to the target by any path in the chain,

clearly, the learner cannot reach the target from here as well. They compute the

list of problematic initial states as those, from which the learner can never reach the

target, in other words, those states which are unconnected to the target. They have

implicitly assumed that if a triggered path to the target exists, it will be taken with

probability one. This need not be the case. We will soon see that there are additional

problematic states, from which the learner cannot reach the target with probability

one. Gibson and Wexler omit these states in their analysis.

4.5 Derivation of Transition Probabilities for the

Markov TLA Structure

We have argued in the previous section, that the TLA working on �nite parameter

spaces reduces to a Markov chain. This argument cannot be complete without the

precise computation of the transition probabilities from state to state. We do this

now.

Consider, a parametric family with n boolean valued parameters. These de�ne,

2n grammars (and by extension, languages), as we have discussed. Let the target

language Lt consist of the strings (sentences) s1; s2; :::; i.e.,

Lt = fs1; s2; s3; :::g � ��

Let there be a probability distribution P on these strings26, according to which they

are drawn and presented to the learner. Suppose the learner is in a state s cor-

responding to the language Ls. Consider some other state k corresponding to the

26This is equivalent to assuming a noise-free situation, in the the sense that no sentence outside
of the target language can occur. However, one could choose malicious distributions so that all
strings from the target are not presented to the learner. If one wishes to include noise, one only need
consider a distribution P on �� rather than on the strings of Lt: Everything else in the derivation
remains identical. This would yield a Markov chain corresponding to the TLA operating in the
presence of noise. We study this situation in greater detail in the next chapter.
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language Lk: What is the probability that the TLA will update its hypothesis from

Ls to Lk after receiving the next example sentence? First, observe that due to the

single valued constraint, if k and s di�er by more than one parameter setting, then

the probability of this transition is zero. As a matter of fact, the TLA will move

from s to k only if the following two conditions are met, viz., 1)the next sentence it

receives (say ! which occurs with probability P (!) ) is analyzable by the parameter

settings corresponding to k and not by the parameter setting corresponding to s, and

2)the TLA has a choice of n parameters to 
ip on not being able to analyze ! and it

picks the one which would move it to state k:

Event 1 occurs with probability
P

!2LknLs
P (!) while event 2 occurs with prob-

ability 1=n since the parameter to 
ip is chosen uniformly at random out of the n

possible choices. Thus the co-occurrence of both these events yields the following

expression for the total probability of transition from s to k after one step:

P [s! k] =
X

sj 62Ls;sj2Lk

(1=n)P (sj )

Since the total probability over all the arcs out of s (including the self loop) must be

1, we obtain the probability of remaining in state s after one step as

P [s! s] = 1�
X

k is a neighboring state of s

P [s! k]

Finally, given any parameter space with n parameters, we have 2n languages.

Fixing one of them as the target language Lt we obtain the following procedure for

constructing the corresponding Markov chain. Note that this will yield a Markov

chain with the same topology (in the absence of noise) as the GW procedure in their

paper. However, there is the signi�cant di�erence of adding a probability measure on

the language family.

� (Assign distribution) First �x a probability measure P on the strings of the

target language Lt.

� (Enumerate states) Assign a state to each language i.e., each Li.

� (Take set di�erences.) Now for any two states i and k, if they are more than

1 Hamming distance apart, then the transition P [i ! k] = 0. If they are 1

Hamming distance apart then P [i! k] = 1
n
P (Lk n Li.

This model captures the dynamics of the TLA completely. We have indicated,

in a previous footnote, how to extend the model to cover noise. In general, a class
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of memoryless algorithms can me modeled by a Markov chain. Appendix B of this

chapter shows how to do this.

Example (continued).

Consider again the 3-parameter system in the previous �gure with target language

5 (spec-�rst, comp-�nal, -V2; English). We can calculate the set di�erences between

the languages (this is easily done for unembedded sentences using the data from

Appendix A). Thereafter, assuming a distribution on the sentences of the target

(uniform on degree-0 sentences), one could simply follow the procedure prescribed

above, and obtain the transition probabilities which annotate the Markov chain of

�g. 4-37.

For example, since the set di�erence between states 1 and 5 gives all of the target

language, there is a (high) transition probability from state 1 to state 5. Similarly,

since states 7 and 8 share some target language strings in common, such as S V, and

do not share others, such as Adv S and S V O, the learner can move from state 7 to

8 and back again.

Many additional properties of the triggering learning system now become evident

once the mathematical formalization has been given. It is easy to imagine other

alternatives to the TLA that will avoid the local maxima problem. For example, as it

stands, the learner only changes a parameter setting if that change allows the learner

to analyze the sentence it could not analyze before. If we relax this condition so that

in this situation the learner picks a parameter at random to change, then the problem

with local maxima disappears, because there can be only 1 Absorbing State, namely

the target grammar. All other states have exit arcs. Thus, by our main theorem,

such a system is learnable.

Or consider, for example, the possibility of noise|that is, occasionally the learner

gets strings that are not in the target language. GW state (fn. 4, p. 5) that this is not

a problem; the learner need only pay attention to frequent data; how is the learner to

\pay attention" to frequent data? Unless some kind of memory or frequency-counting

device is added, the learner cannot know whether the example it receives is noise or

not. If this is the case, then there is always some �nite probability, however small, of

escaping a local maximum. It appears that the identi�cation in the limit framework

as given is simply incompatible with the notion of noise, unless a memory window of

some kind is added.

We may now proceed to ask the following questions about the TLA more precisely:

1. Does it converge?
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2. How fast does it converge? How does this vary with distributional assumptions

on the input examples?

3. Since our derivation is general, we can now compute the dynamics for other

\natural" parameter systems, like the 10-parameter system for the acquisition

of stress in languages developed by Dresher and Kaye (1990). What results do

they yield?

4. Variants of TLA would correspond to other Markov structures. Do they con-

verge? If so, how fast?

5. How does the convergence time scale up with the number of parameters?

6. What is the computational complexity of learning parameterized language fam-

ilies?

7. What happens if we move from on-line to batch learning? Can we get PAC-style

bounds (Valiant, 1984)?

8. What does it mean to have non-stationary (nonergodic) Markov structures?

How does this relate to assumptions about parameter ordering and maturation?

To explore these and other possible variations systematically, let us return to the

5-way classi�cation scheme for learning models introduced at the beginning of this

chapter. Recall that we have chosen a particular point in the 5-dimensional space

for preliminary analysis. This, among other things, corresponds to an assumption of

no noise, and a uniform probability distribution on the unembedded sentences of the

target. We have shown how to model this particular learning problem by a Markov

chain. This allows us to characterize learnability by our theorem earlier. We will

soon see how to characterize the sample complexity of such a learning system.

In the next section, we discuss how to characterize the sample complexity of

a learning system modeled as a Markov chain. Our eventual goal, however, is to

explore more completely the space of �g. 4-36. We consider variations to our �rst

learning problem along several dimensions. In particular, we discuss in turn, the

e�ect on learnability and sample complexity of distributional assumptions on the

data (question 2 above), and some variations in the learning algorithm (question 4).

In the next chapter, we will consider the e�ect of noise, and how that can potentially

bring about diachronic syntax change, as well as some alternate parameterizations

(question 3).
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4.6 Characterizing Convergence Times for the Markov

Chain Model

The Markov chain formulation gives us some distinct advantages in theoretically char-

acterizing the language acquisition problem. First, we have already seen how given

a Markov Chain one could investigate whether or not it has exactly one absorbing

state corresponding to the target grammar. This is equivalent to the question of

whether any local maxima exist. One could also look at other issues (like station-

arity or ergodicity assumptions) that might potentially a�ect convergence. Later we

will consider several variants to TLA and analyze them formally within the Markov

framework. We will also see that these variants do not su�er from the local maxima

problem associated with GW's TLA.

Perhaps the signi�cant advantage of the Markov chain formulation is that it allows

us to also analyze convergence times. Given the transition matrix of a Markov chain,

the problem of how long it takes to converge has been well studied. This question is of

crucial importance in learnability. Following GW, we believe that it is not enough to

show that the learning problem is consistent i.e., that the learner will converge to the

target in the limit. We also need to show, as GW point out, that the learning problem

is feasible, i.e., the learner will converge in \reasonable" time. This is particularly

true in the case of �nite parameter spaces where consistency might not be as much of

a problem as feasibility. The Markov formulation allows us to attack the feasibility

question. It also allows us to clarify the assumptions about the behavior of data and

learner inherent in such an attack. We begin by considering a few ways in which one

could formulate the question of convergence times.

4.6.1 Some Transition Matrices and Their Convergence Curves

Let us begin by following the procedure detailed in the previous section to actually

obtain a few transition matrices. Consider the example which we looked at infor-

mally in the previous section. Here the target grammar was grammar 5 (according

to our numbering of the languages in Appendix A). For simplicity, let us �rst assume

a uniform distribution on the degree-0 strings in L5, i.e., the probability the learner

sees a particular string sj in L5 is 1=12 because there are 12 (degree-0) strings in L5.

We can now compute the transition matrix as the following, where 0's occupy matrix

entries if not otherwise speci�ed:

168



L1 L2 L3 L4 L5 L6 L7 L8

L1
1
2

1
6

1
3

L2 1

L3
3
4

1
12

1
6

L4
1
12

11
12

L5 1

L6
1
6

5
6

L7
5
18

2
3

1
18

L8
1
12

1
36

8
9

Notice that both 2 and 5 correspond to absorbing states; thus this chain su�ers

from the local maxima problem. Note also (following the previous �gure as well) that

state 4 only exits to either itself or to state 2, hence is also a local maximum. For a

given transition matrix T; it is possible to compute

T1 = lim
m!1

T
m
:

If T is the transition probability matrix of a chain, then tij, i.e. the element of T

in the ith row and jth column is the probability that the learner moves from state i

to state j in one step. It is a well-known fact that if one considers the corresponding

i; j element of Tm then this is the probability that the learner moves from state i to

state j in m steps. Correspondingly, the i; jth element of T1 is the probability of

going from initial state i to state j \in the limit" as the number of examples goes to

in�nity. For learnability to hold irrespective of which state the learner starts in, the

probability that the learner reaches state 5 should tend to 1 as m goes to in�nity.

This means that column 5 of T1 should consist of 1's, and the matrix should contain

0's everywhere else. Actually we �nd that Tm converges to the following matrix as

m goes to in�nity:
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L1 L2 L3 L4 L5 L6 L7 L8

L1
1
3

2
3

L2 1

L3
1
3

2
3

L4 1

L5 1

L6 1

L7 1

L8 1

Examining this matrix we see that if the learner starts out in states 2 or 4, it will

certainly end up in state 2 in the limit. These two states correspond to local maxima

grammars in the GW framework. If the learner starts in either of these two states, it

will never reach the target. From the matrix we also see that if the learner starts in

states 5 through 8, it will certainly converge in the limit to the target grammar.

The situation regarding states 1 and 3 is more interesting, and not covered in

Gibson and Wexler (1994). If the learner starts in either of these states, it will reach

the target grammar with probability 2=3 and reach state 2, the other absorbing state

with probability 1=3. Thus we see that local maxima (states unconnected to the

target) are not the only problem for learnability. As a consequence of our stochastic

formulation, we see that there are initial hypotheses from which triggered paths exist

to the target, however the learner will not take these paths with probability one. In

our case, because of the uniform distribution assumption, we see that the path to

the target will only be taken with probability 2/3. By making the distribution more

favorable, this probability can be made larger, but it can never be made one.

This analysis, motivated as it was by our information-theoretic perspective, con-

siderably increases the number of problematic initial states from that presented in

Gibson and Wexler. While the broader implications of this is not clear, it certainly

renders moot some of the linguistic27 implications of GW's analysis.

Obviously one can examine other details of this particular system. However, let

us now look at a case where there is no local maxima problem. This is the case when

the target languages have verb-second (V2) movement in GW's 3-parameter case.

27For example, GW rely on \connectedness" to obtain their list of local maxima. From this
(incorrect) list, noticing that all local maxima were +Verb Second (+V2), they argued for ordered
parameter acquisition or \maturation". In other words, they claimed that the V2 parameter was
more crucial, and had to be set earlier in the child's language acquisition process. Our analysis shows
that this is incorrect, an example of how computational analysis can aid the search for adequate
linguistic theories.
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Consider the transition matrix (shown below) obtained when the target language is

L1. Again we assume a uniform distribution on strings of the target.

L1 L2 L3 L4 L5 L6 L7 L8

L1 1

L2
1
6

5
6

L3
5
18

2
3

1
18

L4
3
36

1
36

8
9

L5
1
3

23
36

1
36

L6
5
36

31
36

L7
1
18

11
12

1
36

L8
1
18

17
18

Here we �nd that Tm does indeed converge to a matrix with 1's in the �rst column

and 0's elsewhere. Consider the �rst column of Tm. It is of the form:

(p1(m); p2(m); p3(m); p4(m); p5(m); p6(m); p7(m); p8(m))
0

Here pi(m) denotes the probability of being in state 1 at the end of m examples

in the case where the learner started in state i. Naturally we want

lim
m!1

pi(m) = 1

and for this example this is indeed the case. Fig. 4-38 shows a plot of the following

quantity as a function of m, the number of examples.

p(m) = min
i

fpi(m)g

The quantity p(m) is easy to interpret. Thus p(m) = 0:95 means that for every

initial state of the learner the probability that it is in the target state after m ex-

amples is at least 0:95. Further there is one initial state (the worst initial state with

respect to the target, which in our example is L8) for which this probability is exactly

0:95. We �nd on looking at the curve that the learner converges with high probability

within 100 to 200 (degree-0) example sentences, a psychologically plausible number.

