Proceedings of the

Second
PHANToM Users Group Workshop

October 19-22, 1997

Endicott House, Dedham MA
Massachusetts Institute of Technology, Cambridge, MA

Hosted by

Dr. J. Kenneth Salisbury, AI Lab & Dept of ME, MIT
Dr. Mandayam A. Srinivasan, RLE & Dept of ME, MIT

Sponsored by

SensAble Technologies, Inc., Cambridge, MA

The Second PHANToM User's Group Workshop

On October 19-22, 1997, the Second PHANToM Users Group Workshop was held at the MIT Endicott
House in Dedham Massachusetts. Designed as a forum for sharing results and insights, the workshop was
attended by more than 60 participants from 7 countries.

Twenty presentations in diverse areas including rigid and compliant rendering, tool kits, development
environments, techniques for scientific data visualization, multi-modal issues and a programming tutorial were
enjoyed by all. In addition, numerous hands-on demonstrations were made available and provided concrete
evidence of the enormous progress made by the PHANToM users community during the past year. Best
presentation awards (and the coveted SensAble leather jackets) were given to John McLaughtin from CISRO
(Australia) and Rob Playter from Boston Dynamics (USA).

We would like to express our sincere gratitude to all the participants for helping make the workshop a success
and look forward to future meetings. We would also like to thank the staff of SensAble Technologies for their
generous support and assistance in making the workshop run smoothly. Finally we extend our special thanks

to Jacqui Taylor of MIT for her tireless, cheerful and expert assistance in pulling together all the logistical and

administrative details which made the event a success.

Kenneth Salisbury
Mandayam Srinivasan
Cambridge, December 1997

The Second PHANToM User's Group Workshop
October 19-22, 1997
MIT Endicott House, Dedham MA

Program

Sunday, October 19

1:00-4:00 (Optional) Demonstrations at MIT (AI Lab and Touch Lab, RLE).
Rides available to Endicott House, departing 4:00 from Al Lab.,
ground floor entrance, by advance arrangement.

1:00-6:00 Arrival at Endicott House, Registration

6:00-7:00 Dinner

7:30-9:30 Welcome Reception and Refreshments

Monday, October 20

8:00-9:00 BREAKFAST (served in dining room for Endicott overnite guests.
Conteniental breakfast available in Brook Center for all attendees.)

9:00-10:00 INTRODUCTION

Welcome to the Second PHANToM Users Group Workshop
Kenneth Salisbury and Mandayam Srinivasan

Al Lab and RLE, MIT

jks @ai.mit.edu, srini@mit.edu

The Year in Review at SensAble Technology
Bill Aulet, Thomas Massie

SensAble Technologies, Inc.
aulet@sensable.com

10:00-10:30 BREAK

10:30-12:30 RENDERING TECHNIQUES AND TOOLS
Haptic Rendering: Point- and Ray-Based Interactions
Chih-Hao Ho, Cagatay Basdogan, and Mandayam A. Srinivasan
zlill;ri‘@mit.edu

A Unified Approach To Haptic Rendering and Collision Detection
Craig Latimer
MIT

lat@ai.mit.edu

Adding Motion to Constraint Based Haptic Rendering Systems: Issues & Solutions
Diego Ruspini

Stanford University/Interval Corporation

ruspini @robotics.Stanford.edu

Extending the GHOST SDK Shape and Dynamic Classes
Ted Bardasz

SensAble Technology, Inc.
tbardasz @ www.sensable.com

12:30-1:30 LUNCH
1:30-3:00 BREAKOUT SESSIONS

Breakout 1: GHOST: community feedback and collaboration
Breakout 2: TBD

3:00-4:30 REMOTE AND COMPLIANT RENDERING

Controlling Force Feedback Over a Network
Adam Seeger

UNC, Chapel Hill Computer Science Department
seeger@cs.unc.edu

Realistic Haptic Rendering of Flexible Objects

Franco De Angelis, Monica Bordegoni, Giancarlo Frugoli and Caterina Rizzi
Department of Industrial Engineering, University of Parma, Parma, Italy
fda@ied.eng.unipr.it

Haptic Rendering of Elastic and Plastic Surfaces
Chris Tarr

SensAble Technology, Inc.
ctarr@sensable.com

4:30-5:00 BREAK
5:00-6:30 BEYOND FORCE

Hot and cold running VR: adding thermal stimuli to the haptic experience
Mark Ottensmeyer
MIT

canuck@ai.mit.edu

Texture Sensing and Stimulation Using the PHANToM: Toward remote sensing of soil properties
Donald F. Green
MIT

dfg @ai.mit.edu

Simulation of contact sounds for haptic interaction
Dinesh K. Pai and Kees van den Doel

University of British Columbia

pai@cs.ubc.ca

7:00-8:00 DINNER

8:30-9:30 REFRESHMENTS

Tuesday, October 21

8:00 - 9:00 BREAKFAST (served in dining room for Endicott overnite guests.
Conteniental breakfast available in Brook Center for all attendees.)

9:00 - 10:30 DEVELOPMENT ENVIRONMENTS

FLIGHT - A 3D Human-Computer Interface and Application Development Environment
Tom Anderson

Sandia National Labs.

tganders @u.washington.edu

LEGOLAND: A Multi-Sensory Environment for Virtual Prototyping
P. Young, T. Chen, D. Anderson, J. Yu(1); S. Nagata(2)

(1) Department of Electrical Engineering Colorado State University
(2) NHK Science & Technical Research Labs

pmy @engr.colostate.edu

Adding Force Feedback to Interactive Visual Simulations using Oxygen(tm)
Peter Larsson

Prosolvia Clarus AB, Sweden

peterl@prosolvia.se

10:30 - 11:00 BREAK
11:00 - 12:30 APPLICATIONS I

The Haptic Workbench Applied to Petroleum 3D Seismic Interpretation

Keith Nesbitt, Randall Gallimore, Bernard Orenstein(1): John McLaughlin(2)
(1) BHP Research

(2) CSIRO Mathematical and Information Sciences

gallimore.randall.rj @bhp.com.au,bernie @agents.com.au

Haptic Rendering of 3D Seismic Data

John McLaughlin(1); Bernard Orenstein(2)

(1) CSIRO Mathematical and Information Sciences
(2) BHP Research

John.McLaughlin @cmis.csiro.au

A Novel Virtual Reality Surgical Trainer with Force Feedback: Surgeon VS. Medical Student
Performance

Rob Playter

Boston Dynamics, Inc.

playter@bdi.com

12:30 - 1:30 LUNCH
1:30 - 3:00 APPLICATIONS 1I

Some Calibration Information for a PHANToM 1.5 A.
Karl Reinig and Ryan Terry

University of Colorado Center for Human Simulation
karl @pixsun.uchsc.edu

Developing a PC-based Spine Biopsy Simulator

Kevin Cleary, Corinna Lathan, R. Craig Platenberg, Kevin Gary, Laura Traynor, Fred Wade
Georgetown University Medical Center

cleary @isis.imac.georgetown.edu

The Phantasticon: The PHANToM for Blind People
Calle Sjostrom
Center for Rehabilitation Engineering Research, Lund University, Sweden
Calle.Sjostrom@certec.lth.se
3:00 - 4:30 BREAKOUT SESSIONS
4:30 - 5:30 WRAP UP AND DISCUSSION OF FUTURE DIRECTIONS
6:00 - 7:00 DINNER

7:30 - 9:00 REFRESHMENTS

Wednesday, October 22

7:30 - 8:30 BREAKFAST (in dinning room only)

9:00 - 11:00 DEPARTURE (Optional Bus to Airport by prior arrangement)
(revised 10/9/97)

Haptic Rendering: Point- and Ray-Based Interactions

Chih-Hao Ho, Cagatay Basdogan, and Mandayam A. Srinivasan

Laboratory for Human and Machine Haptics
Department of Mechanical Engineering and
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA, 02139
chihhao, basdogan, srini @mit.edu
http://touchlab.mit.edu

Abstract

In this paper, we summarize our progress on two interaction techniques (point-based and ray-based) for haptic
rendering. First, we describe a new point-based rendering technique that is computationally less expensive than
previously proposed methods. We use a localized search procedure to reduce the number of computations and
make it independent of the number polygons of the polyhedron. Second, we discuss the implementation details of
a ray-based technique together with its advantages. We have utilized this rendering technique to display the haptic
interactions between 3D objects and the stylus modeled as a line segment.

In order to develop more effective multimodal VEs, we have experimented with multi-threading (on Windows NT
platform) and multi-processing (on UNIX platform) techniques and have successfully separated the visual and
haptic servo loops. Our experience is that both techniques are quite useful in achieving high haptic rendering rates
and stable haptic interactions. Although creating a separate process for each modality requires more programming
effort, it enables the user to display the graphics and/or haptics on any desired machine(s). On the other hand,
programming with threads takes less effort, but they are not as flexible as processes. We have also developed a
graphical interface that enables the user to construct virtual environments by means of user-defined text file, toggle
stereo visualization, save the virtual environment and quit from the application. The user can load objects into the
scene, assign simple visual and haptic properties to the objects using this text file. Following the construction of
the scene using the text file, the user can interactively transiate, rotate, and scale objects and the interface will
automatically update the visual and haptic models.

Collision Detection

In haptic rendering, one of the important problems is the detection of collisions between the end-effector (or
generic probe) of the haptic device and the 3D objects in the scene. A good collision detection algorithm not
only increases the servo rate, but also helps in correctly displaying interaction forces to the human operator
to make the virtual objects more realistic. The collision detection techniques used in haptic rendering
slightly differ from the ones used in computer graphics. In computer graphics, the collision detection is
used to detect if two objects overlap. On the other hand, the purpose of the collision detection in haptic
rendering is not only to check collisions between objects, but also to calculate the appropriate interaction
forces to convey to the user a tactual sensation of 3D objects. The calculated interaction force increases
with the penetration depth and has the effect of preventing further penetration of stylus into object surfaces.

We propose two types of haptic interaction algorithms here: point-based and ray-based. For the point-
based haptic interaction algorithm, the probe is simply modeled as a point. For the ray-based collision
detection algorithm, the probe is modeled as a line segment. Both techniques have advantages and
disadvantages. For example, it is computationally less expensive to render 3D objects using point-based
technique. Hence, we achieve higher haptic servo rates. On the other hand, the ray-based haptic interaction
technique handles side collisions and can provide additional haptic cues for conveying to the user the shape
of objects.

Point-Based Haptic Interaction Algorithm

The point-based haptic interaction algorithm we have proposed is similar to the god-object algorithm (Zilles
and Salisbury, 1995) but follows a different approach. We believe that our approach increases the servo
rate, makes the haptic interactions more stable and the servo rate independent of the number of polygons. In
this approach, the first step is to construct a hierarchical data base for the geometrical properties of the 3D
objects. The data base is used to store geometrical information of the polygonal objects in the virtual
environment. In the data base, we assume that the polyhedrons are made of three types of geometrical
primitives: polygon, line, and vertex. Each polygon has neighboring primitives of lines and vertices. Each
line has neighboring primitives of polygons and vertices, and each vertex has neighboring primitives of
polygons and lines. In the data base, each primitive also has a normal vector attached to it. For a polygon
primitive, the normal is the vector that is perpendicular to its surface and points outside. For a vertex or
line primitive, its normal is the average of the normals of its neighboring polygons.

When exploring the virtual environments, we interact with objects through the Haptic Interface Point
(HIP). At the same time, we also consider another point, ideal haptic interface point (IHIP) -same as the so
called god-object(Zilles and Salisbury, 1995)- to follow the trace of the HIP. The HIP is not constrained,
and because haptic interface devices have a finite maximum stiffness, it can penetrate the object. However,
we can constrain the THIP such that it doesn’t penetrate any object. When the HIP is outside the virtual
object, the THIP will be coincident with the HIP. When the probe penetrates an object, the IHIP will stay
on the surface of the object. When the user moves the HIP by manipulating the probe, the THIP will also be
moved to a new position depending on the situation. The rule for moving the THIP is that the THIP will
move towards the probe and cannot penetrate any surface. Furthermore, we assume that there is a virtual
spring between the HIP and the THIP. The force applied to the HIP is calculated based on the distance
between the HIP and the THIP.

When the HIP is outside the object, we keep track of its path and check if this path penetrates any polygon
surface. We construct a line segment from the previous (tail) and the current (tip) coordinates of the HIP
and detect the collisions between the line segment and the polygons of the 3D object. If this line segment
penetrates the object, then we choose the surface that is nearest to the previous HIP as the contacted
geometric primitive. The IHIP will then stay on this surface. We then calculate the nearest distance from
the current HIP to the contacted primitive and its neighboring primitives (We only check the contacted
primitive and its neighboring primitives, not all of the primitives. For example, if the contacted primitive is
polygon, then we check the distance from current HIP to the neighboring lines and vertices. This approach
significantly reduce the number of computations). Finally, we set the primitive that has the shortest
distance to the HIP (the priority of selecting the nearest primitive goes as vertex, line, and polygon) as the
contacted primitive and move the IHIP to the point that is on this primitive and nearest to the HIP. After
setting the new position of IHIP, we construct a vector from the IHIP to HIP. If this vector and the normal
of the contacted primitive are in the same direction, the HIP is no longer inside the object.

if (collision == FALSE) primitive] = the contacted primitive of the previous
{ loop;
if (the path ot HIP penetrates a polygon) distancel = nearest distance from current HIP to
{ primitivel
1. set the polygon as the contacted primitive for (i=1 : number of neighboring primitives of
2. move the IHIP to this surface primitivel)

) {
ith

} primitive2 = the i
elsc // there is a collision primitivel

{ distance2 = distance from HIP to primitive2

neighboring primitive of

if(distance2 < distancel) Veclorl = vector from THIP to HIP;

{ Normall = normal of the contacted primitive;
contacted primitive = primitive2; if(dot(Vectorl, Normall) > 0)
distance] = distance2; collision = FALSE;
} else
1 collision = TRUE;
move IHIP to the point that is nearest from the }

contacted primitive to HIP;

Ray-Based Haptic Interaction Algorithm

The ray-based haptic rendering is a haptic interaction technique we have developed recently (Basdogan et.
al, 1997, Srinivasan and Basdogan, 1997). In ray-based rendering, we model the generic probe of the
haptic device as a line segment and detect the collisions with 3D objects in the scene. Therefore, the
collision detection will be much more complicated than that in point-based case. In the point-based case,
the only possible collision situations are point-point, point-line, and point-polygon collisions. However,
the collisions in the ray-based case can in addition be line-point, line-line, line-polygon collisions. There
can also be multiple contacts composed of a combination of the above cases.

Since the collisions in ray-based are more complicated, it is not easy to develop a set of simple rules that
can handle all of the cases. Therefore, we opted to develop a rule-based algorithm that can successfully
handle only the collision conditions between a line probe and convex objects. However, this is not a major
limitation since the concave polyhedron objects can always be divided into several convex objects. The ray-
based collision detection algorithm that we propose follows a rwo-stage approach for detecting the
collisions. Analogous to THIP in point-based interactions, we consider another stylus (we call it the ideal
stylus) to follow the trace of the simulated stylus. Similar to the HIP, the simulated stylus can penetrate the
objects, but the ideal stylus is constrained to stay on the surface of the object and to be always parallel to
the simulated stylus. We assume that there are two springs between the simulated stylus and the ideal stylus
- one between the tips and the other between the tails, respectively. This arrangement will help us in
computing torque in addition to the forces to be displayed to the users. It should be noted here that the only
plausible collision conditions are point-polygon and line-line contacts because we consider only convex
objects. The point-point, point-line, line-point, and line-polygon are all unlikely to occur, because at best
they occur in a single servo loop.

/’/Q P

point - polygon contact line ~line contact

Figure 1. Plausible collision conditions between the simulated stylus and convex object in ray-based
interactions.

When implementing this algorithm, the main challenge is to correctly position the ideal stylus. We use two-
stage movement technique to move the ideal stylus.

First Stage Movement

In the first stage movement, the first step is to find out whether the contacted primitive is a polygon or a
line.

1. If the contacted primitive is a polygon, we move the ideal stylus along the surface. To do this, we first
compute the movement (vector V) of the simulated stylus. We then calculate its component (Vp) along the
surface of the contacted polygon. This is the vector that we use to move the ideal stylus (see Figure 2a and
2b).

vp=v - v en v (N is the normal of the polygon)

old ew old new
ideal sly]us |deal stylus ideal stylus ideal stylus ideal stylus

)
L
|
previous I v previous i
simulated stylus i simulated stylus previous !
i simulated stylus |
1 cuarrent
current current simulated stylus
simulated stylus simulated stylus

(@ (b) (©)

Figure 2. Illustration of the first stage movement in ray-based haptic interactions.

old

new
ideal stylus

In this movement, if the new ideal stylus doesn’t penetrate any line, the movement will be completed in this
stage and the contacted primitive will still be set as a polygon. If the ideal stylus penetrates any of the lines,
we will move the ideal stylus such that the new position of the ideal stylus will be at the position that has

the shortest distance from the line to the current simulated stylus (see Figure 2¢). The contacted primitive
will then be set as a line.

move to
the surface
of the
ponetrace
new old new new
ideal stylus : 1 slylus
e s
/{ /|(\contacted . Vg
1 1 line previous / I >
| | simulated = /| | =
/Q stylus current current !
) C}lrrent simulated simulated
P'FQVIIOLIl,id - simulated stylus stylus stylus ;
simula ylus I i
(a) b)
trat move to
peneirate the line
old a line

ideal stylus new new
z ideal stylus ideal stylus

v B
p_revious/4 —D /-..-\-- imate 3 /

simulated
stylus current current
simulated simulated
stylus stylus
()

Figure 3. First stage movement (when the contacted primitive is a line) of the ray-based rendering

algorithm: (a) the movement of ideal stylus without any constraints, (b and c) the movement of ideal stylus
with constraints.

2. If the contacted primitive is a line, we move the ideal stylus along the line. To do this, we first find the
point (say, point 1) which is at the contacted line and has the shortest distance from the line to the previous

simulated stylus. Then, we find another point (say, point 2) which is also at the contacted line (or an
extension of it) and has the shortest distance from the line to the current simulated stylus. After that, we can
get a vector (say, vector V1) which is from point 1 to 2 and this vector V1 is used to move the contact point
of the old ideal stylus to the contact point of the new ideal stylus. The orientation of the ideal stylus,
however, is always parallel to the simulated stylus. From the contact point, we could decide the new
position of the ideal stylus (see Figure 3a). If the new ideal stylus doesn’t penetrate any polygon or line, the
movement will be completed at this stage and the contacted primitive will still be a line. If the tip of the
ideal stylus penetrates any of the polygons, its tip position will move to the surface of the polygon and the
contacted primitive will be set as a polygon (see Figure 3b). If the ideal stylus penetrates another line, the
position of the ideal stylus will be moved to this line and the contacted primitive will be the new contacted
line (see Figure 3c).

Second Stage Movement

In the second stage movement, we just move the ideal stylus towards the simulated stylus. If there is any
line or polygon between the ideal stylus and the simulated stylus, the ideal stylus will be stopped at the first
primitive it contacts. The pseudo code for the second stage movement is given below:

if’ (contacted primitive is a line) clse //(contacted primitive is a polygon)
{ {
if (there is any line between ideal stylus and simulated if (there is any polygon between ideal stylus and
stylus) simulated stylus)
move ideal stylus to the first contacted line, move ideal stylus to the first contacted polygon,
contacted = TRUE; contacted = TRUE;
if (there is any polygon between ideal stylus and if (there is any line between ideal stylus and simulated
simulated stylus) stylus)
move ideal stylus to the first contacted polygon, move ideal stylus to the first contacted line ,
contacted = TRUE; contacted = TRUE;
if (contacted = FALSE) if (contacted = FALSE)
move ideal stylus to the simulated stylus move ideal stylus to the simulated stylus

} }

In this algorithm, similar to the point-based case, we construct a hierarchical data base such that each
polyhedron is composed of vertices, lines, and polygons. Each vertex has neighbors that are lines and
polygons. Each line has neighbors that are vertices and polygons. And each polygon has neighbors that are
vertices and lines. In the hierarchical data base, each line and polygon also has a list of possible contacted
neighbors. The possible contacted neighbors are those that can be potentially contacted in the next servo
loop. Therefore, when we check the collision, we need to check only the primitives in this list instead of all
of the primitives of the object. In this way, we can save on the computation time and make the servo rate
independent of the size of the polyhedron that represents the full object.

Acknowledgments
Part of this work was carried out under VETT contract N61339-96-K-0002 funded by ONR and NAWC/TSD.

References

{. Basdogan, C., Ho, C., and Srinivasan, M.A., "A Ray-Based Haptic Rendering Technique for Displaying Shape
and Texture of 3D Objects in Virtual Environments ", ASME Winter Annual Meeting, Dallas, TX 1997. (In press)

2. Srinivasan, M.A., and Basdogan, C., “Haptics in Virtual Environments: Taxonomy, Research Status, and
Challenges”, Computers and Graphics, Vol. 21, No.4.,1997.

3. Zilles, C.B., and Salisbury, J.K., “A Constraint-Based God-Object Method for Haptic Display”, /EEE

International Conference on Intelligent Robots and System, Human Robot Interaction, and Co-operative Robots.
IROS, pp 146-151, Vol 3, 1995.

A Unified Approach to Haptic Rendering and Collision Detection
Craig Latimer and J. Kenneth Salisbury

Department of Mechanical Engineering
Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA

Abstract

This paper presents a unified approach to haptic rendering and real-time collision
detection in virtual environments. The foundation for both stems from the geometric support for
polygonal objects, which includes topological adjacency information, contact operations, and a
space partitioning tree. Haptic rendering uses the space partitioning tree to determine the
location of contact and the adjacency information to traverse the surface. Similarly, collision
detection checks for overlap between two polygonal objects by comparing their space
partitioning trees. The motion of objects in the virtual environment is computed using an
impulse-based dynamic simulation.

1.0 Introduction.

Since the conception of virtual environments, sight and sound have played an integral
part in developing realistic and convincing simulations. More recently, however, a third sense
has been added to virtual environments—the sense of touch. Newly created devices, called
haptic interfaces, give the user the ability to interact with virtual environments just as they do in
reality—with their hands. Unlike sight and hearing, with touch we can not only sense the
environment, we can also affect the environment. When we touch objects, we can gain a sense
of texture, stiffness, and shape, while causing these objects to move, rotate, or deform. Although
adding touch to virtual environments creates a more convincing and realistic environment, it also
requires that the virtual environment be realistically modeled. When we push an object, how
quickly the object moves and in what direction the object moves should depend on how the
object is being pushed. When objects move in response to the user’s touch, their motion cannot
be pre-computed, and collisions between objects are possible. For this reason, virtual
environments must use a physically based simulation that can model touch interactions and
collisions between objects. v .

Most previous work has focused either on haptic rendering or collision detection but not
both simultaneously. Salisbury et al. [5] presented a general haptic framework based on point-
object interactions. This work was further developed by Zilles [8] for rendering polygonal
objects using a constraint based method. More recently, point-object haptic interaction has been
extended to other geometry such as NURBS [7] and implicitly defined algebraic surfaces [6]. A
new interaction paradigm, line-object haptic display, has been recently developed by Basadogan
et al. [1]. Collision detection, on the other hand, has been widely studied for over the last
decade, and the approaches vary greatly between algorithms-- often the best technique is problem
dependent. Since we wish to consider large non-convex polyhedra, the collision detection
algorithms are similar to those presented by Gottschalk et al.[3].

The outline of this paper is as follows: First, the geometric support for polygonal objects
is presented. Next, determining possible contact using the space partitioning tree is presented
for both haptic rendering and collision detection. Lastly, contact evaluation including force and
impulse generation is presented.

2.0 Data Structures for Polygonal Objects.

Each polygonal object contains a list of its faces, edges, and vertices. The face class
contains two data members, a support plane which passes through all of the edges and vertices of
the face and a list containing pointers to the edges of the face. These edges are ordered so that
they encircle the face in counterclockwise direction. Like the face class, the edge class also has
pointers to adjacent features. An edge has pointers to two vertices, a head vertex and a tail
vertex, as well as pointers to the faces sharing this edge. An edge has two additional data
members, a normalized direction vector which points from the tail vertex to the head vertex and a
length representing the distance between the head and tail vertices. The vertex class has only two
member variables: a point representing the vertex position and a list containing pointers to
adjacent edges.

Each polygonal object also contains a space partitioning tree composed of oriented
bounding boxes (OBBs). Each OBB has a 3x3 rotation matrix defining its orientation, a position
vector locating of its center of OBB, and a size vector giving the distance from the center to the
faces of the box. Gottschalk et al.[3] presents an algorithm to create tight fitting OBBs. The
tightest fitting OBB for a given a set of faces is determined using statistical properties of the set.
The set is then divided into two subsets based on which side of the box the center point of the
faces lie. OBBs are then created for these subsets, and the process repeats recursively creating an
OBB tree. The leaf nodes of this tree contain a single pointer to a face.

3.0 Determining Possible Contact

The OBB tree can be used for determining possible contact during both haptic rendering
and collision between objects.

For haptic rendering, the user’s position is represented by an “interaction point.” We
want to use the OBB tree to quickly determine either that the interaction point is not touching the
object or which face it might be touching. To determine this, we start with the top level box and
transform the point into the boxes coordinate system. Then, the coordinate of the point is
compared to the size of the box. If the point passes this test, then the children boxes are tested.
This process repeats until either no contact or a possible contact face is determined.

