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Abstract

An investigation is made into the problem of constructing
a model of the appearance to an optical input device of scenes
consisting of plane-faced geometric solids. The goal is to
study algorithms which find the real straight edges in the
scenes, takimg into account smooth wvariations in intensity over
faces of the solids, blurring of edges and nofse. A general
mathematical analysis is made of optimal methods for identify=
ing the edge lines in figures, given a raster of intensities
covering the entire field of view., There is given in additicn
a suboptimal statistical decision procedure, based on the moedel,
for the identification of a2 line within a narrow Band on the
field of view given an array of intensities from within the
band. A computer program has been written and extensively
tested which implements this procedure and extracts lines
from real scenes. Other programs were written which judge
the completeness of extracted sets of lines, and propose and
test for additional lines which had escaped initial detection.
The performance of these programs is discussed in relation to
the theory derived from the model, and with regard to their
use of global information in detecting and proposing lines.

*This report reproduces a thesls of the same title submitted
ta the Department of Mathematics, Massachusetts Institute of
Technology, In partial fulfiliment of the requirements for
the degree of Doctor of Philosophy.
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CHAPTER 1
TOWARD A THEORY OF THE OPTIMAL USE OF INTENSITY
INFORMATION IN THE DETECTION OF LINESIN A

VISUAL FIELD

I. INTRODUCTION AND DEFINITIONS

We are interested in studying procedures which identify
the imeges of straight lines in some two-dimensional (picture-like}
projection of an array of real objects, given some large set of
intensity values from points on the two-dimensional projection
plane. We shall confine our attention to arrays of plane-faced
solids. Applying a line-detection procedure to the image of an
array of such objects yields a "description' of the cbjects which
is, in effect, a line drawing of the objects from a particular

point of view. Such a description is complete in the sense that it

B



containg all information obtainable from that point of view which is
relevant to determining the shape, location in space, and so forth
of the objects. Information of the latter sort, which may be
regarded as constituting a more detailed description of the array
of objects, may be derived from one or several "'line drawings"

of a particular array of objects, by methods surveyed in the last
chapter of this paper.

In the first chapiers of this paper, we shall investigate the
problem of constructing line detection procedures which make
optimal use of the set of intensity values to which they are
applied, by being maximally accurate, in various senses, about
the lines they claim to exist. Such investigations require a
formalism, definitions and so forth, which will presently be
developed in this section. In the meantime we shall informally
discuse several considerations relevant to the development of
such a theory, with the idea of motivating some of the formal
presentation of the rest of the chapter.

Firat, it appears that a theory of optimal edge finding
procedures would be intractably difficult if we were to consider
procedures which decide on the locations at which to measure

each successive intensity value. This leads into the realm of



sequential decision procedures; and we should not attempt this
until we first have a reasonable understanding of the simpler
non-sequential case. One may get an idea of the inherent
complexity of optimal gequential decision procedures by
congulting, e. g., Bellman (Bellman). For the moment, then,
we shall assume that the intensities are obtained from the two-
dimensional projection of the array of objects in a predetermined
pattern, such as at the vertices of a grid of squares, and that the
line finding procedure acts on exactly these intensities. We
shall return to the problem of sequential analysis of scenes in
chapter four, where the matter is approached at the heuristic
level.

A second assumption to be made concerning the set of
intensities upon which a line finding procedure acts concerns
the relation between the actual intensity at a point in the two
dimensionzl view of the scene and the intensity available to
the line-finding procedure, which would be obtained by a real
optical input device. In general such a device is subject to
various forms of optical blurring and distortion, as well as to
random noige. If there is nothing known about the noise, then
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the set of intensity values obtained by such a device contains no
information about the array of objects at hand, in particular
about the locations of the projections of their edge lines. [t is

a regsonable assumption that the obtained values of intensity at
any point be normally distributed about the actual intensity, and
that the standard deviation of such a distribution be a funetion

of the intensity at the point. [t is further reasonable to assume
that any spatial distortion of the intensities be accountable for
principally as some sort of blurring phenomenon. These forms
of distortion and noise are present in any real optical or electro-
optical syatem; and certain devices, such as an image-dissector,
may be designed so that these are the principal effects.

A third restriction involves the relation between the size
of the objects in the scenes under consideration, or more
properly the size of the images of these cbjects in a twe
dimensional projection, and the spatial density of points at which
intensities are measured. [f the intensities are obtained in a
simple grid pattern with a spacing of one unit on the image plane,
it would clearly be impossible to detect edge lines whose images,
for example, were shorter than one unit. In judging the
optimality of an edge detector, it would gurely be unfair to
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penalize it for not detecting so short a line. A solution to the
problem might be to consider only arrays of objects whose
images are larger than a certain size relative to the spacing of
the points at which intensities are measured. An alternative
approach, which will actually be emploved, is as follows: Choose
a suitable geometry of pointe in the image space at which to
measgure intensities. Then define a simple predicate on exact
values of intengity which would be obtained at these points in the
absence of all noige, distortion and imperfections in the objects
being examined. Then use this criterion for the existence of a
line to judge the performance of a line detection procedure which
measures intensities at the same points, but with a real optical
input device. By this means, one is essentially determining how
well the procedure "sees through' the distortion and noise; and does
not penalize it for not "seeing" lines that it could not possibly
detect from intensities measured at points of the given grid
even in the absence of noise.

The concepts so far discussed may be summarized in the

following definitions.

Definition:  an intensity function, I{x,y), is a real-valued
function whose values and derivatives are defined

12



Definition:

Definition:

Definition:

Definition:

Definition:

Definition:

on a square in 2-space, except for a set of
measure 0,

a description space, D, is an arbitrary set of

elements {d;}.
a sampling set, 5, i& a finite set of points

{{J-:i,:ri!. cee b

& noise-free sample, I{5), of an intensity function

Iix, ¥}, is the set of values of 1{311 ¥i) for the
points I[:-.'i, y;) of 5.

a noisy sample, Ji(5), is delined as above, but with

the values of intensity modified by some distortion
and noige functions,

an ldentification function, F(I), is a mapping from

a set of intensity functions onto some description
Epace,
F: {1} =D

a noise-free sample identification function, G{I(S)},

is a mapping from a set of noise-free samples onto
a description space.

G: {Lis)} =D

13



Definition:

Definition:

a noisy-sample identification function, HLI(S)),

is a mapping from a set of noisy samples to a
description space.

H: {J(8)} —=D

a sample identification function G, together with a
space of noise-free samples {I{S}} and a description

gpace D are said to be descriptively complete with

regpect to an identification function F if

F(l)=d;, === G(I{BN=d;

This definition describes the situation where all that one wishes to

say about a scene may be inferred from the values of intensity at

a predetermined finite set of locations on the visual field.

Definition:

Definition:

an intensity function I¥(x, y) on a domain A is said

to be gquivalent under the blurring function

Bix, ¥) to a function Ix, y) if:
I#(x, y)= fI{u, viBlu-x, v-yidu dv
A
an intensity function I*#¥(x, y) is said to be

Gaussian-noise modulated with respect to an

intensity function I*#{x, ¥} if successive values of

[##{x } distribute normally about I*hcﬂ. yn'l with

0 ¥
14



Definition:

Definition:

a standard deviation which is dependent solely on
the value of I*{xﬂ, :.'ﬂ,]',

a transducer which goes from an intensity signal
lix, v) to a Gaussian-noise modulated function
Téix, y) of a funetion I*(x, y) which is equivalent
under blurring to I{x, ¥), is called a transducer

subject to lundamental distortion.

a scene system with identifiers consists of:

{Ii{x, y)}. a set of intensity functions on a common
domain;

=, :'u'i]'E = 8, a sampling set;

{1;(8)}, a set of noise-free samples, one for each
intensity function L;

fJi{S‘Ji, a set of nolsy samples, an infinite number
of J;(5) for each Li5). The relation between a set
of J;(5) and the corresponding I(8) is entirely
accountable for by fundamental distortion.

{d;} = D, a description space;

F: {lj(x,y}} —>D, an identification function;

G: {I,(S)} —>D, a noise-free sample identification
funectlion;

H: {3,(8)} -»D, = noisy-sample identification function.

15



Finally, for completeness:

Definition:  a scene system with identifiers is said to be
descriptively complete if the relevant partg conform
to the descriptive completeness criterion above,

The various restrictions set forth in the earlier parts of
this section may be simply summarized by saying that we will
concern ourselves exclusively with scene systems with identifiers

which are descriptively complete.

II. COMPLETE SYSTEMS OF STRAIGHT -LINE SCENES

A criterion for what constitutes a line in & noise-free
sample will now be given. This definition will provide a basis
for a definition of a line in an intensity function which will he
appropriate for ensuring completeness,

Prior to making this definition, however, it is necessary
to digress slightly to consider a plausible restriction on the
geometry of the sampling set.  An important desideratum of any
line finder is that it not be especially sensitive to lines in a
particular part of the field of view, or at any particular
orientation in the field of view, It may be that of two procedures,
one will find more lines with a given amount of effort, but at the

16



expense of uniformity in this sense. One would still not prefer
the "better” line finder, on account of its inhomogeneous or
anisotropis behavior. One thus wishes to guarantee that any line
finding procedure that is a candidate for being considered optimal
is in addition uniform in this sense. A necessary condition seems
to be to have a sampling set which is distributed uniformlu over
the entire field of view. Without proving this last assertion, we
shall henceforth resirict our attention to systems whose sampling
sets consist of points on all vertices of some grid of squares
covering the entire field of view.

A straight line in & noigse-free sample over a sampling
region ag deseribed above may be defined in terms of the notions
of discontinuity and anomaly. We define three such notions
for, e.g., a set of colinear intensities i, ig, i.3 and ig, using
constants K, K' and K':

1) A discontinuity of intensity occurs at & point between the
points at which i, and i, were obtained if:

3
lig - ig] > K{liy - ig] +1ig - igl).

2) An anomalous intensity occurs at the point where iqg
was obtained if:
lig - (i) - igh2] 2 K"

17



3 A discontinuity in shading occurs at a point between

the points at which i2 and i3 were obtained if:

iy =4} = iy - i,)] > K".

A line may be defined as two or more such pointa, all of the
same type and all adjacent and colinear.

It is now easy to specify a class of systems with identifiers
which are descriptively complete in their identification of lines in
a scene.  One may simply choose a scene system with a description
Space appropriate for describing lines, and define a noise-free
sample identification function G in such a way that it appropriately
identifies all the lines in & noige-free sample according to the above
definition of a line. One may then define the identification function
F as follows:

FiI)=d; <= G(I(E))=d;.

The completeness follows a fortiori.

