PHD: A Hierar chi calCache CoherentProtocol
by
Deborah A. Wall ach

S.B., MIT
(1990)

Sihmitted to the Departint d Electricd Hgireering ad Capter Sierce
InPatid Fdfilliat d tle Requremts fa the Iaogyee o

Miter d Siee
in Hedricd Hgreerirg ad Gpter Siece

a the

Misachsetts Irstitute of Bhrdogy
Sterter 192

©Threh A. Wallachy 192

Fe athr terdy graits to Ml perrissian to reprodee ard to
dstribte apies d ths thesis darat inwhle a in rt.

Sgete d Athr
Ieprtrat d Hedtricd Bereering ad (dpter Sierce
Stpeter 7, 192
b Wliam]J. Hly
Asodate Rdessae d Hedricd Hgreerirg ad Gpter Siene
Tesis Spervisar
Aveted by

Rdesa Gdl L. Sale
Qe Iprtratd (Grittee an Gradste Sudrts






PHD: A Hierarchical Cache Coherent Proto
by
Iobrah A Mlach

Submitted to the
Departnent of Electrical Engineering and Conputer Science
on Septenber 9,1992, in partial ful fill nent of
the requirenents for the Degree of Master of Science in
K ectrical Engineering and Conputer Science

Abstract

As the nunber of processors in distributed-nenmory mul tiprocessors grows, efficiently sup-
porting a shared- nenory programming nodel becones difftult. We have designed the
Protocol for Hierarchical Directories (PHD) to allowshared- nrenory support for systemns
cont aini ng nassi ve nunbers of processors. PHDelimnates bandwi dth problens by using a

scal abl e network, decreases hot-spots by not rel ying on a single point to distribute bl ocks,
and uses a scal abl e amount of space for its directories. PHDprovides a shared- nemory
model by synthesizing a gl obal shared nenory fromthe 1 ocal nenories of processors. PHD
supports sequentially consistent read, write, and test- and-set operations.

This thesis also introduces a nethod of describing locality for hierarchical protocols anc
enpl oys this nethod in the derivation of an abstract model of the protocol behavior. An
enbedded model, based on the work of Johnson [13], describes the protocol behavior when
mapped to a k- ary n- cube. The thesis uses these two nodels to study the average height in

the hierarchy that operations reach, the l ongest path nessages travel, the nunber of nes-
sages that operations generate, the inter-transactionissue tine, and the protocol overhead
for different locality paraneters, degrees of mml tithreadi ng, and nachine sizes.

W determine that multithreadingis only useful for approxinately twoto four threads; any
addi tional interl eaving does not decrease the overall 1atency. For small nachines and high
locality applications, this limtationis due mainlyto the length of the runni ng threads. Fos
large nachines with nediumto lowlocality, this limtationis due mainly to the protocol
overhead being too large.

Our study using the enbedded nodel shows that insituations where the runlength between
references tosharednenoryis at least an order of nagni tude 1 onger thanthe time toprocess
asingle state transitionin the protocol, applications exhibit good performance. If separat
controllers for processing protocol requests are included, the protocol scales to 32k process.
machines as 1ong as the applicationexhibits hierarchical locality: at least 22% of the gl oba
references must be able to be satisfied locally; at most 35%of the global references are
allowed to reach the top level of the hierarchy.

Thesis Supervisor: Dr. WlliamlJ. Dally
Title: Associate Professor of Flectrical Engineering and Conputer Science

Keywords: Hi erarchi cal Cache (oherence, Directory- Based Cache Coherence, Locality.






Xknowledgments

This thesis has benefitted greatly fromthe hel p of nany people.

I thank all of the members of the CVA group, for providing valuable feedback both at
group neetings and at other times. I especially thank Nick Carter and Steve Keckler, for
cheerfully reading full drafts of ny thesis, and John Keen for on- demand proofreading of
particul arl y troubl esone passages.

I thank ny advisor, Bill Dally, who pushed ne inthe right directi on whenI needed nudgi ng.

I thank Fred Chong, for actually vol unteeringto read the earliest draft of ny thesis and for
providing ne with very hel pful comments.

I amespeciallygrateful to Kirk Johnson, for proposing the kernel of the i dea of the nmethod
for describing the locality in applications used by this thesis. Kirk also patientl y answere
all of ny questions about his nodel, and let me query hi mnunerous tines.

I also thank David (haiken for giving ne a copy of his trace data as well as for providing
general caching advice at various tines throughout the years.

Finally, I amgrateful to the 1ate-night crew, who both inproved ny thesis by providing
answers to all sorts of questions and inpeded ny thesis by distracting ne fromny work.
You know who you are.

The research described in this thesis was supported in part by an Offte of Naval Research
Anerican Society for Engineering Education Fellowship.






Content s

1 Introduction 15
1.1 Directory-Based Protocols . . .. .. ... ... ... ... .. ... .. 16
1.1.1 Flat Directory-Based Protocols . . ... ... . ... ......... 16
1.1.2 Herarchical Schenes . . . . . . .. ... ... ... .. 17
1.1.3 PHD. . . .. e e e e e 19
1.2 Analysis and Locality Mdeling . . . . . . . .. ... ... ... ... 19
1.3 J-Machine . . . . . . . L e e 20
1.4 Contributions . . . .. . . . . . . . . e e e 20
1.4.1 Scalability. .. ... .. . . e 21
1.4.2 Mssages and Longest Path Traversed . . .. ... ... .. ... .. 21
1.4.3 Ownership .. ... ... . . e 23
1.4.4 DMpping Schenme . . . . . . . ..o oL 23
1.4.5 LocalityMdel ... ... . ... ... . 23
1.4.6 FEnbedded Mbdel . . . . . . . .. ..o oo 23
1.5 Thesis Overview . . . . . . . i i i i i it it e e e e e 24
2 Protocol Overview 25
2.1 Protocol Description . ... ... .. . .. . e 25
2.1.1 VErvieW . . . . i v i it e e e e e e e e e e e 25
2.1.2 Definitions .. ... ... .. ... e e 26
2.1.3 DNotation. ... ... . i i i e 28
2.1.4 Reading . .. .. . i i i i i e e 31
2.1.5 Witing . . . . . . e e e e e 34
2.1.6 ASynchronizationPrimtive ... ... .. ... . .......... 37
2.2 Physical Layout . . . . . . . . . . . e e e 39
2.2.1 Herarchical Directory . . .. ... ... ... ... .. ..., 39
2.2.2 Mpping Function . .. ... ... ... o oo, 42
2.3 SUMMABTY . . . . . . e e e e e e e e e e e e e e e e 43
3 Protocol Issues 45
3.1 Parallelism ... ... . .. .. e 45
3.1.1 Extra Traversals of the Hierarchy . ... ... ... .......... 45
3.1.2 Distributed Wite Commt Point . ... ... ... .......... 49
3.2 DesignDecisions .. .... ... i 50
3.2.1 Read Combining .. ... .. ... i, 50



4

5

6

3.2.2 Read Conbining Wienever Possible .. ... .. ... ........ 50
3.2.3 Wite Invalidate versus Wite Update . ... ... ... .. ... .. 51
3.2.4 DNon-leaf Invalidation. .. .. ... ... ... ............. 52

3.3 Summary . ... . e e e e e e e e e 52

Simulator 53

4.1 VeTVIEW . . . i v i it e e e e e e e e e e e e e e e e 53

4.2 Datalayout ... ... .. ... i i e e 54

4.3 The Simmlator . . . . . . . . . .. e 56
4.3.1 Node Mbdel . . . . . . . . . . L 56
4.3.2 Network Mdel . .. ... .. .. .. 57
4.3.3 Event-DrivenQueues . . . .. . .. ... ... 57

4.4 Verification . . . . . . . . . e 58
4.4.1 Verifier . . . . .. e e e e 58
4.4.2 Internal Checking . ... .. ... ..., 59

4.5 SUMIBTY . . .« . o vt e e e e e e e e e e e e e e e e e e 59

Abstract Amlysis 60

5.1 Mbdeling Hierarchical Behavior . .. ... ... ... ... ... ..., 60
B.1.1 Verview . . . . v i it e e e e e e e e e e e e 61
5.1.2 Locality Characteristics . .. ... ... ... ... ..., 61
5.1.3 Mdel . . ... . . e 62

5.2 Applications for Mbdel Verification . ... ... ... .. .. ......... 66
5.2.1 Uniform. .. ... . ... . e 66
5.2.2 Relaxation ... ... .. ... ... ... e e 66
5.2.3 Quster . . . . . . . e e e e e e e 67

5.3 Simulationof Applications . . .. .. ... ... ... ... 68

5.4 Locality Paraneters Masured fromSimulation . . ... ... ... ..... 70

5.5 Comparison of Mbdel and Simmlation. . . . . . ... ... .. ... ... .. 73

5.6 Protocol (haracterizationfor Large Michine Sizes . ... .......... 78
5.6.1 Parameters . . .. . . . . .. i e e e e e e 78
5.6.2 Average Height . . . ... .. ... .. o oo n oo 79
5.6.3 Longest Path . ... ... .. ... ... .. . . 79
5.6.4 Nunber of Messages . . . .. ... .. o o e 79

5.7 Issues . . . o i i i e e e e e e e e e e e 83

5.8 SUmmary . . . .. .. L o e e e e e e e e e e e 84

Exrhedded Aml ysis 85

6.1 An Enbedded Mbdel . . . . . . . .. oo oo 86
6.1.1 Mdel Overview . . . .. . . . . . i 86
6.1.2 Mdel Inputs . ... ... .. . e 87
6.1.3 Mdel Constraints . ... .. .. ... ... oo 92

6.2 Protocol Characterization . ... .. ... ... ... ... ... 93
6.2.1 Parameters . . ... .. . .. i e e e e e 94
6.2.2 Architectures Wthout A Separate Cache Controller ... ... ... 96
6.2.3 Architectures Wth A Separate Cache Controller . ... .. ... .. 99



6.3 ISsUES . . . i i i it e e e e e e e e e e e e e e e e e e e e e e e e e e e 102
6.4 SUMmMBTY . . . . . ... e e e e e e e e e e e e e e e 104

7 Conclusion 106
7.1 Summary . . . . . . e e e e e e e e e e e 106
7.2 Contributions . . . . . . . . . . . . e e e e e e e 107
7.3 DIsCuUSSION & v v v v vt e e e e e e e e e e e e e e e e e e e e e e e e e e e 108

A Nomncl ature 110
B Relaxation Gilcul ations 112

C Table of Brotocol Bshavior 118
C. 1 Leaf Node TransitionTable . . . . . . . . . . . . @ i i i .. 118
C.2 Parent Node TransitionTable . . . . . . . . . . . . . i i i v v i 123



List of Fi gures

—

LW W

N DN DNDNDNDNDDNDNNDNDNDNDN

CU O O O O O Ot O Ot O Qv Ot OU Ot O

N =

GO =3 O Ok W N~

—= = = O
W=D

[SUR

GO -3 O O k= W =

= e = = ©
SR W~ O

Savings in Longest Path Per Readfor PHD . . . .. .. ... ... ... .. 22
Savings in Mssages Per Readfor PHD . ... ... ... ... ....... 22
Notation . . .. .o v v i i i i i i i e e e e e e e e 29
Sinple Read Exanple . . . ... .. .. ... ... oL 31
Leaf Node Read State Progression . ... ... ... ... ... .. ... 32
Read Combining Exanple . . . . . . .. ... oo oo oo 33
Sinple Wite Exanple . . . . . . . . . .. o o 34
Lowest Common Ancestor Node Explanation . ... ... .......... 35
Leaf Node Wite State Progression . . ... ... ... ... ... 36
Sinple Test-and-set Failure Exanple . . . . . . ... ... ... ... ... 38
Sinple Test-and-set Success Exanple . . . . . . ... ... ... 0oL, 38
Virtual Tree Mipped to Physical Processors . . ... ... ... ....... 40
Virtual Nodes Mipped to Physical Processors . . .. ... ... ... .... 41
2DGrid with Enbedded Trees . . . . .. ... ... ... oo, 42
Mypping Function for the J- Machine . . . . . . . .. ... ..o 0L, 43
Conparison of Nunber of Traversals of the Herarchy .. .......... 46
Wite Conmit Point . . .. ... .. .. ... ... . 49
Read CombinationlIssue . . ... .. ... ... .. ... .. 51
Choosing Node (1asses for an Operation . . ... ... ... ... ... ... 62
Finite State Michine tsedinMdel . .. ... ... ... ... ....... 63
Wite Height Calculation . ... .. ... ... ... 64
Longest Path Calculation . ... .. ... ... ... .. ... 65
Nunber of Mssages Calculation ... ... ... ... ... ... ... .. 66
Mypping 2- DRel axation Points to Processors . . .. ... ... ....... 67
Mpping Quster Applicationto Herarchy . . . ... ... ... ....... 68
Uni form Masured Locality Parameters . . .. ... ... ... ....... 70
Rel axation: Masured Locality Paraneters . . ... ... ... ....... 71
(Quster: Masured Locality Paraneters . ... ... ............. 71
(Quster: Masured Locality Paraneters . ... ... ............. 72
(Quster: Masured Locality Paraneters . ... ... ............. 72
Uniform Wite Fractionvs Average Height . . ... ... ... ... .... 74
Uniform Wite Fraction vs Average Nunber of Messages . ... ... ... 74
Rel axation: Data per Node per Dinension vs Average Height . .. ... .. 75

10



SO CU Ot OU Ot Ot

B =
B N

.16
.17
.18
.19

SO W N

(Quster: Wite Fraction vs Average Hei ght

Predictions:
Predictions:
Predictions:

Predictions:
Predictions:
Predictions:
Predictions:

(Quster: Wite Fraction vs Average Nunber of Mssages . . . ... ... .. 77

Locality vs Size vs Average Height . .. .. ... ... ... .. 80
Locality vs Size vs Longest Path . ... ... .......... 81
Locality vs Size vs Nunber of Messages . . ... ... ... .. 82
Locality vs Size vs Flits and Distance Per Mssage . . ... .. 95
Locality vs Size vs Run Length and Non- Net work Overhead . . 97
Locality vs Size vs Inter- TransactionIssue Tine (No Controller) 98
Locality vs Size vs Protocol Overhead (No Controller) ... .. 100

Predictions:

Localityvs Size vs Inter- TransactionIssue Time (Wth Controller)101

Predictions: Locality vs Size vs Protocol Overhead (Wth Controller). ... 103
Mypping of 2-DRelaxationto Hierarchy . . .. ... ... ... ....... 113

Data Points T Consider for Counting Rel axation Wite Height . . ... .. 114
Data Points T Consider for Counting 3- DRel axation Wite Height 116
Mre Data Points T Consider for Counting 3- DRel axati on Wite Height 116

11



List of Tables

2.1 Leaf Node State Table . . . . . . . . . . . i i i i, 27
2.2 Parent Node Vector ConmbinationTable . ... ... ... .......... 28
2.3 Parent Node State Table . . . . . . . . . . . ... . . . ... 29
2.4 Table of Protocol Messages . . . .. . . i it 30
4.1 Leaf Node Cache Fntry Layout . .. ... ... ... ... .......... 55
4.2 Parent Node Cache Entry Layout . . . .. ... ... .. .. ......... 55
5.1 Simmlation Parameters . . . .. . .. .. .. @it 69
5.2 DMbdel Parameters . . . . . . . . @ i i i i i it i e e e e e e e 78
6.1 Basic Input Paraneters of the Fnbedded Mbdel . . ... ... .. ... .. 87
6.2 DerivedInput Paraneters of the Fnbedded Mbdel . . . . ... .. .. ... 87
6.3 Non-HerarchyHops . ... ... .. . ... ... 91
6.4 Values for Shared Input Paraneters . .. ... ... ............. 94
6.5 DMdel Parameters . . . . . . . . & i i i it i e e e e e 95
A1 Nonenclature of the Thesis I .. .. ... ... ... . ... ... ..... 110
A 2 Nonenclature of the Thesis IT . . .. ... ... ... ... ... .. ..... 111
C.1 Leaf States . . . . . . i v i i i it i i i e e e e e e e e e e e e 119
C. 2 Leaf Input Mssages . . .. oo it i it i it it e e e e 119
C.3 Leaf Symbols . . .. . . . . . e 120
C. 4 Leaf Output Mssages . . . . oo v i v it it i it i it e e e e 120
C.5 Leaf TransitionTable . .. ... . ... .. ... ..o, 121
C.6 Parent Vector Combinations . . . .. ... ... ... ... ..., 123
C.7 Parent Mssages . . . . v v i i i ittt i it i e e e e 124
C.8 Parent Actions . . . . . . . . i i i i i it i i e e e e e e e e e 124
C.9 Parent Output Mssages . . . . . v v v vt vt it b i e e e 125
C.10 Parent Assertions . . . . . . v v v i v i i i i e e e e e e e e e e e e e 126
C. 11 Parent Transition Table . . ... . . . .. . .. ... 127

12



13



14



Chapter 1

Int roduction

The shared- nenory nodel has been a conveni ent programm ng paradi gmfor mil tiproces-

sors. As the nunber of el erments inmultiprocessors grows, however, effciently supporting a
shared- nrenory programm ng nodel becones diflcult. Bus- based snooping schenes suffte

for only small nunbers of processors; they are inadequate for 1arge nunbers of processors
because their bandwi dth does not growwi th the nunber of processors [8]. Directory-based
caching schenes, on the other hand, all owsharing anong | ar ge nunbers of processors when
inplemented on network- based conputers; the bandwi dth of the network must increase

with the nunber of processors. Hierarchical directory-based schemes have the potential to
scale indefinitely because they have neither the space requirenents of full-map directory
schenes nor the lim ted nunber of copies requirenents of limted-directory schenes nor the
linear dependence on the number of copies for invalidation of chained schemes. H erarchi-
cal schenes additionally exploit the spatial and temporal locality of processes running on
a machine. W have designed the Protocol for Hierarchical Directories (PHD) to provide
shared- remory for systens composed of massi ve nunbers of processors.

PHDsynthesizes a gl obal shared menmory fromthe private local nenories of processors.
Processors access global addresses in the sane nanner as they access local ones. The
systemoperates on blocks (or lines) consisting of several words of data, capitalizing on
spatial locality. PHD maintains sequential consistency [14] inits support of read, write,
and test- and-set operations.

Inthis thesis we alsointroduce a nethod of describinglocalityfor hierarchical protocols

15



16 CHAPTER 1. INTRODUCTI ON

W deri ve an abstract nodel of the behavior of the Protocol for Herarchical Directories using
this nethod and use it to study the average height reached in the hi erarchy per operation,
the l ongest path of nessages travel ed per operation, and the nunber of nessages generated
per operation for different machine configurations. W validate this nodel using a trace-
driven simml ator.

The abstract model is used to generate inputs to an enbedded nodel. The enmbedded
model describes howthe protocol behaves when mapped to a k- ary n- cube using the our

proposed napping schene.

1.1 Directory-BasedProtocols

Miny of the ideas used in the Protocol for Hierarchical Directories evolved fromdirectory-
based protocol research as well as early hierarchical protocols. Mst of the early research
assumed certain capabilities, such as a broadcast ability, which do not scale well. Several

other hierarchical protocols have been proposed since the start of this work.

1.1.1 Flat Directory-Based Protocol s

All directory-based protocols keep a record associated with each bl ock of main nenory.
There have been a wide variety of directory schemes proposed and studied. Thng [ 26]
proposed a write-back scheme in which the main nenory and every cache must keep a
directory. In order to find a block, all of the individual directories need to be checked.
Censier and Feautrier [ 7] first proposed the concept of a “dirty bit” whi chindicates whether
or not the value stored in main nmemory is the newest one. They also added a bit vector
to the main nenmory directory indi cating which caches have copies of the block. These
additions elimnated the need to searcheverylocal directory after every data nodi ficati on.
Agarwal [4] discussed these schenes and their lack of scalability due either to the need
to broadcast or to the presence of a bottleneck. He nentioned the idea of distributing the
directory across the nenories, inorder to prevent any bottlenecks. Chaiken|[8] showed that
directories are scalable and that sone shared- data caching schenes, for many applications,
performbetter than schenes which cache only private data. The shared- data schenes that

he 1ooked at include limiteddirectory, full map, and singly and doubl y-1inked chains.



1.1. DI RECTORY-BASED PROTOCOLS 17

Limteddirectory schenes enpl oy a limited nunber of pointers to keep track of which
processors have copies of particular bl ocks; when a new processor wants a copy and the
limted nunber of pointers have all been allocated, the schene must resort to broadcast or
toinvalidation. Inafull-mapdirectory, all processors can have copies of any bl ock. Singly
linked chains distribute the directory entry, threading it through the processors which have
copies. Doubl y-linked chains use a double linkage, to allowthe chainto be foll owed either

way.

1.1.2 Hierarchical Schemas

In the above-nentioned directory schemnes, the honme location of a particular blockis stat-
ically fixed: any processor without a copy of the blockinits cache which wishes to access
that block mist lookinasinglefixedlocation. Hierarchical directoryschenes were desi gned
both to reduce this static requirenment by provi di ng adapti ve data migration and to sol ve
the 1im ted bandwi dth probl emof single bus schenes.

Ahierarchical schene, ingeneral, has atree structure. At the lowest level of the tree are
processors with caches; at the other levels are directories recording whi ch bl ocks are cached
by nodes located physically belowthemin the tree. Any nunber of copies of a block are
allowed to exist at atine. Aread request is typically propagated up the tree until a copy
is located; awrite typicallyinvolves locating andinvalidating all of the extra copies by tr
traversal and then performng the write.

In [30] Wlson proposes the first hierarchical mul ti processor architecture. He suggests
modi fications to several bus-based schenes in order to forma protocol for his proposed
hi erarchy whi chuses shared buses of caches toformthe tree. He does not, however, consi der
howhis ideas woul d work on very large scale systems. Archibald, in [5], proposes another
solutionintended for a small hierarchy of buses, remarking that his protocol is feasible fos
a two-level hierarchy, but not necessarily a three-level, or four-1level one.

Haridi and Hagersten|[12] later proposed a hierarchical schene whi ch was designedfor a
michlarger systems: the Data Di ffusi on Michine (DDM. Their architecture also assunes
a tree conposed of buses, whichforces all requests to be routed through the hierarchy. The

internediate level directories store information as to whether copies of each block cached



18 CHAPTER 1. I NTRODUCTI ON

belowis cached anywhere above or whether it is exzclusive to that subtree, thus allowing
themto reduce traffc on the higher-level buses during writes. Their architecture also
elimnates the need for a hone location for a block. Their hierarchical schemne typifies a
COMA, or Cache-Only Mnory Architecture, as defined in Stenstronds [ 25] paper.

In a later paper, Yang, Thangadurai and Bhuyan [ 32] proposed a similar hierarchical
bus schene which also keeps track of the exclusivity status for each block. Unlike Haridi’s
schene, however, they assume that the mminmenmoryis situated at the top of the hierarchy,
providing a static place for blocks to be stored in when they are thrown out of the caches.

Scott and Goodman describe a hierarchical schene for processors connected using a
k-ary n- cube networkin [ 23] and [24]. Their mapping scheme provides rings, whichreplace
buses as the broadcast method for their protocol. They also introduces the concept of
pruning caches, which elimnate the need of all of the earlier protocols for conplete mlti-
level inclusion, i.e. keeping ahigher level directoryentryfor everylower level one. Prunir
caches allowa tradeoff between directory size and network bandwi dth to be dynam cally
made, and coul d be added to PHD.

Ma, Pradhan, and Thiebaut [18] [19] are currently working on a hierarchical directory
schene for non- bus- based architectures, but have not yet fully worked out the details of the
protocol.

The Kendall Square Research Conpany has built asystemwi tharing-basedhierarchical
directory scheme [6]. In their schene mmlti-level inclusion is required. They have not
released mch i nformation about their protocol.

Parthasarathy [ 21] studied an earlier versionof PHD, DHP, described in[29]. Although
his refined version of DHP traverses the hierarchy fewer tines than does PHD, it will
deadl ock under certain conditions. Parthasarathy’s work does not consider this problem
H s protocol also does not guarantee that a read operation will nake enough progress to
conplete even in the absence of deadl ock since write operations can skip ahead of reads

indefini tely.



1.2. ANALYSIS AND LOCALITY MODELI NG 19

1.1.3 HD

The Protocol for Herarchical Directories is a tree-based hierarchical directory protocol
Any nunber of processors can have read-only copies of a block in their caches. Tb find

a block, a processor sends a location nessage which travels upwards until a node which
knows of a copy is found. This node sends a nessage which travels downwards until it
reaches anode with a copy. The node with a copy sends the blockdirectly to the requesting
node, which then sends a confirnation nessage upwards to indicate that it has finishedits
read. In this nanner, reads can be satisfiedin the lowest common subtree containing the
requester and a copy of the bl ock.

Wite operations invol ve finding all of the copies of a blockin the systemand deleting
them Only the nodes in the smallest subtree containing all copies of the block and the
write requester are involved in a wwite. The owner of the block transfers ownership to
the node requesting the write. Acknowl edgnents of deletion fromall of the nodes which
previously had copies are conbined, and an acknowl edge nessage is sent downwards to the
node that requested the write. The test-and-set operationis actuallyatest-and-test-and-se

operation; it is inpl emented as an optim zed conbi nation of the read and write operations.

1.2 Analysis and Locality Modeling

Miny previous nodels [15] [28] [31] of hierarchical cache consistency protocols have nod-
eled bus architectures, and as such, considered bus trafft effects to be nost inportant.
Leutenegger and Vernon, in [15], assune uniformcache miss rates across the nachine.
Yang [31] assumes a single-level clustering nodel for reference rates, where each snallest
group of processorsis equallylikelytoaccess sone blocks andall other processors are equal l;
less likely to access those blocks. Vernon, Jog, and Sohi [28] do not directly consider data
locality; instead, they choose fixed mss ratios for different level caches.

Scott, in [24], actually calculates the traffc for a ring-based hierarchical system He
assunes best-case, worst-case, and randomdata- access patterns in his study.

Johnson[ 13] studies localityandits effects onmul tiprocessor performance. He derives a

conbi ned model of applications, commnicati onnmechani sns, andinterconnecti onnetworks,



20 CHAPTER 1. I NTRODUCTI ON

and uses the result to showthat “expl oi ting commmnicationlocality provides gains which
are at most linear in the factor by whi ch average commni cation distance is reduced,” as
long as the outstandi ng nunber of commnications per processor is bounded. W use his
model as the basis for the enbedded nodel studies of Chapter 6.

Stenstrom Joe, and Gupta [25] conpare the performance of a COMA architecture
with that of a NUMA (non-uniformnenory architecture). They find that the COMA
architecture perforns worse than the NUVA one for many situations, such as those where
coherence m sses dom nate over capacitymsses. Miny of their assunptions, however, do not
appl y tothe work describedinthis thesis. They assune a 16 processor configuration, where
the effects of locality are going to be less inportant than on a massively parallel nachine.
They also assune that the COMA architecture will be running Haridi and Hagersten’s
DDMprotocol. PHD, on the other hand, as will be explainedin Section 1.4, not only uses
ashorter pathinorder tosatisfyreadrequests, but alsoelimnates the repl acenent probl em
of the DDMprotocol. The paper concludes with their proposal of COMA-F, a flat COVA
architecture. COMA Flike PHD, has a naster (ovwner) node.

1.3 J- Machine

The cache coherence protocol was designed as part of the J- Maichine [9] project at MT
The J- Machine is a massively parallel, fine- grained nessage-passing concurrent conputer.
Al though the J- Michine was designed to efftiently support a nessage-passing l anguage,
it provides inexpensive synchronization primtives to support other programmng nodels
as well. The cache coherence protocol was devel oped in the context of considering shared-

nenory programing environnents for the J- Machine.

1.4 Contributions

The Protocol for Herarchical Directories differs in several ways frompreviously proposed
hierarchical schenes. It is designed for nessage-passing mil ti conputer systens which use

stmall cache block sizes. It is both scalable and strongly coherent.



1. 4. CONTRI BUTI ONS 21

1.4.1 Scalahility

PHDis scalable in cost and latency, as defined by Scott in[23]. He requires that cost grow

slower than O(# with machine size, and latency growno faster théI).QN

(st  The cost of the hardware includes the cost of the network and the cost of the
directory which stores tag bits. Ak-ary n-cube, as long as the dinensionality properly
increases with size, grows at less thdh [28]. The directory overhead for PHDis
@NogN by Scott’s definitions. Therefore, PHDis scalable in cost.

Latency As shown in Chapter 5, the unl oaded-network predicted latency per read or
write operation scales at less tha%)(QNhe latency due to protocol overhead for the
proposed enbeddi ng of PHDinto a k- ary n- cube depends on the total nunber of nessages

sent and thus the degree of sharing.

Bttleneck at the Bp of the Hierarchy Unlike in a bus-based hierarchical architec-

ture, requests which span across the nachine are not constrainedto cross through the sane
point. PHDdistributes the levels of the hierarchy across each node of a machine. Thereis
no bottleneck at “the” top directory, because there are different top directories for different

bl ocks. This nappingis described in Section 2. 2.

1.4.2 Messages and Longest Path Traversed

Because PHDis not restricted by the machine architecture to a followthe hierarchy at all
times, both the 1ongest path traveled and the nunber of nessages generated per read are

shorter and fewer than in an enforced hi erarchy.

Iongest Pathper (peration As showninFigure 1.1, areadinPHDis satisfieddirectly
after two traversals of the hierarchy and a single direct nessage to deliver the data. Strict

hierarchies require four hierarchy traversals before areadresult can be used.

Messages per (peration The nunber of nessages per read operationis alsosmaller in

PHDthan in a standard hierarchy. As Figure 1.2 illustrates, only three traversals of the



22 CHAPTER 1. I NTRODUCTI ON

e

Figure 1.1: The left side of the figure shows the path a read request must fulfill before it
receives the data for the other protocols. The right side shows howthe pathis shorter for
PHD.

aye

Figure 1.2: The left side of the figure shows the path aread request mmst fulfill in order to
conplete for the other protocols. This pathis identical to the nunber of nessages which
mist be sent. The right side shows howthe pathis shorter for PHD.