For collision detection, the OBB trees for two possible colliding objects are compared to
determine possible overlapping faces. Our overall strategy is to start with the top bounding
boxes and work our way down the trees. Suppose we have two polygonal objects, A and B, and
each has an OBB tree. Initially, the position and orientation of each top level bounding box is
defined with respect to some global coordinate system. The first step is to transform our
coordinate system such that A’s OBB is at the origin and aligned with the coordinate axes. In
these new coordinates, we can efficiently check if A’s OBB overlaps B’s OBB.

Two OBBs will not overlap if there is some plane that separates them. Alternatively, we
can determine separation using any line parallel to the plane’s normal. If the projection of the
two OBBs onto the line forms a disjoint interval then the OBBs do not overlap. For this reason,
the normal of the plane is called a separating axis. It is important to realize, however, that if we

project the OBBs onto an arbitrary line and the intervals overlap, it does not necessarily mean the
OBBs overlap. Rather, it simply indicates that further tests may be required. To establish that
two OBBs overlap we must check planes parallel to the faces and planes parallel to an edge from
each object resulting in a total of 15 separating axis tests. Placing one OBB in the other’s
reference frame and explicitly writing down the equations results in significant simplifications.
In all, the 15 separating axes require 166 operations to determine overlap, but usually much
fewer are needed to determining disjoint boxes. [3]

If the two OBBs overlap, then we work our way down the trees looking for intersecting
faces. The first step is to decide which tree to start descending. If B’s OBB is at a lower level
than A’s OBB or has no children because it is a leaf, then we will descend the children of A’s
OBB. We do this by placing B’s OBB in the coordinate system of the OBB of A’s child. On the
other hand, if we instead descend to the child of B, then we must put the OBB of B’s child into
the coordinate system of A’s OBB. In this manner, we recursively “stair step” down the trees.
The result of this process will be a list of potentially overlapping faces.

4.0 Contact Evaluation

In the previous section, we ascertained which faces the user might be touching or which
faces might be overlapping. In this section, we describe how to take these possible contact or
collisions and generate forces or impulses. The cornerstone of both algorithms is determining
whether a point is on or directly below a face. To check this, we create several test planes
passing through each edge and perpendicular to the support plane. Graphically, all the test
planes create a region similar to extruding the face. If a point is on or-below the face’s support
plane and above the test planes then the point will indeed be on or directly below the face.

For haptic rendering, we use the algorithm above to test if the interaction point is directly
below the faces determined from the OBB tree search. If it is not, then the user is not touching
that face. Ifit is, then the closest point on the face is a projection of the interaction point onto the
support plane of the face. The force that the user feels is generated using a penalty method
similar to attaching a stiff spring and damper between the interaction point and the closest point
on the surface.

For collision detection, we need to compare possible overlapping faces, and if they are
overlapping, then we need to determine the collision point and the collision direction. In
collisions there are two types of contacts, vertex-face contacts and edge-edge contacts.[2] We
will assume that the two faces being considered are FaceA and FaceB. The first step is to
determine which side of FaceA the vertices of FaceB are on, and store that information for
possible future use. If the vertex is below the support plane of FaceA, then we check if the
vertex is directly below FaceA using the algorithm developed above. If the vertex is penetrating
the face, then the collision point is the closest point on the face to the vertex, and the collision
direction is the faces normal. If all of the vertices of FaceB are above FaceA, then the faces are
not touching. An analogous procedure is used to check the vertices of FaceA against FaceB.

The next step is to check for edge-edge contact. We start with an edge of FaceA and
compare it to FaceB. If the head and tail vertices of the edge are on opposite sides of FaceB,
then we determine where the edge intersects FaceB’s support plane. If the intersection point lies
on FaceB, as determined by the algorithm above, then we know that edge-edge contact exists and
that we must find which edge of FaceB intersects FaceA. Finding the edge on FaceB that

intersects FaceA is done in the same manner. The collision direction is simply a vector
orthogonal to both contacting edges.

Typically, several faces interfere for each contact. We must therefore prune our contact
list to eliminate these redundancies. When two objects do collide, the response is handled
through impulses, instantaneous changes in the velocities of the colliding objects. The impulses
are computed analytically based on the velocities and the configuration of the two objects at the
time of impact. [4]

5.0 Conclusion

A unified approach allows simultaneous support of haptic rendering and collision
detection resulting in richer, more expressive virtual environments. Moreover, it reduces
memory requirements and is easily extendible to other haptic rendering paradigms.

Acknowledgments

The material in this paper is based on work supported by ONR Grant no. N00014-97-1-
0655, "Multimodal Software Development for VETT" and NAWC/TSD contract no. N61 339-96-
K-0002, "Development of Haptic Interfaces”.

References

[1] C.Basdogan, C. Ho, and M. Srinivasan. “Haptic Display of 3D Rigid Objects in Virtual
Environments.” Submitted to the Winter Annaul Meeting of ASME, Nov. 15-21, 1997.

[2] J. Canny. “Collision Detection for Moving Polyhedra.” IEEE Transaction on Pattern
Analysis and Machine Intelligence, Vol. PAMI-8, No. 2. March 1986.

[3] S. Gotshalk, M. Lin, and D. Manocha. “OBB-Tree: A Hierarchical Structure for
Interference detection.” Proceedings of ACM Siggrahp’96, pages 171-180, 1996

[4] B.Mirtich. “Impulse-based Dynamic Simulation of Rigid Body Systems.” Ph.D. Thesis,
University of California, Berkeley, 1996.

[5] K. Salisbury, D. Brock, T. Massie, N. Swarup, and C. Zilles. “Haptic Rendering:
Programming Touch Interactions with Virtual Objects.” Proceedings of the ACM 1995
Symposium on Interactive 3-D Graphics, Monterey CA, April 1995.

[6] J.K. Salisbury, and C. Tarr, *Haptic Rendering of Surfaces Defined by Implicit
Functions," Proceedings of the ASME Sixth Annual Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems, Nov 15-21, 1997, Dallas, Texas.

[7] T.V.Thompson II, D.E. Johnson, and E. Cohen. "Direct Haptic Rendering Of Sculptured
Models” Proceedings of the 1997 Symposium on Interactive 3D Graphics, Providence, R,
pp. 167-176

[8] C. Zilles and J. K. Salisbury. “A constraint-based god object method for haptic display.”
Proceedings of IROS-93, Pittsburgh, August 1995.

Adding Motion to Constraint Based Haptic Rendering
Systems: Issues & Solutions

Diego Ruspini
Stanford University/Interval Research Corporation

Abstract

Incorporating dynamic motion into a haptic rendering system introduces complexities
normally not seen in traditional graphic systems. Haptic systems are capable of taking input from
the user to manipulate a virtual environment, as well as applying an output force to simulate
contact with that environment. In most graphic systems the major focus is placed on the display of
the virtual environment (output) and only limited capabilities are provided for interacting with the
environment through a mouse or other device (input). To achieve a realistic impression of motion,
haptic systems must run at a very high servo rate. This requirement implies that at least some
dynamic capabilities need to be incorporated directly into the haptic rendering process. In this talk
we will discuss some of the issues found and the solutions developed to add dynamic motion to the
haptic rendering library “HL.” In all cases the solutions proposed have attempted to be as
general as possible, and applicable to a wide range of applications and fields of interest.

Introduction

To be useful in developing real applications haptic rendering systems must provide the
ability to manipulate, interact and modify a virtual environment. Movements that, at 30Hz, visually
appear smooth feel discontinuous and jerky when updated at the same rate on a haptic system. To
achieve realistic continuous motion the haptic rendering system must incorporate methods to allow
motion and force interaction to be specified and executed in the haptic servo loop, at a very high
update rates (> 1000Hz).

This presentation will discuss some of the techniques used to incorporate dynamic
functionality into the “HL” constraint based haptic rendering library[3]. This library uses a virtual
proxy to model all interaction between the user and the environment, including surface contact,
friction, shading and texture. This framework is continued when adding motion to the haptic
environment. The sensation of motion, mass and inertia are created solely by updating the position
of the proxy in the virtual environment. A position control loop is used to attempt to move the
user’s finger location to the position specified by the proxy.

For many models it is possible to construct a hierarchical linkage that describes the
dynamic motion of the model. While forward dynamic solutions, like Featherstone[2] are capable
of computing the equations of motion for arbitrary tree-like systems, at present these solutions are
too slow to allow for real-time updates at the rates required for haptic simulation. In our
implementation a highly simplified set of equations is used to describe the dynamic behavior of the
virtual model. This model allows the motion of each joint variable to be computed in constant time.
While simplistic this model has been used to model a wide variety of complex objects like
windmills, camnival rides and robots. This solution also produces the exact solution for the most
commonly found haptic dynamic objects: buttons, sliders and dials.

Other models can not be conveniently decomposed into an articulated hierarchy of rigid
bodies. Objects that are deformable or soft move in ways that are difficult to describe with a single
general purpose model. In these cases the objects surface must be updated by the application
program. Given the often limited bandwidth between the user application and the haptic control
loop, it is usually not possible to update the underlying model at a rate sufficient to give the feeling

of a continuous free-form deformation. A method to “morph” between discrete object definitions
is proposed which functions by interpolating the proxy’s position between the old and new object
definitions. This “blending” is often sufficient to restore the apparent continuous nature of the
motion seen on the visual display.

Modeling Interaction with Hierarchical Tree Linkages

When modeling a mechanical system, or articulated figure it is often convenient to describe
the system as a hierarchical linkage of rigid bodies (links) connected by simple one degree of
freedom(d.o.f.) joints. Links may be empty allowing more complex joints to be constructed by
specifying several simple joints is series. The position of each joint (rotational, prismatic, screw)
can be specified by a joint coordinate ©;, 1 <i <n, where n is the number of d.o.f. of the system.
The configuration of the entire system can then be specified by the joint space vector
O= [@, .. 9,] Some example tree linkages are shown if figure 2.

When a collision occurs between the proxy and an object(s) in the environment, a force is
applied to the user to simulate contact with the surface. In a dynamic environment a equal and
opposite force f is applied at the contact point(s) which may induce accelerations on the virtual
system. In a hierarchical linkage it can be shown [1] that the resulting acceleration is equivalent to
that induced by a joint torque vector

r=J'f,
where J_is the Jacobian of the contact point ¢, such that the velocity v of the contact point is given
by v=17J c@.
More complex mechanical systems can be constructed by introducing an additional level of

abstraction. Instead of defining each link as an independent degree of freedom. Each link variable is
specified as the function of one or more animation variables (avars). In the general case

©, = f(q,,..q,,) for some set of avars g, 1 <i<m. I similar Jacobian for this space can be

constructed, and used to create many closed chain, geared, oscillatory or other more complex
systems.

Dynamic Models

Once the effective torque created by a contact is found it can be inserted into the equations
of motion of the system to obtained the configuration space accelerations of the system. The
equations of motion for the system can in general be described by the equation:

§g=M(@)™" (T -b(g,9)-8(q),

where M(q)is the positive definite kinetic energy matrix, b(q,§)the centrifugal coriolis vector and
g(q) the gravity force vector.

In most situations the exact dynamic behavior is not required. In our current
implementation the equations of motion of the system have been greatly simplified to allow real-
time updates of the animation variables. The centrifugal coriolis vector is a function of the
configuration space velocity. For most haptic applications the velocities in the environment are very
small (high velocity virtual objects could be dangerous to the user and the haptic device). In most
cases this vector can be assumed to be zero with very little perceivable effect on the motion of the
linkage. The gravity vector can be easily computed at the same time as the contact forces. At a link
with its center of mass at p the configuration space torque on the linkage is given by

T - -
oo =J , (—mg), where g is a vector giving the magnitude and direction of the gravity force, m
is the link mass and J ; is the Jacobian for the center of mass on the link. The torques of each link
can be added with the generalized contact torques to obtain the total torque on the system.

Lastly in our current implementation we have chosen to not permit dynamic coupling
between the animation variables. Each variable is treated independently. The set of equations of
motion that can be represented by our system can therefore be specified by

G=M,, " (I'-g(q)

where M, is a semi-constant’ diagonal matrix. Such a system is trivial to compute and the

integration can accomplished in closed form. While obviously a tremendous simplification,
systems of this type can often closely model the equations of motion of many common mechanical
systems. In particular for 1-dof systems like dials, buttons, or sliders (The most common haptic
dynamic objects) the equations of motion are exact and no approximation is needed. In many other
systems that are intended to be manipulated by humans the mechanism is arranged to minimize the
coupling between the d.o.f. of the system (lots of right angles between axes). Finally in many
mechanical systems the diagonal elements of the mass matrix greatly dominate the other terms. As
an example in most robotic systems the dominant inertia terms come from the motor inertia which
because of multi-stage gearing far exceeds the inertial effects caused by the other links in the
mechanism.

While space limits the amount that can be discussed it is trivial to add joint limits,
spring/biasing forces, friction and other attributes to the individual animation variables. It is also
possible to set there effective mass to infinite and have them behave as purely kinematic linkages.

Proxy Blending

Some models can not be conveniently decomposed into an articulated hierarchy of rigid
bodies. Objects that are composed of some malleable material like clay, or soft tissue have many
more d.o.f. than can be efficiently represented by a mechanical linkage. In these cases the object
model may need to be updated by the application program which can exploit specific knowledge
about the material being modeled and thereby make interactive movement possible. In many cases
it is still not possible for the application program to update the object model at a rate sufficient for
haptic rendering (> 1000Hz). In addition, as in the “HL” library, there is often a limited bandwidth
between the user application and the haptic control loop.

To bridge this gap between the update rates of the simulation and the haptic rendering
processes we can exploit a interesting asymmetry in the bandwidth of human tactile interaction.
While humans can sense force vibrations in excess of 500Hz, the maximum human motion output
bandwidth is only ~10Hz, and typically much less, on the order of 1 or 2 Hz. In many simulations
only the low-frequency motions are of interest for display. In these cases by smoothly transitioning
between discrete low-frequency model updates from the simulation process we can give the user a
sensation of a continuous free-form deformation.

A method to “morph” between discrete object definitions is proposed which functions by
interpolating the proxy’s position between the old and new object definitions. An object is
haptically rendered as in [3] by using a proxy which attempts to minimize the distance between the
proxy and user’s position. When an object is to be updated, instead of immediately replacing the
object with the new definition, a new proxy is created which is constrained only by the updated
environment. The old proxy remains constrained by the old environment specification. Over a
blending period, both the old and new proxies are updated as in [3] according to the movements of
the user’s finger. During this period goal point of the user’s finger is smoothly interpolated from
the old proxy’s to the new proxy’s location. When the blending period is over the old proxy and
old object definition are deleted and the rendering process continues on the updated environment.
This process is illustrated in Figure 1.

! The elements of the M matrix can be updated by the application program but at a presumably slower
rate then that of the haptic servo loop.

O Proxy

Interpolated Proxy

before blending after

(@) (b) ()

Figure 1: Proxy Blending. During a (b) blend the actual proxy is interpolated from a proxy
constrained by the object definition before (a) and after (c) the blending period.

Although results are preliminary it appears that in most cases this “blending” is sufficient
to restore the apparent continuous nature of the motion seen on the visual display. This technique
can also be used to ensure a gradual change in the output force when objects must appear or change
instantaneously in the environment.

Examples

This techniques described have been used to model a variety of virtual environments. A couple of
examples are shown if Figure 2. Figure 2(a) shows a two degree of freedom windmill. Both the
blades and the cap can be manipulated by the user. Figure 2(b) illustrated a rocket amusement park
ride with 6 d.o.f.. Each pod can be individually moved up and down and the entire ride spun by the

user.

Figure 2: Haptic Windmill (a) and Camival Ride (b)

References

[1] Craig, J. “Introduction to Robotics Mechanics and Control,” Addison-Wesley Pub. Co, 1989.

[2] Featherstone, R.. Robot Dynamics Algorithms. Kluwer, 1987.

[3] Ruspini, D., Kolarov, K., and Khatib, O. “The Haptic Display of Complex Graphical
Environments.” SIGGRAPH 97 Proceedings, (August 1997), pp. 345-352.

EXTENDING THE GHOST® SDK SHAPE AND DYNAMIC CLASSES
Theodore Bardasz
SensAble Technologies
tbardasz @ sensgble.com

Overview

This paper presents an example of how to extend the GHOST SDK shape and dynamics classes. A pyramid and a
dial with a user defined force-angular displacement curve is developed. The capability to extend GHOST’ s haptics
classes is critical for application developers who need to model the haptics behaviors of application objects beyond
the behaviors provided by GHOST. The ability to easily extend the GHOST SDK classes is critical to its utility, and
acceptance, as a haptics renderer.

Background

The GHOST Software Developers Kit is designed to provide developers the ability to haptically render a scene. The
goal of the rendering is to allow an end user to feel and interact with an application’s objects in an intuitive manner.

The main two data model components of the SDK are the Haptic Scene Graph and the Haptics classes. A developer
haptically enables an application by building a scene graph structure populated with instances of the haptics classes.
Two of the most predominant GHOST haptics classes are the Shape and Dynamics classes. The Shape class
(gstShape) is used to model physical objects that can be positioned and oriented, but do not move when touched by
the PHANToM. Examples of the shape classes are boxes, spheres, cylinders and triangular meshes. The Dynamic
classes (gstDynamic) are classes that can be positioned and oriented and do move when touched by the PHANToM.
Examples of the dynamics classes are buttons, dials and sliders.

The GHOST SDK provides a set of shape and dynamics objects that the developer can instance directly to populate
the scene graph. However, it is likely that there will be cases where a developer would like to model objects that
cannot be represented directly by the GHOST SDK classes, either for their complex shape or specific haptics
behavior.

It was one of the major design goals of the GHOST SDK to allow the developer to subclass from the GHOST SDK
object model to develop application specific haptics classes. The GHOST SDK design provides the developer
definitive classes in the object model to subclass from as well as a well defined, finite set of virtual methods to
overload for modifying the object’s haptic behavior.

Figure 1 depicts the GHOST object model in Universal Modeling Language notation [Booch et al-97]. The classes
in the data model from which the developer can begin subclassing are gstShape, gstDynamic, gstEffect and

gstManipulator. They are depicted in gray in Figure 1.
Figure 1. The GHOST SDK Class Diagram

¢ gst]
o 5

| getRotate H pstScale || getTransiate

t t Py
ERNE ‘ * ‘ é £
t t 1 t d tPHANT
Bl?;on al 'sﬁo} [ngml Bog | ,PH&TO ﬁnynamig
3
mmh&o Fotation

| | |
stBuzEttec] ‘ ust(:omtrﬂMEhT IT;.u«mam|
.

| gttVoctorI

"I i ¢1PHANTOI1
Bomch

gstBoundary
Cube

Adding a Pyramid and User-defined Dial

In this paper, we present two user-level extensions made to the GHOST SDK classes; a pyramid and a vser defined
dial. The pyramid is created by subclassing from the gstShape class. The new class, pyramid, provides the
capability to define a haptically rendered pyramid by defining the base dimensions, width and depth, and the height.
All surface properties are available for assignment, as with the other gstShape classes. When instantiated, the user
can feel all five sides of the pyramid. The user defined dial is created from subclassing from the gstDial class. The
new class, userDial, allows the developer to define their own force-displacement/velocity-damping characteristics
for the dial.

Subclassing gstShape — A pyramid

To create a new subclass of the gstShape class, the two most important methods that need to be overloaded are the
intersection and collisionDetect methods[SensAble-97a]. The intersection method determines an intersection point
and normal on an object given the start and end point. The collisionDetect method is responsible for determining if
the PHANTOM has penetrated the object, and if so, provides a suggested new PHANToM position. The code for
both of these overloaded methods is presented below.

The pyramid::intersection method cycles through each of the pyramid’s faces to determine an intersection. As part
of the constructor for the pyramid class, gstPlanes are defmed for each of its faces . The
pointOfSegmentIntersection method is a method of the gstPlane class [SensAble~97b] and determines if a line
intersects the plane, and if so, returns the intersection point. The intersection point returned by
pointOfSegmentintersection is on an infinite plane, so the method pyramid::pointOnFace is used to determine if the
point returned is actually on the trimmed plane of the pyramid. If the point is found to be on the face, the function
returns TRUE along with the intersection point and the normal of the face intersected.

/1 Intersection method
/1 Finds the intersection and normal of the PHANToM with the pyramid
gstBoolean pyramid::intersection{const gstPoint &startPt_WC,
const gstPoint &endPt_WC,
gstPoint &intersectionPt_WC,
gstVector &intersectionPtNormal_WC,
void **userData){

/ Get the start and end position of the line segment against which
/f collision will be detected

gstPoint P1 = fromWorld(startPt_WC);

gstPoint P2 = fromWorld(endPt_WC);

gstPoint intPoint;

/1 Check if this line segment intersects any of the planes
for (int 1 =0;i< 5; i++) {
if (planes{i]->pointOfSegmentintersection(P1, P2, intPoint)) {
if (pointOnFace(i, intPoint)) {
intersectionPt_WC = toWorld(intPoint);
intersectionPtNormal_WC = toWorld(normals(i]);
return TRUE;

}
)
return FALSE;
}

The pyramid. :collisionDetect method also cycles through each of the pyramid’s faces to determine an intersection.
Again, pointOfSegmentintersection and pyramid::pointOnFace is used to determine a face intersection point and
normal. If the point is found to be on the face, the function calculates the projection point of the PHANToM onto the
tace. It then updates the state of the PHANTOM to notify it that it is in contact with an object, and notifies the
system of a collision via addCollision with the projected PHANTOM point.

// collisionDetect method
/f Returns a suggested SCP
/f Given the intersection point, determine the new SCP for the PHANToM
gstBoolean pyramid::collisionDetect(gstPHANToM *phantom){
gstPoint [astSCP, phantomPos;
gstPoint newPHANToMPos;

int inContact;
gstPoint intPoint;

inContact = getStateForPHANToM(phantom);

if(!_touchableByPHANToM [l _resetPHANToMContacts) {
_resetPHANToMContacts = FALSE;
inContact = FALSE;
(void) updateStateForPHANToM(phantom, inContact};
return inContact;

}

/fConvert phantom data to local coordinate system
phantom->getLastSCP_WC(lastSCP);

lastSCP = fromWorld(lastSCP);
phantom->getPosition_WC(phantomPos);
phantomPos = fromWorld(phantomPos);

/f Check if the line segment intersects the plane
// The plane methods gets the intersection point too.

/f Check if this line segment intersects any of the planes
for (int i = 0;i < 5; i++) {
if (planesfi]l->pointOfSegmentintersection(lastSCP, phantomPos, intPoint)) {
if (pointOnFace(i, intPoint)) {

/fProject the current PHANToM position onto the face
newPHANToMPos = planes]i]->projectPoint(phantomPos);

inContact = TRUE;

(void) updateStateForPHANToM(phantom, inContact);
addCollision(phantom, newPHANToMPos, normals{i]);
return inContact;

}

/1 If we didn't find an intersection, set the inContact state of the
// PHANTOM to false. Otherwise, the PHANToM will stay stuck to the surface.
inContact = FALSE;
(void) updateStateForPHANToM(phantom, inContact);
return inContact;
}

There are two other notes of interest that should be made clear when subclassing to provide a new shape. The first is
the overloading of the classes type methods. The methods that need to be overload are clearly defined in [SensAble-
97a). Second, it is important to, as accurately as possible, define the bounding sphere of the object. The bounding
sphere is used to optimize the number of collision detections called on each of the haptic scene objects. Too small a
bounding sphere will result in the PHANToM being inside of the object when a collisionDetect is triggered. Too
large a bounding sphere and unnecessary collisionDetects will be called on the object.

Subclassing gstDynamic ~ A dial with a user defined force/displacement

A common request of the GHOST SDK is to describe sets of controls that may not have linear force/displacement
curves. The GHOST SDK uses a linear force-displacement calculation for its gstDial class (actually force-angular
displacement). In this example, the gstDial is subclassed to provide the developer the ability to define their own
specific function for determining the force-angular displacement calculation. Once implemented, the developer can

use any function, set of functions or table lookups to determine the correct force to deliver to the user for a given
angular displacement.

When subclassing a gstDynamic, the virtual method required for overloading is the gstDynamic: :updateDynamics
method. The update Dynamics method is used to calculate the new position of the dial given its position in the throw
and any user-applied force. The normal procession of the code is to a) acquire the torque applied by the user, b)
adjust the torque for spring forces related to the dial, c) adjust the torque for damping, and d) calculate angular
acceleration, velocity and position by successive euler integrations,

For the implementation of userDial, subclassing took place from the gstDial. The code for userDial::collisionDetect
is shown below.

// Overloaded updateDynamics method for a user defined dial.
/1 This method calls a user-defined function to determine adjustments to the torque applied to the dial from external forces
// (e.g. springs, dampers, magnetizn, etc.). The new position of the dial is then determined by euler integrations
void userDial::updateDynamics()
{

gstPoint local SCP;

gstVector radius; // vector from center of object to point of contact

gstVector torque;

double moment = mass;

double deltaA;

double section_tval = 0.0;

double o_sectionTheta = fmod(orientation, sectionTheta); // orientation within sectionTheta

// Find out the amount of torque the user is applying to the dial
double t = reactionTorque[2];

/1 If we are going in the counterclockwise direction
/1 then the parameterization of the segment is typical, from 0-1 for 0 to sectionTheta
// Else, if we are going clockwisc, then the parameterization reversed, from O - 1 for SectionTheta to 0
if (t>=0)
section_tval = 1 - o_sectionTheta/sectionTheta;
else
section_tval = o_sectionTheta/sectionTheta;

// Call the function pointer of the user defined force function specified by force_func
t += (*force_func)(t, section_tval, angularVel.z(), this);

angularAccel.setz(t/moment);

// Euler integration, vel=vel+accel*delta_t
angular Vel += deltaT *angularAccel; // angular velocity

{/ Buler integration again, delta_x = vel*delta_t
deltaA = (angularVel.zQ)*deltaT;
orientation -= deitaA; // change orientation of dial

// keep orientation between 0..2pi
if (orientation < 0.0) orientation += 2*M_PI;
else if (orientation >= 2*M_P]) orientation -= 2*M_PI; .

