
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Technical Report No. 1627 March 1993

Implementing Distributed
Systems Using Linear Naming

Alan Bawden

alan@ai.mit.edu

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

Linear graph reduction is a simple computational model in which the cost of naming

things is explicitly represented. The key idea is the notion of linearity. A name is

linear if it is only used once, so with linear naming you cannot create more than one

outstanding reference to an entity. As a result, linear naming is cheap to support and

easy to reason about.

Programs can be translated into the linear graph reduction model such that linear

names in the program are implemented directly as linear names in the model. Nonlin-

ear names are supported by constructing them out of linear names. The translation

thus exposes those places where the program uses names in expensive, nonlinear ways.

Two applications demonstrate the utility of using linear graph reduction: First,

in the area of distributed computing, linear naming makes it easy to support cheap

cross-network references and highly portable data structures, Linear naming also

facilitates demand driven migration of tasks and data around the network without

requiring explicit guidance from the programmer.

Second, linear graph reduction reveals a new characterization of the phenomenon

of state. Systems in which state appears are those which depend on certain global

system properties. State is not a localizable phenomenon, which suggests that our

usual object oriented metaphor for state is
awed.

c
 Alan Bawden, 1993

The author hereby grants to MIT permission to reproduce and

to distribute copies of this thesis document in whole or in part.

2

Contents

1 Introduction 9

1.1 Linearity : 10

1.1.1 What is it? : 10

1.1.2 Why is it called \linearity"? : : : : : : : : : : : : : : : : : : : 12

1.1.3 Why is linearity important? : : : : : : : : : : : : : : : : : : : 13

1.1.4 Why not just use �-calculus? : : : : : : : : : : : : : : : : : : 15

1.2 Application to distributed computing : : : : : : : : : : : : : : : : : : 16

1.2.1 The state of the art : 16

1.2.2 A uni�ed approach : 18

1.2.3 Continuations and location transparency : : : : : : : : : : : : 19

1.2.4 The streaming problem, demand migration and tasks : : : : : 19

1.2.5 Results : 21

1.3 Application to the problem of state : : : : : : : : : : : : : : : : : : : 21

1.4 Outline : 23

2 Linear Graph Reduction 25

2.1 Linear graphs : 25

2.2 Linear graph grammars : 26

2.3 Graph expressions : 28

2.4 Modeling real systems : 29

2.4.1 Representing linear structures : : : : : : : : : : : : : : : : : : 30

2.4.2 Representing nonlinear structures : : : : : : : : : : : : : : : : 30

2.4.3 Representing objects with state : : : : : : : : : : : : : : : : : 32

2.4.4 Representing input/output behavior : : : : : : : : : : : : : : : 35

3 Compiling Scheme 37

3.1 Vertex types for the Scheme run-time : : : : : : : : : : : : : : : : : : 38

3.1.1 Objects : 38

3.1.2 Messages : 41

3.1.2.1 Operations : 42

3.1.3 Atoms : 43

3.1.3.1 Globals : 44

3.1.4 Futures : 47

3.2 Translating Scheme constructs : 48

3.2.1 BEGIN : 52

3

4 CONTENTS

3.2.2 IF : 53

3.2.3 FUTURE : 55

3.2.4 LETREC : 56

3.3 Optimization: simulation : 58

3.4 A real example : 62

3.5 Code generation : 68

3.6 Summary : 70

4 Maintaining Connections Across the Network 73

4.1 The contract of a link : 74

4.2 The link maintenance protocol : 76

4.2.1 Link maintenance data structures : : : : : : : : : : : : : : : : 77

4.2.2 Link layer communication : 78

4.2.3 Creating a new link : 78

4.2.4 Destroying a link : 78

4.2.5 Moving one end of a link : 79

4.2.6 Reclaiming link records : 80

4.3 Proof of correctness : 81

4.4 Examples : 83

4.4.1 There and back again : 83

4.4.2 Follow the leader : 84

4.4.3 Wandering around away from home : : : : : : : : : : : : : : : 85

4.4.4 Everybody leaves home : 86

4.4.5 Confusion reigns : 87

4.5 Analysis and possible improvements : : : : : : : : : : : : : : : : : : : 89

4.6 Summary : 90

5 Distributed Execution 93

5.1 Run-time modules : 93

5.2 Two examples : 97

5.2.1 The source code : 97

5.2.2 First example : 100

5.2.3 Second example : 105

5.3 Migration heuristics : 110

5.3.1 The heuristics : 112

5.3.2 The example revisited : 114

5.4 Summary : 116

6 State 121

6.1 What is state? : 122

6.2 The symptoms of state : 124

6.2.1 Symptom: nondeterminism : : : : : : : : : : : : : : : : : : : 124

6.2.2 Symptom: cycles : 125

CONTENTS 5

6.3 Locality : 128

6.3.1 Homomorphisms and local indistinguishability : : : : : : : : : 129

6.3.2 Methods : 130

6.4 Implications for programs : 133

6.4.1 The parable of the robot : 134

6.5 The object metaphor : 135

6.6 Summary : 136

7 Conclusion 139

7.1 Relation to other work : 139

7.1.1 Linear naming : 139

7.1.2 Graph reduction : 141

7.1.3 Distributed computing : 142

7.1.3.1 Explicit locations : 142

7.1.3.2 Location independent object names : : : : : : : : : : 143

7.1.3.3 Uni�ed naming : 143

7.1.4 Programming language semantics : : : : : : : : : : : : : : : : 144

7.1.5 The target/tail protocol : 145

7.1.6 Thinking about state : 145

7.2 Future research : 146

7.2.1 Linearity : 146

7.2.2 Linear graph reduction : 146

7.2.3 Programming languages : 147

7.2.4 Garbage collection : 148

7.2.5 Distributed computing : 149

7.2.6 State : 149

7.3 Contributions : 150

Bibliography 153

6 CONTENTS

List of Figures

2-1 A Linear Graph : 26

2-2 A Nonlinear Graph : 26

2-3 A Method : 27

2-4 A Copy tree : 31

2-5 A Car message in transit : 33

2-6 The Car message arrives : 33

3-1 Run-time vertex types : 39

3-2 The method for calling FACT : 63

3-3 The method for calling LOOP : 63

3-4 The method for when (< N 2) is true : : : : : : : : : : : : : : : : : : 65

3-5 The method for when (< N 2) is false : : : : : : : : : : : : : : : : : 65

3-6 The initial working graph for (FACT 2) : : : : : : : : : : : : : : : : : 65

3-7 Before the conditional test (�rst time) : : : : : : : : : : : : : : : : : 66

3-8 Before tree-climbing : 66

3-9 After tree-climbing : 67

3-10 Before the conditional test (second time) : : : : : : : : : : : : : : : : 67

3-11 Returning the result : 68

5-1 Run-time modules : 94

6-1 The method for calling EXPERIMENT : : : : : : : : : : : : : : : : : : : 126

6-2 A Linear Graph Homomorphism : 130

7

8 LIST OF FIGURES

Chapter 1

Introduction

Linear graph reduction is a simple computational model in which the cost of naming

things is explicitly represented. Names are costly because communication is costly,

and names govern the way computational entities communicate. Linear graph reduc-

tion can be used to model computational systems in order to expose the places where

those systems use names in expensive ways.

The key to the linear graph reduction approach to naming is the notion of linearity.

Brie
y, a name is linear if it is only used once. With nonlinear naming you can create

more than one outstanding reference to an entity, but with linear naming you cannot.

As a result, linear naming is cheaper to support than fully general naming, and it is

also easier to reason about.

Programs can be translated into the linear graph reduction model such that linear

names in the program are implemented directly as linear names in the model. Non-

linear names can be supported by constructing them out of the more primitive linear

names. We can choose to view this translation as either exposing nonlinearity, since

certain telltale structures are created by converted nonlinear names, or as eliminating

nonlinearity, since the model itself is entirely linear. In either case, once a program

has been translated into the linear graph reduction model, many problems which are

exacerbated by nonlinear naming become more tractable.

To demonstrate the utility of the linear graph reduction model, I applied it it

two di�erent areas. First, I used it to solve some practical problems in the con-

struction of a distributed programming environment. By taking advantage of the

properties of linear naming I was able to build a distributed programming environ-

ment in which cross-network references are cheap, and all data structures are highly

portable. Furthermore, the controlled linear naming mechanism facilitates the con-

struction of heuristics that e�ectively migrate tasks and data around the network

without requiring explicit guidance from the programmer.

Second, I used linear graph reduction to develop a new theoretical characterization

of the notion of state. System's in which state appears stand revealed as those which

depend on certain global properties of the system. What we normally think of as state

is merely the way this property is perceived by the observers embedded in the system.

State is not a phenomenon that can necessarily be localized, which suggests that our

usual object oriented programming language metaphor for state is
awed.

9

10 CHAPTER 1. INTRODUCTION

The rest of this chapter introduces the notion of linearity and the linear graph

reduction model and describes my two applications. Section 1.1 de�nes linearity

and some related notions. Section 1.2 summarizes the current state of the art in

distributed programming environments, and then describes how I used linear graph

reduction to solve some fundamental problems in that area. Section 1.3 explains how

I used linear graph reduction to investigate the origins of the phenomenon of state.

1.1 Linearity

1.1.1 What is it?

Linearity1 is a property of names. A name is linear if it is only used once. By

extension, things that use names, such as expressions and programs, are linear if all

of the names they use are linear. For example

(define (shorter? x y)

(< (length x) (length y)))

is a linear Scheme [RC92] procedure because X and Y are both used exactly once.

(For simplicity, assume that global identi�ers such as LENGTH and < are some kind of

constant, rather than being ordinary names.)

(define (length l)

(if (null? l) 0 (+ 1 (length (cdr l)))))

is nonlinear because L is used twice in the case where its value is nonempty. Note

that

(define (f l x)

(if (null? l) (x) (car x)))

is linear because X is only used once (because only one arm of a conditional or case

statement is ever executed). In other words, it isn't syntactic occurrences of a name

that matter, it is the number of times that the name must be resolved during execu-

tion.

An interpreter could be written that checks for linearity by keeping a count for

each variable in every environment. Initially, each count is zero. Each time the

value of a variable is retrieved, the associated count is incremented. If a count for

a particular variable ever exceeds one, that variable is a nonlinear name. Variables

whose count never exceeds one are linear names.

Notice that this de�nition of linearity has little to do with the familiar meaning

of \linear" from algebra.2 The procedure

1
Whenever I de�ne a new term I will set it in bold type.

2
But see the discussion in section 1.1.2.

1.1. LINEARITY 11

(define (discriminant a b c)

(- (expt b 2) (* 4 a c)))

computes a nonlinear function over the numbers, but it ful�lls our de�nition of a

linear procedure because the names A, B and C are all used exactly once in its body.

Similarly

(define (double x)

(+ x x))

computes a linear function in the algebraic sense, while the procedure de�nition is

nonlinear because the name X is used twice.

A data structure is just a bunch of names bundled together, so a data structure

is linear if everything that manipulates it uses those names linearly, and if the struc-

ture itself is only manipulated once. This is really just the dual of the observation

previously made about conditional and case statements. Imagine gathering up all the

pieces of code that manipulate instances of the given structure and assembling them

into a giant case statement that dispatches on the operation that is to be performed.3

If we treat not only identi�ers, but also accesses to structure components as names,

then if that case statement is linear we will say that the original data structure was

linear.

A reference is a low-level name|examples are memory addresses and network

addresses. A nonlinear reference is a reference that can be freely duplicated. Most

familiar references are nonlinear. In contrast, a linear reference is a reference that

can not be duplicated. If all names in a program are linear names, then all the

references manipulated at run-time can be linear references.

Linear graph reduction (which is described completely in chapter 2) is a graph

reduction system in which the reduction rules are linear. In a graph reduction sys-

tem edges are references, so for a graph reduction system to be linear means that

the number of edges incident to a given vertex cannot change as a result of graph

reduction (e.g. if a vertex is created with 3 incident edges, it will have 3 incident

edges throughout its lifetime).

This is in contrast to typical graph reduction systems where the number of edges

incident to a vertex can change during the vertex's lifetime. In such systems the

edges are directed, and it is the number of inbound incident edges that can change.

In particular, the number of inbound edges is normally allowed to grow without

bound.

Since the all reduction rules in a linear graph reduction system are linear, it

follows that the vertices are linear data structures in the sense de�ned above. We

are guaranteed that at all times, all structures only have edges connecting them to a

�xed number of other structures.

3
In e�ect, convert the program into the object oriented style of Scheme programming found in

[AS85].

12 CHAPTER 1. INTRODUCTION

It is possible to translate an arbitrary computer program into a set of rules for

a linear graph reduction system. (The complete translation process for a particular

well-known language is described in chapter 3.) In the process of this translation,

something must be done in order to implement nonlinear names that appear in the

program, using only linear reductions and linear vertices. Fortunately, it proves pos-

sible to build structures that support the behavior of nonlinear names. Importantly,

it proves possible to do this in a way such that the linear names are implemented

directly in terms of edges (the native reference mechanism in the linear graph reduc-

tion model). This translation process thus \squeezes out" the nonlinearities in the

original program, exposing them to view.

Another important di�erence between linear graph reduction and most traditional

graph reduction systems is the way vertices are used. Traditionally graph reduction

has been used to represent the process of normalizing an expression, and so ver-

tices typically correspond to expressions taken from the program. In linear graph

reduction, we use vertices to represent the familiar data structures found in a typical

programming language implementation: records, stack frames, closures, lists, num-

bers, etc. The working graph directly represents the state of such an implementation

captured at a particular point in time. The linear reduction rules model the changes

that occur in the state of the implementation as the computation evolves.

1.1.2 Why is it called \linearity"?

It may not be immediately obvious why I have chosen to call this property \linearity".

In a dictionary, the �rst sense given for \linear" is typically something like

of, relating to, resembling, or having a graph that is a straight line,

which is obviously the original meaning of the word, but an additional sense is usually

given as

of the �rst degree with respect to one or more variables.

This second sense represents a fact that mathematicians discovered about functions

whose graph satis�es the �rst sense of the word: Linear functions can be written as

expressions (using only the operations + and �) in which the relevant variable is

only used once. As a result of this discovery, the de�nition of linear has expanded to

include this syntactic property.4

4
The de�nition of linear also now includes other consequences of the original de�nition of the

word. For example, a function T satisfying relations like

T (x+ y) = T (x) + T (y)

T (a � x) = a � T (x)

is said to be linear|even though the domain and range of T may be such that it makes little sense

to draw a graph of T in order to see if it resembles a straight line.

1.1. LINEARITY 13

It is the syntactic property alone that I have in mind when I use the word linear.

None of the other senses apply (at least in any way that I have been able to discover).

Note that by itself the syntactic property is still enough to prove that compositions of

linear expressions are linear. Substituting a linear expression for every occurrence of

a variable in another linear expression always results in a linear result. This kind of

proof works equally well for the linear functions from algebra as it does for my linear

programming language expressions.

1.1.3 Why is linearity important?

The key to the importance of linearity is the observation that nonlinear naming can

be used to create more than one outstanding reference to an entity|and this can be

expensive. As long as an entity is only referred to through linear names, there can

only be one place in the system that refers to it, but as soon as nonlinear names are

used, references can multiply. Furthermore, in all traditional programming languages

this is the only way references can multiply; unnamed entities, such as continuations

and the intermediate values produced during the evaluation of expressions, are only

referenced from one location throughout their lifetimes.

When references proliferate, many things can happen that would otherwise be

impossible. In general, we must pay some price in order to prepare for these additional

possibilities. Here are three examples that will play roles of varying importance in

the rest of this dissertation:

Garbage collection. In the absence of multiple references, the storage manage-

ment problem is easy to solve: The storage associated with an entity can be freed the

�rst time it is used, because the �rst time must also be the last time. A garbage col-

lector only becomes necessary when nonlinear names allow the references to entities

to multiply.

Programming language implementors have traditionally taken advantage of this

fact in order to stack allocate continuations. Most programming languages don't

provide a mechanism for naming continuations. In those languages a continuation

is only ever referenced from a single location at a time; it is either the \current"

continuation, or it is referenced from some more recent continuation. Once such a

continuation is used, it may be immediately discarded.

In programming languages that provide a mechanism for naming continuations,

such as Scheme [RC92] and Common Lisp [Ste90], allocating continuations on a stack

no longer works in all situations. (Common Lisp's approach to this problem is to just

allocate continuations on the stack anyway, and then write the resulting limitations

into the language de�nition.)

Distributed computing. In the absence of multiple references, there are no com-

munications bottlenecks. If entities refer to each other using only linear names, each

14 CHAPTER 1. INTRODUCTION

entity can only be known about by one other entity. When that single outstanding

reference is �nally used to communicate with the entity, that will necessarily be the

reference's last use. So the �rst message received will also be the only message re-

ceived. There is never any need to worry that a large number of messages may arrive

in a short time and swamp the local communications facilities. Indeed, the receiver

does not even need to continue to listen after the �rst and �nal message arrives.

As with garbage collection, implementors are already taking advantage of this

in the case of continuations. When implementing remote procedure calls [BN84] a

continuation is a link between two network locations that will eventually transport

some answer back to the caller. Since a continuation can only be used once, there is

never any need to devote any resources to maintaining that link after the completion

of its single intended use.

This connection between nonlinear naming and the complexity of communications

in a distributed environment will be central to both chapter 4 and chapter 5.

Side e�ects. In the absence of multiple references, side e�ects are impossible.

Again, this results from the inability to use an entity more than once without us-

ing nonlinear naming. In this case the notion of side e�ect simply makes no sense

unless you can interact with the same entity at least twice. You need to be able to

perform one operation that supposedly alters the state of the entity, followed by a

second operation that detects the alteration.

This observation will play a central role in chapter 6, where the phenomenon of

state will be examined.

Of course we don't want to give up the language capabilities that make garbage

collection necessary, or that make communications bottlenecks possible, or that allow

side e�ects; I am not advocating a \linear style" of programming analogous to the

\functional style" of programming. It is practical to program in a functional style,

but linearity is too restrictive to ever in
ict it directly on programmers.5 There are

times when multiple references to the same entity are exactly what the programmer

needs. For example, a communications bottleneck may be a small price to pay in

return for the ability to share some valuable resource.

Fully general naming is a powerful tool. We want to be able to use that power

whenever we need it. But we don't want to pay for it when we aren't using it. In

fact, as many of the examples that follow will demonstrate, typical programs are

largely linear. Most objects are named linearly most of the time. By implementing

naming such that we only pay for nonlinear naming when we actually use it, we can

make the common case of linear naming much cheaper. This is why it is important

that the translation of a program into linear graph reduction rules implements the

linear names from the program directly in terms of the linear references (edges) in

5
Although in [Baw84] I did advocate exactly that. I have since come to my senses.

1.1. LINEARITY 15

the graph|if those edges are kept cheap, then linear names in the original program

will be cheap.

1.1.4 Why not just use �-calculus?

�-calculus is a simple model of naming that has traditionally been used in the study

of programming languages. Why can't the study of linear naming be carried out using

�-calculus? The problem is that �-calculus itself exhibits the phenomenon we wish

to study. �-calculus lets you write an identi�er as many times as you like. �-calculus

itself makes no distinction between linear names and nonlinear names.

For many purposes, this property of �-calculus is an advantage. For example,

a computer's memory system supports nonlinear naming|a computer's memory is

willing to accept the same address over and over again|which conveniently allows a

compiler to implement the high-level names from �-calculus directly in terms of the

low-level names from the memory system.

This property is what makes translating a program into \continuation-passing

style" [Ste76, Ste78] an e�ective technique for a compiler. This translation exposes

the unnamed intermediate values and continuations necessary to execute the pro-

gram by turning them into explicitly named quantities. This simpli�es working with

the original program by reducing all reference manipulation to the named case. In

particular, since the memory system supports essentially the same model of naming,

compiling the continuation-passing style �-calculus into machine language is relatively

simple.

As it happens, all the names introduced when a program is translated into con-

tinuation-passing style �-calculus are linear. But nothing in the �-calculus explicitly

represents this fact. For this reason it can be argued that the translation has actually

hidden some important information, since some quantities that were previously only

referenced through a special case linear mechanism are now referenced through the

general nonlinear naming mechanism.

Compiler writers that use continuation-passing style are aware of this loss of ex-

plicit information. They generally take special pains to be sure that the compiler

stack-allocates continuations (at least in the common cases). See [KKR+86] for an

example. In e�ect they must work to recover some special case information about

linearity that the translation into continuation-passing style has hidden.

The translation of a program into the linear graph reduction model is closely

analogous to the translation into continuation-passing style �-calculus. It too ex-

poses things that were previously implicit in the program. In addition to exposing

continuations and intermediate values, it also exposes nonlinear naming. This expo-

sure comes about for analogous reasons: just as continuation-passing style �-calculus

does not support intermediate values and continuations, the linear graph reduction

model doesn't support nonlinear naming.

16 CHAPTER 1. INTRODUCTION

1.2 Application to distributed computing

In order to demonstrate the power of exposing nonlinearity, I went in search of a

practical problem that could be solved using this tool. Distributed computing pre-

sented itself as the obvious choice because it is an area in which naming problems are

particularly acute. In a distributed environment, the user of a name and the named

entity itself may be separated by the network, a situation which creates problems not

present in purely local naming.

In this section, I will brie
y review the state of the art in distributed computing,

discuss some of the problems currently being faced, and then explain how I applied

linear graph reduction to solve those problems.

1.2.1 The state of the art

The remote procedure call (RPC) is well established as a basis for distributed com-

puting [BN84]. If what is needed is a single interaction with some remote entity, and

if the nature of that interaction is known in advance, then RPC works well. RPC

achieves a nice modularity by neatly aligning the network interface with the procedure

call interface.

RPC provides a su�cient basis for constructing any distributed application, but

performance can become a problem if the pattern of procedure calls does not represent

an e�cient pattern of network transmissions. Problems are caused by the fact that

every RPC entails a complete network round trip. For example, reading a series of

bytes is naturally expressed as a sequence of calls to a procedure that reads a bu�er

full of bytes, but performance will be unacceptable if each of those calls takes the

time of a network round trip. A network stream (such as a TCP connection [Pos81])

will achieve the same goal with much better performance, but it is very di�cult to

duplicate the way a stream uses the network given only RPC. I will call this the

\streaming problem".

Additional problems are caused by the fact that the result of an RPC is always

returned to the source of the call. For example, suppose a task running on network

node A wants to copy a block of data from node B to node C. The natural way

for A to proceed is to �rst read in the data with one RPC to B, and then write

it out with a second RPC to C. The total time spent crossing the network will be

4T , where T is the \typical" network transit time.6 The data itself will cross the

network twice|once from B to A and again from A to C. Clearly the same job could

be accomplished in 3T using more low-level mechanisms: �rst a message from A to

B describes the job to be done, then a message from B to C carries the data, and

�nally a message from C to A announces the completion of the job. Again, it is very

6
Each RPC call takes 2T , T for the call to travel from caller to callee, and T for the reply to

return. See [Par92] for a good presentation of the argument why ultimately T is the only time worth

worrying about.

1.2. APPLICATION TO DISTRIBUTED COMPUTING 17

di�cult to duplicate this behavior given only RPC. I will call this the \continuation

problem".

The streaming problem can be solved in a variety of ways. For example, the RPC

and stream mechanisms can be combined to allow call and return messages to be

pipelined over the same communications channel. In order to take full advantage of

this pipelining, the originator needs to be able to make many calls before claiming

any of the returns. Some additional linguistic support is required to make such \call-

streams" as neatly modular as simple RPC [LBG+88, LS88].

In many cases the streaming problem can be solved by migrating the client to

the location of the data, instead of insisting that the data journey to the client.

Consider the case where the individual elements of the stream are to be summed

together. Instead of arranging to stream the data over the network to the client,

the holder of the data is sent a description of the task to be performed; it then

runs that task and returns the result to the client. This is almost like RPC, except

that an arbitrary task is performed remotely, rather than selecting one from a �xed

menu of exported procedures. This requires some language for describing that task to

the remote site. Typical description language choices are Lisp or PostScript dialects

[FE85, Par92, Sun90].

Neither of these techniques is a fully general solution to the performance problems

of pure RPC. In particular, neither addresses the continuation problem, since both

techniques always insist on returning answers directly to the questioner. The contin-

uation problem could be solved by using a variant of RPC where the call message

explicitly contained a continuation that said where to send the answer. In the exam-

ple above, a continuation that named A as the place to send the answer would be

passed in a call message from A to B; then B would send the data to C in a second

(tail-recursive) call message that contained the same continuation; �nally C would

return to that continuation by sending a return message to A.

In addition to performance problems, there is another shortcoming shared by RPC

and all the improvements described above: They all require the caller to specify the

network node where the next step of the computation is to take place. The caller

must explicitly think about where data is located. It would be much better if this

was handled automatically and transparently, so that the programmer never had to

think about choosing between remote and local procedure call. Instead, tasks and

data would move from place to place as needed, in order to collect together the

information needed for the computation to progress.

While RPC aligns the network interface with the procedure call interface it fails

to unite the network naming system with the programming language naming system.

To bring about such transparency, the references manipulated by the system must

uniformly capture the network location of the referent. Such references cannot be

simple pointers, since sometimes the relevant information will be local, and other

times it will be remote. Using such a reference will necessarily require that these two

cases be distinguished. This leads naturally to the slightlymore arm's length approach

18 CHAPTER 1. INTRODUCTION

to references that is characteristic of object oriented programming. An example of

this is the way \ports" are used as universal references in Mach [YTR+87].

1.2.2 A uni�ed approach

All of the various improvements on simple RPC based systems are heading in rea-

sonable directions. Eventually these developments, and others like them, may be

combined to build e�cient, location transparent, distributed programming environ-

ments. But the journey down this road will be a di�cult one until distributed system

architects recognize that all of the problems have something in common: They are

all ultimately naming issues. Speci�cally:

� Solutions to the streaming problem all require mobility of either tasks or data,

and mobility is di�cult because it puts pressure on the way entities can name

each other. Anyone who has ever �led a forwarding address with the post o�ce

understands how mobility interacts badly with naming systems.

� The continuation problem is a result of the way the typical implementation of

RPC fails to explicitly name continuations.

� The lack of location transparency is a de�ciency in the naming scheme used for

objects in the distributed environment.

In all three cases, the root of the problem is that implementors are reluctant to em-

brace fully general naming schemes for remotely located objects. Implementors avoid

such naming because nonlinear naming can be expensive to support in a distributed

environment, although in fact linear naming is the common case (for example, linear

naming is all that is ever needed to solve the continuation problem) and linear naming

can be supported quite cheaply.

Thus, by using linear graph reduction as the basis for a distributed programming

environment, all of the problems discussed in the last section can be addressed at once.

The basic strategy is to compile programs written in a familiar programming language

into the linear graph reduction model, and then execute them on a distributed graph

reduction engine. I have constructed such a system|its detailed description makes

up the body of this dissertation. In the rest of this section I will describe how this

approach solves the problems identi�ed above.

At run-time, the vertices in the working graph will be parceled out to the various

network nodes that are participants in the distributed graph reduction engine. Recall

that these vertices function as stack frames (continuations), records, numbers, proce-

dures, etc., and the edges that join them function as the references those structures

make to each other. Some edges will join vertices held at the same location, and other

edges will cross the network. As the working graph evolves due to the application of

linear reduction rules, it will sometimes prove necessary tomigrate groups of vertices

from place to place.

1.2. APPLICATION TO DISTRIBUTED COMPUTING 19

1.2.3 Continuations and location transparency

The continuation problem will be solved because in the linear graph reduction model

all data structures refer to each other using the same uniform mechanism (edges).

So in particular, continuations will always be explicitly referred to by other entities.

In more implementational terms, stack frames will be linked together just as any

other data structures are linked together|there will be no implicit references to

continuations such as \return to the next thing down on the stack" or \return to

the network entity who asked you the question". A reference to a continuations that

resides on a di�erent network node will be represented in the same way as a reference

to any other remote object.

Importantly, since continuations are always manipulated linearly, these references

to remote continuations will always be cheap. There will never be any need to deploy

the additional mechanism necessary to allow there to be multiple references to a

continuation.

Location transparency will also be a consequence of using a uniform representation

for all references. Since all references are the same, we can allow the names used in our

programs to be implemented directly in terms of these references. This will keep the

locations of all entities completely hidden from view in the programming language.

In other words, a uniform representation for references allows us to align the network

naming system with the programming language naming system.

Linearity facilitates these solutions by minimizing the cost of adopting a uniform

representation for references. We could have achieved the same results using nonlinear

references|at a price. As long as the nonlinear references to local and remote entities

had the same representation, and as long as continuations were referenced explicitly,

we would have solved the continuation problem and achieved location transparency.

These nonlinear references would be di�cult, but not impossible, to maintain across

the network.

However, as I will demonstrate in (almost painful) detail in chapter 4, cross-

network linear references are very simple and easy to maintain. This is a direct result

of the fact that linear references cannot be duplicated. Supporting linear references

from remote locations to a local entity is easy because you only need to worry about

the whereabouts of one outstanding reference. If that reference ever becomes local,

then all network resources devoted to maintaining the reference can be easily dis-

carded. If the referenced entity needs to move to a new location, only that single

reference needs to be tracked down and informed of the new location.

1.2.4 The streaming problem, demand migration and tasks

Cheap linear references also play a role in solving the streaming problem. Recall that

the streaming problem is an instance of the more general problem of mobility: a task

is separated from the data it wants to manipulate next, and so either the task or

the data must be migrated. Since both task structures and data structures contain

20 CHAPTER 1. INTRODUCTION

references to, and are referenced by, other entities, using linear references makes both

tasks and data easier to migrate.

But that doesn't directly address the issue of which structure to migrate. Should

we migrate the data to the task, or the task to the data? Nor does it address the

much harder problem of selecting what to migrate and what to leave behind. If we

decide to migrate a list, should we send the elements of that list along for the ride?

If we send a stack frame, what structures directly referenced from that stack frame

should accompany it? Should we also include the next stack frame down?

These wouldn't be problems if we simply reverted to the current state of a�airs,

where the programmer must explicitly specify everything about a migration. But

having successfully hidden the network from the programming language level so far,

it would be a shame to surrender at this point. Fortunately, linearity can be used

in a di�erent way to solve this problem as well. The solution is closely analogous to

the way demand paging works to implement virtual memory. When it becomes clear

that a migration must take place, we will handle this \fault" by using some simple

heuristics to select a set of vertices to migrate. Just as demand paging satis�es a page

fault by bringing more words into memory than are strictly necessary to relieve the

fault, we will migrate additional vertices beyond those that are immediately needed.

This process will be called demand migration.

In demand paging, the heuristic is to read in words adjacent to the one that

caused the fault. This works well because of the property commonly called \locality":

addresses referenced in the recent past tend to be close to addresses that will be

referenced in the near future. Using exclusively linear structures enables us to make

analogous predictions about what structures will need to be close to each other in the

near future, so we can avoid future separate migrations (\faults") by migrating those

structures together.

The migration heuristics work by combining the limited and controlled nature of

linear references with some simple compile-time analysis of the set of linear graph

reduction rules. Precisely how this works will be explained in chapter 5, but the basic

contribution made by linearity is to make it easy to know when one entity (A) makes

the only reference to another entity (B). In such a case, if A is de�nitely going to

be migrated, then it is likely that migrating B is a good choice. This observation

simpli�es the problem enough that a few heuristics are able to make migration choices

that are close to optimal.

In fact, the heuristics are so good that they are able to reconstruct the intuitive

notion of a \process" or \task", even though the linear graph reduction model itself

supports no such notion. Intuitively a task is some locus of ongoing activity along

with all of the data structures that are directly related to supporting that activity.

In other words, a task is exactly the right thing to treat as a unit when migrating

things around a network.

In order to take full advantage of programming in a distributed environment, there

needs to be some mechanism for getting more than one task running at the same time.

1.3. APPLICATION TO THE PROBLEM OF STATE 21

For this purpose I have chosen the FUTURE construct as found in MultiLisp [Hal84].

(Futures have a particularly elegant implementation in the linear graph reduction

model.) We will see that the migration heuristics work well at spotting the linear

graph structure that properly \belongs" to the various tasks created when using

futures, and so the system will be able to migrate those tasks separately around the

network. All this from a model that has no native notion of task to begin with.

1.2.5 Results

In a distributed environment, parts of an evolving computation can become separated

from each other. A fundamental problem is bringing these parts back together again

when the appropriate time arrives. This is precisely what naming is for. We name

things that we are not currently interacting with so that we may track them down

later and interact with them then. Thus, we should expect that something that claims

to be an improved way to think about naming should �nd application in distributed

computing.

Linear graph reduction passes this test. My implementation demonstrates how

proper attention to linearity can make cross-network references cheap, can support

highly mobile data structures, and can facilitate heuristics to e�ectively migrate tasks

on demand without explicit guidance from the programmer.

1.3 Application to the problem of state

As a second demonstration of linear graph reduction, I will present (in chapter 6) an

examination of the phenomenon of state. In this context, linearity yields an important

insight rather than immediately practical bene�ts.