In whatever system we shall henceforth be considering, we
shall assume that the description Space is the power set of the set
of all lines definable as above on noigse-free samples. We ghall
further assume that the noise=free sample identification function
of the system is as defined in the previous paragraph. The
choice of an optimal noisy-sample identification function for this

type of system ig the subject of the remainder of this paper.
18



III. OPTIMIZATION CRITERIA

The variables to be considered in discussing optimal
object recognition algorithms are number of intensities read,
time taken to read each intensity value, length of computation
time, and rate of error in identifying lines. We will not be
concerned with computation time, as this would require more
knowledge about "mimimal" versions of the algorithms concerned
than is available today. ©On the other hand, the number of points
at which intensities are taken, and the length of time taken in
getting the intensities can be related in a natural way to the
accuracy of identifying and locating lines, or other features
of a scene. Intuitively, there must exist a trade-off between
the measurement cost of a certain amount of intensity
information; and accuracy, measured in terms of number
of lines correctly identified. Optimization may congist in
minimizing some iype of error rate, with a fixed overhead
in effort. One may, alternatively, wish to set a certain
error rate criterion, and minimize the amount of effort

necessary to achieve it. It is easy to see that this latter

14



form of optimization may be reduced to the former: Suppose there
exXiste a procedure P{E) which, using E units of effort, minimizes
the error rate. If it is desired to minimize effort for a fixed
error raie, one may simply congider all possible instances of

the procedure P(E) with error rate below the desired one, and
choose the procedure P(E#) where E% iz a minimum among all
such amounts of effort. This procedure uses the least possible
amount of effort while guaranteeing the error rate to be below a
certain value. We may thus without loss of generality restrict our
attention to procedures which make a minimum of errors for a
given amount of overhead,

Further discussion of error rate requires a more detailed
discussion of various types of classification errors and the
probabilities with which they occur. We shall base this discussion
on the notion of false positive error, the assertion by a line finder
that a line exists at a particular place on the visual field when no
such line exists in the scene under consideration, and upon the
converse notion of true negative error. We will begin with some
definitions regarding line identification functions.

Definition: In a system of the type under consideration, for
some noige-free sample Ii{S} and a corresponding

20



noisy pattern .Ij{SL we call the set of lines

H{Jj{S]I—G{IiIE}II the set of false positive errors
in the identification of the scene from the noisy
sample JJ{E},

Definition: For similar conditions, the set GLIi{E]}-H{J’i{S]}

is called the set of true negative errors in the

identification of the scene from the noisy sample
J4(5)

Definition: Let A and B be two sets, then the difference
cardinality, N(A, B), is the cardinality of the
set A-B.

It follows immediately that for any J]{EI and corresponding

I;(5), the number of false positive errors is given by:

N:H{thS}L G{Ii{Sm.
and the number of true negative errors by:

N(G(L(S)), H(J (S).

With the aid of the function N defined above, we may
indicate the performance of a noisy sample identification function
in terms of the number of errors of each type it will make in
describing any particular noisy sample. Before being able to
indicate the over-gall performance of a noisy sample identification
function, one must as well be able to specify the relative

21



probabilities of occurrence of the various pairs of noise-free and

noisy samples. For the present we need only the first of the

following definitions; however they will all ultimately be necessary,

Definition; P(L{5), JJ{E,‘I]I is the joint probability of oceurrence .
of the noise-free sample Ii{S:I and the noisy sample
JjESJ.

Definition: P'[JJ-I:S]}']‘_i{S]} ig the conditional probability that the
noisy sample JJ{E: will occur given the occurrence
ol noise-free sample Li(S).

Definition: P{Ii{S]."Jj{S]'J is defined similarly.

Definition:  P(L;(8)), P{JJIS]} are the a priori probabilities of
occurrence of the noise-free sample [its} and the
noisy sample Jj{E}I.

We may now discuss the expected rate of error of a

classification system of the type under consideration,

Lemma: The false-positive error rate, or expected number

of false positive errors made by a complete scene
system 18 given by:

2 PU(5), I(SIN(HLI(S)), Gl(S))
L]

Proof: Whenever the noisy sample le[E,'l ococurs in
conjunction with the scene representable by

22



the noise-free sample L{5), the number of
false positive errors is;

:'-]tl-l{.IjiE:I:I, GUL(5)).

This occurs with probability

P{[i[SJ.Jj{S]L QED

Lemrma: The true negative error rate in a similar situation

is given by:

2. PI(8), J,(SHN(G(I(S)), HI;(SN),

L]
the proof is similar.
With the aid of the following definitions, we may define two
additional error-rate measures:

Definition:  M(A, B), the total number of errors is defined by:

M{A, Bl=N(A, BHN(E, A).

Definition:  O(A, B), the identity predicate, is defined by:
OlA, B)=1 il A=B,
(MA, B)=0 if A%B,

Lemma: The correct recognition rate, or expected rate at

which a scene is perfecily identified is given by
the following:

2. PUL(S), I (SNOLGH (SN, HISN),

i)
the proof is as above.
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Theoremm: The total error rate, or expected number of errors

made by a complete scene system is given by:

2 PUL(S), J;(SNM(GLI (SN, HIL(S))),
i3]

the proof is as above,
As a corrolary to the above theorems, we make the

[ollowing definitions,
Definition:  a(J(S), d;)= 1ZP{Ii:S]\.f.lrj{s}h'lrcr{u:ij, GIL(S))

is the expected rate of false positive errors on

occasions when the noisy sample .J'J-'[E.! ocours,

provided the description dj is assigned to it.
Definition:  b(Jy(8), d;)= 3 P(1,(S)/ 3 (SHN(GIL;(S)), d)

ig the expectle-d error rate of true negative errors

under similar conditions,
Iv. OPTIMIZATION PROCEDURES

With the aid of the definitions in the previous section, we
are in a position to discuss four optimization procedures. The
first involves the maximization of the probability of correctly
recognizing a scene in its entirety. The second involves
minimizing the sum of the false positive and true negative error
rates. The last two involve the maximization of one of the error

24



rates with the other error rate held constant. Since these latter

two procedures are mathematically nearly equivalent, we shall

consider only the case of holding the false positive error rate
constant, and minimizing the true negative error rate,

Theorem: The scene recognition procedure which maximizes
the rate of correct recognition of scenes in their
entirety is given by the function H{Jj}=d}g such that
2 O(GA(S)), dy JP(L(S), T (S))
isl maximized.

Proof: If description d_ is assigned to the noisy sample
._TJ{S'I, then a perfect recognition of the scene will
occur whenever Ii{SL the corresponding state of the
real world, has the property that G(I;{(S)}=dy. This
occurs with a probability P{Ii{S}IJj{S]]I for a particular
Ii[E] having this property. Hence the expected rate
of correct identification for the noisy sample
.IJ'[E}I is:

> PUI;IS) TS,
G{Ii{S}FdR

This is equivalent to:
Zimmxi{m}, Ay JP(1;(S) 3,(8))
or:

ls'PLljtsllﬁv_D{GtIi{SIL dy JP(L(S), J,(S)).
25



Thearem:

Froof:

For a given ths}, the rate of correct recognition
is obtained by maximizing this sum. This
optimization for a particular Jj{s_l ig independent in
its effect on optimizing the recognition of other
JlS). Hence this noisy-sample-wise optimization
procedure provides an optimum recognition procedure
for the set of all JJ.{S}-

The scene recognition procedure which minimizes
the rate of false positive errors plus true negative
errors i given by the function HtthE}]F- dy. with the
property that:

2 MIGLI(S)), d, JB(I,(8), T5(8))

ial minimized.

Similar to that of the preceding theorem.

The last case is a bit more complex.

Thearem:

Suppose it is desired to keep the false positive error
rate at or below a constant value a, while minimizing
the true negative error rate. Then there exists a

£, depending only on @, with the property that the

desired optimality may be achieved by assigning to

JJ.t_E]' the description d}r. such that

26



Proof:

|:~at.IJ'[S:I. d) 4 (1-c) D{Jj{SL d, )

is minimal for all dj.

1} There must exist a description function having
false positive error rate at or below a, and minimal
true negative error rate. This follows [rom the
fact that, e.g., HI[JJ{S]I]- = 0 gives a false pogitive
error rate of 0. Hence the set of decision functions
with false positive error rates below ais non-empty.
There must exist one with minimal true negative
error rate. Let it be denoted by H{.}'j{s;l}, and its
true negative error rate by .

2) Consider a decision function H;{J]{ﬁl} which
assigns to Jj{SJ the description dy, such that
K-atJj[EH, dy ) + {1-x) h'[JjﬂS}, d]-r.} iz minimal for all
d;. We shall show that for a suitable value c of x,
the function HE{JJ{S}I} has a false positive error rate
at or below a, and a true negative error rate of f.
From this it will follow that the function H¥ [JJ{SH,
which is the function referred to in the theorem, has

the desired optimality.

27



3) Let:

at;|}=a{Jj'[EiLH(Jj {Sh,

b{j}=b{JjEE}, H{JJ{SH}; and also

aﬁ'{j]FEiJj{S}. H;lJJiEHL

b;!jFI:J[JJ{EiJ. HﬁiJJﬂSH}.

From the definition of I-IJ?:{JJ{E]I}, we know that for
all j,

x-alj) + (1-x) b(j) > x-ak(j) + (1-x) b
Multiplying by P(J;(5)) and summing on j, we have:
x%a{j}PtJj{E}} - {l—x}J_Zb{jJP{Jj{EI}E

xJZa;HL{jJP{ijn - u-xa;hgtj IP(I;(S)).

But, by definition,

2 2IPL(5) = @, and
J

S bHPILS) = B.

3 J

Algo, letting

‘?_'a*{j}Ple{E}}l = a%, and
Zh;mmj{sn
]

i
™
 #

we have:
xa+ (1-x)} 8 gxu; +BE.

28



4} It is not difficult to see that x may be chosen so
as to make ,.,;- = a, This follows by assuming that
qﬁ is a continuous function of %; and noting that

::l'vi‘ = [, since HT minimizes false posgitive errors
ignoring true negative errors, and H(J,(S)) = 4]
achieves a false positive error rate of 0. By similar
reagoning, a¥ increases without bound as x decreases
from 1. Thus for some value ¢ of x the value of

ug =, This approach may be applied to the
discrete case, where at least u'c* will be very close
to @, The expression of the previous step will then
reduce to:

ca+ (1-c)§ = ca + (1-clg*.

But B is minimal, and (1-c)} 20, thus:

B=pg*. QED
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CHAPTER 2
THE OFTIMAL USE OF REGIONAL INTENSITY [NFORMATION

IN THE DETECTION OF LINES

I. THE REGIONAL QUALITY OF ISOLATED LINES

In this section we shall direct our attention to situations
where there exist no systematic spatial relationships among the
lines appearing in scenes under consideration. We shall briefly
discuss the extent to which lines in this case are "regional” in the
gense that all intensity information relevant to the detection of a
line is contained on the visual field within a certain short distance
from the line,

Definition: Let Sbe a sampling region consisting of points
uniformly distributed over a field of view. Let
F{A, B, 5) be a predicate on intensity values at points

in



of 8§, which attempts to decide whether or not there
is a line segment through points A and B. Let @
and @ respectively be the false positive and true
negative error rates of the function F(A, B, 5).
Then the guantity EF{E‘,I is defined as the smallest
distance such that there exists a predicate F#{A, B)
which decides on the existence of a line through A
and B only on the basis of intensities of 5 lying
within this distance of AB, and which has false
positive and true negative error rates respectively
below a+€ , and B+e€.
For some small value of €, the value of EF{H may take on a
wide variety of values in different sorts of situations. For example
& F{:J would be large in the situation where scenes consist of
rectangular parallelapipeds. In this case, lines parallel to a
proposed line, or incident with an end, constitute useful evidence
for the existence of the propesed line. The spatial remoleness of
useful evidence in this case might make EFEE} not appreciably
smaller than the radius of the field of view for small values of €.
However, EFiE} may be relatively small in the case of scenes
consisting of single discontinuities of intensity across the field,

31



or of sets of straight lines drawn at random across a sheet of paper.
A hypothetical situation of particular interest is that in which scenes
consist of lines which, within a relatively large radius, behave like
lines given rise to by edges of plane-faced solids; but which are
randomly distributed across the field of view. In cases such as
this, two effects limit the predictive value of intensity information
remote from a proposed line.