1. 4. CONTRI BUTI ONS 23

hierarchy worth of nessages plus one direct data-delivery nessage need to be sent for PHD

as opposed to four traversals of the hierarchy worth of “nessages” for the strict hierarchy.

1.4.3 Owwership

The concept of ownership[10] as usedinthis protocol was derivedfrombothLi [16] [17] and
Totty [27]. An owner of a blockis responsible for it. Any other node can only have a copy
of the block, which can be asynchronously thrown away in order to make roomfor other

bl ocks. That node can theninformthe rest of the systemat its leisure wi thout affecting the
correctness of the protocol. This ability to throwaway unneeded copies of bl ocks without
the gl obal transactions required by Hari di and Hagerstenresultsinless tine neededinorder

toinvalidate bl ocks when caches are full.

1.4.4 Mpp ng Schene

This thesis proposes a mapping schene designed to map hierarchical cache coherence pro-
tocols onto non-toroidal k-ary n-cubes. This schene allows easy cal cul ati on of parent and
childnodes, andis designed toreduce commnicationto the area of the network cont ai ni ng

participating nodes.

1.4.5 Tocality Mdel

This thesis introduces a method of describinglocality for hierarchical cache coherent proto-
cols and incorporates this nethod in a nmodel. The thesis al so shows howthe nethod can
be used to accurately predict the longest path travel ed per operation and the nunber of

nessages sent per operation.

1.4.6 Enbedded Mdel

This thesis also introduces a nodel for describing the behavior of PHDas enbedded into
a k-ary n- cube. This nodel is based on the work of Johnson [13], and models applications,
processors, and networks. The model is used to showthat the enbedding will scale well
for applications with noderate localityin situations where the nunber of cycles needed to

process the protocol transactions is small.



24 CHAPTER 1. I NTRODUCTI ON

1.5 Thesis Overview

The focus of this thesisis the descriptionandthe nodelingof ahierarchical, directory-base:
cache coherence protocol. Chapter 2 describes the Protocol for Herarchical Directories in
moderate detail and proposes an enbeddi ng of the protocol intoa k-ary n-cube. Chapter 3
discusses sone of the i ssues invol vedin designing hierarchical protocols. Chapter 4 outline:
the simul ator usedtotest and explore PHD, this chapter also explains the siml ator veri fier.

Two nodel s were used to study the protocol. The abstract nmodel, which considers the
protocol running on an abstract hierarchy, is described in Chapter 5. Chapter 6 extends
this nodel to showhowthe protocol behaves when enbedded as proposed in Chapter 2.

Chapter 7 concludes the thesis, outlining areas of future research.



Chapter 2

Protocol Overview

This chapter provi des a description of the behavior of the Protocol for Herarchical Direc-
tories. Atable listing the exact behavior of the protocol is located in Appendix C This
chapter also briefly outlines a method of mapping a hierarchy to a k- ary n- cube. The next

chapter discusses the issues invol ved in the design of a hierarchical protocol.

2.1 Protocol Description

This section expl ains the operations used by PHDto ensure consistency while coordinating

the gl obal read, write, and test-and-set operations. Section 2.1.1 briefly describes the op
eration of the protocol. Sections 2.1.2 and 2.1.3 outline the defini tions and the notations
used in the description of the protocol. Sections 2.1.4, 2.1.5, and 2. 1. 6 expl ain the protoce

innore detail, describing the read, write, and test- and-set operations, respectively.

2.1.1 Orrview

PHDsupports three essential global primitives: read, write, and test-and-set. Any nunber
of nodes can have read-only copies of a blockin their caches. To find a bl ock, a node asks

its parent for a copy. The parent mist knowwhichof its childsubtrees have copies. If none
do, it forwards the nessage upwards. If one does, the read messageis forwardedtoit. Read
operations can therefore be satisfied locally.

Wite operations invol ve finding all of the copies of a blockin the systemand deleting

25



26 CHAPTER 2. PROTOCOL OVERVI EW

them Only the nodes inthe snallest subtree which contains all copies of the block and the
write requester are involvedin the write process. Acknowl edgnents of deletion fromall of
the nodes which previously had copies are conbined, and an acknowl edge nessage is sent
dovwn to the node requesting the write. The oumer of the block transfers ownership and

a valid copy of the block to the write requester. The test-and-set operationis actually a
test-and-test-and-set operation; it is inpl emented as an optim zed conbination of the read

and write operations.

2.1.2 Dfinitions

There are two types of directory entries in the hierarchy. The first type, a leaf level entry,
represents an actual bl ock of cached data and would be found in the memory of a node

at the bottomof the hierarchy. The second type, a parent entry, is a directory that stores
informationabout whichchildsubtrees have copies of a particul ar bl ock. The parent entries
correspond to menory on some node of the hierarchy whichis not at the leaf level.

Everycache entryonaleaf node may be purgeabl e or unpurgeable. Purgeable entries may
be deleted at any tine. One copy of every bl ock nmmst never be del eted; the node designated
as the owner is responsible for keeping this master copy until ownershipis passed on. The
only purgeabl e entries are ones which are in the readable state are yet not owned. Afull
list of the possible states a of 1eaf entryis shownin Table 2. 1.

Aparent entry consists of a vector containing two bits of state for every child subtree,
three additional bits of state, and a pointer to the subtree that the current write request, i
any, was sent from The entrywill indicate which of four possible states each child subtree
is in: invalid, confirned, valid, or waiting. The invalid state neans that there is no copy of
that blockin that subtree. The confirmed state nmeans that either at least one node in that
subtree has a copy of that block or sonewhere bel owa nessage is propagating upwards
indicating that the bl ock has been deleted. The walid state neans that an operationis
occurring inthe subtree that will eventuall y make the subtree confirmed. The wniting state
neans that the subtree has at least one node whichis waiting for the result of aread, and
that the parent entry needs to send the bl ock down to that node upon recei ving the data.

The waiting state is enpl oyed by the protocol to support read conbining. Asubtree vector



2.

1. PROTOCOL DES CRI PTI ON

| State | Description
readable_yowrner Entryis readaHe.
Node is ower.
readal e_nowner Edryis readaHe.

Node is mot ower.

val ting_for_read

DNode is witing for a read to comp ete.
Mok is not ower.

witale

Bitryis witale.
Node is ower.

val ting for_write_novoer npl _nread

Noce is waiting for a wite to complete.
DNoce is not ower.

Invalidation has not yet reached this node.
Node may not respond to read rassages.

val ting for_write_novoer npl _yread

Noce is waiting for a wite to complete.

DNoce is not ower.

Invalidation has not yet reached this node.
DNode has valid val ue whi ch can be distributed

val ting for_write_yower_ngd

Noce is waiting for a wite to complete.

DNode is ower.

Invalidation has not yet reached this node.
DNode has valid val ve whi ch can be distrilbuted

val t1ng for_write_novoer_yp _nread

Noce is waiting for a wite to complete.
Mok is not ower.

Invalidation has reached this node.
DNode may not respond to read messages.

val t1ng for_write_novoer_yp _yread

Noce is waiting for a wite to complete.

MNode is mot owner.

Invalidation has reached this node.

Node has valid val ve vhich can be distributed

val t1ng for_write_ok _yowner

DNode is waiting for a wite; only needs fimal ack
DNode is ower.

Invalidation has not yet reached this node.

DNode has valid val ve whi ch can be distrilbuted

val t1ng for_write_ok yowoer _yfd

Node is waiting for a wite; only needs fimal ack
Node is owner.

Invalidation has reached this node.

Node has valid val ve vhich can be distributed

val ting for_write_val ue_nower_ypd _nread

Node is witing for a wite; only needs owership
DNoce is not ower.

Invalidation has reached this node.

DNode may not respond to read messages.

val ting for_write_val ue_nower_yp _yread

Node is witing for a wite; only needs owership
MNode is mot owner.

Invalidation has reached this node.

Node has valid val ve vhich can be distributed

val ting for_tas

(Ful set corresponding to waiting for_wite set).

Table 2.1: The possible states of aleaf cache entry.

27



28 CHAPTER 2. PROTOCOL OVERVI EW

Conbination‘ Description ‘

v0wl_cX Al]l subtrees are either confirned or invalid.
vXw_c0 Al]l subtrees are either valid or invalid.

vXwXcl Al]l subtrees are valid, witing, or invalid.
vXw_cX Al]l subtrees are valid, confirmed or invalid.
vXwXcX Al]l subtrees are valid, wniting, confirmed or invalid.

Table 2. 2: The possible conbinations of states inthe subtree vector of a cache parent entry.

can onl y have certain conbinations of these states, shownin Table 2. 2.

All parent entries are nmarked as either shared or exclusive. An exclusive entryindicates
that all copies are within the current subtree. All entries at the top level node of the
hi erarchy, by definition, are exclusive. Adirectory entry on a node which is marked as
shared, on the other hand, indicates that there may be a copy outside of the subtree rooted
at that node.

Aparent entry may be locked or unl ocked. 1f anentryis locked, thenall nessages which

wish to access it must wait until it is unlocked. Mssages which unl ock an entry are of
course not required to wait. During a write, when a parent entryis locked, there are two
more possible state nodifiers a node m ght have: on_request_path and writer_acknowl edged.
If the node containingthe parent entryis locatedonadirect path betweenthe writingnode
and the top of the write, it is on_request_path. If the parent entryis on the request path of
the write, the final state, writer_acknouwl edged, indi cates whether or not the writing subtree
has acknowl edged the write invalidation. Table 2.3 shows these states.

There are ei ghteen di fferent nessages used by the protocol. They are listedin Table 2. 4,

and will be expl ained as they are used.

2.1.3 Notation

Thr oughout this chapter, diagrans of trees will be shown. These trees are virtual trees,
and do not actuallyexist onthe typical architecture PHDwill be mapped to. The mapping

is described in Section 2.2. Except where noted, the figures only consider a single cache

bl ock.



2.1. PROTOCOL DESCRI PTI ON 29

‘State | Description ‘

S_.UNOP_NGA | Entryis also containedin another subsystem(shared).
Entryis unl ocked.

E_UNOP _NGA | Entryis only containedin this subsystem(exzclusive).
Entryis unl ocked.

S _L.NOP _NGA | Entryis also containedin another subsystem(shared).
Entryis [ocked.

Entryis not located on path fromwriter to top node for the write.
S_L_YOP NGA | Entryis also containedin another subsystem(shared).
Entryis [ocked.

Entryis located on path fromwriter to top node for the write.
Entry has not yet received acknowl edge fromthe writing subtree.
E L _YOP _NGA | Entryis only containedin this subsystem(ezclusive).
Entryis [ocked.

Entryis located on path fromwriter to top node for the write.
Entry has not yet received acknowl edge fromthe writing subtree.
S L_YOP_YGA | Entryis also containedin another subsystem(shared).
Entryis [ocked.

Entryis located on path fromwriter to top node for the write.
Entry has recei ved acknowl edge fromthe writing subtree.
E L _YOP_YGA | Entryis only containedin this subsystem(ezclusive).
Entryis [ocked.

Entryis located on path fromwriter to top node for the write.
Entry has recei ved acknowl edge fromthe writing subtree.

Table 2. 3: The possible states of a cache parent entry.

@ A node with no copy of the data.
‘ A node with avalid copy of the data.

‘ A node requesting an operation. No copy of the data.

Figure 2.1: This figure explains the synbols used throughout the chapter. Note that a
node with a “valid” copy of the blockis an inprecise description, basically inpl ying that
the node, if 1eaf, has a copy of the block in a readable or writable state. If a grey node is
not aleaf node, it is assumed to have at 1 east one subtree in the confirned state.



30

CHAPTER 2.

PROTOCOL OVERVI EW

Mssage

‘ Description

find 1 owest _common for read

Look upwards for nearest node with val ue

reditected find 1l owest cormonfor_r

pddok again; failedin current subtree.

read

Wlk downwards to a node wi th val ue.

find 1 owest _common for write

Look for 1ca of all nodes with val ue.

lock Lock all nodes bel owwi th val ue.
ack All copies beloware invalid.
ackl All copies belowexcept writer’s are inv

al 1d.

t hr owi ng_away

Subtree bel owinvalid; once was confirned.

change to_exclusive

Node is least common ancestor of all copi

find 1 owest _comron for _tas

Look upwards for nearest node with val ue

reditected find1owest comonfor_t

adook again; failedin current subtree.

confir mval ue

Subtree bel owhas gotten a copy of val ue.

read_data

Level = 0: Send data directly toreader.

Level > 0: Send data to waiting subtrees|

unconfir mval ue Subtree bel ownownot confirned, not invalid.
read tas Wil k downwards to a node with val ue.

write ok No other copies left in tree.

s _write_own Ownership transfer nessage for writes.

tas failed Test-and-set failedininitial read stage.

Table 2. 4: The nessages sent by the protocol.



2.1. PROTOCOL DESCRI PTI ON 31

send a copy directly

Figure 2.2: This diagramshows the three phases which occur during a read operation.
Node 5 wants toread X, soit sends nessages tolocate X This first phase, locatinga bl ock,
fini shes when Node 6is inforned that Node 5 wants a copy. At that point, phase twostarts,

in which a copyis sent directly to Node 5. Finally, in phase three, confirmation that the
value arrivedis sent to Node 2 and then fromNode 2 to Node 1.

At the level of detail of the figures inthis chapter, nodes may be in one of three states
as shown in Figure 2.1: invalid, valid, and requesting an operation. These states apply
intuitively to bothleaf and parent entries. Note that the “valid” state for a parent node is

most simlar to having a confirned subtree.

2.1.4 Reading

Areadtoalocally cached block occurs inmmediately. On aread miss, however, a three-
phase operation must be perforned, as sketchedin Figure 2.2. The first phase locates the
nearest block while siml taneously updating the states in the hierarchy. The second phase
sends a copy of the block directly to the requesting node. The third sends a confirmation
that the node has actually received the copy. There are two possible complications to a
read. First, a write may be going on at the same tinme. Second, the copy chosen to be
replicated may be deleted locally before the readrequest reaches it. Both of these probl ens
are handl ed by the protocol.

Anode which wishes tolocate a block for a read sends a find_l ouest _common_for_read
nessage toits parent. If the parent has no record of the block, it sends the sane nessage
up, until a node is found that has it. If the blockexists, the nessage traveling upwards will
eventually arrive at a node whi ch knows where the blockis. If the bl ock does not exist, the

protocol will allocate it automatically or signal an error, whichever it has been configured



32 CHAPTER 2. PROTOCOL OVERVI EW

readable
not owner

waiting for

read

Figure 2. 3: The states that aleaf node can enter during a read.

to do.

If the entry at that node is unl ocked, and at 1 east one subtree i s confirmed but none are
valid, the node must update its vector of who has the block and pick one of the confirmed
subtrees to send the read nessage down to. If any of the subtrees are valid, the requesting
subtree is nmarked as wai ting, and the read process suspends here. Wien the valid subtrees
are changed to confirned, indicating that they have finished the read, the values are sent
dovwn to all waiting subtrees. This nechani smsupports read conbining.

Wien a non- 1 eaf node receives a read nessage, it changes the state of its entrytoshared,
since the request must have cone fromoutside of the subtree it heads, and forwards the read
nessage down towards the confirned subtrees and leaves. Wien a leaf entryin a readable
or writable state receives a read, it sends a purgeable copy (using the read data nessage)
directly to the requesting node. Wen the requesting node receives the value, it sends a
confirmval ue message upwards toits parent, to confirmthat it has received a copy of the
bl ock.

(Conplications to aread can occur when a node deletes a bl ock whi ch sone other node
is tryingtoread. This deletion nay cause a read nessage to reach a node whi ch no 1 onger
knows about the block. In this case, a redirected find lowest_commwn_for_read nessage is
sent upwards to find a di fferent record of the bl ock.

In all of the cases described above, if a node is ever reached whose entry for the block
being readis locked, the readis tenporarily halted. This halting permits the serializati o
of reads and writes.

Figure 2.3 shows the states that can occur in a leaf node during a read. Wen a node
wishes to read a block which it has not locally cached, it enters a wniting_for_read state

and sends a find louest_commwon_for_read nessage to its parent. In a normal read case,



2.1. PROTOCOL DESCRI PTI ON 33

2

confirm

confirm

send a copy directly

Figure 2.4: This diagramillustrates howread conbining occurs. As shownin the left tree,
Node 5 requests a read just as in Figure 2.2. A any tine between the locate nessage
reaching Node 2 and the confirmnessage reachingit, Node 4 al so decides toread the sane
value, and sends a locate nessage to its parent, Node 2. Node 2 records that Node 4 is
wai ting for that block. As shown in the right tree, when the confirnation nessage from
Node 5 reaches Node 2, Node 2 sends the data fromthe read to Node 4, which responds

with a confirmation. Note that only one confirmation is sent fromNode 2 to Node 1;
confirmationis sent by Node 2 only after recei ving confirnation fromNode 5.

the node will be inforned by a read_date nessage of the value, and will then enter the
readabl e_nouner state. If, on the other hand, a write starts before the read conpletes, the
node may receive a lock nessage before the new value. The node blocks the write from
conpl eting by not acknowl edging the lock until it receives the newvalue and conpletes its
read.

If several nodes simil taneously try to read a block which is not already widely dis-
tributed, the nessages will be conbined. For example, if three leaf nodes with the sane
parent trytoreadblock X, theywill all send find_l owest _commwon_for_read nessages totheir
parent. Wien the first nessage reaches the parent, it will update its entry to record that
the node which sent the first message, Node 1, has a valid (but not confirmed) copy, and
forward up the request. The second nessage to arrive will result in Node 2’s state being
changed to waiting. This time, of course, the parent node does not forward the request
upwards. The third nessage to arrive will result in a change of Node 3’s state to waiting.
Wen the value of Xis sent to Node 1, it will send that data to the parent as part of
the confirmval ue message. The parent will then send the data to all of its subtrees in the
waitingstate, inthis case Nodes 2 and 3. Asinilar exanple of read conbiningisillustrated

in Figure 2. 4.



34 CHAPTER 2. PROTOCOL OVERVI EW

write copies deleted

E exclusive
1 S shared
P purgeable
U unpurgeable

write copies deleted write data

Figure 2.5: This is a sketch of the write process. Node 5 wants to write X, so it sends
nessages to locate X Wien the locate nessages reach the lowest comon ancestor of
Node 5 and all nodes that knowabout X(inthis case Node 1), lock nessages are sent down

to every node which has X Fach leaf node receiving a lock nessage deletes its copy and
sends an acknowl edgnent upwards. The ovmner (6) additionally sends a copy of Xto 5.
Wien all of the acknowl edgnents have been collected, Node 5is sent a nessage. Node 5
may nowupdate X

2.1.5 Writing

Aglobal write invol ves finding all of the copies of ablockin the system locking them
deleting them transferring ownership and the current value to the new owner, and then
performning the actual write. This process is shownin Figure 2. 5.

Several consecutive write requests froma single node to a particular location can be
fulfilled quickly and easily. As soon as a node has written to a block once, it has sole
ownership and control over that bl ock, and can thus performconsecutive reads or writes
locally until another node requests a copy.

Anode wishingtowritetoablockwhichit does not have a uritabl e copy of must first cre-
ate anentryinthe state wuiting for_write_nouner_npl _nread, or nrodify anexisting entryto
be in the waiting_for_write_nouner_npl _yread or waiting_for_urite_youner_npl state, as ap-
propriate. The location phase then begins. The node sends a find_l ouest _common for_urite
nessage to the node above it in the hierarchy. If that node has no record of the block, it
sends the sane nessage up.

The locate phase continues until the lowest comon ancestor (lca) of the block is
reached. The calculation of the lowest common ancestor for a block considers all leaf

nodes containing the block and the node requesting the write (see Figure 2.6). Note that



2.1. PROTOCOL DESCRI PTI ON 35

E exclusive
1 S shared

P purgeable
U unpurgeable @

5 6 7 8 9 10 11 12 13

Figure 2.6: The least commn ancestor for a bl ock depends not only upon the bl ock, but

al so upon where the writer is located. The 1ca for block y, cached in Nodes 5 and 6, from
the point of viewof Nodes 5, 6, or 2, is Node 2. Fromthe point of viewof all of the other
nodes, the lcafor yis Node 1. The Ica for block x, fromany node’s point of view, is Node
1. The definition of the 1ca for a block fromthe perspective of a node Nis that the Icais
the first node whose entryis tagged exclusive in a path starting from/Ngoing up to the
node at the hi ghest 1evel of the hierarchy. Nodes 1 and 2 1 abel block y as exclusive. Nodes
2 and 3 1abel block x as shared. Node 1 1abels block x as exclusive.

the 1canode is the hi ghest node in the hierarchythat is involvedin the write. Anlca node
receiving a find louest_common for_urite nessage locks its entry, signifying the beginning
of the lock phase and ensuring the serializationof writes. It then sends down [ ock nessages
to every node whi ch has a copy of the bl ock.

Mbst nodes recei ving the [ ock nessage will have copies of the bl ock bel Mph-ocked.
leaf nodes withrecords of the blocklock their entries, and forward down the [ ock nessages
to all those nodes bel owthemwhi ch have the bl ock.

All of the leaf nodes with copies of the block will receive lock nessages. Those with
purgeable copies just erase the copies and send an ack nessage up i medi atel y. The old
owner of the block will have an unpurgeable entry. This owner node first sends a copy of the
block directly to the node requesting the write, then deletes its copy and sends up an ack
nessage. The main purpose of the copy nessage is to transfer the ownership of the block
and to give the writer the old value to distribute if necessary to the reads serialized befor
the write. This prevents a deadl ock situation, whichwill be described nmore fullylater.

The node that is in the state wniting for_write will also have an unpurgeable version

'If a node has deleted a bl ock and the information that this has happenedis still propagating upwards,
sone nodes nay receive a lock nessage but not have a record of the block. In this case they i mediatel y
send up an acknowl edgnent of del etion.



36 CHAPTER 2. PROTOCOL OVERVI EW

S_write_own . write ok
waiting for

write ok

waiting for
write

waiting for

write value

write ok S_write_own

Figure 2.7: The finite state machine describing a leaf node entry during a write. These
states are all approximate; the exact transitions are described in Table C 5.

of the block. This is the node that requested the write. If two writes were requested at
approximately the same time, the one who the lock nessage records as the writer is the
one that won the race. The other write will be waiting on a locked entry sonewhere. The
wi nni ng node sends up a special acknowl edgnent, ackl, indicatingthat it is on the path of
the write.

The streans of ack and ackl nessages signal the combining phase of a write. This
phase is used to ensure that every copy of the block is deleted before any nodifications
are perforned. Fach parent node collects ack and ack! nessages until it receives responses
fromall of its invol ved children. If the parent node is onthe direct path betweenthe writing
node and the 1 canode, it sends up an ack! as soonas thereis onlyone subtree belowit with
a copy, and it has already received an ack! froma subtree. The single renaining subtree
contains the node which requested the write. If the parent node is not on the write path,
it waits until it receives ack nessages fromall subtrees directly belowit which had copies,
and then deletes its record of the block. The lca node for the block will be on the path
for deletion. Wienit receives the last acknowl edgnent, it sends a write_ok nessage down
to the node requesting the write and unl ocks its cache entry. The write_ok nessage travels
through all nodes that were on the write path, unl ocking themas it descends.

The node requesting the write will recei ve t wo final nessages, inanindeternminate order.
One is the s urite_oun nessage, which contains the value of the data and performs the

ownershiptransfer. The other is the write_ok nessage, whichindicates that all other copies



2.1. PROTOCOL DESCRI PTI ON 37

on the systemhave been deleted. Only after receiving both nessages does the node change
the state of the entry to writable and performthe write. Figure 2.7 shows the finite state
machine representing this sequence.

In the protocol, anyreadin progress when a write reaches a certainpoint will conplete
before the write does. In particul ar, when a lock nessage reaches a leaf node in the unit-
ing_for_read state the lock will be delayed at the node until a value is actually sent there.
After the read, the blockis purged fromthe cache, and an acknowl edge is sent. In order to
avoid deadl ock, the protocol al ways allows at l1east one node to distribute the old val ue on
demand. Before the ownershiptransfer, the owner will have the value for distribution; after
the ownership transfer the writer will have and distribute the value. Reads attenpting to

conplete during the later stages of a write often end up being sent to the writer.

2.1.6 ASynchromni zation Bimtive

Al though the read and write prim tives whi choperate onshared nenoryensure consistency,

they do not provide a sinpl e nethod for synchronizati on bet weennodes. W have therefore
included the test-and-set (TAs) instruction. This prinmitive is included for conpleteness,
and coul d be inpl enented better by a variety of methods [11] [20].

The TAS is a conbination of aread and a write. First areadis performed, up to the
point where a copy of the value is located. If the copy is non-zero, the Tas fails, and a
tas_fatled nessage is sent to the requesting node (see Figure 2.8). If the copy’s value is
zero, the write phase begins. The “write” continues just until the requesting node would
be about to performthe write. At this point, the value is again checked. If it is non-zero,
no value is written. If it is zero, the TAS conpletes successfully. This second check mst be
perforned in order to ensure the atomcity of the test-and-set. Adiagramof a successful
TAS is shownin Figure 2.9.

Al though the test-and-set primtive was designed with barrier synchronizationin mind,
itisstill not as good as anmechani smspeciall y designedfor barrier synchronization. Synchro-
nizationusingthe providedtest-and-set primtive does aprelimnaryreadbefore attenpting
to gain ownership of the test-and-set variable in order toreduce useless thrashing. Tb per-

forma barrier synchronization, however, every node will still have to gain ownership of the



38

CHAPTER 2. PROTOCOL OVERVI EW

E exclusive
1 S shared
P purgeable
U unpurgeable

tasfailed

Figure 2.8: The di agramshows the steps of a test-and-set whichfails in phase one. Node
5tries toperforma TAS on X Node 5 does not find Xlocally, and sends a locate nessage
up to Node 2. Node 2 knows where a copyis, so sends a nessage down to Node 4. Node

4 examnes X and finds out that Xis non-zero, inpl ying that the test-and-set has failed.
Node 4 therefore sends a nessage to Node 5 tellingit that the tas has failed.

Figure 2.9:

tas copies deleted E exclusive
1 S shared
ack P purgeable

U unpurgeable

tas copies deleted tas data

The di agramshows the steps of a test-and-set which conpletes successfully.

The first part is the same as in Figure 2. 8 and is not repeated here. After Node 4 verifies
that Xis 0, it begins the sane steps as would happen in a write. The lca node for X
(Node 1) is found. It sends lock nessages to all nodes which have copies of X Those nodes
delete their copies, and send acknow edgnents upwards. After both the val ue and the final
acknowl edgnent are sent to Node 5, it checks to make sure Xis still 0. If so, it sets X



2.2. PHYSICAL LAYOUT 39

block at sone point. On a nmachine such as the J- Michine, the separate nessage facility

can be used by an applicationto build a more effti ent barrier synchronization.

2.2 Physical Layout

The hierarchy is mapped to a physical machine in such a way as to realize hierarchical
locality as physical locality. The mappingis also designed to split the address space so as
to increase bandwi dth and prevent bottlenecks at higher levels of the tree. The mapping

is designed to work for all k-ary n- cubes, although the protocol may not performwell on
configurations such as hi gh- di nensional cubes.

Fach processor stores part of the global address space. The locations of every block
are storedin a hierarchical directory, forming the virtual tree described in Section 2. 1.
virtual treeis conposedof virtual nodes, each of whi chmay be mapped onto several physi cal
processors. This napping all ows us to forma di fferent physical tree traversal patterns: one

for eachset of addresses.

2.2.1 Herarchical Drectory

Adirectory records which nodes have copies of blocks. In amiltiple level system every
parent node at 1evel 1 knows which of its child nodes have copies of a block. Every parent
node above level 1 stores whichof its childnodes are the roots of subtrees containing copies
of a block at their leaves. To locate a block that is not stored locally, a node sends an
inquiry whichwill travel upwards until a copy is found.

In order to increase bandwidth, the directories of the virtual nodes at every level are
split onto nany physical processors. This splitting is shown in Figure 2.10. Fach leaf
node is mapped directly onto a uni que physical processor. The parent (non-1leaf ) nodes are
distributed equally onto all processors of the machine, while maintaininglocality. The top
node of the treeis distributed onto all nodes of the nachine. The mappingis also designed
to promote locality: every physical processor stores part of a node fromevery level. This
inplies that some requests can traverse the entire tree while staying local to a processor.

Figure 2.11 shows a hierarchical directory enbedded into a two- di nensional nesh net-

work. The highest level of a virtual tree consists of a single node. Its four children are th



40 CHAPTER 2. PROTOCOL OVERVI EW

Figure 2.10: The virtual address treeis split toincrease bandwidth. Inthis case, a 3 level
radix 2 tree is mapped onto a 4-ary 1- cube. FEach virtual leaf node is stored on a uni que
physical processor. The first-1evel parent nodes are each split onto t wo physical processors
(forming sub-lines). The second-level parent nodes (in this case the root node) are split
onto four physical processors (formngasub-line of double the size of the first-level ones). I
a k-ary 1- cube, the parent of aleaf node will be locatedin the same two- processor sub-1ine
as leaf node itself. The grandparent of aleaf node will be locatedin the sane four-processor
sub-line as the leaf node itself. For every additional level inthe radix two tree, the nunber
of processors needs to be doubl ed.



2.2. PHYSICAL LAYOUT 41

I R AR |
I R AR |
.
.

LI

]

mn
fayatifrsl
[y

= —
\

Level 0 goiooi||iooloo!
Loy L,

Level 1 -
o0noon,conoo

|

_ ] Oollooil|lool ool
DPhyscalProcr ooioolloo!ioo!
[] Virtual Processor St B oot | it R el

Figure 2.11: Aconceptual viewof a two, three, and four level tree. Each group at a level
becones a single node at the next highest level.

four level 2 nodes which conpose that single node. The four children of alevel 2 node are
the four 1evel 1 nodes, and of alevel 1 node are four level 0 nodes. Level 0 nodes correspond
to leaves of the tree, and are physical processors. Each virtual parent node can contain
information about any bl ock, yet each of the physical processors composing a parent node
can only hold sone predeterm ned subset of the blocks, based on the bl ock addresses. This
mapping results in physical locality, because any nessages traveling in the hierarchy will
al ways stay within sub- cubes.

