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Expressive Haptics

Bill Verplank
Interval Research
verplank@interval.com

A pianist sets fingers on keys, a painter brings brush to canvas, a sculptor presses clay. Why
are these skilled and satisfying interactions? What are the qualities of physical manipulation
that allow artists to become skilled? How can those qualities be provided in our interactions
with computers?

At Interval we are doing research on the design of human-computer interaction with special
emphasis on the physical aspects of interaction. For two years now at Interval we have
experimented with four PhanTom arms. Our goals are to understand better the role of
force-feedback in manipulation both for simulation of virtual objects and for the design new
devices.

In addition to our own research, we have supported and learned from a succession of students
and faculty. Here are the students we have been working with, along with <e-mail> and
(PhD thesis titles). We are pleased to be part of this growing community of researchers.

Margaret Minsky <marg@media.mit.edu>, at MIT and Interval simulated textures. Us-
ing forces just in-the-plane (never normal to the plane) she was able to create convincing
“bumps” or textures in surfaces. (Computational Haptics, 1995)

Brent Gillespie <b-gillespie@nwu.edu>, at Stanford, built motorized keys to simulate the feel
of a piano or harpsichord. He solved many of the dynamic simulation and stability problems
inherent in sample-data systems coupled to variable human impedance. (The Virtual Piano

Action, 1996)

Karon Maclean <maclean@interval.com>>, recently joined Interval from MIT where she em-
ulated the feel of real toggle-switches and sliders with her own 1-dof device. She conducted
careful human subject experiments measuring the resolution and fidelity of the emulations.
(Emulation of Haptic Feedback For Manual Interfaces, 1996)

Wendy Plesniak <wjp@media.mit.edu> is an Interval Fellow at MIT Media Lab’s holog-
raphy group. She has investigated drawing in 3-D and the value of active force-feedback
for supportive constraints and better control. She is currently exploring the simulation of
“pets”. (PhD thesis proposal: Spatial Haptic Pets)

Diego Ruspini<ruspini@leland.stanford.edu> at Stanford, is extending fast distance and col-
lision calculations developed for robotic path planning to haptic simulation of arbitrarily
complex rigid objects, motion of objects and constraints between objects.

Tamara Munzner <munzner@cs.stanford.edu> at Stanford, is hooking up a PhanTom to Pat
Hanrahan’s Responsive Workbench and will be exploring the spatial correspondence of hand
and 3D view.



Sundar Vedula <vedula@cs.cmu.edu> is a student of David Baraff and CMU working with
a Phantom to manipulate simulated dynamic systems including contacts and collisions.

With this list of people and project highlights, I propose to describe our enthusiasm for this
convergence of virtual haptics with product design, music, computer graphics and robotics.

- Bill Verplank <verplank@interval.com> has a PhD from the Man-Machine Systems Lab at
MIT and has taught at MIT and Stanford. Before joining Interval Research, he worked at
Xerox on graphical user interfaces and at ID Two, as an “interaction” design consultant.

- Interval Research is 60+ researchers in Palo Alto with a broad charter to “create new
industries”. All our funding is from Paul Allen.



An Overview of Haptics Research at MIT’s AI Lab

Kenneth Salisbury
Dept. of Mechanical Engineering and Artificial Intelligence Lab.
Massachusetts Institute of Technology
jks@ai.mit.edu

1 Introduction

One of the fundamental interests in our research group has been the design of high performance
mechanisms and sensors needed to advance the state-of-the-art in robotics. Of central concern has
been the development of systems which utilize force information and force control to permit contact-
intensive interaction with objects in the environment. It was inspiration from these experiences
that motivated our work current work in Phantom-style haptics, and the lessons learned from the
robotic activities that have guided our haptic interface design efforts.

We list here some of the devices we have built which pre-dated our Phantom activities, partly to
provide a sense of history to our design philosophy and partly to give pointers to the early lessons
we learned.

2 A Brief History of Devices

JPL Force Reflecting Hand Controller: a six-degree-of-freedom (DOF) joystick able to monitor
user’s and motions and exert force and torque vectors on them. Designed pre-1980 this device is
used by NASA researchers to develop teleoperator control paradigms. [Bejczy & Salisbury 83}

Salisbury Hand (Stanford/JPL Hand): a three finger, 9-DOF hand featuring force controllable fin-
gers. Completed in 1982, this force controllable articulated hand has been used by many researchers
to explore sensing and control issues aimed at increasing robot dexterity. [Salisbury & Craig 82]

Brock fingertip sensor: a six-axis force sensing fingertip permitting contact detection and contact
force measurement. This high-bandwidth contact force sensor provided important information on
the geometric and temporal nature of forces which occur during contact interaction. Though used
as a sensor, it’s data hinted at the richness of information available from contact force information;
it suggested to us that applying high-bandwidth force stimulation to humans might well provide
an important new human-computer interaction modality. [Bicchi et. al, 90]

Whole-Arm Manipulator (WAM): 4-DOF force controllable arm able to contact and interact with
objects with all it its surfaces. 1 meter reach. This arm sought to exploit force control capabilities

at a large scale, permitting a single, mechanically efficient mechanism, to act as both a sensor and
effector. [Townsend 88|

Force controllable actuator: Brushless torque motor with built-in reaction torque sensor for precise
torque control. In our never-ending search for higher dynamic range in force application, we



explored the use of a tightly integrated sensor and actuator package, achieving better than 500:1
dynamic range. [Levin 90]

WristHand: 3-DOF wrist coupled with 2 1-DOF curling fingers for mounting on whole-arm manipu-
lator. Controllable grasp forces and curling fingers for rapid stable object grasping. A design study
aimed at providing the WAM arm with mechanically adaptive grasping. [Moyer 92| {Anderson 92]

Fast-Eyes Gimbal: a simple yet precise and high-bandwidth 2-DOF camera pointing device. Used
by the WAM system for tracking moving objects for catching experiments. [Swarup 93]

Talon-End Effector: A light-weight WAM end effector, exploiting compliant transmission and finger
mechanisms in order to grasp both moving and buried objects. [JPL progress report, in press|

Mini-WAM: 4-DOF miniature version of whole arm-manipulator. 1/3 meter reach. Used as force
reflecting master for full size WAM and by itself as a manipulator. The warmups for the Phantom
design.

Phantom: 6-DOF (3 active, 3 passive) device for exerting precise force vectors on user fingertips.
High performance haptic interface. Initially designed as a device to enable users to “touch things
on the screen”. [Massie 93]

Shah Finger: a new, modular 3-DOF finger aimed at enabling the next generation of fingertip ma-
nipulation research. Exploits stiffening transmission techniques to mechanically enhance dynamic
range and sensitivity. [ONR Progress report, in press|

Taken together, these projects have helped establish within our group a culture of design which
favors simple high-performance force-controllable mechanisms. Yet, none of us have been satisfied
with simply building devices. In each case the devices have been interfaced to computers and
extensively programmed to demonstrate (and in some cases, disprove) our conjectures of what
constitutes useful mechanism.

3 Haptic Rendering Activities

With the advent of the Phantom in 1993 our research took an exciting new turn. Rather than trying
to algorithmically interpret sensory information in service of robot perception, we realized that there
was an enormous potential for displaying to humans information through correctly modulated force
stimulation. The goal of haptic rendering borrows from the fields of art and computer graphics, in
that is seeks ways to evoke sensations of objects by appropriate sensory stimulation. In the visual
domain rendering techniques seek to evoke the sensation of geometry and material properties by
providing appropriate optical stimulation. In the haptic domain, rendering techniques similarly
seek to provide to human “observers” the stimulation necessary to evoke the sensation of object
geometry, behavior and material properties.

Our projects have explored a number of techniques for haptically evoking the properties of objects.
These include the potential function based approaches for rendering simple geometry [Massie 96]
[Salisbury et. al 95], constraint-based methods for rendering polyhedral objects [Zilles & Salisbury
95], and new tangent-plane based methods for rendering surfaces described by implicit mathematical
functions [Salisbury & Tarr 97]. Texture display has also been of interest and we have found that
texture sensations can be evoked by both micro-geometric perturbations and friction attributes



[Zilles 95] [Massie 96]. While to rendering compliant objects by finite-element methods has been
of interest, traditional finite-element methods are (so far) too computationally expensive for the
real-time demands of haptic rendering. A simplification of the finite-element approach developed
by [Swarup 95], however, enabled users to interact with thick sheets of compliant material and has
been used to guide further efforts in this area.

4 Projects

Our current activities in haptics continue to focus on rendering techniques as well as advancement
of haptic interface hardware. We describe briefly some of the projects which support our haptics
research.

ARPA Look and Feel: Haptic Interaction with Bio-Materials. This project has two goals. One,
in conjunction with Boston Dynamics, Inc., seeks to develop techniques to enable surgical training
and tryout. It focuses on compliant material rendering techniques needed to simulate bio-materials.
We are currently developing techniques for “palpating-in” material viscoelastic properties needed to
populate our models. The other goal of the project is to develop techniques for enhanced teleoper-
ation. In addition to developing surgical robotic devices we are exploring methods for interactively
combining virtual haptic constraints with real-time teleoperation to guide and constrain surgical
procedures.

VETT Haptics Project. This project’s primary goal is to support Naval training activities through
the use of haptic interaction capabilities. In addition to supporting basic training and training
transfer studies for cognitive and sensorimotor tasks, we are exploring larger workspace haptic
interfaces, stimulation in other sub-modalities such as vibration and heat flow, and haptic extensions
to the VRML representation for use in modeling training environments.

Reactor Maintenance Robot Simulation. This project explores training and tryout of reactor main-
tenance tasks via the modeling of reactor and task geometry. A real-time dynamic model of the
Schilling Titan robot has been developed and enables users to feel robot dynamics as well as contact
interactions. [Anthony & Salisbury 96]

NASA Vision and Touch Guided Grasping. While this project focus on basic NASA needs for
performing planetary geology science activities via robot probes, it includes a component which
explores methods for providing earth-bound scientists with haptic display of remotely gathered
geologic data.

5 Acknowledgments

The work described herein has been supported by a broad range of agencies for many years. Beyond
being grateful to them for their generous support, I am even more indebted to the many mentors
and hard working students who have inspired and enabled the results described.



6 References

Anderson, Catherine, “The Design of a Compact Actuator System for a Robotic Wrist/Hand,” MS
Thesis, MIT Dept of Mechanical Engineering, February, 1992.

Anthony, B. and K. Salisbury, “Potential Tunnel Enhanced Telemanipulation” to be presented at
SPIE’s International Symposium on Intelligent Systems and Advanced Manufacturing, Telemanip-
ulator and Telepresence Technologies III, Boston, Nov 1996.

Bejczy, A.K. and J.K. Salisbury, “Controlling Remote Manipulators Through Kinesthetic Cou-
pling,” ASME Computers in Mechanical Engineering, Vol. 2, No. 1, July 1983.

Bicchi. A, J.K. Salisbury and D.L. Brock, “Contact Sensing from Force Measurements,” Interna-
tional Journal of Robotics Research, Vol. 12 No. 3., MIT Press, Cambridge, MA. (also MIT AI
Lab Memo No. 1262, October 1990.)

Levin, Michael D., “Design and Control of a Closed Loop Torque Actuator,” May 1990. MIT AI
Lab Memo, AI-TR 1244.

Massie, Thomas H. “Design of a Three Degree of Freedom Force-Reflecting Haptic Interface”, SB
thesis, MIT EECS Department, May 1993.

Massie, Thomas H., “Initial Haptic Explorations with the Phantom: Virtual Touch Through Point
Interaction,” MS Thesis, MIT EECS Dept. February 1996.

Moyer, Thomas, “Design of an Integrated Wrist/Hand Mechanism,” MS Thesis, MIT Dept of
Mechanical Engineering, February, 1992.

Salisbury, J.K. and C. Tarr, “Haptic Rendering of Implicit 3D Surfaces,” submitted to the 1997
Symposium on Interactive 3D Graphics.

Salisbury, J.K. and J.J. Craig, “Articulated Hands: Force Control and Kinematic Issues,” Interna-
tional Journal of Robotics Research, Vol. 1, No. 1, MIT Press, Cambridge, MA, Spring 1982.

Salisbury, Kenneth, D. Brock, T. Massie, N. Swarup and C. Zilles, “Haptic Rendering: Program-
ming Touch Interaction with Virtual Objects,” Proceedings of 1995 ACM Symposium on Interactive
3D Graphics, Monterey, California, April 1995.

Swarup, Nitish, “Design and Control of a Two-Axis Gimbal System for Use in Active Vision,” SB
Thesis, MIT Dept of Mechanical Engineering, May, 1993.

Swarup, Nitish, “Haptic Interaction with Deformable Objects Using Real-Time Dynamic Simula-
tion,” SB Thesis, MIT Dept of Mechanical Engineering, September 1995.

Townsend, William T., “The Effect of Transmission Design on Force-Controlled Manipulator Per-
formance,” April 1988. MIT AI Lab Memo, AI-TR 1054.

Zilles, Craig and K. Salisbury, “A Constraint-Based God Object Method for Haptic Display,”
proceedings of IROS-95, Pittsburgh, Aug 6-9, 1995.



HAPTICS RESEARCH AT THE MIT TOUCH LAB

Mandayam A. Srinivasan
Laboratory for Human and Machine Haptics
36-796, Massachusetts Institute of Technology
E-mail: srini@mit.edu

The goals of research conducted at the "MIT Touch Lab" are to understand human haptics, develop machine
haptics, and enhance human-machine interactions in virtual reality and teleoperator systems. To gain a deeper
understanding of human haptics, multidisciplinary investigations involving skin biomechanics, neurophysiology,
psychophysics, motor control, and computational models are employed. Typical projects involve the measurement
of human capabilities in specified manual tasks employing computer-controlled electromechanical devices, and the
determination of the biomechanical, neural and perceptual mechanisms that underlie performance in these tasks.
To develop haptic machines that enable the user to touch and feel virtual environments, electromechanical devices
are designed, simulation and rendering software are developed, and studies on the human perception of virtual
objects under purely haptic and multisensory conditions are conducted. The results of this research are also
beneficial to hand therapy, intelligent prosthesis design, and the development of autonomous robots that need to
perform human-like functions in unstructured environments.

Figure below illustrates the subsystems and information flow underlying interactions between human users and
haptic interfaces to virtual environments. A review of human haptics, machine haptics, and the relationship
between the two is given in Srinivasan (1995). The following list, ordered according to the numbers in the figure,
gives brief summaries of research topics that are being investigated at the Touch Lab.
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1. Biomechanics of Touch: Mechanical behavior of human fingerpads is measured using high precision robots and
analyzed using finite element models to better understand how forces on the fingers due to contact with objects are
converted into tactile information (Gulati and Srinivasan, 1995; Dandekar and Srinivasan, 1995).

2. Tactile Neurophysiology: The neural signals sent from the skin of the fingerpad to the brain during tactile
sensing of object properties are recorded and analyzed (slip and microtexture: Srinivasan et al 1990;LaMotte and



Srinivasan, 1991);(shape: Srinivasan and LaMotte, 1991;LaMotte et al, 1996);(softness: Srinivasan and LaMotte,
1995).

3. Human Perception: The human ability to perceive object properties such as shape, texture and softness is

measured using computer-controlled apparatus and psychophysical methods(Tan, et al, 1994,1995; Beauregard, et
al, 1995).

4. Motor Action: The human ability to control contact forces during manual exploration and manipulation is
measured and its relationship to sensory limitations is investigated (Srinivasan and Chen, 1993; Karason and
Srinivasan, 1995; Beauregard and Srinivasan, 1996).

5. Haptic Device Development: Computer controlled electromechanical devices that can be programmed to

convey the "feel" of virtual objects to the human user have been developed (Beauregard, et al, 1995; Srinivasan, et
al, 1996).

6. Software Tools for Simulated Worlds: Software is being developed to create interactive virtual worlds and to

display their visual, auditory, and haptic attributes to the human user (Morgenbesser and Srinivasan, 1996; Hou
and Srinivasan, 1996).

7. Human-Machine Interactions: Experiments are performed to investigate how controlled alterations in visual,
auditory, and haptic displays affect human perception and performance (Srinivasan, et al, 1996; Hou and
Srinivasan, 1996). The results are useful in overcoming some of the technological limitations and are applicable to
the design of optimal human-machine interaction paradigms.

8. Computational Theory of Haptics: A computational theory of haptics is being developed to provide a
theoretical framework for information processing and control strategies common to both humans and robots
performing haptic tasks.

In the past few years we have developed device hardware, interaction software, and psychophysical experiments
pertaining to haptic interactions with virtual environments. The Linear Grasper is a device capable of simulating
mechanical properties of objects such as compliance, viscosity, and mass along a single dimension. The Planar
Grasper has a two-dimensional workspace, and software for simulating rigid walls, corners and springs have been
developed. With the advent of the PHANTOM, a variety of haptic rendering algorithms for displaying the shape,
texture and compliance of objects have been created. All the three devices have been used to perform
psychophysical experiments aimed at characterizing the sensorimotor abilities of the human user and the
effectiveness of computationally efficient rendering algorithms in conveying the desired object properties to the
human user. In the following sections we highlight some of the results of experiments on human abilities and the
development of software for haptic interactions.

Purely Haptic and Multisensory Perception and Performance

Although technological limitations impose major constraints on haptic interface design, human abilities and
limitations are also important in determining the design specifications for the hardware and software that enable
haptic interactions. With this viewpoint, we have designed and conducted simple experiments to rapidly determine
the human factors for the design of haptic interfaces (Tan, et al, 1994). More precise psychophysical experiments
have been carried out with computer-controlled apparatus to measure human haptic resolution in discriminating
fundamental physical properties such as stiffness, viscosity, mass, velocity and acceleration (Tan, et al, 1995;
Beauregard, et al, 1995). During these discrimination tasks, haptic motor performance was also recorded and later
analyzed. The results have led to the postulation of "Temporal force control - spatial force discrimination (TFC-
SFD) hypothesis™ which states that subjects apply a stereotypical force vs. time profile (almost linear ramps) and
discriminate on the basis of force vs. position profiles (Beauregard and Srinivasan, 1996). Implications to the

design of virtual environments include specifications on how accurately the object dynamics need to be simulated
and what parameter values will ensure discriminable objects.



Psychophysical experiments have also been conducted to investigate how controlled alterations in visual, auditory,
and haptic displays affect human perception. For example, in experiments on discrimination of stiffness of virtual
springs, intentional skewing of the visual display of spring deformation relative to the kinesthetic sense of hand
position resulted in a drastic misperception of stiffness (Srinivasan, et al, 1996). This is an example of how altered
mappings of different modalities in multisensory virtual environments can enhance the range of properties

perceived by the user. Experiments are underway to assess the influence of contact sounds on the perception of
object stiffness.

Interaction Software Development

To display object shape, a haptic rendering algorithm called "Force Shading" has been developed (Morgenbesser
and Srinivasan, 1996). It employs controlled variation in the direction of the reflected force vector to cause a flat or
polyhedral surface to be perceived as a smooth convex or concave shape. Perceptual experiments that validate the
algorithm have also been conducted. It has been demonstrated that a modification of this technique can
successfully display surface texture. An implication is that polygon-based geometric model of an object can be

common to both graphics and haptics; appropriate "shading" in each modality causes the object to be perceived as
smooth or textured. ‘

To facilitate rapid building of specific virtual environments, a tool kit called "MAGIC" has been developed (Hou
and Srinivasan, 1996). It provides the user with virtual building blocks that can be displayed visually and
haptically. The user can select primitive shapes such as cylinders, spheres, cubes and cones; move them and
change their size, stiffness, and color; combine several primitive shapes to form a new, more complex object; save
the scene for future use. Using this toolkit to design mazes, perceptual experiments on visual-haptic mappings and
interaction paradigms have been performed. More recently, a new haptic rendering software called "HaptiC-
Binder" has been developed to enable the user to interact with general polyhedral objects (Basdogan and
Srinivasan, 1996).
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Protecting the PHANToM from the Programmer

Rob Kooper, John Barrus, David Ratajczak, David Parsons

MERL - A Mitsubishi Electric Research Laboratory
201 Broadway
Cambridge, MA 02139

kooper@cc.gatech.edu, barrus @merl.com, dratajcz@mit.edu, parsons @svl.meitca.com
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ABSTRACT

Anytime you connect motors and amplifiers to a com-
puter, you make it possible for the computer to break
something or hurt someone. However, careful design of
hardware and software can permit full use of a device
within limits imposed by safety concerns. It is trivial to
cause one such device, the Phantom [Massie and Salis-
bury ‘94] from SensAble Technologies, to damage it-
self and in fact it is quite difficult not to do so. In this
paper, we describe a robust solution to this problem.

INTRODUCTION

Programming SensAble Technologies Phantom is diffi-
cult for many reasons, one of the foremost being that it
is quite easy to write a program that will destroy the
machine, as is shown in Example 1. This program will
cause the Phantom arm to accelerate until it reaches its
mechanical stops. High electrical currents will continue
to flow to the motors and the insulation on the motor
windings will melt and short out the motors.

#include <phantom.h>

void main(void) ({
/* Torque in Newtons */
setPhantomTorques (10, 10, 10);
sleep(1000);

}

Example 1. Application that will break the Phan-
tom.

At MERL, we have been working on a system which
makes it impossible for a programmer to hurt the
Phantom in any way. This system is a combination of
hardware and software which monitors both the Phan-
tom and the actions of the software driving it, thus
eliminating dangerous or fatal software commands.

The system protects the Phantom in four ways:
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1. Thermal protection: If the motors are driven with
too high of a current for too long, the amplifiers
are disabled while the motors cool down.

2. Speed limits: If the end of the arm accelerates be-
yond a certain maximum speed, no additional
torque is applied to the arm.

3. Torque limits: Torque requests sent to the Phantom
motors are kept within safe limits.

4. Workspace limits: Resistive forces are applied in
order to decelerate the Phantom when the user
moves it too close to its mechanical workspace
constraints.

Maximum speed, torque, and workspace limits are built
into our safety system, but the programmer has the op-
tion of specifying more cautious limits while debugging
Phantom programs.

DESIGN PHILOSOPHY

Providing a safe environment for the Phantom requires
careful consideration of the entire system. For instance,
if some of the safety features are implemented in soft-
ware, that software must not be influenced by factors
which are out of the control of the architect of the sys-
tem, such as bugs in other people’s programs. This con-
sideration moved us to develop an embedded controller
which removes the possibility of someone else’s soft-
ware disabling our safeguards. An additional advantage
of using an embedded controller is the opportunity to
take over some of the processing normally done by the
application computer, leaving more time for the appli-
cation to run.

The following are some of the things we considered
when designing the Phantom safety system:

e Never assume motors are at ambient temperature
when application starts.

e Provide for absolute torque (current) limits at all
times.



e Do as many calculations as possible on dedicated
processor(s) to reduce the workload on the appli-
cation computer.

