The Artificial Intelligence Laboratory and
The Research Laboratory of Electronics
at the
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Proceedings of the
Fourth
PHANTOM Users Group Workshop

Edited by:
Dr. J. Kenneth Salisbury and Dr. Mandayam A. Srinivasan

A.L. Technical Report No.
R.L.E. Technical Report No.

October 1999

Massachusetts Institute of Technology

Proceedings of the

Fourth

PHANTOM Users Group Workshop

October 9 — 12,1999
Endicott House, Dedham MA
Massachusetts Institute of Technology, Cambridge, MA

Hosted by

Dr. J. Kenneth Salisbury, Al Lab & Dept of ME, MIT
Dr. Mandayam A. Srinivasan, RLE & Dept of ME, MIT

Sponsored by

SensAble Technologies, Inc., Cambridge, MA

The Fourth PHANTOM Users Group Workshop (PUG99)
October 9-12, 1999

Program and Schedule

Saturday October 9 - ARRIVAL AND SETUP

Sunday October 10 - TUTORIALS AND DEMONSTRATIONS

Monday October 11 - SYMPOSIUM ON SCIENTIFIC ISSUES

[TITTT T T T I I T I I I I I I I I I I I I I IIIIIITl

[TITTT T I I I I I I I T I I I I I I IIIIIrTl

Tuesday October 12 - SYMPOSIUM ON APPLICATION ISSUES

Using Fast Local Modelling to Buffer Haptic Data

Remis BALANIUK
Universidade Catolica de Brasilia - Brasil
SHARP/GRAVIR INRIA Rhone Alpes - France
Email : Remis.Balaniuk@jinrialpes.fr

Abstract

1t is well known that realistic haptic rendering depends on high update rates. Nevertheless,
there are many applications for which haptic interfaces could be useful where haptic data cannot
be delivered at these rates. In VR and real-time dynamic simulation of deformable objects, for
instance, update rates are limited by the computation time. In distributed systems, as telerobotics
or network-based simulators, communication rates are unstable and limited by the network
features. In this paper we show how this problem can be minimised using a "buffer model" between
the haptic interface and the data source (the system being interfaced). This buffer is intended to be
able to deliver data to the haptic device at the required rate and its role is to maximise the
information contained in the data flow. The buffer is implemented as a local numerical model of the
data source. The buffer model must be simple, generic and easily adaptable. The data flow will be
used to continuously update a number of parameters of this model in order to render it locally as
close as possible of the data source. We will show also how a buffer model can be useful to easily
implement a proxy-based calculation of the haptic forces. We will finish showing how we used this
approach to interface a PHANToM with a deformable objects simulator.

1. Introduction

We are interested in simplifying the conception of a haptic interface in an existing Virtual
Reality (VR) system.

In a haptic interface the force feedback represents the contact forces between the haptic
probe and the objects of a virtual scene. This physically based scene will typically be simulated in
real-time by a VR software component. The instantaneous contact forces depend directly on the
instantaneous scene state, and the scene state can be affected by the user actions. Consequently, the
haptic systems are usually organised in a way that for each haptic refresh cycle we have also a
virtual scene update. In this configuration, the haptic rate depends entirely on the scene simulator
computational delay.

The estimation of haptic forces can also present some difficulties. In physical simulators,
surface contacts are usually modelled using penalty or impulse-based methods. Impulse based
methods compute state changes, not forces. Penalty based methods compute repulsive forces and
can work well to model simple obstacles, such planes or spheres, but we can find a number of
difficulties when trying to extend these models to display more complex environments. A better
suited framework to estimate contact forces for generic haptic display are the constraint based
methods [zilles-94] [ruspini-97], but most of the existing physical simulators do not use it.

In this paper we propose an approach to conceive haptic interfaces where the haptic
rendering does not depend directly on the physical simulation rates nor on the methods used by the
simulator.

The haptic interface is conceived as an external module of a VR system, connected to this
system by a buffer model. This buffer model is a generic numerical model, that will locally emulate
the haptic interaction between the user and the virtual environment simulated by the VR system.
We do not care about the methods used to simulate this environment.

The buffer model will act as a very simple local physical model, and the haptic loop will
interact with this local model instead of interacting with the virtual environment. The simplicity of
the buffer model makes easy and fast the collisions detection and the estimation of contact forces.

A buffer manager process will communicate with the VR system to inform the user motions
and to obtain relevant data to update the buffer model.

The buffer model will be updated at a rate proportional to the VR computational delay, but
this will not compromise the haptic loop rate.

2. Conceiving an haptic interface based on a buffer model

The central idea in our approach is that the haptic interface locally emulates the virtual
environment, continuously adapting its own simple physical model.

Inside the virtual environment, the user is represented by a virtual object, the probe. The
user is controlling the probe and the probe is interacting with the other virtual objects.

Inside the haptic interface we use a constraint-based framework. The user is represented by
a virtual proxy, as proposed in [ruspini-97]. In our approach, the proxy is a point moving in the
configuration space of the haptic device.

The proxy interacts with one constraint non deformable surface, corresponding to one
configuration space obstacle (c-obstacle). This surface represents the nearest portion of the nearest
object in the virtual environment with respect to the probe. The position and the shape of this
surface will be defined by a set of parameters, continuously adapted to fit the closest c-obstacle
form.

The haptic interface is defined by two processes: the model manager and the haptic loop.

The model manager interacts with the simulator, informing the user motions and obtaining
the minimum distance between the probe and its closest neighbour in the virtual environment.
Using this distance and its derivatives, the manager will adapt the constraint surface to locally fit
these values. The simulator must to inform also the local stiffness of the neighbour.

The haptic loop follows the constraint based rendering framework.

2.1. The model manager

The model manager role is to inform to the VR simulator the user motions and to
continuously update the constraint surface.

We assume that the VR simulator is prepared to accept this interaction. It means that the
simulator can handle our demand within its real-time loop.

The mapping between the probe in the virtual environment and the proxy will be determined
by the haptic device features. In an ideal framework, the haptic device would offer force and torque
feedback, and the proxy would move in a 6-D configuration space. In this case, the proxy motions
could be expressed in full probe motions (6 dof : translation and rotation). In the case of a haptic
device with no torque feedback, the proxy would be a point in a 3-D configuration space, and its
motions would be expressed only by translations of the probe in the virtual environment (3 dof).
The probe would not rotate.

After the probe position update, the VR simulator will find its nearest neighbour, estimate
the minimum distance between these two objects and estimate the partial derivatives of this
distance with respect to the probe degrees of freedom.

The VR simulator will return the estimated values to the model manager and will update its
dynamic state (motions and deformations).

The model manager uses the obtained distance d and its partial derivatives d' to update the
buffer model. Let us consider the distance d as being defined by an unknown mapping f: 0" - [:

d=f(x) a=2 k :ig
xl xn D

The buffer model can be defined as a function ¢: O™ — [, which can be written as :

P(x) = P(u, x)
for certain u=/u;... u]T O O .We will refer to u;... y as the parameters and to x;... x, as the
variables . The variables correspond to the configuration space dimensions.
We define also the partial derivatives for ¢:

dx, = a¢(§”’x) (i =K n)

l

The fitting algorithm to adapt the buffer model with respect to f'is based on the following
first order approximations :

do = A(u, x) = iAu,. a¢;zfx)
O0dx
Oou .

J

ddx, =Adx, = Au, Li=1,K ,n)
i i J
j:

We define du=[Au;... Au,] as the vector of corrections to be applied to the model
parameters, dx=/dx;... dx]" as the vector of the partial derivatives of @ ddx=[ddx... ddyx,] as the
vector of differences over the partial derivatives that we obtain applying du to u, d¢ as the
difference on ¢ we obtain applying du to u and dxu as the matrix of partial derivatives of dx with
respect to u:

[(Ddx, A ddx, O

DD6“1 Ou, B
du= M M Mp
%dx” A ddx,

Hou, ou, H

Writing in a matrix form :

¢ O Odx O
0 ¢D:D * Eﬂu:J.du
[Qdx] [Tdxu[]

We consider the problem of fitting ¢ to locally emulate f as the problem of finding the du

corrections to be applied to the model parameters u so that the model estimation errors (d¢,ddx) are
minimised. The model estimation errors are assumed to be :

d¢ =d —¢(u,x) ddx = d'-dx
We use the pseudo-inverse of J (J "= 1" 1) ") to estimate the parameters corrections (du):
¢ O
du=J" .0 4 0
[ldx]

Using iteratively this approach the model manager will continuously keep ¢(u,x)~ f(x)
nearby the probe position.

2.2. The haptic loop

The haptic loop estimates the contact forces using the constraint surface defined by the
buffer model. This estimation is based on a very simple physical simulation, with a point
interacting with a non deformable surface determined by the points x respecting ¢x)=0. The proxy
location is defined by two values: the haptic device effective position and a virtual location, subject
to the constraint surface. The effective position must to be informed to characterise the collisions in
the virtual environment, but the distance we need to update the buffer model must be estimated

with respect to the proxy position, which is always in the free space, to assure a correct distance
estimation. The distances will always be positive (or null) and no collisions will be missed.

To implement this framework, at each time step of the haptic loop we obtain the haptic
device effective position and we change the proxy position to reduce its distance to the device
effective position subject to the constraint surface.

Generically, this problem can be written as :

Minimise D(x) = % (x-p)" (x-p) s.t.

d(x) =0
where x is the proxy position and p the device effective position.

Before moving the proxy we must to know if it will collide with the constraint surface. The
collision detection between the proxy and the surface can be simplified when the ¢ function defines
a large surface'. Using ¢ we simply compute the distance between the device position and the
constraint surface. If the distance is positive or zero the device is in the free space and there will not
be collision. The proxy can be moved directly to the device position. If the distance is negative the
device is inside the obstacle. The proxy is moved until it makes contact with the constraint surface
in its linear path towards the device position. At this point it is no longer possible to move directly
to the device position, but it may be still possible to reduce the distance between the proxy and
device positions, keeping the surface contact. The minimisation problem becomes :

Minimise D(x) = %(x-p)" (x-p) s.t. (1)

dx) =0

Zilles and Salisbury [zilles-94] and Ruspini et al. [ruspini-97] solve this problem using
constraining planes and Lagrange multipliers. We can use the same approach if we introduce a first
order approximation for ¢, corresponding to a constraint plane tangent to the constraint surface and
going through the proxy position (x=xp) :

§(x) = dsp(x =) dsp = (PPOP)y 900P)
0 ox, ox, [J

n

Introducing the A multiplier, the Lagrangian for our minimisation problem becomes :

F(x,2)= %(x -) (= xp) + A (%) @)

The new location of the proxy is found by minimising F, setting its n+/ partial derivatives
to 0. We obtain :

OF _ - 0g(xp) _ OF _ . .
o= p) A =0 S =P =0

In a matrix form we have :
017 dpllx0 0O p O
O 00 O
Hep” 0 HRH Heo” xpd

As proposed in [ruspini-99], we can combine these equations and find a solution which is
independent from x : dxp’ .dxp.A = dxp’. (p - xp). We can solve this equation for A and use the
result to obtain x = p —dxp. A, which will be the proxy position.

Because we used the first order approximation ¢’, the obtained x position is also an
approximation of the exact position that minimise (1). We can iteratively apply the minimisation of
(2) in order to approach the exact solution.

" A large surface can assure that no collisions in the configuration space will be missed. If we use a
more complex surface we will must to use a more sophisticated collision detection algorithm also

In the constraint based framework, once the proxy location is determined, the contact forces
estimation becomes easy. Simple impedance control techniques can be used to estimate the forces,
using the given object stiffness. The general form of the forces estimation can be given by the
Hooke's law :

f=k(x-p)

where k is proportional to the local stiffness, x the proxy position and p the device position.

3. Applying the approach to a deformable objects environment

We applied this approach to interface a dynamic simulator of deformable objects to a
desktop 3 dof PHANToM manipulator. The buffer model was implemented in two forms. As a
sphere :

P(u,x) :\/(x1 _u1)2 +(x, _u2)2 +(x; _u3)2 Uy

where (u;, uy, u3) determine the sphere center and u, the sphere radius, and as a plane :
P(u,x) =

The vector x = [x; x, x3] are the probe Cartesian co-ordinates and u=[u; u> us u4] are
the parameters identified by the model manager.

The obtained haptic rendering is realistic and stable.

Refers to [aulignac-99] to see how we used this approach to implement a haptic virtual
exam of the human thigh.

XU +x,u, +x

2 2 2
u; tu;, tu;

Ay
+u4

4. Summary and Conclusions

We presented an approach to implement haptic interfaces based on a buffer model. The
haptic interface is considered as an external module of a VR system. Using this modularised
structure the haptic update rate does not depend on the scene simulation rate. The collision
detection and the contact forces estimation are simplified, and do not depend on the simulation
methods used inside the VR system.

The main advantage of using our approach is to simplify the haptic interface conception,
and to permit to existing VR systems to offer a haptic interface without changing its algorithms.

Even applications having high and/or unstable computational delays, as deformable objects
simulators of and network-based VR systems, can implement a haptic interface using this
approach.

Bibliography

[aulignac-99] D. d’Aulignac, R. Balaniuk. Providing reliable force-feedback for a virtual, echographic exam
of the human thigh. In Proc. of the Fourth Phantom User Group Workshop —PUGY9, Boston (US), October
1999.

[ruspini-97] D. Ruspini, K. Kolarov and O. Khatib. Haptic interaction in virtual environments. In Proc. of
the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, Grenoble (FR), September 1997.

[zilles-94] C.B. Zilles and J.K. Salisbury. A constraint-based god-object method for haptic display. /n Proc.
of ASME Haptic Interfaces for Virtual Environment and Teleoperator Systems, vol. 1, pages 149-150,
Chicago ,IL (US),1994.

[ruspini-99] D. Ruspini, O. Khatib. Haptic Display for Human Interactions with Virtual Dynamic
Environments, unpublished.

> We used the GHOST programming interface (ControlForce::calculateForceFieldForce) to directly
apply forces over the Cartesian axis.

Algorithms for Network-Based Force Feedback

John P. Wilson
Creare Incorporated
jpw(@creare.com

Dr. Robert J. Kline-Schoder
Creare Incorporated
rjk@creare.com

Dr. Marc A. Kenton
Creare Incorporated
mak(@creare.com

Dr. Neville Hogan
Massachusetts Institute of Technology
neville@mit.edu

1.0 Introduction

Network-based force feedback is an important tool in many distributed robotic systems, including
master/slave systems and haptic displays connected to networked virtual reality (VR) simulations. Standard
distributed implementations in applications such as these require that force and kinematic data be transferred over
a communication link between computers. Delays may arise from the finite time required for the transmission and
processing of data. Since delays add phase lag to the signal, this lag limits the effective bandwidth of the closed
loop and may result in an unstable telerobotic or haptic display system. Such instability poses a significant safety
threat because of the relatively large force-generating capability of the hardware.

Currently, force reflecting systems either reduce the total loop gain (which severely limits performance) or
they rely on adding large amounts of damping, with no consideration of formal stability or performance
requirements. These approaches can account for a fixed, known time delay, however, they cannot optimize the
performance in the presence of random and unpredictable time delays. Consequently, the design and fabrication of
telerobots and network-based haptic displays requires the development of control algorithms and software which
guarantee stability and improve the response characteristics in the presence of unstructured and unpredictable time
delays.

To address this issue, Creare Inc., in a Phase II SBIR project for the U.S. Army STRICOM, is developing a
Haptic Display Toolkit which will allow users to easily incorporate haptic devices into network-based force
feedback applications. Two techniques for stabilizing force-feedback in the presence of random time delays are
implemented in this toolkit: Passive Transmission Line Modeling and Haptic Dead Reckoning. Passive
Transmission Line Modeling allows the stable distribution of network-based force feedback. Haptic Dead
Reckoning allows a simple, local environment model to service the real-time needs of the haptic display while
being periodically updated by a more complex and accurate network environment model. Both of these techniques
are described below.

2.0 Passive Transmission Line Modeling

Time delays are a natural property of transmitting power in a continuous medium between two points. An
electrical transmission line is an example of a system which includes time delays and yet is passive. Using wave

scattering theory [Anderson-89], it can be shown that passive communication can be attained by replacing the
standard communication protocol with the mathematical model of a passive transmission line. Essentially,
stability is maintained by modeling the communication link as a collection of passive objects: i.e. masses and
springs. Therefore, the key to ensuring stability of telerobots and haptic displays in the presence of arbitrarily long
time delays is to construct a communications procedure that mimics a passive transmission line. This
configuration can also be considered lossless, because the transmission line model does not dissipate energy. Thus,
this communication link model will result in lossless, wave-like behavior and reflections will take place at
boundaries which have mismatched impedance. Impedance control [Hogan-88] can be used to match all of the
elements in the system in order to avoid these reflections. Therefore, this method of transmitting data implements
a lossless, passive communication link.

A two-port lossless transmission line has the input-output relationships shown below [Anderson-89]:
fm(t) = fe(t-T) + b (vm(t) - ve(t-T))
ve(t) = vm(t-T) + b (fm(t-T) - fe(t))

where fm is the force applied to the haptic display, fe is the force calculated by the environment, vm is the velocity
of the haptic display, ve is the haptic display velocity as represented in the environment, T is the communication
link time delay, and b is a physical constant that characterizes the transmission line. Taking the z-transform of
this expression, assuming that the environment impedance is controlled to be b (that is, fe(z) = b ve(z)), and then
solving for fm(z) in terms of the other input quantities yields:

fm(z) = b vm(z).

This expression shows that the input impedance of the transmission line is simply the physical constant, b, for all
time delays. The constant, b, is calculated from the effective stiffness and mass of the transmission line and has
the units of damping. Therefore, the transmission line appears to be a simple damper for any time delay.
Performing the same calculation when transmitting kinematic variables (i.e. ve(t) = vim(t-T) and fm(t) = fe(t-T))
results in the following expression:

fm(z) = b z*' vm(z)

which shows a strong dependence of the impedance on the time delay, T. This means that by implementing the
transmission line input/output relationships, the destabilizing effect of time delays in force reflecting systems (i.e.
the dependence of the communication link impedance on the time delay) is eliminated by implementing the
equivalent of a lossless transmission line.

The parameter, b, in the equations described above, is the characteristic impedance of the transmission line.
For a transmission line implemented with a flexible rod with length L, cross-sectional area A, density p, and
Young’s modulus E, the net mass, m, and the net stiffness, k, of the rod can be shown to be:

m = pAL
k=LA
L

The characteristic impedance, b, of the rod can be shown to be:

b=+4km.

The transmission delay time may be interpreted as the length of time it takes for a stress wave to travel the
length of the rod, i.e. the length of the rod divided by the wave speed in the continuous medium. The wave speed,
¢, is well known to be:

E
c=_[—.
Ve
Thus,

=L |(par)EH= % .

c OEA O
Combining this with the above equations results in the following expressions for m and k:

m = bT

k=2
T

In our applications, the delay time is determined by features of the system beyond our control (i.e. the
physical communication link). Thus, for a constant b, the effective mass and stiffness of the rod vary as the time
delay varies. Short delay times result in a rod that feels light and stiff and long delay times result in a rod that feels

heavy and compliant. This demonstrates how the performance of the system varies as the time delay varies,
however, the stability of the system is still guaranteed.

3.0 Haptic Dead Reckoning

Dead Reckoning is a technique employed by distributed military simulations where a local entity (an
aircraft, for instance) keeps track of the position and orientation of each surrounding entity of interest (all other
aircraft in range, for instance) through the use of a local model. Updated information from the actual surrounding
entities is used to update the local entity’s model. This technique is used in order to limit the rate of networked
data; the local entity “fills in the gaps” between data samples using the local model.

Similarly, we have defined a procedure and implemented supporting code which enables stable network-
based force feedback by employing two models of an environment system: (1) a simplified version of the
environment to meet the high rate local needs of the haptic display, i.e. a model that can be run at 1000 Hz; and (2)
the full system representation which resides in an environment server. Whereas the military dead reckoning model
calculates updated position and orientation, our local “haptic dead reckoning” model calculates updated force to be
applied to the haptic device. Kinematic information is passed from the local haptic system to the environment
server and the environment server in turn passes updated model parameters back to the local system which are
plugged into the local haptic dead reckoning model. For example, consider an environment whose lowest order
mode is represented by a stiffness term and a damping term. The full environment server receives updated
kinematic information from the local system and uses whatever technique is desired to calculate the new values of
stiffness and damping. These updated parameters are then passed to the local model. Force is only calculated by
the local model, which is called at a 1000 Hz rate to meet the needs of the attached haptic display.

The heart of the dead reckoning technique is the procedure employed by the environment server to develop a
simplified model for use on the local system. This process relies on linearizing the full system model and then
simplifying this linearized model. Linearization and simplification are justifiable because the resulting model need
only be accurate over a short “update” time interval for calculating a small number of key outputs caused by
changes in a specified set of inputs. For example, the process has been used to develop a very simple model that

can accurately calculate the effect on force of changes in haptic display position for time intervals greater than 100
milliseconds.

The simplification process consists of the following steps:

1. Linearization of the system model around the current operating point. For a system of N first-order
ordinary differential equations (ODEs), the result of this calculation is the NxN Jacobian matrix of the
rates-of-change of the states in the full system model.

2. Calculation of the eigenvalues and eigenvectors of the Jacobian matrix.
3. Diagonalization of the Jacobian using the eigenvectors.
4. Model-order reduction is then performed on the diagonalized system of ODEs.

5. Update the simplified model. The preceding steps result in the calculation of a set of coefficients that
define a simplified, linear set of ODEs in time. These coefficients are transmitted to the local system
for use over the following update interval.

The development of the simplified model has proven to be highly effective for cases in which the
linearization process is justified. The only situations in which problems have been encountered are those in which
the character of the system changes dramatically during an update interval, e.g. due to a collision. Where
necessary, such problems can be addressed by various expedients. For example, the linearization procedure can
include an explicit procedure for detecting and dealing with fundamental changes in the model. One way to
accomplish this is to develop a separate linearized system model that is accurate for the post-collision state of the
system and making both models available to the local haptic processor.

4.0 Demonstration Program

A distributed application which employs the PHANToM haptic display and our Haptic Display Toolkit is
provided to demonstrate this technology. The user is presented with a dialog box containing a number of options
when the program starts. In this dialog, the user can choose Passive Transmission Line Modeling or Haptic Dead
Reckoning. In addition, the user can choose an arbitrary amount of communication delay or alternatively choose to
use the default amount of delay present in the network connection between the haptic and environment portions of
the application. This program uses the freely available ACE communications package (ADAPTIVE
Communication Environment developed at University of California, Irvine; see
http://www.cs.wustl.edu/~schmidt/ACE.html). Users are invited to try this demonstration at PUG99 or contact
Creare Inc. for more information. Alternatively, a modified version of this application that demonstrates Passive
Transmission Line Modeling is available via the SensAble Technologies @ Web site
(http://www.sensable.com/products/Ghost_Demos/netfeel.htm).

5.0 Conclusions

Creare Inc. is developing a number of network-based force feedback applications, including master/slave
telerobot systems, distributed driving simulations, and HLA (High Level Architecture) applications. We have
demonstrated two methods for achieving stable network-based force feedback: Passive Transmission Line
Modeling and Haptic Dead Reckoning. We have shown the advantages and disadvantages of each method and are
in the process of developing a commercially-available Haptic Display Toolkit based on these technologies.

Acknowledgements

This research has been supported by the U.S. Army Simulation, Training, and Instrumentation Command
(STRICOM) Small Business Innovative Research (SBIR) Program contract numbers M67004-97-C-0041 (Phase I)
and M67004-98-C-0030 (Phase II).