The hierarchical directory can also be viewed as consisting of nmmltiple trees. As an
examnpl e, consider the mapping of a virtual 3 level, radix 4 tree to a physical 4-ary 2 cube
shown in Figure 2.12. The collection of nodes that can store a particular address forms a
conplete tree. Inthis exanple, sixteendifferent trees are forned, eachrooted at a different
processor. Because the trees for different addresses are different, there is no bottleneck at

the “top node” of the hierarchy.



42 CHAPTER 2. PROTOCOL OVERVI EW

Figure 2.12: Trees enbeddedinto a 2- dinensional grid. Only two out of sixteen are shown.

2.2.2 Mpp ng Kinction

The mapping function is used to calculate the node nunber of the parent (or child) of
a node, given an address, a level in the hierarchy, and the current node nunber. This
particul ar mapping functi on only works for nachi nes whose radi ces are powers of two.

A global address consists of two parts. The map part must encode the information
necessary for the napping function to operate, such as a gl obal processor ID. The key part
is used to distinguish among addresses with i dentical nap parts, such as local addresses
on a single processor. There are no restrictions as to howthe nmap and key parts nay be
conbined to forma gl obal address.

Any node can store any block at the leaf 1evel. Tb calcul ate the parent for that bl ock,
replace some part of the current node nunber with the map part. For example, on the
J-Michine, which has a three-dinensional nesh network, take the lowbits of the node
nunber’s three coordinates and replace these three bits with the corresponding three bits
fromthe global address. This strategy inplies that the highest level nodes will store only

bl ocks whose map part of their addresses equals their node nunber. Figure 2.13 illustrates



2.3 SUMMARY 43

Le\/eIZZ5Z4Z32HHYYYHHXXX

=
=
=
o
»
w
N
(o))
a1
N~
w
N
i T
=
o

Al Al

Level 1 | Z5 £4 23 2, Z3Hg Y, Yg Yy Yy Hg X, X3 X5 X Hy

Al Al Al

Level 0 | Zs 2, Z4 Z, 2, Zg Y, Yq Y, Y. Yo X, X X, X, X,

Figure 2.13: This figure denonstrates the mapping functionused for a 3- di nensional nesh.
The three node nunbers indicate whi ch nodes can store address H. Hcould be stored on
any leaf (level 0) node. To calculate the level 1 node that Hcould be stored at replace the
lowthree coordinate bits, one fromeach di nension, with their correspondi ng val ue fromH
To cal cul ate the level 2 node, replace the next highest three coordinate bits, etc.

the J- Machi ne napping function.

This mapping function will keep nessages confined to physically snmall areas whenever
possible. Anessage being sent fromthe 1eaf level to the first level will by defini ti on have a
destination somewhere within the eight (nore genethplloyde 2ube whi ch includes the
sender. Assumng bidirectional links, the farthest such a nessage woul d need to travel is
three (n) hops. Mre generally, the farthest a message will have to travel to commnicate
between levels i and i+ 1 is #-Rops. On average, assuning randomdestinations, the

distance is 0n"§y2i hops. There will be nore discussion of this enbedding in Chapter 6.

2.3 Summary

This chapter described the operations of PHD. PHDsupports cache coherent read, write,

and test-and-set operations. Read requests are satisfied in the smallest subtree containing
both the requester and a copy of the requested block; only three sets of nessages are sent
up or down that subtree. Wite requests are confined to the subtree containing the lowest
common ancestor of the requester and all copies of the requested block; four sets of nessages

traverse the hierarchy, t w of whichfanout toall nodes withcopies. The test-and-set request



44 CHAPTER 2. PROTOCOL OVERVI EW

is inplemented as an optim zed conbination of read and write requests, and inpl enents a
test-and-test-and-set operation.

This chapter al so described a mappi ng of PHDto arbi trary k- ary n- cubes. The nmapping
transl ates hierarchical locality into physical locality. The mapping also statically sprea
hi gher-level tree nodes onto many physical processors, in order to increase bandwi dth and

prevent bottl enecks at the top of the tree.



Chapter 3

Protocol Issues

Miny decisions mist be made in the design of a conplex system These decisions often
invol ve tradeoffs bet ween space, tine, and conplexity. This chapter discusses sone of the
tradeoffs that were made in the design of the Protocol for Hierarchical Directories as well
as the consequences of these decisions.

Section 3.1 examines those tradeoffs intended to increase the parallelismin conparison
to other hierarchical protocols by increasing the asynchrony. Section 3.2 considers small,

easily changeabl e design decisions that further optimize the perfornance of the protocol.

3.1 Parallelism

PHDwas designed toreduce the serializationof protocol actions byintroducing parallelism
in the satisfaction of requests. Parallelizing a problem however, often makes the problem
more compl ex. Mhny of the choices nade in the protocol design therefore significantly
increased the conplexity of the protocol. Wether there is a coomensurate decrease in

latency is an openissue to be studied.

3.1.1 Kxtra Faversals of the Herarchy

Extra traversals of the hierarchy provide informationto a protocol. Avoidingextra traver-
sals of the hierarchyincreases both the state necessary to support a protocol and the com

plexity of a protocol. There are two specific cases of this tradeoffin PHD: one in the read

45



46 CHAPTER 3. PROTOCOL I SSUES

DDM PHD NAI, DHP

Figure 3.1: This figure conpares the nunber of traversals of the hi erarchy needed for aread
request for the four different protocols: DDM PHD, NAI, and DHP. The bl ack node is

performng aread request. The grey nodes have copies of the block being requested.

request nechani sm and one in the asynchronous invalidate nechani sm W briefly conpare

four different solutions to this tradeoff, three of which are part of existing protocols.

DIM The DDMprotocol [12] requires nore traversals of the hierarchy than do any of

the other protocols. This requirenent is reasonable gi ven the assunptions of that project:
they propose to implenent their protocol on a bus-based system where the hierarchy is
fixed in hardware and cannot be circunvented. During a read request, four traversals of
the hierarchy occur (see Figure 3.1): first up, to find a node whi ch knows where a copyis,
then down, to a node with a copy, then back up and down t hrough the net work, updating

the interior directories as the read occurs.

There is only partially asynchronous invalidation in the DDMprotocol. In order to
discard a block, a node rmst initiate atransaction which carries the data. This transaction
will continue to propagate upwards until at least one other copy of the blockis found. This
systemprevents the protocol fromdel eting the last copy of a block. The transaction mst
carry the value withit, unlike in the other protocols, in order to be sure that the value is
preserved.

This protocol differentiates four read states in the hierarchy for a subtree: invalid,
reading, answering, and valid data. These states are updated as the read travels twice up
and down the hierarchy, and provi de full information to the protocol as to the exact stage

of aread. The valid data state only inplies that the data has been sent into the subtree,



3.1. PARALLELISM 47

not that the datais still there.

HPD The PHDprotocol requires one fewer traversal of the hierarchy for a read request
than does the DDMprotocol. PHD, as illustratedin Figure 3.1, al soroutes the readrequest
up and down t hrough the hi erarchy, but then sends a copy of the value directly through the
net work to the node requesting the read, and then updates the hierarchy by a confirmati on
sent onl y upwards.

PHDcan al so conpl etel y asynchronouslydiscard blocks. This feature all ows nost nodes
to quickly discard cache entries whenever the caches are full. Unlike the DDMprotocol,
the value i s not carriedinthe discard nessage. The use of a special ouner node guarantees
that all nodes will not simul taneously discard their copies. The owner, whichis defined as
the last node to write to a block, cannot asynchronously discard its copy. If a particul ar
node is the only node to write to many blocks, its cache will eventually fill up. PHDcan
be extended to solve this probl emby adding a nessage which requests sone other node
write the value (freeingit fromthe full node’s cache). This solutionintroduces conplicatec
l oad- bal ancing i ssues not addressed by this thesis.

The conbination of these two features introduces conplexity to the protocol. Although
invalidationis nowsinpler, because the value is not carriedin the deletion nessage, the
probl emof the owner capacity overflowhas been introduced. The longest path for a read
request is nowshorter than it was before, but the read- conbining pathis slightly longer.
Reads whi ch have been comnbined do not recei ve the val ue of the data until after the confir-
mationstep of the read request. Aread request that has been read conmbined must, in the
worst case, wait through two traversals of the hierarchy (one up and down), one nessage
being sent across, a confirnation being sent up through the hi erarchy, and the data finally
being sent down to the conbined nodes.

PHD also differentiates four read states in the hierarchy for a tree: invalid, reading,
wai ting for aread conbi nation, and validdata. The valid data state neans that the subtree

received the data but may have already deletedit.

IXP The DHPprotocol [21] bothrequires the fewest nunber of traversals of the hierarchy

and i npl enents asynchronous invalidation. Together this conbinationresults ina protocol



48 CHAPTER 3. PROTOCOL I SSUES

vul nerabl e to deadl ock, because not enough information in the hierarchy is available to
tell whether or not a subtree is waiting to receive a block, has already recei ved the bl ock,
or has received and already deleted (but not yet propagated this information upwards)
the block. This lack of informationis used as the read combining nechanism if a read
request reaches a node whichis in the process of reading data, it waits there until the data
arrives. This nechanismby itself is perfectly reasonable. Unfortunately, when conbined
with asynchronous invalidation, the mechanismresults in deadl ock, where tw nodes can
each end up wai ting for the sane block, and each also be promising to tell the other when
they receive the block. In this case neither request can ever be fill ed.

The read conbi ni ng nechani smof this protocol theoreticallyreduces the pathlength of
the 1ongest conbined read. The only probl emwhich can occur is read chains, where alist
of nodes is waiting for a block. The values will propagate one at a time; upon recei ving the
value it has been waiting for, a node forwards that value toits ownlist of waiting nodes.
Those nodes in turn mi ght thensel ves have lists of other nodes waiting for the sane val ue.

The DHP can only differentiate two states for subtrees in the hierarchy: invalid and
valid, where validimnplies that the subtree will receive the data, has received the data, or
had received (and already deleted) the data. It cannot use any other states because every

node is only visited once.

N Afourth protocol, not yet proposed, is identical to the DHP except that it elimi-
nates the asynchronous invalidation ability. W call this protocol NAI (No Asynchronous
Invalidation). Read requests still take only two traversals of the hierarchy. There are stil
only two states for subtrees in the hierarchy but the neani ngs have changed: nowthe hi-
erarchy keeps track of whether a subtree is invalid or has or will get a particular block.
This protocol elimnates the deadl ock situation of the DHP by guaranteeing that a “valid”
subtree either has a copy of the block or has an outstanding read request whichis being
satisfied outside of that subtree.

The di sadvantage of this protocol is that it requires that nodes reserve enough roomin
their caches for the blocks that they delete betweenthe time that the deletionis initiated
and the tinme that they receive an acknowl edgnent indi cating that it is safe to performthe

del etion.



3.1. PARALLELISM 49

L locked

1 2 3 4 ) 6 7 8

Figure 3.2: This figure shows howthe distributed write commt works. Node 1 is in the
process of requesting a write. The grey nodes have copies of the object. Consider what
happens if Nodes 2-8 all requested read operations at this point, and the lock nessages all
froze in the network, so that the reads woul d have tine to conplete. Nodes 4 and 6 woul d
conplete their read requests, because they have locally cached copies. The requests from
Nodes 3, 7, and 8 would stall on the write, because they woul d reach a l ocked node before
reaching a valid node. Node 5, on the other hand, would be able to conplete its read,
because a valid node above it is still unl ocked. Node 2 woul d be able to conplete its read,
because its request is comng fromthe writing subtree.

3.1.2 Dstributed Wte Cormt Rint

The commi t point for awriteis distributedinPHD Awrite waits until all reads in progress
finish. After a particular tine, newly starting reads will be stalled until the conpletion of
a write; the calculation of this tine is distributed. As soon as a lock nessage reaches a
node, no read originating fromany invalid subtree belowit will be satisfied until after the
write. The one exceptiontothis rule is that reads comng fromnodes in currently writing
subtrees will be allowed to conpl ete as well. An exanple of the various cases of reads and
writes interacting to formthe commt point is shownin Figure 3.2. This schene supports
sequential consistency [14], but also adds conplexity to the protocol.

The DHP protocol , on the other hand, does not nmake any guarantees about reads maki ng
progress. It is possible that a read in the DHP can be indefinitely delayed by a series of
write requests comng fromother nodes; the read will spend all of its tine searching the

machine for a valid copy.



50 CHAPTER 3. PROTOCOL I SSUES
3.2 DesignDecisions

Several designdecisions whichwere nadeinthe constructionof the Protocol for H erarchical
Directories could be easily varied. These decisions invol ve the read comnbini ng nechani sm

the write invalidati on mechani sm and the invalidation nechani sm

3.2.1 Read Goining

The design of the read conbini ng nechani smis another exanple of a tine-space tradeoff.

The read conbining of PHD del ays read requests fromlater requesting nodes until the
requests fromearlier requesting nodes have been answered. This delay prevents the later
requests fromsendi ng another set of location and data transfer nessages. Another way to
inpl ement read conbining is to use address-specific del ayi ng queues which are exami ned
whenever a block’s directory state on a node changes. This strategy saves sone bits in the
state of eachnode, because aslot tostore the waitingstatus of everysubtree for every block
is no longer needed.

Using these queues provides two nethods for deciding what to do when a lock nessage
reaches a directory node which has children waiting for the value. The first is to send the
lock nessage to all waiting child subtrees, as in the current version of PHD. Unlike PHD,
however, this scheme requires that alock nessage al ways check the del ayi ng queue before
continuing, inorder to find out whi ch subtrees need copies of the value. The second schene
is to not lock waiting subtrees; the reads coming fromthose subtrees are considered to
happen after the writes.

Another interesting question to consider about read conbining is whether it is worth-
while at all. Wthout read conmbining the protocol becones substantially simpler. It is
not clear howoften nodes request the same val ue nearly siml taneously, except for special

synchronization variables; these coul d be handl ed separatel y.

3.2.2 Read Gulini ng Venever Bssibl e

The read combi ni ng nechani smof PHD conbi nes two read requests whenever they occur
nearly simul taneously. Wien a read reaches a node with a subtree that is already reading

that bl ock, and that node has no subtrees which definitely have copies of the block, read



3.2. DESIGNDECI SI ONS 51

Figure 3.3: This figure shows the two possibilities for read conbining. In both nethods,
Node 1 request aread operation. Since it has no copyof it, the request is sent up to the first
node that has it, inthis case the root node. NowNodes 2, 4 and 12 issue read requests to
the same bl ock. Node 2’s request waits at its parent, as explained in Chapter 2. Similarly,
Node 4’s request waits at its grandparent. The issue is what happens to the request from
Node 12. The request could be sent down the path to Node 6, like Node 1’s request was,

or the request coul d be conbined.

conbinationoccurs. The questionis what todointhe situation, shownin Figure 3.3, where

a read request propagates up to a node that has both a subtree in the middle of a read
and a subtree with a definite copy of the block. If a newread request is sent down to the
subtree with a copy, one-fifth of the protocol table (shownin Table C.11) will be no l onger
reachable and can be elinminated, because the conbined vector state vXwXcX (subtrees

may be invalid, valid, waiting, or confirned) can no longer occur. The other possibility
for inplementation is that the read request be conmbined, and thus forced to wait until
the first read conpletes, whenit will be sent its value. Both versions of the protocol have
been simul ated. The scheme whi ch conbi nes readrequests performed better onthe studied

synthetic traces andis currently inplementedin the system

3.2.3 Wte Invalidate versus W te Update

Another interestingissueis whether toinvalidate ablock or toupdate it withthe newval ue
when a remte write occurs. PHDcoul d be nmodified to use an update schene, instead of

an invalidate one. For performance, a mechani smto periodically remove unused copies of
bl ocks woul d be required. Wthout this capability, writes would invol ve all nodes who had

ever read the bl ock and whose caches had not subsequently chosen to discard the bl ock.



52 CHAPTER 3. PROTOCOL I SSUES

Wite update could be extrenely valuable in sone situations, such as where a fewnodes

were constantly sharing data.

3.2.4 DMNnrleaf Invalidation

The protocol does not currently address the issue of a full cache in a non-1eaf node. Wen
non- 1l eaf nodes fill up, we cannot simply discard the non-1eaf values. Scott and Goodman
have addressed this problemin [24]. Their solution is pruning caches, which could be
adapted to workin PHD In their pruning cache schene, non-leaf directory entries may be

di scarded when a cache is full. Pruning caches store i nfornation about where a bl ock does
not reside rather than where it does reside. Intheir protocol, if alocknessage ever reaches
aninvalid entry located in a node whose parent has a valid entry, lock nessages mst be
broadcast to all children. Scott and Goodman have determined that “pruning caches with

”

a nmodest hit rate significantly reduce the invalidation traffc.” They also found, in their
simml ation studies, that when a cache filled up and they needed to discard an entry, “it is
better to suffer increased invalidation trafft when the line is written than to prematurely

invalidate the line.”

3.3 Summary

This chapter examined some of the decisions nmade in the design of the Protocol for Hier-
archical Directories. Sone of these decisions are easily changeable inpl enentationissues.
Others, such as the nunber of traversals that shoul d be nade of the hierarchy, expose major

di fferences between PHD and other protocols.

Al though the minor decisions could be easily isolated and tested to determine which
perforns better, the major ones cannot be tested inisolation, as they are not necessarily
separable fromeach other. In order to determne the benefits of these major decisions, we
must conpare the performance of PHDand the other hi erarchical cache coherence protocol s

for a variety of benchmarks.



Chapter 4

Si1i mul ator

W wrote a simul ator to nodel the operation of the protocol running on a conputer, such

as the J- Michine, with a k- ary n- cube network topol ogy. The simul ator currently nodels
machines of 64 nodes with two or three dinensions. The simulator is trace-driven, taking
as input astatically scheduledlist of memory references and simml ating themby following
the protocol. It outputs alog file detailing the steps it took. W also wrote a verification
programwhi ch t akes the out put of the simml ator and verifies that it follows alegal ordering

of events.

4.1 Overview

The simul ator serves two purposes: first, it tests the protocol and second, it provides a

platformfor studying several characteristics of protocol behavior. Inparticular, it provic

a nethod to examine the nunber of nessages sent per operation, the longest path traveled

per operation, and the average height inthe tree reached per operationfor different types of

operations. The results of this study are in Chapter 5. The simul ator was not designed to

support an anal ysis of howthe protocol behaves when burdened by net work constraints and

di fferent costs for different activities. An anal ysis of these issues is located in Chapter 6.
The simml ator operates at the nmessage level; one unit of simil ated time is the tine a

nessage takes to travel one hop between two adjacent nodes. The tine a nessage takes

to travel fromnode Ato node Bis therefore equivalent to the distance in hops between

53



54 CHAPTER 4. SI MULATOR

nodes Aand B. Operations which can be satisfied locally, such as a local read, write, or
test-and-set, occur instantaneously on a single node. Mssage processing for a node, on the
other hand, takes a constant amount of time, 10 hops, during which the node is busy and

can process no newevents.

Tine and event sequencing is represented by an event-driven queue. The queue rep-
resents a range of time. Fach slot in the queue corresponds to one particular time, and
contains alist of events to occur at that particular tine. There is one gl obal queue for the
simml ation plus one 1l ocal queue per processor.

Events are renoved fromthe queues and processed according to their type: nessages
or operations. The simul ator supports local allocation, read, write, and test-and-set oper-
ations. It additionally supports all of the types of nmessages specified by the protocol. The
gl obal event queue al so supports printingevents, cache-enptyingevents, warmstart events,
and nenor y- dunpi ng events.

In additionto listing every operation as it conpletes, the simulator can be configured
to print any of the followinglog infornation: events processed (as they occur in the event
queue), messages processed, and messages sent. The simul ator can be configured to print

out many different types of statistics about the protocol andits operation.

4.2 Data Layout

The “gl obal ” memory of the systemis scattered throughout the nodes. Each node has a
section of its memory devoted to storing the data blocks that it has copies of, or knows
about. It also has a section which contains nappings froman {address, level } pair to a
pointer to the data block storedin the data section.

There are two t ypes of entries which m ght be pointed to fromthe data- napping table.
The first type is a leaf entry. It represents an actual block of data, and corresponds to a
bl ock of menory whi ch woul d be found in a node located at the bottomof the hierarchy.
The second type is a parent entry. Aparent entry stores informati on about which subtrees
have copies of particular blocks. These entries correspond to nemory whi ch woul d be found
on a node of the hierarchy not located at the leaf level.

Aleaf cache entry, shownin Table 4.1, takes up M2 words, where Nis the line size.



4.2. DATALAYOUT 55

sy [ [ [ [ I IV T P T ITTTT I I PPl IllTTTTI]0

State Word

Address | Level
Data (N words)

Table 4.1: The parts of aleaf cache entry.

S HEEEEEEEEEE e
State VWC V ector Writer

Address | Leve

Table 4.2: The parts of a parent cache entry.

The first word contains the state of the entry, as described in Chapter 2. It also contains
the infornation, during writes, of whichwordinthe cachelineis being written. The second
word encodes the global address of the object and the level. The final Nwords are the

val ue of the block starting at the address. Because only the address representing the start
of the blockis inportant, this inplenentation hi des the level in those redundant bottom
address bits.

Aparent entryis any entry which does not correspond to a leaf of the hierarchy. It is
al ways composed of exactly two words. The first word contains the bits specified by the
protocol, as well as a vector of up to sixteen bits indicating which subtrees have copies
of that object. The vector contains two bits per subtree. The writer field, whichis used
only during writes by nodes located on the path betweenthe write requester and the lowest
common ancestor of all copies, stores the index of what subtree is performng the write, so
that lost read requests can be routed to the writer, as described in Chapter 2. A32-bit
entry can actually store up to 12 subtrees, although only the capability for eight is in the
current simil ator version. The second word encodes the global address of the object and
its level, exactly as inthe leaf entry.

The simul at or manages the simul ated heap by using a nemory all ocati on nanager. The
manager prevents memory frombeing fragnented by rearrangi ng nenory whenever a bl ock

is freed, and throwing away purgeabl e bl ocks when necessary. The simulator al so provides



56 CHAPTER 4. SI MULATOR

a method for remving bl ocks fromthe cache on demand fromthe input, in order to test

the protocol.

4.3 The Simul ator

The main parts of the siml ator are the node nodel, the network nmodel, and the event-

dri ven queues.

4.3.1 DNde Mdel

Only the state of anode essential tothe operationof the simmlator is nodeled. Every node
has a nodeid, a local event queue, a set of del aying queues, and nenory. Associated with
the nenory is a table which stores mappings between {faddress, level }pairs and pointers
into the nemory. In an inplementation on an actual machine, the table woul d be part of
the nenory.

Because the processing of a nessage in a node occurs in asingle tine-step, part of the
state of a node stores whether or not a node is busy and, if so, for howlong. A special
event, node_done, is added to the 1ocal event queue at the time when a node shoul d fini sh
processing the current message. Anode will performno actions in the neantine.

Fach node also stores a special associationlist recording the value to be written for
any ongoing write. This information would nornally be stored directly in the instruction
stream

Ideally, each node can timeshare anong several different processes. Wen a process
makes a global nenory reference which is not locally satisfiable, it suspends while the
reference is filled. In the neantine, other processes can run.

The simul ator nodels this ability by allowing nglobal requests per processor to be
occurring simul taneously, where nis an execution-tine paraneter. Operations which have
already been read in fromthe input trace are placed in a reference queue whichis part of
the node nodel, but is disjoint fromthe event queues. Wenever an operation on a node
conpl etes, the queue for that node is checked. If the next operation on that queue is due to
happeninthe future, it is scheduled. If the next operati on was supposed to happen already,

itis started. If there is no waiting operation, the parser is invoked to read nore input.



4. 3. THE SI MULATOR 57

4.3.2 DNtvork Mdel

The network of the J- Michine is a three-dinensional nesh. The simil ator nodels this
network, or optionally a two-dinensional nesh, in a conpletely unl oaded condition, ¢.e.
under a zero congestionsituation. Mssage deliverytakes tine proportional tothe distance
bet ween the nodes al ong a Minhattan route: first the Xdirectionis followed, then the Y,
then the Z. Anessage is “sent” at the end of the period of tine corresponding to any
processing that a node is doing.

W have chosen paraneters such that each hop in the network takes one-tenth of the
time to process a nessage. This nodels a systemwith bal ance bet ween computati on and
communi cation for fine- grained processing. The longest nessage sent is 4 +Nwords (M s
the line size); the shortest 2 words. All nessages are approxinated as being the sane length
for purposes of arrival time. If the destination of a nessage is the node that generated the

nessage, the transmssionis suppressed and the computati on continues i medi atel y.

4.3.3 Brent-I¥ ven Queues

Tineis inplenentedas acircular list of queues. At the start of a simml ation, the simlator
reads a block of the input and schedul es the specified events. It places each event in the
queue entry representing the appropriate tinme, creating entries as needed. It then begins
processing the queue. The simil ator processes input on a node by node basis when any
node runs out of operations to perform as more fully described in Section 4.3.1. Wen

there are no nore events in any of the queues, the simml ator halts.

Global Queve The global event-driven queue keeps track of the events that are to be
activated during each time slice. There are several different types of events. Operations
are specified by the input file, and include READ, WRITE, TAS, and ALL OC. As nmentioned
earlier, there are al so vari ous types of debugging events, not necessarily specific toparticul

nodes, which can be specified.

Iocal Qeuve Local event-driven queues are used, one per node, to keep track of node

specific events, such as nmessages, and gl obal events that becone local. Mssages are gener-



58 CHAPTER 4. SI MULATOR

atedinresponse to other nessages or operations. These queues correspond nost closely to

the nessage queues that woul d be found on sone nachines.

I¥laying Qeuve FEach node additionally has del aying queues. Events which cannot be
satisfied until another event occurs are placed on an address-specific del ayi ng queue, and

woken up onl y when an event referring to that address occurs.

4.4 Verification

The simul ator was tested by runni ng a hand-written set of tests, designed to exercise all of
the features of the protocol, as well as nany sets of nachine-generated synthetic address
streans. The simulator also contains self-consistency code, ensuring that an error is sig-
nalledif state and nessage conbinations which are illegal occur. Averifier was writtenin

order to help verify the siml ator.

4.4.1 Verifier

W wrote a verificati on programwhi ch takes the output of the siml ator and ensures that
the output sequence of reads, writes, and test-and-sets is alegal ordering of the requested
events. The verification of the verifier was done for a large set of hand-crafted test cases.

The rul es that the verifier obeys are as follows:

e Any read that fini shes before a write operationstarts will see the ol d val ue.

o After a write operation fini shes, the val ue changes, and any read that starts gets the

newval ue.

e Any read that starts before a write operation finishes and fini shes after the write

operation starts may see the ol d or newval ue.

e Atest-and-set may only conpl ete successfully if the value of the data is zero at the

point when the set woul d occur.



4.5 SUMMARY 59

4.4.2 Internal Checking

The simul ator is peppered with assertions which check for illegal states and combinations.
The simul ator al so has an option allowing one to choose naxi mumbounds on a random
interval for ejecting values fromthe cache. Wen this interval is set to one, values are
ejected fromthe cache one tine unit after they are placed there, allowing for a thorough

testing of the protocol.

4.5 Summary

This chapter describes the simil ator used to experiment with PHD. The simul ator im
plements the full protocol plus certain extensions, such as local allocation and optional
automatic allocation on uninitialized data. The simmlator is trace-driven, and can gather
many types of statistics for studying the protocol.

The simul ator has been used to test the protocol; additional features for debugging
include printing events and cache- enptying events. Aspecial verification programwas also
designed to ensure that the protocol keeps the memory consistent.

The simml ator runs 3,999,800 cycles in just under two hours. This represents 4096
allocation requests, 384,417 read requests, and 255,583 write requests, all resulting in_
total of 1,496,929 nessages being sent. Fach node was allocated 0x3000 words of nemory
for this simmlation. This tine neasurenent took place on an unl oaded Sparc Il with 32
negabytes of DRAM accessingonlylocallystoredfil es, and was t ypi cal of howthe siml ator

was actually run.



Chapter 5

Abstract Anal ysis

This chapter presents an abstract nodel of the Protocol for Hierarchical Directories and
then uses the model to showthe effects of locality andmachine size onseveral characteristics
of the protocol. The nodel is shown to be valid using results generated by the siml ator
described in Chapter 4. The nodel is used to study the average hei ght per operation, the
longest path of nessages traveled per operation, and the nunber of nessages generated per
operation for machine configurations toolarge to simulate. The results fromthis chapter
becone the inputs of an enbedded nodel, described in Chapter 6, which addresses the
protocol behavior whenit is mapped onto a specific architecture.

Sectionb.1 describes the nodel and a newnethod of representing the amount of 1ocality
in an application. Sections 5.2 through 5.5 discuss the applications and nethods used to
validate the nodel. Section 5.6 presents the results of the study, showi ng the i nportance of
locality as nmachines increase insize. An al phabetical listing of all of the variables define

inthis thesis can be found in Table A 1.

5.1 Modeling Hierarchical Behavior

Before neasuring the application- dependent behavior of the protocol, the protocol charac-
teristics to be neasured, the application characteristics needed to neasure these aspects of

the protocol, and a model of the protocol behavior mist be defined.

60



5.1. MODELI NG HI ERARCHI CAL BEHAVI OR 61

5.1.1 Orrview

Since we are prinmarily interested in understanding howa hierarchical protocol scales as
machine size and locality change, we have studied three application characteristics: the
average height inthe tree aread or write operation reaches, the length in nessage hops of
the “l ongest” path traversedin order to satisfy aread or write operation, and the nunber
of nessages generated per read or write operation.

Because this chapter does not study the protocol as mapped onto a particul ar architec-
ture, issues such as whether or not the cal cul ated nessage- generationrate can be sustained
due to bandwi dth consi derations are not considered. Simlarly, we are al so assuming infinite
caches, since finite cache effects conplicate the nodel, clouding the i nportant mul tiproces-

sor issues under consideration. Finite cache nodeling can al ways be factoredinlater [1].

