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ABSTRACT

SIR is a computer system, programmed in the LISP language, which
accepts information and answers questions expressed in a restricted
form of English. This system demonstrates what can reasonably be called
an ability to "understand" semantic information. SIR's semantic and
deductive ability is based on the construction of an internal model,
which uses word associations and property lists, for the relational
information normally conveyed in conversational statements.

A format~-matching procedure extracts semantic content from English
sentences, If an input sentence is declarative, the system adds
appropriate information to the model. If an input sentence is a
question, the system searches the model until it either finds the
answer or determines why it cannot find the answer. 1In all cases SIR
reports its conclusions. The system has some capacity to recognize
exceptions to general rules, resolve certain semantic ambiguities, and
modify its model structure in order to save computer memory space.

Judging from its conversational ability, SIR is more "“intelligent"
than any other existing question-~answering system. The author describes
how this ability was developed and how the basic features of SIR com~
pare with those of other systems.

The working system, SIR, is a first step toward intelligent man-
machine communication. The author proposes a next step by describing
how to construct a more general system which is less complex and yet
more powerful than SIR. This proposed system contains a generalized
version of the SIR model, a formal logical system called SIRl, and a
computer program for testing the truth of SIRl statements with respect
to the generalized model by using partial proof procedures in the
predicate calculus. The thesis also describes the formal properties
of SIRl and how they relate to the logical structure of SIR.

Thesis Supervisor: Marvin L. Minsky
Title: Professor of Electrical Engineering.
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Chapter I: Introduction

A. The Problem,

This report discusses the problem of developing a computer* which
"understands.'" The method of study involved the construction of a
computer system having certain cognitive abilities and exhibiting
some human-like conversational behavior.

This computer system is called "SIR" -- Semantic Information
Retriever., The conversation presented in Fig. 1 between a person
(identified by '"##%%,") and SIR illustrates some of the system's
capabilities. Although it is capable of "understanding' statements
dealing with set relations, part-whole relations, ownership, and
certain spatial relations, SIR has no initial built-in associations
for nouns like '"John," "boy,'" and "table."

"Understanding'" is difficult to define precisely. The present
study makes the following specific assumptions and observations:

i) '"Understanding'" can be demonstrated by dialogue, which requires
the participants to indicate an awareness of the meaning of their
subject matter. Therefore a computer should be considered éble to
"understand" if it can converse intelligently, i.e., if it can remem-
ber what it is told, answer questions and make responses which a

human observer considers reasonable.

* The term "computer" refers to the combination of digital computer
hardware and operating computer program.

v
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[ens, EVERY BOY IS A PERSON)
(1 UNDERSTAND)

(e, A FINGER IS PART OF A HAND)
(1 UNDERSTAND)

(eea, EACH PERSON HAS TWO HANDS)

(THE ABUVE SENTENCE IS AMBIGUUUS we PLEASE RE-PHRASE IT)

(ene, THERE ARE TWO HANDS ON EACH PERSON)
(1 UNDERSTAND)

(ean, HOW MANY FINGERS DOES JOHN HAVE Q)

(THE ABOVE SENTENCE IS AMBIGUOUS e BUT I ASSUME (HAS) MEANS (HAS AS PARTS))
(I DON#T KNUW WHETHER FINGER IS PART OF JOHN)

(san, JOHN IS A BOY)

(1 UNDERSTAND)

(nan, HOW. MANY FINGERS DOES JOHN HAVE Q)
(THE ABOVE SENTENCE IS AMBIGUOUS ®e BUT I ASSUME (HAS) MEANS (HAS AS PARTS))
({HUW MANY FINGER PER HAND Q))

(wae, EVERY HAND HAS 5 FINGERS)

(THE ABOVE SENTENCE IS AMBIGUOUS e« BUT I ASSUME (HAS) MEANS (HAS AS PARTS))
(1 UNDERSTAND) . !
(ren, HOW MANY FINGERS DOES JOHN HAVE Q)

(THE ABUVE SENTENCE IS AMBIGUDUS e# BUT I ASSUME (HAS) MEANS (HAS AS PARTS))
(THE ANSWER IS 10)

(ess, HOW MANY AUTOMOBILES DOES JOHN HAVE Q)

(THE ABOVE SENTENCE IS AMBIGUOUS #® PLEASE RE-PHRASE IT)

(wen, WHO 1S PRESIDENT OF THE UNITED STATES Q)
(STATEMENT FORM NOT RECUGNIZED)

(e, THE BOY IS JUST TO THE LEFT OF THE TABLE)

(602840 IS A TABLE)
(I UNDERSTAND)

[EX 2N THE LAMP 1S JUST TO THE LEFT OF THE TABLE)

(602841 1S A LAMP)
(THE ABOVE STATEMENT IS IMPOSSIBLE)

(ene, THE TABLE IS TO THE RIGHT OF THE CHAIR)
(602842 IS A CHAIR)

(I UNDERSTAND)

(eon, WHAT IS THE RELATIVE POSITION OF A PERSON Q)

(THE LEFT-TU~RIGHT ORDER 1S AS FOLLOWS)
(CHAIR (BOY TABLE))

FIGURE 1: SAMPLE CONVERSATION

S
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Note: I am concerned here with the computer's internal information
representation and retrieval techniques. For this purpose I assume
that abstract "words' are the basic signal unit. There is no need to
be concerned with speech recognition, sensory receptors, or other
problems involving the physical nature of the communication channel
and signals.
ii) In addition to echoing, upon request, the facts it has been given,
a machine which '"understands'" must be able to recognize the logical
implications of those facts. It also must be able to identify (from
a large data store) facts which are relevant to a particular question.
iii) The most important prerequisite for the ability to "understand"
is a suitable internal representation, or model, for stored information.
This model should be structured so that information relevant for
question-answering is easily accessible. Direct storage of English
text is not suitable since the structure of an English statement gener-
ally is not a good representation of the meaning of the statement. On
the other hand, models which are direct representations of certain
kinds of relational information usually are unsuited for use with other
relations. A general-purpose '"understanding'" machine should utilize a

model which can represent semantic content for a wide variety of subject

areas.

SIR is a prototype of an '"understanding' machine. It demonstrates
how these conversational and deductive abilities can be obtained
through use of a suitable model. Later chapters will describe the
model and the SIR program, how they were developed, how they are used,

and how they can be extended for future applications.
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B. Where the Problem Arises.
The need for computers which '"understand" arises in several areas

of computer research. Some examples follow.

1) Information retrieval: The high speeds and huge memory

capacities of present computers could be of great aid in scanning
scientific literature. Unfortunately, high-speed search is useless
unless the searcher is capable of recognizing what is being searched
for; and existing computer systems for information retrieval use too
crude techniques for specifying and identifying the objects of the
search.

Information retrieval systems generally provide either document
retrieval or fact retrieval. Document retrieval programs usually
depend upon a human pre-assignment of '"descriptors' to the documents.
A user of the system may know the list of descriptors but cannot know
precisely what the descriptors meant to the cataloguef. It is difficult
for the user to determine what the semantic interactions between the
descriptors are and how these interactions help determine the content
of the documents obtained.

Fact retrieval systems usually require that the information to be
retrieved first be placed in a rigid form designed for a particular
subject area. This rigid representation for the data, and the corre-
sponding rigid formulation of the retrieval requests, could be pro-
duced automatically by a computer which '"understands' statements
expressed in a form more natural to the human user. Further, if the

computer could "understand" information expressed in some general

manner, specialized formal representations would be unnecessary.
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In order to make a computer serve as a reference librarian, it is
not sufficient simply to store a large volume of information. The
computer must also have the ability to find and retrieve information
in response to flexible descriptive commands. Further, the computer
should be able to modify both the information in storage and the re-
quests it is receiving, and it should be able to describe its actions
and to request clarifying information. The most useful information
retrieval system will be one which can '"converse'" with its users, to
make sure that each request is well-defined and correctly "understood."

2) Mechanical translation: Researchers in the area of mechanical

translation of natural language have been disappointed to discover how
difficult their task is. First word-to-word translations, and then
word-to-word translations coupled with grammatical analysis, rearrange-
ment, and context-dependent restrictions, have proven inadequate for
achieving good translations. The vital feature missing from present
computer translating systems is the ability of human translators to
"understand" what they read in one language, and then 'say the same
thing" in another. The SIR computer system can store facts, make
logical deductions, answer questions, and exhibit other features of
human conversational behavior, and therefore appears to have some such
"understanding' ability. The mechanisms which help it to "understand"
are likely to help also in solving the mechanical translation problem.

3) General computer applications: During the past decade there

has been tremendous growth in the amount of computer utilization and

in the variety of computer applications. However, before each new

problem can be tackled by a computer someone must perform the arduous
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task of "programming" a solution, i.e., encoding the problem into a
form acceptable to a computer.

Various '"'problem-oriented" computer languages have been developed
to ease this encoding problem. Unfortunately, such languages are
useful only when programs ('"compilers'" or "interpreters'") are avail-
able to translate automatically from the problem-oriented language to
the basic "order-code'" of the computer. At present all such problem-
oriented languages are very rigid systems. This means that the problem
domain must be one which lends itself to rigorous, complete, formal
definition, e.g., algebraic manipulations, accounting procedures, or
machine tool operations.

Many interesting problems are not sufficiently well defined or
clearly understood to be expressed in any of the conventional com-
puter programming languages. Still, people are able to describe
these problems to each other and to assist each other in making the
problems more precise and in solving them. 1In order to utilize the
high speed and large memory capacities of computers while working on
such ill-defined problems, people need some useful way to communicate
incomplete information to the computer; some way which will make the
computer "aware' of facts and enable it to 'understand" the nature of
the problems which are described to it. SIR is a prototype of a

computer system which captures some measure of the "meaning'" of the
information presented to it, and can act upon its stored body of

knowledge in an "intelligent'" manner.

n
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Chapter II: Semantic Information Retrieval Systems

The word "semantic'" is used in the title of this paper for two
reasons: First, the actual information extracted from text and
stored by the program is intended to approximate the linguistic
"semantic content'" or 'meaning" of the material. Second, the compu-
ter representation of information used in SIR (Chapter III.D) is
derived from the 'semantic" model structures of formal mathematical
logic. "Information retrieval" refers to the fact that the systems
discussed operate on collections of statements, retrieving facts in
response to questions. Question-answering was chosen because it is
a straight-forward context in which to experiment with the under-
standing and communicative ability of a computer.

The SIR system utilizes results from two major research areas:
the study of the semantics of natural language, and the study of
previously developed computer programming techniques for solving

various specific question-answering problems.

A. Semantics.

Semantics is generally studied from one of two viewpoints:
pure and descriptive. Pure semantics, as studied by Carnap (5),
deals with the properties of artificially constructed formal
systems (which may or may not have analogues in the real world),
with respect to rules for sentence formation and designation of

formal models and truth values. I shall rather be concerned with
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descriptive semantics, an empirical search for rules governing truth

and meaningfulness of sentences in natural language.

1) Semantics and meaning: When discussing meaning, one quickly

encounters difficulties in having to use words with which to discuss
the meaning of words, especially that of the word '"meaning."
Therefore one finds it difficult to distinguish between object-
language and meta-language. A common device is to define '"meaning"
in a very specialized sense, or to deny that it can be defined at all.
Quine, tongue in cheek, recognizes this difficulty in the following
paragraph: (33)

"One must remember that an expression's meaning (if we are to
admit such things as meanings) is not to be confused with the object,
if any, that the expression designates. Sentences do not designate at
all..., though words in them may; sentences are simply not singular
terms., But sentences still have meanings (if we admit such things as
meanings); and the meaning of an eternal sentence is the object
designated by the singular term found by bracketing the sentence.

That singular term will have a meaning in turn (if we are prodigal
enough with meanings), but it will presumably be something further.
Under this approach the meanin; {ii such there be) of the non-eternal
sentence 'The door is open' is not a proposition..."

Quine continues that the elusive meaning of '"The door is open'" is some
complete intuitive set of circumstances surrounding a particular
occasion on which the statement "The door is open' was uttered. Clearly
this kind of concept does not lend itself to computer usage. In order
to construct a computer system which behaves as if it understands the
meaning of a statement, one must find specific words and relations

which can be represented within the computer's memory, yet which some-

how capture the significance of the statement they represent.
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Ziff (47) is more precise in making the following distinction:
words may have meaning, but not significénce; utterances (phrases,
sentences) may have significance, but not meaning. However, he states

that an analysis of the significance of a whole utterance cannot be

completed without an analysis of the meanings of the words in the
utterance. I find Ziff's distinction between word meaning and utter-
ance significance a useful distinction, although the terminology is
poor since both concepts contribute to what is commonly called
"meaning.'" Since Ziff does not present any further explanation or
representation of ""meaning" and "significance," let us proceed to a
similar but more complete discussion by Ullmann (44).

Ullmann considers a word as the smallest significant unit with
bisolated "content,'" whereas phrases and sentences express relations
between the things which are symbolized by individual words. Here
"meaning'" is defined as "a reciprocal relationship between the name
and- the sense, which enables the one to call up the other." By '"sense"
is meant the thought or reference to an object or association which is
represented by the word. Note that meaning here relates word with
thought about object, not necessarily with object itself. Now,
"thought about object'" is too vague an idea for computer formalization.
However, we can work with a verbalization of a thought; namely, the
words which name objects and features associated with the thought.

We may consider the meaning of a word which names an object or
class of objects to be either the thing named or, after Ullmann, the

most common thoughts people have in connection with the thing named.
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In either case, in the SIR system I approximate the meaning of the
word by building up, in the cbmputer, a description of the object or
class. This description, itself composed of words, presents proper-
ties of the described entity and names othér objects and classes to
which that entity is related. The meaning of an utterance can then
be represented in a natural way by partitular entries in the descrip-
tions of the objects named in the utterance.

Walpole (45) points out similarly that a word may be defined (i.e.,
the meaning of a word may be explained) by any kind of association,
connection, or characteristic, and these features of a word are
usually described verbally. Thus such features can be part of the
computer's description of the word being defined.

"Words do not live in isolation in a language system. They enter

into all kinds of groupings held together by a complex, unstable and
highly subjective network of associations; associations between the
names and the senses, associations based on similarity or some other

relation. It is by their effects that these associative connections
make themselves felt;.... The sum total of these associative networks

is the vocabulary." (45)

SIR uses an approximation to those associative networks as its basic
data store.

Walpole also notes that some word relationships, such as part to
whole, or class to subclass, determine partial orderings of large classes
of nouns and thus can be represented by tree structures. This fact
leads to certain search procedures which are useful in our computer
system. However, the class of abstract nouns ("fictions'"), which do
not name any object in any specific sense-experience, do not lend them-

selves to such ordering, and hence are omitted from early versions of

computer representations for semantic information.
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2) Grammar and meaning: Thus far I have discussed meaning (seman-

Eics) while ignoring the grammar (syntax) of language. However,
grammar is important since I would like the computer program to take
advantage of whatever useful information is available in the grammati-
cal structure of its input. Also, at least one school of thought
(discussed in (3) below) holds that syntactic analysis is an adequate
method for obtaining semantic classification. Therefore let us con-
sider the nature of grammar.

A "grammar" is usually defined as a set of rules defining which
strings of alphabetic characters are '"sentences'" of the language and
which are not. Deriving a grammar for a natural language is an
empirical process, since the ultimate test of whether a statement is
grammatical or not is to ask a native speaker. Considering only the
functions of words in sentences (their '"parts of speech'") but not
their meanings in any sense, Chomsky (9) develops various kinds of

English grammars. Phrase structure is a simple concept and works for

a small part of the language, but is frequently inadequate.

Transformational grammar schemes are probably adequate, but are compli-

cated and difficult to complete or test.

Although syntactic procedures are generally supposed to ignore
meaning, the boundary between syntactics and semantics is hazy. For
example, some linguists classify the so-called '"mass nouns'" (e.g.,

"water') as a separate grammatical group since they do not take the

article. However, the distinction between "I want meat" and "I want

a steak'" seems to be basically a semantic one,
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Ziff defines meaningfulness in terms of rigidity of grammatical
structure. Words which are necessary in a particular grammatical con-
figuration, such as frequent occurrences of '"to," '"do," '"the," and
the like, are said to have no meaning. On the other hand, words
which could be replaced by a large number of alternatives within a
given grammatical context are considered very meaningful. Simmons
(38) makes this distinction between function words and content words
even more sharp, as we shall see later (Paragraph C.3). I have
used these ideas to the extent that only words which are names of
objects or classes, or of properties of objects or classes, appear
in the internal representation used in SIR. The frequently-occurring
"meaningless" words of Ziff are used as indicators of relations
between other '"meaningful' words appearing in the same sentences.

(See Section IV. B).

3) Formalizing meaning: The intelligent computer has to under-

stand and remember the meaning of what it is told; therefore it
needs some pfecise internal representation for these meanings. Let
us now examine some of the formal representations of meaning which
have been proposed, and see which ideas from those representations
might be useful in a computer representation.

One way to deal with the problem of semantics is to avoid it by
translating ordinary language into a formal system which could be
handled syntactically (1). Thus far, attempts to formally encode

all of natural English seem to introduce a mass of detailed notation
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which obscures the real problem, for the problem of representing mean-
ing must be solved in order to develop a good translation scheme. At
first view Freudenthal's LINCOS (15) may seem like a formal system for
describing human behavior. Actually the LINCOS system is not practical
since it assumes far greater abilities for inductive inference of rules
and situations on the part of the receiver than is expected of the
usual language student.

Another approach, used, for example, by Klein (19), is to increase
the number and kinds of catagories in the usual syntactic analysis
systems until the semantic properties are automatically included.
Although some of the results are promising, it seems to me this approach
will eventually obtain the same ultimate system of word associations
as can be approached more simply by considering and representing
directly the "meaningful' relations between words.

Quillian (32) attempts to represent the semantic content of words
as sets of "concepts,' which can be combined to represent the meanings
of phrases and sentences. With the basic premise that learning a new
word involves measuring its values on a set of basic scales, he is trying
to build up a repertoire of suitable coordinate scales. Each word is
represented by a set of values which are generally intuitive, unidimen-
sional coordinates such as length, time, and hue. Quillian also permits
defining words in terms of predefined words as coordinates. My feeling
is that the relations between words are more important than the conceptual
meaning of individual words, and therefore a simpler approach which

ignores '"basic" meanings would be more immediately fruitful.
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Sommers (42) is more concerned with permissible word combinations
than with the meanings of individual words. He first describes a
hierarchy of sentence types: 1) Ungrammatical; 2) Grammatical but
nonsense; 3)‘ Sensible but false; 4) True. He then argues that
the crucial semantic distinction lies between the grammatical declara-
tive sentences which are nonsense, and those which are significant
(but may be true or false). Any pair of monadic predicates Pl’ P2
are said by Sommers to have a sense value U(PI’PZ) if there exists
any significant sentence conjoining them. Otherwise they have value
ﬂ’U=N(Pl,P2). The U-relation is symmetric and is presérved under
certain logical operations on its arguments, but it is not transitive.
A stronger relation Q=P is true if "of (what is) P, it can be signifi-
cantly said that it is Q...e.g., P=Prime minister, Q=quick." This
permits the arrangement of these '"monadic predicates'" into a simple
tree, where all words in the same meaning class, e.g., all colors, or
all words describing weight, occupy the same node.

My main objection to this work is in where the important distinc-
tions lie. Sommers would argue that '"The idea is always green' is
nonsense, but '"The yellow sky is always green'" is sensible (since sky
may have color, "The sky is blue" and "The sky is not blue" are
significant), although false. Note that ''Ideas cannot be green"
would be ponsidered nonsense rather than true, by Sommers. I feel the
distinction between "nonsense' and '"sensible but not true of the real
world" is not precise enough to be a gasis for a computer representation

of a semantic system. SIR is concerned with deductions of consequences



21
from a given body of statements, rather than judgements of '"nonsense"

or "'sensible."

In summary, many schemes have been developed in the literature for
formally describing the semantic properties of language. Some of these
were described above. Most of the schemes are vague, and although
Klein's and Quillian's, among others, are being programmed foy computers,
none of the presently available semantic systems have been developed to
the point where they could provide a useful basis for computer '"under-
standing." However, I have used some of the ideas from the above
systems in developing SIR. The idea of representing meaning by word
associations is particularly important for the information representa-

tion used in SIR.

B. Models,

The SIR system uses a special data structure which I call the
"model." The program refers to this '"'model" whenever it must store or
retrieve semantic information. The purpose of this section is to explain
what I mean by the term '"model" in general, and to define the SIR model

in particular.

1) Definition: The term '"model" has been grossly overworked, and
it does not seem to have any generally agreed-upon definition (18). For
purposes of this paper, I present the following definition:

A model for an entity x has the following properties:
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a. Certain features of the model correspond in some well-defined way
to certain features of Xx.

b. Changes in the model represent, in some well-defined way, corre-
sponding changes in x.

c. There is some distinct advantage to studying the model and
effects of changes upon it in order to learn about x, rather than
studying x directly.

x may be any of a wide class of entities, such as an object; a statement
in English, or a mathematical concept.

2) Examples of models:

i) A small-scale wind-tunnel test-section for part of an airplane is a
model for the actual part because aerodynamicists understand how air
flow around the test-section is related to air flow around an actual
airplane part (whose shape corresponds to the shape of the test-section
in a well-defined way). An obvious advantage of such a model is its
convenient size.

ii) A verbal statement of a plane geometry problem usually includes
statements about line segments, connections, shapes, etc. The usual
model is a pencil or chalk diagram which has the geometric features
described in the statement. The advantage of the model is that it is
conceptually easier for people to interpret geometric relationships

from a diagram than from a verbal statement, which is really an encoding
of the geometric information into a linear string of words.

iii) Problem solving ability in human beings has been modeled by a
computer program developed by Newell, Shaw and Simon (28). The model
can be improved by modifying the program so that its external behavior
corresponds more closely to the behavior of people working on the same
problems. The advantage of this model for behavior is that its internal
workings are observable, and hence provide a hypothesis for the corre-
sponding mechanisms involved at the information-processing level in
human problem-solving.

iv) Logicians develop and study formal systems. Occasionally these
have no significance other than their syntactic structures. Sometimes,
however, systems are developed in order to study the properties of
external (usually mathematical) relationships. On these occasions one
says that statements in the formal system correspond "under standard
interpretation' to facts about the relationships. The model for such a
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formal (syntaétic) system usually consists of sets of objects which
satisfy our intuitive notions of the 'meaning" of the original relation-
ships, yet whose properties correspond to certain features of the
syntactic statements, Thus one may study the abstract formal system
by manipulating a model which has intuitive significance. Semantics,
in mathematical logic, refers to the study of such models (6).

There may not always be a clear-cut distinction between entities
which are models and those which are not really representations of
something else, For example, Newell, Shaw, and Simon's problem-
solving program discussed in (iii) above is truly a model, in the sense
defined earlier, only insofar as it is intended to represent human

behavior. Otherwise the program would have to be treated just on its

merits as an independent problem-solving machine.

3) Question-answering model: Inrdesigning a question-answering
system one is concerned with providing a store of information, or a
mechanism for developing such . a store, and a procedure for extracting
appropriate information from that store when presented with a question.
The store may be built up on the basis of information presented in the
form of simple declarative English sentences, as it is in SIR, or it
may be a prepared data structure. In either case, it generally contains
information which people would normally communicate to each other in
English sentences. I consider the store of information which is the
basis of any question-answering system as a model for any set of
English sentences which contains the same information. Of course,
"information contained" refers here to the sgmantic content, not the
number of information-theoretic bits. Note that, due to the present

vague state of semantic analysis in natural language, the most effective
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way of discovering this infeimation content of a question-answeiing
system's store of information is to ask the system some questions --

and make subjective inferences from its performance.

The information store of a system is aAmodel for a set of English
sentences because the information which can be extracted from the
store corresponds in a well-defined way to, and in fact should be identi-
cal to, at least some of the information available in the sentences.
The principal advantage of such a model is that it is easier to identify
and extract desired information from the model than it would be from the
complete English sentences. Question-answering systems have been devel=-
oped which use various kinds of models and which have achieved varying
degrees of success. The best-known examples of such systems are dis-
cussed in the following section. The structure of the model used in
my new question-answering system is discussed in Chapter III of this

paper.

C. Some Existing Question-Answering Systems.

v Several computer programs have been written whose aims and results
are somewhat related to those of SIR. None of these "queétion-
answering' systems uses a model for storing arbitrary semantic informa-
tion; and none of them deal with the same general kind of subject
matter as SIR. However, each of these systems has certain interesting

features, some of which have influenced the design of SIR.
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1) ""Baseball: An Automatic Question-Answerer." (17) This program,

written in the IPL-V (25) programming language, answers most reasonable
verbal English questions about a set of baseball games. Example:
input: "How many teams played in 8 places in July?"

output: MONTH = JULY

PLACE 8

NO. OF

TEAM = 3: YANKEES, TIGERS, RED SOX.

NQ. OF
The stored information (model) consists of a list-structure containing
all the relevant baseball game results arranged according to a pre-
selected hierarchical format. There is no provision for automatically
modifying this model. Each question is translated into a specification-
list with the desired information represented by blanks. This specifica-
tion-list is then matched against the model, the blanks filled, and the
entire final specification-list printed out., No attempt is made to
respond in grammatical English.

The bulk of the program is devoted to the task of translating a
question sentence into a specification-list. This requires looking up
words in a dictionary, identifying idioms, performing grammatical
analysis, resolving ambiguities, etc. The dictionary consists of a set
of entries for each word, such as its part of speech, whether the word
is part of an idiom, and its 'meaning." '"Meaning,' which only appears
for certain words, refers to a canonical translation of the word
within the context of the program; e.g., the meaning of '"who" is
"Team = ?" Thus the specialized nature of the subject matter enables

simple, gg;hoc procedures to solve what would otherwise be very difficult
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problems. The model consists of a fixed structure of information
arranged to facilitate the process of filling blanks in specification-
lists.

The "Baseball" system gives the illusion of intelligent behavior
because it can respond to a wide variety of English question forms.
However, a limited amount of information about a specific subject
must be pre-arranged in a fixed data structure; and the data must lend
itself to hierarchical ordering. Such a scheme cannot be generalized
conveniently to handle the larger variety of information which is

necessary for a truly "intelligent' system.

2) Phillips' "Question-Answering Routine." (31) This program,

written in the LISP programming language, (23) can correctly answer
certain simple English questions on the basis of a corpus of simple
English sentences.,
Example:
input: ( (AT SCHOOL JOHNNY MEETS THE TEACHER)

(THE TEACHER READS BOOKS IN THE CLASSROOM))

(WHERE DOES THE TEACHER READ BOOKS)
output: (IN THE CLASSROOM)
The model for a sentence is a list of up to five elements: subject,
verb, object, place, and time. This model is constructed for each
sentence in the corpus, and for the question (where a special symbol
in the question-list identifies the unknown item). The question;list

is matched against each sentence-list and, if an appropriately matching
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sentence is found, the correct reply is extracted from the corre-
sponding sentence in the original corpus.

This is a primitive system in several obvious respécts: any
information in a sentence other than the five "basic'" elements, and
any sentence which cannot be analyzed, is ignored; the words in the
question must be exactly the same as those in a corpus sentence; a
question must be answerable on the basis of a single sentence from
the corpus; and the model for the entire corpus must be searched
linearly for the answer to each question. However, the idea of a
model which is created and extended automatically as new sentences
are added, and which serves as an intermediary form to assist in
finding answers to questions, is an essential feature of an intelli-
gent, human-like system -- and is the important contribution of

Phillip's work.

3) "'SYNTHEX.'" (38) This program, written in the JOVIAL programming
language (37), can answer a wide variety of questions about information
contained in a large corpus of simple natural English such as the

Golden Book Encyclopedia. Example:

input: "What do birds eat?"
(somewhere in the encyclopedia): 'Worms are eaten by birds."”
y

output: "Birds eat worms."

The program classifies all words as either function words, which have
structural (syntactic) significance (e.g., the, is, do, what), and
content words, which have semantic significance (in practice, content

words are any words which have not been chosen as function words).
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Initially the corpus (the encyclopedia) is indexed with respect to all
occurrences of all content words. This index occupies about the same
amount of space as the corpus itself. When a question is asked, the
system selects those sentences from the corpus which have the greatest
number of content words in common with the question. At this point
elaborate grammatical analyses are used to determine whether any of the
selected sentences provide an answer to the question,

This system doesn't use a model at all; the complete corpus is kept
in its original form and referred to, when necessary, through the use
of an index. Since the information is not pre-processed into a more
usable form, the grammatical analysis required at the time the question
is answered is quite complex. Recent related work by Klein (19)
indicated that some of the rules of the grammar can be developed auto-
matically from the corpus, and information from several sentences may
be combined by use of syntactic methods to help answer questions.