(One can now of course proceed to examine actual transcripts of child input to cal-

culate convergence times for \actual" distributions of examples, and we are currently

engaged in this e�ort.)

Now that we have made a �rst attempt to quantify the convergence time, several

other questions can be raised. How does convergence time depend upon the distribu-

tion of the data? How does it compare with other kinds of Markov structures with

171



N
um

ber of exam
ples (m

)

Probability of converging from most unfavourable state p(m)

0
100

200
300

400

0.0 0.2 0.4 0.6 0.8 1.0

F
ig
u
re

4
-3
8
:
C
o
n
v
erg

en
ce

a
s
fu
n
ctio

n
o
f
n
u
m
b
er

o
f
ex
a
m
p
les.

T
h
e
h
o
rizo

n
ta
l
a
x
is

d
en
o
tes

th
e
n
u
m
b
er

o
f
ex
a
m
p
les

receiv
ed

a
n
d
th
e
v
ertica

l
a
x
is
rep

resen
ts
th
e
p
ro
b
a
-

b
ility

o
f
co
n
v
erg

in
g
to

th
e
ta
rg
et

sta
te.

T
h
e
d
a
ta

fro
m

th
e
ta
rg
et

is
a
ssu

m
ed

to
b
e

d
istrib

u
ted

u
n
ifo
rm

ly
ov
er
d
eg
ree-0

sen
ten

ces.
T
h
e
so
lid

lin
e
rep

resen
ts
T
L
A
co
n
v
er-

g
en
ce

tim
es

a
n
d
th
e
d
o
tted

lin
e
is
a
ra
n
d
o
m

w
a
lk

lea
rn
in
g
a
lg
o
rith

m
(R
W
A
).
N
o
te

th
a
t
ra
n
d
o
m

w
a
lk
a
ctu

a
lly

co
n
v
erg

es
fa
ster

th
a
n
th
e
T
L
A
in

th
is
ca
se.

1
7
2



the same number of states? How will the convergence time be a�ected if the number

of states increases, i.e the number of parameters increases? How does it depend upon

the way in which the parameters relate to the surface strings? Are there other ways to

characterize convergence times? We now proceed to answer some of these questions.

4.6.2 Absorption Times

In the previous section, we computed the transition matrix for a �xed (in principle,

this could be arbitrary) distribution and showed the rate of convergence in a certain

way. In particular, we plotted p(m), (the probability of converging from the most

unfavorable initial state) against m (the number of samples). However, this is not

the only way to characterize convergence times. Given an initial state, the time taken

to reach the absorption state (known as the absorption time) is a random variable.

One can compute the mean and variance of this random variable. For the case when

the target language is L1, we have seen that the transition matrix has the form:

T =

0
@ 1 0

R Q

1
A

Here Q is a 7-dimensional square matrix. The mean absorption times from states 2

through 8 is given by the vector (see Isaacson and Madsen (1976) )

� = (I �Q)�11

where 1 is a 7-dimensional column vector of ones. The vector of second moments is

given by

�
0 = (I �Q)�1(2� � 1):

Using this result, we can now compute the mean and standard deviation of the ab-

sorption time from the most unfavorable initial state of the learner. (We note that

the second moment is fairly skewed in such cases and so is not symmetric about the

mean, as may be seen from the previous curves.) The four learning scenarios consid-

ered are the TLA with uniform, and increasingly malicious distributions (discussed

later), and the random walk (also discussed later).

173



Learning Mean abs. St. Dev.

scenario time of abs. time

TLA (uniform) 34.8 22.3

TLA (a = 0:99) 45000 33000

TLA (a = 0:9999) 4:5 � 106 3:3� 106

RW 9.6 10.1

4.6.3 Eigenvalue Rates of Convergence

In classical Markov chain theory, there are also well-known convergence theorems

derived from a consideration of the eigenvalues of the transition matrix. We state

without proof a convergence result for transition matrices stated in terms of its eigen-

values.

Theorem 4.6.1 Let T be an n � n transition matrix with n linearly independent

left eigenvectors x1; : : :x2 corresponding to eigenvalues �1; : : : ; �n. Let x0 (an n-

dimensional vector) represent the starting probability of being in each state of the

chain and � be the limiting probability of being in each state. Then after k transitions,

the probability of being in each state x0T
k can be described by

k x0T
k � � k=k

nX
i=1

�
k

i
x0yixi k� max

2�j�n
j�j jk

nX
i=2

k x0yixi k

where the yi's are the right eigenvectors of T .

This theorem thus bounds the rate of convergence to the limiting distribution �

(in cases where there is only one absorption state, � will have a 1 corresponding to

that state and 0 everywhere else). Using this result we can now bound the rates of

convergence (in terms of number, k; of samples) by:

Learning scenario Rate of Convergence

TLA (uniform) O(0:94k)

TLA(a = 0:99) O((1 � 10�4)k)

TLA(a = 0:9999) O((1 � 10�6)k)

RW O(0:89k)

This theorem also helps us to see the connection between the number of examples

and the number of parameters since a chain with n states (corresponding to an n�n

transition matrix) represents a language family with log2(n) parameters.
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4.7 Exploring Other Points

We have developed, by now, a complete set of tools to characterize learnability and

sample complexity of memoryless algorithms working on �nite parameter spaces. We

applied these tools to a speci�c learning problem which corresponded to a point in our

5-dimensional space previously investigated by Gibson and Wexler. We also provided

an account of how our new analysis revised some of their conclusions and had possible

applications to linguistic theory. Here we now explore some other points in the space.

In the next section, we consider varying the learning algorithm, while keeping other

assumptions about the learning problem identical to that before. Later, we vary the

distribution of the data.

4.7.1 Changing the Algorithm

As one example of the power of this approach, we can compare the convergence time of

TLA to other algorithms. TLA observes the single value and greediness constraints.

We consider the following three simple variants by dropping either or both of the

Single Value and Greediness constraints:

Random walk with neither greediness nor single value constraints: We

have already seen this example before. The learner is in a particular state. Upon

receiving a new sentence, it remains in that state if the sentence is analyzable. If not,

the learner moves uniformly at random to any of the other states and stays there

waiting for the next sentence. This is done without regard to whether the new state

allows the sentence to be analyzed.

Random walk with no greediness but with single value constraint: The

learner remains in its original state if the new sentence is analyzable. Otherwise,

the learner chooses one of the parameters uniformly at random and 
ips it thereby

moving to an adjacent state in the Markov structure. Again this is done without

regard to whether the new state allows the sentence to be analyzed. However since

only one parameter is changed at a time, the learner can only move to neighboring

states at any given time.

Random walk with no single value constraint but with greediness: The

learner remains in its original state if the new sentence is analyzable. Otherwise the

learner moves uniformly at random to any of the other states and stays there i� the
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yet another example of how the computational perspective can allow us to rethink

cognitive assumptions. Of course, it may be that the TLA has empirical support, in

the sense of independent evidence that children do use this procedure (given by the

pattern of their errors, etc.), but this evidence is lacking, as far as we know.

4.7.2 Distributional Assumptions

In an earlier section we assumed that the data was uniformly distributed. We com-

puted the transition matrix for a particular target language and showed that con-

vergence times were of the order of 100-200 samples. In this section we show that

the convergence times depend crucially upon the distribution. In particular we can

choose a distribution that will make the convergence time as large as we want. Thus

the distribution-free convergence time for the 3-parameter system is in�nite.

As before, we consider the situation where the target language is L1. There are

no local maxima problems for this choice. We begin by letting the distribution be

parameterized by the variables a; b; c; d where

a = P (A = fAdv V Sg)
b = P (B = fAdv V O S, Adv Aux V Sg)
c = P (C = fAdv V O1 O2 S, Adv Aux V O S,

Adv Aux V O1 O2 Sg)
d = P (D = fV Sg)

Thus each of the sets A;B;C and D contain di�erent degree-0 sentences of L1. Clearly

the probability of the set L1nfA[B[C[Dg is 1�(a+b+c+d). The elements of each

de�ned subset of L1 are equally likely with respect to each other. Setting positive

values for a; b; c; d such that a + b + c + d < 1 now de�nes a unique probability for

each degree(0) sentence in L1. For example, the probability of (Adv V O S) is b=2,

the probability of (Adv Aux V O S) is c=3, that of (V O S) is (1� (a+ b+ c+ d))=6

and so on.

We can now obtain the transition matrix corresponding to this distribution. This

is shown in Table 4.2.

Compare this matrix with that obtained with a uniform distribution on the sen-

tences of L1 in the earlier section. This matrix has non-zero elements (transition

probabilities) exactly where the earlier matrix had non-zero elements. However, the

value of each transition probability now depends upon a; b; c; and d. In particular if

we choose a = 1=12; b = 2=12; c = 3=12; d = 1=12 (this is equivalent to assuming a

uniform distribution) we obtain the appropriate transition matrix as before. Looking
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L1 L2 L3 L4 L5 L6 L7 L8

L1 1

L2
1�a�b�c

3
2+a+b+c

3

L3
1�a�d

3
2+a+d�b

3
b

3

L4
c

3
d

3
3�c�d

3

L5
1
3

2�a
3

a

3

L6
b+c
3

3�b�c
3

L7
a+d
3

3�2a�d
3

a

3

L8
b

3
3�b
3

Table 4.2: Transition matrix corresponding to a parameterized choice for the distri-

bution on the target strings. In this case the target is L1 and the distribution is

parameterized according to Section 4.7.2

more closely at the general transition matrix, we see that the transition probability

from state 2 to state 1 is (1 � (a + b + c))=3. Clearly if we make a arbitrarily close

to 1, then this transition probability is arbitrarily close to 0 so that the number of

samples needed to converge can be made arbitrarily large. Thus choosing large values

for a and small values for b will result in large convergence times.

This means that the sample complexity cannot be bounded in a distribution-free

sense, because by choosing a highly unfavorable distribution the sample complexity

can be made as high as possible. For example, we now give the convergence curves

calculated for di�erent choices of a; b; c; d. We see that for a uniform distribution the

convergence occurs within 200 samples. By choosing a distribution with a = 0:9999

and b = c = d = 0:000001, the convergence time can be pushed up to as much as

50 million samples. (Of course, this distribution is presumably not psychologically

realistic.) For a = 0:99; b = c = d = 0:0001, the sample complexity is on the order of

100; 000 positive examples.

4.7.3 Natural Distributions{CHILDES CORPUS

It is of interest to examine the �delity of the model using real language distributions,

namely, the CHILDES database. We have carried out preliminary direct experiments

using the CHILDES caretaker English input to \Nina" and German input to \Ka-

trin"; these consist of 43,612 and 632 sentences each, respectively. We note, following

well-known results by psycholinguists, that both corpuses contain a much higher

percentage of aux-inversion and wh-questions than \ordinary" text (e.g., the LOB):

25,890 questions, and 11, 775 wh-questions; 201 and 99 in the German corpus; but

only 2,506 questions or 3.7% out of 53,495 LOB sentences.

To test convergence, an implemented system using a newer version of deMarcken's
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partial parser (see deMarcken, 1990) analyzed each degree-0 or degree-1 sentence as

falling into one of the input patterns SVO, S Aux V, etc., as appropriate for the target

language. Sentences not parsable into these patterns were discarded (presumably \too

complex" in some sense following a tradition established by many other researchers;

see Wexler and Culicover (1980) for details). Some examples of caretaker inputs

follow:

this is a book ? what do you see in the book ?

how many rabbits ?

what is the rabbit doing ? (: : :)

is he hopping ? oh . and what is he playing with ?

red mir doch nicht alles nach !

ja , die schw�atzen auch immer alles nach (: : :)

When run through the TLA, we discover that convergence falls roughly along

the TLA convergence time displayed in �gure 1{roughly 100 examples to asymptote.

Thus, the feasibility of the basic model is con�rmed by actual caretaker input, at

least in this simple case, for both English and German. We are continuing to explore

this model with other languages and distributional assumptions. However, there is

one very important new complication that must be taken into account: we have

found that one must (obviously) add patterns to cover the predominance of auxiliary

inversions and wh-questions. However, that largely begs the question of whether the

language is verb-second or not. Thus, as far as we can tell, we have not yet arrived

at a satisfactory parameter-setting account for V2 acquisition.

4.8 Batch Learning Upper and Lower Bounds:

An Aside

So far we have discussed a memoryless learner moving from state to state in parameter

space and hopefully converging to the correct target in �nite time. As we saw this was

well-modeled by our Markov formulation. In this section however we step back and

consider upper and lower bounds for learning �nite language families if the learner was

allowed to remember all the strings encountered and optimize over them. Needless

to say this might not be a psychologically plausible assumption, but it can shed light

on the information-theoretic complexity of the learning problem.
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Consider a situation where there are n languages L1; L2; : : :Ln over an alphabet

�. Each language can be represented as a subset of �� i.e.

Li = f!i1; !i2; : : :g;!j 2 ��

The learner is provided with positive data (strings that belong to the language)

drawn according to distribution P on the strings of a particular target language. The

learner is to identify the target. It is quite possible that the learner receives strings

that are in more than one language. In such a case the learner will not be able to

uniquely identify the target. However, as more and more data becomes available, the

probability of having received only ambigious strings becomes smaller and smaller

and eventually the learner will be able to identify the target uniquely. An interesting

question to ask then is how many samples does the learner need to see so that with

high con�dence it is able to identify the target, i.e. the probability that after seeing

that many samples, the learner is still ambigious about the target is less than �. The

following theorem provides a lower bound.

Theorem 4.8.1 The learner needs to draw at least M = maxj 6=t
1

ln(1=pj)
ln(1=�) sam-

ples (where pj = P (Lt \ Lj)) in order to be able to identify the target with con�dence

greater than 1� �.

