Learning from Ambiguity
by
Oded Maron

Sc.B., Brown University (1992)
M.S., Massachusetts Institute of Technology (1994)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1998
(© Massachusetts Institute of Technology 1998. All rights reserved.

AUthor ...
Department of Electrical Engineering and Computer Science
May 20, 1998

Certified Dyo
Tomas Lozano-Pérez

Cecil H. Green Professor of Computer Science and Engineering
Thesis Supervisor

Accepted Dy ...
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Learning from Ambiguity
by
Oded Maron

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 1998, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

There are many learning problems for which the examples given by the teacher are
ambiguously labeled. In this thesis, we will examine one framework of learning from
ambiguous examples known as Multiple-Instance learning. Each example is a bag,
consisting of any number of instances. A bag is labeled negative if all instances in
it are negative. A bag is labeled positive if at least one instance in it is positive.
Because the instances themselves are not labeled, each positive bag is an ambiguous
example. We would like to learn a concept which will correctly classify unseen bags.

We have developed a measure called Diverse Density and algorithms for learning
from multiple-instance examples. We have applied these techniques to problems in
drug design, stock prediction, and image database retrieval. These serve as examples
of how to translate the ambiguity in the application domain into bags, as well as
successful examples of applying Diverse Density techniques.

Thesis Supervisor: Tomas Lozano-Pérez
Title: Cecil H. Green Professor of Computer Science and Engineering

Learning from Ambiguity
by
Oded Maron

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 1998, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

There are many learning problems for which the examples given by the teacher are
ambiguously labeled. In this thesis, we will examine one framework of learning from
ambiguous examples known as Multiple-Instance learning. Each example is a bag,
consisting of any number of instances. A bag is labeled negative if all instances in
it are negative. A bag is labeled positive if at least one instance in it is positive.
Because the instances themselves are not labeled, each positive bag is an ambiguous
example. We would like to learn a concept which will correctly classify unseen bags.

We have developed a measure called Diverse Density and algorithms for learning
from multiple-instance examples. We have applied these techniques to problems in
drug design, stock prediction, and image database retrieval. These serve as examples
of how to translate the ambiguity in the application domain into bags, as well as
successful examples of applying Diverse Density techniques.

Thesis Supervisor: Tomas Lozano-Pérez
Title: Cecil H. Green Professor of Computer Science and Engineering

Acknowledgments

A year ago, I was ready to submit a paper to NIPS. It contained the basic idea of
Diverse Density, but it had only been tested on small or artificial problems where the
relevant features were known. My advisor, Tomas Lozano-Pérez, said that to make
it a good paper we should really implement an algorithm that performed feature
scaling and test it on the MUSK dataset. I had been planning to do that eventually,
but it was two days before the submission deadline and I was coming down with a
cold. Reluctantly, I agreed. We hacked through that night and the following day.
Amazingly, the code worked without much tweaking, and the paper got out just in
time. The rest of this thesis flowed easily after that. I tell this story not because
Tomas is a slave driver — quite the contrary. It was the one time when I needed a
push and I got it. During the rest of my graduate career, Tomas gave me the freedom
to explore a variety of topics, and the support when I floundered. In other words, he
is everything you could ask for in an advisor.

The other members of my committee, Paul Viola and Peter Dayan, were both
mentors and collaborators. They provided a wealth of knowledge and inspiration,
and focused my energies on making the thesis more rigorous, more readable, and
more practical.

Large sections of the thesis are the results of collaboration with a number of
people. I enjoyed hours of useful feedback from Charles Isbell. Our discussions paid
off in the development of PWDD. Aparna Lakshmi Ratan provided the perfect Machine
Vision foil to the learning techniques developed here. Our collaboration is detailed in
Chapter 6, and I feel that it brought out the best in both of our work.

Throughout most of my graduate career, I consulted for Grantham, Mayo, Van
Otterloo & Co. They have been extremely generous in allowing me to experiment
with various techniques on their financial data. Chris Darnell and Tom Hancock have
supported me with ideas and insights into the world of computational finance.

I tried to attend as many group meetings as I could during my time at the Al

Lab, and they have helped to shape my research and refine my critical eye: Tommy

Poggio’s learning meetings, Patrick Winston’s Al group meeting, Ron Rivest’s (and
then Anselm Blumer’s) Machine Learning reading group, and Paul Viola’s Learning
and Vision group. I am also grateful to Ed Wang and Lisa Tucker-Kellogg for putting
up with my lack of knowledge of biochemistry during our group meetings.

There are many people who gave me advice, a reference, or a sympathetic ear.
They shaped the curves of my research trajectory. Eric Grimson helped with the
image retrieval application. Pam Lipson shared code and expertise of the problems
of natural scenes. Carl de Marcken helped me turn initial intuitions into a working
algorithm. Dana Ron provided timely references and advice. Mike Kearns got me to
think of bags in different ways. Tom Dietterich was generous with advice and code.
I had many constructive discussions with Peter Auer, who helped me understand his
algorithm and generously provided me with his code. Discussions with Haym Hirsh
helped me put my work in context.

Finally, Holly Yanco was with me through this process, both when it was an
adventure and when it was an ordeal. Her contributions are on every page.

This research was supported by the AFOSR ASSERT program, Parent Grant
F49620-93-1-0263, and also by ONR’s “A Trainable Modular Vision System,” grant
N00014-95-1-0600.

Contents

1 Introduction 11
1.1 Multiple-Instance learning L. 13
1.2 Multiple-Instance learning applications 15

1.2.1 Drugdiscovery 15
1.2.2 Stock prediction 16
1.2.3 Image database retrieval 17
1.3 Diverse Density 19

2 Computing Diverse Density 23
2.1 Notation L 23
2.2 Diverse Density as probability 24

2.2.1 Exact generative modelso 25
2.2.2 Defining Diverse Density in terms of Pr(¢t | B;) 28
2.3 Ways to estimate Pr(t | B;) 30
2.3.1 Using noisy-or to estimate a density 30
2.3.2 Other density estimators 31
2.4 Computing Pr(B;; € ¢;) for various concept classes 33
2.4.1 Single point concept class L. 34
2.4.2 Single point-and-scaling concept class 34
2.4.3 Disjunctive point-and-scaling concept class 35
2.5 Comparing density estimators 37
2.6 Examples 38
2.6.1 Example: A simple dataset 41

2.6.2 Example: A difficult artificial data set

3 Learning a concept by using Diverse Density

3.1 Maximizing Diverse Density
3.1.1 Learning from a single point concept class using

multiple gradient based optimizations

3.1.2 Learning from a point-and-scaling concept class

3.1.3 Learning disjunctive concepts

3.2 Pointwise Diverse Density

3.2.1 Using PWDD to learn a point-and-scaling concept

3.3 Computational issues

An application to drug discovery
4.1 Drug discovery
4.2 A molecular bag generator

4.3 The MUSK datasets

4.4 Experiments

An application to stock prediction
5.1 Generating bags as collections of stocks

5.2 Experiments with financial data

An application to image database retrieval

6.1 Previouswork

6.2 Image database retrieval as a multiple-instance learning problem . . .

6.3 Generating a bag from an image

6.4 Experiments Lo
6.4.1 Experimental setup
6.4.2 Precision and recall graphs L.
6.43 Results.

6.5 Conclusions

45
45

46
48
50
o1
93
54

56
56
o8
60
61

65
66
69

7 Related work

7.1 Previous work on Multiple-Instance learning

7.1.1 Overview of the MULTINST algorithm

7.2 Previous work on ambiguous examples

8 Conclusion

81 Future Work.

8.2 Summary

A Fun with logarithms and derivatives

A1 Soft min and max

A.2 Computing with very small probabilities

A.3 Derivative of Diverse Density

B Experimental details

94
94
97
98

102
102
105

107
107
108
108

111

List of Figures

1-1
1-2
1-3
1-4

2-1
2-2

2-4
2-5
2-6

2-8

3-1
3-2

Learning frameworks along the ambiguity spectrum 12
Images are inherently ambiguous 17
Training examples in the form of images 18
A motivating example for Diverse Density 21
An example of using estimated density of each bag to find an intersection 32

Example of a disjunctive concept 36

Comparison between inverse generative, all-or-nothing, noisy-or, and

most-likely-cause approaches to approximating Pr(¢t | Bf) 37
Difference between noisy-or and most-likely-cause density estimators . 39
Computing Diverse Density on a simple data set 40
A difficult artificial dataset L. 42
Density surfaces using Diverse Density vs. Nearest Neighbor 43
Success of Diverse Density vs. number of training bags 44
Example of potential maxDD starting points 47
Example of the effects of changing feature scales 49
Different conformations of a molecule 57
Energy function of different conformations 58
An example of using rays to represent a conformation 60
A concept learned by maxDD for MUSK1 63
Plotting parameters of the stock bag generator 68
A sketch of the Multiple-Instance stock prediction problem 69

5-3 Results on the stock prediction domain 71
5-4 A disjunctive concept learned by maxDD for stock prediction 73
6-1 Examples of natural scenes from the COREL database 7
6-2 Types of instances produced by various image bag generators 78
6-3 Learned concept vs. global histogram on the small test set 83
6-4 Learned concept vs. global histogram on the large test set 84
6-5 Comparison of learned vs. hand-crafted concept on the mountain images 86
6-6 Comparison of different training schemes on a small test set 87
6-7 Comparison of different training schemes on a large test set 88
6-8 Comparison of different concept types on a small test set 90
6-9 Comparison of different concept types on a large test set 91
6-10 Snapshot of the image retrieval system 92
7-1 Performance of MULTINST on an artificial dataset 96
8-1 Potential complicated concepts 103

List of Tables

4.1 Summary descriptions of the MUSK datasets

4.2 Results on the MUSK datasets

10

Chapter 1

Introduction

The field of Machine Learning is concerned with methods that use experience to
improve performance. There are a number of reasons why one would want a computer
to learn a task instead of programming the task into the computer. One reason is
that many problems are simply too complex to program; predicting the behavior of
the stock market, determining the three-dimensional structure of a protein from its
amino acid sequence, and forecasting the weather are some examples of systems that
are not understood well enough to program as an algorithm. Another reason is that
some systems need to be adaptable to changing environments that could not have
been foreseen by the programmer. For example, a robot that wanders around an
office environment might need to learn on-line a new map if a doorway is blocked
or a new partition is erected. Finally, one key component of natural intelligence is
the ability to learn. If we can build artificial learners, then perhaps we can develop
insights about how minds work.

Machine Learning algorithms receive examples from a teacher or from the environ-
ment and attempt to learn some structure that will generalize for unseen examples.
The majority of work in Machine Learning falls into three learning frameworks: su-
pervised, unsupervised, and reinforcement.

In supervised learning, the algorithm attempts to learn a concept from labeled
examples that predicts the labels of the training examples correctly and generalizes

to produce correct labels on examples outside of the training set. The label can

11

non noisy Reinforcement

ambiguous labels Learning ambiguous
-~ — —>
supervised Multiple-Instance unsupervised
learning learning learning

Figure 1-1: An ambiguity spectrum, with learning frameworks of increasingly am-
biguous training examples.

be a class, in which case the learning task is called classification, or a continuous
signal, in which case the task is called regression. Some concept representations
used to learn from labeled examples include decision trees [Quinlan, 1992], nearest
neighbor [Dasarathy, 1991], neural networks [Rumelhart et al., 1986, and Bayesian
networks [Pearl, 1988].

In unsupervised learning, the examples are not labeled. The algorithm attempts
to learn the structure of the underlying source of the examples. Some instances of
unsupervised learning are clustering [Cheeseman et al., 1988], Principal Component
Analysis [Chatfield and Collins, 1980], and Independent Component Analysis [Bell
and Sejnowski, 1995, Comon, 1994].

In Reinforcement Learning the goal is to learn a policy, which is a mapping from
states to actions. Examples are not labeled with the correct action; instead an occa-
sional reinforcement signal which denotes the utility of some state is received. Rein-
forcement Learning methods are reviewed in [Sutton and Barto, 1998 and [Kaelbling
et al., 1996).

One way to relate these three frameworks is to look at the ambiguity of the training
examples by determining how much information the label of an example conveys. In
supervised learning, every example is perfectly labeled, so there is no ambiguity. In
unsupervised learning, no example is labeled with respect to the desired output, so
there is much ambiguity. Figure 1-1 shows a rough picture of the ambiguity spectrum,
mapping supervised learning, learning with noisy labels (discussed in Chapter 7),
Reinforcement Learning, Multiple-Instance learning, and unsupervised learning. In
fact, there are many learning problems in which the examples are neither perfectly

labeled nor completely unlabeled. We call these situations learning from ambiguous

12

examples.

In this thesis, we concentrate on a relatively new framework of learning from
ambiguity called Multiple-Instance learning. In this framework, each positive example
is made up of a collection of instances, at least one of which is positive; each negative
example is made of a collection of negative instances. Whether Multiple-Instance
learning or Reinforcement Learning is more ambiguous is not clear, and so their

order in Figure 1-1 is arbitrary. The contribution of this thesis is threefold:

e We present a new scheme — Diverse Density — of learning from Multiple-

Instance examples.

e We show that there are many different learning problems that fall into the

Multiple-Instance learning framework.

e Finally, we describe architectures for transforming difficult learning problems
into Multiple-Instance learning problems, which in turn may be solved with

Diverse Density techniques.

Supervised learning has been a dominant and useful framework over the past
few decades. Many learning problems with ambiguous labels were forced into the
supervised learning framework with the hope that enough examples would overcome
any ambiguity or noise. However, a major undercurrent of this thesis is that it is
crucial to explicitly tackle the ambiguity inherent in many learning problems. The
techniques developed in this thesis should make the process of tackling ambiguity
a simple, efficient (both in the number of examples and computation needed), and

general one.

1.1 Multiple-Instance learning

Multiple-Instance learning is a framework for learning from ambiguity. Like super-
vised learning, each example is labeled. Unlike supervised learning, an example is not

a simple feature vector, but is actually a collection of instances. We call a collection

13

of instances a bag. Each instance is described by a vector of features. Each bag can
contain a different number of instances. In this thesis, we will deal only with two-class
classification problems, so a bag’s label is either positive or negative. Extensions to

multi-class and regression problems are discussed in Chapter 8.
e A bag is labeled negative if all the instances in it are negative.
e A bag is labeled positive if at least one of the instances in it is positive.

Note that while there exists some unknown function that can label individual in-
stances, only the bags are actually labeled. Given a training set of labeled bags, a
Multiple-Instance learning algorithm attempts to find a concept that correctly pre-
dicts the labels on the training set and generalizes to predict the labels for unseen
bags. It can also predict the class of individual instances if a bag only contains a
single instance.

If there was only one instance per bag, then the Multiple-Instance learning problem
would be reduced to regular supervised learning. However, with many instances
per bag, the “noise ratio” in a positive bag can be arbitrarily high. Specifically,
the Multiple-Instance framework does not prohibit a bag with one true positive and
millions of negatives being labeled as a positive bag. Even when supervised learning
problems assume noisy labels, the probability of a corrupt label is less than 50%.
The Multiple-Instance learning problem therefore can be much more difficult than
the noisy supervised learning problem. The tradeoff for learning in a more complex
environment is that the concepts learned in this framework will be very simple. We
will not be learning concepts such as a neural network.

There are two trivial transformations of a Multiple-Instance learning problem to
a supervised learning problem, but neither one is likely to be successful. One trans-
formation is to treat every instance in a positive bag as positive, and every instance
in a negative bag as negative. This is likely to fail because the ratio of true positive
instances to false positive instances can be arbitrarily high, and the supervised learner
would be overwhelmed by incorrectly labeled examples. Another transformation is to

make each bag a single example, with all the instances concatenated together to form

14

a single feature vector. This is likely to fail because the “true instance” might be the
first feature of one example and the third feature of a different example. In addition,
every bag can have a different number of instances, leading to examples with varying

numbers of features.

1.2 Multiple-Instance learning applications

The learning framework described above may appear abstract, but in fact, there are a
variety of learning problems that can be tackled as Multiple-Instance problems. In this
section we summarize the applications which are discussed in detail in Chapters 4, 5,
and 6. In all three of these applications, the bags need to be constructed before a

Multiple-Instance learning algorithm can be applied.

1.2.1 Drug discovery

In the drug discovery application, one objective is to predict whether a candidate
drug molecule will bind strongly to a target protein known to be involved in some
disease state. Typically, one has examples of molecules that bind well to the target
protein and also those that do not bind well. Just as with a lock and key, shape is
the most important factor in determining whether a drug molecule and the target
protein will bind. However, drug molecules are flexible, and can adopt a wide range
of shapes. A positive example does not convey what shape the molecule took when
binding to the target — only that one of the shapes that the molecule can take was
the right one. However, a negative example means that none of the shapes that the
molecule can achieve was bound to the target.

Each molecule is represented by a bag, and the bag’s label is positive if the
molecule binds well to the target protein. A bag is made up of instances, where
each instance represents one shape (or conformation) that the molecule can take.
The instances are sampled from the large variety of low-energy conformations of the
molecule. After being trained on a set of positive and negative bags, the learning

algorithm returns a concept which represents constraints on the shape of a molecule

15

that would bind to the target protein. In Chapter 4, we discuss how to limit the
number of instances per bag and how to represent shape. In addition, we examine
a particular set of molecules (musks) and show results of Diverse Density and other

learning algorithms on this task.

1.2.2 Stock prediction

The stock market is one of the most noisy (some would even say chaotic [Trippi, 1995])
and popular domains for Machine Learning techniques. One reason for the apparent
high amount of noise in the stock market is that most price changes are caused
by unpredictable current events and public sentiment, rather than by fundamental
financial and economic reasons. For example, IBM’s stock price went up in May 1997
because their Deep Blue system beat Gary Kasparov in chess, an event for which
few computerized trading systems were trained!. Coca-Cola’s stock went up in June
1993 when rumors of people finding syringes in Pepsi cans spread across the country?.
The price of IPOs with “net” or “web” in the company’s name does not always lead
to judicious choices. Netscape’s stock value tripled in its first four months, only to
return to its initial value.?

A learning algorithm trained on these stocks will only learn spurious correlations
between the stock’s behavior and its economic features. However, some stocks do
go up and down in value according to some fundamental (platonic) aspects of the
stock. If a learning algorithm could be trained on these stocks, then the ideal stock
description could be found. The ambiguity in this problem is that we do not know
which stocks behave according to some fundamental economic features (or when) and
which do not. However, if we put enough high-return stocks in a bag, then with high
probability at least one of them will be platonically good. Every stock is described

IThe price of an IBM share went from $161 on May 2, a day before the match started, to $173.50
on May 12, a day after Deep Blue’s victory.

2The price of a Coca-Cola share went from $20.02 on June 9 when a Seattle couple found a
syringe in a Pepsi can, to $21.22 on June 17 before a Colorado woman was caught by a supermarket
surveillance camera placing objects into a can of Diet Pepsi.

3Netscape went from $29.125 as the closing price on its first day of trading (May 12, 1995), to
$85.50 on December 5, 1995. It was back at $29.125 on April 29, 1998.