My feeling is that the word-relations being developed by these
"dependency grammar' methods can be discovered more easily by means
of semantic analysis, and they would then be more intuitively meaningful.
A model based on such semantic relations would significantly simplify
the question-answering procedure. SIR illustrates the feasibility of

directly storing and using semantic relations.

4) Lindsay's "SAD-SAM: Sentence Appraiser and Diagrammer, and

Semantic Analyzing Machine.'" (21) This program, written in the IPL-V

(26) programming language, accepts as input any sentence in Basic
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English (30), extracts from it any information concerning kinship,
and adds this information to a "family tree." Example:
input: '"John, Mary's brother, went home."
effect: John and Mary are assigned a common set of parents -- i.e.,
they are represented as descendants of a common node in the family
tree. The grammar is sufficient to handle a considerable portion of
natural Ehglish in recognizing family relationships. Although the
author does not consider question-answering in detail, it is clear that
the family relation information is immediately available in the tree
model and specific requests could be answered almost trivially.

This system illustrates the effectiveness of a model designed
for a very specific task. Lindsay decided in advance that only family
relationships were of interest, and observed that there is a natural
model for family relationships. Then whatever relevant information
was received was processed into this model, leaving practically
nothing to be done at question-answering time.

Unfortunately,»different forms of "natural' models are needed
for different kinds of information. In a more general system, it
might be possible to use the best available model to represent infor-
mation for each subject area --e.g., trees for family relations,
Cartesian coordinates for spatial relations, perhaps just the original
text in areas for which there is no obviously better representation;
but that would be a confused system with tremendous organizational
problems. The SIR system is based on a single model which captures

some of the advantages of various specific models while permitting
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uniform processing procedures and permitting the storage and retrieval

of arbitrary facts which arise in human conversation.

5) Darlington's program for the translation of restricted English

into the notation of symbolic logic (12): This program, written in the

COMIT (34) programming language, translates certain English riddles
into a logical form which may then be tested for validity by another
program, written by the same author, which applies the Davis-Putnam
proof procedure (13) for statements in the propositional calculus.
Example:

input: "If the butler was present, then the butler would have been seen,
and if the butler was seen, then the butler would have been questioned.
If the butler had been questioned, then the butler would have replied,
and if the butler had replied, then the butler would have been heard.
The butler was not heard. 1If the butler was neither seen nor heard,
then the butler must have been on duty, and if the butler was on duty,.
then the butler must have been present. Therefore the butler was
questioned."

output: [[L=M] A [M=N] A [NP] 5 [P2QAYQAATMA~QIDR] A [RDL]]N]
The input is typical of a type of problem which appears in elementary
logic texts. It has been pre-edited to perform certain clarifications
including removal of most pronouns and insertion of necessary marker
words such as '"then." The program translates this input, by means of
dictionary references and grammatical analysis, into the model, which
is a statement in mathematical logic having the same truth-value as

the original English statement. The ''question'" in these problems is
understood to be, "Is this argument valid (i.e., necessarily true)?",

and the answer can be obtained by applying established methods to the

logical model.
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As in Lindsay's kinship system (4) above, Darlington's program
takes advantage of a model ideally suited to the type of problem
involved and advance knowledge of the only possible question. If one
considers the possibility of questions such as, 'What was the occupa-
tion of the suspect who was questioned?," or '"What was done to the
butler?" then the complicated process of translating the corpus into
logical terms would not be of any aid in finding answers. Only a
small part of the information needed for intelligent behavior can
be expressed in the propositional calculus. As will be discussed in
Chapter VI, even a version of the quantificational calculus is not
sufficient to formalize the conversational ability of SIR; a procedural

language is also necessary.

6) Bennett's computer program for word relations.(3): This

program, written in the COMIT programming language, will accept
information and answer questions framed in a small number of fixed
formats. Example:
input: DOG IS ALWAYS MAMMAL.

MAMMAL IS ALWAYS ANIMAL.

WHAT IS ALWAYS ANIMAL Q.
output: MAMMAL IS ALWAYS ANIMAL.
The input sentences must be in one of five formats (e.g., "X IS ALWAYS
Y," "X MAY BE Y," etc.), and only one occurrence of each format may
be held true at one time for any one item X. This input information is
translated into the model, which has associated with every item X each

corresponding item Y and an identifying number for the format which set
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up the correspondence. (The model actually consists of linear strings
of tagged entries, as is required by the COMIT language.) Similarly
there is a small number of allowable question-formats, each associated
‘with one of the input-formats and resulting in a particular class of
entries being retrieved from the model.

The major feature of this system, which is also the basic feature
of SIR, is that the information kept in the model identifies particular
kinds of semantic relations between particular words. Questions are
analyzed with respect to, and answered by referring to the model for
information about, these same relations. Principal shortcomings of
Bennett's system, which I have overcome in SIR, include the following:

1) Relations are identified with particular formats rather than
with their intended interpretations.

2) Logical implications based on the meanings of the relations
are ignored.

3) Interactions between different relations are ignored.

4) Its string representation makes processing the model more
difficult than necessary.

5) The user must know the form and content of the model in order
to make changes to it.

In summary, several computer question-answering systems have been
developed to solve special problems or illustrate special abilities.
None of them constitute a direct approach to providing intelligent
"understanding'" behavior for the computer. Although various forms of
models are used in the existing systems, none represent semantic rela-

tions in an intuitive, general, and useable way. The SIR model described
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in the next chapter provides the basis for a system which is more power-
ful than any developed thus far. The system based on this model can
store and retrieve information about arbitrary subjects, make logical
deductions, account for interactions between stored relations, resolve
certain ambiguities, and perform other tasks which are necessary

prerequisites for an understanding machine.
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Chapter III: Representations for Semantic Information

The SIR model is the collection of data which the SIR programs can
refer to in the course of question-answering. It is a dynamic model, in
the sense that new information can cause automatic additions or changes
to the data. In addition, it is a semantic model, in the sense that the
data are organized in a structure which represents the meanings of the
English sentences upon which the model is based. The purpose of this
chapter is to describe this semantic organization, which is reponsible
for convenient accessibility of relevant information and therefore for
efficient question-answering.

Many kinds of '"semantic' models are possible. The precise form of
the SIR model evolved from studies of possible word-association models
and of the semantic systems of mathematical logic. Its implementation
was influenced by the features of available computer programming lang-
uages. It is only capable of representing a particular group of se-
mantic: relations. These factors are discussed in the following para-
graphs., Chapter VI will present a proposal for future expansion and

formalization of this model and of its associated programs.

A. Symbol-Manipulating Computer Languages (&)

Programming the SIR system, or any other elaborate question-
answering system, would have been almost impossible if not for the
availability of symbol-manipulating computer languages. By taking care
of much of the necessary encoding and bookkeeping, these languages per-

mit a programmer to concentrate on the more significant aspects of organ-
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ization and representation necessary for problem-solving. Since the
choice of a symbol-manipulating language was an important step in the
development of SIR, it seems wo;th-while to discuss this class of lang-
uages in some detail.

Historically, the data used in computers have been numerical, in
the form of either numbers or fixed-size vectors and arrays of numbers.
Question-answering and other areas of recent computer research require
the use of symbolic as well as numeric data, and it is frequently desir-
able to transmit information by means of the relational structure as
well as the symbolic content of the data. The "symbol-manipulating'
or "list-processing" computer languages have been developed to handle
these special processing needs. An important feature of these langu-
ages is that computer memory space for data structures need not be
pre-assigned; storage for each structure is allocated automatically
as it is needed. Thus a symbol-manipulating language gives a programmer
a powerful set of toels for describing processes which create, modify,
search, or otherwise operate on arbitrary amounts of symbolic data with-
out being concerned with the inherent limitations or basic numerical
operations of the computer being used.

The most widely used symbolfmanipulating computer languages are
IPL (25), COMIT (35), and LISP (23).* 1IPL, used in the "Baseball'" and

""SAD-SAM" question-answering systems described in the previous chapter,

* See reference (4) for definitions of list-processing terms and more
detailed descriptions and comparisons of these languages.
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is one of the oldest symbol-manipulating languages, The basic units of
data used in IPL are list structures* composed of IPL symbols. An IPL
program describes symbol manipulation at a very basic level, leaving
the programmer with the problems of keeping track of storage used,
symbols assigned, etc. On the other hand, it is quite easy in IPL to
build up elaborate programs out of simpler processes and to manipulate
arbitrarily complex list structures.

COMIT was originally designed to be a convenient system in which
to process natural language, and was used in two of the question-answering
systems described above. Although COMIT is a general purpose symbol mani-
pulation system, it is best suited to problems involving string* manipul-
ation; i‘f" problems in which the data can be represented in the form
of strings of symbols without introducing undue complication into the
processing algorithms. The COMIT system provides a simple yet powerful
formalism for describing string manipulations. This formalism can be
extremely useful for describing procedures, such as parsing, which oper-
ate: on sentences of natural language.

LISP, the language used in one of the above question-answerérs and
the one chosen for programming SIR,was originally designed to be a for-
malism useful for studying the mathematical properties of functions of

symbolic expressions as well as useful in a practical programming system.

LISP programs consist of functions, rather than sequences of instructions

* See reference (4) for definitions of list-processing terms and more
detailed descriptions and comparisons of these languages.
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or descriptions of data forms. These functions map symbolic expressions
into symbolic expressions; the basic form of a LISP symbalic expression
is a binary tree* which can easily be used to represent list structures
when necessary. The organization of LISP programs into functions en-
ables one to describe elaborate recursive tree-searching and list-
structure-building operations simply and concisely. Reasons for

choosing LISP as the language for programming SIR include the followings

1) Unlike IPL, LISP offers several significant programming con-
veniences such as the use of mnemonic symbols and the automatic main-
tenances of available storage.

2) Unlike COMIT, complex trees and list structures =-- which
frequently arise in the chosen representation for the model (see sec-
tion D) -- can be represented directly as LISP data.

3) The LISP formalism is particularly well suited for describing

the recursive tree-searching procedures which are an important part of
the system (see Chapter V).

In an earlier version of SIR, COMIT was used as a pre-processor to
translate from English sentences into a function form better suited for
LISP input. However, since the simple format-matching input procedures
finally chosen (see Chapter IV) could just as easily be handled in LISP,
the problems of a hybrid system were avoided by converting everything

to the LISP language.

B. Word Association Models
The variety of existing question-anwering systems discussed in the

previous chapter demonstrates that many different kinds of models for

* See reference (4) for definitions of list-processing terms and more
detailed descriptions and comparisons of these languages.,




(]

38

representing the information in English text @re possible. One can
develop question-answering systems which vary widely in approach. At
one extreme are systems, e.g., Lindsay's: kinship program, which immedi-
ately process the text into a form from which anticipated questions can
be answered trivially, but which thereby ignore much of the information
in the input., At the other extreme are systems, e.g., the SYNTHEX sys-
tem, which simply store the raw text and perform all necessary comput-
ations after each question is received, thereby becoming embroiled in
complex grammatical analysis.

I feel that a system which is capable of intelligent, human-
like behavior must lie between these two extremes. Accordingly, the

design requirements for the model in SIR included the following:

i) The modeél crganization should be general enough to be useful
in a wide variety of subject areas, yet the stored information should
be specific enough to be of real assistance in the question-answering
process,

ii) The effort involved in the question-answering procedure should
be divided between the job of encoding input into the model and the job

of retrieving answers from the model. Neither job must be prohibitively
complicated or time-consuming.

Models based upon words and word-associations are the best candidates
for meeting these requirements.
Words are the basic symbols in most natural languages. Certain

words, usually verbs and prepositions, denote relationships between real

objeéts. In the SIR model I shall use words themselves to represent the
objects or classes denoted by the words, and specific kinds of associ-
ations between words to represent relations between those objects or

classes.
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Before describing the kinds of associations actually used in the
SIR model, let us consider a simpler word-association model structured
solely by class-inclusion (') and class-membership ('¢") relations;
This model, which was considered early in this investigation, has certain
possible applications, but also has significant drawbacks which preveént
its use in SIR. It is structured as follows: Let X and Y be words
which denote the objects or classes represented by x and y, respectively.
All such words are arranged in a tree, i.e., partially ordered, accord-
ing to the following rule: XY if either xCy or x¢y. In addition to
this primary ordering, various kinds of secondary associations can be
indicated by special additional links. Similarly, some verbs can be
partially ordered. For example, if x and y denote the subject and ob-
ject, respectively, of a verb g in a sentence xay , we shall order verbs
by the criterion: B if, for all objects x and y, xay implies xBy.

For intransitive verbs, the criterion is 4P if xq implies xB. Fig. 2
shows such trees for some words from a first-grade reader (29). The
parenthesized words were not in the vocabulary of the text, but are
included to motivate the organization of the tree.

Having defined the tree of nouns and the tree of verbs, I must now
complete the model by defining connections between these two trees.
Although a formal notation for such cross-links could be defined, for
present purposes I shall simply give the following examples of state-
ments describing cross-linkages (with respect to the node-labeling in

Fig. 2):

i) Any noun below node 1 is a suitable subject for any verb below node 1'.
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ii) Any noun below node 2 is a suitable subject for any verb above
node 2'.

iii) Only nouns below nodes 3 or 4 may be subjects for verbs below
node 3'.

The complete model, composed of tree structures and statements about
their possible connections, is a representation for the class of all
possible events., In other words, it represents the computer's know-
ledge of the world. We now have a mechanism for testing the "coherence"
or "meaningfulness" of new samples of text. As information is fed into
a system which uses this model, the program would simply have to insert
a "thread" of special connections into the model. The thread would
distinguish those events which actually happened from those which are
just '"conceivable' to the computer. Questions about the input state-
ments could then be answered by referring to the model to see which way
the thread passed. Such a model would be useful in a pragmatic system
such as Abelson's (7), to test the credibility of what it is told. It
could identify sources of its factual knowledge by their threads, and
compare the reliabilities of the various sources.

Unfortunately, the model described has several drawbacks which
prevent its use in a general semantic information retrieval system.

It is extremely difficut to construct a useful model of the form des-
cribed, for a significant amount of information; writing a program

which would add information to the model automatically is out of the

question, The "C" and "g¢" relations are not sufficient to describe
many useful groupings of nouns, but the introduction of a few additional
relations would confuse the structural organization of the model and

force the cross-link statements to be much more complicated. The verb
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groupings, in order to be useful, must be carefully selected according
to the ill-defined restriction that the resulting configuration allow
simple and useful cross-link statements. This may not always be possible,
and certainly becomes more difficult as the number of relations con-
sidered increases.

The model used in SIR is a word-association model similar in some
respects to the omne just described. However, the words are linked in
a general manner so that no particular relations are more significant
than others. The model is constructed, on the basis of input sentences,
completely automatically. Descriptions of the behavior of particular
relations, which roughly correspond to the cross~link statements in the
above system, are programmed into SIR rather than being part of the

model. Section D below describes the actual model used in SIR.

C. Semantics and Logic.

The structure of the SIR model was partly motivated by the
structure of models in mathematical logic. These logical models repre-~
sent the '"meanings'" of logical statements, and thereby help the mathema-
tician "think" about his problems, in the same way that the SIR model
is supposed to represent the 'meaning" of English input, and thereby
help the program obtain answers to questions. Let us take a more
detailed look at logical models.

The "semantics'" of mathematical logic is the study of models for
logical systems (6). Such a model consists of a set of individuals

(corresponding to the domain of the logical variables), and, for each

logical predicate or relation, a set of ordered n-tuples of individuals.

m
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A relation is true of certain individuals if and only if, in the
model, the ordered n-tuple of those individuals is an element of the
set corresponding to the relation. For example, a model for a logical
system dealing with the natural ordering of the integers might have as
its model the set of integers (as the domain of individual variables)
and a set of ordered pairs of integers corresponding to the "<
(less-than) relation. This latter set would contain all pairs {a, b)
for which integer a is truly less than integer b, i.e., for which the
statement a<b is true,

These semantic models are particularly useful in logic for
studying certain properties, such as consistency and completeness, of
the associated formal systems. They are not generally as useful as aids
in proving particular theorems, or studying the possible interactions
between various relations. The SIR model organization must be better
suited to these latter problems, which are of major interest in devel-
oping a question-answering system.

The idea of representing a relation by a set of ordered n-tuples
is a good starting point for a question-answering system model.
However, certain modifications are necessary. Since we are interested
in conversational ability in the computer, the '"relations" in our
model should represent concepts which commonly occur in human conversa-
tion, such as set-inclusion and spatial relationships, rather than
abstract mathematical properties., Furthermore, unlike a logical model,
the system should have built-in provisions for determining restrictionms,

extensions, or inconsistencies in the model, based on properties of the
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relations involved. E.g., if "c:” indicates set-iﬁclusion, and if
aChb and bCc are both in the model, the system should deduce that
aCc should also be in the model (or, equivalently, that aCc is a
true statement), from the built-in knowledge that set-inclusion is
transitive. Finally, for reasons of computational efficiency, a sub-
ject which is never considered in formal logic but is of prime impor-
tance in a practical computer system, information about relations
must be more easily accessible than it would be if it consisted simply
of unordered sets of n-tuples of objects. These considerations led
to a choice of the description-list organization for the actual wordv
association model used in SIR and described in Part D below.

Although some ideas were borrowed from logical semantic
systems, SIR is not directly dependent upon any formal logical
mechanism. Instead, the model and the programs which utilize it
were designed according to informal heuristic principles of reason-
ing, which I believe to be the most convenient ones for a first,
experimental system for intelligent conversation between machines
and human beings. Once a working system has been developed, one
can try to extract from it a logical basis for a more advanced

system. Such an extension is the subject of Chapter VI.

D. The SIR Model.
The SIR model consists of words associated with each other
through particular relations. These associations are represented by

"description-list" entries. In this section I shall discuss the
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description-list structure, the relations used in SIR, and the precise

representations for those relations.

1) Description-lists: The model in SIR is based largely upon

the use of description-lists. A description-list is a sequence of

pairs of elements, and the entire list is associated with a particular
object, The first element of each pair is the name of an attribute
applicable to a class of objects, and the second element of the pair
is the value of that attribute for the object described. For example,
if the object is the number "3", its description-list might contain the
following sequence of attributes (underlined) and associated values:
SUCCESSOR, 4, ODD, YES, SHAPE, CURVY,...
The fact that "3" is an odd number could have been indicated simply
by the presence of the attribute '"ODD," with any associated value --
or no value at all, provided the system using the description-lists
is capable of recognizing such a '"flag," i.e., valueless attribute.
The class of "cats'" might be described by the list:
SOUND, MEW, COLOR, (BLACK, WHITE, YELLOW, BROWN), LEGGEDNESS, &4,...
Note that, since the color of cats is not unique, the value associated
with COLOR is a list of possible cat colors. Its enclosure in paren-
theses indicates that the entire list of colors is a single element
of the description~-list,
I can illustrate the way description-~lists may be used by consider-~
ing their place in the IPL (25) programming system. By convention,

every IPL data list has an associated description-list. The attributes
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on IPL description-lists are IPL symbols, and the values are symbols
which may name arbitrarily complex IPL list structures. Basic IPL
operations can add pairs to description-lists; others retrieve the
second element of a pair (a value) on the description~-list, given the
first element (the attribute) and the name of the main data list.
An attribute can only occur once on any one description list, and the
order of the attributes on a description-list is ignored. Thus,
description-list operations simulate an associative memory containing
arbitrary descriptive information for the described object.

The LISP system (23) utilizes "property-lists" which are used in
much the same ways as IPL description-lists. In LISP, the described
objects are individual words or "atomic symbols,'" rather than lists.
LISP associates with each unique atomic symbol a property-list which
is a description-list allowing the use of flags as well as attribute-
value pairs. Although originally provided to facilitate the internal
operations of the LISP system, property-lists may be searched and
modified by the programmer. The model in SIR depends upon the use

of property-lists.

2) Model organization and development: The purpose of the

model is to assist the computer in understanding and communicating
with a person in English sentences. SIR works only with simple
sentences which consist of words which denote real objects or classes
of objects and words which express particular relationships between

the objects and classes. If one considers the objects and classes
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as the individual elements in a formal system, then these relationships
between objects and classes are analogous to the relations of formal
logic (described in C above), '"Understanding the meaning' of a sen-
tence is interpreted as the process of recognizing the objects in the
sentence and of placing them in a specified relation to one another.
The proper relation to use is frequently determined by the verbs and
prepositions in the sentence, and the way in which to place the objects
into the relation is determined by the form of the sentence. For
example, the verb "is'" usually determines a set relation. The form
"Every x is a y'" determines that class x is a subset of class y.

In the computer representation the basic objects, as well as the
names of relations, are simply words. The intended interpretation of
this representation is as follows: Suppose word x is associated in
the model with word y by means of relation R. Then this represents
a statement which 'means'" that the object or class denoted by x is
associated with the object or class denoted by y by means of the rela-
tion named R,

The procedure for developing the form of the model and the
associated storage and retrieval programs was approximately as follows:
A single relation -- set inclusion -- was chosen because it is an
easy concept to recognize from English text and is also (intuitively)
important to the "meaning' of simple sentences, An internal computer
representation was then found which adequately represented the relational
information, seemed general enough to model many other kinds of rela=

tions, and also had connectivity and accessibility properties which make

it useful for question-answeringe. Programs were then developed for
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recognizing sentences which deal with the given relation by their
syntactic forms (see Chapter IV); selecting relevant word tokens
from the sentences; and adding to, modifying, or searching the model
according to the results of the recognition process., The search
programs are designed to ''know' the peculiar properties of the
relation being searched, e.g., transitivity or reflexivity. .There-
fore a special set of search programs had to be written for each
relation. Each time a new concept or relation was added to the system,
the above steps were repeated. That is, the basic model structure
was generalized, if necessary; new syntactic recognition forms were
introduced, and existing ones modified if any ambiguities had been
intrqduced; and search and response programs for the new relation
were written, Search programs designed for relations already avail-
able in the system were modified when the old and.new relations
"interacted"*

The relations included in SIR were chosen because they demon-
strate various aspects of the information normally conveyed in
human conversation. They were introduced in the following order and
for the reasons stated:

a) Set-inclusion, because it is one of the most basic relations
of which people are aware.

b) Part-whole relationship, because, although it is significantly

* "Interactions'" between relations, and the structure of a modified
system which is easier to expand, are discussed in Chapter VI.
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different from, it interacts strongly with the set-inclusion relation
and has several common properties with it permitting the use of common
subroutines.,

c¢) Numeric quantity associated with the part-whole relation,
since it is not a new relation but rather consists of special descrip-
tive information which must be carried along with relational information.

d) Set-membership, because it is closely related to set-
inclusion but requires attention to properties of individual objects
as well as classes.

e) Left-to-right spatial relations, to see how the chosen
model works for a different kind of relation for which there is a
different, more natural-appearing model.

f) Ownership, since it is quite different from the existing
part-whole relation, and yet frequently is specified by the same verb
("to have"). It is therefore a suitable subject for an experiment in

resolving ambiguities.

3) Model structure: The basic objects in the model are the

words which denote real objects and classes. If an English statement
is interpreted by the sentence~form recognition program as asserting
that relation R holds between objects or classes named x and y, then
this relationship is represented by placing attribute-value pairs on
the property-lists of both x and y. Each attribute specifies a rela-
tion, and the value of the attribute indicates which other objects are

related to the described object by means of the specified relation.
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Since in general relations are not symmetric, relation R must be
factored into two relations Rl and R2 so that if relation R holds
between x and y (in logic terms, if }g)a é R), then one can say that
y stands in relation Rl to x and x stands in the inverse relation R2
to y. One may think of Rl and R2 as mappings from individuals into
sets such that x,y) € R if and only if y é R1(x) and x€ R2(y). For
example, if R is the set-inclusion relation, Rl is the subset relation
and R2 the superset relation. Rl and R2 may be named by the symbols
SUBSET and SUPERSET. In general, the symbols naming Rl and R2 are used
as attributes on the property lists of x and y, respectively., Note that
if R is a symmetric relation then only one mapping, which may itself be
named R, is necessary; for y€ R(x) implies x€R(y) and vice-versa.

If one and only one object can be in relation Rl to any word x,
then the value of attribute Rl of x can be simply the name of that
object. 1In this case I say that a type-1 link exists from x to y
following (or, by means of) the attribute Rl. An example of the use
of type=-1 links is in spatial relations, where only one object can be
"just-to-the-right" of another. TIf the system learns that "The lamp is
just to the right of the chair,'" then the attribute-value pair (JRIGﬁT,
LAMP) is added to the property-list of CHAIR, and the inverse relation
is indicated by adding the pair (JLEFT, CHAIR) to the property-list of
LAMP.

If R holds between x and y and also between x and z, type-1l links
are inadequate, since there can only be one value corresponding to a

given attribute on a given property list. However, this value may be
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a list of object-names instead of just a single object-name. In parti-
cular, we can make the value of Rl a list of the objects related to x
by relation R. For example, in the set-inclusion relation we may learn
independently that every boy is a person, every girl is a person, and
every MIT-student is a person. The value of the attribute SUBSET on the
property-list of PERSON would then be the list (BOY, GIRL, MIT-STUDENT).
This type of linkage ié called a type-2 link.

Occasionally descriptive information pertinent to a particuiar
occurrence of a relation must be represented, in addition to the
basic fact that the relation exists. For example, "A person has two
hands" implies not only that a hand is part of every person, but also
that in the case of '"hands'" there are exactly two such parts. This
relation can be handled by using type-3 links, where the value of
an attribute is a list of items, each of which is itself a property-
list., The first item on such sub-property-lists is the flag PLIST,
which indicates that a property-list follows. NAME is an attribute
on each sub-property-list whose type-1 value is the principal object
on the list. For example, after the system learns that '"A person has
two hands" and also "A finger is part of a person," the property-list
of PERSON would contain the attribute-value pair:

(SUBPART, ((PLIST, NAME, HAND, NUMBER, 2) (PLIST, NAME, FINGER))).
In the interest of generality and uniformity type-3 links are the pre-

dominant mechanism for structuring the model.
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Chapter IV: SIR Treatment of Restricted Natural Language

SIR must communicate with people: therefore the input and response
languages of the SIR system should both be reasonably close to natural
English. Since SIR utilizes a relational model; we are faced with the
difficult problem of extracting relational information::from natural
language. text,

I am primarily interested in. the ability of a computer to store
and utilize relational information in order to produce intelligent
behavior. Although the linguistic problem of transforming natural
language input into a usable form will have to be solved before we
obtain a general semantic information retrieval system, it is inde-
pendent of the representation and retrieval problems and therefore is
considered beyond the scope of this paper.

In this chapter I shall describe briefly the background for the
linguistic problem and the devices which SIR uses to bypass it, while

still utilizing understandable English~like input and output.

A. Background

In the past ten to fifteen years much research has been done on
the structure of natural languages, including English, for automatic
processing by computer. In virtually every case, the form of the ori-
ginal text is restricted or pre-processed in some way to make it more
amenable to automatic processing. Some of these studies were mentioned

in Chapter II in connection with existing question-answering systems.
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A recent paper by Bobrow (3) surveys various approaches and cata-
logues existing computer programs which automatically parse English
text.

The object of most of these systems is to identify the classical
grammatical structures of the sentences for purposes of linguistic
analysis, mechanical translation, or information retrieval. Large
dictionaries of parts of speech and grammatical rules are generally
employed, and usually no consideration is given to the meanings (in
any acceptable sense of the term "meaning') of the words and phrases
involved.