References

[Anderson-89] Anderson, R. and Spong, M.; Bilateral Control of Teleoperators with Time Delay; IEEE
Transactions on Automatic Control, 1989, V34, N5, pp. 494-501.

[Hogan-88] Hogan, N.; On the Stability of Manipulators Performing Contact Tasks; IEEE Journal of Robotics and
Automation, 1988, V4, N6, pp. 677-686.

A Haptic Constraints ClassLibrary

Matthew Hutchinsand Chris Gunn
CSIRO Mathematical and I nformation Sciences!
GPO Box 664, Canberra, ACT 2601, Australia.

M atthew.Hutchins@cmis.csiro.au

Abstract

Constraints are an important part of many new interac-
tion techniques. They can be used to simplify input,
reduce degrees of freedom, and eliminate error condi-
tions. Constraints can be part of low-level interactions
or be derived from high-level application-specific rules.
There is a natural synergy between the use of haptics
and the use of constraints in interfaces. Force feedback
can be used to control the interaction so that the user is
either encouraged or obliged to “ do the right thing” .
This paper describes the initial design of a C++ class
library that encapsulates some of the essential ingredi-
ents for building applicationsthat use haptic constraints.
It describes our early experiences with the library, and
our plansfor its future development.

Keywor ds: haptics, constraints.

1. Introduction

Three dimensional multi-sensory virtual environments
provide unparalleled amounts of freedom for users to
explore data and solve difficult design problems. But in a
user interface, sometimes too much freedom can be a
bad thing. Unnecessary degrees of freedom can lead to
confusion, ambiguity, irrelevant decisions, or errors. An
obvious example is trying to solve a 2D problem in 3D,
or a 1D problem in 2D. Consider the scrollbar in
Figure 1. If the “knob” could be moved anywhere on the
page, the interface would be unusable. The sensible
application of constraints is a fundamental principle for
good interaction design [1]. Constraints can be used as
part of low-level interaction techniques (like the motion
of the scrollbar), or can be used to enforce high-level
design rules specified by an application expert.

Previous papers have described our Haptic Workbench
configuration [6] and the motivation for using haptics to
enforce design constraints [2]. Thereisanatural synergy
between the use of haptics and the use of constraintsin

1. This work was carried out within the Cooperative Research
Centrefor Advanced Computational Systems established under the
Australian Government’'s Cooperative Research Centres
Program [8,9].

“knob”
&S L] >
I

constrained motion ————|

Figure 1: A scrollbar as an example of
constrained motion.

interfaces. Force feedback can be used to control the
interaction so that the user is either encouraged or
obliged to “do the right thing”. The haptic display of
seismic data described in [4] created the effect of haptic
constraints using special-purpose rendering techniques.
This paper addresses some of the specific design details
of amore general software library we are developing to
enable programmers to easily construct applications that
use haptically rendered constraints.

2. Design

The Haptic Constraints Library is a C++ class library
that extends the Magma multi-sensory scenegraph AP
from Reachln Technologies [10], which in turn uses the
GHOST API [11]. A class hierarchy diagram for the
library is shown in Figure 2. A scenegraph isahierarchi-
cal representation of a collection of objects in a scene.
To render the scene, the scenegraph is repeatedly tra-
versed, starting from the root. Traversals accumulate
graphic and haptic rendering instructions from certain
nodes in the graph (the “drawable” nodes). The haptic
rendering instructions are passed to a realtime process
that is responsible for controlling the PHANTOM at the
high refresh rate required. The haptic instructions can be
potential or actual surface contacts, or more abstract
instructions called force operators that define an output
force as a function of the device position and other state
information, such as time. Any drawable node in the
scenegraph can generate graphic or haptic rendering
instructions. The starting point for our Haptic Con-
straints Library was the “PenPusher” class — an
abstract base class for nodes that just do haptic rendering
with force operators. This could be seen as analogous to
the GHOST “gst Ef f ect ” or “gst For ceFi el d”
classes.

MAGMA Node v
Constraint

Figure 2:

J PenPusher ConstrainedProxy
/
—
~ PointConstraint
/

/X_ \\ I

Class hierarchy for the Haptic Constraints Library.

LineConstraint

PlaneConstraint

BoxConstraint

SphereConstraint

ShapeConstraint

|
|
ConeConstraint |
|

CylinderConstraint

CircleOnPlaneConstraint |

ShapeOnPlaneConstraint

NN

RectOnPlaneConstraint |

nyOKOrCIosestConstraint|

AlIOKOrOnlyConstraint |

SequentialPipeConstraint |

MultiConstraint

IterativePipeConstraint |

SwitchConstraint |

IntersectSwitchConstraint |

TransformConstraint |

1 ModifiedConstraint SnapToConstraint |

SoftenedConstraint |

/N

Our first experiments with constraints were therefore
based on a pure force model, and we implemented exam-
ples such as attraction and repulsion from points and line
segments. We encountered several problems with this
approach, particularly with getting stable force behav-
iour. For example, using a“gravity” model for attraction
to apoint (force inversely proportional to distance) cre-
ates an unstable region near the point (which is a singu-
larity). A “spring” model (force proportional to distance)
is better, but can still be unstable with large forces. With
respect to implementing constraints with forces, we note
that:

e aconstraint must be violated before any force can
be generated;

« the PHANTOM can only generate a finite amount
of force, so the constraint can always be violated
by an arbitrary amount by a user who pushes hard
enough;

« using large forces to overcome these problems
magnifies any instabilities in the constraint geome-
try, and can be uncomfortable for the user.

As an alternative approach, we implemented a con-
strained proxy node. Thisis essentially the same solution
that is often used for haptic surface rendering [7]. Instead
of using the actual PHANTOM device position as the
user’s interaction point, the application uses the position
of aproxy point that is subject to an algorithmically cal-

culated constraint. The proxy will attempt to follow the
tool position, but will not violate the constraint. Spring-
like forces are used to attract the tool to the proxy posi-
tion. This architecture ensures that the constraint is satis-
fied, but can use reasonably small forces (or even no
force) as a form of feedback to the user. Naturally,
graphical feedback can also be used to show the position
of the constrained proxy. Instead of using a linear spring
model, we designed a force curve that allows the user to
smoothly pull away from the proxy position if desired
(Figure 3). This curve prevents large forces from being
generated if an instability in the constraint causes the
proxy to be separated from the current tool position. The
system also “disengages’ forces at startup or if the proxy
position jumps alarge distance. In the disengaged mode,
only the low background force will be applied. Full
forces are re-engaged when the tool is brought close to
the proxy.

o snaﬁ |
= |
=2
oS ‘ suck ‘
=2
2|/ | | background
| |
distance
Figure 3: Force curve for the con-
strained proxy.

As shown in Figure 2, the constrained proxy is imple-
mented as a scenegraph node, a subclass of the abstract
PenPusher class. The Const r ai nedPr oxy node
has a child node, which isan instance of a subclass of the
abstract base class “Const r ai nt ”. This base class
specifies the function interface that is used to define all
constraints. The function interface is defined in terms of
arequest point, typically the physical position of the
haptic tool. The simplest interface would be a predicate:
does this request satisfy the constraint or not? We add to
this the notion of aprojection: if the request does not sat-
isfy the constraint, what is a“good” replacement point?
Sometimes this will be the closest satisfying point, but
projections are not always that straightforward. We also
allow for the projection to fail, meaning the request does
not satisfy the constraint, but no reasonabl e replacement
can be found. For some constraints, detecting whether
the constraint has been violated and/or computing a pro-
jection requires knowledge of the current point. For
example, aconstraint that acts like a surface is concerned
with preventing transitions from one side to the other,
and so must know the current point and the request point
to detect violations. An example of the use of the current
point in computing projections is discussed below. In

summary, a constraint is defined by a function that looks
at a current point and a request point, and returns avalue
indicating one of: the request satisfies the constraint; the
reguest does not satisfy the constraint, with a projection;
the request does not satisfy the constraint, but projection
has failed. The Const r ai nt base class also provides
some functionality common to all constraints. This
includes enabling and disabling of constraints, and han-
dling some issues to do with constraint coordinate sys-
tems.

Our first crop of constraints are based on familiar 3D
geometric primitives — point, line, plane, a set of solid
shapes (box, sphere, cone, cylinder), and some planar
shapes (circle, rectangle), shown in the hierarchy in
Figure 2. Theline constraint includes constraining onto a
line, ray or segment, the plane constraint includes con-
straining above, below or onto the plane, and the solids
include constraining inside, outside or onto the surface.
Each of these constraints poses three problems: how to
parameterise or describe the constraint, how to detect
whether arequest satisfies or violates the constraint, and
how to project a violating request to a satisfying point.
The parameterisation problem is familiar from other
kinds of 3D modelling, and we use similar solutions. For
example, a planeis described by an origin and a normal,
asphereisdescribed by an origin and aradius, and acir-
cle on a plane by origin, normal and radius. Detecting
whether a request satisfies a constraint can usually be
done with a few vector calculations, e.g. for a sphere,
compute the length of the vector from the origin to the
request and compare it with the radius. As mentioned
previously, projections can require more work. Figure 4
shows inward and outward projections for a box. The
inward projection is to the closest point on the surface.
The outward projection doesn’t necessarily use the clos-
est point — the projection is toward the side of the box
that the current point is on, if possible. This stops the
constrained proxy from jumping from one side of the
box to the other when the PHANTOM is moved around
inside the box.

* O request
@ projection
® current
% closest

projecting inwards projecting outwards

Figure 4: Inward and outward projec-
tions for a box.

Figure 5 shows some of the projection options for a
cone. Each has different perceptual properties from the
user’s point of view. The radial and perpendicular pro-
jections, for example, have a discontinuity at the centre
of the cone, which the axial projection does not have.
For large and small angle cones, the radial and axial pro-
jections (respectively) can be a large distance from the
request point. The choice of the “best” projection is
probably application dependent. The current version
uses the radial projection, because it is consistent with
theradial projection used by the sphere and cylinder.

radial perpendicular axial
Figure 5. Potential projection methods

for a cone.

An application using the Haptic Constraints Library will
often need to achieve specific effects by combining or
modifying the basic constraints. The “Mul t i Con-

straint” and “Modi fi edConstrai nt” classes
shown in Figure 2 alow this to happen. Thereis no sin-
gle approach to combining constraints that will suit all
situations. Mul t i Constr ai nt is an abstract base
class that supports different approaches to combining the
results from a set of “child” constraints into a single
result. Some of the specific instances shown in Figure 2
include:

* AnyCKOr O osest Constrai nt : if the request
satisfiesany child then it is OK, otherwise the clos-
est of the children’s constrained pointsis used.

e Sequenti al Pi peConstrai nt: therequestis
fed through a chain of child constraints, with the
constrained result of one becoming the request for
the next.

e lterativePi peConstr ai nt: works like the
Sequent i al Pi peConst rai nt, but feeds the
result of the final child back to the first child, and
continues until all children agree on a constrained
point, or atime limit is reached.

e IntersectSwitchConstraint: asingle
child is active at a time, with switching between
active children occurring at intersection points.

ThelterativePi peConstrai nt istheonly ago-
rithm we have implemented so far to search for apoint to

simultaneously satisfy multiple constraints, but this
could be an interesting area for future work.

Subclasses of Modi fi edConstrai nt modify the
input and output of a single child constraint. Examples
include:

e TransformConstraint: likea Transform
node in a scenegraph, this defines a matrix coordi-
nate transformation through translation, rotation
and scaling.

e SnapToConst r ai nt : activates the child when
the request is close to the constrained point, but
ignoresthe constraint if the request is far awvay.

3. Experience

One of the features of the Magma AP is its support for
rapid prototyping of demonstrations using a modified
version of VRML ‘97 [12]. This VRML support extends
to user-defined nodes, and so we are able to demonstrate
aspects of the Haptic Constraints Library using simple
scenes that include a selection of the available con-
straints. We have also developed demonstrations target-
ing particular interaction techniques, such as constrained
rubberbanding of objects.

Our initial work on haptic rendering of constraints was
motivated by design problems where experts could pro-
vide rules for good and bad design which could be
turned into interaction constraints. One of these prob-
lems was the planning of mine access shafts that had to
adhere to strict rules concerning, for example, the gradi-
ent of the shaft and the radius of curvature of turns,
because of operating limits of the machinery in use. The
design of the Haptic Constraints Library allowed a dem-
onstration to be constructed component-wise. For exam-
ple, agradient constraint without a specific direction can
be implemented with a constraint onto the surface of a
cone. A combined gradient and direction constraint can
be implemented with aray. A combined gradient and
radius of curvature for aleft or right turn is achieved by
combining two planar circle constraints. We have devel-
oped a prototype system that shows the potential of this
style of interaction.

We have used the constraints library to implement a pro-
gram demonstrating the use of haptic assistance to a user
sketching in a 3D workspace. The program was based on
the idea of predicting the type of curve the user was
drawing (straight line, circle or spiral) from the initial
part of a stroke, and then constraining to that curve for
the remainder of the stroke. The constraints worked well,
but the prediction mechanism was not effective, and was
replaced with a simple mode selection (more details will

be published in [3]). A different approach to using haptic
constraintsin sketching is described by Snibbe et. al. [5].

We have also begun experimenting with using haptic
constraints as a method of enhancing visual presenta-
tions of data. One example is constraining the interaction
to a data surface (defined as a toroid) that is also pre-
sented visually. Thiswork is till in its early stages, and
it remains to be seen whether this method is more effec-
tive than traditional surface rendering.

Our experience has been that the Haptic Constraints
Library provides a good platform for developing new
interaction techniques and interesting haptic-enabled
applications. We are now looking for an appropriate
application niche in the Australian industrial context
where we can most effectively demonstrate the power of
these techniques.

4. Futurework

We are currently working on anew design for the Haptic
Constraints Library to address several issues that have
arisen as aresult of theinitial design. One of theseisthe
problem of realtime rendering of constraints. In the cur-
rent system, constraints are calculated in the graphics-
rate traversal of the scenegraph, and a force operator
implementing the spring force to the constrained point is
passed to the realtime haptic renderer. At best, thisintro-
duces an undesirable roughness and drag to the con-
strained interaction, but in some cases, particularly at
constraint boundaries, it can create large oscillations.
Hence one of our goals for the new design is to improve
this aspect of haptic rendering. Our current plan is to
continue to have the constraints accurately calculated in
the scenegraph traversal, but to provide better haptic
approximations of the constraint for realtime updates. A
significant design goal isto be able to use the same code
for the accurate cal culation and the approximation where
it is appropriate to do so. This will reduce the amount of
programming required to develop new constraints.

Another issue to be addressed by the new design is
increased flexibility in what types of things can be con-
strained. The current design only allows for a single
interaction point to be constrained. That is, constraints
are fixed, and the interaction point moves around them.
If we invert this concept, we could attach a constraint to
the haptic tool and use it to affect points or objectsin the
workspace. Another option is to constrain the motion of
dynamic objects that are pushed or pulled by the haptic
tool.

We are also aiming for increased flexibility and re-usa-
bility of constraint detection and projection components,
so that they can be used as general tools for implement-
ing interaction techniques. Naturally, we would also like
to provide computational optimisations, such as concate-
nating transformation matrices. Another goal is to
reduce the dependence on any particular haptic API, so
that the library can be more easily ported to different
software and hardware configurations.

References

1 Doug A. Bowman and Larry F. Hodges. User interface
constraints for immersive virtual environment
applications. Graphics, Visualization, and Usability
Center Technical Report GIT-GVU-95-26. 1995.

2] Chris Gunn and Paul Marando. Haptic constraints:
guiding the user. In proceedings of SimTecT ‘99,
Melbourne, Australia, March 1999. Pages 261-264.

[3] Matthew Hutchins and Chris Gunn. Sketching in space
with haptic assistance. Paper submitted to the First
Australasian User Interface Conference, to be held in
Canberra, Australia, January 2000.

[4] J.P. McLaughlin and B.J. Orenstein. Haptic rendering
of 3D seismic data. In proceedings of the Second
PHANTOM Users Group Workshop, 1997.

[5] Scott Snibbe, Sean Anderson and Bill Verplank. Springs
and constraints for 3D drawing. In proceedings of the
Third PHANToM Users Group Workshop, 1998.

[6] Duncan R. Stevenson, Kevin A. Smith, John P.
McLaughlin, Chris J. Gunn, J. Paul Veldkamp, and
Mark J. Dixon. Haptic Workbench: A multi-sensory
virtual environment. In Stereoscopic Displays and
Virtual Reality Systems VI, proceedings of SPIE
Vol. 3639, 1999. Pages 356—366.

7 C.B. Zillesand J.K. Salishbury. A constraint-based god-
object method for haptic display. In proceedings of the
1995 |EEE/RSJ International Conference on Intelligent
Robots and Systems, August 1995. Pages 146-151.

Web Cites

[8] ACSys:. The Cooperative Research Centrefor Advanced
Computational Systems.
http://acsys. anu. edu. au

9] CSIRO Mathematical and Information Sciences.
http://wmw. cm s. csiro. au

[10] Reachln Technologies.
http://ww reachin. se

[11] SensAble Technologies.
http://ww. sensabl e. com

[12] Web 3D Consortium.
http://wwv vrm . org

Haptic Interaction with Three-Dimensional Bitmapped
Virtual Environments

Jered Floyd
MIT Artificial Intelligence Laboratory
(jered@mit.edu)

Abstract

This paper briefly describes the design and implementation of a system integrating a force-reflecting hap-
tic interface, the PHANTOM, with a high-powered computer designed to efficiently compute cellular au-
tomata, the CAM-8. The goal was to build a system to allow users to interact with real-time three-dimensional
bitmapped simulations running on the CAM. Such simulations are far more computationally complex than
can currently be computed on the PHANTOM host. This system can also provide an intuitive user interface
for manipulating data within CAM simulations.

Background

Computational systems exist that allow large-scale 3D cellular automata systems to be rapidly computed.
In general, these systems are used to simulate physical environments with very limited user interaction.
Using the PHANToOM, we can develop methods to allow intuitive human interaction with these large-scale
bitmapped simulations.

Most computer generated virtual environments are constructed from polygonal models of objects. This
limits user interaction with such systems to rules that may not accurately model a physical system. With
advances in technology it has become feasable to work with three-dimensional bitmapped environments,
computed by cellular automata simulations. Systems exist that can iterate a set of rules over a large multi-
dimensional space, primarily for examining physical simulations such as lattice-gas or hydrodynamic mod-
els. Interactive user interfaces for real-time manipulation of these existing systems have been lacking.
Force-feedback haptic touch interfaces provide interesting possibilities.

Previous Work

A substantial amount of work has been done in the past on the technologies underlying this research. Phys-
ical modeling with discrete spatial-lattice cellular automata models has been studied[margolus-99]. Haptic
interaction with polygon-based computer simulations has been extensively explored, however, haptic in-
teraction with volumetric simulations has not been as well studied.

Approach

Work in the past year has included the design and implementation of a basic system combining a PHAN-
ToM haptic interface[massie-94] and the CAM-8 cellular automata machine[margolus-96] to provide a
three-dimensional haptic user interface for real-time simulations running on the CAM. This was a suc-
cessful demonstration of what can be done with current technology. Given the high (1 kHz) response rate
required for haptic interaction, there were initially problems due to the communication and computation
delays inherent in the system. These were overcome with a novel method for coping with latency that in
effect trades some degree of spatial accuracy of interaction for timely and sharp haptic responses[floyd-99].

This is an acceptable trade-off. If the haptic response is inaccurate, this is eminently noticeable to the
user. Objects feel soft or unwieldy, and in the worst cases violent oscillations may occur. The result of

melactad

/ block

Static 3-D Pi=ces [(with grasyp point) Static 3-ID Piemces [(with me=le=ct=d Llock)

spatial inaccuracy, however, is far less noticeable to the user of a haptic interface as long as other forms of
feedback match the haptic feedback. As the user is operating the haptic interface in free space, they have
very little in the way of a frame of spatial reference beyond their own proprioception. For small coordinate
offsets, this effect is not easily perceptible to the user.

Latency Issues

As the PHANToM and the CAM-8 connect to different host computers, the two machines need to exchange
information for the system to work. | first examined the possibility of standard closed loop operation at a
lower response rate. Given Ethernet communications and the speed of the CAM-8, a loop rate of 100 Hz
would not be an unfeasable goal. To determine whether or not this was a viable direction to continue
working towards, the simple “Hello, sphere” program was reimplemented to operate over the network.

Testing revealed serious problems with this model of operation. The environment presented to the
user is of very low fidelity. The stiffness of items in the enviroment is determined by the stiffness of the
haptic interface and the stiffness of the closed servo loop, of which the latter is the limiting factor with
the PHANToM [massie-93]. Additionally, the large delays in force updates could often lead to violent
instabilities in the system.

The same problems this system encountered with communication and computational latency have pre-
viously been seen when using force feedback devices for teleoperation. The computational delays are es-
sentially no different from additional communication delays, so the whole system can be likened to time-
delayed teleoperation in a virtual environment. Some existing systems have been designed to cope with
delays at least as large as 1 s [niemeyer-96], which is far greater than the expected system latency. A number
of different options were explored, but none of them were found to be suitable, as most made unacceptable
assumptions such as a passive remote environment.

Time vs. Space Tradeoff

To meet system design goals, it was necessary to formulate a new method for coping with latency in virtual
teleoperation. For the kind of high-fidelity force response desired, it is clear that the closed haptic response
loop should not extend beyond the haptic interface host, and should be designed to operate as quickly as
possible based on a local model of the remote virtual environment. By relaxing environmental restrictions
further, we are able to find an acceptable solution to the latency problem.

All of the conventional methods explored make a fundamental assumption about the nature of the
system: There is a direct spatial correspondence between the local and remote environments. That is to

say, if there is a wall five inches from the neutral starting position in the remote environment, then the user
will perceive it five inches from the neutral starting position with the haptic interface. Fixed objects in the
remote environment are also fixed in a frame of reference about the haptic interface.

This assumption is understandable when teleoperating in a remote real environment. The slave robot
physically exists in that remote environment, and when it collides with an object it encounters natural
restoring forces that should be communicated back to the master. This is not, however, the case when op-
erating in a virtual environment. The slave robot exists only inside the computer, and does not necessarily
encounter forces unless we choose to compute them, and these forces can be computed without affecting the
state of the environment. It is free to penetrate solid objects and violate the physics of the virtual universe
if we so desire. None of the other similar systems encountered took advantage of these properties.

This understanding allows us to make a simple trade-off of temporal versus spatial accuracy. We are
able to provide a high-fidelity haptic response at the exact time the user penetrates an object in the virtual
environment by relaxing the spatial correspondence between the haptic interface workspace and the virtual
environment.

0 X 0 ' X 0 X
a) user approaches b) user penetrates surface, c) client offsets coordinate
surface client is notified system |earns constraint

X < 4

Figure 1: Time/Space Tradeoff

A simple example: Consider that the user is moving unimpeded through free space, and there exists a
solid surface some distance in front of the user (Figure 1a). As the user moves towards the surface, at some
point they will penetrate the surface given the current frame of reference of the haptic interface (Figure 1b).
Some delay length later, the computation server will realize that the user has violated physical constraints of
the environment. In a traditional teleoperation system, it would then compute a force to deliver to the user
which by the time it was delivered would be incorrect, as the user may have moved significantly during
the time it took to compute and communicate this force. Instead, the server tells the haptic client that the
user has penetrated a surface in the environment, and where that collision occured. The client uses this
information to offset the coordinate system the user is operating in so that instead of having significantly
penetrated the surface the user is merely just within it, computes an appropriate force response, and caches
the constraint implicit in the existance of that surface so that forces to impede further progress in that
direction are computed on the client alone (Figure 1c).