5.1.2 Iocality (haracteristics

In order to study the behavior of a cache coherence protocol which is highly dependent
on locality, we must have sone nethod of expressing the locality present in applications.
W propose a representation of locality tailored to studying hierarchical cache coherence
protocols

Shared data operations are al ways caused by node requests. Instead of choosing a node
to nake a request and foll owing that request up the hierarchy, as in the actual protocol,
the abstract model chooses which class of nodes a request occurs in. The actual node
that makes the request is uni mportant, all that matters is what class that node is inwith
respect to what other nodes have copies of the block. All nodes inaclass have equal - hei ght
lowest valfdncestors. Choose the node to make arequest as follows (see Figure 5.1 for an
illustration): start at the root node of adirectory tree, and choose fromone of two groups:
the invalid and the valid subtrees of the root. If the invalid class is chosen, the proces:
stops. If the valid class is chosen we again choose fromtwo groups: the invalid and the

valid subtrees of the validchildren of the root. This process continues until aninvalid clas

'Kirk Johnson greatly assisted in the devel opnent of this locality model .
ZBecause all requests are model ed as occurring instantaneously, we consider only two states: valid and
invalid. Validinplies that there is a copy in the subtree; invalidinplies that there is not.



62 CHAPTER 5. ABSTRACT ANALYSI S

o Feed cio e

Figure 5.1: This diagramillustrates the selection of node classes perforned by the nodel.
The grey nodes are valid. The selection process starts at the root node, where either the
group of subtrees who are valid or are invalid are chosen. In the left side of the figure, the
validgroupis chosen. Because the validclass was chosen, at the next 1evel another selection
mist be nade. At this selection, the invalid groupis chosen. This neans that the node to
nmake the next request will be inthe class of nodes who are not valid, but whose parents are
valid. In the right side of the figure, the selection process again begins at the root, where
the invalid group is chosen. This ends the selection process; the next request will be nade
by a node who is invalid and whose parent is invalid but whose parent’s parent is valid.

is chosen, or until the leaf is reached. If an invalid class is chosen, all nodes bel owths
class are in the group of nodes that will nake the next request. If a validpath down to the
leaves is chosen, all leaf nodes which are valid are in the group of nodes that will nake the
next request.

W calcul ate the probability of choosingthe valid class as follgwshededinal pty
paraneter of level [, as the a priori probabilitythat the choice will be the valid group when
l ooking down fromlevel I. These locality paraneters can be different at each level of the
tree. If the request did not a priori come froman already valid subtree, we distribute
the probability of where it came fromuniformy over all of the children. The localityin
an applicationis thus expressed by this set of locality parameters. For example, in an
application where bl ocks were accessed uniforrd y by all prodemsat},!/ moul d be 0.

This set of locality paraneters lets us describe an application’s data usage. For greater
accuracy, instead of considering an average bl ock, we coul d consi der several classes of bl ocks

with their own sets of p

5.1.3 Mdel

The performance nodel cal cul ates the average height inthe tree, the longest pathtraversed,

and the nunber of nessages sent per read and per write operationg,uthag pcality



5.1. MODELI NG HI ERARCHI CAL BEHAVI OR 63

w

ﬂ/\

chlId chlldren chlldren O 00 chlldren chlldren
valid valid valid valid

r(l q)bl r(1- q)bz r(1- H)b3 r(1- q)z r(1- q)l
r(q+(1—|?)6) r(R’f(l—l?Fb) r(q+(1—9)€ f(q+(1—Q)T) r

Figure 5.2: The Markov model for counting the nunber of valid children of a valid parent.

paranmeters, w, the write ratio, b, the branching factor, and L, the nunber of levels in the
tree.

Define r to be the fraction of reads to shared data and wto be the fraction of writes to
shared data, where r+w=1.

W first determinefy the probability that c children of a validnode at level [are valid,
by constructing a Mirkovmodel, as shownin Figure 5.2. W use the solutionto this nodel
to calcul ate the expected val ug dthe nunber of valid children at Z ;EE’;lelc.
Using ¢, we cal cul ate the val ug,of lte probability of taking a vali d path while perform ng
a node selection, 1ooking down froml evel § F&f this neans that the root node will

be chosen with probability one and sinplifies the equations.

C
t=pi1+(1-p)y (5.1)

EBight Calcul ating the expected height aread will reach gi ven the nodel is straightfor-
ward. Aread by a node in the class of nodes which are valid will be of 0 height. Aread
by a node in the class of nodes whose parents are validbut whois not itself validwill be of

height 1. The expected height of a read requesk ., #di venin Equation 5. 2.

21(14 1) H t (5.2)

[ =h+1



64 CHAPTER 5. ABSTRACT ANALYSI S

o et te

Figure 5.3: In both of these exanples, the grey nodes have copies of the value, and the
bl ack node is attenpting to performa write. The write operation will have to reach the
toplevel of the tree in order to conplete.

In order to calculate the expected height a write request will reach, we mmst consider
not onl y whether or not the requesting node has a copy, but al so whether or not ot her nodes
of any classes have copies. Awrite mmst progress upwards in until such a hei ght as which
only a single node at eachlevel is valid, and those nodes are all ancestors of the writing
node. For exanple, as shown in Figure 5.3, where the black node is requesting the write
operation and grey nodes have copies of the value, a write operation would need to reach
the top of the tree inboth cases. Inthe first case, the full height of the tree is needed just t
reach any other copies. In the second case, al though a shorter height is sufftient tolocate
anode with a copy of the block, the write operationmst reach the top of the tree in order

toinvalidate the other copies. Keeping these rules in mind, we cal cul ate the expected write

hei ght, E4].

L-1 L
Ehw] :El(l — }Lth) H tl'vll (5.3)
h=l

l=hH

Iongest Path The 1 ongest pathtraversedduringareadrequest is the path of the request
up the tree, downto the node that hasit, andthendirectlytothe requestingnode, as shown

inFigure 5.4. The expected longest length #/{hus:

L-1 L
Bl =) (2rt1) (1) ] # (5.4)
h=1 I =hH

The 1ongest path for a write is up to the hi ghest node, down to all of the copies, back

up to the top, and then down fromthe top to the requesting nodgl i #kiven in



5.1. MODELI NG HI ERARCHI CAL BEHAVI OR 65

) (~ 9=
('g ?f ﬁ% ?@
S

Figure 5.4: The left exanple shows a read request, the right a write request. In both of
these exanpl es, the grey nodes have copies of the value, and the bl ack node is making the
request. The longest path traversedis shown for both cases. Note that for the write case,
there are other equally |l ong paths not shown.

Equation 5. 5.

L-1 L
Elw] :E 4](1 - }Lth) H tl'vll (5.5)
h=l

I=h#

Nmher of Mssages The calculation of #m ,], the expected nunber of nessages per
read operation, is verysimlar tothat for the expected]l ongest read path. The only di flerence
is that the set of nessages sent fromthe read ori ginator tothe topnode of the readto confirm

that the read has occurred must be added in.

L-1 L
Em,] => (3h+1)(1+4) [ © (5.6)
h=l l=hH

The expected nunber of nmessages per write operation, on the other hand, requires nmore
knowl edge than the 1ongest write path cal cul ation. This is because the nunber of nessages
depends on howmany nodes have read the block since the last write and therefore need
to be invalidated. Renenber thati¢ the expected nunber of valid children of a valid
node at a level [. For each non-local write, one set of nessages is sent fromthe requester
to the highest node in the tree involvedin the write, as shown in Figure 5.5, a full fan-
in and fan- out of acknowl edgnents and invalidates is sent to all nodes with copies, a final

acknowl edgnent is sent downtothe writer, and write ownershipis transferredtothe writer.



66 CHAPTER 5. ABSTRACT ANALYSI S

‘ﬂ
79)

e

Figure 5.5: This figure illustrates the nunber of nessages sent for atypical write operation.
The grey nodes have copies of the value, and the bl ack node is performng the write.

z=
(&

The expected nunber of nessages per write, s thus:

-1 h h-1 L
Emy] =Y ((2h—|—1 +2 3 11 ce) (10 fw) II tlvll) (5.7)

h=1 l=ed -1 Il =hH
5.2 Applications for Model Verification

Three applications have been enpl oyed in the vali dati on of the nodel. (One is a uniform
reference pattern, in which every processor is equally likely to reference all of data. Th
second mmcs a basic relaxation pattern, such as a Jacobi relaxation. The thirdis a
synthetic pattern exhibiting clustering behavior: nodes further away froma fixed “home

location” of data access it less frequentl y than do cl oser nodes.

5.2.1 UWiform

The uni formreference pattern fits the nodel exactly. Uniformityinplies that every node
is equallylikelytoreference any bl ock. Because of this property, there is nolocality, sot

entire set of 1ocality paramgtsheupd al ways be zero.

5.2.2 Rlaxation

In the particular relaxation we simulated, during every iteration every point of an »
di nensional nmesh updates its value by a function of the value of its 2nnei ghbors.

(onsider a 2-dinensional relaxation inplenmented on a 2-d grid of processors. The



5.2. APPLI CATI ONS FOR MODEL VERI FI CATI ON 67

Figure 5.6: A32 by 32 grid of rel axation datais napped onto a 4 by 4 grid of processors.

obvi ous way to embed the problemis to map a contiguous 2-d portion of the relaxation
array onto a single processor, such that the nearest neighbors of all of the points inasingle
processor are either on that processor or a neighbor of that processor. The enbedding,
shown in Figure 5.6, is reasonable for a hierarchy as well. For the nodel, we assune that
the relaxation gridis mapped in the above fashion.

Note that an exact cal cul ation of the read and write height can be perforned for this
application. Defing dhd W; as the nunber of read and write operations whichreachlevel
[, respectively. These formil as are shown and derivedin Equations B.1- B. 3in Appendi x B.

The read and write heights for the application can then be exactly expressed as:

L1 .:p.

=Lt (5:8)
Yo Ri
L1 57,

hy = 20 Wi (5.9)
i Wi

5.2.3 Quster

The cluster al gorithmassunes that there are clusters or groups of processors working on
data. (Qusters are saidto oun bl ocks. The processors withinagivencluster are more likely

toreference bl ocks owned by the cluster than bl ocks owned by other clusters. This model



68 CHAPTER 5. ABSTRACT ANALYSI S

Figure 5.7: Inthis figure, the bl ack node owns a bl ock. The lighter the color of a node, the
less likelyit is toaccess the block.

is simlar to the one proposed by Qng Yang, in [31].

Define e as the fraction of all operations by node P which occur toits own blocks. eis
the defini ng paraneter of a cluster application. As shownin Figure 5.7, Paccesses bl ocks
owned by processors in the group of bprocessors containing but not including Pwith
uni formprobability, Bwhichis calcul ated frome Paccesses bl ocks owned by processors
inthe group of? processors containing but not including the aforenenti oned bprocessors

with the smaller uniformprobabilityllEs access probabilityis calculated as foll ows:

e =0
E; = Yot (5.10)
(1-¢ le[l, L[]

2T-T_1

This formmla inplies that the frequency of requests to processors in the next largest

cluster but not inthe current one decreases by a factor of two as the clusters increase.

5.3 Simulationof Applications

The synthetic address traces of three applications were simml ated using the simul ator de-
scribedin Chapter 4 inorder to determine val ugstherset of 1ocality paraneters, with

whi ch to check the nodel. All applications were similated both for a 2-di mensional, radix
4, four level tree (L=4, b=4) and for a 3-dinensional, radix 8, three level tree (L=3,
b=8). In both cases this resulted in a 64 processor simulation. As much nremory was
allocatedto the processors as was necessary to run wi thout i ncurring cache overflowmi sses,

inorder tosimil ate infini te cache size.



5.3. SIMULATI ON OF APPLI CATI ONS 69

Uniform Rel azation Cluster

n | 200 n 2 n | 10000
7| 64 T | 100 | 64
T | 400 w | 1/5, 1/7 T | 400

Table 5.1: These are the values of the paraneters used in the simul ations.

Uniform The uniformaddress trace consists of references, by every processor, every T
simml ator steps, to arandom y chosen one of Taddresses. All addresses are equallylikelyto
be chosen by each processor. The paraneter variedinthis trace is the percentage of writes,

w

Rlaxation The rel axation address trace consists of cycles of reads to neighbors followed

by writes. In the trace every node simil t aneousl y makes the read requests foll owed by the
write requests for the first block, then the read requests followed by a write request for
the second block, etc. In other words, the grid is being updated such that sone bl ocks
are updated by values fromlater iterations on earlier iterations, simlar to a Ghuss- Sei del
rel axation. There are T'simul ator cycles between each reference. The anount of the grid
assigned to each node was varied across the simil ations. n the nunber of iterations, is low
because the simil ator perforned a warmstart for this application. For the 2-dinensional
(b=4) relaxation, the percentage of writes was 20; for the 3-dinensional (b=28), the

percentage was 14.

Quster The cluster address trace consists of references, by every processor, every T
simml ator steps, to a random y chosen one of N addresses, where Nis the nunber of
processors. Accesses byaparticul ar processor toself-ownedaddresses occur withprobability
e 'The probability of references to other clusters is calculated according to the formla
described earlier in Equation 5.10. The paraneters variedinthis trace are the percentage

of writes, wand the base probabilitye



Average L ocality

70 CHAPTER 5. ABSTRACT ANALYSI S
012y~ O---Otell _ 008y~ O---OLevel 1
(] -[Levd2 & A L] -[CLevel 2
L] o : A Alevel 3
0.10% - S oosk-
: -
008t : S
) : @
: o 0.04 1
: >
0064 <
: 002
0.04% ';% .
2 ooof il
002 Ml
000 @ oo He g 0024
&0 @@..@_@__@.@
0,022 e e e e e e 0,01 e e e e e e )
0.0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0
Write Fraction Write Fraction
Three Level, Radix Eight Tree Four Level, Radix Four Tree

Figure 5.8: The localityparanetessneasured fromthe uni f ormapplicationsimlation.

5.4 Locality Parameters Measured fromSi mul

The siml ation all owed us to neasugetfhe set of locality parameters for the applications.

Uiiform As predicted, the values forape nearly zero for the uniformapplication, as
showninFigure 5.8. Ahighpoint occurs when the percentage of writesis zero; this behavior
is caused by the fact that there are no writes at all. If the simml ation was run for a very
long tine, eventually nearly every node woul d have a copy, and then there would seemto

be correlationin the choice of a subtree; a valid subtree node woul d be more likely to be

selected than an invalid one because there are so many.

Rlaxation As the ampunt of data per node increases, the applicationexhibits nore and
more locality at every level, as expected. Note that there is tremendous locality for the

references whichreach the hi gher levels, as there are extrenel y fewof them

AQuster For all values of ¢ the fraction of references by an owner toits own bl ocks, and
[, the nunber of levels, as the write fraction increases the dadmeastsp This is

because a write issued froma nmore remote node capdesdpcrease twice: once when the



5.4.

1.00
0.90
0.80

0.70

Average L ocality

0.60

0.50

0.40

0.30

0.20

0.10

Figure 5.9: The locality paranetersspyeasured fromthe rel axati on application siml a-
tion.

o
©Q
N

©
@®
©

Average L ocality
o o
S g

o
]
o

0.72

0.68

0.64

LOCALI TY PARAMETERS MEAS URED FROMSI MULATI ON

g-ae 3§88
ol @"@
.... n®
ol
2
O---OLev 1
[ --[JLevel 2
©
| | | | |
2 4 6 8 10

Data per Dimension Per Node

ThreeLevel, Radix Eight Tree

O+ -OLevel 1
[]---[JLeve 2

e

| I I I N N N S

0.60
00 01 02 03 04 05 06 0.7 08 09

Figure 5.10: Thelocalityparamnetessmpasuredfromthe cluster applicationsimlation.

Write Fraction

ThreeLevel, Radix Eight Tree

The base reference fraction e=0.75.

Average L ocality

Average L ocality

100

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

AA@'%" ---------- % B

- . ’B

A o I Ol

- O

Mg

— O -Olevel 1
: [ [ JLevel 2

— A+ -ALeve 3

e

] | ] | | ] |

0.10

0.92

0.88

0.84

0.80

0.76

0.72

0.68

0.64

|
o¥al=

|
o E

0o
o=

2 4 6 8 10 12 14
Data per Dimension per Node

Four Level, Radix Four Tree

+Olevel 1
<[ JLevel 2
-+ /\Level 3

>0

o

§
o

0.60
00 01 02 03 04 05 06 0.7 08 09

Write Fraction

Four Level, Radix Four Tree

71



72 CHAPTER 5. ABSTRACT ANALYSI S

b 0.854 % . -8Leve| 1 b 0.85%4— % . -%Le\/el 1
= o Levd 2 = ~o[Level 2
g 0.80F g 0.804 éﬁ\ A Aleve 3
Q 0751 Q 075¢- . A
@ @© D A
g o070f L) a>3 070 - A"ﬁ.
<ot < oest e LN
] @ | gepe!
060 @ ,‘_@ 0.60 oW
0554 “',"@..@ 0554 ’%.','O..@
.. 0., .
0504 BrD ©-0 0504 D"'D
0454 E*g_ 0454
0.40 L 0.40 I I I N N T B
00 01 02 03 04 05 06 0.7 08 09 0.0 01 02 03 04 05 0.6 0.7 08 09
Write Fraction Write Fraction
ThreeLevel, Radix Eight Tree Four Level, Radix Four Tree

Figure 5.11: Thelocalityparamnetessmpasuredfromthe cluster applicationsimlation.
The base reference fraction e=0.5.

> 0.76 4 O -Oleve 1 > 0.76%4 O -Olevel 1
3 S B Rt
8 069 8 069F '~.A~..
2 o r A"A
2 0621 B D 0.621- AL
] . o ] AL
Z 0551 Z 0s5f- A-.A.
oy o oy A
0.48%4- . 0484 - :
©] g ©. kD!
044 . Bl 0414 . .
g - Q. .
; oy . o
k%% SEENOS ‘1. 0341 ©. i
'©..,© R Sog.
027} O 0 027 0.0
0.20 L e 0.20 L1l 1 1 | ] | | |
00 01 02 03 04 05 06 07 08 09 00 01 02 03 04 05 06 07 08 09
Write Fraction Write Fraction
ThreeLevel, Radix Eight Tree Four Level, Radix Four Tree

Figure 5.12: Thelocalityparamnetessmpasuredfromthe cluster applicationsimlation.
The base reference fraction e=0.25.



5.5. COMPARI SON OF MODEL AND SI MULATI ON 73

write is issued, to pull the value into the cache, and once when the nmore commwn read or
write occurs to the owner node.

Note that as eincreases, spays artificially high. This behavior is caused by the
extrerely high value of e Wen eis 0.75, three-quarters of all requests to bl ocks owned
by node Pare made by node P This neans that the effect mentioned above, where p
decreases vithwrite fraction, does not oftenoccur (since awrite tothe owner node followed
by another operation to the owner node (with no intervening writes by other nodes)) does

not lover the locality paraneter.

5.5 (nparison of Midel and Simml ation

The predicted and sinmul ated average read and write heights are very similar, and confirm
that the set of localityparanetersis avalidwayof expressingthe behavior of an application.
The predi cted nunber of nessages per read and write operation also conpares favorablyto

the siml ation.

Uni f or m W exanmined the average read and write height of the uni formapplication as
the write fractionis varied, as shownin Figure 5.13. Note that as expected, using the val ue
of the set of locality parameters neasured fromthe simml ation produced identical results
as just using the value zero, showing that the deviations fromzereinvéhearme
insignificant.

Figure 5. 14 conpares the predi ct ed nunber of nessages per operationwiththe siml ated
nunber. Although the predi cted nunber of write nessages is hi gher than the siml ated for
lowvalues of the write fraction, the predicted and simml ated nunber nearly match for the

rest of the write fractionrange, and the shape of the curveis very similar.

Rel axation Fortherelaxationapplication, we examinedthe average height characteris
as a function of the ampunt of data allocated to each node. The resulting 3- di nensional
(radix 8) and 2-dinensional (radix 4) graphs can be seen in Figure 5.15. Note that the
nunbers shown on the x-axis of the graphs represent the anount of data allocated per

di nension per node. In other words, to cal cul ate the actual data per node, cube the nunber



74 CHAPTER 5. ABSTRACT ANALYSI S

T 20f = =
C e SN NI TEUPURIES - i NP
T o T @"@""'@--5--_%---l--i
S 16} & S ¥
® ) ° x@’ S 244 —/@”
(0] &’ (0] .2
> ; > e ©
< o, < e
124 ° 184 o @,'
L3S o
@ o
ost °: _ 124+ ¢ .
(©) [ ) @ Average Read Height P ® @ Average Read Height
! H W Average Write Height ,© H W AverageWrite Height
@ O--- 0O Predicted Read Height ® O --- O Predicted Read Height
041 o O -- - O Predicted Write Height o6 ! O - - - O Predicted Write Height
' o o Predicted Read Height (p,= 0) o) © o Predicted Read Height (p,= 0)
:- O o Predicted Write Height (plzo) .,' o o Predicted Write Height (pI:O)
0.0 1 1 1 ] 1 | | ] | | 0.0 1 1 /]| ] | | | ] |
’ 0.0 010203040506 07080910 ' 0.001020304050607080910
Write Fraction Write Fraction
ThreeLevel, Radix Eight Tree Four Level, Radix Four Tree

Figure 5.13: This figure shows the average read and write hei ght nodel predictions as well
as the simil ated ones for the uniformapplication. Note that two sets of ;jvmes for p
used: one where;pmas set to zero, and one whegewps neasured fromthe siml ati on.

8 120y [ ] @ Average Read M essages 8 160 y— [ ] @ Average Read M essages
o)) ] W Average Write M essages o)) ] W Average Write M essages
n O --- O Predicted Read Messages 1ol ® O --- O Predicted Read M essages
108 [ --- [ Predicted Write M essages H [J---Predicted Write Messages
= ' = :
o i [} 1204 ['!‘]
& | O & .
o 80 ' 5 \
> \ g 100 G
< EJ < N
60— - 80§
oof- "
0 | o
m ] .
] E\ 01 [ ] S
[ ] Wl
20 LIS . T
) B % 201 n ﬁ -
Lomeret vyt ?y | Lewerryv vy
0.0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 l.O 0001020304050607080910
Write Fraction Write Fraction
ThreeLevel, Radix Eight Tree Four Level, Radix Four Tree

Figure 5.14: This figure conpares the predicted nunber of nessages per read and write
operation with the simml ated val ues for the uniformappl j omtsi omasured fromt he
simml ation for the predicted curve.



5.5. COMPARI SON OF MODEL AND SI MULATI ON 75

- 21y [} @ Average Read Height - 24y ] ® Average Read Height
< = ] W Average Write Height < | W Average Write Height
-% ™3 O --- O Predicted Read Height .g’ 21 | = O --- O Predicted Read Height
T 184 " [ --- 0 Predicted Write Height T ’ [ --- 0 Predicted Write Height
() o " o - - - o Directly Calculated Read Height ) Y o -+ - o Directly Calculated Read Height
% 15 ‘, B O---0ODirectly Calculated Write Height % 1.8 E"‘! o - - - 0 Directly Calculated Write Height
? . \\\ -" a>3 “ .'.
N L

& | ) < 15 .

124 L o M

. ‘E _. ¥ “
o L 12-% Ny
0.9 " EL\E‘. - ‘B..
: [T O - - ptomy
5 Aoy i IERNY
064 - T L e
Ny e o6t v =
O Q. o “ﬂ;_-_._,!.
03y~ \5.' 03} ‘@:... -!"'!
.\g"f-@'.;,s..s, ' O"g-'-'.'__-_.. .
00 | | I 00 L eeee
0 2 4 6 8 10 0 2 4 6 8 10 12 14
Data per Node per Dimension Data per Node per Dimension
Three Level, Radix Eight Tree Four Level, Radix Four Tree

Figure 5.15: This figure shows the average read and write hei ght nodel predi ctions as well as
the simml ated ones for the rel axati on application. Two different predi ctions are shown: one
uses the locality paranmeter nmodel, and one uses an anal ytical cal cul ati on of the rel axation
data nmotion to directly calcul ate the heights.

shownin the figure for the 3- di nensional case, and square the nunber for the 2- di nensi onal
case. The directly calculated average heights nentionedin Section 5.2.2 are also included
on the graphs. The exact cal cul ation does not work properly when there is only one data

point allocated per processor.

Cluster Figureb5.16shows graphs of the write fraction versus the average read and write
characteristics for three values of the base reference paraneter: 0.75, 0.5, and 0.25. The
model is nore accurate for hi gher base reference val ues.

Figure 5.17 conpares the nunber of nmessages per read and write operation predicted
fromthe nodel with the nunber of nessages recorded as sent by the simmlation. Abase
reference rate of 0.75 and 0.25 is shown in the figure. Note that in these graphs, the
predi cted nunber of nessages per read and write seens over-predi cted for hi gher val ues of
the base reference rate. In fact, the nunber of similated nessages is low. This effect is
caused by the nethod of gathering nessage statistics inthe simlation: nessages which are

sent froma physical processor toitself, evenif the virtual nodes being represented change,



-~
=]

~ L6y [ ® Average Read Height
5 5 H W AverageWrite Height
oIy O--- O Predicted Read Height
% ’ \ 0--- 0 Predicted Write Height
2Ll R
12 .
o -
= .
1.0 -
A
.!_\!
081 IE
e
-
0.6 e__.a-
o
041 o
0.2 | | | | | | | | | |
“00 01 02 03 04 05 06 0.7 08 09 10
Write Fraction
Three Level, Radix Eight Tree
o 207 [ ® Average Read Height
% H  E AverageWrite Height
T 184 ® O--- O Predicted Read Height
% e | 0--- O Predicted Write Height
D - * ]
g 16 . u
o ..
z 14t Sen. B
'-E--.g___;
124 .-
L&
.8
] = -
" '3_
&
081 e
o6 &
0.4 | | | | | | | | | |
"00 01 02 03 04 05 06 0.7 0.8 09 10
Write Fraction
Three Level, Radix Eight Tree
- [ ® Average Read Height
5 2004 H  H AverageWrite Height
‘D . O---0O Predicted Read Height
T . ) . ;
s 180} o. n - O---0 Predicted Write Height
D 5 [ ]
o T n .
<>( 1604 EF--EF ..
-8
1404 . _,3-‘”9
o .Y
1204 ° 7
jos
o
1.004 &
'
0.80 ¢ a
o
0.60 | | | | | | | | | |
00 01 02 03 04 05 06 0.7 08 09 1.0

Write Fraction

Three Level, Radix Eight Tree

CHAPTER 5. ABSTRACT ANALYSI S
o 227 [ @ Average Read Height
'83 n H W AverageWriteHeight
T 201 RN 0--- 0O Predicted Read Height
I IR 0---0 Predicted Write Height
% 1.8 \

ST S -
> S
< 14 =N
12§ ﬂ‘“ﬂ.
S -
104 ~!..§
08t Q,_.o--"'
.-
064 I
8
04t &
02 I T I N T O |
“00 01 02 03 04 05 06 0.7 08 09 1.0
Write Fraction
e=0.75 Four Level, Radix Four Tree
o 277 [ ® Average Read Height
'E) n H W AverageWriteHeight
D 244 O 0---0 Predicted Read Height
T . O---0O Predicted Write Height
g T
S 21 ..
(o) w.. .
> 18} 5.8
< B "“EF..&__!
--m
15 &__9_-»0
L&
124 &_,5'
&
- o .
0.9 e
o,
064 @
03 I T I N T O |
"00 01 02 03 04 05 06 0.7 08 09 1.0
Write Fraction
e=0.5 Four Level, Radix Four Tree
o~ 301 ® @ Average Read Height
'83 H W AverageWriteHeight
T 274 ® O---0O Predicted Read Height
T o m O---0O Predicted Write Height
g .
S 241 o -
a>3 “El.._B -
214 R Y | |
< G-..E___g___
184 8- T
° _8'
15 o o
[ ) _,@'
124 ° ',®"
'Q'
oo °* .-
06 N N T N T N N N M
"00 01 02 03 04 05 06 0.7 08 09 1.0
Write Fraction
e=0.25

Four Level, Radix Four Tree

Figure 5.16: This figure shows the average read and write hei ght nodel predictions as
as the simml ated ones for the cluster application.

well



5.5. COMPARI SON OF MODEL AND SI MULATI ON 77

8 14— [ J @ Average Read M essages 8 16 g— [ ® Average Read M essages
o)) ol ] W Average Write M essages o)) ol | W Average Write M essages
v O --- O Predicted Read M essages ul 5 O --- O Predicted Read M essages
2y [ --- [ Predicted Write M essages \‘ [J---Predicted Write Messages
= p= i
o ok o 129
§ §
! 104 A
> | & > o,
< 8 < .
S 8t R
6 u o, \
\B. B ~\
| | ~E~. 6 L - ‘EL__
| | | ~B-'G B-"Ew.
4 ] . BRREEPE 4+ u (. H--0
| _5 n ]
U= - R LA -
2 T ? 2 R £
¢ o e 0o 0o 0o 0o o o o e 0o © 0 o o 0o
| | | | | | | | | | 0 | | | | | | | | | |
00 01 02 03 04 05 06 07 08 09 10 0.0 01 02 03 04 05 06 0.7 08 09 10
Write Fraction Write Fraction
ThreeLevel, Radix Eight Tree Four Level, Radix Four Tree
e=0.75
8 327 [ J ® Average Read M essages 8 277 [ J ® Average Read M essages
o)) o ] W Average Write M essages o)) E‘ | W Average Write M essages
] \‘ O --- O Predicted Read M essages ulf O --- O Predicted Read M essages
Y [ --- [ Predicted Write M essages Y [J---Predicted Write Messages
= \ = _—_—
= ul \ > 21 “‘
% ' % 181+ m ‘\‘
o 20F ) i
> a U > |
< X I 15}
164 . I
o, 124 ‘\
[ . o
121 . B ey
! o THE-.
u - a-.
[ ﬁ-..i_ '!—-.%
81 "i---i el S T
F e REECEEECERbD o-‘e'——@---@
4 g8 e e o o @ | e @ © o o o 0
.- ® @ e o o <] P
0 | | | | | | | | | | 0 | | | | | | | | | |
00 01 02 03 04 05 06 07 08 09 10 0.0 01 02 03 04 05 06 0.7 08 09 10
Write Fraction Write Fraction
ThreeLevel, Radix Eight Tree Four Level, Radix Four Tree

e=0.25

Figure 5.17: This figure conpares the simml ated and the predi cted nunber of nessages per
read and write operation for the cluster application.