A recent exception is the work at the National Bureau of Stan-
dards dealing with a "picture language machine'" (10), Here the object
is to determine whether a given English statement is a correct assertion
about geometrical relationships in a given picture; therefore the
"meaning" of the sentence is critical., The procedure used is to trans-
late the English sentence into a logical statement involving geometric
predicates, and then to test the truth of the logical statement by
determining whether the relations specified by the predicates hold
for the given picture,

In the SIR search and retrieval programs I am concerned with a
problem similar to that of the picture language machine: namely,
translating from English to a relational statement, and then deter-
mining how the relational statement affects the model. However,
the SIR modelis a data structure automatically built up on the basis of

input relational statements, rather than an' independently provided
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"picture." 1In the NBS system, the process of translating from
English to the logical statement involves using a complete phrase-
structure grammar for a fragment of English associated with picture
descripfions. This seems like an extravagant approach, although it
may turn out to be the one best capable of generalization., In the
present version of SIR I am not concerned with constructing a formal
logical statement of the relations recognized from the English sen-
tence. Instead, the recognition programs directly invoke the appro-
priate storage or retrieval programs to deal with the relations
recognized. T call the process of extracting relational information
from English text "semantic parsing,'" The NBS work described above
points to one rather expensive apbroach foriobtaining fﬁis reiéfional
information. Charney (8) has studied the relation between sentence
form and word meanings. Reichenbach (34) and Fries (16) also dis-
cuss the semantic parsing problem, and other approaches will un-
doubtedly be developed by linguists in the near future. It seems
significant, although somewhat surprisings; that the simple format-
matching approach used in SIR, and discussed in part B below, is as

effective as it is.

B. Input Sentence Recognition

SIR solves the semantic parsing problem by recognizing only a
small number of sentence forms; each of which corresponds in specific
ways to particular relations. The allowable input language is defined

by a list of rules; each of which recognizes and operates upon a parti-
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cular form of English sentence. Each sentence presented to SIR is
tested by each rule in the list, The first rule applicable to the
sentence determines the action taken by the system and immediately
invokes a program to perform the action. If no rule is applicable,
the sentence is ignored, except that the system makes an appropriate
response (see Section C). A new rule may be added to the system, and
thus the class of recognizable sentences may be enlarged, by executing
the LISP function "addrule[x]" where x is the rule to be added., Let

us consider the use of these rules in detail,

1) Format matching procedure:

The four components of a rulé are a format, a list of the vari-

ables appearing in the format, a list of applicability tests, and an

"action'" list specifying the actions to be taken if the sentence satis-
fies all the tests, The format is simply a string of symbols which may
be words., The list of variables contains those symbols which appear
in the format which should be treated as variables. All other symbols
in the format are constants., The first step in trying to apply a rule
to a sentence is a '"'similarity test" between the sentence and the for-
mat of the rule to see whether the constants in the format all appear,
in the same order, in the sentence., If they don't, the rule is rejected.
If the sentence is similar to the format, the variables in the format
are indentified with their corresponding substrings in the sentence,
The applicability tests are then applied, one to each substring
matched by a variable, Each of these tests is the evaluation of a

specified function of one argument, the corresponding substring. If
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the value of any of these function evaluations is the special LISP
symbol "NIL" the substring is considered unsuitable and the entire
rule is rejected. Otherwise, the system composes a list of the
results of the applicability tests and communicates this list to the
last part of the rule, the "action" list.

The first element of the action list is the name of a function
which will act on the model to perform the operation required by the
English sentences create a link, test whether 'a particular relation
holds by checking the existence of certain chains of links,or extract
certain information from the model., The remaining elements of the
action list are functions which, when applied to the list resulting
from the applicability tests, produce arguments for the main action
function.

"For example, the semantic parsing of the sentence, " (A BOY IS
A PERSON)" would be performed by a rule such as

((X IS A Y) (X Y) (ART ART) (SETR CAR CADR))

The format "(X IS A Y)" is indeed similar to the sentence '"(A BOY IS
A PERSON)" because the constants "IS" and "A" appear in both in the
same order. Therefore the variable X is associated with the string
"A BOY" and Y with "A PERSON," "ART" is the name of a function which
tests whether its argument is a string of two symbols, the first of
which is an indefinite article. If so, the value of "ART'" is the
second symbol in the string. Otherwise, the value of "ART" is "NIL."
In this case, the same applicability test function, "ART," is used for

both matched substrings "A BOY" and "A PERSON." 1In both cases the
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results of the test are positive, so the values of the two evaluations
of "ART" are "BOY" and '"PERSON," respectively. The system then composes
the list of these values ' (BOYs¢ -PERSON)'", and proceeds to the "action'
list. Here "SETR" is the SIR function which creates links indicating
the existence of a set-inclusion relation between its two arguments.
""CAR" and '"CADR" are functions which obtain the arguments for "SETR"
by extracting the first and second elements, respectively, from the
value list "(BOYwy -PERSON).'" Af:cr this final function "setr [BOY;
PERSON]" is executed, the model will contain the relational information
which the rule extracted from the sentence, "(A BOY IS A PERSON)."
The recognition scheme does not distinguish between declarative sen-
tences and questions; they each have their own formats and corres-
ponding action fuctions. Of course, the effects of the action functiomns
for questions are usually quite defferent from the effects of declara-
tive-sentence functions. All action functions, as well as applicability
tests, are programs which must be provided to the system along with
cach new rule.

Fige 3 is a listing of all the rules included in the present ver-
sion of SIR., The symbol"Q" is to be read as a question-mark. The
significance of the "classify'" function.is explained in paragraph 2

below.

2) Ambiguities: The above translation from English sentence to
action function can work only if a desired action is uniquely deter-
mined by each format. This is not really the case with many of the

iormats used for one of two reasons, which I call format ambiguity
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and semantic ambiguity.

Format ambiguity is(a programming device rather than a true ambig-
uity. It occurs when a single format (and rule) is used in order to
save space and processing effort, even though several formats would
be necessary to uniquely determine the required action. E.g., the
sentence "Every boy is a person" specifies that the set "boy" is

' while "The boy is a person'" specifies

included in the set '"person,'
that some particular element of the set "boy'" is also an element of the
set "person.'" These two types of sentences could be uniquely recog-
nized by the formats, "Every x is a y" and "The x is a y." Instead,
SIR uses a single format of the form, "z is a y." 1In the rule con-
taining this format, the "action" function cannot be one which directly
creates either a set-inclusion link, corresponding to the first of the
above interpretations, or a set=membership link; corresponding to the
second interpretation. Instead, the applicability test is the "classify"
function which transmits to the action function an indicatdr of the
nature of the article in the string matched by variable z, as well as
the noun in the string. The action function then used is a '"select"
type of function which resolves the format ambiguity by examining the
indicator supplied by "classify" and then invoking the correct action
as a subroutine.

A more interesting case is that of semantic ambiguity, in which
the ambiguity in desired action is due to the meanings of the words
involved, Such an ambiguity cannot be resolved by using more-detailed

formats. The example implemented in SIR invalves the verb '"to have,"



(t1s X &) Xy (DECOMPY (SETRW=SELECT  CAAR  (LAR)
COX OWNS YD (X Y) (JLASSIFY  CLASSIFY) (OWN=STLECT CAD CARY)
((DC0ES X CwN Y Q) (X Y} (CLASSIFY CLASSIFY) (OWN=-SE T CADR CAR))
((HOw MANY Y DOES X CwN ) (Y X)(HING CLASSIFY) (OWA=SELECT CAR CATR))
CEXT5 Y PART CF Z) 4% Y Z)  (FLAGSIFY A= ZLASSIFY)
(PARTR-SELECT (AR CadRR)y)
((X HAS AS A PART ONE V) (X ¥) (CLASSIFY [DEN-1)
(PARTRN=SZLECT (o

X 1s wy (X ) CCLAS JLAS=ITY) (SETR-SELRCT CAR C4DR))
)

EARI Y ON 2} (Y &) (NJ“=Y CLAL5IFY] (PARTRN=SELECT 4R CaRy)
B 15 O ARV 8 oy X)) CIDENT LLASSIFY)
(PARTRN-LELEZT  CAR CaRY)

CUIs X PART OF ¥ ) (X ¥) ((LA¥RDA  (J)  (CLASSIFY (ALAST J)))
CLASSIFY) (PA2TRY=-ELECT  CA®  CACR))
(040w MANY Y ARS TH ON X 2) (Y TH &) (5ING THERE=~ CLASSIFY)
(PARTRNQ-SELECT C&2 CADDR} !
(A0 MANY Y ARE PART: OF x Q) ty x) (SING TLASSIFY)
(PARTRNG-SZLECT  C4a®  CADPR)) -
(X HAS Y) (X Y) (CLASSIFY CLASSIFY) (4A5=RESULVE  CALR  CAR))
CUX HAS W) (X w) CLAGSIFY  NUM=Y) (HASN-RESOLVE CADR CAR})
CLHOY MANY X OCES Y HAVE Q) (X Y) (SING CLASSIFY)
(HAVE=RE50LVE CAR CADR)))
COX IS JusT TS THE RIGHT OF Y) (X v CLASSIFY CLASSIFY)
(JRIGHT-SELECT C{AR  CALRY)
XI5 JUST TO THE LEFT OF Y1) (X Y)  (CLASSIFY CLASSIFY)
(JIRIGHT-SELECT  CADR  CaRm) )
COX IS TO THE RIGHT OF Y) (X Y) . (CLASSIFY CLASSIFY)
(RIGHT=SELECT CAR (AR} )
COX 1S TO THE LEFT OF v) (x vy (CLAGSIFY  CLASSIFY)
(RICHT=SZLECT  CADR  l2R) )
(I3 X JuST TO THE RIGHT OF ¥ 31 tx v) (CLASSIFY  CLASSIFY)
(JRIGHTG-SELECT  CAR  CALR) )

(0o X JubT TO THE LIFT 2F ¥ ) (X Yy (CLASSIFY CLASSIFY)
(JRIGHTG-SELECT  CACR  CaR) )
(tI> X TG THE RIGHT CF Y ) (X vy (CLASSIFY  CLASSIFY)

(RIGHTI-SELECT CAR  CACZR) )

((Is X TG THE LEFT OF v Q) (x v (CLASLIFY  CLASSIFY)
(RIGHTQ-SELECT CA3R (AR) )

(UAHERE 15 X ) (x) (CLASSIFY) (WHERE-SELECT CAR)}

({wHAT 15 THE X OF Y Q) (X Y) (LOC CLASSIFY) (LOC=SELECT CADR))

FIGURE 3: SENTENCE RECOGNITION RULES
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which may mean either "to have attached as parts" or "to own," e.g.,
"John has ten fingers" Xga‘"John hag three marhles." 1In a case of
semantic ambiguity the "action" function is a '"resolve" type function
which once again has the task of resolving the ambiguity and selecting
the appropriate subroutine, rather than performing any action on the
model directly. However, the ambiguity cannot be resolved on the
basis of any information available in the original sentence. Instead,
the ambiguity resolution depends upon word associations in the model
which were created on the basis of previous, unambiguous sentences.
Section VB of this paper contains some examples and a discussion of the
processes used, and further discussion of ambiguity can be found in

section VII.D.

C. Outputy Formation and Importance of Responses.

As with the input language, SIR avoids the problems of natural
language processing in its responses, The response mechanism involves
a set of built-in response. formats. Although some generative grammar
would probably be needed in a larger system, these response formats
are adequate to demonstrate the use of the model and the ability of
the present system to produce intelligible conversations

Some of the responses are complete prepared statements, such as
are frequiently used as diagnostic comments in modern programming
systems; e.g., the comment "The above statement is not recognized by

1

the present system," which is printed if no rule is found to be appli-
P y

cable to the input sentence. Other responses must be completed by the
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programs which use them before being printed; e.gs, the form,."I don't
know whether'# is part of *%,'" which is printed, after the *%'s are
appropriately replaced, in response to certain questions about part-
whole relationse.

One principle used in programming this system was that SIR should
always make easily understandable reports of its actions., In parti-

~cular, it should never fail to act on a new input sentence without
presenting a reasonable explanation for its failure, Implementing
this principle turned out to be easier than expected, for there always
seemed to be only a small number of possible reasons for the failure
of any one search procedure, and thus it was only necessary to provide
a few response formats ‘(and programs to use themy, These responses,
in turn, not only improved the conversational ability and thus the
apparent intelligence of the system, but also greatly aided in debug-
ging. .SIR, in effect, frequently told me what it was doing wrong.

The conversation shown in Fig, 1 was produced by operating in an
abbreviated~response .mode in which SIR only prints directly rele-
vant responses, The program can also operate in a mode in which SIR
provides a running commentary of its activities, identifying functions
used and commenting on every link created, Although less readable,
this full-response mode was a significant program debugging aid. Fig. 4
shows the oufput for the dialogue of Fige. 1 in the alternate full-

response mode,
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(THE NEXT SENTENCE IS . .)
(EVERY BOY IS A PERSON)

(THE FUNCTION USED IS . .)

SETR-SELECT

{(GENERIC « BOY) (GENERIC . PERSUN))

(THE REPLY . )

(THE SUB-FUNCTION USED IS . )

SETR

{BUY PERSUN)

(LFS REPLY & )

(1 UNDERSTAND THE SUPERSET RELATION BETWEEN PERSON AND BOY)
(I UNDERSTAND THE SUBSET RELATION BETWEEN BOY AND PERSON)

{THE NEXT SENTENCE IS < o)
(A FINGER IS PART UF A HAND)

{THE FUNCTION USED IS . )
PARTR-SELECT

({GENERIC . FINGER) (GENERIC . HANL))
(THE REPLY . <)

(THE SUB-FUNCTION USED IS . .)

PARTR

{FINGER HAND)

(1TSS REPLY . )
(1 UNDERSTAND THE SUBPART-OF-EACH RELATION BEIWELEN FINGER AND HAND)
(1 UNDERSTAND VHE SUPERPART-OF-EACH RELATION BETWEEN HAND AND FINGER)

(THE NEXT SENTENCE [S « o)
(EACH PERSON HAS TwU HANDS)

(THE FUNCTIUN USED IS « )

HASN-RESOLVE

({2 « HAND) (GENERIC . PERSON))

({THE REPLY . .)

(THE ABUVE SENTENCE IS AMBIGUUUS =+ PLEASE RE-PHRASE 1T)

(IHE NEXT SENTENCE IS . )
(THERE ARE TWO HANDS UN EACH PERSON)

(THE FUNCTION USED IS . .}

PARTRN-SELECT

({GENERIC « PERSON) (2 . HAND))

(THE REPLY o o)

(I UNDERSTAND THE SUPERPART-OF-EACH RELATION BETWEEN PERSON AND HAND)
REALIZE THE NUMBER RELATION BETWEEN 2 AND (PLIST NAME PERSON))
UNDERSTAND THE SUBPART-OF-EACH RELATION BETWEEN HAND AND PERSON)
REALIZE THE NUMBER RELATION BETWEEN 2 AND (PLIST NAME HAND))

———

{THE NEXT SENTENCE IS . .)
(HOW MANY FINGERS DOES JOHN HAVE Q)

(IHE FUNCTION USED IS . .)

HAVE-RESOLVE

(FINGER (UNIQUE . JOHN))

(THE REPLY o o)

(THE ABOVE SENTENCE IS AMBIGUOUS #» BUT I ASSUME (HAS) MEANS (HAS AS PARTS))
(I LUN*T KNUW WHETHER FINGER IS PART OF JOHN)

(THE NEXT SENTENCE IS . )
(JOHN 1S A BOY)

(THE FUNCTION USED IS . .)

SETR-SELECT

((UNIQUE . JOHN) (GENERIC . BOY))

(THE REPLY . )

(THE SUB~FUNCTION USED IS . .)

SETRS

(JOHN BOY)

(ITS REPLY o o)

{1 UNDERSTAND THE ELEMENTS RELATION BETWEEN JOHN AND BOY)
(I UNDERSTAND THE MEMBER RELATION BETWEEN BOY AND JOHN)

(THE NEXT SENTENCE IS . .)
(HOW MANY FINGERS DOES JOHN HAVE Q)

(THE FUNCTION USED IS . .)
HAVE-RESOLVE
(FINGER (UNIQUE . JOHN))

(THe REPLY o )

(THE ABOVE SENTENCE IS AMBIGUUUS % BUT [ ASSUME (HAS) MEANS (HAS AS PARTS))
([ KNOW THE SUPERPART-OF-EACH RELATION BETWEEN HAND AND FINGER)

({HOW MANY FINGER PER HAND Q))

(THE NEXT SENTENCE IS « )
(EVERY HAND HAS 5 FINGERS)

{THE FUNCTION USED IS . o)

HASN~-RESOLVE

({5 . FINGER) (GENERIC o HAND))

(THE REPLY < )

(THE ABOVE SENTENCE [S AMBIGUUUS #» BUT I ASSUME (HAS) MEANS (HAS AS PARTS))

FIGURE 4: SAMPLE CONVERSATION IN FULL-RESPONSE MODE



KNOW THE SUPERPART-OF-EACH RELATION BETWEEN HAND AU FINGER)
KREALIZE THE NUMBER RcLATION BETWEEN 5 ANL (PLIST N4ME HAND))
KNOW THE SUBPART-OF-EACH RELATION GETWLEN FINGER AND HAND)
REALIZE THE NUMBER RtlLATION BEVTWEEN 5 AND (PLIST NAME FINGERD)

————

(FHE NEXT SENTENCE IS . .)
(HOW MANY FINGERS DOES JOHN HAVE W)

(ThE FUNCTION USED IS « )

HAVE-RESOLVE

(FINGER (UNIQUE o JUHN))

(THE REPLY . .)

(THE ABOVE SENTENCE IS AMBIGUOUS #s BUT [ ASSUME (HAS) HMEANS (HAS AS PARTS))
(I KNOW THE SUPERPART-OF-FACH RELATIUN BETWEEN HAND AND FINGER)

(I KNOW THE SUPERPART-OF-EACH RELATION BEIWEEN PERSON AND HAND)

(1hi: ANSWER IS 10}

{THE NEXT SENTENCE IS « o)
(HUW MANY AUTOMUBILES DOES JOHN HAVE Q)

(Ihe FUNCTION USED IS . )

HAVE-RESOLVE

(AUTOMOBILE (UNIQUE . JOHN))

(THE REPLY < o)

(Ine ABOVE SENTENCE IS AMBIGUOUS #s PLEASE RE-PHRASE IT)

(The NEXT SENTENCE IS o o)
{wHO IS PRESIDENT OF THE UNITCD SIATES Q)

(STATEMENT FOKM NOT RECOGNIZED)

(THe NEXT SENTENCE IS . .)
(THe 80Y IS JUST TO THE LEFT UF THE TABLE)

{THE FUNCTIUN USED IS « o)

JRIGHT-SELECT

({SPECIFIC . TABLE) (SPECIFIC . BOY))

(THE REPLY « o)

(THE SUB-FUNCTIUN USED IS . .)

JRILHT

(TABLE BOY)

(ITS REPLY o o)

(602840 IS5 A TABLE)

(1 UNDERSTAND THE ELEMENTS RELATIUN BETWEEN GO2840 AND TAHLE)
(1 UNDERSTAND THE MEMBER RELATION BETWEEN TABLE AND GUZ2840)
(1 REALIZE THE JRIGHT RELATION GETWEEN TAsLE AND BOY)

(I REALIZE THE JLEFT RELATION BETWEEN BOY AND TABLE)

(FHE NEXT SENTENCE IS .« )
(THL LAMP IS JUST TO THE LEFT OF THE TABLE)

(ThE FUNCTION USED IS . o)

JRIGHT-SELECT

((SPECIFIC « TABLE) (SPECIFIC . LAMP)]}

{THE REPLY o .)

(THE SUB-FUNCTION USED IS . .)

JRIGHT

(TABLE LAMP)

(1TSS REPLY .« o)

(502841 IS A LAMP)

(I UNDERSTAND THE ELEMENTS RELATION BETWEEN (02841 AND LAMP)
(1 UNDERSTAND THE MEMBER RcLATIOUN HETWEEN LAMP AND GOZB41)
(THt ABOVE STATEMENT IS IMPOSSIBLC)

(THE WEXT SENTUNCE IS o o)
(THE TABLE IS TO THE RIGHT OF THE CHAIR}

{THE FUNCTION USED IS . «)

RIGHT~-SELECT

({SPECIFIC . TABLE) (SPECIFIC . CHAI[R))

{THE REPLY . o)

({THE SUB~FUNCTION USED IS . )

RIGHT

(TABLE CHAIR)

(1TS REPLY « o)

(502842 1S A CHAIR)

(1 UNDERSTAND THE ELEMENTS RELATION BETWEEN G02842 AND CHAIR)
(1 UNDERSTAND THE MEMBER RELATION BETWEEN CHAIR AND 602842)
(1 UNDERSTAND THE RIGHT RELATION BETWEEN TABLt AND CHAIR)
(I UNDERSTAND THE LEFT RELATION BETWEEN CHAIR AND TABLE)

(THE NEXT SENTENCE IS . )
(WHAT IS THE RELATIVE POSITION OF A PERSON Q)

(THE FUNCTION USED IS . .}

LOC-SELECT

{(GENERIC « PERSON))

(THE REPLY . )

(THE SUB-FUNCTIUN USED IS . .)

LOCATEG

(PERSON)

(ITS REPLY . o)

{THE LEFT-TOU-RIGHT ORDER [S AS FOLLOWS)
(CHAIR (BOY TABLE))

FIGURE 4 (Cont.)
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Chapter V: Behavior and Operation of SIR

In this chapter I shall give examples of typical conversations with
SIR and explain the mechanisms which enable SIR to carry on its end of
a conversation. These examples can frequently best be presented with
the aid of logical notation, so formal symbols will be used when
necessary. Explanations of the standard logical symbols are given in
Appendix I.

Some knowledge of the LISP (21) programming language might be of
aid in understanding the following pages. However, it should be
sufficient for the reader to know the "fcn[a;b]" indicates that the
function named "fcn" is to be applied to the symbols or symbolic
expressions named "a" and "b" as arguments. This function of these
arguments will have a value which is itself a symbolic expression,
although the evaluation process may have side effects such as changing
the model structure or printing comments. In more conventional pro-
gramming terms, one may. think of '"fcn'" as naming a subroutine, and
"fcnl[a;b]" representing the execution of the subroutine with "a" and
"b" as input data. The creation of a single symbolic expression
called the value is the principal result of the execution. This
value of a function, which is a symbolic expression resulting from
a computation, should not be confused with the value of an attribute,

which is the entry following the attribute on a property-list.

A. Relations and Functions.
Each part of Fig. 5 is a conversation between a person and SIR,

presented in the abbreviated-response mode described at the end of
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Section IV4C. Each example illustrates the use of a different group of
relations and their associated LISP functions in the SIR system, With
minor exceptions the examples are cumulative, i.e., later ones freely
use functions introduced earlier but not conversely., These conversa-
tions are presented again as Appendix III in the full-response mode
which identifies the functions used. 1In Fig. 5, the symbol '#¥%,"
prefixes the input sentences; all other remarks are SIR responses.

The remainder of this section presents descriptions of all the sig-
nificant functions mentioned in Appendix III in the order in which
they are needed for the conversations. The functions are presented in
groups which correspond to the various parts of Fig. 5, and which are
identified by the principal attribute~links manipulated by the functions
in the group,

Each function description consists of three parts: a purpose, a
method, and a procedure. The purpose is a brief statement of the effect
the function is designed to have, The method is an intuitive descrip=
tion of how the purpose should be achieved, and is usually presented
in a mixture of English and logical notation for maximum clarity.
Finally, the procedure is a description of how the method is imple-
mented, and may be considered a rough flow-chart of the actual program.
Notice that the relational structure of the model is the key internal
feature of SIR which enables the procedures to implement the methods
in a direct and efficient manner. These methods, in turn, determine the

degree of SIR's ability to store facts and answer questions. Chapter VI

will discuss how SIR's model, methods, and procedures could be general-

ized to produce a more powerful semantic information retrieval system.




a. SET-INCLUSION

(wue, EVERY KEYPUNCH-OPERATOR IS A GIRL)

(1 UNDERSTAND)

(eew, ANY GIRL IS AN EXAMPLE OF A PERSON)

(I UNDERSTAND)

(#nw, IS A KEYPUNCH-OPERATOR A PERSON Q)
Yts
¢. EQUIVALENCE
(euse, IS A PERSUN A PERSON Q)
YES (wan, THE MAN IS A JERK)
(602840 1S A MAN)
(nne, IS A PERSON A GIRL Q) {1 UNDERSTAND)
SUMETIMES [EX TN JACK IS A DOPE)
(ewn, IS A MONKEY A KEYPUNCH-OPERATOR Q) {1 UNDERSTAND)

(INSUFFICIENT INFORMATIOUN) (ses, JOHN IS JACK)

{1 UNDERSTAND)

(wae, IS JOHN A DOPE Q)
b. SET-MEMBERSHIP YES
(was, MAX IS AN IBM-7094) (nes, IS THE MAN A DOPE Q)
(I UNDERSTAND) (INSUFFICIENT INFORMATION)
(eww, AN IBM-7094 IS A COMPUTER) (wae, JUHN IS THE MAN)
{1 UNDERSTAND) (I UNDERSTAND)
(ena, IS MAX A COMPUTER Q) (wos, IS THE MAN A DOPE Q)
YES YES
(nna, THE BOY IS AN MIT-STUDENT) (een, JIM [S A MAN)
{02840 IS A 8OY) {1 UNDERSTAND)
(I UNDERSTAND)
(e=u, EVERY MIT~STUDENT IS A BRIGHT-PERSON)
(1 UNDERSTAND)
X (enn, IS THE MAN A DOPE Q)
(wnw, IS THE BOY A BRIGHT-PERSUN Q)
. (WHICH MAN . . (G02840 JiM))
YeS
(enu, JOHN IS A BOY)

{1 UNDERSTAND)

(enw, IS THE BUY A BRIGHT-PERSUN Q)

(WHICH BOY o . (G02840 JOHN))

FIGURE 5: SELECTED CONVERSATIONS



(enu,

d. OWNERSHIP, GENERAL

EVERY FIREMAN OWNS A PAIR-OF-RED-SUSPENDERS)

{1 UNDERSTAND)

(wen,

DOES A PAIR-UF-RED-SUSPENDERS UwN A PAIR-0OF-RED-SUSPENDERS )

(NU #& THEY ARC THE SAME)

(ese,

DOES A DUCTOR OWN A PAIR-0OF-RED-SUSPEDERS W)

CINSUFFICIENT INFORMATION)

{ene,

A FIRECHIEF IS A FIREMAN)

(I UNUERSTAND)

(ewe.

YES

(sea,

DUES A FIKECHIFF UWN A PAIR-0F-rRED-SISPENDERS Q)

e. OWNERSHIP, SPECIFIC

ALFRED OWNS A LNG-LOG-DECITRIG)

(1 UNDERSTANDI)

(sen,

A LOG=-LOG-DECITRIG IS A SLIDE-RULE)

(1 UNDERSTAND)

(snn,

YES

(ewe.