Most treatments of state start with some primitive elements that support state and

then study mechanisms used to combine those elements in ways that keep the state

well behaved [GL86, SRI91]. My approach di�ers in that I will be creating entities

that support state out of nothing. Then a careful examination of the conditions

necessary for state to emerge will reveal the essence of what state is really all about.

Understanding that essence will reveal why the usual approaches to state sometimes

go awry. The rest of this section outlines my approach to state and summarizes the

resulting insight.

The �rst problem we will face is the lack of a satisfactory preexisting de�nition

for \state". Typically state is taken to be a property that can be localized to speci�c

entities|some entities have state and other entities are \stateless"|but as our goal,

in part, is to discover whether or not state can be localized, we cannot adopt such a

de�nition. Instead, state will not be de�ned at all initially, and we will rely on an ap-

proach that pays careful attention to the perceptions of the entities in a computational

system. That is, we will examine systems in which some components perceive state in

other components. Later, armed with a successfully characterized those systems, we

22 CHAPTER 1. INTRODUCTION

will be able to supply a de�nition for \state". (This entire enterprise can be viewed

as a search for this de�nition.)

This is a subtle approach, and it is interesting to consider how it is that the

linear graph reduction model suggested it. Using linear references makes it much

clearer where the boundary lies between a base-level computation and a meta-level

computation that manipulates or reasons about it. A linear reference to an entity in

the base-level computation can be held by another base-level entity, but for that same

reference to be held by some meta-level entity would imply (because of linearity) that

no base-level entity can be holding that reference. This clearly reveals a confusion of

levels and suggests that some other independent reference mechanism is required for

the meta-level to name the entities in the base-level. Since state is perceived through

the references to an entity, this suggests that state as perceived from the meta-level

may not be the same as state perceived from within the base-level. We restrict our

attentions to base-level perceptions because this is the viewpoint that our programs

actually possess.

At this point in the dissertation we will have seen many examples of linear graph

reduction systems in which various components perceive state. We will, for example,

have seen the Scheme primitive SET-CAR! implemented in linear graph reduction

terms. So by then the reader will have no trouble seeing that all such systems share

two common characteristics:

� They are all nondeterministic. That is, they all require sets of graph reduction

rules in which the outcome of a computation can depend on the order in which

rules are applied.

� They all require linear graph structure that contains cycles.

These observations, especially the observation of cycles, will motivate us to take an

apparent digression into the formal mathematical properties of linear graph structure.

In particular we will study homomorphisms between linear graphs as a tool that will

enable us to examine local vs. global properties. Then we will prove some theorems

about the actions of linear graph reduction rule sets when applied to graphs that have

the same local structure but di�erent global structure.

At this point I will pull a rabbit out of my hat, for it turns out that linear graph

reduction systems that are sensitive to the global structure of the system (in a certain

well-de�ned way) must be nondeterministic and must exhibit cycles|precisely the

symptoms observed empirically in systems that experience state. This implies that

what is really going on when the components of a system experience state is that the

system as a whole has this kind of global sensitivity. I claim that this is how state

should be de�ned. What we normally think of as state is merely the expression of

a global property of a system in the perceptions of the observers embedded in that

system.

This insight can be applied to a number of di�erent problems to suggest new

approaches to their solution. Perhaps the most promising is in the area of program-

1.4. OUTLINE 23

ming language design. Characterizing state in these global terms reveals that the

usual programming language metaphor for managing state, the notion of a mutable

\objects", contains a
aw|state is not something that can necessarily be assigned a

single location, state is more of a global tension between a number of entities. Given

this clearer understanding of what state is all about, we can hope to develop better

programming language constructs that more accurately match state's true nature.

No such programming language constructs, or other practical derivatives of this

insight into state, have been developed. So far this new perspective remains a surpris-

ing and subtle curiosity. This is in contrast to the distributed linear graph reduction

engine, which is a quite straightforward demonstration of the practical advantages of

thinking about linearity. I believe, however, that in the long run this characterization

of the phenomenon of state will prove to be the more important result.

1.4 Outline

Chapter 2 describes the linear graph reduction model itself, and describes the general

principles used whenever linear graph reduction is used as a model to expose linearity.

It also introduces the notation used throughout the rest of the dissertation.

Chapter 3 is the �rst of three chapters that describe the distributed program-

ming environment. It describes the compiler used to translate a Scheme program

into linear graph reduction rules. This chapter should leave the reader with a solid

understanding of how linear graph reduction can support all familiar programming

language constructs.

Chapter 4 describes the basic network protocol used to support the distributed

linear graph reduction engine. In this chapter we will see the �rst example where

linearity has a tangible bene�t. Because it only supports linear naming, the protocol

is quite simple and light-weight. This chapter can be skimmed by people who are

scared of networks.

Chapter 5 describes the algorithms and heuristics used by the individual agents

that make up the distributed reduction engine. In a second example of a bene�t

derived from linearity, these agents use some linearity-based heuristics to further

improve the communications behavior of the execution of the program.

In chapter 6 linearity is used to examine the phenomenon of state. It develops an

interesting and potentially useful characterization of systems in which state occurs.

This chapter only requires an understanding of the the material up through chapter 3.

This chapter can be skipped by people who are scared of higher mathematics.

Chapter 7 puts this work in context by comparing it to other related (and not

so related) work on naming, programming languages, distributed computing, graph

reduction, and state. This chapter also discusses future directions that research into

linearity can explore, and it summarizes what I feel are the most important contri-

butions of this work.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Linear Graph Reduction

This chapter introduces the abstract linear graph reduction model. The �rst section

describes a static structure called a linear graph. The second section describes the

linear graph grammar, which is a collection of reduction rules that can be applied

to a linear graph to cause it to evolve. The third section describes a simple and

convenient textual representation for these structures that will be used throughout

the rest of this dissertation. The �nal section is a brief introduction to the ways in

which linear graph reduction can be applied to real problems to expose linearity.

2.1 Linear graphs

Intuitively, a linear graph is similar to the topological structure of an electronic circuit.

An electronic circuit consists of a collection of gadgets joined together by wires.

Gadgets come in various types|transistors, capacitors, resistors, etc. Each type

of gadget always has the same number and kinds of terminals. A transistor, for

example, always has three terminals called the collector, the base, and the emitter.

Each terminal of each gadget can be joined, using wires, to some number of other

terminals of other gadgets.

A linear graph di�ers from a circuit chie
y in that we restrict the way terminals

can be connected. In a linear graph each terminal must be connected to exactly one

other terminal. (In particular, there can be no unconnected terminals.)

Symmetrical gadgets are also ruled out. Some gadgets found in circuits, such as

resistors, have two indistinguishable terminals. In a linear graph all the terminals of

any particular type of gadget must be distinguishable.

Some convenient terminology: The gadgets in a linear graph are called vertices.

The type of a vertex is called simply a type, and the terminals of a vertex are called

terminals. The wires that join pairs of terminals are called connections. The

number of terminals a vertex has is its valence.

The type of a terminal is called a label. Thus, associated with each vertex type

is a set of terminal labels that determine how many terminals a vertex of that type

will possess, and what they are called. For example, if we were trying to use a linear

graph to represent a circuit, the type Transistor might be associated with the three

25

26 CHAPTER 2. LINEAR GRAPH REDUCTION

Transbase

emitter

collector

Trans
emitter

collector
base

Cons
car cdr

Trans

collector

emitter

base

Cons
cdrcar

Cons
cdrcar

Figure 2-1: A Linear Graph

Cons
car cdr

Trans
emitter

collector
base Cons

car cdr

Figure 2-2: A Nonlinear Graph

labels \collector", \base", and \emitter".

Given a set of types, each with an associated set of labels, we can consider the

set of linear graphs over that set of types, just as given a set of letters called an

alphabet, we can consider the set of strings over that alphabet. Figure 2-1 shows a

linear graph over the two types Transistor and Cons, where type Cons has the three

associated labels \car", \cdr", and \" (the empty string). This example is a single

linear graph|a linear graph may consist of several disconnected components.

Figure 2-2 is not an example of a linear graph; the \" terminal of the Cons vertex

is not connected to exactly one other terminal. The restriction that terminals be

joined in pairs is crucial to the de�nition|it is what makes the graph \linear".

2.2 Linear graph grammars

A linear graph grammar is a collection of reduction rules called methods. Each

method describes how to replace a certain kind of subgraph with a di�erent subgraph.

If the linear graphs over some set of types are analogous to the strings over some

alphabet, then a linear graph grammar is analogous to the familiar string grammar.

In a string grammar the individual rules are fairly simple, consisting of just an

ordered pair of strings. When an instance of the �rst string, (the left hand side) is

2.2. LINEAR GRAPH GRAMMARS 27

b a

Cons
car

cdr

d c

Trans
emitter collector

base

b

c

Conscar

cdr

a

d

Cons cdr

car

Figure 2-3: A Method

found, it may be replaced by an instance of the second string (the right hand side).

It is clear what is meant by \replacing" one string with another.

In a linear graph grammar the notion of replacement must be treated more care-

fully. Figure 2-3 shows an example of a method. Both the left hand and right hand

sides of a method are subgraphs with a certain number of loose ends. A method

must specify how the terminals that used to be connected to terminals in the old

subgraph should be reconnected to terminals in the new subgraph. In the �gure, the

loose ends in each subgraph are labeled to indicate how this reconnection is to be

done.

For example, when applying the method in �gure 2-3, a Cons vertex and a

Transistor vertex, connected from cdr to base, are to be replaced with two new

Cons vertices connected together as indicated. The terminal in the old linear graph

that was connected to the \" terminal of the old Cons vertex is reconnected to the

car terminal of the �rst new Cons vertex, as shown by the loose ends labeled a. The

terminal that was connected to the emitter terminal of the old Transistor vertex

is reconnected to the \" terminal of the same new Cons vertex, as shown by the

loose ends labeled d. The terminal that was connected to the car terminal of the

old Cons vertex, and the one that was connected to the collector terminal of the

old Transistor vertex, are reconnected to each other|this is indicated by the loose

ends labeled b and c.

A subgraph that matches the left hand side of some method is called a redex,

and the act of applying a method is called reduction. It should be emphasized that

when a reduction occurs, the redex is discarded. In this aspect linear graph grammars

really are exactly analogous to the way grammars are de�ned for strings.

It might be interesting to continue the analogy with string grammars and de�ne

the \language" generated by a given linear graph grammar as the set of linear graphs

that can be generated by starting with a graph consisting of a single vertex of some

initial type. There might be interesting results to be proved, for example, about

what kind of linear graphs can be generated using only context sensitive linear graph

grammars, where that notion is suitably de�ned.

But none of these potentially interesting paths will be explored in what follows. In

28 CHAPTER 2. LINEAR GRAPH REDUCTION

using linear graph grammars as a model of computation we will have no need of the

notion of a generated language. Furthermore, only one kind of method will appear in

the linear graph grammars described below: methods whose left hand side consists of

exactly two vertices joined by a single connection. Figure 2-3 is an example of such

a binary method. There will never be any need for a method whose left hand side

contains a cycle, more than one connected component, or other than two vertices.

2.3 Graph expressions

Graph expressions are a textual representation for linear graphs that are more

convenient than the pictures we have used so far. As an example, here is the graph

expression for the graph in �gure 2-1:

(graph ()

(<Cons> 0 car:1 cdr:1)

(<Cons> 0 car:2 cdr:3)

(<Transistor> collector:3 base:2 emitter:4)

(<Cons> 5 car:4 cdr:5)

(<Transistor> collector:6 base:7 emitter:8)

(<Transistor> collector:6 base:8 emitter:7))

A graph expression super�cially resembles the S-expression representation used

for �-abstractions. A graph expression is written as a parenthesized list whose �rst

element is the word \graph". The second element is an ordered list of loose ends,

and the rest of the elements represent the vertices. Each vertex is written as a

parenthesized list whose �rst element is the type of the vertex, and rest of whose

elements are the vertex's terminals. A type is written by enclosing its name between

angle brackets. Each terminal is written as a label and an index separated by a

colon. (If the label is the empty string, then the colon is omitted.)

The indices specify how the vertices are connected together. Each index corre-

sponds to one connection. An index thus appears in the graph expression exactly

twice, once for each of the two terminals the connection joins. If one or both of the

ends of a connection are loose ends, then the index appears once or twice in the list

of loose ends at the beginning. Indices are typically small non-negative integers, but

the values chosen are arbitrary. Indices are only meaningful within a single graph

expression.

In order to generate the graph expression from a linear graph, start by picking an

index for each connection. Each of the two ends of a connection is either joined to

a terminal, or it is dangling loose. For each connection attach its index to the two

things at its ends. Every terminal and every loose end now has an attached index,

and every index has been attached to exactly two things. The graph expression is

constructed by (1) reading o� the indices attached to the loose ends, and (2) visiting

each vertex and reading o� the indices attached to its terminals.

2.4. MODELING REAL SYSTEMS 29

In order to generate a picture from a graph expression, start by drawing all the

vertices listed, without drawing any connections between them. Pick a point for

each loose end indicated in the graph expression. Now consider the indices one at a

time. Each index will occur exactly twice in the graph expression. Draw a connection

between the corresponding two points.

A method is written as an ordered pair of graph expressions. The two graph

expressions must have the same number of loose ends. The ordering of the loose ends

determines the correspondence that is to be used when the method is applied. Thus

the method in �gure 2-3 is written as follows:

(graph (0 1 2 3)

(<Cons> 0 car:1 cdr:4)

(<Transistor> collector:2 base:4 emitter:3))

(graph (0 1 1 2)

(<Cons> 2 car:0 cdr:3)

(<Cons> 4 car:3 cdr:4))

With a little practice, it isn't di�cult to read graph expressions directly, but

initially the reader may �nd it helpful to draw the graphs by hand to help visualize

them.

2.4 Modeling real systems

Linear graph reduction can be used to model real computational systems by using lin-

ear graphs to represent data structures, and using methods to encode algorithms. The

precise details of how the modeling is done may vary from application to application,

but there are some common ideas that are set forth in this section.

The basic idea is to translate the program to be executed into a linear graph

grammar|a collection of types and methods. This is di�erent from the original

combinator model [Tur79] where the program becomes a graph, and the set of vertex

types and reduction rules are �xed from the start.1 All of the properties of the

program must be encoded somehow in a set of methods.

The fact that applicable methods are selected nondeterministically means that

ordering constraints in the program must be satis�ed by ensuring that methods only

become applicable in the desired order. Typically this is done by having one method

introduce a certain vertex type into the graph that appears in the left hand side of

another method. This ensures that the second method can only run after the �rst

method, since the �rst method must produce a vertex of that type before the second

method can consume it. In e�ect, the program counter is represented as the presence

of one of a selected set of vertex types in the working graph.

1
In some more evolved combinator implementations the compiler does introduce new vertex types

and reduction rules [Pey87].

30 CHAPTER 2. LINEAR GRAPH REDUCTION

A more important problem than representing the sequentiality required in the

input program is representing the nonlinearity it requires. Linear graph reduction

itself is linear|the connections that hold the graph together are constrained to behave

in a linear fashion (a connection joins a terminal to exactly one other terminal),

and methods are de�ned to preserve that property. Thus, when data structures

and algorithms are built from linear graphs and methods, the nonlinear parts of the

algorithms will have to be expressed in terms of more primitive linear elements.

2.4.1 Representing linear structures

Representing linear data structures is generally quite straightforward. The basic idea

is that objects traditionally represented using N -component record structures are

instead represented using vertices of valence N + 1. The extra terminal, called a

handle, is used as a place for other vertices to connect to. So, for example, where

a pointer would be installed in the jth component of record structure A pointing to

record structure B, a connection is made from the jth terminal of vertex A to the

handle terminal of vertex B. (Handle terminals are usually given the empty string as

their label.)

All attributes of an object other than its references to other objects are encoded

using the type of the vertex. Integers, for example, make no references to other ob-

jects; their only attribute is their numerical magnitude. Thus an integer is represented

as a univalent vertex, and each integer is given its own unique type.2

Representing nonlinear data structures requires some additional mechanism. This

is, of course, the goal of this entire exercise. Because we are using a representation

that supports linear data structures directly, but that allows nonlinear structures to

be built explicitly when necessary, the nonlinearities in the original program will be

exposed.

2.4.2 Representing nonlinear structures

The exact mechanism used to represent nonlinear structures varies, but it is always

based on the vertex types Copy and Drop. When the program requires a reference

to an object to be duplicated, a trivalent Copy vertex is attached to the object's

handle terminal by its target terminal. The other two terminals of the Copy vertex,

labeled a and b, are then available to be used in place of the original handle terminal.

As more and more copies of the original reference are made, more and more Copy

2
This may seem like an excessive number of types to introduce in such an o�hand manner, but

this profusion of types is only for the convenience of the abstract model, and does not translate into

any ine�ciencies in any actual implementation. Note that the notion of vertex type has nothing

to do with the notion of data type or variable type encountered in typed programming languages.

That notion of type is actually more closely related to the labels placed on the terminals in a linear

graph.

2.4. MODELING REAL SYSTEMS 31

Copy

target

ba
Copy

target

ba

Copy

target

ba

Copy

target

ba
Copy

target

ba

Copy

target

ba

Cons
cdrcar

Copy ba

target

Figure 2-4: A Copy tree

vertices accumulate in a tree between the users and the object they wish to reference.

Figure 2-4 shows an example of such a tree.

Similarly, when the program wishes to discard a reference, it attaches that refer-

ence to a univalent Drop vertex. To make Drop work properly in combination with

Copy, the following two methods are always assumed whenever both types are in use:

(graph (0 1)

(<Drop> 2)

(<Copy> target:0 a:2 b:1))

(graph (0 0))

(graph (0 1)

(<Drop> 2)

(<Copy> target:0 a:1 b:2))

(graph (0 0))

These methods ensure that if a reference is duplicated, and then one of the copies is

discarded, the graph will return to its original state. (Methods for balancing the tree

of Copy vertices are not needed.)

Since the users of an object are no longer directly connected to it, it is more di�cult

for them to interact with the object|some additional protocol must be employed.

There are basically two techniques that are used, depending on whether the object

or the users take responsibility for handling the situation. The object at the apex of

the tree can take responsibility by reacting to the Copy vertex by somehow making

a suitable copy of itself. For example, numbers will usually react by duplicating

themselves as follows:

32 CHAPTER 2. LINEAR GRAPH REDUCTION

(graph (0 1)

(<Copy> target:2 a:0 b:1)

(<Number 9> 2))

(graph (0 1)

(<Number 9> 0)

(<Number 9> 1))

Alternatively, the users at the fringe of the tree can take responsibility by climbing

up the Copy tree to the object at the apex, using methods similar to these two:

(graph (0 1 2 3)

(<Car> target:4 tail:2 cont:3)

(<Copy> target:0 a:4 b:1))

(graph (0 1 2 3)

(<Car> target:0 tail:4 cont:3)

(<Copy> target:4 a:2 b:1))

(graph (0 1 2 3)

(<Car> target:4 tail:2 cont:3)

(<Copy> target:0 a:1 b:4))

(graph (0 1 2 3)

(<Car> target:0 tail:4 cont:3)

(<Copy> target:4 a:1 b:2))

These methods permit a Car vertex to climb up through a tree of Copy vertices to

reach the object at the apex. Figure 2-5 shows a Car vertex in the process of making

such a journey; after the �rst method above is applied, the Car vertex arrives at the

apex of the tree, as shown in �gure 2-6. (Note how the cont terminal is being carried

along for the ride.)

Vertex types, such as Car in this example, which climb through Copy trees in

this fashion are called messages. The two terminals of a message that are used to

perform this climb are customarily labeled target and tail, just as they are above.

Usually some mix of these two techniques is used to cope with the Copy trees in-

troduced by nonlinearities. Small objects, such as numbers, will duplicate themselves,

while large objects will respond to messages that know how to tree-climb.

2.4.3 Representing objects with state

Messages that tree-climb are also the usual technique used for supporting objects that

have state. For example, the Car message just introduced may interact with a Cons

vertex using a method like the following:

2.4. MODELING REAL SYSTEMS 33

Copy

target

ba
Copy

target

ba

Copy

target

ba

Copy

target

ba

Car

target

tail

cont

Cons
cdrcar

Copy ba

target

Figure 2-5: A Car message in transit

Copy

target

ba
Copy

target

ba

Copy

target

ba

Copy

target

ba

Cons
cdrcar

Car

tail

target

cont

Copy ba

target

Figure 2-6: The Car message arrives

34 CHAPTER 2. LINEAR GRAPH REDUCTION

(graph (0 1 2 3)

(<Car> target:4 tail:2 cont:3)

(<Cons> 4 car:0 cdr:1))

(graph (0 1 2 3)

(<Cons> 2 car:4 cdr:1)

(<Copy> target:0 a:3 b:4))

This method returns a copy of the car of the Cons to the continuation object (pre-

sumed to be attached to the cont terminal of the Car vertex), and also replaces the

Cons vertex at the apex of the tree. A similar tree-climbing Set Car message allows

a Cons to be mutated using this method:

(graph (0 1 2 3 4)

(<Set Car> target:5 tail:2 cont:3 new:4)

(<Cons> 5 car:0 cdr:1))

(graph (0 1 2 0 4)

(<Cons> 2 car:4 cdr:1))

This method returns the old car of the Cons to the continuation object, and replaces

the Cons vertex at the apex of the tree with one whose car terminal is connected

to the replacement value (previously attached to the new terminal of the Set Car

vertex).

Both of the last two methods use a particular protocol for returning a value to the

continuation object. The choice of continuation protocol is important, and will be

examined in more detail in later chapters; for the moment I have chosen to employ a

simple protocol where a continuation is simply attached directly to the return value.

It is clear from this example that tree-climbing messages are a fully general proto-

col that allows the graph structure at the apex of a Copy tree to react in an arbitrary

way to the messages that are funneled up to it. Just how arbitrary this behavior can

be is illustrated by the following example:

(graph (0 1 2 3)

(<Abracadabra> target:4 tail:2 cont:3)

(<Cons> 4 car:0 cdr:1))

(graph (0 1 2 3)

(<Drop> 0)

(<Drop> 1)

(<Nil> 2)

(<True> 3))

Here we have an Abracadabra message that changes a Cons into an empty list! This

is not something that can occur in an ordinary Lisp implementation,3 where the type

of an object is not something that can be mutated.

3
Although beginning Lisp students sometimes wish that it could|especially when they are �rst

introduced to the DELQ function.

2.4. MODELING REAL SYSTEMS 35

Notice that the Copy tree serves to serialize the messages that arrive at the apex.

Choices made about which methods to apply while messages are climbing up the tree

will determine the order that those messages arrive at the top.

It may seem surprising that you can create side e�ects with something as simple

as linear graph reduction. Other forms of graph reduction are not generally credited

with this ability. Actually, this has little to do with the nature of graph reduction

itself; it is an artifact of how graph reduction is generally viewed as an e�cient way

to perform expression reduction. Here, we are taking a di�erent view, where graph

reduction is used to model the data structures that implementors build to support

programming languages, rather than modeling the expressions that theorists use to

think about programming languages.

2.4.4 Representing input/output behavior

At some level, something other than graph reduction must take place in order to cause

characters to appear on a terminal. Fortunately, it is possible to avoid confronting

such low-level issues directly. Instead, we simply imagine that some other part of the

graph is responsible for performing primitive I/O, and concentrate on how we interact

with it. (This is similar to the way most modern programming languages support

I/O facilities. Instead of providing I/O directly, they specify an interface to a library

of I/O procedures.)

This approach to I/O has an interesting consequence for the linear graph reduction

model. It means that subgraphs can be discarded if they get disconnected from the

parts of the graph that are connected to the I/O facilities. The reason for this is

that no matter what methods may apply to such a subgraph, it can never become

reconnected,4 and thus it is unable to e�ect the output of the computation.

Since disconnected components can be discarded from the working graph at run-

time, they can also be discarded from the right hand sides of methods to avoid

introducing them in the �rst place. When we compile linear graph grammars for

execution on real hardware, this will be an important optimization. (See section 3.3.)

Discarding disconnected components is similar in spirit to conventional garbage col-

lection.

This completes the introduction to linear graph reduction. A thorough familiarity

with linear graph reduction and especially with the modeling techniques introduced

in this section will be assumed in the following chapters. I therefore encourage you

to take some time out now to play with some simple grammars and with modeling

various kinds of data structures.

4
This is a consequence of the fact that the left hand side of a binary method is connected. If

methods with disconnected left hand sides were allowed, then reconnection, and all kinds of other

non-local e�ects, are a possibility.

36 CHAPTER 2. LINEAR GRAPH REDUCTION

You should resist the temptation to make up new kinds of methods. Only binary

methods will be needed in the following chapters.

A good problem is to design a collection of methods that implement a combinator

machine. The challenge comes from the fact that both the S and K combinators are

nonlinear:

Sxyz) xz(yz)

duplicates the value z, and in

Kxy) x

the value y is discarded. Using Copy trees, as described above, is the obvious solution,

but other solutions are also possible.

Chapter 3

Compiling Scheme

In the next three chapters I will present a practical implementation of a distributed

linear graph reduction engine. This system allows a programmer to program in a

standard sequential programming language (Scheme [RC92]), which is then compiled

into a linear graph grammar, and executed collectively by several processors commu-

nicating over a network. The goal of building this system was to demonstrate how

linear graph reduction keeps the implementation simple and e�cient, and allows some

powerful new techniques to be applied to the problems of distributed execution.

This chapter explains how Scheme is compiled into a linear graph grammar. It is

about how to correctly capture the semantics of standard Scheme using linear graph

structure and methods. It is not about how to design a programming language that

takes full advantage of being based on linear graph reduction.

Chapter 4 describes the fundamental network protocol and data structures used

to maintain distributed linear graph structure. The fact that connections are more

constrained than full-
edged pointers keeps this protocol cheap and fast.

Chapter 5, describes the distributed linear graph reduction engine. It describes

the behavior of the individual agents that hold the vertices that make up the working

graph. Agents exchange vertices through the network and they apply methods to

the subgraphs composed of the vertices they currently possess. Agents decide which

vertices to migrate, when to migrate them, and who to migrate them to, by using a

simple model of the expense of interagent connections.

Chapter 4 and chapter 5 are kept distinct because they describe two di�erent

ways in which linearity is important to the system. Chapter 4 demonstrates how data

structures that only name each other linearly are cheap to support in a distributed

environment, where traditional non-linear naming mechanisms would be burdensome.

Chapter 5 shows how linearity can be further exploited to make decisions about

migrating tasks and data in order to make distributed execution more e�cient.

Scheme was chosen as the source language as an example of a typical sequential

programming language. Scheme is a lexically scoped, call-by-value dialect of Lisp.

Scheme is described in [RC92]. Like most other Lisp dialects Scheme is \mostly

functional", which means that Scheme programs are mostly written in the functional

subset of the language|only occasionally are imperative features used. Scheme is also

deterministic; in particular it makes no concessions to the possibilities of concurrent

37

38 CHAPTER 3. COMPILING SCHEME

execution.

In theory FORTRAN or C could have served instead of Scheme (we will not be

restricted to the functional subset of Scheme) but since it turns out that functional

constructs are much more straightforward to compile, a language that is mostly func-

tional makes a better choice for expository purposes.

Sticking to a purely sequential deterministic programming language fails to demon-

strate a number of interesting things about distributed linear graph reduction. A

purely sequential program calls for only a single action to take place at a time; a

sequential program describes only a single task. Thus, even in a distributed envi-

ronment there will only be a single locus of activity|although that locus may move

if the task must migrate in order to access some remote resource. In order to get

things executing concurrently, we need to extend Scheme with some kind of parallel

programming construct. Fortunately, there is a fairly well-known Scheme extension,

the FUTURE special form [Lie81, Hal84, Mil87], that can meet our needs.

Of course I didn't have the time to make this a truly complete Scheme imple-

mentation. There are many data types, procedures and special forms missing. In

principle these missing pieces can all be supplied. One missing piece that you should

not be fooled into thinking is a signi�cant omission is the SET! special form. Using

the technique of assignment conversion [KKR+86] any program that makes use of

assignment statements can be transformed into one that uses mutable objects, such

as CONS-cells, instead. Since I have implemented mutable CONS-cells, I could have

done assignment conversion as well. However, this would probably double the size of

the current small compiler, so in the interest of simplicity I left it out.

3.1 Vertex types for the Scheme run-time

This section describes the vertex types used by the Scheme run-time world. Many of

the techniques used by these types were introduced in section 2.4.

The vertex types described in this section can be classi�ed according to the hi-

erarchy shown in �gure 3-1. This hierarchy will double as the outline for the rest of

this section.

3.1.1 Objects

An object is a vertex used in the way ordinary data structures are used in a tra-

ditional Scheme implementation. Recall the technique introduced in section 2.4: an

N -component aggregate data structure becomes an N +1 terminal vertex, where the

extra terminal serves as a handle for users of the object to connect to. The handle

terminal is always given the empty string as its label.

The following object types are built in to the Scheme run-time system:

3.1. VERTEX TYPES FOR THE SCHEME RUN-TIME 39

objects

operations

calls

numbersreturns

messages atoms

all types

globals

constructors operators

Figure 3-1: Run-time vertex types

Type Labels

Cons \", \car", \cdr"

Continuation \", \cont"

Sum \", \left", \right"

Difference \", \left", \right"

Product \", \left", \right"

Equal? \", \left", \right"

Less? \", \left", \right"

Greater? \", \left", \right"

In addition, the compiler makes more object types as a result of translating the user's

program (see section 3.2).

All object types have a method for the case where a Drop vertex is connected to

the object's handle. For example, here is the method for the Cons type:

(graph (0 1)

(<Cons> 2 car:0 cdr:1)

(<Drop> 2))

(graph (0 1)

(<Drop> 1)

(<Drop> 0))

Similar methods exist for all of the other types in the table above, as well as for all

the compiler-produced object types.

Object types speci�cally do not have a method for when a Copy vertex is connected

to the object's handle. Instead, the Copy vertices are allowed accumulate into a tree,

with the object vertex at the apex. The message climbing technique described in

section 2.4.2 is used to communicate with such vertices. (See also the message types

described in the next section.)

40 CHAPTER 3. COMPILING SCHEME

The type Cons is used to implement Scheme CONS-cells. Additional methods,

described below, support the Scheme procedures CAR, CDR, SET-CAR!, SET-CDR!, and

NULL?.

The type Continuation is used by the CALL-WITH-CURRENT-CONTINUATION pro-

cedure for the continuations that it creates. The cont terminal of a Continuation

is connected to a \raw" continuation of the kind generally produced by the compiler.

This is explained in more detail in section 3.1.3.1.

The types Sum, Difference, Product, Equal?, Less?, and Greater? are used to

implement arithmetic. In order to perform addition, subtraction, multiplication or

comparison, one connects the values to be added, subtracted, multiplied or compared

to the left and right terminals of a Sum, Difference, etc.

Of course, simply building a tree that represents the arithmetic to be performed

isn't very satisfactory when one wants to compute an actual numeric answer, so the

Scheme run-time behaves as if methods such as

(graph (0 1)

(<Sum> 0 left:2 right:1)

(<Number x> 2))

(graph (0 1)

(<Sum x> 0 right:1))

and

(graph (0)

(<Sum x> 0 right:1)

(<Number y> 1))

(graph (0)

(<Number (x+ y)> 0))

were de�ned for all numbers x and y. These methods make trees of arithmetic oper-

ators and numbers simplify into numbers (or to the boolean values True and False

in the case of the comparison predicates).

This simpli�cation proceeds in parallel with the evaluation of the rest of the

program. This parallelism must not be exposed to the programmer if the sequential

semantics of Scheme are to be faithfully reproduced, so the compiler will be careful to

construct vertices such as Sum at exactly the moment when the sequential semantics

calls for an addition to take place.

A useful way to think about this is to imagine that a vertex of a type like Sum is

itself a number, so the act of constructing such a vertex is equivalent to performing an

addition. The simpli�cation process merely converts one kind of number into another

more convenient kind of number.

This arithmetic-by-construction-and-simpli�cation scheme is by no means the only

way arithmetic could have been implemented. Its advantage is that the compiler

is very good at compiling calls to constructors (because ultimately it must express

3.1. VERTEX TYPES FOR THE SCHEME RUN-TIME 41

everything in terms of constructing graph structure), so treating calls to + in the same

way as calls to CONS results in much simpler generated code (i.e. fewer methods). It

has the practical disadvantage that the arithmetic simpli�cation process may not

proceed quicky enough to avoid a \dragging" phenomenon similar to that sometimes

experienced by \lazy" evaluation strategies (see [Pey87]).

3.1.2 Messages

A message is a vertex that has target and tail terminals, and the methods neces-

sary to allow it to climb through Copy trees in the fashion described in section 2.4.2.

Messages are used to model both procedure calling and message passing. Most mes-

sages also have a cont terminal that is connected to a compiler-produced continuation.

Such messages are called operations.