Proof. Suppose the learner draws m (less than M) samples. Let k = arg maxj 6=t pj.

This means 1)M = 1
ln(1=pk)

ln(1=�) and 2) that with probability pk the learner receives

a string which is in both Lk and Lt. Hence it will be unable to discriminate between

the target and the kth language. After drawing m samples, the probability that all of

them belong to the set Lt \ Lk is (pk)
m. In such a case even after seeing m samples,

the learner will be in an ambiguous state. Now (pk)
m
> (pk)

M since m < M and

pk < 1. Finally since M ln(1=pk) = ln((1=pk)
M) = ln(1=�), we see that (pk)

m
> �.

Thus the probability of being ambiguous after m examples is greater than � which

means that the con�dence of being able to identify the target is less than 1 � �.

This simple result allows us to assess the number of samples we need to draw in

order to be con�dent of correctly identifying the target. Note that if the distribution

of the data is very unfavorable, that is, the probability of receiving ambiguous strings

is quite high, then the number of samples needed can actually be quite large. While

the previous theorem provides the number of samples necessary to identify the target,

the following theorem provides an upper bound for the number of samples that are

su�cient to guarantee identi�cation with high con�dence.

Theorem 4.8.2 If the learner draws more thanM = 1
ln(1=(1�bt))

ln(1=�) samples, then

it will identify the target with con�dence greater than 1��. ( Here bt = P (Ltn[j 6=tLj)).
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Proof. Consider the set L = Lt n [j 6=tLj . Any element of this set is present in

the target language Lt but not in any other language. Consequently upon receiving

such a string, the learner will be able to instantly identify the target. After m > M

samples, the probability that the learner has not received any member of this set

is (1 � P (L))m = (1 � bt)
m
< (1 � bt)

M = �: Hence the probability of seeing some

member of L in those m samples is greater than 1 � �. But seeing such a member

enables the learner to identify the target so the probability that the learner is able to

identify the target is greater than 1 � � if it draws more than M samples.

To summarize, this section provides a simple upper and lower bound on the sample

complexity of exact identi�cation of the target language from positive data. The �

parameter that measures the con�dence of the learner of being able to identify the

target is suggestive of a PAC [124] formulation. However there is a crucial di�erence.

In the PAC formulation, one is interested in an �-approximation to the target language

with at least 1� � con�dence. In our case, this is not so. Since we are not allowed to

approximate the target, the sample complexity shoots up with choice of unfavorable

distributions. There are some interesting directions one could follow within this batch

learning framework. One could try to get true PAC-style distribution-free bounds for

various kinds of language families. Alternatively one could use the exact identi�cation

results here for linguistically plausible language families with \reasonable" probability

distributions on the data. It might be an interesting exercise to recompute the bounds

for cases where the learner receives both positive and negative data. Finally the

bounds obtained here could be sharpened further. We intend to look into some of

these questions in the future.

4.9 Conclusions, Open Questions, and Future Di-

rections

The problem of learning parameterized families of grammars has several di�erent

dimensions as we have emphasized earlier. One needs to investigate the learnability

for a variety of algorithms, distributional assumptions, parameterizations, and so

on. In this chapter, we have emphasized that it is not enough to merely check for

learnability in the limit (as previous research within an inductive inference Gold

framework has tended to do; see, for example, Osherson and Weinstein, 1986); one

also needs to quantify the sample complexity of the learning problem, i.e., how many

examples does the learning algorithm need to see in order to be able to identify

the target grammar with high con�dence. To illustrate the importance of this, we

re-analyzed a particular learning problem previously studied by Gibson and Wexler.
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Our reanalysis, shows that on �nite parameter spaces, the Triggering Learning

Algorithm in particular, and memoryless algorithms in general, can be completely

modeled by a Markov process. This Markov model then allows us to check for learn-

ability in a very simple fashion, rather than the more complicated procedures pre-

viously used in the linguistics community. Further, it also allows us to characterize

the sample complexity of learning with such algorithms. On studying the perfor-

mance of the TLA on the speci�c 3-parameter subspace from this perspective, we

found several new results. First, the existence of new problematic initial hypotheses

was discovered|leading to revisions of certain aspects of maturation and parameter

ordering suggested by Gibson and Wexler. Second, we showed that the existence

of local triggers (in other words, a triggered path from the initial hypothesis to the

target) is not su�cient to guarantee learnability. Third, we found that the TLA

was suboptimal; for example the random walk algorithm on this space had no local

maxima and converged faster.

This analysis on a simple, previously studied, example demonstrates the useful-

ness of our perspective. It should be reiterated that any �nite parameterization, and

a class of memoryless algorithms can be studied by this approach. There are several

important questions which need to be pursued further. For example, one could turn

to other natural parametric systems suggested (the example of metrical phonology

given in this chapter, a variant studied by Dresher and Kaye (1990), a parameteriza-

tion chosen by Clark and Roberts (1993)) and so on. One could then establish the

complexity of learning these other parametric schemes, possibly with useful results

again.

Another crucial direction relates to the learning algorithm used. What happens

when the learner is allowed the use of memory? An interesting investigation of this

issue has been done by Kapur (1992). However some questions remain unresolved.

For example, is it true that any algorithm with a �nite memory size (n examples,

say) can be modeled as a �nite order Markov chain (presumably, the order would be

related to n; in some sense)? Is this a useful way to characterize such algorithms?

A complete characterization of human language requires us to describe the linguis-

tic knowledge (equivalent to parameterization), and the algorithm children use to

acquire this knowledge. Insights about the kinds of algorithms available, and their

psychological feasibility, could often direct the search for the right kind of linguistic

knowledge.

It is also of interest to study the relationship between the expressive power of

the parameterized family of grammars and the number of parameters. One needs

to reiterate, here, the importance of our point of view in this thesis. Recall how
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in Chapter 2, we investigated regularization networks from an approximation and

estimation point of view. Grammars, are no di�erent from regularization networks

in this sense. Thus, one could pose the following general problem. Assume a class of

grammars G as the concept class, and a parameterized class of grammars Hn as the

hypothesis class. Now, for a target grammar g 2 G; how many example sentences

need to be drawn, and how large must the number of parameters, n; be, so that the

learner's hypothesis will be close to the target with high con�dence?

Yet another issue has to do with the \smoothness" relation between the parameter

settings and the resulting surface strings. In principles-and-parameters theory, it has

often been suggested that a small parameter change could lead to a large deductive

change in the grammar, hence a large change in the surface language generated. In all

the examples considered so far there is a smooth relation between surface sentences

and parameters, in that switching from a V2 to a non-V2 system, for instance, leads

us to a Markov state that is not too far away from the previous one. If this is

not so, it is not so clear that the TLA will work as before. In fact, the whole

question of how to formulate the notion of \smoothness" in a language{grammar

framework is unclear. We know in the case of continuous functions, as discussed in

Chapter 3, that if the learner is allowed to choose examples (which can be simulated

by selective attention), then such an \active" learner can approximate such functions

much more quickly than a \passive" learner, like the one presented in GW. Is there

an analog to this in the discrete, digital domain of language? Further, how can one

approximate a language? Here too mathematics may play a helpful role. Recall

that there is an analog to a functional analysis of languages|namely, the algebraic

approach advanced by Chomsky and Schutzenberger (1963). In this model, a language

is described by an (in�nite) polynomial generating function, where the coe�cients on

the polynomial term x gives the number of ways of deriving the string x. A (weak,

string) approximation to a language can then be de�ned in terms of an approximation

to the generating function. If this method can be deployed, then one might be able to

carry over the results of functional analysis and approximation for active vs. passive

learners into the \digital" domain of language. If this is possible, we would then

have a very powerful set of previously underutilized mathematical tools to analyze

language learnability.
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Appendix

4-A Unembedded Sentences For Parametric Gram-

mars

The following table provides the unembedded (degree-0) sentences from each of the 8

grammars (languages) obtained by setting the 3 parameters of example 1 to di�erent

values. The languages are referred to as L1 through L8:
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4-B Memoryless Algorithms and Markov Chains

Memoryless algorithms can be regarded as those which have no recollection of previous

data, or previous inferences made about the target function. At any point in time,

the only information upon which such an algorithm acts is the current data, and

the current hypothesis (state). A memoryless algorithm can then be regarded as

an e�ective procedure mapping this information to a new hypothesis. In general,

given a particular hypothesis state (h in H, the hypothesis space), and a new datum

(sentence, s in ��), such a memoryless algorithm will map onto a new hypothesis

(g 2 H). Ofcourse, g could be the same as h or it could be di�erent depending

upon the speci�cs of the algorithm and the datum. If one includes the possibility of

randomization, then the mapping need not be deterministic. In other words, given a

state h; and sentence s; the algorithmmaps onto a distribution PH over the hypothesis

space, according to which the new state is selected. Clearly,

X
h2H

PH(h) = 1

Let P be the set of all possible probability distributions over the (�nite) hypothesis

space. For any PH 2 P; thus, PH[h] is the probability measure on the hypothesis

(state) h:

A memoryless algorithm can then be regarded as a computable function (f) from

(H;��) to P as follows:

f : (H;��) �! P

Thus, for any h 2 H; and s 2 ��; the quantity f(h; s) is a distribution over

the hypothesis space according to which the learner would pick the next hypothesis.

Consequently, a learner following such an algorithm, would update its hypothesis

with each new sentence, and move from state to state in our �nite parameter space

of hypotheses. Suppose, at a point in time, the learner is in a state h1: What is

the probability that it will move to state h2 after the next example? It will do so

only if the following two conditions are met. First, it receives a sentence (example),

s; for which f(h1; s) has a non-zero probability measure on the state h2: Let this

probability measure be f(h1; s)[h2]: Second, given the probability over the hypothesis

space according to which it chooses the next hypothesis, the learner actually ends up

choosing h2 as the next hypothesis.

Given a distribution P on ��; according to which sentences are drawn, and pre-
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sented to the learner, the transition probability from h1 to h2 is now given by:

Prob[h1 ! h2] =
X

fsjf(h1;s)[h2]>0g

f(h1; s)[h2]P (s)

Having obtained the transition probabilities, it is clear that the memoryless algorithm

is a Markov chain.
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Chapter 5

The Logical Problem of Language Change

Abstract

In this chapter, we consider the problem of language change. Linguists have to explain not only how

languages are learned (a problem we investigated in the previous chapter), but also how and why they

have evolved in certain trajectories. While the language learning problem has concentrated on the

behavior of the individual child, and how it acquires a particular grammar (from a class of grammars

G), we consider, in this chapter, a population of such child learners, and investigate the emergent,

global, population characteristics of the linguistic community over several generations. We argue

that language change is the logical consequence of speci�c assumptions about grammatical theories,

and learning paradigms. In particular, we are able to transform the parameterized theories, and

memoryless algorithms of the previous chapter into grammatical dynamical systems, whose evolution

depicts the evolving linguistic composition of the population. We investigate the linguistic, and

computational consequences of this fact. From a more programmatic perspective, we lay a possible

logical framework for the scienti�c study of historical linguistics, and introduce thereby, a formal

diachronic criterion for adequacy of linguistic theories.

5.1 Introduction

As is well known, languages change over time. Language scientists have long been oc-

cupied with describing language changes in phonology, syntax, and semantics. There

have been many descriptive and a few explanatory accounts of language change, in-

cluding some explicit computational models. Many authors appeal naturally to the

analogy between language change and another familiar model of change, namely,

biological evolution. There is also a notion that language systems are adaptive (dy-

namical) ones. For instance, Lightfoot (1991, chapter 7, pages 163{65�.) talks about

language change in this way:

Some general properties of language change are shared by other dy-

namic systems in the natural world: : :
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Indeed, entire books have been devoted to the description of language change

using the terminology of population biology: genetic drift, clines, etc. (UCLA book

on language diversity in space and time).

However, these analogies have rarely been pursued beyond casual and descriptive

accounts.29 In this paper we would like to formalize these linguists' intuitive notions in

a speci�c way as a concrete computational model, and investigate the consequences of

this formalization. In particular, we show that a model of language change emerges as

a logical consequence of language learnability, a point made by Lightfoot (1991). We

shall see that Lightfoot's intuition that languages could behave just as though they

were dynamical systems is essentially correct, and we can provide concrete examples

of both \gradual" and \sudden" syntactic changes occuring over time periods of many

generations to just a single generation.30

Not surprisingly, many other interesting points emerge from the formalization,

some programmatic in nature:

� We provide a general procedure for deriving a dynamical systems model from

grammatical theories and learning paradigms.

� Learnability is a well-known criterion for testing the adequacy of grammatical

theories. With our new model, we can now give an evolutionary criterion. By

this we mean that by comparing the evolutionary trajectories of derived dynam-

ical linguistic systems to historically observed trajectories, one can determine

the adequacy of linguistic theories or learning algorithms.

� We explicitly derive dynamical systems corresponding to parameterized linguis-

tic theories (e.g. Head First/Final parameter in HPSG or GB grammars) and

memoryless language learning algorithms (e.g. gradient ascent in parameter

space).

� Concretely, we illustrate the use of dynamical systems as a research tool by

considering the loss of Verb Second position in Old French as compared to

Modern French. We demonstrate that, when mathematically modeled by our

system, one grammatical parameterization in the literature does not seem to

permit this historical change, while another does. We are also able to more

accurately model the time course of language change. In particular, in contrast

to Kroch (1989) and others, who mimic population biology models by imposing

29Some notable exceptions are Kroch (1990), Clark and Roberts (1993).
30Lightfoot 1991 refers to these sudden changes, acting over 1 generation, as \catastrophic" but

in fact this term usually has a di�erent sense in the dynamical systems literature.
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an S-shaped logistic change by assumption, we show that the time course of

language change need not be S-shaped. Rather, language-change envelopes are

derivable from more fundamental properties of dynamical systems; sometimes

they are S-shaped, but they can also have a nonmonotonic shape, or even non-

smooth, \catastrophic" properties.