/ideltaA *= 5.0;
rotateDynamic(gst Vector(0.0,0.0,1.0),deitaA); // rotate dial

double tolerance = 0.01;
currentNotch = (int) ((orientation/sectionTheta) + 0.5); // round to nearest notch
if (currentNotch = number_notches) currentNotch = 0;

if (fabs(currentNotch * sectionTheta - orientation) < tolerance
&& currentNotch != notch) {
gstEvent newEvent = getEvent();
(void) addEvent(newEvent);
t

gstDynamic::updateDynamics(;
}

userDial: :update Dynamics first determines the amount of torque applied by the user. It then parameterizes the
position of the dial in its throw, respecting the direction of rotation. The user-defined force adjustment function is
then called to calculate any adjustments that should be made to the torque from external forces. The adjustment is
added to the user applied torque and the angular acceleration is then calculated. Successive euler integrations are
then performed to determine the angular velocity and displacement. Finally, the dial is rotated accordingly.

A sample of a user-detined force-angular displacement function is given below, cosine_func. This function uses a
half-cycle cosine curve to determine the resistant torque on the dial given its angular position between dial notches.

// User defined function for the determination of resistant force on a dial.
/f A half-cycle cosine curve is used to determine the resistant force. A normal drag equation is used.
double cosine_func(double user_torque, double orient_tval, double ang_veloc, gstDial *dial) {
double torque_adjust = 0;
double damp_adjust = 0.0;

// Calculate the adjustment to the torque based on a cosine curve.
torque_adjust = cos(orient_tval*M_PI) * dial->getK(;

/f Determine the sign of the resistence depending on the direction the user is turning the dial
if (user_torque >= Q)
torque_adjust = -torque_adjust;

// Independent of torque, the damping should always be in the opposite direction
11 of the velocity
damp_adjust = -dial->getDamping() * ang_veloc;

return torque_adjust + damp_adjust;
}

The only other note when implementing the updateDynamics function for userDial was to make sure to call
gstDynamic::updateDynamics at the end of the overload userDial::updateDynamics method. This call ensures that
all new values and states are propagated correctly.

Acknowledgements

I would like to thank Chris Tarr and Josh Handley, both of SensAble, for valuable, timely advice as [was putting
together these examples.

Summary

" The GHOST SDK was designed to provide for extension via inheritance. The points of inheritance in the GHOST
object model are well defined. For each of these inheritance points, a well defined, finite set of methods are
presented that allow the developer to provide application specific haptic behavior to the object.

In this paper, two user defined classes were built using GHOST. Both implementations were found to be fairly
straightforward with little background in using GHOST. Both examples were completed in about one man-day per
example. ’

It is extremely important for the GHOST SDK to provide a powerful and flexible means for allowing developers to
define their own haptically enabled objects. This capability is provided for currently and should be expanded in the
future to include both the power to define more radically different haptics object; both in terms of shape and haptics
behavior.

References

{Booch et al-97] Unified Modeling Language User's Guide, Booch, Jacobson, I., G., Rumbaugh, J., Addison
Wesley, 1997

[SensAble-97a) GHOST Software Developer’s Toolkit, Programmer’s Guide Version 1.2, October, 1997.
[SensAble-97b] GHOST Software Developer’s Toolkit, API Reference, Version 1.2, October, 1997

Controlling Force Feedback Over a Network
Adam Seeger, Jun Chen, Russell M. Taylor I
Department of Computer Science
University of North Carolina, Chapel Hill
seeger@cs.unc.edu

Introduction

The work we discuss in this paper is part of the nanoManipulator project started by Dr.
Russell Taylor at UNC Chapel Hill to develop a better interface for scanning probe microscopes.
Scanning probe microscopes work by scanning a microscopic tip across a surface. Information
about the interaction between the tip and the surface can be used to determine the height, friction,
and many other properties of the surface. Our current system allows the user to see a 3D
stereoscopic rendering of a surface with height and color mapped to various data sets. The user is
also able to feel the shape of the surface using a PHANToM or other force feedback device. The
nanoManipulator has allowed researchers in the physics department at UNC to perform
qualitatively different experiments than were possible with previous interfaces [Taylor-94].

Recently we have switched to using GHOST to control our PHANToMs. Before
GHOST, we used our own force feedback library called ARMLib. This software worked with the
Argonne Remote Manipulator and the PHAN ToM and provided a way to control these devices
over a network. Besides providing a network layer, ARMlib provided us with several other
important features which we needed to reimplement in switching to GHOST. Although GHOST
did not offer all the same features of ARMlib, those that it lacked were added very easily and with
GHOST it is easier for us to work on high-level issues in our force feedback system without
having to worry about how changes will affect the force update rate.

Our system consists of three separate programs: a microscope server, a graphics engine,
and a PHANTOM server. The graphics engine is a client of both the microscope server and the
PHANTOM server. It sends commands to control the microscope and receives data to display.
The graphics engine receives position information from the PHANTOM server and displays a
graphical representation of the PHANToM stylus on top of a graphical representation of the
surface. The graphics engine uses the position of the PHANToM on the surface to determine a
surface approximation for that point. This surface approximation (or intermediate representation
as it is called in [Adachi-95]) is sent back to the PHANToM server about 20 times per second.
The PHANToM server then updates the haptic scene to the intermediate representation. The
intermediate representation can be as simple as a plane; it is very easy to maintain high force
update rates because few computations are required to calculate forces from a plane [Adachi-95].
In our system we allow for up to four planes to be used at one time on the force server with each
being updated separately. We may need more than one plane to simulate sharp corners for
example. However, we are currently using only a single plane.

UNC Nanomaniputstor

figure 1. The nanoManipulator consists of three separate programs communicating over a network.

Issues we encountered in switching from ARMIib to GHOST
Implementation of a Network Layer

In our department we have four graphics engines and four PHANToMs. While we have
displays located next to each PHANToM, the graphics machines are usually in separate rooms. As
a result we need to have our PHANToMs communicate with the graphics application over a
network. In the past, ARMIib provided this capability in a force server application running on an
Intel-based PC which ran the 1000Hz force update loop based on 20Hz plane updates sent from
the graphics engine over the network. Another advantage of having a separate force server and
graphics engine is that it allows us to switch between different types of graphics machines more
easily. For example, we will soon be adding an HP PixelFlow machine as our graphics engine.

In keeping with our philosophy of having peripheral devices controlled remotely over a
network, we have developed a library called VRPN (for Virtual Reality Peripheral Network)
which provides a unified interface for all of our force feedback, tracking, and other input devices.
To provide a network layer for GHOST we extended VRPN by creating a vipn_PHANToM class
which inherits from the base classes vrpn_Tracker, vrpn_ForceDevice, and vrpn_Button. Each of
the base classes handles sending and receiving its own network messages. For example, in our
force server we have an instance of vrpn_ForceDevice that receives plane update messages from
the graphics engine. On the graphics engine side there is an instance of
vrpn_ForceDevice_Remote which looks basically the same as vrpn_ForceDevice except that
when we tell it that the plane has changed it sends the plane over the network to the force server
instead of telling the PHANToM that the haptic scene has changed. On the server side, we have a
callback function specific to the vipn_PHANToM which gets called whenever a plane update is
received by the vrpn_ForceDevice. This callback function then calls the GHOST functions to
modify the plane in the haptic scene.

Force Server Graphics Engine
vrpn_Phantom P 9
Callback turn on/off (TCP) .
function calls vrpn_ForceDevice plane updates (UDP) vrpn_ForceDevice_Remote
GHOST
vrpn_Tracker position reports 4 vrpn_Tracker_Remote
[GHOST |
* vrpn_Button button pressed/released vrpn_Button_Remote
l%erver main loop _T T

figure 2. Our force server program combines the VRPN library and GHOST to provide access to the PHANToM
from a remote graphics application.

One important aspect of how the vrpn_ForceDevice_Remote sends update messages over
the network is that it uses different protocols for different types of messages. Messages that tell
the force server to start and stop generating forces need to be sent reliably. Messages that simply
update the plane approximation should be sent unreliably because they are sent 15-30 times per
second and it doesn't make sense to keep sending a message if it gets dropped. We use TCP
(reliable) for start/stop messages and UDP (unreliable) for plane update messages. This works
quite well over the ethernet in our department at UNC.

Other features we added to our GHOST-based force server

As mentioned earlier, our system computes plane updates at about 20Hz to simulate a
more complicated surface stored and displayed by the graphics engine. When the user moves the
position of the PHANToM slowly this approximation works very well but as the velocity
increases the user starts to feel more discontinuity as the plane changes more between updates.
This is especially noticeable when the virtual stylus position runs into the steep side of a bump. To
fix this problem, we implemented a recovery procedure that updates the plane more gradually by
performing a kind of interpolation between the previous plane and the new plane [Mark-96]. This
algorithm takes the new plane and adjusts its height until the stylus is at the same depth in the
surface as it was in the last force update loop iteration. Then, with each force update loop
iteration it increments the height slightly. The recovery time is set as the number of loop iterations
over which the interpolation takes place and can be set remotely on the graphics engine. We
found that setting the recovery time to about one fourth of the maximum time between plane
updates worked best. This seems reasonable because the time between updates as measured in
units of the GHOST force update loop varied mostly between 10 and 40. If the recovery time
much longer than it should be and we are colliding with an inclined plane forming the side of a
bump then with each plane update, the difference between the perceived depth and the actual
depth in the surface grows until the height increment is approximately the same as the difference
in height between successive planes and we end up feeling the same discontinuity as without
recovery. At most the recovery time should be set to the average time between plane updates.

figure 3. Our recovery al gorithm gradually updates to a new plane over n force update cycles.

Because GHOST did not include adhesion as a surface force we needed to add this
separately [Chen-97]. Although we haven't finished yet, we are implementing adhesion as a
gstEffect which generates the appropriate adhesion forces for the current plane. It would be better
to implement this as a force like friction and the normal force but unfortunately GHOST does not
allow us to modify surface interactions in this way. Another thing we would like to do is calibrate
the PHANToM using GHOST. With our nanoWorkbench which is a stereoscopic display with a
head tracker and a 'T' model PHANToM we can calibrate the PHANToM precisely enough so
that the virtual tip displayed appears to be connected to the end of the actual PHANTOM stylus. It
is not possible to use the reset position required by GHOST because a calibration rig in this
location would be in the way of the display for the nanoWorkbench. With ARMIib we used a
calibration mount to the side of the display and the offset of this mount from the neutral position
to calibrate the PHANToM. With version 1.1 of GHOST we should be able to do the same thing
by putting the appropriate reset angles in the initialization file.

Acknowledgments:

I would like to thank Dr. Russell Taylor for inviting me to join the nanoManipulator
project and for taking the time to explain how the nanoManipulator works. I would also like to
thank Jun Chen for getting me started on force feedback and introducing me to the PHANToM.

References:

[Adachi-95] Adachi, Yoshitaka, Takahiro Kumano and Kouichi Ogino, “Intermediate
Representation for Stiff Virtual Objects,” Proc. IEEE Virtual Reality Annual International
Symposium (VRAIS’95), March 11-15, Research Triangle Park, NC. pp. 203-210.

[Chen-97] Chen, Jun, Christopher DiMattia, Russell M. Taylor, Mike Falvo, Pichet
Thiansathaporn, Richard Superfine, “Sticking to the Point: A Friction and Adhesion
Model for Simulated Surfaces,” to be presented at Symposium on Haptic Interfaces to VE
and TS, Dallas Nov. 15-Nov. 21, 1997.

[Mark-96] Mark, William, Scott Randolph, Mark Finch, James Van Verth and Russell M. Taylor
11, “Adding Force Feedback to Graphics Systems: Issues and Solutions,” Computer
Graphics: Proceedings of SIGGRAPH "96, August 1996.

[Taylor-94] Taylor, Russell M., “The Nanomanipulator: A Virtual-Reality Interface to a Scanning
Tunneling Microscope,” Doctor of Philosophy, UNC Chapel Hill, 1994.

Realistic Haptic Rendering of Flexible Objects

F. De Angelis, M. Bordegoni, G. Frugoli and C. Rizzi

KAEMaRT Group
Dipartimento di Ingegneria Industriale
Universita di Parma - Viale delle Scienze
43100 PARMA Italy
e-mail [fda,mb,frugoli,rizzi]@ied.unipr.it

ABSTRACT

The research work described in this paper aims at performing realistic haptic rendering of
flexible objects by integrating the Sensable haptic feedback technology with the non-rigid
material simulator developed at University of Parma.

Keywords: haptic rendering, non-rigid materials.

1. INTRODUCTION

The research described in this paper is carried out by the KAEMaRT (Knowiedge Aided
Engineering & Manufacturing and Related Technologies) Group at University of Parma. Of
particular interest is the research work carried out on flexible material modeling and their
behavior simulation. The research interest on this topic is not purely academic, but is also
supported and pushed by some industrial needs related to the automation of industrial processes
dealing with the handling and manipulation of flexible products, such as meat, fabrics, wires and
cables, etc. The KAEMaRT Group is involved in several projects facing the issue of the
simulation of the behavior of non-rigid objects. These projects are funded under the framework
of the Brite/Euram Programme supported by the European Union.

It has been developed an environment (SoftWorld) for modeling and simulating flexible
materials. The environment allows us to describe flexible objects through a discrete model,
known as particle-based model. An object is described by a set of particles distributed in space
and related by means of internal forces and constraints. Depending on the type of material to be
simulated, different discretization rules and force distribution are used. The environment also
allows us to define and simulate some external forces, constraints and obstacles interfering with
the objects. In this way, we are able to simulate the behavior of a flexible object when grasped
and manipulated.

Presently, the only interaction between the user and the simulated object is purely visual. What
would be interesting and crucial for several applications is to provide the user with a real feeling
of the object. Providing the simulated object with haptic feedback congruent to the material it is
made of, would allow the user to grasp and manipulate it in a way close to reality. Hence we
mean to integrate our flexible object simulation software with two PHANToMs.

2. PARTICLE-BASED SIMULATOR

2.1 Usage advantages

The current approach for modeling the objects to be haptically rendered could be defined
"primitive-based", which means the scene has to be built by a set of pre-defined primitives, each
one having its pre-defined behavior depending on some high-level parameters, like mass,
damping, friction, stiffness etc.

Our simulator instead uses a more general approach, non primitive-based, where each object is
modeled by its approximation in particles, allowing any object to be modeled. The object
properties are low-level defined by the description of forces and constraints among the particles,
the mass of each particle, and so on; for this reason non-homogeneous materials (having non-
uniform density distribution) can be modeled too.

The interaction between an object and the surrounding environement is always computed by its
current, possibly deformed, geometry; the visualization, too, is always congruent with the actual
object shape, as it is obtained from the current particles position.

So, the usage of our non-rigid material simulator enables to perform accurate, realistic simulation
of complex scenes including free-form objects made by non-homogeneous materials.

2.2 Integration with PHANToMs

The basic idea of this work is to use the non-rigid material simulator to compute realistically
both the forces generated by flexible objects against finger pressure and the modified objects
shape, to perform an accurate haptic rendering together with a congruent visualization.

The manipulated object is modeled by an approximation of it by particles, and the current
PHANTOM position is used to impose modifications on its shape where an interference is
detected. The simulator computes how the deformation propagates in the object, and the
resulting generated forces. At this point it is possible to display the poligonal mesh describing
the new object shape and to send the force vector to the PHANTOM.

3. REAL-TIME SIMULATION

The problem in implementing this idea is that, as known, haptic rendering requires updating the
force vector exerted by each PHANToM every thousandth of a second, while the computational
cost of simulating a real object is greater by some orders of magnitude.

In the following section we will give a more precise estimation of the computational power
required for such a simulation.

3.1 Hardware requirements

The computational cost of simulating a flexible object by our simulator depends on the number
of particles describing the object, but also on other variables, like the constraints among the
particles, the type and number of internal forces used and the stiffness of the material, just to
mention some. While this implies that it is not appropriate in general to describe the
computational cost of the simulator as an O(n) function where n is the number of particles, it is

however possible to get a qualitative idea of that function by performing some measurements on
a test case where all variables except n are kept as much as possible constant.

The test case chosen due to its simplicity, is a cube where the particles are uniformily distributed
in space (a 3D grid of equidistant particles). Starting from the simpler case, modeled by 8
particles in the cube corners, the number of particles is increased by adding a complete layer of
particles on the previous one, to obtain a bigger cube. Laws describing particles interaction are
defined only between neighbour particles. Thus while the number of particles increases the
uniformity of the model is preserved and the other variables remain constant.

Running such a test on a DEC ALPHA 500 (400 MHz) we got the following results:

250000 $ —

200000 - 2

150000 /

100000 / .

50000 /

L .

° 500 1000 1500 1600

per one simulated ms

computation ms

number of particles

There are two main observations:

a) The function is not linear as the computational time increases more than the number of
particles. While the validity of this data is restricted to the considered test case, we expect
the behavior to be qualitatively the same even using a different test case.

b) The computational cost is dramatically high.

However, the test was performed on a quite accurate model, having a "high" number of forces
and constraints defined among the particles, which increases considerably the computational
time. A different test case, corresponding to a highly simplified model made of just four
particles, did run in 0.4 ms per step, thus allowing real-time simulation and in fact it was possible
to haptically render that model on a double PPro-200 MHz. Such a model doesn't correspond to
any real object, but the fact the application works is an interesting result as it demonstrates that,
leaving the number of particles apart, the real-time simulation with our approach is feasible.
Given enough computational power, it will be possible to perform real-time flexible objects
haptic rendering with a certain degree of accuracy.

Nevertheless, models of real objects are usually described by hundreds or thousands of particles
and the estimated computational time for such values of n, even for the simplified model, is
greater than 100 ms, while the time we can spend is just one thousandth of a second.

So we can roughly state that the computational power we need for performing the real-time
simulation of real objects is, in the best case, at least a hundred times more than the one we have
available now, while the requirements of a highly accurate simulation would be greater by 2or3
orders of magnitude than that.

As Personal Computer speed only doubles every 18 months or so, the required computational
power won't be available for several years.

4. OFF-LINE SIMULATION

While waiting the required computational power to be available, we are working on some kind of
non-real-time integration between the non-rigid material simulator and the haptic application
controlling the PHANToM devices.

Some object geometries have the property that, if the object material is homogeneous or at least
the material density distribution meets proper criterias, the object behavior is the same or
approximately the same when the same deformation is imposed in different points of its surface
(an example of such a geometry is the sphere). In other words, such objects show a behavior
which is indepéndent from the surface point where the deformation is applied (at least inside
certain regions of them).

In these cases, the behavior of the object can be simulated off-line, stored in some form, and used
later during the haptic rendering without the need of computing it real-time.

To be suitable to our objectives, the simulated "object behavior" must provide at least the

following information:

e the force generated by the object as a reaction to the deformation, to be used for the haptic
rendering;

o the geometry of the deformed object surface, to be used for the visual rendering.

Work is in progress to extract this data from particular object geometries showing the above
properties, like the sphere, the halfspace (which cannot be a real object, but fits very well the
specifications), the box (under the assumption to touch it "enough" far from the edges) and the
cylinder (under the assumption to touch it "enough" far from the bases).

A number of approximations and simplifications has to be done to make the data resulting from
the simulation usable run time, thus renouncing to many of the non-rigid material simulator
features, like history-dependent behavior, friction, damping; nevertheless we mean to obtain a
haptic rendering more realistic than the one derived by describing the objects by a primitive-
based model, and also to enhance the visual feedback by displaying the deformations taking
place in the objects.

5. CONCLUSIONS

The research work described in this paper is ongoing. The real-time simulation of non-rigid
objects is appealing but the required computational power is not avalaible yet in everyday
computers. In some special cases it is however possible, under a number of assumptions and
approximations, to haptically render objects using data precomputed off-line by a non-rigid
material simulator, still obtaining results which are more realistic than the ones got modeling the
object behavior by a primitive-based approach.

Haptic Rendering of Visco-Elastic and Plastic Surfaces
Chris Tarr and J. Kenneth Salisbury
MIT Artificial Intelligence Laboratory and SensAble Technologies, Inc.

ctarr@ai.mit.edu

Abstract: Few methods have been developed to haptically interact with deformable three-dimensional
surfaces in real time. This body of work develops a way to convert existing surface representations into
visco-elastically and/or plastically deformable surfaces capable of interacting with a volume tool
commanded by the PHANToM?® haptic interface. Using force feedback to the PHANToM interface, the
user can take advantage of the force information to sense the compliant properties of the model and guide
intended deformations to the model.

lgure 1.

1 Introduction

The goal of this work has been to develop a system that enables haptic interaction with surfaces exhibiting
visco-elastic and plastic surface deformations. It extends and improves Nitish Swarup’s Interactive
Deformable Media Simulator, IDMS [Swarup-95]. IDMS has been reworked to allow the simulation to
handle large surface models and is now able to convert VRML models into for use in the system. This
work has led to further innovations that should extend the system to handle plastic deformations that can be
used to continually alter the geometry of the model. This new mode of interaction has applications far
beyond the originally intended medical simulations. Plastic deformations could add a new robust metaphor
to the already large field of model design that includes animation, industrial design and CAD/CAM
industries.

1.1 Related Work

Most of the previous results on modeling deformable surfaces has been without the use of force feedback
and more often then not, is too complex to perform in real time, hence the lack of force feedback. Several
of these include local deformations of solid geometries by Barr [Barr-84], the volumetric sculpting work of
Wang and Kaufman [Wang-95], Terzopoulos’ [Terzopoulos-87] work with deformations using elasticity
theory. Recently, haptic approaches to deforming surfaces have surfaced each with a different approach
and goal in mind. Tom Anderson’s [Anderson-96] work avoids displaying a surface contact point,
commonly referred to as the God object [Zilles-95], by altering the visual model to bend when the
PHANToM® enters the object. This is an efficient approach for simulating a homogeneous surface
compliance since each point on the surface deforms in the same manner. However, this method is limited
to point contact of the PHANToM® with the surface. Rick Avila has also developed a system to deform
surfaces [Avila-96], in his case solids, using a volumetric approach. Avila’s system deforms the volume
through a carving metaphor. This is similar to a plastic surface deformation. Unfortunately, the haptic

model of the tool interaction is based on a stateless potential method. This limits the tool to very simple
geometries and can allow the tool to pop through the surfaces. In addition, the intersection and deformation
calculations are still too complex to allow the model to be deformed very quickly or with large tools.
Finally, Swarup’s Interactive Deformable Media Simulator (IDMS), the starting point for my research, uses
a finite element approach to model a visco-elastically deformable surface interacting with a spherical tool
commanded by the PHANToM® device. 1 believe this approach was a step in the right direction, but
Swarup’s system was hard to build useful surfaces with, had unacceptable limits on surface detail, and
allowed the tool to slip through the surface when pushed too hard by the tool. I set out to solve these
problems and have come across a method to handle some interesting plastic surface deformations as well.
In the following sections I will briefly discuss Swarup’s IDMS system and then go on to discuss my work
simulating deformable surfaces.

1.2 IDMS

IDMS defines a two layer tetrahedral mesh of nodes interconnected by spring/dashpot elements as shown in
figure 2. In addition, each surface node is connected to a grounded home position by a spring/dashpot
element. A discrete simulation model (DSM) is used to sum the forces acting on the mesh nodes and
integrate the state of the mesh at each time step. Intersections with the spherical tool, the master interaction
object (MIO), is done through simple point intersections with a sphere. Nodes in the mesh that penetrate
into the sphere have forces, proportional to their penetration depths, imparted on them. This compels the
penetrating nodes outside of the MIO and the sum of these forces is imparted back onto the PHANToM®
interface. Adding these interaction forces into the DSM causes the mesh to deform in a realistic visco-
elastic manner given that deformations are small relative to the spatial density of the tetrahedral mesh.

N
SN

R K SR
SN A X X NN R X NN X~

/7 Y/
,/\é(\// LRV
/27 N\

Figure 2.

2 Performance

My first modifications to IDMS were to improve the performance of existing operations. Two of the more
time consuming steps of the algorithm were searching for node penetrations with the MIO and updating the
state of each node in the mesh during each time step. My first optimization was to use an octree to partition
the nodes of the mesh, which limits the number of nodes searched for penetrations with the MIO. This was
a suggestion of Swarup’s that had not been implemented. With the octree, the penetration calculations
were no longer limited by the size of the mesh. The second optimization was to better limit the nodes
updated in each time step. Swarup’s haptic windowing method left nodes stuck in unstable states. 1
decided to limit the maximum number of nodes updated in any time step to a constant. Only nodes
previously updated that still had significant velocity remained on the list to update. New nodes could then
be put on the list to update if they had sufficient force exerted on them and only if there was less then the
maximum number of nodes allowed on the list to update already. This made the mesh more stable and
limited the maximum CPU usage per time step. As a last optimization, I limited calculations of forces on

et o st 10t G W MG g | o g ¢ S

nodes from neighboring spring/dashpot elements to a slower rate. This eliminated quite a few calculations,
since the number of these connections is large with respect to the penetrating nodes in the MIO and forces
from the home springs of each node.

