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Abstract

This thesis describes development of a new actuator technology for integrated machines

of the future: piezoelectric ultrasonic micromotors. Ultrasonic motors o�er the advantages

of low speed, high torque operation without the need for gears. They can be made compact

and lightweight and provide a holding torque in the absence of applied power due to the

traveling wave frictional coupling mechanism between the rotor and the stator.

Whereas ultrasonic motors would typically be made from a bulk ferroelectric ceramic

such as lead zirconate titanate, or PZT, this thesis describes the implementation of a new

idea { that of using PZT in a sol-gel form deposited directly onto silicon to create high-torque

motors compatible with silicon integration technologies. Due to large dielectric constants

and increased breakdown strengths of thin-�lm PZT, ultrasonic micromotors o�er a factor

of 1000 improvement in energy density over electrostatic micromotors. In a joint project

with the Penn State Materials Research Laboratory and MIT Lincoln Laboratory, 2 mm and

5 mm diameter stator structures were fabricated on 1�m thick silicon nitride membranes.

Small glass lenses placed down on top spun at 100-300rpm with 4V excitation at 90 kHz.

While generation of appropriate traveling bending waves in the stator is fairly well

understood, less is known about how the frictional coupling and surface properties at the

rotor-stator interface a�ect mechanical power output performance. This thesis proposes

models for production of torque in rotary ultrasonic motors. Models of line contact, Hertzian

contact and linear spring contact for Coulomb and viscous friction have been derived and

simulations are presented which predict speed-torque curves, e�ciencies and overall output

power for various conditions of operating voltage and normal force.

To validate these models, a set of 8 mm diameter � 3mm tall motors, in a designed

experiment, has been fabricated. These devices have demonstrated maximum stall torques

of 10�3Nm, maximum no-load speeds of 1710 rpm and peak power outputs of 27mW. The

resulting peak power density is 108 W
kg
, more than double that of human muscle.

This thesis further describes a laser-etching process which has been developed to fab-

ricate more practical piezoelectric ultrasonic micromotors. This laser-based process pro-

duces thin-�lm PZT-on-silicon stators without the need for mask alignment, wet-etching

or fragile membranes. The large power densities and stall torques of these piezoelectric

ultrasonic motors o�er tremendous promise for integrated machines: complete intelligent,

electro-mechanical autonomous systems mass-produced in a single fabrication process.
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Chapter 1

Introduction

Ferroelectric thin �lms incorporated into new ultrasonic micromotors can create actuators

with orders of magnitude more energy density than electrostatic micromotors. Because the

coupling of vibrational energy from the stator into rotational motion of the rotor involves

frictional contact however, these motors are not as well understood as conventional elec-

tromagnetic or electrostatic motors. The aim of the research described herein has been

two-fold: to develop a new high-torque, low-speed actuator technology useful in micro-

robotic applications and to increase our understanding of the frictional coupling mechanism

at the rotor-stator interface of an ultrasonic motor.

The research e�ort undertaken ranges from theoretical modeling of torque production

in ultrasonic motors to development of a completely new type of microactuator using sol-

gel lead zirconate titanate, PZT. These devices were fabricated in a joint project between

the MIT Mobile Robot Group at the Arti�cial Intelligence Laboratory (the author's home

laboratory), the Pennsylvania State University's Material Research Laboratory and MIT

Lincoln Laboratory's Solid State Division.

The ultimate goal has been to integrate all the subsystems of a mobile robot, the intelli-

gence system, the sensors, the actuators and the power supply, onto a single silicon substrate

and mass-produce robots much the way we mass-produce integrated circuits. This idea of

such a gnat robot was conceived after initial proposals were made for fabricating electrostatic

micromotors on silicon. However, the low-torque, high-speed nature of variable-capacitance

electrostatic micromotors made them ill-suited for robot propulsion, hence the search for a

better motor.
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While ultrasonic motors inherently deliver high torque at low-speed, piezoelectric ultra-

sonic motors were typically built by bonding a bulk ceramic ferroelectric material with very

large piezoelectric coe�cients, such as PZT, onto a non-piezoelectric material to create a

ring-shaped bimorph structure capable of sustaining traveling 
exure waves. Due to the

bulk ceramic formulation of the PZT material, ultrasonic motors were not amenable to

fabrication in a silicon process. Our idea was to create a sol-gel formulation of PZT, spin it

onto a silicon wafer in much the same manner as photoresist and use silicon micromachining

techniques to etch motor structures. This report details our initial fabrication attempts and

relates subsequent e�orts aimed at modeling and improving the devices, in both thin-�lm

and bulk ceramic form, for increased output performance.

Speci�cally, the contributions of this dissertation include:

� Fabrication of the world's �rst ferroelectric thin-�lm motor

� Analysis of models of interface contact mechanics

� Characterization of 8 mm bulk motors based on design-of-experiments techniques

� Development of a laser-machining process for fabricating new thin-�lm stators which

requires no masks and no wet-etching

Subsequent to a brief overview of ultrasonic motors later in this chapter, Chapter 2

details the development of microfabricated ultrasonic motors. Much of this work was origi-

nally published in [Flynn et al. 92]. After initial experiments were performed with thin-�lm

PZT ultrasonic micromotors to determine feasibility, the project was split in order to sep-

arate further development of the new thin-�lm PZT materials from development of new

devices. Research was undertaken at the Penn State Materials Research Laboratory to

fabricate thicker �lms with larger-area electrode coverage, while a parallel e�ort was be-

gun at the MIT Arti�cial Intelligence Laboratory to model, fabricate and test bulk-ceramic

8mm piezoelectric ultrasonic motors to enhance our understanding of the frictional coupling

mechanism.

Chapters 3 through 6 describe these models of ultrasonic motors, from stator vibration

analysis through contact mechanics. Models of line contact, Hertzian contact and linear

spring contact for Coulomb and viscous friction have been derived and simulations are pre-

sented which predict speed-torque curves, e�ciencies and overall output power for various
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Figure 1-1: There are two levels of energy conversion in a piezoelectric ultrasonic motor. Electrical

energy is �rst converted to strain energy through piezoelectric elements, where time changing elec-

trical �elds induce vibratory motion. The high-frequency, small-amplitude vibration is then recti�ed

to lower-frequency unidirectional movement through vibro-impact frictional coupling.

conditions of operating voltage and normal force. Chapter 7 discusses fabrication and test-

ing of the prototype 8mm diameter bulk motors. It was found that these devices could

produce maximum stall torques of 10�3Nm (10gf-cm), maximum no-load speeds of 1710

rpm and peak power outputs of 28mW. The resulting peak power density is 108 W
kg
, for

these motors weighing on the order of one third of a gram. Chapter 8 discusses a new

process developed for creating thin-�lm PZT-on-silicon motors on the same scale as the

8mm bulk motors, but free from the wafer and from other constraints of a typical silicon

microfabrication process. Chapter 9 gives a summary and conclusions and Appendices A

and B relate additional background on mechanics and materials parameters.

1.1 Overview of Ultrasonic Motors

While most electric machines convert electrical energy to mechanical energy through the

interaction of currents and magnetic �elds, a new class of actuators has arisen which uti-

lizes the e�ect of electrically induced vibratory motion converted to unidirectional motion

through frictional coupling. These actuators, or vibration converters, come in a variety of

physical embodiments and can be realized via di�erent modes of vibration. They can be

excited through piezoelectric, electrostrictive or magnetostrictive transduction mechanisms,

but typically, the exciting transducers are piezoelectric elements and driving frequencies are

in the range of 20 kHz to 150kHz. This subset of vibromotors, piezoelectric ultrasonic mo-

tors, was �rst invented by the Soviets [Vishnevsky et al. 77], [Ragulskis et al. 88], �rst
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Figure 1-2: Traveling waves can be induced in a waveguide structure such as the annular disk

shown here. Points on the surface of the ring move in retrograde elliptical motions. A rotor pressed

against the stator is propelled along in the reverse direction from the propagating wave. Figure from

[Inaba et al. 87].

commercialized by the Japanese [Inaba et al. 87], [Sashida 82], [Sashida 85], [Shinsei 89],

[Okumura and Mukohjima 87], [Hosoe 89], [Kasuga et al. 92], [Sashida and Kenjo 93],

[Tomikawa and Ueha 93] and �rst microfabricated by the Americans [Moroney et al. 89],

[Flynn et al. 92].

As shown in Figure 1-1, piezoelectric ultrasonic motors have a two-stage energy con-

version process. In the �rst stage, piezoelectric elements convert electrical energy into

oscillatory bending motion. Depending on the geometry of the device and the form of

the excitation, longitudinal, torsional or 
exural modes of bending can be induced in the

structure to produce either standing or traveling waves of deformation. A traveling wave

ring-type ultrasonic motor is depicted in Figure 1-2.

Whatever the cause of the motion, all ultrasonic motors have a common form of second-

stage energy conversion, wherein high frequency oscillatory vibration of a stator is recti�ed

into macroscopic, unidirectional rotary or linear motion of a rotor or carriage. The mech-

anism for energy conversion is a frictional impact between the rotor and stator surfaces.

While free vibration of the stator in the �rst stage of energy conversion is a linear phe-

nomenon and the equations of motion can be formulated as an eigenvalue problem, the

second-stage conversion of stator to rotor motion is a vibro-impact system and inherently

displays non-linear dynamics because vibration cycles of the stator surface cease to be

symmetric due to impact with the rotor.
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This thesis work concentrates on the second-stage energy conversion process, the fric-

tional interaction between rotor and stator. Speci�cally, we focus on traveling wave motors

which have time-continuous forms of contact between stator and rotor.

We are interested in studying piezoelectric traveling wave ultrasonic motors for a number

of reasons. One is that they have been shown to exhibit high-torque, low-speed character-

istics without the requirements for gears. The other is that, because the stator structures

are planar, ultrasonic motor technology is symbiotic with microfabrication techniques, and

early results [Udayakumar et al. 91] have shown that new thin-�lm forms of piezoceramics

can yield energy densities three orders of magnitude larger than energy densities in mi-

crofabricated electrostatic motors. High energy densities and high torques are important

in robotics applications, especially for autonomous machines which must carry their own

power supplies.

While small piezoelectric motors appear promising, there are many phenomena which

are not well understood. The form of the friction law describing rotor-stator interaction,

impact processes, e�ects of surface roughness, material hardness, wear, normal pressure,

boundary layer regimes and bearings and mounts need to be studied in order to optimize

and design e�cient, compact ultrasonic motors.
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Chapter 2

Ultrasonic Micromotors for

Microrobots

Today's robots are large, expensive and not too clever. Robots of the future may be small

and cheap (and perhaps still not too clever). But if we could achieve even insect level

intelligence while scaling down sizes and costs, there may be tremendous opportunities for

creating useful robots. From autonomous sensors to robots cheap enough to throw away

when they have completed their task { microrobots provide a new way of thinking about

robotics.

Our goal of building gnat-sized robots has been driven by recent successes in developing

intelligence architectures for mobile robots which can be compiled e�ciently into parallel

networks on silicon. Brooks' subsumption-style architectures [Brooks 86] provide a way

of combining distributed real time control with sensor-triggered behaviors to produce a

variety of robots exhibiting \insect level" intelligence [Brooks 89], [Angle 89], [Connell 90],

[Mataric 90], [Flynn, Brooks, Wells and Barrett 89], [Maes and Brooks 90]. This assemblage

of arti�cial creatures includes soda can collecting robots, sonar-guided explorers, six-legged

arthropods that learn to walk, and a \bug" that hides in the dark and moves towards noises.

One of the most interesting aspects of the subsumption architecture has to do with

the way it handles sensor fusion, the issue of combining information from various, possibly

con
icting, sensors. Typically, sensor data is fused into a global data structure and robot

actions are planned accordingly. A subsumption architecture however, instead of making

explicit judgments about sensor validity, encapsulates a strategy that might be termed
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sensor �ssion, whereby sensors are only dealt with implicitly in that they activate behaviors.

Behaviors are just layers of control systems that all run in parallel whenever appropriate

sensors �re. The problem of con
icting sensor data then is handed o� to the problem

of con
icting behaviors. \Fusion" consequently is performed at the output of behaviors

(behavior fusion) rather than the output of sensors. A prioritized arbitration scheme then

selects the dominant behavior for a given scenario.

The rami�cation of this distributed approach to handling vast quantities of sensor data

is that it takes far less computational hardware. Since there is no need to handle the

complexities of maintaining and updating a map of the environment, the resulting control

system becomes very lean and elegant.

The original idea for gnat robots [Flynn 87] came about when this realization that sub-

sumption architectures could compile straightforwardly to gates coincided with a proposal

[Bart et al. 88] to fabricate an electrostatic motor on a chip (approximately 100�m in di-

ameter). Early calculations for this silicon micromotor forecast small but useful amounts of

power. Already, many types of sensors (i.e. imaging sensors, infrared sensors, force sensors)

microfabricated on silicon are commercially available. If a suitable power supply could be

obtained (solar cells are silicon and thin �lm batteries are beginning to appear in research

laboratories), the pieces might begin to �t.

The driving vision is to develop a technology where complete machines can be fabricated

in a single process, alleviating the need for connectors and wiring harnesses and the necessity

for acquiring components from a variety of vendors as would be found in a traditional large-

scale robot. The microrobots would be designed in software through a \robot compiler"

and a foundry would convert the �les to masks and then print the robots en masse. One

critical technology presently missing is a batch-fabricatable micromotor which can couple

useful power out to a load.

Various types of intriguing microactuators have recently appeared. One example is the

variable capacitance silicon electrostatic motor (which is based on the force created due to

charge attraction as two plates move past each other) [Tai, Fan and Muller 89], [Fujita,

Omodaka, Sakata and Hatazawa 89], [Mehregany, Bart, Tavrow, Lang and Senturia 90].

Figure 2-1 illustrates one such electrostatic micromotor. Another type of micromotor is

a \wobble" motor, where one cylinder precesses inside another, again due to electrostatic

forces [Jacobsen et al. 89], [Trimmer and Jebens 89]. Figure 2-2 illustrates a wobble motor.
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Figure 2-1: A variable capacitance motor has a 100�m diameter rotor which revolves around a

bearing as oppositely placed stators are sequentially stepped with the applied drive voltages. Figure

from [Tavrow 91].

In general, electrostatic motors are preferred over magnetostatic motors in the microworld

because electrostatic forces scale favorably as dimensions shrink and because dielectric ma-

terials are more easily patterned and processed than magnetic materials, especially in the

realm of silicon processing. The three-dimensional windings required for magnetostatic

motors would be very hard to fabricate in silicon, but the small gap sizes that allow electro-

static motors to take advantage of the ability to withstand increased electric �elds before

breakdown are easily fabricated using photolithographic techniques. Electrostatic micro-

motors have demonstrated successes but also uncovered limitations. Problems with these

types of motors arise in the areas of friction, fabrication aspect ratio constraints, and low

torque-to-speed characteristics.

[Flynn, Brooks and Tavrow 89] provides a detailed summary of these problems and

proposes a piezoelectric ultrasonic micromotor as an alternative approach. This structure,

fabricated from thin-�lm lead zirconate titanate, PZT, circumvents many of the drawbacks

of electrostatic micromotors.

Our idea is based on the underlying principles of commercially available ultrasonic mo-

tors presently popular in Japan [Inaba et al. 87], [Akiyama 87], [Shinsei 89], [Kumada

90], [Sashida and Kenjo 93] and [Ueha and Tomikawa 93], which essentially convert elec-

trical power to mechanical power through a piezoelectric interaction. Mechanical power is

then coupled to a load through a frictional phenomenon induced by a traveling wave de-
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Figure 2-2: The wobble motor contains a rotor which is attracted to active electrodes as the drive

voltages are sequenced around the perimeter, similar to a variable capacitance motor. Since the

rotor is the bearing, it tends to \wobble". Figure from [Jacobsen et al. 89].

formation of the material. Piezoelectric motors display distinct advantages over traditional

electromagnetic motors such as small size, low noise, and high torque-to-speed ratios. These

commercially available motors however, use PZT in its bulk ceramic form, which must be

cut and milled.

Our contribution has been to realize that if PZT can be deposited in a thin-�lm form

compatible with silicon processing, then motors can be manufactured in a batch printing

process instead of being individually machined.

Additionally, these motors should show signi�cant improvements in performance over

bulk PZT motors. That is, because the �lms are very thin, it is possible to apply much

higher electric �elds than in thicker bulk devices. This leads to higher energy densities.

2.1 Advantages of Piezoelectric Motors

Energy Density { The argument for pursuing piezoelectric ultrasonic micromotors is

based on energy density considerations. The maximum energy density storeable in the air

gap of an electrostatic micromotor is

1
2
�airE

2
bd

where Ebd is the maximum electric �eld before breakdown (approximately 108 V
m

for 1�m

gaps) and where �air is the permittivity of air (equal to that of free space).

For a piezoelectric motor made from a ferroelectric material such as PZT, the energy
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density becomes

1
2
�pztE

2
bd

Thin �lm PZT can similarly withstand high electric �elds (Ebd
�= 108 V

m
), but the dielectric

constant is three orders of magnitude larger (�pzt �= 1300�0) than air. Other types of thin

�lm piezoelectric (but not ferroelectric) ultrasonic actuators have been produced [Moroney

et al. 89] from zinc oxide, but the dielectric constant is only one order of magnitude larger

(�zo �= 10�0) than air. The greater the energy density stored in the gap, the greater the

potential for converting to larger torques, or useful work out.

Low Voltages { Piezoelectric motors are not required to support an air gap. Mechani-

cal forces instead, are generated by applying a voltage directly across the piezoelectric �lm.

Because these ferroelectric �lms are very thin (ours are typically 0.3�m), intense electric

�elds can be established with fairly low voltages. Consequently, we drive our thin �lm PZT

motors with two to three volts as opposed to the hundred or so volts needed in air-gap

electrostatic actuators.

Geardown { Energy density comparisons may be the primary motivators in pursuing

PZT micromotors, but there are other advantages as well. Because this strong dielectric

material also bends with applied voltage, mechanical power can be coupled out in unique

ways. Figure 1-2 illustrated an ultrasonic traveling wave motor marketed by Matsushita

(Panasonic). Two bulk ceramic layers of PZT are placed atop one another. Each layer

is segmented such that neighboring segments are alternately poled. That is, for a given

polarity of applied voltage, one segment contracts while its neighbor expands. These two

layers are placed atop one another but o�set so that they are spatially out of phase. When

also driven temporally out of phase, the two piezoelectric layers induce a traveling wave

of bending in the elastic body. Any point on the surface of the stator then moves in an

ellipse and by contacting a rotor onto the stator, the rotor is pulled along through frictional

coupling. Fast vibratory vertical motions are transformed into a slower macroscopic motion

tangential to the surface where peak performance is attained at resonance. This geardown

means that we can fabricate motors without the need for gearboxes. This is especially

important when we compare to electrostatic variable capacitance micromotors which spin

at tens of thousands of revolutions per minute [Bart, Mehregany, Tavrow, Lang and Senturia

90]. Gearing down to a useful speed for a robot from such a motor would require a gear
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several feet in diameter. While electrostatic wobble micromotors are also able to produce an

inherent gear reduction, they do not incorporate the advantage of high dielectric materials

which the piezoelectric motors possess.

No Levitation { Friction is another major player in problems besetting micromotors.

In a variable capacitance electrostatic micromotor, frictionless bearings are something to

strive for, as the rotor needs to slide around the bearing. Piezoelectric traveling wave motors

on the other hand, are based on friction { it is sliding that we need to prevent. Consequently,

there is no need to levitate the rotor, a fact which makes a piezoelectric motor much more

amenable to designs for transmitting power to a load. Furthermore because the rotor in an

electrostatic variable capacitance micromotor 
ies above the stator, it needs to be very 
at.

Electrostatic micromotors are small, on the order of 100�m in diameter, because of the

di�culties in fabricating large rotors without warpage. In a piezoelectric ultrasonic motor,

the rotor is in physical contact with the stator, so the actuator can scale to much larger

sizes for resulting higher torques.

Axial Coupling { The consequences of the e�ects of friction and stability in various

types of micromotors force speci�c geometries on these actuators. Variable capacitance

motors require a radial gap design due to stability considerations. That is, the capacitor

plates sliding past each other are radially distributed about the bearing. Since silicon pro-

cessing techniques cannot create large structures in the vertical dimension, that leaves very

little area for energy transduction. Similarly, the physics of wobble motors constrains them

to have cylindrical coaxial geometries. Ultrasonic motors however, due to this frictional

coupling, can be formed into either linear or rotary motors and in addition, have the advan-

tage that the rotor can sit atop the stator, creating more area over which to couple power

out. The large planar area of ultrasonic motors is also symbiotic with planar lithographic

techniques.

Rotor Material { Friction coupling (as opposed to charge attraction) leads to another

trait characteristic of piezoelectric ultrasonic motors - the rotor can be any material. That

is, the rotor need not be a good conductor as in variable capacitance or wobble motors.

Rotor conductivity is unimportant, in contrast to an electrostatic induction micromotor.

Most importantly, a piezoelectric ultrasonic motor could actuate a pump, and the 
uid can

then be any solution, without regard to conductivity.

Holding Torque { Finally, in terms of complete systems such as autonomous robots
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or battery-operated machines, total energy consumption over the lifespan of the system

is of critical concern. Piezoelectric ultrasonic motors, again due to friction coupling, can

maintain holding torque even in the absence of applied power. This is a unique trait for an

actuator that does not contain a gearbox, much less a transmission system or a brake.

2.2 From Materials to Devices

Bulk ceramic PZT has been widely used for decades but thin �lm ferroelectrics are new ar-

rivals, having only recently been developed for non-volatile memory applications [Ramtron

88], [Udayakumar, Chen, Krupanidhi and Cross 90]. One problem with these new ferro-

electric memories is fatigue, as the chips actually 
ex when memory cells switch. But that

is exactly the e�ect we seek to exploit!

We would like �lms that maximize the piezoelectric e�ect in order to design useful

high torque, low speed micromotors but the leap from materials to devices is a large one.

Standing on the shoulders of previous technology is, in general, a good idea (and one which

has been the approach in electrostatic micromotor research to this point { some even going

so far as to label them \IC-processed micromotors" [Tai, Fan and Muller 89]). Stepping

away from known silicon processing techniques and incorporating a new material can be a

large undertaking, especially when the aim is to develop a new device. Consequently, the

design for the device has to be as simple as possible in terms of materials processing to

ensure a reasonable chance of success.1

2.2.1 Keeping Things Simple

Figure 2-3 and Figure 2-4 illustrate our initial designs for the stators of linear and rotary

motors (carriages and rotors have not been microfabricated { at the moment we simply

place small glass lenses or other materials down on the stators). A silicon-rich nitride layer

is deposited on a silicon wafer and is then patterned on the backside to create a membrane.

120 stator structures are patterned per two-inch wafer. After the membranes are etched,

piezoelectric capacitor structures are built. These structures consist �rst, of a bottom

electrode formed from titanium and platinum. The PZT dielectric is then added and �nally

1Experienced designers usually note however, that the �rst way you design something is always the most

complex way [Angle 90].
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Figure 2-3: Linear motors utilizing thin-�lm PZT are illustrated here. By etching a membrane

into a silicon wafer and patterning the stator on the membrane, the stator will be able to de
ect

more than if it were trying to bend the entire thickness of the wafer. Silicon-rich nitride is used for

the membrane. The stator consists of a bottom electrode of titanium and platinum (ground), the

PZT �lm and the patterned gold top electrodes. A carriage would have to be placed down by hand.

Figure 2-4: A rotary motor is made in the same way except that the top electrodes are patterned

in a circle. We typically place down a small glass lens for a rotor.

the patterned gold top electrodes are deposited. The bottom electrode and thin �lm PZT

are laid uniformly over the entire wafer, while gold top electrodes are positioned only above

membranes.

A close-up of the membrane cross section is shown in Figure 2-5. Note that the silicon

wafer and the silicon nitride membrane provide only structural support for the stator. No

electrical properties or charge attraction e�ects of silicon are presently used in this motor.

Future iterations might �nd other manufacturing technologies more attractive, but for the

present we use silicon for its accompanying tools and lithographic techniques.

These stators were designed in this fashion because the materials requirements here

are much simpler than in, for instance, a Matsushita motor (Figure 1-2), which would

require two layers of ceramics with alternately poled segments throughout each piece. Our
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Figure 2-5: This scanning electron micrograph shows a cross section of the nitride membrane

structure with PZT and the gold top electrode. The titanium-platinum bottom electrode is too thin

to see here.

microfabricated stators require only one layer of PZT and that layer is poled uniformly

everywhere. The tradeo� is that our motors now require a four-phase drive to induce a

traveling wave, whereas the Matsushita motor requires only two phases. Patterning and

wiring is straightforward with photolithography. However, while multilayer materials with

various geometries of poling are easily realized in macro-scale assembled motors, these steps

would be cumbersome from a microfabrication point of view.

A more recent design is even simpler. We start with thinned wafers which are 75�m

thick (as opposed to the usual 250�m) and omit membranes entirely. Since stress-free

nitride is no longer required as an etch stop to create the membranes, the entire layer

sequence simply becomes silicon, oxide, Ti-Pt, PZT and then gold (titanium is required for

adhesion reasons and oxide is necessary to separate silicon from reacting with the PZT).

2.2.2 Stators and Rotors

In either case, whether utilizing membraned wafers or thinned wafers, there are a variety of

possible geometries for patterning the top electrodes for inducing traveling waves. Figure 2-

6 shows the simplest layout for a rotary motor. Eight electrodes are patterned radially
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Figure 2-6: This 8-pole stator has an inner diameter of 1.2mm and an outer diameter of 2mm

placed over a 2.2mm by 2.2mm square membrane. The eight pads are driven in a four phase

sequence (sin, cos, -sin and -cos), repeated twice. The extra four pads at the north, east, south and

west positions are undriven pads which can be used as passive piezoelectric sensors. That is, a signal

will be generated as the wave passes through the pad.

around a center point and driven four-phase over two wavelengths. Eight probes would be

needed to drive the motor in this particular example. However, other patterns on our test

wafer use an interconnect scheme between pads to reduce the requirement to four probes.

Note in Figure 2-6 that there are four extra pads. These can be used as sensors, since the

piezoelectric �lm is reciprocal, where a bending moment can induce a voltage.

The simplest way to observe electrical to mechanical energy conversion is to place a

small object down on the stator as portrayed in Figure 2-7. We have found that glass lenses

spin the best, although dust particles dance wildly, signaling the onset of resonance as drive

frequencies are swept from 50kHz through several hundred kilohertz. Typical rotational

velocities of the glass lens are on the order of 100{300rpm. One interesting point to note is

that four phases are not necessary to induce spinning. In fact, the lenses rotate with only

single pad excitation. This is likely due to wave re
ections o� the edges of the membranes

setting up parasitic traveling waves.

In addition to rotary stators, we have fabricated linear stators as shown in Figure 2-8.

These structures can also be used as surface acoustic wave devices for measuring various

properties of the ferroelectric �lm, such as acoustic velocity, etc.
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Figure 2-7: Here a plano-convex 1.5mm diameter glass lens is placed convex surface down upon a

rotary stator which has the same dimensions as Figure 2-6. Although there is no bearing, the lens

spins at 100{300rpm when the stator is driven at 90kHz.

Figure 2-8: Linear stators have also been fabricated. Here, the probe pads to the right are 200�m

square and connect to every fourth electrode for setting up four-phase traveling waves. These

structures are patterned over similarly shaped linear membranes.
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2.2.3 The Process

Nitride membranes are �rst fabricated using standard bulk micromachining techniques into

two-inch silicon <100> wafers. A 1�m thick low-stress chemical vapor deposition silicon-

rich (nonstoichiometric) nitride �lm acts both as the membrane and the mask for the tetra

methyl ammonium hydroxide (TMAH) anisotropic silicon etch. The electroded PZT �lm

(for the stators) is then formed on the membranes. The reduced sti�ness of the membranes

permits larger stator de
ections than would be possible on a full thickness wafer.

Electrode material selection is critical to fully utilize the PZT properties. We have used

a 0.46�m thick platinum layer for our bottom electrode which is deposited on top of a 20nm

titanium adhesion layer. The nitride layer together with the titanium-platinum layers act

as a separation barrier preventing the silicon from reacting with the PZT.

Sol-gel PZT �lm is deposited by a spin-on technique in a series of steps. These �lms have

been characterized as reported in [Udayakumar et al. 91] and show signi�cant improvements

over bulk PZT, including greater breakdown strength and dielectric constant. Although

thin-�lm PZT was �rst developed for memory devices, much of that work has focused on

sputtering and chemical vapor deposition methods, even though it is very di�cult to get

the correct PZT makeup with these techniques. Sputtering from three separate elementary

targets (or even from a single ceramic PZT target) to get lead, zirconium and titanium

atoms all in their proper atomic positions in the crystal lattice is signi�cantly harder than

preparing a solution of the proper composition and spinning it onto a wafer as in a sol-gel

process. These sol-gel fabricated �lms do in fact, exhibit the proper perovskite structure

and show strong ferroelectric characteristics. For memory applications, piezoelectric 
exing

is not of interest, but the conformal coating properties of vapor deposited �lms are. Sol-gel

�lms on the other hand, are planarizing, which can be a problem where uniform thicknesses

even over undulating surfaces are required. One critical requirement for preparing quality

sol-gel �lms is cleanliness, as wet spin-on techniques are more susceptible to the particle

contamination than vacuum-based methods.

The sol mixture is prepared from the lead precursor, lead acetate trihydrate, together

with alkoxides of Ti and Zr in 2-methoxyethanol as the solvent. Films are spun-on in

approximately 50nm layers. The �lm is pyrolyzed under quartz lamps after each step to

remove organics. After 6-8 layers, the �lm is annealed to crystallize into the perovskite

phase, which is the type of crystalline form which brings out the strong ferroelectric and
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piezoelectric traits. Annealing is carried out above 500 oC. These PZT �lms are of the 52-48

mole ratio of zirconium-titanium which places them on the morphotropic phase boundary.