The following message types are built in to the Scheme run-time system:

Type Labels

Return 1 \target", \tail", \0"

Call 0 \target", \tail", \cont"

Call 1 \target", \tail", \cont", \0"

Call 2 \target", \tail", \cont", \0", \1"

Call 3 \target", \tail", \cont", \0", \1", \2"

Call 4 \target", \tail", \cont", \0", \1", \2", \3"

Call 5 \target", \tail", \cont", \0", \1", \2", \3", \4"

Car \target", \tail", \cont"

Cdr \target", \tail", \cont"

Set Car \target", \tail", \cont", \new"

Set Cdr \target", \tail", \cont", \new"

Null? \target", \tail", \cont"

The one message that lacks a cont terminal (and is therefore not an operation) is

Return 1. The reason for this is that Return 1 is used to resume a continuation|

typically one that was recently attached to the cont terminal of an operation. The

0 terminal of a Return 1 is attached to the value that is to be returned to the

continuation.1

1
The \1" in the name \Return 1" re
ects the fact that the run-time supports multiple return

values. There also exist messages Return 0, Return 2, Return 3, etc., for returning other numbers

of values. The current compiler does not make use of these other messages, so they are not described

here.

42 CHAPTER 3. COMPILING SCHEME

3.1.2.1 Operations

The operations Call 0 through Call 5 are used to invoke objects that represent

procedures.2 The arguments to be passed to the procedure are attached to the ter-

minals 0 through 4, and the continuation is attached to the cont terminal.

The Car operation is generated by calls to the Scheme CAR procedure. (How this

happens is covered below in section 3.1.3.1.) The method

(graph (0 1 2 3)

(<Car> target:4 tail:2 cont:3)

(<Cons> 4 car:0 cdr:1))

(graph (0 1 2 3)

(<Cons> 2 car:4 cdr:1)

(<Return 1> target:3 tail:5 0:6)

(<Drop> 5)

(<Copy> target:0 a:6 b:4))

makes Car behave as it should when it climbs up to a Cons: The car of the Cons

is copied, one copy is returned in a Return 1 message sent to the continuation, and

the other copy becomes the car of the recreated Cons that will be seen by the next

message to arrive. An analogous method is de�ned for the Cdr operation.

The Set Car operation is generated by calls to the Scheme SET-CAR! procedure.

The method

(graph (0 1 2 3 4)

(<Set Car> target:5 tail:2 cont:3 new:4)

(<Cons> 5 car:0 cdr:1))

(graph (0 1 2 3 4)

(<Cons> 2 car:4 cdr:1)

(<Return 1> target:3 tail:5 0:0)

(<Drop> 5))

creates a new Cons whose car is the value that was previously attached to the new

terminal of the Set Car. An analogous method is de�ned for the Set Cdr operation.

The Null? operation is generated by calls to the Scheme NULL? procedure. The

methods

2
Actually, the operation Call n is de�ned for all non-negative n, but none of the examples here

will require more than 5 arguments.

3.1. VERTEX TYPES FOR THE SCHEME RUN-TIME 43

(graph (0 1 2 3)

(<Null?> target:4 tail:2 cont:3)

(<Cons> 4 car:0 cdr:1))

(graph (0 1 2 3)

(<Cons> 2 car:0 cdr:1)

(<False> 4)

(<Return 1> target:3 tail:5 0:4)

(<Drop> 5))

and

(graph (0 1)

(<Null?> target:2 tail:0 cont:1)

(<Nil> 2))

(graph (0 1)

(<Nil> 0)

(<True> 2)

(<Return 1> target:1 tail:3 0:2)

(<Drop> 3))

allow the Null? operation to distinguish between Cons vertices and Nil vertices: A

True or False vertex is returned to the continuation, as appropriate, and the original

target is recreated for the bene�t of the next message to arrive.

3.1.3 Atoms

An atom is a vertex that has a single terminal (its handle) and a method that makes

a duplicate of the atom when it is connected to the target terminal of a Copy vertex.

For example, the atomic type True has the associated method:

(graph (0 1)

(<True> 2)

(<Copy> target:2 a:0 b:1))

(graph (0 1)

(<True> 1)

(<True> 0))

You might expect that a method like

(graph ()

(<True> 0)

(<Drop> 0))

(graph ())

44 CHAPTER 3. COMPILING SCHEME

would be needed to make atoms disappear when they were dropped. However, as

discussed in section 2.4, disconnected subgraphs can always be discarded without any

e�ect on the output of the computation; instead of de�ning such methods, we can rely

on disconnected subgraph garbage collection to clean up when atoms are dropped.

The following miscellaneous atomic types are built in to the Scheme run-time

system:

Type Labels

Drop \"

Nil \"

True \"

False \"

Number x \"

Failure \"

Sink \"

Drop vertices were described in section 2.4. Nil vertices represent the empty list.

True and False vertices are used as boolean values. For any number x there is an

atomic vertex type named \Number x" that represents that value.

Failure and Sink are part of the support for Futures. A Failure is a Future that

can never become a \real" value, and a Sink is a continuation that simply discards

any value that is returned to it. The implementation of Futures is described more

detail below.

3.1.3.1 Globals

Identi�ers that occur free in top level Scheme expressions are called global identi�ers.

Global identi�ers typically name primitive procedures such as +, CONS, CAR or CALL-

WITH-CURRENT-CONTINUATION that have no internal state. In those cases we can make

the values of these global identi�ers be atoms that respond to the appropriate Call

operation. Atoms that are the value of global identi�ers are simply called globals.

For any global identi�er G there is a global vertex type named \Global G" that is

the type of its value.

Constructors. Many global types respond to the appropriate Call operation by

returning a new vertex of some other type. Such globals are called constructors.

The scheme run-time supports the following constructors:

3.1. VERTEX TYPES FOR THE SCHEME RUN-TIME 45

Type Constructed type

Global CONS Cons

Global + Sum

Global - Difference

Global * Product

Global = Equal?

Global < Less?

Global > Greater?

(The constructed types are all objects introduced in section 3.1.1.)

The method that controls what happens when a Global CONS vertex encounters

a Call 2 operation is typical of the behavior of constructors:

(graph (0 1 2 3)

(<Global CONS> 4)

(<Call 2> target:4 tail:0 cont:1 0:2 1:3))

(graph (0 1 2 3)

(<Global CONS> 0)

(<Cons> 4 car:2 cdr:3)

(<Return 1> target:1 tail:5 0:4)

(<Drop> 5))

This method constructs a new Cons vertex and returns it to the continuation, ini-

tializing its car and cdr from the arguments to the Call 2. It also leaves behind a

Global CONS vertex in case another message is waiting on the tail of the Call 2.

(This is necessary because the caller can't know whether the procedure being called

is an atom or an object, so it must use the same calling convention in either case.)

Operators. Many global types respond to the appropriate Call operation by send-

ing another operation to the �rst argument. Such globals are called operators. The

scheme run-time supports the following operators:

Type Operation sent

Global CAR Car

Global CDR Cdr

Global SET-CAR! Set Car

Global SET-CDR! Set Cdr

Global NULL? Null?

The method that controls what happens when a Global SET-CAR! vertex encoun-

ters a Call 2 operation is typical of the behavior of operators:

46 CHAPTER 3. COMPILING SCHEME

(graph (0 1 2 3)

(<Global SET-CAR!> 4)

(<Call 2> target:4 tail:0 cont:1 0:2 1:3))

(graph (0 1 2 3)

(<Global SET-CAR!> 0)

(<Set Car> target:2 tail:4 cont:1 new:3)

(<Drop> 4))

This method creates a Set Car operation and targets it for the Call's �rst argument.

The Call's second argument is attached to the Set Car's new terminal, and the Call's

continuation becomes the continuation for the Set Car. As with the constructors,

the Global SET-CAR! operator is reconstructed in case another message is waiting

on the tail of the Call 2.

Call with current continuation. Many people �nd the procedure CALL-WITH-

CURRENT-CONTINUATION to be scary. Those people may safely skip the rest of this

section. On the other hand, I think that this implementation of CALL-WITH-CURRENT-

CONTINUATION is particularly nice, so I encourage you to read and understand it.

Perhaps afterwards you won't be scared any more!

The method

(graph (0 1 2)

(<Global CALL-WITH-CURRENT-CONTINUATION> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global CALL-WITH-CURRENT-CONTINUATION> 0)

(<Copy> target:1 a:4 b:6)

(<Continuation> 3 cont:4)

(<Call 1> target:2 tail:5 cont:6 0:3)

(<Drop> 5))

serves to support Scheme's CALL-WITH-CURRENT-CONTINUATION procedure. Recall

that the �rst argument to CALL-WITH-CURRENT-CONTINUATION is a one-argument pro-

cedure, which is to be tail-recursively applied to an escape procedure that captures

the continuation that was originally passed to CALL-WITH-CURRENT-CONTINUATION.

This method makes a vertex of type Continuation that holds one copy of the con-

tinuation in its cont terminal. The other copy is supplied as the continuation for

the tail-recursive call of the one-argument procedure that was passed to CALL-WITH-

CURRENT-CONTINUATION.

A Continuation is an object type (see section 3.1.1). Since a Continuation must

behave as a one-argument procedure, the following method describes the interaction

of a Continuation with a Call 1:

3.1. VERTEX TYPES FOR THE SCHEME RUN-TIME 47

(graph (0 1 2 3)

(<Continuation> 4 cont:0)

(<Call 1> target:4 tail:1 cont:2 0:3))

(graph (0 1 2 3)

(<Drop> 2)

(<Continuation> 1 cont:4)

(<Return 1> target:0 tail:4 0:3))

This method takes the argument passed in the Call, and returns it directly to the

captured continuation. As usual, the Continuation vertex is reconstructed for the

bene�t of any future callers.

There are two interesting things to notice about this method. First, observe that

when a Continuation is called, the continuation supplied by the Call operation is

dropped. This method, and the one immediately preceding it that copied a continu-

ation, are the only methods that treat continuations nonlinearly.

Second, notice that when the Continuation is reconstructed, no Copy vertex is

used to duplicate the captured continuation. Instead, the tail of the Return 1 vertex

is used. This works because the captured continuation also obeys the protocol for an

object, so after it has processed the Return 1 it will connect a reconstruction of itself

to the tail terminal. This device will appear many times in subsequent methods|in

e�ect, every message contains an implicit Copy that the sender of a message can use

if it wishes to retain its access to the target.

3.1.4 Futures

One type fails to �t into the neat categorization of types into objects, messages,

and atoms: the Future vertex type. A Future is created by the (extended) Scheme

FUTURE special form. A Future has two terminals, labeled \" and \as cont", both

of which can be thought of as handles. The \" terminal is connected to the parts

of the working graph that are treating the future as if it were already a full-
edged

value. For example, this terminal might be connect to the left terminal of a Sum,

or the car terminal of a Cons. The \as cont" terminal is connected to the parts of

the working graph that are working on computing the future's eventual value. This

terminal functions as a continuation, so it accepts Return 1 messages through the

following method:

(graph (0 1 2)

(<Future> 2 as cont:3)

(<Return 1> target:3 tail:0 0:1))

(graph (0 1 1)

(<Sink> 0))

This method connects the returned value directly to the parts of the graph that have

proceeded on as if the value was already there. In e�ect the Future vertex \becomes"

48 CHAPTER 3. COMPILING SCHEME

the returned value. This method also replaces the Future with a Sink atom. A Sink

responds to any additional attempts to return values by simply dropping them:3

(graph (0 1)

(<Sink> 2)

(<Return 1> target:2 tail:0 0:1))

(graph (0 1)

(<Sink> 0)

(<Drop> 1))

Of course this can only occur if CALL-WITH-CURRENT-CONTINUATION was used to

capture and duplicate the continuation|normally the Sink atom will be quickly

dropped.

If no values are ever returned to the \as cont" terminal of a Future, i.e. if it is

simply dropped, then this method will apply:

(graph (0)

(<Future> 0 as cont:1)

(<Drop> 1))

(graph (0)

(<Failure> 0))

So the Future vertex becomes a Failure atom. There are no methods that allow

a Scheme program to test for such a failed future, this is done purely as a storage

reclamation measure.

For similar reasons, the method

(graph (0)

(<Future> 1 as cont:0)

(<Drop> 1))

(graph (0)

(<Sink> 0))

handles the case where the \" terminal of a Future is dropped.

3.2 Translating Scheme constructs

This section describes how a Scheme program is translated into a collection of meth-

ods.

The only top-level expressions that are supported are procedure de�nitions. Each

de�nition de�nes a global type (see section 3.1.3.1) and a method for what should

happen when the global type is treated as a procedure. For example, given the

top-level de�nition

3
As a result, the futures described here behave like those in MultiLisp [Hal84]. Other possible

behaviors are described in [Mil87, KW90].

3.2. TRANSLATING SCHEME CONSTRUCTS 49

(define (inc x) (+ x 1))

the method

(graph (0 1 2)

(<Global INC> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global INC> 0)

(<Number 1> 3)

(<Sum> 4 left:2 right:3)

(<Return 1> target:1 tail:5 0:4)

(<Drop> 5))

is the result. It is easy to see that this method performs the computation called for

in the body of the de�nition and returns the answer to the supplied continuation.

(Notice that the compiler has integrated knowledge about the meaning of the global

identi�er + into this method.)

De�nitions that call for more complicated computations will require the compiler

to generate new object types to represent the required closures and continuations.

For example, compiling

(define (f x) (lambda (y) (+ x y)))

yields the method

(graph (0 1 2)

(<Global F> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global F> 0)

(<Lambda 1583> 3 x:2)

(<Return 1> target:1 tail:4 0:3)

(<Drop> 4))

which creates a Lambda 15834 object to serve as a closure. The value of X is captured

in this closure for later use when the Lambda 1583 handles a Call 1 operation:

4
This is a badly chosen name. It would be better if the compiler gave such generated types names

that started with \Procedure" or \Closure" instead of \Lambda".

50 CHAPTER 3. COMPILING SCHEME

(graph (0 1 2 3)

(<Lambda 1583> 4 x:3)

(<Call 1> target:4 tail:0 cont:1 0:2))

(graph (0 1 2 3)

(<Lambda 1583> 0 x:4)

(<Copy> target:3 a:6 b:4)

(<Sum> 5 left:6 right:2)

(<Return 1> target:1 tail:7 0:5)

(<Drop> 7))

This adds the argument to one copy of the captured value, and recreates the Lambda

1583 using the other copy.

Note that the values of the captured variables are held directly by the closure

object itself. There are no separate environment objects as there are in a traditional

Scheme interpreter [AS85]. Environments are not needed when there are no local

variable assignments. (Recall that we are pretending that assignment statements

have been eliminated through assignment conversion.)

Continuations are created in a similar manner. For example, compiling

(define (f g) (+ (g) 1))

yields the method

(graph (0 1 2)

(<Global F> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global F> 0)

(<Evarg 1472> 3 cont:1)

(<Call 0> target:2 tail:4 cont:3)

(<Drop> 4))

which creates an Evarg 1472 object to serve as the continuation when the procedure

G is called. An Evarg 1472 handles a Return 1message by incrementing the returned

value before passing that value back to the original continuation:

(graph (0 1 2)

(<Evarg 1472> 3 cont:2)

(<Return 1> target:3 tail:0 0:1))

(graph (0 1 2)

(<Evarg 1472> 0 cont:3)

(<Return 1> target:2 tail:3 0:5)

(<Sum> 5 left:1 right:4)

(<Number 1> 4))

3.2. TRANSLATING SCHEME CONSTRUCTS 51

Like any object, an Evarg 1472 reconstructs itself for the bene�t of any further

Return 1 messages.

Note that in order to properly reconstruct itself, this continuation method needs

to make a copy of the original continuation it holds. (It does this by using the tail

of the Return 1.) This is in apparent violation of my assertion in section 3.1.3.1

that only the methods associated with CALL-WITH-CURRENT-CONTINUATION ever treat

continuations in a nonlinear fashion.

However, observe that this copying is only done to cover the case where the Evarg

1472 is itself copied. In the absence of CALL-WITH-CURRENT-CONTINUATION every

Return 1 message has a Drop following close behind on its tail, and these contin-

uations are all quickly discarded. If CALL-WITH-CURRENT-CONTINUATION were elimi-

nated from the language, continuation methods would not need to engage in all this

useless duplication.

Continuations can also capture variables from the lexical environment and inter-

mediate values. Consider the de�nition:

(define (bar f) (+ (f) (f)))

This compiles into the method

(graph (0 1 2)

(<Global BAR> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global BAR> 0)

(<Evarg 673> 3 cont:1 f:4)

(<Call 0> target:2 tail:4 cont:3))

which calls the function F with a continuation of type Evarg 673 which holds both the

original continuation, and a second copy of the value of F. When a value is returned

to an Evarg 673, the method

(graph (0 1 2 3)

(<Evarg 673> 4 cont:2 f:3)

(<Return 1> target:4 tail:0 0:1))

(graph (0 1 2 3)

(<Evarg 673> 0 cont:4 f:5)

(<Evarg 662> 6 cont:7 0:1)

(<Call 0> target:3 tail:5 cont:6)

(<Copy> target:2 a:7 b:4))

calls the saved value of F (for the second time) with a continuation of type Evarg

662 which maintains a hold on the original continuation, and also holds on to the

returned value. When a value is returned to an Evarg 662, the method

52 CHAPTER 3. COMPILING SCHEME

(graph (0 1 2 3)

(<Evarg 662> 4 cont:2 0:3)

(<Return 1> target:4 tail:0 0:1))

(graph (0 1 2 3)

(<Evarg 662> 0 cont:4 0:5)

(<Sum> 6 left:7 right:1)

(<Return 1> target:2 tail:4 0:6)

(<Copy> target:3 a:7 b:5))

adds the returned value value to the saved value and returns the result to the saved

continuation.

The examples presented so far demonstrate how the basic Scheme constructs can

be compiled into methods. Combinations, local and global identi�ers, LAMBDA expres-

sions, and constants have all been demonstrated. The following subsections describe

the treatment of the Scheme special forms IF, BEGIN, LETREC and FUTURE. (The spe-

cial forms LET, LET*, COND, AND and OR are also present. They are de�ned as macros.)

This should complete the picture of how an arbitrary sequential Scheme program can

be compiled into a linear graph grammar.

3.2.1 BEGIN

BEGIN is handled in much the same way as a combination. For example,

(define (twice f) (begin (f) (f)))

generates the method

(graph (0 1 2)

(<Global TWICE> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global TWICE> 0)

(<Evseq 733> 3 cont:1 f:4)

(<Call 0> target:2 tail:4 cont:3))

which calls the function F with a continuation of type Evseq 733 which holds both the

original continuation, and a second copy of the value of F. When a value is returned

to an Evseq 733, the method

3.2. TRANSLATING SCHEME CONSTRUCTS 53

(graph (0 1 2 3)

(<Evseq 733> 4 cont:2 f:3)

(<Return 1> target:4 tail:0 0:1))

(graph (0 1 2 3)

(<Evseq 733> 0 cont:4 f:5)

(<Call 0> target:3 tail:5 cont:6)

(<Drop> 1)

(<Copy> target:2 a:6 b:4))

drops the returned value and calls the saved value of F (for the second time) with the

original continuation.

3.2.2 IF

Conditional expressions are somewhat more complicated. There are two cases, de-

pending on the nature of the expression which is to be tested. In some cases the

compiler can produce a single type and two methods, while in other cases the com-

piler is forced to generate an additional type and an additional method.

First, an example of the simple case: The de�nition

(define (test n x) (if (< n 2) x 105))

generates the method

(graph (0 1 2 3)

(<Global TEST> 4)

(<Call 2> target:4 tail:0 cont:1 0:2 1:3))

(graph (0 1 2 3)

(<Global TEST> 0)

(<Test 1307> 4 cont:1 x:3)

(<Less?> 4 left:2 right:5)

(<Number 2> 5))

which compares N with 2, and connects the result to the handle of a Test 1307

vertex. Test 1307 is a compiler generated type, similar to a continuation. It captures

the continuation and the values of the variables that are used on either arm of the

conditional. A Test 1307 is not a continuation, because it does not expect to handle

a Return 1 message. Instead it expects to be connected to the value to be tested,

so that it may perform a dispatch on the Boolean value. If the value is True, the

method

54 CHAPTER 3. COMPILING SCHEME

(graph (0 1)

(<Test 1307> 2 cont:0 x:1)

(<True> 2))

(graph (0 1)

(<Return 1> target:0 tail:2 0:1)

(<Drop> 2))

returns the preserved value of X to the continuation. If the value is False, the method

(graph (0 1)

(<Test 1307> 2 cont:0 x:1)

(<False> 2))

(graph (0 1)

(<Drop> 1)

(<Number 105> 2)

(<Return 1> target:0 tail:3 0:2)

(<Drop> 3))

discards the preserved value of X and returns 105.

The previous example was simple because the compiler was able to avoid gener-

ating an explicit continuation for the call to <. This won't always be possible. If the

example had been

(define (test f x) (if (f) x 105))

then the compiler would have generated the method

(graph (0 1 2 3)

(<Global TEST> 4)

(<Call 2> target:4 tail:0 cont:1 0:2 1:3))

(graph (0 1 2 3)

(<Global TEST> 0)

(<Evif 1450> 4 cont:1 x:3)

(<Call 0> target:2 tail:5 cont:4)

(<Drop> 5))

which calls F with a continuation of type Evif 1450. When a value is returned to an

Evif 1450 the method

(graph (0 1 2 3)

(<Evif 1450> 4 cont:2 x:3)

(<Return 1> target:4 tail:0 0:1))

(graph (0 1 2 3)

(<Evif 1450> 0 cont:4 x:5)

(<Test 1307> 1 cont:6 x:7)

(<Copy> target:2 a:6 b:4)

(<Copy> target:3 a:7 b:5))

3.2. TRANSLATING SCHEME CONSTRUCTS 55

connects that value to the Test 1307 vertex and (as usual) recreates the continuation.

3.2.3 FUTURE

Since the FUTURE special form is not a standard part of Scheme, we present a brief

introduction of it here. (More complete descriptions can be found elsewhere [Hal84,

Mil87].) A FUTURE expression contains a single subexpression. When the FUTURE

expression is evaluated, what was previously a single thread of execution splits, and

execution continues concurrently in two di�erent directions. One thread of execution

starts evaluating the subexpression. The other thread of execution continues the

execution of the rest of the program, taking as the value of the FUTURE expression

something called a \future". Execution continues in parallel until one of two things

happens: If the evaluation of the subexpression yields a value, then the future becomes

that value.5 If, on the other hand, the evaluation of the rest of the program requires

an actual value instead of a future, then that thread simply waits until evaluation of

the subexpression �nally yields a value.

The compilation of the FUTURE special form is quite simple. Consider

(define (future-call f) (future (f)))

which compiles into the single method:

(graph (0 1 2)

(<Global FUTURE-CALL> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global FUTURE-CALL> 0)

(<Future> 3 as cont:4)

(<Return 1> target:1 tail:5 0:3)

(<Call 0> target:2 tail:6 cont:4)

(<Drop> 5)

(<Drop> 6))

Almost exactly the same method would have been generated if the call to F had not

been wrapped in a FUTURE. The di�erence is the additional Future and Return 1

vertices strung together between the original continuation and the cont terminal of

the Call 0. This has the e�ect of immediately returning the Future to the caller,

while allowing the call to F to proceed simultaneously.

Various methods for Futures were described in section 3.1.4.

You might think of Future vertices as anti-particles for Return 1 vertices. When

a FUTURE special form is evaluated, a Return 1 and an anti-Return 1 (a Future)

are created. Later, when the expression inside the FUTURE produces a Return 1, the

Return 1 and the anti-Return 1 annihilate each other.

5
An operation that can prove quite challenging to implement!

56 CHAPTER 3. COMPILING SCHEME

3.2.4 LETREC

There are many interesting things to say about the implementation of LETREC, but

none of them is really essential to an understanding of the current system, so the

reader can skip this subsection without missing anything important. On the other

hand, Scheme language a�cionados will �nd this stu� right up their alley.

Let us start with a simple example: The de�nition

(define (make-f)

(letrec ((f (lambda (n) (f (+ n 1)))))

f))

generates the method

(graph (0 1)

(<Global MAKE-F> 2)

(<Call 0> target:2 tail:0 cont:1))

(graph (0 1)

(<Global MAKE-F> 0)

(<Lambda 2101> 2 f:3)

(<Return 1> target:1 tail:4 0:5)

(<Drop> 4)

(<Copy> target:2 a:3 b:5))

which creates a closure of type Lambda 2101. One copy of the closure is returned

and the other copy is looped back to become the value of the closed-over variable F.

Later, when the closure is called, the method

(graph (0 1 2 3)

(<Lambda 2101> 4 f:3)

(<Call 1> target:4 tail:0 cont:1 0:2))

(graph (0 1 2 3)

(<Lambda 2101> 0 f:4)

(<Number 1> 5)

(<Sum> 6 left:2 right:5)

(<Call 1> target:3 tail:4 cont:1 0:6))

calls one copy of the function F, and makes a second copy for the reconstructed Lambda

2101 vertex.

So far, this is exactly what one would expect given the usual Scheme de�nition for

LETREC and the way Scheme objects are beingmodeled, but the underlying mechanism

that supports this is actually much more general. For example

(define (circular-list x)

(letrec ((l (cons x l)))

l))

3.2. TRANSLATING SCHEME CONSTRUCTS 57

generates the method

(graph (0 1 2)

(<Global CIRCULAR-LIST> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global CIRCULAR-LIST> 0)

(<Cons> 3 car:2 cdr:4)

(<Return 1> target:1 tail:5 0:6)

(<Drop> 5)

(<Copy> target:3 a:4 b:6))

which returns (one copy of) a Cons whose cdr is (the other copy of) itself.

In fact, by using Futures, any expression can appear in a LETREC. For example

(define (fixpoint f)

(letrec ((x (f x)))

x))

generates the method

(graph (0 1 2)

(<Global FIXPOINT> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global FIXPOINT> 0)

(<Future> 3 as cont:4)

(<Return 1> target:1 tail:5 0:6)

(<Call 1> target:2 tail:7 cont:4 0:8)

(<Drop> 5)

(<Drop> 7)

(<Copy> target:3 a:8 b:6))

which creates a Future to �ll in for the value of the call to F, and then passes one

copy in to F as its argument, and returns the other copy.

The �rst two examples were produced by generating the fully general translation,

using Futures, and then optimizing the Futures away (using the techniques described

in the next section). In the usual case, where the expressions in a LETREC are all

LAMBDA-expressions, the futures can always be eliminated.

The fact that futures can be used to implement a fully general LETREC is not new.

See [Mil87].

58 CHAPTER 3. COMPILING SCHEME

3.3 Optimization: simulation

The compiler uses one simple technique to optimize linear graph grammars: It applies

methods to the right hand sides of other methods.

To see why this is a safe thing to do, suppose method B applies to the right hand

side of method A. In other words, the left hand side of B occurs as a subgraph of the

right hand side of A. When A is actually applied to the working graph at run-time,

its right hand side will be instantiated as a subgraph of the working graph; so B's

left hand side will now occur in the working graph. When A is applied, B always

becomes applicable immediately afterwards. Applying B to A simply performs that

application at compile-time. In e�ect, this does a compile-time simulation of the

run-time world.

Some possible execution histories are eliminated by making these decisions at

compile-time. After A is applied, B becomes applicable, but the run-time is free to

choose some other applicable method C instead. C might even change the graph so

that B is no longer applicable. By making the choice to apply B at compile-time, that

possibility is precluded. Fortunately, the compiler takes care to generate grammars

that work correctly given any scheduling of methods, so this isn't a problem.

Simulation turns out to be quite good at cleaning up the rubbish left behind by

the raw source-to-methods translation algorithm. In fact, all the methods presented

in the previous section as examples of compiler output were already optimized in this

way. Unsimulated methods are considerably more di�cult to read. For example, the

de�nition

(define (invoke f) (f))

initially becomes two methods:

(graph (0 1 2)

(<Global INVOKE> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global INVOKE> 0)

(<Evarg 317> 3 cont:1)

(<Return 1> target:3 tail:4 0:2)

(<Drop> 4))

(graph (0 1 2)

(<Evarg 317> 3 cont:2)

(<Return 1> target:3 tail:0 0:1))

(graph (0 1 2)

(<Evarg 317> 0 cont:3)

(<Call 0> target:1 tail:4 cont:5)

(<Drop> 4)

(<Copy> target:2 a:5 b:3))

3.3. OPTIMIZATION: SIMULATION 59

The object type Evarg 317 is the continuation for the evaluation of the expression

F. The �rst method creates an Evarg 317 and immediately returns the value of F to

it. The second method describes what happens when a value is returned to an Evarg

317. So the second method can be applied to the right hand side of the �rst method

so that it becomes:

(graph (0 1 2)

(<Global INVOKE> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global INVOKE> 0)

(<Copy> target:1 a:5 b:6)

(<Evarg 317> 4 cont:6)

(<Call 0> target:2 tail:7 cont:5)

(<Drop> 4)

(<Drop> 7))

Then we can apply the method that applies when a Drop is connected to the handle

of a Evarg 317. (Recall from section 3.1.1 that all object types have such a method.)

The result:

(graph (0 1 2)

(<Global INVOKE> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global INVOKE> 0)

(<Copy> target:1 a:5 b:6)

(<Call 0> target:2 tail:7 cont:5)

(<Drop> 6)

(<Drop> 7))

Now we can apply the method that applies when a Drop is connected to the b terminal

of a Copy (see section 2.4) to obtain the �nal result:

(graph (0 1 2)

(<Global INVOKE> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global INVOKE> 0)

(<Call 0> target:2 tail:7 cont:1)

(<Drop> 7))

Simulation sometimes looks a lot like �-reduction, but it is both more and less

powerful. It is more powerful because it is able to integrate knowledge of the behavior

of various data types into the generated code. For example, the de�nition

60 CHAPTER 3. COMPILING SCHEME

(define (f x) (car (cons x x)))

becomes simply

(graph (0 1 2)

(<Global F> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global F> 0)

(<Return 1> target:1 tail:3 0:2)

(<Drop> 3))

because the compiler has the complete set of methods describing the behavior of CAR

and CONS available at compile-time. (This example also illustrates how nonlinearities

can sometimes be eliminated at compile-time.)

On the other hand, simulation is less powerful than �-reduction because it is

unable to eliminate captured variables from closures. For example

(define (7up) ((lambda (x) (lambda () x)) 7))

can be �-substituted to become

(define (7up) (lambda () 7))

but compiles into the following two methods:

(graph (0 1)

(<Global 7UP> 2)

(<Call 0> target:2 tail:0 cont:1))

(graph (0 1)

(<Global 7UP> 0)

(<Lambda 487> 2 x:3)

(<Number 7> 3)

(<Return 1> target:1 tail:4 0:2)

(<Drop> 4))

(graph (0 1 2)

(<Lambda 487> 3 x:2)

(<Call 0> target:3 tail:0 cont:1))

(graph (0 1 2)

(<Lambda 487> 0 x:3)

(<Return 1> target:1 tail:4 0:5)

(<Drop> 4)

(<Copy> target:2 a:5 b:3))

We would prefer for the compiler to eliminate the variable X and generate instead the

two methods:

3.3. OPTIMIZATION: SIMULATION 61

(graph (0 1)

(<Global 7UP> 2)

(<Call 0> target:2 tail:0 cont:1))

(graph (0 1)

(<Global 7UP> 0)

(<Lambda 487> 2)

(<Return 1> target:1 tail:3 0:2)

(<Drop> 3))

(graph (0 1)

(<Lambda 487> 2)

(<Call 0> target:2 tail:0 cont:1))

(graph (0 1)

(<Lambda 487> 0)

(<Return 1> target:1 tail:2 0:3)

(<Drop> 2)

(<Number 7> 3))

The problem is that the initial translation decided that the type Lambda 487

(used to represent closures of the expression (LAMBDA () X)) needed an x terminal to

remember the value of X, and no amount of mere simulation can eliminate a terminal.

More complex optimizations would be required to duplicate full �-reduction.

Another important function served by simulation is to integrate calls to the con-

structors and operators described in section 3.1.3.1 into the code. Calls to +, for

example, are converted into Sum vertex constructions, rather than remaining explicit

calls to Global +. Many of the raw translations also rely on simulation to produce

reasonable code. For example, the raw translation for a LETREC always makes use of

futures, and assumes they will be eliminated in the common cases (section 3.2.4).

Simulation remains a valid technique even if the compiler uses only a subset of

the methods and types that will be present at run-time. In fact, the current com-

piler doesn't have complete knowledge of the numeric types and the methods that

implement arithmetic (although it could, given some more work).

The compiler also lacks all knowledge of the vertex types used at run-time to

implement I/O. Such types cannot even occur in any of the methods manipulated at

compile-time. Therefore, in particular, such types cannot occur in any disconnected

component appearing in the right hand side of a method. Thus the compiler knows

that all disconnected components in method right hand sides will be garbage at run-

time (see section 2.4), and so it can discard them immediately.