The first effect has to do with the unpredictibility of
intensity values away from an edge. In the absence of optical
distortion and noise, intensities an a line normal to an edge might

appear as in Figure 2. 1. The determination of the existence of an

HYPOTHETICAL IDEALIZED
INTENSITY PROFILE AT
AN EDGE (X,)

. -
INTENSITY] N
| ]
xu 4
Figure 2.1

intensity discontinuity at x 0 is dependent upon finding the right and

left limits of the intensity function at the point x The intensities

0
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glong the normal away from *n contain information about the left
and right limits at x,. However the amount of information contained
in these intensities falls off as one goes farther from the edge. This
is due to possible unpredictible non-uniformities in the illumination
and reflectivity of the objects in the scene.

The second effect has to do with the nature of the blurring
inherent in an optical system. An edge subject to such blurring

appears as in Figure 2. 2. An abrupt step function is smeared out

INTENSITY PROFILE AT AN
EDGE (xq) SUBJECT TO
BLURRING

INTENSLITY]

L

X, =

Figure 2.2
a small distance from the edge and causes extreme values of the
various derivatives of the intensity function in a small neighborhood
of the edge. It is the extreme values of the derivatives that
characterize and identify an edge. However, the effect of the
existence of an edge on the derivatives falls off drastically as one
goes away from the edge. Hence, derivative information on a set
of intensities remote from a possible edge can give little
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information about the presence or absence of the edge.
The spatial extent of this effect is determined by the
critical resolution radius defined as follows,

Definition:  The critical resclution radius is the radius of a

cirele whose intensity equals (I+J)/ 2 around the

image of a point of intensity I on & background of

intengity J.
This radius is related to such factors as the resc::l-.ring power of
the optics of the system. Empirical evidence suggests that for
relatively small values of €, the value of EF{f} is on the order of
magnitude of a few times this radius, in the hypothetical case
mentioned of randomly distributed parallelopiped-edge-like lines.

In situations where the existence of a line is indeed

virtually determinable entirely from intensity information contained
within a few critical radii of the proposed line, we can test for the
presence of a line in a given location by examining an area which
could only possibly contain a few other lines resolvable from the
given line. In general there would seldom be any line but the
central line in an examined region. This suggests the development
of a theory of the optimal use of intensity information within a

narrow rectangular region, based on a model which assumes the
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possible existence of at most one line in the region,
I1. A REGIONAL VERSION OF THE GENERAL THEORY

A regional version of the theory presented in the previous
chapter will now be discussed. The theorems presented give rise
to & procedure which is optimal in deciding on the presence or
absence of lines within a narrow rectangular region.

For the theory to be discussed, we adapt the following
from chapter 1:

Let {Iili:n :.']IE be a set of real valued functions defined
over a narrow rectangle K.

Let Db = {D, 1 E be a two element description space.

Let 5, a sampling set, be a finite subset of R.

Let F(I(R)} be an identification function mapping onto D,
with the inverse image of the element 1 consisting of exactly the
intensity functions given rise to by lines down the center of R.

Let G{I;{5)} be a noise free sample identification function
such that it and the function F{Iimj} conform to the descriptive
completeness criterion. In this case, descriptive completeness
requires that any line identified on R by F{Ii{H}}I be identifiable
by GU;(5)) from intensities on 5.
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We shall make the following assumptions as well:

1} That the intensity gathering device is subject to
fundamental distortion, as defined in the previous chapter,
In particular, we assume that this distortion governs the
relationship between noisy samples JitE}, and corresponding
noise free samples IiI;E}.

2} That at most one line can occur in the set S,
Some of these definitions and assumptions will not be explicitly
used until the next chapter. In particular, the theorem about
to be proved makes rather little explicit use of them,

The optimization of the system in question will, as before,
e a matter of making optimal use of a series of a priori and
conditional probabilities in the minimization of certain error rates.
In particular, we will assume that the a priori probabilities
P(I;(8) of each noize-free sample L{5), together with the
conditional probabilities PtJj{Ellf Iil_E]l] are known; or alternatively
that the joint probabilities P{Jj{S}. Iil[S]]n, the product of the previous
two, are known., Apgain we may wish to hold the true negative
error rate to some value and minimize the false positive error rate;
hold the false positive error rate to a certain value and minimize
the true negative error rate; or minimize the sum of the two.
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A gurpriging result emerges [rom the theorem about to be discussed:
that these three types of optimization are brought about by
egsentially the same procedure,

We need the following definition before stating the main
theorem of this section.
Definition:

QUIS) = D PIL(S)/J(8)) (2.1)
H[l{E}I]'= 1

This quantity is the probability, given the noisy sample J(5), that

there is a line down the center of the region R.

Theorerm: suppose it is desired to keep the false positive error
rate below a certain value @, and to minimize the true
negative error rate. Then there exists & g such that
the following decision function H{J(S)) satisfies the
conditions:

H{J(5)=1<=>Q{J(5)) 28 (2.2)

Where @ is the minimum value such that:

Y (1-QlIsHPI S < a. (2. 3)
QlI(s)z8
Proof: 1) Suppose a noisy patiern J(S) occurs, and that

H{J{5))=1, i.e. a line is claimed to exist. Then
(1-Q{J(S)}} is the relative probability of a false
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positive error whenever this pattern J(S) occurs, and
(1-QLI(ENP(I(8)) iz the absolute probability of a false
positive error involving the pattern J(S)). Thus:

2 (1-QU(SHP(I,(S)
HLJ;(5))=1

is the over-all false positive error rate of the function
HI{J(5M,

2) It is clear that the value 1 in place of £ in
equation (2. 3} satisfies it, and that such values are
bounded below by 0. Hence there exists a least value
satisfying the equation, which we shall call 8.

Also, in the continuous case, for this value of the
equality of equation (2. 3) will hold. One may
consider this to be the case as well in the discrete
case, il the number of discrete values is large,

#) It remains to show that this procedure gives a
minimum number of true negative errors, This error
rate is given by:

3 QUISHPLIISY (2. 4)
H(J;(5))=0

Suppose we consider another decision function
H#{J(8)) satisfying the condition of having false positive
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error rate equal to or less than @, i.e.

(1-Q(I(S)PLI(S)<a (2.5)
A*(3,(5))=1

We wish to show that its true negative error rate
is not less than that of H(J(S)), given by expression
(2.4), i.e. that

S QULISHPLIS) 2 3 QLSNPS (2. 6)
H*(J;(SH=0 H(J(8))=0

4) Let R be the set of 1's 5. ¢, H{Ji{Sj}ul_ and
H={J;(5))=0,
and let T be the set of i's 5. €. Hl:Jil_S:l}=Cl, and
H#(J,(S)=1,
and let UJ be the set of i's 5.1, {-]{.Ii{SZI]-n 0, and
H=(J.(5))=0,
and let V be the set of i's s.t. H{JE{E}‘.|=1, and
I-]“"IJi'[E-iI]I= 1.
Then

3 QUILISNPIS)) =
H*(J,(5))=0

;Q{JitH}JP{JiES}} + %&(Jitsj}ﬁ.}i{ﬂﬂ,
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and

2 QU (SNPLIS)) =
H':Jifﬁ-ﬂ}:ﬂ

D QUISHPLIS) + ;Q[Ji{S]}FLII-{S}L
L1}

So to prove (2. 6), we need to show:

2 QUENPWLS) 2 ) QU (SHPI(S)) (2.7)
3 T

If ieR, then Q{J;(5)) 2 B,and if i¢T, Q(J;iS)) < B, s0

2 QUSHPIIS) 2 BY. PLI(S)) (2. 8)
R R

and

2 QUISNPWS) < B, PLI(S). (2. 8)
T T

Assuming equality in expression (2, 3), we have
from (2. 3), (2. 3) and the definition of B, T, and V:

2 (1-QUISHPUILSY = @ > D (1-QUI(SHPLI(S)),
RUV TUWV

or, expanding and eliminating the sum on V:

D PUS) - D QUISNPIE) >
R R

2 P8 - D QUISHPLI(S)), (2. 10)
T T
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Combining (2. 8), (2.9) and (2. 10);

LB 2 QUISHPIS)) - D QI SHEI(S) >
R "

D PIIS) - D QUISNPIS)) 2

R K

D PUHS) - D QUIISHPLSH2

T T

u,a%qmicsnpwi{sn - ;qmi;s}}mi{sn,

ars

(LIB-1) D QUISHPUIIS) 2 (1/8-1) D QLI{SHP(I,(S)).
R T

Formula (2. 7) follows from the fact that (1/8-1) is

positive, DED

The case of minimizing the false positive error rate with

a fixed true negative error rate is almost identical:

Theorem:

Proof:

suppose it is desired to keep the true negative error
rate below a certain value a, and to minimize the
false positive error rate, Then there exists apf
such that the following decision function satisfies

the conditions:

H{J(S))=1<=> Q(J(ShHz B .

Ag for the previous theorem.

It follaws from these two theorems that whatever the value
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of |E used, the procedure of thresholding QLJi{E]} is better than

all other procedures with the same false positive error rate,

and better than all other procedures with the same true negative
error rate. In this respect it is similar to a saddle point solution
of classical 2 by 2 game theory.

It iz not difficult to see that this procedure can, for a
suitable choice of A, be used to minimize the sum of the two
error rates., Consider an arbitrary choice procedure H¥ which
gives a false positive error rate a and true negative error
rate b. Then there exists a g such that thresholding Q{J(3)) at
B gives false positive error rate a and true negative error rate
b# where b* £ b, This will provide & decision procedure
whose total error rate is a + b* £ a+ b, Hence thresholding
of @(J(S)) with this 8 gives a minimal sum of error rates.

I1I. THE RELATIONSHIFP BETWEEN GLOBAL AND

REGIONAL LINE PREDICATES

This gection discusses the relation between the global
line finding procedure described in chapter one, and the
regional procedure of the present chapter. It ig clear that the
procedure of chapter one is computationally unfeasible.
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Howewver a systematic application of the regional predicate to a
large number of regions on the field of view may be computationally
practical. The latter procedure, in certain cases of interest, can
not achieve the optimality of the global procedure. However it
does trade & certain amount of accuracy for .ﬂﬂmpuiatinnﬂl
feasibility.