� We formally examine the \diachronic envelopes" possible under varying con-

ditions of alternative language distributions, language acquisition algorithms,

parameterizations, input noise, and sentence distributions|that is, what lan-

guage changes are possible by varying these dimensions. This involves the

simulation of these dynamical systems under di�erent initial conditions, and

characterizations of the resulting evolutionary trajectories, phase-space plots,

issues of stability, and the like.

� The formal diachronic model as a dynamical system provides a novel possi-

ble source for explaining several linguistic changes including (a) the evolution

of modern Greek phonology from proto-Indo-European (b) Bickerton's (199x)

creole hypothesis (concerning the striking fact that all creoles, irrespective of

linguistic origin, have exactly the same grammar) as the condensation point of

a dynamical system (though we have not tested these possibilities explicitly).

The Acquisition-BasedModel of Language Change:

The Logical Problem of Language Change

How does the combination of a grammatical theory and learning algorithm lead to

a model of language change? We �rst note that, just as with language acquisition,

there is a seeming paradox in language change: it is generally assumed that children

acquired their caretaker (target) grammars without error. However, if this were al-

ways true, at �rst glance grammatical changes within a population could seemingly

never occur, since generation after generation, the children would have successfully

acquired the grammar of their parents.

Of course, Lightfoot and others have pointed out the obvious solution to this

paradox: the possibility of slight misconvergence to target grammars could, over time

(generations), drive language change, much as speciation occurs in the population

biology sense. We pursue this point in detail below. Similarly, just as in the biological

case, some of the most commonly observed changes in languages seem to occur as the

result of the e�ects of surrounding populations, whose features in�ltrate the original

language.
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We begin our treatment of this subject by arguing that the problem of language

acquisition at the individual level leads logically to the problem of language change

at the group (or population) level. Consider a population speaking a particular

language31. This is the target language|children are exposed to primary linguis-

tic data from this source (language); typically in the form of sentences uttered by

caretakers (adults). The logical problem of language acquisition is how children ac-

quire this target language from the primary linguistic data|in other words to come

up with an adequate learning theory. Such a learning algorithm is simply a mapping

from primary linguistic data to the class of grammars. For example, in a typical

inductive inference model (as we saw in the previous chapter), given a stream of sen-

tences (primary linguistic data), the algorithm would simply update its grammatical

hypothesis with each new sentence according to some preprogrammed procedure. An

important criterion for learnability (as we saw in the previous chapter) is to require

that the algorithm converge to the target as the data goes to in�nity.

Now, suppose that the primary linguistic data presented to the child is altered

(due, perhaps, to presence of foreign speakers, contact with another population, dis-


uencies etc.). In other words, the sentences presented to the learner (child) are no

longer consistent with a single target grammar. In the face of this input, the learning

algorithm might no longer converge to the target grammar. Indeed, it might con-

verge to some other grammar (g2); or it might converge to g2 with some probability,

g3 with some other probability, and so on. In either case, children attempting to

solve the acquisition problem by means of the learning algorithm, would have inter-

nalized grammars di�erent from the parental (target) grammar. Consequently, in

one generation, the linguistic composition of the population would have changed32.

Furthermore, this change is driven by 1) the primary linguistic data (composed in

this case of sentences from the original target language, and sentences from the for-

eign speakers) 2) the language acquisition device: which acting upon the primary

evidence, causes the acquisition of a di�erent grammar by the children. Finally, the

change is limited by the hypothesis space of possible grammars; after all, the children

can never converge to a grammar which lies outside this space of grammars.

In short, on this view, language change is a logical consequence of speci�c assump-

tions about

1. the hypothesis space of grammars|in a parametric theory, like the ones we ex-

31In our framework of analysis, this implies that all the adult members of this population have
internalized the same grammar (corresponding to the language they speak).

32Sociological factors a�ecting language change, a�ect language acquisition in exactly the same
way, yet are abstracted away from the formalization of the logical problem of language acquisition.
In this same sense, we similarly abstract away such causes.
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amine in this thesis, this corresponds to a particular choice of parameterization

2. the language acquisition device|in other words, the learning algorithm the child

uses to develop hypotheses on the basis of data

3. the primary linguistic data|the sentences which are presented to the children

of any one generation

If we specify 1) through 3) for a particular generation, we should, in principle, be able

to compute the linguistic composition for the next generation. In this manner, we

can compute the evolving linguistic composition of the population from generation

to generation; we arrive at a dynamical system. We can be a bit more precise about

this. First, let us recall our framework for language learning. Then we will show how

to derive a dynamical system from this framework.

The Language Learning Framework:

Denote by G; a family of possible (target) grammars. Each grammar g 2 G de�nes

a language L(g) � �� over some alphabet � in the usual fashion. Let there be a

distribution P on �� according to which sentences are drawn and presented to the

learner. Note that if there is well de�ned target, gt; and only positive examples from

this target are presented to the learner, then P will have all its measure on L(gt);

and zero measure on sentences outside of this. Suppose n examples are drawn in

this fashion, one can then let Dn = (��)n be the set of all n-example data sets the

learner might potentially be presented with. A learning algorithm A can then be

regarded as a mapping from Dn to G: Thus, acting upon a particular presentation

sequence dn 2 Dn; the learner posits a hypothesis A(dn) = hn 2 G: Allowing for

the possibility of randomization, the learner could, in general, posit hi 2 G with

probability pi for such a presentation sequence dn: The standard (stochastic version)

learnability criterion (after Gold, 1967) can then be stated as follows:

For every target grammar, gt 2 G;with positive-only examples presented according

to P as above, the learner must converge to the target with probability 1, i.e.,

Prob[A(dn) = gt] �!n!1 1

In the previous chapter, we concerned ourselves with this learnability issue for

memoryless algorithms in �nite parameter spaces.
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From Language Learning to Population Dynamics:

The framework for language learning has learners (children) attempting to infer gram-

mars on the basis of linguistic data (sentences). At any point in time, n; (i.e., after

hearing n examples) the child learner has a current hypothesis, h; with probability

pn(h):What happens when there is a population of child learners? Since an arbitrary

child learner, has a probability pn(h) of developing hypothesis h (for every h 2 G);
it follows that a fraction pn(h) of the population of children would have internalized

the grammar h after n examples. We therefore have a current state of the population

after n examples. This state of the population (of children) might well be di�erent

from the state of the parental population. Pretend for a moment that after n exam-

ples, maturation occurs, i.e., the child retains for the rest of its life, the grammatical

hypothesis after n examples, then we would have arrived at the state of the mature

population for the next generation33. This new generation now produces sentences

for the following generation of children according to the distribution of grammars in

the population. The same process repeats itself and the linguistic composition of the

population evolves from generation to generation.

Formalizing the Argument Further:

This formulation leads naturally to a discrete-time dynamical systems model for lan-

guage change. In order to de�ne such a dynamical system formally, one needs to

specify

1. the state space, S| a set of states the system can be in. At any given point in

time, t, the system is in exactly one state s 2 S;

2. an update rule de�ning, the manner in which the state of the system changes

from one time to the next. Typically, this involves the speci�cation of a function,

f; which maps st; (the state at time t) to st+1 (the state at time t+ 1).34

For example, a typical linear dynamical system might consist of state variables

x (where x is a k-dimensional state vector) and a system of di�erential equations

x0 = Ax (A is a matrix operator) which characterize the evolution of the states

with time. RC circuits are a simple example of linear dynamical systems. The state

33Maturation is a reasonable hypothesis. After all, it seems even more unreasonable to imagine
that children are forever wandering around in hypothesis space. After a certain point, and there
is evidence from developmental psychology to suggest that this is the case, the child matures and
retains its current grammatical hypothesis for the rest of its life.

34In general, this mapping could be fairly complicated. For example, it could depend on previous
states, future states etc. For reference, see Strogatz (1993).
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Figure 5-41: A simple illustration of the state space for the 3-parameter syntactic

case. There are 8 grammars, a probability distribution on these 8 grammars, as

shown above, can be interpreted as the linguistic composition of the population.

Thus, a fraction P1 of the population have internalized grammar, g1; and so on.

(current) evolves as the capacitor discharges through the resistor. Population growth

models (for example, using logistic equations) provide other examples.

The State Space:

In our case, the state space is the space of possible linguistic compositions of the

population. More speci�cally, it is a distribution Ppop on the space of grammars, G35.

For example, consider the three parameter syntactic space described in Gibson and

Wexler (1994) and analyzed in the previous chapter. This de�nes 8 possible \natural"

grammars. Thus G has 8 elements. We can picture a distribution on this space as

shown in �g. 5-41. In this particular case, the state space is

S = fP 2 R
8j

8X
i=1

Pi = 1g

We interpret the state as the linguistic composition of the population. For ex-

ample, a distribution which puts all its weight on grammar g1 and 0 everywhere

else, indicates a homogeneous population which speaks the language corresponding

to grammar g1: Similarly, a distribution which puts a probability mass of 1/2 on

g1 and 1/2 on g2 indicates a population (non-homogeneous) with half its speakers

speaking a language corresponding to g1 and half speaking a language corresponding

to g2:

The Update Rule:

The update rule is obtained by considering the learning algorithm, A; involved.
For example, given the state at time t; (Ppop;t), i.e., the distribution of speakers in

the parental population (they are the generators of the primary linguistic data for

35Obviously one needs to be able to de�ne a �-algebra on the space of grammars, and so on. For
the cases we look at, this is not a problem because the set of grammars is �nite.

194



the next generation), one can obtain the distribution with which sentences from ��
will be presented to the learner. To do this, imagine that the ith linguistic group in

the population (speaking language Li) produces sentences with distribution Pi (on

the sentences of Li; i.e., sentences not in Li are produced with probability 0). Then

for any ! 2 ��; the probability with which it is presented to the learner is given by

P (!) =
X
i

Pi(!)Ppop;t(i)

Now that the distribution with which sentences are presented to the learner is

determined, the algorithm operates on the linguistic data, dn; (this is a dataset of

n example sentences drawn according to distribution P ) and develops hypotheses

(A(dn) 2 G). Furthermore, one can, in principle, compute the probability with which

the learner will develop hypothesis hi after n examples:

Finite Sample: Prob[A(dn) = hi] = pn(hi) (5:33)

This �nite sample situation is always well de�ned. In other words, the probability pn

exists36.

Learnability requires pn(gt) to go to 1, for the unique target grammar, gt, if such

a grammar exists. In general, however, there is no unique target grammar since

we have non-homogeneous linguistic populations. However, the following limiting

behavior might still exist:

Limiting Sample: lim
n!1

Prob[A(dn) = hi] = pi (5:34)

Thus, the child, according to the arguments described earlier, internalizes gram-

mar hi 2 G with probability pn(hi) (for a �nite sample analysis) and with probability

pi \in the limit". We can �nd pi for every i; and the next generation would then

have a proportion pi (or pn(hi); if one wanted to do a �nite sample analysis) of people

who have internalized the grammar hi: Consequently, the linguistic composition of

the next generation is given by Ppop;t+1(hi) = pi(or pn(hi)). In this fashion,

Ppop;t �!A
Ppop;t+1

36This is easy to see for deterministic algorithms, Adet: Such an algorithm would have a precise
behavior for every data set of n examples drawn. In our case, the examples are drawn in i.i.d.
fashion according to a distribution P on � � : It is clear that pn(hi) = P [fdnjAdet(dn) = hig]: For
randomized algorithms, the case is trickier, but the probability still exists. We saw in the previous
chapter, how to compute pn for randomized memoryless algorithms.
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Remarks

1. The �nite sample case probability always exists. Suppose, we have solved the

maturation problem, i.e., we know the rough amount of time, the learner takes to

develop its mature (adult) hypothesis. This is tantamount to knowing (roughly, if

not exactly) the number of examples, N; the child would have heard by then. In that

case pN (h) is the probability that the child internalizes the grammar h: This (pN (h))

is the percentage of speakers of Lh in the next generation. Note that under this �nite

sample analysis, for a homogeneous population, with all adults speaking a particular

language (corresponding to grammar, g; say), pN (g) will not be 1|that is, there will

be a small percentage who have misconverged. This percentage might blow up over

generations; and we potentially have unstable languages. This is in contrast to the

limiting analysis of homogeneous populations which is trivial for learnable families of

grammars.

2. The limiting case analysis is more problematic, though more consistent with

learnability theories \in the limit." First, the limit in question need not always exist.

In such a case, of course, no limiting analysis is possible. If however, the limit does

exist, then pi is the probability that a child learner attains the grammar pi in the

limit|and this is the proportion of the population with this internal grammar in the

next generation.

3. In general, the linguistic composition for the (t + 1)th generation is given in

similar fashion from the linguistic composition for the tth generation. Such a dynam-

ical system exists for every assumption of a)A, and b)G and c)Pi's the probability

with which sentences are produced by speakers of the ith grammar37. Thus we see

that ,

(G;A; fPig) �! D( dynamical system)

4. The formulation is completely general so far. It does not assume any par-

ticular linguistic theory, or learning algorithm, or distribution with which sentences

are drawn. Of course, we have implicitly assumed a learning model, i.e., positive

examples are drawn in i.i.d. fashion and presented to the learner (algorithm). Our

formalization of the grammatical dynamical systems follows as a logical consequence

of this learning framework. One can conceivably imagine other learning frameworks|

these would potentially give rise to other kinds of dynamical systems; but we don't

formalize them here.