16

Figure 1-2: What is this image? A rock
formation (El Capitan), a river (Merced
River), clouds, or trees? This is an exam-
ple of how images are inherently ambigu-
ous.

using a feature vector, and a collection of stocks (instances) that performed well
during a particular month constitute a positive bag. Each bag represents a different
month. The fundamental concept, by definition, does not change from month to
month. Therefore, there will be a common instance to all the positive bags, much
like the common shape of all of the positive molecules in the previous subsection. In
Chapter 5, we show results of this approach in learning to select stocks in the US

stock market.

1.2.3 Image database retrieval

If a person were asked to describe the image in Figure 1-2 | any of these responses

PRENA4 bRANA4 PR3

would be considered valid: “a rock formation,” “a river,” “trees,” “clouds,” “a blue
blob over a green blob,” etc. A computer, even armed with an object recognizer (still
an elusive goal for Machine Vision researchers), could hope to do no better. Most im-
ages are inherently ambiguous disseminators of information. Unfortunately, interfaces
to image databases normally involve the user giving the system ambiguous queries
such as “Give me images like Figure 1-2.” By treating each query as a Multiple-

Instance example, we make the ambiguity in each image explicit. In addition, by

17

Figure 1-3: Some (a) positive and (b) negative training examples

receiving several positive and negative examples, the system can learn what the user
desires. Using the learned concept, the system returns images from the database that
are close to that concept.

Let us take a hypothetical example: imagine that the user enters the images in
Figure 1-3(a) as positive examples of what they are looking for, and the image in
Figure 1-3(b) as a negative example®. Let us further suppose that we have an object
recognizer such that when given an image, it outputs the set of objects that are in

the image. In the three positive images the output could be

{building, trees, people, windows}
{trees, leaves, fish, water}
{water, trees, footsteps, tire tracks, mud}

and for the negative image the output could be
{fish, geese}.

This fits the Multiple-Instance framework precisely, where every image is a bag,

and each instance in a bag is a particular way of describing the image. In this

4All M.C. Escher works (©Cordon Art B.V. Baarn,the Netherlands. All rights reserved.

18

hypothetical example, we assume that the image can be described by some of the
objects in it. In Chapter 6, we assume that the image can be described by some of
the subregions in it because object recognition is not currently feasible. A Multiple-
Instance learning algorithm can be trained on the bags and determine that the concept
is images with trees in them. The database is then searched for other images with
trees. In Chapter 6, we describe a similar system, designed to search a database
for images of natural scenes such as sunsets and mountains. We explore various bag
generators, and show that, at least for images of natural scenes, one does not need

the full power of the mythical object recognizer.

1.3 Diverse Density

We now give an intuitive explanation of a technique called Diverse Density for learning
from multiple-instance examples. This technique was first introduced in [Maron and
Lozano-Pérez, 1998]. A more detailed discussion of the algorithm, a formal derivation,
its mathematical assumptions, and its variants are given in Chapters 2 and 3. The
applications in the previous section have hinted at the approach taken in this thesis.
If we can find what is in common among the positive bags and does not appear in
the negative bags, then we have a concept that agrees with the training examples. If
we treat bags as sets, the natural operators for this technique are the intersection,

union, and difference operators. Specifically, we want
the intersection of the positive bags minus the union of the negative bags.

Unfortunately, most real world problems involve noisy information. The features
of the instances might be corrupted by noise, some features may be irrelevant or
less important than others, some of the labels of the bags might be wrong, or the
strict intersection of the positive bags may be empty. We would still like to perform
operations such as intersection, but we would like to have a softer (less strict) version
of them. In this thesis, we achieve a soft version of intersection by thinking of the

instances and bags as coming from some probability distribution. The location of

19

an instance is therefore treated as evidence of the location of the true underlying
concept. Chapter 2 describes how evidence from instances within a single bag is
combined. It also describes how evidence from multiple bags is combined to form
a probability distribution over the space of candidate concepts (each of which is a
potential intersection area).

Once soft versions of intersection, union, and difference have been established we
can assign every possible concept a measure of “goodness.” If we could use a discrete
version of intersection, then goodness would be a binary value: 1 if the concept is
contained by the intersection of the positive bags minus the union of the negative
bags, and 0 otherwise. Using soft versions, the value of goodness is continuous and is
indicative of the probability that this concept agrees with the underlying distribution
of positive and negative bags. We have coined the term Diverse Density for this
measure to indicate that it measures not merely a co-occurrence of samples (i.e.
intersection of instances), but a co-occurrence of instances from different (diverse)
positive bags.

To illustrate this technique, we use a simplified example of the drug discovery
problem. Assume that two features are sufficient to describe the shape of a molecule.
A particular conformation is therefore represented as a point in a 2-dimensional fea-
ture space, and all possible conformations of a molecule can be represented as a
manifold through this feature space.

If a candidate molecule is labeled positive, we know that in at least one place along
the manifold, it took on the right shape to fit into the target protein. If the molecule
is labeled negative, we know that none of the conformations along its manifold will
allow binding with the target protein. If we assume that there is only one shape
that will bind to the target protein, the correct shape is where all positive feature-
manifolds intersect without intersecting any negative feature-manifolds. For example,
in Figure 1-4(a), the correct shape is point A.

Unfortunately, a multiple-instance bag does not give us complete distribution
information, but only some arbitrary sample from that distribution. In fact, in ap-

plications other than drug discovery, there is no notion of an underlying continuous

20

positive negati\./e bag positive negative bag
L]
bag g:l\. --.,.' bag #1 O o
\ () =
K > e A
< O
[}
positive - positive . o A
bag #2 5 bag #2 X point A o A
g
., [}
.~ .' [} >><<’A/A A AN AN VAN §
................. N O sl O O
N > O section
: A O o B
- > O
[
3 s - = =
“ A V) O @)
0
., . o =< O
Seacolw ‘____o~:..__— AN e < K X&QX
~,
e, | |
~, A @)
positve s :"'; positive H o8
bag #3 S bag #3 o
‘n, (@)

(a) (b)

The different shapes that a molecule
can take on are represented as a
path. The intersection point of posi-
tive paths is where they took on the
same shape.

Samples taken along the paths. Lo-
cation B is a high density area, but
location A is a high Diverse Density

area.

Figure 1-4: A motivating example for Diverse Density

manifold. In this case, Figure 1-4(a) becomes Figure 1-4(b). Instead of finding an
intersection, we need to find an area where there is both high density of positive
points and low density of negative points — a soft intersection. Normally, to find
an intersection of a set of samples, one finds an area of high sample density. Section
B in Figure 1-4(b) is an area of high density, but that is not the answer we want.
Therefore, we are not just looking for high density, but high “Diverse Density.” We
define Diverse Density at a point to be a measure of how many different positive
bags have instances near that point and how far the negative instances are from that
point. In Chapter 2, we estimate the probability that a bag is near a hypothesized
concept. We also show that Diverse Density can be computed as a combination of
the probability densities from each bag.

In Chapter 3, we examine several ways of using Diverse Density to generate a
concept from multiple-instance examples. One is to find the concept that maximizes
Diverse Density by finding locations in the feature space (concepts) that have high
Diverse Density. Another approach is to use Diverse Density to find which instances

in a positive bag are the “true positive instances.” If Diverse Density is computed

21

at every instance, the “true positive instances” will be those instances which have
the highest Diverse Density. Once those are found, the problem has been reduced
to a simple supervised learning problem. The advantage of this method is that the
computationally expensive operation of finding locations in feature space with high
Diverse Density has been bypassed.

Chapters 4, 5, and 6 discuss the three applications outlined in Section 1.2. They
are representative of situations where Multiple-Instance learning can be used. In these
applications, we describe a variety of bag generators that transform the problems
into the Multiple-Instance framework. In the drug discovery application, the data is
sampled from low-energy conformations of the various molecules and converted into
bags. In the stock prediction application, highly noisy instances need to be gathered
into bags. In the image database retrieval application, each highly ambiguous example
(image) needs to be broken up into instances (things the image could be about). In
this application, we describe a range of possible bag generators, and show results
from experiments using a variety of different generators. These results are taken
from [Maron and Lakshmi Ratan, 1998].

In Chapter 7, we discuss other work on Multiple-Instance learning and on learn-
ing from ambiguous examples in general. Finally, future work and conclusions are
presented in Chapter 8. Appendix A details the computation of Diverse Density and
its derivatives. Appendix B gives details of the various experiments described in the

thesis.

22

Chapter 2

Computing Diverse Density

In this chapter we explore different ways to compute Diverse Density. There are
two types of variations for computing it. One variation involves different ways of
combining evidence from instances in a bag. The other variation is derived from our
use of different concept classes. A concept class defines the set of possible concepts
that can be learned by the algorithm. Diverse Density of a possible concept is a
measure of the amount of intersection between the positive bags at that concept.
It also measures the amount of negative evidence (instances from negatively labeled

bags) at that concept.

2.1 Notation

The training data is presented as positive and negative bags. Positive bag are denoted
as

By, - B

n

and negative bags as

By,---,B;

m

When the label on the bag does not matter, it will simply be referred to as B;. A

bag may contain any number of instances. The p instances of the 7*" positive bag are

23

written as

+ +
Bi,--, B},

and similarly for a negative bag. Each instance represents a point in a k-dimensional
feature space. The individual feature values of the j* instance of the i*" positive bag
are

B

i1

.... Bt

ijk-

2.2 Diverse Density as probability

Given some concept class C, consisting of concepts {¢;}, we define a random variable
T, whose domain is the set of concepts. Pr(T = t) is the probability that the ¢
concept is correct. We use Pr(t) as shorthand for that probability. We want to
compute the probability that a concept, ¢, is the target concept given the training

tth

examples. We call this probability the Diverse Density of the t*" concept:

m

We would like to maximize this probability with respect to ¢, to find the target
concept ¢; that is most likely to agree with the data. In Chapter 3, we examine
methods for maximizing Diverse Density. In this chapter, we examine how to compute
Diverse Density for a particular concept ¢;.

Using Bayes’ rule, Formula 2.1 becomes

Pr(Bi'—vaB;Li_uBl_aan_m|t)Pr(t)
PI(BT,"',B;,Bl_,---,B_) ‘

m

DD(t) = (2.2)

The quantity Pr(t) represents the prior knowledge of what concept is preferred. In
this thesis, we do not use any prior knowledge, and therefore Pr(¢) is constant. The

quantity Pr(By,---, B, By, -, B,

) is also constant with respect to ¢. Since we

are maximizing with respect to ¢, this quantity can be thought of as a normalizing
term and need not be calculated explicitly. Therefore, we are left to compute the

likelihood:

24

We can further simplify Formula 2.3 by making the key assumption that all bags
are conditionally independent given the true target concept. This allows us to de-

compose Formula 2.3 into

[T Pe(BF [0 TI Pe(B7|0) (2.4)

1<i<n 1<i<m
2.2.1 Exact generative models

A generative model which describes how each bag was generated from the target
concept could be plugged into Formula 2.4 to calculate Diverse Density exactly. We
now examine two possible generative models, one for a discrete domain and another
for a continuous domain. We do not have generative models for the applications
described in Chapters 4, 5 and 6. However, the models examined here hint at possible

general approximations discussed in Section 2.3.

A discrete generative model example

Let us assume that all instances are taken from the discrete domain {1,..., D}. The
set of possible concepts is identical, where the meaning of concept ¢, is that any
instance with value 2 should be labeled positive, and instances with values other than
2 should be labeled negative.

We describe one possible generative model in this situation. The concept is picked
uniformly at random from the D possible concepts. Each bag contains n instances.
Positive bags have one instance equal to the concept and the rest are independently
and uniformly chosen at random (with replacement) from D possible values. Negative
bags have all instances independently chosen from the non-concept domain values.

We can now calculate the following quantities:!

L§[expression] is defined to be 1 when the experssion is true, and 0 otherwise.

25

Pr(t) = 1/D

1 1\
Pr(Br | = X ol =1(5)
1<]Z;nn J D
no) - (5)
1
Pr(t| BY) = — 3 olBf =1
1<j<n

If this was indeed the way in which bags were generated, then the above equations
could be plugged into Formula 2.4. Formula 2.4 would in turn be plugged into
Formula 2.2 for a complete definition of Diverse Density. Note that we can also
compute the value of Pr(¢ | B;"), which is non-zero only when ¢ is equal to at least
one of the instances in the bag. Despite the fact that we do not need to calculate the
exact inverse generative model, Pr(t | B;"), the calculations in this section motivate
approximations of Pr(¢ | B;") in Section 2.3.

Likewise, the generative model and inverse generative model for negative bags can

be calculated as:

Pr(B; |t) = (Ly II daB; #1]

D—1/ \Sjcn

Pie) = (o) XTI almg A

1<t<D 1<j<n

IT d[B; #1]

1<j<n

>, 11 olB; #4

1<t<D 1<j<n

where Y [0[Bj; # t] is the number of different instances in bag B; . Note that
1<t<D 1<j<n
the inverse generative model, Pr(¢ | B;), is constant everywhere except for values of

t which are equal to one of the instances, where it is zero.

26

A continuous generative model example

Let us assume that each instance is described using a single real number. Once again,
there are as many concepts as elements in the domain. We select the true concept to
be ¢; with probability G (t), where G (-) is a zero-mean, L-variance Gaussian, and
L > 1is a large number (in other words, a roughly uniform distribution).

One possible generative model is as follows. Each bag contains n instances. A
positive bag contains one instance that was generated from a Gaussian distribution
with mean equal to the concept and a variance of 1. The rest of the instances
were generated independently from a zero-mean, L-variance Gaussian. We can now

calculate the following quantities:

Pr(t) == GL(t)

1
P(Br 0 = Y | Leuss -0 T Gusi)
1<j<n 1<1<n
I

11 Gu(B;) .
1<I<n

= lsise —Gy(Bf: —t) T] GL(B})
I Ga(B) 2, | o 1) 1L ot
1<i<n I#j

S | R0 I Dl B eN0: N § ()7 M —
1<j<n 1<j<n | T 1<i<n H GL(By)

I#j 1<i<n

[T Gu(s) e
— _;Ll}—\/% > (Gl(B;;-—t)eXp< 252))

1<j<n
Pr(Bf) = I Gu(B)
1<5<n
Gr(t) (Bf;)®
S + _ J

Once again, we can plug the generative model’s calculation of Pr(B;" | ¢) into
Formula 2.4 to get a complete definition of Diverse Density. As seen, we can also cal-

culate Pr(¢ | B;"), which turns out to be proportional to a mixture of Gaussians. The

27

Gaussians are centered at the instances and the mixture coefficients are exp (“igﬁ 2>.
Note that when L is large, these coefficients are all approximately one. This is similar
to the inverse generative model in the discrete example, except that instead of having
spikes at the instances, there are Gaussian bumps.

Likewise, let us assume that negative bags are generated by independently picking

n instances from G (+), except not in the area close to the target ¢. Namely,

0 if|B;—t[<1
Gr(B)

1—714@) otherwise

Pr(Bj | t) =

t+1
where A(t) = / Gr(z)dr. The generative and inverse generative models can be
t—1

calculated as follows:

Pr(B; |t) = <H< Pr(Bj | t)
Ge(t) TI Pr(B; 1)
P BY) =

Note that the inverse generative model is only zero where t is close to one of the

negative instances.

2.2.2 Defining Diverse Density in terms of Pr(t | B;)

For the applications described in Chapters 4, 5 and 6, we do not know what the bags’
generative model is. Instead of estimating a different generative model Pr(B; | ?)
for each application, we instead attempt to use a general estimator for Pr(t | B;).
Intuitively, this is an easier quantity to compute because we use the instances as pieces
of evidence for potential concept locations. We describe several such estimators in
Section 2.3. For now, we derive Diverse Density in terms of Pr(¢ | B;). Using Bayes’

rule again on each of the terms in Formula 2.4, we get

28

Pr(t | Bf) Pr(B;')
Pr(?)

Pr(t| Bi) Pr(B;)
Pr(t)

[

1<i<n

I

1<i<m

Inserting this back into Formula 2.2, we get the following definition for Diverse Den-

sity:

DD(t) = H Pr(t| B;") H Pr(t | BY)| x
| 1<i<n 1<i<m
I P 1 Pe(sn)
1<i<n 1<i<m " 1 (2.5)
Pr(Bf, - Br, By, B)| | Pripmrm ‘

Once again, the last term in Formula 2.5 is a constant if we assume a uniform
prior. The middle term is also constant with respect to ¢, and disappears if we were
to assume that the bags are generated independently. Neither the middle nor the last
term in Formula 2.5 needs to be computed if the operation we want to perform is
a comparison between different concepts. This is the only operation (also known as
Maximum Likelihood) needed when we optimize Diverse Density in Chapter 3. The
last term in Formula 2.5 might seem odd because it indicates that concepts with a low
prior become more probable with additional examples. However, there is a canceling
prior term in each of the Pr(¢ | B;) terms, as can be explicitly seen in the continuous
generative model example.

The first line of Formula 2.5 agrees with the intuition established in Chapter 1.
The multiplication of the terms represents the idea that we want to find a concept that
intersects the first positive bag and the second positive bag, etc., and is not in the first
negative bag, and is not in the second negative bag, etc. This is a general definition
of Diverse Density, but we have yet to specify how to compute Pr(¢ | B;). In the
following sections, we give several ways of computing this term, each of which gives a
different instantiation of Diverse Density. The intuitive idea behind Pr(¢ | B;") is that

we would like it to be high if the 7" positive bag is “close” to ¢;, and low otherwise.

29

Similarly, we would like Pr(t | B;") to be high if ¢; is “far” from the i'" negative bag,
and low otherwise. The two exact generative models described earlier indicate that a
reasonable estimate of Pr(¢ | B;") would be a combination of the distances from each

instance to the potential concept ¢;.

