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EECOGNITION OF TOPOLOGICAL ITHVARTANTS®
BY ITERATIVE ARRAYS

Abstract

A study ia made of the recognition and transformation of figures
by iterative arrays of finite state automata. A figure is a finite
rectangular two-dimensicnal array of symbols. The iterative arrays
considered are also finite, rectangular, snd two-dimensional. The
dutomata comprising any given array are called cells and are assumed
to be isomorphic and to operate synchronously with the state of &8 cell
at time t+4l being &4 function of the states af it and its four nearest
neighbore at time t. At time t=0 each cell is placed in one of a fixed
number of initial states., The pattern of initial states thus intro-
duced represents the figure to be processed. The resulting sequence of
array states represents 4 computation based on the inmput figure, If
one waits for a specially designated cell to indicate acceptance or
rejection of the figure, the array is said to be working om a recog-
nition problem. TIf one waits for the array to come te a stable config-
uration representing an output figure, the array is said to be workimg
on & transiormation problem.

Chapter 2 contains a general theory of recognition. Thorems on
the amount of time required to perform recogmition and on methods of
speeding up recognition are presented. Some properties of the classes
of recognizable figures are given. Arrays are compared to other types
of figure recognitien devices. In the last sectien the class of linear
predicates is studied. A limear predicate is a family of figures which
can be recognized in time proportional to the perimeter of the figure.

Chapter 3 contains a study of the recognition of some topologically
invariant properties of figures. A fundamental transformation of
figures is presented and is then used to show that a wide variety of
topologically invariant properties form linear predicates including
connectivity and maze solvability. Two properties whose linearicy is
open are discussed,

Chapeter 4 contains a brief study of transformation problems, Some
general theorems are presented as well as discussions of specific
transformations. An optimal solution to the two-dimensional firing
squad synchronization problem is also presented im Chapter 4.

In addition te the formal results, several open questions are
presented and some iterative programming techniques are considered.

¥Ih1s report reproduces & Tthesis of the same title submitted te the
Department of Mathematics, Massachusetts Institute of Technelogy, in

partial fulfillment of the requirements for the degree of Doctor of
Fhilosophy.
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CHAFTER 1
INTROTUCTION

11 The Topie

In this theslis we study the recognition and transformation of
figures by iterative arrays of finite state automata. For our
purpozes & figure 13 a finlte rectangular iwo=dimensional array of
symbols, Our iterative arrays are also inite, rectangular, and
iwo-dimensional. We eall the automata, which make up sush an array,
sells. All the eells in an array are assumed to be of the same type,
that is, isomorphie, [he cells on the edges and corners of an array
may operate in a manner quite distinct from those in the interlor,
but this is to oe thought of as an effect which takes place because
these cells can sense that they are on the edges rather than bscause
they are inherently different from the interior cells. All of the
cells are placed in the array with common oriencation and each cell
is connected to its four nearest neighbors. The array funetions
synchrencusly, with the state of each cell at time t + 1 being a
funetion of the states of it and its four nearest nelghbors at time t.

At time t = 0 we place each cell in some initial stats. The
eonflguration of initial states thus introduced repressnts a figurs
which 1s taken to be the input to the array. Oiven an input figure,
the array procesds from state to state with the state transiticns of
the array being determmined by the transition funetiecn of the cell

type from which the array was constructed, The progressiocn of array
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states may be interpreted as a computation based on the input figure.
Of the many intarpretatins possible, we will consider two which we
epll recognition and display.

In a2 recognition computation we view the array as an acceptor
of figures in much the same way that a finite state automaton may be
viewed as an acceptor of tapes. Two cell states are designated as
final states corresponding %o accept and reject., These stetes are
assumed to be terminal. We input a figure, allow the computation
to proceed, and observe some specially designated cell, say the
northwest corner cell, When that cell enters one of the two final
states, we say that the figure has been accepted or rejected.

In & display cemputation we vliew the array as a device for
performing a trensformation of the input flgure. Certain cell states
are designated as fipal states and are assumed tc be terminal. We
inmt & figure, allow the computation to proceed, and observe the
array until it enters a state in which each cell is in a final state.
We interpret the resulting configuration of final states as a figure
and take that figure to be the output of the computation,

The major poertion of this thesis is devoted to the study of
reccgnition. A central role in this study is played by the concept of
predliecates which are simply collections of figures. Usually the
figures comprising a particular predicate share scme common property
which is of interest, Given a partieular predicate and a eell type,
we say that the cell type recognizes the predicate if the arrays of
that type accept exactly those figures belonging to the predicate

and reject all others. We consider questions such as the followlng:
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"What may be sald about the class of predicates which

are recognizable by arrayst®

"What may be sald about the speed with which a given

pradicate can be recognized?®

"How powerful are arrays as recognition devicest®

"To what other devices may they be comparedi®
A modest theory of recognition is developed in an attempt to answer
these and other questions., In addition the application of arrays to
some specifiec recognition problems is considered. These problems
inelude the recognition of connectivity, simple connectivity, and
more complicated topologleally invariant predicates, Display problems

are treated briefly in a comeluding chapter.

1s2 The Background

Cne of the earliest uses of iterative arrays was by von Neumann
who used the structure of a regular array of identlical automata as the
framework for a study of self-reproducing automata. The von Neumann
manuseript has been edited and completed by Ehr.rl-:s“m.

Humiuw} haz perfomed an extensive analysis of the funetioning
of iterative arrays in several dimensions, In his work arrays are
clegsified according to the number of dimensions, the pumber of
directions of signal flow, and whether or pnot the cells have an internal
memory. Hennie's eells are eguipped with external input and output

lines, Figures are presented to the array by placing an appropriate

stimulus on each input line and maintaining the stimulus untill an



apopropriate outpat is obtained. He does not always assume that the
ce ls have been reset to a canonical state at the time the input is=
presented. Thuas a given input figure may cause different behavior in
the array depending on the configuration of statas at the time the
input was presented. If an array always achleves a steady state no
matter what 1ts initial configuration and input, it is sald to be
stable, If an array has axactly cne steady state corresponding to any
glven input, it is =said to be regular. Hennise studies the guestiom
af detemmining the stabdlity or repularity of a family of arrays,
miven a description of & typleal cell. He finds algoritims for
onswering these guestions in most one-dimensional cases and goes on o
ahow that the same guestions are recursively unsolvable in higher
dimensions under all tut the most severse restrictions on signal flow,
He also studies the relative computing power of arrays of various
wpes, Many of the questions studied by Hennie deal with arrays par

a8 as opposed to the application of arrays to computational problems.
Sines we tend to emphasize the latter type of problem, we feal that
our work forms a complement to that of Hennle,

Many peoples are intreduced to iterative arrays via the ocne-
dimensional firing sguad synechronization problem. This problem has
besn eredited to Jehn Myhill (1967) by Moore''!). Scluticns of
varying degrees of efficlency and generality have been published by
l-l'-lkm“?}, Enlzuruj. and Moore and Langdon {‘E}. Tha two=
dimenaional firing squad 1s discussed in Sectlon 4.3 below,

The real time computing power of iterative arrays has been studied

by Cole'®), atrupin'??, and Fisehsr (7)., In their models, ome cell
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of the array is egquipped with input and output channels. A time
saquence of inputs is fed into this cell and a computed ocutput seguencs
is produced. Arrays are thus viewed as ancther fomm of sequence
transducer, Atrubin shows that multiplication of twe binary coded
numbers may be performed in real time by an infinite one-dimensional
array. Fiseher shows that an infinite one-dimensional array can
gennrete the characteristic funetion of the szet of prime lntegers in
real time, Cole performs extensive studiss of the real-time
computational powers of infinite iterative arrays in arbitrary
dimansicns. He establishes relatlons between the real-time computing
powar of such arrays and the information capacity of the inter-eell
connections. The use of arrays as figure computers is not considered
in these papers.

The use of arrays to process two=dimensional figures has bean

conasidared by Atrubin M

who analyzes ssveral examplas of simple
figure transformations, but =zakes no attempt to formulate a general
thacry,

Many algorithms for serial computers have been published which
find a natural setting in iterative arrays. Examples are the shortest
path method of L“H} and the picture processing of Rosenfeld and
Pi‘ultsl:m}.

The review of highly parallel computears by Hl.lr‘l‘.hl“::'l} contains
the designs of many theorstical and actual computers which incorporate
regular arraye of identiesl processing elements, Among those discussed
we Eight mention the "spatially orlented® computer of Lh:gur“rf‘:' and
the TLLTAC IV deseribed by Barnes‘ ',



ur work has been greatly influenced by the work of Minsky and
Fap&rti1ﬂ} on the perceptron. In thelr bood they state:

Fiood theories rarely develop outside the context of a

background of well-understood real problems and special

Cases8: « « « Acgordingly,; our best course would seem to

be to strive for a very thorough understanding of well-

chosen particular situations in which these concepts

(parallel, serial, etec.) are involved."
This theslis 1s an attempt te analysze a speelal case of parallal
procesging in the same spirit and in 3 manner compatible with that

of Mipsky and Papert.

1.3 The Layout

Chapter 2 contains a general theory of recognition. After some
basie definitions, an example of the solution of a recognitlon problem
1z giwven. DbNext the amount of time required for the solutlon of
recognition problems is taken up. We glve the Interdependence Theorem
wanleh allows us to prediet the future state of & ecell, given sufficient
information about the current states of Lt and Lts nelghbers. The
Interdependence Theorem is used to establish lower bounds on the
recognition time of most predicates and is alsc the basis of the
Speed=lfp Theorem. An adapiation of 2 well=known iterstive technigue,
the Speed-Up Theorem states that if recognition canm be carried out by
&n array within time T(m.n) where the array ls of slze men, then

for any integer k a second array can be constructed which will carry
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cut the computation within time %+T{n,n] +m+n+ 2, Finally we
have the Minimizing Theoresm, which says that twe distinet methods of
meccgnizing a predicate may be combimed tc obtaln & method which is as
faat op any figure as the faster of the two.

Chepter 2 continues with a study of the computing power of
arrays, we find that arrays are not universal computers, but are more
powerful as figpure recopnizers than the pebble auiomata of Hlum and
Huuit:'.':ﬂ. In faet, arrays are eguivalent in power to, although
faster than, linsar bounded sutemats which are allowed to walk about
on a fipure, This squivalence was to be expected since the amount of
storace available to an array incresses linearly with the size of the
figura, We show that the ¢lass of recognizable predicates forms a
Boolean algebra, Some undecidability results are cbtained ineluding
the undecidability of whether or not a given cell type reccgnizes a
glven predicata,

Chapter 2 ands with a brief study of the ¢lass of linear
sredicates (those which are recognizable in time proportional to the
perimeter of the array). It is shown that a linear prediecate is, in a
certain well=defined sense,; recognizable almost as fast as any
predicate. This fact is intesresting because it is shown in Chapter 3
that some intuliively wvery complicated predicates are linear. The
class of linear predicates is shown to be a Booclean algebra and some
unsolvable problems are presented. PFinally we disecuss the open gquestion
of whether or not all recognizable predicates are linear.

Chapter 3 contalns a study of some topologiczlly inwvariant

pradicates (predicates over black and white figures which depend only
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en the manner in which the holes and ecomponents of the flgures are
anbedded within each other), We first develop a simple but wery
powerful transformation of figures called the comnectlvity transforms-
tion. Using this transfommation as a basis, we prove that a wide
variety of predicates including "connectivity" and "simple connec-
tivity" are linear, It is shown that it can be determined whether cr
not a mare is solvable in less time than is required for the transs=
mission of a signal along the shortest path of the maze. The problems
of solvirg multilevel mazes and developing a three-dimensional
coennectivity trapsformation are discussed, It is shown that the
solution in linear time of multilevel mages would imply that any
predicate recognizable by a finite stete sutomaten was linear,

Chapter 4 eontains a brief deseription of the use of arrays in
display problems and presents some typical figurs transformaticons
which may be carried out., Several open guastions are presented.

Throughout the thesis many open questlons are ralsed. These
questions may be referenced by loaking in the lndex under "open
questions,"

In sddition to the formal results obtained, we have included
discussions of several interative programming techniques, These
techniques were developed to solve specific problems, but are of
genaral interest. They may be found by leooking in the index under

"programming technigues,"
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CHAFTER 2
THEORY OF RECOGNITICN

In this chapter we will formalize the notion of iterative array
and study some aspects of the thecry of the recognition of figures by

iterative arrays.

£.1 Fasie Definitions

Consider a finite, rectangular, two-dimensicnal iterative array
of finits state automata. Such an array is pictured below with the
automata represented by squares, The lines connecting the sgquares

represent communication channels between the automata.

r

The automata used in such a construction are called cells and

the entire arrangement is called an iterative array or simply an

array. Other terms used in the litersture include "gellular array"
and "terative array of logleal ecircuits.® We assume that all ef
the cells in the array are isomorphic and have been placed in tha
array with common orientation., Bach cell is connected with its
four nearest neighbors. The array functions synchronously with the
state of a cell at time t + 1 being a funetion of the states of it
and its four nearest nelghbors st time t.

13



The above description assumes that every cell inm the array has
four rearest neighbors while in the diagrazs it appsars that the cells
cn -he edges and cormars of the array have fewer than four, We have
hore 2 confliet of interest., On the one hand we would like to be able
to treat all the cells &z if they were the same, allowing us io make
statements such as "All cells are iscmorphie" and "Each cell is
connectad to its four nearest neighbors." On the other hand we
definitely want to make use of the fact that the cells on the edges
and cormars cen oparate in a manner different from those in the interier.
Fortunately these twe points of view can be resclved by a simple
technical deviece. Informally we will eontinue te think of an array
as & finite rectangular arrangement of cells, Formally, however, we
will pleture this finite array of cells as being embedded in a two-way
infinite cellular space. All of the cells in thls space which are not
within the finite array will be in a special terminal state, e, ocalled
the edge state, Thus the only real computation within ihe space lakes
place within that finite portion known as the array. Any cell in the
array can determine where it lies with respect to the boundary of the
array by determining which of its neighbors are in edge states. Thus,
for example, the porthwest corner cell of the array can operate in a
manner which is completely unlike any other ecell in the array and yet
¥r can consider it to be isomorphic with all other cells in the array.
The deseription of a "typleal™ cell in an array must actually describe
the behavior of that cell in each of the sixteen possible positions in

which it ecan find itself with respect to the boundary of an array,

For the sake of simplicity we will emlt from our diagrams all

14



colls which do not lie within the array anc will suppress the lines

indigating intercell connectlons. Our diagram now becomes simply:

Sinee the eslls which do not lie within the array are always in
state e, we seldom have to mention them expliecitly, HNevartheless they
are tacitly assumed to be present at all times,

To operate an array as a recognition device for black and white
figures, one designates two of the cell's states to be initlal states
correspending te black and white, At time t = 0 every cell in the
array ls placed in one of the twe initial states and the pattern of
statles thus ereated represents ihs figure to be processed, Beginning
with the initial state representing the figure, the array procssds from
state te state until finally a designated cell {we will always uss thas
northwest corner cell) enters one or the other of two specially

designated final states thus indieating whether the figure has been

accepied or rejecied, The [inal states are assumed to be terminal,
Note that we use only one accepi state rather than many, The use of
f single terminal accept state is merely a techniecal convenience and
causes ne less of generality. By using the technigues of Thecrem 2.5
below, any cell type with multiple non-terminal acecepting states can be
converted inte a cell type with a single terminal accept state,

An array cperating in the mode deseribed in the preceding
paragraph is sald to be working on a recognition problem. The

15



axtension of recognition problems to inelude input figures of more taan
two ecloss and to n-way classification rather than binary classification
is ztraigzht forward.

“hese informal remarks motivate the follewing definition,

Isfinition
A gell type M is a 5-tuple (5,I,F,e,g) where
5 is a finite set of cell states;
I is a subset of S called the initial states;

F is a subsst of S called the final states;
& is a distinguished member of 5 called tha
adge state; and

¥
g is a funetien g 5-5+5 — 5 oalled
s

the transition funetios,

suoch that final statas are tarminal

(.o, VseF, £ (|* *|} =g )

[ o[

and adge atates are conservad.