It has been pointed out that in certain cases where lines
on the visual field bear no systematic relationship to each other,
a regional line predicate of the sort described in the definition
at the beginning of this chapter seems to be potentizlly as
accurate as a global one. It is tempting to formalize this notion
into some sort of theorem, stating conditions under which a
systematic application of a regional predicate of this sort to a
gsuitably large number of regions on the field is equivalent to a
global procedure. Unfortunately, an exact correspondence
between these two procedures is difficult to make. One problem
is illustrated in Fipgure 2. 3. [t is reasonable to assume that in
the svstem described in chapter one, if an element of the
description space contains a segment AB, it would not also
contain a subsegment of that line., More informally stated, the
gcene descriptions would not contain redundant segments,
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A REGIONAL LINE PREDICATE
APPLIED TO MANY REGIONS ON
THE FIELD WOULD REPORT LINES
AB, AC, ..., AZ, BC, ..., BZ, ETC,
A GLOBAL PROCEDURE WOULD
OMIT THE SUB-SEGMENTS AND
REPORT ONLY AZ,

Figure 2. 3
On the other hand, the systematic application of a regional
predicate of the sort mentioned would not only give positive
identification for some complete line in the scene, but for all
examined subsegments as well. Another difficulty is that the
regional predicate might report the existence of two nearly
coincident lines at very slightly different inclinations, where
there is actually only one line. These difficulties will be
encountered in chapter four, which describes an actual computer
program embodying a regional line predicate, In the program,
the problems are handled at the heuristic level. However, from
a formal point of view, obvious efforts to solve them appear
artificial. We will thus confine the remainder of this discussion
to the informal level.
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It is convenient to informally divide the evidence relating
to the existence of a particular line into three categories:

1} Global evidence, namely evidence from areas spatially

remote from a possible line;

2} Regional evidence, namely evidence from an area

within a emall radius of a possible line;

3} Local evidence, namely evidence contained within a

neighborhood of some point on a possible line.

It has been pointed out that there are certain problems
associated with a formal identification of a systematic use of a
regional predicate with a global predicate. This identification
appeared plausible only in cases where there is no relationship
among the lines in the figures. However, the situation of
particular i:nh:-r:eslt is that in which the scenes consist of sets of
plane-faced solids. In thig case there is definitely a relationship
among the lines in the figures; and a regional predicate cannot
possibly achieve the optimality of a global one. Figures 2. 4
and 2. 5 illustrate the possible failures of a regional line
predicate, which might be avoided by the use of globzl evidence
as well as regional evidence.
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Figure 2.4 illustirates three lines radiating from a common

DISTINCT LINES

LINE IS5 A THE REGIONAL PREDICATE APPLIED
VERY FAINT { +  TO"A" INDICATES A LINE DOES NOT
TRAVERSE THE WHOLE REGION;

APPLIED TO "B" IT IS POSITIVE,

B THIS IGNORES THE GLOBAL

' EVIDENCE FPROVIDED BY THE
"DISTINCT" LINES, WHICH SUGGEST
THAT THE LINE CONTINUES TO THE
VERTEX,

LINE IS FAINT

Figure 2. 4
vertex., The upper two lines are guite distinct, whereas the lower
line is faint, especially at the top. A regional predicate applied
to region A may claim that a line does not traverse the entire
region. However, when applied to B, there is sufficient evidence
to claim the existence of a line. The fact that the line in region B
"points to' a close vertex is ignored by the regional predicate.
Global evidence indicates that the line continues to the vertex.
The latter would likely be the conclusion of a global procedure,
as discussed in chapter one, which would assign low plausibility

{a priori probability) to scenes with isolated line ends, and high
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plausibility to closed line figures. Figure 2.5 Hlustrates a

\'ﬂ\\ THE REGIONAL PREDICATE

DISTINCT || APPLIED TO "A" MIGHT CLAIM
s LINES : THAT THERE IS NO LINE.

€A HOWEVER, CLOBAL EVIDENCE
) FAINT |: STRONGLY SUGGESTS THERE
LINE | IS,
s
Figure 2.5

gituation similar to that in Figure 2.4, In this case a line is
totally ignored by the regional predicate, despite considerable
global evidence for its existence.

In chapter four, a program will be described which uses
a regional predicate in the analysis of scenes consisting of
prismatic solids. It is convenient to here describe briefly two
features of this program, as the current context justifies their
use. Specifically, the two [eatures are designed to overcome
the non-globality of the regional predicate as illustrated by
the previous two examples., The sort of problem illusirated in
Figure 2.4 is overcome by the use of what will be termed links,
which tentatively extend a line to a possible vertex. The sort of
problem illustrated in Figure 2.5 is handled by the procedure of
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proposing lines., The procedure in effect assigns a high a priori
probability to lines suggested by lines already identified. This
tende to augment regional evidence for the proposed line.

A final fact should be pointed out in this context concerning
the relationship between the use of purely lecal evidence and the
use of a regional predicate. This is analogous to the relationship
between the systematic use of a regional line finder and the use
of a global one. In the latter case, it is necessary that the lines
in the scenes be spatially independent in order that the two
procedures be equally effective. In order for purely local decisions
a5 to the existence of a line to be as effective as regional decisions,
it would, by analogy, be necessary that the points along a particular
line be spatially independent. This is, of course, totally contrary
to the nature of a line. [t is thus gquite impossible that a
systematic application of a simple local decision procedure to a
suitably large number of neighborhoods covering & region could
be as sensitive in detecting lines as a regional predicate. By a
"local decision procedure" is meant & procedure which decides
entirely on the basis of intensity information from within a
neighborhood of a point, whether or not a line traverses the
neighborhooed. The output of such a procedure would be a set of
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points on the visual field, which would be incorporated into lines
by finding maximal sets of adjacent colinear points.

This two stage procedure is a special case of a set of
procedures which process intensities in a neighborhood, and then
process the results for a set of neighborhdods contained within a
region. Although the particular two stage procedure mentioned
in the previous paragraph can never be as sensitive as an optimal
regional line finder, there exist two stage procedures of this sort
which are. This is not surprising, sinece all regional predicates
fall into this class, if one regards the first stage to be the
identity function, and the second stage to be the regional predicate
itself. There also exist non-trivial examples of members of this
c¢lass which are ag sensitive as an optimal regional procedure.
The procedure described in the next two chapters involves such
a two stage predicate. For the first stage, four values are
obtained from the intensities in a neighborhood. BSets of these
four-tuples, obtained from all the neighborhoods within a region,
are processed by the second stage; and a decision is made as to
the existence of a line in the region. The procedure may be
regarded intuitively as extracting all necessary local evidence in
the first stage, and employing all necessary regional evidence
in the second stage.
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CHAPTER 3

COMPUTATIONAL APPROACHES TO THE REGIONAL THEORY
I. INTRODUCTION

The object of this chapter is to give a computationally
feasible method for computing values of the function given by

Formula 2.1 of the last chapter:

QUIS)) = D P(LIS) J(S)),
G{Ii{E:l =]

It will be recalled that this is a function of the finite set J(3)
of intensities obiained by a particular sort of optical input
device from within some region on the field of view, The
thresholding of this value provides an optimal regional line
detection procedure.

From Bayes' rule it follows that

PLI(S), 1j(8))

P{L(8)/J(8)) = B{J(S))
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g0 that

P(J(S), L;(5))
%Iiisﬂﬂ '

PLI(5))

QI(E) =

Using the relation

PLIS) = D PWIS)LI(S)) + D PLI(S), Li(S)).
G (8))=1 G(L;(S)}=0

and

P(I(5), 1;(8)) = PUISHIL(8)P(L;(8)),
we have:

QLIS =

2 PUISHITSHP(L(S))
G(L;(8))=1

D RSN ILSHELS) + 3 PLIS), LISHP(L(S))
GlL(8))=1 GU;(S))=0

Sections II and III of this chapter will be concerned with
the calculation of the values of P{J{S‘.I.I'Ii{S}], Sections IV and V
propose a model for the relative probabilities of the various
noise-free patterns [;(5). On the basis of the values of
P(I;(5)) given by the model, it is possible to express the sums
in the above expression ag integrals, and to give a relatively
simple explicit formula for Q{J(5)). In the last section of this
chapter, this formula is applied to some simple cases of

image-dissector output.
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II. NOISE-FREE PATTERNS AND BLURRING DISTORTION

The value of the conditional probability PEJi,f I_j} is a
function of the relation between the two sets of intensities
Jy and Ij‘ Thie relationship can be decomposed into:
1) a determinate relation between the noise-free
sample Ij and a distorted but noise-free version 113_-; and
2} a simple probabilistic relation between this I? and
the noisy pattern J,.
The former will be discussed in this section; the latter in the
next section.
According to the definition of fundamental distortion,
the relation between a noise-free patiern I:i and a distorted
version 145 may be expressed in terms of a convolution of the

former with some function f(x, y). Possible examples of

f{x, ¥) are given in Figure 3. 1. Theoretically, from the way an

HILL FUNCTION FILLBOX FUNCTION

Figure 3.1
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image-dissector is designed, this function should be eylindrically
shaped as in the right hand fllustration of Figure 3.1. In fact,

it is more like a gaussian "hill'" as shown in the left hand
illustration. An intensity function I{x, ¥} is acted upon by this
convolution function f{x, ¥) to produece a blurred intensity

function I#(x, ¥} as follows:

® @
I*(x, y) = fff{u,v}l{x—u,y—v]du dv.

~ -0

If we had an edge which is reasonably uniform for a
relatively long distance compared with the "width" of the
convolution function, we can describe the convolution effect, at
least locally, by means of a single integral instead of a double
integral. In particular, suppose for some local region the
intensity function I{x, y) represents a line parallel to the y-axis.
Then locally we may write I{x, y) = Iix) and the corresponding
blurred but noise-free intensity function I*#(x, y) may be

expressed in this region as:

o G0
fﬁ{u, vil{x-uldu dv

~0-0D

ot o
fI[}L-u‘.l[ﬁlu,u}dv du.
=G

-0

I*(x, ¥)
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Since the inner integral is a function only of u, we may

indicate it with a single function name:

==}

glu) = ffliujv}dv*

=0

and we have at a reasonably extensive and uniform edge

parallel to the y-axis:

oG

I¥(x, v} = I®{x) =fI{x-u}lgl[qudu. {3.1)
-GG
We may obtain g{u) empirically by scanning at right angles
across a very narrow line in the visual field. Let the intensity

along a line normal to & vertical line in the visual field be

given by:
Ifx) = b if x < -a, x> a
Iix) = ¢ B g X ¢ a.

Then the distorted version of the intensity locally around the

line is given by:

an -x+a
[#(x) = fl{x-u‘.lg'[u}:iu B cfgtu]-du + b.
— —x=d
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-X+a

But Lim cfgtu}du = c.a-gl-x), so

a-=0
-x-a

I#(x) = c-a2-g(-x) + d,
for very narrow lines.