At this stage, we have developed our case in abstraction. The next obvious step

is to choose speci�c linguistic theories, and learning paradigms, and compute our

37Note that this probability could evolve with generations as well. That will complete all the
logical possibilities. However, for simplicity, we assume that this does not happen.
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dynamical system. The important questions are: can we really compute all the

relevant quantities to specify the dynamical system?? Can we evaluate the behavior

(the phase-space characteristics) of the resulting dynamical system?? Does this allow

us to shed light on linguistic theories?? We show some concrete examples of this

in this chapter. Our examples are conducted within the principles and parameters

theory of modern linguistics.

5.2 Language Change in Parametric Systems

The previous section led us through the important steps in formalizing the process

of language change, leading ultimately to a computational paradigm within which

such change can be meaningfully studied. We carry out our investigations within

the principles and parameters framework introduced in the previous chapter. In

Chapter 4, we investigated the problem of learnability within this framework. In

particular, we saw that the behavior of any memoryless algorithm can be modeled as

a Markov chain. This analysis will allow us to solve equations 1 and 2, and obtain

the update equations of our dynamical system. We now proceed to do this.

1) the grammatical theory: Assume there are n parameters|this leads to a space

G with 2n di�erent grammars in it.

2) the distribution with which data is produced: If there are speakers of the

ith language, Li; in the population, let them produce sentences according to the

distribution, Pi; on the sentences of this language. For the most part, we will assume,

in our simulations, that this is uniform on degree-0 sentences (exactly as we did in

our analysis of the learnability problem).

3) the learning algorithm: Let us imagine that the child learner follows some

memoryless (incremental) algorithm to set parameters. For the most part, we will

assume that the algorithm is the TLA or one of the variants discussed in the previous

chapter.

From One Generation to the Next: The Update Rule

Suppose the state of the parental population is Ppop;n on G: Then one can ob-

tain the distribution P on the sentences of �� according to which sentences will be

presented to the learner. Once such a distribution is obtained, we can compute the

transition matrix T according to which the learner updates its hypotheses with each

new sentence (as shown in the previous chapter). From T; one can �nally compute

the following quantities:
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Prob[ Learner's hypothesis = hi 2 G after m examples] == f 1
2n
(1; : : : ; 1)0Tmg[i]

Similarly, making use of limiting distributions of Markov chains (see Resnick,

1992) one can obtain the following (where ONE is a 1
2n
� 1

2n
matrix with all ones).

Prob[ Learner's hypothesis = hi \in the limit"] = (1; : : : ; 1)0(I � T +ONE)�1

These expressions allow us to compute the linguistic composition of the population

according to our analysis of the previous section.

Remarks:

1. The limiting distribution needs to be interpreted. Markov chains corresponding

to population mixes do not have an absorbing state. Instead they have recurrent

states. These states will be visited in�nitely often. There might be more than one

state that will be visited in�nitely often. However, the percentage of time, the learner

will be in a particular state might vary. This is provided by the equation above. Since,

we know the fraction of the time the learner spends in each grammatical state in the

limit, we assume that this is the probability with which it internalize the grammar

corresponding to that state in the Markov chain.

2. The �nite case analysis always works. The limiting analysis need not work.

However, the limiting analysis works only when there is more than one target. That

is, if there is only one target grammar, for learnable algorithms, all children would

converge to that target in the limit, and the population characteristics would not

change with generations.

We provide now the basic computational framework for modeling language change.

1. Let �1 be the initial population mix, i.e., the percentage of di�erent language

speakers in the community. Assuming, then, that the ith group of speakers

produce sentences with probability Pi; we can obtain P with which sentences

in �� occur for the next generation of children.

2. From P; we can obtain the transition probabilities for the child learners and the

limiting distribution �2 for the next generation.

3. The second generation produce sentences with �2: We can repeat step 1 and

obtain �3; in general a population mix �i will over a generation change to a mix

of �i+1:
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5.3 Example 1: A Three Parameter System

The previous section developed the necessary mathematical and computational tools

to completely specify the dynamical systems corresponding to memoryless algorithms

operating on �nite parameter spaces. In this example, we investigate the behavior

of these dynamical systems. Recall that every choice of (G;A; fPig) gives rise to a

unique dynamical system. We start by assuming:

1) G : This is a 3-parameter syntactic subsystem described in the previous chapter

(Gibson and Wexler, 1994). Thus G has exactly 8 grammars.

2) A : The memoryless algorithms we consider are the TLA, and variants by

dropping either or both of the single-valued and greediness constraints.

3) fPig : For the most part, we assume sentences are produced according to a

uniform distribution on the degree-0 sentences of the relevant language, i.e., Pi is

uniform on (degree-0 sentences of) Li:

5.3.1 Starting with Homogeneous Populations:

Here we investigate how stable the languages in the parametric system are in the ab-

sence of noise or other confounding factors like foreign speech. Thus we start o� with

a linguistically homogeneous population producing sentences according to a uniform

distribution on the degree-0 sentences of the target language (parental language). We

compute the the distribution of the children in the parameter space after 128 example

sentences (recall, by the analysis of the previous chapter, the learners converge to the

target with high probability after hearing these many sentences). Some small pro-

portion of the children will have misconverged; the goal is to see whether this small

proportion can drive language change|and if so, in what direction.

A = TLA; Pi = Uniform; Finite Sample = 128

The table below shows the result after 30 generations. Languages are numbered from

1 to 8 according to the scheme in the appendix of chapter 4.

Observations: Some striking patterns are observed.

1. First, all the +V2 languages are relatively stable, i.e., the linguistic composition

did not vary signi�cantly over 30 generations. This means that every succeeding gen-

eration acquired the target parameter settings and no parameter drifts were observed

over time.

2. Populations speaking -V2 languages all drift to speaking +V2 languages. Thus

a population speaking L1 starts speaking mostly L2: A population speaking language

L7 gradually shifts to a population with 54 percent speaking L2 and 35 percent
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Initial Language Change to Language?

(�V 2) 1 2 (0.85), 6 (0.1)

(+V 2) 2 2 (0.98); stable

(�V 2) 3 6 (0.48), 8(0.38)

(+V 2) 4 4 (0.86); stable

(�V 2) 5 2 (0.97)

(+V 2) 6 6 (0.92); stable

(�V 2) 7 2 (0.54), 4(0.35)

(+V 2) 8 8 (0.97); stable

Table 5.3: Language change driven by misconvergence. A �nite-sample analysis was

conducted allowing each child learner 128 examples to internalize its grammar. Initial

populations were linguistically homogeneous, and they drifted (or not) to di�erent

linguistic compositions. The major language groups after 30 generations have been

listed in this table.

speaking L4 (with a smattering of other speakers) and seems (?) to remain basically

stable in this mix thereafter. Note that this relative stability of +V2, and the tendency

of -V2 languages to drift to +V2 ones, are contrary to assertions in the linguistic

literature. Lightfoot (1991), for example, claims the tendency to lose V2 dominates

the reverse tendency in the world's languages. Certainly, both English and French

lost the V2 parameter setting|an empirically observed phenomenon that needs to

be explained. Right away, we see that our dynamical system does not evolve in

the expected pattern. The problem could be due to incorrect assumptions about

the parameter space, the algorithm, initial conditions, or distributional assumptions

about the sentences. This needs to be examined, no doubt, but we have just seen a

concrete example of how assumptions about grammatical theory, and learning theory,

have made evolutionary predictions|in this case the predictions are incorrect, and

our model is falsi�ed.

3. The rates at which the linguistic composition changes varies signi�cantly. Con-

sider for example the change of L1 to L2: Fig. 5-42 below shows the gradual decrease

in speakers of L1 over successive generations along with the increase in L2 speakers.

We see that over the �rst 6 or seven generations very little change occurs, thereafter

over the next 6 or seven generations the population switches at a much faster rate.

Note that in this particular case, the two languages di�er only in the V2 parameter; so

the curves essentially plot the gain of V2. In contrast, consider �g. 5-43 which shows

the decrease of L5 speakers and the shift to L2: Here we notice a sudden change; over

a space of 4 generations, the population has shifted completely. The time course of

language change has been given some attention in linguistic analyses of diachronic

syntax change, and we return to this in a later section.
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Figure 5-42: Percentage of the population speaking languages L1 and L2 as it evolves

over the number of generations. The plot has been shown only upto 20 generations,

as the proportions of L1 and L2 speakers do not vary signi�cantly thereafter. Notice

the \S" shaped nature of the curve (Kroch, 1989, imposes such a shape using models

from population biology, while we obtain this as an emergent property of our dynam-

ical model from di�erent starting assumptions). Also notice the region of maximum

change as the V2 parameter is slowly set by increasing proportion of the population.

L1 and L2 di�er only in the V2 parameter setting.

4. We see that in many cases, the homogeneous population splits up into di�erent

linguistic groups, and seem to remain stable in that mix. In other words, certain

combinations of language speakers seem to asymptote towards equilibrium (atleast

by examining the 30 generations simulated so far). For example, a population of

L7 speakers shifts (over 5-6 generations) to one with 54 percent speaking L2 and

35 percent speaking L4 and remains that way with no shifts in the distribution of

speakers. Is this really a stable mix? Or will the population shift suddenly after

another 100 generations? Can we characterize the stable points (\limit cycles")?

Other linguistic mixes are inherently unstable mixes. They might drift systematically

to stable situations, or might shift dramatically.

In table 5.3, why are some languages stable while others are unstable? It seems

that the instability and the drifts observed are to a large extent an artifact of the

learning algorithm used. Remember that TLA su�ers from the problem of local

maxima. We notice that those languages whose acquisition is not impeded by local
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Initial Language Change to Language?

�V 2 1 2 (0.41), 4 (0.19), 6 (0.18), 8 (0.13)

+V 2 2 2 (0.42), 4 (0.19), 6 (0.17), 8 (0.12)

�V 2 3 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

+V 2 4 2 (0.41), 4 (0.19), 6 (0.18), 8 (0.13)

�V 2 5 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

+V 2 6 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

�V 2 7 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

+V 2 8 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

Table 5.4: Language change driven by misconvergence. A �nite-sample analysis was

conducted allowing each child learner (following the TLA with single-value dropped)

128 examples to internalize its grammar. Initial populations were linguistically ho-

mogeneous, and they drifted to di�erent linguistic compositions. The major language

groups after 30 generations have been listed in this table. Notice how all initially

homogeneous populations tend to the same composition.

sentence it cannot analyze, it chooses any of the alternative grammars and attempts

to analyze the sentence with it. Greediness is retained; thus the learner retains its

original hypothesis if the new one is also not able to analyze the sentence. Table 5.4

shows the distribution of speakers after 30 generations.

Observations: In this situation there are no local maxima, and the pattern of evolution

takes on a very di�erent nature. There are two distinct observations to be made.

1. All homogeneous populations (irrespective of what language they speak) even-

tually drift to a strikingly similar population mix. What is unique about this mix?

Is it a stable point (or attractor)? Further simulations, and theoretical analysis is

needed to resolve this question.

2. All homogeneous populations drift to a population mix of only +V2 languages.

Thus, the V2 parameter is gradually set over succeeding generations by all people in

the community (irrespective of which language they speak). In other words, there is

as before a tendency to gain V2 rather than lose it (we emphasize again, that this is

contrary to linguistic intuition).

Fig. 5-44 shows the changing percentage of the population speaking the di�erent

languages starting o� from a homogeneous population speaking L5:As before, learners

who have not converged to the target in 128 examples are the driving force for change

here. Note again the time evolution of the grammars. For about 5 generations there is

only a slight decrease in the percentage of speakers of L5: Then the linguistic patterns

switch over the next 7 generations to a relatively stable mix.
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Figure 5-44: Time evolution of grammars using greedy algorithm with no single value.

Initial Language Change to Language?

Any Language 1 (0.11), 2 (0.16), 3 (0.10), 4 (0.14)

(Homogeneous) 5 (0.12), 6 (0.14), 7 (0.10), 8 (0.13)

Table 5.5: Language change driven by misconvergence. A �nite-sample analysis was

conducted allowing each child learner (following 1) random walk and 2) the TLA with

greediness dropped) 128 examples to internalize its grammar. Initial populations were

linguistically homogeneous, and they drifted to di�erent linguistic compositions. The

major language groups after 30 generations have been listed in this table. Notice,

again, how all initially homogeneous populations tend to the same composition.

A = a) R.W. b) S. V. only; Pi = Uniform; Finite Sample = 128

Here we simulated the evolution of the dynamical systems corresponding to two algo-

rithms, both of which have no greediness constraint. The two algorithms are 1) the

random walk described in the previous chapter and 2) TLA with single-value retained

but no greediness constraint.

In both cases, the population mix after 30 generations is the same, irrespective of

the initial language of the homogeneous population. This is shown in table 5.5.

Observations:

1. The �rst striking observation is that both algorithms yield dynamical systems

which arrive at the same population mix after 30 generations. The path by which

they arrive at this mix is, however, not the same (see �g. 5-45).
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this proposes that linguistic replacements follow an S-shaped curve in time. In Bailey's

own words (taken from Kroch, 1990)

A given change begins quite gradually; after reaching a certain point (say,

twenty percent), it picks up momentum and proceeds at a much faster

rate; and �nally tails o� slowly before reaching completion. The result is

an S-curve: the statistical di�erences among isolects in the middle relative

times of the change will be greater than the statistical di�erences among

the early and late isolects.