In other words, when a user collides with an object in a remote virtual environment, instead of immedi-
ately encountering a restoring force they frictionlessly push the coordinate system (and all objects therein)
away from them for the duration of one round-trip delay. After this delay, the haptic client has learned of
the environmental constraints and can provide force feedback as appropriate.

Conclusions

The currently available hardware puts this project just within the bounds of possibility, where a proof-of-
concept system was feasible and more complex systems will be possible soon. Designing a general purpose
interface to bitmapped simulation is not easy; due to the properties of different simulations it often seems
necessary to tailor the haptic interface to the task at hand. Additionally, the current method for coping with
the large latencies found in the implemented system significantly restrict the realm of simulations that can
be easily interacted with via the haptic interface.

Parallel computers such as the CAM-8 are engines that allow real-time presentation and manipulation
of large amounts of data, such as a three-dimensional bitmapped virtual environment, however they suffer
from the fact that there are few effective ways for a user to directly interact with a simulation. This research
begins to provide interfaces for automata-based simulations that are easily understood and consistent with
the way a user would expect a simulation to behave, based on their real-life haptic experience.

Such interaction may be of use for controlling and analyzing scientific and engineering simulations,
for interacting with 3D bitmapped medical data, and in general for many of the applications for which
direct haptic interaction has been studied and proposed in connection with non-bitmapped virtual reality
simulations.

Future Work

There are a number of directions in which future work on this research could proceed. Currently imple-
mented examples do not make particularly efficient use of the available computational power and should
be expanded to explore more dynamic applications in a variety of fields. The power provided by a next-
generation parallel computer would greatly expand the scope of simulations accessible to this research.
Expanding the implemented system to include a user interface beyond single point haptic interaction, by
the use of multiple PHANToMs or other more complex interfaces, would also be interesting. Further, some
of the methods devised for coping with communication and computation delays should also be applicable
to conventional force-reflecting teleoperation.

Acknowledgements

Support for this research was provided in part by DARPA under contracts DABT63-95-C-0130 and N00014-
96-1-1228.

References

[floyd-99] Jered Floyd. Haptic Interaction with Three-Dimensional Bitmapped Virtual Environments.
M.Eng Thesis, MIT, Department of Electrical Engineering and Computer Science, May 1999.

[margolus-96] Norman Margolus. CAM-8. a computer architecture based on cellular automata. In
Lawriczak and Kapral, editors, Pattern Formation and Lattice-Gas Automata. Addison-Wesley, 1996.

[margolus-99] Norman Margolus. Crystalline computation. In Hey, editor, Feynman and Computation.
Perseus Books, 1999.

[massie-93] Thomas H. Massie. Design of a Three Degree of Freedom Force-Reflecting Haptic Interface. SB
Thesis, MIT, Department of Electrical Engineering and Computer Science, May 1993.

[massie-94] Thomas Massie and J, Kenneth Salisbury. The PHANToM haptic interface: A device for prob-
ing virtual objects. In ASME International Mechanical Engineering Exposition and Congress. Chicago,
November 1994,

[niemeyer-96] Gunter Niemeyer. Using Wave Variables in Time Delayed For Reflecting Teleoperation. PhD
Thesis, MIT, Department of Aeronautics and Astronautics, Sep 1996.

The use of CORBA in haptic systems - a requirement
for future applications

Christoph Giess, Harald Evers, Hans-Peter Meinzer

Deutsches Krebsforschungszentrum
Abteilung Medizinische und Biologische Informatik
Im Neuenheimer Feld 280
D-69120 Heidelberg, Germany

Ch.Giess@DKFZ-Heidelberg.de

Abstract: Currently, haptic rendering finds its way from research laboratories to industrial applications where
it hasto beintegrated in existing, often distributed and heter ogeneous systems. CORBA has become the industrial
standard for such tasks. A surgical planning system, developed by our group, will be used to demonstrate possible
solutions for the integration of haptic volume rendering in a legacy system. We will present the advantages of
CORBA over traditional network programming. Based on this application we derived a concept that enables the
testing of the user interface of haptic applications without changing the application. Hence, it showsthe flexibility
and extensibility of our approach.

Index Terms: CORBA, distributed systems, haptic volume rendering

1 Introduction

Distributing a haptic application across multiple computers in a network is a commonly used method to:
« fulfill the time constraint calculating the forces
* take advantage of specialized graphic hardware and

e integrate legacy systems.
All previously described distributed haptic applications (e.g. [Seeger 97], [Fritz 96], [Plesniak 96], [Vedula 96])
used an proprietary communication infrastructure to connect the haptic rendering with the visualization processes.
The development of that infrastructure always includes the definition of protocol and message formats, an imple-
mentation of addressing and initialization, the marshalling and unmarshalling of data in the appropriate formats,
ademultiplexing of requests, error detecting and recovering strategies [Gullekson 99]. This time consuming and
expensive task is only one prerequisite for a haptic application. The implementation effort is seldom justifiable.

Additionally, the ,simple* message passing between processes does not fit into the higher abstraction level of an
object oriented programming model as offered by GHOST [SensAble 99]. With that, neither inheritance nor
polymorphism can be adequately addressed.

All these drawbacks are already known from industrial applications. In this field, CORBA has been established
over the last years and has become the standard middleware for distributed systems. In this paper, it is shown how
the functionality of CORBA can be used in haptic applications.

2 Haptic Volume Rendering in a Surgical Planning Tool

A surgical planning tool for different tasksin heart, liver and cranio-facial surgery is one project our group is cur-
rently working on. Thistool isdesigned to be executed as aplugin of theteleradiol ogy system CHILI® [Evers 99].
It consists of two logically disunct parts: the user interface and the image processing algorithms. All image pro-
cessing related functionality is implemented as an independent server which allows multiple clients to share its
resources. Thefirst implementation of this server was realized with a proprietary communication library and used

a RPC based communication model [Mayer 99].

2.1 Redesign with CORBA as middleware

When we decided to integrate a PHANTOM as an additionally input device in the surgical planning tool, it turned out
that the haptic rendering has to be done inside the server since it maintains an exclusive copy of the images. These
images are used as model for the force calculation. The size of the data makes an replication inappropriate and would
reguire an expensive data exchange when performing image processing algorithms. The datawere visualized with vol-
ume rendering which was al so choosen for the haptic rendering. An overview of the entire systemisshown infigure 1.

The use of an own communication library has several drawbacks as mentioned in the introduction. Replacing it with
CORBA was one decision when redesigning the server. The first step was to select a CORBA implementation which
fulfills the requirements. In our selection we considered the following implementations: Inprise Visibroker 3.1, lona
Orbix 2.3, TAO 0.2.46, MICO 2.2.1 and OOC ORBacus 3.1. We have chosen ORBacus [OOC 99] for our project
because of the availability of source code, the support for all our platforms with their native compilers, the single and
multithreaded version, the excellent support from OOC and the free license for non-commercial use. The new
implementation of the image processing server was tested on Solaris SPARC/Intel, Linux, Irix and Windows NT
whereby the haptic rendering is currently supported only on the last two platforms.

| haptic rendering

I
| volume visualization | I
I

I

I

| image processing ~ CORBA | :
| image processing / \ visualization |

image processing server -t I_ _____ CHILI ®JI

Fig. 1: Overview of the structure of the surgical planning tool

2.2 Results of the redesign

The use of CORBA has simplified the implementation of the image processing server. The previous implementation
consist of 3100 lines of code (communication library and image processing a gorithms not included). For the new ver-
sion only 2550 lines of code were needed, although the number of accessible image processing functions increased
from 1 to 80 and the haptic rendering was added. A clearer structure will make maintenance and extensions easier.

Performance issues play an important role in haptic applications. The time needed to call a method with 16 double
values as parameters and returning along value (transmission of rotation matrix and acknowledge receive) is between
0.5 and 2.2 msec. The times were measured on a ordinary loaded 100BASE-T ethernet network. They are depending
mostly on the performance of the used hardware.

The use of the image processing server was much simplified after using CORBA. The developers of the graphical
user interface do not need to deal any further with network programming. They can access the whole functionality of
image processing and haptic rendering asif they were implemented in the same process. Additionally, all concepts of
object-oriented programming can be used on client side with fully integration of the server.

With this implementation, it is possible that multiple clients can retrieve al information from the haptic rendering
process using an standardized interface. Such a feature can be helpful in surgical training or for testing a new user
interface. Each client has to pull al state transitions of the server process. Depending on the number of clients, this
can lead to an remarkable load on the server where the requests have to be processed. This may consume large
amounts of computing power which will not be available for the haptic rendering and eventually stopping the process.
A solution to this problem is the event model presented in the next section.

3 Event Model

For some tasks, e.g. psychophysical experiments or testing the usability of an application, it is necessary to log all of
the user‘ s actionsfor an further evaluation or to observe the user solving a problem. For that, there are two approaches
using the previously described implementation.

The first approach would require a modification of the implementation of the haptic rendering process. The server is
responsible to write al interesting information to disk. Testing several alternatives require a change in all
implementations which is clearly an expensive solution.

The second solution implements a logging process which polls the server permanently for state transitions. With that,
no changes in the server are necessary but an avoidable load of the network occurs.

3.1 Implementing the Event Model

To avoid these drawbacks, the Event Service, one of the Common Object Services specified by the OMG can be used.
The central concept of the Event Service isthe event channel which decouples the communication between objects. It
definestwo rolesfor objects: supplier and consumer role. The supplier produces event dataand the consumer processes
it [OMG 99a]. In our scenario, the server isthe supplier of events. The user interface and the logging process are con-
sumers.

However, implementing this concept with the current GHOST version (2.1) seems to be complicated. The generation
of events may depend only on actions in the haptic rendering loop. But GHOST requires an explicit call of
gst Scene: : updat eG aphi cs() or gst Scene: : updat eEvent s() in the application loop. Only these methods
invoke the appropriate callbacks [SensAble 99, p. 2-26] to transmit data to the event channel. A possible solution
might be the introduction of a,, helper-object that will permanently call one of the methods (see fig. 2).

Beside GHOST, other libraries exist for haptic rendering. The Magma framework [Reachin 994] is based on an
internal field network. The field network can be set to perform cal culations on incoming and outgoing values as well
as passing messages and data. This extremely powerful feature allows a seamless incorporation of the event channel
[Reachln 99b] in the application.

control
g |

client

haptic rendering position/orientation

]
— ><E

button pressed, etc.
P >| event channel | >

client
gst Scene: : updat eEvent s()

R

Fig. 2: The use of an event channel to transmit state changes from the haptic rendering process

3.2 Testing a haptic application

Based on the event channel concept, the configuration of a system for testing the usability of a haptic application is
shown in fig. 3. The haptic application has not to be changed for this purpose.

The testing is done through additional modules which were connected to the haptic application via the event channel
or may access it directly through its CORBA interface. Beside alogging facility, any module may be connected with
the system. An observer of the experiment may have different views to the proband' s application (Graphic) and may
change parameters of the system during runtime (Controller). Such interferences may also be automated. A different
behaviour can be simulated with an appropriate model (Model). The simple reuse of the test modules is possible
because of their generality.

This abstraction is highly generic and its use is not restricted for the specified case.

---------------------------- - 0..n

. 1..n N
N - . >‘ controller
- - - haptic . :I‘
roband ' X
P ! 0..n

:) in : 0..n dd AN R
"~ graphics event channel [:|mo
| ' n observer
' haptic application R graphics| - - - ¥~
— — - human machine interaction
—— dataflow gn__
X.y number of instances logging

Fig. 3: Modules in an environment for testing haptic applications

3.3 Notification Service

A further enhancement of this concept can be accomplished by replacing the event channel from the Event Service
with the extended version of the Notification Service [OMG 99b] when first implementations will be available. This
will alow amore precise adaptation of the event flow by event filtering and the setting of quality of servicelevels.

4 Acknowledgements

Thisresearch was performed at the Division of Medical and Biological Informatics at the Deutsches Krebsforschungs-
zentrum (German Cancer Research Center). The work was funded by the Deutsche Forschungsgemeinschaft (SFB
414: Information Technology in Medicine - Computer and Sensor Supported Surgery).

5 References

[Evers 99] Evers H, Mayer A, Engelmann U, Schréter A, Baur U, Wolsiffer K, Meinzer HP: , Extending a
teleradiology system by tools for visualization and volumetric analysis through a plug-in
mechanism*, Int. Journal of Medical Informatics 53, 2-3 (1999) 265-275.

[Fritz 96] Fritz JP, Barner KE: ,,Haptic Scientific Visualisation", Proceedings of the First PHANToM Users
Group Workshop, Dedham, MA, 1996.

[Gullekson 99] Gullekson G: ,,ORBs For Distributed Embedded Software”, ObjecTime Limited, Kanata, Ontario,

Canada, 1999.
[Mayer 99] Mayer A, Meinzer HP: ,High performance medica image processing in client/server-
environments.”, Computer Methods and Programs in Biomedicine 58(1999), 207-217.
[OOC 99] »ORBacus For C++ and Java Version 3.2“, Object Oriented Conceptes, Inc., Billerica, MA, 1999.
[OMG 984] »CORBAservices:. Common Object Services Specification”, Object Management Group TC

Document 98-07-05, Framingham, MA, 1998.

[OMG 98b] »Notification Service (Joint Revised Submission), Object Management Group TC Document
telecom/98-06-15, Framingham, MA, 1998.

[Plesniak 96] Plesniak W, Underkoffler J. ,, SPI Haptics Library“, Proceedings of the First PHANToOM Users
Group Workshop, Dedham, MA, 1996.

[Reachin99a] ,,Magma User Guide", Reachln Technologies AB, Stockholm, 1999.

[Reachin99b] Sienkowski P: personal communication, Reachln Technologies AB, Stockholm, 1999.

[Seeger 97] Seeger A, Chen J, Taylor RM: ,,“ Controlling Force Feedback Over a Network*, Proceedings of the
Second PHANToM Users Group Workshop, Dedham, MA, 1997.

[SensAble99] ,GHOST SDK Programmer‘s Guide", SensAble Technologies, Inc., Cambridge, MA, 1999.

[Vedula 96] Vedula S, Baraff, D: ,, Force Feedback in Interactive Dynamic Simulation®, Proceedings of the First
PHANTOM Users Group Workshop, Dedham, MA, 1996.

A VR Three-dimensional Pottery Design System
Using PHANToM Haptic Devices

Shingo Hirose and Kazuo Mori

Mechanical Engineering Laboratory, AIST, MITI
1-2 Namiki, Tsukuba, Ibaraki 305-8564, Japan
hirose@mel.go.jp

Richard M. Y. Lee and Yutaka Kanou
3D Incorporated
Queen’ Tower C, 17F, 2-3-5 Minatomirai, Nishi-ku, Yokohama 220-6217, Japan

Abstract

We explore a novel design system for fabricating various three-dimensional structures by arbitrarily
transforming the clay object within a virtual reality environment. The setup consists of a personal computer,
PHANTOM haptic devices, and a rapid prototyping system.

The virtual object is deformed plastically, with the necessary calculations computed in real time, while
haptic rendering is provided concurrently with the PHANToMs. This gives the designer the ability to push and to
mark as if we touch clay directly by fingers. Finally, the deformed object can be realized using a rapid

prototyping (RP) system.

I. 1. Introduction

Within glassware and pottery industries, it has become more important for the customer to be able to
visualize the final design before the actual manufacture. Also, customers want to get the originally designed
object that he and she can satisfy. With this in mind, we are developing a virtual reality (VR)-based design

system, inside which the user can manipulate clay in a VR environment any way he and she so desires.

Virtual Clay Objects
Stereoscopic ~

———
Vision Display // N
\
N /
N 7
~Z -

Virtual Fingers

Personal
Computer

Finger Sack Type
Positioning and
Force Feedback Device

Controller

Working
Reaction Force

Figure 1 Schematic illustration and photograph of the system.

Recently, studies of haptic interaction with an object surface have matured rapidly and have attracted much
attention within the PHANToM community [C. Tarr-97, K. Hirota-98]. This is because the PHANToM provides
a high spatial resolution and faithful force fidelity for users. In this study, we choose to work the real-time plastic

deformation on a modern Intel PC, which now has a performance comparable to a UNIX workstation.

2. Implementation

The design system we are developing consists of a personal computer (PC), a stereo display and two
PHANTOM haptic devices as shown in Fig. 1. A rapid prototyping (RP) system is also connected to this system
via a local network. The PC is of a high-end type (Pentium 300 MHz %2, Windows NT) with a graphics
accelerator card. The PHANToMs read in the finger positions, and the reaction force is calculated via the

software development kit GHOST.

3. Results and Discussion

We simulated the action of pushing and hence deforming a three-dimensional (3D) virtual object. As
shown in Fig. 2, the object surface is made up of a mesh of triangular polygons, where vertex nodes are
connected via polygon edges. The deformation algorithm entails a mass-spring-dashpot model, whereby each
vertex node has a mass, and a parallel arrangement of a spring and a damper is inserted onto each polygon edge.
Such a model is usually named the Voigt model [D. K. Felbeck-96]. As for a thin object, corresponding vertex
nodes on opposing surfaces are also connected in addition. The stiffness of the object could be altered by

changing the spring constant.

force polygon node
A-surface \
\ v
B-surface .
spring

=%,
amper

Figure 2 Three-dimensional plastic deformation using mass-spring-dashpot model.

We prepared a cup-shaped cylinder in the virtual environment as an initial object (Fig. 3). The white ball
represents the position of the finger. When the finger touched the inside or the outside surface of the cylinder,
deformation was carried out in real time such that what the user touched would always be the continuously
deforming cylinder, as we would expect in the real physical world. It should be noted that the deformation was
not in an absolute plastic mode but in a quasi-plastic mode. The volume of the clay object became slightly
smaller while deforming. This resembles the behavior in actual clay pottery making where the density of clay

object is increased. We therefore think that this deformation model is suitable for deforming clay objects.

Figure 3 The virtual clay cylinder before (right) and after deformation (left).

Finally, the polygon mesh of the object can be used in CAD and rapid prototyping (RP) systems. We
realized the object designed using a RP system, by saving the shape of the object in a STL (STereoLithography)
file and sending it to a RP system via the local network. Figure 4 shows the shape of deformed object (left) and

the realized product (right).

Figure 4 The shape of deformed object (left) and its RP result (right).

4. Summary

A virtual clay object is molded using the plastic deformation model proposed in this study. Plastic
deformation of the object is computed in real time so that the haptic rendering process can be executed in parallel
on the latest deformed contour. This enables the designer to receive the same tactile sensation as that of touching

real clay by finger. Finally, a real object of the desired deformed shape is directly realized using a RP system.

Acknowledgement
The author (S. H.) would like to thank Dr. T. Tanikawa at MEL for helping me learn how to use the RP

system.

References

[C. Tarr-97] C. Tarr and J. K. Salisbury, “ Proceedings of the second PHANToM Users Group
Workshop® 1997.

[K. Hirota-98] K. Hirota and T. Kaneko, Japanese Society of Information Processing, 39 (1998) 3261, in
Japanese.

[D. K. Felbeck-96] D. K. Felbeck and A. G. Atkins, “ Strength and Fracture of Engineering Solids’, (Prentice
Hall, NJ 1996) p. 256.

Mobility Training using a Haptic Interface: Initial Plans

Frances L. Van Scoy, Vic Baker, Chaim Gingold, Eric Martino
West Virginia Virtual Environments Laboratory
and
Department of Computer Science and Electrical Engineering
West Virginia University
fvanscoy @wvu.edu, vic@csee.wvu.edu, gingold@csee.wvu.edu, designmartino@yahoo.com

Darrin Burton
West Virginia Assistive Technology System
West Virginia University
dburton3@wvu.edu

Abstract

We describe the design and progress towards implementation of a haptic-based interface for mobility training. This
system will provide the user with information about the site to be visited, such as names of businesses, types and
locations of doors, and types of traffic control devices.

Statement of Problem

For a blind person or someone with low vision, the thought of travelling alone to a new city can be daunting. We
have designed and have begun implementation of a prototype for using the PHANToM and sound to present a
model of a portion of a city to give pre-trip. We have chosen a one-block section of downtown Morgantown, West
Virginia, for our prototype. We chose this particular block because the county court house is in that block, set back
from the street about 75 feet from other buildings.

Information to be Presented to User

We are using a digital camera to photograph facades of buildings and the Canoma software package to construct 3-D
models of the buildings. The user interface will use the regular keys of the keyboard used by the left hand of a touch
typist, the PHANToM (operated by the right hand), and sound. The user will use the PHANToM to explore the
street by pushing the stylus along the front of buildings. At each store front the user can be told the name and/or
address of the business and optionally additional information about the business. At each door, information will be
available on how the door opens, on the left or right, and by pushing or pulling. Optionally the user may enter the
length of pace and have steps counted aloud while moving along the street. At each intersection information on the
kind of traffic control device will also be provided.

User Interface Design

This section describes the design of our system, which is in the process of being built.

Our user interface uses both the senses of touch and sound, and, optionally for debugging and demonstrations, sight.
The user controls the system via the PHANToM (using the right hand) and the left side of the computer keyboard
(using the left hand). The system responds via tactile feedback using the PHANToM and pre-recorded messages.

The user traverses the model by moving the tip of the PHANToM along the modeled sidewalk. Artificial ridges in
the sidewalk indicate the boundary between two buildings and between the sidewalk and a cross street. Such ridges
also are added to the facades of buildings to indicate the presence of doors.

Using the left hand on the computer keyboard the user has easy access to 15 letter keys. These keys control various
options of the system.

When the appropriate options are selected the user hears:

when in front of a building, the name of the current building, a list of the various businesses in that building
(important in the case of buildings with offices and shops on floors above the ground floor)

when touching the door of a building, whether the door is hinged on the left or right edge, and whether it
opens inward or outward

the distance from the more recently visited end of the current block to the current location, in feet and,
optionally, in number of steps

when at an intersection, the nature of the traffic control device and, where relevant, information on how to
activate it

The system also will display visibly our model of the block and a 2-D map of the downtown area with a “you are
here” indication. Toggling between these two views and rotation of the 3-D model are controlled by the number
keys on the left side of the keyboard.

Building the 3-d Models

We began the project by taking a series of photographs of the High Street business district. Because of the
narrowness of the street and the height of the buildings, we were unable to capture the entire fagade of an individual
building in one photograph. Instead we typically took six photographs of each building to cover the entire front.

Because each of these photos was taken at a different angle or from a different location, we then used Photoshop to
combine the series of images of a single building into one image of the entire fagade (and context) of that building.

Next we used Canoma to construct a 3-d model of the exterior of each building. We exported these models from
Canoma in VRML and then imported the VRML building models into 3D Studio Max. Using 3D Studio Max we
created the terrain, sometimes flat and sometimes sloping, and placed each building model onto the terrain. From
3D Studio Max we then exported a single VRML model of the portion of the downtown business district of interest
to us.

Experience with the PHANToM

We acquired two PHANToOM systems in summer 1999. One of these is connected to the Onyx computer which
powers our ImmersaDesk. The other is attached to a Pentium-based system running Windows NT. In these first
few months of using the PHANToMs West Virginia Virtual Environments Laboratory members have done several
small projects.

(1) In June 1999 we built two VRML objects, one of a teapot and one of a maze, and asked users to identify these
models by touch, using the PHANToM.

(2) We have attempted to port a VRML model of a DNA molecule to the PHANToM system using Haptic Viewer,
but this software often fails to load the model or crashes when presented with a fairly large or complex VRML
model.

(3) One of us has built a model of a small atom using calls to OpenGL and has incorporated sight, sound, and
haptics into the model. The model presents to the user information about the probability density function for an
electron.