2.3 Ways to estimate Pr(t | B;)

2.3.1 Using noisy-or to estimate a density

One way to estimate the likelihood of a hypothesized concept given a single bag is to
use noisy-or [Pearl, 1988]. Noisy-or is an idea from Bayesian Networks, where it is
used to calculate the probability of a binary event with multiple possible causes. In
the noisy-or model, it is assumed that the event can only happen if at least one of
the causations occurred. It is also assumed that the probability of any cause failing
to trigger the event is independent of any other cause. Therefore, if we denote the

event as I and the causes as Cy, - - -, C), then

Pr(E|Cr-.C) =1— [] (1-Pr(E|Cy).
1<5<p
where Pr(E | C}) is the causal probability of the j cause triggering event E.
By analogy, the event E corresponds to “c; is the underlying concept.” This event
can happen if at least one of the instances in the bag is in ¢;, so the causes are
represented by instances in the bag. The density distribution analogous to noisy-or

is

Pr(t|Bf) = Pr(t| By, B
1— H (1—PI'(B:]_ Ect))

1<5<p
_ 2.6
Z (2:6)

where Z is a normalizing constant that depends on the concept class, and can be

30

computed as [, Pr(t | B;) Pr(t)dt. If even one of the instances in the bag is likely to
be in the concept ¢;, then Pr(¢ | B;") will be high. If none of the instances is likely
to be in ¢, then Pr.(t | B;f) will be close to zero. Computing Pr(B;; € ¢;) depends
on the concept class, and is discussed in Section 2.4. Negative bags are handled in a
similar manner, resulting in

H (1—-Pr(Bj € ¢))

1<j<p

Pr(t| B;) =

A

2.3.2 Other density estimators
All-or-nothing density estimator

If we assume that there is no noise involved in any of the instances, then one inter-

pretation of Pr(t | B;) is

1/Z if 37 such that B € ¢,

0 otherwise

if 37 such that B;; € ¢

Pr(t| BY) = (2.7)

1/Z otherwise

This “all-or-nothing” approach means that the distribution of Pr(t | B;") is zero
everywhere except for spikes where ¢; overlaps positive instances. Likewise, Pr(t | B;")
is zero only where ¢; overlaps the negative instances. This is similar to the discrete
generative model example, except that the size of the spike does not depend on the
number of instances in the bag. When this approach is used with Formula 2.5, Diverse
Density is computing a strict intersection between the positive bags minus a union of
the negative bags. If the data is not noisy and precisely agrees with our assumptions,
then this strict approach should work. However, in most real world problems there are
noisy measurements of the instances, irrelevant attributes, and perhaps mislabeling

of the bags. In that case, strict intersection would return the empty set, but a softer

31

“ggr?gé’:)’t‘g 5283 Figure 2-1: There are three bags
B 6 (A, B,C), each with six instances
(Ay,-++, Ag, B, -+, Bg,Cy, -, Cg).
Every bag is positive because it has
. at least one instance within the true
AIEERILS concept. A strict intersection of the
bags would be empty. An intersec-
A, %c% tion of the estimated densities of
A, the bag would work only if As, By,
and Cy are not ignored as outliers.

LI

FEATURE 2
O

FEATURE 1

approach (such as noisy-or) would be able to handle some amount of noise.

Most-likely-cause estimator

An approach which is similar to noisy-or, but which requires fewer independence
assumptions, is the most-likely-cause method. Pr(t | B;) is estimated by looking only

at the instance in the bag which is most likely to be in the concept ¢;. Specifically,

Pr(t| Bf) = mJaX{Pr(B;; €w)}/Z
Pr(t|B;) = (1— mjax{Pr(Bi; cc)})/Z (2.8)

Using domain knowledge in the estimator

So far, we have tried to make minimal assumptions about how the bag was generated.
If domain-specific knowledge is known, other density estimators may be better and
more computationally efficient than the ones described here. However, without that
knowledge, some density estimators are likely to be very bad choices for computing
Diverse Density. For example, suppose that we tried to estimate the density of each of

the bags in Figure 2-1 using a single Gaussian for each bag. For bag A, the Gaussian

32

would be centered in the cluster of A’s instances, and instance A5 — the very instance
that makes the bag positive — would be ignored as an outlier. The same problem
occurs in the other bags, so Diverse Density would fail as an indicator of intersection
if this method were used. The lesson to be learned from this example is that without
problem-specific knowledge one cannot afford to treat any instance as an outlier.
One example of using domain knowledge to create a better evidence combination
function occurs in [Keeler et al., 1991a] and [Dayan and Zemel, 1995]. Unlike the
noisy-or model, which assumes that there is at least one cause, they assume that
there is exactly one cause. They use a sum of likelihood-ratios estimate of event E

given a set of causes Cy, - - -, Cp:

Pr(E | Cj)

Pr(E | Cy,---,Cp) = Z T)

In Multiple-Instance learning, this translates to the assumption that there is exactly
one instance which is a “true positive instance” in every positive bag.

Section 2.5 compares some of the density estimators for Pr(t | B;Y). In the next

section, we describe the final piece needed to compute Diverse Density: the probability

that an instance B;; is in the concept ¢;. This probability will depend on the concept

class from which the desired concept is to be learned.

2.4 Computing Pr(B;; € ¢;) for various concept classes

Previous algorithms for Multiple-Instance learning, [Dietterich et al., 1997, Auer,
1997, Long and Tan, 1996], tried to learn from a hypothesis class of axis-parallel
hyper-rectangles. This led to concepts that were clearly defined: either the instance
was in the rectangle or it was not. Here we attempt to learn concepts that lead to
a probabilistic measure of whether an instance is in the concept or not. We assume
that instances are corrupted by some noise. However, the farther the instance is from
the concept, the less likely it is to be a corrupted part of the concept.

We describe three concept classes of increasing complexity. All three are used in

33

the applications of Chapters 4, 5 and 6. The three classes are also relatively simple
concepts; some of the difficulties with more complicated concepts are discussed in
Chapter 8. Finally, it is straightforward to measure distance between an instance and
the concept in all three cases. The probability of an instance being in the concept

will depend on that distance.

2.4.1 Single point concept class

The simplest concept class is one where every concept corresponds to a a single
point in feature space. This class assumes that given an underlying true concept P,
every positive bag has at least one instance that is equal to P corrupted by some
Gaussian noise. Every negative has no instances that are equal to P corrupted by
some Gaussian noise.

The concept ¢, is therefore described as a k-dimensional vector ¢;,, - - -, ¢, , where
k is the number of dimensions in feature space. We calculate the probability that an

instance B;; is in the concept ¢, with a Gaussian-like distribution:

Pr(B;; € ¢;) = exp(— Z (Biji — ctl)2) (2.9)

1<i<k

tth

The closer instance B;; is to the " concept (which in this case is location ¢ in feature

space), the more likely it is to be in that concept.

2.4.2 Single point-and-scaling concept class

Whenever a distance metric is imposed over a feature space (as in Equation 2.9), the
question arises whether the scaling of the dimensions is correct. In most real world
learning problems, the data has many irrelevant or redundant attributes, and even
some of the relevant attributes are more important than others. We would like to
learn the best weighting of the attributes so that irrelevant ones are ignored (their

weight goes to zero) and important ones are more noticeable stand out (their weight

goes up).

34

We expand our concept class to include feature scaling in the following manner.
Each member of the new concept class is denoted as a duple (¢, ¢s). Each concept is
described as two k-dimensional vectors, where k is the dimensionality of the feature
space. The first vector, denoted {c,, - -, ¢, }, is a point in feature space. The second
vector, denoted {cs,,---,cs, }, is a weighting of each feature. This concept class
assumes that given an underlying true concept P, every positive bag has at least one
instance that was generated from a Gaussian centered at P with a covariance of P’s
distance metric.

We calculate the probability that an instance Bj;; is in the concept (ct,cs) as

follows:

Pr(Bij € (Ct’cb‘)) - eXp(— Z (CSL(Biﬂ - Ctl))Q) (2'10)

The closer (using distance metric ¢) instance B;; is to the location ¢; in feature
space, the more likely it is to be in that concept. We can think of the two concept
classes described so far as being parameterized. The single point concept class is
parameterized by a position vector, and the single point-and-scaling concept class is
parameterized by both position and scaling vectors. In Chapter 3 we show that the
best parameters (i.e. the best concept) are found the same way for both concept
classes — by maximizing Diverse Density with respect to those parameters.

This definition of the single point-and-scaling concept class only allows indepen-
dent scaling of the features. In other words, it only allows stretching of the distance
metric along the feature axis. It is possible to scale with a full covariance matrix,
thereby allowing a stretch along an arbitrary axis. However, the number of param-
eters needed to specify c, is k%, which results in a large computational expense and

the potential for overfitting when searching for the best concept.

2.4.3 Disjunctive point-and-scaling concept class

So far we have assumed that the target concept is a single area in feature space. More

complicated concept classes can be formed by allowing a disjunction of d single-point

35

A
C
E B D
A A N
N B
(9\] /\ N N
o) .@ A
i NN
(]
s N N
A
N E
c B A B B
N E c
D B

Feature 1

Figure 2-2: Example of a disjunctive concept. There are 5 positive bags, called
A, B,C,D and E. An instance is labeled by the name of its bag. Negative instances
are marked as N, all from a single negative bag. The 2-disjunct concept shown has
different feature weightings in each disjunct. A new bag will be labeled positive if
one of its instances falls near either disjunct.

concepts. A bag is positive if at least one of its instances is in concept (cf,cl) or in
concept (c2,c2) or ... or in concept (¢, c?). A bag is negative if none of its instances
are in any of the d concepts. Figure 2-2 shows an example of some positive bags that
agree with a 2-disjunct concept.

There are many ways to estimate the probability that an instance B;; is in the
concept (cf,cl) VvV (2, 2) V-V (¢, c?). The estimation we chose is to measure the

maximum probability over being in any one of the disjuncts. Namely,

Pr(Bj; € (e,) V (e, c0) V-V (¢, cf)) = max {Pr(Bj; € (¢f,)} (2.11)

1<a<d

where Pr(B;; € (cf,c?)) is calculated as in Formula 2.10. The disjunctive concept
class is parameterized by 2 x d k-dimensional vectors. As we see in Chapter 3, this
increase in complexity leads to a more computationally expensive algorithm, but it

can also lead to better concepts.

36

i nverse generative al | - or-not hi ng

h 3** 4 * 6 8 10 4 6 8 10
(a) (b)

noi sy- or nost -1 i kel y-cause

- 3°* 4 * 6 8 10 4 6 10
(c) (d)

Figure 2-3: Comparison between the (a) continuous inverse generative model from
Section 2.2.1, (b) all-or-nothing, (c¢) noisy-or, and (d) most-likely-cause approaches
to approximating Pr(¢ | B;"). In our example, the positive bag has instances at
2.0,2.5,3.0,5.0, and 8.0 (in a one-dimensional feature space). They are marked as
points along the x-axis. We use a single point concept class, so each graph shows the
value of Pr(t | B;") for every concept ¢, t € [0, 10].

2.5 Comparing density estimators

Figures 2-3 shows a comparison between the (a) continuous inverse generative model
from Section 2.2.1, (b) all-or-nothing, (c) noisy-or, and (d) most-likely-cause ap-
proaches to estimating Pr(¢ | B;"). The positive bag contains five instances, each
one described by a single continuous feature. They are marked as points along the
x-axis. We use the single point concept class. The graph shows the likelihood of
every concept ¢; (t € [0,10]). There are a number of aspects worth noting from these

examples:

37

e The all-or-nothing approximation is extremely restrictive and not immune to

noisy data.

e The inverse generative model is based on the assumption that the instances were
generated independently. Therefore, the probability that the “true positive
instance” is in the cluster of instances around ¢t = 2.5 is higher than at the
isolated instance at t = 8. The noisy-or and most-likely-cause approaches do
not know that the instances were generated independently, and therefore give

equal credence to the hypotheses t = 2.5 and ¢ = 8.

e The noisy-or and most-likely-cause approaches appear very similar, and we
examine their differences in Figure 2-4. In Figure 2-4(a), a positive bag B;"
contains only one instance. If we use the single point concept class, both noisy-
or and most-likely-cause compute the same value for Pr(t, | B;"), the likelihood
of concept ¢;,. However, if that bag contains 7 instances which are all equidistant
from ¢y (as in Figure 2-4(b)), then the likelihood of concept ¢;, increases with the

noisy-or estimator. It remains constant with the most-likely-cause estimator.

2.6 Examples

In this section we present two example data sets. Both are learned using the single
point concept class with a noisy-or estimator, and both have a one or two dimensional
feature space. This allows us to plot the Diverse Density surface. This plot shows,
for every concept ¢, the value of [j<ic, Pr(t | B;") [li<icm Pr(t | B;), which is
proportional to DD(t). The peak of this plot corresponds to the most likely concept.
We can also plot each term in the above product. In the applications of Chapters 4, 5
and 6 the complexity of the concept class and the feature space will prohibit such

plots.

38

(@)

(b)

A BT,
° 11
A
d using noisy-or
Y 1-M(1-Pr(B;Oc,) = exp(- &)
to Pr(t,0B) = : I
0 1% i . .
using most-likely-cause
_ 42
mjax{Pr(Bij O Cto)} =exp(-d9)
.
+
A Bi7 ° +
B. . .
N ¢ o'l using noisy-or
Bis.\ d d/ 1—|j'|(1—Pr(Bicht0))
4V ¥ 8", =1-(1- exp(- d2)
.A/d /:tco)\«d‘» ([I Pr(td] B:-) = ‘
B.+5 d d which is greater than
: ¥ \ using most-likely-cause
)
BiJ’4 o | max(Pr; ey)} = exn - d?)
13 >

Figure 2-4: Two different situations are examined: (a) a positive bag contains a single
instance and we try to estimate Pr(¢ | B;f) at the concept t, which is distance d away
from B;"’s single instance, and (b) a positive bag contains many instances, all of which
fall along a circle with radius d and center t5. We once again try to estimate Pr(¢ | B;")
at ty. Noisy-or and most-likely-cause are equivalent when there is a single minimally

close instance.

However, the noisy-or estimate increases as minimally equidistant

instances are added, whereas the most-likely-cause estimate remains constant.

39

Pr(t | BY) Pr(t | BY) pr(t | BY) - Pr(t | BY)
L 4 6 10 2 4 6 8 10 2 4 6 8 10
Pr(t | Bf) - Pr(t | BY) Pr(t | BY) Pr(t | Bf) - Pr(¢t| BY) - Pr(t | BY)
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Pr(t | Bf) - Pr(¢t | BY) - Pr(t | BY) Pr(t | B]) Pr(t | BY) - Pr(t | Bf) - Pr(t | Bf) - Pr(t| BY)
2 T4 7 6 8 10 2 4 6 8 10

Figure 2-5: Computing DD(t) for every concept ¢; (¢ € [0,10]) on a simple data set.

40

2.6.1 Example: A simple data set

We constructed three positive bags (B, By, By) and one negative bag (B;). The
feature space is one dimensional. The instances in each bag are shown as dots along
the x-axis in Figure 2-5. The concept class is single point, which means that the
concept could be at any one feature location. We use noisy-or to compute Pr(t | B;).
Each plot in Figure 2-5 shows the probability of a concept being at location ¢ (where
t ranges from 0 to 10), given some evidence.

We can see how the Diverse Density computation progresses as more evidence
is combined. The top line in Figure 2-5 shows the Diverse Density surface after
combining evidence from the first two positive bags. Good candidate locations for
the most likely concept appear to be at t = 3 and ¢ = 8. The second line shows the
surface after combining all three positive bags. The concept at ¢ = 3 appears most
probable. The third line combines that with evidence from the negative bag. Because

there are negative instances close to t = 3, the ¢ = 8 concept becomes the most likely.

2.6.2 Example: A difficult artificial data set

To test more rigorously how Diverse Density works with a noisy-or estimator and
the single point concept class, we generated the following difficult data set. Ten bags
were generated, each with 50 instances. Every instance was generated uniformly at
random from the space of [0,100] x [0,100]. The underlying concept was a 5 X 5
square in the middle of the 100 x 100 feature space. A bag was labeled positive if at
least one of its instances fell within the square, and negative otherwise. The set of
bags is shown in Figure 2-6. The instances from the negative bags are all shown as
dots (since it does not matter from which negative bag an instance came). Instances
from the i*" positive bag are each labeled as i. This is a particularly difficult data
set because every bag (both positive and negative) comes from the same underlying
distribution.

Figure 2-7(b) shows the Diverse Density surface over the single point concept class

{c: : t € [0,100] x [0,100]}. Diverse Density at every point is calculated using the

41

80 r -~
. .

100f, 4 5 4e o 5 3 o« 3 e WAl ey s 4
s et B Bt 8 Mehe g ol nalsd
R X 53-§-5f‘2-33 b %o‘”.-’@ P S B4 ¢ 2l 2%
s 1 48 e ?? Yaad e lwe 28, g .l.

° 31 c)

L & 20. ° 5 26 o 32 o 4 o .
60 Fa 113.’32%1'“. o3 3% %3 5 33.434f5 23??1 5..2225'5 ' °

RS RS I A R

ole Jo * e fl 33"2 3

.3 .14131 .51 5.%:) * s * 1 2 00.4 3 S ?4.
oA P ﬁ‘”’sf‘ﬁf:zfszé ? q%‘? TR £ A ?5’23?%

éi. .053: .42- .QZ. ,'12:1. :..;::,.. 333221; 4 1‘2 .%.'E’ " 1. » A: .055 .4%.

- ’:a.g“t?él. .0532 42? %44 ’500 4'4.':?_14. ° .R:. ..:' ‘o..'.é °d 2 44226.4?
oyl Y A e

51 22 8920 %330% ® o%. . 525 310 3 = o 2 2.g

:b,23 OSé Aete® & ﬁ:lioz .!OJ. *520» 4,40 ? 00 o 8] ;ﬁz.

>y :fl'ﬁf{l-é'Z “oBL Sigih £ o

o .EZ é‘hjoj]% b ‘."zo:o 1 %5.2 4 24.:.. ..1. ?2.. o ?.'—'\1%:‘3’4 ‘.. A %1

i 20 20 ~ 60 — 80 - 100

Figure 2-6: Negative and positive bags with all instances drawn from the same dis-
tribution. The bags are labeled according to their intersection with the square in the
middle. Negative instances are dots, and positive instances are numbered according
to which bag they are from. The square (underlying concept) contains at least one
instance from every positive bag and no negatives.

noisy-or density estimator. The peak at the middle of feature space falls in the true
concept, so an algorithm that returns the concept with maximum Diverse Density
as its learned hypothesis (as maxDD does in Chapter 3) would perform well on this
example.

It is instructive to look at two approaches that would fail on this training set. If
we had used an all-or-nothing estimator instead of noisy-or, Diverse Density would
be zero everywhere. That is because the strict intersection of the positive bags is
empty. If we had tried to solve this problem as if it were a traditional supervised
learning problem, then every instance would receive the label of the bag to which it
belongs. We can see the surface that this would generate by adding (or averaging)
the contributions of every bag (instead of multiplying them, as in Diverse Density),

with negative bags having a negative contribution. The Kernel Regression [Atkeson

42

i 'II} i
| l': ﬁf} “I:'ll' '.I Y

| ji

(a) Surface using regular density (b) Surface using Diverse Density

Figure 2-7: Density surfaces over the feature space of the difficult artificial example.

et al., 1997] algorithm? can be thought of as performing such a density estimation;
it classifies a point in feature space as positive if the total density at that point is
greater than zero. Figure 2-7(a) shows this density surface. Not only are there many
areas that are mistakenly labeled positive (have density value greater than zero), but
the true concept does not stand out. In fact, no supervised learning algorithm will
perform well when roughly 49 out of every 50 positive examples are mislabeled.