3 Surface Model

3.1 Generalized Topology

One of the most limiting factors about IDMS was the 2 layer tetrahedral mesh required to make up the
surface. By forcing the nodes to be arranged in this way made it very hard to build usable surfaces and
even harder to convert existing surface models to an acceptable format for IDMS. The first problem with
this was the two layer structure. Swarup designed the mesh this way so that the second layer would
distribute forces realistically according to existing finite element modeling techniques. This second layer
was really only useful so long as deformations didn’t go much deeper into the surface then the second layer
of nodes. Unfortunately, in order to bring the tool size down and have a detailed surface, the spatial density
of the surface nodes must be large. My assumption has been that if the spatial density is large then the
second layer becomes less useful and can be eliminated. In addition, I have made the assumption that the
first layer hexagonal structure can also be violated so long as the spatial density of the nodes remains fairly
homogeneous and neighboring element connections are maintained.

3.2 Converting Existing Surface Models

With these new assumptions it became possible now to load in an existing polygonal mesh, use the vertices
as nodes, and use the edges as connecting elements for the mesh. The problem then was that most available
polygonal surface representations do not optimize the model for homogeneous spatial density of vertices.
Instead, the models usually have large polygons with sparse vertices on low curvature sections. These
large gaps in the model would allow the MIO to fall through. Also, large variations in the node density
caused the surface compliance to change and could cause the gain to exceed the PHANToM® interface’s
limit. To solve the later problem I would alter the spring/dashpot values according to the local density to
normalize the surface compliance for the MIO. But this still didn’t fill in the large open spaces in the
model and in turn limited the useful size of the MIO.

To resolve this, I've designed a method to remesh the polygonal model optimizing the spatial density of the
vertices. Thus, the triangles are divided or removed intelligently to make the density of the vertices
roughly constant while maintaining the geometry of the original surface. This allows me to preprocess the
model for simulation and adjust the level of the detail according to the size of the MIO.

3.3 Dynamic Remeshing

There was still the problem of slipping through the surface mesh with the MIO when pushing too hard
against the surface. This happens when the nodes of the mesh are pushed apart by the MIO creating a gap
in the surface large enough for the MIO to pass through. Since the connecting element springs cannot be
made infinitely stiff, some method needed to be added to prevent holes in the mesh. The solution was
fairly straightforward given my previous remeshing algorithm. The idea is to apply the techniques of
dividing and collapsing triangles on the fly. As the mesh is deformed, gaps are filled in with new nodes by
dividing the triangles. As nodes are pushed close together, the nodes are collapsed to one node and the
appropriate triangles are removed from the mesh.

4 Tool Interaction

Every haptic rendering technique involving a point or points penetrating a volume or surface uses a
previous state or stateless method to calculate forces of the tool interacting with a surface or volume. Inthe
previous state method past state information is used to determine the current state of the tool, surface, and
resulting forces. Craig Zilles’s God object method is a typical example of a previous state method [Zilles-
95]. In a stateless method the tool penetrates the surface and the new state of the tool, surface and contact
forces are calculated based only on the current state of the system. Note that a stateless method can be
implemented for any volume for which, at any interior location, a vector can be given pointing to the

closest surface point proportional in length to the penetration depth. This approach 1s typically much faster
than previous state methods, but can also produce unwanted results on thin sheets and at corners. This
method and these problems are typified in Thomas Massie’s BS Thesis [Massie-93]. The MIO and surface
mesh also use a stateless method, but in the opposite manner. In this case the tool is the penetration volume
and the nodes of the mesh can each generate forces based on penetrations into the tool.

4.1 Visco-Elastic Interaction

Swarup’s approach was to impart forces on the mesh nodes based on their penetration depths into the
sphere. These forces compel the nodes toward the surface of the MIO and, when summed, provide the
reaction force sent to the PHANToM® interface. Since only forces were imparted on the nodes, it was
actually possible to pass through the surface just by pushing hard enough. Ideally, a infinitely stiff tool
would give only the compliance of the surface mesh and would not allow the tool to pass through unless the
nodes spread apart. Unfortunately, this also creates an unstable system. As a result, I decided to model the
MIO as two spheres, one as an infinitely hard sphere slightly smaller then the original sphere is centered
inside the original compliant sphere. Nodes penetrating the outside layer of the sphere receive forces to

. compel them outside of the surface. When nodes penetrate the smaller inside sphere the nodes are forced to
the outside of the small inner sphere immediately and are then compelled outside of the larger sphere. In
addition, the resultant force back to the PHANTOoM?® interface is computed from the resulting internal
forces of the mesh normal to the tools surface. This actually works preity well and only allows the sphere
to pass through the surface when the nodes spread apart. Thus, when I add the dynamic remeshing, the too!
should be prevented from passing through the surface.

4.2 Pilastic Interaction

Plastic interactions present the problem of permanently altering the geometry of the surface. There are
several ways of doing this based on what has already been done for visco-elastic surfaces and also a new
method that does away with the visco-elastic behavior all together. The most straightforward is to freeze
the deformed state of a visco-elastic mesh by reseting the nominal positions of all moved mesh nodes. For
example, I could press a key or a button when I have deformed the surface to a desired state that I want to
keep. Although this isn’t a real plastic deformation, it may actually be more desirable in some instances
since the user can preview deformations before deciding to keep one. This method is also simple to
implement into the previously defined system.

A second approach is to replace the grounded home position of each surface node with a position that
moves when the force of the spring/dashpot element exceeds a threshold. The feel desired for the
deformation can determine the way that home position moves after the force threshold is exceeded. For
example, I may desire a coulomb friction force response to the deforming surface. This would require the
nodes to move with this coulomb model. Many other models are possible that could give a desirable effect.

The problem with plastic deformations is that time is needed to both update the dynamic state of the surface
mesh and to calculate the permanent deformations. In fact, plastic deformations should be possible without
having to perform a DSM of the surface mesh. : Simply moving nodes in response to the tool pushing on the
surface should suffice if done properly. By adding the dynamic remeshing algorithm, additional surface
area, created by the deformation action, can be filled in with more nodes to preserve the spatial density of
the mesh. This combination should allow the surface to be deformed without limit.

I am currently developing a hybrid tool interaction metaphor in order to allow a volumetric tool to deform
the surface as described above. These ideas are still being worked out, therefore I will only give a rough
outline of this method and hope to show successful resuits in the near future. The most important concept
of this method is the use of a combination of stateless and past state algorithms to support the tool
interaction. I intend to use a combination of a stateless method to quickly find the points of contact on the
too! and also a God object method to keep the tool on the surface while making contact. This combination
of the speed of a stateless method and the past state information of the God object method should create
realistic surface interaction with an arbitrary tool shape. Instead of attempting to move the tool in one step
to a goal location, I am limiting the maximum step size that the tool can move between intersection
calculations to eliminate the problems of stateless methods. Each servoloop, as many steps will be taken as

allowed by time to move the tool to the goal location. This allows the tool to move at the maximum speed
allowed by the CPU and scene complexity. For example, in a sparse area the too! should move
unconstrained, but in a complex area or with a large tool the simulation will slow the tool down to keep up
with the calculations. This will hopefully ensure that the stateless method will guarantee that penetrations
by any surface nodes are resolved to the correct point on the surface and maintain stability at all times. The
tool can now be considered a God object since the tool is no longer coincident with the PHANToM®
position at all times. Using the traditiona! spring/dashpot element connecting the PHANToM? interface
position and the God object, I can then calculate forces to be sent to the PHANToM® device. Finally,
since the tool can be kept on the surface at all times, deformations should be straightforward. If the
reaction force to the PHANToM?® device exceeds a threshold then the nodes on the surface preventing the
tool from penetrating can be moved toward the PHANToM? interface position by some prescribed amount.
One should note that this should allow not only plastic deformations, but also rigid interaction with an
arbitrary volume tool. Both of these are interactions that have not been exploited as of yet.

5 Results

Currently, I have implemented the spatial partitioning, improved haptic windowing, the visco-elastic tool
interactions, and a VRML converter. Using these optimizations on a heart model of around 2000 nodes, I
was able to simulate in excess of a couple hundred nodes on a dual pentium 200Mhz Intergraph machine.
This is shown in figure 1. Although the mesh was not optimally meshed, the resuits were very pleasing.
The next step is to implement the remeshing algorithm. This is now in the final stages and is showing
promising results already. I hope to show these results when presenting this paper. Afterwards, the plastic
deformations will become possible. Most of this work has been done in my spare time over the past 2 years
and has been put on extended hold on several occasions. Fortunately, the remaining work should be done
by the end of the Fall ‘97 semester upon completion of my Bachelor’s thesis at MIT.

6 Acknowledgements

Thanks to Nitish Swarup for his significant work that led to my own discoveries, Ken Salisbury for his
constant support, insightful ideas and undying friendship, and to SensAble for a job that allows me to help
shape the world of haptics.

7 References
Tom Anderson, A virtual universe utilizing haptic display, PHANToM® Users Group, September 1996.

Ricardo S. Avila and Lisa M. Sobierajski, A haptic interaction method for volume visualization, IEEE
Visualization, pp.197-204, 1996.

Alan H. Barr. Global and local deformations of solid primitives. Computer Graphics, 18(3), July 1984.

Thomas Massie. Design of a three degree of freedom force-reflecting haptic interface. Bachelor’s thesis,
Department of Electrical Engineering and Computer Science, MIT, 1993.

Nitish Swarup, Haptic interaction with deformable objects using real-time dynamic simulation. Master’s
thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering, September 1995.

D. Terzopoulos et al. Elastically deformable models. Computer Graphics, Preceedings of SIGGRAPH,
21(4):205-214, July 1987.

Sidney W. Wang and Arie E. Kaufman, “Volume Sculpting,” Proceedings of the 1995 Symposium on
Interactive 3D Graphics, pp.151-156, April 1995.

Craig Zilles. Haptic rendering with the toolhandle haptic interface. Master’s thesis, Massachusetts
Institute of Technology, Department of Mechanical Engineering, May 1995.

Hot and Cold Running VR: adding thermal stimuli to the haptic experience

Mark P. Ottensmeyer and J. Kenneth Salisbury
Haptics Group, Artificial Intelligence Laboratory, MIT, Cambridge, MA
canuck @ai.mit.edu

Abstract:

A device that can present thermal stimuli to a virtual environment (VE) user has been developed
for use with the PHANToM Haptic Interface. Using a thermo-electric heat pump and a water cooled heat
sink, it can achieve heating and cooling rates of +11°C/s and -4.5°C/s, respectively, and can display
temperatures over the entire comfort range of human sensation (5 to 45°C). The ThermoStylus can display
the thermal characteristics of a VE, or represent any other scalar data by substitution (e.g. pressure,
concentration, etc.). Applications include improved medical simulation, increased VE realism and
improved physical simulations (e.g. thermo-fluid systems with flow and thermal variations). This stylus-
style interface is both familiar to PHANToM users, and intrinsically safe. Water cooling prevents build-up
of heat in the heat sink, and should a failure occur, the user can easily release the stylus. Current
performance and future developments, including the determination of real thermal transients, are discussed.

Introduction:

In presenting haptic feedback to VE and teleoperator users, some areas have been well researched,
including vibratory displays [Kontarinis and Howe-95, Caldwell et al.-96], tactile arrays [Kontarinis and
Howe—93], and force feedback such as that generated by the PHANTOM [Salisbury and Srinivasan-97].
One haptic mode that has not been extensively examined is displaying thermal information to VE users.
Thermal stimuli provide information about the material being touched (via thermal conductivity), warnings
against prolonged contact with very hot or cold objects, and can be used to present other scalar information
through mapping to temperature. Potential applications of augmenting haptic feedback with thermal stimuli
include: more realistic medical simulations (e.g. warmth due to fever); increased VE realism, as thermal
sensation is a natural component of touch; or physical simulations such as thermo-fluid systems where flow
and thermal variations can be presented haptically.

While thermal stimulators have been used to study human perception of temperature, very few
groups have used them for providing thermal feedback in either VEs or teleoperation. C/M Research
[Zerkus et al.—93] has developed a system intended for use with VE displays, which can control eight
thermal stimulators (thermodes). [Caldwell et al.-95] have developed an exo-skeleton and tactile feedback
glove to control a teleoperator arm. The arm has a thermal sensor, and the glove feeds the detected
temperature to the back surface of the user’s index finger. One other notable example is that of [Dionisio—
97), in which a virtual space is presented visually, but is augmented with air heater/blowers for gross
thermal feedback, and a thermo-electric heat pump to display thermal information to the user's hand.

To date, there is no comparable device for use with the PHANToM, so one was developed in the
Al Lab at MIT to explore its utility in providing multi-modal haptic feedback.

The neuronal basis for the sensation of thermal stimuli is less well understood than that for tactile
stimuli. In the case of mechano-receptors, a number of structures have been identified whose behavior
corresponds with different regimes of tactile stimulation (e.g. pressure or vibration). In the thermal domain,
it is recognized from experiment that there are two different sets of thermo-receptors--one set for detecting
warmth, another for detecting cold. It has been suggested, based on response times, that the cold receptors
are located approximately 0.15mm underneath the skin's surface, while the warm receptors are deeper, at
0.3mm, but no specific nerves have been unequivocally identified. There is also debate as to whether the
thermo-receptors respond to changing temperatures (i.e. dT/dt), or to the temperature directly. The
comfortable range of temperature sensation for humans is typically between 15°C and 48°C [Caldwell et
al.—96]. Within the range 31°C to 36°C, in which the sensation of temperature fades as the skin adapts to the
temperature, the JND (just noticeable difference) is rate dependent (e.g. when heating at 0.1°C/s, the JND is
less than 0.5°C while at +0.02°C/s, the JND is a larger 2°C). Outside of this range, persistent heat or cold
are perceived [Sherrick and Cholewiak—86].

In terms of stimulating the thermo-receptors, all forms of heat transfer have been used by various
researchers, including: radiation (IR and microwave), liquid and air convection [Sherrick and Cholewiak—
86, Dionisio—97], and various modes of conduction. An early attempt to standardize methods for
determining responses to thermal stimuli is the Minnesota Thermal Disks test [Dyck et al.~74]. In this test,
disks of various materials are placed on the skin with equal force, to determine if a subject could distinguish
between them. More amenable for use in VEs has been electrical heating (though cooling is a problem),
thermodes with temperature-controlled water flowing through them, and thermo-electric heat pumps which
use the Peltier effect [Sherrick and Cholewiak—86]. This last technique uses doped semi-conductor “dice”
in series electrically, and in paralle] thermally, to create a heat flow which is a function of the current passed
through the device (compare with thermocouples, which create a voltage difference dependent on
temperature difference). Peltier cells have been used by [Dionisio-97], [Zerkus et al-93] and
[Caldwell et al.—96) in their displays, and have been used in the device that will be described in the
remainder of this paper.

ThermoStylus design:

The heart of the stylus-based thermal display is a sandwich of a water-cooled heat sink, the Peltier
cell, and an aluminum “touch plate” with a temperature sensor (see figure 1). The user’s finger is placed on
top of the touch plate which, because of the high thermal conductivity of aluminum, is at a nearly uniform
temperature. The temperature sensor is a commercially available RTD (resistive temperature device),
whose resistance increases linearly with temperature. The Peltier cell pumps heat into or out of the touch
plate depending on the direction of the current passed through it. The heat pumped by the cell is given by:

qump=S‘T'I

where S is the Seebeck coefficient (based on choice of semi-conductor and device geometry), T,
the absolute temperature in Kelvins and I, the current. in addition to the heat pumped, the device also
generates heat by the Joule effect (Q=FPR) within itself, and there is a leakage heat flow due to the
temperature difference across the device of the form: : .

Qreax=k-A-dT /1

where k is the thermal conductivity of the cell, A is the cross sectional area and 1 is its thickness.

When the device is in finger-cooling mode, heat is drawn through and generated by the device, and
must be rejected to a heat sink. This role is played by a water-cooled heat sink. In the current version of
the device, an aquarium water pump is used to pump 130mL/min of ice-water through the sink, resulting in
a thermal resistivity of approximately 0.78°C/W. In an earlier version, a CPU heat sink and cooling fan
were used, but it was found that when in cooling mode for long periods, the sink could not dissipate heat
quickly enough. Because of this, the sink would heat up, and when the current to the Peltier cell was shut
off, this stored heat would flow back through the Peltier cell and could burn the user. With the water cooled
sink (with a separate power source), the maximum temperature estimated for the sink under normal use is
22°C, well within the comfort range for human users. Ice water has been used for a coolant for convenience
and also for safety—the ice water is not so cold that a user is in immediate jeopardy when the heat pump is
shut off.

The prototype thermal display was a desktop version, to verify that the device and the control
software functioned properly. The current version is in the form of a 7/8" stylus (sée figure 2), designed so
that the user places his or her index finger on the touch plate on the “top” surface of the stylus. It can be
used by right or left handed users equally well. A safety feature inherent in the stylus design is that in the
unlikely event of an over or under-temperature command, the user can simply release the stylus to prevent
injury—something that would be more difficult with a thimble or glove interface.

Performance:

The ThermoStylus is limited in the maximum rate of heating and cooling by the maximum current
that can be borne by the device. In heating mode, with a maximum of 8A, the device will increase
temperature at a rate of approximately 11°C/s. In cooling mode, the maximum current is -4A, and the
cooling rate is approximately -4.5°C/s. The rate of temperature change versus current is non-linear because
of the quadratic Joule heating term—it aids in heating mode, but hinders the cooling action. The current-
limit asymmetry is also a function of the quadratic term; if the current is increased past -4A, the increment
in additional heat generated is larger than the increment in the heat pumped through the device, so the net

’—‘_______....- User’s finger

Aluminum touch plate with
RTD sensor
Ime
= Peltier cell (ceramic layers
(i around semi-conductor dice)

Water cooled heat sink

Figure 1:

Figure 2: Holding onto the prototype ThermoStylus

heat pumped away from the finger decreases. The maximum cooling current could be increased if a colder
coolant were employed, since then the leakage heat would be larger, aiding the cooling action of the pump
(though presenting more of a danger of damage from cold).

To achieve rapid response with no steady state temperature error, a modified proportional plus
integral controller is used. When the proportional gain alone is sufficient to reach the current limits,
maximum current is applied, and the integral term is set to zero. Once the temperature error is small
enough, the integral term is allowed to become active and brings the error to zero. Because of the rate limit
on temperature change, the system bandwidth is dependent on the commanded amplitude, but is roughly
0.1 Hz.

To demonstrate the use of the device, a series of simple demonstration programs has been written
for the ThermoStylus. Among these are simulations of: a human patient with a fever, whose forehead is
maintained at 40°C (104°F); a thermo-fluid simulation which allows the user to feel the temperature in a
flow field with viscous heating, and at the same time feel the drag force on a small probe in the flow; and a
simulation of the interior of the Sun, including temperatures scaled from 5700 to 15 million K down to 15
to 45°C, and forces due to gravity acting on a 0.5g mass. The multi-modal haptic feedback adds to the
realism or amount of information presented to the user in each case. In addition, temperature can be used as
a substitute for other data; pressure, concentration, radioactivity or any other scalar field could be presented
thermally if mapped appropriately to temperature.

Comments, Conclusions and Future Work:

To date, a thermal display for the PHANToM has been constructed, and has been shown to
function fairly well. However, the device described by [Caldwell et al.-96] has achieved higher rates of
heating and cooling, so further development is warranted to improve the capabilities of the ThermoStylus.

A number of simple demonstration programs have been written for the device, demonstrating the utility of
thermal information in a haptic display. It was noted by some users that, because of the location of the heat
sink, the other fingers being used to hold the device detect the cold of the sink. This is a distraction from the
stimulus on the index finger (from the touch plate). This too will be addressed in the next version of the
device.

In terms of creating convincing thermal feedback from VEs, the next major step is to study the
thermal transients that occur when a finger comes in contact with a real surface. At the skin's surface,
according to the description of semi-infinite bodies coming in contact, the change in temperature is
instantaneous. However, this description applies for only a very short time, and is complicated below the
skin’s surface. To find estimates for the real transients, experiments will be conducted in the near future, in
which fast temperature sensors attached to the skin will be brought into contact with materials of varying
conductivity and heat capacity (e.g. wood, ice, aluminum). The transients can be recorded, and will serve
as a target for the performance of the device. To put such a target in physical terms, one can imagine
touching an object while wearing thin latex surgical gloves. The thinner the glove, the closer the perceived
transient would be to touching an object barehanded. Currently, the display behaves as if the glove is
approximately 0.4mm thick. Real surgeon’s gloves are approximately 0.15mm thick, a reasonable goal for
the next version of the ThermoStylus.

Acknowledgments:
This work is supported under the “Look and Feel: Haptic Interaction for Biomedicine” funded by
DARPA Contract DAMD17-94-C-4123. Principal Investigator: Dr. Kenneth Salisbury

References:

[Caldwell et al.-95] Caldwell, DG, Andersen, U, Bowler, CJ, Wardle, AJ, 1995. “A high power/weight
dexterous manipulator using ‘Sensory Glove’ based motion control and tactile feedback,” Transactions of
the Institute of Measurement and Control, Vol. 17, no. 5, Inst. Of Measurement and Control, London,
England, pp. 234-241.

[Caldwell et al.—96] Caldwell, DG, Lawther, S, Wardle, A, 1996. “Tactile Perception and its Application to
the Design of Multi-modal Cutaneous Feedback Systems,” Proceedings of IEEE International Conference
on Robotics and Automation, IEEE, New York, pp. 3215-3221.

[Dionisio-97] Dionisio, J, 1997. “Virtual Hell: A Trip Through the Flames,” IEEE Computer Graphics and
Applications, Vol. 17, no. 3, IEEE, New York, pp. 11-14.

[Dyck et al.—74] Dyck, PJ, Curtis, DJ, Bushek, W, Offord, K, 1974. “Description of ‘Minnesota Thermal
Disks’ and normal values of cutaneous thermal discrimination in man,” Neurology, Vol. 24, no. 4, Lancet
Publications, New York, pp325-330.

[Kontarinis and Howe-93] Kontarinis, D, Howe, R, 1993, “Tactile Display of Contact Shape in Dexterous
Telemanipulation,” Proceedings of ASME WAM, DSC-Vol. 49, ASME, New York, pp. 81-88.

[Kontarinis and Howe-95] Kontarinis, D, Howe, R, 1995. “Tactile Display of Vibratory Information in
Teleoperation and Virtual Environments,” Presence-Teleoperators and Virtual Environments, Vol. 4, No.
4, MIT Press, Cambridge, MA, pp. 387-402.

[Salisbury and Srinivasan-97] Salisbury, JK, Srinivasan, MA, 1997. “PHANToM-based haptic interaction
with virtual objects,” IEEE Computer Graphics and Applications, Fall 1997, IEEE, New York (in press).

[Sherrick and Cholewiak-86] Sherrick, CE, Cholewiak, RW, 1986. “Cutaneous Sensitivity,” In Handbook
of Perception and Human Performance, Eds. Boff, KR, Kaufman, L, Thomas, JP, John Wiley and Sons,
New York, pp12.28-12.37.

[Zerkus et al.-93] Zerkus, M, Becker, B, Ward, J, Halvorsen, L, 1993. “Temperature Sensing in Virtual
Reality and Telerobotics,” Virtual Reality Systems, Vol. 1, no. 2., pp-88-90.

Texture Sensing and Simulation Using the PHANToM:
Towards Remote Sensing of Soil Properties.

Donald F. Green and J. Kenneth Salisbury

Department of Mechanical Engineering
Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA

dfg@ai.mit.edu

Abstract

A method for sensing and simulating rigid, planar textured surfaces is presented.
Test surfaces were a range of various grit value pieces of sandpaper along with a sheet of
acetate. Static friction coefficients and surface height deviations are sensed by directly
stroking the surface with the PHANToM fitted with a pointed probe tip. The resulting
static coefficients were found to have Gaussian distribution. A very computationally fast,
haptically convincing simulation of the textured surface is then generated from the mean
and standard deviation of sensed coefficients and the sample vector of height values. The
resulting simulation demonstrates that a haptically accurate representation of a real
textured surface can be created from a very compact set of data. This method does not
attempt to reproduce the textured surface in an exact sense, but determines a small set of
properties which will allow an accurate-feeling reproduction of surface.

Introduction

This paper presents an approach to simulating textured surfaces by directly
sensing properties such as static friction coefficients and high frequency/low amplitude
surface deviations. The PHANToM is used as both a data acquisition platform and a
display device. In an automated three step process, the PHANTOM strokes a surface
saving force input and position data, analyzes the data collected and generates a
simulation of the textured surface. Currently, surfaces are assumed to be rigid and planar,
with randomly distributed geometric textural properties. Specifically, we use various grit
value pieces of sandpaper ranging from 50 Grit down to smooth pieces of acetate as the
set of test textures.

Remote texture sensing could be used to build simulations of soil and rocks
encountered during planetary explorations. A rover outfitted with a manipulator having
capabilities like the PHANToM could conceivably acquire the data necessary to construct
a realistic virtual environment of an interesting area that planetary geologists back on
ecarth could interact with. The texture sensing process is relatively quick and
uncomplicated and the resulting numerical representation of the texture is compact.

The mechanical properties of the PHANToM make it an excellent platform to
begin research on remote sensing of soil and rock properties for the same reasons that it
makes a good haptic display device: namely, it’s high stiffness and low friction
characteristics coupled with very high spatial resolution capabilities. These factors allow
the PHANTOM to perform very accurate position control while permitting reasonably
accurate feed-forward force control and even force sensing, as we shall see. The
PHANTOM’s nominal spatial resolution of about 0.03mm is fine enough to represent
textures made up of sand particles as small as 0.06 mm but not silts or clay, which are
defined in soil mechanics literature to range from .06mm down to less than 0.002mm
[Lambe p.40].