In related work, another lab member this summer wrote a small C program consisting primarily of calls to the World
Tool Kit library with the Immersive Display Option which allows us to display and interact with VRML models on
our ImmersaDesk. We use this program to display and manipulate the DNA molecule mentioned above.

Building on these experiences we are in the early stage of writing a World Tool Kit (without IDO) + GHOST
application which will display our VRML model of High Street visually on the computer monitor and allow us to
interact with the model via the computer keyboard and the PHANToM. This application will incorporate the user
interface described earlier in this paper.

Future Direction

We continue work on implementation of the system described here.

This fall we expect to buy a Cyrax 3-D scanner for the laboratory. This system should greatly simplify the task of
constructing VRML (or other format) models of a street scene.

Acknowledgements

This work is underway at the West Virginia Virtual Environments Laboratory, which is funded by the EPSCoR
programs of the National Science Foundation and the state of West Virginia and by the Department of Computer
Science and Electrical Engineering of West Virginia University.

The teapot and maze models were built by Chaim Gingold and demonstrated by Vic Baker and Alexi Leontopoulos
at the West Virginia Information Technology conference in June 1999. The DNA model was constructed by Pete
Gannett, professor of pharmacy at WVU. The atomic model was built by Chaim Gingold and Erica Harvey,
associate professor of chemistry at Fairmont State College. Alexi Leontopoulos wrote the VRML display and
interaction program for the ImmersaDesk. Young Oh took the photographs for the downtown High Street model
described in this paper, and he, Radhika Mukkamala, and Erik Martino built the VRML models.

Canoma is a registered trademark of MetaCreations. Cyrax is a registered trakemark of Cyra Technologies.
GHOST and PHANToM are registered trademarks of SensAble. ImmersaDesk is a registered trademark of the
Board of Trustees of the University of Illinois. OpenGL and Onyx are registered trademarks of Silicon Graphics.
Photoshop is a registered trademark of Adobe. 3D Studio Max is a registered trademark of Autodesk. Windows NT
is a registered trademark of Microsoft. World Tool Kit is a registered trademark of SENSS.

Structurally-Derived Soundsin a Haptic Rendering System

Nikolai A. Grabowski and Kenneth E. Barner
Department of Electrical and Computer Engineering
University of Delaware
Newark, DE 19716
E-mail: grabowsk@eecis.udel .edu, barner @eecis.udel .edu

1 Introduction

Objects being rendered by the PHANTOM can often be thought of as structures that, in the real world, would
vibrate when struck to produce sounds. We have implemented a system that triggers impact sounds when
the PHANTOM strikes the objects it is rendering. To create the sounds, we use amodal analysis framework
put forth by Van den Doel and Pai [1]. The sound is determined by the structure’s natural frequencies,
mode shapes, and location of impact. For certain objects of simple shape, an equation of motion can be
written and solved analytically. However, for irregular shapes, wefind the vibration using the Finite Element
Method. We have embedded this rendering system in MATLAB for Windows using ActiveX technology.
By connecting the PHANTOM with MATLAB, we provide an environment in which the user can quickly
and easily create haptic renderings of data.

2 Related Work

When an object moves, it causes the air around it to move. The ear senses this air movement and we perceive
the sensation as sound. Van den Doel and Pai [1] developed a method for synthesizing impact sounds using
the equation of motion,)

(A~ gl 1) = Flo, 1) @
Here, uu(x, t) represents the deviation from equilibrium of a surface defined on someregion S, A is a self-
adjoint differential operator under the boundary conditions on 9S, and ¢ is a constant to be determined by
the material being considered. If the external force, F(x, t) is set to zero, the solution to (1) can be written

as
00

p(e,t) = Z(ai sin(wjct) + b; cos(w;ct)) ¥y (x), 2
i=1
where the coefficients a; and b; are determined by the inital conditions. The w;’s derive from the eigen-
values of the operator A under the specified boundary conditions, and the ¥;(x)’s are the corresponding
eigenfunctions (modes). To model the response from impact at a point p, the initial conditions can be set
as u(x,0) = 0and p'(x,0) = 6(x — p). Assuming the eigenfunctions are normalized, Van den Doel and
Pai argue that areasonable model of the resulting sound wave can be computed as a sum of sine waves with
frequencies, w; and amplitudes given by
\I/.
a3 = condant x — (p) : ©)
wj
where the constant takes into account factors such as energy of impact and distance of the listener from the
object. The key here is that the relative amplitudes of the sine waves vary according to the values of the
eigenfunctions at the impact location. Therefore, the sound will change depending on where the user strikes
the object. Finaly, the sine waves should be scaled by decaying exponentials to represent damping.

3 TheFinite Element Method

When the object being modeled is irregularly shaped, we may not be able to find it's natural frequencies
and eigenfunctions analytically. To approximate the solution, the Finite Element Method (FEM) subdivides
the object into anumber of simpler elements [2]. If the load-displacement relations for a single element are
derived in matrix form, it is possible to combine the equations of all the elements into a single system of
eguations.

v

\{Lel \éTe

5 b
x=0 %=1

Figure 1. Beam Element

An example of a commonly used element is the beam element shown in Fig. 1. The endpoints of the
beam are the nodes and the transverse displacements, v1,v2, and the dopes, 61,02, are the noda variables.
Between the endpoints, the transverse displacement, v, is found by polynomial interpolation as v(z) =
co + c12 + cox? + c3z3. If the congtants, ¢;, are expressed in terms of the nodal variables, v(z) can be
written as

U(%’) = H; (1’)?)1 + H2($)91 + H3($)U2 + H4($)92 (4)

where the H; are known as shape functions. A matrix equation of motion can be written for the element in
terms of the nodal variables as

M¢d® + K°d® = F° (5)
where d® = [v; 0 vy 05]7 is the displacement vector for the element, and d¢ isits second derivative with
respect to time. M¢ is the element mass matrix, K¢ is the element stiffness matrix, and F¢ is the vector
of forces and moments at the nodes. Utilizing Galerkin's weighted residual method to develop the finite
element formulation [3], the mass and stiffness matrices are found as

l
M¢ = /O p[H) [H]dz, where [H] = [H, Hy H3 Hy] (6)
l

K* = / (BT EI[B)dx, where [B] = [H{ HYy H} HY). @

0

In (6) and (7), p, E, and I are the mass density, Young's Modulus, and moment of inertia, respectively, and

[isthelength of the beam element. The double prime in (7) denotes the second derivative with respect to x.

Once the equations are established for the individual elements of the structure, they can be assembled
into the global system of equations asillustrated bel ow:

D) — = o) — =y
T T T T vl r- - - a Vl
el | M 6 KY o
E | 1 vt ! | 1 1
o O T Vi 2 CTTKE v
QeerUofio oM p e e L
2 T | ‘F \ME\ ¥3 | ‘F \Ke\ V3
I e e Mgl g, e Kal | e
Fs : : Va | : Va
| |
- b L HIRY - 48 (8

Wherever the element matrices overlap, the coefficients are added. These overlapping positions correspond
to nodes that are shared by different elements. The same rule applies for the overlapping externa load
vectors. Note that, to reduce notational complexity, we have ignored any coordinate transformations that
may be needed between the local and global coordinate systems. The assembled equations can then be
written compactly as

Md +Kd =F (9)

where d isavector containing all the nodal variables. If weset F = {0} we can solve for the free vibrations
to obtain .

d(t) = a;sin(w;t) + bj cos(wit)) g, (10)

i=1

where the ¢,’s are the eigenvectors, and the w;’s are the natural frequencies. The eigenvectors contain
the mode shapes in terms of the discrete nodal variables. If we wish to find a mode shape along any
given element, we can substitute the appropriate nodal values from the eigenvector into (4) to obtain the
interpolated mode shape. Note that coordinate transformations from global to local coordinates may be
necessary. Since we now have the interpolated mode shapes and the set of natural frequencies, we have al
the required information to calculate the sound amplitudes from (3).

4 Implementation

To perform the Finite Element computations, we use MATLAB equipped with the CALFEM toolbox [4].
Upon obtaining the eigenfunctions and eigenfrequencies, various points along the surface are chosen for
generating a matrix of impact sounds. In order to trigger the sounds using the PHANToOM, a Microsoft
Visual C++ program using the GHOST development toolkit is created. The GHOST program accepts a
matrix of heights to be rendered as a haptic trimesh. In addition, the program accepts the matrix of impact
sound data associated with locations on the trimesh. Using the Windows multimedia timer, the PHANToM
event callback mechanism is updated as frequently as possible (= 1-20 ms). When the PHANToM touches
the trimesh, the appropriate sound is determined based on impact location and played using the Windows
audio functions.

To connect between MATLAB and the C++ program, we make use of ActiveX technology. This tech-
nology alows a program to be compiled as a Windows control that can be embedded in another ActiveX-
supporting application such asMATLAB. Using ActiveX, data can betransferred between MATLAB and the
C++ program. In addition, the control appearsinaMATLAB figurewindow asif part of the MATLAB envi-
ronment. Thus, the user can generate a matrix of datain MATLAB and then bring up a haptic/graphic/sound
rendering with a single command.

5 Reaults

Here we present two structures modeled with the FEM. The first is a simply supported beam which has
boundary conditions of zero displacement at the ends but allows changes in the slope. The beam’s materia
properties are set according to measured values for steel which are p = 7800 kg/m and E = 20 x 10'°
N/m [5]. The beam has a thickness of h = 0.5 cm. The length of the beam was varied until it's lowest
frequency was 880 Hz which corresponds to the note A5. Thisis one of the lowest notes on a glockenspiel.
The length of the beam turned out to be 11.42 cm which seems reasonable. For the FEM model, we use
41 frame elements. A frame element is the same as the beam element discussed earlier, but it has an added
nodal variable which accounts for displacements along the x-axis of the element. The mode shapes and
time/frequency plots for impact sounds are shown in Figs. 2 and 3. Notice that the first mode is maximum

880 Hz 3521 Hz 7923 Hz 14085 Hz

Figure 2: Mode shapes (solid) and origina shape (dashed) for beam

(a) Strikeat z/l =5.9/11.4 (b) Strikeat =/l = 0.7/11.4
Figure 3: Tim/Frequency plots for beam

at the center and decreases with increased closeness to the edge. Comparing Fig. 3 (a) and (b), we see the
differences in relative strength of the frequency components depending on impact location. Striking near
the center excites the low frequency more than striking near the ege. The opposite is true for some of the
high frequencies.

The second structure is also made of frame elements but is bent into an irregular shape. The material
properties, thickness, width, horizontal span, and boundary conditions are the same as those for the first
example. Figure 4 shows the mode shapes and natural frequencies. We observe that the frequencies are not

5675 Hz

8685 Hz 11245 Hz

Figure 4: Mode shapes (solid) and original shape (dashed) for an irregular frame structure

as far apart as those of the flat beam. Aswith the previous example, the fundamental mode is stronger near
the center and weaker near the edge. However, it does not decrease evenly. Rather, it is strong in the center,
very weak dightly left of center, strong again as you move further to the left, and weak at the very edge.
This is different from the monotonic decrease in strength from center to edge of the flat beam. Figure 5

150 200 250 300 50 100 1t 200 250 300 50 100

(@) Strikeat /1 = 5.9/11.4 (b) Strikeat /1 = 5.2/11.4 (c) Strikeat z/l = 1.4/11.4
Figure 5: Time/Freguency plots for impact with irregular frame

shows time/frequency plots for the irregular structure.

6 Conclusions and Future Work

A haptic and sound rendering program has been created which can be embedded in the MATLAB environ-
ment. Aural feedback in the form of physically-modeled impact sounds has been successfully integrated
with the PHANToOM haptic interface. The sounds provide the user with information about the location of
impact and the structural features of the object being touched. How much information these sounds convey
and how useful they are for virtual environments are important subjects for future work. The structura
sounds may help to increase information bandwidth when the PHANTOM is used for scientific visualization
applications [6].

Currently, only frame finite elements have been implemented. These are only useful for narrow objects.
To create sounds for the haptic trimesh surfaces, the plate finite element should be implemented. Further-
more, our everyday sound-producing interactions are not limited to impacts but include contact sounds such
as scraping. Thus, the physical model should be generalized to an arbitrary excitation, and the implementa-
tion should make more use of the dynamics involved in the haptic interaction.

References

[1] K. vanden Dod and D. K. Pai, “The sounds of physical shapes,” Presence, vol. 7, no. 4, pp. 382—-395,
1998.

[2] O.C. Zienkiewvicz, The Finite Element Method. McGraw-Hill, 1977.
[3] Y. W. Kwon and H. Bang, The Finite Element Method using MATLAB. CRC Press, 1997.

[4] Division of Structural Mechanics, Lund University, CALFEM: A Finite Element Toolbox to MATLAB
Version 3.2, 1996.

[5] P.M. Morse, Theoretical Acoustics. McGraw-Hill, 1948.

[6] J.P.Fritzand K. E. Barner, “Design of ahaptic data visualization system for people with visua impair-
ments,” |EEE Transactions on Rehabilitation Engineering, vol. 7, Sept. 1999.

Evaluating Haptic I nterfaces
In Terms of Interaction Techniques

Arthur E. Kirkpatrick
University of Oregon
(ted@cs.uoregon.edu)

Sarah A. Douglas
University of Oregon
(douglas@cs.uoregon.edu)

1. Introduction

One of the most important attributes of a haptic device such asthe PHANTOM isits
usability. However a haptic device by itself has neither good nor bad usability. Rather, usability
is determined by the relationship between atask and an interface, which includes the haptic
device as one hardware component of an integrated hardware and software system. Itisthe
interface that is usable (or not) for agiven task. How might we evaluate the usability of a haptic
interface?

We argue that we must begin to incorporate more complete and integrated levels of human
perception into haptic interface assessment. Previous work on haptic devices has used
psychophysical protocols (for example Tan, 1997; von der Heyde & Héager-Ross, 1998), which
focus on the device alone or on the device together with ahighly stylized interface. While these
methods exercise important aspects of device usability, particularly its resolution along agiven
haptic dimension, we believe that other crucial aspects of usability can only be understood using
protocols that test the interaction techniques of an interface. Interaction techniques are the most
basic operations that still exercise the interface as awhole: the input devices, the graphics output,
and the haptics outpui.

We begin the paper by considering the task of haptic object recognition, which is best
described in terms of hand gestures. Hand gestures are supported or inhibited by the interaction
techniques of an interface, and so we consider interaction techniques next. We develop thisinto
aframework for evaluating a haptic interface in terms of its interaction techniques. Finally, we
apply that framework to make performance predictions for acommon PHANTOM interface.

2. Factorsdetermining speed of haptic object recognition

Usability is evaluated with respect to a specific task. What tasks might we use for
evaluating haptic interfaces? Psychophysical protocols emphasize the task of measuring
intensity along some perceptual dimension, such as roughness or sphere size. However, this says
nothing about such important tasks as object recognition. In daily life, this can be performed
exclusively with haptics (locating an object in adark room), or in combination with vision.
Object recognition also requires the apprehension of the attributes of an object, an important
haptic task inits own right. Understanding the factors determining the speed of haptic object

recognition in the physical world will give us abasis for predicting the usability of interaction
techniques for object recognition (and object attribute apprehension) in virtua environments.

The factors determining the speed of haptic object recognition have been extensively
studied. There are three key factors. the number of different attributes apprehended
simultaneously, the number of fingers used to apprehend those attributes, and the gestures used
to apprehend the attributes. Klatzky, Loomis, Lederman, Wake, and Fujita (1993) studied the
first two factors. With respect to the number of fingers used, they found that it took seven times
longer for blindfolded participants to recognize an object using just asingle, gloved finger than
using unrestricted exploration with their hands. They concluded that the participants using a
single finger took so much longer because they had to construct a model of the object’ s shape
over time (temporal integration), whereas using both hands they could directly perceive overall
object shape in a single gesture (spatial integration).

Klatzky et al. (1993) also found that access to fewer object attributes reduced speed of
recognition: participantstook 1.5 to 2 times as long to recognize an object while wearing gloves
versus when their bare fingertips could directly touch the object. This demonstrates the
importance of material properties (including thermal cues and texture) in object recognition.
Factor analysis showed that material properties were most important when the participants could
only touch the object with asingle finger.

Another research program (summarized in Lederman & Klatzky, 1996) demonstrated that
the patterns of hand movement used by participants in object recognition experiments were also
crucial determinants of the speed and accuracy of objects recognition. Lederman and Klatzky
found that participants used specific, stereotyped hand movements, each associated with the
apprehension of one or more haptic attributes, such as hardness, texture, or weight. They named
these movements exploratory procedures (EP). They found two classes of such procedures:
optimal procedures, for very accurate apprehension of a single attribute, and broad procedures,
for coarse but rapid apprehension of several attributes. They concluded that rapid object
recognition is a two-stage process, beginning with a broad EP to quickly categorize the object,
followed by an optimal EP to precisely identify the object. We will consider the implications of
this for the usability of the PHANTOM in section 4.

3. Evaluating haptic interfaces using interaction techniques

In the physical realm, gestures are the medium through which exploratory procedures are
performed. Gestures have an indirect relationship to EPs. They enable one or more EPs to be
performed but do not always constitute an EP. For example, someone may grasp aball not to
perform an enclosure EP but simply to reorient it in a new direction. Some gestures, such as
grasp-and-lift, combine multiple compatible EPs.

In haptic interfaces, interaction techniques are the medium for EPs. An interaction
technique (IT) isaprocedure for accomplishing afundamental task in a user interface.
Examples of interaction techniques include:

» dragging afileicon to move it from one folder to another
» selecting acommand from a menu using a mouse
» selecting acommand by using a command key

» scrolling down by dragging the scrollbar

» scrolling down by pressing the “page down” key
» determining an object’ s shape by running the PHANToM along its contours

Note that interfaces may offer several interaction techniques to accomplish the same task.
An interaction technique is unitary—all its component steps are required to accomplish the
task—and elementary—it has no subsidiary steps that can be used on their own. Interaction
techniques potentially use the entire interface: all input and output devices may be used in a
coordinated manner.

In contrast to the physical environment, the designed nature of interaction techniques
requires that the interface designer directly account for the relationship between I Ts and EPs.
The user of ahaptic interface is restricted to whatever 1Ts the system designer included. If the
repertoire of 1 Ts does not support a specific EP, the EP ssmply cannot be performed. For
example, with asingle point force device such asthe PHANToM, thereis no way to contact an
object at multiple points, so the enclosure EP (wrapping the hand around an object to apprehend
its approximate shape) must be replaced by the contour following EP (running the PHANTOM
cursor around the contours of the object). If the attribute optimally apprehended by that EP can
instead only be apprehended by other EPs less specific to that attribute, the effective resolution
of that attribute is reduced. Continuing the example, since the contour following EP uses
temporal integration rather than spatial integration and so is far slower than the enclosure EP,
shape recognition will be less effective. The restriction is more stringent if the missing EP is the
only one capable of apprehending an attribute: the attribute cannot be rendered in any
meaningful way by the system at all.

The enabling role of interaction techniques shifts our attention from the device to the
interface. Although at the psychophysical level the ability of a haptic device to display agiven
property is an inherent result of its mechanical and electrical structure, at the cognitive level the
ability of the device to render a given attribute is aresult of the design of the entire interface.
We cannot speak of whether a device can render a given attribute, but can only speak of whether
an interface can render that attribute—because the I Ts of the interface enable the EPs, and it is
the EPs that allow an attribute to be apprehended or not. Furthermore, the speed of the
interaction technique determines the speed of the EP.

This suggests an approach for analyzing usability of haptic interfaces. We argue that usability
must be analyzed at a higher level than simply hardware display capabilities. Usability is affected by
the relationships between the cognitive aspects of haptic perception, the various senses and motor
systems, and the task the user is performing. We cannot discuss the usability of a haptic device alone,
but can only discussit in terms of that device working within a given configuration of graphics
hardware and software, input devices, haptic algorithms, and interaction techniques. The fundamental
principle of thisresearch isthat the usability of a haptic interface is determined by how well its
constituent parts work together. Usability is a property of the interface as a whole, not an individual
hardware or software component.

Interaction techniques are the lowest level of interaction that tests the whole interface. They are
shared within whole classes of applications, so usability predictionsfor ITs are widely applicable.
Finally, thereis strong a priori reason to believe they affect usability: The interaction techniques
supported by an interface can facilitate or hinder the use of each EP, in turn making the corresponding
haptic property more or less perceptible.

4. Exampleevaluation: Hapticinterfacesin point force environments

The above framework can be applied to any specific haptic interface, or evento asingle
hardware configuration that might be used for any number of different haptic interfaces. Asan
example, we analyze several interaction techniques for a hardware configuration that is expected
to be widely used in commercial environments: the PHANToM with a monoscopic (i.e., non-
stereoscopic) graphics display. Thisstyle of interfaceis used for the FreeForm haptic scul pting
program, as well asin many other 3-D modeling and CAD programs.

One of the most important tasks for these applications is determining the shape of an object.
Three ITsare available for accomplishing thistask: ahaptics-only IT, running the PHANToM
along the contours of the object without looking at the object at all (either because the object
isn't being displayed or because the user islooking elsewhere); agraphics-only IT, looking at
the object, perhaps reorienting its position, but not touching it; and an IT combining graphics and
haptics, both looking at the object and running the PHANTOM aong its contours. We consider
in turn the likely performance of each of these ITs.

We can make some predictions about the performance of the haptics-only IT based upon the
studies of object recognition described in Section 2. The object recognition task used in those
studies includes object shape recognition as an important subcomponent. The Klatzky et a.
(1993) study demonstrated the importance of using multiple fingersto spatially integrate shape
information. The PHANTOM, a point force device, requires the user to perform temporal
integration of shape information, a much slower process. Second, L ederman and Klatzky (1996)
showed that rapid object recognition requires the ability to perform broad EPs, procedures that
perform rapid, coarse discriminations of several attributes simultaneously. Broad EPs invariably
involve spatial integration, which the PHANToM cannot provide. These results strongly suggest
that the haptics-only IT will be aslow and unreliable means of determining object shape.

The low predicted performance of the PHANTOM for haptic object recognition suggests that
vision will be essential in haptic interfaces using the PHANToM. But will it be sufficient by
itself? In the physical world, vision is superlative for apprehending object geometry, and sighted
participants rely on it exclusively, ignoring haptics for that task. However, vision may be less
effective in the virtual environments we are considering here, because important depth cues are
missing. Thereis no stereoscopic display, no interobject shadowing, no texture on the object,
and no environmental reflections. In such an environment, while vision may well be ultimately
effective in apprehending shape, it will be probably be considerably slower than for a physical
object of corresponding complexity.

Finally, we consider the combined graphics and haptics IT. We suspect that the addition of
haptic contour following will at least partly compensate for the reduced depth cues and produce
an IT that isfaster than vision alone—and far faster than haptics alone. As admittedly anecdotal
evidence for this claim, we point out that users of FreeForm, which provides both haptic and
visual display of the object being created, apparently have a better feel (pun intended!) for the
shape of their objects than users of graphics-only modeling programs.

We emphasize that the above predictions cannot be made on the basis of psychophysical
arguments. Simple considerations of the psychophysics of vision and haptics would tell us
nothing about the unavailability of broad exploratory procedures, and little about the
interrel ationship between the two senses. Interface research has tended to treat the senses as
additive, as though adding haptics to an interface has no effect on the performance of vision.
Thisis obviously untrue. In our example, the whole interface will probably be more effective

than the sum of its constituent senses. An important contribution of evaluating an interface
through its interaction techniques isto explicitly consider intersensory interactions.

5. Acknowledgements

We gratefully acknowledge Intel Corporation for the donation of the PHANToM and
Pentium computer used in this research.