The surface in Figure 2-7(b) is close to zero almost everywhere because of the
exponential nature of Diverse Density. A point that is close to the intersection of
n bags will have exponentially higher Diverse Density than a point that is close to
the intersection of n — ¢ bags (exponential in ¢). The smaller peaks in Figure 2-7(b)
are the result of chance concentrations of positive instances from different bags and
chance sparsity of negative instances. It is possible that a different random collec-
tion of instances will have chance concentrations with even higher Diverse Density.
However, as the number of training bags increases, the chance of having an acci-

dental concentration with Diverse Density higher than at the true concept becomes

2Given a set of input-output training pairs {w;,y;}, kernel regression predicts the output at a
new point, p, as a weighted average of all the outputs {y;}, where the i*" weight is proportional
to the zero-mean, o2-variance Gaussian G(|| p — z; ||). The kernel width, o, indicates how much
smoothing is performed. Radial kernels other than Gaussians can also be used.

43

20

Figure 2-8: Success of Diverse Density vs. number of training bags. Accuracy was
computed from 200 tests, where the bags were generated randomly in each test.

lower and lower. Figure 2-8 demonstrates that as the number of positive or negative
bags is increased, the chance that the maximum Diverse Density point is within the
true concept converges to 1. For every 3 < n < 18 positive bags and 0 < m < 20
negative bags, 200 tests were run. During each test, 200 instances were generated uni-
formly at random for each bag (which is a harder problem than the 50-instance bags
shown in Figure 2-6). The test was called successful if the maximum Diverse Density
point fell within the underlying concept. The small number of examples needed to
learn consistently well on this task is compared against the MULTINST algorithm in
Chapter 7.

44

Chapter 3

Learning a concept by using

Diverse Density

We present two algorithms for finding a concept from multiple-instance examples
using Diverse Density. The first, called maxDD, finds a concept that maximizes Diverse
Density. The second, called Pointwise Diverse Density (PWDD), finds the true positive
instances in each positive bag by looking for those instances with high Diverse Density.

This reduces the multiple-instance learning problem to a supervised learning problem.

3.1 Maximizing Diverse Density

The most straightforward algorithm that uses the Diverse Density measure is one
which attempts to find the concept with maximum Diverse Density. Since we assume
a uniform prior over concepts, only the first term of Formula 2.5 can be maximized.
We call this algorithm maxDD, and it can be thought of as performing Maximum
Likelihood.

If the size of the concept class is small, then we can simply measure Diverse Density
at every concept and pick the largest one. However, in the applications discussed in
this thesis, the concept class is at least as big as the entire feature space. Namely, it
is continuous and high-dimensional. Finding the maximum point in such a space is a

difficult global optimization problem. Most of the functions described in Chapter 2 are

45

smooth, so we can take their derivative with respect to the current concept hypothesis.
The only exception is the all-or-nothing estimator!. The calculations of the derivatives
for various estimators and concept classes are shown in Appendix A.

We can perform a gradient based optimization in concept space, starting at some
initial concept, and incrementally changing it in the direction of increasing Diverse
Density. This can be most easily thought of with the single point concept class. We
search in feature space for the point which is closest to instances from many different
positive bags and far from all negative instances. In the next few subsections, we
explore how to improve this search technique and its performance on various concept

classes. Details of the optimization are given in the appendices.

3.1.1 Learning from a single point concept class using

multiple gradient based optimizations

The main problem with the gradient based optimization technique is that it can get
stuck in local maxima. In other words, it can find a Diverse Density peak which is
not as high as the optimal peak. One popular heuristic to ameliorate this problem
is to use multiple optimizations, starting each one at a different random location.
However, we can further improve on the multiple restart approach. The Multiple-
Instance learning framework provides us with knowledge about possible good starting
points.

The highest Diverse Density peak (whose location we want to find) is high precisely
because it is close to instances from several different positive bags. Starting a gradient
based optimization with an initial concept equal to one of those instances will likely
lead to the peak because we are starting close to it. How do we know which instances
are near the peak and which are not? We do not, but if we start an optimization
at every instance in every positive bag, at least one will begin at a concept which is

close to the maximum Diverse Density concept. Notice that the terms “instance” and

!The max function is also not smooth, but we will use a softmax function to approximate it (as
in Appendix A).

46

DD(t)

i /7 s Bgz :?’ B,

B3 By By 811 11

Figure 3-1: Example of potential gradient based optimization starting points for the
maxDD algorithm. The plot shows Diverse Density for every concept in the single point
concept class. The instances are described using only one feature, and are shown as
dots along the x-axis. Starting an optimization from every instance in a positive
bag will lead to some local minima, but some optimizations will lead to the global
maximum. Figure 2-5 shows how the Diverse Density surface plot was derived from
the bags.

“concept” are interchanged because there is a one-to-one mapping from a location in
feature space (an instance) to a concept.

Figure 3-1 shows the Diverse Density surface derived in Figure 2-5. For every
concept ¢, we plot the value of DD(t). The feature space is one dimensional, and the
instances are plotted as points along the x-axis. Starting a gradient based optimiza-
tion at instances By, B3, Bi}, B3, or By, will lead to one of the two local maxima.
However, starting an optimization at instances By, Bf; or By, will lead to the global
maximum.

By starting an optimization at every positive instance we are not guaranteed to
find the global maximum, but in practice this heuristic has proved very successful.
The computational cost can be high if the total number of instances in all positive
bags is large. However, we can reuse the same heuristic to further reduce the search.
Even if we only use the instances in one positive bag, one of them should be close to

the Diverse Density peak. Using the difficult artificial dataset of Section 2.6.2, with

47

5 positive bags, 5 negative bags, and 50 instances per bag, the average number of
gradient based optimizations needed before the true best peak was found is 22.75.
This is far less than the expected 125 optimizations. Even if the number of positive
bags is doubled, the average number of optimizations needed before the eventual best

peak was found remains at 22.6.

3.1.2 Learning from a point-and-scaling concept class

Using maxDD with a point-and-scaling concept class is not very different than the single
point concept class. The concept space now has twice as many dimensions, making
it a harder search problem. The multiple gradient based optimization heuristic can
still be used, but we no longer have knowledge about starting values for the scaling
vector. Arbitrarily, we start all scalings at one. By searching in this new space, we
are optimizing for the location and scaling of the concept at the same time. It is
possible to have a dual-optimizing algorithm, where we alternate the search for the
best location and the best scaling.

The semantics of searching over this concept class are worth more careful study.
The scaling vector defines which features are considered important (have high scale
value) and which are considered unimportant (have low scale value). The correct
scaling of the features at the correct location in feature space will bring instances
from different positive bags closer together while keeping negative instances farther
from that location; Diverse Density measures how well that is performed. Therefore,
searching for the best Diverse Density is equivalent to searching for the relevant
features. A schematic example of this is shown in Figure 3-2.

There are two forces that pull the search in different directions. First, as the scales
decline in value, distances get shorter (see Formula 2.10) and instances from positive
bags get closer together, increasing Diverse Density. Second, as scales increase in
value, distances get longer and instances from negative bags get farther from the
concept location, also increasing Diverse Density. This tug and pull can best be seen
at an extreme: let us suppose there were no negative bags. What is the scaling

that will maximize Diverse Density? Setting every feature scale to zero will bring

48

A
negative
N
o bag™g
S5
©
o
L
A AA B >
A iti B
positive
\bags
>
Feature 1

Diverse Density is

low everywhere

Scaling 1: |
Scaling 2: 1

>

Feature 2

Diverse Density
Is high here

T ™ Feature 1

Figure 3-2: A schematic example of the effects of changing feature scales. On the left,
Diverse Density has a low value regardless of the single point concept hypothesized.
If we decrease Feature 1’s scaling and increase Feature 2’s, positive instances from
different bags are moved closer and negative instances are moved farther away. On
the right, we see the scaled feature space, and the Diverse Density between bags A
and B is higher than anywhere in the pre-scaled concept space. The gradient on the
Diverse Density surface will point toward that change in feature scalings.

49

all instances from all bags together at a single point, thereby achieving maximum
Diverse Density. Negative evidence is essential to discovering the distance metric.
The negative instances can be thought of as girders that keep the distance metric
from collapsing. The scalings chosen by maxDD will be as big as is required to keep
the negative instances away, and no bigger. This gives us a natural bias toward
simpler concepts (i.e., concepts that use fewer features). Normally, Machine Learning
algorithms need to add a regularizing term (e.g., [Rissanen, 1978], [Girosi et al., 1995])

to prevent overfitting with an overly complicated concept.

3.1.3 Learning disjunctive concepts

There is no conceptual difference between learning a single point-and-scaling concept
and learning a disjunction of d of them. However, the computational expense and the
size of the search space become much larger. The concept space has 2kd dimensions.
The multiple gradient based optimization heuristic can be used, but the starting point

consists of d instances. Therefore, the number of optimizations performed is increased

from N to , where N is the total number of instances in positive bags. The
d

search attempts to find d point-and-scaling concepts such that every positive bag
is close to at least one of the concepts and every negative instance is far from all

concepts.

How many disjuncts are needed?

The choice of the number of disjuncts d in the concept class can be crucial to the
performance of maxDD. If d is too small then no concept can capture the training
data, and the algorithm will likely have to choose some midpoints between the true
disjuncts. On the other hand, if d is too big, then it is easy to find good Diverse
Density, but it will not necessarily correspond to a concept that classifies unseen
examples correctly. For example, if d is chosen to be the number of positive bags,
then picking the concept where ¢ is an instance from the i positive bag will result

in very good Diverse Density. However, that will not necessarily be a useful concept

50

for generalizing to unseen bags. In fact, Diverse Density can only improve as d is
increased, but prediction error on unseen examples will also increase.

The problem of trading off hypothesis complexity against generalization is an old
one in the fields of Machine Learning and statistics. In this thesis, there are no
hypothesis classes with d greater than two for reasons of computational efficiency. If
computation were cheaper then more complex classes could be considered. There are
two popular approaches to find the number of disjuncts d.

The first approach uses a validation set. The labeled bags are divided into a
training set and a validation set. The algorithm is run repeatedly with the same
training set and different values of d. The multi-disjunct concept with the best
classification results on the validation set is chosen as the concept with the correct
d. For better accuracy, the evaluation of the concept should be done on multiple
partitions of the data into training and testing sets. This is known as cross-validation.

A second approach uses ideas from Minimum Description Length [Rissanen, 1978,
Regularization theory [Morozov, 1984], PAC learning theory [Valiant, 1984], and
Structural Risk Minimization [Vapnik, 1995]. All these theories attempt to capture
analytically the tradeoff between complexity of the hypothesis class and ability to

generalize.

3.2 Pointwise Diverse Density?

The maxDD algorithm’s goal is to return a concept that maximizes Diverse Density.
However, that is not the only possible goal of an algorithm that learns from Multiple-
Instance examples. A different goal might be to return the correct label for every
instance in the training bags. Instances in negative bags are easy because we know
that all of them are negative. For instances in positive bags, the “true positive
instances” need to be separated from the “false positive instances.” If we had such an
algorithm, then we could use it to transform the Multiple-Instance learning problem

into a supervised learning problem, for which there is a plethora of solutions.

2Material in this section was developed with Charles Isbell.

51

Pointwise Diverse Density (PWDD) attempts to perform such a transformation.
Given a set of positive and negative bags, it returns an instance from each positive
bag which is likely to be a “true positive instance.” Note that this does not mean that
all other instances in positive bags are “false positive instances.” During supervised
learning, only the instances from negative bags and instances generated by PWDD will
be used as training examples.

It is easiest to show how PWDD works with the single point concept class because
of the direct mapping from an instance (location in feature space) to a concept. The

algorithm behaves as follows:

1. Measure Diverse Density only at the concepts corresponding to instances in

positive bags.

2. For each positive bag, return the instance with the highest Diverse Density in

that bag.

The algorithm performs no gradient based optimization, and computes Diverse
Density exactly N times, where N is the total number of positive instances. This
will normally be a great computational saving over maxDD. As a simple example of
its behavior, if its input consisted of the bags shown in Figure 3-1, it would select
instances B, By} and Bj, to return from the three positive bags. Those are indeed
the true positives.

The algorithm, though not guaranteed to return true positives, is a useful and
efficient heuristic. It succeeds because those instances closest to the true concept will
have the highest Diverse Density, and those are the most likely instances to have been
generated from the true concept. If we assume a single point concept class and know
a true positive from every bag, then simply taking the average of true positives will
result in an optimal estimate of the true concept.

When tested on the difficult artificial dataset of Section 2.6.2, PWDD’s learning
curve behaved exactly like maxDD (Figure 2-8). Percentage of success was measured
by the number of returned instances that fell within the true concept. The real

advantage of PWDD over maxDD is its computational efficiency. Generating the graph

92

of Figure 2-8 required over 6.7 million runs of either maxDD or PWDD with anywhere
from 600 to 3600 total instances in positive bags. On average, the number of Diverse
Density evaluations required for one run of gradient based optimization is 17.2. PWDD
is therefore 17.2 times faster than maxDD on this data. On data with a higher number

of dimensions, the improvement is even more marked.

3.2.1 Using PWDD to learn a point-and-scaling concept

The discussion so far has assumed that the scaling of feature space is correct. If we
want to both find the true positives and the best scaling of the features, the PWDD
technique becomes slightly more complex. The idea is a combination of maxDD and
PWDD: find the feature scalings that maximize Diverse Density in at least one instance
in every positive bag. Specifically, do not attempt to find the best scalings for any
location in feature space, but for particular locations: the instances.

There are a number of possible techniques for performing this maximization. We
list a few here. We indicate the Diverse Density of the concept corresponding to the

instance B as DD(B;}).

e For every instance in a positive bag, Bj}, find the scaling vector ¢,(i,7) that
maximizes DD(B;;). The search can be performed using gradient based op-
timization as in Section 3.1. Pick the scaling that results in the maximum
Diverse Density value, and use it to run PWDD. This method requires as many
optimizations as maxDD for the concept class point-and-scaling. However, the

search space is of dimensionality k rather than 2k.

e For every positive bag, B;", find the scaling vector c,(i) that maximizes the
following quantity:
m?x{DD(B;JT)}

Once again, this can be done using gradient based optimization®, and requires

only one optimization per bag. However, the search space can potentially have

3To compute the gradient, we actually use softmax as described in Appendix A.

53

more local maxima. Run PWDD using the best scaling vector.

e Find the scaling vector ¢, that maximizes the following quantity:
miax{m]aX{DD(B;;)}}

This requires only one gradient based optimization, but the number of local

maxima can be high.

e Perform a two-step optimization process similar to dynamic reposing [Dietterich
et al., 1994]. Pick an initial scaling, and find instances with high Diverse Density.
Find a scaling (by maxDD, for example) to optimize the Diverse Density of all of

them. Use this scaling to find instances with high Diverse Density, and repeat.

Thoroughly comparing the merits of each of these methods is a subject of ongoing

and future work.

3.3 Computational issues

So far we have discussed ways of using Diverse Density to efficiently learn a concept
from multiple-instance examples. The basic operation underlying these methods is
the computation of Diverse Density at a particular concept. This basic operation can
be expensive as the size of the training set grows.

The calculation of Diverse Density is in many ways similar to the computations
needed for a Nearest Neighbor algorithm; the distance from every instance to the
hypothesized concept must be calculated. This implies that a Diverse Density calcu-
lation requires O(N) space and O(N) time, where N is the total number of instances
in all bags. There are techniques for calculating Nearest Neighbor in sub-linear time.
Bump trees [Omohundro, 1991] and k-d trees [Preparata and Shamos, 1985] are ex-
amples of such techniques, and they can be used to approximate Diverse Density. The
main difficulty with using them during learning is that they assume that the distance

metric is held constant. If the distance metric changes (as it does when learning

o4

with point-and-scaling concept class), the expensive operation of recalculation must
be performed on the tree.

A more promising avenue is the parallelization of the Diverse Density calculation.
Using the Parallel Problem Server [Husbands and Isbell, 1998], a parallel implementa-
tion of maxDD and PWDD is being developed for document retrieval applications similar

to the image database application described in Chapter 6.

55

Chapter 4

An application to drug discovery

In the following three chapters, we discuss applications of Multiple-Instance learning
and investigate how Diverse Density algorithms perform on these tasks. Each chapter
will be organized in the following manner: an explanation of the application and its
importance, a description of what the bags and instances are and how they were

generated, and the results from various experiments on the domain.

4.1 Drug discovery

Given a target protein, the object of “drug discovery” is to find molecules that will
bind tightly and selectively to the protein. The most important factor in determining
whether a molecule binds to a protein is shape!. If we imagine the target protein
to be a lock, then we need to find a key (molecule) that will fit into that lock.
Performing the physical experiment of combining each candidate molecule with the
target protein in a test tube is both expensive and slow, particularly if the number
of different candidate molecules is large. If we can use computational techniques to
determine how well a given molecule fits into a protein, then we can alleviate the
expense of drug discovery and allow for a much larger search space. An even more

important consideration is that synthesizing the candidate molecule can be difficult.

'Having complementary electrostatics is also important, but secondary for our purposes.

56

FHXY
HH XY
HHXY

Figure 4-1: An example of the different conformations a single Butane molecule
(CyHyp) can take on. In this example, the various conformations occur because the
molecule can rotate about the bond between the two central carbon atoms.

If we can model how well the candidate molecule will bind to the protein, then we
would know whether to invest the effort needed to synthesize it.

One popular way of finding the right key shape is learning a solution from a series
of positive and negative examples. A positive example is a molecule that is known to
bind to the target protein, and a negative example is a molecule that does not bind
to the protein. The main problem with this approach is that molecules are flexible
objects, and can take on many shapes. Figure 4-1 shows an example of various
shapes a Butane molecule can take simply by rotating one of its bonds. Therefore,
each example is not a single shape, but a collection of shapes. If a molecule is positive,

we know that at least one of its possible shapes is the correct one. We do not know

57

Ener gy

in 2 T An § e
Tt
3T[3T[3T[3T[2Tt

Figure 4-2: The energy function for the Butane molecule CyHy, with respect to
the angle of rotation of the bond between the two central carbon atoms. Energy is
minimized when the two C'H3 groups are far from each other, and when the opposing
hydrogen atoms are also distant.

which of its many shapes are true positives though. If a molecule is negative, we
know that none of its shapes is correct. This is a Multiple-Instance learning problem,
and we will use Diverse Density techniques to solve it. The learned concept should
be able to correctly classify new molecules, and therefore will be a good model for

the shape a molecule needs to take in order to bind to the target protein.

4.2 A molecular bag generator

We represent each molecule as a bag. FEach instance in a bag is one shape that the
molecule takes on. A bag’s label is positive if the molecule is known to bind well to
the protein, and negative otherwise. The label is generated by measuring the free
energy of the binding between the molecule and the protein, and thresholding it. We
now describe how the instances were generated from a given molecule, and how each
instance is represented.

Given a small molecule, we can simulate essentially all of the conformations

(shapes) it can take, as in Figure 4-1. However, many of these conformations are

58

very unlikely to be the correct one. That is because many of these conformations
have high potential energy, and the correct binding conformation must have low po-
tential energy. Conformations whose energy is substantially above that of the global
energy minimum for that molecule are extremely unlikely. However, it is important to
note that the molecule’s conformation on binding is the one that minimizes the total
free energy of the protein/drug complex. It may be that the binding conformation
has a higher potential energy than the most likely conformation of the molecule when
found in isolation. Therefore, one cannot simply use the single (or few) conformations
whose energy is minimal. This is an important consideration to weigh against the
computational advantage of having only a few instances per bag.