78 CHAPTER 5. ABSTRACT ANALYSI S

‘ Model Paraneters ‘ Mdel Paraneters ‘
w 0.3 w 0.3
b 8 b 4
L 3,4, 5,6 L 4, 5,6, 7, 8, 9
N | 64, 512, 4096, 32768 N | 64, 256, 1024, 4096, 16384, 69536

Table 5.2: These are the val ues of the input paraneters for the model.

are not counted. Because of the way t he napping of virtual nodes to physical processors is
perforned (see Section 2.2 for details), many nore nessages are sent froma processor to

itself when the base reference rate is high.

5.6 Protocol (haracterization for Large Mchi ne Sizes

Inthis section, the verifiedwdel is used to predict the behavi or of the protocol on machine

sizes toolarge to simlate.

5.6.1 Paraneters

In order to sinplify the study, several of the nmodel input paraneters have been con-
strained, as shown in Table 5.2. The fraction of writes is fixed at 0.3: a reasonable choice
for parallel applications [ 28] as well as one at which the nessages per operation cal cul ation
is accurate. Trees with two different radices, eight and four, are nodeled. The range of
machine sizes is chosen to showthe trend of the curves.

The set of locality paraneters is fixed to a single value for all levels, rather than a set
of values for eachlevel. This fixing still provides interesting resul tjs=hésause VI: p
a uni formreference input stream and;¥%1 ps a conpletelylocal input stream Mst
applications will lie between these two extremes. Furthermore, the fal utisffef emt
lseenin the uniformand rel axati on application were very close, and the values in nmost of

the cluster applications were simlar.



5. 6. PROTOCOL CHARACTERI ZATI ON FOR LARGE MACHI NE S1 ZES 79

5.6.2 Average Ikight

Figure 5.18 shows the average height per request as a function of the machine size
and the locality. The “Height/Operation” characteristic is determned by weighting the
“Hei ght /Read” and the “Hei ght /Wite” values by the write fraction. Results for bothradix
eight and radix four trees are shown. Note that the “Michine Size” axis is plotted on
alogarithmc scale; alternately, the scale can be viewed as linear, relabeling that axis a
“Nunber of Levels” with the values 3-6 for radix eight, and 4-9 for radi x four.

There are two trends to observe. First note the importance of locality, especially with
larger machine sizes. The second effect is that of nmachine size. The average heights all grow
sub-linearly with machine size, and nearly linear with the nunber of levels. Note, however,
that with a large nmachine size, and lowlocality, nearly the entire tree is being traversed

during an average request. This behavior is clearly unacceptable.

5.6.3 Longest Path

Figure 5.19 shows the effect on the 1 ongest path per request as a function of the machine
size and the locality. The formof these results is very similar to that of the average hei ght.
The nain point to note about these graphs is the sheer nunber of nodes eachrequest will,
on average, have to pass through. FEven if the network bandwi dth were large enough to
support this many requests, the nodes need to exam ne each nessage passing through, and

woul d i kel y have 1 ong queues of pending nessages to examnine.

5.6.4 Ninber of Mssages

The nunber of nessages sent per request as a function of the machine size and the
localityis shown in Figure 5.20. The shape of the curve of nunber of nessages sent per
readis simlar to those discussed earlier. The curves for the nunber of nessages sent per
write and the nunber of messages sent per operation (the weighted conbination of reads
and writes), on the other hand, are different.

Because the nunber of nmessages sent per write depends not only on the distribution
of the nodes with copies of the block, but also on the number of nodes with copies of the

bl ock, the effects of machine size andlocalityare muchnore pronounced. Instead of varying



80 CHAPTER 5. ABSTRACT ANALYSI S

Average Height /Operation

Figure 5.18: This figure shows the predictions for average hei ght per operationas a
of machine size and of locality. The left graphs are for radix eight trees; the ri
are for radix four.



5.6. PROTOCOL CHARACTERI ZATI ON FOR LARGE MACHI NE SI ZES 81

Longest Path/Read
N o B

Longest Path/Write
B & S

Longest Path/Operation
=
o

Longest Path/Operation

Figure 5.19: This figure shows the predictions for the length of the longest path traveled
per request as a function of nachine size and of locality. The 1eft graphs are for radix ei ght
trees; the right graphs are for radix four.



82 CHAPTER 5. ABSTRACT ANALYSI S

Mssages /Read

Machine Size 93663 32536

ﬂ;';'!!o |

Messages/Operation

Mssages /Operation

Figure 5.20: This figure shows the predictions for the nunber of nessages sent per request
as a function of nachine size and of 1ocality. The left graphs are for radix eight trees; the
right graphs are for radix four.



5.7. ISSUES 83

logarithm cally, where the nain gains are for localityinthe 0.75to 1 range, the nunber of
nessages per write versus localitycurveis barely affected by small changes for highlocality;
as the locality decreases, the nunber of nessages sent per write increases pol ynomi ally. The
degree of the pol ynomi al varies with machine size, inpl ying that while applications with
poor locality may performreasonably on snall machines, they will swanp |l ar ge nachines.

The nunber of nessages sent per write and per operationas afunctionof nachinesizeis
actually sub-linear. As a function of the nunber of levels, however, the nunber of nessages

sent is definitely quadratic.

5.7 Issues

Al though the results describedinthis chapter are of interest in examining the perfornance
of the protocol, there are many extensions that could be done to provide nore insight
into the abstract protocol behavior. Mny applications should be anal yzed to determine
the precise neaning of the set of locality paraneters. A better estimate of the locality
paraneter coul d be used. Finally, the datain an applicationcould be dividedintosets, and
the locality parameters separately cal cul ated for each one.

Currently, the localityparaneter set canonlybe derivedfor an applicationby neasuring
the paraneters fromsimil ation. W have perforned sone initial work towards deriving the
set of locality paraneters froma spatial locality model of an application, such as that
available for the cluster application. The derivation works best, however, for applications
whi ch exhibit a very hi gh degree of clustering. Mre work needs to be done in this area.

Using a flat set of locality paraneters is not necessarilyrealistic. For large applicatior
runni ng on massi vel y parallel nachines, we m ght expect less sharing to occur near the top
of the hierarchy, and nore at the bottom Studies need to be done of applications toprovide
insight as to what the hierarchical locality of applications actuallyis like.

For applications which have a large variance in the types of data referencing, several
sets of locality paraneters can be used to avoid averaging effects. This would all owone
to separate widely shared data such as synchroni zation variables fromless used ones. This
separationis useful because anapplicationmaystall due to the high sharing of synchroniza-

tion variables. This nethod mi ght also provide newinsight into the interactions betwen



84 CHAPTER 5. ABSTRACT ANALYSI S

shared data and programexecution-tine behavior.

5.8 Summary

In this chapter we have proposed a nethod of expressing locality in applications mapped
onto hierarchical architectures. W have used this nodel to predict the average height per
request, the average l ongest path per request, and the average nunber of nessages sent per
request. W used three applications in order to validate the nodel: a uniformreference
stream arelaxationalgorithm and a clustering data-reference stream

After validating the nodel, we enpl oyedit inthe predictionof the abstract performance
of verylarge machines as a function of the locality, studying howthe nodel outputs varied
with machine size and locality. The nost inportant result is that locality is extrenely
inportant in an application. As machine sizes grow, the locality becones increasingly
inportant for reducing latency.

W will use the abstract nodel as input to an enbedded model in Chapter 6. The
enbedded model describes howthe protocol runs when mapped onto particul ar machines.
This will allowus to study howthe protocol behaves under conditions where requests are

not allowed to send an unlinited nunber of nessages wi thout penal ty.



Chapter 6

Embedded Anal ysi s

This chapter extends the abstract anal ysis of Chapter 5 to showhowenbeddi ng PHDinto

a machine affects the behavi or of the protocol. Wuse the mapping describedin Section2.2
to enbed the protocol into a k-ary n- cube. The enbedded nodel describes this mapping,
as well as the configuration of the architectures being studied.

In our study we find that multithreading is only useful for approxinately two to four
threads; interleaving more than that does not decrease the overall latency. For small na-
chines and high locality applications, this limitationis due mainly to the length of the
runni ng threads. For large nmachines with mediumto lowlocality, this limtationis due
mainly to the large protocol overhead.

W also consider the addition of controllers to the processing nodes. W will see that
the gains fromthe addition of these controllers are not large enough to justify hardware
which is nore expensive than processors. In no case does the addition of the controllers
save more tine than doubl e the nunber of processors.

W first provide a brief description of the enbedded nodel in Section 6.1 and derive the
necessary inputs. W then characterize the behavior of the mapped protocol in Section 6.2
for several different architectures. Finally, we discuss what further issues need to be studie
in Section 6.3. An al phabetical listing of all of the variables defined in this thesis can be
found in Table A 1.

85



86 CHAPTER 6. EMBEDDED ANALYSIS
6.1 An Enbedded Mdel

The enbedded model is basically the nodel derived by Johnson in [13], slightly nodified
to suit our purposes. The abstract nodel is used to generate the inputs to the enbedded
model .

The enbedded nmodel is used tostudy two mainarchitectural configurati ons: a nachine
in which protocol activities are handled by the sane processor whichis attenpting to do
work, as outlinedin Section 2.2, and a machine in which protocol activities are handl ed by

a separate controller.

6.1.1 Mdel Overview

Johnson devel oped a franework for nodel i ng howcommni cation affects perfornance. His
framework consists of three parts: anetworkmodel, anapplicationnodel, andatransaction
model . These three are conbinedinto a single nodel in order to provide feedback between
each subsystem nodes will be unable to inject nessages into the network faster than the
transactionlatencies will allow The nodel is fully describedin[13]; only the parts of th
model which have been changed for this anal ysis will be discussedin detail.

The enbedded model directly uses the application and the network models. An appli-
cation consists of threads running on processors. The threads rununtil they make off- node
requests (commnicationtransactions). In the absence of multithreading, the threads sus-
pend until their transactions finish. If there is multithreading, and there are still runnabl
threads, a context switch occurs, and a newthreadis started.

In Johnson’s nodel the application nodel invokes commnication transactions; in our
enbedded nodel it invokes off- node requests to shared nenory. The off- node requests
are nodeled identically to the transacti on nodel, except that the neaning of one of the
paraneters is diflerent, the fixed del ay of Johnson’s nodel, represents the tine necessary
toprocess protocol requests by a non-1eaf node. As such, it becones a function of hownany
nessages are sent.

The net workmodel is used to determne average nessage latency, gi venaninput nessage
size, injection rate, and commni cation distance. The network is assumed to be a k-ary

n-di rensional nesh, with separate unidirecti onal channels in both directions.



6.1. AN EMBEDDED MODEL 87

Average thread run length bet ween successive requests to shared{nenory.
Context switchtine.
Average tine tosatisfy alocallysatisfiable request to shared nenory.
Average tine to process a protocol nessage invoked on a processor.

Average network interface overhead

Number of words in a cache line.
Nunber of flits per word.
P | Degree of hardware mul tithreading.

~|Q|2|K(E|R| =

Table 6.1: The additional basic input paraneters needed for the enbedded nodel .

¢ | Average nunber of nmessages in critical path of a non-local shared-memory request.
g | Average nunber of nessages per non-1local shared- nrenory request.
B | Average nessage size (inflits).

d | Average distance a nessage travels (in hops).

kg | Average distance a nessage travels in each dinension.

T, | Average thread run length bet ween successive non-locally satisfiable requests.
T¢ | Non- net work overhead to satisfying a non-local shared-memory request.

Table 6.2: The derived input paraneters needed for the enbedded nodel .

6.1.2 Mdel Inputs

The enbedded nodel takes as i nput nany paraneters. Sone of these paraneters have been
discussed in the abstract anal ysis chapter, and vary depending on the application. Other
parameters, shownin Table 6.1, need to be specified onl y when the protocol is mapped to

an architecture. The enbedded model uses athird set of parameters, derived fromthe first

two sets, as its actual inputs. This thirdset is listedin Table 6.2, and will be derivedi:

this section.

Locally Satisfiable Shared-Menory Requests W first calcul ate the nunber of re-
quests toshared nenory that are locall ysatisfiable, touseinlater equations. W determ ne
the expected fractionof locallysatisfiabl e reads by cal cul ating the probabilitythat areques

will cone froma node in the class of nodes which are valid.



88 CHAPTER 6. EMBEDDED ANALYSI S

L
EZ,] =]t (6.1)
=1

W find the expected fraction of locally satisfiable writes by cal cul ating the probability
that arequest will cone froma node in the class of nodes whichare valid, and all of whose

ancestors are the only validnodes intheir set of siblings.

L
EZw] :Htlvll (62)
=1

The expected fraction of locally satisfiable shared-nmenory requests is just the weighted

fraction of. Znd Z,.

B =1Z .+ (6.3)

Nunber of Messages in Critical Path The calculation of the expected nunber of
nessages inthe critical pathof anon-locallysatisfiable shared-nenoryrequest, ¢ is simlar
to the calcul ation of the longest path for an operatddy { h Equations 5.4 and 5. 5).

There are, however, two differences. First, we condition the cal cul ati on on non-1ocal oper-
ations by dividing by the fraction of non-local requests. Second, we only want to consider
those nessages which actuall y need to be sent off-node. In the enbedding, a parent node
andits bchildrenfor a particul ar block correspond to bnodes. This neans that one of the
childrenis situated on the sane physical processor as its parent. Equation 6.4 gives the

expected nunber of nmessages for aread request.

-1 L
Beg =L S <b_T12h—|—1 >(1—th) II « (6.4)

1-Z, r=1 I=ht1
The critical path for a write request contains a fan-in and fan-out to all nodes with
copies of the block. W make the reasonable assunption that at least one of these paths
will containno nessage sends bet ween nodes mapped to the same processor, sothe expected
nunber of messages inthe critical pathfor a write operationis just the expected nunber in

the l ongest path for a write, conditioned on the non-1local factor, as shown in Equation 6. 5.



6.1. AN EMBEDDED MODEL 89

Beu) =1, Bl] (6.5)

The expected nunber of nessages inthe critical path of a general request is calcul ated

by wei ghting,cand ¢, by the write fraction.

Ed =rc , 4w 4 (6.6)

Nunber of Messages 'The cal cul ationof the expected nunber of nessages sent for non-
locally satisfiabl e shared- nenory requests, ¢ is simlar to that of the nunber of nessages
sent in the abstract nodel, fmd m,, i n Equations 5.6 and 5. 7). There are two differences
between these cal cul ations, the same as described for Equations 6.4 and 6.5 above. The

expected nunber of nessages for aread operationis givenin Equation 6. 7.

-1 L
Bo) =3 (Sam1 ) (1-u) T] (6.7)

" k=1 I=ht+1

Avwrite operation generates many nessages, sone of which are expected to stay local
to a physical processor. Since we are not counting the critical path length, just the total

nessages sent here, we do weight by the branching factor, as shown in Equation 6. 8.

1 L1 b—1 b—1 h h-1 L
Bgul =7—5— > ((T2h+1+ =23 ] ce) (t—vita) I tzv}) (6.8)
Y h=1 I=1e=l-1 I=ht1

The expected nunber of nessages sent by a general request is cal cul ated by wei ghting

g- and g, by the write fraction.

Bg =19 + +w w (6.9)

Flits per Message The expected nunber of flits sent per nessage is dependent on the
exact machine to which the protocol is mapped. Define fas the nunber of flits per word,
and Cas the cache line size in words. W assune 32 bit words for the purpose of this

calculation. Aread sends the 4 word find louest_commwn_for_read nessage, the 3 word



90 CHAPTER 6. EMBEDDED ANALYSI S

readmunessage, the 3 +Cword read_data nessage, and the 4 + Cword confirmval ue

nmessage. These nessages are described in Thble 2. 4.

L-1 L

Avrite operation sends the 4 word find lowest _common for_write nessage, the 3 word
lock nessage, the 4 word ack and ack! nessages, the 2 +Cword s_urite_oun nessage and

the 3 word write_ok nessage.

1 h Al L
1 ((7)h+(2 +0 +H(7) X I 5(1 —vith) II tz'vll) (6.11)

EB,| =f E
1 =24 =1 2h+1 42 E?:l Hg;ll—1 Ce I=ht1

The expected nunber of flits per general nessage sent, B is weighted by the nunber of

nessages sent by each type of operation as well as the frequency of each operation.

mrBr +uw wBw
EB =
Y +W w

(6.12)

Distance per Message The expected distance in hops that the average nessage travels,
d depends on the radix kand the nunber of dinensions nof the machine to which the
protocol is mapped. Note that the enbedding is such thatdhege bis the branching
factor of the tree, is equal ton
W first determne d the expected nunber of hops needed for a nessage sent between
a node at level [ and its parent, where the parent and the node are located on separate
processors. This is just the nunber sent for a 2-ary n- cube [2] [22], scaled by the dilation

caused by hi gher levels.

bl og, b 1
d = . é: .
Edl 2(b—1) 2n —1

(6.13)

W also need to determnind,dthe nunber of hops that a hierarchy- circunventing nes-
sage, such as read_data, will take. Anessage of this formis sent froma node directly to
another node. The t wo nodes are guaranteed not to share a common sub- cube smaller than

that of their lowest commwn ancestor. The val u¢smfedcounted, and are enunerated



6.1. AN EMBEDDED MODEL 91

Radi x Level

1 | 2 | 3 | 4 | 5 | 6 | 1 | 8
4 4/3] 3 37/6 | 149/12] 199/8 [ 2389/48] 9557/96] 12743 /64
8 12/7]57/14] 237/28] 957/56| 3837/112

Table 6.3: This table shofps whe enpirically deternined nunber of hops a nessage sent
directly froma node in a subtree to one outside of its subtree takes, if the lowest common
ancestor of those two nodes is at level [. This calcul ation assumes a uniformdistribution.

in Table 6. 3.

The expected di stance per read nessage is gi venin FEquation6.14. Note that the nunber
of hops sent between each level is summed and then mil tiplied by the nunmber of tree
traversals. W do not worry about excluding the nessages whi ch are not actually sent; the

di fference is negligible.

L-1 h L

1 (3301 di1) +dj,

Ed,] = y (1—tp) J] @ (6.14)
1-Z, & 3ht1 i

The expected distance per write nessage is simlarly calculatedin Equation 6. 15.

Ed.,)

-1 h h h-1 L
1 203 dim1) HdL 42 Y dia T2 ce
:1_Z E ( =1 ) h =1 -1 (1 —'Uillth> H tl'Ull

L 2h‘|—1 +2 E;l:]_ Hg;}_]_ Ce I=ht+1
(6.15)

The expected distance per general nessage type sent, d is weighted by the nunber of

nessages send by each type of operation as well as the frequency of each operation.

mrdr +u wdw
=27 77 6.16
Ed g, +W w ( )

Distance per Dinension The average distance a message travels in eachgdirection, k
assuming i ndependence, is just dn In Johnson’s model, whepésekeks than one, the

average per- hop latency for the head of a nessage is fixed to one.



92 CHAPTER 6. EMBEDDED ANALYSI S

Run length Bet ween Requests The average thread run length between successive
requests to shared nenory, B is one model input. Anotheyr, itshdfaverage tine needed
to satisfy a locally satisfiable shared- nemory request, ¢.e. one that does not cause any
off-node traffc. The average thread run l ength bet ween successive requests to non-locally
satisfiable shared nemory,, s a function of these two parameters. For the purpose of
this nmodel,,is considered to be the useful work done by the processor.

7Z

BT =B —(R:M ) (6.17)

Non- net work Overhead The nmapping of non-1leaf nodes onto the sane processors as
leaf nodes guarantees that all processors will need to spend sone timne processing protocol
transitions, instead of performing actual work. W nodel this non-network gyerhead, T
as afunctionof g the average nunber of nessages sent per operatiha,alérage tine
in processor cycles needed to handle a protocol request, b the branching fiactor, and N
the tine taken up by the network interface.

If every node is sending gnessages on average per request, every node will have to
process gmnessages. 'The cost of processing a nessageiifsiM stays on the current
processor, and,MN;if it cones in fromanother processor.

b—1

ET;] =gM, + ——gN. (6.18)

6.1.3 Mdel Gonstraints

The nmodel devel oped by Johnsonis only validunder certain conditions, where the available
parallelismis smaller than the commni cation transactionlatency, so that despite mmlti-
threading, the processors will be idle part of the tine. In the enbedded nodel, the extra
time where threads woul dnormall y be wai ting can be used to support protocol transactions.

In an architecture with no controller, where every processor both runs threads and
supports protocol transactions, the analysis is only valid as 1ong as the thread run length,
the context switch tinme, and the protocol transaction overhead time do not exceed the

transactionlatency tine, as shownin Equation 6.19.



6.2. PROTOCOL CHARACTERI ZATI ON 93

T > p( LG +T ) +(pn —1)T: (6.19)
Wen this conditionis false, the average inter-transaction isdueltiimeed as
follows:
t.=T,+T,+Ty (6.20)

Wien the protocol requests are handled by a controller, there are two constraints that
mist be net. First, the transactionlatencytine mst be greater thanthe threadrunlength

and the context switch tine:

T: 2pm(L) +(pm —1) T, (6.21)

Wien this conditionis false, the average inter-transaction isdueltiimeed to
T.+T,. The transactionlatency time plus the thread runlength must al so be less than the

tine required by the controller to process the protocol requests:

T, >pmTs —T, (6.22)

Wen this conditionis false, the protocol is limited by the speed of the controller to a

time of noless than:

t, =T (6.23)

Wien both of those conditions are false, the protocol is limited by the 1argest of the

above transactionissue times.

6.2 Protocol Characterization

There are several fundamental questions we must address. The first is the smallest

average inter-transactionissue tine that can be sustained. This tine depends on the degree



94 CHAPTER 6. EMBEDDED ANALYSI S

‘ Shared Mdel Paraneters ‘

20 cycles
10 cycles
15 cycles
8 words
2flits

1, 2, 4
-0.9

.3

wololo

3, 4, 5, 6
64, 512, 4096, 32768

2 g s (T [~ 2(E|S

Table 6.4: These are the values of the input paraneters which are shared for the different
architectures.

of miltithreading: withnore threads running, nore l atency can be hi dden. Mil tithreading

is only useful up to a certain point, however. Another important question is what sort of
overhead is seen, and what are its sources? Are the limits set by protocol overhead or by
network latency? This section first describes the parameters chosen for the study, then

shows the results of the study.

6.2.1 Paraneters

W chose to study three machine configurations, representing a variety of architectures.
Across all three configurations particul ar paraneters, listedin Thble 6.4, were hel d constant,
since we were most interestedin varying the other paraneters.

Figure 6.1 shows the nunber of flits per nessage, and the di stance travel ed per nessage,
as a function of machine size and locality. These parameters are used as input to the
enbedded nodel. The nunber of flits per nessage is higher for high locality; this effect
is caused by the domination of longer nessages, such as read_data. The nore nodes which
need to be invalidated, the lower the nunber of flits will be. The effect of the distance being
so conparativelylarge for high-localitylarge nachines is caused because the distance grows

exponentially as one ascends the hierarchy, yet all 1evels of the hierarchy are assigned an



6.2. PROTOCOL CHARACTERI ZATI ON 95

MachineSize 32768 Machine Size 32768
4096

Flits per Message
Distance per Message

Figure 6.1: This figure shows the predictions for the average nunber of flits needed per
nessage, and the average distance that a nessage travels, as functions of nachine size and

of locality.

Mdel Paraneters Mdel Paraneters Mdel Paraneters
Optimstic-ptimstjc htimstic- Pessim stic Pessimstic- ptimstic
R 500 R 500 R 50
M, 20 M, 100 M, 20

Tabl e 6.5: These are the val ues of the i nput paraneters whichare variedacross the different

architectures.

equal locality paraneter. This inplies that further studies with a set of graduated locality
paranmeters rather than flat ones mi ght be interesting. The nunber of critical nessages in

an operation, ¢ and the total nunber of nessages sent per operation, g are simlar tol
and m graphed in Figures 5.19 and 5. 20 and are therefore not shown here.

Table 6.5 1ists the values of the parameters which were varied across the architectures.

These val ues correspond to three situations:

1. Optimistic-Optimstic: The run length between shared-nenory references is long
(such as on the J- Michine, where floating point operations are inplenentedin soft-

ware), and the protocol overheadis low

2. Optimistic-Pessimstic: The run length between references is high, and the protocol

overheadis high (for exanple if the protocol was inpl enented entirelyin software).

3. Pessimistic-Optimstic: The run length bet ween nessages is very short, and the pro-



96 CHAPTER 6. EMBEDDED ANALYSI S

tocol overheadis low

W additionally consider the case where the non-leaf protocol overhead is handled by a
separate controller for all three architectures.

Figure 6.2 shows the average run length between requests to off- node shared nenory,
T, and the non-network-related protocol processing overhedljsI'run lengthis an
input to the enbedded model , and was cal cul ated fromaverage runlength betweenrequests
to shared nenory (B, in Equation 6.17. Note thataFies frombeing almost exactly
R for machines withnolocality, to approxinatel y 4Rfor small nachines withalocality of
0.9, and 2HKfor large nachines witha 0.9 1locality. The overhead, shown in Equation 6. 18,
is another input to the nmodel, and is mainly affected by the nunber of nessages sent to

satisfy an operation.

6.2.2 Architectures Wthout A Separate Cache Controller

In all three architectures studied, mmltithreadingis only useful up to two threads. In other
words, interl eaving more than t wo threads does not increase the transactionissue rate. For
stmall machines and highlocality applications, thislimtationis due mainly to the length of
the runni ng threads. For large machines with nediumtolowlocality, thislimtationis due

mainly to the protocol overhead being too large.

Inter- Transaction Issue Tine

Figure 6.3 shows the average inter-transactionissue tine for one thread and two threads.
Note that increasing the nunber of threads fromone to two provides little speedup. As
expected, the lower protocol processing times create mich better transactionissue tines.
Since the runlength varies for different nachine sizes and localities, we must 1 ook at what

percentage of tine is taken up in the protocol overhead.

Protocol Overhead

W examine the protocol overheadin order to see howmch of the transactionlatencyis
caused by overhead and howmichrepresents work being done. Overhead (Q is defined as

the fraction of the average transactionissue time not spent running:



6.2. PROTOCOL CHARACTERI ZATI ON 97

Machine Size 32768 Machine Size 32768
4096 4096

Run Length
RN}
5g¢

Non-Network Overhead

Optimistic-Optimstic (R=500; #20)

Machine Size 32768 Machine Size 32768
4096

Run Length
RN}
5g¢

Non-Network Overhead

Optimstic-Pessimstic (R=500;=400)

Machine Size 32768 Machine Size 32768
4096 409

Run Length

Non-Network Overhead

Pessimstic- Optimistic (R=50; 320)

Figure 6.2: The left half of this figure shows the predictions for the average run length
bet ween off- node references to shared nenmory as a functi on of machine size and of locality.
The right side shows the predicted protocol processing overhead tine (dependent on the
nunber of nessages sent) per off node shared- renory request.



98 CHAPTER 6. EMBEDDED ANALYSI S

Machine Size 32768 Machine Size 32768
40 40

Txn Issue Time

Machine Size 32768

Txn Issue Time
Txn Issue Time

Optimstic-Pessimstic (R=500;=400)

Machine Size 32768 Machine Size 32768
4096 40!

Txn Issue Time
Txn Issue Time

Pessimstic- Optimistic (R=50; 320)

Figure 6. 3: This figure shows the predi ctions for the averageinter-transactionissue tine as a
function of machine size and of locality. The graphs onthe left side are for noml tithreading
(pn =1); the graphs on the right are for a mltithreading ef2}.(p



6.2. PROTOCOL CHARACTERI ZATI ON 99

EQ=1- f—t (6.24)

Figure 6.4 shows these results.

The Optimistic- Optimstic case does best, as expected. The Optimistic-Pessimstic case
is tolerable for small machines with high locality. The Pessimstic-Optimistic case, on the
other hand, shows extrenely high overhead for nearly all conditions. If the typical run
lengthis only 50 cycles, as assuned for this case, the protocol processing tine needs to be
reduced before this systemcan be effectivel y used. Note that there is verylittle speedup

fromgoing to two threads; in general, only small nachines with poor 1locality benefit.

6.2.3 Architectures Wth ASeparate Cache Controller

In order toincrease the performance of the protocol, we consider the case where a separate
controller exists to handle protocol requests. This situation will only be beneficial in tw
cases: first, where the controller can be added to the systemmore cheaply than another
processor, and secondl y, where the controller can be designed to be significantlyfaster than
a processor. If neither of these conditions are true, there is no benefit to using a controlle:
W nodel the architectures with a separate cache controller by allowing the inter-
transactionissue time to decrease until it reaches the limts caused by either the protocol
overhead or the run-length overhead. W assune that the controller operates at the sane
speed as the processor didin the earlier experinent; the gains all cone fromhaving a sep-
arate protocol handler, not fromimmense controller speed. For the Optimstic-Optimstic
case (R=500; M =20), multithreadingup tofour results inbetter inter-transactionissue
times. For the Optimistic-Pessimistic (R=506;100) case, up to eight threads can
be profitably used to reduce latency. For the Pessimstic-Optimstic (R=20; M
case, only four threads provi de speedup. Again, these limtations are due to the thread run
length for small nachines, or machines with veryhighlocality, and tothe protocol overhead

for large machines with nediumto lowlocality.