6. References

Klatzky, R. L., Loomis, J. M., Lederman, S. J., Wake, H., & Fujita, N. (1993). Haptic
identification of objects and their depictions. Perception and Psychophysics, 54, 170-178.

Lederman, S. J,, & Klatzky, R. L. (1996). Action for perception: Manual exploratory
movements for haptically processing objects and their features. In A. M. Wing, P. Haggard,
& J. R. Flanagan (Eds.), Hand and brain: The neurophysiology and psychology of hand
movements, (pp. 431-446). New Y ork: Academic Press.

Tan, H. Z. (1997). Identification of sphere size using the PHANToM: Towards a set of building
blocks for rendering haptic environment. In Proceedings of ASME Dynamic Systems and
Control Division, DSC-Vol. 61, (pp. 197-203). New York: ASME.

von der Heyde, M., & Hager-Ross, C. (1998). Psychophysical experimentsin a complex virtual
environment. In Proceedings of Third Phantom User's Group Workshop. Cambridge, MA:
MIT Al Lab (http://www.ai.mit.edu/conferences/pug98).

FGB: A Graphical and Haptic User Interface
For Creating Graphical, Haptic User Interfaces

Tom Anderson
Sandia National Laboratories
tgander@sandia.gov

Arthurine Breckenridge
Sandia National Laboratories
arbreck@sandia.gov

George Davidson
Sandia National Laboratories
gsdavid@sandia.gov

Abstract

The emerging field of haptics represents a fundamental change in human-computer interaction (HCI), and
presents solutions to problems that are difficult or impossible to solve with a two-dimensional, mouse-based
interface. To take advantage of the potential of haptics, however, innovative interaction techniques and
programming environments are needed. This paper describes FGB (FLIGHT GHUI Builder), a programming tool
that can be used to create an application specific graphical and haptic user interface (GHUI). FGB is itself a
graphical and haptic user interface with which a programmer can intuitively create and manipulate components of a
GHUI in real time in a graphical environment through the use of a haptic device. The programmer can create a
GHUI without writing any programming code. After a user interface is created, FGB writes the appropriate
programming code to a file, using the FLIGHT API, to recreate what the programmer created in the FGB interface.
FGB saves programming time and increases productivity because a programmer can see the end result as it is
created, and FGB does much of the programming itself. Interestingly, as FGB was created, it was used to help build
itself. The further FGB was in its development, the more easily and quickly it could be used to create additional
functionality and improve its own design. As a finished product, FGB can be used to recreate itself in much less
time than it originally required, and with much less programming. This paper describes FGB% GHUI components,
the techniques used in the interface, how the output code is created, where programming additions and modifications
should be placed, and how it can be compared to and integrated with existing API% such as MFC and Visual C++,
OpenGL, and GHOST.

I. Introduction

A significant bottleneck in productivity for the use of 3D computer generated environments is the relatively
poor interface between the user and the computer. While 3D computer graphics and 3D applications have become
much more complicated, interfaces to these 3D environments have remained consistent for decades. To unlock the
potential of todays computers, advanced Human-Computer Interface (HCI) techniques are needed. There have been
several recent thresholds that allow a new, fundamental shift in the ways that people interact with computers.
Graphics cards, for example, have reached prices and rendering capabilities where personal computers can
effectively utilize 3D graphics. One of the most important thresholds, however, is the ability to use our sense of
touch in computer environments, which will be a critical element of future interfaces.

As with any computer technology, both software and hardware must be developed in parallel to make the
technology effective. The dramatic improvements in haptics hardware are now being followed by more advanced
research in haptics software. This paper describes FGB, a programming tool that can be used to accelerate haptics
software development and research. FGB, a graphical and haptic interface itself, can help a programmer quickly
create an application specific interface that utilizes 3D graphics, haptics, and 3D (HRTF) sound. It contains a variety
of components such as buttons, sliders, text boxes, etc. that can be used to create an interface. These objects, and the

3D windows that contain them, called control modules, are easily manipulated in the FGB GHUI without any need
for programming. A programmer can create an interface in an intuitive way by creating and modifying components
using techniques that mimic real life. Objects can be moved directly with all six degrees of freedom, and the
programmer can immediately see the end result of the GHUI as it is created. FGB then outputs appropriate code that
can be compiled to create the specified GHUI.

A developer working in FGB, for example, can click and drag the cursor to create a 3D window containing
objects needed in an application. If a developer desires a button, it can be created and named, and can then be
directly positioned and sized within the 3D window on any wall, or even in the air. The button can be set to call a
callback when it is pushed in any direction. Any modifications are handled through the FGB GHUI, which has all of
the options available for any selected object. These options can be modified directly with the cursor or through text
input boxes. The system therefore represents an efficient tool that can be used to quickly create a user interface that
a programmer can use as a front end to haptic applications.

The code that is output uses the FLIGHT Application Programming Interface (API). FLIGHT is a
development environment that was created for rapid haptic application development [2]. It is both a user interface
and a programming interface. FLIGHT uses a craft metaphor in which a user can navigate the craft through a virtual
space, utilize 3D tools, and interact with a 3D control panel and user interface. FGB is a tool that aids in
programming within the FLIGHT development environment.

I1. GHUI Components

There are several components currently available that can be used in creating a GHUI. These include
control modules, buttons, sliders, button panels, text, text input boxes, force callbacks, graphics callbacks, and
removal callbacks. The objects and their descriptions are given in Table 1. All of the objects given in Table 1 can be
sized, scaled, positioned, and otherwise modified to fit the needs of the application while still maintaining a
consistency in developed interfaces.

Control Modules Control Modules are windows that are analogous to the common 2D windows metaphor,
except that they are three-dimensional. They can be moved and scaled at any time by a user.
They contain the objects listed below, in any configuration, and are the base element to create
a FLIGHT GHUI. The control module walls can be made to disappear while they still contain
objects or callbacks, so any of the objects below can appear to be a standalone object. Control
Modules can be moved to any domain in an application. For example, they can be used within
the control panel (in the craft metaphor) or near the application specific data.

Buttons Buttons are components that are similar to their real-life counterparts. When they are pushed,
a user can feel them click. They can be attached to walls, can be set to move in any direction,
and have a callback associated with each movement direction that is enabled.

Sliders Sliders are also analogous to their real-life counterparts, except that they are more flexible.
They can be pushed along any axis and therefore can control three-dimensional variables
directly (for example, a 3D slider can control the RGB components of color). Sliders can be
set to control any variable and can be automatically adjusted by the system in real time if that
variable changes elsewhere in the code.

Button Panels As their name suggests, button panels are two-dimensional panels of buttons. There is a
callback associated with a button panel that receives the number of a button if it is activated
and another one that receives the number of a button if it is deactivated. The buttons can be
activated and/or deactivated depending on the following button panel modes:

CM_BP TOUCH: While a button is pressed, it is on. Otherwise it is off.
CM_BP_TOGGLE: When a button is pressed, it toggles on or off.

CM_BP_ONE: Exactly one button is always active in the button panel.
CM_BP MAX ONE: At most one button is on, but the active button can be turned off.

Text This is a text object in the control module. Text (and text input boxes below) can be sized,
scaled, colored, and positioned.
Text Input Boxes This is a text input object in the control module. These objects can be set to return ints, floats,

or character strings. They are two-dimensional, however, they can be positioned anywhere in
3D space. To activate them, a user touches the text input box and a flashing cursor appears

indicating that it is active. The tab key can be used to move between text input boxes.

Force Callbacks Force callbacks are called during each cycle of the haptics programming loop within
FLIGHT. They can be made to be called only when the cursor is in the vicinity of the control
module if desired. A control module can have multiple force callbacks in any order.

Graphics Callbacks | Graphics callbacks are called during each cycle of the graphics loop within FLIGHT. They
can be made to be called for the control panel or world interaction modes in FLIGHT. A
control module can have multiple graphics callbacks in any order.

Removal Callbacks | A removal callback is called when a control module is deleted.

Table 1: GHUI Components.

Objects can be created in any or all domains (i.e. an object can be seen but not felt, or it can exist in the
graphics, haptics, and sound domains). All of the properties for the objects can be changed while the application is
running. For example, if a button is only applicable in certain situations, it can be programmed to appear or
disappear appropriately. There are a number of other components that will be available in the next release of
FLIGHT and FGB. Several of these are toolbars, wizard components, and tabs for different uses within a single
control module.

I11. FGB Techniques

When a programmer starts FGB, the base control module appears. It can be used to create a new control
module, modify an existing one, and add components into a control module. When a control module is selected or
created, its attributes can be modified directly with the cursor or through text input boxes. A powerful feature of
FGB is that it can modify any of FLIGHTS existing control modules. If, for example, there is a control module
already built that is similar to one that is desired, it can be highlighted and modified, and then the new programming
code for it can be written to a file.

FLMGHT AS¥

1]

Bubout WiZerd 0 B)

M
Cartrol
Podui 4
Dutpat

Tyt

Bl tors Fare)

E‘;,"?:,:I_' Pemcsl o iback

Tawk [rgut

Outpud WiZserd Enabied

Figure 1: This figure shows FGB in use. A user has created a 3D window and is using the output wizard to
output the programming code. The wizard is prompting the user for additional information needed
to create the output file.

Through the base control module in FGB, any number of objects can be added to or deleted from a control
module. When an object is added or selected, another of FGB5% control modules appears to adjust the parameters.

Objects can also be positioned, sized, or scaled directly with the cursor, or can be adjusted through text input boxes.
Whenever an object is highlighted, all of its available options are given in the FGB Objects Control Module.

After a control module is created and its objects are in place, a user can generate the code through the
output wizard as shown in Figure 1. The output wizard leads a user through an intuitive process of gathering any
additional information that is needed to output the code. For example, the output wizard makes suggestions for
variable names that the control module code will use, and allows the user the option of changing any of those names
or variables. The final step in the output wizard saves the programming code for the active control module. Before
the code is saved, the wizard makes sure all the necessary information has been entered and that there are no
discrepancies. If there are any errors, an error message appears and the user is taken directly to the step in the wizard
where the error occurred. A control module’ programming code is output to a modular C++ file, which is ready to
be compiled without any further modifications. The file contains the callbacks that were created for any of the
GHUI% components, where additional programming code can be added to describe the components’ functionality.

After an application specific GHUI is created, it can be incorporated into other applications or API%
through FLIGHT3 programming interface. FLIGHT has three primary functions that are used to incorporate it into
other applications: an initialization callback, a graphics callback, and a haptics callback. The initialization callback
sets up memory for process communications and initializes the system. The graphics callback is called each cycle of
an OpenGL based graphics loop. At the lowest level, the haptics callback simply receives a device’ position and
outputs a force based on that position. Because of this simple programming interface for integrating FLIGHT into
existing applications, FGB represents a tool that can be used to create interfaces for a variety of applications. For
example, FLIGHT was easily integrated into the GHOST Application Programming Interface. FGB can therefore be
used as a tool to create haptic interfaces for GHOST based applications.

IV. Conclusions

There are a number of two dimensional graphical interface builders such as Microsofts Visual C++
software. These tools are comparable to FGB in some ways, in that they represent an intuitive way to create
interfaces that can be viewed as they are created. There are a number of differences, however. Primarily, FGB was
built around haptics. Haptics is a tightly coupled component in FGB, which is an important aspect of any haptics
software as it is often difficult to simply integrate haptics into applications that were not specifically designed for the
need of a high speed (approximately 1000 Hz) interaction loop. Additionally, FGB is entirely three-dimensional and
allows direct 3D manipulation. This is essential to both creating and using 3D interfaces where the mouse is often
ineffective. A 3D interface is useful to prevent the need for alternating between using the mouse and using the haptic
device when working with a 3D application.

As an initial note on the successful use of FGB, it was used to help create itself as it was built. Intuitively, it
was expected that an interface such as FGB would be as useful for 3D, haptics based applications as comparable 2D
graphical interface builders are for 2D interfaces. It was unexpected, however, that it would be as useful as it was in
its own creation. As added functionality was incorporated into FGB, it was easier to create other new control
modules that added further functionality. As a finished product, FGB could recreate itself in less than a quarter of
the time and effort.

Acknowledgments

The authors would like to thank Brian Pino, Kendall Mauldin, Kevin Oishi, and Dan Zimmerer for their
help in the work that lead to this paper. The inclusion of any external products described in this paper does not imply
any endorsement by Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the US Department of Energy under Contract DE-AC04-
94AL.85000.

References

[1] J. Preece, Human-Computer Interaction, Addison-Wesley Publishing, New York, NY 1994.

[2] T. Anderson, ‘FLIGHT Users and Programmers Manual”, Sandia National Laboratories, 1999.

[31 W. Barfield, T. Furness 111, Virtual Environments and Advanced Interface Design, Oxford University Press,
New York, 1995.

Haptic Vector Fields for Animation Motion Control

Bruce Randall Donald and Frederick Henle*
Dartmouth Computer Science Department

Abstract

We are developing paradigms and algorithms for
browsing and editing families of animations using a
haptic force-feedback device called a Phantom. These
techniques may be generalized to navigation of any
high degree-of-freedom system from a lower degree-
of-freedom control space, with applications to tele-
robotics and simulation of virtual humans. We believe
that modeling the animation configuration space cou-
pled with the highly interactive nature of the Phantom
provides us with useful and intuitive means of control.

We have implemented our ideas in a system for the
manipulation of animation motion capture data; in
particular, anthropomorphic figures with 57 degrees
of freedom are controlled by the user in real time. We
treat trajectories, which encode animation, as first-
class objects; haptic manipulation of these trajectories
results in change to the animation. We have several
haptic editing modes in which these trajectories are
either haptically deformed or performed by the us-
er with expressive control subject to dynamic haptic
constraints. The initial trajectories are given by sam-
ple animations (for example, motion capture data) but
may be authored by other means.

1 Introduction

In our system, a parametric family of animations
is encoded by a bundle of trajectories. This bun-
dle in turn defines a time-varying, higher-order vector
field (HOVF) on a configuration space for the anima-
tion. A haptic input device (a Phantom) provides a
low-dimensional parameterization of the resulting dy-
namical system, and the haptic force feedback per-
mits browsing and editing of the space of animations,
by allowing the user to experience the vector field as
physical forces.

In order to encode a family of animations in this
manner, a number of representational problems must
be solved. The mathematical and computational un-

*{brd,henle}@cs.dartmouth.edu

derpinnings of this work devolve to the theory of vec-
tor fields and dynamical systems, developed in robot-
ics and control theory. However, their use in the con-
text of animation authoring is novel and requires some
extension.

2 How Can Haptic Vector Fields Con-
trol Animations?

The state of an animation is encoded as a point in
its configuration space. A continuous animation or an-
imation segment is encoded as a continuous trajectory
in the configuration space. Since the animation and
the trajectory are equivalent, we may alter the tra-
jectory and derive a new animation from the altered
trajectory. However, it is difficult to work in such a
high-dimensional configuration space directly, so we
provide a mapping from a lower-dimensional control
space to the configuration space, and manipulate tra-
jectories in the control space.

The control space is defined by the degrees of
freedom of the Phantom. The user interacts with
the Phantom by manipulating a pen-like appendage
(called a “stylus”). It has six degrees of freedom, three
for the position of the tip of the stylus and three for
its orientation. There is also a switch on the stylus
which may be used like a mouse button, e.g. to click
and drag.

Thus, a trajectory in the control space is represent-
ed visually (in a two-dimensional projection on the
computer monitor) and haptically (through the Phan-
tom) as a continuous path in three dimensions. We
have provided several techniques for editing existing
trajectories, and as this is done the user can see the
effect on the animation in real time.

2.1 Mathematical Model

We call the configuration space D, with a point in
D representing one “frame” of the animation.! For
example, in this paper we take D to represent the

Hn practice, the time domain will be discretized or sampled.
We follow [5] in our terminology for sampling: “An animation

set of possible joint angles [13] for an articulated hu-
man figure. A control map is established so that the
Phantom’s degrees of freedom control the animation.
This is done by constructing a mapping h : C — D
where C' is the control space representing the six in-
put degrees of freedom of the Phantom (in our case,
C = SE(3), the Special Euclidean group of rigid body
motions in 3D). We take as input a smooth trajectory?
w1 : I — C. Here ¢ represents an entire animation
“clip,” because the mapping h o p; defines an anima-
tion “frame” for each point ¢ in I. Note that ¢, trivial-
ly defines a vector field along its image ¢ ([), namely
the field of tangent velocity vectors (p1(t), $1(¢)); see
Fig. 1.

- B H($, (1)
>

- . .
D > A, (D) > .
>

IS

) “
hw) N - %@

Figure 1: The haptic vector field V7 is defined on haptic con-
trol space C. The haptic map A maps from C to the animation
space D.

2.2 Vector Fields for Haptics

Follow mode: We have developed several haptic
modes. Let us begin by describing one of the simplest
ones. We take as input a default trajectory, corre-
sponding to a default animation. We ask the user
to perform a similar trajectory by tracing the default
one, and we use a haptic vector field to make this task
easier—in fact, when the user releases the Phantom or

system should have a sampling rate that is decoupled from the
nominal ‘frame rate’ of the final product. We will speak of
‘frames’ at the sample rate without intending any loss of gener-
ality.”

2Here I represents time, parameterized to the unit inter-
val [0,1]. In general, of course, animations could take different
amounts of time. For cyclic animations (e.g. walking, running,
hopping), time is viewed as circular (parameterized by the unit
circle Sl) and cyclic animations are represented by mappings

St —c¢

merely relaxes her grip it will trace the default tra-
jectory autonomously. Thus, any deviations from the
default trajectory are the result of an expressive act of
will on the part of the user, and not simply an inability
to trace with a steady hand. In order to accomplish
this, we need to embed a vector field in the control
space and express the field as Phantom forces.

We define a small tube of radius € about the image
of 1, and extend the vector field to this tube in the
following manner. The field has a radial and a tan-
gential component. The radial component Y; points
towards the center of the tube, where ¢;(I) lies. The
tangential component X; near ¢;(t) lies parallel to
$1(t). Both components decrease in magnitude with
distance from the tube center. In fact, the radial com-
ponent also vanishes at the trajectory, so that we avoid
a force discontinuity. The sum Vi3 = X7 4+ Y7 of the
radial and tangential components defines a dynamical
system on C that may be viewed as a “river,” pulling
configurations into and along a central attracting flow
defined by the animation. This vector field defines
not only the flow of the animation, but also a force
function, parameterized by the position in C' of the
Phantom; this field is experienced by the user as hap-
tic forces. Finally, when h is injective, the vector field
on C may be “pushed forward” using h*, the deriva-
tive (or Jacobian) of h, to the configuration space D.
See Fig. 1.

Now, the vector field in the e-tube about ¢ (I) de-
fines a dynamical system on the haptic control space
C, linked via the haptic control map h to the anima-
tion configuration space D. To play back an anima-
tion, the Phantom is positioned in space and allowed
to travel along with the vector field. Mathematically,
the resulting trajectory is obtained by ordinary inte-
gration of the vector field from a starting configura-
tion. During this traversal, the haptic control map h
defines an animation “frame” for every configuration
in the resulting trajectory; sequential display of these
frames results in an animation. Hence as the Phantom
moves in the vector field, an animation plays (Fig. 4).

Stretchy Tubes mode: During playback, the
user-supplied forces define another vector field, U.
During interactive modification, the new family of an-
imations can be represented by the sum of V; and the
user-supplied force field U. We can record the com-
bined vector field U + V] as a stored representation for
the new animation system. See Fig. 2.

We have experimented with a few different tech-
niques for direct manipulation of such systems, using
haptic browsing and force fields. For example, sup-
pose we are given a set of trajectories ¢1, @9, . .. defin-

Figure 2: A sample animation is encoded as a trajectory @1,
which induces a vector field V; about its image in C (see Fig. 1).
During playback in FOLLOW mode, the Phantom’s manipulan-
dum by default follows the flow of V7, therefore tracing out 7.
Here, the user alters the trajectory by exerting physical forces
(the force field U) on the Phantom. This results in an edited
trajectory ¢}, which is an integral curve of the edited dynami-
cal system V1 +U. ¢} represents a new path for the Phantom;
given a haptic map h : C — D, h o ¢} encodes the edited
animation.

ing example animations. It is possible to build virtual
tubes around the images of these trajectories in hap-
tic control space, and to directly manipulate the tubes.
These tubes may be treated as a set of springy fibers in
a virtual 3-D space. We can manifest these tubes both
visually and haptically as virtual objects. The Phan-
tom can then be used to push, pull, or manipulate a
folded trajectory, and thereby change the animation.
During the direct manipulation, the tube haptically
appears rubbery and resistant to motion (“stretchy”).
See Fig. 4. For example, the manipulandum can vir-
tually approach a trajectory tube, grab it, stretch it,
and move it to a new position. Simultaneously, the
user views the corresponding animation playing, while
the point ;(t) in configuration space (representing the
animation) is seen to move along the virtual tube. De-
formation of the tube changes the trajectory from ¢;
to ¢} and therefore the animation changes from hoy;
to ho .

3 Previous Work

Few techniques use haptics to browse and edit the
dynamical system of an animation through direct ma-
nipulation. The encoding and editing of such systems
as palpable vector fields appears to be novel. Previous
research falls into a few broad categories. Fundamen-

Figure 3: Our system takes as input several motion cap-
ture files. Here one is red, and depicts an angry figure mak-
ing a few derisive one-armed gestures. The second is blue,
and depicts a figure cheering with both arms. Next, we de-
fine a composite figure whose lower half is taken entirely from
the red example but whose upper half ranges between red
and blue examples according to the parameter of interpola-
tion. To see detailed figures and animations for this paper,
visit http://www.cs.dartmouth.edu/“henle/PUG99/

tal work in haptics and force-feedback [15, 4, 6, 20] has
allowed devices such as the Phantom to be integrated
with computer graphics. Most of this work is tar-
geted for scientific visualization, or for the combined
visual-haptic display of complex virtual-reality envi-
ronments. Control systems and abstractions in this
work have been important in building our haptic sys-
tem. Vector fields have been widely used in robot con-
trol [11, 12, 17, 16, 3], and these mathematical foun-
dations were influential in our system design. Non-
holonomic control and HOVFs were developed in the
context of control for non-linear geometric dynamics,
and have a wide range of applications [1, 13, 2, 9, 14].
There have been a number of elegant papers on pro-
cessing motion data [5, 21] multi-target motion inter-
polation [18], real-time control of virtual humans [10],
retargeting of motion [7], motion transitions [19], and
constraint-based motion adaptation [8]. Inspired by
this work, we employ very simple forms of interpola-
tion and motion processing in order to demonstrate
the power of haptic vector fields for animation motion
control. We believe that in the future, sophisticated
motion processing, interpolation, and retargeting al-
gorithms will be integrated with haptics for direct ma-
nipulation of trajectory bundles, and for haptic brows-
ing of an animation’s dynamical systems using vector
force fields. Our paper represents a first step towards
realizing that goal.

‘ -

£ | i

Figure 4: The StrRETCHY TUBES and FOLLOW paradigms. The animation is in approximately the same frame in each screenshot.
Note the green arrow indicating the force vector from the Phantom cursor in the stretch and follow pictures. Left: before stretch.
Center: after stretch. Right: FOLLOW phase using result of stretch. The Left and Center frames show STRETCHY TUBES phase of
editing the trajectory, using the inputs in Fig. 3.

References

(1]

2l

(4]

(5]

(9]

(10]

(11]

J. Baillieul and R. Brockett. Robotics, volume 41 of
Symposia in Applied Mathematics. American Mathe-
matical Society Press, Providence, RI, 1990.