The morphotropic phase boundary composition is that composition for which the crystallites

have the maximum number of possible domain states because the composition lies at the

boundary of the tetragonal phase (6 possible domain states) and the rhombohedral phase

(8 possible domain states). This position among the possible spectrum of compositions in

the lead zirconate - lead titanate solid solution system is the most amenable for attaining

the distinctive ferroelectric properties. One interesting point about these thin �lms of PZT,

in contrast to its bulk form, is that poling, the process of aligning domains in order to

bring out these strong ferroelectric characteristics, need no longer be performed at elevated

temperatures.

Characteristic measurements, described in more detail in [Udayakumar et al. 91] are

summarized in Table I. Similar measurements reported in the literature for bulk PZT [Ja�e,

Cook and Ja�e 71] yield some interesting comparisons. The breakdown �eld strength of

1 MV
cm

is signi�cantly improved over bulk PZT which is often on the order of 40 kV
cm

. Our sol-

gel PZT �lms also exhibit almost twice the relative dielectric constant, 1300, of (similarly

undoped) bulk PZT which is 730.

Table I. Sol-gel PZT Film Characteristics

Ebd 1 MV
cm

Breakdown �eld

�pzt 1300�o Dielectric constant

tan � 0.03 Loss tangent

d33 220 pC
N

Longitudinal piezoelectric coe�cient

d31 �88:7 pC
N

Transverse piezoelectric coe�cient

Pr 36 �C

cm2 Remanent polarization

k33 0:49 Longitudinal coupling factor

k31 0:22 Transverse coupling factor

kp 0:32 Planar coupling factor

Once the PZT �lm has been annealed, 0.5�m thick gold electrodes are deposited and

patterned by lift-o�. A variety of eight- and twelve-pole rotary stators on three sizes of

square membranes (0.8mm, 2.2mm and 5mm per side) and various con�gurations of linear
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stators are patterned.

The structures built on thinned wafers are fabricated in an analogous manner except

that the membrane etch is skipped and 0.5�m oxide is used in place of nitride. The oxide

layer together with the titanium-platinum layer act as a separation barrier preventing the

silicon from reacting with the PZT.

2.3 Results

Initial experiments with these thin �lm PZT actuators have raised some intriguing questions.

On the one hand, we have observed phenomena we expected such as high energy densities,

gear down and low voltage operation. A 4V peak-to-peak drive signal at 90 kHz competently

spins a fairly large rotor, a glass lens 1.5mm in diameter, at 100{300rpm. On the other

hand, the lens spins competently with only one phase excitation, and does not spin any

better with four, something we did not expect! Furthermore, changing directions when

applying four-phase drive does not cause the rotor to reverse, although in one instance, it

did cause the lens to stop. Essentially, we are not inducing traveling waves in the manner

we would like, but evidently there is enough energy density that the lenses spin anyway.

We have observed other indications of high energy density. Not only do dust and par-

ticles vibrate across the stators upon resonance, but in certain instances in which a pad's

impedance is very low, applying a voltage on the order of 10V causes a static de
ection

dependent on voltage that can be seen through the microscope as a darkened area where

the surface is deformed and re
ecting light away from the eyepiece. An example with a

unique stress pattern is shown in Figure 2-9. Note that even at 10V, the electric �elds that

we can apply across our 0.3�m thick �lms contribute to energy densities will beyond those

achievable with bulk ceramic PZT motors.

The single-phase drive is intriguing and brings into question the e�ects of the boundary

conditions on the waves imposed by the edges of the membranes. At high enough frequen-

cies (several hundred kHz) standing waves become visible on both square and rectangular

membranes as shown in Figure 2-10. Rotors continue to spin however, even though the

motors are not working in the manner in which they were designed. The plano-convex glass

lenses seem to spin because the contact is a point. We have observed glass lenses, convex

side down, jiggling across the stator until brushing up against the inner radius of the gold
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Figure 2-9: Static de
ection of this partially shorted stator pad can be seen through the microscope.

The darkened portion is deformed, de
ecting light away from the eyepiece. 10V is applied from the

electrode at the right across the PZT, to the ground plane beneath it.

electrodes which are approximately 0.5�m tall, whereupon they sit and spin. We have

also observed that plano-convex lenses 
at side down do not spin, nor do annularly shaped

objects such as jeweled bearings.

In this �rst fabrication sequence, we made no attempt to microfabricate a bearing or

etch a rotor in place. Consequently, the amount of frictional coupling is only determined

by the weight of the rotor. In fact, it is possible there is no frictional coupling and the

lens is merely sliding on air as the surface vibrates. Nevertheless, a mass is spinning and

it is possible to calculate a torque by measuring the inertia of the lens and its acceleration

when starting. Approximating our lens as a disk 1mm thick and estimating from visual

observation that it reaches a �nal velocity of 3Hz in one quarter of a second, the resulting

torque is 41 pNm. We can compare to variable-capacitance electrostatic micromotors by

normalizing over voltage squared, which gives a �gure of merit over a class of experiments.

This normalized net torque for such electrostatic micromotors (typically run at 100V) is

1.4�10�15 Nm
V 2 . The �gure of merit for our piezoelectric motors then becomes, for 5V

excitation, 1:6 � 10�12 Nm
V 2 , about three orders of magnitude larger. What this number

actually signi�es for a piezoelectric motor with no bearing and no traveling wave drive is

debatable. Mostly, it serves to underscore that the �lms are indeed very active, encapsulate

high energy densities and can move fairly large objects with low voltages.

True motor action will depend on future attempts to fabricate a bearing and to measure
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Figure 2-10: Standing waves on a membrane are visible through an optical microscope when a

single-phase drive is applied.

torques across a spectrum of normal forces. Further experiments are needed to determine

better structures for guiding traveling waves. Instruments need to be developed for visual-

izing the waves throughout a spectrum of frequencies and for ascertaining the amplitudes

of these dynamic de
ections. Determining proper rotor-stator interface coatings for high

friction contact would also be helpful.

Electrostatic motors are essentially the duals of magnetostatic motors which have been

around for years and are well understood. Piezoelectric ultrasonic motors on the other hand

are fairly new and ferroelectric thin �lms are newer still. Many factors conspire to produce

complexities and di�culties in analyzing these structures: non-linear materials, coupled

electrical and mechanical �elds, resonance drives, clamped and unclamped boundary con-

ditions and friction-based interactions between rotors and stators, to name a few.
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Chapter 3

Ultrasonic Motors

Due to the constraints of the silicon micromachining process, our �rst attempts at thin-�lm

PZT microactuators were built on 1�m thick membranes. We chose membranes in order

to achieve a thin substrate against which the thin �lm could bend. Due to constraints in

fabricating sol-gel PZT, the PZT could not be much thicker than 0.3�m or cracking would

occur during pyrolization.

Consequently, because the membranes acted as drumheads rather than mechanical

waveguides, and because the �lms sometimes shorted due to pinholes, it was di�cult to

achieve true traveling wave motion. At this junction, we split the project into two separate

studies: one to develop thicker, pinhole-free �lms at the Penn State Materials Research

Laboratory, and one, at the MIT Arti�cial Intelligence Laboratory to develop models for

predicting performance of traveling wave motors on ring-type waveguides.

Here, we discuss a succession of models and relate early experiments on prototype motors

made at a larger, but still small (and useful for our mini-robot applications) scale, made from

commercially available bulk ceramic PZT. These motors are 8mm in outer diameter with a

5mm inner diameter. Two generations of these motors were actually prototyped during the

course of the project, with signi�cant improvements incorporated into the second batch.

Later, we will describe a new laser-based process for bringing the two projects back

together and achieving thin-�lm PZT-on-silicon micromotors where membranes are circum-

vented and the motors are cut free from the wafer.
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3.1 Bulk 8mm Motors

Traveling wave piezoelectric ultrasonic motors can be made with a very simple structure.

Figure 3-1 illustrates an 8mm ring-type motor. The stator is composed of a steel ring

with piezoelectric elements bonded onto the underside for exciting vibration modes in the

ring. When traveling waves are developed, points on the stator surface move in retrograde

elliptical motions, creating a tangential component of velocity which propels the rotor. The

rotor can be any material, but a normal force must be provided to press the rotor against the

stator in order to frictionally couple the vibratory motion of the stator into the rotational

motion of the rotor.

The most commonly used material for piezoelectric actuators, and that used in this mo-

tor, is lead zirconate titanate, PZT. PZT is a ceramic material that is ferroelectric, meaning

that it displays a hysteretic e�ect between polarization and electric �eld where the polar-

ization direction can be reversed with opposite polarity drive �eld { but it also happens

to have very large piezoelectric coe�cients. Bulk forms of PZT, on the order of several

hundreds of microns in thickness, are commercially available and found in bimorph and

multi-layer stack actuators. Thin-�lm PZT, under one micron in thickness, has recently

been developed for non-volatile memories, taking advantage of the ferroelectric switch-

ing characteristics [Udayakumar 93]. Fundamentals of piezoelectric notation and material

properties can be found in Appendix B. Here we will model ultrasonic motors utilizing the

piezoelectric properties of both bulk and thin-�lm PZT.

3.2 Vibration of Rings

An ultrasonic motor is essentially a vibrating annular ring. Vibration of strings, membranes,

plates and disks was studied by Lord Rayleigh and Kircho� in the nineteenth century

[Rayleigh 1894] and the equation of motion for free transverse vibration of a circular plate

was formulated as:
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for the coordinate system as shown in Figure 3-2.
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Figure 3-1: This 8mmdiameter piezoelectric ultrasonic motor is composed of two pieces, the stator

and the rotor. The stator is shown in the �gure at top and is a steel ring with piezoceramics bonded

onto the bottom side. A brass rotor is shown atop the stator in the bottom photograph.

Here, w is the transverse de
ection of the plate in the z-direction, E is Young's modulus,

h is the half-thickness of the plate, � is Poisson's ratio and � is the mass density of the

material. Vogel and Skinner [1965] give a detailed analysis with numerical evaluation of

various boundary conditions. Solutions to this free vibration problem are of the form:

w (r; �; t) = A (r) cos n�ej!t

where the mode shapes are transcendental functions in the �-direction with scaling factor

A (r). Plugging this solution into the equation of motion leads to Bessel function forms for

A (r):

A (r) = C1Jn (�r) + C2Yn (�r) + C3In (�r) + C4Kn (�r)

where

�
4 =

3�
�
1� �

2
�

Eh2

and Jn and Yn are Bessel functions, and In and Kn are modi�ed Bessel functions.
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Figure 3-2: Finite element simulations of the modes of vibration for an 8 mm outer diameter, 5

mm inner diameter, composite ring of steel on PZT, show the mode shapes and natural frequencies.

The steel layer here is 820�m thick and the PZT layer is 195 �m thick.
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Figure 3-2 shows �nite element simulations (ANSYS �nite element package, [Ostergaard

89]) which help to visualize the free vibration of an 8 mm outer diameter, 5 mm inner

diameter composite ring, similar to the stator in Figure 3-1. The boundary conditions for

these structures are free-free along the inner and outer circumferences.

We can see that simulations show that not all modes of vibration are composed of trans-

verse displacements. Such transverse deformations are known as 
exure or bending modes,

and the 2-, 3-, and 4-wavelength 
exure modes can be seen to have natural frequencies

of 12 kHz, 33 kHz, and 63 kHz, respectively. Due to axial symmetry, these modes are

degenerate, having eigenvalues of multiplicity two. By exciting both solutions as standing

waves, but phased 90 degrees apart in time, traveling waves result due to superposition.

For an ultrasonic motor that is top-drive, where the rotor sits atop the stator, we want

to induce traveling waves from these 
exure modes. Other modes, such as the umbrella

mode, will not sustain traveling waves of bending. Note, however, that the 39 kHz radial

mode could be used for an ultrasonic motor if the rotor was placed circumferentially around

the stator. Kumada has used this technique to produce very thin clock motors [Kumada

91]. Here, we will study top-drive 
exural traveling wave motors because we are interested

in investigating piezoelectric thin �lms for excitation, a technology more compatible with

top-driven devices.

Because the stator of our motor has free-free boundary conditions at the inner and outer

diameters, and the radial dimension of contact with the rotor is very short, we can model

the radial variation of vibration amplitude as constant, and unfold the annular ring into a

in�nite Bernoulli-Euler beam capable of sustaining traveling waves. For a Bernoulli-Euler

model and small de
ections, rotary inertia and shear forces are neglected and normal cross-

sections are assumed to remain normal after bending. While a �nite beam can only support

standing waves due to re
ections at each end, we can model one standing wave component

of the traveling wave as a �nite beam of the same length as an open, unfolded ring as shown

in Figure 3-3.

Figure 3-3(a) represents the four-wavelength 
exure mode at which the motors of Fig-

ure 3-1 are designed to run and Figure 3-3(b) illustrates the Bernoulli-Euler beam model

of one of the standing wave components. Using this model and superposition, eigenfre-

quencies, traveling-wave speeds and surface-point trajectories can be determined. To pre-

dict de
ection in the out-of-plane direction, we may take one half-wavelength section of
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Figure 3-3: (a) The fourth 
exure mode vibration pattern of an annular ring. (b) Bernoulli-Euler

beam model of the ring in its fourth 
exure mode.

this standing-wave beam and model it as a simply-supported piezoceramic-metal-composite

beam of length L, where L = �
2
, the supports being located at the nodes of the standing

wave, as illustrated in Figure 3-7 and discussed later.

3.3 Eigenfrequencies and Wavespeeds

With the simple beam model of Figure 3-3(b), we can calculate the natural frequencies of

an ultrasonic motor and the corresponding wavespeeds and rotor speeds.

For a beam of transverse displacement w, mass density per unit length �, Young's

modulus E, cross-sectional moment of inertia I , and cross-sectional area A, the equation of

motion of 
exural free vibration of a beam is:

@
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2
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@t2
= 0

Solutions are of the form:

w (x; t) = W (x) ej!t

with pinned boundary conditions at the nodes of a standing wave where L = �
2
,

W (x = 0) = W (x = L) =
d
2
W

dx2
(x = 0) =

d
2
W

dx2
(x = L) = 0
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yielding mode shapes with a sinusoidal form:

W (x) = C1sinkx

Here k is the wavenumber:

k =
2�

�
=
w

cT

� is the wavelength and cT is the speed of the transverse bending waves. For a pinned-pinned

beam,

k =
n�

L

Plugging this solution back into the equation of motion, we �nd the dispersion relation:

k
4 = !

2 �A
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and the natural frequencies:
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�
n�
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�2s
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We can also note that: s
E

�
= cl

where cl is the longitudinal speed of sound in the material. Furthermore, we can take:

s
I

A
= �

where � is the radius of gyration. This shows that the speed of 
exure waves is dependent

on excitation frequency:

cT =
!

k
=
p
!cl�

3.4 Traveling Waves and Elliptic Motion

The wavespeed we have just described is the phase velocity of traveling 
exure waves along

the neutral axis of a beam. However, for a beam of half-thickness h, the points on the

surface move in elliptical trajectories. Coupling of this motion to the rotor produces a rotor

speed di�erent than the wavespeed.
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Figure 3-4: (a) For a beam in 
exure, a traveling wave is one solution to the beam equation. A

vibration of amplitude wo will cause a point on the surface to displace from P to Po. (b) Traveling

wave excitation causes point P to undergo retrograde elliptical motion. A carriage pressed against

this in�nite beam is propelled along through friction in the direction opposite to the direction of the

traveling wave.
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Figure 3-5: (a) A thin glue layer is used to attach an electroded ferroelectric to the underside of a

steel ring. (b) The segments are then cut and poled alternately. The poling process aligns domains

in the piezoceramic to create a remanent polarization. (c) After poling, two groups of electrodes are

connected as shown at the bottom with silver paint, and wires are soldered in place.

Generation of traveling waves and equations of motion for surface points on beams and

rings have been reported in the literature [Sashida 86], [Inaba et al. 87], [Zemella 90],

[Hagedorn and Wallaschek 92], [Hagedorn et al. 92].

It can be shown (see Appendix A) that for a traveling wave solution of:

w(x; t) = wo cos(kx� !t)

a point, P , on the surface of a beam as shown in Figure 3-4(a), moves with horizontal

displacement, �, and vertical displacement after bending, �, where:

� = wo cos(kx� !t)

� = hkwo sin(kx� !t) =
2�hwo

�
sin(kx� !t)
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The velocity of the horizontal displacement of a point on the surface of a beam is:

�h =
@�

@t
= �2�!hwo

�
cos(kx� !t)

where it reaches its maximum value at the peak of the de
ection contacting the rotor.

Assuming no slip between the stator and the rotor, the rotor is propelled in the opposite

direction of the traveling wave at a speed of:

�h; max = �2�!hwo

�

This maximum horizontal velocity is simply the no-load speed of the motor. Note that

this is very di�erent than the phase velocity, cT , of the traveling wave:

cT =
p
!

4

s
E

�

I

A

Figure 3-4(b) shows the retrograde elliptical motion on the surface of the stator as the

traveling wave moves to the right. The angular velocity of the rotor is

!rotor;max =
vt;max

r

where r is the radius of the rotor at the circumference of contact with the stator. Comparing

this rotor speed to the frequency of vibration, we �nd:

!rotor;max

!
= �2�hwo

�r

3.5 Mechanical Modeling of the Stator

We can model our stator of Figure 3-1 as a composite beam in the manner illustrated in

Figure 3-5(a). Teeth are cut in the steel ring to reduce sti�ness while maintaining maximum

height for mechanical ampli�cation. That is, for calculation of the natural frequencies:

!n =

�
n�

L

�2s
EI

�A

we model the teeth as not entering into the sti�ness term, EI , but as contributing to added
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mass per unit length:

(�A)tot = (�A)beam + (�A)teeth

where n = 1 in our model of each half-wavelength piezo-segment acting as a pinned-pinned

beam inducing a bending moment in the structure.

The beam is considered as the composite structure of PZT and metal, a momomorph,

where the height of the beam is the sum of the PZT thickness and the base portion of the

metal thickness, hp + hb, the pitch of each tooth is pt, the length of the beam is L = �
2
,

and the depth of the beam is b. The cross-sectional moment of inertia, I , is measured with

respect to the neutral axis. The location of the neutral axis is the distance from the bottom

of the piezoceramic layer, g, calculated as a fraction of PZT thickness, and weighted by the

elasticities (sti�nesses) of each material:

g

hp

=
1+ cm

cp

�
hb
hp

�2
+ 2 cm

cp

hb
hp

2
�
1 + cm

cp

hb
hp

�

Here, cm is the elastic modulus of the metal layer and cp is the elastic modulus of the

PZT layer (equal to cE11 in the piezoelectric notation outlined in Appendix B).

The piezoelectric elements are attached to the steel ring in the manner shown in Figure 3-

5(b) and Figure 3-5(c). The piezoceramic is purchased with a thin electrode layer of nickel

coating on each side. After bonding, the bottommost electrode is cut into sectors. Once

the backside electrode is segmented, neighboring segments are poled alternately.

The poling process utilizes a high electric �eld to initialize a polarization direction in

a ferroelectric material to induce its piezoelectric properties. Poling is accomplished by

application of 350 V at room temperature for two to three seconds. The convention for

coordinate systems describing piezoelectric phenomena is to call the axes 1, 2, and 3, where

the poling direction is taken as the 3-direction and the 1 and 2 directions are mutually

orthogonal. After poling, the electrodes are silver-painted together and wires are attached

to top and bottom electrodes.

Later, when a drive voltage is applied, neighboring segments which are poled up and

down, expand and contract respectively in the 1-direction (using d31 motor action), causing

the structure to buckle. Oscillatory drive voltages near the resonant frequency force the

structure to vibrate with maximum amplitude in standing waves.
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Figure 3-6: A four wavelength traveling wave motor is electroded with six half-wavelength

alternately-poled segments and four quarter-wavelength spacer segments.

The piezoelectric elements are designed in a manner so as to induce the fourth 
exure

mode as was shown in Figure 3-3. To create a four-wavelength traveling wave ultrasonic

motor, the electrodes are patterned as illustrated in Figure 3-6. As two neighboring elec-

trodes create one wavelength of bending, eight electrodes are required for a four-wavelength

motor. One pair is left passive and cut in quarter-wavelength and three-quarter-wavelength

segments respectively, in order to space the two electrode groups by ninety degrees. The

two opposing electrode groups are driven out of phase in time, also by ninety degrees, in

order to induce traveling waves.

We can investigate the viability of this model by evaluating our four-wavelength motor of

Figure 3-1, whose dimensions are noted in Figure 3-5(a). For an average radius of r = 3:25

mm, we �nd that � = 5:1 mm and L = �
2
= 2550 �m. The elastic modulus of steel, cm,

is 200 GPa and the elastic modulus of PZT (PTS-1195) is very close to that of aluminum,

cp = 70 GPa [Piezo Systems 85]. The beam is modeled as not including the teeth for

purposes of calculating the sti�ness and location of the neutral axis. The base portion of

the metal layer is then hb = 300 �m, the PZT layer is hp = 188 �m, and the depth of the

beam is b = 3000 �m. This gives a neutral axis location at g = 294 �m from the bottom of

the PZT layer.

The equivalent sti�ness of the composite beam is:

EI = cpIp + cmIb
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EI = cpb

Z
pzt

z
2
dz + cmb

Z
base

z
2
dz

where z here is measured from the neutral axis. The equivalent sti�ness is calculated to be

EI = 3:39� 10�3 Nm2.

The total mass per length, with the mass density of steel taken as �met = 7860 kg

m3 and

the mass density of PZT as �pzt = 7600 kg

m3
is:

(�A)tot = (�A)pzt + �met (Abase +Atooth) = 2:32� 10�2
kg

m

The resonant frequency of the motor vibrating in the fourth 
exure mode is the �rst

natural frequency in our model of this pinned-pinned beam of length L:

!1 =
�
2

L2

s
EI

(�A)tot
= 5:80� 105

rads

sec
= 92:3 kHz

In actuality, the motor runs at several resonant frequencies, one of them being 98.5 kHz.

Interferometric measurements veri�ed that this was indeed the fourth 
exure mode. The

calculated natural frequency then is within:

6:2 kHz

98:5 kHz
= 6%

Our model was based on the assumption of a half-wavelength monomorph acting as a

Bernoulli-Euler beam where the length of the beam is much greater than the height (usually

10 or 100 times larger). For our 8 mm motor:

L

hp + hb

= 5:2

and we �nd that our beam is far from ideal, so 6% error is not unreasonable.

We can also check the wavespeed and the rotor speed. The phase velocity of the traveling

wave along a beam was given as

cT =
p
!1

4

s
EI

(�A)tot
= 471

m

s
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and for our motor of radius r = 3:25 mm,

!wave =
cT

r
= 1:45� 105

rads

sec
= 1:39� 106 rpm

The rotor no-load speed, however is:

!rotor;max = �2�!1hwo

�r

where the minus sign signi�es that the rotor moves in the reverse direction from the traveling

wave.

Interferometric measurements determined that with no rotor, wo was 0.1 �m when

excitation was 10 V peak at 98.5 kHz. With h equal to half the total thickness of the beam,

1
2
(hp + hb), the no-load rotor speed is calculated to be:

!rotor;max = �5:4 rads
sec

= �51 rpm

Experiments with a small glass rotor, similar in dimension to the brass rotor in the lower

photograph of Figure 3-1, resulted in rotational velocities of 36 rpm, which is �tting, as the

rotor has �nite inertia.

It is interesting to compare the �nal rotor rotational speed to the original excitation

frequency:

!rotor

!1

=
5:4 rads

s

5:8� 105 rads
s

� 1

107; 000

or to the speed of the traveling wave around the ring:

!rotor

!wave

=
5:4 rads

s

1:45� 105 rads
s

� 1

26; 900

These large numbers signify the magnitude of the recti�cation of the high-frequency

excitation, enabling resonant vibration and maximum amplitude de
ection of the stator to

be converted into low-speed rotational velocity of the rotor. Because of this property, ultra-

sonic motors can run many applications (depending on the torque requirements) without

the need for gears.

Before we address the issue of torque production and the mechanisms behind the fric-

tional coupling of vibrational energy of the stator into rotational kinetic energy of the rotor,
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Figure 3-7: (a) One half-wavelength section of the stator is modeled as a simply-supported beam.

(b) With polarization and electric �elds both in the 3-direction, the monomorph will bow upwards

as shown.

let us �rst look at the conversion process of electrical energy to strain energy of the 
exing

stator. This will enable us to predict the amount of deformation, wo, for a given drive

voltage.

3.6 De
ection of the Stator

In order to investigate the dynamic de
ection of the beam, we begin with an analysis of the

static de
ection of the stator due to piezoelectric excitation. We examine a half-wavelength

portion of the stator modeled as a simply-supported beam as illustrated in Figure 3-7(a).

For now, we ignore the teeth on the stator and focus on the monomorph which consists of a

bottom layer of piezoceramic of thickness hp, bonded onto the base metal layer of thickness

hb. Because we model the teeth as contributing only added mass to the structure (and

hence mechanical ampli�cation) and not sti�ness, only the piezoceramic and base metal

layers a�ect the �nal bending con�guration.

After determining the static de
ection of the beam, the de
ection magnitude at reso-

nance can be calculated by multiplying the static value by a dynamic ampli�cation factor.

The dynamic ampli�cation factor of the composite monomorph structure is the quality fac-

tor of the piezoceramic material weighted by the strain energies of the two material layers

[Nashif et al. 85] as will be discussed later. First however, we �nd the static de
ection.

For a piezoceramic poled in the positive z-direction and driven with an electric �eld
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also in the z-direction, the piezoceramic will expand in the z-direction and contract in

the x-direction causing the structure to bow upwards as shown in Figure 3-7(b). Since the

common convention de�ning a positive bending moment is for the beam to bow downwards,

the e�ect of this polarity drive is to induce a stress �eld which creates a negative bending

moment throughout the structure.

In static equilibrium, force and moment balance equations lead to determination of the

curvature in terms of stresses and strains, which can then be related to de
ection of a beam,

given appropriate boundary conditions. [Lucas 75] describes curvature and de
ection of a

monomorph cantilever beam and we follow the notation here, but apply our analysis to a

simply-supported beam where we are interested in the magnitude of the de
ection at the

midpoint.

Figure 3-8 illustrates the x-directed stress distribution, T1 (z), acting on the x-faces

of the beam (T1 (z) is the reduced matrix notation for Txx (z)) where the beam has been

subjected to bending with a radius of curvature, ��. Along the unstrained neutral axis of

length ds,

��d� = ds

For small de
ections,

d�

ds
� d�

dx
=

1

�k

=
d
2
w

dx2

Here, dx is the length of the neutral axis in the initial undeformed state and the curva-

ture, 1
��
, is equal to the second derivative of the de
ection pro�le, w (x), of the beam.

A longitudinal di�erential line element at a distance z�g from the neutral axis location,

g, exhibits extensional strain of the form:

S1 (z) =
z � g

��

where S1 (z) is the x-directed strain component acting on the face normal to the x-axis

(S1 (z) = Sxx (z)).

Moment balance requires that the stress distribution, T1 (z), multiplied by the moment

arm and integrated over the cross-sectional area of the beam be zero, as there are no
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Figure 3-8: The radius of curvature, ��, due to bending moments caused by contraction of the

piezoceramic can be determined from the resulting stresses and strains in the composite beam.

externally applied moments or forces acting on this structure:

M = 0 = b

Z
z

(z � g)T1 (z) dz

Next, we use the stress-strain constitutive law to restate this moment balance expression

in terms of the curvature. Stress, strain and applied �eld in the monomorph are related by

the piezoelectric strain relations (described in Appendix B):

S = sET+ dtE

D = dT+ �
TE

where

S = Strain tensor

T = Stress tensor

D = Electric 
ux density vector

E = Electric �eld intensity vector

sE = Elastic compliance tensor at zero E

d = Piezoelectric strain tensor

dt = Piezoelectric strain tensor transposed

�
T = Dielectric permittivity tensor at zero T

Alternatively, the constitutive relationships between stress, strain and applied �eld can

also be expressed in terms of the piezoelectric stress relations:

T = cES� etE

D = eS+ �
SE
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where

cE = Elastic sti�ness tensor at zero E

e = Piezoelectric stress tensor

et = Piezoelectric stress tensor transposed

�
S = Dielectric permittivity tensor at zero S

In the case of the monomorph presented here, the faces normal to the 2- and 3-directions

are stress-free surfaces, and so:

T2 = T3 = 0

The stress distributions on the 1-faces due to an applied electric �eld in the 3-direction are:

T1 (z) = c (z)S1 (z)� e31 (z)E3

The piezoelectric stress tensor, e, is related to the piezoelectric strain tensor and the

sti�ness tensor by:

e = dc

giving:

e31 (z) = d31 (z) c (z)

This results in a stress distribution of the form:

T1 (z) = c (z)S1 (z)� d31 (z) c (z)E3

where c (z) and d31 (z) are step functions at the materials interface:

c (z) =

(
cm hp < z < hp + hb

cp 0 < z < hp

d31 (z) =

(
0 hp < z < hp + hb

d31 0 < z < hp

Substituting the expression for S1 (z) into T1 (z) gives:

T1 (z) = c (z)

�
z � g
��

�
� d31 (z) c (z)E3
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Plugging this stress expression into the moment balance equation yields:

M = 0 = b

Z
z

"
c (z)

(z � g)2
��

� (z � g)d31 (z) c (z)E3

#
dz

Solving for the curvature and noting that the second term in the integral exists only in

the piezoceramic layer, we �nd:

1

��

= d31cpE3

8>>>>><
>>>>>:

hpR
0

(z � g)dz

hpR
0

cp (z � g)2 dz +
hp+hbR
hp

cm (z � g)2 dz

9>>>>>=
>>>>>;

Integration produces an expression for the curvature in terms of thickness and compli-

ance ratios:

1

�K

=
3

2

d31E3

hp

1

r�

where 1
r�

is a dimensionless curvature parameter,

1

r�

=
(1� 2fo)

1� 3fo + 3f2o +m (3p+ 3p2 + p3 � 6pfo � 3p2fo + 3pf2o )

and

m =
cm

cp

p =
hb

hp

fo =
g

hp

=
1 +mp

2 + 2mp

2 (1 +mp)

We can solve for the de
ection pro�le, w (x), from the curvature-displacement relation-

ship,

1

��

=
d
2
w (x)

dx2
=

3

2

d31E3

hp

1

r�

by taking into account the boundary conditions of a simply-supported beam:

w (x = 0) = 0 w (x = L) =
d
2
w

dx2
(x = 0) =

d
2
w

dx2
(x = L) = 0
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to determine the constants of integration. The displacement pro�le becomes:

w (x) =
3

4

d31E3

hp

1

r�

�
x
2 � Lx

�

and the resulting de
ection at the midpoint is:

wmax

�
x =

L

2

�
= � 3

16

d31E3

hp

L
2

r�

As the electric �eld is equal to the applied voltage, V3, divided by the thickness of the

piezoceramic, we now have an expression for the static de
ection of the beam in terms of

the applied voltage:

wmax

�
x =

L

2

�
= � 3

16

d31V3

h2p

L
2

r�

Note that d31 is a negative quantity and so the resulting de
ection is positive, as ex-

pected. What we are really interested in however, is the magnitude of the dynamic de
ection

of the stator at resonance. At resonance, the system is damping controlled and dependent

on the losses in the materials. The resulting dynamic de
ection is equal to the static de-


ection of the beam times the dynamic ampli�cation factor, or quality factor, Q. Damping

characteristics of a system are often also expressed in terms of the loss factor, �, where:

Q =
1

�

For a composite structure such as the monomorph presented here, the loss factor of the

entire structure can be expressed in terms of the loss factor of the piezoceramic material

times the ratio of the strain energy of the piezoceramic layer to the strain energy of the

entire monomorph [Nashif et al. 85]:

�mono = �piezo
Upiezo;strain

Umono;strain

where the strain energy stored in the 
exural mode, Ustrain, is de�ned as the integral over

the volume of the strain energy density:

Ustrain =
Lb

2

Z
z

S1 (z)T1 (z) dz
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Substituting in the expressions for stress and strain for 
exural energy alone, gives:

Ustrain =
Lb

2

Z
z

c (z)

�
z � g

��

�2
dz

Integration over the appropriate layers results in a stored elastic energy (in Joules) in the

piezoceramic layer of:

Upiezo;strain =
3

8
Lbhpd

2
31E

2
3cp

�
1� 3fo + 3f2o

�
r2�

and in the entire monomorph of:

Umono;strain =
3

8
Lbhpd

2
31E

2
3cp

(1� 2fo)

r�

The loss factor for the device is then calculated to be:

�mono = �piezo

1� 3fo + 3f2o
r� (1� 2fo)

and the dynamic ampli�cation factor:

Qmono = Qp

r� (1� 2fo)

1� 3fo + 3f2o

For example, we can calculate the expected de
ection for our motors of Figure 3-5,

ignoring the teeth and using the dimensions and elasticities given in Section 3.1. We �nd

m = 2:86, p = 1:60 and fo = 1:56, resulting in a value for the dimensionless curvature

parameter of:

1

r�

= �0:291

One experiment was performed earlier using an interferometer [Zhang, Pan and Cross

88] to measure the de
ection of the stator at the fourth 
exure mode resonance under an

applied voltage of 10 V. (This is a rather low �eld, E3 = 5:32�104V
m
, whereas the maximum

depoling �eld for the ceramic is Ec = 2:36� 106 V
m

[Piezo Systems 85]). For such a drive,

we would expect a de
ection magnitude of:

wmax

�
x =

L

2

�
= 1:87� 10�8m
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The actual measured value at resonance was 0.1 �m, which means there was a dynamic

ampli�cation factor of the monomorph of 5.4.