The conformations chosen to be placed in a bag are therefore typically sampled
from the approximately O(3"™) local minima of the molecule’s energy function (where n
is the number of rotatable bonds). In addition, conformations whose energy is higher
than some bound over the global energy minimum are not sampled at all [Jain et al.,
1994]. The bound is chosen so as to accept conformations which may be energetically
reachable on binding.

Figure 4-2 shows the energy function of Butane as it goes through the conforma-
tions outlined in Figure 4-1. Depending on the value of the energy bound described
above, either the conformation(s) corresponding to the one global minimum or to all
three local minima would be picked as viable conformations.

There are many possible ways of describing a conformation (instance). In this
thesis, we use a ray-representation [Jain et al., 1994, Dietterich et al., 1997] for a
conformation. From a central point in the molecule, k rays are drawn out uniformly
in three dimensions. Each ray is extended until it hits the surface of the molecule. The
length of the k' ray is the value of the k' feature, as in Figure 4-3. This technique
gives a straightforward representation of the molecule’s shape. However, there are two
important problems with the ray-representation. One problem is that it is difficult to
represent concave conformations. The second problem is that this representation is
not invariant to the position and orientation of the conformation. If all conformations

can be aligned to have the same center of rays and the same orientation (as was

59

confc@a:lon : /\I I
d1

distance along
ray #1 dy

d3 = instance

Figure 4-3: An example of using rays to represent a conformation.

done with the MUSK datasets, described in the next section), then this is not a
problem. Without such an alignment, the number of instances per bag increases
dramatically because each conformation must be represented in every orientation
and with varying ray centers. In that case, a preferable representation would be an
orientation-independent one, such as the pharmacophore model of [Dammkoehler et
al., 1989] or [Leach, 1996]. Another possible representation would be to place many
ray-centers throughout 3D space, with only one ray coming out of each one. The

distances along each ray would represent the shape of the molecule.

4.3 The MUSK datasets

A publicly available dataset (deposited at [Murphy and Aha, 1996]) was generated as
described in the previous section describes positive and negative examples of musks.
In this case, the target protein is a putative receptor in the human nose?, and a
molecule binds to the receptor (i.e., is labeled positive) if it smells like a musk. We

would like to learn what shape makes a molecule musky (allows us to smell it).

2The nose senses smells through a combination of receptors [Kauer, 1991], but for these purposes,
this is a reasonable approximation.

60

data number number number average number

set of bags positive negative instances per bag
MUSK1 92 47 45 5.17
MUSK?2 102 39 63 64.69

Table 4.1: Summary descriptions of the two MUSK datasets.

There are two datasets, MUSK1 and MUSK2, with some overlapping molecules.
The main difference between the two datasets is that MUSK2 contains molecules
that have more possible conformations than MUSK1. Some characteristics of the
two datasets are shown in Table 4.1. Each conformation is represented by 162 rays,
along with four additional features that specify the location of a unique oxygen atom
common to all the molecules, for a total of 166 features. All molecules have been

roughly aligned using the COMPASS program [Jain et al., 1994].

4.4 Experiments

We ran maxDD, optimizing both location and feature weights (using the point-and-
scaling concept class), on MUSK1 and MUSK2. To measure the generalizing capabil-
ity of the learned concept, we perform several iterations of 10-fold cross validation. In
a 10-fold cross validation run, the data set is randomly divided into 10 partitions. The
learner is then trained 10 times, with each iteration involving a different combination
of 9 partitions as the training set and one partition as the test set. After training,
maxDD returns a concept which represents the shape (or section of shape) that is most
in common to the positive molecules and not to the negative molecules. Specifically,
it returns a location in feature space (the length of each ray in the correct shape),
and a scaling of that space (which rays are important in distinguishing this shape
from negative shapes and which are not). In these experiments, fewer than five of 166
features receive very high weights, and fewer than 30 receive any significant weight.
Unfortunately, a single point in feature space is not a very useful classifier because

most molecules will not have a conformation that is described exactly by that point.

61

Musk Data Set 1 Musk Data Set 2

Algorithm Accuracy Algorithm Accuracy
iterated-discrim APR 92.4 iterated-discrim APR 89.2
GFS elim-kde APR 91.3 MULTINST 84.0
maxDD 88.9 maxDD 82.5
MULTINST 76.7 GFS elim-kde APR 80.4
backpropagation 75.0 backpropagation 67.7
C4.5 68.5 C4.5 58.8

Table 4.2: Results of various algorithms on the two MUSK datasets.

We would like to classify a molecule as positive if one of its conformations is close
to the maximum Diverse Density point, and negative if all of its conformations are
far from that point. Distance can be measured using the learned scaling of feature
space, but a threshold is needed to determine when a conformation is considered too
far from that point. We estimate this threshold by finding the best threshold on the
training set. In other words, we find a distance d such that the number of correctly
classified training bags is maximized. A bag is classified positive if at least one of its
instances is within distance d of the maximum Diverse Density point, and distance is
calculated using the learned feature weights.

Results of various algorithms on the MUSK datasets are presented in Table 4.2.
The results of the APR algorithms, backpropagation, and C4.5 are taken from [Diet-
terich et al., 1997]. The results of the MULTINST algorithm are taken from [Auer,
1997]. Backpropagation and C4.5 are popular supervised learning algorithms which
use a neural network and a decision tree, respectively, to represent the learned concept.
Since supervised learning algorithms cannot learn from Multiple-Instance examples,
each instance is presented as a separate example, with a positive label if it came
from a positive bag. As expected, traditional supervised learning algorithms do not
perform well in this framework.

The details of the MULTINST and APR algorithms are discussed in Chapter 7.
The high accuracy of “iterated-discrim APR” on MUSK2 is partly due to the fact

that some of its parameters were picked based on experiments on the MUSK1 dataset.

62

126 126+
- g
f
'
o7k 57

it i

9k —g
0 gl néof ator B0 B0 et v ue'(r’ D100 Angstr om %

(a) (b)

Figure 4-4: A concept learned by maxDD for MUSK1 on one of the cross-validated
training partitions. (a) shows the scale (s;,)? for each feature k € {1,---,166}. The
features whose scale is greater than 1 are indicated, and their values are given in (b).

The results of “iterated-discrim APR” can therefore be considered an upper bound
on the accuracy possible with these data sets. The success of MULTINST (especially
on MUSK?2) is surprising because the algorithm assumes that a conformation is inde-
pendent of the molecule from which it came. Specifically, MULTINST assumes that
all instances were generated independently (as discussed further in Chapter 7). This
might indicate that the MUSK datasets do not provide an adequate platform to test
Multiple-Instance learning algorithms.

Several variations on the learning scheme described above were tried. These in-
cluded using the most-likely-cause model rather than noisy-or, and learning with a
two-disjunct concept class. We have also tried various thresholding methods. None of
these methods performed better than the results shown above. However, these minor
changes did not result in significant loss of accuracy either, indicating that the basic
algorithm is fairly robust to implementation details.

Figure 4-4 shows an example of a concept learned by maxDD on the MUSK1 dataset
for one of the cross-validated training sets. For each of the 166 features, it shows

the scaling associated with that feature. Note that only a few of the features have

63

significant (or relevant) scalings. We also show the value of the feature for those
features with a scaling greater than 1. The dominance of features 145 and 76 indicate
that the concept learned is almost a decision list; only if those two features cannot
discriminate the class of the instance will other features be used. Concepts learned

on other cross-validation partitions also use a similar scaling to the one shown here.

64

Chapter 5

An application to stock prediction

In this chapter, we discuss a novel application of Multiple-Instance learning to pre-
dicting the value of US market stocks. This is an important application because many
people are interested in having a model of the behavior of stocks so that they will
know when to sell a stock (when the model predicts its price will decline) and when to
buy (when the model predicts its price will increase). Using a good predictive model,
one can become very rich very quickly. It is also an important application because
it is an extremely difficult problem to find a good predictive model, and the current
(and past) state of the stock gives very little information as to its future.
Traditional Machine Learning techniques attempt to learn a predictive model
by learning from positive examples (stocks that have performed well) and negative
examples (stocks whose value has fallen) in the past. Each example is comprised
of a feature vector that may include the stock’s past value fluctuations, financial
indicators specific to the stock, its sector, or the market at large, and any other
information that might be relevant. For a classification task, an example is labeled
positive if the stock’s value rises in the future!, while for a regression task an example
is labeled with its actual value change. A supervised learner attempts to find a simple
concept that predicts the labels on its training set well, and that will also predict the

labels of unseen future examples.

'How far into the future is a task-dependent parameter that can very from a minute to a month
to years.

65

There are a number of difficulties that make this a hard learning problem, but the
main one is that most fluctuations in the price of a stock occur for reasons that are
not economically fundamental: world events, public whims, and other unpredictable
phenomena. The three examples given in the introductory chapter of this thesis
about Coca Cola, IBM, and Netscape are not exceptions; they are typical of the
ways that most stock prices behave. This is not to say that all stocks behave for
spurious reasons, because at every time period some stocks do increase in value for
fundamental economic reasons. However, we do not know which ones do so because
we do not know what these fundamental economic factors are. To learn these factors,

we use Multiple-Instance learning instead of supervised learning.

5.1 Generating bags as collections of stocks

We take an instance to be a particular stock X at time 7. The stock X is described
as a point in k-dimensional feature space. The features used to describe the stock are
ones that could potentially be used to describe the unknown fundamental economic
factors (the concept). We also know the change in value of the stock between time
T and time T + 1. Supervised learning treats all instances whose values increase as
positive examples. Multiple-Instance learning treats a collection of instances whose
value increases as a positive example.

A positive bag is created from a collection of n stocks from time 7" which increase
in value at time 7'+ 1. The bag is labeled positive because we assume that at least
one of the n increases occurred for fundamental reasons. A negative bag is created
from a collection of m stocks from time 7" which decrease in value at time 7'+ 1. The
bag is labeled negative because we assume that all of the m decreases occurred for
fundamental reasons. Both of these assumptions are difficult to guarantee in practice,
but we will attempt to ensure them. One positive and one negative bag are created
for each time period 7T in the training set.

There are two problems with the bag generator described above. One problem is

that perhaps none of the n instances in a positive bag are true positives. The second

66

problem is that perhaps some of the fundamentally good stocks actually decreased
in value for some spurious reasons, and these might be included in a bag as negative
instances when they are, in fact, true positives. We present heuristic methods for
coping with these problems. In addition, we do not calculate Diverse Density using an
all-or-nothing rule, but instead use a softer method such as noisy-or (as in Chapter 2).
Therefore, our Diverse Density calculation will be able to tolerate some amount of
noise in cases where our heuristics fail.

To handle the possibility of having no true positive instance in the bag, we note
that as n approaches infinity, the chance that at least one of the stocks in the bag is
fundamentally good approaches 1. However, the more instances there are in positive
bags, the harder it is to learn the concept. The solution is to find a value for n
such that at least one of the stocks is fundamentally good with high probability. We
present one way to estimate n, but note that the assumptions made here for the bag
generator are separate from the assumptions made for the bag learner mechanism.

Assume that each stock that goes up in value has some probability p of being
a fundamentally good stock. In addition, assume that each stock that goes up at
some time period has the same independent probability of being fundamentally good.
The chance of a stock not being fundamentally good is therefore 1 — p, and the
chance of n stocks not being fundamentally good is (1 — p)™ (by the independence
assumption). The probability of at least one fundamentally good stock in a positive
bagis 1 — (1 — p)™. Given a confidence probability 1 — §, we would like the chance of
generating [valid positive bags (one for every time period) to be (1—(1—p)")! > 1-4.

A graph of how many instances are needed per bag as p is varied is shown in
Figure 5-1. The other two parameters are held at [= 120 and 6 = 0.01. This
derivation is only a coarse approximation of the true number of instances needed
per bag. Usually the value of p is not known and the probability that a stock is
fundamentally good is not independent across stocks or time.

Generating a bag of negative examples is also not a simple task because a stock
whose value decreased is not necessarily a fundamentally bad stock by the same

arguments as above. One solution is not to generate any negative bags. This means

67

800

600+

400+

200

005 01 015 02 025 03"

Figure 5-1: A plot of n, the number of instances per positive bag, versus p, the
probability that at least one stock fundamentally good. The other two parameters
are held at [= 120 and 6 = 0.01.

that we cannot perform a search for the best feature weights, only for the best feature
location (as explained in Chapter 3). Another solution is to have an expert carefully
pick out stocks that are fairly certain to not be fundamentally good. The solution we
chose is to pick very few negative instances (10 per time period) which have the worst
performance in that time period. A stock which performed so abysmally is unlikely
to be fundamentally good.

Finally, we note that this approach to generating bags from extremely noisy la-
beled examples is not a magical cure for learning from any collection of noisy examples
by converting it to bags. The main reason that we will be able to learn anything from
this data is that the cause of the noise (public whims, world events, etc.) changes from
one time period to another, while one of the causes of stocks performing well (some
fundamental economic factors) is constant. Figure 5-2 gives a conceptual view of how
the distribution of false positives changes over time, while the distribution of true
positives remains constant. If all instances were drawn from the same distribution,

learning would be more difficult.

68

distribution of instances
for the Feb. 1990 bag distribution of instances

for the Jan. 1990 bag

Feature 2

stocks that went up for
fundamental reasons

IBM
Jan’90

went up for Coke
spurious Mar'90
reasons

distribution of instances
for the Mar. 1990 bag

>

Feature 1

Figure 5-2: A sketch of the Multiple-Instance stock prediction problem. Three posi-
tive bags are shown, each one containing stocks that performed well in a given month.
The key to distinguishing noisy instances (stocks that performed well because of spu-
rious events) from true positives (stocks that performed well because of fundamental
economic reasons) is that the distribution of noisy instances changes from one month
to another as the whims of the public change.

5.2 Experiments with financial data

In this section, we report results of Multiple-Instance learning algorithms on the stock
prediction task using real financial data. The data was obtained from Grantham,
Mayo, Van Otterloo & Co. (GMO), a Boston investment firm, and consists of monthly
information about 600 companies in the US market between 1979 and 1995. Each
company was described using 17 attributes that included such aspects as the stock’s
size, cyclicality, momentum, and trailing returns. The learning algorithm was trained
on data from 10 years, and tested on data from the following year. This procedure
was repeated for a shifting 10-year window.

Bags were generated as described in the previous section. Each month, the 100
stocks with the largest positive change in value were placed in a positive bag. The
10 stocks with the largest negative change in value were placed in a negative bag.
Therefore, each training set was made of 120 positive and 120 negative bags. Each
test set included all 600 stocks during each of the 12 months of the test year.

Unlike the drug discovery task, the goal here is not to classify stocks as fundamen-

69

tally good or not, but instead to rank stocks by a prediction of future performance.
The concept learned by the system can be thought of as a description of an ideal
stock. Stocks that are close to that concept using the learned scales on the features
will likely go up for fundamental reasons. It is hard to claim something about the
stocks that are far from the concept, but at very least, they are less than ideal.

We measure performance as a decile run: distances from the learned concept to
all stocks in the test period are calculated, and the test stocks are sorted by those
distances. We then calculate the average change in value (average return) of the stocks
in each decile (10%) of the test stocks. The top decile (those stocks closest to the
learned concept, or the ideal stock) should have high return, and lower deciles should
have lower return. The decile run indicates the quality of a classifier without enforcing
a particular policy. However, we can assume that some version of the following policy
will be used: buy stocks in the top few deciles and sell ones in the bottom few deciles.
A good decile run takes the shape of a line running from extremely negative average
return at the bottom decile to extremely positive average return at the top decile.

Figure 5-3 shows four decile runs. One is for GMO’s predictor, which has been
carefully developed over several years. A second one is a decile run of a point-and-
scaling concept learned using maxDD. A third one is a decile run of a two-disjunct
concept learned using maxDD; the algorithm attempts to find two ideal stocks, so
distance is calculated as the minimum distance to either ideal stock. Finally, we
show a decile run of the concept learned by the MULTINST algorithm (discussed in
more detail in Chapter 7). Because MULTINST learns a hyper-rectangle, it needed
to be slightly modified in order to return a continuous ranking (rather than a binary
classification). Given a stock to predict, we calculate the multiplier by which the
learned hyper-rectangle needs to be scaled in order to contain that stock. The larger
the multiplier, the further the stock is from ideal. Each decile run is actually an
average of the seven decile runs on test sets from 1989 through 1995.

As can be seen from the figure, the single or disjunctive concepts found by maxDD
perform better than GMO’s predictor (lower average return in the bottom deciles

and higher average return in the top deciles). The main exception to that occurs in

70

4 5 6 7 8 9 10 BT 9
-0.2 -0.2

0.4

0.2¢

uﬁu"w i

[|) .
B two-disjundg
MULTI NST

1] GV

Figure 5-3: For each of four concepts, the decile run is plotted. The black bars indicate
the decilized return of a single concept, dark gray bars indicate the decilized return of
a two-disjunct concept, light gray bars indicate the decilized return of MULTINST s
concept, and the white bars indicate the decilized return of a GMO predictor.

71

the top decile, where the GMO predictor’s ranking of the top 10% of the stocks is
more accurate than the ranking generated by distance to the maxDD concept. This is

7

only a concern if the desired policy is “buy the stocks in the top decile.” However,
if the policy is “buy the stocks in the top 5 deciles and sell the ones in the bottom
5 deciles” or some variant thereof, then the concept learned from Multiple-Instance
examples should outperform GMO’s predictor. Finally, we see that the MULTINST
concept generates a decile run which is at best random, and at worst has a negative
correlation with return.

Figure 5-4 gives an example of a disjunctive concept learned by maxDD on one of
the 10-year training partitions. For each disjunct, we show the scalings for each of the
17 features, and also the feature values for the relevant features (those with scaling
greater than 0.1). We can see that each disjunct covers a different part of the space
and uses different scalings. A new stock will be considered fundamentally good if it
is close to either one of the disjuncts.

The values of the features in the data set range from 1.0 to 11.0, and each feature
is uniformly distributed in that range. It is interesting to note that most of the feature
values learned by the algorithm are not at the extremes of the value range. Instead,
they are mostly in the 8-10 and 2—4 range. The majority of high-return stocks lie at

the extreme ranges of the features, but so do many low-return stocks. maxDD finds a

more consistent (though less flashy) type of stock at non-extreme feature values.

72

17
16
15

1 | ——

17
16
15

1 | —

(a) Scalings of disjunct 1

d 7 I
g 3 I
01 0.2 0.‘3,0.?} 0.5 0.6 0.7 2 1 6 8 10
Scal ing factor Feature val ue

(b) Feature values of disjunct 1

02 04 06 08 1
Scaling factor

(¢) Scalings of disjunct 2

4 6 8 10
Feature val ue

(d) Feature values of disjunct 2

Figure 5-4: A disjunctive concept learned by maxDD on one of the 10-year training
partitions. (a) shows the scale (s})? for each feature k € {1,---,17}. The features
whose scales is greater than 0.1 are indicated, and their values are given in (b). The
second disjunct is shown in (c) — the values of the scales (s2)? and (d) — the values
of the features ¢ which have significant scaling values.