¢ Reduce or eliminate complexity for the program-
mer.

e Allow safe addition and removal of objects while
Phantom is operating.

CONTROLLER ATTRIBUTES

Based on the above design philosophy, we created a
controller for the Phantom which has the following
attributes:

e  Thermal simulation runs on embedded controller.

e Thermal simulation cannot be stopped by remov-
ing power or by programmer error and thermal
protection cannot be shut off.

e Automatic conversion between forces and torques
and between angles and XYZ positions done.

e  Temperature, position, velocity, and error infor-
mation provided to application programmer on re-
quest or at specified intervals.

¢ Reduces computational load on application com-
puter.

¢ Eliminates dangerous forces caused by new objects
appearing in same location as users hand.

In order to accomplish the above tasks, we provide
additional processors between the Phantom hardware
and the application computer. One of those processors
is essentially an embedded controller which controls
the Phantom directly using information received from
the application computer over an Ethernet connection
(see Figure 1).

Embedded
Controller
and Amps

Phantom

Application Computer

Figure 1 Phantom setup

Using this controller, the programmer no longer needs
to set and read bits directly on the Phantom plug-in
board. The user can create small packets of informa-
tion, like torque requests, and convey those directly to
the controller over the Ethernet. Information is con-

veyed back to the application using the same communi-
cation channel. Since this is network based, many com-
puters can receive the same information at the same
time, although only one can have direct control of the
Phantom.

CONTROLLER IMPLEMENTATION

A library of abstract C++ classes is provided to the
application programmer. These classes provide network
connectivity, temperature checks and predefined ob-
jects and are used to communicate with the controller.
This enables the programmer to quickly build an appli-
cation that can connect with the Phantom controller and
issue commands and display Phantom specific infor-
mation.

The current implementation of the controller is based
on a 90Mhz Pentium running a real time UNIX variant
(LynxOS). The communication between an application
computer and the controller is handled by TCP/IP over
Ethernet.

Thermal Protection

Since thermal protection is so vital, a unique solution
was developed to prevent the motors from burning out.
In addition to the thermal simulation of the motors run-
ning on the controller, we designed and built an electri-
cal system which mimics the thermal performance of
the motors. The voltage at one point in the electronic
circuit precisely tracks the heating and cooling of the
motors’ internal windings and housing. Powering down
the hardware has no affect on the cooling of the motors
nor does it adversely affect the analog electronic simu-
lation. The tracking voltage is always measured on start
up to determine the current temperature of the motors
for the software simulation. Additional electronics
monitor the tracking voltage and automatically shut off
the amplifiers if the voltages, and therefore the internal
motor temperatures, reach dangerous levels. Even if the
controller suffers an unexpected software failure, the
motors will still be protected.

Torque and Velocity Limits

The Phantom controller converts the forces supplied by
the user, or calculated internally, to torques. After this
calculation, and before supplying these values to the
Phantom, the controller checks to see if these values are
within the range specified by the user. It the not, the
Phantom controller scales the force vector to keep it
within range.

When converting the angles of the Phantom to a posi-
tion, the Phantom controller calculates the velocity of
the Phantom. If the velocity is outside of the range sup-



plied by the user, the Phantom controller will not apply
a force until the velocity comes within the set limits.

Workspace Limits

One of the predefined objects in the controller is a
model of the reachable workspace of the Phantom. This
model is used to decelerate the Phantom whenever the
probe approaches either the limits of the Phantom's
reach or fixed obstacles in the workspace, such as a
desktop. This provides an important operating safety
feature, and also supplies useful haptic feedback to the
user. The geometry and haptic rendering algorithms of
the workspace model can be easily changed.

SENSABLE’S APPROACH

SensAble Technologies has a Phantom library (called
GHOST) which does all of the thermal calculations and
works with a watchdog timer on the amplifier box to
reduce the chance of burning out motors. However, it
has no provisions for the situation in which a person
using the Phantom might shut off the software when the
motors are hot and then restart the program immedi-
ately. On restart, the GHOST library must assume that
the motors are at ambient temperature because the
GHOST library has no way of measuring the real tem-
perature. If the motors are hot on startup then it is pos-
sible to burn out the motors using SensAble’s software.
In order to guarantee that the motors are at ambient
temperature, more than 15 minutes would have to pass
before restarting the program because of the amount of
time it takes for the motor housing to cool.

FUTURE WORK

Unfortunately, due to limitations in capacitor technol-
ogy, the electronics that mimic the motor temperature
are not very reliable or stable and require frequent re-
calibration. Other methods of thermal tracking are be-
ing pursued, in addition to the software based thermal
simulation.

The speed of the Ethernet communication is too slow.
Maximum round-trip communication using the current
embedded controller is about 500 Hz which prohibits
the representation of stiff objects. Although rewriting
the Ethernet drivers for our system might speed it up a
bit, we are also considering other communication tech-
nologies like FireWire, Univeral Serial Bus and High
Performance Parallel Interface when they become more
widely available. Also, the use of a simple stiff wall
model in the controller like the one used in the UNC
Phantom library might be an effective alternative [Mark
et al. '96].

Another way to alleviate problems with communication
speed is to remove the need for high speed communi-
cation completely. If a haptic model could be loaded
into the controlier and the controller could then do all
of the necessary calculations for delivering the correct
force to the user, the applications computer would not
have to worry about haptic calculations at all and the
Ethernet communications speed would no longer be a
bottleneck. In the near future we will be considering a
model format or file format for storing and communi-
cating haptic information to the controller. This format
will provide for transmission of not only haptic object
geometry but also surface properties such as friction,
The controller could implement a friction model such
as the one described in [Zilles and Salisbury '95].
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Abstract

Convincingly hard walls and free space that feels free are perhaps the two most
important criteria for a useful haptic interface system. For this reason, several studies
have been done on optimal software algorithms for creating very hard walls. Approaches
to creating hard walls have including increasing spring constants to the ragged edge of
instability, introducing hardware and software damping, and even inertia cancelling
impulses upon user contact. I will present a novel method that I developed which
(neglecting hardware deflections) effectively creates a wall with infinite stiffness.

The algorithm is easy to understand and is best described as the analogy to a
classical P.I.D. (Proportional Integral Derivative) controller. Most haptic interface
algorithms to date implement the Proportional term in the form of a spring constant
which pushes back on a user when the user penetrates a virtual surface. Some algorithms
go one step further an implement the Derivative term as a damper proportional to the
velocity that a user is penetrating a virtual wall. The P and D terms have physical
analogies, are easily conceptualized, and don’t have adverse side effects due to
discontinuities when the user makes a transition from free space to a wall or vice versa.
Implementing the Integral term in a virtual environment is not as straightforward, but has
profound implications for wall stiffness. I will present the problems I encountered in
adapting this classical control algorithm to virtual haptic environments, the remedies I
tried, and the final working solution which includes a temporal-spatial filter. Source code
and live demonstrations will be presented at the Phantom User’s Group.

Description of the Approach

For simplicity, this algorithm is described in one degree of freedom, but is
extensible to a full three degree of freedom controller. The user’s position in space is
defined as X,,. If the surface that we wish to represent as a hard wall occurs at X, =0,
then for values of X, greater than 0, the user is considered above the surface and for
values of X ., less than 0, the user is considered to be penetrating the surface. The
desired position is at the surface when the user is penetrating the surface, and the desired

position is the user’s position when the user is above the surface (in free space).



Specifically, X,.,=0 when X <0 and X=X, when X .>0. Now, E_ is defined as the
difference between X, and X,..

For a wall with a “proportional controller,” the rule for determining the reaction
force is simply Force=K E,. This is best described physically as a virtual spring. For a
wall with a “proportional derivative controller,” Force=K E, + K,E,, where E,;=d(E,)/dt.
The derivative term is best described as a virtual shock absorber. Finally, for a wall with
a full “proportional integral derivative controller”, Force=K E, + KE; + K,E,, where
E={ E, dt. The closest physical analogy that comes to mind for the integral term is a
virtual pneumatic cylinder that starts being filled with air when the user enters the
surface.

What function do each of these three terms contribute to a hard wall? The further
a user pushes into a surface, the harder the proportional term will push back. The faster
a user pushes on a surface, the harder the derivative term will push back. And finally, the
longer a user pushes into a surface, the harder the integral term will push back.

A direct application of this classical PID controller would work very well for
simulating hard, stiff virtual walls, except there is an issue of what to do with the integral
term, K,E,, when the user moves from contacting or penetrating the surface to being in the
free space above the surface. As they are defined above, E,=0 and E~0 when the user
moves to free space. But because E; is the integral of E, and E, is 0 in free space, E; will
remain at some finite, non zero value when the user moves to free space. Imagine a
surface that pushes on a user long after the user is no longer touching the surface!

Improvements

So can we make a special case and simply set E, to zero when the user enters a
region of free space? No, this does not work. Ironicly, the integral term always pushes
the user to the exact place where the special case is applied - right at the transition from
surface to free space. If E, is set to zero as soon as the user leaves the surface and enters
free space, then a casual user exerting a constant force into the surface would be “jacked
up”’ by the “pneumatic cylinder” only to be dropped back below the surface repeatedly.
How do I know this? This was the first solution that I tried!

Observing the defect in the first approach of setting E=0 as soon as the user left a
surface led to the second approach. Specifically, instead of setting E; to zero as soon as
the user left the surface, a region of epsilon thickness was defined above the surface. If
the user was above the surface, but within epsilon of the surface, the E, term was allowed
to stay constant. When the user moved at least epsilon from the surface, the E, term was
set to zero. As one might expect, this approach was only marginally better than simply
setting E; to zero in the region of free space, but it was worth a try. Furthermore,
pursuing this approach further led to the realization that any discontinuity in E; would
probably lead to problems. E; had to be the integral of E, while penetrating the surface,
and E; had to be zero in free space, but discontinuities in E; with respect to time or space
had to be eliminated.



A temporal decay function was first used to attenuate the E; term when the user
moved to free space. At each iteration of the algorithm, E=E,/ (1 + beta), when the user
was outside of the wall. This was a definite improvement over the earlier discrete one-
step elimination of E;. It was during the process of searching for the optimal value of beta
that the realization was made that beta should be position dependent. The algorithm was
then changed to E=E, / (1 + (beta*x)), where x was the distance the user had traveled
above the surface. If the user was either very near the surface, or if not much time had
passed, the E; term would not be attenuated much, but if many time steps have passed, or
if the user was very far from the surface, then E; would be greatly attenuated.

The results of this algorithm were very promising. Surfaces could be made to feel
infinitely stiff and no odd discontinuities in force were perceivable. However, the
surfaces had an “active” quality that was very distracting. That is, the wall often seemed
to impart more energy to the user than the user had put into the wall.

The final tweak to the algorithm, which might be considered a “hack” or “insight”
depending on the reader’s point of view, was to let the derivative (velocity damping) term
remain active, even after the user had left the wall, but only so long as K,E,<K.E,. (E,
was redefined as d(X,,,)/dt rather than just d(E,)/dt for this calculation.) And in the case
where K,E~KE, and the user was in free space, E; was set to zero instantaneously. If the
user was leaving the wall quickly, this part of algorithm would avoid imparting more
energy than needed to the user. Adding this branch in the algorithm made a tremendous
difference in the quality of the feel of the wall.

Conclusion:

The purpose of this endeavor was to improve the basic software algorithms for
creating virtual haptic surfaces by implementing an integral term. This paper describes a
reliable, working solution, and how I came to realize this solution. Perhaps most
significant was the realization that the transition of the integral term between the wall and
free space would require a temporal-spatial filter, with velocity considerations. Although
this paper may not contain the optimal implementation of the integral term, I have shown
that it is both possible and worthwhile to include the integral term in haptic algorithms. It
is my hope that others might look for and find a better implementation.
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The Phantom is an example of a haptics /O device that provides 6 degrees of freedom
(DOF) input control (with the optional gimbal attachment) but is limited by design to only 3
degrees of freedom (linear) force output. In real life when we move three dimensional objects
around an environment with our hands, we feel stopping forces and twisting torques during
object collision. Humans use this 6 DOF feedback to intuitively accomplish path planning
(e.g. removing the milk pitcher from the back of the refrigerator shelf.) It might be
supposed the lack of output torque from the Phantom would limit its use to only linear
placement of generalized 3D objects in a synthetic scene. However this is not entirely true.
Recent experiences with a single Phantom reveal there is a sense of torque the user
experiences which aids in the placement of 3D objects. To be sure, there is no real torque in
the classic mechanics. The implication for this observation is that many path planning and
CAD synthetic assembly tasks can be accomplished with a single Phantom, saving the cost of
a second Phantom and computer system.

We have written software that computes collision detection/ force-torque generation for a
3D polygonalized object moving in a similarly characterized static world. Objects in this
world can be convex or concave. Currently, no surface friction models or material
compliance models have been implemented. Because of the lack of output torque capability
of the Phantom device, we cannot negotiate object placement/orientation in our synthetic
world to mimic the experience in the real physical world. Two Phantoms used together can
display torques along the two directions perpendicular to the moment arm described by the
line connecting the endpoints of the two arms. But this architecture effectively doubles the
cost of the hardware, both for the haptics display and the computers. Our experience with a
single Phantom suggests there are some classes of placement tasks that can be effectively
performed even though no output torque can be applied.

Consider the simple scene shown in Figure la. The stick object encounters the solid block
at a point contact, and a torque t_is generated by the vector force F provided by the the users
hand operating on the moment arm R formed from the point of contact to the location of
force application. In the Figure, we see that the moving object initially pivots around the
point of contact due to this torque and a user of a haptics device would expect to feel a twist
in their hand. The evolution of the forces and torques in this example depends on many
factors and several scenarios could develop. But the important point is that someone
experiencing these forces can involuntarily negotiate a realistic path around the obstructing
object.

The condition shown in Figure 1b shows the situation of no torque generation because there
is no moment arm to act on. The user would only feel a force of opposition to motion and
no torque. This comment pertains not only to a real world physical situation but also a
synthetic situation where one could have a fully 6 DOF haptics display. But we all know that
an applied torque can make this object rotate about this point of contact. In the synthetic



world experience where a person is using a haptics device to move objects, he can voluntarily
provide this torque with his hand and rotate the object. The force/torque diagram for this
case in shown in Figure 1c and should be compared with the diagram of Figure 1a. The only
difference in these figures is that the force vector in lc is at the point of contact. This is the
force/torque diagram that arises with a haptics device with only a linear force output and no
torque output. No matter where the stick collides with the object there will be no moment
arm.

It has been our observation that there is a sense of torque a person experiences in these
situations that aids in placing parts in a 3D world. To be sure there is no real torque--there
can't be. But there is the kinesthethic sense that one can roll an object around another in a
believable way. We make the following observations about this phenomenon:

1) when the user of a haptics device with only 3 DOF output linear force voluntarily
supplies the torque of collision with his hand, there is a sense of torque that aids in the
negotiated placement of objects in a 3D world.

2) This condition is greatly aided when the colliding objects can be visualized and the
person's experience with the real world can be applied.

3) This sense of torque can only be experienced for the orientations consistent with the
force vector applied by the users hand. Thus, no apparent twisting forces can be felt and
current Phantoms cannot be expected to mimic screwdrivers and wrenches. (However,
devices equipped with 3DOF torque instead of 3DOF linear force output could mimic the
displacement of rotated objects with the voluntarily application of linear forces. These two
display options are complementary.)

Our current hardware system consists of 2 Hewlett-Packard 735 UNIX workstations
running asynchronously of each other. The machines run in the real time priority mode and
both exchange information with each other using Berekely sockets over an Ethernet
connection. One machine is dedicated solely to stereoscopic rendering of our graphics scene.
This 125MHz computer runs code utilizing the Starbase graphics library and renders a 3300
flat shaded polygonal scene of the Ford Mustang at 20Hz. Stereoscopic viewing of the CRT is
accomplished with non headtracked CrystalEyes eyewear. The second workstation is a 100
MHz, 50 Mflop machine that runs our OS non-specific collision detection/force-torque
generation code. Both codes are written in C to avoid any execution time penalties currently
associated with C++. This machine currently is executing at the 1 hapton* level due to an I/O
bottleneck to the Phantom. We estimate that this hardware-software system is potentially
capable of 10 haptons.

Acknowledgements. 1 gratefully acknowledge the financial and materiel support of Fred
Kitson of the Hewlett-Packard Laboratories for this project. And hats off to Mike Goss for
his assistance and PC wizardry. 1 would also like to thank the Hewlett-Packard Company for
past support on other unreported haptics projects. Finally, 1 would like to thank NASA
Goddard for initially funding my collision detection algorithm work in support of the Hi Gain
Antenna Study for the Hubble Telescope.

* We define the hapton as the number of triangle pair collisions that can be computed 1000
times per second. Spatial accuracy of collision computation must be done to a precision of
0.1% or greater and the triangles must be intersecting on edge. The hapton is a measure of
haptics computer system performance in analogy to the polygon/sec as a unit of graphics
system rendering performance.




Figure 1a. Rod pivots due to torque_t created by applied force F Figure 1b. Rod pivots due to voluntarily applied torque t.
acting on moment arm R Force F acts on no moment arm, creating no torque.

Figure l¢. Rod pivots due to torque ¢ voluntarily applied by
user. Force F acts on no moment arm, creating
no torque.



Home Haptics Laboratory
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The time has come to revisit the pin-block, usually found in toy stores for making 3D pictures
of your face. It is 4” x 6” array of metal pins, available in novelty stores for about $10. It’s
a great toy; most people use it to make 3D impressions of their faces, hands, etc. In this
essay, I will show you some recent observations using the pin-block as an "object to think
with”, to highlight certain issues in human haptics and display design.

1 Haptic interaction with 3D Images

Many researchers in the community have realized that a large scale pin-array, with fast ac-
tuators, is an interesting haptic display. But perhaps not everyone has realized that without
actuation, it already is a perfectly good, though highly limited teleoperator mechanism.

If you place the pin-block on top of a radio console with buttons and knobs, they all show up
nicely. If you touch the 3D images, the surfaces (as sampled by the pinheads) are rigid. If
you push on the button surfaces, they operate the buttons. You can choose a radio station.
However, if you try to turn the volume up, you can’t. This device transmits the shape and
size of all the controls, as well as the button feel, but of course it can only transmit normal
forces, along the pins, and no torques or shears.

In that simple experiment, the block has been unexpectedly transformed from an imaging
device to a control device with haptic feedback.

2 Textures and Materials

In my recent work, I showed that certain properties of textures can be perceived when shear
forces only are available to the finger. The pin-block provides the dual filter, providing
normal forces only from the environment, to the fingertips. What happens if you use this
rigid teleoperator to feel more subtle textures and materials?

To test this, I placed the pin-block on each page of ”Feely Bugs”, a tactile book for kids. Each
bug is covered with a textile. Lacy bug can neither be seen nor felt through the block. Velcro
bug can be seen as a raised shape, but the block does not have enough resolution for the
individual hook shapes to be transmitted. Puffy bug is a big success in haptic transmission.
It can hardly be seen, but the boundaries of the spongy fabric can easily be felt by scanning
the fingertips across the block.

Compliance is such an important property of textured materials that it can provide a sense

1



of presence, despite the fact that the surface texture available to the fingertips (the smooth
scaly texture of the pin heads) is radically different from the soft fuzzy texture of the fabric.

3 Living Things

What do you need to transmit the presence of another person’s hand? I was surprised at how
animate the image of a hand in the pin-block is. One part of the surprise is finding that you
can interact haptically with what appeared to be a visual representation. But there is more
to the surprise. It is okay that the skin texture is different than real skin. The transmission
of compliance is very important to the sense of living tissue. Scanning across the pin-hand
with a single fingertip one can see and feel that the fingerpads, even the whole hand taken
together, act as bags of incompressible fluid. When you push on one the right side of the
palm, the pins on the left side push up. And of course, you can feel deliberate motions from
the other hand as the person flexes and moves.

4 Summary

In summary, the unactuated pin-block toy is a subtle laboratory for contemplating issues
about haptic display such as the role of normal and shear forces, the relative importance of
compliance and position, and the components of animacy and presence.
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1 Introduction

Like most haptic interfaces, the Phantom provides force feedback, where a single force vector is
applied to the end of the finger or arm. In general, haptic perception also relies on cutaneous
information, produced by distributed sensations across the skin. We are developing new devices to
generate this type of feedback, including both small-scale shape and high-frequency vibration.
Shape is useful for both object recognition and for manipulation control. Knowledge of object
shape permits determination of the local surface normal direction, which is important for predicting
frictional behavior. The shape of the object at the contact with the finger tip also determines the
kinematics of the contact, and thus whether the object can pivot or roll against the finger.
Vibrations are produced by transient events such as contact and slip, and humans make extensive
use of this type of information in manipulation. Vibrations also allow us to distinguish textures and
detect contamination by stroking a finger over a surface. Beyond the system development aspects,
our work is directed at understanding how tactile information relates to task properties and
perception. We are also creating algorithms for synthesizing tactile feedback in virtual
environments.

2 Shape display

To recreate small-scale object shapes, we have developed a number of tactile shape displays. These
devices consists of a regular array of pin elements which rest against the user's finger tip (Figure 1).
Shape memory alloy (SMA) wires raise and lower individual elements to approximate the desired
surface shape on the skin. Each element can produce over 1 N of force and up to 3 mm of height
variation. Current versions include 6x4 and 10x1 element arrays (Kontarinis et al. 1995). We have
implemented a feedforward controller and fluid cooling, which raises the bandwidth of the
otherwise slow SMA actuators (Howe et al. 1995a). In contrast with other tactile shape displays,
these devices combine the small size and weight that permits mounting on a haptic interface like the
Phantom, with the high force levels essential for portraying object shape under force reflection.
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Figure 1. Shape display and human finger Figure 2. Vibrotactile display system.
tip. Individual pins are raised and lowered Vibrations generated by the vibration display
by shape memory alloy actuators to are transmitted through the square sheet metal
approximate the shape of objects. frame to the user's finger (shown end-on).

These devices can also be used to relay tactile information in teleoperated manipulation. Tactile
array sensors in the gripping surface of the remote robot's hand measure the pressure distribution at
the contact with grasped objects. This sensor's output is sampled by a computer, which applies
signal processing algorithms and drives the shape display at the operator's finger tip. One
application for these systems is in minimally invasive surgery, where shape information is
particularly important for tasks such as finding hidden anatomical features and assessing tissue
properties (Howe et al. 1995b). In our laboratory experiments, we have demonstrated that this
system can be used to locate simulated tumors hidden in compliant "tissue."