For a 10 V drive, the total stored elastic energy in the piezo layer is:

Upiezo;strain = 1:24� 10�9J

For the entire monomorph, the total strain energy turns out to be:

Umono;strain = 6:47� 10�9J

The quality factor for the monomorph device then is:

Qmono =
6:47

1:24
Qp = 5:20Qp

The loss factor for the PTS-1195 piezoceramic is given as �piezo = 0:015 [Piezo Systems 85],

yielding a Qp of 67, and a consequent ampli�cation factor of:

Qmono = 350
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Chapter 4

Electrical Modeling of the Stator

We can model the stator both mechanically, as a beam vibrating, and electrically, as an

equivalent circuit looking into the electrical terminals. Electrode groups A and B of Fig-

ure 3-6 each act to produce standing waves when excited near their resonant frequencies.

At these frequencies, the stator can be modeled by the electrical equivalent circuits shown

in Figure 4-1. The series-RLC branches are the mechanical arms. The resistive, inductive

and capacitive lumped parameters are the mechanical damping, mass and compliance, re-

spectively, transformed into electrical equivalents due to the piezoelectric e�ect. Co is the

electrical capacitance in the absence of the mechanical motion which is induced at reso-

nance. At resonance, the inductive and capacitive components of the mechanical arm, j!L

and 1
j!C

, become equal in magnitude and opposite in phase, leaving the system damping

controlled. This resonant frequency, fr, shown in Figure 4-2, corresponds to an impedance

zero. Above resonance, the series RLC branch becomes inductive and the equivalent circuit

reduces to a parallel resonant circuit, displaying an antiresonance at the frequency fa, cor-

responding to an impedance maximum. At even larger frequencies, the system again acts

capacitively.

The resonance and anti-resonance frequencies of a single electroded slab of piezoceramic

(as opposed to the monomorph device used in the ultrasonic motor here) can be related

to material properties and the electromechanical coupling coe�cient (see Appendix B).

Laboratory measurements of the impedance characteristics of a piezoelectric material can

then be used to characterize and verify the electromechanical coupling factor, the damping

coe�cient and the quality factor of the device.
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Figure 4-1: The electrical circuit model of an ultrasonic motor consists of two series-resonant

circuits, one for each standing wave.
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Figure 4-2: Near a resonant frequency, a piezoelectric material has an impedance characteristic

displaying both a resonance and antiresonance. This small blip can be seen on the jZj curve near
26 kHz. The phase, � and electrical damping factor, Q, also change signi�cantly at this point.
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The electromechanical coupling factor for a piezoelectric material where a �eld is applied

in the 3-direction and the output strain is taken in the 1-direction, is k31. [Buchanan 86]

gives k31 as:

k31 =

vuuut �
2
fa
fr
tan

�
�
2
fa�fr
fr

�
1 + �

2
fa
fr
tan

�
�
2
fa�fr
fr

� =
d31q
�T33s

E
11

However, for a monomorph, the 1-directed strain must work against the sti�ness of the

non-piezoelectric steel layer, with the result being bending instead of lateral displacement.

The e�ective electromechanical coupling factor for a monomorph then would be lower than

for a plain slab of piezoceramic. For instance, [Smits and Choi 92] showed that for bimorphs

used as cantilever beams (two electroded slabs of piezoceramic bonded together rather

than one layer of piezoceramic bonded onto one passive layer), the squares of the e�ective

electromechanical coupling factors, �eff , when the tip works against a vertical moment,

force, or distributed load, are respectively:

�M = 3

 
k
2
31

4� k
2
31

!
�F =

9

4

 
k
2
31

4� k231

!
�P =

5

3

 
k
2
31

4� k231

!

For our ultrasonic motor, we do not have cantilever beams. Our monomorph structure

can, however, be modeled as a simply-supported beam of length L = �
2
.

The e�ective electromechanical coupling factor for our simply-supported monomorph,

which we denote as �eff , will be di�erent than the e�ective electromechanical coupling

factor for a cantilevered bimorph device. For a simply-supported monomorph working

against moments applied at the ends (as in the case of a traveling wave motor), we can

expect:

�M < 3

 
k
2
31

4� k
2
31

!

since a single-layer monomorph structure will be less e�ective than a bimorph in delivering

output moments and forces.

The electromechanical coupling coe�cient, k31, for our PZT thin �lms was measured to

be 0.22 [Udayakumar 91], and is given as 0.34 for the PTS-1195 ceramic in the motors of

Figure 3-1 [Piezo Systems 85] which leads to the result that the percentage of mechanical

energy converted from input electrical energy for our bulk-ceramic motors will be on the

order of 11.6%. This does not imply e�ciency however, as the remaining 88.4% is not

dissipated but stored dielectrically.

53



Whereas energy conversion is described by k31 in a slab of piezoelectric material, or by

�eff and �eff for devices such as bimorphs and monomorphs, energy loss in a piezoelectric

material is denoted by the quality factorsQM (mechanical) and QE (electrical, or dielectric).

The equivalent circuit of Figure 4-1 can lead to determination of the mechanical quality

factor of a piezoceramic, QM , which is the ratio of average energy stored per cycle to average

energy dissipated per cycle. [Ja�e 58] gives an expression in terms of electrical equivalent

circuit parameters:

1

QM

�= 4�4f jZminj (Co + CA)

The electrical quality factor is related to the dielectric dissipation or loss tangent, tan�,

the form usually speci�ed with the material. tan� is the ratio of the imaginary part of the

complex permittivity to the real part:

1

QE

= tan� =
Im f�g
Re f�g = �

This electrical model of each stator section is applicable only in the vicinity of an isolated

resonance. Unwanted excitation of nearby modes can result in mode coupling and unwanted

forms of deformation.
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Chapter 5

Energy Conversion

To this point, we have developed a model of the mechanical and electrical characteristics

of the stator portion of an ultrasonic motor, from the input electrical terminals to the

output displacements on the stator surface. It would be useful to compare such energy

conversion processes across a spectrum of actuator technologies in order to expose relative

merits among the possible choices.

[Hollerbach, Hunter and Ballantyne 91], in their comparative analysis of actuator tech-

nologies for robotic applications, point to stall torque density as a �gure of merit amongst

disparate technologies ranging from electromagnetic motors through pneumatics, hydraulics,

magnetostrictors, shape memory alloys and piezoelectric inchworm motors. They claim that

stall torque density is a better �gure of merit than power density, as power density calcula-

tions require the pro�ciency of the drive electronics to be taken into account. [Bart et al. 88]

alternatively compare electromagnetic and electrostatic motors based on energy densities

storable in the gap between the stator and the rotor. Here, we extend the latter analysis to

energy densities storable in piezoelectric ultrasonic motors.

In an electromagnetic motor, the storable energy density, umag, in the air gap between

the stator and the rotor is:

umag =
1

2

B
2

�o

where B is the magnetic 
ux density and �o is the permeability of free space.

In an electrostatic motor, the storable energy density in the air gap is:

uelectrostatic =
1

2
�oE

2
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where E is the electric �eld intensity and �o is the permittivity of free space.

[Bart et al. 88] note that the maximum 
ux density available in an electromagnetic

motor at saturation is approximately 1.5 T, yielding a maximum energy density of:

umag;max = 9� 105
J

m3

Similarly, for an electrostatic motor, the maximum electric �eld before breakdown is on

the order of 106 V
m
, which gives the maximum energy density attainable as:

uelectrostatic;max = 4:4
J

m3

For small gaps on the order of 1 �m, achievable with silicon lithographic processes, [Bart

et al. 88] also point out that electric �elds on the order of 108 V
m

are sustainable, leading to

energy densities commensurate with those of electromagnetic motors:

uthin electrostatic;max = 4:4� 104
J

m3

Torques however, are computed from the spatial derivatives (the changes in rotor po-

sitions as the rotors slide past the stators) of the total coenergies, U 0

mag and U 0

electrostatic.

For a linear material (i.e. an air gap), the energy, U , is equal to the coenergy, U 0. Total

coenergy in the air gap of an electromagnetic motor then is the integral over the volume of

the energy density:

U
0

mag =

Z
vol

1

2

B
2

�o

dv =
1

2
Li

2

where dv is a di�erential volume element, L is the inductance and i is the current.

Total coenergy in an electrostatic motor becomes:

U
0

electrostatic =

Z
vol

1

2
�oE

2
dv =

1

2
CV

2

where C is the capacitance and V is the voltage.

The torque for an electromagnetic motor can then be calculated by taking the derivative
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of the coenergy with respect to the rotor position, �, keeping i constant:

�mag =
@U

0

mag

@�
ji =

1

2

dL

d�
i
2

Similarly, for an electrostatic motor, the torque produced is calculated with V held

constant:

�electrostatic =
@U

0

electrostatic

@�
jV =

1

2

dC

d�
V
2

If we look now at piezoelectric motors, we �nd that the storable energy density is

related to the electric �eld applied across the piezoceramic, \the gap". In these capacitive-

type motors, the gap is no longer air, but the high dielectric material, PZT. The storable

electrical energy density input to a piezoelectric motor becomes:

upiezo;input =
1

2
�pzt�oE

2

where �pzt is the relative dielectric constant of PZT (1950 for the PTS-1195 ceramic in the

motors of Figure 3-1 [Piezo Systems 85] and 1300 for our PZT thin �lms [Udayakumar

91]). For bulk-ceramic PZT, the electric �eld breakdown strength is on the order of 106 V
m
,

similar to the breakdown �eld of macroscopic electrostatic motors. Thus we see that the

storable electrical energy densities of bulk-ceramic piezoelectric motors are three orders of

magnitude larger than those of electrostatic motors, due to the large dielectric constant.

The total electrical energy input to a piezoelectric motor is also the integral over the

volume of the energy density:

Upiezo;input =

Z
vol

1

2
�pzt�oE

2
dv

In a piezoelectric motor however, torque is not generated as the spatial rate of change of

total energy, but rather is �rst converted to strain energy in bending and then converted to

output forces through frictional coupling. The amount of input electrical energy converted

to strain energy in a slab of piezoceramic is characterized as k231 [Lucas 75] as is described

in Appendix B. For a monomorph, the ratio is �2
eff .

For example, we can calculate that the maximum allowable energy density input to our
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bulk-PZT motors will occur at the breakdown �eld, 106 V
m
:

ubulk piezo;max input = 8:6� 103
J

m3

The output strain energy density is the total strain energy, Upiezo;strain, divided by the

volume, Lbhp:

upiezo;strain =
3

8
d
2
13E

2
3cp

�
1� 3fo + 3f2o

�
r2�

which, using the maximum breakdown �eld strength, calculates to:

ubulk piezo;max strain = 6:65
J

m3

The ratio of the latter, strain energy density, to the former, input electrical energy

density, is �2
eff :

�2
eff =

6:65 J
m3

8:6� 103 J
m3

= 7:7� 10�4

or

�eff = 0:028

This calculated value is roughly a factor of 12 lower than that calculated from the given

(measured) value of k31 = 0:34:

�M < 3

 
k
2
31

4� k231

!
= 0:090

When macroscopic electrostatic motors are shrunk to microscopic sizes with gap widths

on the order of 1 �m, electric �eld breakdown strength increases by two orders of magnitude.

This is due to the fact that as the gap gets smaller or the pressure in the gap decreases,

there is a decreased chance of air molecules colliding, leading to breakdown.

For thin �lm dielectrics, it is also the case that electric �eld breakdown strengths see

a two-order of magnitude improvement from the roughly 106 V
m

available for PTS-1195 ce-

ramic [Piezo Systems 85] which is 188 �m thick, to the 108 V
m

possible in PZT thin �lms

[Udayakumar 91] which are 0.3 �m thick. In thin �lms, the reason for improved break-

down strength is not a decrease in the pressure-gap product, but rather a decrease in the

likelihood of point defects due to thin layers.
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Figure 5-1: The breakdown strength of PZT increases dramatically as the material moves from

bulk to thin-�lm form. The round dots indicate data from [Gerson and Marshall 59] while the square

block signi�es new data on thin �lms [Udayakumar 91].

Studies of breakdown strength vs. thickness in bulk PZT samples were �rst conducted by

Gerson and Marshall [Gerson and Marshall 59]. They found that the relationship empirically

�t the curve which is illustrated in Figure 5-1 where:

Ebd = 27:2h�0:39p

Here, Ebd is the electric �eld intensity at breakdown, given in kV
cm

, and hp is the thickness

of the piezoceramic layer, in centimeters.

Although, at the time, Gerson and Marshall had no thin-�lm PZT, our recent fabrica-

tions runs have shown that thin �lm breakdown measurements do �t precisely with their

earlier work.

We can see then, that while electrostatic micromotors display improved energy densi-

ties over electrostatic macromotors, microfabricated piezoelectric motors exhibit the same

improvement in breakdown strength, but again contribute three orders of magnitude im-

provement in energy density due to the large dielectric constant. The maximum energy

density then, for piezoelectric micromotors is:

uthin piezo;max input =
1

2
�pzt�oE

2
bd = 5:8� 107

J

m3

Plugging in the above expression for Ebd, we derive an expression for energy density
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Figure 5-2: Energy density and total energy, for a given active electrode area, depend on piezoce-

ramic thickness.

as a function of piezoelectric thickness which is plotted in the top graph in Figure 5-2.

Converting to mks units for hp in meters:

upiezo;input =
�
4:26� 104

��
(100hp)

�0:78
�
J

m3

Multiplying by the area and thickness, we �nd the total energy as:

Upiezo;input =
�
4:26� 104

� �
(100hp)

�0:78
�
(A) (hp)J

This expression of total energy as a function of piezo-layer thickness is illustrated in the

lower graph in Figure 5-2 for an area equal to the 8 mm outer diameter, 5 inner diameter

motor of Figure 3-1. For a �lm thickness of 0.3 �m, we �nd the total input electrical energy

for a thin-�lm PZT version of the motor in Figure 3-1 to be:

Uthin piezo; input = 5:3� 10�3 J

For the same size motor, but using bulk PZT 188 �m thick, we �nd

Ubulk piezo;input = 2:1� 10�2 J
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Although the total electrical energy storable in this bulk PZT motor is four times greater

than for a thin-�lm motor of equivalent area, we are interested in the possibilities of lower

manufacturing costs which microfabrication holds. If motors can be printed rather than

machined, sanded, grinded and soldered, then we can hope to develop small, compact, cheap

actuators. In addition, moving away from machine tools and towards microfabrication

and lithographic manufacturing processes provides a means for scaling to even smaller

dimensions or patterning �ner features.
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Chapter 6

Contact Mechanics

We have described the energy conversion process which takes place in the stator of an ultra-

sonic motor. That is, we have discussed the �rst stage of the energy transduction mechanism

of a vibromotor which we outlined in Figure 1-1. We have seen how input electrical energy

is transformed into output strain energy in the form of mechanical displacements, where

the percentage of input electrical energy converted to strain energy is characterized by �2
eff

for a monomorph. Losses in this resonant motor were described by the mechanical quality

factor, QM .

What we are really interested in, however, is how much power can be delivered to a load

and what form the speed-torque curve will take. We would also like to know the overall

system e�ciency and the stall torque density. To answer these questions, we focus on the

second stage of the energy conversion process, the vibration recti�cation achieved through

frictional coupling between the rotor and the stator.

Actuators utilizing these mechanisms form a much wider class than the various embodi-

ments of ultrasonic traveling wave motors. Vibratory feeders transporting granular particles

on a bed in process-control applications impart a 
ight phase or sliding phase to the par-

ticles to be moved by inducing an oscillatory diagonal motion in the bed [Gaberson 72].

Early piezoelectric actuators used ratchet-style mechanisms, wherein a single-point contact

would oscillate and impact against the rotor at an oblique angle, creating a uni-directional

drive [Barth 73]. Some modeling of these types of systems is described in [Sashida 82]

and [Kobrinskii and Lennox-Napier 69]. In all of these actuators, the stator is in contact

with the rotor for one portion of the cycle pushing it in one direction, and is retracted
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from contact in the remaining portion of the cycle when the stator point is moving in the

opposite direction. A primary disadvantage of this type of actuator is that the stator must

be adjusted and held �xed to within a few microns of the rotor when at rest.

One subset of vibromotors, in which the stator and rotor always maintain frictional

contact are the hammer-type actuators described in the work of [Higuchi et al. 89], which

quasistatically in
ict an impulse to a mass which produces a reaction force larger than the

frictional sticking force.

Resonant traveling-wave ultrasonic motors which were �rst invented in the Soviet Union

in the sixties [Ragulskis et al. 88] and again in Japan in the eighties [Sashida 83] contributed

a means for creating larger amplitude displacements, maintaining continuous rotor-stator

contact and allowing for electronic control of bi-directional motion. While much work has

been done on modeling the stator energy conversion processes, far less has been reported

on modeling the frictional coupling at the rotor-stator interface.

On the friction topic, [Hosoe 89] and [Okumura and Mukohjima 87] have reported on

wear problems and e�orts at improving e�ciency in Canon ultrasonic motors used in auto-

focus lenses. [Maeno, Tsukimoto and Miyake 92] have simulated the slip-stick interaction of

the Canon motors using �nite element analysis and [Maeno and Bogy 92] have investigated

the hydrodynamic e�ects on the coupling. Other studies have been undertaken in Germany

to understand the tribological properties of ultrasonic motors [Rehbein and Heinz 92] and

experiments with linear ultrasonic motors using a variety of frictional interface materials

have been reported by [Endo and Sasaki 87]. While many papers cite output torques and

speeds of prototype motors with e�ciencies in the range of 35% to 45%, [Kumada 85] claims

the highest e�ciencies, on the order of 80%.

[Minotti and Lallement 93] have modeled the rotor-stator interaction parameterizing the

contact conditions of a non-rigid rotor in terms of angle of contact. [Kurosawa and Ueha

88] have performed closed-form analyses of interface losses, claiming theoretical limits of

70% e�ciency for traveling wave motors and [Hirata and Ueha 93] have described lumped

parameter equivalent circuits of the frictional coupling.

Our analysis of this process can be divided into several steps. First, we focus on the

contact mechanics of a number of simple models of the interface conditions between the

rotor and the stator, ignoring the tribological issues associated with surface asperities,

hardness, wear and other surface e�ects. Later, we will make some comments on experiments
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Figure 6-1: (a) We need to determine the form of the speed-torque curve. For each applied normal

force, FN , and applied voltage, V , there will be one curve characterizing the relationship of speed

to torque. This curve will shift and possibly change shape as V or FN is increased. (b) For a given

applied voltage, we are interested in determining how the curve shifts with FN . Parameterizing

each curve by !no�load, we can �nd a relationship between !no�load and FN . (c) Alternatively, the

performance of the motors can be described by parameterizing each curve by �stall and plotting

�stall vs. FN . By calculating these curves, we will be able to apply an optimal normal force to these

motors such that the power output will be maximized for a given applied voltage.
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performed with rotors exhibiting di�erent asperity magnitudes.

The goal is to �nd a �gure of merit for ultrasonic motors in order to compare them

to other types of actuators. We have chosen stall-torque density as the metric for judging

disparate technologies, and Figure 6-1 illustrates the approach. The torque produced by

an ultrasonic motor is determined by the friction force at the rotor-stator interface. For

a given excitation voltage and applied normal force, there will be a set of speed-torque

operating points at which the motor will run, depending on the load it must drive. With no

load, the motor will spin at its no-load speed and when the load is increased to the point

that the rotor no longer moves, the motor is delivering its stall torque. The no-load speed

and stall torque provide two operating points on the speed-torque curve as illustrated in

Figure 6-1(a), but we would also like to know the relationship of speed to torque for the set

of points determining the form of drop-o� in between.

As the voltage or normal force is varied, the characteristic speed-torque curve will shift

in some manner. By setting the drive voltage to the maximum value before depoling occurs

and varying the applied normal force, we can determine how the speed-torque curve shifts

in relation to a new normal force. Figure 6-1(b) illustrates a succession of characteristic

no-load speeds for a set of applied normal forces and a given excitation voltage. We would

imagine that if there is no normal force (the rotor does not touch the stator), there will be

no rotor speed. When a normal force presses the rotor against the stator, without a side

load, the rotor will spin at a certain no-load speed. As the normal force is increased, the

no-load speed will change and for some very large normal force, the rotor will not spin at

all. For some value of normal force, FN , there will be a maximum no-load speed. Of course,

for every speed-torque curve characterized by a no-load speed, there will be a related stall

torque, and the variation of stall torque with normal force can then also be determined as

shown in Figure 6-1(c). Once we �nd the maximum stall torque, we can divide by the mass

or volume of the motor to determine our �gure of merit, the maximum stall-torque density.

The form the speed-torque curves take will depend on two things: 1) our model of the

deformation, and 2) the friction law we choose.

In terms of the friction law, a coe�cient of friction describes the relationship between

two surfaces and how forces are transmitted across their area of contact. To speak of \the

coe�cient of friction of a material" is meaningless, as a coe�cient of friction describes not

a property of a lone material, but the relationship between two. In general, the coe�cient
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Figure 6-2: If the rotor contacts the stator only at the apex of the traveling wave, the rotor velocity

will be equal to the horizontal velocity, vh;max, of the stator surface as long as there is no slipping.

of friction of two materials, �, is not a constant. In Coulomb friction, � is a constant and

is multivalued for dynamic and static scenarios. In rolling friction, such as a plate on a

bed of rollers, the coe�cient of friction is proportional to the di�erence in velocities of the

plate and the rollers [Bhushan and Gupta 91]. Other, more complicated, friction laws have

been proposed to include time histories and hysteresis for phenomena such as earthquakes

[Linker and Dieterich 92] and robot joints [Dupont and Bapna 92].

In pursuit of characteristic speed-torque curves, our approach will be to analyze a series

of progressively more sophisticated contact mechanisms, along with several di�erent friction

laws. We will examine three cases:

� A rigid rotor and a rigid stator contacting along a line, assuming Coulomb friction;

FT = �FN .

� A compliant rotor and a rigid stator contacting over an area, also assuming Coulomb

friction; FT = �FN .

� A compliant rotor and rigid stator contacting over an area, but assuming viscous

friction; FT = �" [vstator (x)� vrotor]FN .

6.1 Line Contact, Coulomb Friction
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Figure 6-3: Free-body diagram of the rotor and stator with the stator modeled as having only a

line contact by the rotor.

The �rst case is illustrated in Figure 6-2, where we assume the rotor is rigid and contacts

the stator only at the peaks of the traveling wave, as the stator bending pro�le does not

distort. The contact between the rotor and the stator then is along a line of length b into

the beam. Due to our assumption of the beam having a uniform cross-section, we will use

two-dimensional free-body diagrams to depict forces acting on the system. These forces

are, however, actually forces per unit length. This ideal case of line contact will lead us to

upper bounds for the no-load speed and the stall torque of an ultrasonic motor.

If we assume Coulomb friction and no slipping, then at the line of contact the velocity

of the stator will be equal to the velocity of the rotor, as the stator contact point pulls the

rotor along.

Figure 6-3 illustrates the forces acting on the rotor and the stator. For line contact

between the rotor and stator, the normal force acting on the rotor is transmitted as a force,

RA, acting solely on the apex of the stator (RA = FN ). While in the condition of no slip,

when a load or braking force, FB , is applied to the motor at a level less than that required

to stall the motor, then at steady-state, the frictional force, FT , delivered by the rotor will

increase to match it, being equal and opposite to FB , and the velocity of the rotor will be

equal to the velocity of the stator.

There can be slipping, however, when larger loads are applied. The largest load that
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Figure 6-4: For point contact and Coulomb friction, rigid rotor and undistorted stator, the speed-

torque curve shows constant rotor speed for any torque in the region of no slipping. For larger loads,

slipping occurs and the speed-torque curve is vertical, displaying a constant, maximum torque for

any rotor speed.

can be applied without slipping is equal to:

FT = �sFN

where �s is the static coe�cient of friction.

After sliding is initiated, the friction force becomes:

FT = �dFN

where �d is the dynamic coe�cient of friction. Figure 6-4 illustrates the speed-torque curve

for this ideal case of line contact between a rigid rotor and rigid stator.

The velocity of the stator contact point is determined by examining Figure 6-2. In this

�gure, the �-� coordinate system is centered at a point P on the surface of the originally

undeformed stator. The thin-dashed horizontal lines in the �gure represent the top and

bottom surfaces of the undeformed stator. From Appendix A, we saw that when a traveling

wave of bending is induced, a stator surface point, P , moves with a transverse displacement

of:

� = wocos (kx� !t)
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Figure 6-5: (a) The velocity pro�le for a counter-clockwise elliptical trajectory of a point on

the surface of the stator is everywhere at right angles to the displacement. (b) The longitudinal

components of velocity point in opposite directions for � > 0 and � < 0.

and with a longitudinal displacement of:

� =
2�hwo

�
sin (kx � !t)

tracing out an elliptical trajectory which satis�es the equation:

�
2�

2�hwo
�

�2 + �
2

w2
o

= 1

The displacement and velocity pro�les of a stator surface point undergoing this elliptical

trajectory are shown in Figure 6-5 (a). The longitudinal speed of a surface point is the

derivative of the horizontal displacement with respect to time:

�h =
@�

@t
= �2�!hwo

�
cos(kx� !t)

The horizontal components, vh, of each velocity vector in Figure 6-5(a) are shown in Fig-

ure 6-5(b).

For the case of a rigid rotor and rigid stator, the rotor contacts the apex of the traveling

wave, giving a rotor speed of the maximum horizontal velocity of the surface point:

�h;max = �2�!hwo

�

We see from the speed-torque curve of Figure 6-4 that the rotor speed will be constant
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Figure 6-6: (a) For a rigid rotor and rigid stator, the no-load speed is independent of applied

normal force. (b) For this case of line contact, the stall torque can be increased arbitrarily by

applying larger normal forces.

at the value:

!rotor =
vh;max

r

for all load torques within the range of no slipping. Once slipping occurs, the torque

delivered by the motor remains constant at:

�rotor = �dFNr

This describes the motoring action of quadrant I of Figure 6-4. As FB is increased beyond

this point, the motor slows down while still delivering torque equal to �dFNr, until �nally

the rotor stops moving. Increasing FB further causes the rotor to spin in the reverse

direction as illustrated by quadrant IV behavior. When FB is directly oppositely to the

way it is de�ned in Figure 6-3, the friction force acts to oppose it and so the rotor and

stator velocities remain equal and in the same direction. The rotor torque is thus negative

in quadrant II and remains equal and opposite to the pulling force, �FBr, until slipping

occurs, at which point the rotor velocity increases and the rotor delivers a constant torque

of:

�rotor = ��dFNr

Once the speed-torque curve has been characterized, we can investigate how it shifts

with FN for a �xed excitation voltage. As the rotor speed is independent of FN and the

torque is directly proportional to FN , increasing the applied normal force will increase the

stall torque of the motor without a�ecting its speed before stall. Figure 6-6 shows the
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no-load speed and stall torque dependencies on FN . For this case, it seems that the stall

torque can be increased by arbitrarily increasing FN . However it is surely the case that the

rotor and stator will deform at some point and the case of point contact will no longer hold.