Adding micro-geometry and tribological factors to the haptic display of virtual
objects will increase the accuracy and perceptual credibility for many kinds of haptic
simulations. Therefore, improvements in methods for haptic texture rendering should be
of interest to a wide range of researchers within the field.

Related Work

In her seminal work on haptic texture generation, Margaret Minsky presents a
method of simulating 3 dimensional textures with only 2 actuated degrees of freedom
[Minsky p.48-51]. This work demonstrated how lateral forces added to the normal force
changes the users perception of surface geometry. At last year's PHANToM Users Group
Workshop, Chen and Taylor presented a stick-slip friction implementation for
synthesizing textures using the PHANToM [Chen p75-76]. They modeled stick-slip
friction as the interaction of a compliant probe catching and breaking away from small
indentations uniformly distributed in a virtual surface. Siira and Pai discussed generating
realistic feeling texture by varying lateral forces on a 2 degree of freedom haptic display
[Siira]. Using randomly generated surface height deviations with Gaussian distribution,
normal forces are generated proportional to virtual endpoint penetration beneath the
surface, and lateral forces are generated proportional to the normal.

Physical Model

Probe tip Nexes
as it is dragged
across surface.

The interaction between the
V= Velocity of prabe

probe and a surface is modeled using
the basic static friction force equation
from adhesion theory [Mitchell p.306].
The two important physical constants are
the static friction coefficient and the
compliance of the probe. Figure 1
illustrates the physical model we use to
inform our approach to analyzing the
data taken during the sensing stage, and
also the simulation of the sensed texture.

Fn = Force on probe normal
to surface.

Fg = Force arising due to comphance
in the probe.

Fy = Broak away (orce required
due to friction

ps = Static friction coefTicient

Kp = Spring canstant of prabe -

Fn

Fs= Fn"ps Fy=Kp+[AP| Pef R

It has been observed that stick-slip friction is commonly exhibited in point contact
mechanical interactions involving minerals [Mitchell p.310]. This provides a theoretical
justification for choosing this model for a probe stroking a surface, such as sandpaper.
However, it should also extend to the surfaces of various kinds of rocks as well, if we
disregard gross geometric perturbations of the surface.

Implementation

The first step involves taking a
sample of the surface of interest. A
hybrid control scheme is used which
commands the PHANToM to follow a
given trajectory (simply a line parallel to
x-axis in PHANToM space) at a constant
velocity, under P or PD control. In the
process a constant normal force 1is
exerted as the PHANToM tracks the
commanded trajectory. The resulting
lateral forces and the z position of the
endpoint are recorded. Figure 2 shows a
photograph of the sampling setup. Figure 2

» Each element of the force vector is then divided by the applied normal force and
the result is interpreted as a vector of static friction coefficients. When plotted in a
histogram, the sensed static friction values fall into a Gaussian distribution. Examples of
histogram plots of sampled surfaces appear below. The vertical axis indicates the number
of coefficients whose value fell into the bin represented by the bar. The bins were chosen
as 100 evenly spaced centers in the range spanned by the 50 grit values (the broadest
range). This has the effect of horizontally compressing and vertically stretching
histograms of data sets with smaller standard deviations (decreasing resolution). When
plotted with 100 evenly spaced centers across their own range of values, the shape of the
other histograms more closely resemble that of the 50 grit.

sid = 0.562 mean=0.849
v T T

50 grit

i su1=0.'473 mean= 0834 . . 120 grit

&1d = 0.037 mean = 0.582

3500
3000 |
2500
20001
1600

10001

05 1 K X 500 -

80 gl‘it] 05 o 05 ; s 2 25

td = 0.354 mean= 0761
— Acetate sheet

sid = 0.185 mean = 0.751
v T ™

500

-1 0.5 0 05 1 1.5 2 25

220 grit

The mean and standard deviation of the computed static p values are then used
during the simulation stage, along with the vector of z - position values, which are
normalized to have a mean value of zero. The vector of z values and the mean and
standard deviation of the computed static friction coefficients are then used to drive the
surface simulation.

The following is a description of the computations made during each iteration of
the simulation to compute the output force exerted on the PHANToM:

We first compute a perturbation for the base surface height for the
current x,y position, Pc, by using Hl Pc Il as an index into the vector of z values
from the sensing process. The area each discrete height represents is computed
from the ratio of the sample rate to the commanded velocity of the sample stroke.
This has the effect of creating concentric circles of common height about the
origin of the PHANTOM space, but we have found the resolution to be too high
for a user to perceive this.

The next step is to check if the endpoint of the PHANToM has
penetrated the virtual surface, and if not, no force is output. If it has, then the
normal force, Fn, is computed to be proportional to the depth of penetration and
the x,y point of contact, Pref, is recorded. A Static il value, ps, is then computed
for this contact point by a Gaussian random number generator with the
characteristic mean, o, and standard deviation, ©, computed from the sampled
data. The break away friction force required, Fs, is then defined to be Fs = ps *
Fn. Tangential output force magnitude, Ft, is then computed to be Ft = Kp * Il Pc
-Pref. Il, where Kp is the stiffness of the probe and Pc is the current x,y position
of the end effector. The direction that the tangential force is to be applied can
easily be computed from Pc - Pref as well. When Ft 2 Fs, a new Us is generated,
the reference point Pref is updated to be the current position Pc and the process
is repeated.

Results

This process produces very realistic feeling simulations of the textured surfaces. It
does not reproduce an exact geometric or tribological mapping of the surface and we
believe it would be impractical to attempt to do so using this mechanical sensing process.
In any case, the phase information that an exact representation provides is perceptually
unimportant when representing of the kinds of textured surfaces considered here. Perhaps
this insensitivity to phase provides a hint towards quantifying the point at which the
geometric properties of a surface pass from being described as shape to being described
as texture.

Because of the underlying assumptions about the geometric properties of the
surfaces being sampled, this process gives poor results when objects with regular texture
patterns are tested. The resulting simulation lacks any directional dependence and when a
surface with such a texture in sampled (such as a metal file) the resulting simulation feels
like sandpaper. Spectral methods of analyzing data vectors taken from these regularly
patterned surfaces should provide better results.

Future work

Future efforts will be directed towards extending these methods to homogeneous
soils. We will explore sensing the surface compliance and viscosity or other factors of
particulate systems. It may be possible to test the compressibility or shear limits of soils
using the PHANTOM as well. We are also interested in integrating this texture sensing
process with methods for acquiring the overall shape of objects.

References

1.) Chen Jun; Taylor, R M. “Nanomanipulator Force Feedback Research.” Proceedings
of the First PHANToM Users Group Workshop, December 1996. MIT A.L Technical
Report No 1596.

2.) Minsky, Margaret D. R. “Computational Haptics: The Sandpaper System of
Synthesizing Texture for a Force Feedback Display.” Ph.D. thesis, Media Arts and
Sciences, Massachusetts Institute of Technology, Cambridge, 1995.

3.) Mitchell, J.K. “Fundamentals of Soil Behavior” New York, John Wiley & Sons, Inc,
1976.

4.) Lambe, T.W; Whitman, R.V. “Soil Mechanics” New York, John Wiley & Sons, Inc.
1969.

5.) Sirra, J.; Pai, D.K. “Haptic Texturing - A Stochastic Approach.” Proceedings of the
1996 International Conference on Robotics and Automation. Minneapolis, April
1996.

Simulation of contact sounds for haptic interaction *

Dinesh K. Pai and Kees van den Doel
Department of Computer Science
University of British Columbia
Vancouver, Canada
{pailkvdoel}@cs.ubc.ca

1 Introduction

Sounds provide important perceptual cues for
contact events such as impact and sliding. We
believe real-time synthesis of realistic sounds will
complement and greatly enhance haptic inter-
faces (however, see also [Led79, DBS97]). We
will first describe physically-based simulation of
the sound produced by contacting objects in vir-
tual environments. The computed sounds de-
pend on the material of the body, its shape, and
the location of the impact. Finally we describe
implemented software for interaction with sim-
ulated objects with auditory feedback, using a
“Sonic Probe”.

2 Sound Modeling and Simula-
tion

When an object is struck, the energy of im-
pact causes deformations to propagate through
the body, causing its outer surfaces to vibrate
and emit sound waves. The resulting sound field
propagates through and also interacts with the
environment before reaching the inner ear where
it is sensed. Real sounds therefore provide an
important “image” of various physical attributes
of the object, its environment and the impact
event, including the force (or energy) of the im-
pact, the material composition of the object, the
shape and size, the place of impact on the object,
and finally the location and environment of the
object.

*Supported in part by grants from IRIS NCE, NSERC,
and BC ASI

In [vdDP96a, vdDP96b] we developed an algo-
rithm for synthesizing such impact sounds, based
on the physics of vibration. Related work on
sound modeling and synthesis is also described
in [vdDP96a]. We outline our basic approach
here. We have recently extended this approach
to synthesize continuous contact sounds, such as
scraping sounds, in real time.

The vibration of an object is described by a
function p(z,t), which represents the deviation
from equilibrium of the surface, defined on some
region S, which defines the shape of the object.
We assume that u obeys a wave equation of the
form

A 2P e =F

(- 0_251‘,—2)“(2’) = (m?t) (1)
with ¢ a constant (related to the speed of sound
in the material), and A is a self-adjoint differen-
tial operator under the boundary conditions on
Js.

In some cases this type of equation is well
known, and can be solved by analytic methods
for simple geometries with homogeneous materi-
als. In that case, we can rely on pure simulation,
as follows:

1. First, compute the vibration modes of the
object. The solution to Equation 1 can be
written as

plz,t) = i(an sin (wpet)+b, cos(wnct))¥n(zx),

n=1
(2)
where a,, and by, are arbitrary real numbers,
to be determined by the initial conditions.
The w,, are related to the eigenvalues of the
operator A under the appropriate boundary

conditions, and the functions ¥, (x) are the
corresponding eigenfunctions, i.e.,

(A +wh)¥n(z) = 0. (3)

2. Next we compute the vibrations resulting
from an impact at some point p, when the
body is initially at rest. We model the im-
pact as causing an initial velocity

vo(z) = 6(x — p), (4)

with (@) the k-dimensional Dirac delta
function. This allows us to obtain the am-
plitudes of the vibration modes as a function
of the impact location. The resulting sounds
reflect the dependence on impact location.

3. The sound field around a vibrating body
is very complex. Under reasonable as-
sumptions [vdDP96a] and a simple model
of the material damping (following [WR88,
KK95]), we can compute the sound-wave
ps(t) to be given by

i
ps(t) = e /™Y afe T tané gin (2 fit),

=1
(5)
with the amplitudes a? are computed based
on the contact location, and
Wn €

=%
with the w, determined by Equation 3.

The model parameters for most real objects
can not be obtained very easily if the object has
complex geometry and material properties. In
such cases, we assume a form of the sound re-
sponse similar to that given by Equation 5 (but
allowing more general damping), and estimate
the parameters from measured sounds. See also
[KK95]. This is more practical for modeling ex-
isting objects.

3 Interaction with Sonic Ob-

jects

To support interaction with a haptic device, the
parameters for sound synthesis (in Equation 5),

are mapped on to the respective contact loca-
tions on the geometric models of the objects.
Based on the user’s interaction, the sound pa~
rameters are extracted and the sound is ren-
dered.

We have implemented a Sonic Explorer pro-
gram, which allows us to create a 3D virtual en-
vironment with sonic objects. It is written in
C-++, using the Openlnventor graphics library,
and SGI's Audio Library. A Windows95 version
is planned.

Currently, our haptic device consists of a
“sound probe” — a specially rigged pen and
tablet. We do not have any force feedback associ-
ated with it, but it should be straightforward to
replace the tablet with a force feedback device
such as the PHANToM. In our current proto-
type, the input stream (force) is provided by a
contact mike embedded in the probe, with which
the user taps and scrapes objects with real-time
generation of sounds.

The sounds under any kind of interaction can
be obtained by convolving the impulse response
with the interaction force. For this we have con-
structed an algorithm which runs in real time,
and whose complexity is linear in n, the number
of frequencies, or partials, in the sound model.
The interaction is modeled as a live input data
stream. The quality of the sound depends on the
number of partials we can synthesize in real time,
and can be dynamically adapted to the speed
of the hardware. This means that there will be
no breaks in the sound when other tasks require
CPU time, but rather a smooth degradation in
quality.

Figure 1 shows a 3D vase with sound param-
eters mapped on to the geometric model. Users
can hit or scrape the object with the sound
probe, and produce realistic sounds. A demon-
stration of the software will be provided at the
workshop.

References
[DBS97) D. E. DiFranco, G. L. Beauregard, and
M. A. Srinivasan. The effect of auditory
cues on the haptic perception of stiffness

in virtual environments. In Sirth Annual
Sympostum on Haptic Interfaces for Vir-

[KK95]

[Led79]

[vdDP96a]

[vdDP96b)]

(WR88]

Figure 1: A 3D sonic object

tual Environments and Teleoperator Sys-
tems, page (To appear). ASME, 1997.

Eric Krotkov and Roberta Klatzky.
Robotic perception of material: Experi-
ments with shape-invariant acoustic mea-
sures of material type. In Preprints of the
Fourth International Symposium on Ez-
perimental Robotics, ISER 95, Stanford,
California, 1995.

S.J. Lederman. Auditory texture percep-
tion. Perception, 8:93-103, 1979.

K. van den Doel and D. K. Pai. The
sounds of physical shapes. CS Technical
Report 96-03, Univ. of British Columbia,
February 1996. Submitted to Presence.

K. van den Doel and D. K. Pai. Synthesis
of shape dependent sounds with physical
modeling. In International Conference
on Auditory Display (ICAD 96), Xerox
PARC, Palo Alto, November 1996.

Richard P. Wildes and Whitman A.
Richards. Recovering material proper-
ties from sound. In Whitman Richards,
editor, Natural Computation, Cambridge,
Massachusetts, 1988. The MIT Press.

FLIGHT
A 3D Human-Computer Interface
and Application Development Environment

Tom Anderson
Sandia National Labs
email: tganders @u.washington.edu

Abstract

This paper discusses the FLIGHT application development environment, a three dimensional
human-computer interface (HCI) software and Application Programming Interface (API). The
development of HCT's is one of the few areas in computers that has not grown significantly compared
with the enormous increases that have occurred in computing power. For over two decades, HCI's
have only increased marginally, often relying solely on the ubiquitous mouse. With the now
dominating presence of 3D environments, considerable amounts of effort have been spent in finding
ways to use 2D input devices in these environments, which innately involves a level of non-
intuitiveness and which is somewhat surprising given the ineffectiveness the mouse often has in 3D
environments. 2D inputs and the lack of feedback are becoming the bottlenecks in productivity,
especially with the increasing power of computers, enormous amounts of computational information,
and the increasing prevalence of stereo, haptics, and 3D sound. With the advances in computational
ability and human-computer interaction there is an increasing demand for software that no longer
relies on ineffective 2D strategies, but is designed specifically for 3-D inputs and feedback. FLIGHT
is a software that is based on the principle that as the human-computer interface is strengthened
through the use of more intuitive inputs and more effective feedback, the computer itself will be far
more valuable.

1. Introduction

An interesting phenomenon has developed in the computer world in which computers
themselves have undergone orders of magnitude increases in performance, while inputs and outputs
have remained relatively constant since the advent of the monitor, mouse, and keyboard. Upon first
inspection this might seem natural, as this is the current mode of thought in computers, but in
considering the purpose of computers, it is an odd progression. Computers exist to solve problems or
to speed tasks, to give insight, for entertainment, or in any other way to help a person. Although high
speed calculations are a part of all that a computer might do, it is not an end unto itself. It is odd that
when a typical customer purchases a computer, relatively little thought, money, or advertising, is
given towards the monitor, and much less to the mouse and keyboard, when nearly all interactions
occur through them.

As computers become even more powerful and the amount of information that they process
increases enormously, the lopsidedness of the HCI will become more of an issue. Three-dimensional
environments will no longer be able to be controlled with a mouse, and feedback will no longer be
able to be limited to simply a monitor. The bottleneck will be the interface between the computer and
the user, and therefore a new mode of thought is necessary. A larger portion of the computer budget
will necessarily be committed to interfaces and better outputs such as six degree of freedom (DOF)
input devices, force feedback, tactile feedback, 3D sound, and stereo graphics or holography. This
shift in thought will also require new software strategies to accommodate the enriched hardware
environment, FLIGHT is a software that was designed to accommodate such a change in modality
and focuses on improving one of the largest frontiers to come in computers -- advancing the HCL.

FLIGHT is a 3D application development software that can be used by both end users and
programmers. It can be used to develop and interact with a wide variety of multi-dimensional
environments including animation, computer-aided design (CAD), virtual reality, medical
applications, scientific visnalization, educational environments, games, an alternative HCI for the
hearing or visually impaired, or nearly any other multi-dimensional environment, especially in which
a user wishes to interact in ways that are impossible with standard 2D interfaces and feedback.

For an end user, FLIGHT extends the human-computer interface away from 2D into an
entirely three-dimensional domain. A user interacts through a craft metaphor rather than through a
desktop metaphor. Control modules, 3D versions of the common windows metaphor, allow access
to the system in ways that are difficult or even impossible with only a mouse and a 2D interaction
scheme. The system is designed to be intuitive, in that it tries to mimic real life interactions and
feedback as much as possible to keep them familiar. For example, in real life and in FLIGHT one
actually pushes a button to use it, rather than “pointing and clicking”, and can hear and feel the button
click as it is pushed. Force Feedback and 3D sound allow a much higher human-computer bandwidth
than can be accomplished with graphics alone, and many of the interactions with the system can take
place entirely without graphics. In addition, a user has access to 3D tools and also to interaction
techniques that make easy transitions from the world to the control panel and navigation.

For a programmer, FLIGHT is a software shell based on OpenGL and C that can be used to
incorporate graphics, haptics, and 3D sound in an established framework. FLIGHT utilizes "the next
generation mouse," i.e. a three or more degree of freedom device, for input to the system in a way
that lends itself towards device independence. The FLIGHT API consists of a library with calls for
creating a 3D windowing system, for object creation and manipulation, for navigation, for tool
interactions, and for general system and world interactions that take advantage of the added human
senses.

2. The FLIGHT User Interface

The user interface for FLIGHT consists of a craft analogy with a 3D control panel and
windowing system, including techniques for interacting with the system itself and with the application
or world through a 3D cursor. Included in the user interface are navigation techniques, 3D tools,
multiple human sensory channels of input and feedback, application specific interaction techniques,
and a standard set of 3D windows, called control modules. The control modules have associated
control objects such as buttons, sliders, knobs, etc. FLIGHT differs from more traditional graphical
user interfaces (GUT’s) in that it focuses more on haptics and 3D sound, and it is based entirely on a
three-dimensional strategy. However, there is a smooth transition from typical 2D interfaces in that
FLIGHT extends analogies that users are already familiar with while also extending the interface in
ways that are more like real life and are often difficult with a more standard GUIL For Example, the
control panel and control modules are extensions of a desktop/windows metaphor, yet the newer
aspects that are created with the third dimension, such as buttons that one can actually feel and push
in, more closely resemble real life. The reason that this is important is the assumption that as
computers more closely resemble real life and interactions that people use every day, the interface will
be more intuitive and useful. This strategy keeps a user grounded yet still allows for extensions that
are impossible in real life. An example is a three-dimensional slider that is not attached and therefore
hangs in the air, but still has resistance to moving. People know how to use one dimensional sliders,
and so one that is 3D is not a large leap, yet it can be more useful in controlling aspects of an
application given the added degrees of freedom.

2.1 The FLIGHT Control Panel and Control Modules

FLIGHT consists of two types of interaction modes -- interaction with the control panel and
interaction with the world. These two modes of operation can be easily traversed by cursor
movements with respect to the current frame of reference. To change to world interactions, the cursor

[P

moves through the ‘windshield’ of the craft which then places the cursor in the world. To return to the
control panel, the cursor must be pulled backwards through an invisible wall. This type of interaction
technique allows easy transitions in addition to a fuller range of movement in each mode of operation.

The control panel consists of a bottom and front panel that have buttons to interact with the
system. In general, the front panel contains buttons for navigation, while the bottom panel contains
buttons for accessing the control module system.

The control modules are separated into six areas: Tools, Preferences, Craft, Information,
Operations, and Application Specific control modules. The tool control modules allow interactions
through the use of 3D tools. The preferences and information control modules give access to the
overall system except for craft interactions which are contained in the craft control modules. The
application control modules are specific to and defined by the application itself.

Control Modules have a variety of standard control objects that can be used to manipulate the
system or the world. These objects often have advantages over their 2D counterparts because of the
added degrees of freedom. For example, a 3D slider can be used to directly control an object’s x, y,
and z positions simultaneously and intuitively. Preferences in many situations can be accessed by
pushing a button to the left which is natural given the button’s 3D nature. Another important point to
consider is that with the 3D nature of FLIGHT there are possibilities for new types of control objects
as well. One type of object might be a multiple sided geometric surface in which each side controls a
different action and in which the layout of the object is key to its use. Other possible objects might be
3D miniature and simplified representations of real objects in the computer world that could be used
to control the real objects directly, for example a puppet used to control an animation. While the 3D
user-interface has already shown benefits, the full extent of the advantages still remain to be explored.

2.2 FLIGHT Navigation

The control panel also gives access to the different types of navigation, defined here as all
aspects involved with changing the user’s viewpoint, which are based on different craft metaphors.
Each craft is specific to a different type of situation. The crafts include a hovercraft, a plane craft, a six
DOF craft, several types of teleportation, a circular craft, a sphere craft, and a terrain craft.

Although the specifics of all the types of navigation are extensive, the craft names can be used
to imply their uses and methods of movements to some extent. The sphere craft, teleportation
methods, and terrain craft are used to control the craft’s position and orientation directly while the
other crafts control them through velocities. The crafts are often limited in some ways to make them
more intuitive, for example the hovercraft and terrain craft can only move on a three-dimensional
plane, while the plane craft moves more like an airplane. The circular craft and sphere craft are always
centered on a particular point in the world that can be changed at any time, which makes them good
general crafts for overall inspection of an area or object. All of the crafts also use feedback to make
their operations more intuitive. For example, the six DOF craft is controlled with a control box that
the cursor pushes into for movements. Each side of the box controls a translation in its respective
direction and controls the rate of movement as well. Therefore, as the cursor pushes into the left wall
of the control box, the craft moves left. The harder the cursor pushes against the wall, the faster the
craft moves. This force feedback allows a user to precisely control the craft’s velocity especially in a
non-linear control situation.

The three dimensional cursor also greatly enhances the abilities of the navigation. It can be
used in the world interaction mode to determine specific teleportation points and can set the center
points for the sphere craft and circular craft quickly, as they must be placed in a 3D space. In addition,
while in the world interaction mode a user can quickly change between interaction and navigation by
double clicking the input switch. This presents a useful method for quick interactions.

Finally, the control modules themselves aid in the navigation process. They can be used in
controlling how the different crafts move, and can even give information to aid in the process of
navigation. There are, for example, control modules that give numerical values for position and

orientation and control modules that give visual representations of the craft and the world, i.e. through
a representational map and orientation graphic object.

2.3 FLIGHT Tools

The tool control modules allow interactions with the system, world, and specific application
through tools such as clip plane tools, measurement tools, or object creation and manipulation tools.
The tools are particularly effective given the 3D nature of the cursor. For example, a clip plane can be
easily placed by the 3D cursor in the world interaction mode, where this is a particularly difficult
problem with a mouse. A measurement tool can, for example, move through a 3D space to the exact
position where a measurement is desired, even if the area is obscured. Other types of feedback can
also enhance the tools’ effectiveness as a user does not need to rely solely on the graphics for a tool’s
use.

3. The FLIGHT API

The FLIGHT API is the set of commands that allow a programmer (o create a 3D computer
environment through the use of the FLIGHT library. A FLIGHT application is created within a
modular software structure that is designed towards rapid application development and hardware
independence. FLIGHT in its core self is not a renderer, although that is one possible use for the
system. Instead, a programmer would use it more as a shell and structure to create a specific
application. It is based on OpenGL and C, so that any graphics in an application are created through
an OpenGL based renderer in conjunction with the FLIGHT graphics.

FLIGHT has a multi-threaded structure in which the first thread controls the graphics and
related control, and the second, faster thread controls much of the user interaction. One strong
purpose of a second thread which runs at a faster rate is to accommodate the needs of the haptics
aspects, as haptics requires a faster cycle rate than does graphics.

The base of all the interactions with the system occurs in a globally shared memory area,
which is key to the system’s design. The shared memory block allows an interface layer with which
platform specific or device specific hardware can interact. This also allows a interface layer that is
grouped into several key areas that allows intuitive programming especially with respect to the human
sensory channels. In addition, the AP includes a large number of commands for interacting and
adding to the system. Key among these commands are those for navigation, for object interactions,
and for control modules.

The navigation aspects of the API consist of a simple set of commands that allow complex
movements, because a user can control multiple degrees of freedom simultaneously given the types
of input and feedback FLIGHT uses. By interfacing through the shared memory block, the navigation
commands allow a user’s input to affect the craft’s movements with few lines of code. All of the
crafts, described in section 2.2, were created with the navigation commands, which allowed an
effective way to find the most useful modes of navigation in each craft’s respective situation.
Although there are many crafts that already fit most situations, the navigation aspects of the API can
be used in an application specific way to extend the craft’s movements to fit the situation even more
precisely.