J. Barraquand and J.-C. Latombe. Nonholonomic
multibody mobile robots: Controllability and motion
planning the the presence of obstacles. Algorithmica,
10(2):121-155, August 1993. Special Issue on Com-
putational Robotics.

K.-F. Bohringer, B. R. Donald, and N. C. MacDonald.
Programmable Vector Fields for Distributed Manipu-
lation, with Applications to MEMS Actuator Arrays
and Vibratory Parts Feeders. Int. Journal of Robotics
Research, vol. 18(2), Feb., (1999) pp. 168-200.

F. P. Brooks, Jr., M. Ouh-Young, J. J. Batter, and
P. J. Kilpatrick. Project GROPE — haptic dis-
plays for scientific visualization. Computer Graphics,
24(4):177-185, Aug. 1990.

A. Bruderlin and L. Williams. Motion signal pro-
cessing. Computer Graphics, 29(Annual Conference
Series):97-104, 1995.

T. A. Galyean and J. F. Hughes. Sculpting: An in-
teractive volumetric modeling technique. Computer
Graphics, 25(4):267-274, July 1991.

M. Gleicher. Retargeting motion to new characters.
Proc. SIGGRAPH (Computer Graphics), Aug. 1998.

M. Gleicher and P. Litwinowicz. Constraint-
based motion adaptation. Jour. Visualization and
Comp. Graphics, 9:65-94, 1998.

K. Goldberg, J.C.-Latombe, D. Halperin, and R. Wil-
son, editors. The Algorithmic Foundations of Robot-
ics: First Workshop. A. K. Peters, Boston, MA, 1995.

P. Kalra, N. Magnenat-Thalmann, L. Moccozet,
G. Sannier, A. Amaury, and D. Thalmann. Real-time
animation of realistic virtual humans. [IEFEE Com-
puter Graphics and Applications, pages 42-56, Sept.
1998.

O. Khatib. Real time obstacle avoidance for manip-
ulators and mobile robots. Int. Journal of Robotics
Research, 5(1):90-99, Spring 1986.

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

D. E. Koditschek and E. Rimon. Robot navigation
functions on manifolds with boundary. Advances in
Applied Mathematics, 1988.

J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Press, 1991.

J.-C. Latombe. Robot algorithms. In T. Kanade and
R. Paul, editors, Robotics Research: The Sixth Inter-
national Symposium, 1993.

M. Minsky, M. Ouh-young, O. Steele, F. P. Brook-
s, Jr., and M. Behensky. Feeling and seeing: Issues
in force display. Computer Graphics, 24(2):235-243,
Mar. 1990.

J. Reif and H. Wang. Social potential fields: A dis-
tributed behavioral control for autonoomous robots.
In K. Goldberg, D. Halperin, J.-C. Latombe, and
R. Wilson, editors, International Workshop on Algo-
rithmic Foundations of Robotics (WAFR), pages 431—
459. A. K. Peters, Wellesley, MA, 1995.

E. Rimon and D. Koditschek. Exact robot naviga-
tion using artificial potential functions. IEEE Trans-
actions on Robotics and Automation, 8(5), October
1992.

C. Rose, M. Cohen, and B. Bodenheimer. Verbs
and adverbs: Multidimensional motion interpolation.
IEEE Computer Graphics and Applications, 18(5):32—
30, Sept. 1998.

C. F. Rose, B. Guenter, B. Bodenheimer, Cohen, and
M. F. Efficient generation of motion transitions using
spacetime constraints. Computer Graphics, 30(Annu-
al Conference Series):147-154, 1996.

D. C. Ruspini, K. Kolarov, and O. Khatib. The haptic
display of complex graphical environments. Computer
Graphics, 31(3A):345-352, Aug. 1997.

A. Witkin and Z. Popovi’c. Motion warping. Comput-
er Graphics, 29(Annual Conference Series):105-108,
1995.

Twice the Fun: Two Phantoms as a High-Performance
Telemanipulation System

Robert D. Howe Thomas Debus and Pierre Dupont
Division of Engineering and Applied Sciences Aerospace and Mechanical Engineering
Harvard University Boston University
howe@deas.harvard.edu debus@bu.edu, pierre@bu.edu

We have connected two Phantoms as a telerobotic system for use in research on remote
manipulation. In this abstract we describe the hardware and software configuration of the system,
which provides exceptionally good force feedback without the use of a force sensor. To quantify
this capability, we present experimental measurements of forces at the remote robot using only
position information and carefully calibrated gains.

System Description

Both Phantoms are the Classic 1.5 model. The operator moves the master Phantom with the
stylus to control the motion of the other Phantom, which acts as a remote robotic manipulator. A
simple, lightweight pneumatic gripper has been added to the remote Phantom to enable grasping
of objects. The gripper is attached directly to the Phantom linkages in place of the gimbal,
creating in a 3 degree-of-freedom robot manipulator.

Motion of the slave robot and force feedback to the operator are both generated by a symmetrical
position controller. This control method avoids the need for a force sensor on the remote
manipulator. The position of the master is used as the position command to the remote robot,
which servos to this position using a conventional proportional-derivative controller

1

remote master — remote ﬁmaster — ﬁremm‘e
Fi _Kpi(X[Xi)+Kw'(i i)

where X; and F; are the i"™ components of the tip position and force (i = x, y, z), and K,iand K,;
are the proportional and derivative gain components. The position of the remote robot is likewise
used as the master position command, using the same control law with master and remote terms
interchanged. The resulting force applied to the operator by the master is the same as the above
expression with reversed sign.

The feedback gains were tuned to balance force fidelity with stability, resulting in values of
K,=10.5,1,0.5] and K,=1[0.0001, 0.001, 0.0005]. The system was programmed using the
BASIC I/O subroutine library. The usual Phantom control loop runs at approximately 1 kHz,
which proved inadequate for teleoperation purposes. We thus increase this rate to approximately
10 kHz by modifying the servo loop callback routine.

Force Measurement Experiment

Although only position and velocity signals are used in the controller, the system provides
surprisingly high-fidelity force feedback to the operator. Subjectively, the system produces some
of the best force feedback of any telemanipulation system. To quantify this performance, we
measured the system’ ability to measure forces at the remote robot gripper.

Two blocks with masses of 160 and then 80 grams were grasped in the remote robot gripper,
lifted a few inches above the table, and replaced (Figure 1). During the experiment the robot
positions and velocities, and the forces computed by the controller using the equation above,
were recorded 50 Hz. As with forces measured directly by a force sensor, the recorded signals
contained significant noise, so these signals were low-pass filtered using a 4" order Butterworth
filter. Analysis of the power spectral density of the signals suggested that a cut off frequency
between 3 and 10 Hz would preserve the essential force information.

2 ; T T

77777777 For¢e signal

Filtered signal

Segmented signéi N

0 2 4 6 8 16 1é 14
Time(s)
Figure 1. Force signals from lifting 160 and 80 g blocks.

Each block mass was estimated during the time the signal exceeded a 0.2 N threshold as

L F, (1)

= &
(tl - to + 1)

mass —

where F), is the vertical component of the force signal, (¢,¢;) is the time interval when the signal
exceeded the threshold, and g is the acceleration of gravity. The resulting estimates are
summarized in Table 1, which shows that the measured forces are accurate to within a few
percent.

Actual Mass Estimated Mass Error
160 g 1542 ¢ 3.6%
80 g 756 g 5.5%

Table 1. Mass estimate results.

Applications

This system is used in a project aimed at automatically identifying the properties of objects as
they are manipulated in a remote environment (Debus, Dupont, and Howe 1999). Such a system
can assist operators by providing quantitative information about the properties of remote objects;
at present, we have developed algorithms for estimating weight, size, shape, stiffness, and
friction. Applications include assisting in the disposal of unexploded ordinance and remediation
of hazardous waste dumps. In addition, the information collected in real teleoperated
manipulation tasks can be used to generate a virtual environment model of the task, which may
then be used for operator training and critical procedure rehearsal (Dupont, Schulteis, Millman,
and Howe 1999).

References

P. E. Dupont, T. M. Schulteis, and R. D. Howe , “Experimental Identification of Kinematic
Constraints,” Proc. IEEE International Conference on Robotics and Automation,
Albuquerque, New Mexico, April 20 - 25, 1997, pp. 2677-82.

T. Debus P. Dupont, and R.D. Howe, 1999. “Automatic Property Identification via Parameterized
Constraints,” Proc. IEEE International Conference on Robotics and Automation, Detroit, May
1999.

P. Dupont, T. Schulteis, P. Millman and R. Howe, 1999. “Automatic Identification of
Environment Haptic Properties,” Presence 8(4):392-409, August.

Contact Deter mination for Real-time Haptic Interaction in 3D M odeling,
Editing and Painting*

Ming C. Lin Arthur Gregory Stephen Ehmann Stephan Gottschalk Russ Taylor
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175
{lin,gregory,ehmann,stefan,taylorr} @cs.unc.edu

1 Introduction

Collision detection and distance computation are important for a number of engineering applications including dy-
namic simulation, tolerance verification, object manipulation, motion planning and control. Numerous algorithms and
techniques have been proposed. (See arecent survey [LG98].) In order to meet the stringent requirement of haptic
rendering, new al gorithms and specialized system implementation need to be devel oped to substain KHz haptic update
rates on complex models. This requiresimproving the state of the art in contact determination by at least an order of
magnitude.

In this paper, we present a general and extensible algorithmic framework for fast and accurate contact determina-
tion for haptic display of complex geometric models. Our ultimate goal is to support a wide range of force feedback
devices. Given a model, we pre-compute a hybrid hierarchical representation, utilizing both spatial partitioning and
bounding volume hierarchy. At run time, we use hybrid hierarchical representations and exploit frame-to-frame coher-
ence for fast proximity queries. We further discuss technical issues involved and propose approaches to improve the
overall system performance. Aninitial prototypesystem has been implemented and interfaced with a3-dof PHANToOM
arm and its haptic toolkit, GHOST, and applied to a number of models. As compared to the commercial implemen-
tation, we are able to achieve up to 20 times speedup in our experiments and sustain update rates over 1000Hz on a
400MHz Pentium 11.

Based on our prototypeimplementation“H-Collide”, we develop an intuitive 3D interface for interactively editing
and painting a 3D polygonal mesh using a 3-dof PHANTOM. An artist or a designer can use this system to create
a multi-resolution polygonal mesh, further refine it by multi-resolution modeling techniques or enhance its look by
painting colors and textures on it. The system allows the user to naturally create complex forms by a sense of touch
and to freely interact with the design space without specification of rigorous mathematics.

2 Our Approaches

In this section, we briefly examine the requirements of general haptic rendering systems and then highlight our ap-
proaches to the problem of contact determination for haptic display.

*Supported in part by NSF grants EIA-9806027, DMI-9900157, and 11S-9821067 and Intel.

2.1 System Requirements

Any contact determination algorithm or system for haptic rendering should be able to address the following require-
ments for smooth interaction in virtual prototyping and engineering design: (1) scalable performance on large complex
model, (2) unstructured models that may deform over time due to forces or manipulation, (3) multiple contacts and
close proximity, (4) extensibility and generality.

These requirementsimply that the algorithms need to have the following characteristics: (1) the runtime should be
independent of the model complexity, (2) it should work well on dynamic scenes, in addition to static environments,
(3) it should be able to handle contacts rapidly and accurately to generate realistic forces for haptic interaction, (4) the
data structure and the a gorithmic framework should be appicable to a wide range of haptic devices and applications.

2.2 An Extensible Design Framework

Based on the problem characteristics and the system requirements, we propose a general design framework, which
speciaizes many earlier algorithms for haptic interaction in virtual prototyping of mechanical and structural design.
This framework utilizes:

e Spatial Decomposition: It decomposesthe workspace into regions (e.g. coarse-grain uniform grid cells, adap-
tive grids, etc.), implemented as a hash table to efficiently deal with large storage requirements. At runtime, the
algorithm quickly finds the region(s) containing the volume swept out by the probe or the bounding volumes of
the moving objects, and thereby the “region(s) of potential contacts’.

e Adaptive, Embedded Bounding Volume Hierarchy: For each region containing some primitives of the ob-
jects in the simulated environment, we pre-compute a corresponding bounding volume hierarchy (based on
OBB'’s, SSV’'s [LGLM99], K-DoP's, Spherical Shells, or others) for that region and store the pointer to the
associated bounding volume hierarchy using a hash table for performing constant-time proximity queries. Each
hierarchy is an embedded node of the bounding volume hierarchy of the entire model. At run-time, most of the
computation time is spent in finding collisions between a bounding volume and the path swept out by the tip
of the probe or between a pair of bounding volumes. To optimize this query, we have devel oped specialized
and fast overlap tests that take very few arithmetic operations. This embedded hierarchical representation is
adaptively modified for deformations due to external forces or haptic manipulation.

e Temporal and Spatial Coherence: The agorithm exploits temporal and spatial coherence by caching the
contact geometry from the previous step to perform incremental computations.

After pre-processing, the on-line computation consists of three phases. In the first phase, it identifies “the region(s)
of potential contacts’ by determining which region(s) are touched by the probe path or the bounding volumes of the
objects, using the precomputed look-up table. This alows the algorithm to quickly eliminate many levels of tree
traversal by zooming in directly to the portions of subtrees that correspond to the regions of close proximity. In the
second phasg, it traverses down the bounding volume hierarchies using associated nodes of the region(s) of potential
contacts, to rapidly determineif collisions have occurred using the specialized fast overlap test. In the third phase, if
the contacts occur, it computes the (projected) surface contact point(s). If contacts occurred in the previous frame, we
exploit temporal and spatial coherence by caching the previous pair of contact witnesses to initialize the queries and
computation.

2.3 Other Optimizations

In addition to the overall framework, we also need to conduct further investigations to extend and generalize this
design framework for more challenging scenarios, including handling surface-surface contacts at KHz rate. There are
several agorithmic issues that remain to be addressed: (&) computation of optimal hierarchies, (b) intelligent choice
of bounding volumes, (c) specialized overlap tests for spline surface primitives, and (d) more efficient handling of
deformable models. Due to the space limitation, we will not go into details about each issue.

3 Implementation and Results

We are currently working on extending the design framework with a 6-DoF haptic device. However, we have imple-
mented many of the algorithms described and devel oped a prototype system using a 3-DoF force feedback arm. Inthis
section, we briefly describe the initial results we have achieved to indicate the potential of the proposed approaches.

3.1 Prototype Implementation Using a 3-DoF PHANToOM Arm

Using on the design framework described in Section 2.2, we have implemented a preliminary version of the algorithms
described earlier. For comparison, we have implemented adaptive grids, our hybrid approach and an algorithm using
only OBBTrees and the specialized overlap test. We have applied them to a wide range of models of varying sizes
(from 5,000 polygonsto over 80,000 polygons as shown at http://www.cs.unc.edu/~geom/HCollide/model.pdf). Their
performance varies based on the models, the configuration of the probe relative to the model, and machine configura-
tion (e.g. cache and memory size). Our hybrid approach resultsin afactor of 2-20 speed improvement as compared to
anative GHOST method.

3.2 Further Enhancement

In addition to the early prototyping system based on our design framework, H-Collide, we also investigated some of
the technical issues addressed in Section 2.

Hierarchy Construction: We have implemented a combinational hierarchy construction scheme that uses both the
top-down splitting and “tiling” of the polygons. In our implementation, we observed a significant speed up (morethan
two order of magnitude) when using hierarchies of spheres. However, we did not observe similar performance gain
for OBBTrees.

Adaptive, Hybrid Hierarchies. We have implemented a software framework for performing contact determination
based on hybrid hierarchies consisting of a family of swept sphere volumes [LGLM99]. The desired BV types are
specified either at run time or computed statically offline. We observe some modest performance gain only in some
cases and have not been able to reach any conclusion regarding the appropriate selection mechanism.

Specialized Overlap Tests: We aso have implemented a specialized overlap test between two OBB’s with SIMD
instruction sets. We were able to obtain an average speed-up factor of 2-3. We plan to implement a specialized overlap
test between two higher-order bounding volumes for splinesyNURBS models. We believe that a SIMD or mini-parallel
implementation can provide similar performance gain as well.

Local Deformation: The adaptive hybrid hierarchy was able to handle local deformation, while substaining the KHz
update rate. Based on our prototype system implementation of H-COLLIDE [GLGT99], we developed an interactive
multiresolution modeling and 3D painting system using a haptic interface, called inTouch [GEL99], which we will
describe next.

3.3 inTouch

inTouch is an interactive multiresolution modeling and 3D painting system with a haptic interface. An artist or a
designer can use inTouch to create and refine a three-dimensional multiresolution polygonal mesh. Its appearance can
be further enhanced by directly painting onto its surface. The system allows users to naturally create complex forms
and patterns not only aided by visual feedback but also by their sense of touch.

We chose subdivision surfaces as the underlying geometric representation for our system. This representation
enables the user to perform global shape design and multiresolution editing with ease, allows the users to trade off
fidelity for speed, and operates on simple triangular meshes. In addition, our system also offers 3D painting capability
on arbitrary polygona meshes with the haptic stylus as an “ electronic paintbrush”. The contact information output by
H-Collide is used for both model editing and painting.

To deform and shape the model interactively, the user ssimply chooses the edit level (resolution) and attaches the
probe to the surface. The real-time haptic display is rendered using GHOST and H-Collide. The deformation update
process uses the force vector currently being displayed by the PHANTOM to move the current surface point at the
selected edit level. These geometric changes are then propagated up according to subdivision rules to the highest
level of the mesh. The changes are sent across the network to the client application which maintains an identical
multiresolution data structure so that it can perform the same operation to update the graphical display. Once the
highest level mesh has been modified, the H-Collide and graphical data structures need to be updated to reflect the
change. A local deformation algorithmis used to merge the changed triangles with the triangles that were not changed
in the H-Collide data structure. The graphical output subsystem also receives the update and proceeds to modify the
display lists corresponding to the changed triangles and redraw the screen.

As for 3D painting, H-Collide is used to establish the contact point of the probe with the surface of the object.
The probeis then used as avirtual paintbrush with the user’s preferred brush size, color, and falloff. The brush sizeis
stretched relative to the amount of force being applied by the stylus, in a manner similar to real painting. Please refer
to [GEL99] for more details about the design and implementation of inTouch.

4 Ongoing and Future Work

We are currently working on extending the design framework to support a 6-DoF PHANToM 1.5 to manipulate CAD
models, nano-structures and flexible surfaces that may deform due to manipulation. Our ultimate goal is to support
haptic interaction with complex CAD models for virtual prototyping and engineering design. We plan to continue
extending our current algorithmic framework to general haptic devices and to design new hierarchy construction
methods for allowing even faster local modification of surfaces, and to work on seamless integration of agorithmic
techniques and data structures.

References

[GEL99] A. Gregory, S. Ehmann, and M. C. Lin. inTouch: Interactive Multiresolution Modeling and 3D Painting with a Haptic
Interface. Technical report, Department of Computer Science, University of North Carolina, 1999.

[GLGT99] A. Gregory, M. Lin, S. Gottschalk, and R. Taylor. H-Collide: A Framework for Fast and Accurate Collision Detection
for Haptic Interaction. In Proceedings of Mirtual Reality Conference 1999, 1999.

[LGLM99] E.Larsen, S. Gottschalk, M. Lin, and D. Manocha”, Fast Proximity Querieswith Swept Sphere Volumes. Department
of Computer Science, University of North Carolina, Tech. Report #TR99-018, 1999

[LG98] M. Lin and S. Gottschalk. Collision Detection between Geometric Models: A Survey. In Proc. of IMA Conference on
Mathematics of Surfaces, 1998.

Providing Haptic’Hints to Automatic Motion Planner s

O. Burchan Bayazit Guang Song Nancy M. Amato
{bur chanb, gsong, amat o}@s. t anu. edu
Department of Computer Science, Texas A&M University
College Station, TX 77843-3112

Abstract

In this paper, we investigate methods for enabling a human operator and an automatic motion planner to cooperatively solve a
motion planning query. Our work is motivated by our experience that automatic motion planners sometimesfail due to the difficulty
of discovering ‘critical’ configurations of the robot that are often naturally apparent to a human observer.

Our goal is to develop techniques by which the automatic planner can utilize (easily generated) user-input, and determine
‘natural’ ways to inform the user of the progress made by the motion planner. e show that simple randomized techniques inspired
by probabilistic roadmap methods are quite useful for transforming approximate, user-generated paths into collision-free paths,
and describe an iterative transformation method which enables one to transform a solution for an easier version of the probleminto
a solution for the original problem. We also show that simple visualization techniques can provide meaningful representations of
the planner’s progress in a 6-dimensional C-space. We illustrate the utility of our methods on difficult problems involving complex
3D CAD Modédls.

1 Introduction

Moation planning arises in many application domains such as robotics, virtual reality systems, and computer-aided
design. Algorithms for performing fully automatic motion planning would be highly desirable for many of these
applications, and as such, have been the object of much research [9]. Despite the large effort that has been spent
on this problem, efficient fully automatic solutions are known only for very limited scenarios. Indeed, there is strong
evidencethat any compl ete planner (onethat is guaranteed to find a solution or determinethat none exists) requirestime
exponential in the number of degrees of freedom (dof) of the robot. Recently, some promising randomized methods
have been proposed (see, e.g., [2, 8]). Nonetheless, despite the great amount of effort spent on motion planning [9],
there exist many important applications that have resisted automatic solution.

We believe that some such problems could be solved by using user-input to help guide automatic motion planning
algorithms. This belief is based on our experience that automatic motion planners sometimes fail due to the difficulty
of discovering ‘critical’ configurations of the ‘robot’ that arein tight, or crowded, regions of the robot’s configuration
space but which are crucia configurationsin the resulting path. In contrast, such configurations are often naturally
apparent to a human observer. On the other hand, automatic methods are very good at computations that human
operators find cumbersome and/or overly time consuming, e.g., detailed computations necessary to fully determine a
continuous path.

In this work, we consider how to incorporate the strengths of both a human operator and an automatic planning
method. In particular, we investigate how haptic and visual interfaces can be used to enable a user and an automatic
motion planner to cooperatively solve a motion planning query. Haptic interfaces enable the user to feel and natu-
rally manipulate the virtual objects, which provides valuable information about the environment not present in visual
displays. While haptic devices have been used in some limited situations to generate robot trajectories (see, e.g.,
[4, 7, 11, 13]), they have not been used in truly cooperative systems involving human operators and more general au-
tomatic planners. Advancesin thisareawill have important applicationsin many areasin addition to motion planning,
e.g., in augmented reality training systems where a motion planner and an employee could work together to train the
worker to perform complex tasks.

*This research supported in part by NSF CAREER Award CCR-9624315 (with REU Supplement), NSF Grants 11S-9619850 (with REU Sup-
plement), EIA-9805823, and EIA-9810937, and by the Texas Higher Education Coordinating Board under grant ARP-036327-017. Bayazit is
supported in part by the Turkish Ministry of Education.

We consider a scenario in which the human operator manipulates a virtual object using the haptic interface, cap-
tures (some) configurations of the object, and passes them to the planner. The planner then attempts to use these
configurationsto generate a valid motion plan. The planner’s progressis communicated to the operator using a visual
overlay on the virtual scene. Our goal is to develop methods which are natural for the human operator and beneficial
to the automatic planner. Toward this end, we consider the following questions:

e How can the motion planner best utilize the user-generated input?
e What are ‘natural’ ways for the user to understand the progress made by the motion planner?

We propose and analyze several techniquesfor incorporating user-generated input in probabilistic roadmap (PRM)
motion planning methods [8]. In particular, we show that simple randomized methods inspired by an obstacle-based
PRM (oBPRM) [1] are quite useful for transforming approximate, user-generated paths into collision-free paths. We
also illustrate that simple visualization techniques can provide meaningful representations of the planner’s progressin
a 6-dimensional C-space on the graphical display of the 3-dimensional workspace.