Figure 3. 2 shows plots of intensity taken along normals

SCAN
LINES

SOURCE
OBJECT

——T
INTENSITY PROFILES 0 ] 10
(NEGATED)
NORMALIZED TO HAVE 1 UNIT = 1/2000 VIDI FIELD

SIMILAR AMPLITUDES

Figure 3.2
to various vertical lines. According to the preceding
paragraph, these curves should be of the form a-g(x) + b.
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They are shown superimposed and normalized to have similar
amplitudes. The lines are all quite narrow relative to the
width of the hill plotted, and represent lines of a wide variety
of intensities. The values are all proportional to absolute
intensity, having been suitably transformed from vidissector
output which is logarithmic. The degree of variation of
un-normalized amplitude was greater than ten to one; and may
be observed from the relative noisiness of the curves, All
were recorded at a fixed noise level, and the amount of local
fluctuation of a given line in the illustration is a measure of

the degree to which the hill in question was enlarged in the
normalization process. It should be noted that the shape of

the curves is remarkably consistent. This indicates a good
agreement between the theory just discussed and the actual
behavior of the blurring process in the vidissector. Figure 3.3
illustrates a curve obtained from the data in Figure 3. 2 by

hand fitting. Again, this curve should be of the form

a-gix) + b, where gl{x) is the one-dimensional blurring function.
Also illustrated is a curve of the integral of this function,
obtained by hand integration. This latter curve will he
compared with a similar curve obtained by two different methods
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.15

HAND FITTED CURVE
OBTAINED FROM
CURVES IN FIGURE 3. 2

0 3 10 15
1 UNIT = 1/2000 VIDISSECTOR FIELD

¥

INTEGRAL FROM 0 TO X
QOF THE ABOVE CURVE,

3 OBTAINED BY HAND
INTEGRATION
L I T T | — T — T r i
0 4 10 15

1 UNIT = 1/2000 VIDISSECTOR FIELD

APPROXIMATIONS TO g(x) AND
ITS INTEGRAL MAY BE OBTAINED
EMPIRICALLY FROM THE DATA
IN FIGURE 3.2

Figure 3.3
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which will now be described.
Another approach to finding gix) ig based on the fact
that the peak value of an intensity scan normal to a line of

non-negligible width a is related in & simple way to the integral

all

j:g{x} dx,

-af2
namely, if the actual intensity along a normal to & narrow

vertical line is given by:

L]

Tix) ° if x< b, x>b+ a

[lx) =c+d b< x< b+ a,

then I¥(x), the distorted intengity function is given by:

=]

[= u]}
T#{x) =fI{:-:-u}g{u}du = f{: + I;(x-u})glu)du,

= O o

where 11[1-:} = 0 except in the interval (b, b+a), where

Il{}:} = d. One may write the latter integral as:

=] = =]

cfgﬂu}du +f111:{—u}lg'{u}du.

= = o

But the former integral is a constant, and the latter integral
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iz equal to:

and has an extremum at x = 1/2(a + b), which is a minimum or
a maximum depending on the sign of d. At this extremum, the

integral has the value:

Thus a scan made perpendicular to a line of width a and
intensity c+d on a background of intensity ¢ has a maximum
(or minimum) whose value relative to the intensity somewhat
away from the line is;

af2

-:Lfgfu Jelu.

-al2

Suppose & Scan is taken across a pair of narrow
triangles as in the left of Figure 3. 4. In the figure,
kLni{l/intensity) is plotted for successive scans. In the right
hand side of the figure, the values of the maxima of each
scan minus the background value are plotted for each scan as
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IN FIGURE 3.3 1 UNIT = 1/2000 VIDI FIELD

Figure 3. 4
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a function of the spatial location of the scan along the set of
triangles. Since the width of the triangle at a particular scan
is a linear function of the position of the scan along the
triangle, the plot just mentioned may be considered to be a
function of the width of the line being scanned. Hence the
x-axis in the plot is in units commensurate with this distance
measure, and in the same scale a8 i8 used in Figures 3.2
and 3. 3 relative Lo the physical dimensions of the vidissector.
The values plotted are thus those of kLn(l/m(x)) - kLni{l1/c),
where mix) is the actual minimum (since the target is dark)
of intensity along a scan of a line of width x, and ¢ is the
background intensity. If the blurring function behaves

according to the theory proposed, we should have:

x/2 x/2
¢ = mix) = dfg{u}du = ﬂdfgliu}du (3. 2)
-x /2 0

where d is the absolute value of the intensity difference between
the background and the target. Using the curve of the integral
of the function in Figure 3. 3, and doing a certain amount of
arithmetic involving logarithms, we can obtain a curve of

predicted maxima in accordance with the premise expressed
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in (3. 2), and with the assertion that the curves in Figure 3.3
represent gix) and ite integral. This curve i8 indicated in
Figure 3.4 as the dashed line superimposed on the plotted
curve in the figure at the right. The closeness of these two
curves indicates good consistency between these two approaches
to finding glx); and provides further evidence that the curves in
Figure 3.3 represent glx) and its integral.

A third approach to the computation of g{x) is based on
the fact that at a wide edge, the value of the intensity along a
line normal to the edge is related in a simple way to the

function:

¥y

hiy) = f gl)dx.

In particular, if the intensity function for a vertical edge is
given by:

Hx) =a x££ 10

Ix) = b =x =0,

then the distorted value of intensity, I*(x), iz given by:

b3 = =]

I#{x) = fI{.'E—u}g{u]du = a+ hfgtu]ldu.
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This equality is derived by an argument similar to that given

above. In Figure 3.5 we have the values of kLn{l/intensity)

o POINTS OBTAINED FROM THE
INTEGRAL CURVE IN FIGURE 3.3

T~ _.R..scan
LINE

INTENSITY PROFILE AT AN EDGE SOURCE
1 UNIT = 1/2000 VIDI FIELD WIDTH OBJECT
Figure 4.5

for the intensities along a line normal te an edge, subject to
the blurring of the vidissector. T.he illustrated pointg along
the curve represent values obtained from the integral curve

in Figure 3.3, suitably scaled. For clarity, the curve
represented by these points has been omitted. The close
correspondence between the points and the curve further
verifies that the curves of Figure 3.3 are a good approximation

to g(x) and its integral.
ITI. NOISE AND THE COMPUTATION OF P{Jiu"[jl

A given noise-free sample [; turns into a distorted
sample If‘ as shown in the previous section by the conveolution
of I, with some blurring function. The conditional probability

63



P{,‘Ij.l'li] may easily be expressed as the probability that simple
noise on the sample Iiif would give rise to the configuration of
intensities Jj.

It has been claimed that a large number of intensities
read at a given point under a given lighting situation by the
vidissector have approximately a normal distribution.
According to the way in which the vidissector is constructed,
the absolute noise level is a constant for the logarithmically
scaled intensities delivered. Actually there are four possible
noise levels; however all work in the remainder of this paper
will involve only one, the most accurate. Hence we shall
assume that there is a single constant noise level., The
intensities read at & particular point for a particular set of
lighting conditions follow the distribution:

gH)

?é—“— e *Wu
where a 15 a constant. From this may be computed the
probability of a given configuration of intensities
Vie Vo wee s v oal points with actual intensities

2

u u_. Since the noise-induced deviations are

1* 112, Eaa g
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statistically independent, this probability is:

m _1£u. - ]r
1 e 2 A
m; d"‘rldvg' codvp,

i=1
or, letting
D, =% (u v (3.3)
L& kT
with :
W =
I], {ull uzl ju- l:l
l.T:I = {'lrlr TII'EJ- J"rm}!
Wi have:

1D,

1 2la
= T = e (3. 4)
F{Jjull P{JJFI;’] (ayze e dvydva. .. dvy.

The value of a for the signal to noise ratio has been reported
(Horn 1968) in termas of the percentage error of a logarithmic
intensity value corresponding to an error of one standard
deviation of the errors at that intensity. Again, this
percentage is a constant for all intensities, and is reported to
have the value 1. 6%. 5ince the logarithmic intensities are
given by

lﬂﬂHLngzl[lJ"IL

the absolute error corresponding to one standard deviation
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is:

as= Ed.Lngz'lfI— H161) - E-l.l...-:-gzilll = 1.5 {3.5)
This is the value of 2 which will be used in (3. 4).

The procedure for computing the conditional probability
P{.Ij{E:I.FIl{E]} is to determine the blurred version Il# (S) of the
set of intensities Ii{SL and to caleulate the value of
P{JJ{S]I.I'I%{S]I} by (3.4). The relationship between Iil[E]I and
I.if'[EJ is in general governed by the function f{u, v) referred to
in the previcus section. However we shall consider only
cases where (3. 1) applies, and will need only the function
glx) to determine this relationship.

IV. A MODEL FOR THE SET {I#E AND COMPUTATIONAL

CONSEQUENCES '

In this section we shall give models for the sets
11;1: {E}! of noise-free distorted intensity configurations taken
over particular rectangular regions 5. Qur attention will be
confined to sampling regions 5 which have a particular width,
and whose lengths are integral multiples n of the width. We

may consider such a region to be composed of n square
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sub-components, denote it by En* and use the definition:

I%(S ) = I¥].
Rules will be given for assigning a priori probability values
P{I*T} to the elements of {I*?} . It will be recalled that there
is a determinate 1:1 correspondence between elements I#in'
and elements Ii{SnL Thus the analysis in section I of this
chapter remains valid with I*Ii-" in place of ‘Ii{S}. It followe that
the value of Q(J(S)) of (2. 1) is determined by (3. 4) and by the
values of P{I*?]. The latter are the subject of this section.

Consider, for a fixed n, the set {I*?E of all noise-free
distorted samples over rectangular regions composed of n
square sub-components. We shall divide this sel into four
subsets as follows:

Let CL be the subset of fI#Ii.'! consisting of sets of

intensities from lines in the visual field exactly

centered in the rectangular region.

Let CE be the subset of 11#?} consisting of sets of

intensities from edges in the visual field exactly

centered in the rectangular region.

Let CH be the subset of {I*Ii'f consisting of sets of
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intensities from a homogeneous area in the rectangular

region.

Let C5 be the subset of { I*:'f consisting of sets of

intensities from lines or edges which are not centered

in the rectangular region.

We shall first consider a model of CL, and base it on
the following assumptions:

1} That the absolute intensities of the samples of CL

are of no consequence, 5o that in each sguare

sub-component of a sample I=°f-ti1 the sum of the intensities

may be assumed to be 0.

2} That on any section across some j-th sub-component

of a member I*? of CL, the intensity function has the

form:

ay ng:-:} +by 4

where 3y
[

] will be termed the relative amplitude, and

hi $ is chosen to conform with assumption 1).

w

3} That the relative amplitude B, 5 of an intensity peak
(or valley) is uniform within the j=th sub=component of

I#]i-l. A sample I*? may thus be described in terms of

B



an n-tuple of relative amplitudes {ai' 1r v B e BB

as I*{ai: pr ot By o

4) That each sample I*‘? was given rise to from some

line, highlight, etc., in the real world with an

"idealized" relative peak (or valley) amplitude a,,

which ig uniform along the length of the line.

5) That this idealized relative amplitude is purturbed

randomly along the length of the line so that there is a

minor fluctuation of relative amplitude E‘i,} among the

various sub-components of a sample 1*?, with a

normal distribution with variance r.ri.

The first of these assumptions ignores a certain amount
of information about a line which is useful in distinguishing it
from a non-line. Broadly speaking, it prevents a distinction
between a series of peaks in a line whose absolute intensity is
constant or regularly varying; and a series of peaks in a line
whose absolute intensities vary randomly or discontinuously.
This is not undesirable in the case of a line lying in the real
world partly in shadow. However, it would be desirable to
eliminate as lines a series of "lined up" intensity peaks whose

abgolute intensity varied randomly, as this would likely be due
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to noise.

The second assumption is justified on the basis of the
discussion in the first section, and by the fact that we are
congidering noise-free but distorted samples.

The third assumption i8 justified on the basis that the
"ridges" of intensity of samples in CL are rather uniform
along their whole lengths, and would thus be guite uniform on
square sub-components. This assumption is particularly valid
if a square sub-component is only sampled along a line
traversing it perpendicular to the orientation of the rectangle,
This is approximately what is done in the program which will
be discussed in the next chapter.