This will lead us to the next case, that of a compliant rotor and rigid stator.

However, continuing with the point contact condition, we note that the mechanical

power output by a motor is the product of output speed and drive torque:

Pmech = �rotor!rotor

Mechanical output power is plotted as a function of rotor torque in Figure 6-7 (a). Since

the mechanical output power is Pmech = �rotor!rotor, and !rotor is constant for torques from

zero through stall, the output power grows linearly with torque until stall.

In this case, the maximum output power would be delivered at operating point A in

Figure 6-4:

Pmech;max =

�
2�!hwo

�

�
(�dFN )

where it appears that output power is directly proportional to normal force, FN .

The e�ciency of this second stage of energy conversion is calculated as the ratio of

mechanical output power to input power:

�m =
Pmech

Pin

The power loss in the system is due to frictional forces at the interface causing heating.

The power loss is the product of tangential force produced by the rotor times the relative

velocity of the two surfaces:

Ploss = FT (vstator � vrotor)

or in angular coordinates:

Ploss = �rotor (!stator � !rotor)

The motor e�ciency then, is:

�m =
Pmech

Ploss + Pmech

=
!rotor

!stator
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Figure 6-7: (a) The mechanical output power delivered by the motor grows linearly in the region

of no slipping, from zero torque up through stall. (b) For the case of line contact, the e�ciency of

an ultrasonic motor is 100% while there is no slipping.

For line contact, !stator is a constant and e�ciency is linearly related to rotor speed. The

relationship of e�ciency to rotor torque is illustrated in Figure 6-7(b) where for operating

points that incur no slipping, that is, up until stall, the rotor speed is equal to the stator

speed and the motor is perfectly e�cient.

6.2 Line Contact, Viscous Friction

We can modify the model further by changing the friction law to viscous friction, where

the friction force is proportional to the relative velocity between the two surfaces times the

normal force:

FT = �" [vstator (x)� vrotor]FN

where " is a coe�cient of viscous friction with units of seconds per meter.

For the case of line contact as in Figure 6-2, where the rotor contacts the stator only along

a line through the width of the motor at the apex of the wave, then vstator (x) = vstator;max

and the rotor no-load speed is:

!no�load = !stator;max =
vh;max

r

The net friction force that the rotor applies to the load is equal and opposite to the friction

force acting on the stator, as in Figure 6-3:

FTnet = �FT
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ωrotor

τrotor

rigid rotor, line contact

ω =
vh,max
r

stator,max

F = ε( )FNv vrotorstator,maxT

τ = εω F r2Nstator,maxstall

Figure 6-8: For line contact and viscous friction, the speed-torque curve falls o� linearly.

and so the rotor torque is, converting to angular coordinates:

�rotor = " (!stator;max � !rotor)FNr
2

Solving for !rotor, we see that for viscous friction, the rotor speed falls o� linearly with

increasing torque:

!rotor = !stator;max �
�rotor

"FNr
2

The resulting speed-torque curve is shown in Figure 6-8 where the stall torque occurs at:

�stall = "!stator;maxFNr
2

The slope of the curve is determined by FN . Figure 6-9 illustrates how the slope and

stall torque change as FN is increased. The rotor no-load speed is una�ected, as we have

assumed that the stator does not distort and the rotor contacts the stator only along a line

at the apex. Consequently, the !no�load vs. FN curve and the �stall vs. FN curve look very

similar to those of Figure 6-6. In Figure 6-10(a) we see that !no�load is constant for all

values of FN . Figure 6-10(b) illustrates how stall torque increases linearly with FN with a

slope of "!stator;maxr
2 instead of �dr as in the case of Coulomb friction with line contact.
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ωrotor

τrotor

FN

τ = εω F r2Nstator,maxstall

ωstator,max

F = ε( )FNv vrotorstator,maxT

Figure 6-9: For line contact and viscous friction, as the normal force, FN , is increased, the stall

torque shifts out.

FN FN

(b)

τstall

(a)

vh,max
r

ωno load
εω F r2

Nstator,max

Figure 6-10: (a) For line contact and viscous friction, rotor no-load speed remains constant with

FN . (b) Stall torque increases without bound with FN .
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The output power is again the product of torque and speed:

Pmech = !rotor�rotor

For this case of viscous friction, the power vs. rotor torque curve is an inverted parabola:

Pmech = � �
2
rotor

"FNr
2
+ !stator;max�rotor

where the maximum power point can be found from:

dPmech

d�rotor

= 0

and occurs at:

�rotoropt =
1

2
"!stator;maxFNr

2

or:

�rotoropt =
1

2
�stall

The rotor speed at �rotoropt is:

!rotoropt =
1

2
!stator;max

The output power vs. rotor torque curve is plotted in Figure 6-11(a). The resulting maxi-

mum power output is:

Pmech;max =
1

4
!no�load�stall

The mechanical e�ciency of the friction coupling can be found by again calculating the

power loss due to frictional heating:

�m =
Pmech

Pmech + Ploss

where Ploss is the product of rotor torque and the relative speeds of the sliding surfaces:

Ploss = �rotor (!stator;max � !rotor) =
�rotor

2

"FNr
2
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τstall
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ηm

= ω τstallno load
1
4

Figure 6-11: (a) Mechanical output power reaches a maximum when the rotor speed is !rotor =
1

2
!stator;max and the rotor torque is �rotor =

1

2
�stall. (b) The e�ciency falls o� linearly with rotor

torque from 100% at zero torque to 0% at stall torque.

yielding a mechanical e�ciency of:

�m = 1� �rotor

�stall

Figure 6-11(b) displays the e�ciency vs. rotor torque curve which falls o� linearly with

rotor torque.

6.3 Area Contact, Coulomb Friction

While the line contact assumption was useful in generating theoretical bounds on perfor-

mance of an ultrasonic motor, line contact is an ideal case. We can make our model more

realistic by relaxing the constraints of a rigid rotor and rigid stator. Here, we analyze the

contact condition of a rigid stator with a compliant rotor, maintaining the assumption that

the friction law acts as Coulomb friction.

6.3.1 Physical Interpretation

By assuming that the stator is rigid (i.e. its displacement pro�le is undistorted after contact

with the rotor), we can say that the rotor conforms to the stator over some �nite area and

the normal pressure at the interface will be proportional to that displacement. Since we

know the displacement of the stator, we then need to determine the area of contact.

This contact condition is illustrated in Figure 6-12. We change the coordinate system

here to make the following discussion more straightforward. Whereas earlier diagrams of
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Figure 6-12: For the case of a compliant rotor and rigid stator, the rotor undergoes deformation

such that the contact is over a �nite area of the stator. The coordinate system here is centered on

a peak at the original top surface of the stator.

the deforming stator were drawn for a transverse displacement of �(x; t) = wocos(kx� !t)

for !t = �
2
, here we take !t = 0 and place the z-axis on a peak of the stator. The x-axis is

placed on the top surface of the undeformed stator.

From Figure 6-12 we see that a given normal force will cause the rotor to comply and

interpenetrate the stator surface over an area parameterized by xo. While the rotor moves

with velocity vrotor, the points on the stator surface from �xo to xo all have di�erent

horizontal velocities. As was illustrated in Figure 6-5(b), for a traveling wave moving in the

positive x-direction, the horizontal components of stator surface point velocities point in the

negative x-direction for � > 0 and in the positive x-direction for � < 0. Due to symmetry

of this problem about the z-axis, we can focus on just the positive x-axis in describing

the system. For the moment, we consider the case where the applied normal force is such

that the interpenetration of the rotor into the stator is such that 0 < xo <
�
4
(i.e. the

interpenetration depth is less than wo). In this case, stator surface points in contact with

the rotor all have horizontal velocity components in the negative x-direction, although of

di�erent magnitudes.

The operating point of the motor depends on the load applied, FB. We would like to

�nd the characteristic speed-torque curve as in Figure 6-1(a) for this contact condition and

friction law. If the load, FB, is zero, we can �nd the no-load speed of the rotor. Figure 6-

13(a) illustrates how the stator surface points' horizontal velocities will vary from vh;max

at the apex, x = 0, to vh;min at the edge of the contact region, x = xo. The rotor, which
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Figure 6-13: (a) The rotor moves at one velocity while individual stator points have di�erent

horizontal velocity components. (b) The points of slip and no slip corresponding to the points

shown in (a) are marked. In the region 0 < x < xr, points on the stator surface have horizontal

velocity components larger than the rotor velocity. In the region xr < x <
�

4
, the stator horizontal

velocity components are smaller than the rotor velocity, while at the point xr, they move at the

same speed.

moves at one velocity, will travel at a velocity equal to some stator surface point's horizontal

velocity, vho .

That is, for FB = 0 and a given normal force, FN , the no-load speed of the rotor is:

!no�load =
vho

r

For all other stator surface points, there will be a relative velocity between the rotor and the

stator, which is a slip condition. These slip regions are illustrated in Figure 6-13(b) where

for the stator surface point moving at velocity vho , there is no slip. In region 1, all stator
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surface points have horizontal velocities larger than the rotor velocity and in regions 2 and

3, all stator surface points have horizontal velocities smaller than the rotor velocity. When

a load FB is applied, the friction force acts to oppose it, bringing the rotor to a steady-state

velocity.

The forces acting on the rotor and stator are shown in Figure 6-14. In the free-body

diagram of the rotor, the dotted line represents the deformation the rotor undergoes when

contacting the stator under an applied normal force, FN . This contact condition creates

a pressure distribution at the interface. We consider only the normal component of the

pressure distribution, p (x), here, as the curvature of the stator turns out to be small and

the stator is nearly 
at over the region of contact.

The normal force is related to the pressure distribution by the integral of the pressure

distribution over the contact area:

FN =

xoZ
�xo

p (x) dx

For Coulomb friction, the resulting friction force is:

FT = �
xoZ

�xo

4v (x)
j4v (x)j�dp (x)dx

where the friction force is directed so as to resist motion. The relative velocity, 4v(x), is:

4v (x) = vstator (x)� vrotor

where vstator (x) signi�es the horizontal component of the stator velocity.

For instance, in region 1, where the velocity of the stator is greater than the velocity

of the rotor, 4v (x) is pointed in the negative x-direction. The friction force acting on

the stator in that region, FT1 , is positively x-directed to resist the motion. The force

acting on the rotor is equal and opposite to FT1 of the stator and contributes a force

component propelling the rotor in the negative x-direction. Exactly the opposite e�ect

occurs in regions 2 and 3 where the stator velocity is less than the rotor velocity, contributing

force components FT2 and FT3 of the rotor, resisting rotor motion in the negative x-direction.
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Figure 6-14: These free-body diagrams of the rotor and stator illustrate distributed contact and the

ensuing frictional forces which act in the direction opposite to the direction of the relative velocity of

the two sliding surfaces. For this region of contact where the rotor and all stator horizontal velocity

components are moving to the left, in region 1 the stator horizontal velocity components are larger

than the rotor velocity, and in regions 2 and 3 they are smaller. Consequently, the frictional forces

in each region are directed as shown.

The resulting force acting on the rotor is:

FB = �FTnet = � (FT1 � FT2 � FT3)

which is zero, the no-load condition, if:

FT1 = � (FT2 + FT3)

When FB is increased from zero, the point of no-slip must move down the stator pro�le,

as region 1 must grow and regions 2 and 3 must shrink for FTnet to match FB in steady-

state. The rotor then moves at the new no-slip velocity which is lower than vho . The point

of no-slip is designated as xr in Figure 6-13(b) and moves down the velocity pro�le as FB

is increased. This drop-o� in speed with increased torque continues until FB is increased

to where the no-slip point is at the edge of the contact region, propelling the rotor with a

velocity of:

!stator;min =
vh;min

r
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Figure 6-15: For area contact and Coulomb friction, the speed-torque curve falls o� with torque

from a given no-load speed up until the no-slip point reaches the edge of the contact region, which

is moving at !stator;min. Larger loads, FB, cause slipping over the entire area of contact and the

rotor reaches a limiting maximum torque. The exact shape of the curve in the region marked by the

dotted line is yet to be determined and will depend upon the pressure distribution and the model

of the contact mechanics at the interface.

For any larger loads, all points of contact will be sliding and the rotor will deliver its

maximum torque:

�max1 = �dFN1
r

Maximum torque occurs at the point where xr = xo. That is, when the braking force,

FB , is increased just to the point where the rotor begins to slip everywhere, the motor is

delivering its maximum net frictional force:

FBmax
= �FTnet;max

= �(FT1 � FT2 � FT3)max

FTnet is maximized when FT2 and FT3 are zero, which is the case when xr = xo.

Figure 6-15 depicts the resulting speed-torque curve. The velocity of the stator at its

apex, !stator;max, is �xed by stator geometry and excitation voltage. The stator velocity at

the edge of the contact region, !stator;min, is determined by the interpenetration depth due

to FN . For an interpenetration depth less than wo, the no-load speed will be some point

between !stator;max and !stator;min;
vho
r
. As FB is increased above zero, the speed of the

motor falls o� from
vho
r

to !stator;min. We show a dotted line in the �gure as at this stage
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Figure 6-16: Increasing the normal force, FN , creates a larger area of contact and therefore a lower

!stator;min. The speed-torque curve then shifts down as shown.

the shape of this curve is unknown, and will depend on the deformation at the interface

and the pressure distribution.

Once the no-slip point has moved to the edge of the contact region, larger torques cannot

be sustained, and the motor reaches its torque limit. Loads larger than this cannot be met

with opposing friction forces and so the rotor decelerates. Equilibrium points are shown as

the vertical solid line, where increasingly larger loads, FB , cause the motor to slow down,

but the motor cannot push back with any force larger than �max1 . Finally, the speed of the

rotor becomes zero and eventually reverses direction.

Note that the point where the speed of the rotor is zero is de�ned as the stall torque.

For contact conditions where 0 < xo <
�
2
, the maximum torque is the same as the stall

torque and occurs when xr = x0, as shown by the vertical line in Figure 6-15.

The speed-torque curve of Figure 6-15 depicts a set of operating points for one given

normal force and excitation voltage. Figure 6-16 shows how the speed-torque curve shifts as

FN is increased from the initial value of FN1
to FN3

, assuming FN3
causes an interpenetration

depth just equal to wo. An increase in normal force from FN1
to FN2

causes the edge of the

contact region to move down the stator displacement pro�le, resulting in a lower !stator;min.

The maximum stator speed, !stator;max, is not a�ected by the normal force in this model
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which assumes a rigid stator, and so for FB = 0 and FN = FN2
, the no-slip point will start

at a lower position on the the stator pro�le than for FN = FN1
in order to maintain the

no-load equilibrium condition:

FT1 = � (FT2 + FT3)

As FB is increased from zero, the no-slip point, xr, continues to move lower and the

rotor velocity falls o� with rotor torque until it reaches !stator;min2 , at the new maximum

torque:

�max2 = �dFN2
r

When the normal force is increased to FN3
where the interpenetration depth is wo, then

xo =
�
4 and the edges of the contact region are at x = ��

4 and x = �
4 . At these points, the

horizontal component of the stator velocity is zero and therefore !stator;min3 is zero. The

no-load speed will be somewhere between !stator;max and !stator;min3 and the velocity of the

rotor will drop o� with the load torque until the maximum torque is reached at:

�max3 = �dFN3
r

For larger loads, FB , the rotor begins to decelerate and spin in the other direction as the

rotor cannot supply enough torque to match the load.

The scenario just related describes quadrants I and IV behavior. Loads FB applied in

the negative x-direction yield quadrant II behavior where rotor velocity increases from the

no-load speed to !stator;max up until a limiting negative torque is reached at ��dFNi
r where

i = 1 to 3. Again, we draw dotted lines in the fall-o� region as the exact form of these

curves has not yet been determined.

While Figure 6-16 illustrates how a family of speed-torque curves evolves, for quantifying

a �gure of merit for classifying the performance limits of this class of actuator technology,

we are especially interested in how the stall torque for each curve changes as a function of

FN .

Figure 6-17(a) illustrates the condition of �max1 for a normal force of FN1
. A pressure

distribution, p(x), is generated over the area of contact. At the edge of the contact region,

p(x) = 0. When a braking load of magnitude FBmax1
is applied such that the motor is
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supplying its maximum net torque, then:

�FTnet;max
= �FT1

and all points on the surface of the stator in the region of contact have horizontal velocity

components greater than the rotor velocity, and the no-slip point has reached the edge of

the contact region; xr = xo.

Figure 6-17(b) illustrates the maximum torque condition when the normal force has

been increased to FN3
, where xo =

�
4 . The pressure distribution now extends from xo = ��

4

to xo =
�
4
and has a magnitude such that:

FN =

�

4Z
�

�

4

p (x)dx

For a pressure distribution which is proportional to displacement, most of the total

pressure derives from the region near the apex. When a braking load of FBmax3
is applied,

FTnet;max3
must again be composed solely of contributions from FT1 , and so xr = xo =

�
4
.

As FTnet is related to the normal force by:

FTnet = �dFN = �d

�

4Z
�

�

4

p (x)dx

we realize:

FTnet;max3
> FTnet;max1

since:

FN3
> FN1

Figure 6-18 depicts the geometry of the rotor and stator when the normal force is large

enough that the interpenetration of the rotor is greater than wo. Figure 6-19 illustrates

the resulting pressure distribution and maximum torque condition for this case of FN4

where the contact region has moved beyond xo =
�
4
and encompasses points on the velocity

pro�le where � < 0 and stator horizontal velocity components are pointed in the positive

x-direction.
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Figure 6-17: (a) Normal force FN1
creates a pressure distribution over the region of contact. As

the braking load is made larger and larger, FTnet increases to match it as the rotor slows down and

the no-slip point, xr, moves down the velocity pro�le to xr = xo. (b) For a larger normal force FN3
,

which squishes the rotor and causes it to comply such that xo = �

4
, a larger braking load can be

applied before FTnet;max
is reached, since FTnet is directly proportional to FN . In this case, the onset

of this max condition occurs when xr = xo =
�

4
. At xr =

�

4
, !rotor = 0.
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Figure 6-18: If the rotor deforms more than the amplitude of stator displacement, wo, horizontal

velocity components below � = 0 will work against propulsion of the rotor.
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Figure 6-19: As the normal force is increased such that the area of contact extends beyond

xo =
�

4
, contributions to FTnet are picked up which work against the driving force. However, these

contributions are small, as the pressure is low at the edges of the contact region. The increase in

the magnitude of p(x) near the apex more than o�sets these contributions and can lead to a larger

stall torque, �stall4 , than �stall3 .
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In these regions, the stator has horizontal velocity components opposing the direction of

the velocity of the rotor. However, due to the larger normal force, FN4
, a larger load, FBmax4

,

can be applied than FBmax3
. This condition can occur at a negative velocity where xr = xo

is beyond �
4 . As shown in Figure 6-20, the onset of �max4 occurs at the negative velocity

!stator;min4, the velocity corresponding to the no-slip point, xr, being at the edge of the

region of contact. While �max4 occurs at a negative velocity, the stall torque corresponding

to FN4
is still de�ned as the torque at which !rotor = 0. That is, for cases where �

4 < xo <
�
2 ,

the stall torque occurs at the point where xr =
�
4
.

Note that in this scenerio, �stall4 can be larger than �stall3 , even though the contact

area has extended to regions on the displacement pro�le where stator horizontal velocity

components oppose the direction of the rotor velocity. The reason this is possible is that

while the normal force, FN4
, is larger (and hence FBmax4

is larger) than for the case of

FN3
, the pressure distribution remains primarily over the apex where stator horizontal

velocity components are moving in the same direction as the rotor. Since p(x) has grown

in magnitude, relatively small contributions to the friction force due to the relation:

FTnet = �d

xoZ
�xo

p (x) dx

come from the additional p(x) at the edges of the contact region covered by this new pressure

distribution.

Would it be possible for an even larger normal force, FN5
, to shift the speed-torque curve

in such a way that the new stall torque, �stall5, would be less than �stall4? In this model,

where we assume the stator pro�le to be undistorted and the pressure distribution to be

proportional to that pro�le, larger normal forces will only contribute to a larger FTnet;max

and pick up very little opposition from the edges of the contact region where the pressure

is low. For our model here, we would expect the stall torque to asymptotically reach a

maximum as FN is increased to the point where there is complete interpenetration of the

rotor into the stator, that is, where xo =
�
2
. This case is also illustrated in Figure 6-20.

The variations of stall torque and no-load speed with FN are shown in Figure 6-21. The

fall-o� trend of no-load speed with normal force for �rst quadrant operation is plotted in

Figure 6-21(a) where we see that !no�load decreases as normal force is increased. Comparing

this graph to the corresponding curve for line contact, Figure 6-6 (a), we see that the no-
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Figure 6-20: When the normal force is increased from FN3
to FN4

, the maximum torque, �max4
, is

increased and the onset of this maximum condition occurs at a negative velocity, !stator;min4. Note

that �stall4 can be larger than �stall3 , even though xo >
�

4
. For this model of a non-compliant stator,

further increases in FN never coerce the stall torque to decrease.

load speed for area contact predicts a drop-o� in !no�load with FN as opposed to remaining

constant as in the case for line contact.

Similarly, the stall torque variation with FN is plotted in Figure 6-21(b), where stall

torque reaches a maximum at xo = �
2
. Comparing to Figure 6-6(b), the �stall vs. FN

curve for line contact, we see that the area contact condition asymptotically approaches the

prediction for the line contact case for small applied normal forces, but falls o� for large

FN .

A �stall vs. FN relationship like that originally sought in Figure 6-1(a), where �stall

falls to zero for very large values of FN would not be realized here. Extensions to this

model of area contact with Coulomb friction between a rigid stator and compliant rotor to

incorporate the condition of a compliant stator would lead towards such expectations, but

for now we examine the model here more closely to investigate exactly how the performance

curves develop for various assumptions about the contact mechanics at the interface.
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Figure 6-21: (a) Assuming area contact, Coulomb friction, a rigid stator and compliant rotor, we

can predict that the no-load speed will decrease with normal force from a maximum of !no�load =
vh;max

r
. (b) Stall torque will increase with FN , asymptotically reaching a maximum at xo =

�

2
.
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Figure 6-22: The coordinate system for the model of a cylinder contacting an elastic half space is

centered on a peak at the original top surface of the undeformed stator and the area of contact is

taken as a. The edge of the contact region then, is xo =
a

2
. In the region 0 < x < xr, the horizontal

velocity components of the stator surface points are larger than the rotor velocity. In the region

xr < x < xo, the stator horizontal velocity components are moving slower than the rotor. At xr,

the rotor and stator move at the same speed.

6.3.2 Hertzian Contact Model

Arguing physically, we have found bounds for motor torques and identi�ed contact mech-

anisms for describing how the speed-torque curves shift with normal force. However, the

exact form of the speed-torque drop-o�, marked by the dotted lines in the previous �gures,

needs to be determined by examining the pressure distribution and contact area at the

interface.

In this section, we investigate the e�ects of using a Herztian model of contact [Hertz

1882] to predict the speed-torque characteristics. Figure 6-22 illustrates the coordinate

system used here along with the de�nition of a, the width of the area of the contact region

used in Hertzian theory.

We note that the friction force is related to the rotor speed by:

FT = ��d
xoZ

�xo

4v (x)
j4v (x)jp (x)dx

which is, equivalently:

FT = �2�d
xoZ
0

sgn [4v (x)] p (x)dx
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Figure 6-23: One model for a contact pressure distribution is a cylinder contacting an elastic

half-space. Here, the stator is modeled as a cylinder with an equivalent radius of curvature and the

rotor is modeled as an elastic half-space contacting the cylinder over an area of width a.

where the sgn [4v (x)] function is de�ned as:

sgn [4v (x)] =

8>><
>>:
1 vstator (x) > vrotor

0 vstator (x) = vrotor

�1 vstator (x) < vrotor

and:

vstator (x) = vh;maxcos (kx� !t)

where for this coordinate system, the �gures are again drawn for !t = 0.

Finding the area of contact as parameterized by xo will lead us to the limits of inte-

gration, and our model of the pressure distribution will lead us to p (x). This friction law

will then give us a set of operating points along the speed-torque curve for rotor speeds of

vh;min < vrotor < vh;max. That is, in this section we will be calculating the speed-torque

curves valid for the regions drawn by dotted lines in Figure 6-16 and Figure 6-20.

While there are innumerable models of contact mechanics, and [Johnson 85] gives com-

prehensive coverage in this area, one simple model of contact applicable to the problem

here, is that of Hertzian contact of a cylinder contacting an elastic half-space as shown

in Figure 6-23, where we model the deformed stator as a cylinder of equivalent radius of

curvature. The rotor is modeled as an elastic half-space contacting the cylinder over an

area of width, a, when a force per unit length, FN , is applied. [Young 89] gives the width
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of the area of contact, a, for this model as:

a = 1:60
p
FNDCE

where FN is the applied normal force per unit length, D is the diameter of the cylinder and

CE takes into account materials parameters:

CE =
1� �

2
1

E1

+
1� �22
E2

Here, E1 and E2 are the moduli of elasticity for the two materials at the interface, and

�1 and �2 are their corresponding Poisson's ratios.

This cylinder model will be adequate so long as the undulating stator can be modeled

by the curvature of a cylinder over the region where the stator contacts the rotor. That

is, for values of FN where the rotor interpenetrates only as far as the top half of the

stator's sinusoidally-shaped surface, a cylinder on an elastic half-space model should su�ce.

Certainly for FN such that the interpenetration depth is larger than wo, where the stator

curvature has an in
ection point, we would not expect this model, where a is assumed to

grow as the
p
FN , to apply.

The constants D and CE are determined by wo, the stator de
ection (which in turn

is a function of the applied drive voltage), and the material properties of the frictional

interface. For example, for the case of an aluminum rotor contacting a steel stator, if we

take the modulus of elasticity for aluminum as Eal = 70 GPa, the modulus of rigidity of

aluminum as Gal = 26 GPa, the modulus of elasticity for steel as Estl = 200 GPa and the

modulus of rigidity of steel as Gstl = 77 GPa, Poisson's ratio can be determined from:

G =
E

2 (1 + �)

resulting in �al = 0:35, �stl = 0:38 and CE = 1:68� 10�11m
2

N
.

The diameter of the equivalent cylinder, D, is twice the radius of curvature of the

deformed stator, 2��, which is related to the stator de
ection by:

1

��

=
@
2
� (x; t)

@x2
= k

2
wo =

�
2�

�

�2
wo
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For our prototype motor of Figure 3-5, � = 5:1 mm and wo = 0:1 �m, giving D = 13:2 m.

The contact area for a unit force per length of FN = 1 N
m
works out to be a = 24 �m. That

is, the percentage of contact area of a half-wavelength of the motor is approximately 1% for

unit normal force per length. In terms of the limits of integration of our friction law, this

contact area width, a, is related to xo by:

xo =
a

2

After calculating the width of the contact area, the pressure distribution remains to

be found. The pressure distribution at the interface can also be modeled to various levels

of sophistication [Johnson 85]. Here we assume p (x) is proportional to the transverse

displacement of the stator, � (x; t) = wocos (kx � !t), where, again, the �gure of the stator

has now been drawn for !t = 0. Consequently we take:

p (x) = A [cos (kx) + C]

where A is a function of FN (and therefore xo) with units of N
m2 which satis�es:

FN =

xoZ
�xo

p (x) dx

Here, C is a constant which accounts for the boundary condition that p (x) must equal

zero at x = �xo and x = xo. We �nd C to be:

C = �cos (kxo)

As the pressure distribution is symmetric about x = 0, the expression for the normal force

simpli�es to:

FN = 2A

xoZ
0

[cos (kx)� cos (kxo)]dx

yielding an amplitude of the pressure distribution of:

A =
FNk

2 [sin (kxo)� kxocos (kxo)]
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Now that we have determined p(x), we can substitute it into the equation for the friction

force, FT . The limit of integration, xo, is calculated from the width of the contact region,

a, and is a function of FN :

xo =
a

2
= 0:80

p
FNDCE

The velocity of the stator is:

vstator (x) = vh;maxcos (kx)

giving the friction force acting on the stator as:

FTtotal = �2�dA
xoZ
0

sgn [vh;maxcos (kx)� vrotor] [cos (kx)� cos (kxo)]dx

The net friction force per unit length that the rotor applies to the load is equal and

opposite to the friction forces per unit length acting on the stator, as was shown in Figure 6-

14:

FTnet = �FTtotal

FTnet , then, is:

FTnet = 2�dA

xoZ
0

sgn [vh;maxcos (kx)� vrotor] [cos (kx)� cos (kxo)]dx

Breaking the sgn[ ] function into two integrals, where the stator velocity is greater than the

rotor velocity for 0 < x < xr and less than the rotor velocity for xr < x < xo, the net force

per unit length that the rotor applies to the load becomes:

FTnet = 2�dA

xrZ
0

[cos (kx)� cos (kxo)]dx� 2�dA

xoZ
xr

[cos (kx)� cos (kxo)] dx

which, after integration, simpli�es to:

FTnet =
�dFN

[sin (kxo)� kxocos (kxo)]
[2sin (kxr)� 2kxrcos (kxo)� sin (kxo) + kxocos (kxo)]
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This can be simpli�ed by taking �(x) such that:

� (x) = sin (kx)� kxcos (kxo)

leaving the expression for FTnet as:

FTnet =
�dFN

� (xo)
[2� (xr)� � (xo)]

The no-slip point, xr, is the location along the x-axis at the point where vh;maxcos (kxr) =

vrotor, yielding for linear or angular coordinates:

xr =
1

k
cos

�1

 
vrotor

vh;max

!
=

1

k
cos

�1

 
!rotor

!stator;max

!

The rotor torque per unit length is the product of the net friction force per unit length

and the radius of the motor. After multiplying FTnet by r, we �nd �rotor as a function of xr

and xo:

�rotor =
�dFNr

� (xo)
[2� (xr)� � (xo)]

This is e�ectively the speed-torque equation for the motor, as xr is a function of !rotor.

For a given xo, as determined by the applied FN , xr can be solved for iteratively. The

correct root is the value of xr which satis�es the condition that 0 < xr < xo.