3 Vibration display

In addition to the low-frequency distributed information provided by shape display, physiological
and psychophysical studies suggest that it is helpful to provide high-frequency vibratory
information. The frequencies of interest here are from a few dozen Hz to over 1 kHz. Since this is
in the audio frequency range, miniature loudspeakers are easily modified to create prototype
vibration display devices. The paper cones and metal frames are removed, and the remaining
structure containing the coil and central diaphragm are mounted "upside down," so the base
containing the permanent magnets is free to move in space (Figure 2). Passing current through the
coil generates a force against the magnet, which accelerates the relatively massive base and
produces an inertial reaction force against the manipulator. In our tests, inexpensive speakers
produced a 3 mm range of motion, and up to 0.25 N peak force at 250 Hz.
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Figure 3. Recorded and synthesized vibration waveforms for
tapping an aluminum block with a steel tool tip.

To investigate the role of vibrotactile feedback in various tasks, we have used a telemanipulation
system equipped with a vibration sensor on the remote robot's gripper and a vibrotactile display on
the user's finger tip (Kontarinis and Howe 1995). Manipulation performance could be compared
with and without vibrotactile feedback, and correlated with task properties. In inspection and
exploration tasks like assessing surface roughness, perception of vibrations is a key part of the task,
so vibrotactile feedback is essential for success. In other manipulation tasks, vibrations reveal the
state of the system, and thus aid in execution. One example is needle biopsy, where vibrations
denote the puncture event, and vibration feedback can reduce reaction times or permit minimization
of forces. Some manipulation tasks, such as assembly of close-fitting parts, are limited by the
ability to coordinate forces, so vibrotactile feedback is of marginal value. Current work is directed
at better understanding the relationship between tactile feedback and task performance, and
optimizing sensor and display device characteristics.

3.1 Virtual vibrations

Vibration feedback is also useful in virtual environments, which raises the question of how to
generate the appropriate waveforms. As an initial study, we have examined the problem of
hardness perception based on tapping a surface with a tool (Wellman and Howe 1995). We
began by measuring the waveforms that are produced in actual tapping with an instrumented
stylus. A simple exponentially damped sinusoid model was fit to data (Figure 3), parameterized
by desired hardness and approach velocity. This model was then used to produce waveforms in
an experiment that assessed the validity of this characterization. Using these simple waveforms



for vibrotactile display in a virtual environment allowed subjects to accurately distinguish surface
hardness. In ongoing work, we are examining algorithms for representing other transient events
and surface textures, and issues in synchronizing vibrotactile and force feedback.
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ABSTRACT . Haptic surface features such as
undulation and texture are represented both by shape
profile itself and by deviating normal direction just like
bump mapping in the computer graphics technology. These
two factors which form apparent shape through human
haptic exploration are investigated. Through
psychophysical experiments they are found to contribute
independently to human haptic perception of the shape
profile, and the shape profile itself is more effective
compared to the pseudo profile derived from normal

direction deviation.

1. INTRODUCTION

When we touch an object of little friction such as melting
ice, we receive a reaction force to the normal direction of
the point where we touch it with our fingers. Because of
the integration of surface tangent becomes the surface
profile, we can guess the entire shape profile by obtaining
the sequence of surface tangent or the surface normal as a
substitution of it through haptic exploration. However
we can find usually the shape profile through tracing along
the outline of it. Here these two facts imply that we can
perceive a shape profile by obtaining the sequence of either
the surface geometry itself, or its differential information.
Here arises a question that which component is more
dominant for haptic perception of the whole shape profile
when we touch and explore a curved object of little friction.
Fortunately, for a representation of virtual objects with a
force display, we can control independently these shape
profile parameters (geometry and its differential
information). To modify the surface normal direction, we
introduce a "bump mapping" method which is used in
computer graphics to making a realistic shaded image. As
a related work, M.Minsky developed a virtual 3D haptic

display by controlling the 2D driving force[1].

2. SHAPE RECOGNITION EXPERIMENTS
Through consideration of the previous chapter, we
picked up two shape profile parameters that may control
the human perception of a shape profile. Hereafter we call
thesc parameters a "position parameter” and a "normal
parameter” respectively. Next question is whether these .
two parameters works linearly onto the human perception
or not. Here the lincarity means whether the effects of
these two parameters can be mapped onto a single
psychophysical scale or not. Therefore we performed

psychophysical experiments to investigate the problem.

2.1 Method
We used a virtual cylinder as a target object for
recognition which could be modified by two shape profile
parameters. The cross sections of the modified object are
shown in Fig.1. Equations of the cylinder using parameter
tis
x(t)=a(t)*cos(t)
y(t)=a(t)*sin(t) (H
a(t)=r*(u*cos’(2t)+1),
where r is radius of the cylinder and u is a position
parameter. The directions of reaction force are obtained
by differentiating Eq.1 with ¢, then rotating 90 degrees
and u is substituted by v as
nx(t)=(2+5v-8v*cos(2t)+5v*cos(4t))*r*cos(t)  (2)
ny(t)=(2+5v+8v*cos(2t)+5v*cos(4t))*r*sin(t).
Here v is a normal parameter. Here the parameters « and v
can be changed independently, becoming two shape

parameters which determine apparent haptic shape profile.
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Figures show cross scections of cylinder-like 3D
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virtual object. Subjects can explore inner side of them
by PHANToM. The bars from the surface toward
the center show the directions of reaction force when
cylinder sides are touched. From left to right,
peripheral shape profiles are distorted. From top to
bottom, directions of reaction force distorted. The
bold line figures are consistent with surface profile
and direction of reaction force as are real objects.

One of parameters (position or normal) is set fixed and
the other is required to be changed by the subject. Eight
subjects are participated in this experiment. A Subject can
touch and trace along the inner surface of the cylinder
using PHANTOM, and is asked to make the cylinder fecl
most "smooth" by changing the parameter with specified
keys on the board. The experiments were performed at
first the position parameter fixed, then the normal
parameter fixed. The actual radius r of the cylinder was

2¢m, then Scm.

2.2 Result and Discussion

The figure 2 shows the result of the experiment
described in the previous section. There found no
significant differences between the cases of different fixed

parameter values. This means that one parameter value

with which subjccts feel "smooth" does not depend on the
other. If the two shape profile parameters could be mapped
onto a single psychophysical scale, then one parameter
value of the most smooth case should have depended on
the other.
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Fig.2 Results of experiments

3. QUANTITATIVE EVALUATION

We performed experiments to measure the equivalent
psychophysical amount of deformation made by the two
parameters. We used undulation on a flat surface. Figure

3 shows the shape profile and direction of reaction force.

3.1 Method

Two surfaces are presented haptically to the subject.
One is a reference, and the other is a working surface of
which the amount of undulation can be controlled by the

subject. The shape profile is represented as



y=u*cos(2 x x/p)/2 (3)
where u is a position parameler and p is a constant period
of undulation, while x and y represent the coordinates. The
direction vector of reaction force is represented as

(7 v¥sin(2 © x/p), p) “4)

wherc v is a norm parameter. Note that parameters u and
v have a dimension of length in this case.
Three experiments were performed. The first one presented
normal shape shown in Fig.3(a). The subject is asked to
make the perceived amplitude just same as the reference.
In the second experiment, the reference plane is a shape
in Fig.3(b), while the work plane is Fig.3(c). The third
experiment exchanged them.

WM LN LN LY

(a) normal shape (u=v>())

DALZZNN L Z0N EZEN L DAL

(b) reaction force deviating shape (u=0, v>0)

T T

(c) profile only deviating (u>0, v=0)

Fig.3 Shapes used in the experiment

3.2 Result and Discussion

The resuits of three experiments are shown in Fig.4.
From the results we found that the shape representing
paramecter is more effective than the direction representing

parameter when they are presented individually.

4. CONCLUSION

Human haptic perception, as well as visual perception,
is subject to characteristic distortions. We investigated this
phenomenon to make the most of this human illusion for
simplifying haptic displaying algorithms. We found that
both the shape profile itself and the surface normal
direction depict the apparent shape independently while
haptic exploration. We can use both factors superimposed

just like bump mapping in computer graphics techniques.
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Using PHANToMs for Telesurgery: the HMSL system,
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Abstract:

Many groups have used the PHANToM Haptic Interface arms to interact with virtual environments,
but they can also be used as both master and slave in a teleoperator system. In the Human-Machine Systems
Laboratory at MIT we are involved in a project to examine a number of issues related to the development of a
telesurgery system. We have used a pair of “tool handle” PHANToMs to provide force feedback to the telesurgeon
and as a platform for a dedicated telesurgical tool. The telesurgery system also provides for audio communications
between the surgeon and an assistant at the remote site, and transmission of a color video image of the surgical task.
The issues that we investigated were control of the teleoperator when subject to system time delays and the
interaction between the telesurgeon and assistant under various time delay conditions. To support these efforts, the
system includes hardware and software to generate delays, and surgical simulators to test the performance of the
telesurgeon/assistant team.

The system and the experiments will be described, and the results and our experience will be
discussed.

Introduction:

The first use of a pair of PHANToM haptic interface arms in a teleoperator mode seems to have been a
small demonstration made of two small units set up in a simple position (P) control loop by Rhonda Massie in
1993 [Massie, 1996]. The development of the “tool handle” version opened up the possibility of a larger workspace
teleoperator with excellent force feedback potential. Two of these units were acquired by the HMSL by early 1995,
and with the addition of a teleoperated surgical tool, have become the heart of the HMSL telesurgery system.

Telesurgery is an exciting new development in the field of telemedicine, which seeks to extend the
reach of a surgeon to areas that are either difficult or dangerous for a doctor to reach (e.g. Antarctic research station or
battlefield). A number of other groups are active in this area, both in development of systems and in early clinical
use. SRI Inc. in California [Green, et al., 1995], have developed a two armed, five degree of freedom, bilateral force
reflecting telesurgery system which provides the surgeon with accurate force feedback and stereoscopic views of the
surgical site. It has been demonstrated favorably in performing surgical tasks on simulators with animal tissue. At
Johns Hopkins Medical Institute, in Baltimore, a simpler system called tele-mentoring is in clinical use [Kavoussi,
et al., 1994]. An expert surgeon uses a telerobotically controlled laparoscopic camera to instruct a surgeon learning
a new procedure. The expert can be almost an arbitrary distance away from the operating room, yet still be able to
impart his knowledge to the learning surgeon.

The HMSL telesurgery system has been used to look at two aspects of telesurgery not specifically
addressed by either of these groups, namely what the effects of introducing time delays in the system are, and how to
coordinate the interaction between the telesurgeon and the assistant. Time delays enter the system from primarily
two sources: large distances over which communications may occur, and limited communication channel
bandwidth. To transmit image data efficiently with limited bandwidth, image compression hardware is used, but
this introduces at least a 1/4 second delay between each site. With increased time delay and a system with force
feedback, there is the potential for instability to develop in the control loop which is clearly unacceptable in a
surgical milieu. SRI and Johns Hopkins use short, direct links between master and slave to avoid non-trivial delays
in their systems. The issue of surgeon/assistant interaction springs from the recognition that a less skilled assistant
on the scene is unencumbered by any shortcomings of the teleoperator and can serve as extra pairs of hands, eyes and
ears under the direction of the surgeon. We wanted to know how best to assign surgical subtasks within the team to
yield best performance. The system we used and the experiments we performed will be discussed next.

HMSL telesurgery system: (figure 1)

The heart of the system is the combination of the PHANToM arms with a teleoperated surgical tool
which gives the surgeon physical access to the remote environment. Between the three d.o.f. available from the
PHANToM and one further spatial degree (roll axis) controlled by the tool, the system is suitable for performing
laparoscopic surgical tasks. Laparoscopy is a form of minimally invasive surgery, in which long surgical tools are
inserted through sealed tubes inserted in the abdominal wall, permitting the operation to be performed without ever
exposing the internal organs to the outside air.

When used in non-delayed teleoperator mode, the arms are controlled with a standard PD (position +



derivative) control scheme [Sheridan, et al., 1995]. The control loop runs at approximately S00Hz, which provides
reasonable force feedback. The tool, which controls the roll axis and the position of any of three interchangeable tool
tips (gripper, shears, laparoscope) uses P control, but does not provide force feedback. In laparoscopy, the surgeon's
primary feedback is visual, so complete force feedback was not considered essential.

When time delays are simulated by the system, a novel control scheme, called Fuzzy Sliding Mode
control is used to prevent the instability mentioned earlier. Developed by Hu [Hu, 1996], this scheme modifies the
sliding mode control algorithm by varying the thickness of the boundary layer using a fuzzy logic algorithm which
takes into account position and velocity differences between the command and the current state of the master and
slave. It effectively removes small perturbations locally before they can grow into larger instability.

In addition to force feedback, the video image from the laparoscope is displayed to both the surgeon
and assistant, and audio communication is provided between the team members. In addition to the teleoperated
tool, the surgeon controls a mouse pointer to help give concise instructions to the assistant. The mouse pointer is
displayed on both monitors. A commercial audio-video delay generator is used to synchronize the audio and video
signals with the delays in the teleoperator system. Thus, the assistant deals with the “patient” in real time, while
the surgeon must contend with the delays.

[

Experiments and sample results:

To simulate surgery, we chose a subset of surgical training tasks [Steele, et al., 1994] designed
specifically for laparoscopy. These tasks included grasping and transferring objects between grippers, using the
scissors, laparoscopic clip appliers and the laparoscope (camera). For each task, the tools used were rotated between
surgeon and assistant to test all combinations of the interaction, and four levels of (fixed) time delays were tested.
These levels included a “standard” with the surgeon acting directly, the surgeon acting through an undelayed
teleoperator, and surgeon acting through teleoperator delays of 0.6 and 1.2 seconds, round-trip. A representative
example of the results, for the use of scissors task, is shown in figure 2. In this task, lengths of suture material had
to be grasped and cut at specific locations, simulating removal of excess suture after knot-tying. Notable results
include the following: (1) completion time when the surgeon was using the undelayed teleoperator was the same as
when the surgeon acted directly, (2) completion times increased linearly with time delay when the surgeon
controlled either active tool (gripper or scissors), and (3) time was roughly constant when the surgeon controlled
only the laparoscopic camera, delegating the use of the active tools to the assistant.

Discussion, conclusions and recommendations:

From the results, which were similar across all of the test tasks, there are a number of encouraging
findings. First, the similarity in performance between the “bare-handed” and undelayed tele-surgeon indicates that
the PHANToOM based surgical teleoperator performs very well for these tasks. All of our results could have been
called into question if the undelayed teleoperator had caused significant performance degradation. Second, by
delegating active tasks to the assistant, the team can complete tasks as quickly under time delayed conditions as
without delay. This supports the possibility of using tele-mentoring-style systems over longer distances, where the
expert controls only the camera. The drawbacks to telesurgery are clearly demonstrated when the surgeon takes an
active role, in this case increasing completion time by a factor of four for a delay of 1.2s. This would suggest that
surgeons may not be able to perform active tasks over long distances.

In observing the participants performing the tasks, a number of observations are relevant to these
conclusions. When subject to time delays, people using teleoperators often spontaneously begin to use a “move
and wait” strategy [Ferrell, 1965], in which they make small incremental motions, then wait for the feedback to
arrive before initiating further motions. We saw this very clearly in these experiments, especially at the 1.2s delay
level. This move and wait cycle adds significantly to completion times for active tasks, and prevents real
continuous control of the tools by the surgeon. When controlling the camera, the surgeon was still subject to the
delay, but since the field of view was large enough, imprecise positioning of the camera was not a factor that
contributed to longer completion times. The other major observation was that with the use of the Fuzzy Sliding
Mode control, in eliminating the small perturbations, the fine force feedback useful to the surgeon in the final stages
of positioning the tools was diminished by the algorithm. This is something of a two-edged sword, because though
the loss of some feedback makes the task more difficult, the surgeon likely would not be able to compensate for the
asynchrony between command and the corresponding feedback.

As a result of these experiments, we have some of the first quantitative measurements demonstrating
the differences between different surgeon/assistant team interaction modes for varying time delays. Future work
should include extensions to this work, including the development of a more versatile telesurgery system (e.g. open
surgery), more realistic surgical simulations (e.g. bleeding vessels, motion due to breathing), and work to develop
further methods to reduce the effects of the time delays.
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A Haptic Process Architecture using the PHANToM™ as an I/O
Device in a Virtual Electronics Trainer

Scott W. Davidson

Management Systems and Training Technology, Co.
2300 Ninth Street South, Suite 502

Arlington, Virginia 22204
scott@rdvax.ntsc.navy.mil

This paper describes a software architecture and use of the PHANToM™ as an I/0
device in a Virtual Environment (VE) application. The VE application models the sight,
sound, touch, and simulation of an electronics test console used to teach navy students
basic electricity and electronics. The Model 130 Test Console, shown in Figure 1, is a

portable electronics trainer
that provides a prewired
AC/DC power supply system,
an input-output system, and
an in-circuit faulting system to
teach students the concepts of
basic electronic theory and
trouble-shooting. The Model
130 Test Console supports
approximately 270 circuit
boards and allows the
insertion of faults using
switches located at the bottom
of the console (Nida, 1987).

VIRTUAL MODEL 130
INTERACTION

The user interacts with
the simulated Model 130 in
the context of a virtual
workbench as shown in Figure
2 (Weigand, 1994). The
PHANToM™ tracks the user's
hand in the environment and is
shown as a small 3-D cursor
in the scene; this shape is also
used for the multimeter
positive and negative probes.
Interaction within the VE
involves  touching toggle
buttons, multimeter probes,

Test Console Controls

Circuit Card Interface

Fault Switches

Figure 1. The NIDA Model 130 Test Console.

PC1_POWER LOW_VOLTAGE MAIN_POWER
OFF ov OFF Model 130 control
Haptic toggle buttons————— .

DC_VOLTMETER
V0.0

Multimeter
control /‘ N

Red positive probe

[——=> Resistors

> Testpoints
Black negative probe

Green haptic probe

Two-position switches

Figure 2. The Virtual Model 130 Test Console.



and testpoints as well as switching on and off the two-position switches on the circuit
board.

SOFTWARE DESIGN

The software architecture is shown in figure 3. The main software infrastructure is
provided by the commercial product dVs/dVise from Division Inc. The user-interaction is
almost totally defined in the context of dVise. dVise is an interactive authoring tool for
building and experiencing virtual environments (Division, 1995). For the virtual
electronics application, it was most important to capture the aperiodic touch events
generated by the trainee and to initiate action updates as a result of those events. The
dVise actions cause aperiodic updates to the state of the simulation based on either the
touch of a toggle button or the selection of a testpoint with the multimeter. Switch events
are initiated by the haptics process when the user moves a two-position switch on the

circuit board.
P User
VDI dvi Sim
e ise S riles PHANToM
~—— N

Testpoint,
Touch Button, and Force data
events Audio updates 77
I VC/EC Library I Hand Position and

[ 1, Switch updates .
dVs Runtime P Haptxc_s

rocessing
Cursor
MM, Console, and Position

v Switch updates
Processing

Collision

Simulation

Multimeter MM) | result data

L Button
and Tstpt
updates

Figure 3. Virtual Model 130 Software Architecture.

Touch Events. The haptics process tracks the PHANToM™ position and provides
it as hand “sensor” data to the body actor (an “actor” denotes a standard Division runtime
process). The body actor provides an interface between the user and the VE and monitors
movement of the body. Likewise, the collision actor monitors the movement of the hand
and determines when the hand has touched an object. The collision actor, however, only
does coarse-grain collision detection to determine when two objects have collided. The
touch events are registered with dVise which are then used to issue testpoint or toggle
button updates to the dVs runtime database; dVise also issues an action to the audio actor
to play a sound as a result of any touch event. The multimeter process is notified of touch
events related to multimeter control and updates the appropriate control variables in the
simulation. Additionally, the multimeter process is responsible for updating the numeric
display of the multimeter at 30 Hz. The simulation process is notified of console switch
settings and updates control variables in the simulation.



Switch Events. In addition to monitoring the hand, the haptics process also
updates the dVs runtime database with changes to the two-position switches. The switch
state updates are passed to the Model 130 simulation process to reflect the switch
manipulations.

Simulation Model

The first task in developing the virtual Model 130 was creating a simulation of the
console electronics and providing a reconfigurable model of various circuit cards that can
be used with the consolee. DYMOLA (DYnamic MOdeling LAnguage) was used to
perform the complete modeling of the console, circuit cards, and multimeter. DYMOLA is
an object-oriented language and a program for modeling large continuous-time systems
with discrete events (Cellier, & Elmqvist, 1993). Models are hierarchically decomposed
into submodels, and model reuse is supported through libraries containing model types or
classes. Connections between submodels are described by defining an interface which
represents physical coupling. The physical coupling for this application is represented by
the electrical interface between the circuit card and console.

Haptic Model

The haptics process uses an explicit
representation for modeling the circuit card
components,  haptic  toggle buttons, and
positive/negative probes of the multimeter shown in
Figure 2 (Zilles, 1995). Most of the interaction
involves touching static testpoints and toggle buttons
in the scene. However, there are five instances of a
two-position switch with articulation as shown in
Figure 4.

Axis of applied force

Y
i
!
i
l
;

N

The switch has one-degree of freedom in 004 meters
translation along the z axis with mechanical stops.
In Figure 4, the switch is shown 4 millimeters
extended from its home position. Simulation switch
files were needed to describe the switch motion to
the haptic system and are loaded via dVise. The
switch simulation files describe the number of states, Figure 4. Two-position Switch
initial position, minimum value, maximum value, with Mechanical Stops
motion increment, threshold force, and simulation
parameter control. Switch dynamics, however, are not computed. If the threshold force is
exceeded in the direction of motion, the geometry is transformed by the motion increment
amount. Additionally, the switch state data is updated in the dVs runtime database.

Visual Model

The visual model was developed using ModelGen from MultiGen Inc. The model
includes external files representing common components used on the virtual circuit board
and includes five two position switches, nine resistors, thirteen testpoints, and one circuit



board. Texture mapping was used on all components to add realism. Toggle buttons for
the virtual Model 130 and multimeter were also created to control the simulation using the
haptic interface.

Audio Model

Audio sounds representing interactions with the Test Console were recorded using
Silicon Graphics audio tools and saved as .aif files. The sounds were played back for
every “touch” event defined in the VDI database.
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Figure 1: Virtual Trainers for Surgical Anastomosis and Aircraft Maintenance

Introduction

People use their hands to touch, manipulate, and learn about the world around them. Interaction through
touch and manipulation is known as haptic interaction. BDI is developing simulation-based training systems
in which haptics plays a prominent role. One application is a trainer for surgical procedures, such as end-
to-end anastomosis and palpation of calcified arteries. Another application is a trainer for maintenance of
military aircraft.

Our basic approach is to create dynamic computer simulations of the systems to be trained, and to
connect the simulations to 3D computer graphics and 3D haptics. The graphics provide the sight and sound
of the system, while the haptics allow the user to touch, feel, grasp, and manipulate the simulated system.
The dynamic simulation calculates motions and forces that allow the simulated system to behave as a real
system would behave when touched and manipulated. Haptic algorithms, including contact detection and
contact force calculation, mediate interactions between the dynamic simulations and force feedback devices.