73

Chapter 6

An application to image database

retrievall

In the past few years, the growing number of digital image and video libraries has led
to the need for flexible, automated content-based image retrieval systems which can
efficiently retrieve images from a database that are similar to a user’s query. Because
the desired set of images can vary greatly, we also want to provide a way for the user
to explore and refine the query by having the system bring up examples to be judged
by the user.

6.1 Previous work

One of the most popular global techniques for indexing of images is color-histogramming
which measures the overall distribution of colors in the image. While histograms are
useful because they are relatively insensitive to position and orientation changes, they
do not capture the spatial relationships of color regions and thus have limited discrim-
inating power. Many of the existing image-querying systems work on entire images or
in user-specified regions by using distribution of color, texture and structural prop-

erties. The QBIC system [Flickner et al., 1995] and the Virage system [Bach et

IThis chapter describes joint work with Aparna Lakshmi Ratan [Maron and Lakshmi Ratan,
1998].

74

al., 1996] are examples of such systems. Some recent systems that try to incorporate
some spatial information into their color feature sets include [Smith and Chang, 1996,
Huang et al., 1997, Belongie et al., 1998]. Most of these techniques require the user
to specify the salient regions in the query image.

All of the methods described above use the absolute color and texture properties
of the whole image or fixed regions in the image and some incorporate spatial relations
between connected regions having similar color properties. If we consider the domain
of natural scene classification, these absolute properties can vary between images of
the same class.

Recent work ([Lipson et al., 1997]) in scene classification illustrates that pre-
defined flexible templates that describe the relative color and spatial properties in
the image can be used effectively for this task. The flexible templates constructed by
Lipson [Lipson et al., 1997] encode the scene classes as a set of image patches and
qualitative relationships between those patches. Each image patch has properties in
the color and luminance channels. These templates describe the color relationship
(relative changes in the R,G,B channels), luminance relationship (relative changes in
the luminance channel) and spatial relationship between two image patches. These
flexible templates were hand-crafted for a variety of scene classes and could be used
to classify natural scenes of fields, waterfalls and snowy mountains efficiently and re-
liably. For example, the following concept might be designed for the snowy-mountain
class: “If the image contains a blue blob which is above a blob with more red, blue,
and green (i.e. is white) and which is above a brown blob, then it is a mountain.” In
this chapter, we would like to learn such concepts for natural images given a small
set of positive and negative examples.

All of the systems described above require users to specify precisely the salient
regions and templates that they want. Minka and Picard [Minka and Picard, 1996
introduced a learning component in their system. They use positive and negative
examples to learn which members of a set of image groupings (similarity measures)
should be used. The image groupings occur within and across images and are based

on color and texture cues. However, their system still requires the user to label

75

various parts of the scene. Our system only receives a label for the entire image and

automatically extracts the relevant parts of the scene.

6.2 Image database retrieval as a multiple-instance
learning problem

We treat the image database retrieval task as a learning problem. The user has some
concept in mind, and supplies positive and negative examples of images that fit or do
not fit that concept. After our system learns an approximation of the user’s intended
concept, we can test the approximation’s accuracy by retrieving images from the
database that are similar to the concept. If the user approves of these images, we are
done. If not, the user can provide more examples.

The learning problem is best treated as a Multiple-Instance learning problem
instead of as a supervised learning problem. Each example image given by the user
is actually an ambiguous example. We do not know what it is about the image that
makes the user label it as positive (as in Figure 1-2). We transform each image into
a bag of instances, where each instance represents one way of describing what the
image is about. In this chapter, each instance corresponds to one or two subregions
of the image. However, subregions are only one way of describing what the image
could be about.

The system described in this chapter finds subregions in common between pos-
itively labeled images that do not occur in negatively labeled images. Once the
concept is learned, images from the database can be classified by whether they con-
tain a subregion which is similar to the concept. In the rest of the chapter, we discuss
various ways of generating subregions from an image. We then describe a variety of
experiments that use different bag generators, different training schemes, and various
concept classes. Our results show that Multiple-Instance learning is successful in this

domain, that very simple bag generators suffice, and that interactive training helps.

76

Figure 6-1: Examples of the five image types used from the COREL database.

6.3 Generating a bag from an image

The images that we use are natural scenes such as waterfalls, mountains, fields, lakes,
and sunsets. Examples are shown in Figure 6-1. In general, these images do not
contain many clearly defined edges. This is a significant difference from many image
databases, and allows us to represent images (and subimages) in a very coarse manner.
The images were smoothed using a Gaussian filter and subsampled to 8 x 8.

We experimented with five different bag generators, as described below. Each
description details how an instance is represented, and a bag contains all such possible

instances. Figure 6-2 schematically describes the types of instances.

row An instance is the row’s mean color and the color differences in the rows above
and below it. Specifically, an instance j is a vector {x1, - - -, 29}, where {1, xo, x3}
are the mean RGB values of row j, {x4, x5, 76} are the mean RGB values of
row j + 1 minus the mean RGB values of row j , and {7, xs, 29} are the mean

RGB values of row 7 — 1 minus the mean RGB values of row j.

7

mean RGB=A

B
mean RGB=B A-B
C-B
mean RGB=C

_~mean RGB=A C
—mean RGB=B A-C
[mean RGB=C $| B-C

~~mean RGB=D
—~ mean RGB=E

| RGB=A
| RGB=B
— RGB=C
- RGB=D

o0 m>

 ———

distance=Ax

—description=A B
" description=B | Ax
distance=Ay Ay

distance=Ax
~description=A B
description=B | Ax

distance=Ay Ay

row

single blob
wi t h nei ghbors

single blob wth
no nei ghbors

two bl obs with
no nei ghbors

two blobs with
nei ghbor s

Figure 6-2: Types of instances produced by various bag generators

78

single blob with neighbors An instance is the mean color of a 2 x 2 blob and the
color differences from its 4 neighboring blobs. Specifically, an instance (i, 7) is
a vector {xy,- -, x5}, where {z1, x5, x3} are the mean RGB values of the 2 x 2
blob centered at (i,7), {z4, x5, x6} are the mean RGB values of the 2 x 2 blob
centered at (i + 2, j) minus the mean RGB values of the 2 x 2 blob centered at
(1,7), {7, xs, 29} are the mean RGB values of the 2 x 2 blob centered at (i, j+2)
minus the mean RGB values of the 2 x 2 blob centered at (i, j), {10, 11, 12}
are the mean RGB values of the 2 x 2 blob centered at (i —2, j) minus the mean
RGB values of the 2 x 2 blob centered at (i, j), and {x13, 214, 215} are the mean
RGB values of the 2 x 2 blob centered at (i, j — 2) minus the mean RGB values
of the 2 x 2 blob centered at (3, j).

single blob with no neighbors An instance is the color of each of the pixels in
a 2 x 2 blob. Specifically, an instance (i,7j) is a vector {xy, -, 212}, where
{1, 9,23} are the RGB values of the pixel at (i, 7), {x4, x5, 26} are the RGB
values of the pixel at (i — 1,j), {z7, xs, 9} are the RGB values of the pixel at
(i—1,5—1), and {219, 11, r12} are the RGB values of the pixel at (i,7 —1).

two blob with neighbors An instance is two descriptions of two single blob with
neighbors and their relative spatial relationship (whether the second blob is
above or below, and whether it is to the left or right, of the first blob). Specif-
ically, an instance (i, 7, k,[) is a vector {xy,---, x50}, where {z1,---, 215} is a
single blob with neighbors description of instance (,7), {16, -, %31} is a

single blob with neighbors description of instance (I,m), x3; = ¢ — k, and

l’ggzj—l.

two blob with no neighbors An instance is the mean color of two descriptions of
two single blob with no neighbors and their relative spatial relationship.
Specifically, an instance (i, j, k,) is a vector {xy, - - -, xo}, where {xy, -+, 12} is
asingle blob with no neighbors description of instance (i, 7), {x13, -, Z24}
is a single blob with no neighbors description of instance (I,m), xos =

i—k, andx%:j—l.

79

6.4 Experiments

In this section, we discuss four different types of results from running the system:
one is that Multiple-Instance learning is applicable to this domain. A second result
is that one does not need very complicated hypothesis classes to learn concepts from
the natural image domain. We also compare the performance of various hypotheses,
including the global histogram method and a hand-crafted classifier. Finally, we show

how user interaction works to improve the classifier.

6.4.1 Experimental setup

We tried to learn three different image types: waterfall, mountain, and field. For
training and testing we used 500 natural images from the COREL library and the
labels given by COREL. These included 100 images from each of the following image
types: waterfalls, fields, mountains, sunsets and lakes. Examples of these images are
shown in Figure 6-1. We also used a larger test set of 2600 natural images from
various image types in the COREL database for additional testing.

We created a potential training set of 100 images that consisted of 20 randomly
chosen images from each of the five image types. This left us with a small test set
consisting of the remaining 400 images, 80 from each of the five image types. We
separated the potential training set from the testing set to insure that results of using
various training schemes and hypothesis classes could be compared fairly. Finally the
large test set contained 2600 images of nature scenes from a large variety of classes.

For a given image type, we created an initial training set by picking five positive
examples of the concept and five negative examples, all from the potential training
set. A bag generator and concept class were chosen, and the concept was learned using
maxDD. After the concept was learned from these examples, the unused 90 images in
the potential training set were sorted by distance from the learned concept?. We did

not use all 100 images to train because a typical user of the system would not be

2An image/bag’s distance from the concept is the minimum distance of any of the image’s sub-
regions/instances from the concept.

80

expected to give 100 examples.

This sorted list can be used to simulate what a user would select as further refining
examples. Specifically, the most egregious false positives (the non-concept images at
the beginning of the sorted list) and the most egregious false negatives (the concept
images at the end of the sorted list) would likely be picked by the user as additional
negative and positive examples. For example, if the image type is waterfalls, then
non-waterfall images that are close to the learned concept would be considered false
positives. Waterfall images that are far from the learned concept would be considered
false negatives.

We used four different training schemes: initial is simply using the initial five
positives and five negative examples. +6fp adds the five most egregious false positives.
+10fp repeats the +5fp scheme twice. +3fp+2fn adds 3 false positives and 2 false
negatives.

Because we did not know which of the bag generator’s features were relevant, we
used the point-and-scaling concept class for each of the five concept types shown in
Figure 6-2. We also tried learning 2-disjunct concepts for the single blob with
neighbors and single blob with no neighbors bag generators. This means that

a total of 7 different concept types could be learned for any given data set.

6.4.2 Precision and recall graphs

A standard way of displaying results in image and text database retrieval is through
precision and recall graphs. Let us suppose that there are N objects in our database,
G of which we want to retrieve because they are in the correct class. In addition,
let us suppose that the classifier we have learned has ranked all N objects, hopefully
putting objects of the correct class at the front of the list, and objects that do not
belong to the correct class at the end. Finally, let us call G(n) the number of objects
in the correct class out of the first n objects in the ranked list. Note that G(0) = 0
and G(N) = G.

Precision is defined as the ratio of the number of correct objects to the number

of objects retrieved: G(n)/n. Recall is defined as the ratio of the number of correct

81

objects retrieved to the total number of correct objects in the test set: G(n)/G.
Plotting precision against n is known as a precision graph, plotting recall against
n is known as a recall graph, and plotting precision against recall is known as a
precision-recall graph.

For example, in Figure 6-3, the waterfall precision-recall curve has recall 0.5 with
precision of about 0.7, which means that in order to retrieve 40 of the 80 waterfalls,
30% of the images retrieved are not waterfalls. We show both precision-recall and
recall curves for the following reasons. The beginning of the precision-recall is of
interest to applications where only the top few objects are of importance. On the
other hand, the middle of the recall curve is of interest to applications where correct

classification of a large percentage of the database is important.

6.4.3 Results

In this section we show results of testing the various concept types, training schemes,
and image types against the small test set and the larger one. The small test set does
not intersect the potential training set, and therefore is an accurate measurement
the generalization of the learned concepts. The large test set does intersect with the
potential training set, but is meant to show how the system scales to larger, more
varied image databases. We ran our tests under every combination of four training
schemes, seven concept types, and three image types.

Learning a concept took anywhere from a few seconds to learn a row concept
to a few days for the disjunctive concept classes. The more complicated hypotheses
take longer to learn because there is a higher number of features and the number of
instances per bag is large. In addition, searching for the best concept involves starting
a gradient based optimization at every pair of instances (for the disjunctive concept
class). Because this is a prototype, we did not try to optimize the running time;
however, a more intelligent method for generating instances (for example, a rough
segmentation using connected components) will reduce both the number of instances
and the running time by orders of magnitude.

In Figure 6-3, we show the performance of the best concept and training method

82

Pr eci si on Mountain

1t Fi el ds
~ Wterfalls
0. 8}
0. 64

0.4

-

P P
- = - '——-'__-

L
--|'__---l--l_—---ll_-__.,_--r--l--=l-\--\:-—|"h
=

‘i".p- el L

O. 2 N'r‘p“,/‘m* *:"” POTrRr
0.2 0.4 0.6 0.8 ; Recal |
Recal |
1 T >
0.8
0.6} -"l"' ‘,-'—"‘
O. 4» ’-"_: -"- '__:
A ~ Mountain
0.2 fj 3" Fi el ds
| ifo ~ \Waterfalls
') : A _ Nunber
100 200 300 400retri eved

Figure 6-3: The best curves for each image type. Dashed curves are the global
histogram’s performance, and solid curves show the learned concept’s performance.

Both use a small test set of 400 images.

83

Pr eci si on »~ Mountain
1 Fi el ds
»~ \Waterfalls

0. 8

0.6

0.4

LT Ty
- —
-

S

i
S g

O- 2 [;ﬁ"‘l""l: ':I.l < :l-::"rl
-’3'5'-'-155!—'“.-#,',::'._.-,.._..-_-------.-‘
) - - o 58 i Recal |
Recal |
0. 8}
0. 6}
0.4
Mountain

- Fi el ds

| ~” Waterfalls

j Nurber

500 1000 1500 2000 2500 retrieved

Figure 6-4: The best curves for each image type. Dashed curves are the global
histogram’s performance, and solid curves show the learned concept’s performance.
Both use a large test set of 2600 images.

84

on each image type. The dashed lines show the performance of the global his-
togram method. The solid lines in the precision-recall graph show the performance of
single blob with neighbors with +10fp for waterfalls, row with +10fp for fields,
and disjunctive blob with no neighbors with +10fp for mountains. The solid
lines in the recall curve show the performance of the single blob with neighbors
with +10fp for waterfalls, single blob with neighbors with +3fp+2fn for fields,
and row with +3fp+2fn for mountains. Figure 6-4 shows the behavior of the same
concepts on the larger database.

As can be seen from these graphs, the global histogram method performs ex-
tremely poorly on this data, generating a ranking of the data which is usually ran-
dom. The learned concepts perform well, and for the most part generalize well to
larger databases.

The global histogram method is the straw man of the image database retrieval
community. A more worthy adversary for a concept learned from examples is one
which was hand-crafted based on domain knowledge of a particular image type. Fig-
ure 6-5 shows that the performance of the learned mountain concept is competitive
with a hand-crafted mountain template from [Lipson et al., 1997]. Lipson’s classifier
was modified to give a ranking of each image, rather than its class. The test set
consists of 80 mountains, 80 fields, and 80 waterfalls. It is disjoint from the training
set.

The learned concept is shown as a solid curve, while the hand-crafted concept is
shown as a dashed curve. The hand-crafted model’s precision-recall curve is flat at
approximately 84% because the first 32 images all receive the same score, and 27 of
them are mountains. We also show the curves if we were to retrieve the 27 mountains
first (best case) or after the first five false positives (worst case). The learned concept
is impressively competitive with the hand-crafted classifier.

In addition to finding specific classifiers, we can also use our experiments to com-
pare the various training schemes and the various concept types. In Figure 6-6, we
show the recall and precision-recall curves for each of the four training schemes. Each

curve is the result of averaging over all three image types and all seven concept types.

85

Pr eci si on
1 L

0.8
0.6

0.4

0.2

Recal |

Recal |

0.8' /J
0.6}
0.4' //

0. 2;

‘ ‘ ‘ ‘ Nunber
50 100 150 200 retrieved

Figure 6-5: Comparison of learned concept (solid curves) with hand-crafted templates
(dashed curves) for the mountain concept on 240 images from the small test set. The
top and bottom dashed precision-recall curves indicate the best case and worst case
curves for the first 32 images retrieved by the hand-crafted template which all have
the same score.

86

Pr eci si on

- I+ %ti al
o +10 p
0.6 “, +3fp+2fn

0.2 0.4 06 0.8 i Recal |
Recal |
1,
0.8 =
0.6
I %tial
0.4} s + P
o +10 P
” +3fp+2fn
0.2t
Nunber

50 100 150 200 250 300 350 retrieved

Figure 6-6: Different training schemes, averaged over image type and concept type.
A small test set is used.

87

Pr eci si on

Al
- Lg%t I a
““‘ +1O p

~ H3fpt+2fn

© o o o o o
P N W B~ O O

002 0.4 0.6 0.8 i Recal |
Recal |
1> -
0. 8¢
0. 6}
¢ [g%ti al
0. 4¢ s +
o +10 p
” +3fp+2fn
0.2
Nunber

500 1000 1500 2000 2500retrieved

Figure 6-7: Different training schemes, averaged over image type and concept type.
A large test set is used.

88

We see that performance improves with user interaction. Any training scheme where
there is an iteration of feedback from the user results in markedly better performance.
This behavior continues for the larger test set as well, shown in Figure 6-7.

In Figure 6-8, we show the precision-recall and recall curves for each of the seven
concept types averaged over all image types and all training schemes on the small test
set. Figure 6-9 shows the same curves for the large test set. We see that the single blob
with neighbors hypothesis has good precision. We also see that the more complicated
hypothesis classes (i.e. the disjunctive concepts and the two-blob concepts) tend to
have better recall curves.

In Figure 6-10, we show a snapshot of the system in action. The system is trained
using training scheme +10fp for the waterfall image type. It has learned a water-
fall concept using the single blob with neighbors bag generator. The learned

waterfall concept is that somewhere in the image there is a blob
e whose left neighbor is less blue, and
e whose own blue value is 0.5 (where RGB values are in the [0, 1]* cube), and
e whose neighbor below has the same blue value, and
e whose neighbor above has the same red value, and
e whose green value is 0.55, and
e whose neighbor above has the same blue value, and

whose red value is 0.47.

These properties are weighted in the order given, and any other features were
found to be irrelevant. To rate an image from the database, we assign it the minimum
distance of one of its instances to the learned concept, where the distance metric uses
the learned scaling to account for the importance of the relevant features. As we
can see in the figure, this simple learned concept is able to retrieve a wide variety of

waterfall scenes.