08

(1.e. HEES.E{|# t])-aq;-"»5=.}

Tyo notational devises have been introduced in the above

definition, One is the two-dimensional cartesian produst. Rather

than exp=ess the domain of the transition funcotion as the usual linear
sartesian product of sets, we have taken the liberiy of arranging the
factors of the product in a two-dimsnsional manner which more clearly

illustrates the process being modelled. The second notational device
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intreluced 1s the don't care symbol, « , which is used to replace

universally quantified varisbles. Thus "g, [#|s][«]| )} = s" is

3,]

i

notaticral shorthand for " s, Vs, Vs, Vs, 2( [§]2]%,] ) = s." The set

[

over which quantification takes plaee is usually understood.

et M be a cell type. An array composed of cells of type M is
sald to be an array of type M. If the array has m cells per eolumn and
n c3lls per row, it is said to be an men array of type M. The notien
of sell typs formalizes the mechanis= underlying the operation of an
array. Corresponding to the idea ef an instantanecus description in the

theory of Turing machines, we have the following definition.

efinition
An mxn description of type M (or simply & description
if =, n, and M are understecd) is an msxn matrix with
entries in S, where S5 1s the set of cell states of

the cell type M. An lnitial description is a

desceription, all of whose entries are initial states.

Note that & mxn description contains only enough information to
deteraine the states of the cells within an mxn array. The states of
the remaining cells in the space are formally set equal to g by the

follewing definition,
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Tefinitien
If D is an myn deseription of tyoe M then the
state of eell (i,j) in D, dencted .u_j'l' La the
(1, §)=th entry in D provided 1<% <m and 1< J<n,
and is & otherwise, whers & is the odge state

of M.

Mota that we have introduoed matrix type cecordinates. For
exanple call (1,1) is the northwest corner cell and ecell (m,n) is the
southeast commer call,

™he transition function is now used to define the cbvicus notion

of suncessor.

Iefiniticn
Lat D ba an mxn deseription of type M. The

suecassor of D i= the mwn deseription of type M,
D', glven by

"'-.l"
I
% = g |%s|Pus [P )

1'a1_,l|i

whare g is the transition functiom of M.

We can now formalize the concept of a computation.

18



Dafinition

An mxn computation of type M 1s an infinite

ssquencs S¥= 1, D', ¥, ... of men descriptions
of typs M such that

l.'li:I iz an inltlal deseription and

'*! 15 the successor of I* for all izo0.
1t Br= P, ol, A ... 1s a computation, then
D¥, , 1s said to be the state of cell (4,j) at

1.4
time % in the computatien J¥.

This completes the formalization of the terms necessary for

deseribing an array and its functioning., We now formalize the terms

necessary toc deseribe recognition problems.

Definition
An mxn flgure over the set I ( or simply figure if
m, f0, and I are understood) is an m=n matrix with

antries in I.

Wa will most frequently consider figure=s over the set EE- = {h,u}

representing black and white., When we wlsh to repressnt a specific

figurs over IE" wa will use a diagram of tha form gﬁ#} rather than
]

standard matrix notatlon, Note that a figure has a specific size.

Thus i! e are distinet figures even unougn both
are blank,

Recogniticon preblems involve the ssparation eof all figures over

4 fixed set inte two classes, the accepied figures and the rejected

19



figures, We concentrate ocur attenticn on one of the two classes,

Iefinition
A predicate over the set I 1s a mubset, ¥, of the
set of all figures over I. The gomplement of ¥,

denoted ¥, is the set of all figures over I which
are not in V.

It is the predicate which allows us to make connsctlons between
figires vhich have similar properties. For instance we could form a
predicate by taking the set of all blank figures or the set of all
figures contalning five or fewer black squares.

Fin:1ly we relate computations to reeognition of predicates. For
thiz purpose wa will fix a set F = {a. r } which represents the fimal
two states of any cell type involved in a recognition problem. The

states @ and r correspond to accept and reject respectively.

[afinition
Lat ¥ be a predicate over the set I and let M
be a cell type. We say M accepts ¥ (respectively
rejects ¥) if the following hold:
1) I is the set of initial states of M.
14) F= {a, r} is the set of final states
of M.
1i1) Given any cemputation [f¥= DD. D'y By eus
of type M, we have IF'E':':‘"L‘-:} 3t

such that Dt'in = a (respectively Dt1'1 = r).

20



we say that M recognlies 'F if
i) M accepts ¥, and

11) M rejects V.

Hote that we actually require the set of initial states of ¥ to
be the same set as that over which ¥ is defined. This not anly
elimina<es the need for introducing an artitrary correspondence, but
aotuzlly makes a figure and an initial deseripticn the same formal
object,

We have made an arbltrary cholee of cell (1,1), the northwest
corner =ell, as being the cell which is designated to give the accept
ar reject signal. One could make a case for having the designated cell
be scmevhere more centrally located in the array, but then one would
elther have to introduce additional machinery so that that cell eould
be singled out, or have the array compute the location of that cell

sach tire 1t performed a computation.

2.2 An Example: 'FPPAH

Parhaps it would be best at this polnt te glve scme 1ife to our
defiriticns by considering an example.

Let FP#H be the predicate over I, consisting of all figures with
an ocdd number of black cells, This parity predicate plays an
important role in the work of Minsky and Papert on the percaptrﬂn':m:'.
They show that F"mﬂ is very difficult for a perceptron to recognize
and use thi=s fact to show that many other predicates which are

reducible in perceptron theory to ¥pup are also difficult for a
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perceptron to recognize. We will sees that ﬁ,m iz gquite easily
recognized by arrays. It is introduced hare only as an example and
pleys ne rele in cur theory,

We now describe a cell type Mp,p which recognizes "*PAFI + The
zost precise way of describing Mp,e would be to l1ist its states and
display a state transition table. Unfortunately a cell type with =
states has s° rows in its complete stete transitien table. Since the
cell type we are about to deseribe has & states, its transition table
would have §° = 7,776 entries, making it quite unreadable as well as
shedding little 1ight on the methed by which Mg, p earries cut its
computation, Use of the don't care symbol, %, drastically reduces the
nunber of entries needed, but still leaves the underlying methed of
computation to be puzzled out be the resder. It has been found that
the best method of deseribing the functioming ef a cell type is to
deseribe the action of & typiesl array composed of cells of that type
an a4 typieal figure. Attentien is thus focused on the method of
cemputation rather than the machinery which carries it out. In most
cases we do not even attempt to glve a complete llst of the states
invalved in the cell typs. The reader who is interested in more
detailed analysis of ocell types may refar te Hinninw} and
atrunin(1),

Operation Ei!,{jﬂﬂ_: Assume the figure to be processed is at
laast 2x2. The cases of 1xn and mx1 are easy modificatlicns of the
main idea, Each cell which is not on the northern edge of the array
#imply eoples the state of its southern nelghbor. In this way the

information within each cclumn of the array is shifted tc the north,
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Whar. tie information arrives at the northern edge, it is shifted tec the
west by the cells on the northermn edge. All Informatlon eventually
arrives gt tne northwest corner., Each call on the northem edge of
the array comblnes the infermation arriving from the south with that
arriviag from the west in such a way that parity is preserved. The
nerthwest corner call eventually arrives in state b or w depending on
whether the parity was odd or even respectlwvely. All that remains is
to cause the northwest comer cell o enter the appropriate final
state. This is accomplished by having a contaglous "done® signal d
begin inm the southeast cormer at time € = 1 and spread at the rate of
one ecell par unit time toward the northwest cormer eell. By the time
the nortikwest corner datects the done simmal, 211 of the parity
information will have been processed and the spprepriste finsl state

can be artared,
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The following diagram illustrates the process for s particular

Lx§ array.
2 fﬁ_’f%? ] — [ ]
% %[«fo:z d
Z | d d|d
71T Y1 %5 B
. 4| _, dld| d|d|4d
d|d d|d|d dld|d |4
didd ldjd|e]¢e dld|d|d|d
444 dlda[d]d rld]|d]<|d
d|d|d|d dld|d|d|d dld]|a]d]|d
— - — —
dld|d|d]|d dld|d|d]|d dld|d|d|d
dld|dld|d did|d]d]d dld|d|d]|d

ﬂF’ﬁH asz desoribed above has slx states:

b black
initial states
W white
d dane
-] edge

a accapt
} final states

r reject
The reader who is cconesmed wlth the number of states used in HF‘AH

may wish to show thai Mg, could be modified to have only five states,



2,3 Timing

Hote that HHR in genesral takes m + B = 1 time units to
recognize an mwn figure, We will be guite interested in the amount of
time required to recognite various predicates, =o we now define scome

appropriate terminoleogy.

Definltion
Let ¥ be a cell type with initial states I; F, a
figare over I; and ﬂ= E, II1.. 112. DJ, sss Lthe
ceomputation of type M with F as its initial
deseription, If t is a real number, we say that
M recognizes P within time t provided tnat DY |
is a final state of M, where [ | 1s the greatest

integer funetion.

It would certainly have been adequate in the zbove definition to
rastrict t to the positlive integers. However, the slight generality
obtained by allowing t to range over the reals will be useful later.
The timing functlons in the following definitions are real wvalued for

the game resason,

Definition
Let ¥ be a predicate over I; M, & eell type which
recognizes ’n"'; and T(=,n), & real-velued function,
We say that M recognizes ¥ within time I(m,n)
provided that M recognizes every mxn figure over I
within time T{m,n).
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Tiwe following definition forms & basis for measuring the

complaxity of predicates with respect to lterative arrays.

[afinition
Let ¥ be a predicate and T(m,n) 2 real-valued
function., We say that ¥ 1= recognizable within

time T{m,n) if there exists a cell type ¥ such that
M recognizes ¥ within time T(m,n).

Thus we would say that Mo, recognizes ¥pyp within time
m+n=1and that ﬂ"pﬁﬂ is recognizable in time m + 0 = 1. As we
shall see in Corollary 2.1.1 below, ¥pap 18 not recognizable in time
m+n =2, This result iz an application of the Interdependence
Thecrem. To properly state the Interdependence Thecrem, we need
thres more definitlons.

Iefinition
Let =1 = {11IJ1J and ﬂz = {.12l-|jz} be two cells,
The distance batwesan e, and e, is given by the function

Plegaey) = Ei'l - 12| + |-31 - 32

Eote that the distance functlion F ia a metrie on the set of all
ealls and that the distance between two cells eguals the amount of

thime 1t takes a signal to travel from one o the other.
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Iefinitlion
If d is a posiilve integer, then the d-nelghborhood
of a cell ¢ i the set
H!(ﬁ} = {ﬂ' | &' is a cell and F{:.c'}!{d}.

Since neighborhoods are defined over the two-way infinite
eallular space of cells, thers are no edge effects and hence all
d=neighbornocods have the same slze and shape, Indesd the d-neighborhood
of a cell ¢ contains 1 + 2-d-(d + 1) cells and forma a diamond shaped
cluster of cells abeut o, For example, 1=42-; and 3-nelghberhoods
have the followlng shapes:

Hote that the state transition function for any cell type 1z &
function which has as its domain a two-dimensicnal cartesian product of
cell states in the shepe of a 1-neighborheod and which Ls used to
predict the state of the central ecell of that nelghberhecd at one time
unit in the foture. The following definition and thecrem peneralize

this concept.

Definition
Let d be & positive integer and M a cell types with

st of states S. Then a d-geighborhood function of
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type ¥ is a functien whese demalin is the two-
dimensional cartesian product of 5 with itselfl a
total of 1 + 2.d.(d + 1) times (arranged in the

shape of a d=-nelghborhood) and whose range is S.

Theorem 2.1 (Interlependence)
Let M e a cell type and d 2 positive integer, then
there exists a d-peighborhood function of type M,
say f, such that if &= I, D', I?, ... is any
eomputation of type M, © iz any non-negative integer,
and ¢ iz any cell, then the =tate of ¢ at time © + d
can be obtained by applying f to the d-neighborhood

af & at time =,

PRO0F: The result is imsmediate for d = 1 by letting £ be the
ransitlon function of ecell type M.

Aszume by induetion that it holds for 81l d<n and let d = n.
Thzn for each c'e Iil1l:l:t:| we have Hd_-lf.u'}“-_— Hd{l:t] by the triangle
im=quality. Henece by induction the state of cell e at time t + 4 = 1
is a fuaetion of the states at time t of all cells in N (e}, for all
e'e Ny(2). Bat by definitlon the transition function gives the state
of enll ¢ at time ¢t + d as a function of the states at time t +d - 1

of a1 e'e Hy(e). Composing these functions giwves the desired function

£, O

The Interdependernce Theorem is fundamental and has several

importent applications, It can be viewed in two different ways. As
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egtated, it allows one to make predictions sbout the future state of &
oall given sufficlent surrent informationm sbout the neighbora of that
eells, It will be used in this gulse to prove the Speed-Up Theorss
{Theorem 2.2 below), Viewed in another way, the Interdependsnce
Theorem states that two cells which are at a distance of d + 1 from
sach other cannot influsree sach other's behavior for the next d units
of time. In this form it is simply the statement that signals
propagate &t unit distancs per unit time, but avelds mentloning
signals as such. In this latter formm it may be used to establish
minimal time results, such as the following.

Qorollary 2,1.1
WFHH. iz not recognizable within time less than

m*+pn-1if slther m= {1 ar n = 1

Tygy(mn) = {

BE+h=21ifm,n22,

PROOF: Let M be a cell type which recognizes Vpugq .
Firat consider the cass where m = 1., Lat ntl' ba an infitisl

description, say

P = ] -

Now creates the initial description Eﬂ by adding & black square to the
eastern end of ]:P. Thus

f- SRR 2 rEe |] n | b

Now the cells in the (n-1)-neighborhood of ocell (1,1) have the same
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states ir both IP and E°. Hence by the Interdependence Theorem, cell
{1,1) will be in the same state in both TP"! and "', But since ¥
recignizes EI’F:H and since I‘P and E:ﬂ' have opposite parity, this state
eannot be a final state, Thus M takes at least n +m - 1 = n units of
time to recognize Yo, when m = 1,

Tha case where n = 1 13 asimilar,

Finally assume that m,n2>2. Consider a typical initial deseription.

1 T

{
==~V

A
[

i

S

'F;'-"l ]
=) |

Note that the scutheast cormer esll (m,n) is at a distance m +n - 2
from cell (1,1) and hence by the Interdependence Theorem eall (1,1) is
independant of the state of eell {m,n) for the first n 4+ =m - 3 units of
time, Hence since l'ﬁrP.l-H depands on the state of cell (m,n), we have

that ¥ requires at least m + n - 2 units to recognice *F'ﬁ.n i ﬂ

Veote that the only property of ?JrF;d.H which we used ln the above
proof was that it depended on the imitial state of cell (m,n). Thus

woe have aetually proved the following.

Corollary 2.1,2
No reasonable predicate, 'ra'r. can be recognized in

time less than IMIH' wnera by resscnable we mean
that for any m,n 21 there exist two figures P and P'

which differ only in their (m,n) entry and such that
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Pe ¥ and Prg ¥
Tne reader with an eye for detaill will notes that the eell type
Mpsr constructed sarlier actually achieves the theoretical minimum
timing only for the cases n = {1 orm = 1 and it iz one unit slower
than the minimus for the cases where m,n22. This sinor defect can be
remedied by modifying HF.'.H.‘ The smmallest numbar of states the author
has found for sush a modified machine is seven., Detalls are laft te

tho reader,

E !li' wd‘up

We now turn te the Speed-Up Theorem, The ocentrasl ides behind this
thecrem is that by packing infermatien into fewer cells in an array,
tha inforsation can be processed at a higher rate since the amount
of tlme it takes for a signal to trawvel from the location of one
Filace of information to the location of another has been reduced. This
idea has occurred to many people and uses of it may be found in the
pavers of Gnlatﬁ“. Fist:har{ﬂ. and Hamiuw}. In their formulations no
information iz initislly present in the computer and hence the packing
ean be done asz the information is input to the computer. In this way
they achieve any desired degres of speed-up without having to pay a
priee in processing time, although they do lncrease the number of statas
per cell, In our formulation, the infommation to be processed is
initially present in the array and some time must be spent in packing
it into a smaller area within the array., Thus we =must pay a price in

both time and states to achleve a speed-up.
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(ne-[Amensional Case: As a warmlng up exerclse for the two-

dimens ionel Speed-Up Theorem, we first con:lider a one-dimenslonal
example, Assume that we have set up some flegure in a 1x9 array of

enlla of typa M and let 15 observe 1ts operation for a few time units.

P = [so]s?[so[s2]sa]sa]s%]s5]s%

P = |5 sf |5y s [s [sd]st [st ]sd

"he symbol EE of course represents the state of ecell (1,3) at
time .. We are golng to deseribe a ¢ell type HE' whnera each cell moast

have the ability to simulate two cells of type M. Our notation should

be trinsparent, MNamely

Sl [ or more simply .

represents one cell of type HE which is currently in a state represent-
ing two cells of type M; one of which 13 in state 52 and the other of
which is n stats 5; Extensions of this notatlon will be introduced
without further comment. Since we will be talking about both M ecells
and ’!{2 eplls at the same time, we will find it convenient teo refer to
the former as gells and the latter as modules. For example, we say
that sach medule in an HE array simulates two cells. Now lat us
chserve the operation of a 1x9 array of type L when started with the
same “ipure, The first five steps of this coperaticon are shown in the

diagrom on the next page.