The haptics system we developed for these applications, Tangible Reality™™ , uses SensAble Phantoms
for the high fidelity force feedback, fast dedicated PCs to simulate virtual objects and compute haptics
algorithms, and Silicon Graphics workstations for high quality 3D graphics and sound. In this paper we
describe two integrated training applications, present some of the technical challenges we faced in making
the integrated systems, and discuss Tangible Reality, the common software foundation the applications are
built upon.

Virtual Aircraft Maintenance Training

Cadets learning to maintain US military aircraft receive about half of their hands-on experience using
full-scale mock-ups of the various aircraft systems. (The other half of the hands-on training is done on
actual aircraft.) These mock-ups take up a lot of space, require substantial logistics for operations and
maintenance, are specialized for each aircraft type, and are very expensive. We developed the Virtual Aircraft
Maintenance Trainer to explore the feasibility of replacing these expensive mock-ups with less expensive



computer hardware and software. If successful, virtual maintenance training could have substantial benefits,
including reduced cost, training in a smaller space, use of standard commercial hardware, and training during
the aircraft design phase. In the ideal case, a single VR training system could replace the mock-ups for all
aircraft systems for all types of aircraft.

The virtual maintenance trainer we built allows a user to perform the essential elements of two real-
world maintenance training tasks performed by the US Marines on the AV8B aircraft, a vertical take-off and
landing attack fighter. (You may have seen Arnold Schwartzenegger fly an AV8B in “True Lies”.) One task
is diagnosis of a failed Radar Warning Receiver System Built-In-Test (RWR BIT). The second maintenance
task is adjustment of the Vernier/Non-Linear Nosewheel Steering Linkage. Next we summarize these tasks
as implemented on the virtual trainer.

Avionics Task: RWR BIT

The RWR BIT is a self testing function of the avionics system. It is run from the cockpit of the aircraft.
Setting up and running the RWR BIT requires the technician to push buttons, throw toggle switches, and
turn dials in the cockpit, as well as observe indicator lights and listen for audible tones. During the RWR
BIT, an abnormal Threat Light Display on the front panel of the cockpit indicates a failure that needs to be
isolated. Diagnosing the RWR BIT failure requires additional cockpit procedures as well as electrical system
diagnosis in the rear avionics bay.

To support the RWR BIT, the virtual maintenance trainer includes functional models of the AV8B that
allow the user to move about the aircraft, operate cockpit controls, observe avionics system behavior and
measure electrical signals with a virtual voltmeter probe. 3D computer graphic models of the virtual trainer
include graphic texture maps and accurate geometry to simulate the appearance of the aircraft. Haptic
simulations of the cockpit panels, buttons, dials, switches, and electrical pins allow the technician to see,
feel, and hear the avionics system operations. Functional models of the aircraft electrical system allow the
user to detect and diagnose the RWR BIT failure.

Vernier/Non-Linear Steering Linkage Adjustment

The Vernier/Non-Linear Steering Linkage is a linkage mechanism that is responsible for shifting between
fine and coarse steering of the nosewheel as a function of rudder pedal position. The physical device is a
four-bar linkage that is located in the nosewheel hatch. The linkage adjustment procedure involves detaching
the linkage from its neighbors, manipulating the linkage through its range of motion, measuring the forces
required to move the linkage between two hard stops, and adjusting those forces by tightening or loosening
a friction nut on the linkage.

To support the adjustment of the nosewheel steering linkage the virtual maintenance trainer includes
simulation models of the AV8B that allow the user to move from the exterior of the plane to the nosewheel
hatch, observe the nosewheel steering linkage as it is driven by rudder pedal inputs, disconnect the linkage
from the steering column, manipulate the linkage, adjust the tightness of the friction nut, and reconnect
the linkage. The dynamic simulation of the linkage obeys the kinematic and dynamic constraints of the
multi-link system and allows interactive attachment or detachment from the rudder pedal actuator, and
joint friction adjustment. The user can feel the shapes of the links in the mechanism, as well as the forces
needed to move it.

The technical challenges associated with the virtual maintenance project were related to the graphic and
haptic complexity of the aircraft. We used Wavefront Advanced Visualizer to design the aircraft cockpit in
the form of general polyhedra. We then created an object loader and generalized contact detection algorithms
that allowed us to see and touch these objects with a tool represented by a polyhedron. Even though we
did not model all the features of the cockpit, we modeled enough of them that the computational burden of
contact detection was significant. We used bounding box algorithms to limit the number of candidate objects
that needed to be processed at any one time. The user interacted with virtual objects in this application
through a single finger or tool tip. To make the interaction with cockpit features convincing we made haptic
algorithms that supported friction, sharp features such as corners, and hard surfaces. We designed our dials
to have flat sides in order to make them easier to turn with a single finger. This same technique could have
been used to turn the linkage nuts in the nosewheel bay. Instead we programmed the instantaneous removal



or installation of a nut or used a slider on the graphical user interface to determine nut angle. State machine
logic tracked the sequence of operations performed by the user in the cockpit to enable certain electronic
functions and to trigger visual and audible cues such as flashing lights or tones.

The Virtual Surgical Trainer

The Virtual Reality Anastomosis Trainer is an integrated system that allows users to practice end-to-end
anastomosis, a common surgical procedure. The user holds real surgical tools, which are connected to force
feedback devices. The user holds an instrumented needle holder in one hand and a forceps in the other,
allowing them to manipulate two virtual tube organs and suture them together. The surgical tools are
attached to Phantom force feedback devices. The forces of interaction between the tools and the simulated
tubes are displayed to the user through the force feedback devices, while the visual images of the interaction
are displayed through 3D computer graphics.

The simulated elements in the anastomosis demonstration are two deformable tubes, forceps, needle
holder, needle and suture. In a typical suture procedure, forceps are used to grasp and stabilize a tube
with one hand while puncturing the tube with a needle and needle holder held in the other hand. The user
then releases the needle and regrasps it from the inside of the tube. The needle and suture are then drawn
through the tube from outside-to-inside. This process is repeated inside-to-outside on the second tube. The
suture is then pulled tight.

The technical challenges of this project were driven by the need for efficient simulation of the deformable
tube. We used a spline based representation of the tube to simplify the simulation, graphics, and haptics.
We simulated movement of the tubes by modeling the translation and rotation at “control points” of the
spline. Local “puckering” of the tubes that resulted from poking or plucking were only represented in the
graphics, so the user could not touch these local deformations with the other tool. We used a haptic model
for each surgical tool that was comprised of line segments. Rather than model all the interactions needed for
tying a knot in the suture, knots are automatically formed when the tubes are drawn together the correct
amount.

Tangible Reality

The Virtual Aircraft Maintenance Trainer and Virtual Surgical Trainer we developed are both built upon a
common software system called Tangible Reality. Tangible Reality includes many of the software elements
needed for haptics-based VR systems. It includes support for:

e Dynamic object simulation

Deformable tube simulation

3D object loading

Fast contact detection

Contact force calculation

Dual force feedback device drivers

Kinematics for force feedback devices

Low-level force-feedback device drivers for Windows95 and Windows-NT
3D graphics and sound on SGI computers

This list can be broken into three broad software groups that apply to all interactive haptic environments:
dynamic simulation, haptics algorithms, and 3D graphics and sound.

We use a simulation generator to create efficient physics-based dynamic simulations of objects and linkages
from high level descriptions of an object’s geometry, topology, and material characteristics. Once created,
dynamic simulations predict the behavior of virtual objects and insure that they move according to the laws
of physics. Physical behavior can help them to appear realistic. Physics-based models are based on the
equations of motion for the object and sets of parameters that can be changed to tune behavior. Mass,
moment of inertia, compliance, gravitational attraction, shape, friction, and viscosity are among the many
physical parameters that we adjust to influence behavior.



Haptic algorithms mediate the exchange of forces between simulated objects and the user. The two
most important haptic algorithms are those for detecting when objects are in contact and for computing the
forces exchanged when contact occurs. We use several contact detection algorithms that are optimized for
real-time performance and that are tuned to the object model type. For example, we use a linear-time Lin
and Canny type algorithm for contact between convex rigid polyhedra, and a grid-depth type algorithm for
point contact on polyhedra with mild concavities.

To calculate contact forces between objects, we use penalty method techniques. Characteristics such as
surface compliance, friction, textures, puncturability, and surface feature resolution are controlled by the
contact force model.

The 3D computer graphics we use are relatively conventional, including standard SGI texture-mapped
graphics, with stereo presentation and simple triggered sounds.

Conclusion

In this paper we have summarized two examples of integrated haptic training applications, and said a few
words about the underlying software system upon which they are built. Our goal at BDI is to build ever more
capable training applications that include sight, sound, and touch, while further expanding the foundation
of software that supports the development.
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1. Introduction

CAD (Computer Aided Design) is one of the most important application fields that require 3D
haptic/force feedback. Industrial designers have long been forced to manipulate 3D forms with 2D
input/output devices such as mice and CRT displays without haptic feedback, that has given
designers uncertain, indirect, and unnatural feelings of shapes they are creating.

The authors have been working on "ViSurf" system, a 3D virtual surface modeler with force
feedback, which allows users to deform a B-Spline [Yama93, 94] and triangular polygonal surface
directly, without touching control points or vertices. ViSurf has two kinds of force feedback
devices; one is a 6 D.O.F. Cartesian type manipulator controlled by velocity and position which has
been developed by Dr. Fukui, one of the authors [Yokoi94, 95], and the other is a PHANToM. To
control the two different devices in the same way and to bridge the gap of control latency among
three processes, which are haptic rendering, object geometry handling, and graphic rendering, this
paper proposes a "loose coupling" architecture and a Feature-Based Haptic Rendering Protocol. The
architecture separates haptic rendering process from others and they communicate asynchronously
using the protocol. As a result, 1700 Hz PHANToM controlling latency has been achieved
constantly independent of graphics refreshing rate and communication frequency.

2. ViSurf System

Fig.1 shows the ViSurf system configuration and some specifications of haptic feedback
devices. Currently, only one device is available at one time.
2.1 Tool-Based Direct Form Deformation Interface

In ViSurf system, a user deforms a surface just by pushing it with a "virtual tool"; the surface
will be deformed as being pushed and you will feel force feedback through the handle of the force
feedback device. Several kinds of tools of different deformation effects, such as curving, twisting,
and cutting, have been implemented as shown in Fig. 2 [Yama94]. This tool-based interface is very
intuitive and easy to understand, since it (1) is independent of form representations. Though the
modeler has two different underlying form representations, which are B-Spline surface (of degree 3,
a sheet of patch can be handled at one time) and triangular polygonal surface, "push and deform"
interface is the same and the same kind of tools give the same (or at least very similar) deformation.
In addition, different from existing CAD systems, a user can deform surfaces without touching
special "handles," such as control points of B-Spline surface and vertices of polygonal surface. (2)
has force feedback. For example, a "cutter" tool will become very difficult to use without force
feedback, because the user should keep the tip of the tool on the surface to be cut in 3D space just
by visual feedback.
2.2 "Loosely Coupled' Haptic Device and Feature-Based Haptic Rendering

Another unique point of ViSurf system is "loose coupling” of haptic feedback device and
object geometry data. Usually, geometry of the virtual world is maintained where it is most



frequently referred; in this case, on the PC controlling PHANToM or the manipulator, since they
require 100~kHz order control frequency while visual rendering needs 30~60Hz. Let us call this
"tight coupling" of world geometry and haptic device (Fig.3-a). Tightly coupled system has two
problems. One is that geometry handling can not always keep high control frequency for haptic
rendering; for example, topological change, such as cutting open a surface, requires many memory
allocations which take time, and collision detection process becomes slower when the number of
geometry objects increases. The other problem is to keep the coherency of the world geometry
database at the graphic renderer. Any change of geometry should be sent to the workstation over the
EtherNet; when a large number of vertices are changed, it evokes a large network traffic that also
slows down the control cycle of haptic device.

To solve these problems, we propose a "loose coupling” architecture of geometry database
and haptic device. ViSurf has a loose coupling architecture as shown in Fig. 3(b): The Graphic
workstation maintains all geometry data. It receives sequences of 6 DOF data (or cursor trajectory)
from haptic device, detects collision between surface objects and the 3D cursor (or the device),
deforms surface if needed, returns local surface feature data (such as a collision point and a normal
vector there) to the device, and renders surface objects graphically. A haptic feedback device sends
it’s 6 DOF position and rotation data over the EtherNet to the workstation, either periodically or
eventually. It renders surface haptically based on the features. Each feature needs its haptic
rendering algorithms which must be "light" enough to keep high control latency.

We named this communication protocol for loosely coupled haptic device that exchange
surface features a "Feature-Based Haptic Rendering Protocol." The loose coupling architecture with
the protocol has given good results. Although the communication frequency between the PC and the
workstation is at most 30 Hz, which is equal to the graphic rendering latency in this case, more than
1700 Hz PHANToM controlling latency has been achieved constantly, which gives very fine
feelings of surface shape. Even during a time consuming form manipulation such as cutting, it
feedbacks force based on features which are already received and keeps the tip of a "tool" out of
surface.

3. Discussion and Future Work

Haptic rendering based on discrete feature information is an approximation of the true form,
but its quality can be better than that of tightly coupled system for prepared features, since the
device control latency is guaranteed. In addition, the protocol has such merits that robustness,
device independence (different force feedback devices can be used in the same way), and
independence of form representations (e.g., CSG, solid, surface, etc.).

Currently, no feature, a plane, an wedge, and a corner, have been implemented as surface
features, and much more are definitely needed. Especially, features for free-formed surface are
indispensable. Interpolating algorithms of features should also be developed. It is a challenging
problem to determine a set of features sufficient to represent a certain class of surface features. The
protocol should also be extended to support object characteristics other than shape, such as stiffness
and texture. We are also aiming at cooperative virtual CAD system over the network.
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Abstract
This paper summarizes a virtual reality umiverse application in which a user can travel between
four virtual worlds through the use of haptic buttons. Each of the worlds demonstrates different
aspects of haptic rendering which together create a wide base for force feedback effects. Specifics of
the rendering algorithms will be discussed along with possible uses and modifications for other real-
life applications.

1. Introduction

Haptics is a growing field in the virtual reality (VR) community, and will continue to grow as
its significance becomes more clear. Increases in computing power and more sophisticated haptic
interfaces have already shown the value of the sense of touch in VR, and while it is still a relatively
new field, its potential is enormous. Haptics can add a new dimension to data visualization, as well as
increase one's sense of immersion, and create a more effective human computer interface.

At Sandia National Laboratories, haptic research has focused on creating a new level of
interaction with VR environments. The PHANToM haptic interface, a serial, three degree of freedom,
force feedback device was incorporated into the EIGEN virtual environment on a Silicon Graphics
Indigo 2 Impact workstation for researching haptic rendering. Although the PHANToM has worked
well in EIGEN with this research, the principles in this paper apply for other haptic devices and VR
environments. A virtual universe application was created to demonstrate the force rendering
algorithms, in which four separate worlds could be accessed by pushing haptic buttons. The four
worlds (Illusion, Weight, Field, and Poly) and the aspects of haptic rendering that they represent are
described below.

2. General Interaction

The virtual universe application begins in a control panel, a virtual wall with four buttons each
containing a picture of the world to which it leads. A small sphere, the cursor, is controlled by the
PHANToM. The wall is haptically rendered as a normal force that is proportional to penetration depth
[2]. The buttons, which are flush, have a different spring constant than the wall and can therefore be
moved into the surface. At a threshold value the button force discontinues, and the user appears in the
new world. Several first time users have commented that they like the effect of the button's force
suddenly stopping, leaving them in the new world.

This general structure works well for demonstrations, yet it could be effective for other
applications as it is a convenient way to move between related sets of data. The different worlds could
be used to display parts of a larger data set and be easily traversed, or they could contain general
information that one would often access from a main world.

3. Friction, Textures, and Intersensory Discrepancy

The first world, Illusion, received its name from an exploration of intersensory discrepancy
between our visual and proprioceptive senses, of which it has been shown that vision is dominant 3}
In Iltusion, the user can see and touch a sphere inside a box. By changing a slide bar, the graphical
representation of the sphere changes to an ellipsoid (lengthened along the x axis) while the haptic



representation remains the same. When the user moves the cursor across the ellipsoid in the x-y plane,
the cursor visually moves farther than when the ellipsoid is circled on the y-z plane. Yet physically the
user is still touching a perfect sphere. This effect leads many users (though not all) to believe that the
sphere actually 'feels' longer as well. The illusion is more effective as the user spends more time
feeling the sphere while looking at it. It also increases effectiveness with the introduction of friction
and texture. This dominance of sight over touch does not negate the value of haptics, yet by realizing
this concept, one might take advantage of people's ability to smoothly incorporate discrepancies
among their senses. In some situations, an object can feel different than it looks and still seem real.

After the initial inclusion of friction and texture, a larger variety of different materials was
desired for simulation. The friction in these materials is currently accomplished with damping effects
that are proportional to penetration depth. In simulating friction, a key concern is stability. Initially,
the cursor’s current and previous positions were projected to the sphere’s surface (or any object's
surface in a general case) and a vector was created from subtracting the projection of the previous
point from the projection of the current point, which gave the direction of the friction. Stability was
then achieved by averaging this vector over a history.

The textures were created by modulating the surface of the sphere with a combination of
several sine waves and several square waves of differing amplitudes and frequencies. Then the
materials were described with combinations of friction and texture that were intuitively created and
fined tuned until things ‘felt right’. The materials created include wood, both polished and rough;
sandpaper; cobblestone; a magnetic material; water and a thicker viscosity fluid; rubber; plastic; and a
sticky material.

There are several concepts of interest in creating these materials. In materials that were not
supposed to be compliant, the visual image of the cursor was kept from entering the sphere (because
the force is proportional to penetration depth, the cursor partially moves into an object it is touching)
which made it seem harder. This is an example of a use for the intersensory discrepancy described
above. With the magnetic material, the magnetic attraction needed to approach zero as the cursor
moved towards the sphere for stability reasons. The sticky sphere was created by adjusting the
friction to have an inward radial component. The water sphere consisted of only a damping term (the
cursor could feely move through the sphere). It was enhanced by using alpha blending, so it was
transparent which added to its realism. Finally, in a method similar to that of the sticky sphere, a
damping term applied in the outward radial direction added to the spheres' stiffness when desired.

4. Dynamics

The second world, Weight, is an application in which the cursor is attached to a weight bya
spring, visually modeled as a sphere on a rubber-band. The directions of the forces on each are
computed by subtracting their center coordinates and normalizing the resultant vector, and the
magnitude is computed from their distance apart. A gravity term is added to the force on the weight.
The motion of the object is modeled from physics, and thus, given the forces, the acceleration is
found from a = £ / m, where a is a vector representing acceleration, f is a vector representing force,
and m is the mass of the object. Velocity and position are then found by integrating acceleration over
time, using a chosen time value in the equations rather than finding it from the servo rate. A virtual
floor was then added on which the ball could bounce. The sound of this collision was presented in
which the volume was determined from the ball's velocity.

Taking advantage of the freedom in choosing the time variable lead to an interesting resuit. By
decreasing the value of only the time variable, the object not only moved slower but also felt more
massive and felt as if it were moving through a viscous fluid. This effect, for example, might be used
in combination with damping to create the effect of a clay material in an object modeled by point
masses (i.e. vertices on a polygonal object). One might also take advantage of the fact that the force
on the cursor does not necessarily need to be the same force applied to the mass. This could be used
to change how things feel, while maintaining a physics model.

Of the four worlds, Weight requires the least amount of programming code, yet it is often
people's favorite application. Users can feel the momentum and inertia of the sphere, both of which
occur naturally from the motion equations described above, which is a powerful effect.



5. Vector Field Representations

The third world is called Field and contains a mapping from a vector field to the forces felt by
a user. The vector field, electric potential, is created from virtual point charges which a user can place
or delete to make any arbitrary formation. Then the electric potential, which is referred at infinity, is
mapped onto forces that the user can feel. This allows a user to search the field and find places where
the individual charges cancel, thus leaving 'weak' spots where the cursor can explore. One should
note that a user is not feeling actual forces created within the physics, but instead is feeling a mapping
of data into forces. Because the user is feeling an abstraction, this can be a powerful tool in
understanding various vector fields or even other types of data.

Another feature of this world is the interface of the PHANToM to the EIGEN craft's
movements. The cursor is in a box, similar to that in Ilusion, except that when the cursor touches one
of the walls of the box, the ship moves appropriately. This is an intuitive form of navigation and also
works well with general exploration because the user can easily change between a craft movement and
haptic exploration. A user would move the craft until an object was inside the box, and then would
have haptic access to it. This makes large areas available for interaction in fine detail.

6. A Polygonal Force Representation

A main focus in the haptic work at Sandia National Laboratories was the incorporation of
force feedback into already existing technology. Because applications were previously mainly visual,
this incorporation of haptics was greatly encouraged by methods that would work weil in combination
with already defined graphical methods. Therefore, an algorithm was developed in which the user
could touch arbitrary polygonal data sets [5], i.e. surface defined objects which are common in
graphics.

This algorithm creates a force that is
normal to the currently touched polygon, and
interpolates over edges as the cursor moves to
different polygons. The magnitude of this force
is defined by penetration depth which presents a
visualization issue. The cursor can be lost within
a compliant object. To resolve this issue, a
‘Bendable Polygon' algorithm was used in
which the current polygon was divided into six
polygons, and neighboring polygons were also
split to make the object remain seamless as
shown in Figure 1. When Gouraud shaded, this
technique works well and can lead to lower
levels of detail, as objects can then be described
by larger polygons.

The vertices of the object are then
attached by springs to a framework consisting
of base points from which the graphical vertices

can be pulled away. With the inclusion of Figure 1: Graphical deformation in the
additional springs among the verticesand tothe  polygonal representation of forces. The dashed
cursor, the object is deformed as the cursor lines represent the object while it is not deformed,
pushes into it. The friction and textures can be and the solid lines represent the polygons that the
added for material properties. As polygonal user sees after it is deformed. Filled in circles are
data sets increase in size, windowing of the base points and open circles are graphical vertices,

local area can decrease computational timeand ~ which are connected by springs.
make them renderable in real time.