The "idealized” constant relative amplitude of
assumption 4) may be thought of as the relative amplitude
which would be obtained in the absence of physical defects of
the object being viewed or on the vidissector photocathode, and
in the absence of spurious local reflections and anomalies of
lighting. The purturbations of assumption 5) may be thought
of as a result of these defects etc., e.g. a nick on the edge of
& cube, a slight shadow or a bad spot on the photocathode of
the vidisseector. The idea of an idealized constant value of
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the relative amplitude along an edge is further justified by the
fact that intensities used will be logarithmic. Any ridge of
intensity, for example a highlight, ig a relative contrast
phenomenon, and may vary in absolute intensity, but not in
relative intensity. A logarithmic intensity funciion would tend
to register amplitude of highlight the same regardless of the
absolute intensity. The same is true when the argument is
applied to intensity discontinuities at an edpe.

It follows from these assumptions that if we let F(a)
be the a priori probability of an edge in the real world with
"idealized" intensity a, then the probability of existence of
a particular I*? = I*tai. 1+ -+ 83 ) given rise to by an edge
with idealized relative amplitude a and parameterized by

amplitudes By ogs v ai,r: 15 given by

H“ 55
Fia) _;;iﬁe ¢l dai.].'”d""i,n'
i=1

The probability that this I"I‘Ii.1 would occur from a source with
any idealized amplitude is given by the sum over a of the above
expression. This sum is simply the a priori probability P[I*r;} =
PUHay, 1. -ov o 8 )

This sum may then be evaluated provided the distribution
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Fla) is known. Assuming it is normal with standard

deviation pn. we have:

1
Fla) = %‘% e’ "ﬂ]cta,

where P{CL) is the a priori probability of existence of
a member of CL. We then have:

1""I:I=-:-C{Jati1 1 ere s B N

__P(CL) Z e 2 [F_E:&d]

Y2 g, dada, dai*n{:s.s}

1,1

This sum, including the differential da may be expressed as
as integral, with the exponent slightly rewritten:

® _1[af, na' - 2aZa, + Zaj
ff.’ z[ni o Jda_
oo

The exponent may be further rewriiten as:;

Lietting:

L]

1 Ii
A R
B = —FEH—
and completeing the square, the exponent becomes, in
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terms of A and B:
-1 [Ata’-za{BfA} £ (B/AM) - BYA + za?.#a:].
]

The integral becomes;

aa - _ ?_ _ a
fﬁ’ Al2(a - B/fA) 1#2{;a=fni E."A.‘rdaq

-
The second term in the exponent is independent of the
integration variable a, and may be taken outside the
integral sign. The remainimg definite integral is well
known to have the lraluem. Thus the integral is

equivalent to;

1[51.'3% Br]
T 5 2@ A
/i e -

The result of substituting in this expression the values

of A and B, of substituting the resulting expression into

(3. 8), and of doing some straightforward algebraic mainpulation
is:

PURE g e 3y ) =

[ 3s mefark)
Me 2 loa-npl  of o+ ngd
YZmay yoitnpd

da, ,.. dai‘ﬁ- 7)

i.
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An analysis of the CE category may be made in a nearly
identical fashion. In this case, the function g(x) of assumption 2)
is replaced with the function hix), its integral. As was pointed
out in Section II, this function gives the intensity along & normal
to an edge, and is the obvious correspond to gix), which gives
the intensity along a normal to a line. A formula for the
a priori probability of a member of class CL may be derived
from an analysis nearly identical to that given above., The
resulting formula differs from (3. 7) only in that different values
appear for the variances g, and p,; and that P(CE) is used in
place of P(CL).

Apgain, an analysis of the CH category may be made along
nearly identical lines. In this case, the function gix) is replaced
with l{x) = ax = b, the function which gives the intensity profile
acrogs a homogeneous region. Again the resulting formula for
a priori probabilities of members of CH differs from (3. 7) only
in the values of g, and p,; and in the use of PICH) in place of
P{CL).

At this point it i8 convenient to recapitulate some of the
foregoing by rewriting the formula for Q(J(5)) appearing at the
end of Section [ in terms of the specific notation imroduced in
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later sections, and some additional new notation. First, it will
be recalled that the notation I*{&i' 1F oo n]' was introduced
to refer to noise-free distorted samples over a region consisting
of n aquare sub-components, and containing a line centered in
the region. A wvalue 8y 5 refera to the relative amplitude of the
intensity profile of the i-th sample, taken acrogs the j-th
sub=component. We may similarly adopt the notation
11:{}:1} 15 sre s bi* n:' to refer to noise-free distorted samples
from the class CE, and I*l_cij 1o G n! to refer to samples
from CH. We shall reserve the notation I‘#Ii] to refer only to
distorted noise-free samples from the class C3. We may
introduce similar notation for noisy samples by a definition
gimilar to that used at the beginning of Section IV:

I] =J8,).
By this notation is meant the i-th possible noisy sample on a
region consisting of n sguare sub-components.

The sets CL, CE, CH and C5 provide us with an
alternative for expressing the function G{I_its}] used in the

formula for Q(J(S)) in Section I. If we make the following
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definitions:

-:Lu;‘} ]
ZP{.}F‘I"II*{&L proeee s By PR G e gy ), (8.8)
1

n —
CE(J;) =
iZPtJ;ImbLP cee s by NPIHb, L .., by ), (3.9)
EH(J;;"J =

n

2P ITe e, e WPy g, ey o)) (3.10)
1

i T rn In n
C8(J3) - ‘T_PLJ] /B )P(L* ). (3.11)

Then it follows from the 1:1 correspondence of distorted

noise-free elements, and non-distorted noise-free elements

that:

n . n I
2. PUTILIS DPL(S ) = CLL) + CEW),
G5, ))=1

and
n . I wa bl
2. PUT; /LS DPLS ) = CHO) + CS(T).
GI (5 _))=0
Consequently we may rewrite the formula at the end of Section I

HE T n

CL{J?} + CE(J.)

j
- o~
qu:ii] GL{J?} + EEIIJ;l] + cH{J’;} + C8(I)

(3.12)
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We may now turn to an analysis of the class CS. It turns
out not to be necessary to make an explicit model as was done
for the classes CE, CL and CIH. To see this, recall
Formula (3. 12) of the previous paragraph, and Formulas
{3.8) = (3. 11), which define its components. An element in
these latter sums, e.g.,

I
o s ¥ = B e oa g a
P /T4, ;& NP, |, a )

i,n

from the sum CL, may be thought of as a measure of
gimilarity between J? and the distorted noise-free sample
I*—tai_ o mee e By nj’ weighted by the plausibility of the latter.
Thus the value of C35, for example, is roughly proportional to
the plausibility or frequency of occurrence of members of C5,
and to the similarity of J? to members of C5.

If .J';j occurs over a rectangle Sn on the visual field
which is centered on the image of a line, the value of
CS{J’?} is guite small relative to the other members of the
denominator of Q{J;]], owing to the relative infrequency of
members of C5 as compared with members of CH, and to the
fact that such a .II'ElI is as similar to a pattern of intensities

from a homogeneous region as it is to a pattern of intensities
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containing a skewed line. Since the value of CS{J?} is thus
small, it could be omitted in this case, or at least approximated
with the sum of values of

-':Lku;.li v CEHLI;.I}
over a set of regions SE which are nearly coincident with 5,
but are slightly skewed with respect to it. These values may be
obtained "for free" for any region S by a line-finder which has
to be able to find lines in all posgitions in the visual field; since
it would necessarily compute E:Lkl_J:I.-l} and CEk{J?} in the
process of testing the other regions SI; for the presence of lines.

If Eﬂ is a region in the visual field which did not contain
a line, a noisy sample J;] over En would, by & similar argument,
have the property that CS{J;I] makes a rather small contribution
to the denominator of QI:.I;L and could be similarly approximated,
or indeed omitted.

It is only for the case that the region 5, contains the
image of a skew line that the value of CS{J;.-LJ becomes
significant. However, this effect occurs only for rectangles
approximately coincident with a rectangle En centered on & line

in the visual field. Let Q*{J;’} be the same as Q{J?} but with
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the wvalue of CS#J;.]] amitted from the denominator:

CLIT™) + CE(T™)
: ] (3.13)

CL{JJ )+ CE[Jj] + CH{JJ )
It has been empirically checked that Q*t.l;l]l obtaing a maximum
value locally approximately on the rectangle 5, centered on the
line. This is quite plausible, since the value of Q*{J?} should
be large for rectangles approximately coincident with 5, and
if it didn't have a maximum on En. it would either be offset
parallel to 5., which is unlikely because of the symmetry of
the intensity pattern; or there would be several maxima,
which seems not to happen. Hence the omission of CE{J;I]
from the denominator of Q{J?} has the effect of giving
erroneously high values on regions nearly centered on a true
line, but not erroneously high values on the maximum value
region, namely a region centered on the line. However, these
values are not so augmented as to create false maxima for
reglons not guite centered on the line.

In summary, the set of noise-free distorted samples
is partitioned into four classes CL, CH, CE and CS. Our

thresheld function Q{J;.la is expressed, in (3.12), in terms of
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four sums CL{J?L CH{J:;‘L EE{J:} and CE{J?] owver these four
classes. Explicit models of CL, CH and CE allow a simple
explicit expression of the a priori probabilities of members
of these sets. These probabilities, together with the results
of Sections Il and I1I, determine the values of the sums
cL, CH{J?:I and cE{J;’L It has been shown that csu;}
may be computed indirectly, or even omitted from the
denominator of Q{J;‘}. The latter is permissible, resulting in
Formula (3. 13), in the case where the regional predicate is
api:ﬂied systematically over the whole field of view.
V. COMPUTATIONS OF EJL'[J ), CE{J“} AND CHI_J“:I BY

MEANS OF INTEGRALS

In the previous section, it was pointed out that the
threshold function Q[J?} could be approximated with the
funetion Q*{J;l‘.l given by (3. 13). This function is determined
entirely by the values of sums CL{JJI.'}. CE{J?} and GH{J?}, ag
defined by (3. 8), (3.9) and (3. 10). In this section, we shall
show how 1o express these sums as integrals, and to reduce
them to relatively simple closed form.

It might seem a good strategy to evaluate the
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expression, for example CLLJ';:I ag given by (3. 8), by
substituting values given by (3. 4) and (3. 7) respectively for
the two terms within the summation 8ign, expressing the
resulting sum a&s an integral, and finding a closed form for
the value of the integral. This a.ppr-'cm:h appears to run into
difficulties, and a slightly different approach will be used
instead.

Our first step is to express, e.g., EL{..T?]I in a more
convenient form. Since the sum in (3. B} is taken over all
n-tuples, CLI;J;:I may be expressed as:

z 2

A1 %2

2PN Iey g, e, 8y WPy g, e, 8y ),

E"1'., n

where the sum over a; 4 Means that a8 in the summand

takes on all positive integral values, We may express

P{I*{H_L pr e

ZP”*{“LI , oo s 8y M alPlal,
a .

. By nH a8

where P(a) is the a priori probability of a line with
idealized amplitude a; and P{I*{ai roree s By o) a) is the
relative probability of occurrence of a noise-free distorted
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sample with sub region amplitudes A g+ +e- 8y L. Elven
* L]
a line with idealized amplitude a. The conditional probability
P(I#a; 1, ..., ay n]-}'a] may be expressed, as in Section IV,
r &

as a product of probabilities:

o]
Pi¥(a; 5 .vv 8y pMa)= HP{aLkIaJ.

where Pla; . /a) is understood as the probability, given a line
with idealized amplitude g, that the k-th sub-component of

a noise-free sample will have a relative amplitude ai. K The
above probability may be expressed as a product, since the
elements in the product are statistically independent.