One of the strongest aspects of the FLIGHT APl s in the creation of the control modules. The
control module aspects of the API allow a simple and convenient way to create control modules and
their respective control objects. One large benefit is that with a single command, a control module or
one of its objects can be created in both the haptic, auditory, and visual domain. When a command to
create an object is called, its information is put into the shared memory block which is then accessed
by the graphics, haptics, and sound portions of the code to present it to a user. The specifics of the
individual objects can then be altered with additional commands to customize them to their task.
Other types of world objects created with the APT have the same characteristics, in that with a single
command, they can be created with default graphical, haptic, and audio characteristics. This saves a

considerable amount of programming time, because objects do not have to be created once in each of
the multiple sensory domains.

4. Example Applications

FLIGHT has been used at Sandia National Laboratories in several scientific applications. It
has been used on several Silicon Graphics (SGI) platforms with both a PHANToM haptic interface,
from SensAble Technologies, and a spaceball as inputs and an Acoustetron, from CRE inc., for the
3D sound. At Sandia’s recent “Revolution in Engineering” presentation, several FLIGHT
applications were bundled into an overall demonstration application called “Crash and Burn”. This
application provided the visualization tool for simulations run on Sandia’s teraflop supercomputer,
currently the world’s fastest computer. The applications included three fire dynamics simulations, a
structural impact simulation of an airplane wing crashing through a post, and a heat dynamics demo
for a weapon. In addition, FLIGHT was used at Supercomputing 1997, which demonstrated another
bundled application. The demos presented included a haptic texture editing demo, a motion dynamics
demo, intersensory discrepancy effects with geometric objects, a billiards game, a 3D sound
demonstration, and a fire dynamics simulation. FLIGHT has also been used in an experiment
conducted at Sandia, in conjunction with the human factors department, in which FLIGHT was
compared with the SGI Cosmo Suite through navigation and manipulation tasks. FLIGHT is now
being used at the Human Interface Technology (HIT) lab at the University of Washington by the
author for graduate research. Given FLIGHT’s strengths in interaction and navigation, CAD and
animation seem good prospects for future applications and are being explored.

5. Conclusions

FLIGHT was designed to solve several problems that were encountered while trying to create
and interact with 3D computer environments, particularly the long development times for creating
applications and the added difficulties of input and feedback. Its focus has been to use the human
senses and advanced inputs in ways that allow intuitive interactions. Although the mouse is an
overwhelmingly standard input for computers, it is nearing its end. Computers are nearing a point
where 3D will be the new interaction structure, which will require a new mode of thought. As the
next great hurdle in computers nears, advancing the HCI, software with design strategies such as
FLIGHT’s will be crucial in advancements towards breaking the HCI barrier.

6. Acknowledgments
I would like to thank Arthurine Breckenridge and George Davidson for their support on the
research leading to this paper.

7. References

[1} J. Preece, Human-Computer Interaction, Addison-Wesley Publishing, New York, NY, 1994.

[2] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics, Principles and
Practice, Addison-Wesley Publishing Co., Reading, MA, 1990.

(3] R. Klatzky and S. Lederman, “Toward a Computational Model of Constraint-Driven
Exploration and Haptic Object Identification”, Perception, Vol. 22, pp. 597-621, 1993.

[4] T. Anderson, “A Virtual Universe Utilizing Haptic Display”, PHANTOoM User’s Group
Workshop, MIT Al Lab, Cambridge, MA, 1996.

[5] W. Barfield, T. Furness II1, Virtual Environments and Advanced Interface Design, Oxford
University Press, New York, 1995.

LEGOLAND: A Multi-Sensory Environment
for Virtual Prototyping

Peter Young, Tom Chen, David Anderson, Jiang Yu
Department of Electrical Engineering
Colorado State University
Fort Collins, CO 80523

Shojiro Nagata
NHK Science & Technical Research Labs
Tokyo, Japan

QOctober 1, 1997

Abstract

This paper briefly describes the LEGOLAND project, which is a virtual prototyping environ-
ment. The environment provides virtual LEGO blocks which can be manipulated to assemble
virtual LEGO models. This environment is rendered in real time on a multi-sensory computing
platform, with integrated 3D-visual, audio, and haptic components.

1 Multi-Sensory Computing

The LEGOLAND project was developed to study the issues involved with virtual prototyping
in a true multi-sensory environment. The platform for this study is the the Stereoscopic Haptic
Acoustic Real-Time Computer (SHARC), currently being developed at Colorado State University
(CSU) for the study of multi-sensory computing. The central processing unit consists of an SGI
R10000 workstation, which is interfaced to an autostereoscopic 3D display system using a 14” LCD
panel with lenticular lens. The operation of the lens is illustrated in figure 1. An interlaced pattern
of left-eye and right-eye images is displayed on the LCD screen. The lens splits these images along
radial directions so the the viewer’s left and right eyes intercept different images, providing the
stereoscopic 3D effect. Note that in this setup no goggles are needed by the viewer, which is an
important consideration for many applications.

The setup also includes a 3D acoustic head-tracking subsystem, which provides the computer
with the viewer’s position. This information is used to update the display in real-time, so that the
viewing angle is adjusted accordingly. Thus the viewer can “look around” a 3D object without
having to manually rotate it. This is important, not only for efficiency, but also to provide the
viewer with the correct visual cues, so that the environment appears realistic. The head position
information can also be used to optimize the alignment of the 3D autostereoscopic display.

The system also includes a PHANToM haptic interface. This force-feedback robotic system is
used as a “display” to provide haptic/tactile information to the user. At the same time it is used

Figure 1: Lenticular Lens Operation

as a very efficient input device, since it can acquire position in six degrees of freedom (position and
rotation), and hence it provides us with a 3D mouse to efficiently navigate and manipulate the 3D
environment in a natural way. A photograph of the overall system is shown in figure 2.

acoustic head —— -

tracker \

HOSECTCOHSCOPIL . - A
tosterenscopit stereoscopic

dispiay

displas

b pn

intledioe o

Figure 2: The SHARC System

This environment provides a unique multi-sensory computing platform, with interactive capa-
bilities among the different sensory components. The facility for multi-sensory computing enables
us to provide a high degree of realism for virtual or augmented reality environments. It also affords
us a high bandwidth interface between human and computer, as illustrated in figure 3.

It is well recognized that the development of complex physical skills, associated with dextrous
manipulation, relies on a person’s ability to simultaneously process a number of different sensory

Outside World

Neiwork/Hard Drive/Memory
Complex Data Scis

Computer Communication
And Processing

SGI Processor

Autoriereuscopic N
36 Visnul Huptic
Multi-Sensory

U U R A A T
Fa

Figure 3: Multi-Sensory Human-Computer Interface

Acoustic Arroy

Intertace

Human Communication

Human Brain
And Processing

cues. For instance the tactile component, enabling one to assess the elasticity of tissue, is vital to
a surgeon performing an operation. Hence, for many applications, it becomes important to render
visual (preferably 3D), audio, and haptic/tactile information. The SHARC system affords us this
possibility, but with it come a number of issues that need to be addressed for a viable application,
including interfacing, speed, and bandwidth.

2 The LEGOLAND Environment

In order to study these issues, and demonstrate the viability of this setup for virtual prototyping,
we developed the LEGOLAND environment. This environment provides one with a multi-sensory
rendering of a set of LEGO blocks, using the SHARC system. The blocks can be viewed in 3D,
with head tracking and viewing angle adjustment implemented in real time. One may use either
a stereoscopic display (with goggles) or an autostereoscopic display. The surface geometry of the
blocks (or assembled models) can be examined by touch, via the haptic interface, providing a very
realistic rendering of these objects. The blocks can be manipulated using the haptic interface as
a 3D mouse to move through the three dimensional scene. The user can pick up and manipulate
blocks with a full six degrees of freedom in position and rotation. The PHANToM provides a
very natural interface for this type of interaction, which is much more efficient than the standard
keyboard and mouse. The LEGO pieces can be joined together (or pulled apart) to assemble virtual
LEGO models, and a screenshot of some assembled pieces is shown in figure 4.

The dynamic properties of the blocks are programmed in to the virtual environment, so that
the blocks have weight and inertia. Moreover real-time collision detection between “solid” objects
is fully implemented as the user grasps and moves objects. These collisions result in the appro-
priate dynamic reactions, which include visual and haptic/tactile components. Similarly the act

of snapping a LEGO block into place is accompanied by a realistic multi-sensory dynamic simu-

Figure 4: A Simple LEGOLAND assembly

lation. Although LEGOLAND is only a fairly simple multi-sensory environment, it incorporates
many of the properties and challenges of the more complex virtual prototyping setups that will
be required for real-world engineering problems. We believe this is one of the first multi-sensory
virtual prototyping systems in existence.

3 Future Directions

Despite its simplicity, the computational requirements of the LEGOLAND environment are already
high. The visual/haptic rendering and real-time collision detection are based on polygonal models
for efficiency. Even so, with about 15-20 pieces, the environment can already use 70% of the CPU
time. The visual rendering typically occupies less than 5% of this, so that the CPU spends the bulk
of its time dealing with haptic rendering. This illustrates the inefficiency of current techniques for
haptic rendering, especially for dynamic simulations (with collisions). We are currently investigating
both hardware and software architectures for high-speed haptic rendering, and its integration with
the other components of a multi-sensory computing environment.

Finally, we note that there is growing interest in this type of approach for tele-operation of
robotic systems, such as tele-surgery. In this regard, we are currently developing an Internet
implementation of the LEGOLAND environment, so that a user with the appropriate hardware
configuration can access and interact with LEGOLAND through our Web page.

Adding Force Feedback to Interactive Visual Simulations using Oxygen™

Peter Larsson
Prosolvia Clarus AB
peterl @clarus.se

ABSTRACT

Prosolvia Clarus AB is a Swedish software company providing tools for creatiri% Interactive Visual
Simulations for industrial use. One of Prosolvia Clarus’ products is Oxygen,T , a GUI based tool
for creation and real-time manipulation of Virtual Reality environments. Prosolvia Clarus is cur-
rently co-operating with Sensable Technologies, Inc. to add support for the PHANToM Force
Feedback device to OxygchM. This will make it possible to interactively create simulations in
which you not only can see objects but also touch or even grasp them.

INTRODUCTION

Prosolvia Clarus is focused on providing industrial solutions using Virtual Reality Techniques. The
company offers solutions throughout the complete life-cycle of a product; design support, virtual
prototyping, product visualisation, etc. Prosolvia Clarus also offers a wide range of other products
such as medical simulators and simulators for ground based vehicles.

Force Feedback is a technique to allow force interaction within virtual environments. Virtual ob-
jects can be touched or even grasped and lifted. Properties like surface friction and stiffness can be
modelled or full rigid body behaviour simulated.

Prosolvia Clarus AB is the distributor of the PHANToM™ Force Feedback device [1] in Scandi-
navia and Germany. We are also currently co-operating with Sensable Technologies, Inc. to add
Force Feedback support to some of our products. With this technology Interactive Visual Simula-
tions will be made even more realistic.

OXYGEN™

OxygenTM [2] is a multi-platform, interactive tool that allows you to create and manipulate Inter-
active Visual Simulations even at run-time. CAD-data or other graphic models can be imported and
brought to life using the OxygenTM Graphical User Interface.

Oxygen has a modular design that can be divided into three major parts:

READY-TO-USE APPLICATIONS

Ready-To-Use Ag&lications: Applications built
on top of Oxygen . E.g. Oxygen Showroom ™
for product visualisation, and Oxygen AsscmblyTM
for virtual assembly and testing.

Oxygen Base: Provides basic functionality for im-
porting models and creating Interactive Visual sim- 0 XY G EN B A S E* e
ulations.

import, Peripherals, etc. Soon there will also be a

Technology Plug-ins: Adds support for CAD data I l | |
support for Force Feedback. ' A D

OxygenTM is built on top of Open GL OptimizerTM and supports a node-based approach for creat-
ing Interactive Visual Simulations. A set of nodes defining a wide range of behaviours (Interpola-
tors, sensors, etc.) and supporting many kinds of peripherals (Head Mounted Displays, Tracker-
systems, CyberGloves, Stereo-Sound, etc.) may be added to the simulation. Each node has a
number of fields containing information about it’s current state. By connecting the fields of differ-
ent nodes to each other, thus transferring information between them, desirable behaviours can be
obtained.

TR AFFPHANTIM>

3 SB G
sz
Bl

g AEIREINEE
B petaunwineon

Figure 1: Parts of the Oxygen GUL

OXYGEN FORCE FEEDBACK™

Oxygen Force Feedback ™ [4] is a technology plug-in to Oxy genTM that allows force feedback to
be added to simulations using the same node-based approach as described above. Graphic objects
in a scene can easily be given haptic properties, and parameters such as surface stiffness, friction,
etc., can be set at run-time in the Oxygen GUI. Oxygen Force Feedback ™ supports the PHAN
ToM™ device from Sensable Technologies, Inc. and is built on top of their GHoST™ SDK [3],
which provides a high-level API to PHANToM™

To add Force Feedback to a simulation, a Force Feedback scene is created in parallel to the graphic
scene. In the Force Feedback scene nodes can be added to support one or more PHANToM "™ de-
vices and haptic objects. Instead of adding transforms and geometries directly to the Force Feed
back scene, there are references to objects, or groups of objects, in the graphic scene. Using this
approach, haptics can be added to an existing simulation without recreating it, also allowing haptic
and non-haptic objects to be used simultaneously.

COMMENTS AND FUTURE WORK

Since forces have to be updated at a high and stable rate (roughly 1000 Hz) we have chosen to sep-
arate the graphic rendering from the haptic servo loop, using separate processors for the tasks. In
the first version of Oxygen Force Feedback ™ OxygenTM is run on a SGI machine, while the hap-
tics loop is run on a PC, with the processes communicating via a TCP/IP connection. Future ver-
sions will support other configurations (e.g. both processes running on-the same platform: SGI,
PC...).

Our future plans include adding Force Feedback support to some of our existing products, for ex-
ample Oxygen AssemblyTM, and to create new ready-to-use applications using Force Feedback.
New features can easily be added by creating new node-types in the Force Feedback module. Sup-
port for deformable objects and real-time collision detection between dynamic objects are examples
of possible extensions.

REFERENSES

[1] Massie, T. H. “Initial Haptic Exploration with the Phantom: Virtual Touch Through Point In-
teraction”, MSc Thesis, Department of Mechanical Engineering, Massachusetts Institute of
Technology. 1996.

[2] Prosolvia Clarus AB, Sweden. Product Definition Oxygen Base. Document Number PDF-
5148-1. 1997.

[3] Sensable Technologies, Inc. Cambridge, MA. “GHoST Software Developer’s Toolkit, API Ref-
erence”, Version 1.1, 1997.

[4] Prosolvia Clarus AB, Sweden. Product Definition Oxygen Force Feedback. Document Number
PDF-4021-1. 1997.

© Prosojvia Clarus AB 1997. OxygenTM, Oxygen Force FeedbackTM, Oxygen AssemblyTM and Oxygen Show-
room '™ are trademarks of Prosolvia Clarus AB. All other trademarks are the property of their respective companies.

THE HAPTIC WORKBENCH APPLIED TO PETROLEUM 3D SEISMIC INTERPRETATION
K V Nesbitt', B J Orenstein’, R J Gallimore', J P McLaughlin®

1 BHP Research - Newcastle Laboratories
PO Box 188 Wallsend NSW 2287 Australia
Email: gallimore.randall.rj@bhp.com.au

2 cSIRO Mathematical and Information Sciences
GPO Box 664 Canberra ACT 2601 Australia
Email: John.McLaughlin@cmis.csiro.au

1.0 INTRODUCTION

This paper is the result of work performed for
the ~Advanced Computing Applications
Project (ACAP) within the BHP Research
Advanced Systems Corporate Program. A
key role of ACAP is to evaluate emerging and
embryonic computing technologies through
the implementation of application test beds
identified to have a high business impact.

One of the computing technologies selected
for its potential to have a significant business
impact is Virtual Environments (VE).

An initial survey was undertaken to identify
relevant VE component technologies and to
determinecpotentlal centres of excellence with
whom ACAP could collaborate to progress
the technology evaluation and test bed
development. After an evaluation of these
centres it was decided to develop two main
test beds.

The first test bed is being developed with
“Collaborative Workbench” technology in
conjunction with the Virtual Environment
Technology Laboratory (VETL) at the
University of Houston, Texas. This project
will evaluate the potential of VE to support
collaborative geoscientific decision making.
The second test bed is being developed wit

“Haptic ~ Workbench” technology in
collaboration with the Commonwealth
Scientific and Industrial Research

O?anisation (CSIROé Mathematical and
Information Sciences, Canberra. This test bed
will evaluate the potential of displaying and
interpreting multi-dimensional geoscientific
data sets with the visual, touch and auditory
senses.

This paper details the hardware, software and
multi-sensory user-interface capabilities of the
Haptic Workbench platform. It describes
some initial demonstrations developed with
CSIRO for assisting interpretation of 3D
seismic data sets in the petroleum exploration

domain. In depth discussion of the technical
issues related to haptic rendering of the data
is presented in a related paper [7%

2.0 THE HAPTIC WORKBENCH

The primar{l goal of VE is to siEniﬁcantl
increase the communication bandwidt

between humans and computers. One of the
key drivers for VE is the development of
multi-sensory interfaces which support
natural human interaction.

Haptic interfaces enable manual interaction
with computer systems, receiving user
movements and feeding back tactile
information. This allows %or the touching,
feeling and manipulation of objects in a
virtual environment and can provide a sense
of immersion not possible with visual and
auditory feedback alone. The haptic sense is
used for both exploration and handling tasks.
Exploration tasks are mainly sensory in nature
and involve the extraction of object properties
such as shape, mass and texture. Senso
information is both tactile (sense of contact
and kinaesthetic (sense of position and
motion). Other receptors signal skin
temperature, mechanical and thermal pain as
well as chemogenic pain and itch. Handling
tasks are dominated by user motor actions
such as grasping and object manipulation.
These actions may include precision and
power tasks. Most haptic actions involve a
synergy of sensory explorations and motor
manipulation.

The Haptic Workbench [Figures 1, 2] is a
single-user, multi-sensory interaction
latform. It provides support for auditory,
aptic and stereographic visualisation. It was
developed at CSIRO Mathematical and
Information Sciences, Canberra and
incorporates the PHANToM™ force
feedback device [5] from Sensable
Technologies P% Inc. with a “Virtual
Workbench” [4] stereographic display

latform, developed at the Institute of System
gcience (ISS) of the National University of
Singapore [6]. Given that this conference is
cenfred on PHANToM™ tqchnolo%i', we
have assumed that its capabilities are already
understood by the audience and a detailed
technical description is obtainable elsewhere if
required. However, the “Virtual Workbench”
is described below.

3.0 THE VIRTUAL WORKBENCH

The “Virtual Workbench” was developed b

and is commercially available from ISS. It
uses standard Liquid Crystal Display (1.CD)
shutter glass technology to view images
generated on a normal monitor. Left and right
eye images are displayed sequentially to the
screen and synchronised with the glasses
which “shutter” vision to alternate eyes.
Because the alternating images are offset in
perspective this produces a stereographic
effect. LCD glasses are lightweight and non-
intrusive and as the images are rendered on a
monitor, they provide a relatively high
resolution display.

The workbench suspends a computer monitor
face down on a fibreglass frame, projecting
the image onto a mirror. Using the binocular

arallax generated with the LCD glasses, a

gD image is suspended in a virtual space

which corresponds to the user’s normal hand
position when seated at a desk.

In the Haptic Workbench force feedback can
be used to indicate contact with a surface and
hand location and orientation are calculated
directly from the mechanical linkages of the
PHANToM™, However, in the “Virtual
Workbench” interaction with the 3D space is
only provided through visual feedback of the
position and orientation of the hands (which
are determined by an electromagnetic
Polhemus™ [6] tracker and stylus) in the 3D
display. The virtual world is projected into a
space which is coincident with the user’s
hands. This provides a reach-in, high-
resolution, 3D environment which brings the
dislplayed model into the user's natural work
volume. It allows two-handed dexterous
manipulation but is less intuitive without the
haptic feedback.

Most applications being developed for the
workbench are from the medical domain.
However, many parallels exist between the
medical and petroleum exploration domains
since both involve large multi-attributed

volumetric data sets and modelling of
structure.

A C++/(34penGL software toolkit called
BrixMed™ is available to enable the
development of applications. This library does
rovide built-in support for left and right
anded tracking with a Polhemus device as
well as the necessary transformations to
invert the images being projected onto the
mirror. This inversion is necessary so that the
reflected image appears correctly oriented to
the user.

4.0 DEMONSTRATIONS

The demonstrations were developed to
provide input for a major decision point in the
development of test bed applications with the
Haptic =~ Workbench. ithout positive
feedback from BHP Petroleum geoscientists
(including geophysicists, geologists,
tg:trophysicists and reservoir engineers)

rther work on this test bed would not be
undertaken.

The strategy was to develop representative
applications for seismic interpretation in the
petroleum exploration domain;, demonstrate
these to the geoscientists and subsequently
capture their feedback.

Early experience with virtual environments
indicated that = users -~ have difficulty
understanding verbal or written descriptions
of the new models of interaction they provide.
To elicit useful feedback it was considered
appropriate for users to experience the new
interaction styles in a relevant application
area.

The demonstrations were ordered so as to
gradually introduce the concepts of haptics
and multi-modal interaction to the
eoscientists. In particular three key enabling
eatures of haptic force feedback were
demonstrated: '

1. The intuitive nature of spatial location in
3D models when combining touch and
visual modes. The ability to touch
surfaces, manipulate and navigate through
models is a natural way for users to
interact with objects in 3D space.

2. The ability to mimic naturally occurring
physical force models such as spring
dynamics and vibrations.

3. The ability to map complementary data
attributes to the haptic mode from multi-
attributed data sets. The aim is to prevent
overloading of a single sensory mode and

present greater information detail by
using synergy between visual, haptic and
auditory senses.

The “Orientation” demonstrations were
designed to introduce simple haptic concepts.
In the “Spheres” demonstration the ability to
feel solid spheres and touch 3D surfaces is a
compelling introduction to the realism created
by combining haptic and visual feedback. The
“Springs” demonstration allows the user to
manipulate a model of four spheres connected
by springs and experience the dynamic
behaviour of this physical model.
The “Single Plane” demonstration [Figure 3]
presents a vertical slice through a 3D
Eetroleum _seismic survey. A standard red-
lue amplitude colour map shows typical
horizon structures. Changes in amplitude are
mapped to force, with large gradients
requiring greater user effort to move between
them. This demonstration was designed to
assist the task of tracking along a single
horizon, as the user is restrained to specific
values in the data. The task of picking points
of interest in the data is mimicked by clicking
the button on the PHANToM™ stylus to
“drop spheres” which act as markers, While
the plane is visible in stereo the main aim is to
introduce the concept of using force feedback
for horizon following.

The “Triplanar”
force feedback for horizon following. The
stereoscopic display now provides a three
plane view of the seismic data with
orthogonal crossline, inline and timeslice
planes. It allows two different 3D data sets to
coexist in the volume. The user can show raw
amplitude on each plane and choose to view
semblance processed values on the timeslice.
The planes can be positioned in the volume by
pushing them to the desired location. The
entire volume can be selected with the left-
hand Polhemus tool and rotated. The user can
also perform 3D picking by “dropping
spheres” using the button on the
PHANToM™ stylus with the right hand.

The “Seeding Isosurfaces” demonstration
[Figure 4] uses a similar triplanar display but
introduces the concept of generating
isosurfaces. These surfaces correspond to
volumes within the 3D data with like
amplitudes. In this case semblance processed
timeslice data is used to automatically
generate faulting structures after the user
selects a single point on the fault. Once the
structure is picked, the user can then feel the

demonstration also uses .

fault as a discontinuity or force barrier when
tracking along an intersecting horizon.

5.0 FEEDBACK FROM
GEOSCIENTISTS

As a result of positive feedback from BHP
Petroleum staft the following application
areas were identified as having the potential
to be impacted by Haptic Workbench
technology:

1. Evaluating hydrocarbon migration paths
in 3D. Analysis of migration paths is an
inherently 3D problem and involves

“understanding complex vector flow
models within the interpreted geological
structures of a prospect area. Cost of
exi)loration wells can range from $10-40+
million. This application would provide a
confirmation step before exploration
drilling proceeded. There is a natural
mappm% of flow vectors to a force vector
model. It could incorporate a 3D lithology
model for visual feedback and is relevant
in all geographic locations of exploration,
especially where complex geology is seen
such as deep water in the Gulf of Mexico.

2. An integrated 3D seismic interpretation
and reservoir modeling tool would be an
extension of the inttial demonstration
work. The intent would be to integrate
down_stream reservoir models back into
seismic data to improve quality of

interpretation. ~ This could involve
integrating velocity components,
lithology, porosity, density, stacking

velocity, flow characteristics and reservoir
characterisations. There are other multi-
attributed and derived data sets which
originate from gravity, magnetic,
electromagnetic and seismic surveys with
which the quality of interpretations could
be improved by utilising the multi-sensory
support of the Haptic Workbench.

3. Support for the petrophysical task of
examining bore hole and core measures
could also be provided. A large amount of
data is collected through borehole
measures or obtained from examining
cores. This includes core scans such as
CAT, X-ray and sidewall scans such as
acoustic. Well-log data is collected on
Borosny, mineralogy and fracturing.

orehole imaging 1s also performed.
These data sets are often oriented
cylinders of data but are examined in 2D.
here are a number of extra data

attributes which could be explored
haptically, overlaid on an image of the 3D
core. Interpretation comments could be
captured and tied to locations_ like 3D
ost-it notes. Again this application could
e integrated with reservoir and seismic
models to improve overall reservoir
characterisation.