DOES ALFRED uUWN A SLIDE-RULE Q)

EVERY ENGINEEXRING-SIUNDENT OwNS A SLIDE-RULE)

([ UNDERSTAND)

[EX TN

VERNON [S A TECH-MAN)

(1 UNDERSTAND)

(ese,

A TECH-MAN [S AN ENGINEERING-STUDENT)

{1 UNDERSTAND)

(snu,

YES

(sew,

DOES VERNON OWN A SLIDE-RULE Q)

DUES AN ENGINEERING-STUDENT OwN THE LOG-LOG-DECITRIG Q)

(602840 IS A LOG-LOG-DECITRIG]
(INSUFFICIENT [NFORMATION)

(ens,

ALFRED IS A TECH-MAN)

{1 UNDERSTAND)

[EX TN

YES

DUES AN ENGINEERING-STUDENT OWN THE LUG-LOG-DECITRIG Q)

FIGURE 5 (Cont.)




f. PART-WHOLE, GENERAL
ene, A NOSE IS PART OF A PERSON)
(1 UNDERSTAND)

(ene,

A NOSTRIL IS A PART OF A NOSE)

{1 UNDERSTAND)

{enw,

A PROFESSOR [S A TEACHER)
(I UNDERSTAND)

A TEACHER 1S A PERSUN)

(nun,

(I UNDERSTAND)

(new, IS A NOSTRIL PART OF A PRUFESSOR Q)
YLS

(ane, IS A NOSE PART OF A NOSE W)

(NO o, PART MEANS PROPER SUBPART)

(ene,

A PERSON IS A LIVING-CREATUKE)

(1 UNDEKRSTAND)

[EXTIN [S A NOSTRIL PART OF A LIVING-CREATURE
SOMETIMES
(ene, IS A LIVING-CREATURE PART OF A NOSE Q)

(NU o NOSE IS SOMETIMES PART OF LIVING-CREATURE)

g PART-WHOLE, SPECIFIC

(eee, A VAN-DYKE IS PART OF FERREN)

(1 UNDERSTAND)

(ene, A VAN-DYKE IS A BEARD)

(1 UNDERSTAND)

(ene, IS A BEARD PART OF FERREN Q)
YES
(sne, A CRT IS A DISPLAY-DEVICE)

(1 UNDERSTAND)

(ens, A CRT IS PART OF THE PDP-1)

(602840 IS A POP-1)
(1 UNDERSTAND)

(neo, SAM IS THE PDP-1)

(1 UNDERSTAND)

(eee, A SCREEN 1S PART OF EVERY DISPLAY-DEVICE)

J (1 UNDERSTAND)

(oes, IS A SCREEN PART OF SAM Q)
YES

Q)

(esn, A BEARD IS PART OF A BEAINIK)

(1 UNDERSTAND)

(een, EVERY COFFEE-HOUSE-CUSTOME® [S A BEATNIK)

(1 UNDERSTAND)

(one, BUZZ IS A COFFEE-HOUSE-CUSTUMER)

(1 UNDERSTAND)

IS A BEARD PART OF BUIZ Q)

YES

FIGURE 5 (Cont.)



h. NUMBER

(see, A BOY [S A PERSUN)

(I UNDERSTAND)

(ene, JOHN §S A BOY)

(1 UNDERSTAND)

KT T A FINGER IS PART OF A HAND)
(1 UNDERSTAND)

(ena, HOW MANY FINGERS DOES JOHN HAVE Q)

(THE ABOVE SENTENCE IS AMBIGUUUS e BUT I ASSUME (HAS) MEANS (HAS AS PARTS))
(I DON®YT KNOW WHETHER FINGER IS PART OF JOHN)

(see, THERE IS ONE HAND UN EACH ARM)

(1 UNDERSTANO)

(woe, THERE ARE TWO ARMS ON A PERSON)

(1 UNDERSTAND) '

(veu, HOW MANY FINGERS DOES JOHN HAVE Q)

(THE ABOVE SENTENCE IS AMBIGUUUS ®» BUT 1 ASSUME (HAS) MEANS (HAS AS PARTS))
((HOW MANY FINGER PER HAND Q))

(soe, A HAND HAS 5 FINGERS)

(THE ABOVE SENTENCE IS AMBIGUOUS se BUT I ASSUME (HAS) MEANS (11AS AS PARTS))
{1 UNDERSTAND)

(sas, HOW MANY FINGERS DOES JOHN HAVE Q)

(THE ABOVE SENTENCE IS AMBIGUUUS w»e BUT I ASSUME (HAS) MEANS (HAS AS PARTS))
(THE ANSMWER [S 10)

FIGURE 5 (Cont.)




i. LEFT-TO-RIGHT POSITION

(ewu, THE TELEPHUNE 1S JUST Tu THE RIGHT UF THE BOOK)
(6428460 IS A TELEPHUNL)

{0841 IS A 800K)

(L UNDERSTAND)

(won, THE TELEPHONE IS JUST TO THE LEFT OF THE PAD)

(602842 1S A PAD)
(1 UNDFRSTAND)

(vuaw, IS THE PAD JUST TO THE RIGHT OF THE BUOK Q)

N{Y

(onn, IS THE 600K TO THE LEFT OF THE PAD W)

Yid

{nos, THE PAD IS TO THE RIGHT UF THE TELEPHUNE) ”

{THi. ABOVE STATEMENT IS ALREACY KNNWN)

(ona, THE PAD IS TO THE LEFT OF THE TELEPHUNE)

(I ABOVE STATEMENT [S IMPOSSIBLE)

(nasw, THE ASH-TRAY 1S TO THE LEFT OF THE BOUK)
(02843 IS A ASH-TRAY)

{1 UNDERSTAND)

{enn, THE PENCIL IS TO THEL LEFT OF THE PAD)

(LU2844 1S A PENCIL)

(1 UNDERSTAND)

(eee, THE PAPER IS TO THE RIGHT OF THE TELEPHOUNE)
{Lu2845 IS A PAPER)

(1 UNDERSTAND)

(wen, WHERE 1S THE PAD Q)

(JUST TO THE RIGHT OF THE TELEPHONE)

(SOMEWHERE TO THE RIGHT OF THE FOLLOWING . . (PENCIL))
{osn, WHAT IS THE POSITION OF THE PAD Q)

(THL LEFT-TU-RIGHT URDER IS AS FOLLOWS)

(ASH-TRAY (BUUK TELEPHONE PAD) PAPER)

(10 FURTHER SPECIFY THE POSITVIONS YOU MUST INDICATE WHERE THE PENCIL IS WITH RESPECT TD THE ASH-TRAY)
{snn, THE BOOK [S JUST TO THE RIGHT OF THE ASH-TRAY)
(I UNDERSTAND)

[ELTN WHAT IS THE POSITION OF THE PAD Q)

(FHE LEFT-TO-RIGHT URDER IS AS FOLLOWS)

{PENCIL (ASH-TRAY BOOK TELEPHONE PAD) PAPER)

[EXLN A TELEPHUNE IS AN AUDIO-TRANSOUCER)

{1 UNOERSTAND)

(een, A DIAPHRAGM IS PART OF AN AUDIO-TRANSDUCER)

(1 UNDERSTAND)

(wen, WHERE IS A DIAPHRAGM Q)

(JUST TO THE LEFT OF THE PAD)
(JUST TO THE RIGHT OF THE BOOK)
(SOMEWHERE TO THE LEFT OF THE FOLLOWING . < (PAPER))

FIGURE 5 (Cont.)



Operation of functions:

a¥y Attributesy SUBSEL, SUPERSET
i. sctrxiv]
purpose: To specify in the model that set X is included in set y-

method: Create a type~3 link between x and y which indicates set-
inclusion.

proéedure;

a. Add"™(PLIST NAME x)'' to the value list of attribute '""SUBSET"
of y.
b, Add "(PLIST NAME y)" to the value list of attribute '"SUPERSET"
of x.

c. Respond " (I UNDERSTAND)'

2. setrqxyy]

purpose: ‘Lo reply as to whether an arbitrary element of set X is an
element of set 7.

method: # member of x is considered to be a member of y if the sets
x and y are identicalj or if there is a chain of explieit set-inclusion
links proving that x is a subset of y, i.e.,if there exists a
(possibly empty) sequence of sets v,w, ... z such that

XCVAVCWA ... A ZC Y.
A member of x is "sometimes" in y if there is a chain of explicit set-
inclusion links proving that y is a gubset of X.

procedures

a. If x=y, respond "YES".

b. If there is a path from x to y through type-3 links following
the attribute "SUPERSET'",respond "YES".

c. If there is a path from y to x through type-3 links following
the attribute '"SUPERSEI", respond "SOMETIMES".

d. Otherwise, respond " (INSUFFICIENT INFORMATION)".

b) Attributes: MEMBER, ELEMENTS
1. setrs[x;yl]
purpose: To specify in the model that x:is a member of the set y-

method: Create a type-3 link between x and y which: indicates set-
membership.
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procedure:

as Add "(PLIST NAME y)" to the vclue list of attribute "MEMBER"
of x. .

b. Add "(PLIST NAME x)" to the velue list of cttribute "ELEMENTS"
of Ve

c. Respond "(I UNDERSTAND)'".

2, setrsq[x;y]
purpose: To reply &s to whether x is & member of the set ya

method: Reply "YES" if the folling is true:
(F)[[u=xV[u is equive lent™ to x1In
[[there is a link indicating that u is a member of ylV
[ (Jz)[[there is 2 link indiceting thut u is a member of z]
[any member of set z is a member of set y]]1]]

procedure:

ae Make a list of the items connected to x by & type-3 link
following the attribute "MEMBER'".

b. If y is on the list, respond "YES".

cs If, for any member z of the list, qetrsq[z;y]=YES, respond
"YES” .

de Repeat steps (a) through(§ with x replaced by each item
equivalent* to x (if eny) until a "YES'" response is mcde.

e. Otherwise respond '"(INSUFFICIENT INFORMATION)'".

3. setrsl[x;vyl]

purpose: To specify in the model that the unique element (if any) of
the set x is elso an element of the set y.

method: Create a type-3 link from the unique element of x to y which
indicates set~membership. If x has more than one element, do not set up
any link.

procedure:
as Compute u = specify[x]:
be If u = NIL, termincte.
ce Otherwise execute setrs[u;y].

4, specify[x]
purpose: To determine the unique element, if any, of the set x.
method: 1If x has one element, find its name. If x has no elements,

create one and give it & name. If x has more than one element, ask
which one and indicate failure.

*See part: (c) for en explenztion of "equivalent".
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procedure:

a: Get the value list of the attribute '""ELEMENTS" of x.

b. If there is no list, create a new symbol u, respond "(u IS A x)",
execute setrs[u;x], and return u as the value of specify[x].

c. If there is just one element named on the list, or if all the
elements are equivalent, return the name of the first element as the
value of specify[x].

d. Otherwise respond "(WHICH x . . v)", where v is a list of
names of the elements, and return "NIL" &s the value of specify[x].

5. setrslq[x;yl

purpose: To reply as to whether the unique element, if any, of the set
X, is & member of the set y.

method: Determine the element referred to and epply setrsq.
procedure:
a. Compute u = specify[x].

b. If u = NIL, terminate.
c. Execute setrsq[u;y].

c) Attribute: EQUIV
1. equiv[x;y]
purpose: To specify in the model that x and y ere equivalent.
method: Create a type-2 link between x and y which indicates equivalence.
procedure:
a. Add x to the value list of attribute "EQUIV" of y.
b. Add y to the value list of attribute "EQUIV" of x.
c¢. Respond "(I UNDERSTAND)".
2. equivl[x;yl]

purpose: To specify in the model that x is equivealent to the unique
element of the set y.

method: Determine the element referred to and apply equiv.

procedure:
a. Compute u = specifyl[y].
b. If u = NIL= terminate.
c. Execute equiv[x;ul.
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4
d) Attributes: OWNED-BY-EACH, POSSESS-BY-EACH
1. ownr[x;y]

purpose: To.specify in the model that every member of set y owns
‘some member of set x.

method: Create a type-3 link between x and y which indicates the
ownership relation between theéir members.

procedure:

a. Add "(PLIST NAME y)" to the value list of attribute
""OWNED-BY-EACH" of x.

b. Add "(PLIST NAME x)" to the value list of attribute
""POSSESS-BY-EACH'" of y.

c. Respond '"(I UNDERSTAND)'.

2. ownrq[x;yl

purpose: To reply as to whether an earbitrary member of set y owns
some member of set X.

method: The answer is "YES" if x # y, and
(3z)[y=2zV [y is a subset of z]] A
[there exists the appropriste ownership link between x and z]]

procedure:

a. If x=y, respond "(NO ** THEY ARE THE SAME)".

b. Create the list { containing y and all sets u for which there
is a path from y to u through type-3 links following ‘the attribute
"SUPERSET".

c., If any element of ﬂ contolns e type-3 link to x following
the attribute "POSSESS-BY-EACH", respond "YES".

d. Otherwise respond "(INSUFFICIENT INFORMATION)'".

e) Attributes: OWNED, POSSESS
1. ownrgul[x;yl
purpose: To specify in the model that y owns &z member of the set X.

method: Create a type-3 link between x and y which indicates the
intended ownership relation.

procedure:
a. Add "(PLIST NAME x%X)" to the value list of attribute 'POSSESS"

of y.
b. Add "(PLIST NAME y)" to the value list of attribute "OWNED" of x.
c. Respond '"(I UNDERSTAND)'".
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2. ownrguq[x;y]
purpose: To reply as to whether Yy owns a member of set Xx.

method: The reply is "YES" if there is a link indicating that y owns a
member of X or of some subset of x;or if
(F2)[[y is a member of z] A(Ju)[[u=zVzCulA
[there is a link indicating that every member of set u
owns & member of set x]]]

procedure:

&. If there is a link indicating an x is owned by y, respond '"YES".

b. Consider each set z for which there is 2 link indicating that
y owns & member of z. If, for any z, setrq[z;x]=YES, respond "YES".

c. Consider each set z such that there is & link indiceting y is
an element of z.

d. For each z, construct & list g conteining every set u for which
setrq[ z;ul =YES.

e. Compute m = the list of all sets v such that there is a type-3
link from x to v following the attribute ''OWNED-BY-EACH".

f. If, for some z, the intersection of g_and m is non-empty,
respond ''YES".

g. Otherwise, respond "(INSUFFICIENT INFORMATION)'".

3. ownrsgq[x;v]

purpose: To reply as to whether the unique element of the set x
is owned by some element of the set y.

method: Determine thet a unique element of x exists. Then, the
reply is "YES" if
(Jz)[[there is a link indicating that & member of set x is owned by FA
(FW)[[v=zV [y is equivalent to z]]A
(Fw)[[there is a link indicating that y is an element of wlA
[there are links indicating that w is a subset of y]]]l]

procedure:

a. Compute u = specify[x]

b. If u = NIL, terminate.

c. Generate the individuels w which are linked to x as type-3
values of the attribute "OWNED'". '

d. For each w, generate the sets z which w, and any individual
equivalent to w, is a member of.

e. If, for some z, setrq[z;y] = YES, respond "YES".

f. Otherwise respond "(INSUFFICIENT INFORMATION)'.
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f) Attributes: SUPERPART-OF-EACH, SUBPART-OF-EACH
1. pertrix;vyl.

purpose: To specify in the model that every element of set X is part
of some element of set y.

method: Create a type-3 link between x end y which indicates the part-
whole relation between their members.

procedure:

a. Add "(PLIST NAME y)" to the value list of attribute
""SUPERPART-OF-EACH" of x.

b. Add "(PLIST NAME x)" to the value list of attribute
""SUBPART-OF~EACH)" of y.

c. Respond "(I UNDERSTAND)'".

2. partrqlx;yl.

purpose: To reply as to whether an arbitrary member of set x is &
part of some member of set y.

method: No element mey be part of itself. Reply '"YES" if
(Jw)[[there is a chain of links indicating that an arbitrary
member of set x is part of some member of w]A [[y=w V
[[there is a chain of links indicating that y is a subset
of wlll.
Reply '"SOMETIMES" if
(Fw)[[there is a chain of links indicating that an arbitrary
member of set x is part of some member of E]/\
[there is a chain of links indicating that w is a subset of y]].
Reply "NO"if an arbitrary member of set y is always or sometimes a
part of some member of set Xx.

procedure:

a. If x=y, respond "(NO, THEY ARE THE SAME)".

b. Generate those sets w which can be reached from x through
a chain of type-3 links following the attribute "SUPERPART-OF-EACH".

c. If, for some w, setrq[y;w]l = YES or SOMETIMES, respond
"YES" or "SOMETIMES'",respectively.

d. If the response for partrq[y;x] would be YES or SOMETIMES,
respond "(NO, y IS PART OF x)" or "(NO, y IS SOMETIMES PART OF x)",
respectively.

e. Otherwise respond "(INSUFFICIENT INFORMATION)'".



¢) Attvibutes: SUBPART, SUPERPART
1. partrgulx;yl

purpose; To specify .in the model thet some element of set x is =
pert of the individucl y.

method: Create & type-3 link between x and y which indicates the
eppropriete part-whole relation.

procedure:

&+ Add “"(PLIST NAME x)" to the velue list of cttribute
""SUBPART" of v.

b. Add "(PLIST NAME )" to the veclue list of ¢ttribute
"SUPERPART" of x.

ce Respond "(I UNDERSTAND)".

2, pertrgs[x;yl

purpose; To specify in the model that some element of set x is &
part of the unique element, if any, of the set y.

method: Determine z, the unique element of y. Then specify that
some element of x is part of z.

procedure:
&, Compute z = specify[y].
b, TIf z = NIL, terminate.
csy Else, compute partrgul[x;z].

3. partrguq[x;yl

purpose: To reply &¢s to whether some element of set x is part of
the individuzl y.

method: A member of x is ¢ part of y if
Ju)[[u=yV [u is equivalent to y]]JA

[(Jw)[[there is & link indicating that an element of w
is & subpert of u] A -
[[w=xV[there cre links indicating thet w is a subset of x] vV
(Jz)[[there zve links indicating thet every element of z
has some element of x as & part] A
[w=zV[there zve links indicating that w is a subset of z]]]W¥
[@2z)[[u is an element of set z]
[(@v)[there are links indicating thet z is a subset of

v117111111]

procedureg
a. Generate those nodes w which can be reached from y, or from

any node equivalent to y, by a chain of typee3 links following the

attribute "SUBPART."

2

ST
¢

TR
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be If, for any w, setrq[w;x]=YES, respond "YES'".

ce Otherwise, generate those nodes z which can be reached from x
by a chain of type~3 links following the attribute 'SUPERPART-OF-EACH".

de 1If, for any z and any w;, setrq[w;z]=YES respond "YES".

es Otherwise, compute the list f of sets for which there is a
type~3 link from v, or any node equivalent to y, following the
attribute "MEMBER'.

fe. Generate the nodes v which can be reached by a chain of
type~3 links from x £ollow1ng the attribute, '"SUPERPART~OF~EACH'.

ge If, for any v and any u in £, setrq[u;v]=YES, respond "YES".

he Otherwise, respond "(INSUFFLCIENT INFORMATION)".

4o partrss[x;yl

purposes To specify in the model that the unique element, if any, of
set x is part of the unique element, if any, of set ye

method: Identify the unique elements u and v of sets x and y,
respectively, Specify that some element of set x is part of the
individual ve. Then create atype-~2 link from the appropriate type-3
link from x to u, specifying which element of x is involved,

procedure}

ae Compute v=specify[b], and u=specify[ale

be If u or v = NIL, terminate.

ce Execute partrgul[x;v],

de Add u to the value list of attribute "ELEMENTS" on that
member of the "SUPERPART" value list of x which refers to y.

es Respond '"{I UNDERSTAND)'",

5e¢ partrsgq[x;v]

purpose: To reply as to whether the unique element of set x is part
of some element of set yo

method: The answer is "YES" if there exists a unique element z of
set x and if
(Jw)[[there is a link indicating that some x is part of w]A
(Ju)[[u=wV u is equivalent to w]A
(Fv)[[there is a link indicating that u is an element of v]A
[[y=v]V [there are links indicating that y is a subset of v]{
(dq)[[there are links indicating that every ¥y

is part of some gl Al[v= q] V
[there are links indicating that v is a subset of gll1]11]]

procedures

as Compute z = specify[x].

be If z = NIL, terminatece

ce Generate those nodes w which can be reached from x by a
type=3 link following the attribute "SUPERPART"s
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d. For each w compute the list  of those sets which w, or any
set equivalent to w, is a member of.

e. If y is in 23 respond "YES".

f. 1If, for any vef, setrq[y;v] = YES, respond "YES'".

g. Otherwise, generate those nodes g which can be reached from
y by a type-3 link following the attribute ''SUPERPART-OF-EACH".

h. 1If, for any g, setrq[v;q] = YES, respond "YES".

i. Otherwise respond "(INSUFFICIENT INFORMATION)'".

h) Attribute: NUMBER
1. partrn[x;y;n]

purpose: To specify in the model that there are n elements of the
set X which are parts of every element of set y.

method: Create a type-3 link between x and y specifying that an
element of x is part of some element of y. Create type-1 links
associating the number n with that type-3 link.

procedure;

a. Execute partr[x;y].

b, Add "(NUMBER n)" to both the list which was added to the wvalue
list of attribute ''SUBPART-OF-EACH" of y, and the list which was added
to the value list of attribute 'SUPERPART-OF-EACH" of x.

2. partrnu[x;y;n]

purpose: To specify in the model that there are n elements of set
X which are parts of individual y.

method: Create & type-3 link between x and y which indicates that
some element of set x is part of y. Create type-l links associating
the number n with that type-3 link.

procedure:

a. Execute partrgul[x;y]l.

b. Add "(NUMBER n)'"to both the list which was added to the
the velue list of zttribute "SUBPART" of y, and the list which was
added to the value list of ettribute '"SUPERPART" of x.

3. partrnuq[x;y]

purpose: to reply &s to how many elements of the set x are parts
of the individual y.
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method: 1If
(Ju)[[there is 2 link indicating that an element of u is part of yla
[[u=x]V (Jv)[[there is 2 chein of links indiceting tha
a v is part of every 2]/\[[x=v]V
[there is a chain of links indicating x is a subset of vl]]]1N
(Ju)[[there is a link indicating that y is an element of set u]
(Fv)[[there is a chain of links indicating that & v is &
part of every ulA [[x=v]V
[there is & chein of links indicating that x is a .
subset of v]]1],
then the answer is the product of the values of the type-l links follow-
ing the attribute 'NUMBER'", associated with each type-3 link used in
proving the required part reletion. 1If eny such "NUMBER" attribute is
missing, the reply should explicitly request it. If the part-whole
relation cannct be established, the reply indicates that fact.

procedure:

a. Follow the procedure of partrguq[x;y] until links sre found
which warrent a "YES" response. Save a list,g of all required links
which follow the attribute ''SUBPART" or ''SUPERPART-OF-EACH".

b. TIf no such list can be found, respond
"(I DON*T KNOW WHETHER x IS PART OF y)'".

c. For each element ¢ of g, where @ specifies a '"'SUPERPART-OF-EACH"
link from u to v, get the value of the attribute "NUMBER" of g. If, for
some ,. no such value exists, respond '"(HOW MANY u PER v Q)".

d. Compute z = the product of the numbers obtained above.

Respond '"'(THE ANSWER IS z)".

i) Attributes: LEFT, RIGHT, JLEFT, JRIGHT
1. jright[x;yl

purpose: To specify in the model that the unique element of set x is
located just to the right of the unique element of set y.

method: Check whether the statement is consistent with existing know-
ledge; i.e., that nothing is known to be between x and y and that y

is not known to be to the right of x. If it is not consistent, complain.
Otherwise, create a type-1l link indiceting the positionsl relation.

procedure: . .- S ‘ , L

a. If specify[x] or specify[y] = NIL, terminate.

b. 1If there is already a type-1 link from y to x following the at-
tribute "JRIGHT", respond '"(THE ABOVE STATEMENT IS ALREADY KNOWN)'".

c. If it can be proven that y is to the right of x, i.e., if
rightp[y;x]=T ; or if there is any type-1 link from y following the
attribute "JRIGHT'"; or if there is any type-1 link from x following the
attribute "JLEFT"; then respond '"(THE ABOVE STATMENT IS IMPOSSIBLE)".

d. If rightp[x;y]=T, and there does not exist & direct type-2
link from y to x following the attribute "RIGHT", respond
"(THE ABOVE STATEMENT IS IMPOSSIBLE)".
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e. Otherwise, create a type-1l link from y to x following the
attribute "JRIGHT"; create a type-l link from X to y following the
attribute "JLEFT"; and respond "(I UNDERSTAND) .

2. rightp[x;yl

purpose: To test whether it is known that the x is located to the
right of the y.

method: '"rightp[x;yl" is defined recursively as follows: If there is
no type-1 link from y following the attribute "JRIGHT", and no type-2
link from y following the attribute "RIGHT", the value of 'rightp[x;y]"
is NIL; if either of the above links exists and links to x, the value
is T. Otherwise the value is the disjunction of the values of
"rightp[x;y]" for all u which are linked to y by one of the above links.

procedure:

a, Compute u, the value of the type-l1 link from y following the
attribute "JRIGHT".

b. If u=x, value is T; if there is no u, go to step d.

c. If rightp[x;u]l = T, the value is T.

d. Compute £, the value of the type-2 link from y following
the attribute "RIGHT".

e. If x is & member of list ﬁ, the value is T; if there is
no ﬂ, the value is NIL.

f. If, for any véf, rightp[x;v]=T, the value is T; otherwise
the value is NIL.

note: "T'" and "NIL" are specicl LISP symbols standing for "true"
and '"false," respectfully.

3. right[x;yl]

purpose: To specify in the model that the unique element of set x is
located to the right of the unique element of set y.

method: Check whether the statement is consistent with existing
knowledge. 1If so, create a type-2 link indicating the positional
relation. Otherwise, complain.

procedure:
a. If specify[x]=NIL or specify[y]=NIL, terminate.
b. If rightp[x;y}=T, respond "(THE ABOVE STATEMENT IS ALREADY KNOWN)"
ce If rightp[y;x]=T, respond "(THE ABOVE STATEMENT IS IMPOSSIBLE)".
d. Otherwise, create a type-2 link from y to x following the
attribute "RIGHT'"; create a type-2 link from x to y follow1ng the
attribute "LEFT"; and respond " (I UNDERSTAND)”

4. jrightssq[x;vyl]

purpose: To reply as to whether the x is located just to the right of
the _ZG
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method: Determine whether the links in the model indicate that x is just
to the right of Yy, X cannot be just to the right of Yy, or neither.

procedure:

a. If specify[x]=NIL or specify[y]=NIL, terminate.

b. If there is a type-l link from y to x following the attribute
"JRIGHT", respond "YES'".

c. If rightp[y;x]=T; or if there is any type-1 link from y follow-
ing the attribute "JRIGHT"; or if there is any type-1 link from x follow-
ing the attribute "JLEFT'"; then respond '"NO ".

d. If rightp[x;yl=T and there does not exist a direct type-2 link
from y to x following the attribute "RIGHT", respond "NO".

e. Otherwise, respond "(INSUFFICIENT INFORMATION)".

5. rightssq[x;y]
purpose: To reply as to whether the x is located to the right of the y.

method: Determine whether the links in the model indicate that x is
to the right of y, to the left of y, or neither.

procedure:
a. If specify[x]=NIL or specify[y]=NIL, terminate.
b. If rightp[x;yl=T, respond "YES",.
c. If rightp[y;x]=T, respond '"NO".
d, Otherwise, respond "(INSUFFICIENT INFORMATION)'".

6, wheres[x]

purpose: To determine the locations of those objects which have
been positioned with respect to the unique element of the set x.

method: Reply with the information provided by each positional link
associated with x.

procedure:

a. If specify[x]=NIL, terminzate.

b, Compute u = the value of the type-1 link from x following the
attribute "JLEFT"; v = the value of the type-l link from x following the
attribute "JRIGHT"; Q = the value of the type-2 link from x following
the attribute "LEFT"; and m = the value of the type-2 link from X
following the attribute "RIGHT".

c. Ifd, v, gj and m all do not exist, respond '"(NO POSITION IS
KNOWN) "',

d. If u does not exist, go to step f..

e. Respond "(JUST TO THE RIGHT OF THE u)", and go to the next step.

fo If v does not exist, go to step h.

g. Respond, "(JUST TO THE LEFT OF THE v)'", and go to the next step.

h. 1If  does not exist, go to step j.

i. Respond, "(SOMEWHERE TO THE RIGHT OF THE FOLLOWING.e . 2)", and
go to the next step.

j» If m does not exist, terminate.

K. Respond, '"(SOMEWHERE TO THE LEFT OF THE FOLLOWING . . m)'".



83
7. locates|x]

purpose: To determine the location of the unique element of set x with
respect to as many other objects as possible.

method: Construct a diagram of the left-to-right order of objects by
searching thiough 2ll chains of positional links starting from x and
proceeding recursively. The form of the diagram is a list, with ob=-
jects known to be adjacent appearing in sublists. If no positional
links from x exist or if a well-ordering cannot be determined, make an
appropriate comment,

procedure;

a. If specify[x]=NIL, terminate.

be Set the initial diagram g=""(x)".