=) s | sy S3| Se | S¢ | si| 2| s | st

t=1 HEia |

to= 2 (e]
5]7] H [¢]

=
1| |G
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G | EE | BI3 | GIE]

£t thls peint, the Hz array ha=z packed the original figure by a

t=3 J
-

€F

[+ ]

il
5| (8] [B] ] E
o feed | (e (] (B

t=5 |

factor of two and is ready to begiln processing the figure at a rata
sxacily two tlmes that of the M array, Note that the packing process
takes n = [E] time units in general, where n is the length of the array,
k is the packing factor, and [:r ia the greatest integer functiom,

(We ccnslder the packing to be complete when the adge stste & ean ne
longer move to the laft.)

Cne problem now arises. UWe would like all of the modnles in the
pecked portion of the array to begin their simulation simultansously,
Tnds 1s accomplished by using a firing squad procedurs such as that
describad in B:lsartj}. The last module to be packed (module (1,5) in
our example) acts as the general of a firing squad with the soldiers
being the modules to the left of the general. The modules in the

firing squad retaln their packed information on cne level while
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sarpying out the firing sjuad process on ancther level, When the
firing squad goes off, the simulation begins. Neote that the firing
squad process, if earried out as described above, will takes El:ﬂ uniis
to begin similation. Thus the simulation gets under way at time

—

t=mn -E]' The reader who is fond of firing squad problems may show
oW :hﬂs_tima can be reduced to t = n by beginning scme firing squad
activity at time t = O instead of weiting for the packlng to be
comnlated., Note that £+ = n 1s the earliest the simulation can begin,
zires by the Interdependence Thecrem module (1,1) cannct begin simulation
sefore it is aware of the existence of the right-hand end of the array
and this cannot happen before t = n. We will omit the detalls of the
firing squad mechanism, since an altermate methed for symehronizatlion
will be given later.

Lot us assume then that at time £ = 9 our array begins simulation.

The process will leock as follows,

tet ][ Ho
i e
K]
v=9 | (0] |G | EE | B
-n_\-_-ﬁ#.‘_,..-"
t=10 |[]] [E['ﬂ
-._H.:-b:."__..-

Dotted errows have bean drawn to show how module (1,2), which is
responaible for simulating eell (1,3), has access to all of the
information necessary for predieting the state of cell (1,3) tweo
units intc the future via the Interdependence Theorem. In general

with a packing factor of k, one obtains a simulation which is faster

P



by a factor of k,

The sisulstion continues until module (1,1) senses that cell {1,1)
is about to enter a final state., Instead of simulating this entry,
module (1,1) actually enters that final state itself, Thus the HE
array accepts or rejects the 1lnitial figure according as the M array
would have accepted or rejected it,

Siree simulation begins at step m, recognition takes place at time
t=n +[ﬁﬁlﬂ£—'—‘~], where T(m,n) is the time in which M earries out
its recognitien. The number of states required is approximately 8- ak
where 5 is the number of states of eell type M and where we assume cne
possesies an eight state sclutien te the firing sguad preblem,

Progressive Synchronlzaticn: Before turning to the two-dimensional
case, We present & second solutlion to the synchronizatien problem
which does not use the firing squad, This second solutieon is slightly
faster than the firing squad method, btut uses approximately 2. 5%

states per cell., We present it here because it is of interest in its

own right. Let us ocall it the mathed of progressive synchronization.

In progressive synchronlzation the simulation begins to take
place while the packing operation is still under way. Each module
carries out & simulation step as soon as the necessary information
becomes avallable to it. Modules which begin to simulate before
packing is complete carry out thelr simulation at a reduced rate
because of limited information availability. The last module to
be pocked immediately begins simulatieon at full speed and eventually
catchez up with the modules which began simulation earlier. Larger

and larger blocks of medules become synchronized until at last the
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The diagram on the precading page illustrates progressive
synchronization as it would be used in our example. From t = 9
on simulation progesds as in the firing sguad case.

EBach module in the above diagram must sctually have one more
bit of information so0 that it can indicate to its neighbors when it
has made a simulated state transitlon, We have omitted this bit from
the diagrams above.

Obsarve how moduls (1,2) carries out a simulation step each time
the necessary information becomes avallable in the nelghboring modules.
Also abserve how the last modules to be packed, module (1,5), is able
to begin simulation at full speed as scon as it is packed. Since this
module is packed at time t = n - [E]. the recogniticn will take place
atﬂmt=n-[ﬂ]+[ﬂ943%_"_.!.]+1 or bafore, The case where
recognition takes place sconer is due to the faect that medule (1,1) is
saveral simulation steps ahead for a while,

Te recapitulate, we can creates, using firlng squad technigues, a
eell type which performs recognition in time t = n + I:ﬂllﬂg-‘“_‘- and
which has an the order of ak states. By using the method of
progressive synchronization, we can create a cell type which performs

regognition in time t = n + 1 a-[E] +|:T1 ny, = 1:| and has on the arder

of 8% states,

The method of progressive synchronizaticn introduced above belongs
te a class of iterstive programming techniques which we shall call
methods of non-uniform simulaticn. These methods all have the

following characteristics in common:



1) they involve simulation of cne array by another,
2}  a module in the simulator may keep maltiple copies of
tha cells that it iz simulating, and
3] simulated time may be distorted, that 1s, at any
glven moment modules which are apatially separated in
the simulating array may be working at different
points in simolated time.
We will use a method of non=uniform simulaticon in the proof of
Theorsam 2.5.
Speed-Up: We now turn to the two-dimensicnal Speed-Up Theorem,
The statement of the theorem could be sharpanaed in several ways.

Preferring the meore simple and workable statement for our main result,

we will lsave the sharpening to a cerellary,

Theorem 2.2 (Speed-Up)
Let ¥ be a predicate and let M be a cell type
which recognizes ¥ 4in time T(m,n). Then given
any positive integer k, there axlsts a cell type

M, which recognizes ¥ in time i.'r(m.nll +m+n+ 2,

PROOF: The two-dimensional case is guite similar to the cne-dimensional
oase, We perform packing by a factor of k foellowed by or overlapped
with simulation at & rate k times faster than the original array.
Again we have our choice of using a two=dimensional firing squad or of
using a method of progressive synchronization.

Packing: Packlng is accomplished by performing simultaneous

packing within each row and when all the cells in a given column are
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fully packed, the column 1s then packed. The following diagram
illustrates packing by a factor of two, where esach simulated cell

is ropresented by & single dot.

L 3 " E
[ L] ¥
— " ———l » - -
L -le U
& g " L
:3 i 5
g = e
— e ¥ = |ez|eal"® — lew e IE
w8 133
|E®
Fasking is completed in m = Ejl+ n = [E uwnits of tima, Assuming

that progressive synchronization is used, simulation gets under way
immediately.

Simulation: In considering two=dimensional simulation, we find a
problem which wasn't present in the one-dimensional cesze. It iz due
te the faet that we do not allow diagonal neighbor conneetions in our
medel,

Consider a portion of an H3 array attempting to simulate an

M-array at a rate three times faster than nomrmal.
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The central mocdule in the above dlagram has responsibility for
simylating the cells labeled 1. In order to advance the states of
these cells by thres units, the central module must have access to the
eells labeled 2 and 3. Because diagonal connmections are prohibited,
access is available only to those eells labeled 2.

Thers are several ways around this problem, One is to allow
disgonal connections between cells, In that case, assuming diagonal
connections were also allowed in the M-array, the central module in
the diagram above would require access to all simulated ocells shown,
Thus 1t would actually have access to exactly the information needed
to advance the states of the cells for which it is mesponsible,

Within the restricticn of nearest nelghber interaction, we could
simply pack by a factor of #ix and then use Two steps of real time o
allow each module to get informatlon arcund the corner from its diagonal

neighbor and advance the states of the eells for which it is



responsible by six steps., Thus an average speed-up of three would
result. Tha cost 1n terns of states, however, would be high, In
order for each module to pass information around the cormer during the
intermediate step, it would have to have provisions in its memory for
remenbering additicnal simulated cells. The smallest number of
additional simulated cells required seems to be 5-k° - k - 1. Thus in
the case above where k = 6, we would require each module in the
simulator to have memery ecapacity for holding eighty-three simulated
eells, just to provide an average speed-up factor of three. Whaen
comnared with the nine simulated cells required per module in the
dhiagonal connection case, the cost of this method seems excessive,

A more reasonable method is now deseribed which requires twenty-
five simulated cells per module te produce a speed-up of three, It is
apparent thet & module, 1f it is to advance the cells for whnich it is
resoonsible, needs access to information aboutl the states of the ecells
for which its diagonal neighbor is responsible. Instead of having this
information computed by the diagonal neighbor and then passed around
the cormer via a nearast neighbor, we let the nearest neighbor
compute the information directly, thus making it available one time
unit sooner,

Conslder the diagrem on the following page which represents cne

module in the simulator array.
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The module contains twenty=Five simulated cells. The ecentral

nina, which are drawn with sclid lines, are the same as those for

which it would be responsible under the earlier scheme. We say that

these are the cells for which it is primarily responsible. One thinks

of these primary cells az being the ones which are "really" being

simulated and that the s!xtesen secondary eells are simulated merely as

a convenience for the benafit of the module's nearest nelghbors,

The following diagram shows a portion of an array which is to be

simulated.

-

Threes concentric heavy cutllines have been drawn.

The innermost out=

line contains & set of nine eells for which a module is primarily

L2



regponsible, The middle outline contains the twenty-five cells for
which thiz module is bDota primarily and =econdarily responsible. The
ouver outline shows the set of cells to which the module has access
via its nearest neighbors at any given step, Note that the cells
contalned in the outer ouvtline are exactly those cells to which acoess
iz required for a speed-up of three.

The following disgram presents the situation from the point of

view of the simulating array.
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The preceding diagram shows & 3x3 set of modules and within each the
similated cells for which it is responsible. Each simulated cell has
been labeled with its row and eolumn number. Some cells such as (8,8)
are simulated by as many is five different modules., All are simulated
by at least three modules.

Of the many methods of simulation comsidered by the author, the
above method requires the fewest states for the case of nearest
nelghbor interaction, It regquires Er{kz + k) states (for k even)
and 2- (k= + k) + 1 states (for k odd),

Coneclusicn: We have all the pleces necessary to construct a cell
type Hk. given M and k. To recapltulate, ch first performs packing by
a factor of k and then baging high speed simulaticon, Simulation is
begun either by the method of progressive syachronization or by the use
of the two-dimensicnal firing squad which 1s discussed in Seetiom 4.3,

The methed of progreasive synchronization requires on the order of
aq-'{ke + k) states per cell and recognition is completed on or before
time £t =@ + 1 -[E]-[E} +[m'u££'_1]+ z £ &-T[n.n]l +m+n+ 2.

The firing squad methed requires on the order of :Ezr{l:z + k)
states per cell and recognition is completed on or before time
t = 2(m + n) -]:E] - Lﬁ] + max {=,n } +|:I(h££‘—‘. The details of
the latter formula follow from a knowledge of the two-dimensional

firing squad which iz discussed in Seectlon %.3.

This completes cur proof of the Speed-Up Theorem. D

We now state as & corcllary to the above proof the complete

statement of the Speed-Up Thecram,
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Gﬂ-rullag 2=E.i
There axists a known effective procadure which, when

given a positive integer k and & cell type M,
produces a cal. type My such that
1) M and M_have the same initial and
final states
11) any msn figure P which is recognized by
M ig time © iz recognlized by J-Lk in time

=+n-[ﬂ-|}]+|:t_,;_1:|+z.

In the proof of the Spead-Up Theorsm, we mentioned the ldea of
having packing going on in one layer of the array and a firing sguad
going on in another layer of the array. This conceptual trick of
resolving the processing of an array into several semi-independant
but simultanecus processes and of pieturing them as taking place in
different layers of the array is simple but powerful. MAs an application,

wa present

Theorem 2.3 (Minimizing)
Let ¥ be a pradicate and let 1'1I and HE ba cell
types which recognize ¥ in times T,(m,n} and
TEI‘.'m.n} respectively. Then there exists & ecell
type M which recognizes ¥ in time
*(x.n) = win {T,(2,0), T,(m,0)} .

PROOF: Let M consist of two layers. One layer behaves like M., the

t'
other 1ike Hz. Cell (1,1) goes to its final state as soon as elther
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layer completes its recognition, Since both layers recognize the sare

predicate, there can be no confliet. :]

Z:5 Computing Power

We now turn to the study of the class of predlcates which can be

recognized by arrays.

Dafinition

A predicate W 43 sald to be a ecellular predicats

if there exists a cell type M which recognizes ¥,
A predicate ¥ is sald to be a finite predicate if
it contalins only a finilte number of figures.

Theore= 2.4 (Boolean/Finits)
The class of eellular predlcates forms a Boolean
algebra and contalns all finite predicatas.
Furthermore, given two cellulsar predicates ’:‘;
and ¥
and TE[IH'I.} respactively, then both 'I'!"{Uﬂ and

which are recognizable in time T1 (m,n)

¥ ﬁ are recognizable in time max {Tﬂn.nhTﬂm.nJ}.

PROOF: FProof of the closure of the olass of cellular predicates under
the Boolean operatloms of union, interseetion, and complementatieon is
direectly analogous to the proof of this property for regular events.
Layers are used as the method of combining two distinet ecell types.

To prove the second statement, let ¥ be any finite predicate
and let k be the smallest integer such that all figures in ¥ are
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k=k or smaller. Construct & cell type which packes by a factor of k + 1.
As seon as cell {1,1) is packed it will have all of the informati-n
necessary to accept or reject the figure since any figure larger than
Kxk must ba rejectad and sinee thers are only a finite number of
figures kxk or smaller, The entire process will be complasted by at

leest time & = 2k - 1,

In recursion theory cne finds that there are sets which are
recursively snmmerables but not recursive. That is there are sets
which can be accepted (or rejectsd) by Turing machines, but which
cannot be recognized by Turing machines. The following theorsm shows

there is no analogous situation for arrays.

Theores 2.5
Lot ¥ be a predieate and let M be a cell type which
accepts (or rejecta) ¥. Them V¥ is a cellular
predicate and a cell type M' which recognizes Vv

can be affectively constructed from M.

FROOF: Let us assume that M sccepts V¥, the case whers M rejects ¥
being similar, We will give two differsnt ways in which the cell
type M' may be constructed.

(Methed 1). Let an M' array consist of two layers. The bottom
layer acts as M does and may eventually accept or reject 'F. in which
case M" does alsc., The top layer acts as a counter with a capacity
of (8 = t]l“, where s is the number of states of eell type M. (We

use s = 1 rather than s since the edge state e does not matter for
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the present purposes.) When the counter rsaches the value (s - {yme

2 signal is sent to the eell {1,1) which rejects the figure if it has
not already been recognized., The basis for this method is that the
entire mxn array of type M,which is being simulated in the bottom layer,
has oenly (s = 1)2%" states and hence must be in a loop if it has not
rocognized the figure by time t = (s - 1)™. It is assumed that the
reader has no diffieulty in seeing how to orgainize the top layer of

M! into a counter of capacity (s = 1)00,

{Method 2a), In this method we will detect possible looping of
the M array by having two layers in the M' array each of which behaves
as an M array. Onme layer runs at half the speed of the other. The
twe layers will be in identical states at time t = 0, but the slower
layer will immediately fall behind. When the two layers again achleve
identical states, we know that they must be in loops, since the faster
layer must be entering this state for at least the second time. When
suckh a2 looping condition is detected, the figure may be rejected if it
has not already been recognized.