The idea that linguistic changes follow an S-curve has been proposed by Osgood

and Sebeok (1954), Weinreich, Labov, and Herzog (1968). More speci�c logistic forms

were proposed by Altmann (1983), and Kroch (1982,1989). The idea of the logistic

functional form is borrowed from population biology where it is demonstrable that

the logistic governs the replacement of organisms and of genetic alleles that di�er in

Darwinian �tness. However Kroch concedes that \unlike in the population biology

case, no mechanism of change has been proposed from which the logistic form can be

deduced".

Crucially, in our case, we suggest a speci�c acquisition-based model of language

change. The combination of grammatical theory, learning algorithms, and distribu-

tional assumptions on sentences drive change|the speci�c form of the change (which

might or might not be S-shaped, and might have varying rates) is thus a derivative of

more fundamental assumptions. This is in contrast with the above-mentioned theories

of change.

The e�ect of maturational time

One obvious factor in
uencing the evolutionary trajectories is the maturational

time, i.e., the number (N) of sentences the child is allowed to hear before forming

its mature hypothesis. This was kept at 128 in all the systems shown so far. Fig. 5-

46 shows the e�ect of N on the evolutionary trajectories. As usual, we plot only

a subspace of the population. In particular, we plot the percentage of L2 speakers

in the population with each succeeding generation. The initial composition of the

population was homogeneous (with people speaking L1). It is worthwhile to make a

few observations:

1. The initial rate of change of the population is highest for the situation where

the maturational time is the least, i.e., the learner is allowed the least amount

of time to develop its mature hypothesis. This is hardly surprising. If the

learner were allowed access to a lot of examples to make its mature hypothesis,

most of the learners would have reached the target grammar. Very few would
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The e�ect of sentence distributions Pi.

Another important factor in
uencing the evolutionary trajectories is the distri-

bution Pi with which sentences of the ith language, Li; are presented to the learner.

In a certain sense, the grammatical space and the learning algorithm determine the

order of the dynamical system. The sentence distributions on the other hand, are like

the parameters of the dynamical system (we comment on this point later). Clearly

the sentence distributions a�ect rates of convergence within one generation as we saw

in the previous chapter. Further, by putting greater weight on certain word forms

rather than others, they might in
uence the systemic evolution in certain directions.

To illustrate this idea, we consider an example. We study the interaction between

L1 and L2 speakers in the community as the sentence distributions with which these

speakers produce sentences changes. Recall that so far, we have assumed that all

speakers produce sentences with uniform distributions on degree-0 sentences of the

language. Now, we consider an alternative distribution as below:

1. Let L1;2 = L1 \ L2:

2. P1 : Speakers of L1 produce sentences so that all degree-0 sentences of L1;2 are

equally likely and their total probability is p: Further, sentences of L1 nL1;2 are

also equally likely, but their total probability is 1� p:

3. P2 : Speakers of L2 produce sentences so that all degree-0 sentences of L1;2 are

equally likely and their total probability is p: Further, sentences of L2 nL1;2 are

also equally likely, but their total probability is 1� p:

4. Other Pi's are all uniform in degree-0 sentences.

Thus, the distributions Pi's are parameterized by a single parameter, p; which

determines the amount of measure on the sentence patterns in common between the

languages L1 and L2: Fig. 5-47 shows the evolution of the L2 speakers as p varies. The

learning algorithm used was the TLA, and the initial population was homogeneous

(speaking language L1). Thus, the initial percentage of L2 speakers in the community

was 0. Notice how the systemmoves in di�erent ways as p varies. When p is very small

(0.05), i.e., strings common to L1 and L2 occur infrequently, the long term implication

is that L2 speakers do not grow in the community. As p increases, more strings of L2

occur, and the system is driven to increase the number of L2 speakers until p = 0:75

when the population evolves into a completely L2 speaking community. After this,

as p increases further, we notice (see p = 0:95) that the L2 speakers increase but

can never rise to 100 percent of the population, there is still a residual L1 speaking

component. This is natural, because for such high values of p; a lot of strings common
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Figure 5-47: The evolution of L2 speakers in the community for various values of p

(a parameter related to the sentence distributions Pi, see text). The algorithm used

was the TLA, the inital population was homogeneous, speaking only L1: The curves

for p = 0:05; 0:75; and 0:95 have been plotted as solid lines.

to L1 and L2 occur all the time. This means that the learner could converge to L1

just as well, and some learners indeed begin to do so increasing the number of the L1

speakers.

This example shows us that if we wanted a homogeneous L1 speaking population

to move to a homogeneous L2 speaking population, by choosing our distributions

appropriately, we could drive the grammatical dynamical system in the appropriate

direction. This suggests another important application of our dynamical system ap-

proach. We can work backwards, and examine the conditions needed to generate a

change of a certain kind. By checking whether such conditions could possibly have

existed in history, we can falsify a grammatical theory, or a learning paradigm. Note

that this example showed the e�ect of sentence distributions, and how to tinker with

them to obtain desired evolution. One could, in principle, tinker with the grammati-

cal theory, or the learning algorithm in the same fashion|-leading to a powerful new

tool to aid the search for an adequate linguistic theory.
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5.3.2 Non-homogeneous Populations: Phase-Space Plots

For our three-parameter system, we have been able to characterize the update rules

for the dynamical systems corresponding to a variety of learning algorithms. Each

such dynamical system has a speci�c update procedure according to which the states

evolve, from some initial state. In the earlier section, we examined the evolutionary

trajectories when the population was homogeneous. A more complete characterization

of the dynamical system would be achieved by obtaining phase-space plots of this

system. Such phase-space plots are pictures of the state-space S �lled with trajectories

obtained by letting the system evolve from various initial points (states) in the state

space.

Phase-Space Plots: Grammatical Trajectories

We have described earlier, the relationship between the state of the population in one

generation and the next. In our case, let � denote an 8-dimensional vector variable

(state variable). Speci�cally, � = (�1; : : : ; �8)
0 (with

P8
i=1 �i) as we discussed before.

The following schema reiterates the chain of dependencies involved in the update rule

governing system evolution. The state of the population at time t (in generations),

allows us to compute the transition matrix T for the Markov chain associated with

the memoryless learner. Now, depending upon whether we want 1) an asymptotic

analysis or 2) a �nite sample analysis, we compute 1) the limiting behavior of Tm

as m (the number of examples) goes to in�nity (for an asymptotic analysis), or 2)

the value of TN (where N is the number of examples after which maturation occurs).

This allows us to compute the new state of the population. Thus �(t+ 1) = g(�(t))

where g is a complex non-linear relation.

�(t) =) P on �� =) T =) T
m =) �(t+ 1)

If we choose a certain initial condition �1; the system will evolve according to the

above relation and one can obtain a trajectory of � in the 8 dimensional space over

time. Each initial condition yields a unique trajectory and one can then plot these

trajectories obtaining a phase-space plot. Now, each such trajectory corresponds to

a line in the 8-dimensional plane given by
P8

i=1 �i = 1: It is obviously not possible

to display such a high dimensional object but we plot in �g. 5-48 the projection of a

particular trajectory onto a two dimensional subspace given by (�1(t); �2(t)) (in other

words, the proportion of speakers of L1 and L2) at di�erent points in time.

As mentioned earlier, with a di�erent initial condition, we get a di�erent gram-

matical trajectory. The state space is thus �lled with all the di�erent trajectories
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Figure 5-48: Subspace of a Phase-space plot. The plot shows (�1(t); �2(t)) as t varies,

i.e., the proportion of speakers speaking languages L1 and L2 in the population.

The initial state of the population was homogeneous (speaking language L1). The

algorithm used was the TLA with the single-value constraint dropped.

corresponding to di�erent initial conditions. Fig. 5-49 shows this.

Issues of Stability

We notice from the phase-space plots that many of the initial conditions yield trajec-

tories which seem to converge to a point in the state space. In the dynamical systems

terminology, this would correspond to a �xed point of the system. In other words,

this is a population mix which would remain that way. Some natural questions arise

at this stage. What are the conditions for stability? How many �xed points are

there in the system? How do we solve for them? These are interesting questions but

detailed answers are not within the scope of this thesis. We would like to state here

a �xed point theorem which allows us to characterize the stable population mixes.

First, some notational preliminaries. As before, let Pi be the distribution on the

sentences of the ith language Li: From Pi; we can construct Ti; the transition matrix

whose elements are given by the explicit procedure documented in the previous chap-

ter. This matrix, Ti; models the behavior of the TLA learner if the target language

was Li (with sentences from the target produced with Pi). Similarly, one can obtain

the matrices for variants of the TLA. Note that �xing the Pi's �xes the Ti's and these
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Figure 5-49: Subspace of a Phase-space plot. The plot shows (�1(t); �2(t)) as t varies

for di�erent initial conditions (non-homogeneous populations). The algorithm used

by the learner is the TLA with single-value constraint dropped.

can be considered to be the parameters38 of the dynamical system. If the state of

the (parental) population at time t is �(t); then it is possible to show that the (true)

transition matrix of the TLA (or TLA-like) learner is T =
P8

i=1 �i(t)Ti: For the �nite

case analysis, the following theorem holds:

Theorem 5.3.1 (Finite Case) A �xed point (stable point) of the grammatical dy-

namical system (obtained by a TLA like learner operating on the 8 parameter space

with k examples to choose its mature hypothesis) is a solution of the following equa-

tion:

�0 = (�1; : : : ; �8) = (1; : : : ; 1)0(
8X
i=1

�iTi)
k

Proof (Sketch): This equation is obtained simply by setting �(t+1) = �(t). Note

however, that this is an example of a non-linear multi-dimensional iterated function

map. The analysis of such a dynamical system is quite non-trivial, and our theorem

by no means captures all the possibilities.

38There might be some confusion at the two di�erent notions of parameters 
oating around. Just
to clarify further; we have n linguistic parameters which de�ne the 2n languages and de�ne the
state-space of the system. We also have the Pi's which characterize the way in which the system
evolves and are therefore the parameters of the complete grammatical dynamical system.
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We can similarly state a theorem for the limiting case analysis.

Theorem 5.3.2 (Limiting Analysis) A �xed point (stable point) of the grammat-

ical dynamical system (obtained by a TLA like learner operating on the 8 parameter

space (given in�nite examples to choose its mature hypothesis) is a solution of the

following equation:

�0 = (�1; : : : ; �8) = (1; : : : ; 1)0(I �
8X
i=1

�iTi + ONE)�1

where ONE is the 8 � 8 matrix with all its entries equal to 1.

Proof: Again this is trivially obtained by setting �(t+1) = �(t): The expression on

the right provides an analytical expression for the update equation in the asymptotic

case. See Resnick (1992) for details. All the caveats mentioned in the proof section

of the previous theorem apply here as well.

Remark: We have just scratched the surface as far as the theoretical characterization

of these grammatical dynamical systems are concerned. The main purpose of this

chapter is to show that these dynamical systems exist as a logical consequence of

assumptions about the grammatical space, and a learning theory. We have demon-

strated some preliminary simulations with these systems. From a theoretical per-

spective, it would be very interesting to better understand such systems. Strogatz

(1993) suggests that non-linear multidimensional (more than 3 dimensions) mappings

are likely to be chaotic. Such investigations are beyond the scope of this thesis, and

might be a fruitful area for further research.

5.4 Example 2: The Case of Modern French:

The previous example considered a 3-parameter system for which we derived several

di�erent dynamical systems. Our goal was to concretely instantiate our philosophical

arguments in sections 2 and 3, and provide a 
avor of the many di�erent factors which

in
uence the evolution of these grammatical dynamical systems. In this section, we

brie
y consider a di�erent parametric system (studied by Clark and Roberts, 1993).

The historical context in which we study this is the evolution of Modern French from

Old French.

Extensive simulations in the earlier section reveal that while the learnability prob-

lem of the 3-parameter space can be solved by stochastic hill climbing algorithms, the

long term evolution of these algorithms have a behavior which is at variance with the

diachronic change actually observed in historical linguistics. In particular, we saw
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how there was a tendency to gain rather than lose the V2 parameter setting. While

this could be an artifact of the class of learning algorithms considered, a more likely

explanation is that loss of V2 (observed in many of the world's languages like French

etc.) is due to an interaction of parameters and triggers other than that considered

in the previous section. We investigate this possibility and begin, by �rst providing

the parametric theory.

5.4.1 The Parametric Subspace and Data

We now consider a syntactic space involving the following 5 (boolean-valued) param-

eters. We do not attempt to describe these parameters. The interested reader should

consult Haegeman (1991) for details.

1. p1: Case assignment under agreement (p1 = 1) or not (p1 = 0).

2. p2: Case assignment under government (p2 = 1) or not ((p2 = 0). Relevant

triggers for this parameter include \Adv V S", \S V O".

3. p3: Nominative clitics.

4. p4: Null Subject. Here relevant triggers would include \wh V S O".

5. p5: Verb-second V2. Triggers include \Adv V S" , and \S V O".

These 5 parameters now de�ne a space of 32 parameterized grammars. Each

grammar in this parameterized system can be represented by a string of 5 bits de-

pending upon the values of p1; : : : ; p5:We need obviously to look at the surface strings

(sentences) generated by each such grammar. For the purpose of explaining how Old

French changed to Modern French over time, Clark and Roberts consider the follow-

ing sentences. We provide these sentences below. The parameters settings which need

to be made in order to generate each sentence is provided in brackets.

The Relevant Data;

adv V S [*1**1]; SVO [*1**1] or [1***0]; wh V S O [*1***]; wh V s O [**1**] ; X

(pro)V O [*1*11] or [1**10]; X V s [**1*1]; X s V [**1*0]; X S V [1***0]; (s)VY

[*1*11]

The parameter settings provided in brackets determine the grammars which gen-

erate the sentence. Thus the sentence (adv V S; quickly ran John{ incorrect word

order in English) is generated by all grammars which have case assignment under

government (p2 = 1) and verb second movement (p5 = 1). The other parameters can

be set to any value. Clearly there are 8 di�erent grammars which can generate (parse)

this sentence. Similarly there are 16 (8 corresponding to parameter settings of [*1**1]
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and 8 corresponding to parameter settings of [1***0]) grammars which generate (S V

O) and 4 grammars which generate ((s) V Y).