Of course there is a danger in doing such a complete simulation of the program at

compile-time: The compiler might �nd itself running the program to completion using

the considerably slower compile-time data structures. (For example, if the expression

((LAMBDA (X) (X X)) (LAMBDA (X) (X X))) appears in the program.) Compilers

that do �-reduction face this danger as well. To prevent the simulation from getting

62 CHAPTER 3. COMPILING SCHEME

out of hand, no right hand side is ever simulated for more than 250 steps. That

number was picked because a couple of contrived examples really needed to run that

long, but ordinarily all right hand sides terminate in less than 20 steps.

Other optimizations besides simulation are certainly possible. Simulation is par-

ticularly easy because it only involves the interaction of two methods (the method

being applied, and the method whose right hand side is being modi�ed).

3.4 A real example

So far, the examples have all been chosen to emphasize some particular aspect of

compilation. To get a feeling for what compilation will do with a more typical Scheme

procedure, consider the following famous function:

(define (fact n)

(let loop ((a 1) (n n))

(if (< n 2)

a

(loop (* n a) (- n 1)))))

After translation and optimization, four methods remain. One method describes the

behavior of when FACT is �rst called:

(graph (0 1 2)

(<Global FACT> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global FACT> 0)

(<Copy> target:2 a:7 b:10)

(<Lambda 642> 3 loop:4)

(<Copy> target:3 a:8 b:4)

(<Test 520> 6 cont:1 n:7 loop:8 a:9)

(<Number 1> 9)

(<Less?> 6 left:10 right:5)

(<Number 2> 5))

Among other things, this method builds a closure (a Lambda 642 object) to represent

the internal procedure named LOOP in the source. A picture of this method is shown

in �gure 3-2.6 When this closure is invoked, the relevant method will be:

6
The vertex types in this �gure, and those that follow, have been abbreviated in a straightforward

way. \Lambda 642" becomes \L. 642", \Call 1" becomes \C. 1", etc.

3.4. A REAL EXAMPLE 63

G. FACT

nc

t

C. 1 0cont

tail

target

t

G. FACT

L. 642

loop

Copy
a

target

b

c1

n

Copy
ba

target
2

Less?

left right

T. 520 loop

conta

n

Figure 3-2: The method for calling FACT

l

L. 642

loop

n

a

c

t

C. 2 1
0cont

tail

target

l

t

L. 642

loop

Copy
a

target

b

ca

n

Copy
ba

target
2

Less?

left right

T. 520 loop

conta

n

Figure 3-3: The method for calling LOOP

(graph (0 1 2 3 4)

(<Lambda 642> 5 loop:4)

(<Call 2> target:5 tail:0 cont:1 0:2 1:3))

(graph (0 1 2 3 4)

(<Lambda 642> 0 loop:5)

(<Number 2> 6)

(<Test 520> 7 cont:1 n:8 loop:9 a:2)

(<Less?> 7 left:10 right:6)

(<Copy> target:3 a:8 b:10)

(<Copy> target:4 a:9 b:5))

A picture of this method is shown in �gure 3-3.

Notice that both of these methods contain code that checks to see if the current

value of N is less than 2. The reason for this is that the aggressive simulation described

64 CHAPTER 3. COMPILING SCHEME

in the previous section has the e�ect of open-coding calls to procedures known to the

compiler|the �rst method of such a known procedure, the method that describes

what happens immediately after the procedure is called, will be integrated into the

method that called it.

These methods also both build Test 520 vertices to react to the results of the

comparison. The other two methods describe the two possible outcomes: Either N

was less than 2:

(graph (0 1 2 3)

(<Test 520> 4 cont:0 n:1 loop:2 a:3)

(<True> 4))

(graph (0 1 2 3)

(<Return 1> target:0 tail:4 0:3)

(<Drop> 4)

(<Drop> 1)

(<Drop> 2))

in which case the current value of A is returned, or another trip around the loop is

required:

(graph (0 1 2 3)

(<Test 520> 4 cont:0 n:1 loop:2 a:3)

(<False> 4))

(graph (0 1 2 3)

(<Number 1> 4)

(<Product> 5 left:6 right:3)

(<Difference> 7 left:8 right:4)

(<Call 2> target:2 tail:9 cont:0 0:5 1:7)

(<Drop> 9)

(<Copy> target:1 a:6 b:8))

in which case some arithmetic is performed to obtain new values to be arguments to

LOOP. Pictures of these two methods are shown in �gure 3-4 and �gure 3-5. (Note

that simulation was unable to discover that this call to LOOP is the same every time.

This demonstrates how simulation is not quite good enough to remove all traces of

LETREC. This failure is similar to the example on page 61, where the compiler failed

to perform �-reduction.)

Figure 3-6 shows a piece of linear graph structure set up for a call to the FACT

procedure. After applying the method for calling FACT (�gure 3-2), and after copying

the argument and performing the comparison the result appears in �gure 3-7. The

method for the false arm of the conditional (�gure 3-5) can now be applied, and after

some copying and some arithmetic the result appears in �gure 3-8. Notice that the

Copy and Lambda 642 subgraph survived this round unchanged.

3.4. A REAL EXAMPLE 65

True

a

n

c

lT. 520

a

n

cont

loop Drop

n

Drop

l

a

Drop

c

R. 1 0

tail

target

Figure 3-4: The method for when (< N 2) is true

False

a

n

c

lT. 520

a

n

cont

loop

1

Diff.

left right

n

Copy
a b

target

a

Prod.

leftright

c

Drop

l

C. 2
1
0cont

tail

target

Figure 3-5: The method for when (< N 2) is false

2

Drop

G. FACT

C. 1 0cont

tail

target

Figure 3-6: The initial working graph for (FACT 2)

66 CHAPTER 3. COMPILING SCHEME

L. 642

loop

Copy
a

target

b

1

2

False

T. 520 loop

conta

n

Figure 3-7: Before the conditional test (�rst time)

1

2

Drop

L. 642

loop

Copy
a

target

b

C. 2 1
0cont

tail

target

Figure 3-8: Before tree-climbing

3.4. A REAL EXAMPLE 67

1

2

Drop

Copy

target

ba

L. 642

loop

C. 2 1
0cont

tail

target

Figure 3-9: After tree-climbing

L. 642

loop

Copy
a

target

b

2

1

True

T. 520 loop

conta

n

Figure 3-10: Before the conditional test (second time)

Now the Call 2 vertex is connected to the a terminal of a Copy, so the standard

tree-climbing method can be applied and this graph becomes the graph shown in

�gure 3-9. The Drop and Copy vertices will now be eliminated, and the method for

calling a Lambda 642 will run, resulting in another copy and comparison, all resulting

in the graph shown in �gure 3-10. Notice how the Copy and Lambda 642 subgraph

has been recreated by this process, and as a result this graph strongly resembles the

one shown in �gure 3-7.

This time of course, the comparison came out the other way, so the method for

the true arm of the conditional now applies (�gure 3-4), resulting in the graph shown

in �gure 3-11. The correct result is now being returned to the original continuation.

Two disconnected components remain that will be garbage collected.

68 CHAPTER 3. COMPILING SCHEME

2

Drop

R. 1 0

tail

target

Drop

1

L. 642

loop

Drop

Copy

target

ba

Figure 3-11: Returning the result

3.5 Code generation

Code generation has the following phases:

1. Compute which types and methods will be needed at run-time.

Starting with the set of types known to be in the initial graph, the compiler

looks for methods that might apply to a graph built from just those types, i.e.

methods whose left hand side is made entirely from types in the set. Then

the compiler adds all the types used in the right hand sides of these methods

into the set. This operation is repeated until no new types and methods are

discovered. (This \tree shake" will even discard built-in types and methods

described in section 3.1 if they are not needed. If a program doesn't use futures

or CONS-cells, then none of the support for those features will be included.)

2. For each type discovered in the �rst phase, decide how vertices of that type will

be represented at run-time.

The run-time system uses tagged values to implement the connections between

vertices. Connections to univalent types are represented as immediate tagged

values, where the tag identi�es the type of the vertex, and the rest of the value

is ignored. For connections to larger valence types, the tag identi�es the type

of the vertex and which of its terminals is being connected to, and the rest of

the value is the address of a block of storage that contains values that represent

the vertex's other connections.

3. Write a C procedure that implements each method.

Each method becomes a C procedure that performs surgery on the run-time

working graph to transform a single instance of the method's left hand side into

an instance of its right hand side. The C code calls various utilities provided

by the run-time system to manipulate graph structure, and carefully alerts the

run-time system whenever it creates a subgraph to which some other method

might apply.

3.5. CODE GENERATION 69

The set of types and methods computed in the �rst phase are used to compute

the \activity" of each terminal of each type. A terminal is active if it occurs on one

end of a connection in the left hand side of any method. An inactive terminal is

one that is not active. A terminal is monoactive if it is the sole active terminal

among all the terminals of its type. If an active terminal is not monoactive, then it

is polyactive.

Recall that all methods are binary methods. The left hand side of a binary method

is entirely characterized by the pair of terminals joined by its single connection. So for

example, the method on page 42 describes what happens when the target terminal

of a Car operation is joined to the handle of a Cons object. Those two terminals are

thus active whenever this method is present at run-time. Furthermore, since no other

methods or method schema will make any of the other terminals of the types Car and

Cons active, those two terminals are in fact monoactive.

All three terminals of a Copy vertex are polyactive, because every message type

has methods for when its handle is joined to either the a or the b terminal of a Copy,

and in addition every atom type has a method for when it is joined to the target

terminal of a Copy.

Terminal activity information plays a number of important roles:

� The compiler uses terminal activities when it designs the run-time representa-

tions used for vertices. More about this below.

� The linker uses terminal activities to check that the assumptions made in sepa-

rately compiled modules about the characteristics of vertex types held in com-

mon are all consistent. Since the current compiler is actually a block compiler,

this problem reduces to checking that the compiler agrees with the run-time

system about the characteristics of a few built-in types. (Most of them, such

as Sum, Product and the Number types, are concerned with implementing arith-

metic.)

� The run-time system uses terminal activities to help make decisions about how

to migrate graph structure around the network during distributed graph reduc-

tion. More about this in chapter 5.

The layout of the block of storage used to represent a vertex type can be varied

depending on the requirements of the methods that mention that type in either their

left or right hand side. The code generated for those methods is the only code that

ever manipulates that storage, so the format of its contents is entirely up to the

compiler. This leaves a fair amount of room for optimizations, but as this dissertation

isn't concerned with the e�cient local execution of linear graph grammars, these

optimizations are not described here.

Instead I will assume that the compiler uses the general case representation for

all types. In the general case a vertex of valence N is represented using an array of

N tagged values that indicate for each terminal what other terminal it is connected

70 CHAPTER 3. COMPILING SCHEME

to. Thus every connection is represented using a pair of pointers, one running in each

direction.

The individual method procedures all share a fairly simple structure:

1. Allocate the storage needed to represent the vertices in the right hand side of

the method.

2. Move connections between the other terminals of the old pair of vertices and

the appropriate terminals of the newly allocated vertices.

3. Create additional internal connections between the newly allocated vertices.

4. Free the storage that was used to represent the two left hand side vertices.

In steps 2 and 3 connections to old terminals are broken and connections to new

terminals are made. If the terminal involved is active, this can cause previously

applicable methods to become inapplicable and vice versa. In these cases the method

procedure makes or breaks the connection by calling an appropriate run-time routine

that does the work necessary to maintain a queue of redexes. (This redex queue will

be a major character in chapter 5.)

Methods could be compiled into considerably better code. It should be possible

to produce methods that perform type dispatches and arithmetic directly, rather

than always relying on the run-time. I see no fundamental obstacles that prevent

a su�ciently good compiler from producing essentially the same code as any other

Scheme compiler for the same source code. Achieving that goal remains a topic for

future research.

The resulting collection of C procedures are compiled by the C compiler7 and

linked together with the run-time system. When the resulting executable �le is started

it initializes the storage system, starts up the network interface routines, loads all the

method procedures into a hash table, builds the initial working graph (based on

parsing the command line arguments), and calls the main scheduler loop (described

in the chapter 5).

3.6 Summary

In this chapter I demonstrated how Scheme can be modeled using linear graph reduc-

tion. I showed how the various Scheme data types could be represented using linear

graph structure, and how the Scheme language could be faithfully translated into a lin-

ear graph grammar. The current system is far from being a complete Scheme system|

it lacks many data types and language features|but I tried to include enough of the

picture so that it should be obvious how to �nish the job.

7gcc

3.6. SUMMARY 71

A key property of this translation is that linear constructs in the original program

are translated directly into linearities in the resulting graph grammar. If a procedure

uses the value of one of its arguments in a linear manner, then the reference to that

value will always be a direct connection|there will be no need for a tree of Copy

vertices. In this way, linearities in the original program are exposed in the linear

graph structure model, where we can exploit them during execution.

In chapter 5 Scheme programs will be compiled as described above, and executed

by a distributed graph reduction engine. That engine will have no understanding of

what the various vertex types meant to us in this chapter. In a sense it isn't necessary

to have an understanding of this chapter in order to understand chapter 5, but you

cannot truly appreciate the action without it. When the distributed graph reduction

engine decides to transport a subgraph containing a vertex of type Call 2 from

one network location to another, you may see why this act is good graph reduction

strategy, but if you understand this chapter, the act acquires additional signi�cance

as an example of a remote procedure call.

72 CHAPTER 3. COMPILING SCHEME

Chapter 4

Maintaining Connections Across

the Network

This chapter describes the link abstraction and the network protocol that implements

it. The distributed graph reduction engine is made up of a collection of agents that

each hold a subset of the vertices in the working graph. Links are used to maintain

connections between vertices that are held by di�erent agents. In chapter 5 we will

use the mechanism described in this chapter to support the execution of the code

generated in chapter 3.1

A link has two ends, which can travel independently from agent to agent. A agent

that is currently in possession of one of the two ends of a link can inquire about the

most recently known location of the other end. A simple network protocol guarantees

that each end is promptly informed about changes in the location of the other.

The migration of a subgraph from one agent to another will typically cause mul-

tiple link ends to pass from agent to agent over the network. As we shall see in

chapter 5, this is the only signi�cant cost of subgraph migration. Thus the more ex-

pensive it is to move link ends, the more expensive it will be to migrate subgraphs. It

is therefore worthwhile to work at making the implementation of links as light-weight

as possible.

Fortunately links are able to meet the goal of being light-weight because they

implement linear references. A nonlinear reference mechanism has to worry about a

number of things that linear references avoid. Nonlinear references can be duplicated

and stored in an arbitrary number of di�erent locations. The target of a nonlinear

reference must be prepared to handle multiple requests from reference holders, and

must continue to exist until some separate mechanism determines that there are no

more outstanding references. Any implementation of nonlinear references that cross

a network must take these possibilities into account|see [YTR+87] for an example

of the consequences.

In contrast, linear references cannot be duplicated. The entity at the other end

1
In order to better understand how the link abstraction �ts in to the rest of the system, the

reader may �nd it helpful at this point to preview �gure 5-1 on page 94, which shows how the

run-time modules support each other. The link module appears fairly low down, supported only by

the reliable message service.

73

74 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK

of a linear reference need only be prepared to handle a single request and can then

cease to exist. Support for linear references that cross a network only needs to worry

about the whereabouts of one remote entity. If that entity ever becomes local, then all

network resources devoted to maintaining the linear reference can be easily discarded.

4.1 The contract of a link

Links capture the essence of the requirements for supporting cross-network connec-

tions in a simple abstraction. The following �ve procedures de�ne the complete

interface to the abstraction. Note that these procedures are all invoked by some

particular agent|that calling agent is an implicit argument to them all.

create_link()) Link procedure

Creates a new link. The calling agent will be given possession of both ends of

the new link.

destroy_link(Link) procedure

Destroys Link. The calling agent must possess both ends of Link before calling

destroy_link.

pick_up_link(Link, Agent)) Descriptor procedure

Starts the process of moving one end of Link from the calling agent to Agent.

The Descriptor is an identi�er that can be presented to put_down_link (see

below) to complete the move. The calling agent must possess at least one of the

two ends of Link before calling pick_up_link, and after the call it will possess

one fewer.

put_down_link(Descriptor)) Link procedure

Finishes the process of moving a link. The calling agent now has possession of

an additional end of Link. The calling agent must be the agent speci�ed in the

call to pick_up_link that created Descriptor.

query_link(Link)) Agent or NULL procedure

Queries Link about the location of its other end. If the calling agent possesses

both ends of the link, then NULL is returned. The calling agent must possess at

least one of the ends of Link before calling query_link.

A descriptor can be thought of as the portable representation of a link end.

From the point of view of the users of this interface, the only purpose served by a

descriptor is to prevent the caller from confusing multiple link ends that are in transit

at the same time. (Another way to accomplish the same thing would be to arrange

for link ends to arrive in the same order that they were transmitted.)

4.1. THE CONTRACT OF A LINK 75

From within the link layer, descriptors serve a devious additional purpose. The

only thing the user of the link abstraction can do with a descriptor is carry it to

the destination agent and call put_down_link. The link layer takes advantage of

this by making information that it wants to transmit to the destination agent part

of the descriptor itself. This hack allows the link layer to avoid sending its own

reliable messages in many (but not all) situations. In order to make this work prop-

erly an agent that calls pick_up_link accepts responsibility for reliably delivering

the descriptor to the destination agent and calling put_down_link. In practice this

additional responsibility is no burden.

Note there there is never any need for the calling agent to distinguish between the

two ends of a link|for example, by labeling them the \left" and \right" ends. An

agent interested in the state of a particular link will either �nd that it is in possession

of both ends, or it will be interested in the location of the other end. No other

distinguishing characteristics are required.

The two ends of a link can be thought of as two virtual tokens. These tokens are

passed from agent to agent as part of the descriptors. At any given moment, each

token exists in exactly one place in the network: either it is in the possession of some

agent, or it is part of a descriptor. The contract of the link layer is to guarantee that:

� Neither of these tokens will be duplicated or lost. (This is easy to accomplish

as long as descriptors are delivered reliably.)

� If one token stays immobile in the possession of an agent, then that agent will

receive prompt updates about the location of the other token.

� If both tokens stay immobile, then after some small number of messages (perhaps

two or three) have journeyed through the network, each possessing agent will

learn the identity of the other.

� If neither token is moving, no network tra�c will be required to maintain the

link.

� An agent that does not currently possess either token from a given link will be

able to easily reclaim all local resources devoted to maintaining that link|even

though the link continues to exist, and may even pass through this agent again

in the future.

� When a link is destroyed (via a call to destroy_link), all resources on all agents

devoted to maintaining that link will be easily reclaimed.

A call to query_link does not initiate any network tra�c. query_link always just

immediately returns the most recent local information about the location of the other

end of the link. The link module works in the background to update this information

as quickly as possible, but there is no guarantee that the claimed location of the other

token re
ects current reality. The other token may have recently departed from the

76 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK

claimed location, or alternatively it may still be part of a descriptor en route to the

claimed location.2

Higher level modules must be designed to take the limitations of query_link's

answers into account. In section 5.3, when graph structure migration is described,

this fact will play an important role.

4.2 The link maintenance protocol

In this section I will describe the link maintenance protocol in detail. This protocol

meets all the requirements set forth in the previous section, and is clearly good enough

to demonstrate that cross-network connections can be kept light-weight. There are

still some problems with this protocol, and my intuition is that even better protocols

are possible.

There are two desires that motivate the design of this protocol. First, there is

the desire to quickly propagate changes in the location of one end of a link to the

agent that holds the other end. Second, there is the desire to easily reclaim resources

devoted to links whose ends are no longer present at a given agent.

The most obvious kind of protocol, where agents forward messages addressed to

link ends that have recently departed, is unsuitable on both counts. First, if both

ends of a link are hopping rapidly from agent to agent, then it can take an arbitrary

number of forwarding steps before the most up-to-date information about one end

can arrive at the other end. Second, it is di�cult for an agent to know when it is

safe to forget what it knows about a link if the protocol relies on agents to provide

forwarding.

The protocol described here solves these problems by using a �xed home agent

for each link that is always kept informed about the locations of the two ends. The

home agent of a link will be the agent who called create_link to forge the link in the

�rst place. The home agent receives status reports from the two ends whenever they

move. Occasionally the home agent will notice that the two ends have potentially

lost track of each other, in which case it will send messages to correct the situation.

This guarantees that an agent holding one end of a link will learn the true location

of the other end of the link after at most a single forwarding step. This also allows

any agent other than the home agent to discard all knowledge of any link whose ends

are elsewhere.

Relying on a third party home agent does have its disadvantages. If the home

agent becomes inaccessible for some reason, then the two ends of a link may lose

track of each other, even through they may be within easy reach of each other. Even

2
It is in fact possible for an agent to call query_link and �nd that the other end of the link is

believed to be possessed by the calling agent itself, even though only one token is actually resident

locally. This can happen if the token for the other end is in transit and was overtaken by some of

the messages that the link layer itself exchanges|once the token for the other end arrives, calls to

query_link will return NULL, as expected.

4.2. THE LINK MAINTENANCE PROTOCOL 77

if the home agent remains accessible, the two ends may wander far away from home,

so that when the home agent's services are required a lot of long distance network

tra�c takes place to correct what should be a purely local problem.

These are not particularly bad problems for very short-lived links, but for links

that last more that a few seconds it would be nice to shift the home agent's responsi-

bilities from the original creator to one of the two agents currently holding an end of

the link. Although the current run-time system does not implement it, I will suggest

a technique that addresses this problem below.

4.2.1 Link maintenance data structures

The link layer is built on top of a reliable message layer, which assigns a 64-bit

Agent-Id to each agent. Each link is assigned a unique Link-Id when create_link

is called. The 95-bit Link-Id consists of the 64-bit Agent-Id of the home agent (who

called create_link), plus a 31-bit extension generated by the home agent.3 This

makes it easy to obtain the Agent-Id of the home agent of a link given an arbitrary

Link-Id.

Inside the link layer, the two ends are distinguished. They are called the up

and down ends of the link. (The up end prefers to travel, although nothing takes

advantage of this fact.)

Each agent maintains a table of link records, keyed by Link-Id. A link record

contains the following �elds:

id

The Link-Id of this link. Recall that this includes the Agent-Id of the home

agent for the link.

up_agent

The Agent-Id of the agent believed to be in possession of the up end of this

link.

down_agent

The Agent-Id of the agent believed to be in possession of the down end of this

link.

up_sequence

A 16-bit sequence number associated with the information currently stored in

up_agent. The way sequence numbers are used is described below.

down_sequence

A 16-bit sequence number associated with the information currently stored in

down_agent.

3
The issue of what to do when an agent runs out of 31-bit extensions is not addressed in this

implementation. Link-Ids could be reused after a suitable timeout.

78 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK

up_flag

This
ag is set if the up end of the link is actually held by the local agent. If

this bit is set, then up_agent will necessarily contain the Agent-Id of the local

agent. (The converse is not true.)

down_flag

This
ag is set if the down end of the link is actually held by the local agent. If

this bit is set, then down_agent will necessarily contain the Agent-Id of the local

agent. (up_flag and down_flag record the presence of the tokens discussed in

section 4.1.)

deleted_flag

This
ag is set if the link has been destroyed.

4.2.2 Link layer communication

The link layer relies on other layers to transport descriptors, but it also needs to

exchange messages within itself. Thus the link module uses the same reliable message

service used by the migration routines that will be described in section 5.3. This

introduces some unnecessary communication in some circumstances since the link

layer doesn't actually need all the power of reliable messages, but it has the virtue of

simplifying the link layer|making it easier to implement, debug and explain.

4.2.3 Creating a new link

When an agent calls create_link, a new Link-Id is generated (with the calling agent

as home agent), and a new link record for that link is added to the calling agent's

link record table. In that new record the up_agent and down_agent are set to be the

calling agent's own Agent-Id, the up_flag and down_flag are set, the deleted_flag

is clear, and the up_sequence and down_sequence are initialized to 0.

4.2.4 Destroying a link

When an agent calls destroy_link the system �rst checks to be sure that both

up_flag and down_flag are set, otherwise the calling agent does not have permission

to destroy the link. Then, if the calling agent is not itself the home agent, a message

is dispatched to the home agent informing it of the demise of the link.

Both the destroying agent and the home agent set the deleted_flag in their

records for that link. They could immediately discard these records, but as we shall

see below, there are advantages to holding on to this information for a short time.

4.2. THE LINK MAINTENANCE PROTOCOL 79

4.2.5 Moving one end of a link

When an agent calls pick_up_link the system �rst checks to be sure that one of

up_flag or down_flag is set, otherwise the calling agent does not have permission

to move the link. The system then picks one of the ends that the calling agent

possesses|without loss of generality we can assume that this is the up end|and

modi�es it as follows:

� The up_flag is cleared.

� The Agent-Id up_agent is set to be the destination where the caller is planning

on sending the descriptor.

� The number up_sequence is incremented.

A copy of this modi�ed link record is sent in a reliable message to the link's home

agent, a second copy is sent via reliable message to the agent named in down_agent,

and a third copy is made part of the descriptor that is returned by pick_up_link

(which will eventually be delivered to the destination agent now named in up_agent).

The up_flag and down_flag in these copies are cleared, except the up_flag in the

descriptor is set in order to tell the recipient which end it is getting.

The e�ect of this is to insure that the following four agents all eventually learn

about the new state of the link: (1) the caller of pick_up_link, who just packed the

up end into a descriptor; (2) the destination agent, who will soon receive the up end

inside that descriptor; (3) the agent believed to be holding the down end; and (4) the

home agent.

Of course some of these agents may actually be the same, in which case we

avoid sending duplicate messages. For example, it is common for the caller of

pick_up_link, the agent holding the other end of the link, and the home agent,

to all be the same agent (this will always be the case for a link newly created by

create_link). In this case, only the copy of the new link record transmitted as part

of the descriptor need actually be sent.

Whenever any agent receives a link record, either in a descriptor, or in a message

sent within the link layer, it merges the new information in this update record with

whatever information it has stored in its own link table. If it does not currently have

a link record for the link in question, it simply copies the update record into its table.

If it already has a record for the link, then it separately merges the up and down

halves by retaining the information with the larger sequence number.

If the merging agent is the link's home agent, then there are some additional

considerations. First, if the home agent discovers that it no longer has a local record

for that link, then in the new record the deleted_flag will be set. This ensures that

destruction of a link is never forgotten, because its destruction is the only way its

link record can ever vanish from its home agent's link table. Thus at any point in the

future an agent that needs to know if a given link has been destroyed can always ask

80 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK

the link's home agent. Certain rare cases of link record reclamation, described below,

make use of this ability.

Second, recall that the home agent's main function is to guard against the pos-

sibility that the two ends of the link have lost track of each other. For this reason

the home agent compares the new local record with both the update record and the

old local record. If the new record di�ers from both of the others, then it is possible

that the two ends of the link have become separated. In that case, the two agents

named in the up_agent and down_agent of the new local record are each sent a copy

of the record. Those two updates will themselves be merged into their recipient's

local records using the algorithm just described.

The proof that this algorithm successfully keeps the two ends of a link informed

of each other's location is presented in section 4.3.

4.2.6 Reclaiming link records

Periodically, agents scan their link tables and attempt to reclaim link records that

no longer serve any useful purpose. A link record can not be reclaimed if any of the

following are true:

� This is the home agent of the link, and the deleted_flag is not set.

The home agent is depended upon to never forget anything it has ever been

told about its own links (until more recent information arrives).

� One of up_flag or down_flag is set, and the deleted_flag is not set.

Clearly to reclaim such a record would be to permanently lose one of the two

ends of the link.

� The record has been recently used.

This condition is not necessary to the correctness of the algorithm, but it does

improve performance in a couple of cases discussed below. Clearly there is little

to lose by retaining useful information.4

Otherwise the record is a candidate for reclamation.

If the deleted_flag is set in a reclamation candidate, then the record is reclaimed.

If the deleted_flag is not set in a reclamation candidate, then, because of the three

checks listed above, we know that:

� This is not the home agent.

4
The current implementation won't reclaim a record that has been used in the last 30 seconds.

There are many alternatives to this simple approach. For example, agents could wait until their link

record table grows beyond a certain size, and then reclaim enough of the oldest records to reduce

that size by a given amount.

4.3. PROOF OF CORRECTNESS 81

� Neither the up_flag nor the down_flag is set.

� The record has not been recently used.

In this case the agent compares the up_agent and down_agent in the record with its

own Agent-Id. If neither matches, then again the record is reclaimed. However, if

one does match, then it is possible that the actual end of the link is en route to this

agent, and that this record represents useful information that will be needed once that

end arrives. This might happen if the home agent detected some confusion and sent

update records to the two ends|such an update might actually arrive in advance of

the end itself. (Of course this is highly unlikely to be the case if the record has been

sitting around untouched for a long time, which is one reason not to reclaim records

until they have gotten a little stale.)

So in this one case, the agent must actually correspond with the link's home agent

in order to determine whether or not it can reclaim the record. It does this by sending

a message to the home agent requesting that an update message be sent back. When

that update arrives it will either reveal that the link has been destroyed, or it will

change the up_agent and down_agent so that they no longer refer to the local agent,

or perhaps it will con�rm that the record really is up-to-date information, in which

case the agent can only hold on to the record and wait for it to prove useful.

The safety of this algorithm is proved in the next section.

4.3 Proof of correctness

In this section, I will prove that the link maintenance protocol described in the pre-

vious section is correct. There are two things that must be proved:

� The two ends of a link can never permanently lose sight of each other. More

precisely, if an agent receives a link end and holds on to it, it is guaranteed to

eventually learn about the location of the other end.

� The algorithm for link record reclamation never discards any useful information.

I will start by proving the �rst property under the assumption that agents never

discard any link records.

Whenever either end of a link changes its location, it always dispatches an update

record re
ecting that change in a reliable message to the link's home agent. Thus,

the home agent always eventually learns where the ends are located. The algorithm

employed by the home agent guarantees that the following invariant is maintained:

An update containing the same up_sequence, up_agent, down_sequence

and down_agent as are contained in the home agent's link record has been

sent to both the up_agent and the down_agent named there.

82 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK

In other words, the home agent ensures that precisely what it currently knows has

been sent, in a single message, to each of the two agents that it believes need that

information.

The home agent can usually maintain this invariant without doing any work at

all. As described in section 4.2.5, after the home agent performs the merge algorithm,

it compares the new local record with the old local record and the update record. If

the new local record matches the old local record, then the invariant remains true

because the local record hasn't changed. If the new local record matches the received

update record, then the invariant remains true because the agent that sent the update

also sent copies of that record to the two link end holders|it already did the work

necessary to maintain the invariant.

Only in the case where the new local record di�ers from both the inputs to the

merge will the home agent have to take any action in order to preserve the invariant.

In that case, it simply generates the two necessary updates itself. (This case can only

happen if the information in one half of the update is strictly newer than what the

old local record contained, while the information in the other half is strictly older.

This, in turn, can only happen in the presumably rare case where the two link ends

move at almost exactly the same time.)

Since all location changes are sent to the home agent, maintaining this invariant

guarantees that the ends never completely lose touch with each other. If an agent

holds on to a link end for long enough, then eventually the home agent will learn both

where this end is, and where the other end is. At that time, the invariant ensures

that somebody will have sent the agent an update containing what the home agent

knows.

This completes the proof that the two ends cannot lose each other. This proof

assumed that agents never forget anything. Now we have to worry that the link record

reclamation process might foul things up by discarding useful information.

There are two cases to consider. In the easy case the deleted_flag is set in the

record. This can only happen if the link has been destroyed, in which case the only

information that needs to be preserved about the link is the news of its destruction.

We have already seen that the home agent is always able to reconstruct this fact given

a Link-Id.

The second case of link record reclamation occurs when (1) the reclaiming agent is

not the home agent of the link and (2) the up_agent and down_agent of the record do

not contain the Agent-Id of the reclaiming agent. So the reclaiming agent is neither

the home agent, nor is it currently holding either end of the link. Such an agent will

never again need to know anything about the link in question unless some other agent

decides to send one of the ends back to it. In that case, we know that the home agent

will work to ensure that the reclaiming agent will be sent a single update record that

contains everything it needs to know. So our only concern is to avoid reclaiming the

current local record after that vital update has arrived.

4.4. EXAMPLES 83

That vital update, however, will always mention the reclaiming agent as either the

most recent up_agent or down_agent, and the corresponding sequence number will be

larger than any sequence number yet associated with the location of that end. If such

an update had arrived locally, the merge algorithm would therefore have preserved

that information. So since neither the up_agent nor the down_agent mention the

reclaiming agent, such an update, if it exists at all, has not yet arrived. And it is

therefore safe to reclaim the local link record.

4.4 Examples

In order to give the reader a better understanding of how the link maintenance pro-

tocol behaves in practice, this section contains several examples of it in action.

Throughout these examples H will be the home agent of the example link and A,

B and C will be other agents. Initially H calls create_link and is given possession

of both ends of a newly forged link. A link record is placed in H's link record table

that describes this situation.