The problem here is how to detect when the two layers are in the
same state., One straight forward but time comsuming method would be to
have a third layver which chsarves and oontrels the first twe. The
third layer would cause the other twe to advance by one and two steps
raspectively and would then inhibit thelr actlion. Each gell of the
third layer would then eompare the states of the corresponding cells
in the other two layers and would generate a signal indicating
whether or not thay wers in the same state. These signals would be

accumulated at one point, say eell (1,1), in much the same manner as the
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perity information was accumulated by Mpsg. Cell (1,1) would then
decide whether the figure should be rejsctad or whather ancther atep
in 'he simulatien should be carried cut. If the latter is the oase,
2 firing squad eould be started to initlate another step in the
simulation. Thls method elearly turns up & lot of time, since the
accumulation portion takes about m + n steps and the firing squad takes
another m + n + max {m..n} steps. A much fuster method is now
daezeribed, It will be more expensive in terms of states required.
(Method 2b), Wa will use a method of non-uniform simulation. The
basic ldea is that waves of simulation spread out from the southeast
cormar, Ahead of each wave the two layers are at simulsted times
%y and tz- After a wave passes, they are at simulatsed times t, +1
and tz + 2. DBetween the wawves of simulation come comparison waves
which acoumulate the necessary comparison information. A= each
comparison wave washes over cell (1,1), all the information necessary
to decide whether or not a loop as been entered is present and cell
{1:1) can make its dscision. The speed of the method comes from the

fact that one wave may follow immediately bshind another. [

One way of studying the class of eellular predicates is to
compare it te the e¢lasses of predicates recognizable by othar types
of recognitlen devlces such as the perceptron, We have already seen
one gallnlar predicate, namely ‘fmn. which is not in the class of
predicates recognizable by order or diameter limited perceptrons,
Uther predicates which have been censidered by Minsky and F'n}:nmnrt.':":':J

in connectlon with the perceptron will be discussed in Chapter 1.
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Hanniae (8) has clasiified arrays by the number of directlons in
whiszh signals may flow within the array anc¢ then compared the relative
oomiting power of various elassas.

Other types of recopgnition devices may be obtalned by modifying
normal one-dimensional tape-accepting devices to operate on two-
dimsnsional tapes. Consider for a moment a universal computer which is
able to walk about on & wwo=dimensional taps, ssnse the edges without
rteapping off the tape, and which can read the symbols written on the
trpe. (A two counter machine provides a more tidy mental image of this
protass than & Turing machine, since the latter must drag Lts tape
behind and 185 always in danger of tripping over it.,) Ws will use

the phrase two-dimensional universal cemputer to describe such a device,

ifAiven a figure represented on a tape, the machine can wander about on

the figure and eventually accept or reject the figure. The phrases

two~dimensional finite state automaton, two-dimensiocnal push-down

autcmaton, and two=dimensional linear bounded sutomaton desoribe

simllar adaptations of one-dimensicnal devieces.
Elum and Em“{ﬂ introduced & specilel clpss of two=-dimensional

devicas csalled pebble mutomata, Thess devleces are just two-dimensional

finite state automata, which are provided with a fixed finite number
of markers (called pebbles) which they carry about with them and leave
o) Squares as temporary markers. Upon retuming to a square on which
A marker had been previcusly placed, the automaton can sense its
presence, pick it up, and carry it off for further use if so desired.

50



Definition
Jiven two classuvs [':.1 and Bz of devices for recognlzing

predicates, we say that E+ is strictly more powerful

than g_a provided that the class of predicates

recognized by devices in C, is a proper suboclass of

2
the class of predicates recognized by deviges in '-'J1.
If these classes are the same, we say that C, is
equivalent in puwer to EE' Hote that the relatlion
thus dafined induces a4 partisl ordering on the

fa=ily of classes of computing devices.

Theorem 2,6 (Non-Universality)
Two-dimensional universal computers are strictly

more powerful than iteratlive arrays.

FAOUF:; Certainly a universal computer can recognize anything which
can De recognized by an iterative array. The existence of a predicate
witich is recognizable by a universal computer, but which is not a
eallular predicate can be cobtained by a dlagomalization argusent as
follows. Set up some fixed effective method for coding descriptions of
cell types inte figures, Then consider the predicate Fil"mm given as
follows:
F is a coded deseription of & cell
Pe 'ﬁ:nns R — type M such that an array of type M
would reject P.
How wDM«G- iz gartainly an effectively computabhle predicate. Assume it

is a eellular predicate and let X' ba a cell type which mecognizes it.
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Let P' be the coded description of M'. Then P'€ ¥j . = M
rejects P' by definition of WI:HAG . But M' rejects P' <= P'¥ ¥j.c
zonca M' is assumad to recognlize 'me. This contradietion shows

that ‘.ﬂ"ﬂmﬁ iz not eellular. D

Bafore stating the rext two thecorams, let us deseriba the model
+f two-dimensional linear bounded autcmata which we will use, We
could assume that such a device has a one=dimensional awdlliary
working tape which 1s bounded in length by a linear function of the

mbar of sguares in the input figure. We will, however, take the more

imtural approach that the deviee has no sudlijiary taps, but rather
uses the input figure itself as a taps and is able to both read and
write on the figure with a finite set of symbols of which the initial
Tigure's symbols mav ba anly a subset, This model seems much more
natural in the current context, We also assume that the automaton is

always started in its initial state on square {1.,1).

Theorem 2.7
Two=dimensional linear bounded autcmata are strietly

more powerful than psbble autcmata.

PROOF: Using the model of a linear bounded automaton{LBA) deseribad
above, it is easy to see how, gilven any pebble automaton (PA), we
can construct an LBA to simulate it {in faet to simulate it in real
time) .

To show that LBEA's are strictly more powerful than PA's, we sarry

out the same diagonalization argument found in the proof of Theorem 2.6,
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replacing universal computer by LBA and iterative array by PA. Thers
are some things to check, Flrst cne must check that a coding of PA's
can be produced such that a single LHA can look at a coded descriptlon
aof any PA and ¢hen simulate that PA operating on its own description.
Second since a PA may begln locping rather than accepting or rejecting
a figure, we must ensure that the LEA can detect such loops. This can
be done by an adaptation of the second methed of deteeting loops in the
wroof of Theorem 2.5. Namely two coples of the PA are simulated, one
copy at one rete and the other, at half the rate. In batwean simulated
;teps the LBA checks to =zee L the twe slmulated PA"s are in the same
loeation and same state and if they have thelr pebbles all arranged in
the same manner. This must eventually happan if the PA's enter a loop
and hence the LBA can determine if tne PA dascribed has rejected its

own deseription by looping. D

Theorem 2,8

Iterative arrays are equivalent in power to two-
dimensional lirear bounded automata. Indeed, glven
any predieate ¥ which is recognizable in time
T(m,n) by a linear bounded sutomaton and given any
positive integer k, ¥ is recognizable by an array
in time &rTE-.n} + (1 + &Hu +1n) + 2.

Conversely, given any predicate ¥ which is
recognizable in time T{m,n) by an array and given
any positiva integer k, ¥ 4s recognizable in time
#m[ﬂ-: T{..n:ﬂ 1),
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PRI0F: It is elear that an array can simulate a linear bounded
atomatan(LBA) 4in real time. However, the BA can make its decision
atout the figure from any positiom on the f.gure whereas the array
must deliver its answer to eell {(1,1). Thus if the LEA takes

time T(m,n} to recognize the figure, then an array might take as long
as T(m,n) +m + n = 2, QOiven any positive integer k, we have by tha
Speed=Up Thecrem that ¥ can be recognized by an array in time

&-{T{m,n}l +m+n-2+na+n+2 % Ilr.'ﬂ"’n:l + (1 +&}(m +n) + 2,

It iz also not diffieult to see how an LBA might simulate an
array, It could use a working alphabet which would allew it te
reprosont two different cell states within one square of the figure.
Cne of these states would represent the state of the cell at the
"ourrent time" and the cther the state of the cell at the "next time."
By making a pass over the array it would be able to update the states
of each eell., The first method of passing over the array which one
considers usually involves tracing out & path as indleated in the

following diagram, which shows the LBA making & scan of one row.
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This i5 the path traced out by an LEA which examines sach of

the neighbors of a eell in tum s=o that it ean update the state of the

celly, The black dots in the diagram sbove represent the points at
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whirch the LBA has accumulated enough information to update a cell.
Yota that the LEA makes seven movements per cell,

If instead of attempting to update the state of each cell on
each pass over the array, we allow several preparatory passes, we Can
reduce the average number of movements per cell to four., In this case
the LBA keeps four simulsted cells within each square of the tape. Une
represents the cell locailed at that pesition and the other three

represent its western, northern, and eastern nelghbors.

The LEA begins in the northwest ecorner and deseribes the feollowing

¥

patha

iy

»)
ﬁ

5
—
L

ﬁ

Diring this pass sach square can be marked to represent the states of
its western and eastern neilghbors.

The LEA next deseribes the following path.

W
A

During thls pass each sguare 1s marked with the state of its northern

nelghbor upon the first visit from the LBA and upon the second visit
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the LBA, which is coming up frem the south, has all the information
negessary to advance the state of the cell by one time unit,

An cbserver staticned at a given cell in the intericr of the
array would note the following build up of information where a dot

represants information about the current state of a cell.

1] | Bafore first visit by the LBA,

After first visit,

f' ' -I After sscond vilsit.

L 1-1- After third visit,

| After fourth visit,

(The state of the cell has now been

advanced by one simulated time unit.)
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The entire process involves an average of four movemenis per coll
per unit simulated time. PBut glven any peositive lnteger k, we can
simulate not Jjust one time unit per pass, but k time units per pass
simply by inereasing the informaticn deposited in sach square by the
LEA on its first three visits to the square, Of course the LEA must
earry along more local information in this ecase. For example, if k = 3,
then the informaticn capecity of each sguare would be sixteen cells

and cur cbserver would note the follewlng sequence of events.

Bafore first visit by the LEA.

After first visit.

Aftear second vislt.

After third wvisit.
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[ ] After fourth visit.

(The state is now advanced by

I : l three simulated time units.)

The timing result stated in the theorem now follows immediately. U

Corollary 2,6.1
Iterative arrays are strictly more powerful than

pebble automata,
PROOF: Immediate from Theorems 2.7 and 2.8, ﬂ

Let us retum for a moment Lo the idea of a two-dimensional

universal computar,

finition
A predicate ¥ is said to be effectively recognizable
Af there exists a two-dimensional universal computer
which recognizes ¥. We say we are Elven an
effectively recognizable predicate ¥ provided we are
gElven & finite deseription of & universal emmputer

which recegnizes W,

We now state some undecidabdlltiy resulta, Note that Theorem 2.6
proved the existence of a non-cellular effectively reccgnizable

predicate,



Theorem 2.9
Given an effegtively recognizable predicate F". it
is in general undecidable whether or neot ¥V is a

cellular predicate.

FROCF: Ey Theorem 2.6 there exist effectively recognizable predicates
which are not cellular, Lat tlp*bﬁ such a predicate. Now given any
Turing machine T, let 'l"-"-r be given by
PE V' and P iz an men pattern and T
Fe FF'F — deesn't halt in m-n staps when started
on a4 blank tape.
Now 'I"-"r is gertainly effectively recognizable., Furthermore (;{I' is
finite <—> T eventually halts on a blank tape, by definition of
Vo . But ¥.=¥ <= T doesn't halt on a blank tape, again by
dafinition of 5"':.-. Since finite predicates are cellular by Theorem 2.4
and sinee W' is not cellular, we have that ¥, is sellular <> T
halts on a blank tape. The theorem follows by the undecidability of

the halting problem for Turdng machines, ﬂ

Thecrem 2.10
Fiven a cellular predicate ¥ and a cell type M,
it is in gensral undecldable whether or not M

reaognizes V.

PROOF: Let T ba a Turing machina and M" be a eell type which
recognizes ¥, Construct a cell type HT" which first simulates T

starting on a blank tape for m stepas or until T makes an excursion of
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more than n units from 1ts starting point. (A similar construetiom
based on the Post correspondence problem rather than on Turing machines
may bte found in Chapter 3 of HEIUIiﬂEE}.} If T has not halted by the
time the simulation ends, H‘T then simulates M' and accepts or rejects
¥ according as M' does. If T has halted, than M, simulates M' and
makes the opposite eclassifieaticn from the one M' would have made,

Thus HT recognizes ¥ == T never halts, The theores follows. D

finition
Two cell types are said to be sguivalent if they

recognize the same predicate.

The following corcllaries due to H-an.n.iaw] are immediate from the
above theorems. Hennle shows the corcllaries held even 1f cne assumes
that signals can only travel from east to west and from south to north

within the array.

Corellary 2.10.1 (Hennia)
Equivalence of cell types is undecidable.

Eﬂr‘ﬂlllﬂ 2.10,2 (Hennie)
Tiven a ocell type M, it is undeeidable whether or

not it accepts any figures,

2,6 Linear Predicates

We now define an important claas gf predicates,



Iefinition
A predicate ¥ is sald to be linear if there exist
non-negative integers p, q, and r such that ¥ i=

recognizable within time e + gqn + r.

In view of Corollary 2.1.2, we might be justified in saying that
the following theorem shows that linear predicates can be recognized

"glmost" as fast as any predicate.

orem 2,11
If ¥ 1s a linear predicate, then for any real £ >0,

¥ is recognizable within time (1 + £ )(m + n) + 2.

FROOF: Let p, a, and r be such that ¥ 1is recognizable within time
e Hn + r. Let u=m{p+r. q +r}‘ Then since m,n 21, we have
m+tan+r £{p+rim+{g+rn £ s(m+n), Henee ¥ is
recognizable within time s(m + n)., Let k be a positive integer such
that § <£, Then by the Speed-Up Theorem ¥ is recognizable within

time E-{u+n}+l+n+2£{l'l-EHn'I*n]l'l*E- 0

Corresponding to Thecrem 2.4 we have the followlng.

Theorem 2,12
The class of linear predicates is a2 Beolean algebra

which contains all finite predicates,

FROOF: The containment of all finite predicates was shown in the proof
of Thecrem 2,4, 5Since we are interested in the values of the

recognition-time functions only over the positive guadrant in (=.n)-
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space, we can bound the maximum of two linear functions by a linear

funetion., The result then follows from Corollary 2.4.1. []

Correaponding to Theorem 2.5 we have the followlng.

Theorem 2,13
Let ¥ be a pradicate and M a cell type which

aceepts (or rejects) ¥ in linear time, Then
there exists a cell type M' which reccgnizes

¥ 4n linear tima,.

PROOF: Assume M accepts ¥, the case of ¥ redecting ¥ is similar,
Since M accepts ¥ in linesr time, we have by similarity to Theorem 2,11
that ¥ must be acceptable in time (1 + £ )(m + n) + 2 for any £ > 0,
Let M" be a cell type which accepts ¥ in time 2(m + n) + 2, Modify

M" by adding a second layer which counts up to 2(m + n) + 3 and then
rejects the figure if it hasn't already been accepted by M"., The cell

type so constructed is M', D

Note that the correspondence of Theorsm 2,13 to Thecrem 2.5 is
not quite complete. MNamely we do not claim that M' is effectively
ecnstructable given M. It is certainly effectively sonstructable
given M and an integer k such that M always accepts ¥ by time
= kim + n). However, the probles of whether or not it is possible to
effectively ccmpute such & k, glven just M and the lmowledge that M
accepts in linear {ime is open. A partial result is given by the
following theorem due teo Mike Paterson (unpublished).
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Tneorem 2.14 (Faterson)
Mven a predicats 'F, a eall type ¥ which recognizes
i y and given that there is an integer k such that ¥
recognizes ¥ in time k(m + n), then the problem of
finding a minirmm such integer k is in general

unsolvable.

FROOF: Let ¥ be the empty predicate, OGiven any Turing machine T,
cengstruct a call typs 1-|.I which banaves as follows, It simulates T
fer n steps on a blank tape., If T has not halted; it rejects the
input figure at time 2(m + n). If T has halted, it rejects the input
figure at time 3(m + n). Thus H,r recognizes ¥ in time 2(m + n)

<= T never halts, a3d in time 3(m + n) <> T eventually
halts. The result follows. D

Similarly we have the following.