Likewise, by statistical Independence, F[J?J’I*{EL IEIEEEEEE oM

may be expressed as a product:;
N n
- | I n
P{Jj JrIt{E.i" 1 ¥ DR ) ﬂiJ n}} = k_lPtJJ tk}lllai:k],

where .I;lt}:} is understood to mean the set of intensities of the

n

J
of the region. Substituting and rearranging, we have:

noisy sample J; which lie within the k-th square sub-component

CL{J;-’}=

, n
SR@Y LY HP[J?{kaﬂiJkJPtaiikfa}_
a 8 ai,n s
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It is not very difficult to see that the product over k and the
summationg over the a, H‘s may be interchanged, =so that:
]

::L{J?} =

Il
2 pa] [ X pugala, Pt e, (3.14)
a k=1 & ’ '

fl
Similar expressions exist for CE{J?J and C[—I.I:Jj )
An expression for P{J?{L{},l'ai H} may be obtained by

adapting (3. 4) to the present context, using the value of a

from (3. 5):
LD
L 2(1.5)"
o e — LTl
= — N L {3.15)

PtJJ “"n]lrai: k} {1‘5 E;ﬁr}m r.r_],]:". “]JJ:':"

where
I
- L t .2
J::Ii,:],]*t _E{"Lk vj,i:]' ’ {3. 18)

which is similar to (3. 3) in that it refers to some i-th noise-
free distorted sample and a j-th noisy sample, but has a
third subscript to indicate it involves only the k-th
sub-component. The values ”';:,,k are the m intensity values
within the k-th sub-component of the i-th noise-free distorted
gample containing a line; and are taken over points which may

be denoted by p;‘ k- Since the amplitude in this region is
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B o We have by assumption 2) of Section IV that the intensities
at points p}} L are given by:

uf, g = A, et ) + by,
where :-a}J 1 18 the perpendicular distance between p%i jo and a
line traversing the center of the region in the direction of the
expected line. If the geometry of the points p:* i 18 fixed for
all samples and sub-regions, then the value of g{xi k) is
independent of the sample and sub region, and we may

k. By assumption 1)

express such an intensity value by pix

of Section IV, we may chooge hi | 50 that the sum of u:"-u k is
*

zero, i.e., by choosing b]._’ g - E- Hence defining values

wh, .., v by

Ut = i) - £ glxtlm, (3.17)
T

we may express the m intensities in the k-th sub-component

of the i-th distorted noise-free sample by:

{Uil’k‘ ‘s l.'I.inJlk} =
(a; RUI, e A4 kUm] {3.18)
where:
t_
; Ut =0, (3.19)
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To be consistent with assumption 1), we should also assume

that:

|
; "!"jJH = D‘r

(3. 20}

The value of D, . k of {3.15) may be expressed in terms of the

1, Ja

values just defined as:
_ t t,2
Di, gk = L0,k 7 20

It is easy to show that:

- 2
Di, .k T b{ﬂ-juk = E’ﬁ*k} += R.]‘ k*

where:
tt
i EUV
bR Ty
b o= Y U2

1
t t.2
o= -ak U,
RJ,k Etwj,k at )

: 1
Combining we have, omitting the differentials d'.rj' K

i Blaw - H"if + Hs
(1. 5§

1 3
P(IkMa, s ———
SATTEN u,sﬁl"e
We may express Pla; /a) as before by assuming a

noarmal distribation on the various values of 3‘1, Joe with
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(3.22)

(3.23)

(3. 24)

(3.25)
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standard deviation g and mean a:

1 [a - a..]z
. 1 "zl o,
P{aLk.l'a]n *Er o € da; - (3.27)

Combining (3. 14), (3. 26) and (3. 27) we have, again omitting

I8
differentials dv. _ :
Ik

n
n
cLtIy) = 2 e ] 1
! a }q:l%kiﬂ"ﬂnil.ﬁfz’ﬂ”

1 [b{ﬂ.k - Elﬁ'mf + Ry la- El-.n]'a]
da., da

"3 (.57 R
€ 7 sda (3.28)

with b, ai . and RL i Biven by (3.23), (3.24) and (3. 25). The

inner sum may be put in the form:

3.2 + Ca. . + D

-B
AZ e ik i, k dai,ir."
4,k

which admits of the approximation used in the preceding

section: 9
=Bx" + Cx+ D

"I e =

-
o] ; 2
2 C
=Bx + COx + D — — I
ﬂfe - AT B D

Applying this approximation to the inner sum in (3. 28), we
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have after considerable algebras;

1.5

I
N, =
CLAIy) = é Pmﬂ (YZm 1. 57y(1. 5+ bo?

..l,l:ﬂii | blag, - af® ]
2 i 2
€ 21507 (L5F +bai |,

L
where again, the diffemtials dv_ = have been omitted.,

I+ K
may alternatively be expressed:

no_ 1.5 -
{:L{Jj}- ZF{E'.I[ :|

= LZF L 571 57 + be?

L) ERe | DR(Eh - aﬁ‘}
1.5 (1.5P+nbea?

ez da

and expressing P(a) as before by:

_L[il’
_ _PlCL) 2] Pn
Pla) - 2=l

this latter expression for GL{J?] may be put in the
form:

-Ba® + Ca+ D
A Ze da,
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and may be approximated as before to yield:

CLIT) = P(CL) 1.5 Vboi+(1. 5
! (VZm1. SI\IL 5) beifyfbotrnbai (1. 5)

1[§Hj.. . h{,aﬁz

nble X (a% - a_ﬁj’
e 2[(1.5)" (1.57+bej+nbgl (be?+(1. 5 Nbel+nbpi+(1. 5}“1
. 13.20)
t
with differentials d omitted. Similar expressions exist

1. k
for CE{J?} and CH(J").

—_

b= |

[

VI, APPLICATION OF THE THEORY TO SOME ACTUAL

VIDISSECTOR OUTPUT '

In this Section we shall apply some computational
procedures suggested by the foregoing theory to intensity
values obtained from the vidissector. These intensity values
will be taken along single lines normal to various lines and
edges in the visual field. The results of the computation
will serve to validate the theory presented, and justify
some assumptions and approximations in its computational
implementation which will be usged by the program described
in the next chapter,

In applying the foregoing theory of & regional line
predicate, it is first necessary to choose a suitable physical

width for a rectangular region. It appears that, for the
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vidissector in current use, this width should be between 25
and 50 units, where one unit is 1/2000 of the full field width. .
This range of values is chosen to conform with the assertion
that, in the terminology of chapter two, the majority of
regional evidence for the existence of a line is contained
within a neighborhood of the line whose radius is on the
order of a few times the "eritical resolution radius" of the
vidissector. This latter guantity, as defined in Section I

of chapter two, may be easily obtained by examining

Figure 3.3. It may be seen that the intensgity in the upper
curve falls to one half of its maximum value at a radius of
three uni.ts from the center of the curve. This value is
approximately the critical resolution radius as previously
defined. For present purposes, we took "'a few times'" to
mean specifically eight times, which yielded a region width
of 50 units. Later results, reported in the next chapter,
indicated that this value may have been conservatively large,
and somewhat better results seem to have been obtained with
a region width of 25 units. In any case, the value of 50 units
turned out to be adequate for present purposes,
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It seems appropriate to begin an empirical investigation
of the properties of the regional line predicate here developed
with a consideration of the case where the region to which it
is applied consists of a single square sub-region. This
admits of a simplification in the formula for Q*[JE} as given
by (3.13) and (3. 28). In particular, the term involving

(a* - a* ) in (3.29) becomes zero, since a* _ iz the

j-' k Js 1': -]-' 1':
average of only one term. Thus this term is eliminated from
the exponent in (3. 28); and likewise similar terms are
eliminated from corresponding expressions for CE{J?J and
CH(J]).

Another simplification of the exponent in the expression
for CLM?!I given by (3. 29), and likewise for corresponding
expressions for EE{J?} and CH{J;’}, follows from a
consideration of the relative magnitudes of the values
(1. 5‘.!2 and hcri_ The latter is the value of b given by (3. 24)
times the variance of valueg of idealized relative amplitude
of the various lines in scenes in the real world. Since the
distribution of these values has a mean of zero, it follows

from elementary propertiea of the normal curve that about

1/3 of all lines have idealized relative amplitude & with the
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property that lal z o Since the variance of the sub-region
amplitudes 8 is small relative to the variance of the values
of &, the same holds true of these amplitudes, i, e., about 1/3
of all sub-compeonents of noise-free samples containing lines
have amplitudes ai, . With Iai: - o If the intensities

within a sub-region of a noise-free distorted sample are given

1
by (ug o o, u;ﬂk} and their spread is defined as:

t = 2
{% {ui:k - ui, k} ]

with

then it is easy to see from (3. 18) that this spread has the

value a; thI'E, where b is as defined in (3. 24). It follows

from what was said previously that about 1/3 of all sub-
components of noise-free samples have a spread of greater
than ""EFI'I More informally stated: \"Ea;] is a not uncommonly
large value of the spread of intensities in sub-components of
noise-free samples containing lines. In the case of noisy
samples containing lines, empirical investigations suggest

that a spread of 30 is not uncommon; and it is easy to see

from the fact that noise level is relatively much smaller than
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90, that this value is also not an uncommeonly large value of

spread for noise-free samples containing lines. Consequently:
h{rlz‘;-:r (1. 5!2. (3. 30}

Now by simple algebra the exponent in (3. 2%) may be wriiten,

excluding the third term which is zero, and using the relations

in (3. 23), (3.24) and (3. 25):

1) ) u'v; J{af + np?)

2l (1.8  (1.57(1.5) +ba?s nbpi)

It follows from (3. 30) that the coefficient of the second sum
may be approximated by (1/b(l. 5)?), so that the exponent of
{5.29) is almost exactly equal to:

L2, 0 (XUt )
T2 .5 biLs)

(3. 31)

A gimilar sort of simplification of the coefficient of ¢
in (3. 29) may be made from a consideration of the relative
magnitudes of nbpi and b#:. The value of -::ri represents the
variance of a quantity a, idealized relative intensity; and
pi is, according to assumption 5) of Section IV, the variance
of amall purturbations of the latter. It is reasonable to assume

2 2
that .|:rn = p:, and that even b:rn}} nb.pE. By this approximation
n
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it follows that the coefficient in (3, 29) is close to:

P{CL.) : (3.32)
Yoa,(y2ml, 5)7

If this and the approximation in (3. 21) are applied to (3. 29), and

similar approximations are applied to corresponding formulas

for CEE_J:]i':I and CH{J_,.:".I: Formula (3. 13) reduces to:

Q) =
BeL) o '%:%%i e R 5
__a-j Iﬂ.i
1 BL{j) 1 BE() 1 SH(j)
PH'EEE?! eE (1. 5}' inE} € 2 (1. 5}“ !aﬂnteﬂ
Where: @, r.'r‘l, and "I are respectively the idealized relative

amplitude variances of elements of CL, CE and CH:

b =Y (Ul (3. 34)
andtl_U . oee . U™ iz some paradigm intensity

pattern for component regions of members of CL;
h.;tgm.tﬁ (3. 35)
and {T_T'l, oo, '™y 4s some paradigm intensity

profile for component regions of members of CE;

b =LZ{U""}3. : (3. 36)
and tT_T"lJ ..., UM jg some paradipm intensity

profile for component regions of members of CH;
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2
sL) = (Zutv) b (3.37)

o ot 2
SE(j) = ﬂ:’;U viy) /b (3. 38)
T
SH(j) = :; LT”tvj P (3. 39)
1 I ) . . 1
and '[1.-'l].F P vj' f are the intensities in Jj'

It is necessary to assign values to the remaining
constants in (3. 33). First we shall assume that lines and
edges are equally likely, so that P(CL) = PICE). Also in
the examples which follow, it will become clear thal an edge
or line ocours in one sample out of 75, 50 that:

1/75P(CH) = PICE) = P(CH).