As there will be a lot of link records
ying around in the descriptions that follow, it

will help to have a concise notation for them. Link records will be written as follows:

hup_sequence, up_agent, down_sequence, down_agent, Flagsi

where Flags is a subset of fup; down; deletedg. For example, immediately after H

calls create_link, the state of the world is:

H is holding: h0; H; 0; H; fup; downgi

Note that we don't need to specify which link the record describes, since all the

examples only concern a single link.

4.4.1 There and back again

In the simplest possible case,H immediately calls destroy_link. That case is neither

very interesting nor very likely, so we pass immediately to the second simplest case,

where H sends one end of the link to A, who immediately returns it.

First, H calls pick_up_link, passing it the link and the Agent-Id of its intended

destination, A. Then it sends the resulting descriptor to A. The resulting state:

H is holding: h1; A; 0; H; fdowngi

In a descriptor bound for A: h1; A; 0; H; fupgi

Note that up end has been chosen to move from H to A, and the sequence number

in the up half of the record has been incremented to re
ect this fact. Since H is

the home agent, and since H is still holding the down end of the link, no additional

update records were generated.

When the descriptor arrives at A, A calls put_down_link. This creates a new

link record at A:

84 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK

H is holding: h1; A; 0; H; fdowngi

A is holding: h1; A; 0; H; fupgi

At this point, if either A or H calls query_link, it will be told that the other agent

is holding the other end of the link.

Now A decides to send its end back to H. A calls pick_up_link and sends the

resulting descriptor back to H:

H is holding: h1; A; 0; H; fdowngi

A is holding: h2; H; 0; H; fgi

In a descriptor bound for H: h2; H; 0; H; fupgi

Since A is sending the end back to the home agent, who it also believes to be holding

the other end, again no additional updates were generated.

At this point a call to query_link by H would still claim that A is holding the

other end, even though this is no longer the case. But this situation only persists

until the descriptor arrives at H and is merged in with the existing record:

H is holding: h2; H; 0; H; fup; downgi

A is holding: h2; H; 0; H; fgi

Now H is holding both ends, so it can call destroy_link. SinceH is the home agent,

an update is not needed to inform the home agent of the destruction. The result:

H is holding: h2; H; 0; H; fup; down; deletedgi

A is holding: h2; H; 0; H; fgi

The algorithm for link record reclamation will recognize that both of these records

may be reclaimed whenever the agents that hold them �nd it convenient. (In fact, A

could have reclaimed the record that it holds any time after it send the end back to

H.)

Note that in this simple case, the link layer did not send any messages at all.

All network tra�c was contained in descriptors carried in messages sent by other

layers. Frequently the link layer can get away with being completely parasitic on the

messages sent by other layers.

4.4.2 Follow the leader

Now let us return to the state just after A called put_down_link:

H is holding: h1; A; 0; H; fdowngi

A is holding: h1; A; 0; H; fupgi

Now let us suppose that instead of A sending its end back to H, H sends the other

end on to A. So H calls pick_up_link and sends the descriptor o� to A:

4.4. EXAMPLES 85

H is holding: h1; A; 1; A; fgi

In a descriptor bound for A: h1; A; 1; A; fdowngi

A is holding: h1; A; 0; H; fupgi

A merges in the descriptor:

H is holding: h1; A; 1; A; fgi

A is holding: h1; A; 1; A; fup; downgi

Now suppose that this time A calls destroy_link. This requires A to send an update

record in a link layer message to H to inform it of the destruction of the link:

H is holding: h1; A; 1; A; fgi

A is holding: h1; A; 1; A; fup; down; deletedgi

In an update for H: h1; A; 1; A; fdeletedgi

And �nally after H receives the news:

H is holding: h1; A; 1; A; fdeletedgi

A is holding: h1; A; 1; A; fup; down; deletedgi

Again we have arrived at a state where either agent can reclaim its record of the link

whenever it desires.

In this case there was only one link layer message sent, due to the fact that the

link was destroyed somewhere other than at its own home agent.

4.4.3 Wandering around away from home

Again let us return to the state just after A called put_down_link:

H is holding: h1; A; 0; H; fdowngi

A is holding: h1; A; 0; H; fupgi

This time, suppose that A decides to pass its end of the link on to C. So A calls

pick_up_link and sends the descriptor o� to C:

H is holding: h1; A; 0; H; fdowngi

A is holding: h2; C; 0; H; fgi

In a descriptor bound for C: h2; C; 0; H; fupgi

In an update for H: h2; C; 0; H; fgi

Notice that this required A to send an update record back to H both because H is

the home agent and because A believesH is holding the other end. After H processes

that update, and after C merges the descriptor:

H is holding: h2; C; 0; H; fdowngi

A is holding: h2; C; 0; H; fgi

C is holding: h2; C; 0; H; fupgi

86 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK

At this point A is free to reclaim its record of the link and both H and C are aware

of who is holding the other end of the link.

This example demonstrates that as long as one end of the link stays at home, the

price of moving the other end is a single link layer message.

4.4.4 Everybody leaves home

Now let us consider what happens when both ends leave home for separate destina-

tions. After sending one end to A, suppose H calls pick_up_link again and sends

that descriptor to B:

H is holding: h1; A; 1; B; fgi

In a descriptor bound for B: h1; A; 1; B; fdowngi

In an update for A: h1; A; 1; B; fgi

A is holding: h1; A; 0; H; fupgi

An update was dispatched to A to keep it informed of the location of the other end.

After A processes that update, and after B merges the descriptor:

H is holding: h1; A; 1; B; fgi

A is holding: h1; A; 1; B; fupgi

B is holding: h1; A; 1; B; fdowngi

Now suppose A wants to pass its end on to C. It calls pick_up_link and sends the

descriptor:

H is holding: h1; A; 1; B; fgi

A is holding: h2; C; 1; B; fgi

In a descriptor bound for C: h2; C; 1; B; fupgi

In an update for H: h2; C; 1; B; fgi

In an update for B: h2; C; 1; B; fgi

B is holding: h1; A; 1; B; fdowngi

Two update messages were generated, one for the home agent H, and one for B, the

agent believed to be holding the other end. Once everything settles down:

H is holding: h2; C; 1; B; fgi

A is holding: h2; C; 1; B; fgi

C is holding: h2; C; 1; B; fupgi

B is holding: h2; C; 1; B; fdowngi

A is free to reclaim its record, and B and C each know that the other holds the other

end of the link.

So we see that when the second end leaves the home agent, one link layer message

is required, and whenever either end moves from there on in, two link layer messages

are required.

4.4. EXAMPLES 87

4.4.5 Confusion reigns

In the previous example, an interesting case occurs if A passes its end of the link on

to C before it receives word that the other end has traveled from H to B. We return

to the state just after H takes that action:

H is holding: h1; A; 1; B; fgi

In a descriptor bound for B: h1; A; 1; B; fdowngi

In an update for A: h1; A; 1; B; fgi

A is holding: h1; A; 0; H; fupgi

Now this time, before any messages are delivered, A calls pick_up_link and sends

that descriptor to C:

H is holding: h1; A; 1; B; fgi

In a descriptor bound for B: h1; A; 1; B; fdowngi

In an update for A: h1; A; 1; B; fgi

A is holding: h2; C; 0; H; fgi

In a descriptor bound for C: h2; C; 0; H; fupgi

In an update for H: h2; C; 0; H; fgi

Since A is unaware that the other end is on its way to B, it only generated an update

for H. Let us suppose that that update now arrives at H and is merged:

H is holding: h2; C; 1; B; fgi

In an update for B: h2; C; 1; B; fgi

In an update for C: h2; C; 1; B; fgi

In a descriptor bound for B: h1; A; 1; B; fdowngi

In an update for A: h1; A; 1; B; fgi

A is holding: h2; C; 0; H; fgi

In a descriptor bound for C: h2; C; 0; H; fupgi

The merge resulted in a record that was di�erent from both the inputs, soH generated

updates for B and C. Note that A is currently free to reclaim its record.

So far, no messages have arrived at either B or C. At B, suppose the descriptor

arrives �rst, followed by the update. The result:

H is holding: h2; C; 1; B; fgi

In an update for C: h2; C; 1; B; fgi

In an update for A: h1; A; 1; B; fgi

A is holding: h2; C; 0; H; fgi

In a descriptor bound for C: h2; C; 0; H; fupgi

B is holding: h2; C; 1; B; fdowngi

B now believes that C is holding the other end, even though it hasn't actually arrived

there yet. (Before the update arrived, a call to query_link at B would have claimed

that A held the other end, even though it had already departed.)

At C, let us suppose that the update from H arrives �rst. The result:

88 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK

H is holding: h2; C; 1; B; fgi

In an update for A: h1; A; 1; B; fgi

A is holding: h2; C; 0; H; fgi

In a descriptor bound for C: h2; C; 0; H; fupgi

B is holding: h2; C; 1; B; fdowngi

C is holding: h2; C; 1; B; fgi

Notice that at this point, the record at C is a candidate for reclamation, but since

C itself appears in the record, C must ask H for another update if it gets anxious

about that record|and in this situation another update from H will simply reassure

C that the record it holds really is important. But this is unlikely to happen, because

the descriptor sent to C by A will almost certainly arrive long before reclamation

becomes an issue. The result of merging that descriptor will be:

H is holding: h2; C; 1; B; fgi

In an update for A: h1; A; 1; B; fgi

A is holding: h2; C; 0; H; fgi

B is holding: h2; C; 1; B; fdowngi

C is holding: h2; C; 1; B; fupgi

So now B and C know all about each other.

Only the update destined for A remains to be delivered. Since A is unlikely to

get around to reclaiming the record it is currently holding before that happens, the

results after delivery and merging will be:

H is holding: h2; C; 1; B; fgi

A is holding: h2; C; 1; B; fgi

B is holding: h2; C; 1; B; fdowngi

C is holding: h2; C; 1; B; fupgi

The updated record that A is now holding is still one that can be reclaimed at will.

Notice that if A had reclaimed its previous record before the update was delivered,

then that update would have created a new record in which A itself was mentioned.

In order to reclaim that new record A would have had to �rst request another update

from H. This demonstrates that there are bene�ts to not reclaiming link records too

quickly.

The di�erence between this example and the one in the previous section was that

in this case the two ends brie
y lost track of each other. We saw that it took two

additional link layer messages to correct the situation.

We can also see that the worst possible case, in terms of the number of link layer

messages needed to support the protocol, is when both ends have traveled away from

the home agent, and then they both move again nearly simultaneously. In that case,

six link layer message will be sent: two each from the two sending agents (one to the

home agent, and one to the other sending agent), and two more from the home agent

to the new end holders.

4.5. ANALYSIS AND POSSIBLE IMPROVEMENTS 89

4.5 Analysis and possible improvements

In section 4.1, I listed the requirements that the link maintenance protocol was de-

signed to meet. The degree to which those requirements have been satis�ed can now

be evaluated.

The basic integrity requirement, that neither of the two ends be duplicated or

lost, was never at issue. As long as descriptors are delivered in reliable messages, this

is easy to achieve. Similarly, there was never any question that as long as neither end

of a link was moving, no network tra�c would be needed to maintain the link.

In order to evaluate how well the requirements have been met that agents receive

prompt updates about locations, consider the case of an agent, A, which has just

obtained one end of a link from a descriptor. How long must A wait before it learns

the location of the other end? A knows that at the time the transmitting agent called

pick_up_link, that agent also sent an update to the home agent to announce that

A was the new location. Once that update arrives, the home agent will know where

to send future updates about the location of the other end. Thus, even if the other

end never learns about A, the updates it sends to the home agent will be relayed on

to A.

So after an initial short wait, A will start receiving current information that has

passed through at most a single third party. This might not be a particularly quick

way to keep in touch, especially if the home agent is located very far away, but it is

much better than a scheme where an unbounded number of forwarding agents may

intervene.

Finally, it was required that link record reclamation be easy. Ideally, any agent

that is not currently holding either of the two ends of a link should be able to reclaim

its record of that link whenever it wants|without consulting any other agents. This

protocol achieves that goal, with two exceptions.

First, as we saw at the end of the last example, in some very rare cases an extremely

old update can arrive at an agent long after that agent had discarded its previous

record of the same link. The record created by such an update cannot be reclaimed

without probing the home agent for con�rmation. The longer agents hold on to old

records, the more unlikely this case becomes, so the cost here can be made negligible.5

Second, the home agent must preserve its link record even after both ends of the

link have left home. This is another instance where relying on a �xed third party

agent is a bit troublesome.

One important special case performs particularly well. If there are only two agents

ever involved in the history of a link, then no link layer messages will be required

at all. All the correspondence between those agents about that link can be carried

within the descriptors exchanged as part of the higher level protocols. (The �rst two

examples above demonstrate this.)

5
It may even be possible to eliminate this case entirely using an argument based on maximum

packet lifetimes.

90 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK

This case is important because it occurs whenever the higher level is behaving as

it would for a remote procedure call. That is, if two agents pass subgraphs back and

forth that represent procedure calls, call arguments, procedure returns and returned

values, then the links created to support the process will all be of this special kind.

The obvious way to improve this protocol is to provide some way to move the

home agent. While the home agent continues to hold one of the two ends of the link,

there isn't much room for improvement, but as soon as the home agent becomes a

third party, we �nd ourselves in a state where many things would perform better if

only the home agent could be moved to where one of the ends was located.

In fact, we can achieve the e�ect of moving the home agent by discarding the

old link and replacing it with a new one, forged by the agent that would be a better

home. This optimization is not done in the current implementation, but it would be

easy to add.

For example, if A and B are holding the ends of a link forged by H, and A decides

that it would be a better home agent for such a link, A can call create_link to forge

a new link, and then send B a message containing two descriptors: one descriptor

contains A's end of the old link, and the other contains one of the two ends of the

new link. When B receives the message it checks to see if it still has the other end of

the old link. If it does, B calls destroy_link to dispose of the old link and starts to

use the enclosed end of the new link. If the other end of the old link has departed,

then B packs the two ends back up and sends the message o� to chase after it.

This technique for home agent relocation operates as a separate layer on top of

the link layer. The link layer is already built on top of a reliable message layer.

The resulting structure is three levels deep, all to accomplish the simple job of link

maintenance.

It is clear that the bottom two layers could pro�t by being combined into a single

layer. For example, there are occasions where messages sitting in an agent's reliable

message layer retransmission queue can be abandoned because the link maintenance

layer at that agent now has more up-to-date information to transmit. The fact that

both the reliable message layer and the link layer maintain their own sequence num-

bers suggests how closely related these two layers really are. My intuition is that

using a third layer for home agent relocation is also a mismodularization; I believe

that a better protocol can be designed that combines all three of these layers into a

single uni�ed protocol.

4.6 Summary

In this chapter I described the link abstraction which implements cross-network linear

naming, and I demonstrated that links can be implemented cheaply. Linearity is

important in keeping links cheap because it guarantees that each end of a link only

has to think about one thing: the location of the other end.

4.6. SUMMARY 91

In the next chapter links will be used to support the cross-network connections

necessary for distributed linear graph reduction. The fact that links are cheap will

mean that linear graph structure can be easily moved from agent to agent.

92 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK

Chapter 5

Distributed Execution

This chapter describes the distributed linear graph reduction engine. It describes the

behavior of the individual agents that hold the vertices that make up the working

graph. Agents exchange vertices through the network and they apply methods to the

subgraphs composed of the vertices they currently possess.

Agents decide which vertices to migrate, when to migrate them, and who to mi-

grate them to, by using a few simple heuristics. These heuristics are e�ective because

the lifetime cumulative cost of maintaining a cross-network link is both predictable

and small. The same could not be said of traditional nonlinear, pointer-like reference

mechanisms.

5.1 Run-time modules

Figure 5-1 depicts how the modules that comprise the run-time system support each

other. At the very bottom lies a module that maintains data structures that represent

the local part of the working graph, and a module that provides a reliable message

service for interagent communication. Other modules are constructed on top of those

two, and at the top sits a scheduler that decides what to do next.

I will now brie
y describe each module and how it relates to the other modules.

Reliable Messages. Agents communicate with each other using a simple reliable

message service. This service is constructed on top of the Internet's UDP protocol

[Pos80], although any unreliable datagram service would serve as well. The reliable

message service maintains its own sequence numbers, timers, retransmission queues,

and delivery queues. It encapsulates its messages and acknowledgments within UDP

datagrams. Each reliable message is transported in one datagram sent to the desti-

nation and acknowledged in a second datagram sent back to the source.

The reliable message service uses a 64-bit Agent-Id as the address of an agent.

Links. The abstraction of a link is used to maintain connections over the network.

Chapter 4 described how links are implemented in detail. Recall that every link has

exactly two ends somewhere in the network, and that if an agent is holding one of

93

94 CHAPTER 5. DISTRIBUTED EXECUTION

reliable
messages

links

subgraph
transporter

network
executive

local
executive

scheduler

graph
structure

Figure 5-1: Run-time modules

the two ends, then it will be kept informed about the current location of the other

end. In order to accomplish this, the link module uses the reliable message service to

exchange messages with link modules running on other agents.

Graph Structure. The graph structure module is partly a storage manager. It

contains routines that allocate and free the blocks of storage used to represent vertices

(as described in chapter 3). This module is also charged with maintaining two queues:

The reduction queue contains redexes that are waiting to be reduced locally, and

the migration queue contains redexes that are unable to reduce because one of the

two vertices is held by a remote agent.

Compiled method procedures (the results of the compilation procedure described

in chapter 3) are distributed to all agents. These procedures use utilities in the graph

structure module to alter the working graph. These utilities are careful to delete

entries from either queue if they concern vertices that have been removed, and to add

appropriate new queue entries.

The tagged values used for connections make it easy to spot redexes whenever a

new connection is made. Code that constructs new graph structure calls the procedure

connect_dispatch to make new connections between vertices, passing it the two

tagged values that represent the terminals that are to be connected. By extracting the

two tags, concatenating them, and looking the result up in a table, connect_dispatch

can quickly dispatch to an appropriate routine that knows exactly how to make the

desired connection. For example, when connecting the target terminal of a Car

operation to the handle of a Cons object, connect_dispatch can tell from the two

5.1. RUN-TIME MODULES 95

tags alone that a method1 applies whenever those two terminals are connected, so it

makes an entry in the reduction queue.

A special tag is used to identify connections to vertices held by agents elsewhere

in the network. In this case, the rest of the tagged value contains the address of (the

local part of) a link. Given a link, the system can determine the Agent-Id of the

agent holding the vertex at the other end of the connection, and the tag that the

value would have if it were a connection to a locally held vertex (call this the \true

tag").

When connect_dispatch is given a value tagged as a connection to a remote

vertex, it dispatches to a routine that pulls the true tag out of the link and checks to

see if some method would apply if the two vertices were held by the same agent. If

so, then we say that the redex is blocked by the network. Blocked redexes are stored

in the migration queue.

Subgraph Transporter. The subgraph transporter can move arbitrary subgraphs

from agent to agent. Subgraph transporter modules running on di�erent agents ex-

change messages using the reliable message service. Such messages use a simple

language to describe graph structure that was recently disassembled by the sender,

and that should be reassembled by the receiver. These messages also contain links2

that specify how the subgraph is joined to the rest of the working graph.

Before sending a subgraph, the transporter calls the graph structure module to

disassemble the structure to be sent, and it calls the link module to create links

to support newly created interagent connections. After receiving a subgraph, the

transporter calls the graph structure module to reassemble it, and the link module to

�gure out how to connect it to the rest of the locally held graph.

The subgraph transporter makes no decisions about what vertices to send or where

to send them. It is perfectly capable of picking up an arbitrary vertex from the middle

of the locally held graph, and sending it to an arbitrary agent. It is not necessary

for the transported graph structure to be connected to anything at the destination.

Policy decisions about what to move, where to move it, and when to move it are made

by the network executive.

Network Executive. The network executive is invoked by the scheduler to drain

entries from the migration queue. Recall that entries are made in this queue when

the graph structure module discovers that a redex is blocked by the network.

The network executive �rst checks the local vertex in the blocked redex to see if

it is also one of the vertices in a redex in the reduction queue. If so, the network

executive just puts the blocked redex back on the migration queue. The idea here is to

avoid pushing a vertex over the network that local reduction is about to replace with

1
Speci�cally, the method on page 42.

2
Carried in descriptors, as described in chapter 4.

96 CHAPTER 5. DISTRIBUTED EXECUTION

a di�erent vertex|let the local redex run �rst, and perhaps the need to communicate

with the remote agent will be eliminated.

If the local vertex is not subject to local reduction, then the network executive

calls the link module to determine the Agent-Id of the location of the other vertex

in the blocked redex, and then prepares to call the subgraph transporter to move the

local vertex to that location.

Since this commits the system to sending a message, the network executive ex-

amines the vertices in the neighborhood of the vertex to be transported to see if

there might be some bene�t in sending some of them along in the same message.

The heuristics used by the network executive to select the subgraph to be migrated

are described in detail in section 5.3. The selected subgraph is then �red o� to its

destination.

When the subgraph arrives, the transporter on the destination agent incorporates

it into its local graph structure. If the other vertex in the formerly blocked redex is

still held by that agent, then soon a local reduction will take place. If not, no harm has

been done, the working graph is still intact. If the other vertex has moved elsewhere,

then the redex is still blocked on the network, and it becomes the responsibility of

the destination agent's network executive, which may or may not decide to send it

chasing after that vertex again.

Local Executive. The network executive is invoked by the scheduler to drain en-

tries from the reduction queue. Recall that entries are made in this queue when the

graph structure module discovers an unblocked redex. The local executive really has

no intelligence of its own. For each entry in the queue it simply calls the compiler

generated procedure that implements the reduction.

Scheduler. The scheduler provides three di�erent services, although the module

dependency diagram that started this section only shows one of them:

� The scheduler dispatches incoming network messages to the link module or to

the subgraph transporter. Di�erent agent's link modules exchange messages to

keep every agent that holds one end of a link informed of the location of the

other end. The subgraph transporter gets a message when some graph structure

arrives from a di�erent agent.

� The scheduler provides timer interrupts to the link module and the reliable

message module. The link module uses these occasions to garbage collect its

internal data structures (see chapter 4 for details). The reliable message module

uses these occasions to retransmit unacknowledged messages.

� And �nally, as the module dependency diagram indicates, the scheduler calls

the network executive and the local executive to drain their respective queues.

5.2. TWO EXAMPLES 97

The only nontrivial part of the scheduler is the way it selects entries from the

migration and reduction queues for execution. The algorithm it uses ensures that

a certain minimum number of local reductions are made between the time a redex

�rst becomes blocked on the network, and the time the network executive �rst sees

it. The idea is to give the graph structure in the neighborhood of the newly blocked

redex time to settle down before thinking about moving stu� over the network.

This heuristic works quite well in practice. As we will see in the examples below,

it frequently has the e�ect of delaying remote migration until there are no pending

local redexes. This is good, because the agent isn't wasting time using the network

to achieve some goal when purely local computation might have changed or even

eliminated that goal.

5.2 Two examples

Given the brief outline of the run-time system just concluded, some examples of actual

execution can now be presented.

5.2.1 The source code

The complete Scheme source code for the �rst example contains four top-level de�ni-

tions. First a familiar procedure:

(define (fact n)

(let loop ((a 1) (n n))

(if (< n 2)

a

(loop (* n a) (- n 1)))))

The methods generated for this de�nition were examined in section 3.4.

Second, a somewhat peculiar procedure:

(define (force-number n)

(if (= n 0) n n))

The purpose of this procedure may not be immediately obvious. FORCE-NUMBER is

only needed because of a poor interaction between the way arithmetic is implemented

and the way I/O has been left unimplemented. When the initial working graph

is constructed it will contain a continuation that handles a Return 1 message by

displaying the returned value on the console|even if that value happens to still be

a Future or a Sum vertex.3 This isn't very informative when one desires a numeric

value, so FORCE-NUMBER can be used to insure that a value is an actual number. Its

3
Or the a terminal of a Copy vertex!

98 CHAPTER 5. DISTRIBUTED EXECUTION

result must be a number because a numeric value is required before the comparison

with 0 can be completed.

FORCE-NUMBER is the �rst of three kludges revealed in this section. All three are

mechanisms introduced to cover up for missing features that a production implemen-

tation would necessarily include. In this case, FORCE-NUMBER helps compensate for

the lack of a true I/O system. A true I/O system would be written in Scheme and

would contain methods that printed just the types the user cares to see (such as

numbers and CONS-cells), and would wait for other types of vertices to metamorphose

into those known types.

The third procedure also requires some explanation:

(define (remote-fact host n)

(host (lambda () (fact n))))

Clearly, the argument named HOST will be a vertex that can be treated as a one-

argument procedure. In fact, HOST will always behave as if it was the following

procedure:

(lambda (thunk) (thunk))

And so the e�ect will always be to compute and return the factorial of N. The di�erence

between calling FACT and REMOTE-FACT is that before commencing, REMOTE-FACT must

brie
y examine its other argument.

The reason for this curious protocol is the second of this section's three kludges.

The problem is that the distributed linear graph reduction engine lacks any motiva-

tion to keep the working graph distributed. Given what I have presented so far, an

excellent reduction strategy would be for all agents to send every vertex they possess

to a single central agent, who would then run the entire problem locally. In most

cases this strategy will be optimal in terms of minimizing network tra�c and delay.

But in a production implementation, some vertex types would be unable to migrate

from agent to agent. These vertices would be anchored at a particular agent because

they represent a hardware device (printer, disk drive, keyboard, etc.) that is attached

to that agent.

For example, keyboard input might be accomplished by having a Keyboard Input

Stream vertex that behaved as a zero-argument procedure:

(graph (0 1)

(<Keyboard Input Stream> 2)

(<Call 0> target:2 tail:0 cont:1))

(graph (0 1)

(<Keyboard Input Stream> 0)

(<Return 1> target:1 tail:3 0:2)

(<Number x> 2)

(<Drop> 3))

5.2. TWO EXAMPLES 99

where a di�erent x would be returned each time this method was applied, depending

upon which key had been pressed next. A Keyboard Input Stream vertex refers

implicitly to the keyboard of the agent that is holding it, and thus it cannot be

moved.

So there are two special aspects to a Keyboard Input Stream vertex, (1) some

low-level system magic must link it to the actual keyboard, and (2) the run-time

system must recognize its immobility. In the current system we reproduce only the

second aspect. A Network Anchor vertex is a vertex that is anchored to whatever

agent is holding it, and that can be treated as a one argument procedure:

(graph (0 1 2)

(<Network Anchor> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Network Anchor> 0)

(<Call 0> target:2 tail:3 cont:1)

(<Drop> 3))

Since the Network Anchor cannot be moved, whenever this method is applicable, the

Call 1 vertex will be forced to travel to the agent that holds the Network Anchor.

So the purpose of REMOTE-FACT is �nally revealed. It expects to be passed a

\host" in the form of a Network Anchor that is anchored at some speci�c agent, as

well as a number. First it touches the Network Anchor by passing it a thunk. This

will cause a Call 1 to travel to the designated agent. If, as is likely, the network

executive decides to send the thunk (the argument to the call) along in the same

network message, then the evaluation of (FACT N) will start execution at that agent.

The subsequent computation of N ! will tend to stay on that agent due to the inertia

created by the strategy of shunning use of the network unless it appears unavoidable.

In e�ect REMOTE-FACT performs a remote procedure call to FACT.

Fourth and �nally, we have the following procedure:

(define (main args)

(or (null? args)

(force-number

(+ (remote-fact (car args) 8)

(remote-fact (car (cdr args)) 9)))))

A call to the procedure MAIN will be part of the initial working graph. The argument

ARGS will contain a list of Network Anchor vertices that result from parsing the

command line. Each command line argument will be a 64-bit Agent-Id. Those agents

will be contacted during the construction of the initial working graph, and a Network

Anchor will be created at each one.

Reading the code for MAIN we see that if no agents are speci�ed in the command

line, so ARGS is empty, the call to MAIN simply returns True. If two agents are speci�ed,

100 CHAPTER 5. DISTRIBUTED EXECUTION

then the �rst is asked to compute 8!, the second is asked to compute 9!, the results

are added, FORCE-NUMBER insures that the sum has reduced to a true number, and

the answer is returned.

The third of this section's three kludges concerns the need for the case where

ARGS is empty. After the value True has been displayed on the console by the initial

continuation, the executing agent will �nd that it no longer has any vertices in its

possession whatsoever. At this point, it could simply cease to exist, but instead it

continues to listen to the network in the hope that some other agent will send it

something to do. Thus we can use this trivial case to boot up new agents running on

di�erent hosts.

5.2.2 First example

To test the example program, we �rst run the executable �le, passing no command

line arguments, on the two hosts we wish to use as servers. This creates two agents

(call them A and B) that are simply waiting for messages from other agents. Then we

run the executable on a third host, passing it the Agent-Ids of A and B as command

line arguments. This creates a third agent (C) who contacts A and B, and together

they construct the following initial working graph:

(graph ()

;; A:

(<Network Anchor> 10)

;; B:

(<Network Anchor> 9)

;; C:

;; Reduction Queue: 3

(<Global MAIN> 3)

(<Call 1> target:3 tail:4 cont:8 0:2)

(<Drop> 4)

(<Cons> 2 car:10 cdr:1)

(<Cons> 1 car:9 cdr:0)

(<Nil> 0)

(<Network Anchor> 8)

)

(I will be using ;;-comments to indicate which agents are holding which vertices.)

Only one method can be applied to this graph, the one for the connection numbered

\3", and both of the vertices that it joins are held by C, so all queues are empty

except C's reduction queue. C's scheduler thus callsC's local executive, which applies

methods to the subgraph held by C until the working graph becomes:

5.2. TWO EXAMPLES 101

(graph ()

;; A:

(<Network Anchor> 10)

;; B:

(<Network Anchor> 9)

;; C:

;; Migration Queue: 10

(<Call 1> target:10 tail:5 cont:4 0:6)

(<Lambda 894> 6 n:1)

(<Number 8> 1)

(<Evarg 1262> 4 cont:7 args:3)

(<Cons> 3 car:5 cdr:2)

(<Cons> 2 car:9 cdr:0)

(<Nil> 0)

(<Evarg 1305> 7 cont:8)

(<Network Anchor> 8)

)

We see that the computation has advanced to the point where A's Network Anchor

is about to be called. The argument being passed is a zero-argument procedure which

is a closure with one free variable (whose value is 8). This is the closure from the

body of REMOTE-FACT. The continuation for the call is an Evarg 1262 vertex that

captures the original ARGS argument to MAIN. When the call to FACT �nally returns

to the Evarg 1262, it will need the value of this variable in order to start evaluating

the other argument in the call to +.4 The next continuation down the \stack" is

of type Evarg 1305, it is waiting to supply the argument to FORCE-NUMBER. The

bottommost continuation is C's Network Anchor, which will display the �nal value

on C's console.5

Again only one redex remains, the one corresponding to connection 10. A still

believes that the terminal on the other end of connection 10 is the car terminal of

a Cons (for which there is no method), but C knows the true story, so there is now

an entry in C's migration queue. This is the way responsibility for blocked redexes is

always handled, the burden always falls on the agent who �rst discovers the blocked

redex. Usually this is due to local execution at that agent replacing a vertex with one

of a di�erent type.

C's scheduler sees that nothing more can be done locally, so it allows C's network

executive to run, to see if it can unblock connection 10. The network executive sees

that the remote vertex (the Network Anchor) is not mobile, but there is nothing to

4
Notice how faithfully this follows the sequential de�nition of the Scheme language. We don't

evaluate any part of the second argument to + until after the �rst argument has actually returned

its value.
5
A network anchor can also be treated as a continuation. The returned value will be printed on

the console.

102 CHAPTER 5. DISTRIBUTED EXECUTION

prevent the local vertex (the Call 1) from traveling, so it resolves to send a subgraph

containing that vertex from C to A.

The network executive now applies its migration heuristics to determine which,

if any, other local vertices should accompany the Call 1 to its destination. These

heuristics have yet to be described, but understanding them is not essential to under-

standing the example. It is su�cient to know that the heuristics decide that it looks

like a good bet to pick up all the vertices that C is holding (except, of course, C's

Network Anchor) and send them along to A. Later, in section 5.3, we will see how

this advice was computed.

So the network executive calls the subgraph transporter to perform the migration.

One message is sent from C to A containing the description of the migrating graph

structure, and three link end descriptors:

� one end of the link that carries connection 10,

� one end of the link that carries connection 9,

� one end of a new link that carries connection 8.

After A's subgraph transporter reassembles the structure we have the following situ-

ation:

(graph ()

;; A:

;; Reduction Queue: 10

(<Network Anchor> 10)

(<Call 1> target:10 tail:5 cont:4 0:6)

(<Lambda 894> 6 n:1)

(<Number 8> 1)

(<Evarg 1262> 4 cont:7 args:3)

(<Cons> 3 car:5 cdr:2)

(<Cons> 2 car:9 cdr:0)

(<Nil> 0)

(<Evarg 1305> 7 cont:8)

;; B:

(<Network Anchor> 9)

;; C:

(<Network Anchor> 8)

)

As the subgraph transporter installed the new structure at A it discovered the now

unblocked redex corresponding to connection 10, which is now sitting in A's reduction

queue.