Theorem 2,15
GEven a predicate ¥ and a cell type ¥ which
raccgnizes 1!"'. it 15 in general undecidable

whether or not ¥ recognizes ¥ in linear tizme,

PROOF: As in the proof of Theoram Z.14, lat ¥ ba the ampky predicate
and for any Turing machine let !l[.l. ba a cell type such that
HT recognizes ¥ in time 2(m + n ) <—> T doesn't halt

and H‘I‘ recognizes ¥ in time 2(m n) ¢<> T halts, The result
follows, ﬂ

63



We will see in the next chapter that some predicates which weuld
intultively seem to require time on the order of m-n are in fact
Hnear, Indeed, the existence of a cellular predicate which is not
linear is an open question., There are many candidates for non-
linearity, but there are no known methods of proving them to be non-
linear., The only method of establishing minimal time bounds which is
available is the Interdependence Theorem, which is only ussful in
establishing bounds less than m + n - 1. Colel®) in his thesis on
‘terative computers has established certain computations which cannot
be done in real time under restrictions on intercell communications.
However his model receives information from the external world as the
eomputation progresses and can be overloaded as he shows. In our model
the input has already been digested at time £ = 0, =0 no confusion of
inputs 1s possible. Modiflied diagonalization arguments have baan
triad by the author and by several other people; but promising as they
seem, every such argument has contained a flaw. Flnally we mlght add
that this open guestion is related via Theorem 2.8 to an apparently
cpen guestlon aboui deterministic linear bounded automata. Assuming
m= 1, Theorem 2.8 implies that if all eellular predicates were linear,
then all predicates (i.e., languages) recognizable by deterministie
LEBA (using our particular model in which the input tape also serves as
the working tape) could be recognlzed in tlme proportional to the
square of the length of the tape. Hence the exlstence of a language
requiring on the order of nj’ units of time for its recognition would
show that non-linear cellular predicates exist. As far as the author

knows, ne such language has been found.
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CHAPTER 13
RECOGNITION OF TOPOLOGICAL INVARIANTS

In this chapter we will study the recognitlon of some specifie
predicates over black and white flgpures, All of these predicates
depand only on topolegleal properties of the figure such as
connectivity, simple connectivity, number of components, Euler number,
end so on, The prineipal result of this chapter iz a fundsmental
transfomation of flgures which allows the construesticn of algerithms
for recognizing in linear time a wide varlety of these predicates,
Many of these predicates have been studied in Minsky and Papnrt{ 10)
and in Blum and Hairittl:ﬂ. The interested reader may thuas compare
arrays with percepirons and pebble automata with regard to recognizing

these predicates,

3«1 Basie Terminology

Assumption: Unless otherwlse specified, all figures and
predicates in this chapter are assumed to be over 12 {i.e. black and

white),
We begln by establishing some terminelogy.

Deflnltion
Two cells at (1,j) and (p,g) are said to be
adjacent if |1-p| + lj-u_l < 1 and are said
to be melghboring if [1 - p| € 1 and |¢ -qy <1,
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Two black eells are connected 1f there is a chain
of palrwlisze adjacent black cells bLeginning with

one and ending with the other. Twe white cells are
copnagted if there 13 a chaln of palrwlse
neighbtoring white cells beglnning with one and

ending with the other.

Note the asymmetric c(efinition of comnectedness for black and for
white eells, Soma such asymmetric definition is neeessary if one is to
baln sueh "niea" properties as the Jordan Curve Thecram, A notion

of connestedness which is sysmetric with respact to black and white
can ba cbitalned by assuming that each cell "touches® all of the
neighboring cells excapt the ones %o the northeast and scuthwast,
Tnis notlon which L5 derived {rom a hexagonal partition is, howewvar,
asymmetric with regard to direction.

We assume that [igures are presented against a white background.

Haonee the fellowlng deflinitlion.

Definitlon
The equivalence classes of black cells under the
relation "connected® are called the components of
F. The eguivalence classes of white cells uncder the
relation "connected" which do not contain cells on
the border (that is cells in rows 1 or m or in
golumns 1 or n) are called holes. The remaining
equivalence classas of white cells are lumped

together into a class of white cells called the
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background. A compenent or hecle which contains only
cne cell is said to be isolated, otherwlse

non=Leolated.

For example, the fellowing figure has five components {two of

which are isclated) and tnree holes (ome of which is isolated),

J@T%

A
o

- ..-‘_‘_"'H
il = Ef;ﬁf"fﬁ
..rﬂ..a-"‘..:"‘..-’-'r:..-":

Another example is an 8x8 checkerboard which aceording to our
definitions has thirty-two components, all of whieh are isolaied, and

no holas,

Definition
(iven a figure, one can construct an associated iree
which represents the contalmment relatlonshlps
between the background, the components, and the

holes. A fipurme and its associated tree are

ghown below.

(2) @) ()
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Two figures which have isomorphic trees are sald

to be topologically equivalent, where by isomorphie

trees we mean lsomorphic as labelad graphs or as

uncriented rocoted trees.

Definitlon
A predicate ¥V iz said to be topologically
invariant if whenewver P and P' are topologically

equivalent figures, we hava P € ¥ o= pe ¥,

3.2 An Example: ,’I'FC{:'NN

The first toepelogically invariant predicate we study consists of

the set of all econnected figures,

Definition
The predicate il""mrq" is glven by

Pe ¥ oun <> P contains at most one component.

If wa were to ask tha reader at this point to design a cell type
which recognizes %[}HH- his first attempt might very well be an erase-
one=component-and-sae-if-anything=-is=-left algoritha, We now deseribe
such an algorithm,

At time + = 0 the northwest corner cell emits a3 scanning signal
s which begins to sean the array row by row in a back and forth
manner until it encounters a black cell. This stage of the process is

illustrated in the diagrams on the fellewing page.
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At the point at which s encounters the first black cell, twe
things happen. First of all a chain reaction of erasure is set off
within the componant to which the black cell belongs. The black eell
which was struck by s turns white and emits an erase signal s to each
ef its four neighbors. The e signals are ignored by white cells, but
an e signal striking a black cell causes it to turm white and emit @
signals to its four naighbora, In this manner the sntire component 1s
erased,

The second thing which happens when 3 encounters the first black
eell is that 3 changes into a waiting signal w. The waiting signal
centinues the same zlgzag scanning motion which s had been using, but
doss not interact with elther black or vhite cells or with e =ijnals
which are propagating around the array in various directions. The W
sglgnal eventually completes the sean of the array and strikes one of
the bottom cormers of the array. At this point the arasure of the
componant is guarantesd to te complete.

The first three steps of the erasure process are shown in the

figure on the following page.
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When w strikes the cormer at the end of its sean, the figure
contalns one less component thanm it did to begin with, ALl that
remains to be done iz to see if the remaining figure is blank., This
is aceccmplished by having the w signal rebound from the last corner as
an accept signal a which secans up the array searching for a black ecell,

If a encounters a black ecell, it is converted intc & rejeect
signal r which heads directly for the northwest corner to cause a
reject, If a doesn't encounter a black cell, it eventually strikes
the northwest comer eausing an accapt,

The case of the blank figure is handled by having the g signal
rebound as a when 1t completes its scan.

The cell type implieitly deseribed above recognizes connectivity
in time approximately 2mn and henee is not linear. The reader is
challenged to find a faster method of recognizing connectivity bafore
reading on. A good (or bad, depending on your polnt of view) axample
Lo keep in mind while searching for a linear methad 1z the flgure

illustrated on the following page which has length and area of about

dmn,
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3.3 A Fundamental Transformation

We now study a transformation of black and white figures which
will have important applications to the recognition of topologleal
invariants by iterative arrays. By transformation we mean a mapping
from black and white figures into black and white figures. The
transformation will be studied in its own right in this seetion and
its applications will be discussed in the following seetion. This
tranaformation was discovered by the author while he was attempting to
prove that connectivity could not be recognized in linear time.

Since its tirst application was to show that connectivity could be

reccgnized in linear time, we call it the connectivity transformation
and denocte it by T. The image of a figure P under T is denoted by

T(F).
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For heuristie purposes we will deseribe the transformation as

taking place in three steps,

Step 1. Coler all southeast comer cells

of the black subfigure red. (That is if a

call is black and its esstern and scuthem

neighbors are white, color it red.)

o
R
ZI

ctep 2. Color all southeast corner cells Rl 2l
0 the white subfigure black, (That is if '-L Step 2
a eell is white and its eastermn and southern

R
neighbors are black and its southeastern ol

R R

neighbor is either red or black, coler it

black.)

Step 3. Color all red cells white,

Properties of T: We now informally deseribe the properties of T,
Tne remalinder of this section willl be devoted to proving these
proparties in a series of lemmas. If one considers repeated
applications of T to a figure, one cbserves that each component is
reduced to an isolated ccmponent which then disappears. [Mstinet
components remain distinet and elther vanish at different points
or at the same point at different times., Similarly, each hole is
redueed to an isolated hole which then wvanishes with distinet holes
remaining distinet and vanishing 2t different points or different ti=es,

It is easy to caloulate exactly how many applications of T will be
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required to reduce 2 glven compenent or hole te a single cell and
exactly where that eell will be, The entire figure, no matter how
complex, will be reduced to the all white backgreund in less than
m + n applications of T.

To begin proving the above statements, we need some way of
relating the components of P to those of T(P). This is done in the

next four lemmas by using the concept of a stationary point.

Definition
A cell (1,)) is ealled a stationary point of F if

it is black in both P and T(P).

Note that the stationary points are exactly those black cells in

P which are not southeast comers of the black subfigura of P.

Lesmz 1

Every non-isclated compenent of P contains a

staticnary polnt.

FROOF: Let © be a non=isclated compenent and let x be a northwesti
cormmer of €, Then x must be & statiomary polnt for octherwise it

would also be a scutheast cormer and hence C = {x} would be isolated. ]

houms 2

Two stationary points are connected in P Lf and

only if they are connected in T{F).

FROCF : [:ﬂ Let x and y be two staticnary points of F which are

ronnected. Then by definition there exists a sequence Mg, XNyseess¥p
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of distinet palrwise adjacent black cells such that x = x5 and

¥ =X We use induction on n. If m = 1, then x is adjacent te y and
we are dope., If n= 2, then either :t1 is also a statiomary point

in which case we are done, or X iz a southeast ¢ormer, In the latter
case we have the situaticn depdeted in the flgure below, pessibly with
x and y interchanged and one sees that the sell z will be black in
T{P) no matter what its color in P. Thus x and ¥y are connected in

T{P:I-

Now assume n 23, Observe that any chain of distinet pairwise
adjacent black cells cannot eontain two eonsecutive southeast corners.
Thus elther Xz OF X 4 is & staticonary point and we may apply the
induction hypothesis to the chain X sen ¢ X and Hew won s X,
wnere k is elthern - 1 orn - 2, Thus x is connectad to y in T{P}
via X

B:] Suppose x and y are connected in T(F) and let
Tgr Fyr see s In be a sequence of pairwise adjacent black cells in
T(F) such that x = Xy and y = x . Agaln we use induction and again
the cases forn =1 and n = 2 with x, a staticnary point (ef P) are
trivial, so assume n = 2 and Xy 15 net a statlonary point. Then x,

must heve been white in P sinece it is black in T(P). Hence Xy must
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have satisfied the conditions in step 2 of the description of T and

the situation depieted below must have existed in P,

x, 7/

a@:;?;

We know that x and y are adjacent to x and are stationary polnts

of P. Therefore it will suffice to show that all stationary polnta
of F which are adjacent to x, are connected in P to the cell labeled
v, From the diagram above we see that the sastern and southem

naighbors of x, are indeed statiomary pointa of P and are connected

to &, MNow consider the northern neighbor of x, wnich has been labeled

n in the diagram below.

-

kY \.1'\.:

Y s

s
3y
=-

f
I
i

i\\\.

Assume n is a stationary podnt. Then n cannot be a scutheast cormer
and hence either x;, or n' is black, But x; is white, thus n' must be
black, Therefore if n is a stationary point, it is connected to z via
n's A similar argument holds for the westem neighbor of :1;1. This
completes the case forn = 2.
The remaining cases for n 2 3 follow as before from the

chservation that either Xy T X 5 is a stationary point, although
different reasoning must be used to make this observation now since

Xgs «es 3 X%y 15 @ cheln in T(F). ﬂ
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Combining lemmas 1 and 2 with the observation that every black
cell in T(P) is either a stationary point of P or is adjacent to a

stationary point, we have shownt

Lemma 3
There is a canonical one-to-one correspondence

batwesn the non-isolated components of P and the

camponents of T(F).

We now state without proof the corresponding lemma for holes,
which can be proved by methods similar to those above, Howawer, a
slightly different conoept than that of ststicnary peint must be usad

since some holes such as the cne illustrated below have no stationary

points,

i

= T(F)

Lem=a 4
There is a canonical one-to-cne correspondence
betwean the nen-isolated holes of P and the
holes of T{F).

The following lemma should be obvious by now.
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Lemma 5
If P contains no isclated components or holes,

then P and T(F) are topologieally equivalant.

We now show how to compute the mumber of applications of T
required to reduce a component to a single sgquare and whera that

square will lie, Identlcal resulis can be proved for holes using

similar arguments,

Definition
Given a component € of a pattern P, let
(e} = o
T°(C) = the canonical image of T&~1(C) under
T for k 0 (provided it exists)
n(C) = min {ﬂ row 1 intersects Ci
w(C) = min {;l | column j intersects C }

se(C) = max {1 + 31| (L, ec}

Nota that n(C), w(C), and se(C) represent three lines forming &
triangle such that © lies wlthin the triangle and touches each line

a5 shown in the figure below.

We will show that the component vanishes at the cell indicated by
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the dotted lines and that the number of spplications of T required to

achieve this is egqual toc the distanee from thizs cell to the se line.

Lemma 6

If C is a non-igeclated component, then
n(T(c)) = n(C)

w(T(C)) = w(C)

se(T(C}) = sa(C) - 1

PROOF [ﬂ{ﬂﬁ” = n{ﬂ_li It is clear that n(T{C))2n(c), since

sach black cell in T(C) is elther a stationary point (of F) or is the
wasterm neighbor of a statlonary peint. On the cther hand, if (i,3)
is the western mest peint of C which lies in row n(C), then (i,)) must
be & stationary point and hence n(T(C)) £ n(C).

[w{TI:ﬂ:l:l = HEC}] This result follows immediately from the above
and the symmetry of T with respect to north and west.

[se(7(C)) = se(C) = 1] Any cell (1,) in C such that 1 + J = se(C)
must ba a southeast corner of C and hence is adjacent te a staticnary
poeint (p,q) such that p + q = se(C) - 1. Thus se(T(C)) 2 =e(C) - 1.
On the other hand all suoh eells (i,3) do not appear in T(C), =0

se(T(C)) ¢ se{C) - 1. [

lemma 7
If C is a nen-isclated component, than
™€) (c) 1s an isclated component located at
{n{C),w{C)), where k(C) = se(C) = n(C) - w(C).

PROOF: By lemma & we have k{T{C)) = k{C) = 1, Thus by induction
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k(™% (€})) = k(C) - k(C) = 0, which can only hold for an isolated
ecmponent. That component must be located at {n{Tk{':j[EH.H{TkI:G}l:GH}
uhich is (n(C), w(C)) by Lemma 6. 0

Lemma 5
If P is an men figure, then T° ™~ '(F) is the

&ll white figure,

FROOF: Apply Lemma 7 and the faet that k(C) < n + n - 2 for any

eomponent C of F. D

Lemma 9

If P is an m*n figure coptaining ¢ components
and h holes, then the total number of isclated
components appearing in the figures

B, T(E), TE(E)y vee » T O1(P) 45 ¢ and the

total numbar of isclated holes is h.

PROOF:; Immediate from Lemmas 7 and 8. D

.4 Linear Recogniticn of Tepologiecal Invariants

The connectivity transformation, T, described in the previous
gaction forms the basis of the cell types to be presanted in this
spotion, These cell types all have two common characteristies:

i) They recognize topologically invarlant predicates
in linear time,

i1) They sonsist of two layers, a lower or transformation
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laysr which carriss out sucoessive connectivity
transformationas on the initial figure, and an upper
or observation layer which watehes the transformations
taking place, gathers and processes information, and
finally comes to 4 deelsion about the figure,

The transformation layer can scarry out successive applications of
the connectivity transformation, T, at the rate of one transformation
avery two units of time as follows. At time £t = 0 (mod 2) the latest
figure F is represented in the transformation layer. At time
t =1 (mod 2) each cell has entered a state which represents not only
its own stete at the previous time, but also that of itz szouthern
naighbor. Each cell now has access to the information negessary to
enter the appropriate state in T(P), 38y the next unit of time,

t =0 (mod 2), the transformation is complete. The intermediate step
is necassary to pass information around the cormer so that a eell in
the wnite state can determine the state of its sontheastern nelghbor.

(This step could be eliminsted if diagonal connections wers allowed.)

=l

The process is illustrated bealow,

27
N/

t=0 t =
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The cbservation layer watches for the disappearance of components
or holes in the transformation layer and generates appropriste signals

at each such disappearance. These signals are then processed and &
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decizion iz reached. In some casas it 1ls necessary for the northwest
gorner call to know that it has recelved 2ll the information requlred
for a deeisien. In thes¢ cases the sotutheast cormer cell.sends cut a
timing =ignal which propagates through the array at an appropriate
rate, When the timing signal reaches the northwest comer cell, all
other signals must have preceded Lt, and a decision can be made,

We now presant some topologleally imwvariant predicates which are
linear. In each cass the proof that the predicate 1s invariant rests
ori the constructlon of a cell type which recognizes the predicate in
linsar time. As explained above, all of these gell types operate in
two layers with the lower layer being the trensformation layer., Thus
to describe any given cell type, we need only describe the observation

layer.