100 CHAPTER 6. EMBEDDED ANALYSI S

Pessimstic- Optimistic (R=50; 320)

Figure 6.4: This figure shows the predictions for the protocol overhead as a function of
machine size and of 1ocality. The graphs onthe left side are for no mul tit brkjdi ng (p
the ones on the right are for a mul tithreadi ng.0£2)(p



6.2. PROTOCOL CHARACTERI ZATI ON 101

Machine Size 32768 Machine Size 32768
4096 4096

512

Txn Issue Time
Txn Issue Time
=
o
(=]
=]

06
Locality 0.8

Optimistic-Optimstic (R=500; #20)

Machine Size 32768 Machine Size 32768

Txn Issue Time
Txn Issue Time

Optimstic-Pessimstic (R=500;=400)

Machine Size 32768 Machine Size 32768
40 4096

Txn Issue Time
Txn Issue Time
=
o
(=]
=]

Pessimstic- Optimistic (R=50; 320)

Figure 6.5: This figure shows the predi ctions for the averageinter-transactionissue tine as a
function of machine size and of locality. The graphs onthe left side are for noml tithreading
(pn =1); the graphs on the right are for the largest possible useful multithreading, as
described in the text.



102 CHAPTER 6. EMBEDDED ANALYSI S

Inter- Transaction Issue Tine

Figure 6.5 shows the average inter-transactionissue tine for one thread and for the nax-
immmnunber of useful threads, as described above. Note that we do nowsee some im

proverent due to ml tithreading, whi ch can be better observed in the overhead graphs.

Protocol Overhead

W again examine the protocol overheadinorder to see howmich of the transactionlatency
is caused by overhead and howmich represents work being done. Figure 6.6 shows these
results.

These results are muich better than before. The use of a controller provides enornous
gains inpracticality. For an Optimistic-Optimistic architecture, we can expect to efftiently
run the protocol at locality as lowas 0.7 even on very large machines. The Optimstic-
Pessimstic architecture perforns mich better than before, althoughit still has too much
overheadfor large machines. The Pessimstic-Optimsticarchitecture has al soinproved, but
one would still not want to use the protocol with this enbeddi ng on such an architecture.

Mst of the speedup occurs when going fromone thread to two. The gains fromgoing
beyond that are small, and occur only on the boundary bet ween t oo much work and too
mich overhead. For the Optimistic-Optimsticarchitecture, the gains occur on the di agonal
line betweenl arge nachines withlots of locality and small nachines withlittle locality. For
the Optimistic-Pessimstic case, the line noves closer to the small nmachines with high
locality. This trend extends to the Pessimstic-Optimistic case, inplying that the gains all
occur only for small nmachines with highlocality.

Note that these gains are of course not large enough to justify controllers which are
nmore expensive than processors. In no case does the addition of the controllers save nore

tine than doubl e the nunber of processors.

6.3 Issues

The results described in this chapter provide sone insight as to howthe protocol actually

behaves when napped to a k-ary n- cube in the nanner described in Section 2.2. There



6.3. ISSUES 103

Pessimstic- Optimistic (R=50; 320)

Figure 6.6: This figure shows the predictions for the protocol overhead as a function of
machine size and of 1ocality. The graphs onthe left side are for no mul tit brkjdi ng (p

the ones on the right are for the largest possible useful multithreading, as described in the
text.



104 CHAPTER 6. EMBEDDED ANALYSI S

are nmany nore interesting experiments to be done, however. First, other configurations
of machines which woul d work better with the protocol should be studied. Second, other
enbeddi ngs of the protocol to k-ary n-cubes should be considered. Finally, other cache
coherence protocols shoul d be studied to determ ne the conpetitiveness of the performance
of the Protocol for Hierarchical Directories.

The mainlimtation of using this napping to enbed the protocol to an architectureis
clearly the protocol overhead. There are several ways to fix this problem One is to build
fast controllers which can independently process the protocol requests, whichis one of the
goals of the MT Alewife project [3]. The cost of adding such a controller to the machine
mist be bal anced against the potential speed benefits.

Another way to reduce the overhead is to guarantee that high locality is naintained,
with references to shared nenmory rare in conparison to the tine needed to process pro-
tocol requests. In order to do this, conpiler technology for static data pl acement mmst be
inproved. Prograns mmst be conpiled specifically to reduce the anount of data sharing.

This technol ogy woul d benefit all cache coherence protocols.

None of the architectures studied in this chapter was ever limted by the speed of the
network. This indicates that either the assunptions inply a processor-network speed ms-
match, and that the network is too fast, or that the protocol is fundamentally too slow
Studies using a very fast controller withfast processors, or fast controllers and sl owproces
sors coul d be used to eval uate howthe protocol performance is affected by the enbeddi ng.

This study does not indicate whether or not PHD woul d be more useful for large na-
chines than schemes withlimted-directories, or even wi thout caching. Astudy conparing
these schenes for different val ues of the locality paraneter woul d be very enlightening. W
believe that PHDwill performbest onlarge nachines with decent hierarchical locality, and
lowprotocol overhead. Wether or not these conditions will occur for real applications is

unknown.

6.4 Sumary

Inthis chapter we used an enbedded nodel to showthe performance of the protocol mapped

onto various architectures. W looked at average inter-transactionissue tine and protocol



6.4. SUMMARY 105

overhead for different locality paraneters, multithreading, and nachine sizes.

W determined that miltithreadingis onl yuseful for approximatel ytwo to four threads;
any additional interleaving does not decrease the overall latency. For snall machines and
highlocality applications, thislimtationis due mainlyto the length of the running threads
For 1arge nmachines with nediumto lowlocality, this limtationis due nmainly to the high
protocol overhead.

W discovered that the enbedding will work well given fast protocol processing tine
and relativel y fewreferences to shared memory. In the best case only 9%of all cycles are
taken up by protocol overhead for small machines with 0.9 locality. This increases to 28%
for large machines (32768 processors) with highlocality, and 39%for small nachines with
poor locality.

Wth the use of separate cache controllers, we can do even better. For a locality of
0.9, we can reduce the overhead to 1%overhead for up to 32768 processors. For alocality
of 0, we can see as little as 4%overhead for 64 processors, rising rapidly as the nunber
of processors increases. The gains fromthe addition of these controllers, however, are not
large enough to justify hardware whichis nore expensive than processors. Inno case does

the addition of the controllers save nore tine than doubl e the nunber of processors.



Chapter 7

Concl usi on

7.1 Sumary

This thesis described the Protocol for Herarchical Directories, a hierarchical, director
based cache coherence schene. PHD supports read, write, and test-and-set operations.
Read requests are satisfied in the smallest subtree containing both the requester and a
copy of the requested block; only three sets of nessages are sent up or down that subtree.
Wite requests are confined to the subtree containing the lowest common ancestor of the
requester and all copies of the requested bl ock; four sets of nessages are sent up and down
the hierarchy, two of which fan out to all nodes with copies. Test-and-set requests are
inplemented as an optimzed combination of read and write requests, and inplenent a
test-and-test-and-set operation.

An enbeddi ng of PHDinto k- ary n- cubes was al so proposed and eval uated. The nap-
ping translates hierarchical locality into physical locality. The mapping also distribute
hi gher level tree nodes over nmany physical processors, both to increase bandwi dth and to
prevent bottl enecks at the top of the tree.

W built asimilator to experinent with PHD. The simul ator inpl enents the full pro-
tocol plus certain extensions, such as local allocation and optional automatic allocation on
uninitializeddata. The simmlator is trace-driven, and can gather many t ypes of statistics for
studyi ng t he protocol. The simul ator has beenusedto test the protocol; additional features

for debugging include printing events and cache enptying events. A special verification

106



7. 2. CONTRI BUTI ONS 107

programwas also designed to ensure that the protocol kept the memory consistent.

This thesis describes two anal ytical models: an abstract one and an enbedded one.
The abstract model characterizes aspects of the protocol which are not dependent on the
architecture on which the protocol is run and can be used to eval uate other hierarchical
protocols. The enbedded mpdel describes the behavior of PHDas it interacts with a
nmachine whi ch has particul ar net work and processor characteristics. The enbedded model

derives its inputs fromthe outputs of the abstract nodel.

7.2 (Contributions

PHDis scalable in cost and network latency. Unlike other hierarchical protocols, thereis
no bottleneck at the top of the hierarchy. The protocol uses fewer hierarchy traversals and
a shorter critical pathtosatisfyread operations than do other hierarchical protocols. The
protocol supports asynchronous invalidation through the notion of ownershi p.

W proposed a nethod of expressing locality in applications mapped onto hierarchical
architectures and successfully used this nodel to predict the average hei ght per request, the
average l ongest path per request, and the average nunber of nessages sent per request. W
used three applications inorder tovalidate this abstract model: a uniformreference stream
arelaxationalgorithm and a clustering data-reference stream After validating the nodel,
we enployed it in the prediction of the behavior of the protocol on verylarge hierarchies,
studyi ng howthe nodel results varied with machine size and locality.

This abstract nodel was used to generate the inputs to an enbedded nodel; the em
bedded nodel described howthe protocol runs when mapped onto particul ar nachines. W
looked at average inter-transactionissue time and protocol overhead for different locality
paraneters, degrees of multithreadi ng, and nachine sizes.

The enbeddi ng perforns well when the runlength betweenreferences toshared nenmory
is at least an order of magnitude less than the tine spent to process a protocol state
transition. If separate controllers for processing protocol requests are included, the proto
scales to 32k processor nmachines as 1 ong as applications exhibit hierarchical locality: at lea
22%of the global references mist be able to be satisfied locally; at nmost 35%of the gl obal

references are allowed to reach the top level of the hierarchy. Wthout the use of separate



108 CHAPTER 7. CONCLUSI ON

controllers, latency cannot be hi dden effecti vel y by mul tithreadi ng because processors spend

too much of their tine satisfying protocol requests.

7.3 DHscussion

This thesis has exposed several major areas of research which should be pursued. The
tradeoffs invol ved in desi gni ng good hierarchical cache coherence protocols shoul d be char-
acterized. The abstract nodel of the protocol woul d benefit froma better understanding
of the locality paraneter. Wth sone addi tional work, the enbedded nodel can be used to
aidin the design of shared- memory nachines.

This thesis discussed sone of the decisions which were nade in the design of a hierar-
chi cal cache coherence system The effects of these decisions have not been fully expl ored.
A conparison of PHD and another hierarchical cache coherence protocol would still be
instructive.

Currently, the locality paraneter set can only be determnedfor an applicationby simm-
lation. W have perforned sone initial work towards deriving the set of locality paraneters
froma spatial locality nodel of an application, such as that available for the cluster ap-
plication. The derivation works best, however, for applications which exhibit a very high
degree of clustering. Mbre work needs to be done in this area.

All of our large nachine studies use a flat set of locality paraneters to constrain the
study space. Using a flat set of locality paraneters, however, is not necessarilyrealistic. Fo
large applications running on nmassively parallel machines, we m ght expect less sharing to
occur near the top of the hi erarchy, and nore at the bottom Althoughfewlarge applications
exist today, as ones are writtenthey canbe studiedin order to determ ne reasonable locality
paraneters.

For applications which have a large variance in the types of data referencing, several
sets of locality paranmeters can be used, to avoid averaging effects. This would allowone
to separate widely shared data such as synchroni zation variables fromless used ones. This
separation woul d be useful because an applicationmaystall due to synchronizationinstead
of normal changed data. This nethod m ght al so provi de newinsight into the interactions

bet ween shared data and programexecution-tine behavior.



7.3. DISCUSSION 109

Chapter 6 shows that the mainlimtation of using the mapping proposedin this thesis
to enbed the protocol to a k-ary n-cube is the potentially high protocol overhead. Several
ways to fix this probl emshoul d be explored. One is to build fast controllers which can
independently process the protocol requests, the approach of the MT Alewife project [3].
The cost of adding such a controller tothe machine must be bal anced against the potential
speed benefits.

None of the architectures studiedinthis thesis was linmited by the speed of the network.
This indicates that either thereis aprocessor-netwrkspeed m smatch, and that the net work
istoofast, or that the protocol is fundanentall ytooslow. Studies usingaveryfast controlle
with fast processors, or fast controllers and sl owprocessors coul d be used to eval uate how
the protocol performanceis affected by the 1ayout, and possibly howtobuildshared- remory
machines.

There are many areas left to be explored. Uppernost in our minds is the question of
whet her or not hierarchical protocols will performbetter than flat directory schenes, or
even no caching at all, for actual applications. Determining exactly where the tradeoffs are
inconplexity, technol ogy, applicationlocality, conpilationtine, and nachine size woul d be
extrenel y enlightening. W believe that PHDwill performbest onlarge nachines withlow
protocol overhead running applications exhibiting hierarchical locality patterns. Wether
or not these conditions will occur for real applications is unknown.

Regardl ess of what cache coherence schene is chosen conpilers mmst be developed to
mnimze data sharing. The scheduling of processes and the pl acerment of data will be sone

of the most inportant problens in building nassively parallel conputer systens.



Appendix A

Nomencl at ur e

Average nessage size (inflits).
Number of words in a cache line.
Probability a node accesses bl ocks owned by a node inits subfreedes.}
Nunber of levels in the hierarchy.
Average tine to satisfy alocally satisfiable request to shared menory.
Average tine to process a protocol message invoked on a processor.
Nunber of processors.
Average network interface overhead
Overhead: Fraction of the average transaction issue time not spent running.
Average thread runlength bet ween successive requests to shared nenory.
Number of reads which reachlevel L
Non-net work overhead to satisfying a non-local shared-nmenory request
Average thread runlength bet ween successive non-locally satisfiable requests.
Context swmtch time.

wh Nunber of writes whichreachlevel [ .
Zv, Zw, Z Fractionof locally satisfiable {reads, writes, requests} to shared mepory.

BRI x| o2z R | v qlw

Table A 1: Part I of the table listing all of the paraneters used by the thesis. Part Il is
located on the next page.

110



111

equest.

[¢]

est}.

b Branchi ng factor of the hierarchy.
c Nunber of valid children of a valid node at level 1 .

Cry, «, ¢ | Average nunber of nessages incritical path of a non-local shared-memory r
d Average distance a nessage travels (in hops).
d; Expected nunber of hops between a node andits physically distinct parent.

1 Expected nunber of hops a nessage which circunvents the hierarchy will tak

e Fraction of all operations by a node which occur toits own data.
f Number of flits per word.

gr, 9w ¢ Average number of nessages per non-local shared-nemory {read, write, requ

h., &, h| Average height a {read, write, request}is expected to reach.
k Number of processors per di nension.
kq Average distance a nessage travels in each di nension.

l,, J, 1 | Longest pathtraversed during a {read, write, request}.

m,, mw, M Average nunber of nessages sent during a {read, write, request}.

n Number of dinensions.
P Val ue of the locality paraneter at level [ .
Pm Degree of hardware nul tithreading.
7 Fraction of reads in the shared-memory reference stream
17} Probability of taking a valid path down fromlevel I during node selection.
t The average inter-transaction issue tine.
vf Probability that ¢ children of a valid node at level [ are valid.
w Fraction of writes in the shared-nemory reference stream

Table A 2: Part Il of the table listing all of the paraneters used by the thesis.



Appendi x B

Rel axation Cal cul ati ons

The height of read and write operations for a given relaxation problemcan be exactly
cal cul ated, as mentioned in Chapter 5. This appendi x presents the anal ytical equations for

two and three dinensional rel axation cal cul ations.

Calculating t he Characteristics of Read Operations The first characteristic of
applicationthat must be understoodis the nunber of read operations to nei ghboring val ues
that are local, and the nunber that cross various levels of the hierarchy. Wwill first show
a derivation for the 2-dinensional nunbers and then the 3- di nensional nunbers. (all n
the nunber of processors per dinension, Mhe total nunber of processors, z the nunber of
data points per processor per dimension, and Xthe nunber of data points per processor.
Note that inthe rest of the thesis, kis the nunber of processors; we use nhere for simplicity.
As can be seenin Figure B. 1, the read references which reach the highest level in the
system K1, will be the ones by points of data abutting the bol dest lines, whichrepresents
the di visionbetweenthe four level 3 processors. The nunber of reads whichcross these lines
is 4 The nunber of reads which cross the next highest level is 4(2m). In general, the
nunber of reads whichcross level [is twice as many as cross level [41, for all [ €[1,[-2].
For three dinmensions, the read reference calculationis simlar. Here we are dealing with
planes instead of lines. The nunber of reads which cross the hi ghest *pPandsi sn6n
the 2- dinensional case, the nunber of reads which cross level [is twice as many as cross

level [+1, for all I €[1,L-2].

112



113

| | T |
== ) N O
| | !’ |
I | i ‘
| | } |
—— Level 1 Crossings **‘L* ——‘\;777’7777‘\;,
— Level 2 Crossings | ‘ | i
— Level 3 Crossings | ‘ T ‘
= |_evel 4 Crossings L L | L
- R R e
\ ‘ [ ‘
‘ | [ } [
Y I A S Y Y I I
| r | !’ |
| | | | |
Ll T
Level 0 Node 77} 777(’ ) —77r77,} _
| I T ‘
. Level 1 Node | |
Y I A S I I
I r | r |
. Level 2 Node ; } ; } ;
‘ |
DLwdSNode *J‘***—\* —J‘fff_‘ff,J‘,,
| ! | | |
D Level 4 Node \L } \L } L
N EREREE

Figure B.1: The tree is mapped to the processors in such a way that crossing the bol der
lines represents reaching hi gher levels of the tree.

Infact, we can performthis calculationfor an arbitrary ddi nensi onal enbeddi ng. The
I-1 crossing happens for exactly 2c(17¢)4 reads, where D =2 The reads al ways doubl e
as the level decreases. The nunber of read references reaching eachlevel for an arbitrary

dinensionis summrizedin Equation B. 1.

- Y R 1=0
Ri=4 2R le[1,L-2] (B.1)
2d m) 27 I=L-1

Calculating t he Characteristics of Write Operations W are nowpreparedto cal c
late the exact nunber of writes which mist reach a particul ar hei ght. Instead of summing,

for every point, the heights of its neighbors, we must performa maxi mum As can be seen

in Figure B.2, there are nany grid points that have neighbors at varying heights. Data
point ais atypical data point, withall of its neighbors local. The maxi rmumhei ght a write
tothis point couldreach, therefore, is 0. Data point bhas a nei ghbor whichis across alevel
1 boundary. Since the rest of its neighbors are local, the maxi mumheight is 1. Both points
cand dhave nei ghbors across level 2 boundaries, somst be counted at hei ght 2. The three

points e f, and gare similarly counted at height 3, and i ¢, j, and kare simlarly counted



114 APPENDI X B. RELAXATI ON CALCULATI ONS

| \ | \ \ | \
\ \ \ \
**\L***F***\L***F***F***\L***F*****
| | | | | ¢ dp |
| O } oy } } | }
a
— — Level 1 Crossings **‘L***f***%**T***f***%***ﬁ*****
— Level 2 Crossings ‘ | ‘ | | ‘ me}jf -9
— Level 3 Crossings ‘ T ‘ T ire ‘ \
m— |_evel 4 Crossings L | L | | L |
EEEEEEEEEEEEEEEE
\ \ \
oL
AR N I A AN N N IR SN AN AN A S
[ [ \ [ [ \ M
| \ | \ \ Lk
| | | | | | |

Figure B.2: The labeled points represent pieces of data which mst be carefully considered
when determ ni ng the hei ght that a write to that data will reach.

at 4.

All points to be counted at I-1 can be easily cal cul ated asWe—4. The 4
was derivedfor the read case, and the subtractionof 4 refers tothe four cross points each of
whi ch was double countedin the read fortmlld cal cul ate the formulafor [ €[1,L-2],
we count all of the points on a cross for size I, subtracting out the four center ones as
inthe ] =L-1 case, and then mul tiply that quantity by the nunber of crosses at that
level. W then mst subtract offall points whi chare supposed to be counted as hi gher-1evel
points. The resulting formil a, which applies only to the t w- di nensional case, is givenin
Equation B. 2. Note that;,Cthe nunber of crossing points associated with each level, is
2E-1-1 and @, the nunber of processors at level £1i¥.D

n?(z—-2) % +4n(2—2) +4 1=0
Wi=1 G (4 -4)-8(C) (G-1) L€[1,1-2] (B2)
4m—4 l=I-1

(al cul ating the nunber of data points which have conpletely local neighbors is fairly

'This doubl e count is appropriate for a read, since more than one read occurs to every bl ock.



115

sinple. Note that we are assuming that points whichlie on the boundary are read fewer
times (as many fewer tines as neighbors they lack). There aré ¢omflletely local

points per node, plus z—2 boundary points per edge node, plus an extra point (the corner
one) on each corner node.

In the 3-dinensional case we must consider three intersecting planes instead of two
intersecting lines. The nunber of writes which reach the highest level, however, is still
straightforward: fromthe read case we know that theréarertissings of the three
planes. The three planes intersect at three separate lines, each of which generates four
doubl e- counted grid units per line unit which mst be subtracted fromthe earlier total.
The three lines, however, intersect in one point which has ei ght doubl e- counted grid units
around it. These eight gridunits mist be added back to the total, resulting in the forml a

gi ven in Equation B. 3.

n(2-2)° +6n7(2-2) +120(z-2) 48 =0
G <6n2m2 . m+8> —24nC (G 1)
W = ¢t C (B3)

24 (CHG-1)) + (G -1)2C) le[1,L-2]
6n2z2 —12m+8 I=I-1

W nowcalcul ate the equation for [ € [1,L-2] for the 3-dinensional case. First we
consi der each level [ subunit. Therelate!Buch subunits. As inthe [ =L-1 case
we count all the points along the three planes, subtract off the line ones, and add back
in the center eight ones. W nowmust account for the all the points which are counted
at a higher level. These points are the ones at the boundaries of the subunits. W will
calculate these fromlooking at the whole cube, not at subunits. Consider a face of the
cube, as in Figure B.3. Each dotted-line cross inthe right side of the figure is the edge view
of the 3-dinensional object shown at the left side of the figure. The bold lines on the left
figure indi cate whi ch points have been doubl e- counted, and mist be subtracted out of the
total. Fach di anond and circle in the right figure represents aline that st be subtracted
out. There are;0(; —1) circle lines, and the exact same nunber of di anond lines, per

dinmension. For every circle or diamond line, 4mpoints must be subtracted out.



At the

o

—o—

—0—

-

—0—

_L_
_L_
_L_
\
-
7‘ —
r
L
i

—0—

<

T

|
-

|

|

o

L&
&
|

L]
o]
—0—
o

S
S g
¢

S

|
_L
|
_L
|
L
|
_L
|
-+-¢
-+-¢
|

S

—0]
—0]
—O—
]
S S S S
—O—

e

T
-
o .
-
-Lo
_L
|
-
4Qi4¢7
-L-o
|

R
4<?74<>—
—O— 0

R 4
—o—-0

R 4

|
R a2

o]

—O—

B Saine 4

—O—

o
S aiat S S
S

|

—O—

*-9-Lo

—o—

£

TLLLL,
BeSdneSeaesesess
B8 3638 203003038

T
|
-
-+-¢
N
4Qi
-
+
4¢i
.
|

APPENDI X B. RELAXATI ON CALCULATI ONS

* 9o

—O—

S i R S e 3

e
e

SeSededesasesese

|
&
—O—
e
|
4Q7
&
-+
L5
<
-+
Lo
-+

—O—

|
[
|
[
[ !
-
[ !
-

—O——O——O——0—1—-0—1—O0——0——0—

—O——O——O0——O0——O0—1—O0—1—0——0—

L_L

L

BE3§3838 3E3 3008

> 4

£

boundaries of these 3-d crosses are lines (the endpoints of which are narked as circles and

Figure B.3: Fach dotted line cross is the edge of the intersection of two planes.
di anonds ) which contain the points that are supposed to be counted at a hi gher level.

116

BE3E3ERE SEDERCRE
BE383E38 36305856
B0 3238 838 a0ns

The intersections of

these lines have been doubl y subtracted in our total, and nmust be added back.

Figure B.4: The circles and di anonds represent the endpoints of 1ines.



117

After subtracting out all of those points, we still do not have the correct equation.
Everywhere the circle and di anond lines intersected, we double-subtracted points, and we
mist nowadd themback. Consider Figure B.4. Study the front and top faces of the cube.

W can see that per front col umn of circled, f@ont circles interseell €op circles.

There are ¢'front columms of circles. Similarly, per front columm of dj dmomds, C

di amonds intersect Op di anmonds. There are; €1 front col uims of di amonds. This set

of intersections occurs once for every pair of dinensions (4¢.e. three tines), and generates
eight points to be added back per crossing. The resulting formil a was already shown in
Equation B. 3.

W nowcal cul ate the nunber of data points which have conpletel ylocal neighbors for
the 3- dinensional case. There are (#<e8j)pletelylocal points per node, plus {z—2)
boundary points per face of the cube node, plus z—2 boundary points per edge node, plus
an extra point (the corner one) on each corner node. Again, the resulting formmla was

already shown i n Equation B. 3.



Appendi x C

Table of Protocol Behavi

The foll owing sections detail the behavior of the Protocol for Hierarchical Directories. The
first describes the transitions for leaf nodes, and the second describes the transitions fo

parent nodes.

C1 Leaf Node Transition Table

The 1 eaf node transitions are a function of the current state and the input nessage. For
every such combi nation, there is a possible newstate totransitionto as well as a possible
nessage to send. The possible states are enuneratedin Table G 1. Table C.21lists all of the
nessages that can be received by a leaf node. These nessages are expl ained in Table 2. 4.
Table C 3 explains all of the synbols used in the transitiontable. The nessages which can
be sent by a leaf node are listedin C 4, and a further expansion of the abbreviations is

listedin Thble C. 7. The actual transitiontableis split onto tw pages in Thble C 5.

118



C. 1.

Table C 2: The abbreviations for input nessages and requests used in the leaf transition

table.

LEAF NODE TRANSI TI ON TABLE

119

‘ Symbol Expansion
invalid invalid
r _yo_npl readabl e _yowner
r no_npl readabl e nowner
wfr _no npl waiting for read
w_yo_npl writabl e

wf w.no npl nr

wai ting for write nowner npl nread

wf wnonpl yr | waiting for write nowner npl yread
wf w_yo npl wai ting for write _yowner npl

wf wno_ypl nr | waiting for write nowner ypl nread
wf wno_ypl yr | waiting for write nowner ypl yread
wf wo_yo_npl wai ting for write_ok_yowner npl

wf wo_yo_ypl wai ting for write_ok_yowner ypl

wf wv _no_ypl nr

wai ting for write_val ue nowner _ypl n|

read

wf wv no_ypl _yr

wai ting for write_val ue nowner ypl _y

read

wf t _no_npl nr

wai ting for tas nowner npl nread

wft nomnpl yr | waiting for tas nowner npl yread
wf t _yo npl wai ting for _tas _yowner npl

wft no_ypl nr | waiting for tas nowner ypl nread
wft no_ypl yr | waiting for tas nowner ypl yread
wf t o_yo_ npl wai ting for tas ok _yowner npl
wfto_yo_ypl wai ting for tas ok _yowner _ypl

wf t v_no_ypl nr

wai ting for tas val ue nowner ypl nre

wf t v_no_ypl _yr

wai ting for tas val ue nowner ypl yre

‘ Synbol ‘ Expansion ‘

dr read request
r read

rd read_data

dw write requesft
1 lock

S WO s_write_own
wo write_ok

dt tas request
rt read_tas

tf tas failed

Table C.1: The abbreviations for states usedin the leaf transitiontable.



120 APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

‘ Synbol ‘ Expansion
. Stayin the sane state.
NUMBER G to the state nunbered NUMBER.
D Put nessage in del aying queue.
X Error.
DX Xif we issue only one request at atine, Dotherwise.
%: ACTI ON If value of the blockis zero then ACTI ON.

nrq: ACTION | If current node originated the request then ACTI ON.
!: ACTI ON El se ACTI ON.

Table C. 3: The abbreviations for synbols usedin the leaf transitiontable.

‘ Synbol ‘ Expansion

fr Send flcfr up to parent.
rfr Send rflcfr up to parent.
fw Send flcf wup to parent.
a Send a up to parent.

al Send al up to parent.

ft Send flcft up to parent.
rft Send rflcft up to parent.
cv Send cv up to parent.

rd Send rd to the reader.

S WO Send swo the writer.

tf Send tf to the tas requester.

Table C 4: The abbreviations for output nessages usedin the leaf transitiontable.



LEAF NODE TRANSI TI ON TABLE

Hdr‘r‘rd‘dw‘ 1 ‘swo‘wo‘dt‘ rt‘tf‘
0 |invalid fr |rfr] X | fw nrq: X X | X | ft rft | X
3 . 5 l:a. 14
1 | r_yomnpl rd | X | fw SWOo a X | X | ft|z:fw. X
. 7 0 16 | !:tf
2 | r nonpl rd | X | fw a X | X | ft|z:fw. X
. 6 0 15 | !:tf
3 | wfr nonpl DX | rfr| cv | DX D X | X | X rft | X
. 2 .
4 | wyomnpl rd | X SWOo a X | X z:fw. X
. 1 . 0 Votf
5 | fwnonpl nr || DX | rfr| X | DX nrq:al X | DX rft | X
8 10
l:a.
6 | wffwnonpl yr || DX |rd| X | DX nrq:al X | DX rft | X
9 10
':ab
7 | wf wyonpl DX |rd| X | DX | nrq:swo al X | DX rft | X
9 10
l:swab
8 | wfwnoypl nr || DX |rfr| X | DX nrq: X DX rft | X
11 | 12
1:D.
9 | wfwnoypl yr || DX |rd| X | DX nrq: X DX rft | X
11 | 13
1:D.
10 | wf wo_yo npl DX |rd| X | DX nrq:al X | X | DX rft | X
11
1:X
11 | wf wo_yo_ypl DX |rd| X | DX nrq: X X DX rft | X
4
1:D.
12 | wfwwno ypl nr || DX | rfr| X | DX nrq: X X | DX rft | X
4
1:D.
13 | wfwvnoypl yr|| DX | rd| X | DX nrq: X X | DX rft | X
4
1:D.

Table C. 5: The transitiontable for 1eaf nodes.

121



122 APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

‘ Hdr‘r‘rd‘dw‘ 1 ‘swo‘wo‘dt‘rt‘tf‘

14 | wft nonpl or || DX | rfr| X | DX nrq:al X | DX |rft
17 19 . .| 0
l:a.