89

o

0. AF{ecaI IO' 6

o

3

5

400

100 Nunber 20(%0 I mages 300

(o)} 00
O o o o o o o
O DO._n.OC

Figure 6-8: Different concept types averaged over image type and training scheme,
90

using a small test set.

SO~ 0 OM—T

QJO('D;UO

i

0.

1 L L

500 , 1000 . 1500 , 2000 2500
| rages retrieved

Figure 6-9: Different concept types averaged over image type and training scheme,
using a large test set with 2600 images.

91

Figure 6-10: Results for the waterfall concept using the single blob with
neighbors concept with +10fp. Top row: Initial training set-5 positive and 5 neg-
ative examples. Second Row: Additional false positives. Last three rows: Top 30
matches retrieved from the large test set. The red squares indicate where the closest
instance to the learned concept is located.

The top 20 images in the figure are the training set. The first 10 images are the
initial positive and negative examples used in training. The next 10 images are the
false positives added. The last 30 images are images from the large dataset which are

closest to the learned concept.

6.5 Conclusions

We can draw several conclusions from the experiments in this chapter.

e Multiple-Instance learning by maximizing Diverse Density can be used to learn a
classifier for images of natural scenes. The classifier’s performance is competitive
with hand-crafted models, and much better than a global histogram approach.
Supervised learning approaches would be hard pressed to match maxDD’s results

on as few training examples.

92

e Extremely simple concepts that capture color relations in low resolution images

can be used effectively in the domain of natural scene classification.

e User interaction (adding false positives and false negatives) over multiple iter-

ations can improve the performance of the classifier.

The architecture of separating the bag generation mechanism from the learning
mechanism is conducive to future extensions of this work. A better bag generator
(e.g., one that generates coherent subregions of various sizes rather than in a cookie-
cutter fashion) will lead to easier learning, since the number of instances per bag
will decrease. Likewise, a better learning mechanism (e.g., one that can handle more
instances per bag) will allow us to experiment with more general bag generators. This
architecture also suggests a change to the underlying goal of Machine Vision. Instead
of attempting to identify the object(s) in the image, its goal should now be to identify
a set of possible objects, trying to minimize the size of the set while at the same time

maximizing the probability that one of the objects is the right one.

93

Chapter 7

Related work

Multiple-Instance learning is a new framework for learning, so the number of directly
related papers is small. We examine the short history of the area and discuss each
of the papers published to date. The more general idea of explicitly dealing with
ambiguous examples has a longer history, and in the second section of this chapter

we look at other approaches to learning from ambiguity.

7.1 Previous work on Multiple-Instance learning

The area of learning from multiple-instance examples has only recently begun to be
fully explored. The first paper to state and name the Multiple-Instance framework
was [Dietterich et al., 1997]. This paper was concerned with developing an algorithm
to tackle the drug discovery problem. Our setup of the drug discovery problem,
namely the ray representation of molecular shape, is taken from that paper. Diet-
terich et al. assumed that the underlying concept (the shape to be learned) can be
described with an axis-parallel rectangle (APR). The algorithms that they developed
can be thought of as greedily maximizing a discrete version of Diverse Density. In
their algorithms, a hyper-rectangle is shrunk and expanded to maximize the number
of positive points from different bags that are contained within the rectangle while
minimizing the number of negative points within the rectangle. The algorithms were

tested on the musk data set, and results are shown in Chapter 4.

94

To give a specific example of one of their algorithms, we summarize the behavior of
their best algorithm: iterated-discrim APR. It involves three procedures — grow,
discrim, and expand. The grow procedure starts with seed APR that covers only
one instance from a positive bag. It is grown until the smallest APR that covers at
least one instance from every positive bag is found. The discrim procedure takes as
input the APR generated by the grow procedure, and selects those features that are
most important in discriminating negative from positive instances. The grow proce-
dure is then repeated, this time building an APR only using the features selected by
discrim. The algorithm iterates between grow and discrim several times. Finally,
the expand procedure is applied on the resulting APR. It estimates the density of
instances along each feature of the APR, and expands the bounds of the APR so that
the estimated probability of excluding a positive instance is e.

Although Multiple-Instance problems have been encountered before (for example,
in Meta-Dendral [Buchanan and Mitchell, 1978]), they were transformed into a tra-
ditional supervised learning problem. Dietterich et al.’s paper is important because
it was the first to give an algorithm specifically for learning from Multiple-Instance
examples, and also because it achieved impressive results on the musk data set. How-
ever, because the algorithm was designed with the drug discovery problem in mind, it
is not clear that it will generalize well to other problems. In fact, it likely represents
an upper bound on performance for the musk data set because some of the parameters
of the algorithm were trained on MUSK1 and tested on MUSK2.

Because Multiple-Instance learning is a neatly stated problem, it soon attracted
the attention of theoreticians. Long and Tan [Long and Tan, 1996] showed that
it is possible to PAC-learn [Valiant, 1984] an axis-parallel concept from Multiple-
Instance examples, but gave an algorithm with a very high bound on its running time.

Specifically, for their algorithm to return a concept that has error ¢ with probability

1—4, it would need O(digol > log? 24) time (where d is the number of dimensions and n
is the number of points per bag). In addition, the d dimensions were assumed to be
independent. Even worse, Long and Tan assumed that each instance was generated

independently, independent of its bag. This assumption clearly does not hold for any

95

Accur acy
1,

0. 8¢

0.67

0.4

Bags

466
000

1000 2000 3000 4000 5000

Figure 7-1: The accuracy of MULTINST on the artificial dataset of Section 2.6.2.
Each bag contains 50 instances, and each accuracy measurement is based on 20 ran-
domly generated datasets.

reasonable application of Multiple-Instance learning: the shape of a molecule does
depend on which molecule generated it, and the same stocks do not go up every
month.

Auer, Long, and their colleagues soon published two interesting developments.
[Auer, 1997] gave a new algorithm that improved on Long and Tan’s bounds and did
not require the features to be independent. The MULTINST algorithm learned an

d?n?

axis-parallel rectangle that had error of e with probability 1 — ¢ using O(“%- log %l)

examples (bags) in time O(dllogl) where [is the number of examples. A simpli-
fied overview of the algorithm is given in Section 7.1.1. As shown in Chapter 4,
MULTINST performed remarkably well on the MUSK datasets. However, as shown
in Figure 5-3, it had less success in the stock prediction domain. The artificial dataset
described in Section 2.6.2 actually obeys the assumptions made by MULTINST, since
every instance is generated independently. It is also an example of the worst-case be-
havior of the algorithm. Figure 7-1 shows the percentage of times MULTINST learns
the correct concept (the 5 x 5 square) as the number of training bags grows. Each
bag contains 50 instances. The percentage of success was calculated from 20 runs
on randomly generated datasets. When compared to Figure 2-8, we can see that the

number of examples needed by MULTINST are two orders of magnitude greater than

96

the number of examples needed by maxDD. In addition, there are 200 instances per
bag in the experiments of Figure 2-8, making it a harder task.

The other development was less fortunate: [Auer et al., 1996] showed that Long
and Tan’s independence assumption is necessary for any efficiently PAC-learnable
algorithm. Specifically, they showed that if there is an algorithm to efficiently PAC-
learn from multiple-instance examples that are distributed arbitrarily, then it is also
possible to efficiently PAC-learn DNF formulas. It is generally assumed that PAC-
learning DNF formulas is hard.

[Blum and Kalai, 1998] affirm Auer’s proofs. In addition, they show that learning
from multiple-instance examples can be reduced to learning with one-sided noise, two-
sided noise, and learning in the statistical query model [Kearns and Vazirani, 1994].
They also slightly improve Auer et al.’s sample bounds to O(d:—Q")l

To summarize, despite the youth of the field, there have been a number of suc-
cessful applications and a number of strong theoretical results. However, there is
still a large gap between the theoretical claims that learning from multiple-instance
examples is hard and the empirical successes of multiple-instance algorithms. In the
worst case, maxDD would not find the global Diverse Density maximum over concept
space in polynomial time. However, in most cases examined in this thesis, maxDD

found the best concept or one which performed well.

7.1.1 Overview of the MULTINST algorithm

We describe a simplified version of the MULTINST algorithm, based on [Auer et al.,
1996]. We assume there is a distribution D over a d-dimensional feature space. Every
instance is drawn independently from D. Each contains exactly r instances, and is

labeled positive if at least one of the instances falls within the target APR. The target
APR is denoted BOX = [[a;, b;], where {a;} is the “bottom left” corner and {b;}

1<k<d
is the “top right” corner.

Without loss of generality, we will only try to learn the “top right” corner of the

10(-) is the same as O(-) except it ignores the log terms.

97

concept. We want to find an approximation b to BOX, so that the chance of a true
positive instance falling outside bis small. For every feature k, we want to find be < by
such that Pr(B;; € BOX and B;;;, > l;k) is small. We define the function (i(z) to
be the probability (over distribution D) that an instance B;; is a true positive (falls
within BOX) and B;;, > «.

We show that it is possible to compute (i (z) from quantities that can be approx-
imated from the training data. We define the following quantities, where ¢ and ay(z)

are probabilities over distribution D, and ¢ () is defined over distribution D".

¢ = Pr(B; ¢ BOX)
ag(x) = Pr(Byjr > x)
¢p(z) = Pr(B; is negative and By >)
= (on() = (@) ¢

The last equation can be interpreted as follows: the first term is the probability
that instance B;; is negative (does not fall in BOX) and has Bjj; > x. The second
term is the probability that the other r — 1 instances (Bj,---, B;r) are negative.
Note that all of these quantities (except [x(z)) can be approximated from the data.
Therefore, we can estimate

Bu() = an () — Q;’i{”?

By definition, (i(z) is 0 when z < by. If we find the largest X such that £ (X) is 0,
then by, = X.

(7.1)

7.2 Previous work on ambiguous examples

As stated in Chapter 1, there is a spectrum of ambiguity in the field of Machine
Learning, ranging from supervised learning which has no ambiguity to unsupervised

learning in which no example is labeled. Multiple-Instance learning falls in the middle

98

of the spectrum, as does Reinforcement Learning [Sutton and Barto, 1998, Kaelbling
et al., 1996]. In Reinforcement Learning, the teacher (or the world) provides an
occasional reinforcement signal, but the specific value of being at some state (or
which action to take) is usually not given. In this section, we discuss other points
along the spectrum, some of which involve ambiguity about a collection of examples

(bags), and some which involve noisy labels on individual examples:
e Learning from noisy examples
e Norton’s modeling of uncertainty and Hirsh’s bounded inconsistency

e Time Delay Neural Network (TDNN), and Integrated Segmentation and Recog-
nition (ISR)

e Dynamic reposing
e Learning from Automata
e Meta-DENDRAL

Learning from noisy examples is perhaps the closest point in the spectrum to the
extremum of perfect supervised learning. The noise is added either to the value of
the label or to the features used to describe the example. Normally, it is assumed
that the noise is Gaussian. However, models where the noise is brought about by
a malicious adversary have also been explored [Decatur, 1994]. Because the noise
is usually Gaussian, most algorithms assume that with enough examples, the noise
can be washed out. Other algorithms take a more proactive approach; for example,
k-Nearest-Neighbor and other such variants [Atkeson et al., 1997] smooth out noise
through voting schemes. [Kearns and Vazirani, 1994] show that PAC-learning from
noisy examples can be reduced to the standard PAC model.

[Norton, 1994] shows that ambiguity can arise not only from an uncertain ex-
ample, but also from an uncertain representation. Norton attempts to learn DNA
promoter sequences from examples. However, there is no such thing as a universal de-

scription of a promoter sequence. Therefore, each example agrees with many different

99

structures. Norton uses background knowledge to assign probabilities to structures,
combines the evidence from the training example, and picks the most likely concept.

Norton’s work is an outgrowth of Hirsh’s bounded inconsistency learner [Hirsh,
1990]. The bounded inconsistency model assumes that every example is made up of
some true source example corrupted by a noise model. In addition, given a noisy
example, one can efficiently describe the version space [Mitchell, 1978] that covers all
concepts that agree with the possible true sources of that example. Each example
is therefore represented by an “expanded” version space, and the intersection of all
the version spaces contains concepts that are consistent with the training data. This
is similar to the idea behind Diverse Density, where we find the intersection of the
positive bags.

A Time Delay Neural Network [Waibel et al., 1989, Lang, 1989] is an architecture
that allows the network to find time-invariant patterns in the examples. Its original
motivation was to build a classifier to distinguish spoken letters. Each example is
labeled, but it is not known when the speaker begins uttering the letter and for how
long the enunciation lasts. If these details were known about each example, then the
learning task would be simple.

An extension of TDNN is the Integrated Segmentation and Recognition sys-
tem [Keeler et al., 1991al. The ISR network is given an image with one or more
handwritten characters, a label that identifies the characters that appear, but not the
pose or location of the characters. This is similar to the image database retrieval prob-
lem addressed in Chapter 6. There are two main differences between our approach
and the ISR system. First, they assume that there is only one occurrence of each type
of character in the image, whereas there is no such limitation in the Multiple-Instance
learning framework. This assumption leads to their method of combining evidence
through a summation of likelihood ratios (as discussed in Section 2.3.2). In [Keeler
et al., 1991b], they show that the assumption can be relaxed by using noisy-or to
combine evidence (as in Chapter 2 and [Saund, 1995]). In a different context, [Dayan
and Zemel, 1995] show that both summation of likelihood ratios and noisy-or can be

suitable models of combining evidence. The other main difference is that the ISR

100

architecture forces the bag generator to be part of the learning mechanism of the
network, while we construct the learner and bag generator separately.

Dynamic reposing [Jain et al., 1994, Dietterich et al., 1994] is an algorithm for
handling examples that are ambiguous both in pose (like TDNN and ISR) and in
containing multiple instances. It was applied to drug discovery problems as described
in Chapter 4. The algorithm alternates between optimizing for the best pose and
finding the true positive in each bag. As would be expected, local maxima present a
major difficulty for the algorithm.

A classic Machine Learning problem is learning a Deterministic Finite-State Au-
tomata (DFA) from a series of strings which are labeled according to whether they
are accepted by the DFA or not. [Cohen, 1996] examines the dual of this problem:
given a sequence of DFAs, each labeled positive or negative, find a string that is ac-
cepted by positive examples and not by negative ones. This is an ambiguous learning
problem because a labeled example (DFA) represents a variety of different strings.
Unfortunately, Cohen shows that it is hard to PAC-learn from these examples, even
if the alphabet size is limited to three characters.

The Meta-DENDRAL program [Buchanan and Mitchell, 1978| receives training
pairs of molecules and their mass-abundance curve. Its goal is to learn how molecules
disintegrate during mass-spectrometry — which bonds are broken and which atoms
migrate. Since every location along the mass-abundance curve can be explained by
many different hypotheses, the examples are inherently ambiguous. Meta-DENDRAL
generates many possible interpretations for each peak in the curve, and attempts to
learn production rules that cover as many interpretations as possible.

In summary, there have been a number of applications where highly ambiguous
examples have been encountered and a number of different algorithms have been
proposed to handle the ambiguity. However, there has been no unified framework for

learning from ambiguous examples.

101

Chapter 8

Conclusion

8.1 Future Work

There are many exciting avenues for extending the work presented in this thesis. We
list some of them, including general future research directions, algorithmic enhance-

ments, and extending specific applications.

e Figure 1-1 shows some of the approaches taken to learn from ambiguity. We
are only at the beginning of the process of categorizing the large variety of
ambiguity that occurs in learning problems and creating algorithms to learn
from ambiguous data. Multiple-Instance learning handles one type of ambiguity,
Reinforcement Learning another, and unsupervised learning yet another. Is
there some unifying learning algorithm that performs well on many types of
ambiguity, or will we continue to fill in the ambiguity spectrum of Figure 1-1 in

a piecemeal fashion?

e Another question for future investigation is whether we can learn more com-
plicated hypothesis classes than hyper-rectangles (as in [Dietterich et al., 1997]
and [Auer, 1997]) or points with scaled features (as in this work). So far, the
main tradeoff for learning from extremely ambiguous examples, as opposed to
clearly labeled examples, has been that the learned concepts have been very sim-

ple, as opposed to concepts such as trees or neural networks. To examine why

102

2 W DT

concept

20 99 90

BAGS

Figure 8-1: Given four positive bags, we see three different complicated concepts that
agree with the examples. How are we to choose between them?

this might be a difficult task, let us take an extremely simple situation: instances
are described using two attributes, both of which are known to be equally im-
portant. Furthermore, every bag contains an infinite number of points and is
described merely by its boundary (or boundaries). Finally, let us assume that
there are only positive bags. Let the hypothesis class be any two dimensional
shape. Clearly, any hypothesis that intersects all the bags in any manner could
be a valid concept. Some examples of valid concepts are shown in Figure 8-1.
The number of valid concepts is huge, and even negative bags will not cause
that number to drop significantly. It is not clear how to choose one shape over

another because it is difficult to impose a simplicity metric on this space.

e It would also be interesting to apply Multiple-Instance learning to learning
problems that are not a two-class classification problem, such as multi-class or
regression applications. Multi-class problems could be transformed into many
two-class problems, but perhaps there are more elegant ways of handling the
ambiguity of “at least one of the elements in this bag belongs to class X.”
Regression problems appear to be harder to pose as Multiple-Instance learning

problems, but we can state some minimal-regression problems. For example,

103

for each bag you are given the minimum value attained by any instance in the
bag. The goal of the learning algorithm is to find the concept that minimizes

that value.

In fact, the drug discovery application is best stated this way. Every molecule
is labeled with the binding energy required to bind it to the target protein.
Molecules that were labeled simply as negative are now labeled with various
high energy values, and molecules that were labeled simply as positive are now
labeled with various low energy values (since at least one of the conformations of
that molecule has very low binding energy with the protein). The learning task

is to find a conformation which will minimize the energy needed for binding.

One of the main concerns about current Multiple-Instance learners that use
Diverse Density is that it takes a long time to find the maximum Diverse Den-
sity. Techniques such as PWDD help, but as with any large optimization task,
the search space is infested with local maxima. A possible improvement is to
perform a branch-and-bound search. Given a Diverse Density value for some
concept, we can try to eliminate (without search) large parts of the search space

as not containing potentially better Diverse Densities.

Another difficulty with the Diverse Density framework is that it is very aggres-
sive in pruning irrelevant features (see Section 3.1.2). Most Machine Learning
techniques require a regularizer to prevent overfitting. In this case, however, it
seems that an anti-regularizer to prevent under-fitting might be needed. Most
domains do not provide enough negative examples for maxDD to maintain many
features with a non-zero scaling. More work is needed to determine whether
adding a term to Diverse Density which will penalize scalings from going to zero

is necessary or advisable.