Theorem 3.1
Yeouw 4= & linear predicate,

FROOF: Signals are only generated by vanishing components. As each
signal iz generated 1t heads for the northwest comer cells The [lgure
is rejected if more than one such signal is recelved at the corner, If
two such signals collide on the way to the comer, they combline to

form & reject =ignal which, when it reaches the cormmer, will fause the

figure t0 be rejected,.

Definition
Lat !Ih_;,_-_ be gilven as follows

PeVee < all components of P are simply connected.
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Theorem 3.2

!"’5,: is a linear predicate.

FROOF: Signals are genearated by vanlshing noles, If the northwest
corner receives any such signal, the figure is rejected; otherwlise it

i1s agcepted,. ﬂ

The above iwo predicates are special cases of a more gensral

predicate.

Iefinition
For any Ei’cg’hi'hE sach that I]’:E.I.ﬂzrh.] o0y 5 o
€, &
let ¥,', be given by
::1 e 51:2 and h.l:Eh Ehz
Pe ﬁ'i — whers ¢ is the number of components

in F and h 45 the numbear of holaes.

Theorsm 3.3
L
For any ﬂgﬂi.uz,h"hz £ es , the predicats b, by

i= linear.

FROOF: Thiszs is a simple adaptation of the methods emplowed in

Theorems 3.1 and 3.2. |:|

In the abovz theorems we have merely used ocur transformation to
orunt components and holes. But Lemma 5 indigcates that the
eonnactiviiy transformaticn preserves additional topological
information. By introducing a slightly different mode of operation in

the observation layer, wa may take advantapge of thnis faet, Considaer
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the following predicata.,

Definition
Lat q"nnc be the predicate given by
No component of P is doubly
FE Ve — eonnected (i.e, no component

of F has exactly two holes),

New ¥pc 1s not of the form ‘a"",:.,’f,:i. , but nevertheless we have

Thecrem 3.4
F’E'ac is a linear predicate.

FROCOF: As before signals are generated by vanishing holes, but unlike
previous cases they do not immediately head for the northwest cormer,
Instead they remain positicned cver the component in which they were
embedded. As these components gradually shrink and shift under the
astion of the conneotiviiy transformation; the hole signals shift so
as to remain pesiticned over the components in which they criginated.
By the time the component 1s finally reduced to a single cell; all houle
signals assocciated with it have collided and a signal generated by
thelr combination is centered cover the now isclated compenent. In

the ease of Wyp, this combined signal would indiecate whether the
component had originally eontained O, 1, 2, or more than 2 holes, In
the case of 2 holes, a reject slgnal would be generated which would
cause the figure tc be rejected. Otherwise both the component and

the combined hole signal wanish at the next unit of time, D
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Tne method of making a signal generatod by a vanlshing heole
remain above the component in which the hole was embedded can be
applied in a4 dual manner. Thus the predicate "ne hole contains
exactly two components® could be recognized singe it 1= Just the duall
ol "’,,, + This progedurs may be extended as in the following thecrem.

Thecram 3.5
EHven any [igure Q, let ‘*’;q ba the predlcste
given by
F is topoleogleally
Pe¥.y —2
equivalent to Q.

Then W=g is linear.

PRCOF: Feesll that twoe fipures were said to be topologleally
equivalent if they had ismmorphic assoclated trees. Thus glven an
input fipgure P, we can begin computing Lts assoclated tree. I at
any peint im the computation it becomes apparent that the tree of P is
not isomorphic to the tree of Q, & reject signal ocan be generated.
therwise the computation will continue to completion and P will be
accepted. The computation of the tree of F can be carrled ocut in the
followlng manner,

When a hole vanishes (assuming there were no components located

in that hole), it generates a signal which represents the subtree .
(H)

This signal floats above the component in which the hole was located,

If two such signals should sellide, they combine to form a signal

representing ﬁ + (Extensions to more holes 1s plear.) When
ONO
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eventually the component vanishes, it replases the signal by a
® ONO

signal (e « This signal then floats above the hole (or

) ()
possibly the background) in which the component was located. The
process now continues. In general the signal generated by a vanishing
mibfigure will represent a tree which is cbtained from that sub-
figure's associated tree by adjoining a node marked "B® to the root.
wnen two such signals collide, thay join te form a signal representing
the tree obtained by identifying the "B" nodes. By the time P has been
reduced to the background and all signals have merged at oell (1,1),
the resulting signal will represent the tres assceclated with P.

The process deseribed above is workable tut for ocne faet. Since
there is infinite variety in associated trees and subtrees, we need
an infinite mumber of signals to represent them, In the ecase of
recognleing 'P';,; this restriction is not effective slnee we nead only
enough signals to represent all the possible subtrees which could be
formed while constructing the tree assoelated with Q. Anytime two
slgnals ecllide or a component vanishes in such a manner that the
resulting signal has not been provided for, it indieates that P is not

enuivalent o Q and a simple reject signal may be produced instead. |]

Corollary 3,9,1
fven any figure Q, let 'F;:Q ba the predicate

glven by
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the assoclatad tree of F
Feg IH:E — is isomorphie to a subtree
of Q.

Then tlhrcq is linear.

FROOF: A eell type which recognizes ?c:q may be constructed by a

simple adaptation of the method of Theorem 3.5. U

Bnrnllarz 3.5.2

Giwen any finite set n'F of figures, let #ﬁ- ba tha
prediecate given by
FE 1’5 % {

there axists an 5 r;xf such that P

is fopologleally egquivalent to 3,

Than ]JE;- is limear,

FROCF: The result follows immediately from Theorem 2.12, since

]’l.:;' = &H wEs

There sesms to bé an endless variety of topologieally invariant
predicates to whleh the comnmectivity transformation may be applied
to obtain linear results, We will ascnclude with the mestlion of

two predicates which seem interesting and amusing.

Definition
Lat IH = {b.w.ﬁ.fi (representing black, white, start,
finish). A figure P over I, is sald to be a mazs
provided Lt contains exsctly one occcurence of s

(start) and exaetly one occursnce of f (finish).

86



A maze P is sald to be solvable i1f the cells
eontaining the s and £ are connected by a chain of

pairwise connected black cells.

Thecrsm 3,4
Lat LH..‘,,“ be the predicate over Iu given by
Pe ¥yuze — P is a solvable maze.

Then 'ﬂ"m“ is linear.

FROCF: Glven a figure P over [, it can be determined in s linear
amount of time whether or not it is a maze, If it is, & two lsyer
connectivity type array can detemmine sclvability in linear time by
having the = and £ float above the components in which they were

embedded. They will collide if and emly if the maze is solvable, L

In view of Theorem 2,11, the above result says that we can test
whether twoe given peints in a figure are connected in time
{1 +£ }m +n) + 2. But in many figures the shortest path betwesn
such points is on the order of 4mn in length. Thus we can determine
that two points are connected in an amount of time which 1s less than
that required to transmit a signal along the shortest path in the
component connecting them (1).

An application: The final predicate we oconsider is included as

a highly impractical application of the foregoing methods. Let any
figure over I, represent & map of some islands in a lake with whits
representing water and all other symbels representing land, Let b

represent a bare plot of ground, s a plot on which a sheep is standing,
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and f & plet on which a sheep dog (Flde) is standing., Then it will be
of rellief to shepherds whe keep their floeks on islands to know that
the followling predicate is linear.
every island which has sheep has
re IF;HI’I.'PI:M-E- ¢=:" {
a sheep dog.
The proof is omittad,

Higher Dimenslcns: One might ask for a three-dimensicnal analog
te the connegiivity tranaformation which would allow a three-
dimensional iterative cube of automata to test in linear iime whether
an input figure (input sclid?) is connected. No such transfomation
has besn found. Indeed, one can see that any transfomation which
would handle three-dimensional cases must be semewhat more complicated
than a simple shrink-the-compenents-to-a-single-point approach, since
one can have figures such as two interlocking rings which must be
unlocked before being shrunk,

A5 a problem intermediate between two and three dimensions, one
might study the problem of recognizing connectivity in multi-lewvael
mazes of finite depth. The sclution in linear time of multi=level

mazes would allow us to relate arrays and two=dimensional finite stste

automats in an interesting manner.

Theorem 3.5
If multi-level mazes are solvable in linear time
by iteretive arrays, then any predicate recognizable
by a two-dimensional finite state automaton is

mecognizable by an array in linear time,
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PROCF: Assume that multi-level mazes are solvable in linear time,
Let A be a fixed two-dimensional finite stite automaton which
operates on figures over the set I. Then construct the cell type :I'I!_Ill
which oparates as follows, At time t = Q0 the figure over I is present.
At time t = 1 the array has created an s-level maze, where s is the
mmber of states 4n A. Each level represents a state of A, If cells
{4,1) and {p,q) are adjecent and Lf the initial input at (i,j) would
cause the automaton to go from state k to state r and move from (i,])
to {Dyq), then & connection between lavel k at (i,]) and level r at
(pyq) is established in the maze. Thus we see that by time t = 1 the
array has constructed a map of the movements of A over the flgure,
This map contains the path actually traced out by A when it iz placed
on eell {1,1) in its starting state as well as many other paths
corresponding to state/lecation configurations which A would never
actually enter, The guestion "doas A accept the figure?" now becomes
the question "does the multi-level maze have a sclution?" {using the
initial state level at {1,1) as the start peint and any accept state
as a finish point). By assumption this problem 1s a linear problem.
The author has tried several modifications of the conneetivity
transformation in an attempt to find & successful method of solving
gpulti-level mazes in linear time, but none have worked. Multi-level
mazes can certainly be selved in time proportional to m-n, but their

Iinearity is still an open gquestion. D



3.5 EBuler Number

Lefinition
The Euler number of a black and wnite figurs is
the number of components in the figure minus the

rumbar of holes,

Minsky and :l"'.vq:u:n:'|:.{-I'::I:r show that predicates depending in a
reasonable way on the Euler number of a figure are sasily recognized
by parceptrons. Their method of determining the Euler number i= to

parfom a welghted sum over certain subfigures, Namely, each

occurrence of the subfigures and counts +1 and each

e S
oceurrence of the subfigures E2¥2 and ;ﬁ counts -i. They showed by
S

induction how the sum of these lntegers over a figure is egual to the

Euler number of the figure, Their somewhat obscure motivation for this
SEAREE

process 1s that iz analogous to a vertex, %;f; to an edpge, and

Zk7| to a faee. Actually there is a quite simple interpretation of

their result, If we agree to deposit the count (%1) for each of
thess subfigures in its southeast cormer square and if we agree to sum
the counts deposited In any glven square, we find that only two cases
arise where a non-gerc count is attributed to a sguare, These

gorrespond to the subfigures L and R below.

o -1 =




Kow think of an observer who starts walking along the cuter
boundary of a component, keeping the component on his left, and who
eventually returns to his point of departure. During his stroll he
will have made a number of left= and right=hand tums. Since he was
on an outer boundary, he must have made a Lotal of four more laft than
right turns in returning to his starting point. If instead of
eounting all turms, one counts only those left turms which change
direstion from north to west and only those right turns which change
direction from west to north, then cne wlll have exacily cne more left
thap right fturn, But these special nerth-to-west and west-to-north
turns occur only at L and R configurations respectively. Thus an
outer boundary has exactly one more L than R configuration, Similarly
an inner boundary has exactly cne more H than L configuraticn. Hence
the sum over a fipure of the weighted L and R eonfiguraticns is equal
te the difference between the mumbers of outer and inner boundaries,
But this is just the difference beiween the number of components and
holes, which in turn is the Buler number of the figure.

As an example, the figure

F..-':-f = %

would produce the following distribution of counts,

DA
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We can easily design an array which would by time ¢ = 2 have
transformed an original figure inte its corresponding pattern of +1's
and -1's. This might be a nmatural first step in setting out to recog-
niwe a predicate whlch depends on the Euler number, Consider for
example the predicate, '#'EU,_EH, which contains all those fipures
having positive Euler numbers, After transforming the figure inte a
distribution of counts, the preblem becomes simply to determine
whather there are mere +1's than -1's,

This can easily be done in time properticnal to m-n. It
gertainly seems that one should be able to detect a surplus of one
type of symbol over another in linear time, but surprisingly, this

guestion remains opan.

3.6 Topologieal Mateh Problem

A prime ecandidate for a non-linear recognition problem is the
topological mateh problem. In this problem we present two black and
white figures to the array and ask whether or not the two figures are
of the same topological type. The best known times for solving this

problem are on the order of {m.-n:lE. We will mention sewveral methods
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of solving this problem below.
Representing peirs of figures: Let us make the fellowing

gonrention for representing pairs of bleck and white figures. Given
two black and white figures we wish to compare, we flrst adjust them
to have the same mumber of rows by adding extra rows of white cells
to the bottom of whichever figure has flewer rows., The figures which
now have the same number of rows are placed =ide by side, separated
only by a single column of red cells, The total figure consisting of
tha two black and white figures and the red divider constitutes the
input to cur array. We will refer to the two figures as the left
fipure and the right figure, An array which is to solve the
topelegieal mateh problem will aceept only those figures which are in
this formm and in which the left figpure is topologically equivalent to
the right.

Converting a flgure into tree representatien: It is possible Lo

design arrays which solve the topological mateh problem by dealing
directly with the figures as initially presented to the array. It is
also possible to first eonvert the flgures intc representatlons of their
associated trees and then perform isomorphism checking on thelr trees,
Since topological equivalence of [igures was defined in terms of
isemerphism of the associataed trees, we feel the tree comparisen

method is coneeptually eleaner as well as much easier to describe.

The progcess of converting a figure into a representation of its
associated tree appears to reguire on the order of (m-n} units of time
to complets, Since all known methods of eomparing flgures or trees

for isomorphism take on the order of I:mvnjl2 units of time, the
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conversion process does not alter the functieonal form of cur recognition
time. By using speed-up, we may compensate antirely for the time spent
in converslon.

The copversion process may be thought of as taking place in the
following two steps:

1) one cell in each component or hole is chosen to
reapresent the corresponding node in the associsted
tree and

i1) the nodes are connected together by a pathway of cells
in a manner which represents their connectedness in
the associated tree,

We now deseribe a process for coenverting a figure into a tree in
which these two steps overlap. Sinee the distinction between hack-
ground, eccmponent, and hole will be relatively unimportant in the
following diseussion, we will use the temm area to refer to any of them.
The background is by definition one area, btut it may be in fact
dlsecnnected by a component which touches the edges of the array in
several places, A disconnected background represents a difficulty
for the process about to be described, since it recognizes the
integrity of an area by its connectedness. We will assume that the
figure to be processed has an all white berder and hence a connectad
background. Any figure which does not have such a border may be
treated as if it did by having the border cells of the array pretend
te be double cells with the cuter cell being white.

As an example we will follew the figure given in the following

diagram through its conversion inte a tree representation.
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Cur process involves a row by row scan of the entire figure by a
signal which we will call the scanner. The scanner will travel from
west to east along the top row, then move south one row and travel
from east to west along that row, mowe south a row and so on. Eaech
time it strikes an area for the first time, the scanner pauses while
that area is processed. The processing of a new area has three polnts
of interest;

i) The eell on whiech the scanner is sitting becomes
marked as the node correspending to that area;

i1) a linking pathway is established between this newly
created node and the appropriate node above it in the
tree representation; and

iii) the entire area is marked by a contaglous process so
that it will be reccgnized by the scanner as having
been processed.