7. Conclusions

The four worlds represent a base for the haptic rendering that will soon be applied to other
real-life applications. In addition to finding applications for the concepts described and finding the
most effective methods of haptic exploration, there are continued efforts to increase the base of haptic



effects. Work is currently being done on developing a more effective friction models and texture
creation. Combinations of visual, haptic, and audio effects combined will continue to be explored.
More advanced user interfaces, such as a haptic control panel that moves with the ship, similar to that
in an airplane, is being researched. Such an interface would include switches, buttons, etc., and could
possibly replace the mouse completely. The polygonal method of force representation is being
expanded to work with larger data sets, and other surface modeling techniques are being explored.
Overall, the modeling that has been done has shown the potential of haptics in the virtual
environment, and these successes are expected to continue.
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Synthetic Force Feedback Projects at the U. of Virginia.
George Williams and Dennis Cosgrove

This paper reviews the projects at The User Interface Group at the

University of Virginia surrounding the Phantom force feedback device. The
firsc portion of this paper relates our implementation of an integrated
grapnics and force feedback development environment. The remainder focuses on
proiects underway using this environment.

An Interactive Development for Haptics

When we first received a Phantom device, we sought to integrate it into Alice,
an interactive, 3D graphical development system for the desktop PC developed
here at the University of Virginia. Alice is a system for quickly prototyping
3D graphical scenes and scripting simple animations for 3d objects(l). We
have benefitted from an Alice front-end for creating haptically-able
applications mainly because the system allows us to interactively develop and
debug such applications with rapid turnaround time.

AW

Alice is a 3D interactive graphics programming environment. The goal of Alice
has been to make it easy for novice programmers to develop interesting 3D
environments and to explore the new medium of interactive 3D graphics.

Alice is primarily a scripting and prototyping environment for 3D object
behavior, not a 3D modeler. The primary way of interacting with the objects
in the scene is through writing short scripts in an interpreted language.

As scripts are executed, users can manipulate objects with a mouse, move the
camera around, and make objects react to the mouse and keyboard.

The scripting language for Alice is called Python. Python is an easy-to-learn
interpreted and object-oriented language(2). The Alice API supplements the
core language of Python with a set of methods and classes that control the
graphics hardware. The user creates and manipulates graphical objects in
Alice by typing simple commands in a Python command-line shell. The following
line-by-line script might represent a typical Alice session, (comments

follow the "#':

>> cube=AnObject(’'cube’) #make an object of class ’'AnObject’ and make
#it look like a cube
>> cube.Move(Left, 1) #move the cube to the left by 1 unit

>> cube.Turn(Right,90,1) #turn it to the right by 90 degrees over 1 second
>> foobar=ASequence( cube.Move(Left,1l,1), cube.Turn(Right,90,1) )
#move it to left over a second and then to the right over a second

The cube is rendered and the animations are played out in a separate
graphics window as the user is typing in the interpreter.

Alice and Haptics

Alice is a powerful system for creating interactive 3D graphical environments.



One of its more powerful features is its extensibility. External hardware I/0
devices, such as tracking systems and, here, the Phantom, have been easily
integrated into the system. Programmers can write fast low-level C or
assembly code and wrap the functions in Python and make them visible through
the interpreter. A programmer can hide the low level details of the
implementation while providing a easy-to-use abstraction to the user.

The architecture for our particular haptics-integrated Alice system is

simple and reflects partly the design of the Armlib service developed at
UNC(3). A Phantom servo loop process attends to the Phantom and runs on one
machine (a 166MHz PC), and the Alice rendering/animation process runs on
another PC. Both keep a separate database of the objects in the simulation,
but maintain synchrony when necessary by communicating via an ethernet
connection and TCP/IP. Again, programmers develop applications through the
Alice API. As before, normal graphical objects are instantiated from the
'AnObject’ class as in the example. Haptic objects are created from the
'AFeelable’ class, a new class (derived from ’'AnObject’) provided to support
haptic objects. Haptic objects inherit all the methods of graphical objects as
well having haptic properties. In the above example, substitution of
'AnObject’ by ’'AFeelable’ yields the same graphical display, with the addition
of the cube presented haptically by the Phantom device.

‘AFeelable’ extends ’‘AnObject’ with methods that can modify what we call the
properties of inertia and magnetism. The amount of effort needed to move
certain objects with the Phantom can be changed interactively by changing
the inertia property of a haptic object. Setting the inertia to maximum
renders the object immovable. Objects can also ‘attract’ the Phantom probe
point as well. This is achieved by setting an object’s magnetic property
temporarily or until the probe point has collided with the magnetic object.
We don’‘t currently support any notion of friction or gravity, although these
are useful properties for haptic objects.

Works in Progress in Force Feedback

] . ] 1ds-In-Mini M ] ] ibacl

The WIM, or Worlds-In-Miniature interaction technique, was a technique
developed here at The University of Virginia exploring a simple interface

for interaction, object selection, object manipulation, and navigation in
graphical, immersive virtual environments(4). Using the WIM technique, an
immersed user (head-tracked with head-mounted display) interacted with the
virtual environment through a small hand-held miniature, a scaled-down version
of the life-size virtual environment. A user could move objects within this
life-size environment by selecting and manipulating the object’s WIM
counterpart. In the real world, participants are, of course, not holding

real scaled-down miniatures, but are using hand-held, passive props.

We are looking at using the Phantom device to enhance the hand-held props by
imparting haptic properties to the virtual objects in the miniature. This
should add an entirely new dimension to the interaction technique in many
ways. With haptics, miniatures can possess a weight or inertia, reflecting
in some manner how hard the life-size object would be to manipulate. Also,
haptically-able miniatures could support some notion of how objects associate,



potentially improving on user perception of object associations(5) through
visual feedback alone. For example, consider a furniture-moving task using
the WIM metaphor. We might wish to associate a chair with the floor, so

that the chair can move anywhere in the room, but must slide along the floor
to do so. With haptic feedback through a WIM, a user realizes immediately that
the chair can only slide along the floor as it is pushed. In addition, when
the miniature chair hits a wall in the miniature room, the chair, as well as
the hand pushing it along, stop. Visual techniques alone supporting these
associations and constraints can seem awkward.

A truly immersive and bi-manual technique for exploring these ideas is not yet
possible due to the physical constraints of a force-feedback device like the
Phantom. Nevertheless, we are working on a non-immersive condition using

the aforementioned Alice development system.

BI-MANUAL TASKS AND HAPTIC FEEDBACK

Many tasks that one might want to mimic using synthetic haptic feedback are
bi-manual in nature. Bi-manual tasks require both hands to work in concert
but asymmetrically. Often, in these tasks, the less dominant controls the
coarse component of the task, providing the reference frame for the dominant
hand, which performs the detailed part of the task(6). Writing words on paper
is a classic example; as one hand forms the intricate letters, the other hand
constantly shifts and adjusts the. paper underneath. The WIM metaphor is a
tactile, bi-manual interaction technique using passive props.

For some tasks, it may be enough to have passive props. For other tasks,
true-to-form haptic feedback may be required for both hands (for example,
unscrewing the 1lid on a jar.) Still, other tasks may warrant haptic
feedback, but only in one hand. In such tasks, the dominant requires the
true-to-form haptic response, while the other hand does not, but retains
control over the task’s reference frame. 1In this way, only one haptic device,
held by the dominant hand, may be required.

We are exploring this idea of haptic asymmetry in bi-manual tasks by
mimicking the task of an artist hand-painting an object. In our version of
the task, a virtual object is loaded in the integrated graphic-haptic
environment and is logically attached to a tracking device. The tracker is
held in the less dominant hand. As the hand rotates or translates the
tracker, the tracked object in the scene moves faithfully. The tracker in
no way resembles the object rendered, but merely acts as an imprecise prop for
it(7). The prop is then moved within the vicinity of the Phantom work
space. The right hand, using the force feedback device, then probes the
object. The right hand "feels" the object through the Phantom simulation of
it; the left hand of course does not, feeling only the prop.

We wish to eventually implement a simple painting program where users can
actually paint in the texture space of the surfaces of the haptic objects. We
can them compare this interface with commercially available applications for
hand-texturing objects through a 2D graphics window using a mouse. We have
done enough work in this area to offer the following observations:

1) It’s not as strange as one might think.
2) Users quickly get tired holding the tracker.
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3) Some users report ‘sensing’ haptic response in the hand not receiving
simulated haptic force when the other hand receives the simulated haptic
feedback.

To alleviate the problem in #2, we tried a technique where the haptic object’s
center could be rigidly attached in space relative to the Phantom, yet the
rotations of the hand-held tracker register with the object. Thus, users
could hold the tracker anywhere in tracking range while also controlling the
rotational reference frame of the task.

This research in haptic asymmetry is exploratory and is a work in progress.
We hope to eventually understand more deeply the limitations and strengths
of this haptic interaction technique.
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Abstract: It is well understood that force feedback coupled with visual display can be an important two-way commu-
nication channel in human-computer interaction. In this work, we present ways of integrating force feedback with dy-
namic virtual worlds that evolve in time based on physical laws. The Phantom™ haptic interface is used for force
feedback, and is integrated with existing dynamic simulation algorithms running on a separate workstation, so that
objects can be manipulated in real time and the corresponding forces felt back by the user. Various issues involved in
communication between the processors, interpolation, and friction are discussed.

1 Introduction

In recent years, there has been increased interest in virtual environments that evolve physically, or based on forces that
act on objects that make up the environment. In this work, we explore techniques and issues involving integrating a
force feedback device based on point interaction, such as the Phantom™ with a physically based dynamic simulation
system. The idea is to be able to build a framework that enables users to make virtual environments by giving objects
the desired physical properties (mass, material, shape, etc.) and then being able to interact with them - pushing them
around and actually feeling the forces that one would feel if real objects were pushed around with a tool.

Recent work on dynamic simulation of non-penetrating rigid bodies by Baraff[3], Mirtich and Canny[6], has shown
that it is now possible to simulate the physics of interacting rigid bodies in real time. We use a simulation system based
on [3] to build a virtual world with interacting bodies, that handles collisions, contacts, and second order dynamics
between rigid, polyhedral objects. Given the set of external forces on the system, the dynamics equations are incre-
mentally integrated to yield the new state, backtracking when collisions occur. Constraints are modeled as constraint
forces, and friction is implemented as Coulomb friction.

Srinivasan and Salisbury [7] provide a good description of current issues and challenges in haptic feedback. Mark et.
al.[4] provide a general overview of issues and solutions to problems in adding force feedback to graphics systems,
although their discussion is limited to static models. Adachi [1] addresses the problem of haptic display of curved sur-
faces using an intermediate representation, which we use as the base for our local kinematic update model (although
not for curved surfaces). Minsky et. al. [5] address various techniques for surface texture display, and provide a good
overview of control methodologies suitable for haptics.

2 Client Server model

2.1 Motivation

While update rates of 25 to 30 Hz are sufficient for visual display, it is well known that stable force display requires
force updates at least 1000 times a second. Given the complex computation that dynamic simulation involves, it is clear
that we need to decouple the dynamic simulation of the virtual world from the low-level force control loop. Presenting
a model of the world neighboring the location of the virtual probe evolving in time to the force control program would
be the ideal solution. The idea is similar to that of clipping in computer graphics, where the subset of the model outside
the viewing volume need not be rendered. There is also the inherent advantage that the feel of the model at the point
of interest is independent of its complexity at places far away from there.
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Figure 1: Our Client-Server model

2.2 Local Model

Our model handles the above problem by having a force server, that queries the haptic device for position and com-
mands forces to it, and an application client, that models the evolution of the virtual world in time based on forces that
act on the individual bodies and constraints on their motion (in short, runs the dynamic simulation). The client, as soon
as it is ready, queries the force server for the position of the probe, computes an appropriate local model, and sends it
over to the force server. It also receives information on the forces that the user tried to exert on the object(s) in the
model, so that these may be integrated during the next time step. An inherent advantage of this setup is that it is trivial
to have multiple devices and simulations interacting with each other in various combinations. The sequence of com-
putation is as shown in Figure 1.

The amount of information communicated to the force server is a big factor in the performance of the system. One
extreme is giving it knowledge of the entire geometry of the world, which causes a huge degradation in the haptic servo
rate, and is obviously unnecessary. The other is to compute by simulation, forces that a body such as the probe would
feel if it were interacting with other bodies and just send those forces to the controller. Our approach tries to combine
the advantages of a limited geometry model while being able to passively control the device (that is not have it driven
to a “desired” position all the time).

The actual force displayed is computed using a spring model, where it is a linear function of the penetration into the
nearest plane that is a part of the local model. The user now needs to exert the negative of this displayed force to the
probe to keep it from flying away (which he/she automatically will if the probe is being held firmly). To give the user
the feel of “pushing” virtual objects, we apply this same force to the object being pushed, and then have it respond
appropriately one time step later. It is important that this force be scaled suitably because of the different time scales
on both processors. The delay is only visual and goes unnoticed. So rather than trying to measure the force that the



user is pushing with, we actually force him to do so, and then add an equal but opposite force into the list of external
forces that the simulator has to integrate over the next time step.

2.3 Local Model Schemes

We have investigated three schemes for a local model that is sent to the force controller. The first is that of a simple
plane that is closest to the probe, as investigated in [1]. While this works for static objects, objects that are moving
cause a force discontinuity and therefore a nasty clicking sensation at the frequency at which their position is updated,
which is about 30 Hz for our system. In the second scheme, velocities of the bounding points of the plane are sent
across to the force server each time (two end-points for an edge in 2-D simulation), and the position interpolated ap-
propriately. This works fine for objects moving linearly or those that have large moments of inertia and are hard to spin
(the worst case is when the object rotates about one of the two edge points).

In the third, we use a complete kinematic model for the intermediate representation on the force server between the
dynamic updates. In 2-D, the motion of any plane can be fully described by its angular velocity about the center of
rotation, and the linear velocity of the center of rotation itself. For a freely moving dynamic object, the center of rota-
tion corresponds to the center of mass, therefore the position of the plane closest to the probe in local co-ordinates,
along with the world-space position, velocity, and orientation of the center of mass of the object would be a complete
kinematic model of the motion of the plane. With this local model for force display, the problems mentioned in the
previous section are eliminated, and we have a stable force-position relationship.

Although more sophisticated approaches such as a true dynamic model with local force integration are possible, we
feel that the overhead increase is not justified in our case given the well-behavedness of the kinematic update model.
This would be a problem in systems where sudden, high forces are exerted, or if the dynamic simulation is too slow,
causing large changes in velocity each time step.
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Figure 2: Coulomb variation of frictional force f ¢ with applied force f,

Manipulating dynamic objects without friction feels like pushing ice cubes on a floor with a pen. We have implemented
a Coulomb friction model, treating the tip of the probe as a small finite plane that rubs on other surfaces. Coulomb
friction states that frictional forces always arise to oppose impending (static friction) or actual motion (dynamic fric-
tion), with the variation as shown in Figure 2. The main problem with modeling friction on a position sampled device
such as the Phantom is that without knowing the applied force (no force sensors), there is no direct way to guess the
direction of impending motion, and therefore to compute the frictional force. However, if we know that the probe is
being moved, we know that a force has to be applied opposing the direction of motion. This makes dynamic friction
easy. Static friction is implemented as a stiff spring about the point of penetration into the surface (or a point when the
velocity goes below a threshold), but this still is relatively noisy because of the fact that any velocity estimate breaks
down at when movement is very slow. Another problem is the fact that there is often frequent switching between static
and dynamic friction modes. In spite of this, the addition of friction adds a great deal of manipulation capabilities to
the otherwise slippery probe.



4 Implementation Issues and Results

We use the 1.5X Phantom™ interface, controlled by a 200 MHz Pentium Pro PC running Linux. Dynamic simulation
runs on a 150MHz SGI R4400. On a discretely sample device like the Phantom that has no tachometers or accelerom-
eters, velocity can only be computed by differentiating the position signal, which is highly noisy. We use a simple ex-
ponential filter on the velocity that uses the last 100 samples to compute an estimate (equivalent to a lag of about 10
milliseconds) Although this, like most other approaches produces slightly noisy data for velocities close to zero, it
works reasonably well otherwise. Client-server communication is achieved using non-blocking TCP/IP sockets over
an Ethernet network. A useful observation was that it is important to transfer all information with one socket read/write
call, to avoid a nasty degrade of performance on multiple socket calls while waiting for a round-trip packet. The deg-
radation would be a lot lesser with UDP, at the expense of reliability.

We have achieved a haptic servo rate of over 10kHz on the force servo, which is much faster than real-time require-
ments for the Phantom. Dynamic simulation is in 2-D, while haptic and graphic display are both in 3-D. TCP/IP com-
munication consists of about 120 bytes of information sent back and forth between the two workstations once every
simulation loop, which happens about 30 times a second. This is also the update rate of the graphics display, giving a
smooth animation. Thus the graphics loop is real-time, while the force feedback loop runs at well over real-time. The
feel is similar to that of pushing objects around on a smooth plane with a pen (not quite one’s finger because of all the
tactile force information missing).

5 Conclusions

We have established a framework and shown that it is possible to integrate force feedback with physically based dy-
namic simulation and graphics using a client-server based system. This framework makes it trivial to connect multiple
devices to one hardware system, and thus have distributed users manipulating the same virtual environment. Future
work involves design of better interfaces for 3-D interaction, and different control strategies (including active ones that
actually drive the device). We also see many interesting issues in the use of such a system to perform fine manipulation
tasks, possibly using more than one haptic interface in tandem.
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Abstract

For haptics applications in which the PHANTOM haptic interface is controlled by a PC, we have built a network-
based client-server system so that high-quality computer graphic rendering can accompany haptic simulation. The
system currently consists of a 586 (Pentium) PC to drive the PHANToM and an SGI Indigo Elan to render stereo
computer graphics. The machines communicate over Ethernet using TCP/IP.

Position query and object creation commands are sent from the graphics host to the PC running the haptics simula-
tion. Informational replies and automatic notifications are sent from the PC back to the graphics host. Thus the PC-
based haptics library is made available to applications running on higher-end graphics workstations.

The haptics library supports the creation and deletion of a wide variety of primitive objects, textural and bulk material
properties so that rendering a haptic scene is accomplished by making simple calls from a client program. Currently
the system simulates static models, and dynamic simulations are being developed.

Haptics client-server

Our network-based client-server system has been developed for applications demanding both high quality haptic and
visual rendering. The haptics server recognizes commands from a client graphics machine for object creation and
deletion, activation and deactivation, setting global drift forces and global viscosity, specifying surface damping and
friction (static and kinetic), creating textures on objects, and for position-query. In turn, the client receives confirma-
tions of successfully-completed commands, requested position information, and automatic notifications when buttons
tagged as “active” have been touched. This system, which models a world of static objects, has proven to be robust;
the only noticeable visual latency occurs when network traffic is heavy. The basic system is shown below.

object creation request

I position request
(crystal eyes) ) environment, material props. 8 ~ (PHANToM)
Stereo display - "E texture creation request B [¢—» haptic display,

%4 ) . . %4 2 position tracking

= reply with information Y
N - - < @
S0 automatic notification

The haptic control loop, which accommodates a servo-loop of about 4000 pts/sec, is constructed as shown below:

poll |«
i *.y,2) Object Representation

Check collisions with each object; position=/{x, 3 z ]
velocity = { vx, vy, vz }
acceleration = { ax, ay, az }
current force = { fx, fy, fz }
coefficient of static friction = ¢s
coefficient of kinetic friction = ck
mass =m
damping coefficient = b
spring constant = k
bounding sphere position = { bx, by, bz }
bounding sphere radius = r
bulk property id = { int }
Global forces texture scale = ts
texture tag = { TRUE/FALSE }
movement tag = { TRUE/FALSE }

B friction tag = { TRUE/FALSE }
| Display force to hand | update tag = { TRUE/FALSE |
bulk function
texture function
*texture pixels

Check for messages from client; objectID
Send any automatic notification necessary

Haptic control loop:

Fiotal




Within each cycle, the location of the stylus is reported, and its collision with all objects is determined. If the stylus is
in contact with any object, the force in the direction of the object surface normal is computed as well as forces from
specified surface properties (friction, damping, texture). Force contributions from all objects are added to global drift
or damping forces, and the result is displayed to the user. Object state, as shown above, is updated as necessary. Any
requests from the client are then addressed before position polling repeats.

There are obviously many ways to model the surface and bulk properties of materials, and the computation of forces

generated when we interact with them. Because the only directly measured state provided by the PHANToM is posi-

tion, indirect methods must be used for computing physical quantities involving velocity and acceleration. Below, we
provide a brief description of some simple modeling which has yielded satisfying simulation of some haptic phenom-
ena.

Friction and damping modeling

Frictional force, Fy, can be approximated as follows; a “stuck” point, s, at which a user first contacts a surface, or the
point at which velocity along the surface becomes zero, is recorded. We model a second surface (with stiffness k) at
this point, oriented so that its normal opposes the user’s direction of motion. Static friction is modeled as the resisting
force required to “break through” this second surface, before being able to continue motion across the real surface.
After sufficient force has been applied to overcome static friction, movement is permitted and s is dragged along.
Then, kinetic friction is modeled as a smaller opposing force whose magnitude depends on the amount of normal

— o on pr- force, F,,, exerted by the user.
Thus, if ke < (cg IF 1), then F¢ = kef; ; else Fy= (i IF,))) £,
where c, is the coefficient of static friction, cy is the
coefficient of kinetic friction, and f; is the unit vector in the
direction of the tangential component of force. The stiffness
coefficient, k, of the “resisting” surface is currently not
user-specified. Computation of the distance travelled, e,
along a flat surface, textured surface, or sphere is shown in
the diagram below.
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Computing the distance travelled on flat surfaces
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Damping within surfaces can also be computed according to the user-specified damping coefficient, b. We simply
record five most recent points along the stylus trajectory within a surface and use them to compute an approximate
velocity, Vayg. From this information, the damping force, Fyq = bvyyg, is computed and added to F;, and Fy, to form the
total force that a user is exerting on an object.

Texture simulation

We currently specify object textures in two ways, either algorithmically, or by using a greyscale image (a 2D array of
pixels). The texture simulation procedes in the following manner: if, upon polling, the stylus is found to be in contact
with a texture-mapped surface, then either a function is evaluated or a texture map is indexed to indicate the surface
relief at the current sample position. A displacement value ranging from {0 - texture scale} is added to the current
position which permits the stylus to continue to sink into the surface unperturbed for that offset distance. Both textur-
ing methods are outlined below.

Algorithmically-defined textures: Image-defined textures:

If sample point collides with textured object: If sample point collides with textured object:
map currently-polled sample (x1, y1, z1) to (u, v, 22); map currently-polled sample (x1, y1, z1) to (u, v, z2);
evaluate texture function at (u, v) and four surrounding points; index texture map at points around sample point;
vector cross product to approximate new normal (ntx, nty, ntz); interpolation yields a height, offset, at (u, v);
inverse-map (u, v, z2+offset) back to (x1°, y1’, zI’); approximate new normal (ntx, nty, ntz);
replace original normal with (ntx, nty, ntz); inverse-map (u, v, z2+offset) and (ntx, nty, ntz);
compute forces with new position and normal.. compute forces with new position and normal.