After solving, xr can be converted to !rotor via:

!rotor = !stator;maxcos (kxr)

Plotting �rotor vs. !rotor gives us the desired speed-torque relationship that we were

looking for, as outlined earlier in Figure 6-16. We can use the values taken before, �d = 0:3

for the coe�cient of dynamic friction, k = 1:23� 103 m�1 for the wavenumber, D = 13:2 m

for the radius of the cylinder modeling the stator, r = 3:25 mm for the radius of the motor,

� = 5:1 mm for the spatial wavelength of the motor, CE = 1:68�10�11 m2

N
for the materials

interface parameter, and plot the speed-torque curves for various values of FN . As FN is

increased, the contact area becomes wider and xo therefore becomes larger. Figure 6-24

illustrates speed-torque curves for FN values yielding deformation where xo moves down

the sinusoidal stator pro�le by n�
16

where n ranges from to 1 to 4. At xo =
0�
16
, the rotor and
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Figure 6-24: These are the speed-torque curves for Hertzian contact and Coulomb friction for

di�erent values of FN such that the edge of the contact region, xo, moves down the stator pro�le

from x0 =
�

16
to x0 =

4�

16
.

stator are contacting only along a line at the peak of the wave. At xo =
4�
16
, the rotor has

deformed over the stator from x = ��
4
to x = �

4
. That is, the rotor has deformed over the

top half of the cylinder which is depicted in Figure 6-23.

These curves represent the dotted-line regions predicted in Figure 6-16 for quadrants I

and II behavior. The curves here are graphed out to the point of maximum positive torque

in quadrant I, where they then fall o� vertically at positive stall, and out to maximum

negative torque in quadrant II, where they increase vertically. Note, that as predicted in

Figure 6-16, for large negative torques, the rotor speeds approach !stator;max. Also, we see

that for xo =
�
4 , the onset of maximum torque, �max3 , occurs at !rotor = 0 as predicted in

Figure 6-16.

We can try to continue utilizing this model of a cylinder contacting an elastic half-space

beyond the condition that xo =
�
4 . That is, if we continue with the model of a growing as

p
FN and:

xr =
1

k
cos

�1

 
!rotor

!stator;max

!

then we will �nd speed-torque curves such as those illustrated in Figure 6-25. There we

see that as xo is increased to xo =
5�
16

and so on up to xo =
�
2
the stall torque continues to

increase.

After characterizing the speed-torque curves, we would like to �nd !no�load vs. FN

and �stall vs. FN . The no-load speed, !no�load, can be found by setting �rotor = 0 in the
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Figure 6-25: For Hertzian contact of a cylinder and an elastic half-space, as xo is increased beyond

xo =
�

4
, the speed-torque curves shift such that the no-load speeds decrease while the corresponding

stall torques increase. Here, xo moves down the stator pro�le from x0 =
5�

16
to x0 =

�

2
.

speed-torque equation:

0 =
�dFNr

� (xo)
[2� (xr)� � (xo)]

which reduces to:

� (xr) =
1

2
� (xo)

We solve for xr and convert to !no�load with:

!no�load = !stator;maxcos(kxr)

Since each value of x0 is related to the applied normal force per unit length from:

FN =
1

DCE

�
xo

0:80

�2

the !no�load vs. FN performance curve for the motor as outlined in Figure 6-21(a) can be

found. !no�load is plotted vs. FN in Figure 6-26(a) for the same constants used earlier and

for values of xo ranging from
�
16 to �

2 . We see that !no�load falls o� with FN as expected.

Turning to stall torque, we �nd that the maximum torque per unit length is developed

97



τ

( )
Nm

m
stall

F

( )
N

m
N

(b)

(a)

F

( )
N

m
N

s
ω

( )
rads

no load

8λ
16

8λ
16

7λ
16

7λ
16

6λ
16

6λ
16

5λ
16

5λ
16

4λ
16

4λ
16

0 400003000020000100000

25

20

15

10

5

3λ
16

3λ
16

2λ
16

2λ
16

λ

16

λ

16

0 500004000030000200001000000

6

5

4

3

2

1

0

Figure 6-26: (a) !no�load is plotted versus FN for values of FN creating regions of contact param-

eterized by xo ranging from
�

16
to 8�

16
. (b) The �stall vs. FN curve is plotted for the same values of

FN . �stall is seen to be linear with FN in this model.
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when xr = xo in the speed-torque equation, leaving:

�max = �dFNr = �stall for 0 < xo <
�

4

Again, this is consistent with our physical interpretation in Figure 6-16, where �stall is

directly proportional to FN up to xo =
�
4 . For contact beyond xo =

�
4 , stall torque occurs

when xr =
�
4
.

�stall =
�dFNr

� (xo)

�
2�

�
�

4

�
� � (xo)

�
for

�

4
< xo <

�

2

Simplifying, �stall reduces to:

�stall =
�dFNr

� (xo)
[2� � (xo)] for

�

4
< xo <

�

2

where for Hertzian contact, FN and xo are related by:

xo = 0:80
p
FNDCE

This �stall vs. FN curve is plotted in Figure 6-26(b) for normal forces all the way up to

deformations of xo =
�
2
. We see that for �

4
< xo <

�
2
, �stall increases at a lower rate than

for 0 < xo <
�
4
.

Note that �stall, �rotor and FN have been given throughout as torques and forces per

unit length. For total torque or force magnitudes, these values should be multiplied by b,

the stator width. For the motors of Figure 3-1, b is 3 mm.

The mechanical output power can be calculated as the product of rotor torque and rotor

speed in quadrant I operation (i.e. where rotor torque and rotor speed are both positive:

Pmech = !rotor�rotor

Graphs of output power in this region of operation are shown in Figure 6-27. Peak

output power is shown to occur in the graph for xo = �
2 with a value of approximately

31 W
m

and a torque per unit width of 15 Nm
m

. For the motors of Figure 3-1 where the width,

b, of the stator is 3 mm, and the number of wavelengths in the motor is 4, we �nd maximum

total output power to be 370 mW at a total output torque of 0.18 Nm. In reality, our model

undoubtedly breaks down in regimes of such large normal forces as it does not take into
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account damping and compliance in the stator.

Perhaps more useful �gures to keep in mind would be power and torque at a normal

force corresponding to xo =
�
8
. There we �nd that maximum output power per width for

one wavelength is approximately 11 W
m

at a torque per unit width of 2.5 Nm
m

and rotor

speed of 4.4 rads
sec

(i.e. 42 rpm). For a 3 mm width and 4 wavelengths, total output power is

130 mW and total output torque is 0.030 Nm (i.e. 3.0 kgf-cm or 4.2 oz.-in.). The normal

force here is approximately 8.6 N (i.e. 0.87 kgf or 1.9 lbs.).

The e�ciency for this Hertzian model of area contact can also be calculated. The

e�ciency is the ratio of mechanical power output to power input:

�m =
Pmech

Pin

=
Pmech

Ploss + Pmech

where Ploss is the frictional heating loss which arises from the product of the rotor torque

and the relative velocity of the two surfaces. We formulate Ploss using the same integral as

was taken earlier to �nd the rotor torque, but now multiplying the pressure distribution by

the relative velocity between the rotor and stator in the integrand:

Ploss = 2�dr

xoZ
0

sgn [4! (x)] p (x)4! (x) dx

Here, 4!(x) is the relative velocity between the rotor and stator, !stator � !rotor, and

sgn [4! (x)] is the direction of the relative velocity of the rotor and stator as before:

sgn [4! (x)] =

8>><
>>:
1 !stator (x) > !rotor

0 !stator (x) = !rotor

�1 !stator (x) < !rotor

Splitting the integral into two parts over the separate regions where the relative velocity

changes sign, Ploss expands to:

Ploss = 2A�dr
xrR
0

[cos (kx)� cos (kxo)] [!smcos (kx)� !r]dx

�2A�dr
xoR
xr

[cos (kx)� cos (kxo)] [!smcos (kx)� !r ]dx
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Figure 6-27: (a) Mechanical power output per width, b, of the motor over one wavelength is shown

vs. �rotor for values of xo from �

16
to �

4
for quadrant I operation where �rotor and !rotor are both

positive and the motor is doing work on the external system. (b) The corresponding curves for xo
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4
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2
show that mechanical output power reaches a maximum for a normal force which causes

xo =
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2
.
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where we have used !sm for !stator;max and !r for !rotor. After integration and algebraic

manipulation, Ploss can be expressed in the form:

Ploss =
�dFNr

� (xo)
[2� (xr)� � (xo)]

where we have substituted �(x) for:

� (x) =
1

2
kx!sm +

1

4
!smsin (2kx)� [!smcos (kxo) + !r] sin (kx)� kx!rcos (kxo)

and �(x) is, as before:

� (x) = sin (kx)� kxcos (kxo)

Plugging Ploss and Pmech into our expression for mechanical e�ciency:

�m =
Pmech

Pin

=
Pmech

Ploss + Pmech

�m becomes:

�m =
�rotor!rotor

�dFN r
�(xo)

[2� (xr)� � (xo)] + �rotor!rotor

The mechanical e�ciencies for quadrant I operation of the speed-torque curves of Fig-

ure 6-24 and Figure 6-25 are plotted in Figure 6-28. We see from Figure 6-28(a) that while

maximum e�ciencies decrease with increasing FN , for very light normal forces (i.e. FN such

that xo =
�
16), the maximum e�ciency approaches that for the ideal case of line contact, as

was illustrated in Figure 6-7(b).

6.3.3 Linear Spring Model

In the Hertzian contact model, we used an expression for the contact area that Hertz

derived based on the stress distribution in two contacting cylinders, and we assumed a

pressure distribution that was proportional to the displacement of the rigid stator. Taking

one cylinder to have an in�nite radius produced a contact between a cylinder and an elastic

half-space. The relationship between FN and xo in the Hertzian formula e�ectively provided

a sti�ness of the system.

We can see this via a simpler model which considers the rotor to be merely a distributed

linear spring. While perhaps less accurate, this viewpoint can be helpful in building in-
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tuition. Figure 6-29(a) depicts this model where the rotor has a thickness of hr and a

distributed sti�ness of Kr. The rotor is modeled as a series of springs placed in parallel

along the rotor. That is, the displacement of the rotor at any position, x, is una�ected by

the piece next to it at x + 4x. If the area of contact for a given normal force per unit

length, FN , extends from x = �xo to x = xo, we take the normal force per unit length to

be related to the pressure distribution by:

FN =

xoZ
�xo

p (x) dx

and:

p (x) = Kr [wocos (kx)� wocos (kxo)] for 0 < xo <
�

2

as wocos (kx)�wocos (kxo) is the displacement of each spring at any location x in the region

of contact. Kr here has units of
N
m3 since FN is taken as force per length. For a rotor of

thickness hr, Kr is simply the modulus of elasticity of the rotor divided by its thickness:

Kr =
Er

hr

Carrying out the integral for the normal force, we �nd that FN is related to xo by:

FN =
2Krwo

k
[sin (kxo)� kxocos (kxo)]

Figure 6-29(a) illustrates a contact case where a normal force, FN1
, creates a region of

contact where 0 < xo <
�
2
. For some normal force, FN2

, there will be a contact condition

where xo just equals �
2 as in Figure 6-29(b). For the scenerio where xo = �

2 and FN is

increased further, the pressure distribution becomes dependent upon the degree of com-

pression of the rotor. For this case, we take a coordinate system as shown in Figure 6-29(b)

where the z-axis is pointing down and the origin is centered at the top surface of the rotor

just as the bottom of the rotor is touching the valley of the undulating stator. As the

normal force is increased from FN2
to FN3

as shown in Figure 6-29(c), the displacement of

the spring at xo =
�
2 then becomes hr � d and the resulting pressure distribution is:

p (x) = Kr [wocos (kx)� (hr � d)] for xo =
�

2
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Figure 6-29: (a) This is a model of the rotor as a linear elastic spring with a distributed sti�ness

of Kr . (b) At complete interpenetration, for a given normal force, FN2
, xo equals �

2
. (c) If FN is

increased beyond FN2
, the rotor becomes compressed at all locations x.

Going back to the case where 0 < xo <
�
2
, we see that the pressure distribution for a

linear spring:

p (x)LinSpr = Kr [wocos (kx)� wocos (kxo)] for Kr =
Er

hr

is similar in form to the pressure distribution for Hertzian contact:

p (x)Hertz = A [cos (kx)� cos (kxo)] for A =
FNk

2� (xo)

We can �nd a rotor thickness, hr, that signi�es the equivalence between these two models
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by setting:

p(x)LinSpr = p(x)Hertz

The cosine terms drop out, leaving:

A = Krwo

Substituting in the expressions for A and Kr, hr is found to be:

hr =
2Erwo� (xo)

kFN

This can be simpli�ed further by noting that the Hertzian formulation gave a relationship

between FN and xo of:

FN =
1

DCE

�
xo

0:80

�2

where D was related to wo by the radius of curvature, ��:

D = 2�� and
1

��

= k
2
wo

We �nd the ratio of wo to FN to be independent of D:

wo

FN

=
2CE (0:80)2

k2x2o

Plugging wo
FN

into the expression for hr , hr can be seen to be a function of xo:

hr = 2:56
ErCE

k3

� (xo)

x2o

Thus at a given xo, the Hertzian formulation is equivalent to a linear spring model with a

distributed sti�ness of:

Kr =
Er

hr

= 0:39
k
2

CE

x
2
o

� (xo)

The speed-torque equation for this linear spring model is found by solving the friction

integral:

FTnet = 2�dKrwo

xrZ
0

[cos (kx)� cos (kxo)]dx� 2�dKrwo

xoZ
xr

[cos (kx)� cos (kxo)]dx
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After carrying out the integral, FTnet is:

FTnet =
2�dKrwo

k
� [2sin (kxr)� 2kxrcos (kxo)� sin (kxo) + kxocos (kxo)]

If we again take �(x) such that:

� (x) = sin (kx)� kxcos (kxo)

the expression for FTnet reduces to :

FTnet =
2�dKrwo

k
[2� (xr)� � (xo)]

As the speed-torque equation is simply �rotor = FTnetr, we �nd:

�rotor =
2�dKrwor

k
[2� (xr)� � (xo)]

We are still assuming that the stator is rigid, and so the velocity pro�le remains a cosine

function and xr is, as before:

xr =
1

k
cos

�1

 
!rotor

!stator;max

!

The resulting speed-torque curves are plotted in Figure 6-30 and Figure 6-31. We have
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Figure 6-31: These are the speed-torque curves for larger values of FN such that xo moves down

the stator pro�le from x0 =
5�

16
to x0 =

�

2
.

used the same values for the constants, �d, wo and r, as in the speed-torque plots for the

Hertzian model of Figure 6-24 and Figure 6-25. For Kr =
Er

hr
, we have taken the rotor as

aluminum, where Er = Eal = 70 GPa as before and we have chosen hr so as to make Kr be

the equivalent sti�ness of the Hertzian case for xo =
�
16
. That is, for the k and CE values

used earlier, hr works out to be 0.31 mm and Kr to be 2:3� 1014 N
m3 .

In comparing the speed-torque curves of the linear spring model to the speed-torque

curves of the Hertzian model, we see that while we have set the curves to be the same for

xo =
�
16
, the linear spring model predicts the same no-load speeds for the family of curves,

but predicts larger stall torques for a given interpenetration, xo.

The equivalence of the no-load speed as a function of xo between the two models can

be seen analytically. The no-load speed is calculated by setting �rotor = 0, giving the same

relationship for the Hertzian case:

� (xr) =
1

2
� (xo)

However, the relationship of xo to FN is di�erent here than in the Hertzian case and we

see from comparing Figure 6-32(a) and Figure 6-26(a) where !no�load is plotted vs. FN for

each model, that larger normal forces are required here for each subsequent value of xo after

xo =
�
16
.

The stall torque is also similar to the Hertzian case. For a normal force where 0 < xo <
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xo.
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�
4 , we again have that �stall occurs when xr = xo.

�stall =
2�dKrwor

k
� (xo) 0 < xo <

�

4

In this linear spring model where xo and FN are related by:

FN =
2Krwo

k
�(xo)

the stall torque reduces to:

�stall = �dFNr 0 < xo <
�

4

where �stall is again linearly related to FN .

We have a similar relationship for �stall in the regime of �
4
< xo <

�
2
where �stall occurs

when xr = xo:

�stall =
2�dKrwor

k
[2� � (xo)]

�

4
< xo <

�

2

Substituting the relationship between xo and FN gives the same expression for stall torque

as in the Hertzian case:

�stall =
�dFNr

� (xo)
[2� � (xo)]

Comparing Figure 6-32(b) with Figure 6-26(b), we see that the main di�erence between

the two models is the sti�ness of each system, where for the linear spring model, which is

sti�er, it takes more normal force to achieve the same xo.

Mechanical output power for this linear spring model is again taken as:

Pmech = �rotor!rotor

Figure 6-33 graphs this function vs. �rotor for every operating point along each speed-torque

curve. Comparing to Figure 6-27, we see that for a given xo, power output is uniformly

larger than for Hertzian contact as the ability to apply larger normal forces for a given xo

leads to larger torque outputs and hence larger power outputs.

The expressions for Ploss and �m are also the same as for the Hertzian case and graphs

of e�ciency for the linear spring model are shown in Figure 6-34.
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6.4 Extensions

The models described to this point are useful in building intuition about which assumptions

and constraints impose which kinds of performance behavior. The closed-form solutions de-

veloped to this point do not take into account squashing of the stator deformation. The

normal force pushing the rotor against the stator will act against the piezoelectric actuation

of the stator and create a reduced amplitude of deformation. Approximate solution tech-

niques, such as Rayleigh-Ritz methods, can be used to formulate a model which combines

the various models of contact described in this section with stator squashing. [Hagood and

McFarland 95] have recently implemented such a model using a linear spring contact mech-

anism. Appendix B gives background on these variational techniques and shows simulation

results for the 8mm bulk motors discussed here.
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Chapter 7

Experiments with 8mm Bulk

Motors

7.1 Initial Tests With Early Prototypes

Measuring speeds and torques of microfabricated ultrasonic micromotors such as the one

shown in Figure 2-7, is rather di�cult as the torques are quite small, bearings are not

incorporated into the fragile membrane structures and the fabrication iterations require

signi�cant turn-around time.

Consequently, we have fabricated a number of ultrasonic motors from bulk PZT and

steel parts cut in a machine shop at a scale which is easier to handle than the micromotors

of Figure 2-7 yet still smaller than any commercially available electromagnetic motors. One

Figure 7-1: This is the stator of an 8mm bulk PZT ultrasonic motor. A rotor would be pressed

against the stator. The stator structure shown here has an inner diameter of 5mm with a ring of

piezoceramics bonded to the bottom in a four-wavelength electrode pattern.
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Figure 7-2: Interferometer readings of one place on the stator as the frequency is swept. The

amplitude of out of plane de
ections as the traveling wave moves through the stator is under 1�m

for this 8mm motor.

of these 8mm diameter ring-type motors is shown in Figure 7-1. The idea is to study these

devices, understand the phenomena at the rotor-stator interface, discern design tradeo�s,

and then fabricate a new set of motors using improved thin-�lm PZT developed, in parallel

with these e�orts, at the Pennsylvania State University's Materials Research Laboratory.

Achieving large-area electrode coverage of thin-�lm PZT which is free of pinholes is di�cult,

hence the decision to keep these motors rather small. An 8mm diameter motor was chosen

as a valid tradeo� between ease of handling and testing, and the di�culty of fabricating

large-area thin-�lm PZT devices.

With these bulk 8mm motors, we have been able to study and measure a number

of important characteristics of ultrasonic motors, such as impedance pro�les, out-of-plane

de
ections and speed-torque curves for varying normal forces.

In order to determine which mode shapes correspond to which frequencies, we have

run �nite element simulations and also used an interferometer at the Penn State Materi-

als Research Laboratory [Zhang, Pan and Cross 88] for measuring de
ections. Figure 7-2

illustrates the results of interferometer measurements at one position on the stator as the

frequency was swept from 50kHz through 63kHz. A resonance occurs near 53 kHz and the

maximum de
ection is under 1�m. This graph shows clearly that on either side of reso-

nance, the displacement falls o�. Furthermore, this data emphasizes the need for smooth
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Figure 7-3: Interferometer readings around the stator at one frequency show non-uniform ampli-

tudes of displacements. For traveling wave excitation, all points should see the same amplitude of

de
ection.

interface surfaces. We have found that glass lenses spin much better than brass rotors

turned on a lathe, even after polishing. Subsequent Dektak measurements of surface rough-

ness gave 300�Aaverage surface roughness for the glass rotor, as opposed to 7000�Aaverage

surface roughness for the brass rotor. For out-of-plane displacements of just under 1�m,

the 7000�Aasperities of the brass rotor nearly touch the valleys of the traveling wave.

Interferometric measurements were also performed at one frequency but at equally

spaced points around the perimeter of the stator. Figure 7-3 graphs the resulting mea-

surements of the amplitude of out-of-plane de
ections. For an ultrasonic motor working

on a traveling wave principle, all points along the stator should see equal amplitudes of

displacement. Here, we see non-uniform displacements, a clear area for improvement. This

anomaly could be due to the electrode pattern, which is non-uniform, or to an imperfect

bond.

For measuring speeds and torques under varying normal forces, we contracted to Cete-

hor, the French watch industry's center for research and development in horology, to build

a dynamometer to �t these 8mm motors. Shown in Figure 7-4, the dynamometer is capable

of measuring torque from 0 to 60� 10�4Nm, and normal forces from 0 to 20N. An optical

encoder delivers 6 pulses per motor turn.

When running the motor in the dynamometer with a glass rotor, as the side loads are
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Figure 7-4: This dynamometer, built by Cetehor, measures speeds and torques along a range of

operating points and for varying normal forces. The steel stator, with wires attached, sits just below

a glass rotor. Above the rotor, is an optical encoder with a wrapped string acting as a friction brake.

The string wraps around a leaf spring at the left and attaches behind to an LVDT displacement

transducer. The load on the motor is changed by the knob on the left, which pushes on the leaf

spring. The normal force is adjusted by the knob at the top of the picture which acts on a spring

pushing the rotor against the stator.

increased and the motor delivers more torque, the glass rotor tends to wear and get eaten by

the steel stator. It is important then, not only to have very smooth surfaces, but also hard,

wear-resistant surfaces. After switching to sapphire rotors, we have been able to measure

speed-torque curves for �ve operating points as shown in Figure 7-5. The no-load speed has

been found to be approximately 230rpm and the stall torque was measured to be 3.0 gf-cm

(3:0� 10�4Nm).

All of these experiments yielded insight to the workings of these ultrasonic motors, but

this was only a preliminary pass and an exercise in putting together the appropriate instru-

mentation for characterizing such small motors. Unfortunately, just as the experimental

setup came together, the motors all broke. They delaminated. Having been only assembled

with superglue, the extensive testing on the interferometer while driven at 70V peak caused

the motors to heat up such that the initial stall torques �rst measured became so small as

to be unmeasurable.
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Figure 7-5: Speed and power as functions of torque are shown here for measured operating points

of an 8mm steel stator with sapphire rotor using the Cetehor dynamometer.

7.2 Second Generation 8mm Bulk Motors

After the initial batch of motors passed away, we undertook fabrication of a second gener-

ation of motors incorporating improvements from lessons learned in the �rst experiments.

The goal was to produce as complete a data-set as possible, both to verify proposed models

and to provide useful open-literature real data to other researchers in the �eld.

The second generation of motors was a set whose parameters were chosen using design-

of-experiments techniques. Design-of-experiments methods are another approach to cre-

ating and �tting a model: a statistical-experimental investigation. The large number of

parameters involved in the design of an ultrasonic motor creates a huge design space. Size,

geometry, number of teeth, tooth height, base height, type of ceramic, epoxy composition,

poling �eld, drive voltage, drive frequency, electrode pattern, stator material, surface �nish,

rotor material and normal force are just a few of the parameters to be varied.

Consequently, an experiment consisting of 32 trials, or combinations of stators and

rotors, was set up with stall torque and no-load speed taken as the quality parameters to be

measured. All of the stators maintained the 5mm inner diameter and 8mm outer diameter

dimensions, but the stator designs varied 4 parameters in 8 combinations. Three di�erent

rotor parameters were combined with these basic stator types. The way in which these 7

parameters were varied in the 32 trials was based on design-of-experiments methods which

enable problems of 2n con�gurations to be studied with approximately 2n experiments,
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Figure 7-6: This is the second generation electrode pattern used on the set of 8mm bulk PZT

stators. The pattern at left is laser cut, then poled and reconnected to produce the pattern at right.

In this manner, the entire electroded surface is utilized and the �nal number of wires remains three.

where n is the number of parameters.

7.2.1 Bonds and Electrodes

From the preliminary tests run on the �rst batch of 8mm motors, we learned of a few

problems which we addressed in all motors in the second generation motors. The most

obvious realization was that a higher temperature epoxy was needed. After a number

of trials, we found Masterbond EPTS-10 conductive epoxy to produce a strong laminate.

The second problem addressed was the non-uniformity of out-of-plane displacements. The

electrode pattern used for the �rst set of 8mm motors was a simple pattern that could be

etched by hand with a surgeon's scalpel, poled and reconnected with silver paint, as shown

earlier in Figure 3-6. However in that design, the two phases of standing waves were set up

on opposing halves of the stator and spacer segments of one wavelength were required. For

a four-wavelength motor, fully 25% of the available electrode area was undriven.

In the second generation motors, we switched to a more sophisticated electrode design

which leaves no undriven ceramic and which interlaces the two phases of standing waves.

The new electrode pattern used is shown in Figure 7-6 and was contracted for from Piezo

Systems, Cambridge, MA, and uses PTS-5A ceramic. The pattern on the left is �rst pat-

terned by laser machining with line widths of 1.95mm (7.5mils). The same width spaces

are left at the inner and outer edges. Pairs of neighboring segments are then poled and are

reconnected after poling to produce the �nal pattern as shown on the right in Figure 7-6.

The inner set of segments is then driven 90 degrees out of phase from the outer set of
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segments to produce a traveling wave. Each segment is one quarter wavelength long and so

this pattern of 12 segments produces a three-wavelength ultrasonic motor. First tests with

this electrode pattern bonded onto a steel stator using Masterbond conductive epoxy gave

promising results. Stall torque was measured to be 4.6 gf-cm, 50% higher than any previous

measurement.

7.2.2 Design of Experiments

Due to the large number of parameters involved in ultrasonic motors, we used statistical de-

sign of experiments methods in our second batch of motors. Design-of-experiments methods

are the planning of experiments so that appropriate data is collected which can be analyzed

by statistical methods for formulating objective conclusions [Montgomery 91].

The term \experiment" relates to the entire set of 32 trials, or runs. There are 7

parameters, or factors, chosen to be varied: 4 pertaining to the stator and 3 pertaining to

the rotor. The 4 stator parameters are the tooth height, the base height, the number of

teeth and the stator material. For the rotor, we vary the rotor material, the rotor liner and

the lubrication. Voltage and phase are kept constant throughout all the runs. Each motor

is run at its third mode resonant frequency and the normal force is adjusted to extract the

maximum stall torque or no-load speed.

We use what is known as factorial design, speci�cally a factor of two design. That is,

each parameter is assigned one of two binary possibilities, denoted as `+' and `-'. The stator

and rotor parameters are assigned the values shown in Figure 7-7.

The stator tooth height is either 30 mils (0.76 mm) or 50 mils (1.3 mm). The base

height of the metal below the teeth is either 10 mils (0.25 mm) or 15 mils (0.38 mm). The

number of teeth in the stator is either 24 teeth or 36 teeth, and the stator material can be

either aluminum or stainless steel.

The rotor parameters are the material composing the rotor (sapphire or 01 tool steel

hardened to a Rockwell C scale hardness of 64), the rotor liner (no liner or kapton tape)

and the lubrication (no oil or WD-40 oil)

For seven parameters, 27 possible combinations result. A fractional factorial design

selects a subset of these possibilities and aliases some of the e�ects. The idea is to alias

the main e�ects with higher-order interaction e�ects which can be considered negligible.

Interactions that can be assumed, a priori, to have signi�cant e�ects may be left in the
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Parameters
- +

1 Tooth Height 30 mils (0.76 mm) 50 mils (1.3 mm)

2 Base Height 10 mils (0.25 mm) 15 mils (0.38 mm)

3 #Teeth 24 36

4 Stator Material 6061 Aluminum 304 Stainless Steel

5 Rotor Liner None Kapton

6 Rotor Material Hardened 01 Tool Steel Sapphire

7 Lubricant None WD-40 Oil

Figure 7-7: The stator and rotor parameters in the designed experiment are one of two possibilities

each.

design set unaliased and accounted for in the analysis.

If we seek to perform a smaller number of runs than the 27 possible, say 32, we can

formulate a one-quarter fraction factorial design, denoted as a 2k�2 design, where in this

case k = 7. Figure 7-8 illustrates the appropriate mapping of the 25 combinations. The

�rst three factors, tooth height, base height and the number of teeth (denoted v1, v2 and

v3 respectively) are assigned all possible (23) combinations of levels. The fourth factor, the

stator material, is assigned to the combination that is equivalent to the interaction between

v2 and v3, which is assumed insigni�cant. Note that column v23 is the product of columns

v2 and v3. In this way, four parameters can be studied with 8 runs. Figure 7-8 illustrates

the designed experiment.

If it is judged that some interactions will be signi�cant, they are explicitly left in ad-

ditional columns of the matrix, to be taken into account in the analysis of the measured

response. For the response, we measure both stall torque and no-load speed. The average

column is also included to account for common mode results in each trial.

Each row of Figure 7-8 represents a speci�c motor trial. Row 1 signi�es a motor trial

where the stator has a tooth height of 50 mils, a base height of 15 mils, 36 teeth and is

made out of steel. The rotor is sapphire with a kapton liner and has a WD-40 oil lubricant.

Row 2 signi�es the same stator and same rotor, but no lubrication, and so on.

Note that the stator material parameter, Smat or v23, is aliased with the interaction

between v2 and v3. Thus we have assumed the interaction between the base height and the

number of teeth is insigni�cant.