When the link layer was informed that one end of the link for connection 9 was

moving fromC to A, it dispatched an update message from C to B, where it suspected

5.2. TWO EXAMPLES 103

the other end was located. Also, when the link that used to carry connection 10 was

destroyed by A, a message was sent to C, the link's home agent. So the entire act of

migration involved three messages, plus some acknowledgments.6

Now A's local executive gets to work applying methods to the subgraph held by

A until the working graph becomes:

(graph ()

;; A:

;; Migration Queue: 9

(<Call 1> target:9 tail:0 cont:3 0:1)

(<Drop> 0)

(<Lambda 894> 1 n:2)

(<Number 9> 2)

(<Evarg 1251> 3 cont:7 0:4)

(<Number 40320> 4)

(<Evarg 1305> 7 cont:8)

;; B:

(<Network Anchor> 9)

;; C:

(<Network Anchor> 8)

)

This situation resembles the situation at C just before the previous migration. Again

there is a single blocked redex, which is a call on a remote Network Anchor. The

argument is a closure of the same type, although this time the closed over value is the

number 9. The Evarg 1305 continuation hasn't been touched, but the continuation

above it on the stack is now of type Evarg 1251. This continuation is holding the

value 40320, with the intent of adding it to the returned value.

A similar scene unfolds: The network executive resolves to send the Call 1 vertex

to rendezvous with the Network Anchor at B, and the migration heuristics suggest

that all of the vertices held by A should accompany it. A message containing a

description of the graph structure and two descriptors is dispatched from A to B.

The descriptors are for the ends of the links for connections 8 and 9.

This time the link module sends two updates to C, since it is the home agent for

both links, and because it is also the current location of the other end of the link for

connection 8. Also, the link for connection 9 is destroyed at B, generating a message

from B to C. Total messages sent for this migration: 4.

The working graph after the migration:

6
The acknowledgment for the structure migration message from C to A can be piggybacked on

top of the notice of destruction sent from C to A. The existing reliable message module does not

make this optimization, but it should.

104 CHAPTER 5. DISTRIBUTED EXECUTION

(graph ()

;; B:

;; Reduction Queue: 9

(<Network Anchor> 9)

(<Call 1> target:9 tail:0 cont:3 0:1)

(<Drop> 0)

(<Lambda 894> 1 n:2)

(<Number 9> 2)

(<Evarg 1251> 3 cont:7 0:4)

(<Number 40320> 4)

(<Evarg 1305> 7 cont:8)

;; C:

(<Network Anchor> 8)

)

And after more purely local reduction:

(graph ()

;; B:

;; Migration Queue: 8

(<Return 1> target:8 tail:0 0:1)

(<Drop> 0)

(<Number 403200> 1)

;; C:

(<Network Anchor> 8)

)

This time instead of calling a remote Network Anchor, we are trying to return a value

to it, but the e�ect is much the same: The Return 1 must migrate from B to C.

The migration heuristics again suggest sending the whole show along for the ride. A

message is dispatched from B to C containing the graph structure and a descriptor

for the link end. This time, the link layer sends no additional messages of its own.

Total messages sent for this migration: 1. The result:

(graph ()

;; C:

;; Reduction Queue: 8

(<Network Anchor> 8)

(<Return 1> target:8 tail:0 0:1)

(<Drop> 0)

(<Number 403200> 1)

)

which reduces to the empty graph, after printing the number 403200 on C's console.

5.2. TWO EXAMPLES 105

In all, 8 messages were sent and acknowledged. The current simple-minded re-

liable message module sends 16 UDP datagrams to transport these messages and

acknowledgments. A better reliable message module, which knew how to combine

messages and acknowledgments bound for the same destination, could reduce this to

8 datagrams.7

More important than counting messages (or the underlying unreliable datagrams)

is the total delay introduced by network travel. Three times the entire \task" packed

its bags and moved to a new location. Thus the total delay is 3T , where T is the

\typical" network transit time. This is the best possible delay for executing a single

task that must visit two remote locations in order to complete its job.8

In a system that supported only the standard remote procedure call (RPC) mech-

anism, where each remote call evokes a reply from the callee back to the caller, the

analogous program would run with a delay of 4T , 2T for each of the two remote

calls. (Recall that for the moment we are restricting ourselves to purely sequential

execution.)

The additional delay of T in an RPC system is an instance of the continuation

problem introduced in chapter 1. This example thus demonstrates how my system

is able to solve that problem. The crucial moment occurred when the task migrated

from A to B. At that time the connection to the continuation on C was passed from

A to B along with the rest of the migrating structure. This enabled the task to

migrate directly from B to C with the �nal result. In an RPC system, where there is

no explicit representation for a continuation, this would be impossible to accomplish.

Of course the migration heuristics also played a role in this victory over RPC.

Things could have gone very badly if the heuristics hadn't made such good choices

about what vertices to migrate each time. In section 5.3 we will see why the heuristics

are so good at gathering together vertices that correspond to our intuitive notion of

a task.

5.2.3 Second example

Now let us make a small change in our example program. Suppose the procedure

REMOTE-FACT is modi�ed to become:

(define (remote-fact host n)

(future (host (lambda () (fact n)))))

Recall that the FUTURE special form starts executing its subexpression, but immedi-

ately returns to its caller. Thus this new version of REMOTE-FACT will return a Future

to its caller that will eventually become the result of calling the FACT procedure on

the speci�ed host.

7
The fact that the number of datagrams in the best case works out to be the same as the number

of messages is purely a coincidence.
8
[Par92] takes the trouble to prove this fact!

106 CHAPTER 5. DISTRIBUTED EXECUTION

Everything else about the program and the startup procedure stays the same.

The same initial working graph is constructed, and local reduction takes place at C

until the working graph becomes:

(graph ()

;; A:

(<Network Anchor> 16)

;; B:

(<Network Anchor> 17)

;; C:

;; Migration Queue: 16, 17

(<Call 1> target:16 tail:0 cont:1 0:2)

(<Drop> 0)

(<Lambda 1661> 2 n:3)

(<Number 8> 3)

(<Future> 13 as cont:1)

(<Call 1> target:17 tail:4 cont:5 0:6)

(<Drop> 4)

(<Lambda 1661> 6 n:7)

(<Number 9> 7)

(<Future> 14 as cont:5)

(<Sum> 15 left:13 right:14)

(<Copy> target:15 a:8 b:9)

(<Equal?> 11 left:8 right:10)

(<Number 0> 10)

(<Test 746> 11 cont:12 n:9)

(<Network Anchor> 12)

)

Since futures have been introduced, this initial computation at C is able to advance

further before it must involve the network. Both calls to REMOTE-FACT returned

futures, and the two subgraphs responsible for supplying values for those futures ran

until they blocked calling the remote Network Anchor vertices located at A and B.

Meanwhile, the rest of the graph ran until it got blocked in the code for FORCE-NUMBER.

In e�ect, the working graph forked into three separate tasks (re
ected by the

grouping of the vertices in the graph expression above), which then ran independently

until they blocked. This is what one would expect, given how futures are normally

implemented [Mil87, Hal84], but remember that there is no explicit notion of \task" in

linear graph reduction. Tasks here are an emergent phenomenon that arises naturally

from a more primitive model of computation.

The network executive on C now gets to work on the two blocked redexes: As

chance would have it, it �rst considers connection 17, whose other end is held by B. It

5.2. TWO EXAMPLES 107

determines that the Call 1 vertex must migrate to B to rendezvous with the Network

Anchor there. The migration heuristics are consulted, and they suggest sending the

subgraph consisting of the Call 1 vertex, the directly attached Drop, Future, and

Lambda 1661 vertices, and the Number 9 vertex.

These vertices are gathered up and sent in a message to B. A new link is created to

support connection 14. When the graph structure arrives at B, the link for connection

17 is destroyed, generating a message back to that link's home agent, C. Total

messages sent for this migration: 2.

Next the network executive considers connection 16, whose other end is held by A.

Again, the Call 1 vertex must migrate, and this time the heuristics suggest sending

attached Drop, Future, and Lambda 1661 vertices, the Number 8 vertex, and the Sum

vertex.

These vertices are gathered up and sent in a message to A. A new link is created to

support connection 15. Since the other end of the link just recently created to support

connection 14 is now moving to A, the link layer sends an update to B announcing the

move. When the graph structure arrives at A, the link for connection 16 is destroyed,

generating a message back to that link's home agent, C. Total messages sent for this

migration: 3.

In section 5.3, we will see why the heuristics chose to partition the graph in exactly

this manner. For now, simply note that they almost selected exactly the \tasks" that

we previously identi�ed intuitively. The decision to send the Sum vertex to A, instead

of keeping it on C, may seem peculiar|in fact, it will cause minor trouble later

on|but even that can be defended as a reasonable choice.

After the two migrations the working graph becomes:

108 CHAPTER 5. DISTRIBUTED EXECUTION

(graph ()

;; A:

;; Reduction Queue: 16

(<Network Anchor> 16)

(<Call 1> target:16 tail:0 cont:1 0:2)

(<Drop> 0)

(<Lambda 1661> 2 n:3)

(<Number 8> 3)

(<Future> 13 as cont:1)

(<Sum> 15 left:13 right:14)

;; B:

;; Reduction Queue: 17

(<Network Anchor> 17)

(<Call 1> target:17 tail:4 cont:5 0:6)

(<Drop> 4)

(<Lambda 1661> 6 n:7)

(<Number 9> 7)

(<Future> 14 as cont:5)

;; C:

(<Copy> target:15 a:8 b:9)

(<Equal?> 11 left:8 right:10)

(<Number 0> 10)

(<Test 746> 11 cont:12 n:9)

(<Network Anchor> 12)

)

The local executives on A and B now work in parallel applying methods locally until

the working graph becomes:

(graph ()

;; A:

(<Number 40320> 13)

(<Sum> 15 left:13 right:14)

;; B:

;; Migration Queue: 14

(<Number 362880> 14)

;; C:

(<Copy> target:15 a:8 b:9)

(<Equal?> 11 left:8 right:10)

(<Number 0> 10)

(<Test 746> 11 cont:12 n:9)

(<Network Anchor> 12)

)

5.2. TWO EXAMPLES 109

The network executive on B clearly has no choice but to send the Number 362880

vertex to A. Since C is the home agent for the link supporting connection 14, this

will involve a link layer message from B to C announcing the move, and another from

A to C when the link is destroyed. Total messages sent for this migration: 3. The

result:

(graph ()

;; A:

;; Reduction Queue: 14

(<Number 40320> 13)

(<Number 362880> 14)

(<Sum> 15 left:13 right:14)

;; C:

(<Copy> target:15 a:8 b:9)

(<Equal?> 11 left:8 right:10)

(<Number 0> 10)

(<Test 746> 11 cont:12 n:9)

(<Network Anchor> 12)

)

A's local executive reduces this to:

(graph ()

;; A:

;; Migration Queue: 15

(<Number 403200> 15)

;; C:

(<Copy> target:15 a:8 b:9)

(<Equal?> 11 left:8 right:10)

(<Number 0> 10)

(<Test 746> 11 cont:12 n:9)

(<Network Anchor> 12)

)

A's network executive then sends the Number 403200 back to C. Since the home

agent for the link supporting connection 15 is also C, no link layer messages are

needed. Total messages sent for this migration: 1. The result:

110 CHAPTER 5. DISTRIBUTED EXECUTION

(graph ()

;; C:

;; Reduction Queue: 15

(<Number 403200> 15)

(<Copy> target:15 a:8 b:9)

(<Equal?> 11 left:8 right:10)

(<Number 0> 10)

(<Test 746> 11 cont:12 n:9)

(<Network Anchor> 12)

)

which reduces to nothing, after printing the number 403200 on C's console.

In all, 9 messages were sent and acknowledged. The current simple-minded re-

liable message module sends 18 UDP datagrams to transport these messages and

acknowledgments, but as before, a better reliable message module could reduce this

to 8 datagrams.

The network induced delay is again 3T , because of the critical path from C to B

to A and back to C. This is where the decision to migrate the Sum vertex gets us in

trouble. If the Sum had remained behind on C, then when the computations on A

and B completed they would have both sent their results directly to C, where they

would have been added and immediately printed. In this case the delay would have

been only 2T .

In a standard RPC system that also supported some kind of futures (such as those

described in [LS88]) the analogous program would in fact run with a delay of 2T|so

in this case RPC wins. The migration heuristics had to guess about the best place

to compute the sum (which is computed after a delay of 2T in either case), and they

got it wrong. RPC is too in
exible to even consider the possibility of computing the

sum elsewhere, and so in this case it happens to do the right thing.

I could have �ddled with the heuristics to make the optimal thing happen in this

example as well, but the goal of this second example was to illustrate the e�ect of

introducing futures, not to beat RPC a second time. It also helps to have an example

of the heuristics performing less than perfectly in order to emphasize that they are,

after all, only heuristics.

5.3 Migration heuristics

Until now I have avoided explaining the heuristics employed by the network executive

to select migratory subgraphs. I did this to emphasize how these heuristics are not in

any way essential to the system as described so far. As long as the network executive

migrates the vertex necessary to unblock a blocked redex, the heuristics can do very

little to prevent the computation from making at least some progress. (That is, as

long as they don't create new blocked redexes|fortunately this is easy to forbid.)

5.3. MIGRATION HEURISTICS 111

Of course good heuristics can improve matters a great deal by anticipating where

a vertex is going to be needed, and sending it there in advance. In the examples

of the last section it was clearly bene�cial for the arguments attached to a migrat-

ing Call to accompany the Call to its destination. But I make no claim that the

heuristics described here are the right set of heuristics; I've only experimented with a

few variations|the current set work acceptably well|but much better heuristics are

clearly possible.

These heuristics are interesting, not because of exactly what they do, but because

of the kind of reasoning that went into creating them. The key idea is to take advantage

of the fact that linear connections behave in a more predictable fashion than nonlinear

reference mechanisms.

These heuristics examine graph structure and make judgments about the conse-

quences of moving bits of it from agent to agent. They have no understanding of what

the vertex types meant to the compiler (as procedure calls, closures, continuations,

or whatever), all they know about the vertices is the terminal activity information

(described in chapter 3). They compare di�erent distributed con�gurations of graph

structure by comparing the links required to support each con�guration, and reason-

ing about the expense likely to result from each link.

The costs associated with each link are easy to estimate in part because of the

pains we took in chapter 4 to limit the expense of each link level operation (creating,

moving and destroying them). More importantly, link costs are easy to estimate

because a typical link is used exactly once. An agent will use a link to track down

the location of some remote vertex, and will then send the local vertex it holds to

that location. When the migrating vertex arrives, the link will be destroyed, as it

is no longer needed. (This was the fate of every single link in the two examples in

the last section.) To a �rst approximation every link represents exactly one future

migration, so a strategy for minimizing the number of migrations is to try to minimize

the number of links.

Another way to understand why this works is to think of a link as representing a

capability to send one message between a pair of mobile entities. Limiting the capa-

bility to a single message enables us to reclaim the resources devoted to maintaining

the link at the same time the message is sent; this keeps costs incurred by a link

during its lifetime �xed. If multiple messages are required, multiple links must be

forged in advance of those requirements. The result is that the system can anticipate

to some extent how many messages the current computation will need to exchange,

at least in the near term, by counting the number of extant links.

There is a good analogy between the way blocked redexes are handled and the way

page faults are handled by demand paging. In both cases, the possibility of the fault

is ignored at compile-time, and instead the fault is detected and handled at run-time.

In demand paging, the fault is detected by the memory hardware. In distributed

graph reduction, the blocked redex is detected when connect_dispatch is passed a

value tagged as a connection to a remote terminal. In demand paging, adjacent words

112 CHAPTER 5. DISTRIBUTED EXECUTION

are read into physical memory in addition to the single word that is required to satisfy

the fault; this simple heuristic takes advantage of locality of reference to decreases the

number of future page faults. In distributed graph reduction, the heuristics described

in this section play a similar role; they work to decrease the number of future faults by

anticipating redexes and transporting additional graph structure. In both cases the

run-time can a�ord to do a certain amount of head-scratching, because it is already

committed to an expensive action to clear up the existing problem.

5.3.1 The heuristics

Once an agent's network executive has decided to migrate a single vertex it works

on expanding the migratory subgraph one vertex at a time. Each locally held vertex

that is directly connect to a vertex that will migrate, is considered in turn. If that

vertex satis�es the criteria described below, it is added to the migratory subgraph.

This process of examining the fringe of the migratory subgraph is repeated until

eventually no vertices satisfy the criteria.

Since this algorithm only considers the e�ects of adding one vertex at a time, it

performs a rather myopic hill-climb search for the best subgraph to migrate. It is

not hard to construct cases where adding either of two vertices alone will be rejected,

but adding both both vertices at once would be an improvement. This algorithm will

never discover such possibilities.

Don't let the message get too large. As the migratory subgraph grows, the size

of the message that will be sent generally grows. Each vertex to be migrated takes a

certain amount of space to describe, and each link end descriptor takes up space. But

vertices are typically somewhat smaller than descriptors,9 so if sending a particular

vertex will decrease the number of required links, then the message size will actually

decrease. Thus, if the algorithm reaches a point where the message is close to the

maximum message size, it will only consider additions to the subgraph that actually

decrease the number of links.

Don't migrate unblocked redexes. If a vertex is a member of an unblocked

redex, it will never be considered for migration. This prevents agents from exporting

un�nished work to other agents|the idea is to let computation �nish running locally

before getting involved with the relatively expensive network. As a special case, this

restriction prevents migration from creating new blocked redexes.

Monoactive vertices follow their active terminal. Vertices that have only one

active terminal and vertices that have many active terminals are treated di�erently.

9
In the current system, on the average, three vertices take up the same amount of space as a

single descriptor.

5.3. MIGRATION HEURISTICS 113

The majority of vertices fall into the monoactive case. Such a vertex is added to the

migratory subgraph if and only if its active terminal is connected to a vertex already

selected for migration.

A monoactive vertex cannot participate in any future reductions unless its sole

active terminal gets connected to some appropriate vertex (one for which a method

exists). If a monoactive vertex gets separated from whatever graph structure its active

terminal is connected to, nothing further can happen to it unless it subsequently packs

up and follows that structure, or unless that structure happens to return to it. So

letting such a separation take place guarantees that a message must be sent before the

monoactive vertex can do anything useful. If we encourage the monoactive vertex to

follow what its active terminal is connected to, many such messages will be avoided.

When that structure �nally becomes something the vertex can interact with, the

vertex will already be there ready to participate in a local reduction.

As an important special case of this heuristic, a vertex with only a single terminal

will always follow whatever structure it is attached to. Thus numbers and other atoms

will always stick with the vertices they are connected to.

This heuristic is largely responsible for the way the system so successfully extracts

\tasks" from the working graph. Continuations are represented using vertices whose

sole active terminal is connected to the graph structure that will eventually return a

value. So continuations will tend to tag along after the computations whose values

they are waiting for. Continuations linked together to form a \stack" will tend to

travel together.

An essential ingredient in the way stacks stick together is the fact that continua-

tions are almost always treated linearly in Scheme programs. (The only exception is

when CALL-WITH-CURRENT-CONTINUATION is used. See section 3.1.3.1.) Due to this

linearity, each continuation will be directly connected to the next, without even an

intervening tree of Copy vertices. This is a clear example where the linearity in the

original program, exposed by the explicit representation as linear graph structure, is

exploited to aid in the execution of the program.

For polyactive vertices, just avoid creating more links. Polyactive vertices

are added to the migratory subgraph as long as doing so does not increase the number

of links. The idea here is that as long as no additional links are required, a vertex is

more likely to be needed at the remote agent, where we know some action is about

to take place, than it is locally, where things have settled down.

Combining all the above heuristics yields the following algorithm:

Step 0 Initialize G to contain just the initial vertex that is to be migrated.

Step 1 For each local vertex v 62 G, where v is not a member of an unblocked redex,

and v is connected to some vertex w 2 G do the following:

114 CHAPTER 5. DISTRIBUTED EXECUTION

� If sending v would strictly decrease the number of required links, add v to

G.

� If the message being assembled is not close to full, and sending v would

not increase the number of required links, add v to G.

� If the message being assembled is not close to full, and the terminal through

which v is joined to w is monoactive, add v to G.

Step 2 If any new vertices were added to G in step 1, go do step 1 again.

5.3.2 The example revisited

Let us now return to the following situation from the previous section, and examine

in detail exactly how the two migratory subgraphs were chosen:

(graph ()

;; A:

(<Network Anchor> 16)

;; B:

(<Network Anchor> 17)

;; C:

;; Migration Queue: 16, 17

(<Call 1> target:16 tail:0 cont:1 0:2)

(<Drop> 0)

(<Lambda 1661> 2 n:3)

(<Number 8> 3)

(<Future> 13 as cont:1)

(<Call 1> target:17 tail:4 cont:5 0:6)

(<Drop> 4)

(<Lambda 1661> 6 n:7)

(<Number 9> 7)

(<Future> 14 as cont:5)

(<Sum> 15 left:13 right:14)

(<Copy> target:15 a:8 b:9)

(<Equal?> 11 left:8 right:10)

(<Number 0> 10)

(<Test 746> 11 cont:12 n:9)

(<Network Anchor> 12)

)

Recall that the network executive started by considering connection 17, and de-

termined that it should send the Call 1 at one end of that connection from C to B.

Here is how the migration heuristics work in that case:

5.3. MIGRATION HEURISTICS 115

1. The Drop connected to the tail terminal of the Call 1 is sent because its sole

active terminal is connected to the Call 1.

2. The Lambda 1661 connected to the 0 terminal of the Call 1 is sent for the

same reason.

3. The Number 9 connected to the n terminal of the Lambda 1661 is sent to follow

the Lambda 1661.

4. The Future connected to the cont terminal of the Call 1 is sent because if it

isn't sent, connection 1 will require a link, while if it is sent, connection 13 will

require a link. So sending it creates no increase in the number of links.

5. The Sum vertex is not sent. If it isn't sent, connection 13 will require a link,

while if it is sent, connections 14 and 15 will both require links.

As the Sum vertex was the only remaining candidate for migration, at this point the

migratory subgraph stops expanding.

When the network executive considers connection 16 and its Call 1 vertex, every-

thing happens in much the same way until the Sum vertex comes up for consideration.

This time, if the Sum is not sent, connections 13 and 14 will require links. (Remember

we made a link for connection 13 because of the previous migration!) If the Sum is

sent, connections 13 and 15 will require links. Either way, we need two links, so the

Sum gets migrated.

The next step is to consider the Copy vertex. If it is not sent, connection 15

continues to need a link, but if it is sent, connections 8 and 9 both require links.

Thus the Copy is not sent, and the migratory subgraph stops expanding.

It would not be hard to change these heuristics so that in this example the Sum

vertex was not migrated; we could insist that in the polyactive case vertices are only

migrated if they actually decrease the number of required links. This would cause

the delay in printing the answer to drop from 3T to 2T . But remember that the

interesting thing about these heuristics is not how they function, but the reasoning

that went into creating them. Rather than patching them so that particular cases

function in particular ways, we should examine this example to see if it reveals some

aw in the reasoning behind the heuristic.

Note that while the delay before the answer is printed is 3T , the delay before the

answer is computed is 2T . In fact, the delay will be 2T whether the Sum vertex is

migrated to A, or remains on C. So the real problem with sending the Sum to A is

that it causes the answer to the call to + to appear in the wrong place, given that the

rest of the computation calls for that value to be printed by C.

Could any heuristic predict this, given the state of the working graph at the time

the migration of the Sum is being considered? The heuristic must choose between

two nearly symmetrical situations. In either case, the Sum vertex winds up on one

agent, with one connection to some local structure, and two connections to remote

116 CHAPTER 5. DISTRIBUTED EXECUTION

structures. In order to make an informed decision about which alternative to select,

the heuristic needs to understand more about the future course of the computation

than can be extracted just by counting links. It is possible to construct cases where we

are given a similar working graph, but due to the future course of the computation,

the best choice is to migrate the vertex. Simply changing the comparison in the

heuristic from � to < doesn't actually address the problem.

In order to distinguish between the two cases in the Sum example, the heuristics

need to know more about the universe of methods|they need to know more about

the consequences of their actions. The terminal activities are one step in that direc-

tion, and we have already seen that the heuristic for monoactive vertices uses that

information to good advantage. Perhaps some additional information precomputed

from the universe of methods can help suggest that it is not really a good idea for a

Sum vertex to get separated from the structure attached to its handle.

The preceding discussion should not in any way belittle the performance of the

existing heuristics. They work quite well at exploiting the existing combination of

linearity and terminal activity information. I'm only suggesting that by continuing

to travel in the same direction, the system can be made even better.

5.4 Summary

This completes the presentation of the practical implementation of distributed linear

graph reduction. In chapter 3 I showed how to translate an ordinary sequential

Scheme program into a linear graph grammar. A key property of this translation is

that linearities in the original program remain linearities in the resulting grammar.

Chapter 4 demonstrated that linear references between distributed entities can be

maintained cheaply. The fact that linear references are more constrained that full-

edged pointers makes this protocol simple, cheap and fast. In this chapter, the

pieces were put together to build a system that executes the translated program in a

distributed environment. Linear references also helped here by allowing the run-time

system to make good decisions about how to distribute the graph structure.

This system is quite real. The run-time system contains 5400 lines of C code.

It runs under several popular versions of Unix. The compiler consists of 2500 lines

of Scheme code. It tries to honestly address all of the issues that would arise in

a \production" system. This includes issues, many of them quite mundane, that I

have not even mentioned here. For example, there are interesting techniques used

for describing graph structure compactly in messages, and for representing graph

structure so as to make local reduction run faster.

Many things have been left undone. The rest of this section catalogs some of the

issues that would have to be addressed before this system could be used for real.

5.4. SUMMARY 117

Fault Tolerance. The current system is not at all fault tolerant. If an agent

crashes, the system breaks completely at all levels from the reliable message layer on

up. In a production system, something would have to be done about graph structure

that was temporarily inaccessible due to problems with an agent or the network path

to that agent. For example, graph structure en route to such an agent could be

returned to the sender.

Perhaps the same kind of reasoning about linear graph structure that went into

the design of the migration heuristics could help in coping with faults. This might be

a fruitful area of future research.

Security. Nothing in the current system addresses security concerns. The current

run-time is even perfectly happy to migrate the company payroll database (repre-

sented as linear graph structure) to the workstation sitting on the receptionist's desk.

Better Link Protocol. As noted at the end of chapter 4, there are two major

improvements to be made to the link maintenance protocol. First, the link layer

should be able to relocate the home agent when neither end of the link remains

at home. Second, the link layer should be more closely integrated into the reliable

message layer.

Migration. As noted at the end of the previous section, more intelligent migration

strategies are clearly possible, and probably desirable. Other factors besides blocked

redexes and potential links can be taken into consideration. Subgraphs should be

migrated from overloaded agents to underutilized agents. The cost of a link should

be weighted according to the estimated network delay between its two ends. These

strategies, and others like them, would continue to build on the same basic foundation

that supports the existing migration strategies.

Thrashing. Nothing prevents migrating graph structure from chasing other mi-

grating graph structure uselessly around the network. In the simplest case of this

problem two agents holding vertices on opposite ends of a connection simultaneously

decide to send the vertex they are holding to the other agent. The result is that the

two vertices change places, and nothing useful has been accomplished.

Some simple strategies for preventing such \thrashing" are already built in to the

current migration heuristics (this is one reason why the agent who �rst discovers a

blocked redex is always responsible for unblocking it), but in a production system

some additional anti-thrashing mechanisms might well be needed. It is possible that

random variations in the behavior of the network will be su�cient to prevent graph

structure from chasing its tail forever, but if reliance of natural randomness proves

insu�cient, some simple tie-breaking strategies can be implemented.

This is an example of the kind of issue that can't really be addressed without �rst

gaining some experience with running large applications.

118 CHAPTER 5. DISTRIBUTED EXECUTION

Dynamic Code Distribution. Currently all methods are known by all agents

before the system starts running. This makes it impossible to introduce new vertex

types after the program has started running. Unfortunately, this is precisely what an

agent that o�ers some general service to the network needs to be able to do. Such

agents cannot possibly come into existence already knowing all the programs that

they might need to brie
y host. Instead when they see a vertex type that have never

encountered before, they need to go and learn the methods they may need to handle

that type.

This requires some straightforward work on the run-time to cause it to notice

when a method might be missing and search for it. Presumably such a \method

fault" is a rare occurrence, since the results of the search can be cached locally. The

resulting algorithm should closely resemble demand paging.

Nonlinear References. There are some situations in which linear references per-

form poorly, so a true production system would also include nonlinear reference mech-

anisms. For example, an object that represents the root of a �le system might have

hundreds of outstanding references. In this case, building a tree of Copy vertices to

collect and serialize operations might be very ine�cient|especially in a distributed

implementation where operations might have to travel over the network from agent

to agent tracing connections between widely scattered Copy vertices.

A better mechanism might be a true \pointer" data type. Clients would be able

to freely transport and duplicate copies of a pointer, but the target of a pointer would

remain ignorant of how many copies currently existed and where they were located.

The target would therefore �nd it much more di�cult to move to a new location, or to

terminate its existence. Pointers would be an alternative to connections that would

provide a di�erent, and sometimes more appropriate, allocation of the responsibilities

and expenses associated with keeping a reference to an object.

A good analogy can be made between the \pure" linear graph reduction system I

have presented and an implementation of \pure" Lisp. A pure Lisp implementation

might only support a Cons data type, but a true production version of Lisp supports

data structures such as arrays that have e�cient implementations in terms of the

underlying hardware.

Garbage Collection. Methods for handling the interaction of vertices with Copy

and Drop vertices gives the system the equivalent of a reference-count garbage collec-

tor. As with any reference count garbage collector, circular structures can evade the

reference count mechanism.

Full Scheme. As has already been mentioned, the run-time only supports a limited

subset of the features of a full Scheme implementation. Much of the work required

to complete this job is straightforward and dull, but there are interesting language

5.4. SUMMARY 119

design issues still waiting to be addressed. Designing an I/O system is one un�nished

job we have already encountered.

Another highly interesting problem is supporting the Scheme procedure EQ?. The

current protocol for representing objects does not include any way to test if two

references actually speak to the \same" object. In other words, there is no way to

tell if two connections are connected to the fringe of the same Copy vertex tree.

Any treatment of this issue must address subtle issues about exactly what one

means when one talks about \the same object". These issues are the subject of

chapter 6.

Language Design. Finally, it is worth mentioning that a production system built

around distributed linear graph reduction would not necessarily want to stick so

closely to a sequential programming language semantics. This demonstration system

uses standard sequential Scheme in part to demonstrate that it could be done, and

in part to avoid overloading the reader with too many new concepts.

A production system would at least introduce some new programming language

extensions that help promote linearity and that allow parallelism (such as the FUTURE

special form). But a new programming language could also be designed from scratch,

perhaps by using a di�erent protocol for continuations.

After presenting a catalog of things left undone and paths still to be explored, let

me �nish the chapter in a more positive way with a summary of what the distributed

linear graph reduction engine has demonstrated about the bene�ts of paying attention

to linearity and of using linear graph structure:

� All run-time structures (continuations, record structures, procedures, etc.) are

represented explicitly using linear graph structure, so the proper treatment of

continuations in tail-recursive procedure calls is ensured.

� Linearity keeps the link protocol simple, so cross-network references are cheap.

� Cheap cross-network references permit data structures to be highly portable.

� Linearity makes it possible to forecast future network tra�c, so heuristics can

be designed that facilitate the demand migration of tasks and data.

Combine these bene�ts and the result is that programs such as the �rst example in

section 5.2 can function with the minimum possible network delay.

120 CHAPTER 5. DISTRIBUTED EXECUTION

Chapter 6

State

Having demonstrated how linear graph reduction functions in a practical setting in

the last three chapters, I would now like to turn to a more theoretical application.

In this chapter the notion of linearity and the tool of linear graph reduction will be

used to examine one of the most perplexing phenomenon in computer science: the

phenomenon of state.

As functional programming languages and parallel computing hardware become

more widespread, understanding the phenomenon of state is becoming increasingly

more important. It is generally agreed that the unrestricted use of state can make a

program hard to understand, compile, and execute, and that these problems increase

in the presence of parallel hardware. The usual approach to controlling these problems

is to impose programming language restrictions on the use of state, perhaps even by

ruling it out altogether. Others have proposed schemes that accept state as a necessity,

and try to minimize its bad e�ects [Bac78, Agh86, GL86, Kni86].

I believe that before either outlawing state, or learning to simply tolerate it, we

should try to better understand it, in the hope of eventually being able to reform it.

This chapter takes some steps towards such an understanding.

Using the linear graph reduction model we will be able to characterize those

systems in which some components of a system perceive other components as having

state. We will learn a new way of thinking about state, and we will gain insight into

why state seems to be such a problem. This insight might one day help us make our

programming languages more expressive when we program with state.