15 | wft nomnpl yr || DX | rd| X | DX nrq:al X | DX |rft
18 19 . .| 0
l:al14

16 | wft _yonpl DX |rd| X | DX |nrg:sw al X | DX |rft
18 19 . .| 0

l:swoa 14
17 | wft no_ypl nr || DX | rfr| X | DX nrq: X DX |rft
20 | 21 . .| 0
1:D.
18 | wft noypl yr || DX | rd| X | DX nrq: X DX |rft
20 | 22 . .| 0
1:D.

19 | wfto_yonpl DX |rd| X | DX nrq:al X X | DX |[rft] X
20
1:X

20 | wfto_yoypl DX |rd| X | DX nrq: X X DX |rft] X

4
1:D.
21 | wftvmno_ypl nrf| DX | rfr| X | DX nrq: X X | DX |[rft] X
4
1:D.
22 | wftvmno ypl yrf| DX | rd| X | DX nrq: X X | DX |[rft] X
4
1:D.




C. 2. PARENT NODE TRANSI TI ON TABLE 123

C 2 Parent Node Transition Table

The state of a parent (non-leaf ) node includes the full vector describingits child subtrees
For this reason, the transitiontable mst be collapsed (just eight subtrees increases the totz
nunber of states by a factor o) 2n order to express it in a reasonabl e amount of room

The table therefore takes three inputs: the current state (which does not includes the state
of the subtree vector), the subtree vector conbination, and the i nput nessage. Inresponse
to a nessage, a node may send a nessage, performan action, change its ownstate, or any
conbinationof the above. All of these responses may be nodi fied by a condi tional expression
further specifying the state of the node. The table additionally contains assertions about
the state of a node for sone of the entries. These assertions are not required to inpl enent
the protocol, but are useful to understand what mst be happeni ng when a node reaches a
particul ar state.

The list of states is enunerated in Table 2.3. The possible vector combinations are
listedin C. 6. The nessages that a parent node might receive are listedin Tahble C 7; an
expl anation of these nessages is in Table 2.4. The list of actions a node nmay performis
enuneratedin Table C. 8. Table C.91lists the nessages that mi ght be sent by a parent node.
Table C 10 explains all of the assertions and predicates used in the transition table. The

actual node transition table spans mltiple pages, andis referred toas Thble C 11.

‘ Synbol ‘ Expansion

c vOwd cX | All subtrees are either confirned or invalid.
v vXw _c0 All subtrees are either valid or invalid.
vw | vXwXc0 All subtrees are valid, weiting, or invalid.

ve vXwl cX | All subtrees are valid, confirmed or invalid.
vwe | vXwXcX | All subtrees are valid, witing, confirmed or inwalid.

Table C. 6: The abbreviations for the vector conbinations used in the parent transition
table.



124

APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

‘ Synbol ‘ Expansion ‘
flefr find 1 owest _common for read

rflefr redirected find1owest _common for read
r read

flcfw find 1 owest _common for write

1 lock

a ack

al ackl

ta thr owi ng_avway

cte change to_exclusive

fleft find 1 owest _common f or _t as

rfleft redirected.find 1 owest _commmwon for tas
cv confirmval ue

rd read_data

uncv unconfirmval ue

rt read_tas

wo write_ok

Table C. 7: The abbreviations for input nessages used in the parent transition table.

‘ Synbol ‘ Expansion

=

Lock this node and change the writer index.

Change the sending subtree to valid.

Change

the sending subtree to confirned

Change

the sending subtree to invalid.

the sendi ng subtree to waiting.

Change

this node’s status to exclusive

+v
+c
H
Jw Change
+e
+s

Change this node’s status to shared.

Tabl e C. 8: The abbrevi ations for actions used in the parent transition table.



PARENT NODE TRANSI TI ON TABLE 125

Symbol ‘ Expansion

flefr Send flcfr up to parent.

rflefr Send rflcfr up to parent.

r Send r down to randoml y chosen confirned subtree.

flefw Send flcf wup to parent.

1 Send 1 down to writing subtree.

a Send a up to parent.

al Send al up to parent.

ta Send ta up to parent.

cte Send cte down to onl y non-invalid subtree.

fleft Send flcft up to parent.

rfleft Send rflcft up to parent.

cv Send cv up to parent.

uncv Send uncv up to parent.

rt Send rt down to randond y chosen confirned subtree.

Wwo Send wo down to onl y non-invalid subtree.

rdav, c Send rd down to all valid, naking themconfirned.

rdavw,c | Send rd down to all valid or waiting, making themconfirned.

rdaw, ¢ Send rd down to all waiting, making themconfirned.

rdavL,c | Level 1: Send rd down to all valid except locker,
maki ng t hemconfir ned.

Level 3: Send rd down to all validincluding locker,

making all but 1ocker confirned.

rdavwl, ¢| Level 1: Send rd down to all valid or waiting except locker,
maki ng t hemconfir ned.

Level 3: Send rd downto all valid or waiting including|l ocker,

making all but 1ocker confirned.

rl Send r down to the locking subtree.

la Send 1 down to all not-invalidsubtrees and the writing subtree.

Table C 9: The

abbrevi ations for output nessages used in the parent tr

ansitiontable.



126 APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

‘ Synbol ‘ Expansion

rC Sendi ng subtree is not the only confirned subtree.
rV Sendi ng subtree is not the only valid subtree.

iwW Sendi ng subtree is not waiting.

il Sendi ng subtree is not the locker of this node.

ii Sendi ng subtree is invalid.

ivwe Sendi ng subtree is valid, waiting, or confirned.

ivw Sendi ng subtree is valid or waiting.

ive Sendi ng subtree is valid or confirned.

ic Sendi ng subtree is confirned.

iv Sendi ng subtree is valid.

il Sendi ng subtree is the locker of this node.

svc Subtree of requester if operationis valid or confirned.
sV Subtree of requester of operationis valid.

sc Subtree of requester of operationis confirned.

lv Locker’s subtree is valid.

lc Locker’s subtree is confirned.

I'w Locker’s subtree is not waiting.

Oc Zero subtrees are confirned.

0C At least one subtree is confirned.

Ov Zero subtrees are valid.

ov At least one subtree is valid.

T This node is not the toplevel node in the hierarchy.
t This node is the top level in the hierarchy.

1 This node is at level one.

i1 Thi s node is above level one.

lvwe Exactly one subtree is valid, waiting, or confirned.
lvw Exactly one subtree is valid or waiting.

1lve Exactly one subtree is valid or confirned.

1v Exactly one subtree is valid.

lc Exactly one subtree is confirned.

ORP This node is on the request path of the current operation.
NRP Thi s node is not on the request path of the current operation.

Table C. 10: The abbreviations for assertions usedin the parent transition table.



PARENT NODE TRANSI TI ON TABLE

| FLCFR | RFLCFR IE | FLCFW
INVALID 0 I NVALI DO INVALID O INVALID O
if(t){ assert T assert T if(t){
alloc; assert NRP; send rflefr; alloc;
next state 2; send rflefr; next state .; next _state 2;
}else { next _state .; }else {
do +v; send flefw;
send flefr; next _state .;
next state 8; 1
}
¢ S.UNOP_NGA 1 | ¢ S_U_NOP_NGAl ¢ S_U_NOP_NGA 1 ¢ S_U_NOP_NGA 1
assert r1C if(orr){ send r; assert T
do +v; assert sc; next state .; send flefw;
send r; } next state .;
next _state 20; send r;

next state .;

¢ E_U_NOP_NGA 2

¢ E_U_NOP_NGA2

¢ E_U_NOP_NGA 2

¢ E_U_NOP_NGA 2

next state 23;

}

assert r1C if(orr){ do 4s; do L;

do +v; assert sc; send r; send la;

send r; } next state 1; if(i1){

next _state 21; send r; do +v;

next state .; next state 24;

}else {
next state 5;
}

¢ S_L_NOP_NGA 3 | ¢ S_L_NOP_NGA3 ¢ S_L_NOP_NGA 3 ¢ S_L_NOP_NGA 3

if(ii){ if(orr){ send r; send D

send D assert sc; next state .; next state .;

next state .; }

}else { send r;

assert 1 G next _state .;

do +v;

send r;

next state 22;

}

¢ S.LYOPNGA4 |c SL_YOPNGA4 | ¢ S L_YOPNGA4 | c S_L_YOP_NGA 4

if(ii){ if(orr){ send r; send D

send D assert sc; next state .; next state .;

next state .; }

}else { send r;

do +v; next state .;

send r;

Table C.11: The transition table for parent nodes.

127



128

APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

| FLCFR | RFLCFR IE | FLCFW
¢ E.L_YOP_NGA 5 ¢ E_L_YOP_NGAD ¢ E_LL_YOP_NGA 5 ¢ E_L_YOP_NGA 5
if(ii){ if(orp){ if(nNrp){ send D
send D assert sc; send D next state .;
next state .; } next state .;
}else { send r; }else {
do +v; next state .; send r;
send r; next state .;
next state 24; }
}
¢ S_L_YOP_YGA 6 ¢ S_L_YOP_YGAG ¢ S_L_YOP_YGA 6 ¢ S_L_YOP_YGA 6
if(ii){ if(orr){ send r; send D
send D assert sc; next state .; next state .;
next _state .; }
}else { send r;
do +v; next state .;
send r;
next state 25;
}
C EL_YOP_YGAT | c EL_YOP_.YGAT | c EL_YOP.YGAT | ¢ E_LL_YOP_YGA 7
if(ii){ if(orp){ if(nNrp){ send D
send D assert sc; send D next state .;
next state .; } next state .;
}else { send r; }else {
do +v; next state .; send r;
send r; next state .;
next state 26; 1
}
v S_U_NOP_NGA 8 V S_U_NOP_NGAS8 vV S_U_NOP_NGA 8 v S_U_NOP_NGA 8
assert r'V; assert T, assert T, assert T
do 4w if(orr){ send rflefr; send flef w,
next state 14; assert sv; next state .; next state .;
}
send rflcfr;

next state .;

v S_L_NOP_NGA 9
if(ii){
send D
next _state

}else {

assert T
send flefr;

next _state

)

)

}

Vv §_L_NOP_NGA9
assert T
if(orr){
assert sv;

}

send rflcfr;
next state .;

v S_L_NOP_NGA 9
assert T

send rflcfr;
next state .;

Vv S_L_NOP_NGA 9
send I}

next state .;




PARENT NODE TRANSI TI ON TABLE

FLCFR | RFLCFR IE | FLCFW
v S_L_YOP_NGA 10 v S_L_YOP_NGA10 v S_L_YOP_NGA 10 v S_L_YOP_NGA 10
if(ii){ if(orr){ send rl; send D
send D assert sv; next state .; next state .;
next state .; }
}else { if(t){
if(t—il){ send rl;
send rl; telse {
next state .; send rflefr;
}else { 1
send flefr; next state .;
next state .;
1}
v E_.L_YOP_NGA 11 v E_L_YOP_NGAll v E.L_YOP_NGA 11 v E_.L_YOP_NGA 11
if(ii){ if(orp){ if(nNrp){ send D)
send D assert sv; send D next _state .;
next state .; } next state .;
}else { send rl; }else {
send rl; next state .; send rl;

next state .;

next state .;

} }
Vv S_L_YOP_YGA 12 vV S_L_YOP_YGAl2 Vv S_L_YOP_YGA 12 Vv S_L_YOP_YGA 12
if(ii){ if(orr){ send rl; send D
send D assert sv; next state .; next state .;
next state .; }
}else { if(t){
if(t—1){ send rl;
send rl; telse {
next state .; send rflefr;
}else { 1
send flefr; next state .;
next state .;
1}
v E.L_YOP_YGA 13 v E_LL_YOP_YGA13 v E.L_YOP_YGA 13 v E_LL_YOP_YGA 13
if(ii){ if(orp){ if(nNrp){ send D)
send D assert sv; send D next _state .;
next state .; } next state .;
}else { send rl; }else {
send rl; next state .; send rl;

next state .;

next state .;

} }
VW S _U_NOP_NGA 14 VWS _U_NOP_NGAl4 VW S _U_NOP_NGA 14 VWS _U_NOP_NGA 14
assert r'V; assert T assert T, assert T
assert 1 W; if(orr){ send rflefr; send flefw,
do +w; assert sv; next state .; next state .;
next state .;

send rflcfr;

next state .;

129



130

APPENDI X C. TABLE OF PROTOCOL BEHAVI OR
| FLCFR RFLCFR IE | FLCFW

vw S _L_NOP_NGA 15 VW S _L_NOP_NGAlb VWS _L_NOP_NGA 15 vw S _L_NOP_NGA 15
if(ii){ assert T assert T send D
send D if(orr){ send rflefr; next_state .;
next state .; assert sv; next state .;
}else { }
assert r'V; send rflcfr;
do +w; next _state .;
next state .;
}
VWS _L_YOP_NGA 16 VWS _L_YOP_NGA16 VWS _L_YOP_NGA 16 VWS _L_YOP_NGA 16
if(ii){ if(orr){ send rl; send D
send D assert sv; next state .; next state .;
next state .; }
}else { if(t){
assert 1W send rl;
do +w; }else {
next state .; send rflcfr;
} }

next state .;
VWE_L_YOP_NGA 17 VWE_L_YOP_NGA17 VWE_L_YOP_NGA 17 VWE_L_YOP_NGA 17
if(ii){ if(orp){ if(nNrp){ send D)
send D assert sv; send D next _state .;
next state .; } next state .;
}else { send rl; }else {
assert 1W next state .; send rl;
do +w; next state .;
next state .; 1
}
VWS _L_YOP_YGA 18 VWS _L_YOP_YGALS8 VWS _L_YOP_YGA 18 VWS _L_YOP_YGA 18
if(ii){ if(orr){ send rl; send D
send D assert sv; next state .; next state .;
next state .; }
}else { if(t){
assert 1W send rl;
do +w; }else {
next state .; send rflefr;
} }

next state .;
vwE_L_YOP_YGA 19 VWE_L_YOP_YGAL9 VWE_L_YOP_YGA 19 VvWE_L_YOP_YGA 19
if(ii){ if(orp){ if(nNrp){ send D)
send D assert sv; send D next _state .;
next state .; } next state .;
}else { send rl; }else {
assert 1W next state .; send rl;
do +w; next state .;
next state .; 1
}




C.

2.

PARENT NODE TRANSI TI ON TABLE

FLCFR

| RFLCFR

IE

| FLCFW

vc S _U_NOP_NGA 20
assert r'V;
do +w;

next _state 27;

ve S_U_NOP_NGA20
if(orr){

assert svc;

}

send r;

next state .;

ve S_U_NOP_NGA 20
send r;
next state .;

ve $_U_NOP_NGA 20
assert T

send flefw;

next state .;

vce E_U_NOP_NGA 21
assert r'V;
do +w;

next state 28;

ve E_U_NOP_NGA21
if(orr){

assert svc;

}

send r;

next state .;

ve E_U_NOP_NGA 21
do s;

send r;

next state 20;

ve E_U_NOP_NGA 21
do L;

if(ii){

do +v;

}

send la;

next state 24;

ve S_L_NOP_NGA 22

ve S_L_NOP_NGA22

ve S_L_NOP_NGA 22

ve S_L_NOP_NGA 22

if(ii){ if(orr){ send r; send D

send D assert svc; next state .; next state .;
next state .; }

}else { send r;

assert 1 G next state .;

do +v;

send r;

next state .;

}

ve S_L_YOP_NGA 23 | ve S_L_YOP_NGA23 | vc S_L_YOP_NGA 23 | vc S_L_YOP_NGA 23
if(ii){ if(orr){ send r; send D

send D assert svc; next state .; next state .;
next state .; }

}else { send r;

do +v; next state .;

send r;

next state .;

}

ve E_L_YOP_NGA 24 | vc E_L_YOP_NGA24 | vc E_LL_YOP_NGA 24 | vc E_L_YOP_NGA 24
if(ii){ if(orp){ if(nNrp){ send D)

send D assert svc; send D next state .;
next state .; } next state .;

}else { send r; }else {

do +v; next state .; send r;

send r; next state .;

next state .; 1

}

131



132 APPENDI X C. TABLE OF PROTOCOL BEHAVI OR
| FLCFR | RFLCFR IE | FLCFW
ve S_L_YOP_YGA 25 ve S_L_YOP_YGA25 ve S_L_YOP_YGA 25 ve S_L_YOP_YGA 25
if(ii){ if(orr){ send r; send D
send D assert svc; next state .; next state .;
next state .; }
}else { send r;
do +v; next state .;
send r;
next state .;
}
vc E_L_YOP_YGA 26 ve E_L_YOP_YGA26 ve E_L_YOP_YGA 26 vc E_L_YOP_YGA 26
if(ii){ if(orp){ if(nNrp){ send D)
send D assert svc; send D next state .;
next state .; } next state .;
}else { send r; }else {
do +v; next state .; send r;
send r; next state .;

next state .;

}

}

VWwe S_U_NOP_NGA 27
assert r'V;

assert 1W

do +w;

next state .;

VWC S _U_NOP_NGA27
if(orr){

assert svc;

}

send r;

next state .;

VWwe S_U_NOP_NGA 27
send r;
next state .;

vwe S_U_NOP_NGA 27
assert T

send flefw;

next state .;

vwe E_U_NOP_NGA 28
assert r'V;

assert 1W

do +w;

next state .;

vwe E_U_NOP_NGA28
if(orr){

assert svc;

}

send r;

next state .;

vwe E_U_NOP_NGA 28
do s;

send r;

next state 27;

vwe E_U_NOP_NGA 28
do L;

if(ii){

do +v;

}

send la;

next state 31;

vwe $_L_NOP_NGA 29
if(ii){

send D

next state .;
}else {

assert 1 G

do +v;

send r;

next state .;

}

vwe S_L_NOP_NGA29
if(orr){

assert svc;

}

send r;

next state .;

vwe $_L_NOP_NGA 29
send r;
next state .;

VWe S_L_NOP_NGA 29
send D

next state .;




C.

2. PARENT NODE TRANSI TI ON TABLE

| FLCFR | RFLCFR | R FLCFW
vwe S_L_YOP_NGA 30 vwe S_L_YOP_NGA30 vwe $_L_YOP_NGA 30 vwe $_L_YOP_NGA 30
if(ii){ if(orr){ send r; send D
send D assert svc; next state .; next state .;
next _state .; }
}else { send r;
do +v; next state .;
send r;
next state .;
}
vwe E_L_YOP_NGA 31 vwe E_L_YOP_NGA31 vwe E_L_YOP_NGA 31 vwe E_L_YOP_NGa 31
if(ii){ if(orp){ if(nNrp){ send D
send D assert svc; send D next state .;
next state .; } next state .;
}else { send r; }else {
do +v; next state .; send r;
send r; next state .;
next _state .; 1
}
vwe S_L_YOP_YGA 32 vwe S_L_YOP_YGA32 vwe S_L_YOP_YGA 32 vwe $_L_YOP_YGA 32
if(ii){ if(orr){ send r; send D
send D assert svc; next state .; next state .;
next _state .; }
}else { send r;
do +v; next state .;
send r;
next state .;
}
vwe E_L_YOP_YGA 33 vwe E_L_YOP_YGA33 vwe E_L_YOP_YGA 33 vwe E_L_YOP_YGA 33
if(ii){ if(orp){ if(nNrp){ send D
send D assert svc; send D next state .;
next state .; } next state .;
}else { send r; }else {
do +v; next state .; send r;
send r; next state .;

next state .;

}

}

133



134

APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

| L

A

| a1

| TA

INVALID O
assert T
if(orr){

do L;

send 1;

next state 4;
}else {

send a;

next state .;

}

INVALID 0
next state X;

INVALID O
next state X

INVALID O
next state X

¢ S_U_NOP_NGA 1

¢ S_U_NOP_NGA 1

¢ S_U_NOP_NGA 1

¢ S_U_NOP_NGA 1

do L; next state X; next state X assert ic;
if(nre){ do 4
next _state 3; if(0e){
}else { assert T
if(ii){ send ta;
do +v; next _state O;
next state 23; telse {
}else { next state .;
next state 4; }
}r
send la;
¢ E_UNNOP_NGA 2 | ¢ E_U_NOP_NGA 2 ¢ E_UNOP_NGA 2 | ¢ E_U_NOP_NGA 2
do L; next state X; next state X assert ic;
if(nre){ do 4
next state 3; assert 0G
}else { if(>1&1vwe) {
if(ii){ send cte;
do +v; }
next state 23; next state .;
}else {
next state 4;
}r
send la;
¢ S_.L_NOP_NGA 3 | ¢ S_L_NOP_NGA 3 ¢ S_L_NOP_NGA 3 ¢ $_L_NOP_NGA 3
send D assert ic; next state X assert ic;
next state .; do Hi; do +v;
if(0e){ if(0e){
assert T assert T
send a; send uncv;
next _state 0; next _state 9;
}else { }else {
next state .; next state 22;
} }




C.

2.

PARENT NODE TRANSI TI ON TABLE

| L | A Al TA
¢ SL YOPNGA4 | ¢cSL_YOPNGA4 | c S_L_YOPNGA4 | c S_L_YOP_NGA 4
send D assert 1c; assert 1c; assert | W
next state .; do H; do H¢; assert ic;
assert 0C if(le){ do +v;
next _state .; assert T if(0e){
send al; if(T{
next state 3; send uncv;
Yelse { }
next state 6; next state 10;
} }else {
next state 23;
}
¢ EL_YOP NGAD | ¢cEL_YOP.NGAS | c ELL_YOP.NGAS5 | ¢ E_L_YOP_NGA 5
send D assert 1c; assert 1c; assert | W
next state .; do H; do H¢; assert ic;
assert 0C if(le){ do +v;
next _state .; send wo; if(0e){
next state 2; next state 11;
Yelse { }else {
next state 7, next state 24;
} }
¢ SL YOPYGAG |cSL_YOPYGAG | c S_L_YOP.YGAG | c S_L_YOP_YGA 6
send D assert 1c; next state X assert | W
next state .; do H; assert ic;
if(le){ do +v;
assert T if(0e){
send al; if(T{
next _state 3; send uncv;
Yelse { }
next state .; next state 12;
1 }else {
next state 25;
}
CEL_YOP YGAT |cEL_YOPYGAT | c ELL.YOP.YGAT | ¢ E_LL_YOP_YGA 7
send D assert 1c; next state X assert | W
next state .; do H; assert ic;
if(le){ do +v;
send wo; if(0e){
next _state 2; next state 13;
Yelse { }else {
next state .; next state 26;
} }

135



136

APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

| L

A

| a1

| Ta

Vv S_U_NOP_NGA 8
do L;

Vv S_U_NOP_NGA 8
next state X

Vv S_U_NOP_NGA 8
next state X

Vv S_U_NOP_NGA 8
next state X

next state 2;

Yelse {

next state 26;

}

if(nre){
send la;
next state 9;
}else {
if(ii){
do +v;
}
send la;
next state 10;
}
v S_L_NOP_NGA 9 v S_L_NOP_NGA 9 v S_L_NOP_NGA 9 v S_L_NOP_NGA 9
send D assert iv; next state X next _state X;
next state .; do Hi;
if(ov){
assert T
send a;
next _state 0;
}else {
next state .;
}
Vv SL_YOP.NGA 10 | v S_L_.YOP NGA 10 | v S_L_YOP_.NGA 10 | v S_L_YOP_NGA 10
send D assert iv; assert 1v; next _state X;
next state .; do Hi; do +e;
assert 0V, if(1ve){
next state .; assert T
send al;
next state 3;
Yelse {
next state 25;
}
VEL_YOP.NGA 1l | vELL_YOPNGA 11 | vEL_YOP_.NGA 1l | v E_LL_YOP_NGA 11
send D assert iv; assert 1v; next _state X;
next state .; do Hi; do +e;
assert 0V, if(1ve){
next _state .; send wo;




C. 2.

PARENT NODE TRANSI TI ON TABLE

| L

| A

| a1

| Ta

Vv S_L_YOP_YGA 12
send D

next state .;

Vv S_L_YOP_YGA 12
assert iv;

do +4;

if(1v){

assert T
assert lv;

do +e;

send al;

next state 3;

}else {

next state .;

}

Vv S_L_YOP_YGA 12
next state X

v S_L_YOP_YGA 12
next state X

v E_L_YOP_YGA 13
send D

next state .;

v E_LL_YOP_YGA 13
assert iv;

do +4;

if(1v){

assert lv;

do +e;

send wo;

next state 2;

}else {

next state .;

}

v E_L_YOP_YGA 13
next state X

v E_L_YOP_YGA 13
next state X

VW S _U_NOP_NGA 14
do L;

if(nre){

send la;

next state 15;

}else {
if(ii){
do +v;
}
send la;
next state 16;

}

VW S _U_NOP_NGA 14
next state X

VW S _U_NOP_NGA 14
next state X

VW S _U_NOP_NGA 14
next state X

VW S _L_NOP_NGA 15
send D

next state .;

VWS _L_NOP_NGA 15
assert iv;

do +4;

assert 0V,

next state .;

VWS _L_NOP_NGA 15
next state X

VW S _L_NOP_NGA 15
next state X

VWS _L_YOP_NGA 16
send D

next state .;

VWS _L_YOP_NGA 16
assert iv;

do +4;

assert 0V,

next state .;

VWS _L_YOP_NGA 16
assert 1v;

do +e;

assert 0V,

next state 32;

VWS _L_YOP_NGA 16
next state X

137



APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

| L

| A

Al

| Ta

VWE_L_YOP_NGA 17
send D

next state .;

VWE_L_YOP_NGA 17
assert iv;

do +4;

assert 0V,

next state .;

VWE_L_YOP_NGA 17
assert 1v;

do +e;

assert 0V,

next state 33;

VWE_L_YOP_NGA 17
next state X

VWS _L_YOP_YGA 18
send D

next state .;

VWS _L_YOP_YGA 18
assert iv;

do +4;

assert 0V,

next state .;

VWS _L_YOP_YGA 18
next state X

VWS _L_YOP_YGA 18
next state X

VWE_L_YOP_YGA 19
send D

next state .;

VWE_L_YOP_YGA 19
assert iv;

do +4;

assert 0V,

next state .;

VWE_L_YOP_YGA 19
next state X

VWE_L_YOP_YGA 19
next state X

ve S_U_NOP_NGA 20

ve S _U_NOP_NGA 20

ve S_U_NOP_NGA 20

ve S _U_NOP_NGA 20

do L; next state X; next state X assert ic;
if(nre){ do 4

next _state 22; if(0e){
}else { assert T
if(ii){ send uncv;
do +v; next _state 8;
} }else {

next state 23; next state .;
} }
send la;
ve E_U_NOP_NGA 21 ve E_U_NOP_NGA 21 ve E_U_NOP_NGA 21 ve E_U_NOP_NGA 21
do L; next state X; next state X assert ic;
if(nre){ do 4

next state 22; assert 0G
}else { next _state .;
if(ii){

do +v;

}

next state 23;
}

send la;




C.

2. PARENT NODE TRANSI TI ON TABLE

| L

| A

| a1

TA

ve S_L_NOP_NGA 22
send D

next state .;

ve $_L_NOP_NGA 22
assert ivc;
do +4;
if(ov){
if(0e){

next state X
}else {

next state 3;
}

}else {
if(0e){

send uncv;
next state 9;

}else {

next state .;

135

ve S_L_NOP_NGA 22
next state X

ve S_L_NOP_NGA 22
assert ivc;

do +v;

if(0e){

assert T

send uncv;

next _state 9;

Yelse {

next state .;

}

ve S_L_YOP_NGA 23
send D

next state .;

ve S_L_YOP_NGA 23
assert ivc;

do +4;
if(ov){
if(0e){

next state X
}else {

next state 4;
}

}else {
if(0e){

next state 10;

}else {

next state .;

135

ve S_L_YOP_NGA 23
assert ivc;

do +e;

if(ov){

next state 6;

Yelse {

next state 25;

}

ve S_L_YOP_NGA 23
assert | W
assert ivc;

do +v;

if(0c&D){

send uncv;

}
if(0c){

next state 10;

Yelse {

next state .;

}

ve E_L_YOP_NGA 24
send D

next state .;

ve E_L_YOP_NGA 24
assert ivc;

do +4;
if(ov){
if(0e){

next state X
}else {

next state 5;
}

}else {
if(0e){

next state 11;

}else {

next state .;

135

ve E_L_YOP_NGA 24
assert ivc;

do +e;

if(1ve){

send wo;

next state 2;

Yelse {
if(ov){
next state T;

Yelse {

next state 26;

1}

ve E_L_YOP_NGA 24
assert | W
assert ivc;

do +v;

if(0e){

next state 11;

Yelse {

next state .;

}

139



140 APPENDI X C. TABLE OF PROTOCOL BEHAVI OR
| L | A | a1 TA
ve S_L_YOP_YGA 25 ve S_L_YOP_YGA 25 ve S_L_YOP_YGA 25 ve S_L_YOP_YGA 25
send D assert 1vc; next state X assert | W
next state .; do Hi; assert ivc;
if(1ve){ do +v;
assert T if(0c&D){
if(lv){ send uncv;
do e; }
} P£(0c){
send al; next _state 12;
next state 3; Yelse {
}else { next _state .;
i£(0v){ }
next state 6;
}else {
if(0e){
next state 12;
Yelse {
next state .;
39

ve E_L_YOP_YGA 26
send D

next state .;

ve E_L_YOP_YGA 26
assert ivc;
do +4;
if(1ve){
if(lv){
do +¢;
}
send wo;
next state 2;

}else {
if(ov){

next state T;
}else {
if(0e){

next state 13;

Yelse {

next state .;

133;

ve E_L_YOP_YGA 26
next state X

ve E_L_YOP_YGA 26
assert | W
assert ivc;

do +v;

if(0e){

next state 13;

Yelse {

next state .;

}

VWwe S_U_NOP_NGA 27
do L;
if(nre){
next state 29;
}else {
if(ii){
do +v;
}

next state 30;

}

send la;

vwe S_U_NOP_NGA 27
next state X

vwe S_U_NOP_NGA 27
next state X

vwe S_U_NOP_NGA 27
assert ic;

do Hi;

if(0e){

assert T

send uncv;

next state 14;

Yelse {

next state .;

}




C. 2.

PARENT NODE TRANSI TI ON TABLE

| L | A | a1 | Ta
vwe E_U_NOP_NGA 28 vwe E_U_NOP_NGA 28 vwe E_U_NOP_NGA 28 vwe E_U_NOP_NGA 28
do L; next state X next state X assert ic;
if(nre){ do 4
next state 29; assert 0G
}else { next _state .;
if(ii){
do +v;
}
next state 30;
}
send la;
vwe $_L_NOP_NGA 29 vwe $_L_NOP_NGA 29 vwe $_L_NOP_NGA 29 vwe $_L_NOP_NGA 29
send D assert 1vc; next state X assert ivc;
next state .; do Hi; do +v;
assert 0V, if(0e){
if(0e){ assert T
send uncv; send uncv;
next state 15; next state 15;
}else { Yelse {
next state .; next state .;
} }
vwe $_L_YOP_NGA 30 vwe $_L_YOP_NGA 30 vwe $_L_YOP_NGA 30 vwe $_L_YOP_NGA 30
send D assert 1vc; assert 1vc; assert | W
next state .; do Hi; do H¢; assert ivc;
assert 0V; assert 0V; do +v;
if(0e){ next state 32; if(0c&D){
next state 16; send uncv;
}else { }
next state .; if(0e){
} next _state 16;
Yelse {
next state .;
}
vwe E_L_YOP_NGA 31 vwe E_L_YOP_NGa 31 vwe E_L_YOP_NGA 31 vwe E_L_YOP_NGa 31
send D assert 1vc; assert 1vc; assert | W
next state .; do Hi; do H¢; assert ivc;
assert 0V; assert 0V; do +v;
if(0e){ next state 33; if(0e){
next state 17; next state 17;
}else { Yelse {
next state .; next state .;
} }

141



142

APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

| L

| A

| a1

TA

VWC S_L_YOP_YGA 32

VWC S_L_YOP_YGA 32

VWC S_L_YOP_YGA 32

VWC S_L_YOP_YGA 32

send D assert 1vc; next state X assert | W
next state .; do Hi; assert ivc;
assert 0V; do +v;
if(0e){ if(0c&D){
next state 18; send uncv;
}else { }
next state .; if(0e){
} next _state 18;
Yelse {
next state .;
}
vwe E_L_YOP_YGA 33 vwe E_L_YOP_YGA 33 vwe E_L_YOP_YGA 33 vwe E_L_YOP_YGA 33
send D assert 1vc; next state X assert | W
next state .; do Hi; assert ivc;
assert 0V; do +v;
if(0e){ if(0e){
next state 19; next state 19;
}else { Yelse {
next state .; next state .;
} }




C.