2 Probabilistic Roadmap Methods

The automatic planning method used in our system is the obstacle-based probabilistic roadmap method (OBPRM)
[1], which isarepresentative of the class of plannersknown as probabilistic roadmap methods (PRMS) [1, 6, 8]. Briefly,
PRMS, use randomization (usually during preprocessing) to construct a graph in C-space (aroadmap [9]). Roadmap
nodes correspond to collision-free configurations of the robot. Two nodes are connected by an edge if a path between
the two corresponding configurations can be found by alocal planning method. Queries are processed by connecting
theinitial and goal configurationsto the roadmap, and then finding a path in the roadmap between these two connection
points.

We believe PRMs are good prospects for cooperative human/computer planning due to their need for improvement
in crowded environments and because they are amenable to incremental construction. For example, human opera-
tors could generate configurations to be included in the roadmap or sequences of configurationsto connect different

CONREFtRANRRINBPS AL PR ARATRR automatic planner, he must first understand where the planner is having diffi-

culty. Thisis, however, a challenging task since most planners, including oBPRM, work in C-space, which is a higher
dimensional space than the graphical interface availablefor display. The naive method of simply displaying a configu-
ration in the the workspace is acceptableif only afew configurationswill be shown. However, if many configurations
must be displayed simultaneoudly (e.g., a roadmap), then the resulting scene could be as difficult to understand as
a high-dimensiona configuration space. Thus, what is needed are methods of ‘projecting’ configurations into the
workspace.

We have implemented two such methods. In the first, we represent each robot configuration by a single point in
the workspace, e.g., the positional coordinates of a reference point on the robot’s local frame of reference such asthe
center mass. Connections between configurations are displayed as edges between their projections. Since multiple
configurations can project to the same workspace representation, we use colored edges to differentiate roadmap com-
ponents. A problem with this approach is that all orientation information is lost, and this can be very important in
crowded environments. Our second method remedies this problem by displaying a reduced-scale version of the robot,
inits actual orientation, instead of a single point.

3 Generating and Processing Haptic Paths

The operator’sroleisto capture configurationsthat will be useful for the planner. For example, the operator could
help the planner by viewing the workspace representation of the evolving roadmap, and capturing paths of configu-
rations that will enable the planner to connect different roadmap components. In our implementation, the operator
generated sequences of configurations (paths) by attaching the haptic device to the virtual robot and manipulating it
in the VE. The system recorded these configurations at regular intervals, and then passed them to the planner. The
configurationsgenerated by the operator could befree(i.e., collision-free configurationsof the robot), or approximate
(some penetration of the robot into the obstacles is allowed, which can be viewed as ‘dilating’ the robot’s free space
[5]). An advantage of working in adilated free space isthat it allows the operator more freedom of movement.

The planner’s god is to use the operator-generated paths to improve the connectivity of the roadmap. If the
operator has collected a free path, this can immediately be added to the roadmap. However, if an approximate path

Workspace
Obstacle

approximate path
generated by operator C-Space Obstacle

surface confjgurations generated

C-Space Obstacle

new segment replacing

0 collidingsegment T =~ Iem o ==

T
L ——
colliding segment

@) (b) (©
Figure 1: Pushing approximate paths to free space: (a) simple push, (b) shortest push, (c) workspace assisted push.

surface configurations generated
from approximate path

ppfoximate path

genkrated by operator boy

closest translation
direction for a
robot configuration

was collected, then the planner can incorporate only the free portions of this path and must attempt to ‘push’ the
colliding portions to the free space. The motivation behind our methods is that even though a node is in collision,
there should be a free node nearby since the path was user-generated and so is expected to be ‘close’ to a ‘good’
configuration. Thus, the main challenge is determine the best direction in which to ‘push’ the colliding segment. We
have experimented with several different methods for performing this deformation which areillustrated in Figure 1.

The general scenario we consider is as follows. We assume there is a single colliding portion of the path; if there
is more than one, each one can be considered separately. We use ¢y and ¢; to denote the free nodes immediately
preceding and following the colliding segment, and we let n. denote the number of configurationsin the colliding
segment. Generally, we select npusn = |c - n] Of the colliding configurations to push to the free space, for some
constant 0 < ¢ < 1. Our first method, simple push, attempts to push the colliding configurations towards the straight-
line in C-space connecting ¢y and ¢;, while the shortest push method trys to find the closest free configuration to
each colliding configuration. Our third method, workspace-assisted push, identifies nearby pairs of robot and obstacle
vertices and trand ates the robot away from the obstacle vertex towards the robot vertex.

Another way to utilize the approximate path is to use iterative pushing. The basic ideaisto first solve a simpler
version of the original problem (one may do this, for example, by “shrinking” the robot), and then use the resulting
solution path as an ‘approximate path’ input for the harder problem. The process can be applied iteratively until the
original version of the problemis solved. Theinitial input path could be haptically generated, or simply one found by
an automatic planner. Note that this approach is similar to the idea of building aroadmap in adilated free space [5].

4 Haptic Interaction for Motion Planning

Our prototype system consisted of a 3-dof PHANTOM haptic device[10], an SGI O2 graphicsworkstation (graph-
ics display) and an SGI Octane (computation server). The graphics keeps track of the position updates of the PHAN-
TOM finger tip, and the PHANTOM generates force-feedback using collision/penetration information from the com-
putation server. Our haptic-interaction applications were developed using the C++ General Haptic Open Software
Toolkit (GHOST SDK) [12]. The operator can use the PHANTOM to manipulate a single rigid object in the virtual
scene. Haptic interaction is achieved by the following steps:

Haptic interaction is achieved by the following steps: (i) track motion of the user, (ii) detect collision between the
user controlled probe (virtual finger tip) and the virtual objects, (iii) compute the reaction forcesin response to contact
and motion, and (iv) exert forces on the PHANTOM.

In the current system, the user can turn on or off the collision detection feature. Also, the forces can be applied
to the PHANTOM in three modes. maximum-force, half-force and zero-force. This variable strategy enables users
to choose between freedom and restriction of movements. For example, in the half-force case if the robot is close to
the obstacle, the user will be aware of the closeness while still being able to move inside the obstacle if he chooses.
However, in the maximum force case, he would be forced to move away from the obstacle in case of the collision. The
zero-force case is the same as when collision detection is turned off.

To achieve redlistic feedback, all steps should be executed with 1 kHz frequency. However, in our applications
involving complex CAD models, the collision detection rate was usually around 10 Hz, which is 100 times slower than
needed. Thus, to achieve redlistic interaction, we need to determine some reasonabl e feedback to apply during the 99
idle collision detection updates. Our solution was to use a heuristic to decide if a collision occurred during these idle
periods. Since we collect approximate paths anyway, a heuristic is an acceptable solution and actually it performed
very redlistically. Basically we used the last computed free configuration, and the minimum distance (clearance) vector
from the robot to an obstacle as our references. When waiting for a result from the collision detection routine, we
projected the vector between the current configuration and the last free configuration onto minimum distance vector,

(@ (b) (©

Figure2: Theflange problemisshownin (a) and (b): (&) acolliding configuration from the user-generated approximate
path, and (b) the resulting collision-free configuration it was pushed to. For the alpha puzzle (c), we show a narrow
passage configuration found by the workspace directed push method.

Comparison of Different Approaches

Running Time(secs) Comparison of Different Approaches

Env Method [Gen/Push | Connect Running Time(secs)
OBPRM 304 119 Env Method Gen/Push | Connect

Flange .85 || Haptic Push 8 17 OBPRM 30 1649
: : Alphal5 |[Haptic Push | 20(9.4) | 309(3.6)

Haptic Push | 416 2653 !

Haptic Push | 24(6.8) | 274(3.0)
Flange 95 || Tter 85Path | 86 18 Alphal2 |[Tter T5Path | 31(10) | 420(5.0)

Flange 1.0 || Tier .95 Pah 586 TI00 pha 2. : :

Table 1: Node generation/pushing and connection timesfor each method to successfully solvethe query in the specified
environment. Values shown are complete processing times; numbersin parenthesis show only time spent processing
haptic input. The label Iter.85.Path indicates that the iterative push used the solution path for the .85 version as input,
and similarly for others.

and if this projected vector was greater than the minimum distance, we assumed a collision occurred. The details of
this approach can be foundin [3].

5 Experimental Results

We evaluated the various pushing methods described in Section 3 in terms of their ability to generate useful free
configurations. The results reported here were obtained using two environments: the flange and the alpha puzze.
The flange environment consists of a fixed rectangular part with a circular opening (the obstacle, 990 triangles) and
a curved pipe (the robot, 5306 triangles) that must be inserted into the opening in the obstacle (see Figure 2(a).) The
alphapuzzle environment consists of two identical twisted, intertwined tubes (one the obstacle and one the robot, 1008
triangles each); the objective of the puzzle is to separate the tubes (see Figure 2(c).) (We worked with dightly easier
versions of the models, which were obtained by scaling the pipe by afactor of .85 in the flange, and the obstacle tube
by afactor of 1.2 in one dimension in the alpha puzzle.) For both environments, all three methods were tested on the
same user-generated path.

Our experimentsshowed that si npl e push andshort est push arefairly successful with morethan 90% of
the generated nodes pushed in the right direction (i.e., toward the narrow passage in workspace). We note that for both
these methodsto be most useful, the user-generated configurationsmust be close to the desired free configurations, and
moreover, they must be sampled at a high enough frequency so that the resulting free configurations can be connected
to complete the path.

In terms of the wor kspace assi st ed method, we observed that this method has a success rate of around
60-70%. Thisis expected since this method may try many unpromising directions since it selects vertex pairs based
only only proximity information. However, some of the nodesit found were critical in terms of the connectivity.

In an overall comparison of the pushing methods, the winner wasshor t est push sinceit had the fastest node
generation time and the highest success rate with a small number of nodes being generated (which is an advantagein
the connection phase). The detailed results of the experiments can be foundin [3].

4

The experiments also helped us to compare haptically-enhanced motion planning and fully automatic motion
planning. The results are shown in Table 1. In both environments, the haptic hints not only enabled us to solve
the problems much faster, but also allowed us to solve harder problems than we were able to solve using the fully
automatic method alone.

The results for the flange are most dramatic. Our fully automatic planner was only able to solve the .85 version
in a reasonable amount of time, but starting with the haptically generated path, we were able to solve the original
problem quite quickly using the iterative pushing technique. Moreover, the fast solution times for the iterative method
show that using a valid solution path for an easier version of the problem as the starting point (approximate path) for
a harder version is a very useful technique for the flange. Finally, we note that the hints (i.e., the approximate paths)
also reduced the solution time dramatically. For example, the generation of the roadmap for the flange .85 version
took 423 seconds with the automatic planner, and only 30 seconds for the haptically enhanced version.

For the alpha puzzle, we observed similar results. That is, the haptic hints greatly reduced the solution times and
enabled usto solve harder problems than with the fully automatic planner. One difference noted was that the iterative
method works much better for the flange than for the al pha puzzle. This can be explained by the different geometrical
structures of the two problems. Although it appears as if the iterated method actually took longer than the direct
method, this is heavily dependent on the quality of the approximate path collected, and the results above indicate that
we collected a relatively better path for the 1.2 version than for the 1.5 version, i.e., the operator happened to do a
better job in the 1.2 version.

References

[1] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Valego. OBPRM: An obstacle-based PRM for 3D
workspaces. In Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR), pages 155168, 1998.

[2] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed representation approach. Int. J. Robot.
Res., 10(6):628-649, 1991.

[3] O.B. Bayazit, G. Song, and N. M. Amato. Enhancing randomized motion planners: Exploring with haptic hints.
Technical Report 99-021, Dept. of Computer Science, Texas A&M University, Oct 1999.

[4] G. E.Hovland and et al. Skill acquisition from human demonstration using a hidden markov model. In Proc.
|EEE Int. Conf. Robot. Autom. (ICRA), pages 2706-2711, 1996.

[5] D. Hsu, L. Kavraki, JC. Latombe, R. Motwani, and S. Sorkin. On finding narrow passages with probabilistic
roadmap planners. In Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR), 1998.

[6] D. Hsu, JC. Latombe, and R. Motwani. Path planning in expansive configuration spaces. In Proc. |EEE Int.
Conf. Robot. Autom. (ICRA), pages 2719-2726, 1997.

[7] M. Kaiser and R. Dillmann. Building elementary robot skills from human demonstration. In Proc. |IEEE Int.
Conf. Robot. Autom. (ICRA), pages 2700-2705, 1996.

[8] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. |EEE Trans. Robot. Automat., 12(4):566-580, August 1996.

[9] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

[10] T. H. Massieand J. K. Salisbury. The PHANToM haptic interface: A device for probing virtual objects. In Int.
Mechanical Engineering Exposition and Congress, DSC 55-1, pages 295-302, Chicago, 1994. C. J. Radcliffe,
ed., ASME.

[11] B. J. McCarragher. Force sensing from human demonstration using a hybrid dynamical model and qualitative
reasoning. In Proc. |EEE Int. Conf. Robot. Autom. (ICRA), pages 557-563, 1994.

[12] Sensable Technologies, Inc. GHOST Software Developer’s Toolkit Programmer’s Guide Version 1.21.

[13] C. P. Tung and A. C. Kak. Automatic learning of assembly tasks using a dataglove system. In Proc. |[EEE Int.
Conf. Intel. Rob. Syst. (IROS), pages 1-8, 1995.

Providing reliable force-feedback for a virtual, echographic exam of
the human thigh

Diego d'AULIGNAC and Remis BALANIUK'
SHARP Project - GRAVIR/INRIA Rhone Alpes - France
Email : Diego.D Aulignac@inrialpes.fr, Remis.Balaniuk@inrialpes.fr

Abstract

Echographic images are collected by applying pressure on the thigh with a probe emitting
and receiving ultrasounds. This makes it possible to visualise the state on the vein in the thigh,
which if it is healthy will collapse under the influence of the external pressure. However, if it does
not collapse it may indicate the presence of a thrombosis. Therefore, from the force applied and the
echographic image received, the practitioner may be able to make a diagnosis. We have
implemented the dynamic model of a human thigh that corresponds satisfactorily to real stress-
strain data collected on a human thigh. Presently echographic image generators exist, that given a
deformation will be able to simulated a range of pathologies that can be encountered. The aim is
to use our dynamic model in an echographic simulator, which allows the practitioner to train
himself to a reasonable competence before making a diagnosis on a real patient. For this, haptic
return is of paramount importance. Our model, based on a spring-damper network, runs at
frequencies of approximately 100 updates per second. This, however, for haptic devices is not
sufficient, and may introduce vibration in the force feedback, and therefore, impair the
practitioners learning. In this paper we show how we interfaced a Phantom haptic device to this
model. Using an approach of fast local modelling we counter the lower update frequencies
provided by the dynamic model.

1. Introduction

Echographic image generators [henry-97] use a set of echographic images to construct a
more general model that takes into account the orientation and pressure exerted with the
echographic probe. Using this generators is possible to build an image that is dependant on the
deformation caused by the echographic probe considering additional factors such as the arterial and
venous pressure. By modifying these factors we can simulate a set of pathologies on which medical
students could be trained for the identification of the latter.

However, this kind of tool does not provide us with a sense of the force needed to provoke
this deformation. This notion of force is of paramount importance in the simulation of an
echographic exam to be of use for training purposes.

The goal of our work is to lay the groundwork for the development of an echographic
simulator with force feedback. In the final system, the trainee will be looking at artificially
generated echographic images, and interacting with a computer simulated dynamic thigh model
through a haptic interface.

The model used to simulate the dynamics is based on a spring-damper network as described
in Section 3. The parameters chosen for this model are derived from measurements on a real thigh
as published in [aulignac-99].

This model will only update its state at a maximum frequency of approximately 100Hz. Our
aim is to provide force feedback through means of a haptic interface of type PHANToM. These
interfaces require a very high update rate for the force and typically this frequency is around 1KHz.
However, the physical model that simulates the behaviour of the thigh is not able to provide force
values at such rates.

! Also assistant professor at the Universidade Cat6lica de Brasilia - Brasil

In this paper we present how a local model can bridge the gap between the simulation
frequency and the haptic frequency.

2. Overview of the system

[hsmance

Derivative of the distamce

Physical model Wit the position | PHANToM
e servo loop
CITHD | Clpmineen | oo HL_‘i
Stiffvess .
Padtion

To echographic image generalor

{link not implemented yeth

Figurel : System overview

Figure 1 shows how the physical model and the haptic interface (PHANToM servo loop) are
connected via the local network by socket connections. The haptic interface is conceived as an
external module of the system simulating the physical model. Based on a simplified local model
(see Section 4) the force values are estimated inside the servo loop at the haptic rate.

The physical model of the thigh does not supply force values to the haptic interface. It
receives the actual position of the virtual echographic probe, corresponding to the position of the
end effector of the PHANToM arm. It computes and returns the minimum distance from the probe
to the thigh as well as the partial derivatives of this distance with respect to the probe position. It
passes also a linear approximation of the local stiffness of the tissue of the thigh. Finally, it updates
its own dynamic state. These steps are repeated in a loop at a rate which directly depends on the
physical model computational delay.

In the haptic interface the local model is updated in order to fit the values informed by the
physical model. This update is repeated at the same rate of the physical model update. The servo
loop rate does not depend on the local model update rate.

3. Description of the physical model

Nonlinear Springs Linear Springs

Figure2 : Two layer model of the thigh.

Based on the experimental data and the computational requirements, a two layer lumped
element model is chosen. The two layer model is composed of a surface mesh of masses, linear
springs and dampers, and a set of nonlinear springs orthogonal to the surface to model volumetric
effects by giving normal support to the surface mesh (see Figure 2). The deformation-force relation
of the nonlinear springs are of the form :

X

S =—"

The nonlinear spring response is chosen to model the incompressibility of the thigh after a
certain deformation. In the model, the values of the surface elements are chosen uniform whereas
the parameters of the nonlinear spring vary around the mesh to model heterogeneous nature of the
thigh while keeping the number of unknown parameters small.

The parameters of the springs have actually been fitted to match the real deformation
measured on a human thigh [aulignac-99]. The typical update frequency of our physical model on a
R10000 processor is approximately 100Hz.

Implicit Integration is used for the integration of the dynamic, differential equations as
discussed in [baraff-98]. Explicit Newton-Euler takes no notice of wildly changing derivatives and
in our case, forces change very rapidly when the position of point on the surface of the thigh
changes, and the only solution to stop the integration from diverging is to reduce the time step, and
this is not the best thing to do in real-time applications. The general form of the implicit integration
(also known as backward Euler method) has the following formulation :

Ol 0
AY — 1 - 2Uf)|y o= f (X, 1
oy A)b g7 A0 O

where Y is the state vector expressing the positions and velocities of all particles. Thus AY
represents the change in state and f{Y,) the derivative at the current state. Further, 7 is the identity
matrix, [f the Jacobian matrix derived from the spring configuration of the object, and A is a
constant where AO[0,1]. The resulting square matrix is composed of n’ elements, where n is the
size of the state vector. We use the conjugate-gradient method [press-92] to solve this equation.

The added advantage of using implicit integration, is that we can derive the stiffness
parameter that is passed to the local model directly from the Jacobian matrix. Here we use the
linear approximation of the rate of change of the force with respect to the position. Even if the
forces change non-linearly due to the non-linear springs, a linear approximation at the given time is
sufficient for our application.

4. A haptic interface based on a buffer model

The disparity between the physical model update frequency and the haptic rendering
frequency can compromise the haptic interface. The PHANToM needs to display forces at rates
around 1KHz to maintain a realistic sense of touch. Simple solutions as forces interpolation cause
delays in the haptic rendering, and presenting force feedback in the presence of even small delays
has been shown to create operator-induced instabilities [richard-96].

To bridge this disparity we use a buffer model between the physical model simulator and the
haptic device. This approach was firstly proposed in [balaniuk-99]. The haptic interface is
conceived as an external module of the physical simulator, able to estimate the contact forces to be
displayed using its own simplified physical model. This simple model locally emulates the ‘real”
physical model and can estimate contact forces at the haptic rate.

The buffer model is a generic numerical model, defined by a set of parameters, continuously
adapted in order to fit the values informed by the physical simulator. The contact forces estimation
is based on a very simple physical simulation, with a point interacting with a non deformable
constraint surface defined by the buffer model.

This constraint surface represents the nearest portion of the thigh with respect to the probe.
The position and the shape of this surface will be defined by the model parameters.

The constraint surface is defined in the haptic device configuration space. In an ideal
framework, the haptic device would offer force and torque feedback, and the proxy would move in
a 6-D configuration space. In this case, the proxy motions could be expressed in full probe motions
(6 dof : translation and rotation). The PHANToM device we use has no torque feedback, and the
proxy is a point in a 3-D configuration space. The proxy motions are expressed only by translations
of the probe in the virtual environment (3 dof). The probe does not rotate.

Inside the haptic interface we use a constraint-based framework. The haptic device location
inside the configuration space is defined by two values : its effective position and a virtual location,
subject to the constraining obstacles. This virtual location, called the “god-object” in [zilles-94] and
‘“virtual proxy”in [ruspini-97], is the place the device would be if the obstacle was infinitely stiff.

The haptic interface is defined by two processes: the model manager and the haptic loop.

The model manager interacts with the physical model, informing the user motions and
obtaining the minimum distance between the haptic probe and its closest contact point in the virtual
thigh. Using this distance and its derivatives, the manager will adapt the constraint surface to
locally fit these values. The physical model informs also the local stiffness in the contact point.

The model manager uses the obtained distance and its partial derivatives to update the
buffer model. Using this values and the approach exposed in [balaniuk-99] the model manager
adapts the buffer model in order to emulate the physical model nearby the probe position.

The haptic loop follows the constraint based rendering framework. The contact forces are
estimated using the constraint surface, the proxy position and the informed stiffness.

To implement this framework, at each time step of the haptic loop we obtain the haptic
device configuration and we change the proxy position to reduce its distance to the haptic device
position subject to the constraint surface.

Refers to [balaniuk-99] see how the proxy position is determined.

The estimation of forces in the constraint based framework becomes easy after the proxy
location is determined. Simple impedance control techniques can be used to estimate the forces,
using the given local stiffness.

The general form of the forces estimation can be given by the Hooke's law :

S =k(x=p)
where £ is proportional to the local stiffness, x the proxy position and p the probe position.

Since we have the rate of change of the forces by the way of the Jacobian calculated in
equation (1) we can use this information when passing the stiffness parameter. This way the local
model will respect the non-linear force/deformation characteristic.

5. Results
Figure 3 shows a user manipulating the PHANToM to interact with the system.

|

Figure 3 -Using the system

Figure 4 shows the model as it has been built in our simulation system. A force is being
applied on the thigh using a probe which provokes a deformation which is in accordance with the
measurements taken.

Figure 4 - Deformation of the thigh by applying pressure with the probe.
The force-feedback is smooth and there is no noticeable trembling even when the forces are
large.

6. Conclusions

In this paper we have presented a physical simulation system providing graphic and haptic
interfaces for a virtual exam of the human thigh. A spring damper model of the human thigh was
defined from experimental data. This model is simulated in real-time using an implicit integration
method. The haptic interface was conceived using the buffer model approach. Using this approach
the haptic rendering rate does not depend on the physical model computational delay. This
approach can provide reliable haptic rendering even when the simulation frequency is far lower
than the demanded haptic rendering frequency.

The purpose of this work is to contribute for the development of an echographic simulator
with force-feedback.