Shortly after the scanner has completed its scan, the transformation

will be completa,
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At t = 1 the scanner is sitting on cell (1,1) and begins waiting
fer the background to be processed. We will represent the locatien of
tie: secanner by drawing & small triangle (4 ) in the lower right-hand
corner of the cell in which it is located. A cell which has become a

node will be denoted by & heavy outline ( j ). Thus we have
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In the case of the background, ne econneetlen te ancther nods is
made. The contagion which marks the background as having been processed
is similar to the contagious erasure used to recognize chdu in
Sactlon 3.2, but with two important differences. First, each cell
which catches the contaglion keeps a permanent recerd of cne of the
directions from which the contaglon arrived, We will represent this
record by a small arrow within each eell whieh begins in the centar of

the eell and points in the direction from which the contaglon

arrived ( » ). GSecond a mechanism is provided which allows the

scanner Lo know when the contagion which it has created within an area
has completely covered that area. As each new cell catehes the
contagion, it sends a signal, called a dot, back along the system of

arrows which ultimately leads to the scanner, Thus as long as the
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contagion continues to spread, the scanner will continue to receive
dots and will not resume 1ts scan. Since he contaplon moves away
from the secanner at one cell per unit time and since dots travel at
one call per unlt time, the normal frequency of arrival of dots at the
scanner is one dot every other time intervel., Thus if two time
intervals pass without the arrival of a dobt, the scanner may resums

its sean, We will represent the presence of a dot in 2 eell by a black

dot { [+ ). One might think of the centagion as a spreading grass

fire and the dots as particles of amoke drifting back from the fire.
The signalling mechanlam provided by the dots 1s neeessary sinee the
seafiner recognizes new areas by the fect that thelr cells have not
besn Anfected by contagion. If the scanner resumed scanning before
the eontagion stopped, then it would not be able to distinguish
batween cells in newly encountered areas and cells in old areas to
which the contaglon had not yet spread.

Let us now look in on the progress of our exanple. (Hoter the
diagrams which fellow are Lntended as an ald to understanding the
process and de not necessarily represent all the information present

in each cell,)
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The zcontagion and signeling process are under way.

the contagion branchas for the first tima.
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At t = 16 we cbserve the first case of the contagion spreading
through a diagonal connecticn between white cells (from cell (4,9) to
eell (5,8)). MNote that the contagion takes two time units to pass
through the connection because of our nearest nelphbor model. [Hote
also that cell (&,9) has generated a second dot at t = 16 te aveld a
gap in the dot sequence which would be ereated L it si=mply walted te
transmit the dot generated by eell (5,8). In general any white cell
which catches the contaglon and which has diagonal whiie neighbors

will generate a second dot in this manner.
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Wa now wateh the contaglon eome to an end,
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t =17

t =18

Note that the eontaglon arrived at eells (7,B) and (9,10) frem

two direetions at onee and that these cells made & chelee of direction.

.ﬁ.n:.l' choloe will do.

We now see the last of the dots begin toc move toward the scanner.
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At t = 36 the scanner sees that no nore dots will arrive and by

t = 37 1t has begun to continue its sean. By t = 47 1t has completec
its scan of the first row, dropped down one row, and has encountered
an unprocessed eall., Once again contagion within the new area begins.
In addition we now see the linking process begin to take place, The
pathway connecting the pew node to its parent in the tree 1s grown
eell by eell simply by comnecting the node cell to the cell from
which the scanner arrived and continuing tc grow the pathway in the
diregtion indieated by the arrows,

The firast three steps are shown below,
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By t = 57 the pathway has been completed, but the contaglon is

L= 4G
still spreading.
=57

By t = 73 the contaglon is dead and the last dot has arrived

back at the secanner.
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Br t = 97 a third area has basn processed and linked and the

sganner 1s preparing to continue its soan.
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At t = 179 the scanner has ecompleted its scan and all processing

iz completa,
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Although the process was complete ln our example by the Lime tha
seanner finished its sean, this 1s not always the case, The scanner
waits at each node until the contagion is dead, but does not walt until
tha eomnecting pathway has been established, Thus it might be the
case that some pathways are still not complete by the time the scanner
arrivas at the end of its scan. Since the longest pathway may be
about #m+n in length, we must wait this additicnal amcunt of time teo
Ansure that procassing is complete,

The eantire process of converting a figure lntc a tree represen-
taticn takes time proportional to m-n. The scanner is in motion for
about m.-n units and at rest for a total time less than or egual teo
twice the sum of the areas. Counting the walting time for completlon
of connections, the entire process will be complete in at most 34(m-n)
units,

The tree which was produced in our example contains six nodes
corresponding to areas and two false nodes created by the conflluence

of pathways. The false nodes located in cells (2,6) and (2,10) are to
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ba ignored in our interpretation of the results. The ereatiocn of
false nodes is a necessary evil since the ilrees we are trylng to
represent may have nodes of arbitrarily hiph degree. COne way of
ignoring the false nodes is to think of a tree-=like structure of loops
rather than of an actual tresa, In such a loop structure the descend-
ants of & node are threaded on a loop whieh begins and ends at the
node. The diagram below shows a tree T and the corresponding leecp

structure L.

Q

T L

The algorithm for converting figures to trees which was described
above can be medified to produce such loop structures simply by
making the connecting pathways doubtle. The loop structurs

corresponding to our example is shown below,
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Comparing trees: Having shown how to convert figures to tree

reprosentations, we now must deseribe how two tree representatlions
may be compared for isomorphism, The methods to be described will
make use only of the eells which actually formm the tree representations
for the left and right figures, plus & pathway of cells connecting tho
background node of the left tree to the background node of the right
tree, The pathway connecting the background nodes i= used for
gommunication between the eells in the left and right trees. Imagine
now that we have deleted all cells from the array except thosa
gomprising the trees and the communicating pathway. If we grasp the
left background node in one hand and the right background node in the
other hand and 1ift, the trees will untangle and hang down. One has

an image of something like the following diagram.

communicating - —
f,..- - \x pathway .r - Hh"‘n-..
P XS / ~
e - () - \ / (] — right "y
v/
/ laft . / . () tres
| () () | I >
| tree ® o’ | O O/
\ /
\ O [ 0 ;
11 o t ¥/
\ () ! HH /
Y O ! v (O
N @ / Y () /
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Thiz is the form in which we imagine the cells to be arranged
parely Lo avold thinking about their actual embedding in the array ami
to be able to use words such as "sbove® and "below" in deseribing the
relationship between nodes. Since no path lengths were altered in the
1ifting process, communication times have not been zltered.

Becursive method: The first method of Lsomorphism-checking to be
eonsidered 18 a straight forward recursive procedurs. We think of
two observers, one standing on each background node, who can speak to
each other via the communicating pathway. Our cbservers agree to
check whether the trees are isocmorphic. They do this by first
comparing the degrees of the nodes on which they are standing, If the
degreas differ, then the trees are certainly non-isomorphie and the
process terminates. If the degrees are both zero (ignoring the
communication pathway), then the trees are certainly iscmorphic and
the process terminates, If the degrees are equal but non-zero, then
further checking 1s required. The checking involves comparing each
subiree below the node on which the left cbserver is standing with
sach subtree below the node on which the right observer is standing,
The comparisons are carried out in a recursive manner by the cbservers
themselves. They begin methodieally to make 81l palrwise comparisons
of one left subtree with cne right subtres. Each time a matching
pair is found, they are marked and eliminated from consideration,
Eventually either a one-=to-one correspondence of subtrees will be
found, in which case the treez are isomorphic, or a subtree will be
found which has no matehing subtres, in which case the trees are

non=isomorphic,
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lescription generation method: The second method of isomorphism
checking might be called the deseription generation method. Only the
eentral idea will be skeiched here, Assume that we have eatablished
a et of conventions for deseribing finite rooted trees by strings of
symbols. Furthermore assume that our system is canonical in the
sense that two trees which are iscmorphic have identical deseripticons,
Sueh a system ecould for instance be a parenthesis system in which a
tree is deseribed by an opening parenthesis follewed by the descriptloms
of each of its subtrees in lexdicographieal order followed by a closing
parenthesis, Having established such a system, we have the cells
in a tree representation earry out organized activity in such a
marner that the eell corresponding to the root nede emits the
panonieal deseription of the tree. Olven two trees, we simply
compare the descriptions they emit., The trees are isomcrphie 1f and
only if the deseriptions are identieal. A preblem whieh arises with
this method is that one tree may emit symbols faster than another,
but by organizing additional cells into a varlable length stack,
such inequities in generation speed may be ignored.

Squad car method: The final method of perfoming the topological
match might be called the squad car method. It is similar to the
recursive method described above, but is more highly parallel. It is
in its simplest form when applied to the comparison of binary trees,

0 wa will eonslder this case first., Leat E-1 ard E-2 be two rooted

binary trees as in the figure on the following page.
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The comparison process goes as follows., A radic eguipped squad
gar, 8, will drive over the branches of E1 reparting over its radio a
deseription of its rounte, Simultanecusly a second car, C, will begin
to drive over the branches of EI2 while listening on its radic to the
description of the route taken by 5. The car G will attempt to
fellow an iscmorphiec route. If C is suceessful, it will eventually
arrive baok at the root of E2 and the ireeg will have been proved
isemorphie. If C is unsueccessful, it will, &= we shall =ee, wvanish
somewhere along its route and hence never return to the root of B1 "

The route taken by S in driving over B, is a simple right-hand
turn methed for traversing a tree. When 8 approaches a node of
degres thres from above, it leaves by the {from 5's point of view)
right=hand branch. Upon returning to the node from below, S then

takes the second descending branch. Upon return to the node again, §

leaves by the upper branch. The path of 5 aver Ei iz shown in the

diapram on the following page.
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Tha deseription whioh S broadcasts is as follows, Upon entering
a node for the first time from above, it broadeasts the number of
Jrseending tranches leading from the nede (0, 1, or 2). (n all
subsequent visits, it simply broadeasts (N) to indicate that it has
returned to a previous node. The complete sequence of symbols as
brogdeast by S when driving over Bl would be 1, 2, 1, 2, 0, N, O, N,
w, ¥, 1, 0, N, N, H. (Cne could use instead a system of parentheses,
but the system described above is more attuned to the task at hand.)

How let us follow our example as S traverses B, and C attempts

te find an isomorphie path in Bz

=3 _. 1 =L>

At t = 1 both ears are about to bagin and are sitting on the reoot
nodes. S has slready transmitted its first repert (1), but it has

not yet been recsived by C.
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Br t = 2, C has received the 1 emitted by S at t = 1, has found
its eurrent path to be in agreement with the 1, and both ears have
advanced to the next node. (We Lgnore for the moment the time it
takes to transmit messages and the time it takes to move from node to
nede,) 5 has transmitted a 2, When C receives the 2, it will find
that it is indeed sitting on & node of the appropriate degree, Which
tranch should it take next? A deterministie car would got one choice
and might make the wrong one., A non=deterministic car could be
assumed to make the correct cholce. Our car however is a parallel
car and it makes both choiees. That is, it splits into two identical

cars and each car takes a different braneh leading from the node,

t=73 e R B

O

By t = 3, 5 has moved to the next node and our bileocating ear C

has moved dowvm to the next two nodes.

1mz



t =&
2 27l <

Br t =4, 5 has arrived at a doubly branching node and has
transmitted a 2. BPBoth coples of C have advanced one node. 'When the
laft-hand copy of C receives the 2, it will simply vanish since it
will then be apparent that it cen no longer follow a route similar to
that followed by 5, The right=hand copy of G will be in agreement with

the 2, will again split, and will advance to the next two nodes,

AL

Both copies of € will agree with the 0 now belng received and
will aitiempt to return to the previous node, When a car splits,
leaves a node in two directicns, and returns from both direetions, it
indicates that both branches lead to isomcrphic subtrees. One of the

gars ean simply vanish, leaving the other ear to complete the process,
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By £t = 6, one car ramains to continue the processing.

" Py

Br t = 7, C has descended a node and iz still in agreement with
the deseription being given by 5. From here on out C will simply
mirror the movements of +7 and the trees will be found te be isomorphle.
The entlre process has token time proporticnal teo the numbar of nodes
in By.

A point of interest is that the number of distinct lsomorphisms
between two trees can be easily obtained from the above method., Bach
time two cers return to a node and merge, a marker 1s placed at that
node indicating that the two subtress below are isomorphic. I by
the end of the procass the trees turn out to be lsomorphie, then
there will be 2" distinet isomorphisms, where n iz the number of
marked nodes,.

When we come to apply the squad ear method of iscmorphism

checking to the tree representations which have been genersted from
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figures, we encounter twe diffieulties. Flrst the treas are not
binary, but contain nodes of arbitrarily high degree. Second the intar-
node distances vary widely.

The problem of the existence of nodes of arbltrarily high degree
is sasily overcome. “hen 5 arrives at a new node, it must report the
degree of that node. In the binary case this could be done by using a
fixed set of symbols, sinee only three possibilities could arise. In
the current case 5 can report the degres of a newly encountered node
in unary by driving along the loop (thinking in terms of a loop
structure for a moment) on which the descendents of that node are
logated and transmitting a "1" every time it passes a node, When 3
completes its circuit of the loop and arrives back at the origipal
node, 1t transmits an end of number signal. The degree of the
carresponding node or nodes on which C is loecated is checked by having
C traverses the corresponding loop or loops, advaneing by one node as
gach "W is received, Any copy of C which iz not back at its starting
node when the end of numbar signal arrives is on the wrong track and
will vanish, Provisieons for handling highly multiple splitting and
recombination of C in Ez must alse be established. This can be
accomplished by leaving apprepriate markers at the ncdes.

The preblem of varying distances between nodes appears to be more
saricus in that the methods of overcoming it seem to boost the total
time reguired for the process from something on the order of the path
lengths of the trees to something on the order of the product of the
pathlengths of the trees, Consider for a moment what took place in

the naive bipary pleture presented above, The squad ear 3 drove over
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E-1 and transmittied a deseription of its route. Since 5 received no
feedback from C, the rate at which 5 progressed was independent of
any diffieulties encountered by C. In particular if S and C drive at
the same rate, then the Lranch lengths in BE mist be shorter on the
averzge than those in 5 or else C will beccme overloaded with the
information transmitited by 5. In the case of the tree representations
which we have generated from figures, there is no correspondence
between branch lengths in 31 and in BE' One way of clrocumventing
this difficulty is to allow the signals from S to plle up in a queus
at 0. However, C moves up and down within the tree and there may be
multiple coples of C present which may be able to proeess the signals
from 3 at different rates. By the time the movement and multiplicity
af © has been accounted for, one ends up wlth a process which 1s
proportional to the produst of the path lengths of El1 and EE.

A gippler method which yields the same progessing time is to have
S walt for acknowledgement after sach transsission., Thus 5 makes a
unary degree count and then walts for an acknowledgement frem C.  The
glgnal sequence produced by 5 travels up the branches of Ei"' aoross
the communication pathway, and down the branches of Bs, As the signals
travel down the branches of EE' they split at each node of degres
greater than two and a copy goes down each descending branch, Each
copy of C will receiwe the signals, process them, and send back an
scknowladgemant, "A"., The "A"'s travel up the branches of HE‘ When
an "A" arrives at the node of degree greater than two, Lt walts for

the remalning "A"'s to arrive from the other descending branches.

When they have all arrived, they combdne intc a single "A®, which
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then continues up the tree. It now becomes important that when a
gopy of C vanishes, something be left behird which ean still
acknowledge signals, for otherwise no acknowledgement would ever be
received from & branch down which a © had ventured and disaproeared.

The squad ear method as modified by unary degree counting and
acknowledgement of transalssion takes on the order of {m-n)E to
compare two mwn figures. The analysis is as follows, The amount of
time spant in motion by 3 and C is bounded by a multiple of the path
lengths of By and HE' This time iz small compared with the time
apent by § waiting for acknowledgements, The number of times 5 waiis
for acknowledgement 1s proportional to the number of ncdes in By which
in turn may be proportional to men. The amount of time spent walllng
for a single acknowledgement is primarily a function of the distance
betwsen 3 and the furthest {(in terms of path length in the combined
trees) eopy of C. The latter distance may alsc be proportional to
m-n. Thus the total time 5 spends walting for acknowledgements is
proportional to {m-n}z. Of course some figure pairs may be found to
be non-lsomorphic soon after the tres representations have been

generated. Other flgures however will take much lenpgar,
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The diagram balow shows a type of figure whose tree repressntation
has a number of nodes proportional to (m-n) and & depth (measured
from the root to the deepest node) proporticnal te (m-n)., Such

figures will require a long time to check against similar [igures.

:_.'-"r"'
e o et
Z %
7 =7
= e
== =
B = ZHlz =
== Z =
ZRZ Z = Z
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CHAFTER &

IISPLAY PROBLEMS

The preceding two chapters dealt with the use of arrays as
deviess whose input was a figure and whose output was a single blnary
symbol, We now study arrays as devices whose input is a figure and

whoze output iz also a figure,

4.1 Intraduction

If the arrangement of initial states in an array can be Viewsd
as an input figure, then by allowlng the array to run until every cell
is in a final state, we may view the arrangement of final states as an
cutput figure. In this way an array or more properly a cell type may
be viewsd as a transformation from figures over the initisl states
inte figures over the final states. An array operating in this mode
is said to be working on & display problem. The following definiticns

formalize these concepts.