- co Compute u = the value of the type-l1 link from x following the

attribute "JRIGHT". If no u exists or if u is already in g, go to step f.

d. Insert u just to the right of x in‘g, i.e., insert u right after
X in a sublist of g

e. Replace g by the result of executing this procedure starting
from step c, with the current value of u replacing the argument x and
the current value of g as the diagram. .

f+ Repeat step c, for the attribute "JLEFT". In case of failure,
go to step i,

g Insert u just to the left of x in g.

he. Repeat step e.

i, Compute @ = the value of the type=~2 link from x following the
attribute "RIGHT". If no £ exists, go to step 4.

jo For each méQ: If m is already in the current g, ignore it;
if there exists a v in g which is the object (or first object on a
sublist) following x (or a sublist containing x), go to step k. Other-
wise insert m after - X (or the sublist containing x) in g, and repeat step
e, with the ‘current value of m replacing x. When all m¢ £ have been
treated go to step.fo

ke If rightp[v;m]=T, insert m after x and continue with the next
m in step je. If rightp[m;v]=T, then just for this value of m replace b
by v and continue as in step j. Otherwise, respond |

"¢THE LEFT-TO-RIGHT ORDER IS)

g

(TO FURTHER SPECIFY THE POSITIONS YOU MUST INDICATE WHERE THE m IS

WITH RESPECT TO THE v)'".

l. Perform operations analogous to i, j, and k for the attribute
"LEFT" of x.

m. If the current g="(x)", respond "(NO RELATIVE POSITION IN KNOWN)".

n. Otherwise respond, '"(THE LEFT-TO~RIGHT ORDER IS) g".

8+ whereg[x]

purpose: To determine the locations of those objects which have been
positioned with respect to some element of set x.

method: Find an object u of which an x is an example or a part, and
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which has positional links. Then find the locations of those objects
which have been positioned with respect to u.

procedure:

a. If x has any positional links, i.e., 1if the attributes
"JRIGHT", "JLEFT", "RIGHT'", and "LEFT" of x are not all missing,
execute wheres[x].

b If

(Ju)[[there is a sequence of links following the attribute

"SUPERPART~OF-FACH" from x to ula
[u has at least one positional link]],
then execute wheres[u].

c. If the hypotheses of step b.hold for the attribute 'SUBSET",
execute wheres[u].

d. 1If

(Ju)[[there is a sequence of links following the attribute

"SUPERPART~OF~EACHY from X to _q]/\
(Aw)[[there is a sequence of links following the attribute
""SUBSET" from u to w] A
[w has at least one positional link]]],
then execute wheres[w].

eo, Otherwise respond '"(NO RELATIVE POSITION IS KNOWN)".
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Be Special Features,
This section discusses the sample conversations for Fige 6 which
illustrate three special features of the SIR system, The first two --

the exception principle and resolving ambiguities -~ 1illustrate how

SIR can be used to simulate various aspects of human linguistic behavior,

The third feature =-- streamlining -- demonstrates one way in which SIR

can automatically modify its model structure in order to save computer

Memory space,

a) Exception principle: General information about "all the elements"

of a set is considered to apply to particular elements only in the absence
of more specific information about those elements, Thus it is not
necessarily contradictory to learn that '"mammals are land animals" and
yet "a whale is a mammal which always lives in water,'" In the program,
this idea is implemented by always referring for desired information
to the property-list of the individual corcerned before looking at the
descriptions of sets to which the individual belongs.

The justification for this departure from the no-exception prin-
ciples of Aristotelian logic is that this precedence of specific
facts over background knowledge seems to be the way people operate,
and I wish the computer to communicate with people as naturally as
possible,

The present program does not experience the uncomfortable feeling
people frequently get when they must face facts like "a whale is a
mammal which lives in water although mammals as a rule live on land,"

However, minor programming additions to the present system could




a. EXCEPTION PRINCIPLE

(eee, THERE ARE 5 FINGERS ON EVERY HAND)

(1 UNDERSTAND)

(won, THERE ARE TWO HANUS ON A PERSON)

(1 UNDERSTAND)

(ean, A BOY IS A PERSON)
(I UNDERSTAND)

(e, TOM IS A 80Y)

(1 UNDERSTAND)

(nun, OICK IS A BOY)

(1 UNDERSTAND)

(wue, HARRY IS A BOY)

{[ UNDERSTAND)

(o, TOM HAS NINE FINGERS)
(THE ABOVE SENTENCE IS AMBIGUUUS es BUT | ASSUME
(1 UNDERSTAND)

(wna, DICK HAS ONE HAND)

(THE ABOVE SENTENCE IS AMBIGUUUS #= BUT I ASSUME
(1 UNDERSTAND)

(wew, HOW MANY FINGERS DOES TOM HAVE )

(THE ABOVE SENTENCE IS AMBIGUOUS =« BUT 1 ASSUME
(THE ANSWER IS 9)

(ewug HOW MANY FINGERS DOES DICK HAVE Q)
(THE ABOVE SENTENCE IS AMBIGUOUS #= BUT I ASSUME
(THE ANSWER IS 5)

(nee, HOW MANY FINGERS DOES HARRY HAVE Q)
(THE ABOVE SENTENCE IS AMBIGUOUS ## BUT I ASSUME
(THE ANSWER IS 10)

(nan, HOW MANY FINGERS DOES JOE HAVE Q)

(THE ABOVE SENTENCE IS AMBIGUOUS e BUT I ASSUME
(1 OON#T KNOW WHETHER FINGER IS PART OF JOE)

(HAS)

(HAS)

(HAS)

(HAS)

(HAS)

(HAS)

MEANS

MEANS

MEANS

MEANS

MEANS

MEANS

(HAS

(HAS

(HAS

(HAS

{HAS

(HAS

FIGURE 6: SPECIAL FEATURES

AS

AS

PARTS))

PARTS))

PARTS))

PARTS))

PARTS))

PARTS))



b. RESOLVING AMBIGUITIES

(ene, JOHN [S A PERSON)

(1 UNDERSTAND)

(aen, DICK IS A PERSON)

(I UNDERSTAND)

(ees, A CHAIN IS PART OF A 8ICYCLE)

(1 UNDERSTAND)

(ene, THE PUWER-SAW HAS A CHAIN)

{THE ABOVE SENTENCE IS AMBIGUUUS =« BUT [ ASSUME (HAS) MEANS (HAS AS PARTS))
(602840 IS A POWER-SAW}

{1 UNDERSTAND)

(eos, JUHN UWNS A CHAIN)

(1 UNDERSTAND)
(sne, DICK HAS A CHAIN)
({THt ABOVE SENTENCE IS AMBIGUOUS we BUT [ ASSUME (HAS) MEANS (UWNS))

(I UNDERSTAND)

(ass, THE CUCKOU-CLUCK HAS A CHAIN)

(THE ABOVE SENTENCE IS AMBIGUOUS ## PLEASE RE-PHRASE (T)

FIGURE 6 (Cont.)




c. STREAMLINING LINKAGES

(wae, JUHN IS A PERSON)

(1 UNDERSTAND)

(enw, JOHN 1S A TECH-MAN)

(I UNDERSTAND)

{waa, JUHN IS A 8OY)

{1 UNDERSTAND)

(nee, JOHN [S A STUDENT)

(I UNDERSTAND)

(wue, JOHN IS A BRIGHT-PERSON)

{1 UNDERSTAND)

(sae, EVERY B80Y IS A PERSON)
(I UNDERSTAND)

(ess, EVERY VECH-MAN IS A PERSON)

(1 UNDERSTAND)

(nun, EVERY TECH-MAN [S A BRIGHT-PERSON)

(I UNDERSTAND)

(wwe, EVERY TECH-MAN IS A STUDENT}

(1 UNDERSTAND)

(ens, EVERY BRIGHT-PERSON [S A PERSON)

(I UNDERSTAND)

(nean, EVERY STUDENT IS A BRIGHT-PERSON)

(1 UNDERSTAND)

(wan, EVERY STUDENT IS A PERSON)

{1 UNDERSTAND)

END OF EVALQUOTE, VALUE IS ..
(NO MORE INPUT SENTENCES)

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..
STREAML INE
{JOHN)

FORGET THE MEMBER-ELEMENTS RELATIONS BETWEEN PERSON AND JOHN)

FORGET THE MEMBER-ELEMENTS RELATIONS BETWEEN STUDENT AND JOHN)

FORGET THE MEMBER-ELEMENTS RELATIONS BETWEEN BRIGHT-PERSUN AND JOUKN)
FORGET THE SET-INCLUSION RELATION BETWEEN PERSOM AND TECH-MAN)

FORGET THE SET-INCLUSION RELATION BETWEEN BRIGHT-PERSON AND TECH-MAN)

{
(
(
(
{
(I FORGET THE SET-INCLUSION RELATION BETWEEN PERSON AND STUDENT)

et

END UF EVALQUOTE, VALUE IS ..
NIL

FIGURE 6 (Cont.)
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require it to identify those instances in which specific information
and general information differ; the program could then express its
amusement at such paradoxes. |

b) Resolving ambiguities: The criteria used by the program to

decide whether '"has," in the format "x has y," should be interpreted
"has as parts' or "owns' are the following:

1) Let P be the proposition, "either y is known to be part of
something, or y is an element of some set whose elements are known
to be parts of something."

2) Let N be the proposition, '"either y is known to be owned by
something, or y is an element of some set whose elements are known
to be owned by something."

3) If PA~N, assume "has'" means "has as parts.,"

if ~PAN, assume '"has'" means 'owns."
If ~PA~N, give up and ask for re-phrasing.
4) Let P' be the proposition,
| (Ju)[[[y is known to be part of ul]V [y is an element of some
set whose elements are known to be parts of the elements of u]] A
(I [[u€w\ uCwIAlx€wVxCulll.
5) Let N' be the proposition,
(Ju)[[[y is known to be owned by u]\/[y is an element of some
set whose elements are known to be owned by the elements of 3]]/\
(W [[uéwVuCwlA [x€ wV xCwll].
6) If P'A~N', assume "has" means "has as parts."
If ~P'AN', assume "has'" means "owns."

Otherwise, give up and ask for re-phraéing.
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These criteria are simple, yet they are sufficient to enable the
program to make quite reasonable decisions about the intended pur-
pose in various sentences of the ambiguous word 'has." Of course,
the program can be fooled into making mistakes, e.g., in case the
sentence, '"Dick has a chain,'" had been presented before the sentence
"John owns a chain," in the above dialogue; however, a human being
exposed to a new word in a similar situation would make a similar
error. The point here is that it is feasible to automatically
resolve ambiguities in sentence meaning by referring to the descrip-
tions of the words in the sentence =-- descriptions which can auto-
matically be created through proper prior exposure to unambiguous
sentences.

¢) Streamlining linkages: All question-answering (model-

searching) functions which involve references to set-inclusion or
set-membership relations must "know'" about the basic properties of
those relations, i.e., those functions must have built into them the
ability to apply theorems like

xCyaA yCz>xCz and

a€ xAxCy>a€y ;
otherwise the functions would not be able to make full use of the
usually limited information available in the form of explicit links.
On the other hand, since the functions involved will be '"aware' of
these theorems, then the set of questions which can be answered is

independent of the presence or absence of explicit links which provide
the information to the right of the "', provided the information to

the left of the "3 '" is available.
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The "STREAMLINE" operation starts with the object x which is its
argument, and considers all objects linked to x, directly or indirectly,
through set-inclusion or set-membership, All explicit links among these
objects which can also be deduced by use of the above known theorems are
deleted. A response of the form "(I FORGET THE SET-INCLUSION RELATION
BETWEEN y AND z)" indicates that whatever links were created by some
sentence of a form similar to "(EVERY z IS A y)'" are being deleted,
and the space they occupied is being made available for other use.

In the above example, the STREAMLINE operation deleted more than
half the existing links, at no reduction in the question~answering
power of the system. However, the time required to obtain answers

to certain questions was significantly increased.
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Chapter VI: Formalization and Generalization of SIR‘

The present version of the SIR system not only demonstrates the
possibility of designing a computer which 'understands'; it also points
the way toward more general, practical systems by providing a useful
data representation (the model) and by suggesting useful general
information retrieval mechanisms.

SIR's abilities were illustrated by Fig. 1 and, in greater detail,
by the conversations of Fig. 5. Unfortunately, the system is'quite
limited in the number of semantic relations it can "understand" and
in the depth of its apparent understanding of any one relation. More-
over, the present system has some basic features which make these
limitations extremely difficult to overcome.

The purposes of this chapter are to identify those features which
make SIR difficult to extend; to point out how those difficulties
arose and how they may be overcome; and to propose a formalisﬁ and a
computer implementation for a more general semantic information
retrieval system which has most of the advantages of SIR but few of
its limitations.

The SIR treatment of restricted natural language was discussed at
length,in Chapter IV and is not of concern here. This chapter deals
only with the action of SIR on relational statements which precisely

define the desired information storage or retrieval operations.

A. Properties and Problems of SIR.
Let us now examine the present structure and mode of operation of

SIR. In particular, we are interested in learning why SIR cannot be

extended in simple ways to handle a greater quantity and complexity of
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information.

1) Program organization: The present computer implementation of

SIR is an interdependent collection of specially designed subprograms.
Each different information storage or retrieval operation is controlled
by a different subprogram.

Such a diffuse program structure has a certain advantage for pro-
ducing early results with a new experimental system. SIR was pri-
marily developed as an experimental vehicle through which one may learn
the best forms of information representation and the best storage and
retrieval procedures. As an experimental device, SIR must be easily
amenable to changes in its structure and modes of operation. The
programmer must be able to learn the most useful interpretations of
relational statements and the most useful responses the system should
make. This learning takes place as he tries, by means of ad hoc
changes to the program, different interpretations and different response
modes. These program changes are easiest to make if the program con-
sists of many separate subprograms without much overall structure.

As such a system grows more complicated, each change in a sub-
program may affect more of the other subprograms. The structure
becomes more awkward and more difficult to generalize as its size
increases. Finally, the system may become too unwieldy for further
experimentation. (SIR is presently close to this point of diminishing
returns.)

However, by the time this barrier is reached many fruitful results

may have been attained. Ad hoc features may coalesce into general
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principles. Desirable features may be discovered, and uniform methods
may emerge for handling problems which originally seemed quite different
from each other. In particular, my experiences in developing SIR to
its present state have enabled me to specify the more uniform, more

general, more powerful system proposed in Sections B and C below.

2) The model: The model is a flexible body of data whose con-
tent and organization are crucial factors in SIR's learning and question-
answering abilities. SIR's "knowledge'" is derived from two sources:
facts represented in the model, and procedures embodied in the program.
Basic procedures in the program provide for automatic revision of
the model, if necessary, whenever new information is presented to the
system. No such automatic procedures exist for revising the program
itself.

The greater the variety of information which can be stored in
the model, the more flexible the resulting system is; the more
specific requirements and restrictions which are built into the pro-
gram, the more rigid and less general the overall system is. It
seems desirable, then, to store in the model a great variety of infor-
mation, including facts about objects, relations, and the operation
of the program itself. The program would then consist simply of
storage procedures which would modify the model, and retrieval pro-
cedures whose actions would be controlled by data in the model. The
user could then simply '"tell" the system how to change its retrieval

procedures, whenever such changes are desired.

Such a flexible system, whose program is '"driven' by the model,

is an ultimate objective of this research. Unfortunately, this
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objective must be approached by successive approximations. A model-
controlled system cannot be designed at the outset for the following
reasonss
a.+. In order to store all the significant, controlling information in
the model, we must first discover what constitutes the significant
information in a semantic information retrieval system. After devel-
oping any workable program~plus-model system we are in a better
position to recognize truly important features and to transfer
control of them to the model.
bs The value and efficiency of the system depends upon the structure
of the model, and the manner in which the program and model interact.
One should limit the complexity of the model until the organization
of the model and of the overall system have been proved feasible,
c. The problem of how to express controlling information which we
wish to add to the model, e.g., how best to describe search and
deduction procedures, must be solved along with the problems of
representing and utilizing that information once it is in the model.
Formalisms for describing such control procedures are easier to
devise after some experience has been gained in the use of similar
procedures. This experience, in turn, is easy to develop through
experimentation with the program portion of simplified semantic
information retrieval systems.

In SIR the model consists only of descriptions of objects and
of classess The number, kind, and interpretation of the descriptcrs
(attributes) in the model is determined by the program. The information
about how the meanings of certain attributes are related to each other
is incorporated in the subprograms which identify those attributes,
rather than in the model,

Although SIR is approaching its limit in usefulness, experience
with the system has brought me to the point where I can confidently
propose an improved, generalized system. The system proposed in
sections B and C below keeps the now proven description-list organiza-

tion for the model; it increases the variety of data to be stored

in the model; it transfers some of the information about the attributes
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from the program to the model; and it provides the user with a simpli-
fied method for experimenting with the deductive procedures of the

system.

3) Question~answering method: 1In order to describe how SIR's

question-answering behavior has been achieved and how it can be
improved, I must first introduce some notation. As described in
Section IIL«D.3, each relation in the SIR system is a dyadic relation
and hence is represented in the model by two attribute links.

Table a. gives the correspondence between relation names and attri-
bute names, and a typical English interpretation for each relation.
Note that I use the familiar infixes "(C'" and "€" for set-inclusion
and set~membership, respectively, although functional notation,

€eg., '"equiv[x;yl," is used for all other relations. Also, the
usual symbols of mathematical logic, which are defined in Appendix I,
will be used below when convenient.

A relation '"holds" for specified arguments, ie.e., a relation
with specified arguments (called a predicate) is "true," if and only
if any reasonable English interpretation of the relational statement
is a true English statement. An English interpretation should be
considered '"reasonable'" only if the natural-language processing part
of the system would translate it into the given relational statement.
A relation with specified objects as arguments clearly is true if the
objects are linked in the model by the attributes which correspond to
the relation. However, frequently such a predicate is "true' even

when its arguments are not directly linked. 1In such cases the truth
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Relation Attribute on Attribute on Typical English °
property~list property~list interpretation
of x of y
xCy SUPERSET SUBSET An X is a y.
X€y MEMBER ELEMENT X is a y.
equiv[x;yl EQUIV EQUIV x and y name the same
object.
owng[x;vy] OWNED-BY~EACH POSSESS-BY-EACH Every y owns an X.
own[x;yl OWNED POSSESS y owns an X.
partg[x;y] SUPERPART-OF-EACH SUBPART-OF~EACH An x is part of a y.
part[x;yl SUPERPART SUBPART An x is part of y.
right[x;y]  LEFT RIGHT The x is to the right
of the y.
jright[x;y] JLEFT JRIGHT The x is just to the
right of the y.
Table a: RELATIONAL NOTATION

»

of the predicate can be determined indirectly from other information

available in the model cr in the program.

L

SIR contains a separate subprogram for determining '"truth" for

each relation in the system.

answering ''yes-or~no' questions.

These are the subprograms responsible for

For example, the answer to the

question, '"is the chair to the right of the table?'" would be found by

a subprogram called '"rightq' which deals with the truth of the "right"

relation.

""Chair" and "table" would be the inputs to the "rightq"




98
program, which would then search the model and make an appropriate
response.

During the development of SIR, procedures for establishing the
truth of relations had to be explored independently for each relation
and so a separate program was written for each relation. The detailed
operation of these subprograms was described in Chapter V. Now, as we
consider how to generalize the system, the time has come to look for
common features of these subprograms. Such common features could
serve as the basis for a simpler, more unified program structure.
Indeed, such common features have been found, and they are exploited
in the general system to be described in Sections B and C below.

The first step in trying to simplify the truth-testing procedures
is to express the procedures in such a way that their operations can
easily be compared and understood. In practice each of the truth-
testing subprograms operates by searching the model, looking for
certain combinations of attribute links. However, since the existence
of an attribute link implies the truth of a corresponding predicate,
we may consider the subprogram as deducing the truth of a predicate
from the fact that certain other predicates are true. Such deduction
procedures are conveniently expressible in the first-order predicate
calculus (the "quantificational calculus").

Frequently the truth of a predicate depends upon the fact that
the relation involved has a special property, e.g., transitivity.
These properties of relations may conveniently be described by '"defini-
tion" statements in which a bound variable stands for the name of some

unspecified relations These definitions are simply abbreviations which
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will become ordinary quantificational calculus statements when the
bound variables are replaced by particular relation names.

The properties defined below are useful for describing some of the
SIR relations:

Symmetry: f (P) =df (Vx)(/y)[Plx;y] = Ply;x]]

Reflexivity: R (P) =df (Vx)[P[x;x]]

Transitivitys J(P) =df (Vx)(Vy)(V2z)[Plx;y] APly;2z]l = Plx;z]]

The following logical sentences hold throughout SIR and represent
basic properties of the "equiv'" relation:

(VP) (V) (Vy) (VW 2)[Plx;y] A equivlx;z] 5 P[z;y]]

(VP)(Vx)(Vy)(V2)[Plx;y] Aequivlysz] = Plx;z]]

Table b, lists predicate calculus statements corresponding to the
deduction procedures actually used in the SIR subprograms for truth-
testings These statements were obtained by studying the SIR sub~
programs, and they accurately represent the operation of those sub-
programs except for the following:

as All quantifiers range over only the finite universe of objects,
classes, and relations represented in the model.

b, Each subprogram contains built-in mechanisms for searching the
model in the course of trying to apply one of the deduction procedures.
The linkage structure of the model allows the programs to make direct,
exhaustive searches through just the relevant portions of the model.

c. When alternative deduction procedures are available for testing a
predicate, each subprogram specifies the order in which the procedures
should be attempted, As is illustrated by the "Exception Principle"
(Section V.B,1), the use of alternate deduction procedures may result
in different answers to a question. This means that, from a purely
predicate~calculus point of view, the deduction procedures together
with the information stored in the model may form an inconsistent
system, Therefore the order in which deduction procedures are used
influences the answers obtained. In the present form of SIR the
ordering rule has been that those procedures dealing with indirect
links are to be used only if no answer can be obtained by using those
procedures dealing with more direct links.
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d. Each subprogram is independent and contains complete programs for
its deduction procedures. Since some of the deduction procedures in
different subprograms are similar, some program segments appear
several times in the SIR system. For example, programs which test
whether a particular class-inclusion relation holds appear in most of
the truth~testing subprograms. This program redundancy results from
the independent subprogram organization of SIR and should be removed
in a more uniform system.

L3
Relation being tested Deduction Procedures

- L. JIC]
2. x=y3> xCy
3. equiv[ix;y] = xCy

€ be QEXAXCY Q€Y
equiv 5.560,7. Jlequiv],R[equiv],J[equiv]
owng 8. ~owng[x;x]

9. owng[x;y] AzCy = owng[x;z]
10. owngl[x;y]l AxC 2z = owng[z;y]

own 11, own[x;v] AXC z = own[ z;y]
12. owng[x;y]l A zéy => own[x;z]

partg 13, ~partg[x;x]
14, partg[x;ylAzCy = partg[x;z]

part 15. part[x;ylAxCz > part[z;y]
16. part[x;y]l Apartglz;x] = part[z;y]
17. partglx;yl A 2z€y = part[x;z]

right, jright 18. right[x;yl=~right|y;x]
19. J [right]
20. jright[x;y]=> right[x;yl
21. jright[z;ylA z#x D~jright[x;y]
22. jright[x;zlA z#y S ~jright[x;y]
23. right[x;ylA right[y;z]l= ~jright[x;z]

Table b: DEDUCTION PROCEDURES IN SIR SUBPROGRAMS

* Universal quantification over all free variables is assumed.
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Thus far I have been discussing only those programs which answer
"yes-or~no" questions. More complex questions, such as '"Where is the
table?" and "How many fingers does John have?", require different
question~answering procedures. SIR contains an additional subprogram
for each of these complex question forms. These subprograms will be

discussed further in Paragraph C.3 below.

B. Formalism for a General System,

Given a suitable formal system, a separate truth-testing subprogram
for each relation in the SIR system would not be necessary. Instead,
a single "proof~procedure' program could serve for answering all
"yes-or=no'" questions.

The deduction procedures of Table b. could be used as the axioms
of such a formal system. However, the study of those "axioms'" has
suggested an alternative system which is more concise, more intuitively
meaningful, and easier to extend to new relations. This alternative

formal system is the subject of this section.

1) Interactions: Two relations "interact" if, in order to test

the truth of a predicaFe involving one of the relations, it is necessary

first to test the trufﬁ of some predicate involving the other. When-

ever two or more relations appear in the same deduction-procedure

statement in Table b., we may say that those relations interact.
Interactions may be classified informally as follows:

a. Interactions between the € or C relation and some other relation.

b. Interactions between relations whose meanings are similar to each

other. (This "similarity'" will be defined more precisely in Section 2
below.)
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c. Interactions which arise principally because of some peculiarity
of one of the relations involved.

d. Other interactions.

interactions are of interest because they create the biggest
obstacle to generalizing the SIR system. Whenever a new relation is
added to the system, the programmer must identify all the relations
in the system which interact with the new relation, and modify the
system to allow for the interactions. With the present system, this
means modifying each of the question-answering subprograms associated
with the interacting relations. This formidable reprogramming task
accounts for the fact that the deduction schemes in the present
version of SIR do not allow for all the intuitively necessary inter-
actions between relations in the system. For example, if SIR is
told that an x is part of every y and that z owns a y, it cannot
deduce that z owns an x. To perform this and similar deductions
SIR would have to "know' about additional interactions among the

relations part, partg, own, owng, é, and C.

Almost all the interactions accounted for in the present system and

Ha’H Hb’li or c,

in the deduction procedures of Table b. are of type
according to the above classification scheme, i.e., they involve the
relations € or C, relations whose meanings are similar, or relations

with individual peculiar properties. The formal system to be described
below will eliminate the need for explicitly considering any interactions
of these three types. Once a new relation is properly described
according to simple, intuitive rules, any type "a," '"b," or 'c"

interactions between it and other relations will automatically be

accounted for by the logical system. Although other (type '"d") inter~-
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actions may still exist, they will be easy to describe and modify.
For example, a single simple statement will be sufficient to make
the system "aware'" of the interaction between part-whole and owner-

ship relations illustrated in the previous paragraph.

2) SIRl: A proposed formal system for truth-testing: The

formal system called "SIR1'" to be proposed here will consist of:
definitions of certain terms, including terms which describe strings
of symbols; a standard interpretation for the symbols; and a
logical method for determining whether certain strings called
Ysentences'" of SIRl are '"true." The significance of the system is
that all "yes-or-no' questions which can be answered by SIR, and a
great many which cannot, are expressible as sentences in SIRl; i.e.,
the standard interpretation of a formal sentence is its corresponding
English question. Further, if a sentence is '"true'" in SIRl, then the
answer to its corresponding question is "yes.' These points will be
illustrated by examples below. A computer implementaticn of SIR1
will be discussed in Section C of this chapter.
a. Definitions:

basic object =df any object which is described in the model and

which has the following property: No object described in the model
may be related to a basic object by being a member or a subset of it.

basic relation =df a symbol which names a relation whose argu-~
ments must all be basic objects.

variable =df a symbol used in place of the name of some unspeci=-
fied object described in the model. The standard interpretation of
the name of an object is, of course, the object itself.

basic predicate =df a basic relation written as a function of the

names of basic objects or of variables which stand for the names of
basic objects. The standard interpretation of a predicate is that the -
specified relation holds between the specified objects.
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é-quantifier =df either of the symbols "(VWv.,év, )" or "(Iv.€v,),"
- . . , 127, 1772
where v, is any variable and v, is any variable, any object name, or
the special symbol "M" which stands for '"model.'" These €-quantifiers
are related in the first-order predicate calculus as follows:

(1) (Vaex)[R[al]l =df (VoeM)[aex = Rla]l]
(Foex)[Rlal] =df QoaeM)[aexAR[a]]

where (WaeM) and (30€M) are the usual universal and existential
quantifiers of mathematical logic, respectively, except for an explicit
reminder that they range over only the finite universe of objects ’
described in the model; and R[a] is any predicate, although it usually
contains at least one occurrence of the symbol o among its arguments.

An €-quantification of a string S is the string "Q[S]" where Q
is any €-quantifier. The first variable in Q is then called bound
by the €~quantification of S for all its occurrences in Q and in S,
including occurrences as the second variable of other €-quantifiers.

A link=predicate is defined recursively as follows:
i) A basic predicate is a link-predicate.
ii) The strings "v.€v,'" and "v.=v_," where vy and v, are any object~
names or variables, aré link prédicates.
iii) An €-quantification of a link-predicate is a link-predicate.
Link~predicates may be used to represent most of the relations which

are represented by attribute links in the present version of SIR.

A well-formed~-formula (wff) is defined recursively as follows:
i) A link-predicate is a wff.
ii) Any propositional function of wff's is a wff.
iii) Any €-quantification of a wff is a wff.

An occurrence of a variable in a wff is called free if the
occurrence is not bound by an €~quantification of some string contain-
ing that occurrence.

A sentence =df a wff which contains no free variables.