Acknowledgments

Thanks to the GMCAO project at the TIMC lab in Grenoble. This work was partially
supported by an INRIA grant within the framework of the AISIM initiative and the France-
Berkeley Fund.

Bibliography

[balaniuk-99] R. Balaniuk. Using fast local modeling to buffer haptic data. In Proc. of the Fourth Phantom
User Group Workshop —PUGY9, Boston (US), October 1999.

[baraff-98] D. Baraff and A. Witkin. Large steps in cloth simulation. In Computer Graphic (Proc.
SIGGRAPH), pages 43-54, 1998.

[aulignac-99] D. d’Aulignac, C. Laugier and M.C. Cavusoglu. Towards a realistic echographic simulator
with force feedback. In Proc. of the IEEE-RSJ Int. Conf. On Intelligent Robots and Systems, Kyongju (KR),
October 1999.

[henry-97] D. Henry. Outils pour la modelisation de structure et la simulation déxamens echographiques.
PhD thesis, Universite Joseph Fourier, Grenoble (FR), 1997.

[press-92] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C.
Cambridge Univ. Press, 2 edition, 1992.

[richard-96] P. Richard, G. Birbent, P. Coiffet, G. Burdea, D. Gomez, and N. Langrana. Effect of frame rate
and force feedback on virtual object manipulation. In Presence, 1996.

[ruspini-97] D. Ruspini, K. Kolarov and O. Khatib. Haptic interaction in virtual environments. In Proc. of
the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, Grenoble (FR), September 1997.

[zilles-94] C.B. Zilles and J.K. Salisbury. A constraint-based god-object method for haptic display. In Proc.
of ASME Haptic Interfaces for Virtual Environment and Teleoperator Systems, vol. 1, pages 149-150,
Chicago ,IL (US),1994.

The Virtual Reality Dental Training System -
Simulating dental procedures for the purpose of training
dental students using haptics

John F. Ranta

Jranta@teneocomp.com

Walter A. Aviles

Aviles@teneocomp.com

Teneo Computing

Introduction

Dental students currently use artificial teeth and jaws, along with real dental instruments,
to practice cavity preparation and other procedures. These plastic models lack the level
of detail and material properties needed to exactly mirror real life teeth and procedures.
Furthermore, real life experiences such as bleeding and tooth extraction cannot be
simulated with these plastic training models systems. As such, current training
procedures require that dental students gain a portion of their required experience while
practicing on patients. This is obviously less than optimal. Furthermore, utilizing
classical, visual-only, computer simulations is not acceptable — a significant part of the
students learning is sensorimotor in nature. A ‘hands-on’curriculum is literally required.

Haptically enhanced simulations, however, can provide the sensorimotor involvement
needed for dental training. Moreover, if the simulation can provide a level of haptic
realism equal to or better than the artificial-tooth-and-jaw-approach, it promises to be
superior to the current physical fixture approach in simulating other aspects and
procedures as discussed above. In addition, VR simulation offers ‘Super-reality’training
benefits that are not possible with either plastic models or live patients. Thus, the student
can repeat and playback procedures many times, precisely measure and quantify their
results and even zoom in or work in x-ray mode to see their work in detail.

This paper discusses a project jointly undertaken by the Harvard School of Dental
Medicine and Teneo Computing to develop a Virtual Reality Dental Training System
(VRDTS) utilizing the PHANTOM™ haptic interface device (See Figure 1). This project
is exploring the use of haptic interaction in the dental training curriculum. Both Teneo
and Harvard believe that training dental students in certain procedures is an excellent
application of the particular 3D haptic capabilities of the PHANTOM. The first phase of
this project, the development of a prototype for simple cavity preparation, is discussed.
This prototype will be evaluated in the classroom to determine the efficacy of Virtual
Reality (VR) techniques for training dental students.

The Virtual Reality Dental Training System

A dentist strongly depends on touch feedback from the tool tip for diagnosis and
positional guidance during procedures. In this system we are integrating the PHANTOM

haptic interface with 3D stereo displays and advanced software techniques to create a
realistic 3D simulation. The haptic stylus enables the student to orient and operate
simulated dental tools. Working on a virtual model in a stereo display, dental students
can use a simulated pick to probe a tooth, or a simulated drill to prepare a tooth for
cavity repair. Since almost all dental instruments are force-to-a-point tools, these map
very well to a PHANTOM-based simulation.

The system consists of a dual Pentium Windows NT workstation with an OpenGL®
graphics accelerator. A Phantom Desktop or Phantom Premium with Encoder Stylus
provides haptic interaction. An SVGA computer display is used, which provides refresh
rates necessary to render stereo images using LCD stereo shutter glasses. The tooth
models are rendered volumetrically, which enables the presentation of tooth material as
a solid, and provides for the high speed calculation of drilling and filling procedures. The
tool head is rendered similarly as a volume, which enables high speed collision
detection. A tooth (molar) model, obtained on the Internet as an STL (stereolithography)
file [1] is provided in the prototype in both healthy and decayed forms.

The system uses MFC style menus for tool selection and operation, file load/save, view
modes and application operations. NDH (hon-dominant hand) use of keyboard and
mouse is enabled for application interaction.

Bl Ed Wen [uob b

o|m =]~
=1 e
Rerh
et | € mkeng Firkass i =39FM

=
']
=

Figure 1 — VRDTS Screen

The Cavity Preparation Simulation

The prototype simulates a simple Cavity Preparation (CP) procedure, wherein the
student diagnoses, removes and repairs an occlusal cavity. [NOTE: “Occusal’refers to

the bite surface of a tooth.] The user has 4 instruments simulated in the system (see
Figure 2 below) — a pick, a drill (burr), a carrier, and a carver [2].

‘.,-*— P .]
] o Y S
R =
rm o CR R e ____‘_J
A R
Explorer or Carver
Pick
"":‘:‘7\1-:?__:‘- -"l i) "-
2 e e,
: W
[§]
Carrier

Figure 2 — Dental Instruments

A decayed tooth may be modeled as consisting of 4 different materials, enamel (hard
like porcelain), dentin (softer, like ivory), pulp (very soft, like jello), and cavity (somewhat

soft, like leather). The system simulates a simple (occlusal) cavity in a molar (see Figure
3).

Pulp

Figure 3 -- Tooth with Cavity

The student explores the tooth surface and detects the relatively softer area of the cavity
by probing it with the pick. The haptic interface is used to orient the pick in 6 degrees-of-
freedom, and to present the pick tip forces as the tooth is probed. We have
experimented with surface spring and friction forces to simulate the feel of enamel.

The user selects the drill to remove the decayed material, ensuring that the walls of the
resulting hole are smooth, and that there is a reverse draft angle for retaining amalgam.
The PHANTOM is used to position the tool tip and remove the voxels from the tooth
model that are intersected by the drill head.

The student selects the carrier, and fills the cavity preparation with amalgam. Here the
PHANTOM is used to position the tool tip to add voxels to the model when the stylus
button is pressed. Amalgam is a constant volume, highly viscous fluid, which sets
(becomes as hard as enamel) approximately 15 minutes after application. The user
pushes the amalgam into the cavity preparation until the amalgam has filled it to
overflowing. The user selects one of the carvers to contour the amalgam to match the
original contour of the tooth.

Discussion

A dentist depends strongly on touch feedback from the tool tip for diagnosis and
positional guidance during procedures. The tooth and tool tips have to be presented in
sufficient detail to render the fissures and other surface features of the tooth. To date,
we have partially implemented the VRDTS prototype. We have rendered models of
juvenile and adult molars, with single (enamel) material properties. Further work is
needed to implement the multiple material properties of dentin, pulp and cavity. The
teeth obtained from the public domain on the Internet do not provide sufficient detail to
adequately render surface features. We may need to develop our own higher resolution
tooth models to achieve this.

In simulating the 4 dental tools, we have found that the Pick currently comes closest to
real time feel and behavior. The interaction of the Pick tip with tooth surfaces is quite
realistic. The Drill needs further refinement in simulating cutting resistance, cutting (burr
side as well as tip) behavior and accuracy (which is related to the resolution of the tooth
model). In addition, drilling realism would benefit by providing haptic rendering of high
frequency vibration. The Carrier and Carver tools also need improvements, primarily in
the rendering of amalgam properties.

There are shortcomings with the current haptic interface device. There is a need for 6
degree-of-freedom (DOF) force-feedback to enable collision detection of instrument
handles. In the future we also anticipate needing 6 DOF force feedback to simulate the
torque forces of tooth extraction. However, the PHANTOM haptic interfaces current 3
DOF force-feedback capabilities seem to be more than adequate for cavity preparation
training.

Finally, there are considerations to address in the setup and configuration of the
workspace. We plan to explore visual/haptic collocation, using a Reachin Display [3].
We believe that students will benefit from the added realism of the simulation. We have
also found that dentists have a very refined sense of hand position and tool orientation,
necessitating accurate initial positioning of the PHANTOM arm and stylus. There is also
a need for careful positioning of the PHANTOM in relation to the users position and arm
angle.

Conclusions

In general, our demonstrations show that the Phantom is capable of providing the level
of haptic fidelity needed to equal or better the plastic teeth currently used. The real time
performance of tool-to-tooth interaction is quite good on our dual Pentium system.
Although our development is not complete, and our classroom tests have not yet been
run, we feel that the VRDTS system promises to be an excellent alternative to current
methods of dental training.

References

[1] Michael Goetz, University of East Anglia,
OO O I I I O i 1l

[2] Richard S. Schwartz, DDS, Fundamentals of Operative Dentistry, Quintessence
Publishing, 1996

[3] Reachin Technology, T T T T I I T T T 111111

Haptic Interaction with Geoscientific Data

Walter A. Aviles
John F. Ranta
Teneo Computing

Background

Developing models of the subsurface environment is a complex and challenging endeavor. Geoscientists
and data interpreters must utilize data in the time and spatial domains gathered from a variety of sensors.
Typically, this sensor-derived information is noisy and its interpretation requires careful analysis and
modeling. This data must then be correlated and interpreted into spatially oriented models in order to for it
to be utilized [1]. To further complicate this task, the repercussions of interpretation accuracy in
commercial endeavors such as oil exploration are extremely high and often have effects measured in the
millions of dollars.

The interpretation of geoscientific data includes five general phases [2]: 1) data preview; 2) initial
interpretation; 3) verification of interpretation; 4) correction of the interpretation based on new data and/or
further analysis; and 5) the communication of results to others. Historically, all five phases of this
inherently multi-dimensional problem have been tackled using tools — non-computer-aided and computer-
aided -- that operate on two-dimensional slices of the data set. More recently, 3D surface and volumetric
visualization techniques have been applied to aid primarily in steps 1, 3 and 5 of the interpretation process

[3].

Adding Haptics -- voxelNotepad

Adding haptic interaction to existing real-time 3D visualization techniques promises to extend the ability of
geoscientists to operate in three dimensions during the interpretation process. Haptic interaction allows: 1)
the direct and unambiguous selection of individual entities (e.g., voxels) for evaluation and modification; 2)
the use of touch feedback to confirm and increase the accuracy of modifications of the data in three
dimensions and 3) the use of an additional sensory channel or modality (i.e., touch) for purposes of
understanding the data.

o oM e pad [=] 5]
Fiz [ob e Tooh Hek

I HIH

Figure 1 — Geophysical Data and Color/Opacity Map in voxelNotepad

To this end, we are developing a utility known as voxelNotepad™ (Figure 1). As the name suggests, this
utility is aimed at providing quick and intuitive interaction with volumetric data. Developed in
collaboration with practicing oil company geoscientists and interpreters, voxelNotepad currently provides
interactive 3D stereoscopic visualization and haptically-enhanced selection, evaluation and modification of
volumetric data on a WindowsNT™ computer workstation outfitted with a PHANTOM™ haptic interface
device.

The main features of voxelNotepad are:

e Ability to import and export volumetric geoscientific data. The utility is designed to work with
existing applications and currently supports voxelGeo and Landmark volumetric data formats.

e Ability to interactively visualize volumetric data in stereo. Frame sequential stereo with controls
for camera separation and horizontal parallax is provided. As with most volume visualization
tools, data translation, data rotation, data scaling and the mapping of the data to color and opacity
is supported.

* Ability to interactively feel the volumetric data with a haptic interface device. A variety of forces
have been explored for volumetric data evaluation purposes. Currently, voxelNotepad provides a
viscosity-like force. The magnitude and existence of this force can be mapped to the data values
of the volumetric data in a manner analogous to that of color/opacity mapping for visual rendering.
Subsequent sections of this paper describe this feedback in more detail.

e Ability to directly pick individual voxels. A ‘jack” cursor is driven in 3-space with the haptic
device. Coupled with force-feedback, it provides the user with the ability to directly and
unambiguously pick individual voxels. This seemingly simple feature has profound repercussions
for interacting with the volumetric data. The geoscientist can now precisely examine and change
the fine structure (i.e., down to the data values of individual voxels) of the data set while
visualizing and working in 3D. Picking a voxel is as simple as reaching out and touching it. Data
values are displayed as an individual voxel is ‘touched”. No 2D to 3D transformations on the part
of the user are required. The selected voxel may be used as a seed for region modification
algorithms or it may be interactively modified as discussed below.

e Ability to directly and interactively modify data values. Geophysical models are updated on a
continuing basis. Oftentimes, these updates require fine-grained changes to the volumetric data.
Heretofore, these changes were made in 2D slices that were then composited back into a 3D
volume. This process is tedious and prone to error. The voxelNotepad utility allows the data
values to be changed directly using a “3D painting” metaphor. The user chooses the value to
modify the volumetric data from a palette. This palette displays both the available data values and
their current color/opacity mapping. The user then ‘paints” the volume (i.e., changes the existing
data values with the desired data value) by holding down the haptic interface device? stylus
button while moving through the data. In order to aid this process, the user feels as well as sees
the data values of the voxels to be changed. An unlimited undo/redo capability is provided.

Force-Feedback

Types of Force-Feedback

In developing the voxelNotepad utility, we explored several forms and uses for force-feedback and have
currently settled on two basic types of force-feedback. The user may chose either of these or no force-
feedback for volume data evaluation and modification operations.

3D Grid Force. The first form of force-feedback is a simple 3D grid. The purpose of this force is to allow
the user to very precisely position the cursor in the volume data. The grid force includes the concept of a
“dead-band”. This tends to avoid the situation of being “flung” out of the detents (i.e., energy wells)

without resorting to drag/viscosity forces that may decrease the perceived precision of the detents and
provides extremely precise positioning (0.5 voxel capability independent of haptic resolution).

Viscosity Force. The second form of force feedback is a viscosity-like force that varies with the haptic
“density” assigned to a particular data value . This density value is assigned using a map similar to that
used for data to color/opacity assignments. The user can set the haptic density value for individual data
values. Like visual attribute mapping, there is also a concept of haptic opacity/transparency. Density
settings may be overridden and the data made completely haptically transparent by utilizing this control.
The visual color/opacity map may also be used to automatically derive the haptic density map.

The feedback force is implemented as a simple spring system where data value density mapping determines
how much the spring “anchor” position can move towards the phantom position. This type of force was
found by our geoscience colleagues to provide sufficient haptic differentiation between data. This approach
has the advantage over a classical viscosity force (i.e., a force proportional to but in opposition to velocity)
in that accurate velocity measurements (which require an integration of the haptic interface device position
and hence are prone to noise) are not required.

Force-Feedback During Modification
Use of the viscosity force (which varies with the value of the voxel data) during data value modification
operations required several refinements.

The first issue addressed was what to do about feeling newly changed data values during modification (i.c.,
while the haptic stylus is depressed in modification mode). For example, if haptic density increases with
data value and these values are increased during modification, immediately feeling the changed data
impedes the motion of the haptic interaction device. This situation is similar to that which would occur if a
very quickly setting material were being extruded. The opposite situation also presents problems. Again
haptic density increases with data value but the values in a region of data are now decreased. If the changes
are NOT immediately felt, then it is difficult to reach the interior voxels of the region. This would be
analogous to the situation in which physical material is being removed but confirmation of its removal is
somehow delayed in time. In order to meet these conflicting requirements, the user is given control over
when changes to data values are felf. Changes to the data values, however, occur and are seen
immediately.

Three choices are provided: 1) changes are felt as soon as the currently modified voxel is vacated (i.e.,
immediate feel); 2) changes are felt after a certain number of voxels have been changed during the
modification operation; and 3) are felt after the modification operation is finished (i.e., the stylus button is
released). These three choices provide users which sufficient control for efficient modification of the
volume. The conditions under which any of these settings turned out to be an individual preference so their
choice is left to the user.

The second issue concerns the strength of the viscosity force during modification operations. The same
settings that allow successful haptic evaluation of data values tend to be too strong during modification.
Voxels that exhibit high haptic density impede the movement of the haptic interface device and do not
allow the user full freedom of control. Users, however, find that being able to feel the existing data values
during modification operations is extremely valuable. This feedback aids in the determination of the extent
of the region to be modified and helps to accurately start and end the modification operation. Consequently,
users are given control over how much the usual (i.e., evaluation) viscosity feedback force is attenuated
during modification.

Force-Feedback and Haptic Resolution

The PHANTOM haptic interface device is an absolute position input device. The most straightforward
configuration for the device is to map its position such that its physical workspace encompasses the logical
workspace. Situations arise, however, where the user may desire to change this mapping. Users, therefore,
are given control over haptic resolution (i.e., the scaling between physical excursions of the haptic interface
and distance traveled in voxel space). High-resolution settings are useful for extremely fine control of
evaluation and modification operations. In this situation, the entire data set cannot be spanned during an

excursion of the haptic interface device but all portions of the data set can be reached by translating the
volume within the haptic interface’ workspace. Low-resolution settings, on the other hand, are useful for
quick, less precise evaluation of modification of the volume.

It should be noted that the haptic feedback equations for all forces had to take this resolution into account in
order to guarantee stability (i.e., stay within the stiffness constraints of the haptic interface device).

Conclusions

A prototype version of voxelNotepad has been completed and is in use by oil company geoscientists and
interpreters. Although it is much too early to provide a definitive evaluation of the efficacy of haptic
interaction in geoscience, some preliminary observations can be made. First and foremost, users of
voxelNotepad in the geoscientific community have found it useful in the interpretation of geophysical data.
With voxelNotepad they are able to visualize the volumetric data, as they can with their current tools, but
voxelNotepad provides much faster performance for interaction. Furthermore, they are able to do
something that they were previously unable to do — controlled, direct modification of volumetric data in
3D. Certain aspects of force-feedback have already proven essential. Specifically, feeling the data during
modification operations tends to constrain and determine the extents of the modification operations. Early
in the program development there was no such force feedback and users found it extremely difficult to
make changes in 3 space without this feedback. Furthermore, viscosity feedback and the overall precision
of the haptic interface device, when used at reasonable resolutions, have proven to be precise enough that
the 3D-grid force is not often used in practice.

Quantifying the effects of force feedback in this task domain will clearly require further work and
evaluation. In addition to evaluating these effects, however, we plan on extending voxelNotepadto 1)
handle multi-attribute data sets; 2) model other entities used in geoscience and oil exploration such as well
bores, faults and horizons and 3) extend its modification and selection capabilities to include the ability to
“lock” the data values of selected regions of the volume.

References

[1] A. Brown. Interpretation of Three-Dimension Seismic Data, American Association of Petroleum
Geologists, 1996.

[2] S. Lin, B. Loftin, T. Start, Virtual Reality for Geosciences Visualization, Proceedings of Asia
Pacific Human Interaction, 1998.

[3] Paradigm Geophysical, http://www.cogniseis.com, 1999.

1999 PUG Attendees

Abbe Cohen SensAble acohen@sensable.com
Andrew Hally SensAble ahally@sensable.com
Arthur Gregory UNC-CH gregory@cs.unc.edu

Arthur Kirkpatrick University of Oregon ted@cs.uoregon.edu
Arthurine Breckenridge Sandia National Laboratories arbreck@sandia.gov

Bill McNeely The Boeing Company bill. mcneely@boeing.com
Brad Payne SensAble payne@sensable.com
Brandon Itkowitz SensAble bitkowitz@sensable.com
Charlie Lindahl University of Texas@Arlington lindahl@uta.edu

Chau Cao UH VERI/ U. of Houston cmc@metropolis.vetl.uh.edu
Chih-Hao Ho MIT chihhao@mit.edu

Chris Lee University of Colorado chris@chs.uchsc.edu

Dan Staples SensAble dstaples@sensable.com
David Perlsweig IBM dmperl@us.ibm.com

Debraj Basu Mallick Univ. Iof Illinois at Chicago debraj@virtual.me.uic.edu
Elaine Chen SensAble echen@sensable.com

Elaine Wong Shell Oil Company elaine@shellus.com
Florence Morache WMD/MKT/BDT florence_morache@ds-fr.com

Frances L. Van Scoy

WV EPSCoR/ West Virginia University

fvanscoy@wvu.edu

Fred Henle Dartmouth College henle@cs.dartmouth.edu
Frederic Vacher WMD/MKT/BDT frederic_vacher@ds-fr.com
Hiromi Kobayashi VR Center Yokohama Inc. vrc@ddd.co.jp

Jered Floyd MIT jered@mit.edu

John P. Wilson Creare Inc. jpw@creare.com

John Ranta Teneo Computing jranta@teneocomp.com
Josh Handley SensAble jhandley@sensable.com
Jung Kim MIT jungkim@mit.edu

Karl Reinig University of Colorado karl@chs.uchsc.edu
Kendall Mauldin Sandia National Laboratories kdmauld @sandia.gov
Kenneth Salisbury MIT/Stanford jks@robotics.stanford.edu
Lingling Zhang University of Southern California linglinz@usc.edu
Mandayam Srinivasan MIT srini@mit.edu

Marc Midura SensAble mmidura@sensable.com
Matthew Hutchins CSIRO Matthew.Hutchins@cmis.csiro.au
Michael Graffeo Cornell University mpg2@cornell.edu

Mike Lohse SensAble lohse@sensable.com
Nancy Amato Texas A&M University amato@cs.tamu.edu
Nikolai A. Grabowski University of Delaware grabowsk@eecis.udel.edu
Osman Burchan Bayazit = Texas A&M Univesity burchanb@cs.tamu.edu
Philip Winston SensAble pwinston@sensable.com

Pierre Dupont Boston University pierre@bu.edu
Remis Balaniuk INRIA - Rhone Alpes Remis.Balaniuk@inrialpes.fr
Richard M.Y. Lee 3D Incorporated, Japan lee@ddd.co.jp

Robert D. Howe Harvard University howe@deas.harvard.edu
Robert J. Kline-Schoder Creare Inc. rjk@creare.com

Roger Webster Millersville University webster@cs.millersv.edu
Russell Blue GE Corparate R&D blue@crd.ge.com
Seong-Rim University Of Southern California seongnam@scf.usc.edu
Shibin Yin University of Texas@Arlington-VTL shibiny@hotmail.com
Shingo Hirose Mechanical Engineering Laboratory hirose@mel.go.jp

Steve Wang MIT Touch Lab wangs@mit.edu

Steven Dow GROK Lab - U. of Iowa steven-dow@uiowa.edu
Steven E. Linthicum GE Corparate R&D linthicu@crd.ge.com
Tamaharu Yoshimizu Nihon Binary email@nihonbinary.co.jp
Thomas Debus Boston University tdebus@bu.edu

Thomas Massie SensAble thomas@sensable.com
Timothy Miller Brown University tsm@cs.brown.edu

Tom Anderson Novint Technologies/ Sandia Nat'l Labs tom@novint.com

Tomer Shalit ReachlIn Technologies tomer@reachin.se

Torben Kling-Petersen

Mednet, Goteborg University

kling@mednet.gu.se