Dafinition

Given two sets I and F, & figure transformation

(or transformation for short), U, of type I/F is
a funetion from the set of figures over I into
the set of figures aver F, such that the image
of an mxn figure is always an mxn figure. If

P is a figure over I, we denote ita image under

J vy J(F).
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Definitien
Given a transformation :}r and & cell type
M, we say that M implements ,',T, if
1)  J is a transformation from figures over
the set of initial states of M inte
figures cwer the final states of M
i1) Oiven any mxn computation gﬁ'= IP.D1.DZ.
of type M, there exists an intseger k such

that J(IF) = OF,

Definition
Given a transformation J we say that it is
cellular 1f there exists a cell type M which

implements it,

Definition
If T{m,n} is a real-valued funection, we say that M
implements _:_.:F‘_ within time T(m,n) if M implements J
and for every m=n computation = DO. 1,D2. .
there exists an integer k such that 'JI:BD} = EF
and k £ T{m,n),
If there exist integers p, q, r such that M
Implexents J within time pm + qn + r, we say

that J is linear,

Many of the theorsms on recognition such as Theorem 2.3, the

Minimizing Theorem, have immedlate anslogs for display. Sines nothing
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really new is contained in these analogs, we will omit them. The
Speed-lUp Theoram however is slightly different in form in the case of

display,

Theorem 4.1 (Speed-Up)
Lat :.T ba a transformation and let M be a cell type
which implements J within time T(m,n). Then given
any positive irteger k, there exists a cell type Hk
which implements J within
Lo(z(m,n)) + 2(1 + IMm + n) - 2.

FROOF: As in Theorem 2.2 and Corcllary 2.2.1,; we parform packdng
followed by speeded-up simulatizn. According to Cerollary 2.2.1, we
will have all simulated cells in their final states by time
t=m+n-|iE]-[E]+|}ﬂE-LEi-ﬂalJ + 2.

Unlike the recognition case where no more remains to be done, we
must, in the case of display, unpack the results so that the cutput
figure can be displayed by the array.

Unpacking may begin as soen as all the simulated cells have
entered their finagl states, If it were the case that all the
simulated cells entered thelr final state at the same time, we could
begln unpacking at that time. However, since different cells may
entear final states at different times, we nesd a method of decliding
when the last cell has entered its final state, This is done by
having a module generate a completion signal as scon as all of the
eells it is simulating have entered their final states. The

eompletlon signals originating on the southern edge of the packed
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portion of the array flow to the north in the column in which they
originated. If a signal arrives at & medule, all of whose simulataed
eells have not sntered final states, it waits until they do enter
final states bafore comtlnuing., Thus when a completion signal arrivas
at a module on the northern edge, it signifies that all of the
simulated cells in that column are in final states. In a similar
manner each northern edge module passes the completion signal on to
its western nelghbor as socon as it receives ocompleticn signals from
its southern and eastern neighbors, Thus in no more than [E] + I:E:I
units after the last simuwlated cell has entered its final state, the
nortowest comer module will be aware of this faect, It can then
ipitiate a two-dimensional firing squad in the packed portion eof the
array. When the firing squad goes off, the unpacking will begin.
Assuming that the firing squad takaes E{[E] + [E}} = & units to go off,

the unpacking operation will get under way no later than

t=m+n+2[{ﬁ:|+|:ﬂ]_} -2+|:ﬂ!|£f:'_1'i|. (We will see in

Saction 4 that this firing squad time can be improved slightly,)
The unpacking process is quite simple and 1s illustrated on the

following page for & 5x5 case with k = 2,
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The unpacking process takes m + n steps. (Note information can be

packed faster than it ean be unpacked.) Thus the entire simulation

from the beginning of packing to the end of unpacking takes

am+n e 2+ B2 1)+ [ HElol € Lip(m,n) + 2(1 + Ida +n) - 2
K & K % K

steps. U

We alsc have by a simple construction

Theorem 4.2
The compositien of cellular (linear) transformations

is a eellular (linear) transformatiocn.
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4,2 Specifiec Problems

In this section we will consider some specifie figure transfor-
maticns and thelr implamentation by iterative arrays. Scme of these
transformations are lneluded because they are frequently proposed by
pecple who are hearing about iterative arreys for the first time,
Others have been included because they seen to be interesting trans-
formations whose linearity is still open. The discussicns are brief
and informal.

The first set of transformations we consider are seme simple
gemmetric transformations of black and white figures which are
usuzlly proposed as "problems" by persons who are experiencing
iterative programming for the first time. They are all linear
transformations.

iyt TRANSLATE)

This transformation is the result of translating the
input figure rigidly to the west so that the western-
most black cell in the figure lies on the western

adge of the array.

Example :
| | Ef‘ [
FJ'
"
J may be lmplementad in linear time as follows:

TRANS
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1) The figure casts a shadow (ownwards ontc the
southern edge.

i1} The western-mest polint of the shadow is detected
and a line is drawn to the northern edge from thls
point, The figure has now been enclosed in a
block of cells and Ls tangent to the western edge
of the block,

§44) Using shifting technigques similar to those used
in packing and unpacking figures for speed-up (see
Theorems 2.2 and %.1), shift the block to the west

=0 that it is tangent to the western edge.

Jogp (ROTATE)

This transformation applies only to square (= = n)
arrayg, The transfommation 1s the result of rotatling
the input figure about its central point by 90° counter-
clockwise,

Example:

]

e
N

e

F
First observe that & hollow sguare of cells can shift

the information it contains by 90° counterclockwise in
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time proportional to the edge of the square. Such a

ghift is indleated below,

Then :fm. may be implemented in linear time by first
organlzing the array into a set of concentric hollow
squares and then having each hollow sguare shift its
infermation by 90° ccunterclockwise,

One might ask for rotations of other than multiples of 90", A4
major diffieulty then becomes the gquestion of just what the result of
such a transformation should be. This question in turn leads to the
area of approximaticn technigques for figures which 1s outside the

scopes of the current work,

Jorpn) (OILATE)
This transformation causes a dilation of the figure by
a factor of n about the center point of the array, where
n is a positive integer or the reciproeal of a positive
integer. If n is greater than 1, the figure enlarges;

if n 13 less than 1, the figure contracts.
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Example

P Jrra) (P

J

IIL(n
i) 'The center point of the array is determined and

) may te implemented in linear time as follows:

gach cell determines which of the four rectangular
guadrants it lies in.

iil) The portisn of the figure withln each guadrant is
dilated by a factor of n, either away from or toward
the central point.

The process of expanding or contracting a guadrant is

similar to the process of packing or unpacking for the

purpose of speead-up as described in the proofs of

Theorems 2.2 and %.1. When expanding by a factor of k,

each cell in the guadrant pretends that it is a module

in which a k=k block of cells has been packed. The
color of these eells is taken to be the color of the
module, When the cells have been unpacked, they will
cover a ksk area in the figure. That is, the original
gall will have axpanded by a linear faetor of k. The

process of a contraction is similar. After a kek block
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of eells has been packed into a module, that module takes
an a eolor which is determined by the eolers of the cells
packed within it, In this case one has to fix a rule which
determines the color of the module as a function of the
colors of the eells, Three such rules are (1) the module
turns black if all the cells are olack and white octherwise,
{2) the module turns black Af any of the cells are black
and white otherwise, and (3) the module turns black if

more than half of the cells are black and white ctherwisa,.

In carrying ocut a ccatraction, one always has enough room in the
array to represent the image of the transformation. In carrying out
an expansion, nhowesver, there may not be enough room in the array to
contaln the resulting fipure. (When we say the array contains the
resulting figure, we of course mean that the array eontains all the
black cells in the resulting figure,)} We may simply truncate the
expanded figure at the boundary of the arrsy or we may use the concept
of folding to preserve the entire expanded figure for further proces-
sing, although it cannot be displayed. Consider the similarity in
structurs between a pilece of paper which has been folded im half
once with the fold on the left and an iterative array of two layers
in which we think of the layers &s being connected only at the
westemn edge. If the array has dimension m=n, we have in effect an
array of dimension m=2n which has been folded over onca, This is
the coneept of folding., By using more layers, more complicated

folding may be simulated. In particular, given any positive integer
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k, we may design an array which, by using folding, aets as though the
ipitial figure is centered on an array of size kmxkn., Thus given any
positive k, we may use folding to design & cell type which can expand
any input figure by a faetor of k although it cannot display that
figure in the usuzl sense, Finally given any positive rational
number, q, we may perform a dilation by a factor of q by first
expanding by the mmerater and then contracting by the deneminater.
The next set of transformations to be considered are known to be

solvable in time proportional to m-n, but their linearity iz open.

J

B0k { PACKING)

This transformation accepts black and white figures and
produces a figure which has the same number of black
ealls, but in which these oells are packed into solid

rods at the top of the figure,

P Jpacx(®)

There are several simple ways of achieving thls packing
in time proportionel to mn. We will leave them for the
interested reader to discover,

The packing transformation is related to the recognition of

EVEULEH which was defined in Section 3.5. The recognitien of that
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predicate had been reduced to determining whether there were more
#1's than -1's distributed sbeut the srray. If Jp . is linear,
then in linear time the +1's ocould be packed in one layer, the =i's
in ancther layer, and the majority determined, Thus the linearity of
J implies the linearity of 1F'E

PACK ULER"

linearity of F’mﬂ. defined to be the set of all black and whits

It would also imply the

figures which hawve more black than white eells, OCurrently the

linearity of wBL.P.GH is still open,

J p (REPRESENTATIVE)

HE
The problem is to transform & black and white figure
into & black, red, and white figure by turning exactly cne
cell of esach component or hole red., This transformation
thus corresponds to the proeess of selecting a represent-
ative cell from aach hole and eomponent, The tree ganeration
process deseribed in Secticn 3.6 can be easily modified
to produce a sclution to the representative problem. The
Ilnearity of this problem is open. Attempts have been
made to adapt the connectivity transformation to this

problem, but without sucocess,

Note: In the abowve problem as in the following two we do not
actually specify the transfermstion in complete detail. Instead we
indicate some general properties whish the transformation must have,
For example in the problem above we do not ecare which ecell in a glven

compenent turns red, so long as exactly one turns reds. The preblem
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is to find a ecell type which implements in linear time a transformation

having the propertlies given.

Jop (SHORTEST PATH)
Given a solvable maze, draw a shortest path solution te
the maze in red. Theorem 3.4 states that sclvable mazes
gan be recognized in linear time., Here we ask that a
shortest path solution be displayed in linear time. We
might be less ambitious and ask ean any sclution to the
maze be displayed in linear time, since this problem is
opan also. A solution to the shortest path preblem can be
obtained in time proporticnal to msn by a simple
adaptation of the contagion prooess described in

Section 3.5,

{GOLD FLATE)

Given & black and white treasure map (black islands in
white water) on which is indieated the location of a
chest of gold (by a gold eell), display the map obtained
by coloring gold the entire island on which the geld is
located. (Or eguivalently erase all islands on which

the gold is not located.) This process is easily carried
out in time propertional to m-n by a contagion process.

Its linearity 1z open.
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4.3 Two=Dimensional Firing Squad

In this section we conslder a two=dimensional analog of the well-
known firing squad synchronization problem, (See Section 1.2.) This
problem is strietly spesking not a display problem, but is more related
te display than recognition, sc we have included it in this chapter,
hs has been seen in the proof of Theorems 2.2 and 4,1, a solution to
the firing squad problem iz a useful tool in solving other iterative
array problems.

The two-dimensional firing sguad problem may be stated as
follows, Design a cell type M such that the following conditions
hold:

i) The initial states of ¥ are g (general) and s
(soldier).

ii) The final state of M is f (fire),

iii) The soldler state is dormant relative to soldier

and adge states, That is

[ HERGE =g

5

where F is the transition funetion and e|s represents
gither an edge state or a soldier state,

iv) Given any m=n array of type M in which the initial
copfiguration consists of one cell in the general
state at location {1,1) and all octher cells in the

soldier state, then there exists an integer k such
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that all cells enter state f for the first time

at t = k.

A thorough discussicn of this problem for the case where m = 1 1s
glven in Ela..'f.'mair':‘i':I where he proves the existence of an eignt sizte
solution (nine state solution in our formali=m) in which the soldiers
fire at time t = 2n = 2, This seclutlen eor any sclutleon to the one=-
dimensional case may be used to construct a solution to the two-
dimensiopal problem as follows, A firing squad activiiy is organized
tn row 1 of the array by the general in cell {1,1). At time 2n - 2
nach soldler in row 1 instead of entering the firing stnte, becomes a
general, (One of the largest and most drastic field promoticns in the
annals of military history.) Thess new gensrals, together with the
old general, now corganize firing squad aetivity in thelr respeciive
columns, Since this activity begins in each column at the same time
{(t = 2n = 2) and sinece the columns are all of length m, we have that
the entire array will enter the firing state at time

t = Zn-2+2m-2 = 2m+n) -4,

The solution to the two-dimensional firing squad problem which
was presented in the previous paragraph is not optimal in terms of
time, Before considering a faster method, let us find a lower bound

on the time required for a solution.

Theorem 4.7
Any solution to the two=dimensional firing squad
problem will require at least m + n + max {m.h} =3
units of time to enter the firing state on an men

array.
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PROCF: Let m, n be given and assume without loss of generality that
nim, We will show that cell (1,m) cannot fire before time
t = m+2n - 3. The idea iz quite simple, Cell (1,m) cannct fire
before it learns of the existence of the eastern edge of the array.
The amount of time 1t takes a signal to travel from the general to
the eastern edge and returm to cell (1,m) is m + 2Zn - 13,

A more formal proof may be given using diagrans and the

Interdependence Thecorem, but ths ides is the same. []
We now find that the lower bound piven above is attailnable,

Thearsm H.-_Lt
There exists a solution to the two-dimensicnal
firing squad problem which enters the firing

state at £ = m+n+max{m.n} = Ja

PROOF: Moore and Langdon''2) dememstrate the existence of &
seventeen state solution to what they term the gensralized firing
squad problem. This 1z a cne-dimensional firing sgquad in which the
genaral is located not neecessarily at one end of the line of soldiers,
but somewhere in the middle, If we bend such a line of scldiars by
90° at the general's lecation, we end up with an L-shaped firing

squad as in the following diagram.

i |

slslsfsfelsfslala]s]

T

|.1—.
CEEERE
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Moore and Langdon's solution, expressed in terms of m and n will
pausza the soldiers to fire at time £t = m + n + max {t.n} - Ja
Now consider an mwn array which has been partitioned into a set of

L-shaped components as in the diagram below. (Assume n2m.)

We will set up a Moore and Langdon solution to the [iring squad
croblem in each of these L's, Notice that the corners of the L's lie
in 2 diagonal line. The corner cell in the largest L knows it is a
general at time t = 0 and can begin astivity at once. A signal is
made to propagate down the diagonal at the rate of one diagonal eell
every three units of time, As the signal strikes each soldier an the
diagonal, he becomes a general and initiates firing squad activity in

hiz L. Thus the L whose general is in row i will begin activity at

time £ = 91 = 3 and hence will fire at time

]

M -3F+{m-1+1)+2n=-41+1)=-3 =m+2n -3
That is all eells in the array will fire at the same time,

t=m+2n - 3, U

Letting m = n, we find that the above solution will ecause the
opells of a square arrey to fire at time t = 3n - 3, which is minimal
by Theorem 4.3, Suppose however we ask for a selutlen to the firing
squad problem which works only on square arrays. That is, we don't

care what it does on arrays which are not square. Then it turns
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out that we can obtain a solutien in time 2n - 2 by using the same L
partitioning. However instead of treating the entire L as 5 Moore and
Langdon firing squad, we treat esach half as a Balzer firing squad.

In addition we initiate the sguad in rew L at time 21 = 2 rather thanp
A - 3. This result ylelding a time of 2n - 2 for a sguare (which is
provably the best possible) was discovered in parallsl by the members

of Seymour Papert's class at M. I. T.
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{gold plate} 131

(packing) 129

jﬁ!? (representative) 1730
Jegr  (rotate) 125

'jép {shertest path) 131
Jrrans (translate) 124

P {distance function) 26
|4 \predicate) 20

F {eomplement) 20
Yoraog (majority black) 130
Fl'r:ﬁ.lﬂ (connectivity) &8
'hlﬂﬂ (diagonalization) 51
F%UIEH (Euler number) 92
%hAZE (solvable maze) &7
qht: (not doubly connected) 83
Wrm  (parity odd) 21, 29
¥ 86

Egg {simply connected) &1
o 59

Yougeproc 88

Vo 82

Yoo 85

Vig 84

{]. {greatest integer) 25
*

143

(don't care) 17