2.

PARENT NODE TRANSI TI ON TABLE

| cTE | FLCFT | RFLCFT | ov
INVALID 0 INVALID O I NVALI DO INVALID 0
next state X if(t){ assert T next state X
alloc; send rflcft;
next state 2; next state .;
}else {
send fleft;
next state .;
}

¢ S_U_NOP_NGA 1
do He;

next state 2;

¢ S_U_NOP_NGA 1
send rt;
next state .;

¢ S_U_NOP_NGAl
send rt;
next state .;

¢ S_U_NOP_NGA 1
assert ic;
next state .;

¢ E_U_NOP_NGA 2
next state X

¢ E_U_NOP_NGA 2
send rt;
next state .;

¢ E_U_NOP_NGA2
send rt;
next state .;

¢ E_U_NOP_NGA 2
assert ic;
next state .;

¢ S_L_NOP_NGA 3
next state X

¢ S_L_NOP_NGA 3
send D

next state .;

¢ S_L_NOP_NGA3
send D

next state .;

¢ S_L_NOP_NGA 3
assert ic;
next state .;

¢ S_L_YOP_NGA 4
next state X

¢ S_L_YOP_NGA 4
send D

next state .;

¢ S_L_YOP_NGA4
send D

next state .;

¢ S_L_YOP_NGA 4
assert ic;
next state .;

¢ E_LL_YOP_NGA 5
next state X

¢ E_LL_YOP_NGA 5
send D

next state .;

¢ E_L_YOP_NGAb
send D

next state .;

¢ E_LL_YOP_NGA 5
assert ic;
next state .;

¢ S_L_YOP_YGA 6
next state X

¢ S_L_YOP_YGA 6
send D

next state .;

¢ S_L_YOP_YGAG
send D

next state .;

¢ S_L_YOP_YGA 6
assert ic;
next state .;

¢ E_L_YOP_YGA 7
next state X

¢ E.L_YOP_YGA 7
send D

next state .;

¢ E_L_YOP_YGAT
send D

next state .;

¢ ELL_YOP_YGA 7
assert ic;
next state .;

Vv S_U_NOP_NGA 8
next state X

Vv S_U_NOP_NGA 8
assert T

send fleft;

next state .;

V S_U_NOP_NGAS8
assert T
send rflcft;
next state .;

vV S_U_NOP_NGA 8
assert T
assert iv;

do +e;

send cv;
if(ov){

next state 1;

}else {

next state 20;

}

Vv S_L_NOP_NGA 9
next state X

Vv S_L_NOP_NGA 9
send D

next state .;

Vv S_L_NOP_NGA9
send D

next state .;

v S_L_NOP_NGA 9
assert T
assert iv;

do +e;

send cv;
if(ov){

next state 3;

}else {

next state 22;

}

143



144 APPENDI X C. TABLE OF PROTOCOL BEHAVI OR
| CTE FLCFT RFLCFT | Ccv
v S_L_YOP_NGA 10 Vv S_L_YOP_NGA 10 Vv S_L_YOP_NGALO v S_L_YOP_NGA 10
next state X send D send D assert iv;
next state .; next state .; do +e;
(D]
send cv;
}
if(ov){
next state 4;
}else {
next state 23;
}
v E_.L_YOP_NGA 11 v E_LL_YOP_NGA 11 v E_L_YOP_NGAll v E_.L_YOP_NGA 11
next state X send D send D assert iv;
next state .; next state .; do +e;
if(0v){
next _state 5;
}else {
next state 24;
}
v S_L_YOP_YGA 12 Vv S_L_YOP_YGA 12 Vv S_L_YOP_YGAl2 Vv S_L_YOP_YGA 12
next state X send D send D assert iv;
next state .; next state .; do +e;
(D9
send cv;
}
if(ov){
next _state 6;
}else {
next state 25;
}
v E_LL_YOP_YGA 13 v E_LL_YOP_YGA 13 v E_L_YOP_YGAl3 v E_L_YOP_YGA 13
next state X send D send D assert iv;
next state .; next state .; do +e;
if(0v){
next _state T;
}else {
next _state 26;
}
VW S _U_NOP_NGA 14 VW S _U_NOP_NGA 14 VW S _U_NOP_NGAl4 VW S _U_NOP_NGA 14
next state X assert T assert T, assert T
send fleft; send rflcft; assert iv;
next state .; next state .; do +e;
send rdaw, c;
send cv;
if(0v){
next state 1;
}else {

next state 20;

}




C.

2. PARENT NODE TRANSI TI ON TABLE

| cTE

| FLCFT

RFLCFT

(2%

VW S _L_NOP_NGA 15
next state X

VW S _L_NOP_NGA 15
send D

next state .;

VW S _L_NOP_NGA1lH
send D

next state .;

VWS _L_NOP_NGA 15
assert T

assert iv;

do +e;

send rdaw, c;
send cv;

if(ov){

next state 3;

}else {

next state 22;

}

VWS _L_YOP_NGA 16
next state X

VWS _L_YOP_NGA 16
send D

next state .;

VW S _L_YOP_NGA16
send D

next state .;

VWS _L_YOP_NGA 16
assert iv;

do +e;

if(T{

send cv;

}

send rdaw, c;
if(ov){

next state 4;

}else {

next state 23;

}

VWE_L_YOP_NGA 17
next state X

VWE_L_YOP_NGA 17
send D

next state .;

vwWE_L_YOP_NGA17
send D

next state .;

VWE_L_YOP_NGA 17
assert iv;

do +e;

send rdaw, c;
if(ov){

next _state 5;

}else {

next state 24;

}

VWS _L_YOP_YGA 18
next state X

VWS _L_YOP_YGA 18
send D

next state .;

VWS _L_YOP_YGA1S8
send D

next state .;

VWS _L_YOP_YGA 18
assert iv;

do +e;

i£(D{

send cv;

}

send rdaw, c;

if(0v){

next _state 6;

}else {

next state 25;

}

145



146

APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

CTE

FLCFT

RFLCFT

| ov

VWE_L_YOP_YGA 19
next state X

VWE_L_YOP_YGA 19
send D

next state .;

VWE_L_YOP_YGAl9
send D

next state .;

VWE_L_YOP_YGA 19
assert iv;

do H¢;

send rdaw, c;
if(ov){

next _state T;

}else {

next _state 26;

}

ve S_U_NOP_NGA 20
do He;

next state 21;

ve S_U_NOP_NGA 20
send rt;
next state .;

ve S_U_NOP_NGA20
send rt;
next state .;

ve S_U_NOP_NGA 20
assert ivc;

do H¢;

if(ov){

next state 1;

}else {

next state .;

}

ve E_U_NOP_NGA 21
next state X

ve E_U_NOP_NGA 21
send rt;
next state .;

ve E_U_NOP_NGA21
send rt;
next state .;

ve E_U_NOP_NGA 21
assert ivc;

do H¢;

if(ov){

next state 2;

}else {

next state .;

}

ve S_L_NOP_NGA 22
next state X

ve S_L_NOP_NGA 22
send D

next state .;

ve S_L_NOP_NGA22
send D

next state .;

ve S_L_NOP_NGA 22
assert ivc;

do H¢;

if(ov){

next state 3;

}else {

next state .;

}

ve S_L_YOP_NGA 23
next state X

ve S_L_YOP_NGA 23
send D

next state .;

ve S_L_YOP_NGA23
send D

next state .;

ve S_L_YOP_NGA 23
assert ivc;

do H¢;

if(ov){

next state 4;

}else {

next state .;

}

ve E_L_YOP_NGA 24
next state X

ve E_L_YOP_NGA 24
send D

next state .;

ve E_L_YOP_NGA24
send D

next state .;

ve E_L_YOP_NGA 24
assert ivc;

do H¢;

if(ov){

next _state 5;

}else {

next state .;

}




C. 2.

PARENT NODE TRANSI TI ON TABLE

| cTE

FLCFT

RFLCFT

| ov

ve S_L_YOP_YGA 25
next state X

ve S_L_YOP_YGA 25
send D

next state .;

ve S_L_YOP_YGA25
send D

next state .;

ve S_L_YOP_YGA 25
assert ivc;

do +¢;

if(T{

send cv;

}
if(0v){

next state 6;

Yelse {

next state .;

}

ve E_L_YOP_YGA 26
next state X

ve E_L_YOP_YGA 26
send D

next state .;

ve E_L_YOP_YGA26
send D

next state .;

ve E_L_YOP_YGA 26
assert ivc;

do +¢;

if(ov){

next state T;

Yelse {

next state .;

}

vwe S_U_NOP_NGA 27
do He;

next state 28;

vwe S_U_NOP_NGA 27
send rt;

next state .;

vwe S_U_NOP_NGA2T
send rt;
next state .;

vwe S_U_NOP_NGA 27
assert ivc;

do +¢;

send rdaw, c;
if(ov){

next state 1;

Yelse {

next state 20;

}

vwe E_U_NOP_NGA 28
next state X

vwe E_U_NOP_NGA 28
send rt;

next state .;

vwe E_U_NOP_NGA28
send rt;
next state .;

vwe E_U_NOP_NGA 28
assert ivc;

do +¢;

send rdaw, c;
if(ov){

next state 2;

Yelse {

next state 21;

}

VWC S_L_NOP_NGA 29
next state X

VWe S_L_NOP_NGA 29
send D

next state .;

VWC S_L_NOP_NGA29
send D

next state .;

vwe $_L_NOP_NGA 29
assert ivc;

do +¢;

send rdaw, c;
if(ov){

next state 3;

Yelse {

next state 22;

}

147



148

APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

CTE

FLCFT

RFLCFT

(2%

vWwe S_L_YOP_NGA 30
next state X

VWC S_L_YOP_NGA 30
send D

next state .;

VWC S_L_YOP_NGA30
send D

next state .;

vwe $_L_YOP_NGA 30
assert ivc;

do +¢;

send rdaw, c;
if(ov){

next state 4;

Yelse {

next state 23;

}

vwe E_L_YOP_NGA 31
next state X

vwe E_L_YOP_NGA 31
send D

next state .;

vwe E_L_YOP_NGA31
send D

next state .;

vwe E_L_YOP_NGa 31
assert ivc;

do +¢;

send rdaw, c;
if(ov){

next state 5;

Yelse {

next state 24;

}

VWC S_L_YOP_YGA 32
next state X

VWC S_L_YOP_YGA 32
send D

next state .;

VWC S_L_YOP_YGA32
send D

next state .;

vwe $_L_YOP_YGA 32
assert ivc;

do +¢;

send rdaw, c;
if(T{

send cv;

}
if(ov){
next state 6;

Yelse {

next state 25;

}

vwe E_L_YOP_YGA 33
next state X

vwe E_L_YOP_YGA 33
send D

next state .;

vwe E_L_YOP_YGA33
send D

next state .;

vwe E_L_YOP_YGA 33
assert ivc;

do +¢;

send rdaw, c;
if(ov){

next state T;

Yelse {

next state 26;

}




C.

2.

PARENT NODE TRANSI TI ON TABLE

| rRD UNCV | RT o
INVALID O INVALID 0 INVALID O INVALID O
next state X next state X; assert T, next state X
send rflcft;

next state .;

¢ S_U_NOP_NGA 1
next state .;

¢ S_U_NOP_NGA 1
assert ic;

do +v;

if(0e){
assert T
send uncv;
next _state 8;

}else {

next _state 20;

}

¢ S_U_NOP_NGA 1
send rt;
next state .;

¢ S_U_NOP_NGA 1
next state X

¢ E_U_NOP_NGA 2
next state X

¢ E_U_NOP_NGA 2
assert ic;

do +v;

assert 0G
next state 21;

¢ E_U_NOP_NGA 2
send rt;
next state .;

¢ E_U_NOP_NGA 2
next state X

¢ S_L_NOP_NGA 3
next state .;

¢ S_L_NOP_NGA 3
assert ic;

do +v;
if(0c&D){

send uncv;

}
if(0c){

next _state 9;

}else {

next state 22;

}

¢ S_L_NOP_NGA 3
send D

next state .;

¢ $_L_NOP_NGA 3
send wo;
next state 2;

¢ S_L_YOP_NGA 4
next state .;

¢ S_L_YOP_NGA 4
assert ic;

do +v;
if(0c&D){

send uncv;

}
if(0c){

next state 10;

}else {

next state 23;

}

¢ S_L_YOP_NGA 4
send D

next state .;

¢ S_L_YOP_NGA 4
next state X

¢ E_LL_YOP_NGA 5
next state X

¢ E_LL_YOP_NGA 5
assert ic;

do +v;

if(0e){

next state 11;

}else {

next state 24;

}

¢ E_LL_YOP_NGA 5
send D

next state .;

¢ E_LL_YOP_NGA 5
next state X

149



APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

| rRD

| uNev

RT

| wo

¢ S_L_YOP_YGA 6
next state .;

¢ S_L_YOP_YGA 6
assert ic;

do +v;
if(0c&D){

send uncv;

}
if(0c){

next state 12;

}else {

next state 25;

}

¢ S_L_YOP_YGA 6
send D

next state .;

¢ S_L_YOP_YGA 6
next state X

¢ E_L_YOP_YGA 7
next state X

¢ ELL_YOP_YGA 7
assert ic;

do +v;

if(0e){

next state 13;

}else {

next _state 26;

}

¢ E_L_YOP_YGA 7
send D

next state .;

¢ E.L_YOP_YGA 7
next state X

vV S_U_NOP_NGA 8
send rdav, c;
next state 1;

Vv S_U_NOP_NGA 8
next state X

vV S_U_NOP_NGA 8
assert T

send rflcft;
next state .;

Vv S_U_NOP_NGA 8
next state X

v S_L_NOP_NGA 9
send rdav, c;
next state 3;

Vv S_L_NOP_NGA 9
next state X

Vv S_L_NOP_NGA 9
send D

next state .;

Vv S_L_NOP_NGA 9
next state X

send rdavl, c;

if(0c){

next state .;

}else {

next state 23;

}

Vv S_L_YOP_NGA 10

next state X

v S_L_YOP_NGA 10

v S_L_YOP_NGA 10
send D

next state .;

v S_L_YOP_NGA 10
next state X

next state X

v E_L_YOP_NGA 11

next state X

v E_L_YOP_NGA 11

v E_L_YOP_NGA 11
send D

next state .;

v E_LL_YOP_NGA 11
next state X

send rdavl, c;

if(0c){

next state .;

}else {

next state 25;

}

Vv S_L_YOP_YGA 12

next state X

v S_L_YOP_YGA 12

Vv S_L_YOP_YGA 12
send D

next state .;

v S_L_YOP_YGA 12
next state X

next state X

v E_L_YOP_YGA 13

next state X

v E_L_YOP_YGA 13

v E_L_YOP_YGA 13
send D

next state .;

v E_L_YOP_YGA 13
next state X




. 2.

PARENT NODE TRANSI TI ON TABLE

| rRD

| uNev

RT

WO

VW S _U_NOP_NGA 14
send rdavw, c;
next state 1;

VW S _U_NOP_NGA 14
next state X

VW S _U_NOP_NGA 14
assert T

send rflcft;

next state .;

VW S _U_NOP_NGA 14
next state X

VWS _L_NOP_NGA 15
send rdavw, c;
next state 3;

VW S _L_NOP_NGA 15
next state X

VWS _L_NOP_NGA 15
send D

next state .;

VW S _L_NOP_NGA 15
next state X

VWS _L_YOP_NGA 16
send rdavwl, c;
next state 23;

VWS _L_YOP_NGA 16
next state X

VWS _L_YOP_NGA 16
send D

next state .;

VWS _L_YOP_NGA 16
next state X

VWE_L_YOP_NGA 17
next state X

VWE_L_YOP_NGA 17
next state X

VWE_L_YOP_NGA 17
send D

next state .;

VWE_L_YOP_NGA 17
next state X

VWS _L_YOP_YGA 18
send rdavwl, c;
next state 25;

VWS _L_YOP_YGA 18
next state X

VWS _L_YOP_YGA 18
send D

next state .;

VWS _L_YOP_YGA 18
next state X

VWE_L_YOP_YGA 19
next state X

VWE_L_YOP_YGA 19
next state X

VWE_L_YOP_YGA 19
send D

next state .;

VWE_L_YOP_YGA 19
next state X

ve S_U_NOP_NGA 20
next state .;

ve S_U_NOP_NGA 20
assert ic;

do +v;

if(0e){

assert T

send uncv;

next state 8;

}else {

next state .;

}

ve $_U_NOP_NGA 20
send rt;
next state .;

ve S _U_NOP_NGA 20
next state X

ve E_U_NOP_NGA 21
next state X

ve E_U_NOP_NGA 21
assert ic;

do +v;

assert 0G

next state .;

ve E_U_NOP_NGA 21
send rt;
next state .;

ve E_U_NOP_NGA 21
next state X

ve S_L_NOP_NGA 22
next state .;

ve S_L_NOP_NGA 22
assert ic;

do +v;

if(0c&D){

send uncv;

}
if(0c){

next _state 9;

}else {

next state .;

}

ve S_L_NOP_NGA 22
send D

next state .;

ve S_L_NOP_NGA 22
next state X

151



152

APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

| RD

UNCV

RT

| wo

ve S_L_YOP_NGA 23
next state .;

ve S_L_YOP_NGA 23
assert ic;

do +v;

if(0c&D){

send uncv;

}
if(0c){

next state 10;

}else {

next state .;

}

ve S_L_YOP_NGA 23
send D

next state .;

ve S_L_YOP_NGA 23
next state X

ve E_L_YOP_NGA 24
next state X

ve E_L_YOP_NGA 24
assert ic;

do +v;

if(0e){

next state 11;

}else {

next state .;

}

ve E_L_YOP_NGA 24
send D

next state .;

ve E_L_YOP_NGA 24
next state X

ve S_L_YOP_YGA 25
if(lc8dc){

send rdavl, c;
next _state 6;

}else {

next state .;

}

ve S_L_YOP_YGA 25
assert ic;

do +v;

if(0c&D){

send uncv;

}
if(0c){

next state 12;

}else {

next state .;

}

ve S_L_YOP_YGA 25
send D

next state .;

ve S_L_YOP_YGA 25
next state X

ve E_L_YOP_YGA 26
next state X

ve E_L_YOP_YGA 26
assert ic;

do +v;

if(0e){

next state 13;

}else {

next state .;

}

ve E_L_YOP_YGA 26
send D

next state .;

ve E_L_YOP_YGA 26
next state X

vwe S_U_NOP_NGA 27
next state .;

VWwe S_U_NOP_NGA 27
assert ic;

do +v;

if(0e){

assert T

send uncv;

next state 14;

}else {

next state .;

}

vwe S_U_NOP_NGA 27
send rt;
next state .;

vwe S_U_NOP_NGA 27
next state X




C. 2.

PARENT NODE TRANSI TI ON TABLE

| rRD

| uNev

RT

WO

vwe E_U_NOP_NGA 28
next state X

vwe E_U_NOP_NGA 28
assert ic;

do +v;

assert 0G

next state .;

vwe E_U_NOP_NGA 28
send rt;
next state .;

vwe E_U_NOP_NGA 28
next state X

VWC S_L_NOP_NGA 29
next state .;

vwe S_L_NOP_NGA 29
assert ic;

do +v;

if(0c&D){

send uncv;

}
if(0c){

next state 15;

}else {

next state .;

}

VWe S_L_NOP_NGA 29
send D

next state .;

VWe S_L_NOP_NGA 29
next state X

VWC S_L_YOP_NGA 30
next state .;

vwe S_L_YOP_NGA 30
assert ic;

do +v;

if(0c&D){

send uncv;

}
if(0c){

next state 16;

}else {

next state .;

}

vWe S_L_YOP_NGA 30
send D

next state .;

vWe S_L_YOP_NGA 30
next state X

vwe E_L_YOP_NGA 31
next state X

vwe E_L_YOP_NGa 31
assert ic;

do +v;

if(0e){

next state 17;

}else {

next state .;

}

vwe E_L_YOP_NGA 31
send D

next state .;

vwe E_L_YOP_NGA 31
next state X

vwe S_L_YOP_YGA 32
if(lc8dc){

send rdavwl, c;
next state 6;

}else {

next state .;

}

vwe S_L_YOP_YGA 32
assert ic;

do +v;

if(0c&D){

send uncv;

}
if(0c){

next state 18;

}else {

next state .;

}

VWC S_L_YOP_YGA 32
send D

next state .;

VWC S_L_YOP_YGA 32
next state X

153



154

APPENDI X C. TABLE OF PROTOCOL BEHAVI OR

| RD

| uNev

| RT

| wo

vwe E_L_YOP_YGA 33
next state X

vwe E_L_YOP_YGA 33
assert ic;

do +v;

if(0e){

next state 19;

}else {

next state .;

}

vwe E_L_YOP_YGA 33
send D

next state .;

vwe E_L_YOP_YGA 33
next state X




Bi bliography

[1] Anant Agarwal. Alocality-basedmul tiprocessor cache interference nmodel. VLSI Mno
M T VLSI Mno 89-565, Missachusetts Institute of Technol ogy, 1989.

[2] Anant Agarwal. Limits on interconnection network performance. IFEFE Transactions
on Parallel and Distributed Systems, 2(4):398-412, October 1991.

[3] Anant Agarwal, David Chaiken, Kirk Johnson, David Kranz, John Kubiatowicz,
K yoshi Kurihara, Beng-Hong Lim Gno Ma, and Dan Nussbaum The MT
Alewife Michine: A Large-Scale Distributed- Mnory Mil tiprocessor. Technical Re-
port MT/LCS/TM 454, M T Laboratory for Conputer Science, June 1991.

[4] Anant Agarwal, Richard Sinoni, John Hennessy, and Mark Horowitz. An evaluation
of directory schenes for cache coherence. In Proceedings of the 15th International
Sympost umon Conputer Architecture. 1 EEE, June 1988.

[6] J. K Archibald. A cache coherence approach for a large mltiprocessor system In
1988 International Conference on Superconmputing, pages 337-345. ACM July 1988.

[6] Henry Burkhardt I1I, Steven Frank, Bruce Knobe, and Jarmes Rothnie. Overviewof the
KSR1 conmputer system Techni cal Report KSR TR: 9202001, Kendall Square Research,
Boston, February 1992.

[7] Lucien M Censier and Paul Feautrier. Anewsolution to coherence problens in mul-
ticache systens. IEEE Transactions on Computers, G 27(12):1112-1118, Decemnber
1978.

[8] David Chaiken, Craig Fields, K yoshi Kurihara, and Anant Agarwal. Directory-based
cache coherence inlarge-scale mul ti processors. IEEE Conputer, June 1990.

[9] WlliamJ. Dally et al. The J- Michine: A fine-grain concurrent conputer. In GX
Ritter, editor, Proceedings of the IFIP (bngress, pages 1147-1153. North- Holl and,
Angust 1989.

[10] S. J. Frank. Tightly coupled multiprocessor systemspeeds up nenory access times.
Hectronics, 57(1):164-169, January 1984.

[11] J. Goodman, M Vernon, and P. West. Efftient synchronizationprimtives for large-
scale cache coherent mul tiprocessors. In Third International Conference on Architec-
tural Support for Programmng Languages and (perating Systems, pages 64-75, April
1989.

155



156 BI BLI OGRAPHY

[12] Seif Haridi and Erik Hagersten. The cache coherence protocol of the Data Il ffusion
Michine. In PARLE ‘89 Parallel Architectures and Languages Furope, vol une I, pages
1-18, June 1989.

[13] Kirk L. Johnson. The inpact of commnicationlocality onlarge-scale miltiprocessor
performance. In 19th Annual International Synposiumon Conputer Architecture,
pages 392-402, Myy 1992.

[14] Leslie Lanport. Howto make a mul tiprocessor conputer that correctly executes mul -
tiprocess programs. I[EEF Transactions on Conputers, c-28(9):690-691, Septemnber
1979.

[15] Scott T. Leutenegger and Miry K Vernon. A nean-value performance analysis of a
newnul tiprocessor architecture. Performunce Eval uation Review 16(1):167-176, My
1988.

[16] Kai Li. Shared virtual memory on loosely coupled mul tiprocessors. PhDthesis, Yale
Uni versity, September 1986.

[17] Kai Li. IVY: Ashared virtual menory systemfor parallel conputing. In International
Conference on Paral lel Conputing, pages 94-101, 1988.

[18] Yeong- Chang Mia, Dhiraj K Pradhan, and Domni ni que Thi ebaut. Two econoni cal di-
rectory schenes for large-scale cache coherent mul tiprocessors. Conputer Architecture
Neus, 19(4), September 1991.

[19] Yeong- Chang Mha, Dhiraj K Pradhan, and Domini que Thi ebaut. Ahierarchical di-
rectory schene for large-scale cache coherent ml tiprocessors. In Proceedings of the 6th
Int ernational Synposiumon Parallel Processing, pages 43—-46, Mhy 1992.

[20] J. Mllor- CGummey and M Scott. Synchronization without contention. In Fourth
International Conference on Architectural Support for Programming Languages and
Gperating Systens, pages 269-278, April 1991.

[21] Midhavan Parthasarathy. Inpl enenting shared menoryonlarge-scale miltiprocessors.
Mister’s thesis, University of Illinois at Urbana- Chanpai gn, August 1992.

[22] Isaac D Scherson and Peter F. Corbett. Communications overhead and the expected
speedup of mul tidinensional nmesh- connected parallel processors. Journal of Parallel
and B stributed Conputing, 1991.

[23] Steven Scott. Acache coherence programfor scalable, shared- nenory mml tiprocessors.
In International Synposiumon Shared Mnory Miltiprocessing, pages 49-59, April
1991.

[24] Steven L. Scott and Janes R Goodman. Performance of pruning-cache directories
for large-scale mil ti processors. b appear in IEEE Transactions on Parallel and Dis-
tributed Systens, 1992.



BI BLI OGRAPHY 157

[25] Per Stenstrom Truman Joe, and Anoop Gupta. Conparative performance eval uation
of cache-coherent NUMA and COMA architectures. In 19th Annual International
Sympost umon Conputer Architecture, pages 80-91, Myy 1992.

[26] C K Tang. Cache systemdesign in the tightly coupled multiprocessor system In
Proceedings AFIES Mtional Conputer Conference, pages 749-753, 1976.

[27] Brian Totty. An operating environment for the jellybean machine. SB Thesis, Ms-
sachusetts Institute of Technol ogy Departnent of Electrical Engineering and Conputer
Science, Nhy 1988.

[28] Miry Vernon, Rajeev Jog, and Gurindar S. Sohi. Performance anal ysis of hierarchical
cache-consistent mil tiprocessors. In T. Hasegawa, H Thkagi, and Y. Takahashi, edi-
tors, Performance of Hstributed and Parallel Systems, pages 111-126. IFIP, FHsevier
Science Publishers, 1989.

[29] Deborah A Wllach. Ascalable hierarchical cache coherence protocol. SB Thesis,
MT, My 1990.

[30] A W Wlson. Herarchical cache/bus architecture for shared nrenory mul tiprocessors.
In 14th Annual International Synposiumon Conputer Architecture, pages 244-252,
June 1987.

[31] Qing Yang. Performance analysis of a cache-coherent miltiprocessor based on hier-
archical nmmltiple buses. In N Rishe, S. Navathe, and D. Tal, editors, PARBASE 90
International Conference on Ditabases, Parallel Architectures and Their Applications,
pages 248-257. I EEE Conputer Society Press, 1990.

[32] Qing Yang, G Thangadurai, and Laxmi N Bhuyan. An adaptive cache coherence
schene for hierarchical shared-nmenory mul tiprocessors. In Proceedings of the Second
T EEE Synposiumon Parallel and D stributed Processing, pages 318-325. 1 EEE Com
puter Society Press, December 1990.