This excursion into the theory of state may seem quite abstract, especially in

contrast to the practical presentation of the distributed graph reduction system just

concluded. The two may seem quite unrelated, but there are at least three important

points of contact between them. First, the problem of managing state in a distributed

environment is quite an important one. A distributed database is chie
y a system

for providing the useful facility of state to a distributed set of clients. Since linear

graph reduction provides insight into both state and distributed computing separately,

it may prove pro�table to apply these ideas in �elds that have both aspects, such

as distributed databases. I will not, however, be demonstrating such a combined

application here. This remains a promising research topic.

The second point of contact is of a more practical nature. Having seen linear graph

121

122 CHAPTER 6. STATE

reduction applied in a real system will make much of the following presentation much

easier to understand. The subtleties of how linear graph structure can be used to

reproduce the behavior of more familiar computational systems have already been

explained in more than enough detail. I will be able to assume that the reader

has gained a certain amount of intuition about how linear graph reduction works in

practice.

Third, the contrast between the two applications, one quite practical and applied,

and the other quite theoretical and abstract, serves to underscore my contention that

linearity is an important notion of quite general applicability that deserves to be more

widely appreciated throughout computer science.

6.1 What is state?

It is not immediately clear to what, if anything, the word \state" refers. We ordinarily

treat state as being a property of some \object". We pretend that state can be

localized in certain portions of the systems we construct. We act as if the question

\where is the state?" has an answer. Ordinarily this doesn't get us into any trouble.

But, as I will argue below, if we try to analyze systems from a global perspective, this

view becomes untenable.

It cannot be the case that state is an attribute possessed by an object independent

of its observer. In a system consisting of an observer and some other components, in

which the observer describes one component as having state, it is often possible to

provide an alternate description in which some other component contains the state.

Often the system can be redescribed from a viewpoint in which another component is

treated as the observer and the original observer appears to be the component with

state. Sometimes the system can even be described in such a way as to eliminate

all mention of state. (In [SS78] Steele and Sussman explore this mystifying aspect of

state in some depth.)

In cases where state cannot be eliminated, it behaves much like a bump in a rug

that won't go away. Flatten the bump out in one place, and some other part of the

rug bulges up. Any part of the rug can be made locally
at, but some global property

(perhaps the rug is too large for the room) makes it impossible for the entire rug to be

at simultaneously. Analogously, we may be able to describe all the components of

a system in stateless terms, but when the components are assembled together, some

components will perceive other components as possessing state.

As an example, consider the simple system consisting of a programmer interacting,

via a keyboard and display, with a computer. Imagine that the software running on

the computer is written entirely in a functional programming language, the stream of

output sent to the display is expressed as a function of the stream of keyboard input.

(See [Hen80] for a demonstration of how this can be done.) Thus the description of

the subsystem consisting of the keyboard, computer and display is entirely free of

6.1. WHAT IS STATE? 123

any mention of state, yet from the programmer's viewpoint, as he edits a �le, the

computer certainly appears to have state.

Imagine further that the programmer is actually a robot programmed in a func-

tional language, his stream of keystrokes is expressed as a function of the stream of

images he sees. Now the situation appears symmetrical with respect to programmer

and computer, and the computer can claim that it is the programmer that is the

component of the system that has state.

All components in this system agree that from their perspective there is state

somewhere else in the system, but since each component is itself described in state-

free terms, there is no component that can be identi�ed as the location of that state.

This does not mean that the phenomenon of state is any less real than it would

be if we could assign it a location. It does mean that we have to be careful about

treating state as anything other than a perceptual phenomenon experienced by some

components in their interaction with other components. In particular, we must not

expect to single out components as the repositories of state.

Therefore an important aspect of my approach to studying state will be a reliance

on observers embedded in the system itself to report on state as they experience it.

A more conventional approach would be to treat state as something experienced

by observers external to the system under study. Mine is a much more minimalist

approach, demanding less of state as a phenomenon. State is certainly experienced

by entities within the systems that we construct, but this does not imply that state

can be studied as if it were a property of those entities.

This is similar to the stand taken by those physicists who advocate the Many

Worlds interpretation of quantum mechanics [DG73], and I adopt it for similar rea-

sons. By dispensing with external acts of observation, and instead treating observa-

tion solely as a special case of interaction between the components of a system, the

Many Worlds formulation gives insight into why observers perceive e�ects such as the

Einstein-Podolsky-Rosen \paradox".

The programs we write are really instructions to be followed by little physicists

who inhabit computational universes that we create for them. These embedded ob-

servers must react to their environment on the basis of their perceptions of it. They

are not privy to the god's-eye view that we, as the creators and debuggers of their

universe, are given.

Since programming languages are designed to facilitate the instruction of these

little physicists, it is natural that programming languages describe phenomena as they

are perceived by such embedded observers, but that does not mean that we should

adopt the same terminology when we study the universe as a whole. The notion of

state is a valid one, in as much as it describes the way one component of a system

can appear to behave to another, but it would be a mistake to conclude from this

that state is a intrinsic property that we, as external investigators, can meaningfully

assign to certain components.

By carefully restricting the notion of state to apply only relative to embedded

124 CHAPTER 6. STATE

observers, we avoid confusion and achieve additional insight into the conditions that

cause state to appear.

6.2 The symptoms of state

Experience using linear graph reduction suggests that all graph grammars that ex-

hibit the phenomenon of state share two important characteristics: �rst, they are

always nondeterministic grammars; second, they always construct graphs that con-

tain cycles. In this section I shall present some intuitive arguments for why this

should be so. In the next section I will show why these two characteristics constitute

strong circumstantial evidence that state is a phenomenon caused by the nonlocal

topological structure of linear graphs.

It would be nice to be able to prove that the phenomenon of state has this topo-

logical origin. Unfortunately this cannot be done because state is not something that

already has an adequate de�nition. All programmers understand what state is be-

cause they have experienced it in the systems they construct. They know it when

they see it, but they don't have a formal de�nition for it. Thus, the best that we

can hope to do is to demonstrate that this topological property exhibits the same

symptoms that we normally associate with state. We cannot show that some new

de�nition of state is equivalent to some known de�nition, but we can give state a

de�nition for the �rst time.

6.2.1 Symptom: nondeterminism

Why should it be the case that nondeterministic linear graph grammars are needed

in order to construct systems with state?

Recall once again the protocol for messages, �rst introduced in section 2.4. A pair

of methods, such as the two on page 32, permit a message (such as Car) to climb up

through a tree of Copy vertices, using two terminals customarily labeled target and

tail. Such methods are a source of nondeterminism because in a graph such as

(graph (0 3 4 5 6 7)

(<Copy> target:0 a:1 b:2)

(<Car> target:1 tail:3 cont:4)

(<Set Car> target:2 tail:5 cont:6 new:7))

there is a choice about which message to propagate through the Copy vertex �rst.

The result might be either

(graph (0 3 4 5 6 7)

(<Car> target:0 tail:1 cont:4)

(<Copy> target:1 a:3 b:2)

(<Set Car> target:2 tail:5 cont:6 new:7))

6.2. THE SYMPTOMS OF STATE 125

or

(graph (0 3 4 5 6 7)

(<Set Car> target:0 tail:2 cont:6 new:7)

(<Copy> target:2 a:1 b:5)

(<Car> target:1 tail:3 cont:4))

Depending on this choice, either the Car message, or the Set Car message will arrive

at the apex of the tree �rst|two completely di�erent computational histories may

then unfold. This nondeterminism is possible because Copy vertices are willing to

interact with vertices connected to either their a or b terminals. Intuitively, a Copy

tree is willing to \listen" to messages arriving from anywhere along its fringe.

So nondeterminism is built in to the usual linear graph reduction implementation

of objects with state. Of course this does not constitute proof that any implementa-

tion of objects with state must contain nondeterminism. Lacking a de�nition of state

(constructing such a de�nition is the ultimate goal of this chapter) no such proof is

possible.

Still, it is hard to imagine how this nondeterminism can be eliminated. Consider

what would happen if Copy vertices were only willing to interact through their a

terminals. In that case there would only be a single location on the fringe of a Copy

tree that would be listening for the next message. This single attentive location would

be determined at the time the tree was constructed. For each variable that occurred

twice in the body of a LAMBDA-expression, programmers would have to declare which

occurrence was the a occurrence.

In e�ect, programmers would have to specify in advance the order in which reads

and writes will take place. It would be impossible to support patterns of reads and

writes that varied dynamically. It is clear that such a system would fall short of

supporting what most programmers would consider state-like behavior.

Instead of simply altering the protocol for Copy trees, perhaps some completely

di�erent technique for translating a programming language can be found. A tech-

nique that builds some other form of graph structure when a name is used more than

once, and such that a deterministic grammar can work on that structure to produce

apparent state-like behavior. But no such technique is known; nondeterminism ap-

pears in every fully satisfactory linear graph reduction implementation of state-like

behavior.

Others have also observed that the need for nondeterminism seems to be a symp-

tom of the desire for state. In [Hen80], for example, Henderson must add a nonde-

terministic stream merging operator before he can construct an otherwise functional

description of an operating system that appears to maintain state.

6.2.2 Symptom: cycles

Why should it be the case that cyclic linear graphs are needed in order to construct

systems with state?

126 CHAPTER 6. STATE

G. EXP.

xc

t

C. 1 0cont

tail

target

t

G. EXP.

c 1

x

Set Carcont new

tail

target

E. 401

x

cont

Figure 6-1: The method for calling EXPERIMENT

Consider how an observer embedded in such a system can perceive state. There

must be some experiment that the embedded observer can perform that will reveal

that the part of the linear graph external to him behaves as if it had state.

Such an experiment, expressed in Scheme, might look like:

(define (experiment x)

(begin (set-car! x 1)

(= (car x) 1)))

The general idea is to detect that the external system, accessed through the variable

X, somehow remembers the action performed by SET-CAR!, and this can be detected

by the procedure CAR. The programmer who wrote this procedure probably thought

in terms of some object (probably a Cons), named by the variable X, whose state

could be written and read by SET-CAR! and CAR.

The important thing to notice about the procedure EXPERIMENT is that the variable

X occurs in its body twice. The reason for this is that two references to the subsystem

being tested are needed in order to complete the experiment. While one reference is

passed to SET-CAR!, a second reference must be retained so that SET-CAR!'s e�ects

can be observed. When EXPERIMENT is translated in linear graph reduction methods

(using the techniques from chapter 3), the �rst method is the following:

(graph (0 1 2)

(<Global EXPERIMENT> 3)

(<Call 1> target:3 tail:0 cont:1 0:2))

(graph (0 1 2)

(<Global EXPERIMENT> 0)

(<Evseq 401> 3 cont:1 x:4)

(<Number 1> 5)

(<Set Car> target:2 tail:4 cont:3 new:5))

A picture of this method appears in �gure 6-1. Notice that two connections join

the Evseq 401 vertex to the Set Car vertex. The �rst connection is through the

6.2. THE SYMPTOMS OF STATE 127

cont terminal of the Set Car, because the Evseq 401 is a continuation waiting for

con�rmation that the call to SET-CAR! has completed. The second connection joins

the tail of the Set Car to the x of the Evseq 401, because after that con�rmation

arrives, the continuation will need that second copy of the reference to the value of X

to continue the experiment.

This cycle is not a spurious e�ect of the way the procedure was written, it it a

consequence of the nature of the experiment. Any system that looks for correlations

between past actions and future e�ects will have this structure at some point in its

history.

To see this more clearly, it may help to think about the phenomenon of aliasing.

Aliasing occurs in traditional programming languages when a given storage location

comes to have multiple names. Aliasing is often associated with puzzles that involve

the way assignment interacts with di�erent parameter passing mechanisms. When

a location has multiple names, it becomes possible to change the value accessed

through one name by using a another name. Thus, the behavior of an aliased name

can be altered without ever using that name. It requires at least two names for this

phenomenon to occur: a �rst name whose behavior changes mysteriously, even though

it wasn't used, and a second name that causes the change because it was used.

If a name is viewed as a path for accessing a location, then the analogy with cyclic

linear graph structure is revealed. If there are two paths from point A, where the

observer stands, to point B, the observed location, then there is a cycle starting from

A, running down the �rst path to B, and then back up the second path to A again.

Traversing the second path in reverse to get from B back to A may seem unnatural

because we don't usually travel from objects backwards to the entities that know their

names, but when modeling such a system using linear graphs it is easier to think in

terms of cycles, a natural topological property of any kind of graph with undirected

edges.

The need for cycles in systems with state has been noticed before. Usually it is

expressed as a need for some kind of equality predicate in order to have a sensible

notion of side e�ect. In [SS78] Steele and Sussman conclude that \the meanings of

`equality' and `side e�ect' simultaneously constrain each other"; in particular they

note that it is impossible to discuss side e�ects without introducing some notion of

sameness.

The programmer who wrote the EXPERIMENT procedure intended that the variable

X should refer to the same object each time it occurred; he was unable to discuss

side e�ects without using a notion of sameness. To support this notion we have to

introduce cycles into the system. Cycles are thus inevitable when side e�ects are to

be detected.

128 CHAPTER 6. STATE

6.3 Locality

In this section I will demonstrate that the two symptoms ascribed to state in the

previous section occur in systems whose nonlocal topological structure a�ects their

behavior. This strongly suggests that the various phenomena we have loosely been

calling \state-like behavior" can all be explained in those topological terms. We will

therefore adopt the topological characterization as the de�nition of state. The insight

gained into the nature of state will help explain why programming in the presence

of state is sometimes di�cult, and why this di�culty increases as systems become

larger. It will also suggest where to look for further insights, and how we might design

better tools for using state.

In this section the simplicity of the linear graph model will pay o� in a big way.

So far the restricted nature of connections has manifested itself chie
y by forcing us

to construct the somewhat clumsy Copy vertices in certain situations. Here we will

�nd that the simplicity of connections makes it very easy to de�ne an appropriate

notion of locality.

We need to capture the notion of locality because we can only study state as a

phenomenon experienced by observers embedded in computational systems, and the

only tool that an observer embedded in a linear graph has for making an observation

is the binary method, whose left hand side is matched against a local subgraph. If

there were methods whose left hand sides were more complex, perhaps allowing the

method to run only if the entire graph passed some test, then locality would not

be as important, but the left hand side of a binary method only tests a small, local

portion of the graph (two vertices and a single connection). Thus, there is no way

for a running program to learn anything about the nonlocal structure of the linear

graph that it is a part of. With the characterization of locality developed below, this

observation will be made precise.

It is worth recalling, at this point, how message passing and procedure calling

were easily modeled using binary methods. Just as binary methods are unable to gain

nonlocal knowledge, so message passing and procedure calling are similarly limited.

This limitation is a consequence of the way the processing elements in all computing

hardware work. All processing elements have some limit to the amount of state

that can be contained in their private, immediately accessible memory. They are

forced to take computational action based solely on this local knowledge of the state

of the entire system. They must trust that other parts of the system|memories,

other processing elements, I/O devices|are con�gured as expected. Recognizing this

need to trust in the global con�guration of the system will be the key to a new

understanding of state.

6.3. LOCALITY 129

6.3.1 Homomorphisms and local indistinguishability

To capture the notion of locality, we can de�ne a homomorphism from one linear

graph to another as a map that preserves the local structure of the graph. More

precisely, a homomorphism is a map :G ! H from the terminals of the linear graph

G to the terminals of the linear graph H such that:

� If a and b are terminals in G, and a is connected to b, then (a) is connected

to (b).

� If a and b are terminals in G that belong to the same vertex, then (a) and

 (b) belong to the same vertex in H.

� The label of a terminal a in G is the same as the label of (a) in H, and the

type of a's vertex is the same as the type of (a)'s vertex.

 is an epimorphism if it is onto, a monomorphism if it is one-to-one, and an

isomorphism if it is both. If is an isomorphism, it has an inverse �1 that is also

an isomorphism.

Since all the terminals of a vertex in G are mapped together to the same vertex

in H, a homomorphism also de�nes as a map from vertices to vertices. Thus if v is a

vertex in G, we can extend our notation and let (v) be the corresponding vertex in

H. In fact, a homomorphism is completely determined by its action on vertices.

Figure 6-2 shows an example of a homomorphism.1 The arrows indicate how the

vertices of the left hand graph are mapped to the vertices of the right hand graph.

This is the only homomorphism between these two linear graphs, although in general

there may be many.2

Imagine what it would be like to explore a maze that was built on the plan of a

linear graph: Each vertex becomes a room, each connection becomes a hallway, a sign

over each doorway gives the label of the corresponding terminal, and sign in the center

of each room gives the type of the corresponding vertex. Unless he turns around and

retraces his steps, an explorer can never know that he has arrived in a room that he

passed through before. For all the explorer can tell, the linear graph he is exploring

might well be a (possibly in�nite) tree containing no cycles whatsoever. There would

be no way for him to distinguish between the two linear graphs in �gure 6-2. Such

graphs are locally indistinguishable.

Formally, H1 and H2 are locally indistinguishable, written H1 � H2, if there

exists a graph G and two epimorphisms 1:G! H1 and 2:G! H2. It can be shown

that local indistinguishability is an equivalence relation on linear graphs. As a special

case of this de�nition note that if :G! H is any epimorphism, then G � H.

1
This picture resembles a picture of a method since it has a left hand side and a right hand side

and arrows that express a relationship between the two. This resemblance is coincidental|the two

notions will be kept entirely separate.
2
The category of linear graphs and linear graph homomorphisms has many interesting properties.

An entertaining exercise is to determine how to compute products of linear graphs.

130 CHAPTER 6. STATE

Cons
cdrcar

Cons
cdrcar

Frob

x

y

Cons
cdrcar

Cons
cdrcar

Frob

x

y

Cons
cdrcar

Cons
cdrcar

Frob

x

y

Figure 6-2: A Linear Graph Homomorphism

6.3.2 Methods

Things become more complicated once we introduce methods into the picture. In

this section we will prove some theorems about the relationship between linear graph

grammars and homomorphisms and local indistinguishability. The proofs are sketched

rather than being presented in tedious detail, since the results are all easy to see once

the de�nitions are understood.

We will continue to assume that all methods are binary methods. The theorems

in this section are all true even if we slightly relax that restriction and allow any

method whose left hand side is a tree (a connected graph containing no cycles), but

that additional generality is not needed in anything that follows.

We write G) G

0 if the linear graph G0 is the result of applying any number of

methods to any number of disjoint redexes in G. We write G0)
�

Gn when there is

a series G0) G1) � � �) Gn.

Theorem 1 Given a homomorphism :G ! H, and if H) H

0, then there exists

a linear graph G0 and a homomorphism

0:G0

! H

0 such that G) G

0. This can be

summarized in the following diagram:

G

�! H

w
w
�

w
w
�

G

0

0

�! H

0

If is an epimorphism, then 0 can be found so that it is also an epimorphism.

6.3. LOCALITY 131

Proof. Each redex in H that is reduced in forming H 0 can be lifted back through

to a set of redexes in G. The set of all such redexes can then be reduced to obtain

G

0. 0 can then be constructed from in the obvious way. 2

Theorem 2 Given :G ! H, and if H)
�

H

0, then there exists G0 and 0:G0

! H

0

such that G)
�

G

0. If is an epimorphism, then 0 can be found so that it is also

an epimorphism.

Proof. This follows easily from the previous theorem by induction. 2

The theorem 2 is true given any linear graph grammar. It is the strongest such

result I have proven that does not constrain the grammar. For certain classes of

grammars, and in particular for the class that contains most deterministic grammars,

stronger theorems can be proven:

A linear graph grammar is preclusive if two redexes can never overlap. This

means that if a redex appears in a linear graph G, and if G) G

0, and if that redex

was not one of the ones reduced in forming G0, then that redex still appears in G0.

The appearance of a redex in a graph thus precludes the possibility that anything else

will happen to those vertices before the corresponding method can be applied.

For example, any grammar that contains the two methods on page 32 cannot be

preclusive. The reason for this is that, as we showed in section 6.2.1, it is possible to

construct a graph where the Copy vertex belongs to two di�erent redexes. We have

already identi�ed this property of Copy vertices as a source of nondeterminism. The

following theorem demonstrates that preclusive grammars are in fact deterministic.

Theorem 3 If a linear graph grammar is preclusive, then given linear graphs G, G1,

and G2 such that G) G1 and G) G2, there exists a linear graph G

0 such that

G1) G

0 and G2) G

0.

Proof. Since the grammar is preclusive the redexes in G are all disjoint. We can

divide them up into four classes, (1) those that were reduced in forming both G1 and

G2, (2) those that were reduced only in forming G1, (3) those that were reduced only

in formingG2, and (4) those that were reduced in neither case. Redexes in the second

class must still occur in G2, and redexes in the third class must still occur in G1, so

by applying the corresponding methods we can form G

0 from either G1 or G2. (In

fact, G) G

0 because we can apply the methods that correspond to the �rst three

classes redexes.) 2

Theorem 4 If a linear graph grammar is preclusive, then given linear graphs G, G1,

and G2 such that G)
�

G1 and G)
�

G2, there exists G0 such that G1)
�

G

0 and

G2)
�

G

0.

Proof. This follows easily from the previous theorem by induction. 2

132 CHAPTER 6. STATE

Theorem 4 shows most clearly what it is about preclusive grammars that makes

them behave deterministically. It gives us a condition under which we have a Church-

Rosser theorem for linear graphs. It shows that no matter what order we choose to

apply the methods from a preclusive grammar, we always achieve the same result. If

it is possible to apply methods until a linear graph is produced to which no further

methods can be applied, then that graph is unique.

The �nal two theorems relate local indistinguishability and preclusive grammars:

Theorem 5 If a linear graph grammar is preclusive, then given linear graphs G, H,

and H 0 such that G � H and H) H

0, there exists linear graphs G00 and H 00 such

that G) G

00, H 0

) H

00 and G00

� H

00.

Proof. The most straightforward way to construct G00 and H 00 is to let them be the

results of reducing all redexes in G and H. This is possible because these redexes

must all be disjoint (since the grammar is preclusive). Further, it must be the case

that H 0 is the result of performing some subset of these reductions, so by performing

the remainder we see that H 0

) H

00. It is clear from the construction that G00

� H

00.

2

Theorem 6 If a linear graph grammar is preclusive, then given linear graphs G, H,

G

0, and H 0 such that G � H, G)
�

G

0 and H)
�

H

0, there exists linear graphs G00

and H 00 such that G0

)
�

G

00, H 0

)
�

H

00 and G00

� H

00. This can be summarized in

the following diagram:

G � H

w
w
��

w
w
��

G

0

H

0

w
w
��

w
w
��

G

00

� H

00

Proof. This follows from the previous theorem by induction and by using theorem 3.

2

Theorem 6 is very similar in form to theorem 4; their meanings would be iden-

tical if we replaced the \�" in theorem 6 with \=". Theorem 6 shows that given

a preclusive grammar, not only does it not matter what order we choose to apply

methods (theorem 4), it does not even matter which locally indistinguishable linear

graphs we choose to apply them to. A preclusive grammar is completely insensitive

to the nonlocal structure of the system.

6.4. IMPLICATIONS FOR PROGRAMS 133

6.4 Implications for programs

The theorems we have just seen have implications for what an embedded observer

can learn about the system in which it is embedded.

Suppose we are given a pair of linear graphs G and H, where G 6= H, and we are

asked to produce a linear graph grammar that can somehow distinguish between the

two. First, we need to be precise about what we mean by \distinguish". We want to

be able to run the grammar on G or H and then apply some test to determine if the

system has learned how it was initialized. The test must be local, otherwise we could

supply the empty grammar and specify that the test is simply graph equality. Thus

we will include two distinguished vertex types, Was-G and Was-H, in our grammar,

and specify that if a vertex of type Was-G ever appears in the graph, then it will be

understood that the grammar has decided that the initial graph was G, and similarly

Was-H will signal that the grammar has decided that the initial graph was H.

Now consider the case where there is an epimorphism :G ! H. Suppose that

given some grammar we have H)
�

H

0 and that H 0 contains a vertex of type

Was-H, then by theorem 2 there is a graph G0 where G)
�

G

0 and an epimorphism

0:G0

! H

0. Since 0 is an epimorphism,G0 must also contain a vertex of type Was-H.

The grammar is thus capable of deciding that the initial graph was H, even though

it was applied to G. The grammar will therefore be in error. Thus no grammar can

ever correctly decide that it was initially applied to H (although it is possible that it

might learn that it was applied to G).

Putting this observation in somewhat more computational terms: If, in the course

of some computation, a system �nds itself in con�guration H, and there is an epi-

morphism :G! H, then from that point onward there is nothing that the system

can do that will allow it to discover that it had in fact been in con�guration H and

not in con�guration G. It might discover that it had been in con�guration G, and

from this it could conclude that it had not been in con�guration H, but it can never

discover that it had been in con�guration H. Everything that can happen to H is

locally indistinguishable from something that can also happen to G.

Looking at this fact from yet another angle: If a system is halted in con�gura-

tion H, and recon�gured to be in con�guration G, where there is an epimorphism

 :G ! H, the system can perhaps \malfunction" by arriving at a con�guration G0

(i.e. G)
�

G

0) where there are no con�gurations G00 and H

00 such that G0

)
�

G

00,

H)
�

H

00 and G00

� H

00.

There are two conditions under which such malfunctions are impossible:

� If the grammar is preclusive, then since G � H theorem 6 guarantees us that if

G)
�

G

0 we can �nd the requisite G00 and H 00.

� If H contains no cycles, then any epimorphism :G! H must be an isomor-

phism, so we can let G00 = H

00 = G

0.

134 CHAPTER 6. STATE

Thus, replacing H with the locally indistinguishable G can cause a malfunction only

if H contains cycles and the grammar is not preclusive. Surprisingly, these are al-

most exactly the two symptoms we previously identi�ed as always being present in

systems that exhibit state-like behavior. (I say \almost exactly" because I never pre-

cisely de�ned what was meant by \nondeterminism" in section 6.2.1. The content

of theorem 4 was that preclusive grammars behave deterministically, but there are

non-preclusive grammars that also behave deterministically, so the two concepts do

not align exactly.)

We have now arrived at the crucial intersection of our intuitive observations about

state-like behavior (section 6.2) with our theorems about locality (section 6.3). We

have discovered that the two features that always accompany state like behavior are

just the features necessary to make the system dependent on its nonlocal structure.

This leads me to propose that systems that exhibit state-like behavior are, in fact,

precisely those systems which depend on their nonlocal structure in order to function

correctly.

Accepting this proposed de�nition of what it means for a system to experience

state, leaves us with the following picture of the world: Stateless systems have the

property that they are insensitive to their nonlocal structure|they behave the same

way in all locally indistinguishable con�gurations. State is experienced by the com-

ponents in a system when some locally indistinguishable con�gurations of the system

may evolve in additional unintended ways. Importantly, no test the system can per-

form internally can determine that it is properly con�gured.

This says a great deal about why programming in the presence of state is di�cult.

Programming with state means that there are conditions which the system depends

upon, that it cannot check for itself. The system must trust that it is con�gured

as it expects. It must trust that it evolved from known initial conditions through

the application of known methods, rather than being created spontaneously in some

locally indistinguishable con�guration that could never have been reached naturally.

6.4.1 The parable of the robot

To make this more concrete, recall the robot from section 6.1 who was interacting with

his computer via a keyboard and display. Remember that this was a system in which

all components perceived state even though they could all be expressed in functional

terms. Suppose we halt this system and replace it with a locally indistinguishable

con�guration. Speci�cally, replace it with two robots and two computers, where the

�rst robot types on one computer's keyboard, but watches the display of the other

computer, while the second robot types on the other keyboard and watches the �rst

display.

In order to remain locally indistinguishable from the original con�guration, each

robot and each computer must be placed in the same internal con�guration as it was

when the system was still singular. Each robot \believes" that he is alone, and that

6.5. THE OBJECT METAPHOR 135

he is interacting with a single computer. Initially both robots continue typing away

secure in this belief. They are unable to detect that they now operate in a doubled

system because they both type exactly the same thing at the same time, and the

computers respond identically with the appropriate output.

Suddenly a
y lands on one of the displays. The robot watching that display

pauses brie
y to shoo it away. The other robot then notices that his display doesn't

re
ect his last few keystrokes, while the �rst robot notices that his display re
ects

keystrokes that he was only planning on making right before the
y disturbed his

concentration. Upon further experimentation the robots eventually discover their

true situation.

The original singular robot had no way of testing that he was part of the singular

system, nevertheless he depended on this fact in order to act sensibly. He trusted

that there really was a single computer that was responding to his keystrokes, and

that what he saw on the display represented its reactions. He trusted that the �le he

typed in today, really would reappear when he called it up on the display tomorrow.

If you asked him to explain just how the rest of the system was able to behave in

that way, he would explain that \the computer has state". That is his explanation of

how the situation appears to him as an embedded observer, but it isn't a very good

explanation from our point of view. It even has built into it the presupposition that

there is only a single computer.

We can see that the property of the system that really matters, the property that

the robot accepts and depends on to function in the system without error, is the

untestable assertion that the system's nonlocal structure is what the robot believes

it to be, and not some locally indistinguishable equivalent.

6.5 The object metaphor

We have concluded that systems in which state appears are systems whose nonlocal

topological structure is important to their correct functioning. In order to write

correct programs that describe such systems, programmers must understand, and

reason about, nonlocal properties. Unfortunately programming languages do not

give programmers very much help in this job.

Most programming languages support only the metaphor of objects for using

state. The simplest languages give the programmer state variables, simple objects

that can be read and written. More advanced languages provide abstraction mech-

anisms that support the construction of abstract objects [GR83, LAB+81, Moo86,

Agh86] which support more complex operations.

The object metaphor is that objects serve as containers for state. Each container

divides the system into two parts, consisting of the users of the container, and the

keepers of the container. If the container is a state variable, the keepers will consist

of memory hardware. If the container is some more complex object, the keepers will

136 CHAPTER 6. STATE

be implemented in software just like the users.

The users communicate with the keepers by passing notes through the bottle-

neck that is the object itself. The keepers are charged with maintaining the object

metaphor. It is the keepers, for example, who must worry about making operations

appear to happen atomically, should that be required. The keepers are slaves to

the requirements of the users. They labor to maintain the illusion that the state is

actually contained in the object.

The object metaphor works acceptably in many simple situations. It captures a

commonly occurring pattern in which a component of a system serves as a clearing-

house of some kind. In order for such a clearinghouse to function, all of its users must

know that they are using the same clearinghouse. This is an example of the kind

of nonlocal structure discussed in the previous section. No experiment performed by

those embedded in the system can determine that the system is con�gured correctly,

but careful application of the protocols of the object metaphor con�ne the system to

the correct nonlocal structure.

In more complex situations the object metaphor is less useful. If, for example, the

keepers of object Amust operate on object B in order to perform some operation, and

the keepers of B then try to use A, incorrect behavior, such as a deadlock, can arise.

The kinds of nonlocal properties that are needed to rule out such incorrect behavior

are not captured well using the object metaphor alone. Additional reasoning (usually

very special case reasoning) is required.

When we started our investigation of state we adopted the view that programming

languages are designed for instructing the entities that inhabit the computational

universes we create. These embedded observers are the ones that perceive state in

the other components of the universe that surrounds them.

Given our identi�cation of state-like behavior as dependence on the nonlocal struc-

ture of the system as a whole, there is no apparent reason to suppose that the object

metaphor is the only way to describe state-like behavior to those embedded observers.

The word \object" does not appear anywhere in section 6.4, so perhaps we can dis-

cover new metaphors that capture the way state \feels" to an embedded observer,

without reference to the notion of object.

If our programming languages supported these new metaphors, we could use them

when appropriate, rather than being forced to phrase everything in terms of objects.

Given a programming language that is su�ciently expressive about nonlocal proper-

ties, we would no longer need fear programming with state.

6.6 Summary

In this chapter the notion of linearity and the tool of linear graph reduction was

used to examine the phenomenon of state. We concluded that state occurs when

some locally indistinguishable con�gurations of the system may evolve in unintended

6.6. SUMMARY 137

ways, and furthermore no test the system can perform internally can determine that

it is properly con�gured. This explains why programming in the presence of state

is di�cult|such systems must trust in untestable properties. My hope is that this

insight will someday lead to an improvement in the terminology used to describe state

in our programming languages.

As mentioned in the introduction, I also hope that someday this insight can be

pro�tably combined with the more practical application of linear graph reduction to

distributed computing.

Finally, let me remark once again on the striking contrast between the two ap-

plications of linearity presented herein. This chapter used linear graph reduction to

achieve a deep theoretical insight, while the previous three chapters used the very

same tool to address some highly practical problems. Linearity is a very
exible tool.

138 CHAPTER 6. STATE

Chapter 7

Conclusion

This chapter puts linear graph reduction in context by (1) comparing it to related

and similar work on naming, programming languages, distributed computing, graph

reduction and state, and (2) describing some of the future research areas that can

build on what I have done.