An object~predicate =df a wff which contains exactly one free
variable.

b. Logical system:
The axioms of SIRl are sentences which, under standard interpreta-
tion, describe properties of individual basic relations and specify

type~''d" interactions between basic relations.
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Any sentence in SIR1 can be transformed into a sentence in the
standard first-order predicate calculus (the 'quantificational calculus')
by putting each €~quantifier into its "eM" form by use of the
equations (1), and then omitting the "eM." All the usual deduction
procedures of the quantificational calculus are acceptable deduc-
tion procedures in SIRl. Therefore, any theorem provable from SIR1
axioms in the quantificational calculus is also a theorem of SIRI1;
die.es, it is a ''true'" sentence of SIRl, provided "¢M's are inserted
into all quantifiers, regardless of the state of the current model.
In other words, SIRl is reducible to the quantificational calculus.
This reducibility provides us with methods =~ namely the methods of
quantificational calculus, such as Subordinate Proof Derivation
("Natural Deduction") -~ for proving whether sentences of SIRl are
theorems, However, we need different, more direct methods for testing
the truth of SIR1 sentences which depend on the model. These truth-
testing methods must be implemented on the computer, for they con-
stitute the basic question-answering mechanism of the generalized
semantic information retrieval system. However, I shall first
describe a totally impractical truth-testing method which demonstrates
that a decision procedure exists for testing "truthhood'" of SIR1
sentences with respect to particular SIR1 model. A more efficient,
heuristic approach will be described in paragraph C.2 below.

The SIR1 model is quite similar to the SIR model. It consists of
a finite number of object names, each of which is Ydescribed" by a
finite list of attribute-~value pairs. Each attribute may name an

object~predicate which is true of the described object, or it may be

a link which relates the described object to another object. This
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latter object is named in the value corresponding to the given attri~
bute. 1In Section C I shall describe the nature of SIRl attributes
more precisely. For present purposes it is sufficient to assume that
the information carried by each attribute on a property~list in the
SIR1l model can be expressed in some well-defined way as a SIR1l sentence.
A SIR1 sentence is considered '"true" if the sentence can be
deduced from the SIR1l axioms and the information in the SIR1 model.
A decision procedure for this deduction follows:

i) For each attribute in the model, write the SIRl sentence which
expresses the same thinge.

ii) Let A = the conjunction of all the sentences found in i) and of
all the SIR1 axioms. Consider the sentence
(2) A =S

where § is the sentence being tested.

iii) Put all €-quantifiers in (2) into the "éM'" form by using equations

(1)-

iv) 1Let 0,, 0,5000, O be the names of the objects described in the

model. ElIminate the quantifiers in (2) by replacing each string of

the form (WveM)[R[v]], where v is any variable and R is any predicate

possibly depending on v, with the finite conjunction
R[ol]/\R[oz]/\.../\R[o 1

and by replacing each string of the form GveM)[R[v]] with the dis=

junction

R[ol]\/R{oz]\/..,\/R[on].

v) Test the resulting expression by a decision procedure for the
propositional calculus, e.ga, by truth-table analysis. S is true
with respect to the model, and the question corresponding to S should
be answered '"YES," if and only if this final expression is a theorem
of the propositional calculus.

c. Examples and commentss

i) Object-predicates: As defined above, an object-predicate is

a SIR1 wff which contains exactly one free variable, If that free

variable is replaced by an object~name, the object-predicate becomes a
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SIRl sentence. The standard interpretation of an object-predicate
applied to an object in the SIRl1 model is that the sentence obtained by
replacing the free variable in thé predicate by the object~name is a
true sentence. This resulting Sentence may then be used as an addi~
tional axiom in any SIR1l logical deduction procedure.

Object~predicates may be placed om the property~-list of any
object in the SIRl model. Their purposes are to describe those
properties of the object which cannot easily be expressed, in terms
of link-predicates, as specific associations with other objects.

ii) Basic relations: The "¢" relation occupies a special place

in SIR1l because of its connection with €~quantifiers, and is treated
in the formalism as if it were a basic relation. The identity
relation "=" is also treated as a basic relation because identity is
a useful feature to have in a logical system based on the quantifica-
tional calculus. The SIR relation'"equiv'" was simply an equivalence
relation used to identify when different object-names referred to the
same object. In SIRl it is sufficient to subsume the function of
"equiv'" under the "=" sign; i.es, the formal statement "x=y" is
considered to be true if either x and Yy are the same symbol, or

if "equiv[x;y]" is a true predicate in the SIR model.

The predicates in Table ¢, show the basic relations and the

1
object predicate needed by SIRl in order to deal with all the rela-
tions covered by SIR programs.

iii) Connections between SIR and SIRl relations: Table c

2

lists a SIRl expression which should be used in place of each SIR

predicate. Corresponding expressions have exactly the same inter~

pretations; the SIRl statements are more ecomplicated, but they utilize
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Predicate Standard Interpretation
X€y x is a member of the set y.
x=y Either X and y are identical, or they are two

names for the same object.

ownb[x;y] x is owned by y.

partb[x;y] x is part of y.

rightb[x;y] x is to the right of y.
jrightb[x;yl x is just to the right of y.
single[x] @oeM) [aex A (VBeM) [Bex =] ]

(interpretation: x has exactly one member.)

Table K BASIC RELATIONS OF SIRl

SIR Predicate SIRL Expression

xCy (Vaex) [aey]

XEy Xey

equiv(x;yl x¥y

owng[x;y] (YB€F) (Jaex) [ownbla;B]]

own[x;y] Qoex) [ownbla;y]

partg[x;yl (Vey) Qaex) [partbla;pl]

part(x;y] Qoex) [partbla;yl]

right [x;y] (oex) (3pey) [rightblo;pl1 A single[x] A single[y]
jright[x;y] Qoex) (Fpey) [jrightblo;Bl] Asingle[x] Asinglely]

Table c,t “STR PREDICATES EXPRESSED IN SIRIL
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fewer basic symbols and they show more logical structure than their
SIR counterparts.,

The SIR1 link-predicate corresponding to "partg[x;vy]" in Table ¢,
has the interpretation, ''Some x is part of every y." Although this is
the interpretation used in most SIR question~answering subprograms,
"partg[x;yl" might equally well be interpreted, "Every x is part of some
y," in which case the SIRl linkepredicate (Waex)(3pey)[partbla;Bl]
should be used. Actually the interpretation of "partg[x;y]" suggested
in Table a., "An x is part of a y," is ambiguous. This ambiguity
occurs because the natural~language input system in the present version
of SIR cannot discover the finer meanings of "An x is part of a y."
Perhaps the most suitable representation for this latter sentence is
a conjunction of two SIRl linkwpredicates

(V Bey) (Faex) [partb[a;Bl ] A (Vaex) (IBey) [ partbla;B]]

The SIR predicate "right[x;y]" was interpreted as '"The x is to
the right of the y." This English sentence implies first that x and
y are each sets containing unique elements, and secondly that those
elements bear a certain positional relationship to each other. In
SIR the special subprogram "specify" was used to determine the nature
of the sets involved, before the positional information was considered.
Similarly, the SIRl expression must be the conjunction of the object-
predicates 'single[x]" and "single[y]" to describe the special nature
of x and y, and the link~predicate whose interpretation is, "an x is
to the right of a y." Similarly, objectwpredicates, as well as a link=

predicate, are needed to represent the SIR "jright" relation.

iv) Axioms of SIRl: Some useful properties of SIRl relations are

defined as follows;
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P is symmetric:
L) =df (Vx€M) (v €M) [P[x;y] = Ply;x]]

P_is asymmetrict
S (B) =df (Vv x€M)(VyeM)[P[x;y]l=>~Ply;x]]

P is reflexive:
®R(P) =df (Vv x€M)[P[x;x]]

P is set=nonreflexives

R(P) =df (V¥ x€M) ~(~v B€x) (Faex)[Pla;p]]

P is transitives
g (P) =df (v xeM) (v y€M) (v z€M) [P[x;y] AP[y;2] = Plx;2]]

P is uniquely linkeds

U(P) =df (vxeM) O yeM) [Plx; yl=>(vafM) [ [afy=> ~Plx;al] A [afx=3~P[a; yll]]

Notice that these properties will be expressed by ordinary SIRl sentences

when the bound variable "P'" is replaced by the name of a SIRl relatione
Table do is a list of all the axioms necessary to give SIRl at least

the question-answering ability of the SIR deduction procedures in

Table ty except for the "axioms' derived from object predicates on

the property~lists of particular objects. In Table b, deduction pro-

cedures no. l=4, 9-11, 14, and 15 all represent interactions with the

"g" or "¢'" relations, i.es, type "a" interactionse Corresponding

axioms are not needed in SIR1 because of the way "(C'" is defined

(see Table c2) and the way €é~=quantifiers are useds Table be noe 12

and 17 are interactions between 'similar'" relations, i.es, type "b"

interactions. ''Similar'" relations are those which are defined in

terms of a single basic relation in SIRl. Additional axioms are not

needed because information about interactions between "similar" relations

are implicit in their definitions as linkepredicates. Procedure noe 16

is really a statement of the tramsitivity of the basic part-whole

relation (a type "c'" interaction), somewhat obscured by a statement

"

of the interaction between the similar '"part'" and "partg' relations
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Discussion

This fact that "=" is an equivalence relation is
not strictly necessary in the axioms, since it is
built into the logical system.

cf. no. 8 and 13, Table b. These are '"experimental"
axioms, which should be dropped from the system if
too many exceptions turn up.

cf. no. 16, Table b.

cf. no. 18, Table b,

cf. no. 19, Table b,

no. 21 and 22, Table b., were needed because this
property was missing,

(v x€M) (v y€M)[ jrightb[x;y] = rightb[x;y]]

_(;‘go No e 20, Table b.

(vVxEM) (W y€M) (v z€M) [rightb[x;y] A rightb[y;z]l=>~jrightb[x;z]]

cf. no. 21, Table b,

The last two axioms represent true type "d"
interactions between rightb and jrightb,

Table d: SIRL AXIOMS
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(a type "b" dinteraction). Interactions 21 and 22 of Table b. are of
type 'c," for they are due solely to the peculiar property of
"jright'" which is expressed in SIRL by 74(jrightb). Finaily,
no. 20 and 23 of Table b. are true type "d" interactions, and corre~
sponding axioms are necessary in SIRI.

Let me now make this discussion more precise. The deductive
systems of SIR and SIRl are both based on the quantificational
calculus. The only difference between them is that the SIR deduction
procedures, in Table b., are a description of the operation principles
of an existing computer program. SIRl is a formally developed system
which may eventually contribute to the specification for a computer
program, If the SIRl system with its short list of axioms (Table d.)
is already as effective a "yes~or-no' question-answerer as the
programs described by the SIR procedures in Table b., then adding
those procedure rules to SIRl cannot increase the power of SIRIl.

In other words, SIRl1 must already contain all the information avail=-
able in the rules of Table b, To prove that this is indeed the
case, I have shown that SIRl sentences corresponding to each of

th~ rules of table b. are theorems in SIRl. The method used was

to reduce the SIRl axioms and seniences to the quantificational
calculus and then to prove the theorems by Subordinate Proof Deriva-
tions (Appendix I). The details are given in Appendix II.

v) €-=-quantifiers: The most obvious difference between SIR1

and the quantificational calculus is the occurrence in SIRl of
€-quantifiers, These new symbols serve three functions, the most

obvious but least important of which is notational conciseness.

Since the value of any.notational device depends upon its
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understandability, €~-quantifiers are valuable because they indicate the
intended interpretation of SIRl sentences to the user or reader. Finally,
€~quantifiers are important for the computer implementation of SIR1.
They are indicators which relate the formal system to particular model
search~procedures. Details of a proposed implementation scheme are

presented in Section C.

C. Implementation of the General Question~Answering System.

A semantic information retrieval system which can be as effective
as SIR and yet have the uniformity and generality of the SIR1 formalism
must have the following components:

i) a model patterned after the SIR model but containing more complete
information in its linkages and containing a larger class of describable
objects.

ii) a theorem-proving program which can determine whether certain

assertions are true, on the basis of axioms of SIRl and current informa-
tion in the model.

iii) a programming language for specifying question-answering procedures
which are more complex than truth-testing.

In addition, these components must be designed to work together
to form a compact, efficient systems A detailed description of each of
these components of the proposed system will follow shortly.

A program to translate natural or restricted English into formal
relational terms, and a program to annex new relational information to
the model, are also necessary components of any semantic question-
answering system. The latter annexing program is straight~forward and
all the basic mechanisms are already available in SIR. English transla-
tion is a linguistic problem whose detailed study is beyond the scope

of this paper. The trivial format-matching solution (Chapter IV) may be
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used until something better becomes available. 1In any case, I shall
assume the availability of some mechanism for accepting new information
in @ form convenient to the human user, and then inserting corresponding

relational information into the model.

1) The model: As discussed in section A.2 above, one objective of
this research is to find ways of using information stored in the model
to control the operation of the system; since that information can be
modified most easily. Since the operation of any theorem~-proving program
is "controlled" by the axioms of the formal system involved, the axioms
for SIR1 should be stored in the model.

The SIR model consists of objects and associated property-lists.
The advantage of this model structure is that the program using the
model can obtain all the information about an object, such as how it is
related to other objects, simply by referring to the object itself.

The SIRl axioms of Table d. all describe either properties of SIR1
basic relations or interactions between basic relations. These

axioms should be stored, then, on the property~lists of the basic
relations which they affect. In this way the theorem~proving program
will be able to find relevant axioms by looking at the property~lists
of the basic relations it is concerned with, and the human user or
programmer will be able to modify the axiom set by "telling'" the system
to modify its model, without any reprogramming being necessary. Object-
predicates define additional axioms which apply to particular objects.
Therefore, they should be stored on the property~1ists of the objects

involved.
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In SIR, a relation between objects is represented in the model by
attribute=~links on the property-lists of the objects, E;ch relation is
uniquely represented by particular attributes. Simple (types "a'" and 'b')
interactions between relations can not be represented in the model, but
rather have to be 'known'" by the program.

As has been shown, the class of SIR relatioens roughly corresponds to
the class of relations represented in SIRl by link-predicates. Each
link<predicate, in turn, is defined in terms of a SIRl basic relation.
We must now deeide how to represent relational information in the SIRIL
model.

Each basic relation could be uniquely represented by particular
attributes., However, these attributes would not be sufficient to
represent all the facts which were representable in SIR. For example,

the sentence "Every hand is part of a person,"

could be represented
in SIR1 by locating every object in the system which is a member of
the set '"hand," and linking each of them to some member of the set
"person' with the attributes corresponding to the partb basic relation.
However, it is not clear which hands should be parts of which persons;
and the general fact concerning hands and persons would be unavailable
for future deductions, e.g., when a new individual '"person'" is intro~
duced into the model.

Alternatively, one could represent each possible link-predicate by a
different attribute.. The disadvantages of such a scheme would be
twofold: First, much of the flexibility introduced by the definition

and use of link-~predicates would be lost, since special symbols would

have to be assigned as attributes for each link-~predicate actually used

in a model; secondly, the important structure of the link~predicate,
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i.e., the basic predicate and €~quantifiers of which it is composed,
would be undiscoverable except by means of some table look-up or other
decoding procedure.
I propose that, corresponding to the attribute~links of SIR, SIRL

should use descriptions of the link~predicates involved. The attribute

on the property=list of an object should itself be a property-list.

This subproperty-list would contain special attributes whose values

were the basic relation involved and the string of €~quantifiers

which produce the 1ink-predicaté from that basic relation. An additional
item on the subproperty-~list could identify the argument-position of the
described object, thus eliminating the need for more than one symbol
(corresponding to the attribute-link symbols of SIR) for each basic
relation. With this representation no special symbol assignment or
other anticipatory action is necessary in order to add new link=
predicates to the model. Any link-predicate recognized by the input
program and based on an available basic relation is representable.

The names of object-predicates should be another kind of attribute
which may appear on SIRl property-lists. The object-predicates should
themselves by SIR1 objects whose property~lists contain their defini-
tions as SIRl wff's., In this way object-predicates may easily be

defined or applied to new objects.

In summary, the basic objects in the SIRl model are the words
which denote: individuals, classes, basic relations, and object-
predicates. A property~list is associated with each basic object.

Attributes in the descriptions of individuals and classes are either the

names of object-predicates, or themselves property-lists which describe
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link-predicates. 1If lists describing link-predicates, the values
corresponding to those attributes give the other objects associated with
the described object through the described link-predicate. The property~
lists of basic relations contain the axioms which specify properties
of the described relations. The property-~lists of object~predicates
contain the definitions of the object-predicates in terms of SIR1

wff's,

2) The Theorem-prover: In paragraph B.2 above I presented a

decision procedure for testing the truth of any SIRl sentence with
respeet to a given SIR1 model. Unfortunately, that procedure is imprac~
tical since it requires the enumeration of every object and every link
in the model, and the consideration of every known logical truth in

the course af each truth~test., Clearly these procedures would in-

volve an inordinate amount of time. Also, I have gone to great lengths
to develop a model structure which enables the system to save time by
having information organized and accessible in a convenient way; the
above-mentioned decision procedure completely ignores the structure of
the model,

Instead of an impractical decision procedure, I propose that SIR1
use a heuristic Theorem-Proving program ("TP") for its truth-testing.
TP will start its truth-testing with the most relevant axioms and
model linkages, introducing additional facts only when needed. The
model structure will dictate what constitutes "most relevant," as will

be explained below.

The best example of a heuristic theorem-proving program in Newell

and Simon's '"Logic Theorist' (LT) (27), a program which proves theorems
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in the propositional calculus. Since TP will be modeled somewhat after
LT, let us consider the general behavior of LT. LT must be given a list
of true theorems or axioms, and a statement (the '"problem") whose proof
is desired. The system tries to prove the test-~statement by showing
that it, or some statement from which it can easily be deduced, is a
substitution instance of a true statement. The true statement must be
either a theorem or a statement whose proof is easily obtained from the
list of theorems. LT has several methods ~~ the principal ones called

chaining, detachment, and replacement -~ for creating statements from

which the problem statement can be deduced, and for selecting '"relevant"
theorems from the theorem list. LT also contains special devices for
keeping track of sub-=problems and keeping out of "loops."

LT was designed largely as a model of the behavior of naive students
of logic, and is reasonable successful as such. It has not been a
very effective theorem-prover, partly because its methods and selec-
tion heuristics are not powerful enough, and partly because the problem
domain =~ the propositional calculus -~ has a simple decision procedure
(46) which makes any alternative approach seem weak. TP must deal! with
a more complicated problem domain than that of LT. It is concerned
with a domain containing a possibly large, although finite, number of
objects, relations, and axioms. Also, the objects-and relations as
well as the axioms may be changed from problem to problem. However,
the actual proofs of SIRl sentences by TP will, on the average, be
shorter and simpler than typical LT proofs. After all, TP parallels
the human mechanisms for recalling facts in memory and doing some simple

reasoning, not for solving formal mathematical problems. Development

of elaborate logical ability in a computer must come after the achieve-
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ment of our present goal: a mechanism for simple, human-like communica-
tion. Deductive methods similar to those of LT should be adequate for
TP, provided we can provide a mechanism for selecting the '"most rele-
vant" true facts from which to start each deduction; and of course the
central information organizational device of SIR and SIRl ~- the model -~
is just such a mechanism.

Therefore, I propose that TP contain the same deductive methods as
LT, and in general be patterned after LT, with the following important
exceptions;

a, In trying to apply its methods, LT always scans the complete list
of true theorems. TP should initially attempt a proof with a small list
of "most relevant" truths extracted from the model. If the proof
methods fail, the list of truths should be gradually expanded until the
"relevant'" portion of the model is exhausted; or, more commonly, until
the specified time or effort limits have been reached. One method of
generating ''relevant' truths for the proof of a SIRL sentence S is the
following:

i) Let B= the set of all basic relations which appear in S. Let F=

the set of all object-names in the model which appear in S as arguments

of members of B.

ii) Construct a truth list consisting of three parts: those axioms

which appear on the description lists of the basic relations in B,

those link~predicates which involve relations in B and which are described
by attributes of objects in F, and those axioms obtained from object~
predicates which appear on the property lists of objects in F.

If a proof cannot be found, the initial truth list can be expanded
by enlarging B or F in any of the following ways, and then repeating
step ii):

iii) Add the "¢ relation to B. This relation is important for deductions
which involve transforming or removing €-quantifiers.
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iv) Add to B any new basic relations which appear in the current truth
list. Whenever basic relations interact, an axiom on the property-list
of one will name the other, thereby introducing it into the system. Also,
axioms from object-predicates may introduce new basic relations.
v) Add to F all object-names which appear in values of those attri-
butes of objects already named in F, which involve relations already
named in B.

Each iteration of step iv) or v) and step ii) will add facts to the
truth }ist which are more indirectly related to the test sentence than
any facts previously available. When no new facts can be added in this
way, the truth list will contain all the information in the model which
may be relevant for the desired proof. However, I expect that in most
cases true sentences will be provable from a truth list obtained in
very few iterations.

b. SIR1l is concerned with the truth of relational statements with

respect to the model, whereas LT is concerned with the universal truth

of logical propositions. The ultimate test of the truth of a sentence
in LT is whether or not the sentence is a substitution instance of a
known sentence. The corresponding ultimate test of the truth of most
SIR1l sentences is whether or not certain links exist in the model.

Every SIR1 sentence is a propositional function of link-predicates.

A link-predicate is true of the model if it exists as an explicit link
in the model, or if it can be deduced from axioms or higher-order link=-
predicates explicit in the model. Therefore, for the ultimate test of
the truth of a link~predicate, TP must contain subprograms for eliminating
€:-quantifiers. For example, (Woaex)[P[al]l is true of the model if
P[] is true of the model, for every object p such that pex is true

of the model. Thus, the €~quantifier structure of SIRl sentences serves

as an important guide for the theorem-proving program.
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c. The problem of implementing the 'Exception Principle,'" dis=
cussed in Section A.3.c above for SIR, is still with us in SIRl. This
means that the use of different sets of "truths" extracted from the
model may lead to different answers to the same question. The solution
to this problem is simply to be very careful in building and expanding
the list of "truths'" used by TP. I believe the iteration described in
as above is adequate, since it introduces the most closely related
facts first. However, some experimentation in this area, once a

working TP system is developed, will certainly be of interest,

In summary, an English question should be answered ''yes'" by the
generalized semantic information retrieval system if and only if TP
can prove the truth, with respect to the model, of the SIRl sentence
which corresponds to the question, TP attempts to prove the truth of
sentences by going through the following steps:

i) Test whether the sentence is immediately implied by direct links
in the model.

ii) Create a list of the axioms and link-predicates in the model which
are most closely related to the sentence. Attempt to deduce the truth

of the sentence from this list of truths, using both logical transfor-~

mation methods such as those of LT, and model-dependent methods such

as elimination of €~quantifiers.

iii) After a reasonable amount of effort, add to the list of truths
the axioms and link~predicates which are next-most-closely related to
the sentence.

Repeat steps ii) and iii) until proof is completed or abandoned,

Note that TP operates in the finite domain of the propositional

calculus, No provision has been make for true quantificational deduc~

tions, such as proving in general

Ay) (=) Plx;y] = (¥x) (Ay)Plx;yl
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Therefore TP could not, for example, perform the derivations of
Appendix II which relate SIR and STIRl. The problem TP does attack
is that of selecting relevant information from a large (although
finite) store in order to construct proofs efficiently. Of course,
a similar program for quantificational deduction would be a welcome

addition to TP.

3) Complex question-~answering: Some of the questions which SIR

can answer require the system to perform more elaborate information
retrieval tasks than simply testing the truth of an assertion. The
answers to questions like, "How many fingers does John have?'" and
"Where is the book?" must be computed by searching and manipulating
the data stored in the model in order to create appropriate responses.
Let us define a '"'question type" as a class of questions whose
answers are found by following the same computational procedure.
Questions of the same type generally differ from each other by referring
to different objects in the model; those object-names are inputs to the
computational procedure, In the previous sections we havs considered the
special type of all "yes~or-no" questions. Ii SIR, this class of
questions was considered to be made up of many different question
types ==~ one for each SIR relation -~ and there was a corresponding
multiplicity of computational procedures. 1In SIRl, the computational
procedure for all "yes-or-no' questions is simply TP. However, TP
requires as an input not just the names of objects, but rather the

complete SIRl sentence which corresponds to the question.

Unfortunately, no other SIR question types can be combined easily

for a more general system. Each question type requires a different
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procedure for searching through the network of links, identifying
useful information when it is found, and manipulating the information
to produce the answer. Computer programming languages are well
suited for specifying computational procedures, and for reasons described
in Section III.A, the LISP language was quite convenient for specifying
the complex question-answering procedures of SIR, However, as one
attempts to enlarge and generalize SIR it becomes obvious that these
programs should be made easier to write and easier to understand
wherever possible. The full generality of LISP must be kept available,
since new question types may require, in the answering process, unanti-
cipated kinds of data manipulation; but the devices described below
may be used to simplify the construction of question-answering programs.

In LISP, the flow of control within a program is normally deter~
mined by special functions called '"predicates.'" The LISP system
evaluates each predicate according to built-in or separately provided
evaluation procedures, and chooses the next operation to performed
according to whether the value of the predicate is "T'" or '"NIL"
(corresponding to "true'" or "false"). The SIRl procedure-specification
language should be similar to LISP, but should also allow the use of
an additional class of predicates: namely, statements whose LISP
values are "T" if a particular SIRl sentence is true with respect
to the model, and 'NIL" otherwise. The procedure for evaluating
these additional predicates would be just the procedure ordinarily
used by SIR for determining the truth of SIRl sentences, namely TP.
Thus the full power of the SIR 'yes-or-no" type of question-answering

procedure could automatically be used within the procedure for
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answering a more complex type of question. Suppose that in the course
of the procedure for answering the question, '"What is the relative
position of x?" it is determined that y is to the right of x and also
that a z is to the right of x. The procedure could then contain the
statement,

if Qoez)[rightbla;x] Arightbly;a]]l then go A else go B
where A and B are locations of appropriate further instructions in
the procedure. The procedure writer need not consider how to answer
the question, "Is a z between x and y?" for TP will do that for him.

As a special application of this method for procedure-writing, let
us consider how to obtain "no" or 'sometimes'" answers to questions of
the "yes-or~no'" type. The existence of separate programs for each
relation in SIR permitted the consideration of special properties of the
relation in determining an appropriate reply. 1In our generalized
system, TP can reply '"yes' if the SIRl sentence S corresponding to the
question is provable; otherwise the reply must be "insufficient

' Although a ''no'" answer cannot be obtained by TP

information.'
directly, we can build into TP the ability to make a negative reply

if it determines that the sentence ~S is provable; but no general
change to TP can account for special properties of individual relations.
However, this flexibility of SIR is recovered in the generalized

system, without relinquishing any of the uniformity and generality

of the SIRl formalism and the TP program, by the use of simple pro-
cedures written in the LISP~plus~TP specification language. For

example, the procedure for answering the question, "Is an x a y?"

might be as follows:
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if (Woaex)[oeyl then YES;
else if (W aex)[~aey] then NO;
else if (\Waey)[aex] then SOMETIMES;
else (INSUFFICIENT INFORMATION)

There remains the problem of implementing the specification language
on a computer., When TP is available, it will be a simple matter to
design an interpreter which would route control between TP and the LISP
interpreter. Whether a compiler for these procedures is feasible
depends on many factors, including the precise form of the TP system,
The point here is that implementation of this procedure~specification
language, a key part of the generalized semantic question~answerer,

is feasible at the present state of the programming art.