For each trial, a response was measured: maximum stall torque and maximum no-load

speed, as the normal force was varied. The set of motors fabricated is shown in Figure 7-
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8 mm Bulk PZT Ultrasonic Motor Experiment Design
Avg v1 v2 v3 v23 v4 v5 v6 

Tooth Base #Teeth Smat Liner Rmat Oil

1

Violet

+ + + + + + + +

2 + + + + + + + -

3 + + + + + + - +

4 + + + + + + - -

5

Fucia

+ + + - - + + +

6 + + + - - + + -

7 + + + - - + - +

8 + + + - - + - -

9

Tan

+ + - + - - + +

10 + + - + - - + -

11 + + - + - - - +

12 + + - + - - - -

13

Blue

+ + - - + - + +

14 + + - - + - + -

15 + + - - + - - +

16 + + - - + - - -

17

Green

+ - + + + - + +

18 + - + + + - + -

19 + - + + + - - +

20 + - + + + - - -

21

Yellow

+ - + - - - + +

22 + - + - - - + -

23 + - + - - - - +

24 + - + - - - - -

25

Orange

+ - - + - + + +

26 + - - + - + + -

27 + - - + - + - +

28 + - - + - + - -

29

Grey

+ - - - + + + +

30 + - - - + + + -

31 + - - - + + - +

32 + - - - + + - -

Figure 7-8: This one-quarter fraction factorial design selects 32 trials out of a possible 27. The

4-row blocks, given names as the colors violet, fucia, tan, �blue, green, yellow, orange and grey,

signify the 8 di�erent stators that we have manufactured.
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Figure 7-9: This set of eight di�erent 8mm diameter stators was fabricated for the designed

experiment. Two di�erent rotors, with and without liners and/or lubricants combined to make a

32-trial experiment.

9. Design-of-experiments methods provide for a way of analyzing the data and computing

both quantitative and qualitative conclusions. [Fieguth, Spina and Staelin 94] describe a

software tool for assisting in setting up the design matrix and in processing the results of

the trials. A regression analysis is performed on the matrix of plus ones and minus ones,

the vector of unknown factor e�ects and the vector of measured responses. Thus a number

is assigned to each of the columns and is the weight in the resulting predictor polynomial

for the optimum response. A qualitative result, a sequence of +�+��++ values is also

determined. This string refers to the optimum combination of variables for obtaining the

minimum response, (negative signs are simply input with the measured stall torques and

no-load speeds in order to �nd the maximum response) and this combination may not be

one of the trials.

7.2.3 Fabricating Bulk PZT 8mm Motors

In order to perform these experiments with the new electrode pattern, a more sophisticated

process had to be developed for etching the electrode pads. Laser machining o�ered the

potential of a fast, mask-free, process which is ideally suited for building prototypes and

changing designs quickly. However, signi�cant amounts of testing had to be done to �nd
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Figure 7-10: PZT-5A material has been cut and etched by Piezo Systems, Cambridge MA, with

the electrode pattern required for poling. The dot signi�es that pad was poled with positive voltage

on that side.

the appropriate laser parameters for both cutting through the thickness of the PZT and for

etching the top electrode without burning the material.

We did extensive tests with both YAG and excimer lasers through Laser Services, West-

ford MA, with limited success. Both laser processes tended to chip and burn the ceramic

at the edges of the cuts. Nickel-coated PZT-5A from Piezo Systems, Cambridge MA, was

somewhat easier to machine than silver-coated PZT-4 from Transducer Products, Goshen

CT, as the silver electrode tended to melt at a lower temperature.

We contracted to Piezo Systems to provide PZT-5A cut in the 8mm rings and etched

with the electrode pattern of Figure 7-6. They used a proprietary laser-machining process

and the results are shown in Figure 7-10. These parts are free from burn marks and the

ceramic has been successfully poled and used in the second generation of motors.

After this pattern is poled, we reconnect segments by painting conductive epoxy over

the appropriate etch. This was done by hand, and details of the procedure and other

aspects of the manufacturing process are given in [Franck 95]. We also experimented with

a laser direct-write system with the assistance of Dr. Daniel Ehrlich at the MIT Lincoln

Laboratory Solid State Division. The laser-direct writing process was also able to perform

the reconnect.

Once the electrode interconnect was complete, wires were attached to each of the inner

and outer sets of pads. A third wire was soldered to the side of the stator for a ground
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contact. Stainless steel stators were not troublesome in this regard, but the aluminum

stators were. In order to solder to the aluminum stator, we conductive-epoxied brass shims

to one small patch of the stator and then successfully made solder contacts to the shims for

ground leads.

The stator teeth are polished on very �ne sandpaper to make them all of uniform surface

�nish. We performed Dektak experiments to characterize the surface �nishes of both the

stators and the rotors and results are shown later.

Once the stators were completed, the rotors were placed on top of the stators and the

combination was then placed into the dynamometer shown in Figure 7-4. The metal head

above the optical encoder can be moved up vertically to allow for positioning the motor.

Then the head is lowered and normal forces are adjusted by the normal force knob at the

top of the dynamometer. The dynamometer provides the bearing for the motor. That

is, the rotor and stator are two separate pieces and do not work as a motor outside of the

dynamometer. We have postponed developing bearings and building up discrete component

motors until the surface interactions and normal force conditions are better characterized.

This technique of using the dynamometer as the bearing allows easy switching between

rotor and stator combinations for the 32 trials in the experiment.

7.3 Results From Second Generation 8mm Motors

7.3.1 Design of Experiments Results

The 32 trials in the experiment were run on the Cetehor dynamometer and the normal force

and side loads were adjusted to �nd the maximum stall torque and no-load speeds. Each

motor was run at its resonance frequency with a peak voltage of 60V and the two phases

of the drive signal were set 90 degrees apart.

The results of the experiment are tabulated in Figure 7-11. It was found that the motors

did not work at all when WD-40 lubricant was applied. Consequently, every other row in the

table has a zero result. This means that the matrix can be recast as a 16-trial experiment

where the oil parameter column is removed as shown in Figure 7-12, where the frequency

and normal forces are also noted.

Figure 7-12 shows that stator Green (0.76mm tooth height, 0.38mm base height, 36

teeth, made out of stainless steel), in combination with an unlined sapphire rotor and no
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Design of Experiments Results:  Stall Torques and No-load Speeds
Stator Liner Rmat Oil

Max Stall Torque
(gf-cm)

Max No-load Speed
(rpm)

1 Violet Exp 1 + + + 0 0

2 Violet Exp 2 + + - 4.7 1660

3 Violet Exp 3 + - + 0 0

4 Violet Exp 4 + - - 4.8 1600

5 Fucia Exp 1 + + + 0 0

6 Fucia Exp 2 + + - 5.5 1750

7 Fucia Exp 3 + - + 0 0

8 Fucia Exp 4 + - - 4.5 1610

9 Tan Exp 1 - + + 0 0

10 Tan Exp 2 - + - 2.7 746

11 Tan Exp 3 - - + 0 0

12 Tan Exp 4 - - - 3.4 893

13 Blue Exp 1 - + + 0 0

14 Blue Exp 2 - + - 4.7 787

15 Blue Exp 3 - - + 0 0

16 Blue Exp 4 - - - 4.6 813

17 Green Exp 1 - + + 0 0

18 Green Exp 2 - + - 10.0 870

19 Green Exp 3 - - + 0 0

20 Green Exp 4 - - - 8.4 781

21 Yellow Exp 1 - + + 0 0

22 Yellow Exp 2 - + - 5.3 800

23 Yellow Exp 3 - - + 0 0

24 Yellow Exp 4 - - - 5.6 840

25 Orange Exp 1 + + + 0 0

26 Orange Exp 2 + + - 4.8 1060

27 Orange Exp 3 + - + 0 0

28 Orange Exp 4 + - - 4.6 1100

29 Grey Exp 1 + + + 0 0

30 Grey Exp 2 + + - 4.3 885

31 Grey Exp 3 + - + 0 0

32 Grey Exp 4 + - - 5.3 901

Figure 7-11: Resulting stall torques and no-load speeds for the designed experiment.
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Design of Experiments Results:  Stall Torques and No-load Speeds
Stator Liner Rmat

Frequency
(kHz)

Max Stall Torque
(gf-cm)

@FN
(gf)

Max No-load Speed
(rpm)

@FN
(gf)

1 Violet Exp 2 + + 44.5 4.7 62 1660 6.9

2 Violet Exp 4 + - 44.5 4.8 66 1600 11

3 Fucia Exp 2 + + 55.5 5.5 81 1750 11

4 Fucia Exp 4 + - 55.5 4.5 97 1610 4.8

5 Tan Exp 2 - + 38.0 2.7 38 746 4.1

6 Tan Exp 4 - - 38.0 3.4 40 893 21

7 Blue Exp 2 - + 35.5 4.7 76 787 35

8 Blue Exp 4 - - 35.5 4.6 83 813 14

9 Green Exp 2 - + 57.7 10.0 110 870 6.9

10 Green Exp 4 - - 57.7 8.4 110 781 30

11 Yellow Exp 2 - + 63.0 5.3 66 800 6.9

12 Yellow Exp 4 - - 63.0 5.6 59 840 2.8

13 Orange Exp 2 + + 47.4 4.8 97 1060 17

14 Orange Exp 4 + - 47.4 4.6 97 1100 14

15 Grey Exp 2 + + 42.2 4.3 94 885 17

16 Grey Exp 4 + - 42.2 5.3 110 901 14

Figure 7-12: Resulting stall torques and no-load speeds for the designed experiment with the oil

parameter removed. Stator Green, in combination with an unlined sapphire rotor and no lubricant,

produced the largest stall torque: 10 gf-cm. Stator Fucia, with a kapton-coated sapphire rotor and

no lubricant, produced the highest no-load speed: 1750 rpm.

lubricant, produced the largest stall torque: 10.0gf-cm. Stator Fucia (1.3mm tooth height,

0.38mm base height, 24 teeth, made out of aluminum), with a kapton-coated sapphire rotor

and no lubricant, produced the highest no-load speed: 1750 rpm.

The factorial design model represents a quality measure of a system as a linearly weighted

sum of the parameters of the system where the parameters are valued as either +1 or -1.

For instance, the quality measure for each row of the experiment shown in Figure 7-8 would

be represented as:

Quality Measure=Wavgvavg +W1v1 +W2v2 +W3v3

+W23v23 +W4v4 +W5v5 +W6v6

where vn is +1 or -1, depending on the trial, and the weights, Wn, are found from a

regression analysis after performing all trials (measuring stall torques, for instance).

The analysis was performed using a software tool [Fieguth, Spina and Staelin 94] devel-

oped in the MIT Leaders for Manufacturing Program which not only determines the weights,

Wn, for the predictor polynomial, but also performs a search through the parameter space

for the optimal combination of parameters to minimize the quality factor measured.
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For the maximum stall torque quality measurement, the analysis results are as follows

(maximum stall torque data were input as negative values for maximizing the result):

Experiment Analysis Program.

Matrix Identification Code: tes114

Regression Matrix

Coeff Column

-5.200000 Average Quality

0.837500 var1 ( var2-var4 )

-0.900000 var2 ( var1-var4 var3-var23 )

-0.225000 var3 ( var2-var23 )

-0.650000 var23 ( var2-var3 )

0.387500 var4 ( var1-var2 )

-0.050000 var5

0.687500 (unassigned) ( var1-var3 var23-var4 )

0.312500 (unassigned) ( var1-var23 var3-var4 )

0.012500 (unassigned) ( var1-var5 )

-0.225000 (unassigned) ( var2-var5 )

0.037500 (unassigned) ( var4-var5 )

-0.075000 (unassigned) ( var3-var5 )

0.312500 (unassigned)

-0.025000 (unassigned) ( var23-var5 )

0.062500 (unassigned)

Optimal Parameter Assignments:

var1 var2 var3 var23 var4 var5

- + + + - +

Optimized Quality: -8.250000

Free Parameters: 9

RMS Unconfidence: 0.284861

The predictor polynomial for maximum stall torque then is:

�stall;max = �5:200 + 0:8375v1� 0:9000v2� 0:2250v3� 0:6500v23+ 0:3875v4� 0:0500v5

where the vn represent +1 or -1 values for tooth height, base height, the number of teeth,

the stator material, the rotor liner and the rotor material, respectively, for each trial motor.

Plugging in any other combination of parameters will yield a predicted value of stall torque

based on the regression analysis of the prototypes fabricated.

The analysis also performs a search through the space of combinations and �nd the
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combination \{+++{+", which refers to stator Green, with an unlined sapphire rotor as

the optimal con�guration for maximizing stall torque. This combination happens to be

one of the trials performed, but in general the predictor string may point to an untried

combination.

The maximum no-load speeds were also analyzed and the results were found to be:

Experiment Analysis Program.

Matrix Identification Code: tes114

Regression Matrix

Coeff Column

-1068.500000 Average Quality

-163.875000 var1 ( var2-var4 )

-170.375000 var2 ( var1-var4 var3-var23 )

-20.250000 var3 ( var2-var23 )

31.375000 var23 ( var2-var3 )

-252.250000 var4 ( var1-var2 )

-1.250000 var5

27.875000 (unassigned) ( var1-var3 var23-var4 )

-14.000000 (unassigned) ( var1-var23 var3-var4 )

-2.125000 (unassigned) ( var1-var5 )

-29.875000 (unassigned) ( var2-var5 )

-16.750000 (unassigned) ( var4-var5 )

6.000000 (unassigned) ( var3-var5 )

19.125000 (unassigned)

-12.125000 (unassigned) ( var23-var5 )

7.000000 (unassigned)

Optimal Parameter Assignments:

var1 var2 var3 var23 var4 var5

+ + + - + +

Optimized Quality: -1707.875000

Free Parameters: 9

RMS Unconfidence: 17.475031

Here, the predictor polynomial for maximizing no-load speed turns out to be:

Nno�load;max = �1069� 163:9v1� 170:4v2� 20:25v3+ 0:31:38v23� 252:3v4 � 1:25v5

In this case, the predictor variable string is \+++{++", which is a di�erent combination

than any of the trial motors built. This suggests that the next experiment would be to
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fabricate such a stator: tall teeth, large base height, large number of teeth, made out of

aluminum, with a kapton-coated sapphire rotor, and check. Additionally, replicates should

be made of Fucia, as Fucia Experiment 2 actually gave a higher no-load speed, 1750rpm,

than the predictor polynomial for the indicated optimal parameter string.

7.3.2 Speed-Torque Curves

Two complete replicate sets of the eight stators have been fabricated, but the second set

has not yet been tested. Of the �rst replicate set, all motors were measured for maximum

no-load speed and maximum stall torque, as discussed in the previous section. Here we

refer to stators in the �rst replicate set as Violet1, Fucia1, Tan1, and so on. Stators in the

second replicate set will be referred to as Violet2, Fucia2, Tan2, etc.

In addition to measuring maximum no-load speeds and maximum stall torques, three

trial motors of the �rst replicate set have been tested across a spectrum of operating points:

Yellow1 Experiment 2 (unlined sapphire rotor), Grey1 with an unlined sapphire rotor and

Fucia1, also with an unlined sapphire rotor. These complete speed-torque curves are shown

below in this section for a constant drive voltage of 60V peak as the normal force is varied.

7.3.3 Yellow1

Figure 7-13(a) illustrates four speed-torque curves for Yellow1 Experiment 2. The Yellow1

stator is an aluminum stator of 24 teeth, with a tooth height of 0.76mm and a base height

of 0.38mm. The rotor in this run was an unlined sapphire rotor.

It can be seen in Figure 7-13(a), that as the normal force is increased, the no-load speeds

fall o� and the stall torques increase. For a normal force of 55 gf, the stall torque is 5.2 gf-cm.

However, as the normal force is increased to 69 gf, as shown in Figure 7-13(b), the no-load

speed continues to drop but the stall torque does not increase. It falls to 4.6gf-cm. No-

load speed versus normal force is plotted in Figure 7-14(a) and stall torque versus normal

force is plotted in Figure 7-14(b). The no-load speeds fallo� as predicted in Figure 6-21,

but the stall torque was predicted in Figure 6-20 to reach an asymptotic value, under the

assumption of a rigid stator. Here we see the e�ect of stator squashing come into play for

large normal forces and the stall torque decrease with increasing normal force.

By multiplying speed and torque we can �nd the power versus torque pro�les. Figure 7-

15 shows that the peak mechanical output power for Yellow Experiment 2 is 12mW.
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Figure 7-13: (a) The �rst four speed-torque curves of Yellow Experiment 2 (stator Yellow1 run

with an unlined sapphire stator) are shown here with second order regression polynomial curves �t

onto the scatter plot. (b) As the normal force is increased from 55 gf to 69gf in Yellow Experiment

2, the stall torques stops increasing and begins to decrease.
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Figure 7-14: (a) The no-load speed versus normal force curve shows a dropo� as predicted. (b)

Stall torques versus normal force are plotted here for Yellow Experiment 2. The decrease in stall

torque for large normal forces indicates squashing of the stator.
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Figure 7-15: Power versus torque is plotted with curve �ts. The maximum mechanical output

power is 12mW and occurs at a normal force of 28 gf.

7.3.4 Fucia1

The largest no-load speeds in the trial motors of the designed experiment were exhibited by

stator Fucia1 which was made of aluminum, had 24 teeth, a tooth height of 1.3mm and a

base height of 0.38mm. Although the designed experiment speci�ed a kapton liner for both

Fucia1 Experiment 2 and Fucia1 Experiment 4, we also experimented with unlined rotors

and found that plain sapphire rotors produced very high speed motion.

Figure 7-16 illustrates speed-torque curves for data taken at various normal forces for

operating points closer to no-load speed than stall, in order to measure output power quickly.

Figure 7-17 depicts the resulting power vs. torque curve for Fucia1. Second order

polynomial regression curve �ts are also shown. The peak power is produced at a normal

force of 28 gf and was measured to be 27mW.

To recognize the signi�cance of this amount of output power, it is interesting to compare

this ultrasonic motor to the smallest commercially available component electromagnetic

DC motor. In the MIT Mobile Robot Group at the Arti�cial Intelligence Laboratory, we

typically use Namiki DC motors for small mobile robot applications. These motors are

7mm in diameter and 16mm tall. They are speci�ed [Namiki 92] to have a stall torque

of 1.8gf-cm and a no-load speed of 12,000rpm. Taking output power as one-quarter of

the product of no-load speed and stall torque gives a peak output power of 57mW. Thus

this ultrasonic motor, Fucia1 with a plain sapphire rotor, produces approximately half the

output power of a Namiki motor in 1/6 the volume. Even more importantly, this power
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Figure 7-16: Speed vs. torque curves for Fucia1 run with an unlined sapphire rotor (not a trial in

the designed experiment) show very large no-load speeds. The peak speed here is 2080 rpm.
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Figure 7-17: The power vs. torque curves for Fucia1 running with an unlined sapphire rotor

give the largest mechanical output powers of any motors fabricated here. Peak output power was

measured to be 27mW at a normal force of 28 gf.
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is delivered at a much lower speed and higher torque, a better impedance match for most

real-world applications.

7.3.5 Grey1

The motor we have collected the most extensive data set on is stator Grey1 with a plain

sapphire rotor. Speed-torque curves were measured at seven di�erent normal forces ranging

from FN=28gf to 97 gf. The drive voltage was again 60V peak and the frequency was

42.2kHz as noted earlier in Figure 7-12.

If we look back to the speed-torque curves of Figure 7-5, we can compare the number

of operating points we were able to resolve on the early prototypes with the number of

operating points and speed-torque curves on this second generation batch. The stall torques

are approximately a factor of three larger and half a dozen speed-torque curves at di�erent

normal forces are resolvable before the stator is completely squashed down. This is likely due

to larger displacements of the stator resulting from improved bonds and electrode patterns.

The �rst four speed torque curves are shown in Figure 7-18(a). The no-load speeds

decrease with normal force as the stall torques increase, similarly to Figure 7-13(a). As

the normal force is increased from 69gf to 83 gf, the stall torque grows from 8.4 gf-cm to

8.9 gf-cm. However, as the normal force is increased further to 97 gf-cm, the stall torque

falls o� to 7.9 gf-cm.

The stall torques and no-load speeds are plotted versus normal force in Figure 7-19. The

curves develop in much the same manner as for Yellow1 Experiment 2 shown in Figure 7-

14. Again, we see no-load speed drop o� with increased normal force. Stall torques also

increase with normal force up until a point where stator squashing causes the stall torque

to decrease.

The mechanical output power curves can then be calculated and are shown in Figure 7-

20. The peak output power is 16mW at a normal force of 69 gf. The speed-torque operating

point is 368rpm at a load torque of 4.2 gf-cm. Again, this low-speed, high-torque operating

point at maximum power compares favorably with electromagnetic motors such as the

Namiki DC motor which is commonly used as a vibration alarm in silent pagers. In the

pager application, a geardown is not required, simply an eccentric cam to promote shaking.

In fact, Namiki motors are not even available with gearboxes. Gearing them down to useful

torques and speeds to drive a small robot requires building custom gearboxes.
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Figure 7-18: (a) The �rst four speed-torque curves for motor Grey1 with an unlined sapphire

rotor, with regression curves. (b) Fifth, sixth and seventh speed-torque curves for motor Grey1

show maximum stall torques of 8.9 gf-cm.
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Figure 7-19: (a) No-load speed versus normal force curve for motor Grey1. (b) Stall torque versus

normal force for motor Grey1.
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Figure 7-20: (a) The �rst four power versus torque curves for motor Grey1. (b) Fifth, sixth and

seventh power versus torque curves for motor Grey1. Peak output power of 16mW occurs at a load

torque of 4.2 gf-cm under a normal force of 69gf.
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Figure 7-21: (a) The plot of the magnitude of impedance versus frequency shows a resonance at

43.6kHz and an antiresonance at 44.4kHz for the inner electrode. (b) The phase of the impedance

shows a resonance near 44kHz and capacitive characteristics away from resonance.

7.3.6 Magnitude and Phase of Impedance and Damping Measurements

All the speed-torque curves just displayed for stator Grey1 were measured at 42.2kHz,

the frequency which produced the largest stall torque. Due to the piezoelectric e�ect, the

mechanical resonance can be viewed electrically, as was discussed in Figure 4-1.

A Hewlett Packard 4192A Low Frequency Impedance Analyzer, which was frequency

swept via General Purpose Interface Bus control from an IBM 755C Thinkpad laptop run-

ning Labview instrumentation software, was used to measure the magnitude and phase of

both the inner and outer electrodes on stator Grey1 as shown in Figure 7-21.

The magnitude of the impedance reaches a minimum at 43.6 kHz and a maximum at
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Figure 7-22: The turn-o� transient of stator Grey1 from a 60V peak drive at 42.2kHz displays an

initial increase in voltage due to the piezoelectric e�ect, and than a damped response down to zero.

44.4kHz for the inner electrode. The outer electrode is closely matched. Initial prototypes

with the �rst electrode pattern often did not display such uniformity, most likely due to

the fact that the ceramics then were ground by hand and etched with a surgeon's scalpel.

These laser-etched ceramics, even though the two electrode areas are very slightly di�erent,

display a better matching of resonance conditions.

The damping of the unloaded stator can be measured either from the frequency response

or from the time-domain transient response. Figure 7-22 illustrates the turn-o� transient

from an initial excitation of 60V peak at 42.2kHz. The quality factor, Q, can be measured

from the turn-o� transient. Q is de�ned as the number of radians in the signal in the time

it takes to reach 1
e
of its initial value [Staelin, Morgenthaler and Kong 94].

Figure 7-22 shows that the two drive signals, sin and cos, are not perfectly matched

in their damping characteristics. The channel driving the outer electrode is trace 1 at the

top of the oscilloscope display. Using the zoom feature to examine the waveform, it was

found that the signal decayed to 1
e
in 240�s. At 42.2kHz, or 265,000 rads

sec
, the Q of this

signal works out to be on the order of 63. The damping coe�cient, �, de�ned by Q = 1
2�

is then � = 0:8% For the second trace, at the bottom of the oscilloscope display, the signal
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Figure 7-23: The interferometer used to measure displacements on the 8mm diameter stators.

The stator is mounted on the vertical X-Y stage at left such that the laser spot hits the surface of

a stator tooth for measuring out-of-plane de
ection.

decays to 1
e
of its value in 460�s, yielding a Q of 122 and a damping coe�cient of � = 0:4%.

The value of Q is the dynamic ampli�cation factor by which the static de
ection will be

multiplied at resonance. As the two electrode patterns yield di�erent quality factors, we

can expect that each electrode pattern will contribute di�erent amplitudes of de
ection to

the traveling 
exure wave.

7.3.7 Interferometric Displacement Measurements

To get further insight into the mechanisms underlying torque production in ultrasonic mo-

tors, we put together a Michelson interferometer to measure out-of-plane displacements of

the stators. The interferometer is illustrated in Figure 7-23. The motor can be seen at

left mounted on a vertical X-Y stage. The laser is at far right, a polarized beamsplitter

with two attached quarter-wave plates is shown at the center and an adjustable polarizer

is shown o� to center-right. The detector is o� the photo beyond the adjustable polarizer.

Also out of the picture is the reference-arm mirror of the interferometer which would be

across from the adjustable polarizer. A microscope objective is usually placed between the

beamsplitter and the stator to focus the beam onto the small surface area of a stator tooth,

but is left out of the photo so that the stator can be seen. A spatial �lter and collimating
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Figure 7-24: Interferometer measurements of displacement on stator Grey1 at 11 o'clock. The

stator is driven at 60V peak and at 42.2kHz. The big blips in the lower trace mark the turn-around

points from when the stator de
ection changes from moving away from the laser beam to moving

towards it. The fringes in between two big blips then yield the peak-to-peak displacement of the

motor. Notice that the motor has a peak-to-peak displacement once per drive period.

lens has also been added between the laser and beamsplitter to �lter out the structure from

the laser light. The entire optical setup is mounted on a vibration-isolated optical table in

a basement laboratory. Our original setup on the ninth 
oor of the Arti�cial Intelligence

Laboratory, with subway trains running underneath, was far too shaky of an environment

to achieve interference.

The stator is mounted on the X-Y stage in a free-free manner, much as it is mounted in

the dynamometer when speed-torque measurements are taken. In Figure 7-23 the motor can

be seen mounted such that the surface of the stator, which would normally be contacting

the rotor, is facing the laser spot. The stator is held in place merely by a piece of tape

across the lead wires. A piece of kapton tape is placed below the stator on the X-Y stage

to prevent electrical shorting by the stage. The only other attachment holding the stator

�xed is a thin piece of kapton tape placed over one tooth of the stator at approximately six

o'clock. This is also visible in Figure 7-23 as the long piece of tape hanging down o� the

stator. The stator is mounted in this manner so as to permit as much vibration as possible

while preventing rigid body translation or rotation.
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Figure 7-25: (a) Interferometer data showing the magnitude of the displacement at one point on

the stator, at 42.2kHz, as the voltage is swept from 20V peak to 70V peak. (b) Interferometer

data showing the magnitude of the out-of-plane displacement at one location on the motor as the

frequency is swept from 1kHz through 90kHz. A resonance is clearly visible.
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The fringe pattern resulting from driving the unloaded stator is shown in Figure 7-24.

The top trace is one phase of the stator drive signal and the bottom trace is the output

of the interferometer's detector. Fringes between turn-around blips on the trace can be

counted to �nd the peak-to-peak out-of-plane displacement of the stator. A helium-neon

laser of 632.8nm wavelength is used in the interferometer. Half the fringe count times the

wavelength gives the amplitude of the displacement. Here, the stator is driven at 42.2kHz,

60V peak excitation. The laser spot is focused on a tooth positioned at approximately 11

o'clock. While the outer diameter of the stator is 8mm and the inner diameter is 5mm, the

teeth are canted at such an angle that the actual 
at part of the tooth is 0.5mm wide in

the radial direction. That is, the inner edge of the top 
at part of the tooth is at a radius

of 3.0mm from the center of the stator and extends to a radius of 3.5mm. The spot size of

the laser is small enough to take about two readings per tooth.

Figure 7-25(a) illustrates how the out-of-plane de
ection changes with applied voltage

at a frequency of 42.2kHz. The displacement grows from 1.6�m at 20V to 4.5�m at 70V.

Figure 7-25(b) shows the displacement on the same tooth of the stator, at a drive voltage

of 60V peak, as the frequency is scanned. A peak displacement of 5.3�m is achieved at

41.0kHz.

If we leave the stator drive voltage �xed at 60V peak and the drive frequency �xed at

42.2kHz and move the X-Y stage such that the laser beam sequentially measures displace-

ments on each tooth of the stator, we see fringe patterns like those shown in Figure 7-26.

Whereas Figure 7-24 was the result of focusing the beam on a tooth at approximately 11

o'clock, Figure 7-26(a) and Figure 7-26(b) illustrate fringe patterns resulting from the beam

being focused on teeth at 12 o'clock and 1 o'clock around the stator, respectively. By count-

ing fringes, we �nd displacements of 4.9�m, 4.9�m and 3.9�m at 11-, 12- and 1 o'clock

respectively.

Notice that the turn-around blips move to the left, with respect to the reference drive

signal in the top trace, in subsequent readings from Figure 7-24, Figure 7-26(a) and Figure 7-

26(b). This phase change signi�es where the maximum displacement points are with respect

to each other as the circumference of the motor is scanned. That is, if we measure the

phase with respect to the drive signal, for all points around the stator, we can mark o� zero

crossings in phase and visualize the mode of the traveling wave that is generated.

Figure 7-27(a) plots the amplitude of displacement for points around the stator and
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Figure 7-26: (a) Interferometer measurements of displacement on motor Grey1 at 12 o'clock. (b)

Interferometer measurements of displacement on motor Grey1 at 1 o'clock.
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Figure 7-27: (a) Interferometer data showing the magnitude of the displacement, at resonance

and 60 Vpeak drive, around the stator (halfway around and then the interferometer went out of

alignment). Shows fairly uniform displacement. (b) Interferometer data showing the phase of the

displacement with respect to the drive signal. This shows which mode is acting, namely the third.

Figure 7-27(b) shows the phase relative to the drive signal. Every 180o phase shift is marked

as a zero crossing and denotes half a wavelength of the 
exure mode. Unfortunately, the

interferometer went out of alignment halfway through this experiment, so only half of the

readings around the stator were measured in Figure 7-27.

Nevertheless, it can be clearly seen that the magnitudes of the displacements are much

more uniform for the traveling wave generated here than for the initial prototype motor's

displacement shown earlier in Figure 7-3 where the magnitude of de
ection sometimes fell

below 0.1�m.