Recent and future work

The server design reported above does not permit reliable network-based simulation of inter-object dynamics and
thus does not permit the user to rearrange elements in the scene by physically interacting with them. We are currently
redesigning the system to provide a more complete simulation of object dynamics (to be displayed both visually and
haptically.) The revised design permits objects to be created and to interact with each other and with the user. Objects
like spheres, planes, cubes and other obstacles can be tagged as fixed or moveable, and this status can be changed as
the application runs. During the inter-object collision detection stage, the bounding sphere of each object tagged as
moveable is checked for intersection with those of other objects. This operation requires (N? -N)/2 simple compares
per loop, where N is the number of movement-tagged objects. Objects which may be exerting force on other objects
in the scene are tagged for update, and the current force acting on each tagged object is computed and recorded.

Finally, the objects that are tagged for update have their states recomputed, and the graphics host is notified of the new
information at a rate of approximately 30 updates/sec (not every control loop cycle). This permits us to keep the hap-
tics loop as tight as possible so that the simulation runs smoothly, and allows us to update the graphics loop at the
approximate limit of graphics performance.

Haptics Library: summary

The SPI haptics library uses these models and others to provide a flexible platform for quickly mocking up haptic
simulations using the PHANToM haptic interface, that accompany computer graphic stereo display of the same
objects. The complexity of computer graphic rendering, handled by the client, does not interfere with server control
loop speed; thus visual simulations rendered by the client can be arbitrarily elaborate. The calls currently available to
client applications are listed below:

Available Client Calls

PhantomPollPos(&x, &y, &z, button)

PhantomGetForce(&fx, &fy, &fz)

PhantomSetNumReadAttempts(n)

PhantomOpen()

PhantomClose()

PhantomSetVolumeLimits(xMin, xMax, yMin yMax, zMin, zMax)
PhantomGetVolumeLimits(&xMin, &xMax, &yMin &yMax, &zMin, &zMax)




(cont’d)

PhantomDefinePlane(xPnt, yPnt, zPnt, xNorm, yNorm, zNorm, stiffness)
PhantomDefinelmgTx(xRes, yRes, xDist, yDist, *imagefile)
PhantomDefineSphere(xCenter, yCenter, zCenter, xRad, yRad, zRad, stiffness)
PhantomDefineButton(xMin, xMax, yMin, yMax, zMin, zMax, stiffness, activeside)
PhantomDeletePlane(planelD)

PhantomDeleteSphere(spherelD)

PhantomDeleteButton(buttID)

PhantomActivatePlane(planelD)

PhantomDeactivatePlane(planelD)

PhantomActivateSphere(spherelD)
PhantomDeactivateSphere(spherelD)

PhantomActivateButton(buttID)

PhantomDeactivateButton(buttID)

PhantomTranslateObject(objID, xTrans, yTrans, zTrans)
PhantomGetButtonHit()

PhantomNumButtonHits()

PhantomSetPlaneFriction(planelD, cs, ck)
PhantomSetPlaneDamping(planelD, b)
PhantomSetSphereFriction(spherelD, cs, ck)
PhantomSetSphereDamping(spherelD, b)
PhantomSetPlaneTexture(planelD, amp, freq, texid)
PhantomSetSphereTexture(spherelD, amp, freq, texid)
PhantomSetViscosity(b)

PhantomSetDriftForce(fx, fy, fz)

PhantomRelnitialize()

PhantomForcesOn()

PhantomForcesOff()
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1. Research Interests

We are interested in identifying new ways of human - machine interaction via
haptic and graphical devices. In particular we have been working toward
developing a cooperative graphic and haptic interface that allows us to
manipulate and sculpture 3D objects more effectively. That includes compact
and efficient representation of the object as well the ability to "feel" the 3D object -
different textures, friction, etc. - and sculpt and model it through the Phantom.
We are assuming that the combined graphical and haptic interface to 3D objects
will allow us much richer and powerful interaction as well as the ability to
perform tasks that are not possible with the existing technology.

2. Joint Haptics project with Stanford University.

During the past year we started by building an interface based on the UNC
haptics library [1] that includes on one side the Phantom and a PC server to it
and on the other side an SGI for graphical visualization and manipulation of
virtual objects. The communication between the PC and the SGI is done over the
Internet. That setup allowed for effective use and experiments with simultaneous
haptic and graphical interface with virtual 3D objects. It also allowed us to study
the problems of latency over the Internet, transfer of complicated 3D objects, as
well as graphic visualization.

As part of this effort we built a joint research project between Interval Research
Corp. and the research group of Prof. Oussama Khatib from the Robotics lab at
Stanford University. This project explores the possibility of interactions between
remote sites with the Phantom arms that include:

human (using a Phantom) -to- human (using a Phantom);

human (using a Phantom) -to- dynamic, realistic, 3D simulation;



human (using a Phantom) -to- Puma robot (master-slave teleoperation).
3. Student projects in Advance Robotics at Stanford University

We initiated and organized joint projects with the students in the Experimental
Robotics class at Stanford in 1995 and 1996 taught by Prof. Oussama Khatib. That
included equipping a Pentium PC and a Phantom with the right software and
hardware for the project, organizing, directing and supervising the student's
efforts. The project was successful in that in a few weeks, the students produced
interesting and ambitious demos illustrating the advantages of combined use of
haptic feedback and graphics. It also provided a good basis for extending the
existing system to more complicated 3D objects and meshes. 1 will describe the
projects that the students did, some of which were successfully demonstrated at
the Experimental Robotics conference at Stanford in July 1995.

3.1 The Virtual Xylophone.

The first project built a virtual xylophone. The graphics were done on SGI
Inventor and included the color xylophone and a mallet that was controlled by
the Phantom (see Figure 1). The sound changed depending on the acceleration
with which one plays the xylophone. For sound experiments there was a
provision for changing from xylophone to an organ sound as well. A number of
interesting issues relating to the interaction of haptic, visual and sound feedback
were raised.




Figure 1. Graphical view of the Virtual Xylophone.
3.2 Haptic Roaches.

The second project described involves a "Roaches" game. The graphical
environment (done on the SGI with Inventor) includes a large playpen with
cylindrical obstacles, a number of roaches and a small sphere representing the
users' finger (controlled by the Phantom) - see Figure 2. The goal is for the user to
kill the roaches by pinning them down from above. The roaches have certain
amount of intelligence and try to hide underneath the obstacles which the user
needs to put aside in order to reach the roaches. All graphical objects are
inherently 3 dimensional and the game is enhanced via sound and visual effects.
The criteria for the user's performance in the game is time, which adds another
dimension to the project.

Figure 2. The game of Haptic Roaches.
3.3 Haptic Exploration of rigid 3D objects.

The third project describes our first joint efforts with Diego Ruspini from
Stanford on graphic and haptic exploration of rigid 3D objects with surfaces
described as polygonal meshes. Examples include a virtual 3D staircase, 3D
bunny and space shuttle. The newest results and the theoretical foundation of
this work are further explained in a separate paper for this Workshop [2]. Our



overall goal is to extend the capabilities of our haptics library to support a more
powerful and general set of modeling primitives (for manipulating arbitrary
complex rigid objects), to allow the haptic server to operate with a greater
amount of autonomy from the host computer, and simulate a wide range of
virtual environments. On the next stage the support libraries provides a means of
allowing the developer to specify constraints between the objects in the
environment and for controlling the motion of objects in the virtual world. The
last part of the effort will involve modeling the contact forces caused by contact
and collisions between the objects in the virtual environment. This work will
build on research being done in the areas of fast distance/collision calculation
and dynamic simulation at Stanford [3].
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Introduction

We are developing a new haptic interface library “HL.”
With a Application Programmers Interface (API) almost
identical to that of “GL”, a graphics hardware interface
library used on all Silicon Gralp ics workstations, haptic
environments can quickly and efficiently be
incorporated into graphics applications. The library
uses a multi-level control system to effectively simulate
contact with virtual environments. Work has also
begun to help guarantee that the behavior of the haptic
device is stable even if the simulated model is too
complex to be simulated accurately.

In our implementation contact, friction and other forces
are not applied directly to the haptic device, but to a
virtual _l"’l:;:lroxy” or representative object in the virtual
world. This objlect, similar to the god-object proposed by
Zilles and Salisbury [Zilles94], has a known mass,
velocity and acceleration and can therefore be
accurately simulated as it is effected by forces in the
virtual environment. The haptic device and a virtual
spring/damper are then used to keep the error between

e virtual and real objects configuration to a minimum.

To allow complex models to be simulated, fast collision
detection between the proxy and the virtual
environment is essential. In our implementation a
hierarchy of bounding spheres is automaticall

constructed when objects are introduced [Quinlan94].
This hierarchy can be g\uickly traversed to prune objects
that are too far from the proxy to effect its movement.
Only nearbg\:bstacles need to be checked fully to see if
they lie in Fath of the proxy. The use of hierarchical
bounding volumes reduces the computation costs
enough to allow complex environments to be simulated.

Many graphic interfaces, including “GL,” allow
modelers to specify surface normals on the vertices of

lygonal surtaces. This information is used to alter the
ighting model on the surface to give it the appearance
of being smooth. The normal information is used by our
system to create a similar haptic effect. The constrained
motion of the proxy is computed using the local surface
orientation inferred by the supplied normals. Once the
constrained motion is found, it is projected back onto
the actual object surface. The proxy position is then
advanced alontg this projected motion direction. This
gives the user the apfearance that they are on a smooth
surface while actually moving along the underlying
polygonal model. This technique produces results
similiar to that proposed by [Morgenbesser96].

By using a virtual proxy the haptic servo controller task
is reduced to minimizing the error between the
configuration of the proxy and position of the haptic
device. Reducing position error of a mechanical system
is problem that has been dealt with extensively in the
robotics literature [Craig89]. In our current
implementation a strait forward operational space
proportional derivative (PD) controller is used to
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guarantee stability even in the presence of a large
number of objects. The low level control loop can
separated from the contact/proxy update 0011(3. By
running the control loop at a high fixed clock rate
stability is more easily ensured and the fidelity of the
haptic display can be made to degrade gracefully, as the
complexity of the environment is increased.

2. The Client Application

Our current haptic interface runs on two computers
connected via ethernet and follows a common
client/server metaphor. The haptic client is where a
users application is run. In our implementation very
little work is performed b{ our interface on the client
CPU. This was intentional so that the haptic display
would not interfere with the performance of the users
application. The bulk of the work required to render a
haptic scene is performed by the haptic server. Its job is
to receive all modeling information from the client,
track the position of the haptic device, update the
gosition of the virtual proxy, and send control forces
ack to the haptic device.

The “HL” Library allows users to define objects as a
collection of primitive objects — points, line segments, or
polygons. Transformations are provided to allow
objects and primitives to be translated or rotated freely.
Surface normal and texture coordinates can be
associated with polygons vertices to allow smooth or
textured surfaces to be defined. Any number of objects
can be created, and objects can call other objects
allowing the creation of complex object hierarchies. All
primitives specified between the time an object is
ogened and closed belong to the new object. The new
object does not become visible to the haptic display until
it is closed. This condition ensures that a given object is
not made touchable until it is completely specified. A
special object (Obfject 0) is always displayed. This object,
gﬁfsibly emff?l, orms the root of the object hierarchy.
is slight difference from the “GL” specification allows
the object hierarchy to be continuously defined, unlike
in “GL” where time is divided into discrete frames. This
continuity in the definition of the virtual environment is
important since the haptic server may be running at a
servo rate many times that of the application program.

On the client side almost all functions are small wrapper
procedures that pack the functions arguments into a
packet to be transmitted to the haptic server. The
communication protocols supported by the library fall
into roughly three categories, commands which are
issued by the client and do not require a response,
queries where the client waits for a response from the
server, and events which are issued by the server when
a specified condition has occurred é. . the user has
touched an object.) Commands that do not require
immediate action are queued up into a large packet and
only transmitted if the buffer becomes full, or the buffer
is explicitly flushed. Queries always flush the queue
before waiting for a response from the server. Query



functions do not return until the desired response is
received or an error occurs. When events are received
they are placed in an event queue until they can be
serviced by the client application.

3. Model Construction

Once the modeling commands are received from the
client, they must be stored in a form suitable for haptic
rendering. Vertices are transformed into the local object
frames and meshes and sequences of line segments are
broken into a set of independent convex bodies.
Intersections tests between the convex primitives and
the path of the virtual proxy are performed by the
Gilbert distance algorithm described in [Gilbert88]. This
alglorithm computes the distance between two convex
polyhedrons in O(n+m) time, where n and m are the
number of vertices in each polyhedra. Each polyhedra is
specified as the convex hull of a set of vertices. No
additional information about the edges or the facets of
the convex hull, or the order of the vertices is required.
This algorithm returns the nearest point to each
polyhedra as the affine combination of the vertices of
the” polyhedra. The affine weights can be used to
interpolate surface normals and texture coordinates
from the vertices of the underlying polygon. While this
algorithm is more general then what is required bg' our
current system, in the future we hope to extend our
s%stem to allow the proxy to represent more complex
objects.

Because each object is normally constructed from a large
number of primitives, a naive test of checking each
primitive with the path of the proxy would be
prohibitively expensive. In general the fproxy will be in
contact with at most a small fraction of the underlying
primitives. To make use of the spatial coherence
inherent in the object, a hierarchical bounding
representation for the object is constructed. The
bounding representation is based on spheres similar to
the one described in [Quinlan94]. is hierarchy of
bounding spheres is constructed by first covering each
polygon with small spheres in a manner similar to scan
conversion in computer graphics. These spheres are the
leaves of an approximately balanced binary tree. Each
node of this tree represents a single sphere that
completely contains all the leaves of its descendants.

After covering the object a divide and conquer strategy
is used to build the interior nodes of the tree. This
algorithm works in a manner similar to quick-sort. First
an axis aligned bounding box that contains all the leaf
spheres is found. The leaf spheres are then divided
along the plane through the mid-point of the longest
axes of the bounding box. Each of the resulting two
subsets should be compact and contain approximately
an equal number of leaf spheres. The bounding tree is
constructed by recursively invoking the algorithm on
each subset and then creating a new node with the two
sub-trees as children.

Two heuristics are used to compute the bounding
sphere of a given node. The first heuristic finds the
smallest boundin%hiphere that contains the spheres of
its two children. second method directly examines
the leaf spheres. The center is taken as the mid-point of
bounding box already computed earlier. The radius is
taken to be just large enough to contain all the
descendant leaf nodes. Note that a given node is not
required to fully contain all of its descendant nodes only
their leaf nodes. The method that generates the sphere
with the smallest radius is used for the given node. The
first heuristic tends to work better near the leaves of the

tree, while the second method produces better results
closer to the root. This algorithm has an expected
O(nlogn) execution time, where 7 is the number of leaf
spheres.

4. Updating Proxy Position

At each time step the virtual proxy moves in the
direction that reduces the error between it and the
actual finger position, subject to the constraints imposed
by the objects in the environment. In our current
implementation the rEroxy is modeled as a sphere with a
radius specified by the user. Because of small numerical
errors polygons that are intended to share a common
edge may In fact contain gaps. The proxy should
therefore be at least large enough to avoid slipping
through these holes in the underlying model, otherwise
no restriction is placed on the size of the proxy. Most
often a user would like to make the proxy large enough
to be easily visible on a graphics displiay.

To determine if a collision occurs between the proxy
and an object in the environment, the volume swept by
the virtual proxy, as it moves during a given time
period, is checked to see if it penetrates any primitive in
the environment. In our system the time step is always
small enough so that the path of the proxy can ge
approximated by a straight line segment. Because the
proxy is modeled as a sphere the comparison is reduced
to determining if a line segment comes within one proxy
radius of a given polygon. A sphere containin%uthxs line
segment is checked with the bounding sphere hierarchy
of each object. If the two spheres do not touch, then the
underlying primitives cannot interfere with the path of
the proxy, and no further testing is required. If the
S herez&:;enetrate, a collision is still possible and the

ild nodes of the object are checked recursively to see if
they also touch the bounding sphere of the path. If a leaf
node is reached the proxy path and primitive are
checked using the Gilbert distance algorithm. Because a
primitive may have more then one leaf sphere, and the
path bounding sphere may intersect more then one of
these leaves, a comparison cache is kept to ?uickly
determine if a distance test has already been performed
at this time ste[g;nthus avoiding extraneous calls to the
distance algorithm.
When a collision between a primitive and the proxy
path is found, a plane normal to the obstacle in the
configuration space of the g:'oxy is calculated at the
point where the IYroxy will first make contact with the
obstacle. Once all contacts have been found the glroxy
position can be moved until it makes contact with the
closest contact planes. Planes that fall below this new
point cannot at least locally affect the motion of the
proxy and can therefore be Rruned. If the proxy reaches
the users position no further movement is required.
Otherwise a new constrained motion direction is
needed. In [Zilles94] Zilles and Salisbury propose usin,
Lagrange multipliers to find the constrained motion o
the “god-point.” The paper describes a solution where
the allowable region of motion is restricted to the
intersection of all the contact planes, when in fact at
most three of the constraint planes can be active at one
time.

Determining the contact plane can be solved with
standard quadratic programming techniques like those
described 1in [Gill86], however this problem has many
simplifications that make a less complex and faster
solution possible. In our implementation this problem is
solved by taking its dual. The solution is independent of
translation or scaling, thus the proxy can be shifted to



the origin and the distance from the proxy point to the
desired goal position can be scaled to one. All contact
planes, since they are in contact with the proxy, now go
through the origin. In this dual each contact plane is
represented by a point, defined by the negative
components of the contact plane normal. The negated
normals represent the outward normals of the local-free
space region. The active constraint planes are found by
finding the point nearest to the goal position on the
convex hull of the contact plane points and the origin.
tz}rl\ example of this duality is illustrated in Figure 1
elow.

A ..

Figure 1: Duality of Constrained Motion Solution

This problem is now in a form that can be solved using
the same distance a(l§orithm as was used for the
primitive contact test {Gilbert88). This algorithm returns
the nearest point as the affine combination of points on
the convex hull. Each point with a positive contribution
to the solution indicates that the corresponding contact
plane constrains the motion of the proxy. By using the
dual the active contact planes can be found in Ot(t:l) time,
where n is the number of contact planes and without the
addition of any large software package. Once the (}?t
most) three active constraint planes are found the
desired motion of the proxy can be quickly found and
the iteration can continue.

5. Force Shading

Most graphic interfaces allow modelers to specify
surface normals on the vertices of polygonal surfaces.

This information is used to alter the lighting model on
the surface to give it the appearance of being smooth. To
create a similar haptic effect, when contact between the
proxy and a polygon (containing user specified
normals) is detected, a new normal at the surface is
calculated. This is done by interﬁolating the specified
vertex normals using the weights (returned by the
distance algorithm) that:gecxfy the contact point.  This
intergolation is very similar to the interpolation done
for Phong shading in computer graphics. The
computed normal is used to specify a new contact plane

oing through the contact point. This plane is used
instead of the true contact plane to compute the motion
of the proxy as described above. Once the constrained
motion is found, this motion is projected back onto the
actual contact surface. This process is illustrated in
Figure 2.

surface nomal

projected motion
constraint surface

desired motion

finger position
Figure 2: Proxy Update with Force Shading

The difference between the simulated smooth surface
and a normal surface is illustrated in figures 3 and 4. In
the example the difference between the actual user
position and the position of the virtual proxy are shown
as the users finger follows a circular path around a ten
sided polygonal approximation of a circular object. For
compactness only the first quadrant of the circle is
shown. Because the constraint surface is curved, the
differences between the position of the proxy and the
finger are best illustrated in polar coordinates. The
angular disil‘acement corresponds roughly to the
amount to which the users finger is pulled tangentially
as the user moves around the circle. The radial
displacement indicates roughly the amount of force the
uts)er feels pulling the finger toward the surface of the
object.
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Figure 4: Proxy Path with Force Shading

As is seen in Figure 3 a strong discontinuity occurs
when the proxy finally reaches the edge of the object. In
Figure 4 surface normals have been specified on the
vertices as shown. The result movement of the proxy
shows that no tangential force is felt by the user as the
finger is moved around the object. This is what would
be exgected if the user where moving around a perfectly
circular object. In the radial plot it can be seen that the
E[roxy still follows the underlying surface of the object.
owever the motion of the proxy has no discontinuities
and therefore the surface appears smooth to the user.

It should be noted that this technique may increase the
distance between the user position and the proxy. This
makes ensuring stabilig much more difficult. It is
possible to specify normals and polygons that make the
resultant motion of the proxy unstable. However for
normals typically seen In practice proxy movement
appears to be well behaved.

6. Haptic Control

By using a virtual proxy the haptic servo controller task
is reduced to minimizing the error between the
configuration of the proxy and position of the haptic
device. Reducing position error of a mechanical system
is groblem that has been dealt with extensively in the
robotics literature. In our current implementation a
simple operational space proportional derivative (PD)
controller is used to guarantee stability even in the
presence of a large number of objects. The low level
control loop can be separated from the contact/proxy
update loop. By running the control loop at a high fixed

ock rate stability is more easily ensured and the
fidelity of the haptic display can be made to degrade
grace ul(liy, as the complexity of the environment is
increased.

7. Results

Our haptic library has been successfully used on models
containing more the 2000 polygonal primitives. In our
tests the client computer was an SGI Indigo2 High
Impact running IRIX 6.2. The haptic server was a 90

Pentium running Linux 2.0.2, connected to a PHANToM
haptic device. Communication was through a standard
ethernet TCP-IP connection. The haptic server gave
stable results for that many polygons even with position

§ains over 1600 Newton/meter, and no artificial
amping. The cycle time of the proxy update loop
shows onlfy an approximately O(logn) growth with the
number of polygons. It is hoped that with a faster CPU,
even more complex models can be simulated.

Future Work

At present our current librar}i_liduoes not allow objects to
be moved or manipulated. This is a large drawback
since one of the main goals of our project is to allow
eople to better interact with the virtual environment.
ork to allow the proxy to interact with the objects in
the environment has already begun.
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Abstract

Haptic scientific visualization is a technique used to represent scientific or mathematical data using
a haptic interface. The haptic visualization project implements a number of algorithms for the haptic
rendering of data using the PHANToM. These algorithms depend on the nature of the data, and the
desired representation such as a wire frame mesh or a solid surface. Simulation enhancements are also
added to improve the human interpretation of the data. The resulting system can be used investigate
non-visual information display and the human comprehension of those representations.

1 Introduction

Scientific visualization is a technique used to explore scientific data by representing it in a form more
suitable for human comprehension. Traditionally, this form has been only visual, but humans explore new
objects and environments using all of our senses, especially the active sense of touch. Haptic interface
technology, therefore, can provide an additional medium for data analysis, and is especially beneficial to
blind or visually impaired people. Previously, blind people had no access to interactive 3D representations of
scientific/mathematical data. Haptic interfaces, like the PHANToM, provides a higher bandwidth medium
(in terms of information) for non-visual exploration of virtual environments than any other non-visual sense.