In summary, a simple formalism has been presented which adds to
LISP the truth~testing power of TP. This procedure~specification
language, together with the SIRl1 formalism, a corresponding word-
association model structure, and the TP truth~testing program, consti-
tute the basis for a "generalized' semantic information retrieval system,
On the basis of information gleaned from the development of SIR, I have
been able to describe this 'generalized" system which has all the
quest ion=answering ability of SIR and accepts a much larger class of
questions. More importantly, new relations can be added to the
"generalized" system and the axioms of its proof procedure can be
modified without any reprogramming, and question~answering procedures

can be introduced and modified much more easily than they can be in SIR.
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Chapter VII: Conclusions

A. Results.

1) Question-answering effectiveness: Chapter I described how

question-answering behavior is a measure of a computer system's abil-

ity to "understand." SIR represents ''meanings'" in the form of a word-
association, property-list model. As a result SIR is more general, more
powerful, and, judging from its conversational ability, more "intelli-
gent'" than any other existing question-answering system. With respect

to the fundamental problems of the other systems discussed in Chapter TI:
LY |

a) SIR is not limited to a rigid prepared data structure and corres=-
ponding. programs with specific, built-in, ad hoc definitions of "mean-
ings'" as is the "Baseball' program. Rather, it constructs its data
structure as information is presented to it, and interprets '"meanings"
from "learned" word associations.

b) SIR is not restricted to the sentence-by-sentence matching of
Phillips' '"Question-Answering Routine.'" Instead, the SIR model pro-
vides access to relevant stored facts in a direct, natural way.

c) SIR, unlike SNYTHEX, does not require grammatical analyses which

become more detailed and more complicated as the system expands. In-
stead, question-answering is based on semantic relationships, and the
program structure can be simplified while enlarging the scope of the

system in the manner described in Chapter VI.

d) The SIR model is not tailored for a single concept like the family
relationships of SAD-SAM. However, the property-list structure of the
model can easily be used to represent various special-hurpose models and
thus take advantage of their benefits, while permitting the storage of
any relational information.

e) The SIR system is not restricted to testing the universal truth of
a complete statement, regardless of the meanings of its components, as
is Darlington's program. Rather, SIR procedures can be devised to ans-
wer any form of question, and the answers are based on SIR's current
"knowledge'" as determined by word associations in the model.
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f) Although conceptually similar to Bennett's word relation system,
SIR represents a vast improvement in that its list-structure model
permits a direct representation for arbitrary word relations; the
system contains programs for handling several different relations and
their interactions; and both input formats and program logic may easily
be modified.

2) Communication language: SIR provides a framework for reason-

ably natural communication between people and computers. Although
somewhat stilted, both the input and the response languages used by
SIR are sufficiently close to natural English to be easily understood
by an untrained human. The input format recognition process used in
SIR (Section IV, B) illustrates how far one may go toward '"understand-
ing' natural language, in the sense of recognizing word associations,
without reference to grammatical structure. Of course, such a scheme
cannot be generalized to cover any large portion of a natural language.
It was used here simply as a device to get past the input phase and into
the problems of representation and retrieval. However, this format
matching process can easily be expanded to handle any sufficiently
small portion of English.

Even in its present primitive state the process is not excessively
restrictive to the untrained user. With the present system, the user
could be instructed to present in complete English sentences simple
facts and questions, and not to use any sentences with subordinate
clauses, adjectives, conjunctions, or commas. These sentences may be
about class relations, part-whole relations (possibly involving numbers),
possessions, and left-to-right ordering relations. When used in a
time-sharing environment (11) in which each sentence receives an immedi-

ate response, the system would have the effect of a '"teaching machine"
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in training its user to restrict himself to recognizable sentence
forms. After a few trial runs the programmer can easily add any new
sentence forms which frequently arise, thus improving the chances of
success for the next user. If this training process is too slow, the
new user could study sample conversations from previous tests, or re;
fer to an outline of available formats, before composing new statements
to SIR. These processes are much simpler than learning a 'programming'
language. A sorted list of formats and more sophisticated similarity
tests in the matching procedure would allow the addition of many more
formats to the system with no corresponding increase in time required
for recognition.

At the output end, the system demonstrates that "intelligent' re-
sponses are frequently possible without an elaborate generative grammar,
as long as one can anticipate the classes of responses and frame each

class in a suitable format.

3) The model: An important feature of SIR is the flexibility of
the property-list structure of the model. 1Independent or related facts
can automatically be added to or extracted from the system, and the same
data may be expressed in more than one way.

Several existing computer systems, e.g. airline reservation sys-
tems, permit dynamic fact storage and retrieval. However, they depend
upon the use of fixed, unique representations for the information in-
volved. 1In SIR, there can be many representations which are equally
effective in providing correct answers. E.g., the system "knows' that

the statement, "A finger is part of John'" is true if (a) there is an
g P
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explicit part-whole link from FINGER to JOHN; or if (b) there are
links by means of which the retrieval programs can deduce that a finger
is part of a person and John is a person; or if (c) there are links by
means of which the retrieval programs can deduce that a finger is part
of a hand, and a hand is part of John; etc. In addition, the system
can automatically translate from one representation to another having
some advantages. E.g., the "streamline'" operation described in Section
V.B, reduces storage space requirements by removing redundancy in the
representation, without making any changes in the system.

The property-list model turns out to have advnatages even when an-
other form of model seems more natural. For example, left-to-right
spacial relations seem most easily represented by a linear ordering;
i.e., "x is to the left of y'" could be modeled by placing x ahead of
y in a left-to-right list. However, incomplete information can cause
trouble for such a model. If it is known that "x is to the left of
y'" and "z is to the left of y," the linear ordering system cannot
uniquely model the relative positions of x, y, and z. The property-
list system, on the other hand, represents exactly the relations which
are known; and the linear ordering of the objects can be deduced from
the property-list model, as is done in SIR by the '"'locate" function, if

the data is sufficiently complete.

4) Present state: The processing time per statement for the SIR

system with a standard LISP configuration on an IBM 7094 computer with
32K words of memory was about one second. All the examples prepared

for Figure 1 and Figure 5 of this paper, including loading and compiling
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all programs, took about 6 minutes of computer time. The SIR system,
with all the relations, processing programs, and langﬁage formats de-
scribed in this paper, utilizes almost the full capacity of the computer.

It must be remembered that the SIR system was not designed to solve
any particular practical question-answering problem. It consists of a
collection of relations which were introduced, as described in Section
III.D, in order to investigate the various features and possibilities
of the model. These relations do not necessarily bear any other use-
ful or logical relationships to each other.

Although cramped for memory space, the present system has been
successful in the sense that it has demonstrated the usefulness of the
word assocaition property-list model, and it has suggested the more
general system described in Chapter VI which extends the uses of the
same model.

The scope of the present system indicates that it would be feasible
to use the SIR model and present program organization in-a practical
information retrieval system for an IBM 7090 size computer, provided
the system involved a reasonably small number of relations whose inter-
actions are clearly understood. One possible application is a re-
trieval system which has been proposed at the RAND corporation for in-
formation about documents in Soviet cybernetics.(24) In that system the
users will be interested in indirect relationships and implications, as
well as the storage and retrieval of specific facts concerning authors

and subjects of technical papers.
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5) Question-answering details: The following points, although ob-

vious in hindsight, did not become apparent until the program was
fairly well developed:

a) A question-answering system cannot give definite negative replies
without special information about the completeness and consistency of
its data. The fact that SIR does not have such information accounts
for frequent occurrences of the "INSUFFICIENT INFORMATION'" response in
places where a clearcut "NO" would be preferred.

b) If X stands in relation R to y, then a one-way link, e.g., from x
to y through attribute Rl on the property list of x, may be sufficient
for most question-answering applications, However, in the course of
expanding the system the reverse link, from y to x through attribute
R2 on the y property-list, may be much more convenient. To allow for
any eventuality in a general system both links should be provided from
the start. Two-way links also provide the accessibility needed to ex-
periment with various tree-searching procedures.

c) It is frequently possible for search procedures, even when unsuccess-
ful, to provide extremely useful information to the user or programmer

by specifying why they were unsuccessful. This point is discussed fur-
ther in Section IV.C.

B. Extensions of SIR.

1) Adding relations: Two major obstacles, in addition to computer

memory size, stand in the way of extending a SIR-like system by adding
new relations and their associated programs: (a) the problem of inter-
action between a new relation and those already in the system, requir-
ing modifications throughout the system for even minor additions; and
(b) the problem of the time required to search through trees of words
linked by relations. This time apparently must grow exponentially as
the number of relations increases.

The problem of interactions can best be overcome by replacing SIR
with a generalized system. As discussed in Chapter VI, this change

would greatly reduce the interaction problem and simplify the introduction
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of new relations. 1In addition, the programs would probably be signifi-
cantly smaller in the generalized system. Not only would all "yes-or-
no' type question-answering programs be replaced by a single, '"theorem-
proving" program; in addition, the procedure specification language of
the generalized system would result in more compact, as well as more
readable, programs.

The other obstacle to the expansion of a semantic information re-
trieval system is the same obstacle which occurs in programs for theorem
proving, game playing, and other areas of articifical intelligence --
the problem of searching through an exponentially growing space of
possible solutions. Here there is no basic transformation that can be
made to avoid the mathematical fact that the number of possible inter=
connections between elements is an exponential function of the number
of elements ingyolved. This means that in SIR, the time required to
search for certain relational links increases very rapidly with both the
number of individual elements which can be linked and the number of
different relations which can do thé ‘linking. However, many of the
heuristics for reducing search effert which have been suggested in
other areas concerned with tree-structured data can be applied here.

In the first place, relations seem to be divided into independ-
ent (non-interacting) groups; e.g., spatial relations are quite inde-
pendent of temporal relations. The search space affected by a new re-
lation is really just the space of interacting relations, which may be
a very small subset of the total space of relations. The axioms of the
generalized system can be used to identify the groups of interacting re-

lations. Secondly, the existence of two-~way links permits the search
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for a path between two points in the data structure to proceed from
either end (whichever is likely to produce a more efficient search),

or possibly from both ends simultaneously toward an unknown common

point. Finally, semantic information in the model might be useful in
suggesting intermediate points to use as ''stepping stonesY in a larger
tree search, thus greatly reducing the search effort. I believe that

the use of these and similar heuristic devices, along with expected in-
creases in computer speed and memory size and the introduction of parallel
processing computer hardware, will make a large-scale semantic informa-

tion retrieval system practical.

2) Adjectives and n-ary relations: All the relations in the pres-

ent system are binary relations. The model can be extended to handle
arbitrary n-ary relations as follows:

a. Unary operatdrs could be simply flags on the property lists
of the objects to which they apply. Or, if for purposes of uniformity
we forbid the use of flags, then they could be attributes whose values
are always a dummy symbol which indicates that the attribute is to be
interpreted as a unary operator. In handling adjectives, the following
decision would have to be made: should an adjective be modeled by‘an
unary operator, or should it be the value of some attributet For example,
"little red schoolhouse'" could be represented in the model in any of the
following ways$

i) An object which is an element of the set '"SCHOOLHOUSE," and which
has on its property list the flags " LITTLE" and "RED."

ii) The same object, which has on its property list the attribute
""MODIFIERS" with associated value " (LTTTLE, RED)."
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iii) The same object, which has on its property list the attribute-
value pairs '""(SIZE, LITTLE)" and " (COLOR, RED)."

The second representation is equivalent to the first but avoids the
need for unary operators. The third representation contains the most
information and is most consistent with the present form of the SIR
model, but has the disadvantage that it requires the use of a dictionary
to establish appropriate classifications of adjectives. The "best"
representation to use would have to be determined by experimentation
and would depend upon the organization of the information retrieval
programs which use the model.

b. Trinary (e.g., those involving transitive verbs) and higher
order relations could be represented in various ways analogous to the
treatment of binary relations. E.g., the n-ary relation R can be
factored into n relations Rl, RZ2, ..., Rn, such that

(xl, Xps eees xn>GR if and only if

(xz,..u, xn>= Rl[x'l]‘/\<x1, Xgreaes xn>= RZ[XZ]/\'

..»./\<X1, XZ"""Xn;-j.): Rn[xn],
where the value of the attribute Rj on the property list of xj would be

the ordered sequence<§ﬁf .. - xd). More specificelly,

. Xj—l’ Xj+1,
the trinary relation established by the statement, "John gave a book to
Jim'" could be factored into the three relations "GIVER,'" "GIVEN," and
"GETTER.'" The propety list of "JOHN" would have the pair " (GIVER,
(BOOK, JIM))," the property list describing "BOOK" would contain
"GIVEN, (JOHN, JIM))," and "(GETTER, (JOHN, BOOK))" would be placed on
"JIM's'" property list. Once again, the practicality and efficiency of

such a representation can only be discovered by developing and expers-

menting with working computer programs.
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3) Next steps: The present SIR system, and its generalized version
discussed in Chapter VI, are only first steps toward a true "understand-
ing" machine. Eventually we must solve the "advice-taker'" problem (22),
which involves .controling the operation of the machine merely by "advising"
it, in a suitable English~-like language, of the desired procedures or
results.

One approach to the "advice-taker'" is to develop programs which
can produce other.programs in accordance with simple instructions.
Such program writing programs could be an outgrowth of current work on
computer language '"compilers," if the input and output forms are suffi-
ciently well-defined. Simon (39) is working on this approach by de-
veloping a system which accepts a broad range of English statements as
input to such a program-writing program.

SIR suggests an alternative approach. Rather than developing a
program which writes other programs to do specified tasks, I propose
we develop a single, general program which can do any task provided
the program is properly controlled by information in its model. "Giving
advice" would then require only the relatively simple process of in-
serting appropriate control information into the model. The SIR model
provides its programs with information about the truth of particular re-
lations between specific objects. The model in the generalized system
also provides the '"theorem-prover" program with axioms which describe
properties of relations and interactions between relations. The next
generalization should involve adding to the model information which will
specify and control theorem-proving and model-searching procedures for

the program.
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After the above two approaches to an "uﬁderstanding" machine have
been developed independently, they should be synthesized. The program-
writing program should be incorporated into the general program of the
model-dependent system. The resulting system would then be able to con-
struct arbitrary procedure specifications, in accordance with simple in-
structions which had been placed in its model.

Ultimately the "intelligent" machine will have to be able to ab-
stract from the information in its model, "realize'" the necessity for
additional action, and create the necessary instructions for itself.

The design of sdch an "artificial intelligence'" awaits the development of
automatic concept formation and inductive inference systems (20,41) as

well as the generalizations of SIR described above.

C. Concerning Programming.

1) Value of programming: Many of the results and conclusions

written after the development of a large computer program such as SIR
frequently appear as if they could have been established without the
tedious effort of programming. This is rarely true, and in fact, new
systems which are described as complete "except for the programming"
usually require fundamental modifications if and when they are translated
into operating programs. The reasons for the importance of actually writ-
ing the program include the following:

a) Without a program it is extremely difficult to tell whether the
specifications for a system are really complete and consistent. Crucial
decisions may be considered minor details, and contradictions may go un-
noticed, until one is compelled to build an operating system.

b) The process of programming not only turns up fallacies in the speci-
fications for a system, but also generally suggests ways for avoiding

them and improving the system. Thus programming can be much more valu-
able than just searching for errors in the original specification. A
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completed "debugged" programmed system usually turns out to be a compro-
mise between the system as it was originally specified, a simpler system
which was more feasible to actually construct, and a more elaborate sys=
tem whose new features were thought of during the programming process.
This resulting system is frequently as useful and certainly more reliable
than the originally specified system, and in addition it may suggest the
design of even more advanced systems. With SIR, for example, methods for
implementing the '"exception principle" and resolution of ambiguities
arose from the design of the basic question-answerer, and the specifica-
tions for the generalized system of Chapter VI are based largely on proper-
ties of the final, working SIR system.

¢) The programming process frequently turns up insights which might not
otherwise be discovered (see for example paragraph AJS above).

d) Finally, the resulting program provides at the same time a demonstra-
tion of the feasibility of the ideas upon which it is based, a measure

of the practicality of the system in terms of time and space requirements
and an experimental device for testing variations in the original speci-
fications.

-

2) Uniformity of representation: A uniform tree linkage and search

procedure would simplify coding and allow the programmer to concentrate
on the more important problems of program organization and search strate-
gies. Such a standard representation would have to be flexible enough to
handle the most complicated cases. In SIR, the uniform use of only type-
3 links or all property-lists and only type-l links on all sub-property-
lists would probably achieve the desired result. An alternative, some-
what more complicated (but more economical of storage) way to achieve the
same result of freeing the programmer from concern for details, would be
to allow several kinds of linkages to be used wherever they were best
suited (e.g., type-1,-2, and -3 links), but require all retrieval pro-
grams to be able to recognize the type of a link and treat each one
appropriately.

If this alternative of allowing the use of several types of Link-

ages were used in the generalized system, the nature of the links
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appropriate for particular relations could be stored in the model on the
property-lists of the relations. 1In this way the type-identification

would be readily available to the retrieval programs.

3) Programming tree-search: 1In order to handle some of the re- .’

trieval processes I had to develop some general tree-tracing functions.
The facility in the LISP language for defining functions of functional
arguments permitted the design of programs providing a powerful ability
to specify complex search procedures. For example, one of the most use-
ful functions was 'find[start; link; test], ' where "start" can be any
word in the model structure, "link" specifies which attribute to use to
find succeeding words, and '"test" is the name of a function to be applied
in turn to each word reachable from "start" along the kind of path speci-
fied by "link." 1If the value of "test" applied to a word is the special
symbol "NIL," the search continues; otherwise the value of "find" (and
the result of the search) is just the value of "test." This result may
contain the word which satisfied the test and the successful path, i.e.,
the list of words which link "start" to the selected word in the desired
way. Note that the function "find" can be cascaded, i.e., "test" can be
another application of "find" itself. E.g., in testing whether every A
is part of some B, we may wish to test whether there is a class u such
that every A is a u and every u is part of some B. This test is carried
out simply by executing the following function (given in LISP meta-
language notation), and testing whether its value is "NIL" or not:
£ind[A; SUPERSET; A[[ul[find [u; SUPERPART-OF-EACH; A[[v]l[v=B]11;B111].

If a uniform representation (as described in paragraph 2, above) had

been used throughout SIR, then it would have been easy to develop a
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complete set of general network-tracing functions like '"find." Such a
set of functions could be the basis for a language which makes programming
tree- and network-searching systems much simpler than it is now. Such a
language might thus contribute to research in the areas of pattern recogni-
tion, game-playing (36), and network analysis as well as semantics and in-
formation retrieval. Note that the success or failure of an application
of the function "find" depends only on the connectivity of the network;
the order in which nodes are generated and tested, and therefore the
efficiency of the system for various kinds of networks, must be decided

in advance and built into the definition of the function.

4) Program simplification: The "procedures" presented in section

V.A.which were described as "rough flow charts'" for the retrieval programs,
may seem unnecessarily complicated. This is true for the following reasons:

a) Each procedure was written as an explanation of how a particular pro-
gram operates, and the place of these programs in the over-all program
structure was de-emphasized to avoid confusion. There is must more hier-
archical structure and use of common subroutines in the actual SIR pro-
gram than is indicated in those procedures.

b) As with most programming tasks, many possible simplifications occur

to the programmer as after thoughts. 1If I started over now, I could cer-
tainly construct a neater, more compact SIR system -- especially by in-
corporating some of the ideas discussed in paragraphs 2 and 3 above. How-
ever, I would be more inclined to ignore SIR altogether and instead start
programming the generalized system of Chapter VI.

c) Unfortunately, many of the '"simple" reasoning procedures tfhe program
must go through really are complicated. It was surprising to me how many
possible routes one may take to deduce a simple fact like, "A is part of
B.Il
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D. Subjects for Future Experiments.

1) Search procedures: The relative merits of different tree-

searching procedures should be investigated, since any device which signifi-
cantly reduced search effort would be a valuable contribution to the
practicality of SIR-like systems. In seeking a path between two nodes,

for example, one might compare the procedure of moving one ply from each
end, alternately, and looking for a common node, with the procedure of
continually branching out from one node, searching for the other. Even

this latter procedure can be performed in either a "breadth first" or a
more naturally recursive "depth first'" manner. While the first procedure
mentioned above cuts the effective depth of a successful search in half,

it also introduces matching problems in order to recognize success, and
makes it more difficult to discover the complete successful path. Which

of the various procedures is$ "best" will depend on the size of the networks,
the relative frequency of success, the average length of successful paths,
etc. Therefore the best way to determine the most efficient methods is

to experiment on an operating system, preferably with respect to a par-

ticular problem area.

2) Linkage structure: The optimum number of explicit links needed

should be investigated. One might expect a tréde~off here between space
and time; i.e., that a removal of redundant links, for instance by
"streamlining' operations, should save storage at the expense of increas-
ing the average question-answering time, while introducing redundant
links, for instance by adding as explicit links all question-answers which
are successfully obtained, should use up space but speed up the question-

answering process. However, this trade off is not strictly necessary.
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Explicit links save time only when they provide correct answers; otherwise
they use time by requiring spurious parts of the network to be searched.
Which redundant links to weed out, as well as which search procedure to
use, depends on the characterisitics of the model and questions in a par-
ticular application and must be determined by experimentation.

Another structuring problem to be considered is that of consistency.
At present SIR tries to test the consistency of each input sentence with
the information it already has stored, before adding the new relations to
the model. It might be more efficient to blindly accept each input
sentence independently, and then check the consistency of the model from
time to time, say between input sentences, '"complaining'" if problems
occur. This procedure would give later information equal precedence
with earlier inputs, which might be a preferred arrangement for some ap-

plications.

3) Ambiguity in language: A system similar to SIR could be used as

a basis for a study of ambiguity in language. The example given above in
section VaBshows how SIR can resolve an ambiguous word meaning on the
basis of related word meanings. Similarly an expanded version of SIR might
be able to resolve ambiguous sentence structure on the basis of the mean-~
ings (or, more precisely, the contents of the property-lists) of the
words in the sentence. Thus the system could be as effective as people
in recognizing the structural difference between sentences like,

"Bring me the bottle of milk which is sour," and

"Bring me the bottle of milk which is cracked."
Such a study might contribute to our knowledge of the use of language

and how people resolve ambiguities. It could investigate how much-




142

semantic or contextual information is needed to resolve ambiguities which

give people trouble, such as "They are flying planes."

4) Simulation: The behavior of SIR in answering questions and re-
solving ambiguities suggests that the program "understands the meanings'
of the words in its model. The information SIR associates with a word
by means of the property-list of the word is analagous to the informa-
tion a person associates with an object by means of a '"mental image'" of
the object. Perhaps we can carry this analogy further and say that since
certain aspects of the behavior of SIR are similar to human behavior, then
the representation and manipulation of data within‘SIR is similar, at the
information processing level, to the representation and manipulation pro-
cedures a person carries out when '"thinking."

Psychologists have simulated on a computer human problem-solving be-
havior (28) and the process of memorizing nonsense syllables (14). Per-
haps SIR can be considered a simulation of the human process of learning
and thinking about coherent facts. Psychological experiments would have
to be devised to test this theory by testing more precisely the similar-
ity of SIR's behavior to human behavior. In the process we might obtain
valuable ideas for both improving the model and understanding human

cognitive processes.
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Appendix I: Notation
A. Basic Symbols.
The purpose of this section is to present some of the formal
logical terminology used in this paper. 1In the following list, the
use of various symbols will be explained by means of definitioms,

examples, or statements of interpretation.

Symbol Explanation

. and so forth.

A,B,C, ... meta-symbols standing for any logical formulas.
~NAVD S the propositional connectives.

~ A not A; A is false.

AAB A and B (are both true).

AVB A or B or both.

A>B A implies B.

ASB A if and only if B.

X3V sZy oo variables; mnames of unknown objects or sets.
asBsYs --- constants; mnames of particular objects or sets.
C€x o is a member of the set x.

xCy set x is contained in set y.

ogx [ x]; @ is not a member of the set x.

X=y X and y are the same object or set.

x#y [x=y].

A4 universal quantifier symbol.

(V) universal quantifier.

(Vx)A A is true for all values of x.

E; existential quantifier symbol.

@3x) existential quantifier.

(Ix)A there exists an x such that A is true.
{a,B,y,:...:} an unordered set of the objects named.

< aB) the ordered pair of the objects named.

=df equals by definition; is defined to be.

B. Subordinate Proof Derivation.

"Subordinate proof" is a method for proving logical deductions in the
first-order predicate calculus ('"the quantificational calculus'"). The
formulation outlined here is due to Prof. Hértley Rogers, Jr. It is

similar to the system of "general inference'" described by Suppes (43).



147

Definition:: Subordinate Proof Derivation of a formula B from a finite,
possibly empty, set of formulas & =df
an arrangement of formulas and long brackets satisfying the conditions:

1) The first k lines of the derivation consist of the formulas of @.

, . €. .
2) Given n lines of the derivation, the n+1°" line may consist of any
formula whatever, if a new long bracket is begun to the left of that
formula inside all existing brackets not previously terminated.

Definition: 1In a Subordinate Proof Derivation, line j is called an
ancestor of line /£ if j <./ and line j occurs inside no long brackets
other than those containing line £.

3) Given n lines of a derivation, the n+lSt line may consist of a formu-
la A (without a new long bracket) if

i) A is a known true theorem,

ii) A is implied, in the propositioggl calculus, by any set of
formulas in ancestor lines to the n+l line, or

iii) A can be obtained from a formula in an ancestor line by an
allowable use of the method of US, UG, ES, EG, Il, or I2.

Q&finitions: Let A be any formula, and let @ and B be terms.
A =df the formula obtained from A by substituting B for every free
ogawrence of g in A, i.e., for every occurrence of ¢ not within the
scope of a quantifier containing (.

US =df Universal Specification, by which (v a)A becomes g

UG =df Universal Generalization, by which A becomes (\/a)R.

ES =df Existential Specification, by which (3a)A becomes AJ.

EG =df Existential Generalization, by which A becomes (3|3yA .
7 I1 =df A rule which allows insertion of a formula of the form@]qx.

I2 =df A rule by which {a=p,A} leads to A.
Certain conditions restrict the allowable usa%e of most of these quan-
tifier transformation methods. These conditions, which relate to
conflicts between variable interpretations and dependencies between
constants, are too involved to present in this outline.

4). An innermo st long bracket may be terminated at (and including) the
n  line if we write as the n+18t line [A=C] where A and C are,respec-
tively, the first and last formulas in the long bracket in question.

5) An innermost long bracket may be terminated at the Eth line if that
bracket begins with a formula ~A and has for its last two lines C and
~C, for some formula C, if we write A as the nt+1S%t line.

6) The last line has no long brackets and is the formula B.
Main Theorem (given here without proof): If there is a Subordinate

proof Derivation of B from &, then B is quantificationally
deducible from .
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Appendix II: Derivations of SIR Deduction Procedures

Each of the 23 deduction procedures listed in Table b. is a
theorem of the SIRl formal system. The proofs, presented below,
generally consist of four statements:
i) The SIR deduction procedure, as stated in Table b.

ii) A corresponding SIR1 wff, obtained through use of the corre-
spondences of Table c.

iii) The quantificational calculus statement obtained from the
formula in ii) by eliminating €-quantifiers as described in Section
VI.B.

iv) The outline of a Subordinate Proof Derivation for the state-
ment in iii). These proofs are "outlines" in the sense that
occasionally several steps are combined into one, line numbers are
used as meta~symbols to stand for lengthy expressions, and derived
rules of inference such as ''modes ponens'" are used when convenient.
However, enough detail and explanation is presented so that complete
formal "SPD's'" can easily be constructed if desired.

The axioms of SIRl, as given in Table d. and its associated
definitions, are introduced into the Subordinate Proofs as "true"
theorems whenever necessary. Universal quantification over all
free variables in the initial and final statements in the following
proofs is assumed.

In some cases, the proofs of SIR deduction procedures follow

immediately from SIRl axioms or definitions, so that "SPD's" are

unnecessary.

n Jw)
xCyaAyCzxCz
Vo) [z byl A (V) [abyDakz] = (Va) [afx Dot z]
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L. [(Va)[aex eyl A (V) [aeyaez]

2. | Bex>pey US1 (by US in line'l) . -
3. |BEy?BEz Usl

40 BEX

5. [Béy 4,2

6. Béz 5,3

7. | Béx>Bez :

8. | (V) [aex>aez] UG7

1.+ 8. qed.

2) x=y3xCy
x=y = (W a€x) [afy]

x=y = (¢ a) [aex sa€y]

1. | x=

2. | [[~(wa) laex aky]

3. (Ba) ~[aexaafy] 2

4, ~[BEx=>BE€y] ES3

S BExA ~BEy

6. BEy 12-1,5
7. | LVBE€y 5

8. Liwva) [afxzpafyl]

1.=8. qed.

3) equivix;yl=xCy

x=y = (Vv a€x) [a€y] same as 2).

4) atxaAxCy=Qfy
a€x A (v BEx) [BEY] =€y
a€x A(VB)[BEx=2BEY] €y

1. [Gex A (v B)[BEx=BEY]
2. |C€x=Q€y usl
3. Loey 1,3

1. =3, qed.