Here, displacements average roughly 4.5�m, with some de
ections as high as 5.3�m and

some as low as 4.0�m. For traveling wave deformation, one would expect equal displace-

ments at all points around the stator. However, this is clearly not the case as we can see a

standing wave component of de
ection superimposed on the traveling wave in Figure 7-27.
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This is very likely due to the di�erent resonance characteristics of the two electrode patterns

as illustrated in the damping measurements of the last section. A number of reasons are

possible for the di�erences in quality factor between the two electrodes. First, the outer

electrode covers a slightly larger area and at a larger distance from the center of the stator

than the inner electrode. Second, the ceramic segments may not be poled uniformly, thus

granting higher de
ections to some areas of the stator than others. Third, the bond may

not be perfectly uniform, or weakened in spots. The latter was de�nitely a possibility in

the initial prototypes, but probably is not the case here, where a higher quality epoxy has

been used.

However, the sheer magnitude of the improvement in the displacement measured in

these stators as compared to the initial prototypes is clearly the reason for the drastic

improvement in output performance. We are seeing almost 10 times as much displacement

as in the initial prototypes. Again, this is primarily due to improvements incorporated into

the second batch of stators of a higher temperature epoxy bond and a full-area coverage

electrode pattern.

If we look at Figure 7-27(b), the plot of the phase of the turn-around displacement point

with respect to the drive signal, we can see points of zero crossings at 4 locations around

the stator. By symmetry, we can see that if we had been able to complete the experiment,

that there would be two more zero crossings for a total of 6. Six zero crossings represent

three wavelengths, so we can see that a three-wavelength traveling wave has been generated

{ precisely what the electrode pattern was designed for.

This interferometric method then, gives a nice way of visualizing traveling-wave modes

and verifying that the appropriate drive conditions are achieved.

7.3.8 E�ciency Measurements and Drive Electronics

E�ciencies have not yet been measured on the second generation 8mm bulk PZT ultrasonic

motors. While the dynamometer is adequate for measuring mechanical output power, the

input power is not easily measured at this point because the currents are rather small and

fairly noisy. A little bit of work has to be done on the drive electronics to clean up the

signals in order to facilitate ease of measurement of the phase angles o�sets between the

two current and voltage signals, when calculating average input current.

The drive electronics all reside on two small printed circuit boards. A Motorola 68HC11
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processor controls a Qualcomm 2334 2-channel digital frequency synthesizer and also six

LCD thumbwheel switches from American Control Technology. The LCD thumbwheel

switches have embedded 4-bit microcontrollers and can be used as simple smart input and

display devices for changing the frequency, phase and amplitude of the drive signals. The

digital frequency synthesizer is controlled by the microprocessor via user input from the

LCD thumbwheel switches and outputs two channels of 12-bit data at the appropriate

frequency and relative phase. The two 12-bit ports are connected to AD7845 multiplying

analog-to-digital converters to produce sin and cos drive signals for the motors. An AD558

analog-to-digital converter, directed from the microprocessor, controls the amplitude of

the output of the AD7845 converters. These two resulting channels of drive signals are

passed through Apex PA85 high-voltage high-bandwidth (expensive) operational ampli�ers

to boost the output voltage to 60 Vpeak typically.

A low-pass �lter needs to be added between the AD7845 analog-to-digital converters

and the Apex high-voltage stage in order to reduce noise on the output waveforms. The

motors run just �ne with these inputs, but the current signals are somewhat noisy and make

it hard to measure e�ciencies. This problem is next on the agenda.

7.3.9 Coe�cients of Friction

The coe�cients of static friction between the various combinations of rotor and stator

materials used in the experiments here and are shown in Figure 7-28. Most combinations

gave coe�cients on the order of 0.3, but sapphire on aluminum had an extraordinarily high

value of 0.5, which makes sense since like materials have very high coe�cients of friction and

sapphire is aluminum oxide. So aluminum oxide on oxidized aluminum would be expected

to have large friction coe�cients. Sapphire on stainless steel had the lowest coe�cient of

friction at 0.22.

7.3.10 Matching to a Model

Once we have measured stator displacements and coe�cients of friction between various

rotors and stators, we can compare measured output performance to predictions from the

sequence of models developed earlier.

First, we look at the case of line contact with Coulomb friction. Examining the data

taken on stator Grey1, if we approximate the amplitude of displacement from Figure 7-
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Static Coefficients of Friction
01 Hardened Steel Sapphire Kapton-on-steel Kapton-on-sapphire

304 Stainless Steel 0.32 0.22 0.38 0.38
Aluminum 0.35 0.49 0.35 0.35

Figure 7-28: The coe�cients of static friction for the rotor and stator materials used in the designed

experiment are shown here. These coe�cients were determined by �nding the minimum angle at

which a rotor would slide down an inclined piece of stator material.

27(a) as 4.5�m, the wavelength as � = 2�r
3
, where the radius of contact is 3.25mm, or

� = 6:8mm, and the coe�cient of static friction between 304 stainless steel and sapphire

as 0.22, we can compute the predicted no-load speed and stall torque.

The no-load speed for line contact is:

!rotor = !stator;max =
2�!hwo

�r

where !rotor is the rotor speed (equal to the no-load speed for all loads up until stall when

slipping occurs), ! is the drive frequency in rads
secs

, h is the half-height of the stator, � is the

wavelength, r is the radius of contact and wo is the out-of-plane displacement of the stator.

For stator Grey1, which has a tall base and short teeth on top of the PZT ceramic, h is

0.67mm. The rotor speed then works out to:

!rotor = 219
rad

secs
= 2093 rpm

Similarly, if we note the normal forces in Figure 7-18 that achieved the largest and

smallest stall torques, we see they ranged from FN = 28gf to FN = 97gf. For a coe�cient

of friction of 0.22, predicted stall torques are:

�stall = �FNr

which would predict stall torques of 2.0gf-cm and 6.9gf-cm, respectively. Figure 7-29 illus-

trates these two models of line contact superimposed on the data sets from Figure 7-18 for

normal forces of FN = 28gf and FN = 97gf.

It was found that if one goes through all the calculations of the Hertzian contact models

for the actual data found from these experiments with the second generation bulk motors,

that the contact condition is actually equivalent to that of line contact.
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Figure 7-29: Data from the �rst speed-torque curve for stator Grey1 with a plain sapphire rotor,

where the normal force was the lightest, at FN=28 gf is marked by the diamonds. Data from the

seventh speed-torque curve where the normal force was the highest, at FN=97 gf is marked by the

squares. Predictions based on line contact assuming Coulomb friction are shown for both cases.

Hertzian contact assumptions give the same prediction as line contact for the light normal forces

only sustained here.
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Recall that Hertzian contact theory states that the length of the contact region grows

as the square root of the normal force per unit length:

xo =
a

2
= 0:8

p
FNDCE

For 304 Stainless Steel, the Young's modulus is E = 28�106 psi (190�109 N
m2 ) and Poisson's

ratio is � = �0:21 [Oberg et al. 88] For sapphire, or alumina, the Young's modulus is

E = 54� 106 psi (37�109 N
m2 ) and Poisson's ratio is � = �0:20 [Coors 95]. These materials

parameters give a CE of:

CE =
1� �

2
1

E1

+
1� �22
E2

where CE works out to be CE = 1:14� 10�11 m2

N
.

Taking thedisplacement of stator Grey1 as 4.5 �m, the equivalent radius of curvature

becomes �k = 0:26m. Modeling the stator as a cylinder of diameter, D = 2�k gives

D = 0:52m. Plugging in these materials parameters we �nd the length of the region of

contact is 32�m or �
106

for a normal force of FN = 28gf of 61�m and �
55

for a normal force

of FN = 97gf. Looking back at Figure 6-24, the speed-torque curves for Hertzian contact,

we see that this condition approaches the case of line contact. Indeed, following through

and calculating the speed-torque relations from:

�rotor =
�FNr

� (xo)
[2� (xr)� � (xo)]

where

� (x) = sin (kx)� kxcos (kxo)

and

!rotor = !stator;maxcos (kxr)

and

xr =
1

k
cos

�1

 
!rotor

!stator;max

!

gives essentially the same lines as in Figure 7-29 for line contact. Note that the no-load

speeds in reality are lower than the predicted values and the stall torques are higher. The

coe�cient of friction is the scale factor for the stall torques and is not known with complete

accuracy. The no-load speeds are lower than those predicted for line contact, both because
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of the assumption of a rigid, unsquashable stator in these closed-form models and because

of the decrease in the amplitude of de
ection as power is taken out of the system. This

shows that it is important to model the squashing of the stator in addition to area contact.

Appendix B illustrates variational techniques for producing models that relax the rigidity

assumption on the stator.

7.3.11 Surface Pro�lometry Measurements

The second generation set of 8mm motors saw signi�cant improvement in performance

over the initial prototypes whose speed, torque and power characteristics were plotted in

Figure 7-5. With the initial prototypes, we found that glass rotors spun well, while brass

rotors turned on a lathe did not work at all. This was understandable when later we found

that the mean roughness of the glass rotor was 300�A while that of the brass rotor was

7000�A. In addition, the amplitude of displacement on those �rst stators was under 1�m

meaning that the out-of-plane displacement of the stator was not much greater than the

height of the asperities on the rotor.

In the second generation of motors, we took great pains to achieve large out-of-plane

de
ections and indeed we have seen a factor of 5 to 10 improvement. We also paid more

attention to the surface properties of the rotor and stator materials. We not only chose

harder materials, but we polished each surface before testing in the dynamometer. The

stators and rotors were lapped 
at and then polished with 9�m-, 5�m-, 3�m- and �nally

1�m-grit lapping paper.

After polishing, surface properties were examined with a Dektak pro�lometer. Figure 7-

30 illustrates surface pro�les for the polished steel and sapphire rotors, respectively. The

x-axis shows the length of material over which the stylus was run, measured in microns,

while the y-axis denotes the asperity height, measured in angstroms or kilo-angstroms, as

noted. The steel rotor, in Figure 7-30(a) had a mean roughness of 115�A, polished almost

as smoothly as the sapphire surface which displayed a mean roughness of 110�A.

The kapton-coated rotors were not so smooth, obviously. Figure 7-31 displays a mean

roughness of 768�A for the kapton-coated steel rotor and a mean roughness of 411�A for the

kapton-coated sapphire rotor.

It is important to examine not only the rotors, but also the surface of the stator teeth.

Figure 7-32 depicts the surface pro�le across a tooth of stator Grey1 just after polishing.
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Figure 7-30: (a) A plain steel rotor surface pro�le after polishing. The arithmetic mean roughness

is 115�A. (b) The sapphire rotor measured displays an arithmetic mean roughness of 110�A.
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Figure 7-31: (a) The kapton-coated steel rotor measured after polishing displays an arithmetic

mean roughness of 768�A. (b) The kapton-coated sapphire rotor has a mean roughness of 411�A.
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Figure 7-32: This is the stator Grey 1 tooth surface. The arithmetic mean roughness is 631�A.

The measured mean roughness here is 631�A. These pro�lometer traces in conjuction with

signi�cant improvements in torque output, as compared with initial prototypes, point out

the need for out-of-plane displacements to be much larger than surface asperities.

Wear Tests

Surface pro�le measurements were also performed on the rotors after running in the dy-

namometer in order to study wear phenomenon. After the rotors are run on the stators

for 30 minutes or so, the rotors and stators are removed from the dynamometer and their

surfaces inspected. Typically, a discolored ring is seen on the rotor at the radius of contact

and the stator teeth have a radial section which is highly polished while the remaining areas

are rather dull in color.

Figure 7-33 illustrates wear pro�les on plain steel and sapphire rotors after having run

on stator Green1, which was stainless steel. The stator makes a circular gouge mark on the

rotor and the pro�lometer is run across the gouge in the radial direction from the center

of the rotor out towards the edge. Figure 7-33(a) shows that for the 01 hardened tool steel

rotor running on a stainless steel stator, material is deposited on the rotor to a thickness

of 1942�A. Similarly, Figure 7-33(b) shows that the sapphire rotor, after running on the

stainless steel stator, also receives a deposit of 901�A. Thus the rotors are harder than the

stator and the stator does not gouge the rotor, as was the case in the initial prototypes

where the stators ate into the �rst glass rotors. Here, the rotors actually tend to polish the
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Figure 7-33: (a) The steel rotor, measured across the discolored circular mark, shows a peak of

1942�A. This rotor was last run on stator Green1 (stainless steel). (b) The sapphire rotor measured

across the discoloration, acquires a peak of material 901�Ahigh. This rotor was also last run on

stator Green1.
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Figure 7-34: (a) The kapton-coated steel rotor measured across the circular mark shows an inden-

tation into the kapton of nearly 2�m . This stator was run on stator Grey1 (stainless steel). (b)

The kapton-coated sapphire rotor measured across the circular mark displays a valley of 121�Awhich

is followed by a peak of 1956�A.
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stators.

Figure 7-34 portrays surface pro�les of the kapton-coated rotors after having been run

on stator Grey1, which was also stainless steel. Figure 7-34(a) shows what happens to the

kapton-coated steel rotor after 30 minutes or so of running. The stainless steel stator eats

into the kapton to a depth of nearly 2�m. This is as would be expected since the polymer

material is rather soft. Figure 7-34(b) shows a similar result for the kapton-coated sapphire

rotor. The di�erence here, however, is that a valley of 121�A is followed by a peak of 1956�A,

so the kapton material is smushed to the side as the teeth dig into the polymer.

7.4 Comparing Motor Figures of Merit

7.4.1 Stall Torque and Output Power Densities

By dividing the measured maximum stall torques and output powers by the weight or volume

of the stator-rotor assembly, we can examine �gures of merit for our motors. [Hollerbach,

Hunter and Ballantyne 91] argue that the most useful �gure of merit for comparing disparate

motor technologies is stall torque density (Nm
kg

) as power density �gures really depend on

the associated power electronics.

Figure 7-35 lists the stall torque densities resulting from our 16-trial experiment. The

maximum stall torque density of 2.9 Nm
kg

is produced by stator Green1 with a sapphire rotor.

Note that the motors here do not have bearings, but are held together in the dynamometer.

True stall torque density numbers will be smaller after bearings and mounts are added in

the future. We have put o� working on bearings and mounts until the motors were better

understood and useful torques could be shown. This has been achieved and in the near

future we will mount a simple bearing to one of these motors.

Figure 7-35 lists the corresponding output power densities for the second generation

8mm bulk motors. Stator Fucia1 with a sapphire rotor produced the highest power density

of 108 W
kg
.

7.4.2 Comparisons to Other Actuator Technologies

It is interesting to compare piezoelectric ultrasonic motors and see how other actuator

technologies measure up. Figure 7-37 [Hollerbach, Hunter and Ballantyne 91] shows how a

wide variety of technologies, such as hydraulic systems, pneumatic actuators, shape memory
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Design of Experiments Results:  Stall Torque Densities

Stator
Max Stall Torque

(gf-cm)
Mass (g)

St+Rot=Tot
Volume
(mm^3)

Max Stall Torque
Density
(Nm/kg)

Max Stall Torque
Density

(gf-cm/mm^3)

1 Violet Exp 2 4.7 .28+.13=.41 120 1.2 0.039

2 Violet Exp 4 4.8 .28+.37=.65 120 0.74 0.040

3 Fucia Exp 2 5.5 .13+.13=.26 120 2.1 0.046

4 Fucia Exp 4 4.5 .13+.37=.50 120 0.90 0.038

5 Tan Exp 2 2.7 .12+.12=.24 87 1.1 0.031

6 Tan Exp 4 3.4 .12+.36=.48 87 0.71 0.039

7 Blue Exp 2 4.7 .27+.12=.39 87 1.2 0.054

8 Blue Exp 4 4.6 .27+.36=.60 87 0.77 0.053

9 Green Exp 2 10.0 .22+.12=.34 68 2.9 0.15

10 Green Exp 4 8.4 .22+.36=.58 68 1.5 0.12

11 Yellow Exp 2 5.3 .11+.12=.23 68 2.3 0.078

12 Yellow Exp 4 5.6 .11+.36=.47 68 1.2 0.082

13 Orange Exp 2 4.8 .10+.13=.23 61 2.1 0.079

14 Orange Exp 4 4.6 .10+.37=.47 61 1.0 0.075

15 Grey Exp 2 4.3 .20+.13=.33 61 1.3 0.070

16 Grey Exp 4 5.3 .20+.37=.57 61 0.93 0.087

Figure 7-35: Stall torque densities resulting from the 16-trial experiment of 8mm bulk PZT

ultrasonic motors. Stator Green1 (short teeth, thick base, 36 teeth, stainless steel) with a plain

sapphire rotor produced 2.9 Nm

kg
stall torque density.

Power Density

Stator Liner Rmat
Mass (g)

St+Rot=Tot
Volume
(mm^3)

Peak Power
(mW)

Peak Power
Density
(W/kg)

Peak Power
Density

(mW/mm^3)
Fucia - + .13+.12=.25 120 27 108 0.23

Yellow Exp 2 - + .11+.12=.23 68 12 52 0.18

Grey - + .20+.12=.32 61 16 50 0.26

Figure 7-36: Output power densities for the second generation motors. Power densities as high

as 108 W

kg
have been achieved with stator Fucia1 (tall teeth, thick base, 24 teeth, aluminum) with a

plain sapphire rotor.
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Power
Dens.
(W/kg)

Torque
Dens.

(Nm/kg)

McGill/MIT EM Motor

Sarcos Dextrous Arm electro-
hydraulic rotary actuator

Utah/MIT Dextrous Hand
electropneumatic servovalve

NiTi SMA [Hirose 89]

PVA-PAA polymeric actuator
[Caldwell 90]

Burleigh Instruments inchworm
piezoelectric motor

Magnetoelastic (magnetostrictive)
wave motor [Kiesewetter 88]

Human biceps muscle

15

120

20

1

17

3

500

20

200

600

200

6

6

0.1

5

50

Actuator

Stall

MIT 8 mm Fucia/Green 108 2.9

Figure 7-37: Power density and stall torque density can be used as �gures-of-merit to compare

actuator technologies.

alloys, piezoelectric inchworms, magnetostrictive materials and human muscle compare in

terms of both stall torque density and output power density. We have inserted our recent

results into their table where the number for power density refers to the stator Fucia1

running on a plain sapphire rotor and the number for stall torque density refers to the

stator Green1 also running with a plain sapphire rotor.

Note that the piezoelectric ultrasonic motors vastly outperform the piezoelectric inch-

worm drives. This is due the fact that resonance is used to advantage in the ultrasonic

motors, whereas the inchworm drives are quasistatic.

While the stall torque densities for the �rst three actuators in the table are signi�cantly

higher than those for our ultrasonic motors, it is useful to note that these are all fairly large

actuators. The McGill/MIT electromagnetic motor is also water-cooled. If we compare our

8mm ultrasonic motors to small DC motors that would typically be the direct competition,

our ultrasonic motors compare exceedingly well.

Figure 7-38 gives �gures of merit comparing ultrasonic motors reported in the literature

with small electromagnetic DC motors typically used in mobile robot applications. The
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Actuator

Stall

Torque

(kgf-cm)

No-load

Speed

(rpm)

Power

Density

(W/kg)

Stall

Torque

Density

(Nm/kg)

Peak 

Eff.

[Micro Mo] 1319E003 71%

[Mabuchi] FK-280-2865 53%

[Namiki 92] 7CL-1701 50%

Aeroflex 20%

Maxon 70%

Astro 20%

[Kumada 85] 80%

[Shinsei 89] USR-60 35%

[Panasonic 87] USM-40 40%

[Hosoe 89] EF35-135 40%

MIT 8 mm Fucia NA

MIT 8mm Green

0.29

0.42

0.04

1.13

0.21

8.8

3.4

1.1

2.3

2.1

2.9 NA

0.06

13,500

14,500

4,000

5,200

11,500

120

125

800

80

1750

870

9,100

0.034

0.16

0.10

0.13

0.76

13.5

6.0

0.8

1.2

0.0055

0.01

0.0016

106

NA

NA

NA

NA

80

23

NA

NA

108

NA

13

Figure 7-38: This representative sampling of electromagnetic DC motors (without gears), com-

mercially available Japanese ultrasonic motors and our 8mmultrasonic motors are presented to give

a feel of relative measures of stall torque density and e�ciency. Stators Fucia and Green are run

with plain sapphire rotors.

�rst six motors listed in Figure 7-38 are electromagnetic motors, the next four are larger

Japanese ultrasonic motors, on the order of 40mm to 60mm in diameter.

The smallest commercially available electromagnetic DC motor is the Namiki 7CL-

1701. It is 7mm in diameter and 18mm long, roughly 5 times the volume of our 8mm

ultrasonic motors, yet stator Fucia running with a sapphire rotor has 35 times the stall

torque density and 8 times the power density of the Namiki motor. Stator Green with a

sapphire rotor compares even more favorably to the Namiki in stall torque density. Its stall

torque density is 48 times larger. Most importantly, however, is that the typical operating

speeds of ultrasonic motors are much lower, granting a signi�cantly better impedance match

for nearly all loads.
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Chapter 8

Laser Etching of Thin-Film PZT

Motors

The original impetus for pursuing ultrasonic micromotors was the fact that thin-�lm PZT

could now be deposited directly onto silicon and the resulting increase in breakdown strength

provided extremely high energy densities. By depositing PZT in a sol-gel process onto sili-

con, we do away with the need for an epoxy bond layer and we open the door to possibilities

for integration with electronics and microsensors. Because of the high energy densities and

because these ultrasonic motors inherently run at high torques and low speeds, we have a

promising new technology for creating microfabricated motors which couple useful power

to a load.

To this point, we have shown process feasibility in fabricating thin-�lm actuators and we

have modeled and tested larger motors from bulk PZTwith very good results. Now we would

like to join the two e�orts and return to microfabricated ultrasonic motors. However, we are

not necessarily interested in making these motors micro-sized, nor are we so constrained, as

demonstrated by the larger motors we have built. While silicon electrostatic micromotors

are constrained to be under a certain maximum radial dimension due to residual stresses in

the rotor vanes causing them to touch down onto the surface below, friction-based ultrasonic

motors can be made arbitrarily large in the plane of the stator. The constraint here is the

ability to fabricate wide-area coverage �lms that are pinhole-free.

To get motion out of the plain of the wafer, and to achieve true waveguide structures,

it is desirable to cut the stator free from the wafer. Traditional machining is not amenable
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Figure 8-1: The two rings at the bottom right are 8mm composite rings consisting of layers of

silicon, silicon oxide, titanium, platinum, sol-gel PZT and chrome-gold. The stator at left is 5mm

in diameter. The six-pin integrated circuit at top is a serial charge coupled imaging device, to give

scale to the picture and to illustrate our desire to build actuators at the same size as our sensors.

as silicon is fairly brittle, and etching processes create sidewalls at the angle of the lattice

lines. What would be best is a non-contact cutting tool.

Figure 8-1 shows stators that we have machined using a laser-etching process. The laser

etching was performed at a commercial job shop, Laser Services, in Westford, MA. The

laser ablation process is used to cut rings out of wafers that have been prepped with all

the layers of the necessary �lms: oxide, titanium, platinum, sol-gel PZT and chrome-gold.

The laser process is also used to etch the electrode pattern in the chrome-gold and also the

tooth structure on the backside to reduce sti�ness. We also start with thinned wafers, and

in this manner avoid the need for fragile membranes and silicon-rich nitride �lms.

To connect to the titanium-platinum ground electrode, a chemical-assist laser-etching

and deposition process was used. This step was done with the assistance of Dr. Daniel

Ehrlich at MIT Lincoln Laboratory. A platinum gas is used with the laser to deposit a

plug in a laser-punched via. This e�ectively brings up a contact from the bottom electrode

to a top chrome-gold pad. In this manner, all the steps of stator microfabrication are

accomplished without any masks or wet-etching.
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Chapter 9

Conclusion

The technology of micromotors has taken a new turn. Previously, micromotors were fabri-

cated from predominantly silicon integrated-circuit processes. With the incorporation of an

electromechanically active material, PZT, into a standard silicon micromachining process,

we have been able to produce piezoelectric ultrasonic micromotors displaying signi�cant

improvements over previous incarnations of micromotors.

Ultrasonic motors are new and not as well understood as conventional electromagnetic

or electrostatic motors. A number of models with closed-form solutions for production of

torque have been proposed here, where simplifying assumptions on the contact mechan-

ics have been sequentially relaxed. This analysis has granted insight into the phenomena

underlying the frictional coupling mechanism and provided useful upper bounds on perfor-

mance.

In addition to theoretical results, an experimental component of this research has yielded

one of the most complete data sets on bulk piezoelectric ultrasonic motors in the open

literature. Providing this data to other researchers in the �eld will not only contribute to

elevating our understanding of these devices, but also hasten growth of this new technology.

We have found that our second generation of bulk motors shows drastically improved

performance over our initial prototypes, due to improvements in electrode design, bonding

techniques and attention to detail in surface preparation. These new motors work primarily

in the region of line contact. The experiments have shown that ultrasonic motors can deliver

�ve times the stall torque of their electromagnetic brethren in 1
5
the size, with comparable

power densities. Power densities of 108 W
kg

and stall torque densities of 2.9 Nm
kg

have been
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achieved. In addition, the impedance match for these motors to most real-world loads is

signi�cantly better than for electromagnetic motors. Peak power operating points occur at

speeds on the order of a few hundreds of rpm rather than thousands of rpm. Careful design

of the stator geometry can result in operating points tailored to a load such that the need

for geardown can be circumvented.

In the future, we plan to return to thin-�lm PZT-on-silicon technology and incorpo-

rate these high-torque low-speed motors into complete microelectromechanical systems for

microrobotic applications. A new laser-based etching process has been developed in this

regard which allows for microfabrication of ultrasonic motors without fragile membranes

and requires no masks and no wet-etching. This type of process is more amenable to the

designer than batch fabrication processes and such a manufacturing capability will further

aid the growth of the �eld by compressing the design, fabrication and testing cycles.
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Appendix A

Stator Motion

[Inaba et al. 87] described elliptical motion on the surface of a beam due to a traveling

wave as illustrated in Figure 3-4, where one solution to the beam equation is the sum of

two standing wave oscillations o�set by �
4 in space and time:

w(x; t) = wo(sin kx sin!t+ coskx cos!t)

which is simply the equation of a wave traveling along the neutral axis,

w(x; t) = wo cos(kx� !t)

For a beam of half-thickness h, however, the displacement of a point on the surface moving

from P to Po has a horizontal displacement �a and a vertical displacement �a:

�a = �(h� h cos �) + wo sin kx sin!t

�a = �h sin �

To solve for �, we note that the slope of the normal to the neutral axis is the negative

reciprocal of the slope of the tangent to the neutral axis at that point.

tan(
�

2
+ �) = � 1

dw
dx

� 1

tan �
= � 1

dw
dx
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Flexing Beam

Traveling Wave Solution

+ = 0
∂ w( )x, t2

∂t2
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EI
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w( ) = w cos( )kx ωtox, t -
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π

2

Figure A-1: (a) For a beam in 
exure, a traveling wave is one solution to the beam equation. A

vibration of amplitude wo will cause a point on the surface to displace from P to Po.

For small deformations, � is small and

sin � �= �

cos � �= 1

Therefore 1
�
�= 1

dw
dx

or we can say,

� =
dw

dx
= wok cos kx sin!t

�a = wo sin kx sin!t

�a = �h� = �hwok coskx sin!t

If a second standing wave is induced which is spatially and temporally 90 degrees out of

phase from the �rst, the displacements will be:

�b = wo sin(kx+
�

2
) sin(!t+

�

2
) = wo cos kx cos!t

�b = �hkwo cos(kx+
�

2
) sin(!t+

�

2
) = �hkwo sin kx cos!t
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Superimposing these two waves gives the displacements due to traveling waves:

� = �a + �b = wo(sin kx sin!t+ coskx cos!t)

� = �a + �b = hkwo(coskx sin!t � sin kx cos!t)

From the trigonometric identities,

cos(�� �) = cos� cos� + sin� sin �

sin(�� �) = sin� cos� � cos� sin �

we see that traveling waves result, with:

� = wo cos(kx� !t)

� = hkwo sin(kx� !t) =
2�hwo

�
sin(kx� !t)

The relationship between the transverse and longitudinal displacements of a point on

the surface can be seen to be elliptical if we square and add � and �:

1 = sin2(kx� !t) + cos2(kx� !t) = �
2

(2�hwo
�

)2
+
�
2

w2
o
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Appendix B

Variational Methods in Modeling

Active Structures

Closed-form solutions cannot be formulated for the majority of structural systems which

include active, or electromechanically coupled materials. For systems which exhibit complex

geometry, boundary conditions and load con�gurations, approximation techniques based on

energy methods and variational principles are employed. This appendix gives background

for modeling active structures using variational methods such as Rayleigh-Ritz assumed-

mode solution techniques.

The aerospace community has a long history of using sophisticated analysis tools for

modeling complex structures, such as composite load-bearing members which must be

lightweight yet strong and subject to a wide range of forcing conditions, from mechani-

cal to aerodynamic in origin. Active control of such structures is often employed to increase

rigidity, dampen vibration or steer precision optical components. Recently, incorporation of

active materials such as piezoelectrics, electrostrictors, magnetostrictors and shape-memory

alloys into controlled structures has been a proli�c area of research as a route to further

reduce system size and weight by alleviating the need for discrete actuation mechanisms

and linkages.

Much of this recent work has helped to bridge the gap between the materials science and

aerospace communities by developing engineering models of complex electromechanically

coupled materials which can be used in the analysis tools employed for the design of active

structures [Crawley and De Luis 87], [Crawley and Anderson 90] and [Rogers, Liang and
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Jia 89]. While the aerospace devices being modeled are often large-scale structures such as

space-station truss elements, heavy-lift launch vehicles, satellite optical systems or twistable

helicopter rotor blades, many of the analysis techniques can be extended to the new �eld

of microelectromechanical systems where the active materials may be thin �lms deposited

directly onto silicon, the interest here.

The remainder of this appendix gives background, �lls in details, and equates notation

from three papers which use these Rayleigh-Ritz methods to model piezoelectric structural

elements such as static and dynamic beams and plates, [Hagood, Chung and Von Flutow 90]

and [Crawley and Lazarus 91], and more recently, ultrasonic motors [Hagood and McFarland

95]. At the end of this section we show a simulation of the latter model for the 8mm

ultrasonic motors characterized in this thesis work. It is hoped that this exposition will

be helpful to the microelectromechanical systems community for modeling active materials

incorporated into microstructures.