The haptic visualization project at the Applied Science and Engineering Laboratories [2] investigates tech-
niques for the effective haptic display of scientific data, and to create a software framework for this im-
plementation. The hardware for this project consists of the PHANToM connected to a 120 MHz Pentium
running Windows NT, and a Silicon Graphics Crimson for graphical display (see Fig. 1). Through an
object-oriented approach, the software framework implements techniques for rendering data as points, lines,
surfaces, or vector fields. The available rendering methods depend on the dimensionality of the data to be
visualized, which can be up to three dimensions for the 3 DOF interface used in the current system.

Haptic enhancements to the simulations are used to extract more information from the data. In graphical
information display systems, enhancements such as numbered axes and colors are typically added to ease
information extraction. These enhancements do not have direct haptic equivalents, but can be represented
non-visually through means such as speech output, haptic grid planes and texture variations. Texture and
friction can also be used in a haptic display in an analogous manner to false coloring in a visual display.

2 Haptic Visualization System

The visualization system consists of both a haptic and graphics subsystems. Although the main goal is the
development of the haptic components, graphics are used to aid sighted and low vision users, and aid in
development and debugging. The haptics and graphics systems have different operating conditions, and are
thus kept separate, Fig. 1. The haptic environment is generated on the PC, with a control loop frequency of
1kHz. The graphics are rendered on an SGI using OpenGL. All environment information resides on the PC,
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Figure 1: System setup. P, = encoder position, P,, = world position, F = force, 7 = torque.

with changes sent over Ethernet to the SGI using UDP at a rate of 25Hz. Timing is accomplished through
a custom built u-second timer.

The visualization system software is being developed in an object-oriented fashion using C++. The software
structure is such that the haptic interface is independent of the haptic environment, Fig. 1, allowing for the
use of different haptic interfaces. Under this structure, force and interface position are the only variables
transferred between the haptic interface and the software environment. The haptic interface, to the PHAN-
ToM in this case, is implemented as a class. Thus, the Phantom class is used as the software interface to the
PHANTOM for the transformation of position and force/torque vectors from joint space to world space and
vice-versa. This class also handles additional PHANToM I/0 and a software controller for stability.

The haptic environment is implemented as a database class. This database class defines and controls the
interaction of all of the objects, their haptic methods, force profiles, and textures. Haptic methods compute
a displacement or penetration vector, which is then used by the force profile to compute the constraint or
normal force in addition to any friction forces. This structure allows, for instance, constraint forces to range
from linear, such as a spring-damper model, or non-linear, such as a button profile. There is also a class
for stochastic processes and filter implementation for properties such as texture and overall system stability.
This structure is designed for flexibility and simplicity to make it relatively easy to add new algorithms and
create complex haptic simulations.

3 Objects and Rendering Methods

Data comes in many forms, and there is no general solution to render different types with one method.
Ideally, these algorithms should be simple to implement, and fast enough to run in real-time, in addition to
presenting the data in a form that is easy to comprehend. As previously mentioned, data is organized by
its dimensionality as 1D vectors, 2D matrices, or 3D matrices. For each dimension type, there are a number
of algorithms available for rendering. Each of the data types currently used in our visualization system and
their rendering methods are briefly discussed next.

One-dimensional data is rendered in a plane as abscissa and domain values the same way that graphic plots
render vectors. These values are left as discrete points or connected with lines. To feel discrete points is
space, a sphere is created around the haptic interface point (IP). Now perform collision detection between
the sphere and the points. The resultant displacement vector is the normalized sum of the displacement
vectors of each point intersecting the sphere, expressed as

1 M
d= ;< = Ip:lp:

where M is the number of intersected points, r is the sphere radius, and ||p;|| is the distance from the ith
point to the center (IP) in the direction of p;. The resultant d is then modified according the object force
profile. This sphere concept can also be used to feel lines, where p is now the shortest vector from the line



to the sphere center (the IP). Conversely, lines can also be rendered by creating a force field around the
line which generates forces to attract the IP when it is in close proximity to the line. This is similar to a
gravitational force except that there are no forces generated when the IP is on the line.

Two-dimensional data can be rendered as a height map on a 2D lattice where the heights of the data
points correspond to the values of the matrix. These points can be left as discrete points, connected with
lines to create a mesh, or connected to create a solid surface. For points and lines (wire frame mesh) the
sphere technique implemented for 1D data is used. When rendered as a surface, triangular polygons and an
algorithm called the Shadow Point are used. The Shadow Point method was derived from the God-object
method [6]. The God-object computes the location of the point on the surface where the IP would be if
the surface could be infinitely stiff. The solution is found by solving a constrained minimization problem
using Lagrange multipliers, where the constraints are the planar facets. There are three possible solutions
depending on the number of constraints. For one constraint it is the point on the constraint plane closest
to the IP. Two constraints gives the closest point on the line defining the intersection of two planes, and
three constraints results in the point defining the intersection of three or more planes. This is the approach
that the Shadow Point takes to find the same solution using fewer operations. Since the display of 2D
data surfaces renders the polygons on a rectangular grid, only those facets located in a rectangular window
around the IP (independent of the IP height) are checked for collisions. This window takes advantage of the
non-global aspect of point interaction, and allows a surface to be rendered with a large number of polygons.

Three-dimensional data can be rendered as discrete points, a 3D mesh, a 3D polyhedron, or a vector field.
The points and mesh methods are rendered as mentioned above. A polyhedron is the general case of the
height map surface. The Shadow Point is also used in this case, but collisions are checked with all facets
before the initial contact. Therefore, a faster algorithm increases the maximum number of polygons that
can be rendered. Rendering the data using a 3D vector field typically only maked sense when the data itself
represents a 3D vector field. The vectors are arranged on a 3D rectangular lattice, and result in a scaled
version of the force vector at that point in space. Interpolation is used when the IP is not exactly on the
lattice intersections, namely zeroth order (voxel representation), linear, quadratic, or cubic depending on the
smoothness desired.

4 Environment and Haptic Enhancements

While adequate for feeling relative shapes, the previously discussed rendering methods do not provide in-
formation about the specific values of the data. Therefore, additional features must be added. One feature
is speech. Using a text-to-speech (TTS) converter, the coordinates of the data or the location of the IP in
the data coordinate system can be spoken at any time. Another feature is the equivalent of grid lines called
grid planes. Grid planes generate a small, but perceivable force when the IP passes through them, and are
useful for navigation and scale information.

Friction and texture are added to enhance the overall simulation, and to extract more information from the
data. We have implemented simple models for dry friction (Fstatic < psFr and Frinetie = prFr), viscous
friction (F, = —Bv), and drag friction (Fg = 3pAv?, where p and A are the viscosity of the medium and
the cross-sectional area of the object respectively). To prevent the dry friction model from generating forces
when not in motion, the friction force is zero below a small threshold velocity. “Anti-friction”, which is in the
same direction as velocity, can be generated by using small negative coefficients. These coefficients, though,
can cause system instability if they over compensate for the friction and damping of the hardware coupled
with the human user. Since the PHANToM has no force sensors to measure the applied force, estimates
are made from position samples [5]. The range of friction coefficients is limited due to stability concerns,
however, they can be discretized into distinguishable levels to correspond to discretized colors.

Texture is a much more complicated property to model. As with friction, the goal is to render distinguishable
textures, not to exactly model real textures. We have developed a framework to implement a number of
different algorithms. In general, there are two ways to represent texture, which have equivalent counterparts
in graphics: texture mapping and vector perturbation [1, 3]. Texture mapping maps texture patches on a
surface, and includes Minsky’s lateral gradient algorithm for height maps [4]. Vector perturbation generates a



texture force vector that is added to the normal constraint force, perturbing its magnitude and/or direction.
This method includes 1D sampling (temporal or spatial) of a continuous surface with or without additive
noise, and a lattice representation of a texture. One dimensional sampling obtains or generates the texture
vector according to the given model. For example, consider F; = sin(z) + sin(y) + z, + w where z and
y are respective IP components, z, is the height of a plane, and w is a stochastic process. The lattice
representation is the same as that used for rendering a 3D vector field, but the lattice itself can be one,
two, or three dimensional. In general, the stochastic texture vectors are generated by filtering white noise,
expressed as Fy(z,y, 2) = h(z,y, 2z) * w(z,y, z), where the filter impulse response h is convolved with a 3D
white noise process, w. The stable filter can range from an all pass (limiting the magnitude for hardware
stability), to a complex model such as an autoregressive moving average (ARMA) or Markov Random Field.
The lattice structure allows for the incorporation of spatial dependencies of the texture vectors. More
control of the spatial frequencies is another benefit from the lattice structure. The major constraint on
texture rendering is the bandwidth of the haptic interface.

5 Conclusions and Future Work

Using this framework, we have developed a number of simulations. These include 2D line graphs and 3D
surface and mesh plots, and 3D vector fields. Simple texture has also been added to surfaces. Other
simulations include a dynamic peg insertion program, and a representation of spherical sound waves that
can be frozen in time. Feedback from users has been positive.

There is a lot of potential future work for this project. The software framework is currently only a skeleton
and needs further development. Texture modeling will also need further development and experimentation.
Only basic applications have been created, without extensive human factors research into the comprehension
value that they have. In addition to the haptic visualization project, there are two near future projects that
will use the PHANToM. One will investigate the possibility of using the PHANToM for hand tremor filtering,
in addition to a software filter. The other project would involve mounting a PHANToM to a wheelchair to
be used as a teleoperation master.
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Figure 1: The Nanomanipulator is an example of a computer graphics system to which force feedback has been

added. The system comprises a graphics engine, force display and microscope controller.

These computers are

connected through an Ethernet switch, which provides a dedicated 10Mb/s path to each. The force, graphics and

microscope programs each run asynchronously at their own maximum rate.

user’s point of view is shown in the lower right.

Abstract

The Force-Feedback research at the University of North
Carolina at Chapel Hill investigates and develops
methods for providing high quality force feedback to
the users of real applications. Armlib is a distributed
force-feedback software library with support for high
quality hard surfaces. We present Armlib as an
interface to the PHANToM and the Nanomanipulator
as an application using Armlib.
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1. Introduction

Force feedback provides direct perception of three-
dimensional(3D) objects and directly couples input and
output between the computer and user. The
Nanomanipulator project uses force-feedback techniques
in conjunction with stereo graphics to allow human
interaction with objects on the nanometer scale. The
addition of force display to computer graphics system
provided users with a stronger sense of understanding of
the surface structure.

2. The Nanomanipulator

The Nanomanipulator project is a collaboration
between the departments of Computer Science and
Physics at the University of North Carolina at Chapel
Hill. The project is developing an improved, natural



interface to scanning probe microscopes, including
Scanning Tunneling Microscopes (STM) and Atomic
Force Microscopes (AFM).

The project has studied the control of SPMs, using
force feedback to allow the user to feel the surface as
the microscope probe touches and/or modifies it. The
Nanomanipulator displays a high-quality rendering of
the surface being scanned as the data arrives in real
time.

Users not only can feel the topography of the surface,
but also can feel during the modification of the surface.
We are exploring how to modulate friction, stiffness
and adhesion of the simulated surface based on
measured parameters (friction, adhesion) of the scanned
surface.

Scanning Probe Microscopes work by rastering a tip
across a surface, sampling its height at locations on a
regular grid. They can also modify the surface using
either voltage pulses or by physically pressing the tip
into the surface. This modification is normally done
under program control, with experiments consisting of
scanning the surface before and after a change.
Normally, there is no feedback during the modification
event. The Nanomanipulator uses a force-feedback
probe to allow the user to directly control tip motion
during modification and feel the changes as they are
occuring. This provides much finer control over
modification and has enabled new and fruitful types of
experiments.

Experience has shown that the nM greatly increases
productivity by acting as a translator between the
scientist and the instrument being controlled. The
scientist can concentrate on interacting with the surface
rather than with the interface[Taylor-93].

3. Armlib

To support the multiple research projects involved in
force feedback at UNC-CH, and to provide a common
interface to the different devices in the laboratory, we
have developed a force-feedback library we call Armlib.

3.1 Features

The application programmer does not need to know
much about force-feedback technology to use the
software library. Some features of the library and their
motivation for inclusion are:

Device Independence

It supports several varieties of PHANToM force-
feedback device and allows additional devices to be
supported by writing a fairly simple "device-driver" for
them.  The software library automatically scales
positions and forces so that an application can use any
supported device. To specify which force-feedback
device to wuse, the user simply sets a UNIX
environment variable before running the application.

Operate Multiple Devices Simultaneously

The Armlib allows an application to use multiple
force-feedback devices simultaneously. This ability is
useful for multi-user or telepresence applications, or to
provide a user with a force-feedback device for each
hand.

Distributed Operation

The library has a client-server structure, with the client
half of the library running on the same computer as the
application program and the server half running on the
computer that has the hardware interface to the force-
feedback device. The distributed nature of the library
provides an important degree of flexibility in a research
environment because it has the ability to run the main
application on almost any machine connected to the
Ethernet. Additionally, the separation of the server and
client tasks allows the server computer to devote 100%
of its processing power to the force feedback task to
maintain an high update rate (in excess of 500 Hz).

High Performance

The library includes a number of features to provide
high-quality ~ forces. = These  features include
asynchronous message passing between client and
server to reduce wait time and the ability to download
hard surfaces and surface textures to the server.

3.2 Intermediate Representations

[Adachi-95] shows the importance of an intermediate
representation (their term, which we adopt) for a force
model that is updated infrequently by the application
code but allows high update rates on the force server.
Armlib implements two general intermediate
representations, plane and probe and point-to-point
spring, and extensions to these types (multiple probes,
friction, discontinuity prevention).

Plane and Probe
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>
—_—
—

Pr obe

Figure 2: A hard surface is approximated by a plane
connected to a spring. When the probe encounters the
plane, a spring force with spring constant k is applied.
Very high k produces a surface that feels hard. Force is
applied normal to the surface.



In the plane and probe model, the force server keeps
models of a plane in the working volume which the
probe can contact. [Adachi-95] When the probe
penetrates the plane, a restorative spring force that
depends on the depth of the penetration is applied.
This provides a surface with controllable sponginess
against which the user can push (see figure 2).

Using this model, the application computes a local
planar approximation to the surface at the user’s hand
location each time through its main loop. This allows
the user’s hand to slide around on a firm plane (with
force updated at around 1 kHz), with the plane’s
position being updated by the application based on
local information (at around 20 Hz).

Figure 3 shows how this works in the
Nanomanipulator. The Nanomanipulator takes
advantage of local surface approximations and surface
textures to allow force update rates in the 1000Hz
range, while continuing to refresh the graphics display
and the representation of the local surface at a more
moderate 20 Hz.

1 Server measures 2 User interface moves
end effector location i tip to track
Userinterface | end effector motion
code controls

———

force and
microscope
Plane is d Three samples yield

4 into device coordinates 3 @ tangent plane to the
and presented 1o user surface at contact point

Figure 3: Nanomanipulator application determines a
local plane approximation to send to the force server. As
the probe moves, the tip tracks it on the surface and sends
a new plane equation describing the local surface.

Point-to-Point Springs

The complexity of the model maintained by the force
server is limited, since each additional computation
performed by it reduces the force update rate. Some
applications cannot produce a rapidly-computable local
approximation to the force. Examples are rigid-body
simulations with many colliding bodies and molecular
dynamics simulations of all atoms in a protein. For
these applications, there is no simple approximation to
the whole calculation, so any force applied directly
from the model will have a slow update rate.

In order to keep the forces on the probe stable, there
must be some sort of smooth change in force between
simulation updates as the probe is moved. To provide
this, Armlib employs a method that uses a simulated
spring to connect the probe endpoint to the point of
contact in the simulation, as shown in figure 4.

The method is the same used in [Surles-92] for mouse-
based interaction. It was implemented on the graphics
host by Yunshan Zhu using a device-specific
predecessor to Armlib. We have re-implemented it in
the Armlib force server.

f = k*(x-r) |

Endpoint moved

by application Endpoint moved
Kk by force server

|‘mst—>|

length)

Figure 4: Point-to-point spring, where the one point is
moved by the application (at maybe 1 Hz) and the other is
moved by the force server (at around 1 kHz). The two are
coupled by a spring with constant k.

In this method, the application controls the motion of
one endpoint of the spring at its slower update rate,
while the other end of the spring follows the probe
motion at the force update rate. The spring adds force
both to the probe (pulling the user’s hand towards the
point of contact) and to the application (adding forces
into the simulation).  Adjustment of the spring
constant controls the tightness of the coupling between
application and probe; a looser spring produces small
forces in the application while a tighter spring causes
more discontinuity in the force when the application
endpoint moves.

In order to prevent the user from moving the probe too
rapidly, it is possible to add viscosity into the force-
server loop. This makes it feel as if the probe is
moving through oil, and tends to keep the probe from
moving large distances (and thus adding large forces)
between simulation time steps.

3.3 Surface Friction

The surface model described above presented forces to
the probe only in the direction normal to the surface.
This feels to the user as if all surfaces are made of oiled
glass, with the probe tending to slip off convex
surfaces and into concave regions.

[Adachi-95] demonstrates the importance of surface
friction in allowing the user to explore a surface
without slipping. [Minsky-90] implemented a 2-D
static friction texture using surface slopes. We have
implemented a friction model that includes both static
and Kkinetic components and is rapidly computed.
Adjustment of the parameters produces surfaces that
feel like concrete, sand, rubber, skin, or cloth. Figure 5
shows the parameters of our model graphically; an
explanation follows.

The friction model is that of a surface populated by
snags being probed by a flexible tip. When the tip is
not stuck in a snag, it moves across the surface



opposed by a friction force (with coefficient of kinetic
friction kK) that is linearly dependent on its velocity.
When the probe encounters a snag, it sticks there until
the probe moves more than dSnap units away from the
sticking point. While snagged, a force pulling the tip
to the center of the snag (with spring constant kStick)
that is linearly dependent on distance takes effect.

dSnap”'

kK = coefficient
of kinetic friction

kStick = spring
constant of the
probe tip (how

dMean flexible it is)

C
C

N/ A4
dSpread

Figure 5: Surface friction model. The tip slides across
the surface against viscous friction kK until it hits a snag.
Snags populate the surface with mean distance dMean
between them, uniformly distributed within dSpread. The
tip sticks in the snag, bending with spring constant
kStick until moved more than dSnap, then jumps free.

The snags tend to hold the probe in place on the surface
even when the user is not moving it. This provides a
natural “station keeping” on surfaces with high snag
density (such as sandpaper).

The snags are placed around the surface with a mean
distance between snags of dMean, uniformly distributed
within dSpread. In fact, we populate the surface with
snags dynamically, rather than laying them out
statically (which would be very difficult given the
changing parameters and surfaces). After leaving a
snag, the tip encounters another placed with uniform
probability between dMean-dSpread/2 and
dMean+dSpread/2 units away, regardless of the
direction traveled.

An important characteristic of this friction model is
that it is rapid to compute the force each iteration of
the server loop, even though the behavior can be quite
complex. This is important to avoid reducing the
feedback loop update rate, so that we can still present
hard surfaces to the user.

4. Publicly Available Resources

The source code and documentation for the software
library are  available from  the  address:
http://www .cs.unc.edu/Research/force
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INTRODUCTION

WMC Resources Ltd’s geophysical and geological staff at the Kambalda Mine in Western
Australia have commenced a project in conjuction with the Australian Cooperative Research
Centre for Advanced Computational Systems and Fractal Graphics to use virtual reality platforms
to enhance 3D interactions and 3D visualisations of complex geophysical data sets. The Phantom
will be incorporated into a virtual reality platform to faciliate editing and modeling of voxel data
and to provide additional feedback on aspects of the data..

The Mine Environment

Exploration and planning in a mine environment involves the combination of geological data and
remotely-sensed geophysical data on rock properties gathered from the surface, drill holes and
mine openings. Both data sets are used to construct 3D interpretations of the geology, 3D
models of the geophysical properties such as magnetic susceptibility or electrical resistivity
(Willliams, 1996) and 3D models of specific rock types.

The complexity of the data sets and the high value associated with improving exploration success
and decreasing mine development require rapid, interactive interpretation and modeling of the
data.

The Current State of Technology

3D visualisation of geological data, drill hole and mine development information is standard in
the mining and exploration industry. Platforms are generally high-end workstations. PC-based
systems are used, but as yet are not the industry standard due to the high-end graphics
requirements, data volumes and the need for data security.

Input for this data is usually 2D CAD, GIS, and vector data and 1D drill-hole information. Editing
of the data is done at the 2D and 1D input level.
3D visualisation is generally achieved through surface-rendering techniques.

The Future

3D visualisation of geophysical data and models will become standard as the progress is made
with data processing, inversion modelling and understanding the complex relationship of rock
properties to mappable rock units.



The following forces will drive the industry towards the use of interactive 4D virtual reality as a
standard for mine and exploration planning:
1) the value gained from efficient use of geological, geophysical and infrastructural data
for mine planning and exploration,
i) the increasing use of remotely sensed geophysical rock property data,
iii) the need for a real-time “picture” of the mine to support mine automation (Vassie et
al.,1996).

THE PROJECT
Aims and Objectives

The project team aims to apply 3D interactive visualisation and haptics to the interpretation of
complex geophysical data sets. The project will be based on developing an existing interactive
virtual reality platform into a prototype workbench for use in day-to-day mining and exploration
operations. One of the main objectives of the project is to develop a fast, interactive
environment using the platform for manipulation of both vector and voxel data with emphasis on
geological and geophysical systems. The incorporation of haptics will assist portraying and
interacting with the data in a perceptively fluent manner.

Method

The input data will be line, surface and volume data from drill-hole information, surface
interpretations and geophysical data. Voxel data will be generated which satisfy boundary
conditions and constraints imposed by geological observation andd physical laws. Haptic
rendering of the voxel data will be followed by the assignment of attributes to the voxel data to
allow haptic manipulation. A high-performance SGI Onyx workstation will be used with a Virtual
Workbench (Poston & Serra, 1996) from the Institute of System Sciences, at the National
University of Singapore, as the platform.
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Haptic Interaction with the Visible Human
Karl D. Reinig
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Introduction

The Visible Human Dataset TM represents a complete submillimeter photographic
and radiological description of both a male and female cadaver. At the University of
Colorado Center for Human Simulation we are working on methods to both graphically
and haptically interact with the anatomy represented by the data. The effort has lead us to
develop generic algorithms to haptically interact with either voxel or polygonal data.

Before the Visible Human data can be used for haptic interaction it must be both
segmented and classified, that is, each voxel in a volume of interest must be labeled with
its proper tissue type. We are nearly finished with a one-year effort to completely segment
and classify the Visible Human Male. We have also developed techniques to generate both
polygons and their texture maps directly from the segmented and classified data.