7.1 Relation to other work

The importance of linearity in naming has never been explicitly highlighted as I have

done here, but the phenomenon has always existed. Once sensitized to the issue of

linearity, you can �nd instances of it throughout computer science. Some examples

are described below.

Variants on linear graph reduction itself have also appeared. Given the simplicity

of the basic model, this isn't surprising. I like to imagine that linear graph reduction

occupies a point of minimum complexity in some space of computational models|

anyone searching for a simple linear computationalmodel is likely to be drawn towards

it once they get close enough.

Distributed and parallel computing are hot topics these days, so it's not surprising

that there are many connections between the system described here and much recent

work in that area. In contrast, my work on state appears to be almost unique.

7.1.1 Linear naming

There are some programming languages that have adopted a linear restriction on the

way that variables can be used. Janus [SKL90] is a concurrent logic programming

language where only two occurrences of any given variable are allowed in any clause.

When one occurrence is used to constrain the value of the variable, the other occur-

rence can be used to read that value. This is the logic programming equivalent of

the notion of a linear name. The authors adopt this restriction because it simpli�es

the semantics of their language so that they can regard variables as point-to-point

communication channels. They sometimes call this property being \broadcast-free",

a phrase that clearly points to the linear origins of the restriction.

139

140 CHAPTER 7. CONCLUSION

In [Laf90] Lafont presents a notation for his Interaction Nets in which names can

only be used linearly. It is unclear to what extent this notation can be thought of as a

programming language rather than as a direct notation for reduction rules similar to

the graph expressions I have used above. (I will have more to say about Interaction

Nets in the section on other graph reduction systems that follows.)

In [Baw84], I proposed a programming language with only linear names. At the

time I was still reluctant to introduce nondeterminism into the formalism, and so

each vertex was restricted to have only one active terminal which trivially renders

all grammars preclusive. This ruled out the kind of Copy vertices I have used here

to support nonlinear names. Lacking any other way to support nonlinear names, I

declared them illegal. Since I'm now reconciled with nondeterminism, I no longer

advocate this approach to programming languages.

Backus, in his famous paper [Bac78], identi�es names as one of the problematic

features of current programming languages. Interestingly, he doesn't make any di-

rect connection between names and the now-famous von Neumann bottleneck|he is

interested in a di�erent problem caused by the presence of names: the consequent

need for an abstraction mechanism and the di�culties that abstraction would cause

his proposed algebra of programs. The language he advocates, while perfectly free

of names, still allows references to be duplicated through the use of data structure

selectors. The resulting programs are still as full of nonlinearities as those written in

any other language. I would argue that names are actually much more central to the

problem he is trying to address, for it is through nonlinear naming that bottlenecks

are formed.

Back in section 1.1.3 I pointed out that the standard techniques for stack allo-

cating continuations work precisely because references to continuations are treated

linearly in any programming language that does not allow continuations to be named.

This may well be the oldest unconscious application of the notion of linearity in com-

puter science. With the advent of compilers that translate programs into a contin-

uation-passing style intermediate code [Ste78, KKR+86], compiler writers are forced

to become more aware of the fact that there is something lost in that translation.

Of course, they have not yet recognized that the missing information is in fact an

instance of a much more general class of information, namely linearity.

Linearity pops up all over the place once you start looking for it. For example, in

[HW91] the authors advocate a \swapping style" of programming that treats values

in a linear fashion. They argue that the usual \copying style" causes software engi-

neering problems. Even if you don't agree with their argument,1 they have put their

�nger on nonlinearity as something worth thinking about.

Another example: In [Wat89] Waters develops a theory of \optimizable series

expressions" that are written as if they manipulate arrays, but that can be compiled

into e�cient loops. Not surprisingly, it is the occurrences of nonlinear names that

cause all the trouble. Expressions free of nonlinear names are trivially optimizable,

1
I don't entirely.

7.1. RELATION TO OTHER WORK 141

while other expressions require more work to determine whether or not they are

optimizable.

These last two examples are not unusual|they are representative of many other

similar examples where nonlinearity has been making itself felt for years.

7.1.2 Graph reduction

There is not a strong connection between linear graph reduction and most other

graph reduction systems, because the key notion of linearity is generally missing from

more traditional systems [Tur79, Pey87]. In traditional graph reduction systems all

vertices represent either values or expressions that will soon normalize into values.

When linear graph reduction is used to model a real system, such as the Scheme

system constructed above, vertices are used for a wide variety of purposes beyond

just representing values. (consider Copy and Return 1 vertices, or the vertices that

represent continuations.) The only real commonality is that in all kinds of graph

reduction there is an emphasis on having a simple execution model.

There are some other graph reduction systems that are linear. Both Janus and

Interaction Nets are explicitly based on such systems. Lafont's illustrations even

resemble the pictures I drew in chapter 2.2 Both systems have an explicit direction-

ality associated with the links in their graphs, and Interaction Nets imposes a type

discipline on terminals. I have never felt a need for these additional constraints in

my applications of linear graph reduction, although it is true that usually there is

a directionality (and even a type discipline) implicit in the conventions adopted for

building graph structure.

Interaction Nets arose out of attempts to bring functional and logic programming

together with Linear Logic. (It is from this source that I originally borrowed the

word \linear".) In Interaction Nets there is an interesting invariant (called semi-

simplicity) on the form of the working graph, and all reduction rules must preserve

it. This invariant serves to prevent deadlock in the unfolding computation. Semi-

simplicity is a very interesting notion to explore because it succeeds in achieving a

global goal (lack of deadlock) through purely local means (maintaining an invariant in

each method). Given my characterization of state as a global property of the working

graph, perhaps there is some variant of semi-simplicity that will prove relevant to the

phenomenon of state.

Another graph reduction system with linear rules appears in Lamping's algo-

rithm for optimal �-calculus reduction [Lam90]. In this case a speci�c grammar is

presented|that is, the set of methods is �xed and the program is encoded in the ini-

tial graph, just as it would be for a simple SK-combinator implementation. Optimal

�-calculus reduction is an interesting problem because nonlinear names cause expres-

2
The authors of Janus are particularly interested the graphical presentation of their graphs, and

especially in animating them. They have also worked on animating both Lafont's Interaction Nets

and my linear graph reduction system.

142 CHAPTER 7. CONCLUSION

sions to be duplicated when �-reduction is applied. To avoid this duplication, and

instead to share the graph structure representing the substituted expression, Lamping

uses \fan nodes" in very much the same way as I have used Copy vertices. Lamp-

ing has resorted to linear graph reduction for precisely the reason I have advocated

it here: in order to study a system with nonlinear naming (�-calculus) he needs to

expose the nonlinearities by using a linear model.

7.1.3 Distributed computing

In the area of distributed computing there is much work that bears some relation to

mine. These systems can be roughly grouped according to how they name objects

and locations in their distributed environments.

7.1.3.1 Explicit locations

One group of systems share with basic remote procedure call (RPC) [BN84] the fact

that the programmer must explicitly name the network locations of remote objects

and services. Some examples of such systems are NCL [FE85], REV [Sta86], NeFS

[Sun90] and Late-Binding RPC [Par92]. These systems generalize RPC by allowing

the programmer to specify an expression to be executed and the location to execute

it. Typically a new keyword such as AT is added to the language and the programmer

writes something like:

(at location expression)

The Mercury system [LBG+88, LS88] is not as general as these others, but it is

targeted at the same performance problems with RPC. Mercury's call-streams support

a form of remote execution where the control structure continues to execute locally,

generating a stream of instructions, which are sent to the remote site, which executes

them and returns a stream of results.

All these systems address the performance problems of pure RPC (including the

\streaming problem" I mentioned in chapter 1) by allowing a process to move to

a more appropriate location for the duration of some chore, potentially reducing

multiple network round trip delays to a single round trip delay. I have addressed

the same problems using demand migration, which avoids burdening the programmer

with keeping track of explicit locations. (Of course, demand migration relies on

heuristics, so it may sometimes perform worse than a well tuned system in which the

programmer explicitly speci�ed the optimal locations.)

In [Par92], Partridge presents a process migration scheme that he proves will

always perform optimally in terms of network delay. Unfortunately, his proof only

applies when there is a single task|his observation is of no help in deciding how to

migrate data that may be shared by multiple tasks. My demand migration heuristics

are designed to deal with precisely this problem.

7.1. RELATION TO OTHER WORK 143

None of these systems deals with tail-recursive calls properly (the \continuation

problem" from chapter 1), although Partridge is aware of the de�ciency in his system.

My system has no problems with tail-recursive calls.

7.1.3.2 Location independent object names

Many distributed operating systems support a location independent naming mecha-

nism for network objects. Examples are ports in Mach [YTR+87], UIDs in Chronus

[STB86], and links in DEMOS/MP [PM83]. These systems all support an object

oriented interface to the network objects referenced by such names, where the pro-

grammer manipulates objects by sending them messages. Messages are automatically

routed to wherever the object is actually resident. Messages can include the names

of other network objects, and such names will be usable by the recipient.

None of these systems explicitly address the performance problems of RPC, as the

previous group did, but the use of location independent names does permit them to

migrate tasks around to equalize processor load or to bring tasks closer to the objects

they manipulate. In principle these systems could migrate a task whenever it was

about to send a message to a remote network object|moving the task to the object

so that the actual message send was always local. This would minimize the number

of network trips. However, the tasks themselves are too unwieldy for implementors to

take this option seriously. Instead, task migration is viewed as more of an occasional

or periodic resource management problem.

The mechanisms necessary to make such location independent nonlinear naming

work in these systems carry more overhead than light-weight links I used to support

linear naming.

7.1.3.3 Uni�ed naming

All the systems in the previous group use a di�erent mechanism for naming remote

objects than they do for local objects. A reference to a local object is typically

a simple program variable, while a reference to a remote object is some distinctly

di�erent device that must be manipulated using some special facilities. In order to

unify local and remote naming completely, remote naming must be accomplished from

within the programming language.3

The Actor languages [Agh86], applied to distributed computing, are intended to

be languages with such a uni�ed naming system. A distributed Actor engine would

look very much like my system. I could have chosen an Actor language instead of

Scheme as my source language, but there would have been no real advantage in this,

given that naming in an Actor language is no more or less linear than it is in Scheme.

3
It would also be possible to to accomplish the same goal at the low level by building hardware

that treated local memory addresses and remote references on an equal footing.

144 CHAPTER 7. CONCLUSION

Janus [SKL90] is also intended as a language for distributed computing with the

requisite uni�ed naming system. Furthermore its authors are aware of the bene�ts of

linearity, and so Janus only supports linear naming. Janus is also a good candidate

as a source language in place of Scheme|but I wanted to show what it was like

to expose nonlinearities in a programming language by translating it into the linear

graph reduction model, and that wouldn't have been possible using a language that

had no nonlinearities!

I hope that the implementors of Janus or any of the Actor languages will derive

some bene�t from my experience applying linearity to the problem of building a

similar system.

7.1.4 Programming language semantics

The programming language used in this dissertation is almost ordinary Scheme. The

only exception was the addition of the FUTURE construct in order to introduce con-

currency. The proper semantics for FUTURE is currently a subject of debate within

the Scheme community. The issues revolve around futures and continuations created

by expressions such as

(future

(call-with-current-continuation

(lambda (cont)

: : :)))

If such a continuation is invoked in an unexpected way|more than once, or from

within some foreign process|what should happen to the corresponding future? I

have adopted the semantics found in MultiLisp [Hal84], where the �rst invocation

of the continuation always determines the value of the corresponding future and

additional values are simply discarded.

Another possibility is described in [KW90], where additional values are returned

from the original FUTURE form. This alternate behavior would be easy to accomplish

within my existing system.

Not so easily accommodated is the behavior of futures in MultiScheme [Mil87].

MultiScheme supports explicit \tasks", which are used to control resource allocation.

Tasks are intimately related to futures because the MultiScheme garbage collector

uses tasks to determine what processor resources can be reclaimed in the event a

future becomes garbage. When a continuation such as the one created by the ex-

pression above is invoked, the value is returned to the future associated with the

current task, even if that future is not the future that was created to correspond to

the continuation. This simpli�es a resource management problem but in return it

horribly complicates the semantics of futures. The linear graph reduction approach

of garbage collecting disconnected components addresses the same problems without

the troublesome explicit tasks.

7.1. RELATION TO OTHER WORK 145

7.1.5 The target/tail protocol

The following method originally appeared in section 2.4 to demonstrate how a tree-

climbing Set Car message allows a Cons to be mutated:4

(graph (0 1 2 3 4)

(<Set Car> target:5 tail:2 cont:3 new:4)

(<Cons> 5 car:0 cdr:1))

(graph (0 1 2 0 4)

(<Cons> 2 car:4 cdr:1))

In e�ect two continuations, carried by the cont and tail terminals, are delivered to

the site of the computation. The cont continuation is to receive the result of the call,

and the tail continuation is to receive the next version of the mutable object.

The same protocol for achieving mutability is employed in Actor systems [Agh86].

The language used to specify actor behaviors typically has two commands, reply

and become, which correspond to the actions of returning values to cont and tail

respectively. This protocol also appears in [Her90] as part of a larger program to con-

struct concurrent data structures from sequential speci�cations. It is also essentially

the same technique used in [Hen80] to construct state-like behavior from within a

functional programming language. This protocol is the natural outcome of the most

obvious approach to state in a functional framework: view each new con�guration

and output as a function of the previous con�guration and inputs.

In the linear graph reduction Scheme system described in this dissertation, the

fact that objects are implemented using this protocol is not in any way exposed to

the user, as it is the the other systems just mentioned. However, this would not be a

di�cult feature to support. All that is needed is a new special form, similar to LAMBDA,

that puts the the act of reconstructing the object after a call under the control of

the user (instead of having the compiler supply the reconstruction automatically, as

it does for the procedures created by LAMBDA).

7.1.6 Thinking about state

Dixon [Dix91] approaches the phenomenon of state in a manner that is similar in

spirit to mine. Dixon is interested in improved programming language support for

\embedded" programs|programs that are part of, and must interact with, a larger

computational environment. He develops an alternative approach to programming

language semantics that focuses on the way the rest of the system is perceived by an

embedded program, rather than attempting to describe the system as a whole. This

is the essence of the approach to state I adopted in chapter 6.

4
This method uses the alternate, simpler, continuation protocol where a value is returned to a

continuation by direct attachment.

146 CHAPTER 7. CONCLUSION

It may be that his language Amala would be a good place to begin the search for

better metaphors for state that I advocated at the end of chapter 6. Amala has a

distinctly imperative
avor that I �nd hard to reconcile with the kind of �ne control

I imagine would be required of a language with a true understanding of state. Still,

it might prove enlightening to work on translating Amala programs into linear graph

grammars to see what might be revealed.

7.2 Future research

This section contains a sampling of research directions that build on the work de-

scribed here.

7.2.1 Linearity

It is not hard to �nd new places where the notion I have called \linearity" appears.

Once you get the knack of thinking about whether a name is being used linearly or

not, it becomes the natural approach to any problem in which there is a bottleneck to

some resource, a di�culty with state, a question of garbage collection, or any situation

where multiple references to an entity may be involved. Since naming systems appear

in almost every corner of computer science, and since such systems rarely restrict the

names so as to keep them linear, there is a lot of territory that needs to be revisited

with linearity in mind. I hope that after reading this dissertation the reader is inspired

to watch out for this ubiquitous phenomenon in his own area of interest.

7.2.2 Linear graph reduction

In this dissertation we have seen linear graph reduction used as

� a compiler's intermediate representation for a program,

� a virtual machine (for distributed computing), and

� a mathematical tool for modeling real systems.

Each of these uses can be further explored on its own.

In the area of compilers, a lot of interesting work on static analysis and optimiza-

tion of linear graph grammars is possible. The simulation technique I employed in

chapter 3 is only the �rst step in this direction. An example of another technique is

the formation of what might be called macro-vertices. A macro-vertex is a single

vertex which can be used in place of a complex subgraph that the compiler guesses

will occur frequently at run-time. This technique could be used, for example, to elim-

inate the cycles that are commonly introduced by the translation of Scheme's LETREC

construct.

7.2. FUTURE RESEARCH 147

A related technique is to compute the set of pairs of terminal labels that can

possibly be found on opposite ends of a connection at run-time. This can be done

using a straightforward transitive closure algorithm over the set of known methods.

This information could be used to select likely candidate subgraphs for macro-vertices,

or to design special case run-time representations for certain connections.

The linear graph reduction virtual machine has the advantage of being extremely

simple. This makes it easy to build reduction engines for it, but more work can be

done to make such engines e�cient. For example, the existing compiler compiles every

method into code that operates at the level of rearranging vertices and connections,

but it should be possible for the compiler to detect many situations in which the

next reduction will invoke an arithmetic primitive, and so the compiler can instead

directly output native code for performing arithmetic. Similarly, it should be possible

to generate native control structures (dispatches and conditionals) instead of always

relying on the general method lookup.

As a mathematical tool I'm sure linear graph reduction has more surprises still in

store. The results presented in chapter 6 were discovered after only a fairly shallow

examination of the category theory of linear graphs.5 Since linear graph reduction

is intended to �ll the role of �-calculus when linearity is important, any place that

�-calculus is used is a candidate for reinterpretation using linear graph reduction.

For example, it would be interesting to construct the equivalent of denotational se-

mantics in the linear graph reduction world. I don't know what this would look like,

but perhaps it would reveal a deeper connection to the familiar algebraic notion of

linearity.

7.2.3 Programming languages

Naming issues are central in programming language design, but existing languages

have not been designed with linearity in mind. Programming languages constructs can

be designed which promote linearity. For example, consider the Scheme procedure:

(define (append x y)

(if (null? x)

y

(cons (car x) (append (cdr x) y))))

The variable X is not linear since in the case where it's value is not the empty list

it will be used three times. We can add a DISPATCH special form to Scheme that

combines type dispatch with appropriate destructuring:

(define (append x y)

(dispatch x

('() y)

((cons a d) (cons a (append d y)))))

5
You should be glad I stripped out the category theoretic overhead before presenting it!

148 CHAPTER 7. CONCLUSION

(DISPATCH looks a lot like the kind of pattern directed invocation one �nds in ML or

Prolog.) Now there are four variables (X, Y, A, and D) which are all linear. This in not

just hiding the nonlinearity inside the implementation of DISPATCH, for DISPATCH can

be translated directly into the method dispatch inherent in linear graph reduction.

There are also alternate strategies to be explored for translating programming

languages into linear graph reduction. The compiler described in chapter 3 was

designed to be faithful to the well-known, essentially sequential, semantics of Scheme.

Alternate languages are possible that have a more parallel semantics|languages in

which all the expressions in a procedure application are evaluated in parallel. I

described such a language in [Baw86]. The chief di�erence between the two languages

turns out to be the protocol used for continuations: the language in [Baw86] lacks

Return 1 vertices, instead continuations are simply attached directly to the returned

value.6

Finally, do not overlook the possibility of using linear graph reduction for pedagog-

ical purposes. When explained in linear graph reduction terms the FUTURE construct is

particularly clean, and the mechanics of a call to CALL-WITH-CURRENT-CONTINUATION

are easy to see. Pictures of linear graph structure can capture more than the tra-

ditional \box-and-pointer" diagrams, because linear graph structure also represents

the executing processes (e.g. using Call vertices and continuation vertices).

7.2.4 Garbage collection

Reclamation of the resources devoted to linear graph structure has many di�erent

aspects, only some of which have been explored in the system I built. The existing

system uses Drop and Copy vertices to achieve the same e�ect as a reference count

garbage collector. This works at both compile-time and run-time. The existing

system also collects unobservable disconnected components at compile-time during

simulation, but at run-time such structure is not detected|storage and processor

resources can be wasted. Detecting unobservable disconnected components in the

distributed environment is an interesting variant on the distributed garbage collection

problem.

A related resource issue is the detection of stymied subgraphs. A stymied sub-

graph is a subgraph bounded by inactive terminals that contains no redexes. The

simplest example is a pair of monoactive vertices connected by their active termi-

nals, to which no method applies. Such subgraphs are connected to the rest of the

working graph, but are incapable of interacting with it. It is unclear exactly what to

do about stymied subgraphs, but one possibility is to reclaim the storage devoted to

them. (Another possibility is to treat the appearance of a stymied subgraph as an er-

ror.) Detecting stymied subgraphs, even in the non-distributed case, is an interesting

algorithmic challenge.

6
Two methods that use this simple protocol were shown on page 34.

7.2. FUTURE RESEARCH 149

There might be further generalizations of the notion of stymied subgraph that rely

on an analysis of the universe of methods that is deeper than the simple classi�cation

of terminals into active and inactive.

7.2.5 Distributed computing

At the end of chapter 5 I listed a number of things that could be done to make the

existing graph reduction engine more practical. Many of those tasks are suitable

directions for future research.

The most important and di�cult item on that list is probably fault tolerance. A

brute force approach to fault tolerance is to equip every agent with its own stable

storage to store a recent checkpoint of the local part of the working graph and a log

of activity since then. Careful attention to the order of events such as stable storage

writes, message transmissions, and message acknowledgments, can probably make

such a scheme workable. However, it is certainly unnecessary for every agent to have

stable storage|there is interesting ground to be explored here.

I imagine that there might be people who are somewhat skeptical that the local

graph reduction part of the existing system can ever be made as e�cient as the output

of the best C compilers. Such people may be tempted to reject this entire exercise on

those grounds. I invite those people to consider the possibility that the linear graph

reduction view of the world could be used as just a network protocol. Inner loops

could still be coded up in C or assembler, but when it came time to interact with

the network, everything (pointers, stack frames, record structures, etc.) would be

converted into linear graph structure. Linear graph structure would be the network

lingua franca. Such a system would still bene�t from linearity in the two ways that

the current system does (i.e. cheap links and workable demand migration).

7.2.6 State

This is an area where I expect linear graph reduction to produce more surprises. The

perspective on state presented in chapter 6 is radically di�erent from the way state

is normally viewed, and perhaps a little di�cult to get used to, but its embedded

observer approach to the phenomenon is really the only approach that can get a

�rm grip on what state really is. It is possible that the results of chapter 6 can be

phrased in terms of some other nonlinear model of computation, but I suspect that

the di�culties in dealing with nonlinear references would overwhelm the rest of the

argument and obscure the fundamental insight.

In the area of state the research direction most likely to bear fruit is probably

the search for better programming language metaphors and constructs discussed at

the end of chapter 6. Possibly this can be approached by designing a programming

language from the ground up based on linear graph reduction. If this approach

proved successful, the next step would be to consider adding the new ideas to existing

150 CHAPTER 7. CONCLUSION

languages.

Perhaps related to such programming language research is the search for better

ways of managing state in a distributed environment. (This area is one of the points

of contact between the two applications of linear graph reduction described in this

thesis.) Better programming language metaphors could also be useful metaphors for

thinking about distributed state. Or perhaps the characterization of state will help

in the development of a fault tolerant linear graph reduction engine.

Many compiler-oriented applications for the new characterization of state suggest

themselves. For example, imagine a compiler that notices which methods have right

hand sides that introduce cycles into the working graph, and which methods have left

hand sides that make the grammar non-preclusive. Such a compiler may be able to

use this knowledge to recognize when the apparent use of a side e�ect is not visible

outside of some block, or is in some other way not an \essential" side e�ect. Perhaps

such non-essential side e�ects can then be optimized out of the program. Such an

analysis might be useful for even a FORTRAN compiler to perform, if it can learn

something useful about the program.

Finally, the characterization of state needs to be pushed further. The insight that

systems in which state occurs are systems which depend on (untestable) global prop-

erties of the system as a whole, doesn't yet feel complete to me. More investigation is

needed into the nature of those global properties. One possible approach is to think

about the Interaction Net notion of semi-simplicity, which is a di�erent kind of global

property. Perhaps it would be fruitful to investigate methods that fail to to maintain

semi-simplicity as an invariant, or the interaction of semi-simplicity with linear graph

homomorphisms.

7.3 Contributions

Finally, a review of the contributions made by this work:

Linearity. This notion was key to everything that followed. Linear names can only

be used once, and thus cannot be used to create more than one outstanding reference

to an entity. Thus, linear naming is cheaper to support than fully general naming,

and it is also easier to reason about.

The linear graph reduction model. A simple computational model in which

all references are linear. Translating a program onto a linear graph grammar can

expose nonlinearities, just as translating it into continuation-passing style �-calculus

can expose unnamed quantities.

Translating Scheme into a linear graph grammar. Scheme is representative

of a typical sequential programming language. I demonstrated how arbitrary Scheme

7.3. CONTRIBUTIONS 151

programs, including those that use side e�ects, can be compiled into a linear graph

grammar. I also demonstrated how to support the FUTURE construct.

To demonstrate the power of linear graph reduction I presented two applications

that both build on this translation: a distributed programming environment, and a

new theoretical characterization of state.

Linear graph structure as a universal distributed representation. For the

distributed programming environment, all run-time structures (continuations, record

structures, procedures, etc.) are represented explicitly using linear graph structure.

This ensures the proper treatment of continuations in tail-recursive procedure calls.

Linear network references: links. By taking advantage of the properties of linear

naming I was able to build a distributed programming environment in which cross-

network references are cheap. Cheap cross-network references permit data structures

to be highly portable.

Demand migration heuristics. Linear naming also facilitates the construction of

heuristics that migrate tasks without requiring explicit guidance from the program-

mer. This works in a way that is analogous to demand paging.

An embedded approach to state. In order to properly approach the phenomenon

of state it is important to think about how state is perceived by observers embedded

in the system itself.

A characterization of state. State occurs when some locally indistinguishable

con�gurations of a system may evolve in unintended ways. Furthermore, no test the

system can perform internally can determine that it is properly con�gured. This

explains why programming in the presence of state is di�cult.

The
awed object metaphor. Since state is not a phenomenon that can neces-

sarily be localized, the usual object metaphor for state may be fatally
awed.

152 CHAPTER 7. CONCLUSION

Bibliography

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed

Systems. MIT Press, 1986.

[AS85] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of

Computer Programs. MIT Press, 1985.

[Bac78] J. Backus. Can programming be liberated from the von Neumann style?

a functional style and its algebra of programs. Communications of the

ACM, 21(8):613{641, August 1978.

[Baw84] Alan Bawden. A programming language for massively parallel computers.

Master's thesis, MIT, September 1984. Dept. of Electrical Engineering

and Computer Science.

[Baw86] Alan Bawden. Connection graphs. In Proc. Symposium on Lisp and

Functional Programming, pages 258{265. ACM, August 1986.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.

ACM Transactions on Computer Systems, 2(1):39{59, February 1984.

[DG73] B. DeWitt and N. Graham, editors. The Many-Worlds Interpretation of

Quantum Mechanics. Princeton University Press, 1973.

[Dix91] Michael Dixon. Embedded Computation and the Semantics of Programs.

PhD thesis, Stanford University, September 1991.

[FE85] Joseph R. Falcone and Joel S. Emer. A programmable interface language

for heterogeneous distributed systems. TR 371, Digital Equipment Corp.

Eastern Research Lab, December 1985.

[GL86] David K. Gi�ord and John M. Lucassen. Integrating functional and im-

perative programming. In Proc. Symposium on Lisp and Functional Pro-

gramming, pages 28{38. ACM, August 1986.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its

Implementation. Addison-Wesley, 1983.

[Hal84] Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a multipro-

cessor. In Proc. Symposium on Lisp and Functional Programming, pages

9{17. ACM, August 1984.

153

154 BIBLIOGRAPHY

[Hen80] Peter Henderson. Is it reasonable to implement a complete programming

system in a purely functional style? Technical report, The University of

Newcastle upon Tyne Computing Laboratory, December 1980.

[Her90] Maurice Herlihy. A methodology for implementing highly concurrent data

structures. In Proc. Symposium on Principles and Practice of Parallel

Programming, pages 197{206. ACM, July 1990.

[HW91] Douglas E. Harms and Bruce W. Weide. Copying and swapping: In
u-

ences on the design of reusable software components. IEEE Transactions

on Software Engineering, 17(5):424{435, May 1991.

[KKR+86] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin,

and Norman Adams. ORBIT: An optimizing compiler for Scheme. In

Proc. of the SIGPLAN '86 Symposium on Compiler Construction, pages

219{233. ACM, June 1986.

[Kni86] Tom Knight. An architecture for mostly functional languages. In Proc.

Symposium on Lisp and Functional Programming, pages 105{112. ACM,

August 1986.

[KW90] Morry Katz and Daniel Weise. Continuing into the future: On the in-

teraction of futures and �rst-class continuations. In Proc. Symposium on

Lisp and Functional Programming, pages 176{184. ACM, July 1990.

[LAB+81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig

Scha�ert, Robert Schei
er, and Alan Snyder. CLU Reference Manual.

Springer-Verlag, 1981.

[Laf90] Yves Lafont. Interaction nets. In Proc. Symposium on Principles of Pro-

gramming Languages, pages 95{108. ACM, January 1990.

[Lam90] John Lamping. An algorithm for optimal lambda calculus reduction. In

Proc. Symposium on Principles of Programming Languages, pages 16{30.

ACM, January 1990.

[LBG+88] Barbara Liskov, Toby Bloom, David Gi�ord, Robert Schei
er, and

William Weihl. Communication in the Mercury system. In Proc. Hawaii

Conference on System Sciences, pages 178{187. IEEE, January 1988.

[Lie81] Henry Lieberman. Thinking about lots of things at once without getting

confused: Parallellism in Act 1. Memo 626, MIT AI Lab, May 1981.

[LS88] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for ef-

�cient asynchronous procedure calls in distributed systems. In Proc.

Conference on Programming Language Design and Implementation, pages

260{267. ACM, July 1988.

BIBLIOGRAPHY 155

[Mil87] James Miller. MultiScheme: A parallel processing system based on MIT

Scheme. TR 402, MIT LCS, September 1987.

[Moo86] David A. Moon. Object-oriented programmingwith Flavors. In Proc. First

Annual Conference on Object-Oriented Programming Systems, Languages,

and Applications. ACM, 1986.

[Par92] Craig Partridge. Late Binding RPC. PhD thesis, Harvard University,

January 1992.

[Pey87] Simon L. Peyton Jones. The Implementation of Functional Program-

ming Languages. Prentice-Hall International Series in Computer Science.

Prentice-Hall, 1987.

[PM83] Michael L. Powell and Barton P. Miller. Process migration in DE-

MOS/MP. In Proc. Ninth Symposium on Operating System Principles,

pages 110{119. ACM, October 1983.

[Pos80] J. B. Postel. User datagram protocol. Request for Comments (RFC) 768,

USC/Information Sciences Institute, August 1980. Available from the

ARPANET Network Information Center.

[Pos81] J. B. Postel. Transmission control protocol. Request for Comments (RFC)

793, USC/Information Sciences Institute, September 1981. Available from

the ARPANET Network Information Center.

[RC92] Jonathan Rees and William Clinger. Revised4 report on the algorithmic

language Scheme. Memo 848b, MIT AI Lab, March 1992.

[SKL90] Vijay A. Saraswat, Ken Kahn, and Jacob Levy. Janus: A step towards

distributed constraint programming. In Proc. North American Logic Pro-

gramming Conference, pages 431{446. MIT Press, October 1990.

[SRI91] Vipin Swarup, Uday S. Reddy, and Evan Ireland. Assignments for ap-

plicative languages. In Proc. Conference on Functional Programming Lan-

guages and Computer Architecture, pages 192{214. ACM, August 1991.

[SS78] Gerald Jay Sussman and Guy L. Steele Jr. The art of the interpreter or,

the modularity complex. Memo 453, MIT AI Lab, May 1978.

[Sta86] James W. Stamos. Remote evaluation. TR 354, MIT LCS, January 1986.

[STB86] Richard E. Schantz, Robert H. Thomas, and Girome Bono. The architec-

ture of the Chronus distributed operating system. In Sixth International

Conference on Distributed Computing Systems, pages 250{259. IEEE, May

1986.

156 BIBLIOGRAPHY

[Ste76] Guy L. Steele Jr. LAMBDA: The ultimate declarative. Memo 379, MIT

AI Lab, November 1976.

[Ste78] Guy L. Steele Jr. RABBIT: A compiler for SCHEME (a study in compiler

optimization). TR 474, MIT AI Lab, May 1978.

[Ste90] Guy L. Steele Jr. Common LISP: The Language. Digital Press, second

edition, 1990.

[Sun90] Sun Microsystems, Inc. Network extensible �le system protocol speci�ca-

tion, February 1990. Contact nfs3@sun.com.

[Tur79] D. A. Turner. A new implementation technique for applicative languages.

Software|Practice and Experience, 9(1):31{49, January 1979.

[Wat89] Richard C. Waters. Optimization of series expressions: Part II: Overview

of the theory and implementation. Memo 1083, MIT AI Lab, December

1989.

[YTR+87] Michael Young, Avadis Tevanian, Richard Rashid, David Golub, Je�rey

Eppinger, Jonathan Chew, William Bolosky, David Black, and Robert

Baron. The duality of memory and communication in the implementation

of a multiprocessor operating system. In Proc. Eleventh Symposium on

Operating System Principles, pages 63{76. ACM, November 1987.