B.1 Hamilton's Principle

Hamilton's Principle is the starting point from which the dynamic equations of motion are

formed in [Hagood, Chung and Von Flutow 90]. The use of Hamilton's Principle in modeling

piezoelectric plates is also discussed in [Tiersten 67] and [Tiersten 69]. Hamilton's Principle

states that a system will evolve along a trajectory in such a manner as to minimize the

action, where the action is de�ned as an integral over time of a variational indicator of the

system. The de
ections of the static system in [Crawley and Lazarus 91] are derived in a

similar manner, but from the Principle of Minimum Potential Energy, which simply states

that the variation of the variational indicator is zero. In a dynamic system, the action is

minimized if the variation of the action is equal to zero:

�

t2Z
t1

(V:I:)dt = 0

Figure B-1 illustrates the variation of a function. [Lanczos 70] describes the calculus of

variations and its relationship to mechanical systems in which in�nitesimal displacements

and virtual work processes are applied. We assume here linear variations of a function f(x)
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δy
dy

dx

f( )x

y

x

y

f( ) + δf( )xx

Figure B-1: A variation of a function is related to its dependent variable by �f = @f

@x
�x.

by a function �(x) such that the variation of f(x) is:

�f (x) = �� (x)

where � is in�nitesimally small and the variation at the endpoints of the path are zero:

�f (x)x=a = �f (x)x=b = 0

A variation of a function is related to its dependent variables by the chain rule:

�f =
@f

@x1

�x1 +
@f

@x2

�x2 + : : :+
@f

@xn

�xn

The technique of applying an arbitrary variation in position to determine the virtual change

in potential energy (a function of position) is the step which allows the equations of motion

to be extracted from an accounting of energy.

The particular form of the variational indicator chosen by [Hagood, Chung and Von

Flutow 90] for inclusion into Hamilton's Principle speci�es stress and electric �eld as the

independent variables. Stress and electric �eld are typically the control parameters available

in driving active structures in actuator con�gurations. The interaction of these mechanical

and electrical �eld variables is derived from thermodynamics.

The �rst law of thermodynamics states that heat added or work done on a system
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increases the total internal stored energy density of the system:

dU
tot = dQ+ dW

where U tot is the total internal energy density, Q is the heat per volume added and W is the

work per volume acting on the system. Assuming a linear electro-elastic-thermal system,

the change in total internal energy density due to in�nitesimal changes in strain and electric

displacement in the presence of uniform stress and electric �eld, becomes:

dU
tot = �d� + TijdSij +EkdDk

where � is temperature, � is entropy, Tij is a component of the stress tensor as de�ned in

Figure B-2, Sij is a component of the strain tensor as illustrated in Figure B-3, Ek is a

component of the electric �eld vector and Dk is a component of the electric displacement

vector.

Legendre transformations can be applied to the energy expression to switch the inde-

pendent variables from (S,D) to (S,E) [Nye 85]. The Electric Gibb's Free Energy expression

is one such transformation and is de�ned as:

G = U
tot � �� �EkDk

where

dG = dU
tot � d(��)� d(EkDk)

and

dG(�; S; E) = ��d� + TijdSij �DkdEk

By noting that:

dG (�; S; E) =
@G

@�
d� +

@G

@S
dS +

@G

@E
dE

we �nd the relationships between the dependent variables and G:

� = �
�
@G
@�

�
T;E

Tij =
�
@G
@Sij

�
�;E

Dk = �
�
@G
@Ek

�
�;T

where the subscripts signify variables that are held constant. Expanding the change in
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1

3

2

T 11

T 12

T 13

T 21
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T 23
T 31

T 32

T 33

T 23

T 22

T 21

τ 3

Figure B-2: A force per unit area applied to any given face of a cube (a traction vector) has

stress components in three directions. The stress tensor is a 3� 3 matrix of components Tij and is

symmetric. The six independent components can then be written in reduced matrix notation as a

1� 6 vector.

dependent variables as:

dT (�; S; E) =
@T

@�
d� +

@T

@S
dS +

@T

@E
dE

dD (�; S; E) =
@D

@�
d� +

@D

@S
dS +

@D

@E
dE

and assuming isothermal conditions, gives the constitutive relation coe�cients for the lin-

early electromechanically coupled piezoelectric system:

c
E;�
ijkl =

�
@Tij

@Skl

�
E;�

=

 
@
2
G

@Sij@Skl

!
E;�

e
T;�
ijk =

 
@Dk

@Sij

!
T;�

= �
 

@
2
G

@Sij@Ek

!
T;�

�
T;�
kl =

�
@Dk

@El

�
T;�

= �
 

@
2
G

@Ek@El

!
T;�

where c
E;�

ijkl is the sti�ness tensor at constant electric �eld and temperature, e
T;�

ijk is the

piezoelectric stress tensor at constant stress and temperature and �
T;�
kl is the dielectric

permittivity tensor at constant stress and temperature.

182



Because the stress tensor is symmetric:

2
664
T11 T12 T13

T21 T22 T23

T31 T32 T33

3
775 =

2
664
T1 T6 T5

T6 T2 T4

T5 T4 T3

3
775

we can write T in a reduced matrix form:

T =

2
6666666666664

T1

T2

T3

T4

T5

T6

3
7777777777775
=

2
6666666666664

T11

T22

T33

T23

T31

T21

3
7777777777775
=

2
6666666666664

�x

�y

�z

�yz

�zx

�xy

3
7777777777775

where �; � is traditional notation in uncoupled systems for normal and shear stresses and

is used in [Crawley and Lazarus 91]. The strain tensor is also symmetric and can similarly

be written in reduced matrix notation:

S =

2
664
Sxx 2Sxy 2Sxz

2Sxy Syy 2Syz

2Sxz 2Syz Szz

3
775 =

2
664
S1 S6 S5

S6 S2 S4

S5 S4 S3

3
775

The strain-displacement relations are de�ned in cartesian coordinates in Figure B-3 and

given as:

S =

2
6666666666664

S1

S2

S3

S4

S5

S6

3
7777777777775
=

2
6666666666664

S11

S22

S33

2S23

2S31

2S21

3
7777777777775
=

2
6666666666664

�x

�y

�z


yz


zx


xy

3
7777777777775
=

2
6666666666664

@u
@x

@v
@y

@w
@z

@w
@y

+ @v
@z

@w
@x

+ @u
@z

@u
@y

+ @v
@x

3
7777777777775

where �; 
 is engineering notation for normal and shear strains, also used in [Crawley and

Lazarus 91]. Assuming isothermal conditions, the piezoelectric constitutive relations can

now be written in compact form [IEEE 87]:

�
T

D

�
=

"
cE �et
e �

T

# �
S

E

�
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u

v

∂u
∂y

∂v
∂x

(b)

y

x
u + ∆u

u + ∂u
∂x

dx

u

v

v + ∆vv + ∂v
∂y dy

(a)

Figure B-3: (a) Strain produced by positive normal stresses. (b) Strain produced by positive shear

stresses.

184



where the sti�ness tensor at constant electric �eld, cE , becomes a 6� 6 matrix in reduced

form, the piezoelectric stress tensor transposed, et, becomes a 3� 6 matrix and the permit-

tivity tensor at constant stress, �T , remains 3� 3:

2
6666666666664

T1

T2

T3

T4

T5

T6

3
7777777777775
= cE

2
6666666666664

S1

S2

S3

S4

S5

S6

3
7777777777775
� et

2
664
E1

E2

E3

3
775

2
664
D1

D2

D3

3
775 = e

2
6666666666664

S1

S2

S3

S4

S5

S6

3
7777777777775
+ �

T

2
664
E1

E2

E3

3
775

For PZT, the material coe�cient matrices take the following form:

cEPZT =

2
6666666666664

c
E
11 c

E
12 c

E
13 0 0 0

c
E
12 c

E
11 c

E
13 0 0 0

c
E
13 c

E
13 c

E
33 0 0 0

0 0 0 c
E
44 0 0

0 0 0 0 c
E
55

0 0 0 0 0 2(cE11� c
E
12)

3
7777777777775

�
T
PZT =

2
664
�
T
11 0 0

0 �
T
11 0

0 0 �
T
33

3
775
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ePZT t
=

2
6666666666664

0 0 e13

0 0 e13

0 0 e33

0 e15 0

e15 0 0

0 0 0

3
7777777777775

Alternate Legendre transformations of the energy expression can be used to state the

constitutive relations in terms of other combinations of independent variables, such as (T,E)

[Ja�e, Cook and Ja�e 71]: �
S

D

�
=

"
sE +dt

d �
S

# �
T

E

�

where d is the piezoelectric strain matrix, sE is the compliance matrix at constant electric

�eld and �S is the dielectric permittivity matrix at constant strain. The compliance matrix

is related to the sti�ness matrix by:

cE =
�
sE
�
�1

The piezoelectric strain matrix is related to the piezoelectric stress matrix by:

e = d
�
sE
�
�1

and the constant strain and constant stress permittivity matrices are related by:

�
S = �

T � d
�
sE
�
�1

With the constitutive equations de�ned, we return to the formulation of the variational

indicator used in Hamilton's Principle. In matrix notation and under isothermal conditions,

the change in the Electric Gibb's Free Energy, where G0 is in units of energy rather than

energy density, is:

dG
0 (S;E) =

Z
V

(T � dS�D � dE)dV

We take:
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dU =
R
V

T � dSdV dWelec =
R
V

D � dEdV

Integrating, we �nd expressions for U and Welec:

U =
R
V

1
2
STTdV Welec =

R
V

1
2
DTEdV

We can then set up an energy expression:

U �Welec = Wmech

where U is the stored mechanical energy of the system, Wmech is the work of mechanical

origin done on the system and Welec is the work of electrical origin done on the system:

The work of mechanical origin, Wmech, includes components involving accelerations.

Rearranging so as to separate out this kinetic energy term, Tkin, we can de�ne:

Wmech = Tkin +W

where W is the work of mechanical origin not involving accelerations. Substituting the

resulting variational principle back into Hamilton's Equation, we �nd:

�

t2Z
t1

(Tkin � U +Welec +W ) = 0

which is the form of Hamilton's Principle used in Equation (1) of [Hagood, Chung and Von

Flutow 90]

B.2 Laminated Plate Dynamics

[Hagood, Chung and Von Flutow 90] continues by considering the dynamic excitation of

a beam structure. Here, we show the derivation of the dynamic equations of motion of

a laminated plate from Hamilton's Principle using Rayleigh-Ritz assumed modes and the

consistent plate hypothesis of [Crawley and Lazarus 91], and correlate the notation therein

to that of [Hagood, Chung and Von Flutow 90]. We also describe an implementation of

the model in both rectangular and cylindrical coordinates [Hagood and McFarland 95] and

show deformation predictions of microstructures.
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Hamilton's Principle can be used with speci�c geometries, materials and loads to �nd

the equations of motion of a structure. The constitutive equations and external work terms

are substituted into the energy expressions and assumed forms of the deformation shapes

can be used to approximate the solutions.

For the thin plate shown in Figure B-4(a), plane-stress assumptions can be made which

leave only the T1, T2 and T6 terms in the constitutive equations. By setting T3, T4 and T5

to zero in: �
S

D

�
=

"
sE dt

d �
S

# �
T

E

�

and converting the resulting reduced sE , d and �S matrices back into the form required in:

�
T

D

�
=

"
cE �et
e �

T

# �
S

E

�

the plane-stress materials matrices can be found. The materials matrices for various layers

of materials in the plate may have to be further modi�ed if they are orthotropic and skewed

with respect to the laminate axes as shown in Figure B-5. Appropriate tensor transfor-

mations must be applied to �nd the equivalent coe�cients in the plate coordinate system.

Such a transformation can make the sti�ness matrix fully populated, creating the e�ect of

an anisotropic material, the characteristic which [Crawley and Lazarus 91] use to achieve

twisting of their cantilevered plate.

The strain-displacement relations for a plate can also be simpli�ed by making approxi-

mations as illustrated in Figure B-4(b) where the Bernoulli-Euler assumption of plane sec-

tions perpendicular to the midline remaining perpendicular after bending, is shown. The

displacements in the x,y and z directions become:

u (x; y; z) = uo � z
dwo

dx

v (x; y; z) = vo � z
dwo

dy

w (x; y; z) = wo

where uo, vo and wo are the centerline displacements in the x, y and z directions, respec-

tively. Plugging these deformation expressions into the strain-displacement relations, the
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dwo
dx

x

wo
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dxz
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w

Figure B-4: (a) For a thin plate, plane stress assumptions are used, where all but the in-plane

stresses are assumed negligible. (b) The strain-displacement equations are found by observing a

section of the plate and assuming that perpendicular sections remain perpendicular to the midline

after bending.
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x, 1

(a)
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y, 2
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θ

Figure B-5: (a) De�nition of direction cosines, l ~m;n, for rotating material tensors. (b) An or-

thotropic material, such as a �ber composite, may be oriented with its principal axes skewed from the

plate axes. Rotating into plate coordinates creates a fully-populated sti�ness matrix, an anisotropic

characteristic.

strain vector results: 2
664
S1

S2

S6

3
775 =

2
664

@uo
@x

� z @2wo
@x2

@vo
@y

� z
@2wo
@y2

@uo
@y

+ @vo
@x

� 2z @
2wo

@x@y

3
775

where centerline strains and z-dependent terms can be separated:

S = �o + z�

Here, �o represents the vector of midplane strains and � represents the vector of curvatures.

The �o-� vector can then be written as a di�erential matrix operator acting on the midplane

displacements:

"
�o

�

#
=

2
6666666666664

@
@x

0 0

0 @
@y

0

@
@y

@
@x

0

0 0 � @2

@x2

0 0 � @2

@y2

0 0 �2 @2

@x@y

3
7777777777775

2
664
uo

vo

wo

3
775 = Lo p (x; y) p (t)

where Rayleigh-Ritz assumed solutions are inserted for the centerline displacements and the

di�erential matrix operator is de�ned here as Lo. In [Crawley and Lazarus 91] this matrix

is called D but is mistyped, as transposed. [Hagood, Chung and Von Flutow 90] create a

similar di�erential matrix operator, Lu, the di�erence being that Lu incorporates the factor
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Figure B-6: Cutting the plate and integrating over an area gives the stress resultants, N, M and

Q for the deformed plate.

of z multiplying the curvature terms to produce the S vector rather than the �o-� vector.

For a laminated plate of many layers, it is convenient to separate out the z-dependence

explicitly in calculating the stress resultants.

Before proceeding to Hamilton's Principle, we note one more construction for the lami-

nated plate problem, the stress resultants, as shown in Figure B-6. By taking a section of a

plate and integrating the stresses through the thickness, the stress resultants can be found.

Nx, Ny and Nxy are the in-plane stress resultants, Mx, My and Mxy are the moment stress

resultants and Qx and Qy are the shear stress resultants (assumed small):

"
N

M

#
=

2
6666666666664

Nx

Ny

Nxy

Mx

My

Mxy

3
7777777777775
=

h

2Z
�

h

2

2
6666666666664

T1

T2

T6

T1z

T2z

T6z

3
7777777777775
dz

Plugging in the constitutive relations and taking the coordinate system for the laminate as

shown in Figure B-6, the stress resultants become:

"
N

M

#
=

nX
k=1

zkZ
zk�1

" �
c(E)S� etE

�
k�

c(E)S� etE
�
k
z

#
dz
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Figure B-7: For a laminated plate of varying materials and thicknesses, the coordinate system is

de�ned such that the kth layer has bottom coordinate zk�1 and top coordinate zk. Layers may be

of arbitrary thickness and material.

where c(E) signi�es c for a passive layer and cE for a piezoelectric layer. In non-active

layers, e = 0. Substituting in the strain-displacement relations:

"
N

M

#
=

nX
k=1

zkZ
zk�1

2
664
 
c(E)

"
�o

z�

#
� etE

!
k 

c(E)

"
�o

z�

#
� etE

!
k

z

3
775dz

This now reduces to the form given in [Crawley and Lazarus 91] of:

"
N

M

#
=

"
A B

B D

# "
�o

�

#
�
"
Nelec

Melec

#

where:

Aij =
nX

k=1

c
(E)k

ij (zk � zk�1)

Bij =
1

2

nX
k=1

c
(E)

k

ij

�
z
2
k � z2k�1

�

and:

Dij =
1

3

nX
k=1

c
(E)

k

ij

�
z
3
k � z

3
k�1

�

The components of the stress resultants due to electromechanical coupling are:

"
Nelec

Melec

#
=

nX
k=1

zkZ
zk�1

"
etE

etEz

#
dz

Substituting into Hamilton's Principle, we can �nd the dynamic equations of a laminated

plate and relate the notation for the mass, sti�ness and electromechanical coupling matrices
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of [Hagood, Chung and Von Flutow 90] to those of [Crawley and Lazarus 91]. Hamilton's

Principle can be written:

t2Z
t1

� (Tkin � U +Welec +W ) dt = 0

For a system driven only by electrical excitation with no external forcing, W = 0. The

variation in electrical work done on the system is also zero:

�Welec =

Z
V

�

�
1

2
ETD

�
dV =

Z
V

(D � �E)dV = 0

as there is no variation in electric �eld if it is prescribed and where we have used the relation:

�f =
@f

@x
�x

The variation in internal stored energy is given as:

�U =

Z
V

�

�
1

2
STT

�
dV =

Z
V

(T � �S)dV

which is equal to:

�U =

Z
x

Z
y

(
[Nt Mt ]

"
��o

��

#
� [ ��ot ��t ]

"
Nelec

Melec

#)
dxdy

where the t subscripts signify a transpose of the vector. In terms of the resultant sti�ness

matrices, A, B and D, the variation in internal stored energy is:

�U =

Z
x

Z
y

(
[ �ot �t ]

"
A B

B D

# "
��o

��

#
� [ ��ot ��t ]

"
Nelec

Melec

#)
dxdy

Replacing the midline strains and curvatures by the di�erential matrix operator and the

Rayleigh-Ritz assumed solutions gives:

�U =

Z
x

Z
y

(
[Lo p]

T
p (t)

"
A B

B D

#
[Lo p] �p� [Lo p]

T

"
Nelec

Melec

#
�p (t)

)
dxdy
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The �rst term on the right can be written:

Kp (t) �p (t)

where K is as used in [Crawley and Lazarus 91]:

K =

Z
x

Z
y

[Lo p]
T

"
A B

B D

#
[Lo p]dxdy

The second term on the right has a dependence on the electric �eld. As voltage is the

negative of the gradient of the electric �eld, E can also be expressed as a di�erential operator

acting on a matrix of assumed potential shapes and a generalized electrical coordinate v(t):

E = Lv v (x; y; z)v (t)

The components of the stress resultants due to electromechanical coupling become:

"
Nelec

Melec

#
=

nX
k=1

"
et (zk � zk�1)

et
(zk+zk�1)

2 (zk � zk�1)

#
Lv vv (t)

The second term in the expression for the variation in internal stored energy then is:

Z
x

Z
y

[Lo p]
T

nX
k=1

"
et (zk � zk�1)

et
(zk+zk�1)

2
(zk � zk�1)

#
Lv vdxdyv (t) �p (t)

This statement can be rewritten as:

�v (t) �p (t)

where � is the electromechanical coupling matrix formulated in [Hagood, Chung and Von

Flutow 90]:

� =

Z
x

Z
y

[Lo p]
T

nX
k=1

"
et (zk � zk�1)

et
(zk+zk�1)

2
(zk � zk�1)

#
Lv vdxdy

If Tkin for a plate is zero and the plate is only de
ected statically by an applied v,
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Hamilton's Principle reduces to:

t2Z
t1

(Kp� �v) �pdt = 0

Since the variation, �p, is arbitrary, it must be the case that:

Kp� �v = 0

which is the equation of motion for the statically driven plate. The modal amplitudes can

be found by inverting the sti�ness matrix:

p = K�1
�v

The �nal deformations are then calculated by multiplying the mode shapes by the modal

amplitudes and summing.

For a dynamic plate:

Tkin =

Z
V

1

2
� _uT _udV

Ignoring rotary inertia and assuming u is the vector of centerline displacements, uo, and

substituting Rayleigh-Ritz assumed solutions, gives the variation in kinetic energy as:

�Tkin =

Z
V

� 
T
p _p p� _pdV

Integrating by parts:
t2Z
t1

�Tkindt = �
t2Z
t1

Z
V

� 
T
p  p�p�pdV dt

The mass matrix as de�ned in [Hagood, Chung and Von Flutow 90] is then seen to be for

a plate:

M =

Z
x

Z
y

 
T
p

nX
k=1

�k (zk � zk�1) pdxdy

Hamilton's Principle now becomes:

t2Z
t1

(�M�p�Kp+ �v) �pdt = 0
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Because the variation in the modal amplitudes, �p, is arbitrary, the dynamic equations

of an electromechanically coupled plate result:

M�p+Kp� �v = 0

By calculating theM,K and � matrices for a laminated plate as derived, the time evolution

of the dynamic system can be computed.

B.2.1 Simulation Results

The model of [Hagood and McFarland 95] was implemented for an asymmetric free-free

composite piezoelectric plate in cylindrical coordinates and compared to measured results

of a free-standing stator, Grey1.

In cylindrical coordinates, plane-stress assumptions lead to displacements of the form:

u(r; �; t) = uo � z
@wo

@r

v(r; �; t) = vo � z
1

r

@wo

@�

w(r; �; t) = wo

where u, v and w are displacements in the r, � and z directions, respectively. Strain-

displacement relations in cylindrical coordinates, [Timoshenko and Goodier 87], are derived

from cutting a cylindrical section of a thin plate as in Figure B-8. Figure B-8(a) illustrates

the radial and tangential deformations while Figure B-8(b) depicts in-plane shear defor-

mations. The deformation of section abcd to a0b0c0d0 involves a rotation, v
r
, which must be

subtracted from the total angular change, 1
r
@u
@�

+ @v
@r
. The plane-stress strain-displacement

relations become:

2
664
S1

S2

S6

3
775 =

2
664

@u
@r

1
r
@v
@�

+ u
r

1
r
@u
@�

+ @v
@r
� v

r

3
775
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Figure B-8: In cylindrical coordinates, the strain-displacement relations take on a new form. (a)

The in-plane extensional strain is a function of radial displacement, u, while the in-plane tangential

strain is a function of both the radial displacement, u, and the tangential displacement, v. (b)

In-plane shear strains formulations must make sure to subtract o� rotations.
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which results in an �o-� vector of:

"
�o

�

#
=

2
6666666666664

@
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If we are interested in the out-of-plane de
ection of the neutral axis of the plate, ignoring

small in-plane extensions, we solve only for wo. We take the Rayleigh-Ritz assumed solutions

for wo for the annular plate as a sum of products of mode shapes (independent of time) and

modal amplitudes (independent of geometry):

wo(r; �; t) =
X
i

 pi (r; �) pi (t)

To simulate our motor, we choose twomode shapes to meet the geometric free-free boundary

conditions at the inner and outer circumferences, one with no radial variation and one

linearly proportional to r:

 p = [ cos (3�)
�
r�a
b�a

�
cos (3�) ]

For an unsymmetric (in the z-direction) plate, the �o vector is not the vector of midplane

strains, but more precisely, the neutral axis strains. The neutral axis location, g, from the

bottom of the plate is taken as a ratio of weighted sti�nesses:

g =

R
zc

(E)
11 dzR

c
(E)
11 dz

where z(k�1) of the 0
th layer is then equal to �g. The Lo matrix can now be found and the

M and K matrices calculated.

The electromechanical coupling term, �v, determines the forcing in this system. The

piezoelectric layer is segmented and poled alternately in such a manner as to induce a three-

wavelength bending mode, as shown in Figure 7-6. The generalized electrical coordinates,

v(t), are taken as the applied voltages, V , while the mode shapes are either +1 or -1
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depending on the poling direction of the segment. As the electric �eld is the negative of the

gradient of the potential, the di�erential operator, Lv , can be taken as the reciprocal of the

layer thickness. The � matrix in then computed using:

E3 = � V

zk � zk�1

For a static plate deformation, the modal amplitudes are found from:

p = K�1
�v

and combined with the mode shapes to �nd the neutral axis de
ection in the z-direction,

wo:

wo(r; �; t) =  p1 (r; �) p1 (t) +  p2 (r; �) p2 (t)

Dynamical properties of the system can also be calculated. System characteristics are

found by examining the undriven response of the system. For no forcing, the equation of

motion is simply:

M�p+Kp = 0

When we take:

pi (t) = Pie
j!t

we have an eigenvalue problem and can solve for the eigenfrequencies and mode shapes by

taking derivatives: h
�!2M+K

i
P = 0

Natural frequencies are computed by calculating the eigenvalues of the K� !2M matrix:

[K � !2M ] = 0

The solution produces repeated roots which correspond to orthogonal modes of equal

amplitude variation, R(r). A new mode shape matrix is created to model the appropriate

sin and cos modes for generating the traveling wave:

 
0

p (r; �) = [R (r) cos (3�) R (r) sin (3�) ]
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The radial dependence of each mode, R(r), is composed by using the eigenvector, P, to

weight the two radial dependence terms of the initial assumed-modes matrix,  p:

R(r) = P1 + P2

�
r � a

b� a

�

The M, K and � matrices are then recalculated using the new  
0

p mode-shape matrix.

The new M and K matrices then become diagonal and we assume a proportional damping

matrix C:

Cii = 2�!Mii

where � is the damping coe�cient related to the quality factor by Q = 1
2� . The complete

dynamical system can then be expressed as:

M�p+C _p+Kp = �v

This equation can be re-expressed in terms of the modal amplitudes as:

�p =M�1C _p�M�1Kp+M�1
�v

where this second order di�erential equation can be reduced to two �rst order di�erential

equations by taking:

n = _p

The equation of motion can then be written in state-space form as:

"
_n

_p

#
=

"�M�1C �M�1K

I 0

# "
n

p

#
+

"
M�1

�v

0

#

Once the modal amplitudes, p, are found, they are combined with the modes of  
0

p to

calculate wo:

wo(r; �; t) = R(r)cos (3�) p1 (t) +R(r)sin (3�) p2 (t)

Figure B-9 shows simulation results for the driven response of a neutral axis out-of-

plane displacement, wo, of a composite plate similar to stator Grey1, consisting of PZT-5A

material, product number PSI-5A from Piezo Systems, Cambridge, MA, [Piezo Systems 95],

bonded onto a steel substrate. The composite plate has an inner diameter of 5 mm and an
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Figure B-9: A cylindrical plate with a piezoelectric layer bonded onto a steel substrate. The

piezoelectric segments are driven dynamically at 60 Vpeak, 90 degrees out of phase at 18kHz. The

damping is 0.2%.

outer diameter of 8 mm. The PZT layer is 0.191mm thick and the base height of the stator

is 0.381mm thick. The density of PSI-5A used in the simulation is 7750 kg

m3 and the density

of stainless steel is 7860 kg

m2 . The measured value of stator Grey1's damping coe�cient,

� = 2% was used for the calculation of the modal damping matrix, C. The initial conditions

are taken at rest and the plot in Figure B-9 is drawn at 0.01 seconds after turn-on.

The materials matrices characterizing the PZT layer are the plane-stress piezoelectric

matrix, e�PZT :

e�PZT =

2
664

0 0 0

0 0 0

e
�

31 e
�

31 0

3
775 =

2
664

0 0 0

0 0 0

�14:9 �14:9 0

3
775 C

m2

and the plane-stress sti�ness matrix, cE
�

PZT :

cE
�

PZT =

2
664
c
E�

11 c
E�

12 0

c
E�

12 c
E�

11 0

0 0 c
E�

66

3
775 =

2
664
67:0 20:1 0

20:1 67:0 0

0 0 23:5

3
775� 109

N

m2

For stainless steel, the Young's modulus is 190� 109 N
m2 , giving the isotropic material a

sti�ness matrix of:

csteel =

2
664
c11 0 0

0 c11 0

0 0 c11

3
775 =

2
664
190 0 0

0 190 0

0 0 190

3
775� 109

N
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The simulation predicted a resonant frequency of 18.0kHz and a de
ection of approx-

imately 20�m at resonance. The actual measured natural frequency at the third bending

mode was 42.2kHz and the amplitude of de
ection was on the order of 4.5�m. The dis-

crepancy in natural frequency can be attributed to the fact that the materials parameters

used in the simulation may not be accurate, the teeth of the stator are not modeled, the

interconnects on the electrode patterns are not modeled, the electrodes are not perfectly

matched in terms of resonance characteristics and/or the epoxy bond layer is ignored. As

the de
ection amplitudes are dependent on the drive frequency, we expect the predicted

amplitudes to be o� if the predicted natural frequencies are not correct. We also know that

stator Grey1 does not exhibit complete uniformity in traveling wave amplitude at all points

around the stator, so it is not acting in quite the manner that it is modeled.

Rotor coupling can be appended to this model by calculating modal forces in the direc-

tions tangential and normal to the stator surface. [Hagood and McFarland 95] illustrates

this process for a symmetric ring-type motor clamped at the inner circumference where the

equations of motion for the stator are written as:

M�p+C _p+Kp = �v + Fmodal;N + Fmodal;T

and the rotor is modeled by equations of motion in the rotary direction, parameterized by

the angle, �:

Irotor ��+ C� _� = �int � FBr

and in the z-direction, parameterized by the 
exure height, wf , the distance between the

undeformed stator height and the rotor lower surface:

Mrotor �wf + Cz _wf = Fint � FN

where �int and Fint are the interface torques and forces coupling the stator and rotor models.

The rotor equations of motion can be written in state-space form as:

2
6666664
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��

_wf

�wf

3
7777775
= [Ar]

2
6666664

�

_�

wf

_wf

3
7777775
+ [Br]

"
�int � FBr

Fint � FN

#
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and combined with the stator model to model the entire assembly.

This method of [Hagood and McFarland 95] can be extended here for an asymmetric

free-free ring and the contact models discussed earlier can be superimposed to compare their

predictions and yet take into account the decrease in stator de
ection due to the applied

normal force and the extraction of mechanical work.

203