4. Further downstream in the exploration
value chain are applications such as
Eipeline routing. Haptics could be used to

elp investigate the best route to shore for
an undersea gipeline The sub-sea surface
may be soft and lead to sagging or
‘actively shedding which can also damage
Eipelines. Shallow sub-surface gas also

as potential to damage pipelines during
blow-outs. By mappin% dip-vector data to
vibration, routers would be discouraged
from laying pipes in unstable regions
while they concentrated on minimising
overall pipeline length.

Other suggested applications for haptic
feedback n production engineering involve
develolaing general CAD support, for
example object collision detection for model
design and evaluation.

Additional feedback on the Haptic
Workbench was also obtained from BHP
Minerals. Some applications in this domain

include: cﬁscn'minatin values in aeromagnetic -

images; improved dynamic range of data
display by usin higher resolution haptics to
“visualise” exploration data, and DC leveling
in geophysical line data.

6.0 OUTCOMES

The major outcomes are as follows:

1. Develop a number of demonstrations of
haptic workbench technology selected
-from the candidate domains slscussed in
section 5.0.

2. Demonstrate the technology to a broad
range of BHP staff to determine its
relevance and potential impact outside of
the petroleum and minerals exploration
domains.

7.0 ACKNOWLEDGMENTS

This work was supported by the Advanced
Computing Applications Project (ACAP) at
BHP Research, Newcastle Laboratories,
Australia. We wish to acknowledge the
invaluable efforts of our collaborators at
CSIRO Mathematical and Information

Sciences, Canberra and in particular John
McLaughlin ~ who implemented the
q_rotot es. We thank Nick Hoffman and
erry Pritchard from BHP Petroleum for their
suggestions and encouragement. We also
thank Peter Littlejohn g orporate General
Manager, Corporate Information Systems,
BHP) and Gus Ferguson (Chief Technologist,
Corporate Information Systems, BHP) for
their support as program and project
champions, respectively.

8.0 REFERENCES

[1] Bishop, G. et al. "Research Direction in
Virtual Environments.", Computer
Graphics, Vol 26, No3, ppl353-177,
August 1992

[2] Durlach, NI, Mavor, AS. Virtual
Reality.” Scientific and Technological
Challénges. National Academy Press,
Washington, DC. 1996.

[3] Sensable Technologies Inc.
http://www.sensable.com/

[4] Poston, T and Serra, L, "The Virtual
Workbench: Dextrous "
Proceedings ACM VRST'94, 111-122
(1994).

[5] Massie, T and Salisbury, JK. "The
PHANToM Haptic Interface: A Device
for Probing Virtual Objects," .
Proceedings ofthe ASME Winter
Annual Meeting 295-302 (1994).

[6] Polhemus Inc.:
http://www.polhemus.com/

(7] McLapgRlin, JP and Orenstein, BJ,
"Haptic Rendering of 3D Seismic
Data," The Second PHANToM User's
Group Workshop Proceedings (1997).

Figure “The Haptic Workbench. Looking through

stereo glasses into a mirror reflecting a computer -

screen display, the user perceives a virtual object in a
work space within hand's reach. One reaches in, holds
a tool physically where it appears virtually, and uses it
to manipulate a virtual object, in a natural hand-eye
coordinated way as one would when handling real
objects.

Computer Screen

\ stereo
glasses

Figure 2: The layout of the haptic workbench. The
stereo image is created using shutter glasses. A left and
right image is alternatively displayed by the monitor
and reflected from an angled mirror to create the
illusion of an object in the space below the mirror. The
haptic device which is positioned to coincide with this
same space can be used to feel and manipulate the 3D
objects displayed.

Figure 3: The “Single Plane” demonstration showing a
vertical slice of amplitude data from a 3D petroleum
seismic survey. Changes in amplitude are mapped to
force allowing the user to track along horizons. Points
of interest are marked by dropping a sphere. As this is
repeated through slices in the volume the spheres can
be linked to create a surface. This surface would
correspond to a horizon of interest to the interpreter.

Figure 4: The “Seeding Isosurfaces” demonstration
uses a triplanar display and shows an automatically
picked fault surface. These surfaces are generated from
the semblance processed timeslice. Using the
PHANToM™ the user can move along a horizon in one
of the vertical planes. Where the horizon intersects a
fault surface the user feels a force barrier.

Haptic Rendering of 3D Seismic Data

J P McLaughlin® B J Orenstein®

1CSIRO Mathematical and Information Sciences
John.McLaughlin@cmis.csiro.au

2BHP Research

gallimore.randall.rj@bhp.com.au

Abstract

Understanding the terabytes of data produced from offshore seismic surveys
is an expensive bottleneck for the petroleum industry. The state of the art cur-
rently involves viewing the data in section and as a volume at various levels
of interactivity. This paper introduces a method of haptic interaction that
overcomes the interactivity constraints of visual methods and provides new
opportunities for insight. Forces are calculated directly from the seismic vol-
ume data that allow the user to feel features that may be too subtle for visual
identification, or occluded by other visual data. A prototype application for
the Haptic Workbench [4] allowing haptic and visual interaction with multi-

attributed seismic data is described.

1. Introduction

The purpose of this project was to investi-
gate the relevance of haptic devices to the
activities of the petroleum industry. Three
dimensional seismic data was identified as
a likely target for useful haptic applica-
tions since the task of interpreting such
datasets is currently very time-consuming
and hence costly. A 3D visual/haptic
multi-attributed seismic volume viewing
prototype was developed for the purposes
of a scenario demonstration to practising
geoscientists from BHP Australia. It inves-
tigates several forms of haptic interaction
both with the seismic data itself, and with
the visual cross-section planes.

The platform used for this project was the
Haptic Workbench [4] (figure 1) a hard-
ware system under development at CSIRO
Mathematical and Information Sciences in
Canberra, Australia. It consists primarily
of the Virtual Workbench [2], the PHAN-
ToM force feedback device [1], a Silicon
Graphics workstation and software librar-
ies developed to support the integrated
hardware.

FIGURE 1. JPM at the haptic workbench.

The most significant feature of the Haptic
Workbench is the co-location of the haptic
and visual models. In figure 1, the user is
sculpting a “ball of clay” that appears to be
floating in space at exactly the same place
that he feels it to be with his hand. Co-
location allows exploitation of human pro-
prioception [5], the sense of the position
and orientation of one’s body and limbs.
The user operates on the model (sculpts
for example) with their dominant hand
(left for JPM) and can re-orient and posi-

tion the model with their non-dominant
hand using a (non-haptic) Polhemus mag-
netic tracking device.

2. Seismic Data

Offshore seismic data is collected in large-
scale operations using survey vessels troll-
ing hydrophones (figure 2) . The hydro-

FIGURE 2. A seismic survey vessel.

phones record time-traces of the responses
from the seismic explosions, thus building
up a grid of scalar voltage values. This
data is then cast onto a regular grid using
GPS fixes of the hydrophone positions.
The result is a sequence of 2D data files
containing floating-point values at each
point on the grid. For use within this
project, the files were quantised into the
range 0-255 after viewing the histogram
and choosing an appropriate minimum and
maximum bound. This data was stored as a
sequence of 8-bit SGI image files. These
will be referred to as amplitude data.

Also provided in the same file format was
a derivative dataset referred to as sem-
blance [6]. These data provide a measure
of the local continuity of the amplitude
data and are used primarily for identifying
faults (slippages) in the sediment which
are critical to the interpretation process.

3. Haptic Volume Rendering

Three dimensional seismic datasets differ
from volume datasets previously used in
haptic rendering (volume based [3] or oth-
erwise) in that they do not define solid
shapes. Rather they suggest cloud-like
structures with ill-defined boundaries.
Also, consideration must be given to meth-
ods for rendering multi-attributed vol-
umes simultaneously. As in [3], a gradient-
descent method was used to generate
forces from a single attribute. We define a
voxel to be the cubic element of the vol-
ume possessing a single value of a single
attribute (amplitude or semblance) and
grid points to be the infinitesimal corners
of the voxels.

We first associate with each grid point a
gradient vector approximating the direc-
tion and magnitude of the attribute’s first
derivatives with respect to x, y and z. This
is calculated from the attribute values in
the immediately adjacent voxels (figure 3).
This array of gradient vectors is pre-com-
puted at start-up time to reduce computa-
tion during the haptic servo loop.

0.4 0.9

0.0 0.7

(a) (b)
FIGURE 3. 2D analogy of gradient
calculation. The 3D case follows trivially.

(a) Diagonal component vectors associated
with each of the neighbouring voxel values.
(b) The sum of these components representing
the gradient vector for this grid point.

During the servo loop we first identify the
voxel that contains the PHANToM posi-
tion. We then derive a gradient vector
through tri-linear interpolation of the 8
corner grid points. This gradient vector is
then scaled appropriately to give a force in
Newtons.

4. Multi-Attributed Haptic
Volume Rendering

Having calculated a force A for the ampli-
tude data and S for the semblance data,
there are several ways these forces could
be combined to provide a unique mode of
interaction with the seismic volume. The
most obvious is a scaled sum

F = aA +5S

Another is the vector cross-product.
F = cAXS

It is not clear whether the cross product
would make any sense to the user for this
pair of attributes, therefore the scaled sum
was used. In order to choose appropriate a
and s for this equation it is important to
understand the meaning of the two forces
AandS.

The amplitude force A guides the PHAN-
ToM along seismic reflectors which are
large horizontal regions of minimum
amplitude and are of particular interest to
the interpreter. They are visually repre-
sented as red regions in the volume. The
user feels the pen being constrained to the
reflector to a degree proportional to the
strength of that reflector. If the user pushes
hard enough in a vertical direction, the pen
will pop out (and possibly into another
reflector).

The semblance force S attracts the PHAN-
ToM to regions of low continuity (indica-
tive of faulting) and is a fairly sparse force
field (it is negligible most of the time).
When combined with amplitude forces a
repulsive, rather than attractive, force was
appropriate. This provides an intuitive
feeling of barriers or walls where faulting
is evident in the data. The equation used
for the combined force mode is

It is, of course, also possible to just feel the
amplitude or semblance forces in isolation.

5. Other Haptic Interactions

The seismic data can be rendered visually
in full-volume mode with control over
transparency. This mode allows viewing
the red reflectors as horizontal clouds in
space. However this technique causes a
low frame-rate which is particularly unde-
sirable in that it lags behind the haptic ren-
dering which runs at 1kHz. An alternative
is to render the volume with 3 orthogonal
cross-sections, known as inline (the direc-
tion the survey vessel travels in), crossline
(orthogonal to inline) and time (vertical).
The inline and crossline sections bear
amplitude data and the time-slice section
bear semblance data. This is quite accepta-
ble since geoscientists are already very
familiar with viewing these types of sec-
tion with conventional seismic data soft-
ware.

An intuitive method of changing the posi-
tions of the cross-section planes is
required. We present 3 different methods
as follows. B

1. Clicking and dragging to set the inter-
section point of the 3 cross-sections.
This method is simple, however it
requires the user to move all 3 planes at
once when they usually only wanted to
move one. Also, we wish to reserve the
clicker function for interpretive tasks
(see below).

2. Constrained movement. The PHAN-
ToM is constrained to move within the
plane of the cross-section. If the user
pushes above a threshold force in an
orthogonal direction, the plane will start
moving in that direction (static fric-
tion). This method allows the PHAN-
ToM to move around within the plane
clicking to perform an interpretation
and pushing in and out to re-position
the plane.

3. Plane pushing. The PHANToM can
move unrestricted within the volume
but when pushing up against a cross-
section plane, it feels static resistance.

If pushed hard enough the plane will
move away from the PHANToM (static
friction). To pull the plane back towards
the user, the PHANTOM has to be
twisted around slightly to push the
plane back from the other side.

Method 3 is the most effective for users
since it allows free movement within the
volume and is more intuitive since it
closely resembles real-world positioning
tasks. However all 3 methods are available
1o the user as options.

6. Interpretation

A simple interpretation capability is added
to the prototype to complete the demon-
stration scenario. The task is to “drop
spheres” in space to represent points, then
create triangles joining these spheres to
form a surface. The following modes allow
the user to do so without switching modes
or using more than the PHANToM’s single
clicker.

« Clicking close to an existing node initi-
ates dragging of that node. A small
inertial effect is added to dragging to
provide stability.

o Otherwise clicking and dragging initi-
ates triangle creation by highlighting up
to 3 nodes that the PHANToM passes
close to during the drag. When the
clicker is released a triangle is created
between the highlighted nodes. This
allows the user to “click and wave” at
the 3 nodes of the desired triangle, then
release to create the triangle.

e Otherwise clicking and releasing pro-
duces a node (small sphere).

Thus the user can push the cross-section
planes, feel and view the seismic data
either in amplitude, semblance or com-
bined modes, re-orient the volume (with
their non-dominant hand) and create an
interpretation surface all at the same time
and without switching modes.

Finally a marching cubes isosurface con-
struction capability is added. The proce-
dure is to click on a seed point from which
a constant-value surface is then grown,
often forming a closed envelope. This fea-
ture is useful for quickly sketching sem-
blance features such as faults and can be
used as an annotation while the semblance
data is not visible.

7. Conclusion and Future
Work

While feeling semblance data (faults) as
barriers it is possible to differentiate
between ambiguous visual features. For
example, some breaks in the visual red
reflectors are due to aliasing artifacts, and
some are real faults. By running the
PHANTOM through this area one can
immediately differentiate without clutter-
ing the visual field. Unlike graphic models,
haptic models are rendered locally (at the
pen position) which potentially allows a
much higher resolution than in graphic
models. The combined force mode was
found to be extremely effective in convey-
ing more than one seismic attribute at
once.

Allowing the cross-sectioning planes to be
pushed around with a static coefficient of
friction was found to be very intuitive. Par-

‘ticularly so in comparison to other pack-

ages that require numeric entry or picking
and dragging with non-haptic input
devices.

Work is continuing through BHP Research
on application of the Haptic Workbench to
related tasks in the petroleum industry.

8. Acknowledgements

The authors would like to thank Kevin
Smith, Duncan Stevenson (CSIRO), Keith
Nesbitt, Randall Gallimore and Lawrence
Leung (BHP Research) for useful discus-

sions with respect to this paper and the
work in general. In particular Don Bone
for his insights into force combination
(e.g. feeling faults as barriers), the con-
strained plane mode and for reviewing this

paper.

This work was conducted at CSIRO Math-
ematical and Information Sciences in Can-
berra, Australia within the Virtual
Environments program of the Advanced
Computational Systems CRC [7] under
funding from and in collaboration with the
Advanced Computing Applications
Project within the BHP Research
Advanced Systems Corporate Program.

9. References

1. T Massie and J K Salisbury, “The
PHANToM Haptic Interface: A Device
for Probing Virtual Objects,” Proceed-
ings of the ASME Winter Annual Meet-
ing 295-302 (1994).

2. T Poston and L Serra, “The Virtual
Workbench; Dextrous VR,” Proceed-
ings ACM VRST’94, 111-122 (1994).

3. Ricardo S. Avila and Lisa M. Sobiera-
jski, “A Haptic Interaction Method for
Volume Visualization,” The First
PHANToM User’s Group Workshop
Proceedings (1996).

4. K N Nesbitt, B I Orenstein, R J Galli-
more and J P McLaughlin, “The Haptic
Workbench Applied to Petroleum 3D
Seismic Interpretation,” The Second
PHANToM User’s Group Workshop
Proceedings (1997).

5. M R Mine, F P Brooks, C H Sequin,
“Moving Objects In Space: Exploiting
Proprioception in Virtual-Environment
Interaction,” SIGGRAPH 97 Confer-
ence Proceedings (1997)

6. R E Sheriff, “Encyclopedic Dictionary
of Exploration Geophysics, Third Edi-
tion,” Society of Exploration Geophysi-
cists, pp264.

7. The Advanced Computational Systems
CRC Virtual Environments Program
http://acsys.anu.edu.au/
Programs/VE.shtml

A NOVEL VIRTUAL REALITY SURGICAL TRAINER WITH FORCE FEEDBACK:
SURGEON VS. MEDICAL STUDENT PERFORMANCE

O'Toole, R.'?, Playter, R.!, Blank, W.', Cornelius, N.", Roberts, W.', and Raibert, M.

1. Boston Dynamics Inc., Cambridge, MA, USA.
2. Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA.

INTRODUCTION: We have developed an interactive virtual reality (VR) surgical trainer with
force-feedback to simulate the anastomosis of vessels (See Figure 1). The VR surgical trainer
assesses skill level during a simulated surgical procedure. The virtual surgical performance is
evaluated based upon measures of damage to the tissue, needle technique, and other dynamic
parameters. An initial experiment has compared the performance of surgeons and medical
students on a simulated surgical task. We found that on average the surgeons performed better
than the medical students.

Figure 1. The virtual reality surgical trainer lets you see, touch, and feel simulated organs using

3D computer graphics and advanced force feedback technology. Using a needle holder and forceps
attached to force feedback devices, the user can grasp, poke, pluck, and suture flexible tube organs. The
user can feel the vessels when touched and the vessels move realistically in response to touch. The
surgical station uses a mirror arrangement to place the 3D image of the patient in the correct position
relative to the user. This system allows the user to control a virtual needle and thread to perform a
simulated end-to-end anastomosis.

CLINICAL RELEVANCE: Virtual reality simulations hold the potential to improve surgical
training in a manner analogous to its impact on the training of pilots. The advantages of VR for
surgical training include a reduction in operating room time required for training, the
quantification of trainees’ performances, and an ability to provide experiences independent of a
hospital's limited patient population. An interactive virtual reality surgical trainer could improve
the training of surgeons and also play a role in the accreditation process.

METHODS: We conducted an experiment to compare the performance of medical students and
vascular surgeons using the VR surgical trainer. Both groups were given the task of repeatedly
inserting a curved needle through a simulated vessel. Twelve Harvard Medical School students
and nine vascular surgeons from five Boston area hospitals participated in the study. We tracked
eight parameters during the study: 1) tissue damage, 2) accuracy, 3) peak force applied to the
tissue, 4) time to complete the task, 5) surface damage to the tissue, 6) total tool movement, 7
average angular error from an ideal needle path, and 8) an overall error score. The users were
given visual feedback regarding their performance after each trial of the experiment.

RESULTS: The surgeons tended to outperform the medical students by having less tissue
damage (See for example Figure 2). The surgeons' average performance scores were better than
those of the medical students for all of the measured parameters (See Figure 3). These
differences were statistically significant (p<0.05) for: damage to the tissue, time to complete the
task, excessive tool motions, proper angle of the needle, and overall error score.

Average Tissue Damage vs. Trial Number

—¢—Medical Students (n=12)

- Syrgeons (n=9)

Tissue Damage [N s/ stitch]
NS

Trial Number

Figure 2. The average tissue damage values are plotted versus the trial number in the experiment. Tissue
damage is defined as the sum of forces that exceed a tissue damage threshold.

Virtual Reality Surgical Performance:
Medical Students vs. Surgeons

Performance Error Score

Tissue Damage

Surface Damage

Excess Time

Accuracy Error

Excess Too! Motion

Angle Ereor B Medical Students|-

Pesak Force

0 02 04 06 08 1 12 14 16 18

Average Perforamnce
{Normalized to Surgeons’ Average Score)

Figure 3. The bar chart displays the average medical student and surgeon performances for the simulated surgical
task. The values have been normalized to the average surgeon values. The surgeon values were better than the
medical student values for all eight of the metrics. Five of the differences (performance error score, tissue damage,
excess time, excess tool motion, and angle error) were statistically significant (p<0.05).

CONCLUSIONS: We have developed a VR trainer that tests a user’s technique in placing a
needle through a simulated vessel. An initial experiment has compared the simulated surgical
performance of medical students and vascular surgeons. On average, the surgeons outperformed
the medical students in the 8 parameters that were measured (statistically significant for 5 of the
parameters) . These results suggest that the VR surgical trainer may be useful in quantifying
surgical skill.

REFERENCES: [1] Playter, R., and Raibert, M., A Virtual Surgery Simulator Using Advanced
Haptic Feedback, Journal of Minimally Invasive Therapy, To Appear, 1997. [2] Satava, R. M.,
Medical Virtual Reality, The Current Status of the Future. S. Weghorst, H. Siegurg and K.
Morgan Eds., Health Care in the Information Age. [OS Press, Amsterdam, pp. 542-451996. [3]
Higgins, G., et al., New Simulation Technologies for Surgical Training and Certification:
Current Status and Future Projections, Presence, 6 (2), pp. 160 - 172, 1997. {4] Satava, R. and
Jones, S., Virtual Environments for Medical Training and Education, Presence, 6 (2), pp. 139 -
146, 1997.

Some Calibration Information for a PHANToM 1.5 A.
Karl Reinig, Ryan Tracy, Helen Gilmore, Tom Mahalik

University of Colorado Center for Human Simulation

Abstract

At the University of Colorado’s Center for Human Simulation (CHS) we have been
building fundamental tools for interacting both graphically and haptically with anatomical
models derived from the Visible Human (and similar anatomic) data sets. We are also
beginning a study of knee alignment that will require flexible and accurate 3-D '
measurements. This paper tells of a recent effort to turn our PHANToM 1.5 A into an
accurate 3-D measuring device.

Introduction

The PHANToOM has been an integral part of the various surgical simulator prototypes that
we have built over the last two years. These prototypes include needle insertion, surgical
cutting, dental, and ophthalmic simulators. In each, the feel of interacting with the virtual
tissue seems at least as important as the visual cues. The high resolution of the PHANToM,
both in force and position, make it ideal for creating the subtle differences in tactile
response required of the simulators.

Our mission has recently expanded to include measuring relevant landmarks (as they move)
of pathologic joints in an attempt to help orient the surgeon in the operating room. There is
a lot of preliminary work to be done and a device that can digitize with sub-millimeter
accuracy across a workspace the size of the PHANToM 1.5 would be very handy.

SensAble Technologies I/O library makes it easy to receive 3-D positional information from
the PHANToM. However, the accuracy of the position reported by our PHANToM
through its I/O library is not as good as a device with such high resolution and repeatability
could be. We found that measurement along a single axis could be off by more than 3/4
inch across the workspace. This is not generally a problem in haptics since accuracy is
rarely an issue.

We decided to see if we could generate a correction grid for the PHANToM that would
give us sub-millimeter accuracy across its workspace. This would then be used to give us
an accurate 3-D digitizer, as well as improve the accuracy of our simulations.

Assumptions

Without delving into the encoders or the transforms that take their measurements to 3-D
space, we make the following assumptions: 1) Locally, the encoders and transforms can
resolve to far less than .1 mm. 2) The current errors of the PHANTOM are repeatable to
below .1 mm. 3) As long as the PHANTOM is reset in the same neutral position, its
motors may be swapped, cables replaced, etc., without changing the repeatability of the
errors to within .1 mm. In fact, it would seem that the correction grid that we are
attempting to create could be used on any other PHANTOM 1.5 A Our .1 mm assumption
is rather arbitrary. It simply means that we assume the error is less than other errors which
will be introduced during our measurements.

Experimental Setup

The ideal setup would compare a known accurate 3-D measuring system with
measurements from the PHANToM at uniform grid coordinates spanning the PHANToM
workspace. The result would be a grid which can be sampled and interpolated directly by
the PHANToM. Unfortunately we do not have access to an accurate 3-D measuring device.
Instead, we placed the PHANTOM next to a 2-D numerically controlled table. For the third
dimension we clamped a straight edge (ruler) perpendicular to the plane of the two
controlled axes. The task then became to drive the PHANToM tip to a grid coordinate and
move the numerically controlled table until the tip touched the upper right edge of the ruler.
Measurement of two axes then came directly from the table’s digital readout. The third
dimension was measured by eyeballing the tip with the ruler.

We wrote a simple program which expands 3-D integer coordinates into PHANToM
coordinates spread 100 mm apart. Our first attempt to use 50 mm increments
(approximately 300 measurements) resulted in blurry eyes and unpredictably unreliable
readings. The PHANToM was tied to the coordinates by a simple spring model. Each new
input coordinate was “phased in” over 20000 cycles (approximately 2 seconds). The haptic
was essentially transformed into a traditional position seeking robot. The PHANToM tip
could then be driven to each grid coordinate within its workspace.

To be used as a measuring device it is important that the PHANToM be initialized in as
close to the same orientation as possible. Our machine shop built an aluminum *“arm” which
reaches from the base of the PHANTOM to its gimbal when the gimbal is in the neutral
position. Pushing the gimbal against an interior three-sided corner completely fixes its
state.

After initializing the system, we removed the gimbal and replaced it with a measuring tip
whose length was adjusted to place the tip at the normal intersection of the gimbal
encoders. This resulted in a small area of contact between the PHANToM and the ruler and
removed the gimbal from the measurements.

Driving the PHANToM beyond its work envelope is an inefficient and short-lived method
of heating a room. Our software allowed us to move the PHANTOoM tip by hand when
nearing a grid point on the edge of the workspace. This allowed us to be assured that the
point was reachable before making it the set point for the PHANTOoM tip.

Sources of Error

The setup described above injects at least the following errors into the correction grid:
Inaccuracy of the NC table, ruler reading resolution, the difference between the ordered and
actual haptic position, and initialization of the neutral position. We assume the accuracy of
the NC table to be considerably better than one tenth millimeter. We have no way of
checking this directly but the “etched glass™ system maintains a reading accurate to
5/10,000 of an inch regardless of how it got there. It is the same table used to create the
Visible Human data. The ruler resolves to 1/64th inch. Measurements were made to the
nearest tick introducing at least 1/128th inch error or roughly .2 mm. If the person
counting the tick marks were to be off by one, the error would jump to .6 mm. The
PHANToM was nearly neutrally weighted throughout its workspace. We monitored the
set point verses the reported PHANToM position. The components orthogonal to gravity
were always within .1 millimeter of their set point. The other component (the y
component) never varied more than .16 millimeters from its set point.