Remark. Note that the set of sentences considered here is only a subset of the the

total number of (degree-0) sentences generated by the 32 grammars in question. Clark

and Roberts have only considered this subset and attempted to construct learning

algorithms and models of diachronic change using genetic algorithms. In order to

facilitate direct comparison with their results, we have not attempted to expand the

data set or �ll out the space any further. As a result, all the grammars do not have

unique extensional properties, i.e. some generate the same sentences and are thus

equivalent.

5.4.2 The Case of Diachronic Syntax Change in French

Within this parameter space, it is historically observed that the language spoken in

France underwent a parametric change from the twelfth century to modern times. In

particular, a loss of V2 and prodrop is observed. We provide two examples of this.

In keeping with standard practice, the asterisk denotes an ungrammatical sentence.

Loss of null subjects: pro-drop

a. *Ainsi s'amusaient bien cette nuit. (Modern French)

thus (they) had fun that night.

b. Si �rent (pro) grant joie la nuit. (Old French)

thus (they) made great joy the night.

Loss of V2

a. *Puis entendirent-ils un coup de tonerre. (Modern French)

then they heard a clap of thunder.

b. Lors oirent ils venir un escoiz de tonoire. (Old French)

then they heard come a clap of thunder

It has been argued that this transition was brought about by introduction of

new word orders during the �fteenth and sixteenth centuries resulting in generations

of children acquiring slightly di�erent grammars and eventually culminating in the

grammar of modern French. A brief reconstruction of the historical process (after

Clark and Roberts, 1993) is provided.

Old French [11011] The language spoken in the twelfth and thirteenth centuries had

verb-second movement and null subjects, both of which were dropped by the twentieth

century. The set of sentences generated by the parameter settings corresponding to

Old French are:

adv V S - [*1**1]; SVO - [*1**1] or [1***0]; wh V S O [*1***]; X (pro)V O [*1*11]

or [1**10]

215



Note that from the data set, it appears that the Case agreement and nomina-

tive clitics parameters remain ambiguous. In particular, Old French is in a subset-

superset relation with another language (generated by the parameter settings of

11111). Clearly some kind of subset principle (Berwick, 1985) has to be used by

the learner for otherwise it is not clear how the data would allow the learner to con-

verge to the Old French grammar in the �rst place. Note that TLA or TLA like

schemes would not converge uniquely to the grammar of Old French.

The string (X)VS occurs with 58% and SV(X) occurs with 34% in Old French

texts. It is argued that this frequency of (X)VS is high enough to cause the V2

parameter to trigger to +V2.

Middle French In Middle French, the data is not consistent with any of the 32

target grammars (equivalent to a heterogeneous population). Analysis of texts from

that period reveal that some old forms (like Adv V S) decreased in frequency and

new forms (like Adv S V) increased. It is argued in Clark and Roberts that such

a frequency shift causes "erosion" of V2, brings about parameter instability and

ultimately convergence to the grammar of Modern French. In this transition period

(i.e. when Middle French was spoken/written) the data is of the following form:

adv V S [*1**1]; SVO [*1**1] or [1***0]; wh V S O [*1***]; wh V s O [**1**];

X (pro)V O [*1*11] or [1**10]; X V s [**1*1]; X s V [**1*0]; X S V [1***0]; (s)VY

[*1*11]

Thus, we have old sentence patterns like Adv V S (though it decreases in frequency

and becomes only 10%), SVO, X (pro)V O and whVSO. The new sentence patterns

which emerge at this stage are adv S V (increases in frequency to become 60%), X

subjclitic V, V subjclitic (pro)V Y (null subjects) , whV subjclitic O.

Modern French [10100] By the eighteenth century, French had lost both the V2

parameter setting as well as the null subject parameter setting. The sentence patterns

consistent with Modern French parameter settings are SVO [*1**1] or [1***0], X S V

[1***0], V s O [**1**]. Note that this data, though consistent with Modern French,

will not trigger all the parameter settings. In this sense, Modern French (just like

Old French) is not uniquely learnable from data. However, as before, we shall not

concern ourselves overly with this, for the relevant parameters (V2 and null subject)

are uniquely set by the data here.

5.4.3 Some Dynamical System Simulations

We can obtain dynamical systems for this parametric space, for a TLA (or TLA-

like) algorithm in a straightforward fashion. We show the results of two simulations

conducted with such dynamical systems.
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Figure 5-50: Evolution of speakers of di�erent languages in a population starting o�

with speakers only of Old French.

Homogeneous Populations [Initial{Old French]

We conducted a simulation on this new parameter space using the Triggering Learning

Algorithm. Recall that the relevant Markov chain in this case has 32 states. We

start the simulation with a homogeneous population speaking Old French (parameter

setting = 11011). Our goal was to see if misconvergence alone, could drive Old French

to Modern French.

Just as before, we can observe the linguistic composition of the population over

several generations. It is observed that in one generation, 15 percent of the children

converge to grammar 01011; 18 percent to grammar 01111; 33 percent to grammar

11011 (target) and 26 percent to grammar 11111 with very few having converged to

other grammars. Thereafter, the population consists mostly of speakers of these 4

languages, with one important di�erence: 15 percent of the speakers eventually lose

V2. In particular, they have acquired the grammar 11110. Shown in �g. 5-50 are

the percentage of the population speaking the 4 languages mentioned above as they

evolve over 20 generations. Notice that in the space of a few generations, the speakers

of 11011, and 01011 have dropped out altogether. Most of the population now speaks

language 1111 (46 percent) and 01111 (27 percent). Fifteen percent of the population

speaks 11110 and there is a smattering of other speakers. The population remains

roughly stable in this con�guration thereafter.
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Observations:

1. On examining the four languages to which the system converges after one gener-

ation, we notice that they share the same settings for the principles [Case assignment

under government], [pro drop], and [V2]. These correspond to the three parameters

which are uniquely set by data from Old French. The other two parameters can take

on any value. Consequently 4 languages are generated all of which satisfy the data

from Old French.

2. Recall our earlier remark that due to insu�cient data, there were equivalent

grammars in the parameter system. It turns out that in this particular case, the

grammars (01011) and (11011) are identical as far as their extensional properties are

concerned; as are the grammars (11111) and (01111).

3. There is subset relation between the two sets described in (2). The grammar

(11011) is in a subset relation with (11111). This explains why after a few generations

most of the population switches to either (11111) or (01111) (the superset grammars).

4. An interesting feature of the simulation is that 15 percent of the population

eventually acquires the grammar (11110), i.e., they have lost the V2 parameter setting.

This is the �rst sign of instability of V2 that we have seen in our simulations so far

(for greedy algorithms which are psychologically preferred). Recall that for such

algorithms, the V2 parameter was very stable in our previous example.

Heterogeneous Populations (Mixtures)

The earlier section showed that with no new (foreign) sentence patterns the gram-

matical system starting out with only Old French speakers showed some tendency to

lose V2. However, the grammatical trajectory did not terminate in Modern French.

In order to more closely duplicate this historically observed trajectory, we examine

alternative inital conditions. We start our simulations with an initial condition which

is a mixture of two sources; data from Old French and data from New French (repro-

ducing in this sense, data similar to that obtained from the Middle French period).

Thus children in the next generation observe new surface forms. Most of the surface

forms observed in Middle French are covered by this mixture.

Observations:

1. On performing the simulations using the TLA as a learning algorithm on this

parameter space, an interesting pattern is observed. Suppose the learner is exposed to

sentences with 90 percent generated by Old French grammar (11011) and 10 percent

by Modern French grammar (10100), within one generation 22 percent of the learners

have converged to the grammar (11110) and 78 percent to the grammar (11111).

Thus the learners set each of the parameter values to 1 except the V2 parameter
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Figure 5-51: Tendency to lose V2 as a result of new word orders introduced by Modern

French source in our Markov Model.

setting. Now Modern French is a non-V2 language; and 10 percent of data from

Modern French is su�cient to cause 22 percent of the speakers to lose V2. This is the

behavior over one generation. The new population (consisting of 78 percent speaking

grammar (11111) and 22 percent speaking grammar (11110)) remains stable for ever.

2. Fig. 5-51 shows the proportion of speakers who have lost V2 after one gener-

ation, as a function of the proportion of sentences from the Modern French Source.

The shape of the curve is interesting. For small values of the proportion of the Mod-

ern French source, the slope of the curve is greater than 1. Thus there is a greater

tendency of speakers to lose V2 than to retain it. Thus 10 percent of novel sen-

tences from the Modern French source causes 20 percent of the population to lose

V2; similarly 20 percent of novel sentences from the Modern French source causes 40

percent of the speakers to lose V2. This e�ect wears o� later. This seems to capture

computationally the intuitive notion of many linguists that a small change in inputs

provided to children could drive the system towards larger change.

3. Unfortunately, there are several shortcomings of this particular simulation.

First, we notice that mixing Old and Modern French sources does not cause the

desired (historically observed) grammatical trajectory from Old to Modern French

(corresponding in our system to movement from state (11011) to state (10100) in our

Markov Chain). Although we �nd that a small injection of sentences from Modern
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French causes a larger percentage of the population to lose V2 and gain subject cli-

tics (which are historically observed phenomena), nevertheless, the entire population

retains the null subject setting and case assignment under government. It should

be mentioned that Clark and Roberts argue that the change in case assignment un-

der government is the driving force which allows alternate parse-trees to be formed

and causes the parametric loss of V2 and null subject. In this sense, it is a more

fundamental change.

4. If the dynamical system is allowed to evolve, it ends up in either of the two

states (11111) or (11110). This is essentially due to the subset relations these states

(languages) have with other languages in the system. Another complication in the

system is the equivalence of several di�erent grammars (with respect to their surface

extensions) e.g. given the data we are considering, the grammars (01011) and (11011)

(Old French) generate the same sentences. This leads to multiplicity of paths, con-

vergence to more than one target grammar and general inelegance of the state-space

description.

Future Directions: There are several possibilities to consider here.

1. Using more data and �lling out the state-space might yield greater insight.

Note that we can also study the development of other languages like Italian or Spanish

within this framework and that might be useful.

2. TLA-like hill climbing algorithms do not pay attention to the subset princi-

ple explicitly. It would be interesting to explicitly program this into the learning

algorithm and observe the evolution thereafter.

3. There are often cases when several di�erent grammars generate the same sen-

tences or atleast equally well �t the data. Algorithms which look only at surface

strings are unable then to distinguish between them resulting in convergence to all

of them with di�erent probabilities in our stochastic setting. We saw an example of

this for convergence to four states earlier. Clark and Roberts suggest an elegance

criterion by looking at the parse-trees to decide between these grammars. This dif-

ference between strong generative capacity and weak generative capacity can easily

be incorporated into the Markov model as well. The transition probabilities, now,

will not depend upon the surface properties of the grammars alone, but also upon

the elegance of derivation for each surface string.

4. Rather than the evolution of the population, one could look at the evolution of

the distribution of words. One can also obtain bounds on frequencies with which the

new data in the Middle French Period must occur so that the correct drift is observed.
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5.5 Conclusions

In this chapter, we have argued that any combination of (grammatical theory, learning

paradigm) leads to a model of grammatical evolution and diachronic change. A

learning theory (paradigm) attempts to account for how children (the individual child)

solve the problem of language acquisition. By considering a population of such \child

learners", we have arrived at a model of the emergent, global, population behavior.

The key point is that such a model is a logical consequence of grammatical, and

learning theories. Consequently, whenever a linguist suggests a new grammatical, or

learning theory, they are also suggesting a particular evolutionary theory|and the

consequences of this need to be examined.

Historical Linguistics and Diachronic Criteria

From a programmatic perspective, this chapter has two important consequences.

First, it allows us to take a formal, analytic view of historical linguistics. Most

accounts of language change have tended to be descriptive in nature (though signi�-

cant exceptions are the work of Lightfoot, Kroch, Clark and Roberts, among others).

In contrast, we place the study of historical linguistics (diachronic phenomena) on a

scienti�c39 platform. In this sense, our conception of historical linguistics is closest

in spirit to evolutionary theory and population biology40 (which attempts to describe

the origin and changing patterns of life) and cosmology (which attempts to describe

the origin and evolution of the physical universe).

Second, it allows us to formally pose a diachronic criterion for the adequacy of

grammatical theories. A signi�cant body of work in learning theory, has already

sharpened the learnability criterion for grammatical theories|in other words, the

class of grammars G must be learnable by some psychologically plausible algorithm

from primary linguistic data. Now we can go one step further. The class of grammars

G (along with a proposed learning algorithm A) can be reduced to a dynamical

system whose evolution must match that of the true evolution of human languages

(as reconstructed from historical data).

39By scienti�c, we mean, the construction of models with explanatory, and predictive powers{
models which can be falsi�ed in the sense of Popper.

40Indeed, most previous attempts to model language change, like that of Clark and Roberts (1993),
and Kroch (1990) have been in
uenced by the evolutionary models.
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In This Chapter

In this chapter, we have attempted to lay the framework for the development of

research tools to study historical phenomena. To concretely demonstrate that the

grammatical dynamical systems need not be impossibly di�cult to compute (or sim-

ulate), we explicitly showed how to transform parameterized theories, and memoryless

learning algorithms to dynamical systems. The speci�c simulations of this chapter

are far too incomplete to have any long term linguistic implications, though, we hope,

it certainly forms a starting point for research in this direction. Nevertheless, there

were certain interesting results obtained in this chapter.