Haptic algorithms can be developed to interact with volume data, polygonal data, or
a hybrid of the two. We originally created (Summer of 95) algorithms to palpate complex
polygonally defined surfaces. Polygonal models efficiently define volumetric boundaries.
Relatively simple algorithms can be developed to rapidly find the intersections of tools with
polygons. And simple Phong techniques can be used to produce smoothly varying surface
normals. Since we can make polygonal-based models directly from any of our segmented
anatomical structures, we can see them and feel them as well.

We are working through two potential disadvantages of polygonal models for
haptic interaction. The first problem is the effort required to produce multiple polygonal
objects from high resolution segmented data. The second problem has to do with being
sure which tissue types the tool is interacting with based solely on boundary crossings.

For some haptic simulations it has been easier for us to develop the force feedback
directly from the segmented voxel data. Our voxel-based algorithms use digital differential
analyzer techniques [1] to efficiently determine the tool interaction with multiple tissues.
One disadvantage of the voxel-based algorithms is the large memory required to store high
resolution volumes of interest.

Algorithms

The anatomical simulators we are developing each involve a tool coming in contact
with and possibly penetrating different materials. There is generally some part of the tool
which does the shearing and some part that is just drag. For example, the tip of a needle
shears tissues during insertion while the length of the needle provides friction on the way
in and on the way out. The shearing portion of a scalpel is spread out over the sharp
(generally curved) leading edge. The rest of the blade creates drag and can be used to
deform materials, but it does not cut. The general problem then is to determine which
materials the tool is shearing and which surfaces the tool is in contact with but has not
sheared. If these questions can be answered and the appropriate forces generated at 1500
Hz or better for arbitrarily complex models, then you can create effective haptically correct
anatomical simulators.



Between our polygonal-based and voxel-based algorithms we can calculate
appropriate haptic forces for the general problems described above. Our voxel-based
models allow penetration of any number of objects. However, we have yet to implement a
good surface friction model directly from the voxel data. Our polygonal-based models
currently handle the generic surface and internal shear problems for one object bounded by
another. We are in the process of adding the multiple object capabilities of the voxel-based
models to our polygonal-based models and the surface friction capabilities of our
polygonal-based models to our voxel-based models.

Simulators

The following briefly describes three visually and haptically accurate anatomical simulators
that we are in the process of developing.

Needle Insertion Simulator

Our Needle Insertion Simulator (NIS) puts the PHANToM behind a shell machined
from the back of the Visible Human Male. The user inserts the needle anywhere they want
in the back and attaches the tip to the PHANToM. The shell provides orientation for the
user as well as a pivot point for the needle. The pivot point allows us to produce torque in
addition to the usual three degrees of force. The user may push the needle in any desired
direction. As the needle tip is pushed further into the back, the torque preventing
redirection increases. The user feels each anatomical structure and interface that the needle
tip passes through, as well as the summation of the drag along the needle length. The user
feels the needle bump up against bone or wedge into the elastic tar of the inter-vertebral
disk. If they should happen to push the tip into a major artery they feel the subtle loss of
resistance as the tip shears only blood while the length of the needle still provides friction.
They also feel the pulsation of the blood. The user may request updates of Anterior-
Posterior and Lateral X-rays that show the position of the needle with respect to the
anatomy (the same as they see in the clinic). They can also request updates of the needle
position in the original Visible Human volume. The NIS, which runs on a Pentium
processor PC, was demonstrated at the 1995 annual meeting of the American Society of
Anesthesiologists (Atlanta) where it won "Best of Show" for scientific exhibits. The
University of Colorado Health Sciences Center currently uses the NIS to help train
anesthesiologists to do celiac plexus blocks.

Surgical Cutting Simulator

The haptic portion of our surgical cutting simulator uses algorithms similar to those
of the needle insertion simulator. The major difference between the surgical simulator and
the NIS is the ability to show the 3-D cut in real-time. Real-time 3-D graphics are
maintained using a method we call Solid Shells. Briefly, the method of Solid Shells starts
with a texture mapped polygonal model at the full resolution of the original visible portion
of the volume anatomy. As the topology of the scene changes, surfaces are cut or torn, the
texture mapped polygonal model is modified to represent the new surface. Because changes
to the model are incremental the method is able to update topology at virtual reality rates. To
the user, the model appears to be solid since anything they do to it results in the proper
surfaces being rendered. The method requires the graphics power of an SGI maximum
impact or better. We will be demonstrating a form of the surgical cutter which allows a
surgeon to palpate and cut into an eye during the 1996 Centennial Annual Meeting of the
American Academy of Ophthalmology (Chicago).



Dental Simulator

Our dental simulator allows a person to probe a tooth in search of anomalies. In its
current form, the user sees and feels the tool tip make contact with a tooth. When they
“scratch” a healthy portion of enamel, the surface feels slick and they are unable to
penetrate the tooth. When the probe slides into a carries (region of decay), they feel
additional surface friction. If they push a little harder in that area they see and feel the
probe sink into the hard tar of the decay. When they try to pull out, they must pull back
through that same tar giving the classic carries tug back. The tooth that we currently use
came (courtesy of Bill Lorensen) in the form of 161 CT slices from a GE industrial
scanner. We have modified the data to simulate carries and produced both polygonal
surface models, using marching cubes [2], and reconstructed X-rays from the altered data.
We use texture maps both for realistic graphics and to designate surface friction and shear
strength. This gives us very high resolution control of the haptic parameters.

Conclusion

Haptic feedback has added a tremendous amount of realism to our simulators.
Before the PHANTOM, users of our surgical cutting simulator felt as though they were
moving a wand through air. It was easy to carve up a leg, it was very difficult to create the
cuts you wanted. Now they feel the tool-tissue contact. They feel the friction of the cut
including variation due to the different materials they are cutting. Without haptics, the
Needle Insertion Simulator and the Dental Simulator would hardly be worth using.

With the PHANToM comes a simple challenge. It will give you the position, your
algorithms must rapidly determine the appropriate force. With each new application, we
are increasing the scope of our algorithms.

1) Foley, van Dam, Feiner, and Hughes, “Computer Graphics - Principles and Practices”,
Addison Wesly, 1990, pp 74-78.

2) W. E. Lorensen and H.E. Cline. “Marching cubes: A high resolution 3d surface
reconstruction algorithm”. Computer Graphics, 21 (4), July 1987.
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ABSTRACT

This paper describes different methods tested to
haptically explore voxel-based data acquired
through medical scanners. The goal of this project is
a multi-modal virtual reality surgical simulator.
This simulator will allow surgeons and surgical
residents to practice and rehearse surgical
procedures using patient-specific data. Several
methods for calculating the displayed force were
investigated and are presented. Additional medical
dataset operations, graphical interfaces, and
implementation issues are also presented.

I. INTRODUCTION

Through a collaboration between MERL, Brigham
and Women’s Hospital, MIT, and CMU, we are
developing a volume-based surgical simulation system
to accomplish three tasks: assist in the training of
surgical residents, help established surgeons prepare for
procedures by rehearsing the surgery using actual
patient data, and provide an aid to navigation which can
be used in the operating theater during a procedure. To
achieve this goal, this collaboration is focusing on 3
different areas: deformable object simulation, real-time
volume rendering, and voxel- based haptic simulation.
The Phantom, a haptic interface developed by Sensable
Technologies, Inc., is currently being used for force
display.

Three-dimensional, voxel-based data is the natural
medium for performing surgical simulation because it is
the native format of scanned medical data, including
MRI and CT. Also, these methods will allow us to
model the complex interior structures present in human
anatomy, which is critically important for deformable
tissue simulation. In contrast, surface based models
only approximate surfaces in the medical data and
cannot accurately incorporate internal structure. By
interacting directly with the medical data, instead of a
polygonal model fit to surfaces in the data, the Phantom
can more accurately represent the underlying structure
of the patient.

IRobotics Institute, Carnegie Mellon University,
Pittsburgh, PA

ZMERL - A Mitsubishi Electric Research Lab,
Cambridge, MA

3Massachusetts Institute of Technology, Cambridge, MA

While many researchers have impiemented systems
utilizing the Phantom, only a small number have
attempted to interact with three dimensional, voxel-
based data. Avila and Sobierajski at General Electric
Corporate Research and Development were the first to
utilize voxelized data in a haptic simulation. This voxel-
based data presents a novel problem for determining
object boundaries and forces to display to the user due
to the relative sparseness of the data with respect to the
resolution of the Phantom. Additionally, when dealing
with segmented voxel data, which consists of a binary
classification map, additional filtering methods are
required to simulate a smooth surface.

In our current work, three methods for calculating the
displayed force were investigated: interpolating
between stored normal vectors at each voxel location;
trilinear interpolation of smoothed intensities at the
vertices with calculation of the gradient to get direction;
and factoring the raw binary data with a “Gaussian
sphere” around the Phantom position, again using the
gradient to calculate the normal direction. In this work,
three types of data were utilized: raw binary
segmentation data; filtered versions of the above raw
data; and subsampled voxel data built from geometric
primitives.

II. DATASET ACQUISITION, PREPROCESSING,
AND VISUALIZATION

The initial dataset acquired for this project was a T-1
weighted proton density MRI image of a normal male
knee. The dataset size was 256x256x124 with a voxel
size of 0.625 x 0.625 x 0.9mm. This dataset contains
eight million voxels, while a higher resolution dataset
currently being worked on contains 24 million voxels.
The slices were then hand segmented into the major
anatomical structures: bone (femur, tibia, fibula,
patella), cartilage (femoral, tibial, and patellar), lateral
and medial menisci, and anterior and posterior cruciate
ligaments. Hand segmentation was performed due to
the difficulties presented to automatic segmentation
techniques by MRI data. Unlike CT images, where
image intensity is directly related to density, MRI
intensity is based on physical parameters which can
vary greatly within one structure but sometimes
minutely between neighboring bodies.



When viewing the bony structures acquired from the
segmented dataset, the surface of the bones do not
appear smoothly segmented, as shown in Figure 1. In

Figure 1 Raw segmentation data

fact, when the dataset is viewed in a direction
orthogonal to the original slice plane, it is clear that
large inter-slice errors, due to segmentation being
performed on a per-slice basis, are present. These types
of errors will be present in almost any segmented
dataset, due to the difficulties inherent in segmentation,
whether performed by hand or by automatic and semi-
automatic techniques. Therefore, it was necessary to
filter the dataset to achieve a surface that can be
displayed haptically to the user. Without smoothing, a
small change in the Phantom position could cause
erratic behavior in the direction of the displayed force.
Batch filtering was performed using a Gaussian filter in
the frequency domain. A filtered version of the previous
image is shown in Figure 2. The bumpiness present in
the original image is still present, but is now surrounded
by a smooth gradient of values. Note that this filtering
is not required for datasets that are built from geometric
primitives and are inherently smooth.[1]

Two methods for visually displaying the dataset were
utilized. The first method employs fast volume
rendering on a multiprocessor SGI Challenge.[2] This
method utilized the 3-D texture memory and
implemented the shear-warp algorithm to display
depth.[3] The second method employs a flexible 3D
sectional visualization system (SectionView) to display
the slice of data and where in that slice the user is
currently pointing with the Phantom.[4] The two
methods are complementary in that the volume
rendering presents a global view of the user’s position

Figure 2 Filtered segmentation data

in the dataset, while the section method presents the
local view of exactly what the user is interacting with.
If the original MRI dataset is loaded and displayed
using the sectional method, the system allows the user
to see the original available data around what she is
feeling, providing a natural interface to explore an area
of interest. To maximize the refresh rate on the haptic
interface, the graphical interfaces were run on a
separate machine with position data broadcast over an
Ethernet network.

III. METHODS FOR FORCE DISPLAY

As mentioned above, three methods of calculating
the displayed force vector were investigated. The
different methods trade-off speed of execution and
storage size of the voxel-based models. The dataset
contains eight million voxels, where each voxel can
contain multiple datapoints relating to parameters of the
voxel.

The first method that was implemented interpolated
between stored normal vectors at each voxel center.
Utilizing models generated from geometric primitives,
each voxel contained both a magnitude and a normal
direction. To minimize storage size, the normal
direction was stored as three bytes, a byte for the
component in each direction. An inverse distance
metric was used to interpolate the displayed force from
the intensities and normal directions at each vertex
location. While this method is fast, it required at least
three times the amount of storage compared to using the



intensity alone. Additionally, this method tended to
flatten out curves that closely paralleled the axis
directions, due mainly to the discretization of the
normal vector when stored as a triplet of bytes.

The second method involved placing a “Gaussian
sphere” around where the user is pointing and
performing local smoothing, followed by application of
a gradient operator to calculate the displayed force. This
“Gaussian sphere” is just a simple Gaussian filter
extended to three dimensions, so that the scaling factor
decreases with radial distance from its center. By
performing the smoothing at run-time instead of by pre-
processing, the number of occupied voxels is
minimized, an important consideration for a later part of
our research involving deformable, voxel-based
objects. This method operates by precomputing the
Gaussian coefficients for a range of squared distances.
For each update cycle, a 5x5x5 area around the
Phantom tip is factored and summed to calculate the
current intensity, as in the following equation. In this
equation:
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I, is the intensity being calculated; the brackets
around the indices i, j, and k imply rounding to the
nearest integer, and therefore the nearest voxel location;
and d2 is the distance from the ([x] +i, [y]+J, [2] +k)
voxel position to the location of the Phantom tip. The
smoothing is then repeated at points around the current
position to calculate the normal direction. While this
method holds great promise for future work and
research, it currently does not operate smoothly and
displays a very choppy force to the user.

&

2
20
[x]+i, [yl +j, [z] +k

The last method currently being investigated and
researched utilizes trilinear interpolation to calculate
intensities between voxel centers and then central
differences to determine the local surface normal.
Trilinear interpolation is an extension of simple
interpolation in 1D to three dimensions and is
guaranteed to be continuous. As in Figure 3, to calculate
the intensity at a point within a cube comprised of the
eight surrounding vertices, interpolate first between the
vertices along common edges in the x-direction. Then,
using the four values returned from that interpolation,
interpolate in the y-direction. The two values calculated
from these last interpolations are then used to
interpolate to the value at the point of interest. Trilinear
interpolation is also used to calculate the intensity at six
surrounding points to determine the normal direction
using central differences. This method does require
preprocessing of the data to create a smooth region

Figure 3 Trilinear interpolation

containing a ramp of values between free space and the
object. If the smoothed region is not sufficiently wide,
the effective gain in the local region can be great
enough to cause unstable behavior. This method
convincingly displays the forces associated with the
voxel-based data, and provides the cornerstone for a
surgical simulator.

IV. IMPLEMENTATION ISSUES

As with many digital hardware systems, difficulties
arise due to problems with the discretization of time.
For instance, in a continuous time system, velocity is
just the instantaneous derivative of position. But, in the
Phantom system, the change in position from one
update cycle to the next does not look anything like the
actual velocity due to two factors, the discretization of
time and the discretization of space due to the encoders.
Therefore, velocity of the Phantom tip was calculated as
amoving average over the previous 0.01 seconds, using
a ring buffer to store the change in position and the
elapsed time for each update cycle. Viscosity was
implemented in the usual manner, as a force acting
opposite to the velocity vector. Viscosity was applied
whenever the user penetrated the surface of an object.
This could occur because the direction of the displayed
force was generated from the local gradient. When the
user penetrates past the smoothly varying intensities on
the surface of the object, the gradient goes to zero
because all the local voxels possess the maximum
intensity. A pseudo-friction model was used, where a



viscosity force was applied when moving along the
surface of the object. The magnitude of the viscosity
was less than or equal to a preset maximum value, to
simulate Coulomb sliding friction.

Object rotations were implemented utilizing a
quaternion to rotation matrix transform. The quaternion
was calculated approximately ten times a second, and
the object was “rotated” by rotating the user position in
the opposite direction. In this way, the user position is
transformed, and then just indexed into the voxel space
in the usual manner. These rotation matrices are also
sent over the network to the graphical interface to
provide feedback as to how the object is rotating.

As was mentioned above, the binary segmentation
data was filtered to provide smooth gradient values to
the trilinear interpolation. Unfortunately, this filtering
did cause some “buzzing” in a couple of locations in the
dataset. When two bones were sufficiently close
together in the segmentation map, the filtered intensity
values between them would be artificially high. For
instance, when a byte is used to store the intensity,
values as high as 40 were seen between the fibula and
the tibia and also between the femur and the tibia. These
high intensities in the free space between the bones
were large enough to cause unstable behavior of the
Phantom. One view of this behavior is to think of the
Phantom tip as bouncing between the two sides of a
valley, where the sides are formed by the bones in the
model, with the bouncing caused by overshoot of the
tip. Because of this “buzzing,” new filtering techniques,
such as morphological filters which will not increase
the size of the object, are being investigated.

These methods were all implemented on a Silicon
Graphics Indigo2 Extreme equipped with a R4400
processor running at 250MHz. The optimized version
of the trilinear interpolation method updated at
approximately 4800Hz, well above the accepted
minimum of 1000Hz.[5] This method was also ported
to a 200MHz Pentium Pro PC running Windows95. On
this machine, using the Microsoft Visual C++ compiler,
optimized code ran at 6500Hz, a 35% improvement.

V. CONCLUSION

This research provides a solid groundwork toward
voxel-based modeling and interaction for surgical
simulation. A fast haptic display method, trilinear
interpolation with a local gradient operator, for
interacting with static voxel data was implemented and
tested. This knee model was shown to alocal orthopedic
surgeon, who provided helpful feedback. More user
input will be garnered during the next stage of
development of the overall surgical simulator. Three
dimensional voxel-based simulators like this one,
because they utilize raw segmentation data instead of

surfaces that approximate the data, minimize the
approximations needed to accurately display medical
data and are more appropriate for surgical simulation
and training.
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Introduction

One major challenge when developing applications with the PHANTOM is the high refresh
rate required for haptic interaction [Massie-94]. This refresh rate, which is typically at least 1
KHz, is much greater than the 30 Hz rate that is considered ideal for visual interaction. Achieving
this haptic refresh rate in complex, static environments can be difficult, and achieving this rate
while interactively modifying and visualizing the environment is an even bigger challenge.

The majority of the haptics work done to date has focused on geometric representations of
objects, such as planes and spheres [Salisbury-95]. However, there are several compelling reasons
to consider a volumetric representation when performing haptic interaction [Iwata-93][Avila-96].
Some of the strengths and weaknesses of a volumetric approach to haptic interaction are covered
in this paper. In addition, we outline a basic approach to haptic interaction utilizing a volumetric
representation, including methods for visualizing, feeling, and modifying a volume. Finally, some
applications of this approach are discussed.

A volume is considered to be a 3D regular rectilinear grid containing a set of properties at
each vertex, or voxel. In its simplest form, a voxel contains a single scalar value, usually indicat-
ing the density of material in the local area. An interpolation method is used to obtain a continu-
ous scalar field. We have found trilinear interpolation to be adequate for most data sets.

There are two main reasons why we are investigating a volumetric representation for haptic
interaction. First, many scientific and medical scanning devices, such as CT and MR medical
scanners and confocal microscopes, produce volumetric data in the form of stacks of images. It is
therefore desirable to investigate the benefit of haptic interaction with this representation directly.
Second, volumetric representations are well suited for fast local access and are generally indepen-
dent of scene complexity. Computing forces, modifying object properties, and rendering local
changes to a complex structure within a volume can be done very efficiently. For this reason it
may be beneficial to convert a geometric scene to a volumetric representation for haptic interac-
tion [Kaufman-93].

One of the main difficulties with a voxel-based representation is the large memory overhead.
In our current implementation of these techniques, we allocate 1 byte per voxel for the density
value. This is sufficient if we only wish to feel, view, and modify a volumetric isosurface. An
additional 3 bytes are allocated if we want to interactively paint a volume with high fidelity. If we
wish to visually render the volume as a shaded translucent object we store an additional 2 bytes
for an encoded gradient direction, and one byte for the magnitude of this gradient. We use this
encoded normal only for visual rendering since force calculations require higher accuracy. Addi-

tional volume properties can be assigned through a 1 byte index value. When working with a 256°
voxel data set the memory required for this implementation ranges from 16 to 128 MB.



Haptic Rendering

The detection of a collision between the haptic sensing location and an object is a fundamental
operation of haptic interaction. Fortunately, this operation can be performed on a complex volu-
metric isosurface in a quick and efficient manner. This can be accomplished by evaluating the
density function at the haptic sensing location Dy, and performing a simple comparison against the
isosurface density value D;. If Dy, > D; then a collision has occurred. Figure 1 illustrates this with

a two-dimensional example. Evaluating a single trilinear interpolation function and performing a
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Figure 1: A comparison of the density function at the haptic sensing location D}, against the isosurface
density D, reveals a collision has occurred. The local gradient N is then computed using central differ-
ences.

comparison is an inexpensive computation and can easily be performed at the rates required for
haptic interaction. Extending collision detection beyond a point contact model is an area we
intend to study further.

In order compute a simple linear force response (Hooke’s Law) when making contact with an
isosurface we need to compute the penetration distance of the haptic sensing location into the iso-
surface. This is a difficult operation, but it turns out that the scalar density field can be used as an
indicator of penetration distance. Using this assumption, we create a set of transfer functions that
assign not only stiffness force magnitudes based on scalar density, but also viscous force magni-
tudes. While this indicator has proven effective for many data sets, there exist several for which
this is not a valid assumption. We are investigating additional methods which are more resilient to
varying gradients immediately within an isosurface.

Volume Rendering

In our haptic interaction method, we visualize the volumetric scene using an accelerated ray
casting technique [Sobierajski-95]. Initial near and far bounds on each ray used to compute the
image are obtained from an enclosing polygonal approximation of the scene. During haptic inter-
action, the view point remains fixed, and the near and far bounds are updated during the modifica-
tion filtering process. Ray casting is a flexible rendering technique that allows for the display of
hard, solid surfaces as well as amorphous objects such as clouds or smoke [Sobierajski 94]. In
addition, ray casting can be used to efficiently update the image since only those pixels that poten-
tially show a modified portion of an object must be computed. The cost of updating the image can
be distributed across the haptic interaction loop by recasting only a small number of rays during
each iteration.



Volume Modification

We perform volume modification by applying a filter to the properties stored in the local voxel
neighborhood. Virtual tools such as a paintbrush, an airbrush, a carving knife or a toothpaste tube
can be simulated by applying different filtering operations to the properties stored in a voxel. As
long as the extent of the filter remains small, this filtering operation can be done efficiently within
the haptic interaction loop.

Applications

We have applied these techniques toward both volume visualization and modeling tasks.
When visualizing complex objects the ability to interactively feel three-dimensional structure has
been found to be a useful tool. If an unimportant structure is obstructing the user’s view, it is often
desirable to interactively remove the structure to reveal an internal feature. These techniques have
also been found to be helpful when modeling a free-form surface. The ability to simultaneously
see, feel, and modify provides an intuitive method for creating an object.
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