The Correction Grid

We took measurements for 49 grid points spread uniformly (separated in each dimension
by 100 mm in uncorrected PHANToM Coordinates) throughout the PHANToM’s
workspace. To utilize the measurements we simply truncated the PHANToM’s perceived
location to determine a starting grid coordinate. The fractions truncated were used to create
a convex hull of weights for the 8 surrounding grid points. These weights were multiplied
by the measured values associated with the grid locations to return a corrected PHANToM
position. This sort of algorithm is very fast and not likely to effect any of our haptics
algorithms.

Expanding the Correction Grid

Because of the low resolution of our grid a fair amount of the PHANToM’s work volume
was left outside the grid. In order to take measurements throughout the entire workspace
we augmented the grid points. This was done in a primitive way. We transformed the
measurements associated with each grid point from absolute coordinates to correction
values, i.e., the vector which should be added to the PHANToM’s perceived location to
make it agree with the measured value. Then working from the center out we identified
grid points which had not been assigned a measure and assigned to them the average of the
corrections of however many neighbors it had with assigned values. This completely
ignored any trends building along adjacent grid points, a likely place to improve the system
in the future.

Results

The correction grid created here may be downloaded from our web site,
http://www.uchsc.edu/sm/chs/haptics. The following table shows the truncated grid
location, the corrected PHANToM position, and the position as measued by our “ad hoc”
yet presumed accurate measuring system for a few points. All measurements were in
inches. The 1st, 3rd, and last row came from grid locations beyond the range of the
measured grid. The worst case appears to be the X axis of row 1, where the “Actual” and
corrected PHANToM Measurements differ by 0.1668 inches.

Truncated Grid Corrected PHANToM Meas “Actual” location

1 2 1 3.2898 4.1273 7.671 3.123 4,136 7.641
4 2 2 12.0297 4.126 9.4948 11.986 4.136 9.5156
6 2 0 22.4348 4.1166 2.6968 22.497 4,137 2.7344
5 2 0 18.872 4.134 3.828 18.842 4.137 3.8125
5 2 0 18.743 5.752 3.623 18.716 5.754 3.5940
4 3 0 15.7513 8.5060 4.5182 15.736 8.504 4.484
2 3 1 6.497 9.667 8.334 6.457 9.709 8.234
Conclusions

Our simple attempt at calibrating our model 1.5 A PHANToM resulted in apparent accuracy
of approximately .004 inches for each axis when the tip is within the calibration grid. Our
attempt to extrapolate beyond the grid using a simple averaging scheme was not as
productive as we’d hoped. A case was found at the extreme of the PHANToM’s
workspace in which one axis had an error of .1668 inches.

Nothing in our experiment indicates that we pushed the resolution or repeatability of the

PHANToM. Our intent is to continue to improve the effectiveness of our correction grid
until we achieve sub millimeter accuracy throughout its workspace. This can probably be
achieved by a combination of measuring more points near the edge of the workspace and
creating a more intelligent extrapolation of the grid.

DEVELOPING A PC-BASED SPINE BIOPSY SIMULATOR
Kevin Cleary* , Corinna Lathan**, R. Craig Platenberg***,
Kevin Gary****, Fred Wade*, Laura Traynor**

*Imaging Sciences and Information Systems (ISIS), Radiology Department,
Georgetown University Medical Center, 2115 Wisconsin Avenue, Washington, DC, 20007.
Email:cleary @isis.imac.georgetown.edu

**Biomedical Engineering, The Catholic University of America. Email: lathan@ pluto.ee.cua.edu
***MRI Center, Radiology Department, Georgetown University Medical Center

##4% Computer Science and Engineering Department, Arizona State University

1 INTRODUCTION

Surgical simulation is a rapidly expanding field that uses computer graphics to simulate surgical
procedures. Surgical simulators can be used for medical education and training, surgical
planning, and scientific analysis including the design of new surgical procedures. Surgical
simulators have the potential to revolutionize medical training in much the same manner that
flight simulators revolutionized aeronautical training. This paper presents a spine biopsy
simulator under development at Georgetown University Medical Center for training purposes.
The paper describes the spine biopsy procedure, presents the simulator system architecture,
discusses some software development issues, and details the training protocol.

This simulator project has been undertaken in cooperation with the radiology department and an
interventional radiologist. This project was chosen as a good starter application for investigating
surgical simulation, and represents an area of demonstrated clinical need. A related simulator
effort is at the University of Colorado [Reinig 1996], where a needle insertion simulator was
constructed to help train anesthesologists to do celiac plexus blocks. Other surgical simulator
efforts incorporating force feedback include Delp [1997], Gibson [1997], Playter [1996], and
Preminger [1996]. The key characteristics of these systems and several others are reviewed in
Cleary [in press].

A brief description of the procedure is as follows. In CT-directed biopsy, the patient lies prone on
the CT table, and an initial CT scan is done. The doctor then selects the best slice to reach the
lesion, and the entry point on the patient is marked. The skin is anesthetized over the entry site,
and the needle is placed part way in. Another scan is done to confirm the needle position, and the
procedure continues by inserting the needle further and rescanning as needed to verify needle
position. When the lesion is reached, a core sample is removed and sent for pathologic analysis.

2 SYSTEM ARCHITECTURE

A block diagram of the system architecture is shown in Figure | and includes the following
components: computer, computer software, image database, graphics card and display monitor,
and physical interface.

The image database is responsible for storing and managing the images used in the simulator. All
images are stored in the DICOM file format. DICOM stands for Digital Imaging and
Communications in Medicine, and it allows images to be exchanged between different medical

MONITOR

m Hﬂﬂﬂﬂ GRAPHICS CARD
o] (RealiZm 210)

—

(= Computer
=3 P

| (Intergraph TDZ-310)

il

PHYSICAL INTERFACE i
DICOM Medical Im
(PHANTOM, Torso) ¢ ical images)

COMPUTER SOFTWARE
(MFC, OpenGL)

Figure | Spine Biopsy Simulator Components

imaging modalities such as computed radiography (CR), computed tomography (CT), and
magnetic resonance imaging (MRI).

The computer is the brains of the simulator and handles tasks such as interfacing with the
operating system, servoing the force reflecting joystick, and refreshing the graphics display. The
system is an Integraph 310 unit with a RealiZm Z10 PCI graphics board running Windows NT
4.0. This system is a perfect candidate for a personal computer implementation since the
computing requirements are not that demanding and the graphics are two-dimensional. The
RealiZm Z10 is OpenGL based, has 12 megabytes of frame-buffer memory, and supports
resolutions up to 1 Mpixels.

The physical interface consists of a dummy human torso and a PHANToM force reflecting
joystick from SensAble Technologies. A photo of the physical interface is shown in Figure 2.

3 SOFTWARE DEVELOPMENT

The software is being developed using Microsoft Visual C++ 5.0 on Windows NT and Windows
95 computers. The following software libraries are used:

e Microsoft Foundation Classes (MFC) for the user interface

e OpenGL for rendering the images and graphics constructs

e BasiclO library for interfacing with the PHANToM

One goal of the software development effort was to make the software as portable as possible. In
particular, we might want to migrate the system to a Silicon Graphics Unix-based environment at
some point, particularly if we require complex 3-D graphics. Therefore, we initially looked only

at software libraries that were supported on both Windows *95 and Silicon Graphics platforms,

Figure 2 Physical Interface: Torso and Jovstick

such as Openlnventor'. However, Openlnventor provides only limited user interface elements, so
a decision was made to use MFC for the user interface. A properly designed user interface is
critical to the ease of use of the system, and MFC eases the coding task. If the software needs to
be migrated to the Silicon Graphics in the future, the user interface elements will need to be
rewritten, most likely using the X-Window/Motif libraries. However, since OpenGL was used
for the rendering and graphics constructs, this code will be portable to the Silicon Graphics.

The BasiclO library from SensAble Technologies is used to interface with the PHANTOM.
PHANTOM related data is encapsulated in a PhantomWrapper class, which wraps some of the
BasiclO C function calls in C++ methods. These methods include routines to initialize, start, and
stop the PHANToM device. Each of these routines are invoked in response to some user
interface action. A real-time log has also been developed, in which PHANToM positions and
forces for each servo loop iteration are stored in memory for some amount of time (limited by the
available memory of course). Then, when the PHANTOM servo loop is stopped, this log can be
written to disk for analysis. We have found this log essential for investigating how the
PHANTOM is actually responding during our simulation.

A screen capture of the user interface in its current state of development is shown in Figure 3.
The user can page up / page down through the CT slices. The vertical toolbar at the left of the
screen will be used to select the biopsy location and activate the joystick.

! Hup://www sgi.com/Technology/Inventor

Figure 3 User Interface

4 TRAINING PROTOCOL

The training protocol is designed to mimic the existing procedure as closely as possible. The
proposed procedure is as follows:

1. Subject starts training run by selecting a CT case from those available.

2. Subject pages through the CT slices and selects the best slice for accessing the biopsy
location. Feedback is given as to the correctness of the choice.

3. On the selected slice, subject chooses a skin entry point and biopsy location point. The
computer draws a line between these two points, and gives feedback on the suitability of
these choices.

4. Until this point in time, the subject has been working on the computer. The force
reflecting joystick is now turned on, and the subject moves to the torso for the remainder
of the procedure.

5. Subject inserts the needle and feels appropriate forces. The motion is also tracked on the
computer screen,

6. When the procedure is complete, subject is evaluated on how close the final position was
to the target point.

5 SYSTEM STATUS AND FUTURE PLANS

The initial version of the system software will be completed shortly. We have already begun
working with a radiology fellow to evaluate the system and the realism of the force feedback. At
the moment we are using simple algorithms to provide the force feedback, but we anticipate this

will be an area of substantial development in the future. The next step will be to perform training
tasks and evaluate the training effectiveness of the system. In the long range, we hope to extend
the technology developed here to investigate real-time image guided biopsy, including the use of
three-dimensional reconstructions in biopsy procedures.

ACKNOWLEDGEMENT

The authors would like to acknowledge the clinical input from Matthew Freedman of the ISIS
Center. Thanks are also due to Chin-Shoou Lin of the MRI Center for assistance in obtaining the
medical images. The authors appreciate the excellent customer support provided by SensAble
Technologies and software discussions with Walter Aviles and Chris Tarr of SensAble. This
work was funded by U.S. Army grant DAMD17-96-2-6004. The content of this manuscript does
not necessarily reflect the position or policy of the U.S. Government.

REFERENCES

Cleary, K., C. Lathan, R.C. Platenberg (in press). “Surgical Simulation: Research Review and
PC-Based Spine Biopsy Simulator”, to be presented at the 2" Workshop on Medical Robotics
(wwwipr.ira.uka.de/~iarp/) and published in the proceedings, Nov. 10-12, 1997, Heidelberg,
Germany.

Delp, S., P. Loan, C. Basdogan, et al. (1997). “Surgical Simulation: An Emerging Technology
for Training in Emergency Medicine”, Presence, Vol. 6, No. 2, pp. 147-159.

Gibson, S., J. Samosky, A. Mor, et al. (1997). “Simulating Arthroscopic Knee Surgery Using
Volumetric Object Representations, Real-Time Volume Rendering and Haptic Feedback”,
CVRMed-MRCAS, pp. 369-378, Springer-Verlag.

Playter, R., B. Blank, N. Cornelius, et al. (1996). “Integrated Haptics Applications: Surgical
Anastomosis and Aircraft Maintenance”, Preprints of The First PHANToM User's Group
Workshop, Sept. 27-30, Cambridge, MA.

Preminger, G., R. Babayan, G. Merril, et al. (1996). “Virtual Reality Surgical Simulation in
Endoscopic Urologic Surgery”, Medicine Meets Virtual Reality 4, pp. 157-163, IOS Press.

Reinig, K. (1996). “Haptic Interaction with the Visible Human”, Preprints of the First
PHANToM User’s Group Workshop, Sept 27-30, Cambridge, MA.

The Phantasticon

The PHANTOoM for Blind People

Carl Sjostrom, Ph D student
CERTEC, Center for Rehabilitation Engineering Research at Lund University,
Calle.Sjostrom @certec.lth.se

Abstract

This paper deals with CERTECs work to use haptics to provide a new way of using computers
for visually impaired people and people with physical disabilities. We have chosen to call the
concept "The Phantasticon”.

CERTEC has developed a set of programs for the Phantasticon. The programs are working
units themselves, as well as a basis for further development. We have developed a program for
making mathematics easier to understand, a tactile based battleship game and a painting program
with associated colors and structures for visually impaired people.

The work in progress is to gain more experience about haptic user interfaces for blind people
and to make the Windows environment accessible via haptics.

Introduction

Computers are becoming everyday technology for more and more people. Computers have
opened up many doors for disabled people, for example it is now rather easy for a blind person
to access written text. Any text in a computer can be read either with a one row Braille-display
or a speech synthesizer. This is done in real time and is of course much more flexible and less
space consuming than books with Braille-text on paper. There is a big problem though: Since the
introduction of graphical user interfaces computers are getting easier and easier to use for
sighted people, but GUIs has the opposite effect for non-sighted people. The many fast
accessible objects on a Windows desktop become a big mess for a user who can’t see them. And
if you don’t know what is on the screen it is almost impossible to control the computer.

This is where the haptic interfaces can be a good help. With the PHANTOM or a similar
device it is possible to feel things represented in a computer. CERTEC has developed a set of
programs that demonstrate different ways for a blind user to control a virtual reality with finger
movements and to get feedback via the sense of touch. One of the big tasks for the future is to
make the Microsoft Windows environment completely accessible through haptics. If you can
feel the START-button in the lower left corner etc. it is not only possible to control the
environment, but it is also possible to start speaking about how to do things since both sighted
and non sighted users have a common ground to start from.

CERTEC and the Phantasticon

CERTEC is working with the meeting between human needs and technical possibilities.
Normally we start with the human needs and develop technical solutions from that aspect.
Sometimes though it is motivated to start from the other side.

In this case we have used a technical solution which has been developed for other purposes

and modified it to correspond to the needs of a disabled person. We have turned the PHANToM
into the Phantasticon.

When the PHANToM and the CERTECS software are used to meet the needs of disabled
persons it becomes a complete system. This system is what we call the Phantasticon
(Fantomaten® in Swedish).

Software development for the Phantasticon

CERTEC is continuously developing programs for the Phantasticon. Our first steps with the
PHANToM have resulted in these programs:

Paint with your fingers

A program with which the user can paint computer pictures with a finger. One can choose a
color from a palette and paint with it on the screen. The harder you push with your finger, the
thicker becomes the line. Each color has an individual structure. When you are painting you can
feel the structure that is being painted. You can also feel the structure of the whole picture by
changing program mode with a simple click on the space key.

Mathematical curves and surfaces

People who try to explain mathematics for blind persons often notice that mathematics is a
partially visual subject. With the help of the Phantasticon also blind persons can learn to
understand equations as curves and surfaces. CERTEC has developed a program that makes it
possible to feel any mathematical curve or surface with the PHANTOM.

"Submarines”

"Submarines" is a PHANToM variant of the well-known battleship game. The player can feel
10x10 squares in a coordinate system. In the game your finger is a helicopter which is hunting
submarines with depth charge bombs. If you put your finger on the "water surface" you can feel
the smooth waves moving up and down. The surface feels different after you have dropped a
bomb, and it also feels different if a submarine has been sinked.

This computer game uses the PHANToM, the screen and the keyboard for the interaction
with the user. It also uses sound effects as most games do nowadays. "Submarines" is one of the
first computer games that can be played by a deaf blind person.

Work in progress

The big efforts at this moment are laid on developing a general user interface that is easily
accessible for blind people. As a test bench for haptic interface objects and at the same time a
haptic computer game we have developed Haptic Memory. The task for the user is to find pairs
of sounds that are played when the user pushes different buttons. The Memory program is a
good base to find out how different parts of a haptic interface should be designed to work as
good as possible for low vision users.

The Haptic Memory has also been expanded into "the Memory House”. The Memory House
is CERTECs "first steps towards a Haptic Operating System”. The Memory House is a bigger
haptic memory with five floors and five buttons on each floor. With this program we can gain
some experience about how blind persons can use haptics to build inner pictures of complex

environments. That knowledge is an important cornerstone when we start building the complete
haptic windows system or other haptic programs for visually disabled people.

"The Memory House” has been tested with
four children and five adults. All of them are
blind. A reference group of 21 children in the
age of 12 has tested a program with the same
function and layout, but with a graphical user
interface. Since the haptic interface has the same
layout as the graphical interface and both
programs work exactly the same except for the
way of interacting with the user it is possible to
compare the results of the blind users with the

results of the sighted users. All of the blind
testers had a little more than one hour of
experience with the phantom before the test
started.

The tests show that a majority of the blind users could complete the task using about as
many button pushes as the sighted users, but the blind users generally needed more time. The
differences in the results where bigger in the group with blind users and two of them did not
finish the task at all.

The results imply that it is meaningful to keep trying to make graphical user interfaces
accessible for blind people using haptic technology. Most of the blind users showed big
confidence when using the haptic interface even with the rather limited experience they had and
the differences in time will probably be lower after more training.

“The Memory House” has been programmed in C++ using Sensable’s GHOST toolkit.

Figure 1. The Memory House

”Touch Windows”

As mentioned in the introduction there is a big problem for non-sighted users that computer
nowadays mostly have graphical users interfaces. However, Windows and other graphical user
interfaces are widespread and accepted, so almost all new programs are made for those
environments. The good thing is that if one can make Windows accessible for non-sighted users
then almost automatically the Windows programs are accessible as well. That is why we have
started the "Touch Windows” project.

Our idea is that haptics with the PHANToM can provide the overall information and that
sound, speech synthesis and Braille-displays can provide the details of the interface. In this way
it is possible to use the same or at least similar interface metaphors for both sighted and non-
sighted users. People can work together and help each other and it doesn’t make a big difference
whether you see what’s on the screen or if you feel it, you get the same inner picture anyway.

Conclusions

One of the key elements in the process of learning is variation. This implies that an already
existing knowledge is a vital precondition for new knowledge. For a blind person, vital parts of
the experiences of the world around them are touch based from the very beginning. Thus, it is a
most exhilarating possibility to use the PHANToM for widening blind people's touch-based

experiences and learning outside an armlenght’s distance. So far, we have not come across any
unclimbable obstacles.

URLs for reference

http://www.certec.lth.se/index_e.html-ssi
http://www.certec.lth.se/research/projects/fantomat/phantasticon. html
CERTECs homepage and our page about the Phantasticon

Contact persons

Carl Sjostrom
Bodil Jonsson Ph D

CERTEC, Lund University
Box 118

S-221 00 LUND

Sweden

Tel: +46-46-222 46 95
Fax: +46-46-222 44 31

Second PHANToM User's Group Workshop
October 19-22, 1997

Attendee List

NAME: COMPANY EMAIL ADDRESS::

Abrahams-Gessel, Dartmouth College, gessel@cs.dartmouth.edu

Daniel Computer Science Dept.

Anderson, Tom Sandia National Laboratories tganders@u.washington.edu

Aulet, Bill SensAble Technologies, Inc. aulet@sensable.com

Aviles, Walter SensAble Technologies, Inc. aviles@sensable.com

Bardasz, Ted SensAble Technologies, Inc. tbardasz@sensable.com

Basdogan, Cagatay M.LT. basdogan@mit.edu
Research Lab. of Electronics

Ben-Ur, Ela M.IT., elabenur@mit.edu
Mechanical Engineering Dept.

Boatwright, Bill SensAble Technologies, Inc. bill@sensable.com

Brederson, J. Dean University of Utah, jdb@wiggy.cs.utah.edu

Dept. of Computer Science

Burgin, Jon Texas Tech University, jburgin@cs.ttu.edu
Computer Science Dept.

Cleary, Kevin Georgetown University, cleary@isis.imac.georgetown.edu
Medical Center
Dept. of Radiology

Cooke, Anne Fidelity Ventures Anne.Cooke@fmr.com
Davidson, Scott NAWC/TSD scott@rdvax.ntsc.navy.mil
De, Suvranu M.IT., suvranu@mit.edu

Mechanical Engineering Dept.
and Research Lab. of Electronics

De Angelis, Franco University di Parma, fda@ied.eng.unipr.it
Viale delle Scienze

Ernst, Marc Max-Planck-Institut marc.ernst@tuebingen.mpg.de
fuer biologische Kyberntick

Feldberg, Ian

Gallimore, Randall

Green, Donald

Green, Greta

Goldstein, Rich

Gorman, Paul

Grabowski, Nikolai

Gray, Steve
Halle, Mike

Ho, Chih-Hao
Harada, Masayuki

Hou, Alexandra

Jansson, Gunnar

Kasabian, David

Kasabian, Pam
Kobayashi, Hiromi
Kolarov, Krasimir

Larsson, Peter

Johns Hopkins University,
Computer Science Dept.

Newcastle Laboratories

M.IT,

Mechanical Engineering Dept.

SensAble Technologies, Inc.
SensAble Technologies, Inc.

Pennsylvania State University
M.S. Hershey Medical Center

University of Delaware
Electrical Engineering Dept.

DRK Advertising
M.LT. Media Laboratory

M.LT.

Mechanical Engineering Dept.

and Research Lab. of Electronics

Mitsubishi Electronic Corp.
Information Technology and

Research & Development Center

M.LT.

Mechanical Engineering Dept.

and Research Lab. of Electronics

Uppsala University,
Dept. of Psychology

DRK Advertising
SensAble Technologies, Inc.
Nissho Electronics Corp.
Interval Research Corp.

Prosolvia Clarus AB

Page 2

ief@aplcomm.jhuapl.edu

gallimore.rancall.rj@bhp.com.au

dfg@ai.mit.edu

gretag@sensabie.com
richg@sensable.com

pgorman@prs.hmc.psu.edu

grabowsk @ee.udel.edu

sgray@gray.com
halle @media.sensable.com

chihhao@mit.edu

haradam @ pif.isl.melco.co.jp

hou@ mit.edu

Gunnar.Jansson@psyk.uu.se

davek@drk.com

pamk @sensable.com
kbhiromi@kk.iij4u.or.jp
kolarov@interval.com

peterl@clarus.se

Lathan,

Latimer,

Maclean,

Massie,

Miller,

Corinna

Craig

Karon

Thomas

Timothy

McLaughlin,

Minsky,

Morgan,

Mufti,

Mukai,

Nagano,

Fritz

Yasser

John

Margaret

Nobuhiko

Yasutada

Nakajima,
Yoshikazu

Ottensmeyer,

Pai, Di

Playter,

nesh

Mark

The Catholic University of
America, Dept. of

Mechanical Engineering
M.IT.
Mechanical Engineering Dept.

Interval Research Corp.

SensAble Technologies, Inc.

Brown University,

CSIRO
Mitsubishi Electric ITA
Rochester University,

Dept. of Computer Science

Mitsubishi Electric Corp.

Information Technology and
Research & Development Center
Mitsubishi Electric Corp.
Information Technology and
Research & Development Center
Mitsubishi Electric Corp.
Information Technology and

Research & Development Center

M.LT.
Mechanical Engineering Dept.
University of British Columbia
Dept. of Computer Science

Rob Boston Dynamics, Inc.

Plesniak, Wendy

Reinig,

Ranta,

Karl

John

M.L.T. Media Laboratory

University of Colorado
Center For Human Simulation

SensAble Technologies, Inc.

Page 3
lathan@pluto.ee.cua.edu
lat@ai.mit.edu

maclean@interval.com
thomas@sensable.cbm
tsm@cs.brown.edu
John.McLaughlin@cmis.csiro.au
marg@media.mit.edu
morgan@merl.com

yasserm@cs.rochester.edu

mukai@isl.melco.co.jp

naganoy @pif.isl.melco.co.jp

y-nakaji@pif.isl.melco.co.jp

canuck@ai.mit.edu
pai@cs.ubc.ca

playter@bdi.com
wjp@media.mit.edu

karl@pixsun.uchsc.edu

jranta@sensable.com

Ruspini, Diego

Salisbury,
Kenneth

Seeger, Adam

Shaw, Rob
Sjostrom, Calle
Srinivasan,
Mandayam
Tarr, Chris

Temkin, Bharti

Verplank, Bill

Wendlandt, Jeff

Wu, Wan-Chen

Young, Peter

Page 4

Stanford University,
Dept. of Computer Science

ruspini@robotics.Stanford.edu

M.LT. jks@ai.mit.edu
Mechanical Engineering Dept.
and Artificial Intelligence Lab.

University of North Carolina, seeger@cs.unc.edu
Computer Science Dept.

Interval Research Corp. shaw @interval.com

Lund University, CERTEC Calle.Sjostrom@certec.Ith.se

M.LT.
Mechanical Engineering Dept.
and Research Lab. of Electronics

srini@mit.edu

SensAble Technologies, Inc. ctarr@sensable.com

Texas Tech University, temkin@ttu.edu
Dept. of Computer Science
Internval

Research Corp. verplank@interval.com

Mitsubishi Electric ITA wents@merl.com

M.I.T.
Mechanical Engineering Dept.
and Research Lab. of Electronics

wewu @mit.edu

Colorado State University,
Dept. of Electrical Engineering

pmy@engr.colostate.edu