1. We saw that the V2 parameter was more stable in the 3-parameter case,

than it was in the 5 parameter case. This suggests that the loss of V2 (actually

observed in history) might have more to do with the choice of parameterizations than

learning algorithms, or primary linguistic data (though, we suggest great caution,

before drawing strong conclusions on the basis of this study).

2. We were able to shed some light on the time course of evolution. In particular,

we saw how this was a derivative of more fundamental assumptions about initial

population conditions, sentence distributions, and learning algorithms.

3. We were able to formally develop notions of system stability. Thus, certain

parameters could change with time, others might remain stable. This can now be

measured, and the conditions for stability or change can be investigated.

4. We were able to demonstrate how one could tinker with the system (by changing

the algorithm, or the sentence distributions, or maturational time) to allow evolution

in certain directions. This would suggest the kinds of changes needed in linguistics

for greater explanatory adequacy.

Further Research

This has been our �rst attempt to de�ne the boundaries of the problem. There are

several directions of further research.

1. From a linguistic perspective, the most interesting thing to do, would perhaps

be the examination of alternative parameterized theories, and to track the change of

certain languages in the context of these theories (much like our attempt to track

the change of French in this chapter). Some worthwhile attempts would include a)

the study of parametric stress systems (Halle and Idsardi, 1992){and in particular,

the evolution of modern Greek stress patterns from proto-Indo European; b) the in-

vestigation of the possibility that creoles correspond to �xed points in parametric

dynamical systems, a possibility which might explain the striking fact that all creoles

(irrespective of the linguistic origin, i.e., initial linguistic composition of the popula-
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tion) have the same grammar; c) the evolution of modern Urdu, with Hindi syntax,

and Persian vocabulary.

2. From a mathematical perspective, one could take this research in many direc-

tions including a) the formalization of the update rule for other grammatical theories

and learning algorithms, and the characterization of the dynamical systems implied

therein b) the investigation of stability issues more closely, and characterizing better

the phase-space plots c) recall that our dynamical systems are multi-dimensional non-

linear iterated function mappings|a recipe for chaotic behavior, and a possibility to

investigate further.

It is our hope that research in this line will mature to make useful contributions,

both to linguistics, and in view of the unusual nature of the dynamical systems

involved, to the study of such systems from a mathematical perspective.
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Chapter 6
Conclusions

Abstract

This chapter concludes our thesis by articulating the perspective which emerges over the investiga-

tions of the previous chapters. We discuss the implications of some of our speci�c results, their role

in illuminating our point of view, and directions for future research.

In this thesis, we investigated the problem of learning from examples. Implicit in

any scienti�c investigation is a certain point of view| crucial to our point of view

were:

1. the belief (and recognition) that the brain computes functions (input- output

maps). Consequently, a function approximation framework is relevant, and in

the context of learning, it is of some value to understand the complexity of

learning to approximate (or identify) functions from examples.

2. a focus on the informational complexity of learning such functions. Roughly

speaking , if one wishes to learn from examples, then how many examples does

one need?

From this starting point, we proceeded to examine the informational complexity

of learning from examples in a number of di�erent contexts. Several themes have

emerged over the course of this thesis.

6.1 Emergent Themes

Hypothesis Complexity: The number of examples needed depends upon the com-

plexity of the hypothesis class used. In view of Vapnik and Chervonenkis' work (and

numerous other works in statistics), this is reasonably well recognized (though people

continue to 
out this in the design of underconstrained models for learning systems).
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More crucially, there is an inherent tension between the approximation error and es-

timation error, and a tradeo� between the two is involved whenever one chooses a

model of a certain complexity. We demonstrated this explicitly in the case of feed-

forward regularization networks, but the point is general. In language learning, this

tension plays a crucial role, and guided our choice of the kinds of linguistic theo-

ries worth examining from a scienti�c perspective. We later investigated the sample

complexity of learning within the principles and parameters framework of modern

linguistics. It is worthwhile to observe that within this framework as well, the model

complexity can be measured in some fashion, e.g. the number, and nature of the

principles (parameters), the Kolmogorov complexity of the grammatical class, and

so on. The exact nature of the relationship between this model complexity, and the

number of examples needed to learn was not investigated explicitly, and remains an

important area for further research.

Manner and Nature of Examples: The informational complexity of learning from

examples, clearly depends upon nature of the examples, and the manner in which they

are provided to the learner. In every case we have treated in this thesis, examples

were (x; y) pairs consistent with some target function. There were slight di�erences,

however, between the speci�c instances examined in the di�erent chapters. For the

case of regularization networks, these examples were contaminated with noise. For

the case of languages investigated later, only positive examples were presented ( i.e.,

all examples had the y-value of 1).

A more interesting observation to make on the question of examples is our in-

herently stochastic formulation of the problem. Examples were typically randomly

drawn. This was according to some unknown distribution for regularization networks,

and the language learner; and according to some known distribution in the case of the

active function approximator (learner) of chapter 3. Such a stochastic formulation is

very much in keeping with the spirit of PAC learning, which has in
uenced much of

this work. Furthermore, it allows us to to take recourse to laws of large numbers, and

better characterize rates of convergence, and thereby sample complexity.

A few further observations need to be made. First, a stochastic formulation is

not always utilized for investigation of learning paradigms. For example, in typical

language learning research in an inductive inference setting, the learner is required

to converge on every training sequence. The rates of convergence of such a learner

are hard to characterize unless one puts a measure on the training sequences. This

brings us back to a probabilistic framework, and indeed, such extensions have been

considered in the past. Second, we observed that if examples are chosen by the

learner (rather than passively drawn), they could potentially learn faster. Of course,
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this need not always be the case, and explicit formal studies are required to decide

one way or the other. Third, the actual number of examples required (in a passive

setting) depends upon the distribution with which data is presented to the learner. In

the case of regularization networks, we were able to obtain distribution-free bounds,

but these are only bounds, and as various researchers have noted, are often weak. For

language learning in �nite parameter cases, we see this dependence on distributions

explicitly. We notice here that no distribution-free bound exists.

The Learning Algorithm Used: The informational complexity of learning also

depends upon the kind of algorithm the learner uses in making its hypotheses about

the target. A poorly motivated algorithm might not even converge to the target (as

the data goes to in�nity), let alone do this in reasonable time. Again, this is not par-

ticularly surprising, and the point becomes vacuous without explicit characterization

of the relationship (between algorithm and sample complexity) in some form. The

degree of constraints on the learning algorithms we examined, varied from chapter

to chapter. For the case of regularization networks, our results were valid for any

algorithm which minimized a mean-square error term. Though, we did not prove it

in the thesis, it turns out that algorithms minimizing cross entropy terms (for pattern

classi�cation) are covered in the analysis as well. In our investigation of active learn-

ing, we considered the approximation scheme (a component of the learning algorithm)

explicitly. As a matter of fact, all comparisons between passive and active methods

of data collection were made between learners using the same approximation scheme

(thereby eliminating the in
uence of the approximation scheme on sample complex-

ity). Active and passive learners represent two signi�cantly di�erent kinds of learning

algorithms. We saw how to derive an active scheme from a passive one in a function

approximation setting, and how such a scheme could then potentially reduce the in-

formational complexity of learning. For language learning, we were able to show that

all memoryless algorithms could be modeled as a Markov chain. However, the tran-

sition probabilities of these chains depended on the speci�c nature of the algorithms.

We explicitly computed these transition matrices for a number of variants of the TLA

(single step, greedy ascent) and showed how the sample complexity seemed to vary

for the same task. It should also be noted that our analysis scheme in language learn-

ing (Markov chains) were derived from the learning algorithms used. In this sense,

the sample complexity results were sharp (exact). This is in contrast to bounds on

the sample complexity which can be obtained by using uniform convergence type

arguments, or other techniques.

Learnability and Evolution: An important connection between learning systems

and evolutionary systems emerged toward the end of this thesis. Both kinds of sys-
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tems are adaptive ones. However, according to our analysis here, learning occurs

at the level of the individual, evolution at the level of the population. Clearly, the

two interact| and an information-theoretic point of view is important for an under-

standing of such interactions. The manner, nature, and number, of examples, the

complexity of the hypothesis spaces, the learning algorithms used have implications

for global evolutionary trajectories of populations of learners. In this sense, a theory

of learning which attempts to explain individual behavior logically implies a certain

group behavior. We demonstrated this connection explicitly for the human language

system. This kind of evolutionary analysis of learning systems could serve as an

important research tool in a number of di�erent contexts. Certainly, in economic sys-

tems, one could examine the evolution (adaptation) of the global (macro) economy

as a result of the behavior (also adaptive) of the individual economic agents.

6.2 Extensions

The previous section described the broad results, and the emergent perspective of

this thesis. With this perspective, one could proceed in several directions.

1. Model Selection: At a fundamental level, one could examine the question of

model selection in general. In the cases we considered, the models (family of

functions, or hypothesis classes) were homogeneous (in fact, often parameter-

ized) , i.e., all functions in our hypothesis class had the same representation

(as regularization networks, parameterized grammars, or spline functions etc.).

The task of learning reduced primarily to the task of estimating the values of

the parameters. What if we have qualitatively di�erent kinds of models? In-

stead of choosing the best hypothesis h 2 H as all our learning problems were

posed, what if we were interested in choosing the best class H 2 Hsuper? To

make matters a little concrete, suppose one were interested not in choosing the

best regularization network for a certain problem, but in deciding whether reg-

ularization networks were best for that problem (other candidate models might

include multi-layer perceptrons, or polynomials, etc..)? In the case of languages,

one might be interested in choosing between bigrams, context-free grammars,

parameterized theories, etc. How does one characterize the complexity of the

super class Hsuper whose individual elements are not functions but classes of

functions (models)? For that matter, how does one measure the distance be-

tween two models, i.e., d(H1;H2)? This matter is of some interest in recent

times as increased computational power has made it possible for researchers to

literally \throw models at the data" in their frantic search for \good" ones?
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This is also a subject of interest to researchers in the �eld of data mining.

2. Informational Complexity of Grammars: Another fruitful area of research is the

informational complexity of learning grammars. As has been mentioned earlier,

most language learning research tends to focus on the Gold paradigm of iden-

ti�cation in the limit, without due attention to the rates at which the learner

attains the target. Given, the arguments of \poverty of stimulus" invoked in

the modern approach to linguistics, an informational perspective is bound to be

of some value in choosing between alternate theories. For example, what is the

sample complexity of learning bigrams, trigrams, lexical-functional grammars,

metrical stress patterns, optimality theory etc.? How does it depend upon

the algorithms used, noise, sentence distributions? What are psychologically

plausible algorithms? What are \real" sentence distributions like? Quantita-

tive answers to these questions would considerably aid the search for the right

linguistic theory. One could also potentially decompose the language learning

problem into approximation and estimation parts. For example, by analogy

with our analysis of regularization networks, we can pose the following simple

problem. Let Mn be class of all �nite state grammars with at most n states

(analogous to Hn: networks with at most n hidden units). Let M = [1
n=1Mn:

Let M (analogous to F) be some class which can be approximated by M (it

could simply be M itself). Let examples be sentences drawn from some target

grammar m 2 M. Then how many states (n) must we have, and how many

examples must we draw so that with high con�dence, the learner's grammar

(extensionally) is � close to m with high con�dence?

3. Evolutionary Systems: We argued, in chapter 5, that speci�c assumptions about

linguistic theories, and learning paradigms, leads automatically to a model of

language change. We were able to transform memoryless algorithms operating

on �nite parameter spaces into explicit dynamical systems. There are several

interesting directions to pursue within this area of research. First, one could at-

tempt to obtain similar dynamical systems corresponding to other assumptions

about linguistic theories, and learning algorithms. Second, from a purely math-

ematical perspective, it would be interesting to study the classes of dynamical

systems motivated by linguistics. For example, we saw that the the systems

for �nite parameter spaces were non-linear, and multi-dimensional. The mathe-

matical characterization of such systems are far from trivial. Finally, of course,

one must attempt to put such evolutionary models to good scienti�c use, by

validating against real cases of language change. Such an enterprise, will hope-
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fully result in a mathematically productive, and scienti�cally fruitful study of

historical linguistics. In general, the connection between individual learning,

and group evolution is an interesting one. It can be studied in other contexts,

and formal connections between learning theory, and evolutionary theory need

to be developed further.

4. Computational Complexity: This thesis focused almost exclusively on the num-

ber of examples needed so that the learner's hypothesis is close to the target.

The computational complexity of choosing a hypothesis (once the requisite num-

ber of examples have been provided) is a matter of great importance, and largely

ignored in this thesis. For example, our main theorem in Chapter 2 assumes

that the learner will be able to �nd the global minimum of the mean-square

error term. In general, this problem, as we have noted, is likely to be NP -hard.

Similarly, in Chapter 3, the active learner reduces the informational complexity

at the cost of increasing the computational burden. For the cases we examined,

an analytical solution to the sequential optimal recovery problem allowed us to

obtain tractable solutions. In general, however, the complexity of solving the

optimal recovery equations (and recovering the optimal point to sample at each

stage) could well be intractably high. Further, in the case of language learning,

we obtained sample complexity bounds which were tuned to speci�c algorithms

known to be feasible, and psychologically plausible. These algorithms, of course,

don't learn every possible parameterized space. The complexity of learning a

parameterized space, in general, could well be NP -hard (scalability with respect

to number of parameters, and examples). These are directions worth pursuing.

After all, a truly realistic cognitively plausible theory of human learning should

require not only a feasible number of examples, but should also have low com-

putational (cognitive) burden.
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