An exciting area for future research is the development of better bag generators
for the applications described in this thesis and also for new applications. For
example, in the image database retrieval domain, the current bag generator

places all image subregions of some predetermined size into a bag. If we can

104

segment the image into components, such that every component’s pixel set is
roughly uniform in color or texture, then those components would make better
instances than arbitrary subregions. In addition, this should greatly reduce
the number of instances per bag, allowing faster learning and more accurate

concepts.

e Asseen in this thesis, Multiple-Instance learning can be used to tackle old prob-
lems with a new tool. One application which seems like an interesting candidate
for this tool is document classification and retrieval. The document classifica-
tion and retrieval task is similar to the image database retrieval application
discussed in Chapter 6. The user selects several documents as positive and neg-
ative examples, and desires to see more documents like the positive ones and
unlike the negative ones. Like images, documents are ambiguous objects, and
can pertain to many different topics. A good bag generator for this task would

be able to return all topics that a given document is about.

8.2 Summary

This thesis has presented a new technique for learning from multiple-instance exam-
ples. Maximizing Diverse Density is an appealing technique because of its simplicity,
its clear mathematical assumptions, its graceful degradation when those assumptions
fail to hold, and its performance on a wide variety of datasets. This work has also
shown that the Multiple-Instance learning framework is useful for more than just
the drug discovery problem. Its successful application to stock prediction and image
database retrieval will hopefully help it become part of the arsenal of techniques used
for data mining and by Machine Learning researchers. We have also shown a variety
of bag generators, from one which collects many noisy instances into a bag (in Chap-
ter 5) to one which breaks a large ambiguous example into many possible explanatory
instances (in Chapter 6).

The architecture advocated in this thesis, separating the learning mechanism from

the bag generator, allows and encourages the introduction of domain knowledge in-

105

dependently of the learning algorithm. Knowledge of which conformations are more
likely than others is translated into the instances selected for a bag. Knowledge of
current events can be used to eliminate a high-return stock as a candidate from the
bag of possible fundamental stocks. Biases such as pose invariance (in the form of
position invariance) should be a part of bag generators for images.

Finally, this thesis takes a step away from the assumption that enough training
data will overcome any amount of noise, and moves toward a system that treats
ambiguity explicitly. The problems tackled here would either be impossible for a
supervised learner (drug discovery and the difficult artificial dataset) or extremely
difficult (stock prediction and image classification). By using the Multiple-Instance
learning framework, we are explicit about what we know about each bag (at least
one of the instances is in the concept), and what we do not know (which instance).

Diverse Density’s success derives from its ability to learn from ambiguity.

106

Appendix A

Fun with logarithms and

derivatives

A.1 Soft min and max

The softmax function is defined as follows:

(o7}

T e
softmax(zy,...,2z,) = —
Y » N 1<2Z;n E eam]

1<j<n

= lgzi;n Z ea(xj—u’vi)

1<j<n

The parameter o determines how closely softmax approximates max. As « ap-
proaches oo, softmax’s behavior approaches max. When a = 0, it calculates the
mean. As « approaches —oo, softmax’s behavior approaches min.

In this thesis, the main reason for using softmax over max is that we can easily
take the derivative of softmax. If each x; is some function of ¢, then the derivative of

softmax with respect to t is

107

Osoftmax(z1, ..., x,)

ot
axi Z ea(m]-—ri) — | = Z ea(m]-—ri) . Oé(% . axz)
ot 1<5<n 1<j<n ot ot
) 3 (A.1)
1<i<n
== ea(:cj —x;)
(19271

A.2 Computing with very small probabilities

As stated in Chapter 2, we are only concerned with optimizing the first line of For-

mula 2.5, the definition of Diverse Density. We will refer to it as

DD(t)= I] Pr(t|BY) [I Prt|B;)
1<i<n 1<i<m
If the number of bags is large, then many probabilities need to be multiplied,
usually resulting in a number which is too small to represent on a computer. We
therefore compute — log Eb(t), which is known as the negative log-likelihood. We
look for concepts with low negative log-likelihood (the perfect concept would have 0

negative log-likelihood), which is equivalent to maximizing Diverse Density.

~log DD(t) = — |log > Pr(t| Bf) +log > Pr(t|B;)

1<i<n 1<i<m

A.3 Derivative of Diverse Density

As stated in Chapter 3, we optimize Diverse Density over concept space by gradient
based optimization. In this section, we derive the gradient of —log DD(t) for the

noisy-or model and various concept classes.

d(—log DD(t)) 1 dPr(t | BY) 1 dPr(t | By)

ai R D = R i DR =y = e

1<i<n

108

If we use noisy-or to model Pr(¢ | B;"), then

Pr(t | Bf)=1—] (1—Pr(B} €c))

1<j<p
and its derivative with respect to t is
oPr(t | B) 1 OPr(B;: € ¢;)
———— = [@ -Pr(Bf €)) x X "
ot @ng J lgép 1 —Pr(Bj; € &) ot

Likewise, if the bag was negative, the derivative is

1<j<p 1<j<p

OPr(t|B;) _ 1 OPr(B;; €)
ot - H (1—P1"(Bij ECt))X< Z 1—Pr(Bi;€ct) X 5t)

If we had used a most-likely-cause model instead of noisy-or, the derivative would be
calculated as in Formula A.1, with x; = Pr(B;; € ¢).

Using the single point concept class, we define

as in Formula 2.9. ¢, is the value of the [feature of concept ¢;. To find the gradient,

we measure the derivative of Pr(B;; € ¢;) with respect to each feature .

0Pr(B;; € &)

a1, = exp(— Z (Biji — Ctl)Q) X 2(Byji — ¢y,)

1<I<k

Using the point-and-scaling concept class, we define

Pr(Bij € (c1,¢)) = exp(— Y (cs,(Biji — ,))?)

1<i<k

as in Formula 2.10. ¢, and ¢, are the values of the [" feature and scaling, respectively,
of concept (¢4, ¢s). To find the gradient, we measure the derivative of Pr(B;; € (¢, ¢;))

with respect to each feature ¢; and each scaling s;.

109

aPI”(BZ'j S (Ct>cs))

ot 1<1<k
OPr(B;j € (e, ¢s)) = —exp(— Y (¢ (Biji —
Ds; 1<I<k

110

Appendix B

Experimental details

This appendix describes some of the details of the algorithms and experiments in this

thesis so that they may be replicated easily.

Diverse Density calculations

Diverse Density was calculated as described in Appendix A, which alleviated most of
the floating point problems involved in handling probabilities. However, occasionally
the algorithm was faced with the prospect of computing the logarithm of zero. Ar-
bitrarily, we defined that to be log(1077). For example, this bounds the maximum
contribution of a negative instance (or a positive bag with all distant instances) to

be approximately 16.

Gradient based optimization

We use a two-step gradient ascent routine. The routine first performs performs line
searches (1nsrch in [Press et al., 1992]) along the gradient direction using a loose
convergence criterion. After the first step converges, the second step performs a
quasi-newton search (dfpmin in [Press et al., 1992]) from that point. The number
of iterations allowed for each optimization was at least two times the number of

dimensions of the search space.

111

Details of the difficult artificial dataset

The generation of bags was described in Chapter 2. One way of cheating in the positive
bag generation process is to randomly pick p — 1 instances from [0, 100] x [0, 100] and
then one instance from [50,55] x [50,55]. We generated the positive bags honestly;
we picked sets of p instances randomly, discarding each set that did not have at least
one instance within the concept. The cheating method biases the average number of
“true positive instances” in a bag to be high.

The scalings used in the experiments was 1.0 for both features. The Gaussian in
Formula 2.9 has a standard deviation of 1.0 for instances from positive bags and 5.0
for instances from negative bags. The results in Chapter 2 do not significantly change
when the standard deviations for positive and negative instances are equal, except

that negative bags have less noticeable contribution to accuracy.

Details of the musk experiments

The initial scaling of each feature was one. However, the data was preprocessed
by dividing each feature value by 100. This was done so that the gradient based

optimizations would not begin at a flat area of Diverse Density space.

Details of the stock experiments

The initial scaling of each feature was one. Each of the 17 features only takes on
values from 1 to 11. For single point-and-scaling concepts, we began a gradient based
optimization from every instance in every positive bag. For disjunctive concepts, we
randomly selected a pair of instances (each from a different positive bag) as a starting
disjunctive location for gradient based optimization. This was done repeatedly until
no gradient based optimization improved the Diverse Density found. Exhaustively

starting at every pair of instances would have been computationally infeasible.

112

Details of the image experiments

The images were taken from the COREL database, and were labeled according to
COREL’s classifications. The RGB values were normalized to be in the [0, 1] cube.
For each gradient based optimization, the initial scaling vector was uniform at 1.
However, for some experiments, the initial scaling vector forced all instances to be
very far away from each other. This resulted in a flat gradient, and no search was
performed. In those cases, the initial scaling vector was decreased to be 0.1 for each
feature.

We note that the best scaling (i.e., the one which maximizes Diverse Density) is
independent of the initial scaling vector. Using an initial scaling vector with small
scalings simply allowed us to escape a local plateau in Diverse Density space.

For single point-and-scaling concepts, we began a gradient based optimization
from every instance in every positive bag. When it was computationally feasible,
learning disjunctive concepts involved an optimization from every pair of positive
instances. When it was not computationally feasible, we performed optimizations

starting from randomly selected pairs.

113

Bibliography

[Atkeson et al., 1997] C. G. Atkeson, A. W. Moore, and S. A. Schaal. Locally
weighted learning. In David W. Aha, editor, Lazy Learning. Kluwer Academic
Publishers, 1997.

[Auer et al., 1996] Peter Auer, Phil M. Long, and A. Srinivasan. Approximating
hyper-rectangles: learning and pseudorandom sets. In Proceedings of the 1996

Conference on Computational Learning Theory, 1996.

[Auer, 1997] Peter Auer. On learning from multi-instance examples: Empirical evalu-
taion of a theoretical approach. In Proceedings of the 14th International Conference

on Machine Learning, 1997.

[Bach et al., 1996] J.R. Bach, C.Fuller, A. Gupta, A. Hampapur, B. Horowitz,
R. Humphrey, R.C. Jain, and C. Shu. Virage image search engine: an open frame-
work for image management. In Symposium on FElectronic Imaging: Science and

Technology - Storage and Retrieval of Image and Video Databases, volume 4, pages
76-87, 1996.

[Bell and Sejnowski, 1995] A. Bell and T. Sejnowski. An information-maximization

approach to blind source seperation and blind deconvolution. Neural Computation,

7:1129-1159, 1995.

[Belongie et al., 1998] S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color-
and texture based image segmentation using em and its application to content-

based image retrieval. In International Conference on Computer Vision, 1998.

114

[Blum and Kalai, 1998] A. Blum and A. Kalai. A note on learning from multiple-

instance examples. To appear in Machine Learning, 1998.

[Buchanan and Mitchell, 1978] B. G. Buchanan and T. M. Mitchell. Model-directed
learning of production rules. In D. A. Waterman and F. Hayes-Roth, editors,

Pattern-Directed Inference Systems. Academic Press, 1978.

[Chatfield and Collins, 1980] Christopher Chatfield and Alexander J. Collins. Intro-
duction to Multivariate Analysis. Chapman and Hall, 1980.

[Cheeseman et al., 1988] Peter Cheeseman, James Kelly, Matthew Self, John Stutz,
Will Taylor, and Don Freeman. Autoclass: A bayesian classification system. In

Proceedings of the Fifth International Workshop on Machine Learning. Morgan
Kaufmann, 1988.

[Cohen, 1996] William W. Cohen. The dual dfa learning problem: Hardness results
for programming by demonstration and learning first-order representations. In

Proceedings of the 1996 Conference on Computational Learning Theory, 1996.

[Comon, 1994] P. Comon. Independent component analysis, a new concept? Signal

Processing, 36:287-314, 1994.

[Dammbkoehler et al., 1989] R. A. Dammkoehler, S. F. Karasek, E. F. B. Shands,
and G. R. Marshall. Constrained search of conformational hyperspace. Journal of

Computer-Aided Molecular Design, 3:3-21, 1989.

[Dasarathy, 1991] B. V. Dasarathy. Nearest Neighbor Norms: NN Patern Classifac-
tion Techniques. IEEE Computer Society Press, 1991.

[Dayan and Zemel, 1995] Peter Dayan and Richard S. Zemel. Competition and mul-
tiple cause models. Neural Computation, 7:565-579, 1995.

[Decatur, 1994] Scott Decatur. Statistical queries and faulty pac oracles. In Proceed-
ing of the Sizth Annual ACM Workshop on Computational Learning Theory, pages
262-268. ACM Press, July 1994.

115

[Dietterich et al., 1994] T. G. Dietterich, A. Jain, R. Lathrop, and T. Lozano-Pérez.
A comparison of dynamic reposing and tangent distance for drug activity predic-

tion. In Advances in Neural Information Processing Systems 6. Morgan Kauffman,

1994.

[Dietterich et al., 1997] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solv-
ing the multiple-instance problem with axis-parallel rectangles. Artificial Intelli-

gence Journal, 89, 1997.

[Flickner et al., 1995] M. Flickner, Harpreet S. Sawhney, Jonathan Ashley, Qian
Huang, Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic,

David Steele, and Peter Yanker. Query by image and video content: The gbic
system. [EEE Computer, 28:23-32, 1995.

[Girosi et al., 1995] F. Girosi, M. Jones, and T. Poggio. Regularization theory and
neural networks architectures. Neural Computation, 7:219-269, 1995.

[Hirsh, 1990] Haym Hirsh. Incremental version-space merging: a general framework

for concept learning. Kluwer Academic, 1990.

[Huang et al., 1997] J. Huang, S. Ravikumar, M. Mitra, W. Zhu, and R. Zabih. Image
indexing using color correlograms. In Computer Vision and Pattern Recognition,

1997.

[Husbands and Isbell, 1998] P. Husbands and C. Isbell. The parallel problems server:
A client-server model for large scale scientific computation. In Proceedings of the

Third International Conference on Vector and Parallel Processing, 1998.

[Jain et al., 1994] A. N. Jain, T. G. Dietterich, R. H. Lathrop, D. Chapman,
R. E. Critchlow Jr., B. E. Bauer, T. A. Webster, and T. Lozano-Pérez. Compass:

A shape-based machine learning tool for drug design. Journal of Computer-Aided

Molecular Design, 8:635-652, 1994.

[Kaelbling et al., 1996] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforce-

ment learning: A survey. Journal of Artificial Intelligence Research, 4, 1996.

116

[Kauer, 1991] J. S. Kauer. Contributions of topography and parallel processing to
odor coding in the vertebrate olfactory pathway. Trends in Neurosciences, 14(2):79-

85, 1991.

[Kearns and Vazirani, 1994] Michael J. Kearns and Umesh V. Vazirani. An Introduc-
tion to Computational Learning Theory. MIT Press, Cambridge, MA, 1994.

[Keeler et al., 1991a] James D. Keeler, David E. Rumelhart, and Wee-Kheng Leow.
Integrated segmentation and recognition of hand-printed numerals. In Advances in

Neural Information Processing Systems 3. Morgan Kauffman, 1991.

[Keeler et al., 1991b] James D. Keeler, David E. Rumelhart, and Wee-Kheng Leow.
Integrated segmentation and recognition of hand-printed numerals. Technical re-

port, MCC Technical Report ACT-NN-010-91, 1991.

[Lang, 1989] Kevin J. Lang. A Time-Delay Neural Network Architecture for Speech
Recognition. Phd dissertation, Carnegie Mellon University, School of Computer

Science, 1989.

[Leach, 1996] Andrew R. Leach. Molecular Modeling: principles and applications.
Longman, Harlow, England, 1996.

[Lipson et al., 1997] P. Lipson, E. Grimson, and P. Sinha. Context and configuration

based scene classification. In Computer Vision and Pattern Recognition, 1997.

[Long and Tan, 1996] P. M. Long and L. Tan. Pac-learning axis alligned rectangles
with respect to product distributions from multiple-instance examples. In Proceed-

ings of the 1996 Conference on Computational Learning Theory, 1996.

[Maron and Lakshmi Ratan, 1998] O. Maron and A. Lakshmi Ratan. Multiple-
instance learning for natural scene classification. In Machine Learning: Proceedings

of the 15th International Conference, 1998.

[Maron and Lozano-Pérez, 1998] O. Maron and T. Lozano-Pérez. A framework for

multiple-instance learning. In Advances in Neural Information Processing Systems

10. MIT Press, 1998.

117

[Minka and Picard, 1996] T. Minka and R. Picard. Interactive learning using a soci-

ety of models. In Computer Vision and Pattern Recognition, 1996.

[Mitchell, 1978] Tom M. Mitchell. Version spaces: an approach to concept learning.
Phd dissertation, Stanford University, Dept. of Electrical Engineering, 1978.

[Morozov, 1984] V. A. Morozov. Methods for solving incorrectly posed problems.
Springer Verlag, 1984.

[Murphy and Aha, 1996] P. M. Murphy and D. W. Aha. Uci repository of machine

learning databases. for more information contact ml-repository@ics.uci.edu, 1996.

[Norton, 1994] Steven W. Norton. Learning to recognize promoter sequences in e.
coli by modeling uncertainty in the training data. In Proceedings of the Twelfth
National Conference on Artificial Intelligence. MIT Press, 1994.

[Omohundro, 1991] S. M. Omohundro. Bumptrees for efficient function, constraint,
and classification learning. In Lippmann, Moody, and Touretzky, editors, Advances
in Neural Information Processing Systems 3, San Mateo, CA, 1991. Morgan Kauf-

manin.

[Pearl, 1988] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of

plausible inference. Morgan Kaufmann, 1988.

[Preparata and Shamos, 1985] F. P. Preparata and M. I. Shamos. Computational

geometry: an introduction. Springer-Verlag, 1985.

[Press et al., 1992] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical Recipes in C: the art of scientific computing. Cambridge University

Press, New York, second edition, 1992.

[Quinlan, 1992] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kauf-
mann, 1992.

[Rissanen, 1978] J. Rissanen. Modeling by shortest data description. Automatica,
14:465-471, 1978.

118

[Rumelhart et al., 1986] David E. Rumelhart, James L. McClelland, and the PDP re-
search Group. Parallel distributed processing: explorations in the microstructure of

cognition. MIT Press, 1986.

[Saund, 1995] Eric Saund. A multiple cause mixture model for unsupervised learning.

Neural Computation, 7:51-71, 1995.

[Smith and Chang, 1996] J. Smith and S. Chang. Visualseek: a fully automated
content-based image query system. In Proceedings of the ACM International Con-

ference on Multimedia. Morgan Kaufmann, 1996.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press/Bradford Books, Cambridge, MA, 1998.

[Trippi, 1995] Robert R. Trippi. Chaos & Nonlinear Dynamics in the Financial Mar-
kets: Theory, Evidence, and Applications. McGraw-Hill/Irwin, 1995.

[Valiant, 1984] L. G. Valiant. A theory of the learnable. Communications of the
ACM, 27(11):1134-1142, November 1984.

[Vapnik, 1995] Vladimir Naumovich Vapnik. The nature of statistical learning theory.
Springer, 1995.

[Waibel et al., 1989] Alexander Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiy-
ohiro Shikano, and Kevin J. Lang. Phoneme recognition using time-delay neural

networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(3),
March 1989.

119