5) J(equiv)

(=) axiomi.




6) (R(equiv)
®(=)

7) J(equiv)
L=

8) ~ownglx;x]

~( %) (IB€x) [ownb [a5B] ]
R(ownb)

9) ownglx;y]a sz#owng[x;z]
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axiom.

axiom.,

axiom.

(VBE€y) (Jo€x) [ownbla;BI I A (vaz) [a€y]=> (v BEZ) (Fa€x) [ownb [a;B] ]

(¥ B)[Bey=> 3a) [a€x Aownb[a;B] ]I A (W @) [€z a€y]

> (' B) [B€z=(3) [@€x Aownb[a;8]]]

(vB)[BEY @) [a€x Aownb[a;B]]] A G ) [€z=paEy]

1

2. | Yey=>@3) [a€xAownbla;y]]

3. | véz=pvey

4o | Y€z=> () [@€x A 0ownb[ayy]]

5. | (¢ B)[Béz=(3x) [c€x mownbla;B]]]
1.=»5. qed.

10) ownglx;y] A xCz=powng[z;y]

Us1
Us1
3,2
UG4

(7 B€y) Qa€x) [ownbla;B]] A (v € x) [a€z]= (v Bey) (JQ€z) [ownb[a;B]]

(vB)[BEy=>(3x) [a€x Aownb[a;B] 1] A (W) [aéxDagz]

= (v B)[Bey 22@a) [a€z Aownbla;p]]]

1. [(vB)IBey 2(E) [a€x aownb[a;Bl]] A (v ) [afx D0€z]
2. | Yey @) [a€x A ownb[a;y]]

3. | [vey

4, (3a) [oex Aownblasy]]

56 pexAownb[p;y]

6. LEX =€z

7. L€z Aownb [u;y]

8. | |LGa)[c€z Aownbla;y]]

9. |1 3.8,

0. | (¢B)[Bey=>(3a) [afx nownbla;B]]]

1l.=10. qed,

Us1

3,2
ES4
US1
5,6
EG7

UGY
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11) ownl[x;ylA xCz=pown[z;y]

(Fo€x) [ownb[a;y]] A(W fx) [0€z] = (3a€z) [ownbla;y]]

(J) [a€x Aownblasy]] A (W) [a€x=0€2] B (3Q) [Q€z A ownb[a;y]]
1. | Qo) [a€x Anownbla;y]] A (v Q) [gx=paez]
2. | BEx Aownb[B;y]
3. | Bex=pBEz
4, | B€z Aownb[B;y]
5

. | Qo) [a€z A ownblasy]]
1.=5. qed.

12)  ownglx;y] A z€y=own[x;z]

(\VBEy) Gu€x) [ownbla;B]] A z€y = (Ja€x) [ownb[a;2]]

(7 B) [Bey = (3) [a€x Aownb[a;B]] A z€y () [a€x Aownb[a;z]]
1 [Rs s ontiasline

3. | o) [c€x Aownbla;z]]
1. 3. qed.

13) ~vpartglx;x]

~(v afx) (IB€x) [partbla;B]]
R(partb) axiom.

14)  partglx:yl A\ zCy=ppartglx;z]

ES1
Us1
2,3
EG4

(¥ B€y) @a€x) [partblasBl] A (Wafz) [a€y] = (¥ B€2z) (Jafx) [partbla;p]]

Proof is the same as proef of (9), with "ownb" replaced by '"partb."

15)  partlx;y]l oxCz=ppart(z;y]

(Jofx) [partbla;yl 1 A (Wa€x) [a€z] = (Jafz[partbla;y]]

Proof is the same as proef of (11) with "ownb" replaced by '"partb.,"

16)  partx;yla partglz;x]=ppart[z;y]
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(Jo€x) [partbla;yll A (W p€x) (Ga€z) [partbla;Bl] = (Juez) [partbla;y]]

(3Q) [oex A partbla;y]] A (@ B) [BEx = (Fa) [a€z A partbla;Bl]]
=>@3a) [a€z apartbla;y]]

1. [Qa) [aex A partbla;yl] A (W B) [B€x =(3a) [a€z A partbla;pl]]

2. | vex apartbly;y] ES1
3. | vex=>@a) o€z Apartblo;y]] Usl
4, | 3a) [oez A partbla;y]] 2,3
5., | uéz apartblu;y] ES5
6. | g(partp) Axiom
7. | partblp;y] A partbly;yl=partblu;y] Usé
8. | uez apartblp;yl 5,2,7
9. @) [a€z A partblasyl] EGS8

' 1.=%9. qed.
17)  partglx;yl A z€y3ypart[x;z]
(7 Bey) (Ja€x) [partbla;Bl] A zéy=y(Jaex) [partbla;z]]

Proof is the same as proof of (12) with "ownb" replaced by 'partb."

Lemma 1: (v @) (W B)(V x)[single[x] A aéx ABEX=>0=B]

1, [single[x] Aa€x A bEx
2 @Aa) [aex A (VW B) [BEx=B=]] 1,def.of single
3. |vex A (W B) [BEx=p=Y] ES2
4, |a€x=pa=y Us3
5. |aFy 1,4
6. |bex=b=y Us3
7 b=y ]->6
8. [a=b 12-5,7
9. 1.=8.
(V) (v B) (¥x)[single[x] nQ€x ABEX=O=B]  qed. UG9

18) right[x;y]=>~rightly;x]

(3a€x) (IB€y) [rightbla;B]] A singlelx] A singlely]
=~[(a y)( B x)[rightb[a;Bl]A singlely] A single[x]

" (3a) [a€x A 3B) [BEy A rightbla;B1]1] A single[x] A single[y]
= ~[ Ga) [o€y A (IB) [BEx Arightbla;B11] Asinglely] A single[x]



11.
12.
13.
14,
15.
16.
17.
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Y€x A (3B) [B€y Arightbly;B]]
HEy ATightb[y;u]

(Ja) [cey A(IB) [BExArightbla;B]]]
weyA (IB) [Bex Arightblw;p]]
Nex aTightb[w;A]
single[x] A YExA NEXZY=A
Y=A
single[y] o LEY A WEY D U=W
L=
rightt[N\;w]

*Zkrighth)

rightb[A;w]=> ~rightb[w;\]
~rightb[w;A\]

| rightb[w;\]

~,

| ~[4. A singlely] A single[x]]
1.17. qed.

19) < (right)

40
5.
6.
7.
8,
90
10.

11,

12,
13.
14,
150

(Faex) (IBey) [rightbla;B]] A (Ja€y) (IB€z) [rightbla;B]] A51ngle[ ]

Asingle[y] A single[z]
D(Iaex) (Fp€z) [rightbla;B] A 51ng1e[x],\31ng1e[z]

(Ga) [a€x A(3B) [Bey arightb[a;B]]1] A single[x] A single[y]

ES1
ES2

ES4

ES5
US-Lem.,.1
1,2,6,7
US-Lem.1
1,3,5,9
3,8,10,12
Axiom
US12
11,13

6

16

3a) [a€x A(IB) [B€y Arightila;Bl]] A (Ja) €y A (FR) [BEz Arightb[a;B]]]

Asingle[x] A single[y] A single[z]

=) [c€x A (IB) [BEz A rightb[a;B]l]] Asingle[x] A single[z]

Asinglely]

vex A (IB) [BEy Arightb[y;B]

pey Arightbly;p]

wey A(IB) [BEz Arightb[w;B]]

Ny Arightblw;B]

single(y] A L€y A WEY Hp=w

p=0

rightb[y;w]

o/ (rightb)
rightb[y;w] o rightb[w;N] rightb[y;A]
A€z A rightb[y;A]

(38) [Bez arightbly;p]]

YéEX AL12,
| (Fa) [a€x A (FB) [B€z ATightbla;B]]]

lep 14,
1. aosingle[x] ,single[z]=>14, A single[x] A single[z]

qed,

[(3a) [a€x A (3B) [BEY Arightbla;B]]1A(Fx) [aey A (3B) [Bez A rightbo;B]]]

ES1

ES2

ES1

ES4
US-Lem.1
1,3,4,6
3,7,12
Axiom
Us9
8,5,10
EG11
2,12
EG13

15




154

20)  jrightlx;yl=rrightlx;y]

(Baex) (ABey) [jrightbla;pl] A single[x] asinglely]
=>(Ja€x) (3pey) [rightbla;Bl] Asingle[x] A singlely]

@) [cex A(3B) [BEY Ajrightblo;Bl]] A singlelx] A singlely]
=@30) [aex AAB) [Bey arightb[a;B]]] A single[x] A singlely]

1. | @) [cex A(3B) [BEY A jrightbla;pl]]

2. | vex A (3B) [Bey Ajrightbly;B]] ES1
3. | pey Ajrightbly;pl ESB
4o | (Wx) (W y)[irightblx;y]l= rightblx;y]] Axiom
5. | jrightbly;ul rightbly;u] US4
6. | nEy aTightbly;u] 3,5
7. | (3B)[Be€y arightbly;B]] EG6
8. | YEx AT, 2,7
9. [(Fa)[aex A (IB) [BEy Arightbla;p]]] EG8
10, 1l.=9.

L. A single[x] 5 single[yl=9. Asingle[x] 5 single[y] qed. 10

21)  jrightlx;yl p z#y=>~jright[x;z]

Note: The SIR programs assumed that 'z#y' was equivalent to the
assertion, 'the z is not the y." This latter preferred interpre-
tation can be expressed directly in the SIR1l formalism by

single[z] A singlel[y] A (W a€z) [affy].
Therefore the appropriate SIRl statement corresponding to (21) 1is:

(3a€x) (3B€y) [ jrightbla; 1] A single[x] Asinglely] A single[z]
A (Vaez) [ofy]
=~ (Qa€x) (IB€z) [jrightbla;B]] A single[x] A single[z]]

(3o) [aex A @B) [Bey A jrightblasB]]] Asingle[x] A singlely] Asingle(z]
A (v o) [aez=agy] ,
=~ qa) [oex A (IB)[BEz A jrightbla;Bl]] A singlelx] nsingle[z]]

Proof is in the proof of (22) below.

22)  jrightx;y] p z#x = ~jright[z;y]
As discussed in the above note, the appropriate SIRl statement is:

(3aex) (Ipel jrightbla;B1] A single[x] Asinglely] A single[z]
A(v aez) [ofx]
=~[ (30€z) (Ipey) [ jrightblo;B]) A singlelz] A single[y]
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Qo) [aex A (3B) [Bey A jrightb[a;B]]] A single[x] psingle[y] A single[z]
AV @) [aez o]
=~[(@allaez A(IB) [Bey A jrightbla;B]]] A single[z] 5 single[y]

L.| Qo) laex A(3B)[Bey A jrightbla;B]]] A single[x] 5 single[y]

2.[ Nex A(3B)[Bey A jrightb[A;B]] ES1

3. wey ajrightb[i;w] ES2

4, U (jrightb) Axiom

5./ jrightb[hMjwl=(va)[lafw=~jrightb[r;al]

AlOFN = ~jrightbla;w] 1] US4

6. (Fa)l[[afw =~jrightb[N;al] Alafn=>~jrightbla;w]]] 3,5

7. 51nglc[z] asinglely] Ao (¥ ) [aez=agy]

8. ((3a) [aex A (3B) [B€z A jrightbla;Bl]]

9. Yéx A (IB) [BEz Ajrightbly;B]] ES8

10. wez A jrightbly;ul ES9

11. 31ngle[x]/\ NEX A YEXPY=N US-Lem.1
12. Y=A 1,2,9,11
13. wéz gy Us7

14, =0

15. ndy 10,13
16. HEY. 3,14,12
17. FW

18, pfw =>~jrightb[\;u] Us6

19. ~jrightb[A\;ul 17,18
20. jrightb[i;u] 10,12,12
21. ~8.
22, _~[8. /\Slnglelx]/\31ngle[z]] 21,1,7
23. 7.’—'—"—)22
24, 31ng1e[z] asingle[x] A (W) [@€z 20fx]
25, [(32) [cez A(3B) [BEY A jrightbla;Bl]]
26. a€z A (3B) [B€y A jrightbla;p]] ES25
27. bey pjrightbla;b] ES26
28. single[y] A bey AWEy Hb=w US-Lem. 1
29, b=w ) 1,27,3,28
30, a€z adx Us24
31. [a=

32. a¢x 26,30
33, LaEX 2,31,12
34, afh

35. aFN=> ~ jrightb[a;w] Us6
36, ~jrightbla;w] 34,35
37, _jrightb[a;w] 26,29,12
38. ~25,

39. | ~[25. A single[z] ,\81ng1e[y]] 38,24,1
40.| 24.=39.
41 _[7=22.1, [26~39.]] 23,40
42, 1. [[7.220A024.=39.]]

43, [1L.=[7.=222. 1T A [1=2[24.=39.1]] 42

1. A7.=>22. qed(21). 43

1. A 24=39. qed(23). 43




23)
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right[x;y]/\ rightly;z] =>~jright[x;z]

(3a€x) (3B€y) [rightbla;B]] A Fa€y) (IB€z) [rightbla;B] psinglelx]

A singlely] A single[z] »
=~ (Ja€x) (Ip€z) [jrightblx;z]] A single[x] A single[z]]

o) [aex A (IB) [Bey arightb[asBl]] A (F0) [cey A (3B) [B€z A rightbla;Bl]]

L,

2.
3.
b
5.
6.
7‘

8.

9.
10.
11.
12.
13.
14.
15.
16.
17,
18,
19,
20.
21,

asingle[x] aAsinglely] Asingle[z]

M (Fa) [aex o (IB) [B€z A jrightb[a;B]]] A single[x] Asinglelz]]

(3a) [cex A (3B) [Bey arightbla;Bl]] A (Fa) [a€y A (IB) [BEz
Arightblo;B]]] Asingle[x] Asinglely] A single(z]

nex A (3B) [BEy arightblp;B]]
wey arightblu;w]
vey A(3B) [B€z arightbly;B]]
ez arightbly;n]]

single[y] Aw€y A Y€y Sw=y
w=y

rightb[w;\]

(Wx)(Vy)(vz)lrightb[x;y] Arightbly;z]=) ~jrightb[x;z]]
rightb[u;w]/\rightb[w;h]=$fvjrightb[u;k]
(30) [aex A (IB) [BEz Ajrightbla;B]]]

aex A (3B) [B€z AjrightblasB]]

bez A jrightbla;bl

single[x] , HEX 5 a€x pu=a

u=a

single[z] s M€z , bEz=pN=D

A=b

jrightblusA]
| ~jrightb[p;N]
~11,

L~[11. Asingle[x] A single[z]]

1.=»21. qed.

ES1

ES2

"ES1

ES4
US-Lem. 1
1,3,4,6
5,7,12
Axiom
Us9

ES11
ES12
US-Lem.1
1,2,12,14
US-Lem. 1
1,5,13,16
13,15,17,12
3,8,10

20



a. SET-INCLUSION

(THe NEXT SENTENCE I> .+ )
(EVERY KEYPUNCH-OPERATOK (5 A GIRL)D

(FHE FUNCTION USED IS . )

SETR-SELECT

((GENERIC o« KEYPUNCH-UPERATUR) (GFNERIL o GIRL))

{THL REPLY . )

(FHE SUB-FUNCTION USED IS . .)

SETK

(KEYPUNCH-UPERATUR GIRL)

(ETS REPLY . )

(f UNDERSTAND THE SUPERSET RELATIUN Bt TWELN GIRL AND KEYPUNCH-UPERATOR)
{1 UNDERSTAND THE SUBSET <XELATION BETwEEN KEYPUNCH-OPERATOR AND GIRL)

(THE WNEXT SENTENCE IS . .)
(ANY GIRL IS AN EXAMPLE OF A PERSON)

(THE FUNCTION JSEC IS . )

St TR-SELECT

(LGENERIC o GIRL) (GENERIC . PHRSON))

(THE REPLY « )

(FHL SUB=-FUNCTION USEL IS . o)

SETR

(LIRL PERSON)

(ITS REPLY . o)

(I UNDERSTAND THE SUPERSET RELATIUN BETWECN PERSON AND GIRL)
(1 UNDERSTANU THE SUBSET RtLATION BETWEEN GIRL AND PERSON)

(THE NEXT SENTEnNCE [S . .)
(IS A KEYPUNCH-0PERATOK A PERSON W)

{I1HE FUNCTION USED IS . <)

StETRQ-SELECT

((GENERIC « KEYPUNCH-UPERATUR) (GENFRIC o PERSUND)
(ftg REPLY o )

{THE SUB-FUNCTION USED IS . )

SETRQ

(KEYPUNCH-UPERATOR PERSON}
(ITS REPLY o .}
YES

{THE NEXT SENTENCE IS . )
(LS A PERSON A PERSON )

{1HE FUNCTION USED IS . )

SLTKU=-SELECT

((GENERIC + PERSON) (it NExI{ o PERSONTY
{THe REPLY . )

(ine SUB—FUNCTION USEs 1S . o)

SETRUY

{PERSON PERSON)

{ITS REPLY . )

YES

(THE NEXT SENTENCE 1S . .}
(IS A PERSON A GIRL Q)

{THE FUNCTION USED IS . .}
SETRGW~SELECT

((GENERIC . PERSUN) (LENERIC o GIRL))
{THE REPLY .« o)

(THE SUB-FUNCTION USED IS . )

SETRG

(PERSUN GIRL)

(ETy REPLY o o)

SUMETIMES

(THE NEXT SENTENCE IS . )
(IS A MONKEY A KEYPUNCH-OPERATAR Wi

(THE FUNCTION USED IS . <)

SETRQ-SELECT

((GENERIC . MONKEY) [(GENERIC . KEYPUNCH-OPERATOR))
{THE REPLY .+ )

(THE SUB-FUNCTION USED IS . <)

St TRU

{(MNNKEY KEYPUNCH-OPERATUR)

(Iis REPLY o o)

(INSUFFICIENT INFORMATION]
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c. EQUIVALENCE




(THE EXT SENTENCE IS . .)
LEVERY FIREMAN OWNS A PAIR-OF-RED-SUSPENDERS)

(THE FUNCTION USED IS .+ )

OWN-SELECT

((GENERIC « PAIR-OF-RED-SUSPENDERS) (GENERIC . FIREMAN))

(The REPLY o o)

{THL SUB-FUNCTION USED IS . o)

OWNK

{PAIR~0F-RED-SUSPENDERS FIREMAN)

(1TS REPLY « )

{1 UNDERSTAND THE PUOSSESS-BY-EACH KELATION BETWEEN PAIR-UF-RED-SUSPLNUERS AND FIRCMAN)
{1 UNDERSTAND THE UWNED-BY-LACH RELATION BETWEEN FIREMAN AND PAIR-0F-RED-SUSPENDEKS)

(THE NEXT SENTENCE IS . o)
(DUELS A PAIR-OF-REO-SUSPENDERS OWN A PAIR-UF-RED-SUSPENDERS Q)

(THE FUNCTION USED IS . )

UWNQ-SELECT

((GENERIC o« PAIR-UF-RED-SUSPENDERS) (GENERIC . PAIR-OF-RED-SUSPENDERS))
{THE REPLY < )

{THE SUB-FUNCTION USED IS . .2

UWNKQ

(PAIR-OF-RED-SUSPENDERS PAIR-OF-RED~SUSPENDERS)

(ITS REPLY . )

(NO ## THEY ARE THE SAME)

(Tnt NEXT SENTENCE IS .+ )
(DUtS A DUCTOR OWN A PAIR-OF-RED-SUSPENDFRS Q)

{THE FUNCTION USED IS . <)

OwNu-SELECT

({GUNERIC o PAIR-OF-RED-SUSPENDERS) (GENERIC . DOCTOR))
{THE REPLY . .)

{THt SUB-FUNCTION USED IS . )

UnNRW

{PAIR~OF-RED-SUSPENDERS DOCTOR}

(ITS REPLY o &)
{ INSUFFICIENT INFORMATION)

(THE NEXT SENTENCE IS . )
(A FIRECHIEF IS A FIREMAN)

(THE FUNCTION USED IS . )

SETK-SELECT

((GENERIC o FIRECHIEF) (GENERIC . FIREMAN))

(THL REPLY o )

(THE SUB-FUNCTIUN USED 1S . .}

SETR

{FIRECHIEF FIREMAN)}

{ITS REPLY . .)

{1 UNDERSTAND THE SUPERSET RELATION BETWEEN FIREMAN AND FIKECHIEF)
(1 UNDERSTAND THE SUBSET RELATION BETWEEN FIRECHIEF AND FIREMAN)

(THE NEXT SENTENCE IS . )
(DUES A FIRECHIEF UWN A PAIR-UF-RED-SUSPENDERS W)

(IHE FUNCTION USED IS . )

OWNG-SELECT

({GENERIC . PAIR=OF-RED-SUSPENDERS) (GENERIC . FIRECHIEF))
(THE REPLY . )

{ITHE SUB~FUNCTION USED IS . .}

OWNRQ

(PAIR-OF-RED-SUSPENUERS FIRECHIEF)

{I7TS REPLY o o)

YtS
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(THE NEXT SENTENCE IS . o)
(A SCREEN IS PART OF EVERY DISPLAY-0DEVICE)

(THE FUNCTIUN USED IS + o)

PARVR-SELECT

((GENERIC . SCREEN) (GENEKIC . DISPLAY-DEVICE))
(THE REPLY . .}

(THE SUB~FUNCTION USED IS . .)

PARTR

(SCRELN DISPLAY-DEVICE)

(ETS REPLY . o)

{1 UNDERSTAND THE SUBPART-UF~EACH RELATION BETWEEN SCREEN AND UISPLAY-DEVICE)
(1 UNDERSTAND THE SUPERPART-OF-EACH KRELATION bETWEEN DISPLAY-DEVICE AND SCREEN)

(THE NEXT SENVENCE IS . .}
(1S A SCREEN PART OF SAM J)

(THE FUNCTION USED IS . .)
PARTRG~SELECT

({GENERIC . SCREEN) (UNIQUE . SAM))
{THE REPLY . .)

(THE SUB~FUNCTION USED IS . o)
PARTRGUQ

(SCREEN SAM)

(LTS REPLY o o)

Yis

(THE NEXT SENTENCE IS . .1}
(A BEARD [S PART OF A BEAINIK)

(THE FUNCTION USED IS . .)

PARTR=-SELECT

({GENERIC . BEARD) (GENERIC . BEATNIK))

(THE REPLY . .)

(THt SUB~FUNCTION USEUL IS . )

PARTR

(BEARD BEATNIK)

(ITS REPLY . o)

(1 UNDERSTAND THE SUBPART-OF-EACH RELATION BETWEEN BEAKRD AND BEATNIK)
(1 UNDERSTAND THE SUPERPART-OF-EACH RELATION BETWEEN BEATNIK AND BEARD)

(THE NEXT SENTENCE IS .« o)
(EVERY COFFEE-HOUSE-CUSTOMER [S A BEAINIK)

(THt FUNCTION USED IS . .}

SETR-SELECT

({GENERIC . COFFEE-HOUSE-CUSTOMER) (GENERIC o SEATNEK)]

(THE REPLY . )

(THE SUB-FUNCTION USED IS . .}

SETK

{COFFEE-HOUSE-CUSTOMER BEATNIK)

{1TS REPLY « o) .

(I UNDERSTAND THE SUPERSET RELATIUN BETWEEN BLAINIK AND CUFFEE-HUUSE-LUSTUMER)
(1 UNDERSTAND THE SUBSET RELATION BETWEEN COFFEE-HOUSE-CUSTOMER AND BEATNIK)

(THE NEXT SENTENCE IS . .}
(8UZZ IS A COFFEE-HOUSE~CUSTOMER)

(THE FUNCTION USED IS . o)

SETR-SELECT .

((UNIQUE . BUZZ) (GENERIC . COHFEE~HOUSE-CUSTOMER))
(THE REPLY . o)

(THE SUB-FUNCTION USED IS . .)

SETRS

(BUZZ COFFEE-HOUSE-CUSTOMER)

(ITS REPLY o o)

(1 UNDERSTAND THE ELEMENTS RELATION BETWEEN BUZZ ANU CUFFEE-HUUSE-CUSTUMEK)
(I UNDERSTAND THE MEMBER RELATION BETWEEN COFFLE-HOUSE-CUSTOMER AND BUZZ)

(THE NEXT SENTENCE IS o o)
(15 A BEARD PART UF BuU2Z Q)

(THE FUNCTION USED IS . .}
PARTRQ-SELECT

({GENERIC . BEARD) (UNIQUE . BUZZ))
(THE REPLY . o)

(THE SUB~FUNCTION USED IS . .)
PARTRGUQ

(BEARD BUZZ)

(17S REPLY . )

YES

8. PART-WHOLE, SPECIFIC (Cont.)




(THE NEXT SENTENCE IS . .)
(A VAN-DYKE IS PART OF FERREN)

(THe FUNCYION USED IS o )

PARTR-SELECT

((GENERIC o« VAN-DYKE) (UNIQUE « FERREN))

{THE REPLY o .)

{THE SUB-FUNCTION USED IS . .)

PARTRGU

(VAN-DYKE FERREN)

(1TSS REPLY < o)

{1 UNDERSTAND THE SUBPAKT RELATION BETWEEN VAN-DYKE AND FERREN)
(I UNDERSTAND THE SUPERPART RELATIUN BETWEEN FERREN AND VAN-DYKE)

(THE NEXT SENTENCE IS « o)
(A VAN-DYKE IS A BEARD)

(THE FUNCTION USED [S o .)

SETKR-SELECT

({GENERIC o VAN-DYKE) (GENERIC . BEARD))

(THE REPLY . o)

(THE SUB-FUNCTION USED IS . .)

SETR

(VAN-DYKE BEARD)

(LTS REPLY o o)

(I UNDERSTAND THE SUPERSET RELATION BETWEEN BLARD AND VAN-ULYKL)
{1 UNDERSTAND THE SUBSET RELATION BETWEEN VAN-DYKE AND BEARD)

{THE NEXT SENTENCE 1S « )
(IS A BEARD PART OF FERREN Q)

(THE FUNCTION USED IS . .)
PARTRQ-SELECT

({GENERIC . BEAKD) (UNIQUE . FERREN))
(THE REPLY .+ )

(THE SUB-FUNCTION USED IS . .)

PARTRGUQ

(BEARD FERREN)
(ITS REPLY . .)
YES

({THE NEXT SENTENCE IS < o)
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Biographical Note

Bertram Raphael was born in New York City on November 16, 1936. He
attended the Bronx High 8chool of Science, received a B.S. degree in Phy-
sics from Rensselaer Polytechnic Institute in 1957, and received an M.S.
degree in Applied Mathematics from Brown University in 1959.

Mr. Raphael held several scholarships at RPI from 1953 to 1957, and
the Universal Match Foundation fellowship at Brown University in 1958.
He received an NSF honorable mention and was elected to the Society of
Sigma Xi in 1957.

Mr. Raphael has been interested in automatic computation since 1959
and has worked in that field for RCA, Moorestown, New Jersey; for Bolt,
Beranek and Newman, Inc., Cambridge, Massachusetts; and for the RAND Cor-
poration, Santa Monica, California, for whom he is presently a consultant.
He taught at RAND summer institutes for Heuristic Programming (1962) and
Simulation of Cognitive Processes (1963), and lectured at UCLA during the
summers 0£1963 and 1964. He has recently accepted an appointment as As-
sistant Research Scientist at the Center for Research in Management Science,
University of California at Berkeley, effective June, 1964.

His publications include:

"Multiple Scattering of Elastic Waves Involving Mode Conversion," with R..
Truell, AFOSR TN 59-399, Metals Research Laboratory, Brown University,
May, 1959.

""A Computer Representation for Semantic Information,'" paper presented at

1963 meeting of AMICL, abstract in Mechanical Translation 7 (2), October,

1963.

"A Comparison of List-Processing Computer Languages,'" with D. G. Bobrow,
Comm. ACM, expected publication May, 1964.

"LISP as the Language for an Incremental Computer," with L. Lombardi, in
The LISP Programming Language: Its Operation and Applications, (E. C.
Berkeley, ed.), Information International, Maynard, Massachusetts, ex-
pected publication May, 1964.

His hobbies include mountain climbing and square dance calling.

Mr. Raphael is currently a member of the AssOciation for Computing
Machinery, the Association for Machine Translation and Computational
Linguistics, and the American Mathematics Society.