Secondly, it follows from empirical investigation of the

range of spread of homogeneous samples with various

gradients, that five is a reasonable value for b'e] . It was

already pointed out that 30 is a reasonable value for b"}l*

and we shall assume this is the case for b’:r‘l as well. Thus:
QHa))

2(1.5)  2(1.5)°
+

€

-
S SELW SHUj) (3. 40)
(1. 51 2(1. 5 2i1.5)2

e e e
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For values greater than . 5 this function is nearly
monotone with:

Max(SL{j) 2(1. 512, SE()/2(1. 5)%) -

SH(j)/2(1. 5)° - Ln(450.),
or equivalently, with the function Q**{JJI} given by:

Q##(J}) =

B

Max{SL{j), SE(j)) - S5H{3) - 27. 5 (3. 41)
This follows from an observation about the results given later
in this section, namely that SL{j) and 5E(j} are rarely of the
same order of magnitude. This is not surprising, in view
of the fact that one expresses the similarity of the obtained
pattern to a noise free edge, and the other expresses the
similarity to a noise-free line. For values of Q*{J;]
greater than . 5, the pattern must be at least somewhat
similar to either an edge or a line. It could not be
simultaneously similar to both. Consequently the formula
{3.40) above, which is of the form

A+ B
A+B+C

has the property that when its value is above .5, A and B
are considerably different in value, and both positive.
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It is not difficult to show that in such a case if, for example
Max(A, B) > 10 Min(A, B),
then the approximation:

Max{a, B) A+ B
Max{A, BJ+C A+B+C

is good to better than 6 percent. The fact that Q*{J}} is

monotone with Q**{J}} follows from the fact that

Max(e2, e”) N
7
Max(e®, e )+ e"

is monotone with Max(a, b) - ¢, if a, b and ¢ are positive.

It is desirable to apply the predicate to a variety of
regions which are homogeneous, contain off-center lines, or
contain centered lines or edges. We have chosen data from a
series of areas on the visual field which are 200 units wide
and contain the images of vertical edges and lines approximately
centered laterally. The predicate will be applied to 75
Successive overlapping regiong 50 units wide, which are
offset relative to each other by two units and thus exactly
cover the 200-unit-wide area. The procedure will be applied
to vertically oriented regions only, since only vertically

oriented lines exist in the data samples. The fact that 75
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regions are tested and only one contains a centered line or
edge justifies the relation PICH) = T5PICE) used above.
Finally, before applying the predicate to real dats,
which will be done by computing the function Q##(J ]iL it is
necessary to give values for the sets | U}, | U} and {u"!}
used in formulas (3. 34) - (3. 39). It will be recalled that
these are paradigm sets of intensity values at points in some
fixed geometry within a square sub-region. They correspond
respectively to a line centered in the region, an edge centered
in the region, and a homogeneous region. According to the
fixed geometry which we shall use, the points will be equally
spaced along a line traversing the sgquare sub-component
through its center and oriented normal to the expected line.
These values may be ordered in an obvious manner according
to their positions along the line mentioned. They are shown
graphed as a function of this ordering in Figure 3. 6. The
values of b, b' and b" for these sets of intensities are all unity.
The intensities from the real world will come from single scans
of 100 points taken normal to a vertical edge or line in the

real world., The polnts will be separated laterally by two
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units, so that the total width of the area scanned will be 200
units., If it is desired to apply E!**I:le:l to some region along -
thig scan, out of the 100 intensities Tis von s IIDIJ‘ gome

set I s Ijy9g fall within the region. Then it is

i+1* ="
trivial to select intensities from among these to be used as

the values 1.-; 15t s v’jﬂl for use in formulas (3. 37),
] ¥

(3. 38) and (3, 39). They are simply Lgr o Ii+25 respectively.
Thus we will be applying (3. 41) to 75 successive 25-tuples from
the 100 intensities in a particular scan.

It is important to digress here to point out the
advantages of the sort of geometry of points within a sub-region
which is used above. This advantage will be realized in the
next chapter when it is desired to apply the regional predicate
exhaustively over the whole field. In particular it will be
desired to compute the predicate for lines of all srientations
through any point P on the visual field. Consider those
situations where the regions are oriented within * 45 degrees
of the vertical axis of the vidissector, and all pass through
some point P; and consider only the square sub-region

containing the point P, which will be termed the p-th
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gub-region. We shall in chapter IV take intensities relevant
to regions so oriented, along lines separated by approximately
the width 8 of a region, and oriented parallel to the x-axis of
the vidissector. We may thus assume that there will be a
unique scan passing within /2 of the point P; and that the
intensities Ii' .+ 5 I along its length within a distance s/2

of P are exactly the ones from which the 'Lr:i-' D will be selected.

The procedure for selecting the values vl from among this

P
set is parameterized by the angle @ which the region makes
with the vertical, If the spacing of points in the fixed
geometry of points is d, then one wishes to choose points from

among the I,, ... , I_ such that their actual spacing is

IT1
approximately dfCos{). If the spacing of the points along the
scan line is itsell d, which will usually be the case in practice,
then this matching of obtained intensities with those in the
prototype amounts to "stretching' the former by some factor
between 1 and\f2. Thus the various values of, e.g.,

SE{JE p]' = ? 1.-';, FllT_:"', which are used in the computation of
Q*[J?ﬂ for various regions containing P, differ only in the
amount of "stretehing” of one spatial axis relative to the

other in the matching of intensity values of the scan against
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those of the set ﬁ I_T'L E Denoting these various values of
CE{JR F'} by CE{J; o’ @), it turns out empirically that the range
of these values is rather small; and in particular for |@ | < 45°,
the values are within something like 20 percent of the closer of
-::E{.I;" o 107, cE{J’.l_ , 30%. One may thus compute these two
values only, and for any region containing the intensities from
which they were computed, use one or the other in the
calculation of Q*{J?J for that region. In fact we shall in
chapter IV actually compute these two values by stretching the
spatial dimension of the paradigm, rather than vice versa.
This amounts to using two peaks of different widths as paradigm
profiles for lines, and two edges of different severity of slope
for paradigms for edges. It should be clear that if the fixed
geometry of the points were two-dimensional, e.g. on a
aquare grid, no such simple accommodation for the various
angles might be possible; and doubtless the amount of
computation involving the intensgities in each neighborhood
would be far more than the calculation of two values.

To return to the application of Q%% to real data, our
first example, in the upper left of Figure 3.7, comes from

a horizontal scan across the forward edge of a cube. The
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scan covers approximately one eighth of the apparent width of

the cube. The cube is a solid metal block which has been

painted with white paint so as to have a very uniform surface

and sharp edge. In each of the eight figures, the logarithms of the
reciprocals of intensity are given as the bottom of the two curves.
The absolute range of values i8 11 units, where 84 units corresponds
to a factor of two in intensity. It is easy to infer from the physical
properties mentioned that the slope of the intensity curve on either
gide of the edge is due to a systematic nen-uniformity in illumination,
rather than to a non-uniformity of reflectance properties. At the
edge itself there appears to be a sort of "'negative highlight"(a

local peak). Thie appears also at the centers of the scans in the
upper right and upper-middle left examples of Figure 3.7, which
were taken from the same cube; and is apparently a property of
this particular edge. The 100 intensities in the example give rise
to 75 values of %% which are graphed above the intensity curve, A
value of Q%% ig derived from 25 successive intensities consisting of
the one just below it and twelve on either side. Thus a peak in the
value of Q%% should exactly coincide with a peak or discontinuity

in the intensity profile. The horizontal lines in each of the

eight figures are placed at distances along the Q#% axis which
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correspond to values of Q% which are indicated on the lines.

A reasonable threshold value for Q% appears from an
analysis of this example, and those appearing later in this
section, to be about 0.1. A cutoff level of approximately this
magnitude will be used by the program described in the next
chapter. This cutoff value is chosen on the basis of its giving
about 70% false pogitives. There ig no simple exact relationship
between the % cutoff and the false positive error rate; however
it follows from the first theorem of chapter two that if §1is the
cuteff value for Q%, then 1-gis an upper bound of the false
positive error rate. Thia may be seen by noting that for the
threshold procedure, the sum in (2. 3) gives the false positive
error rate. Every element in the sum is some probability
P{Jjﬁﬁl} times a value legs than 1-8. Since the values of
P(J(3)} sum to one, the sum in (2. 3}, i.e., the false positive
error rate, is less than 1-8. Thus thresholding Q% at 0.1 should
give a false positive error rate less than 0.9. However, the
extent to which the false positive error rate is actually less than
0.9 is an empirical matter. Ewvidently the various probabilities
and so forih are such as to give an actual value of 0.7 in this

CaBeE.
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An obvious question now arises: how subtle may an
edge or line be relative to the noise level in order to be just
detectable, e.g., with the threshold of 0. 1. An example of
such an edge i given in Figure 3. T at the upper right. It is
possible to make a general quantitative description of such a
line or edge by means of a value derived from the cutoff value of

ik, Suppose the cutoff value ig 0. 1; then we have:

[ _8L{4) EE“}’I
2(1, 5)° 2(1.5
Max e e = 0.1
g,} SE({) SH(j) s
2(1.5¥ 2{1.5 2(1. 5P
Max . +450 €
Qs
SL{j) SE(j) SH{j)
2(1.5) 2(1, 5¥ 2(1. 5)¢
9. Max LE , € = 450, € ,
or
Max(SL{j)/2(1. 5} SE(GN2(1. 5P + Ln(9) =
SH{j)/ 2(1. 5Y'+ LN(450.),
o1
Max(SL{j}, SE(j)) = 8H{j) - 27.5 = 2(1. 5 Ln(8) = 8.8
orr:

Max(SL{j), SE(j)} - SE{j) = 17. 6 (3.42)
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Since SL({j}, BE(j) and SH{(j} are positive, the minimum value
of Max(SL{j), SE(j}} subject to (3. 42) oceurs when SH(j) = 0.
This is the case when the net intensity gradient for the sample
i mero; a fact which can be deduced from (3. 39) and a
knowledge of some of the arithmetic invelved with simple
least-squares analysis. [n this case for a marginally
detectable line or edge, SL{j) or SE(j) has the value 17. 6.
If the intensily profile follows the form, e. g., of the upper
curve in Figure 3. 6; then it is not difficult to see, by the use
of (3. 37), what its actual peak to valley range would be:
Suppose the 25 intensities in the noisy intensity profile are
given exactly by aUl'. cer aT_TE'E. Then 5L{j) for these
values is, according to (3. 37);

[a. ;: lUtJE] 2

1Z (uty?

However, the denominator term, which is simply b as defined
in (3. 34), was chosen to be unity for the set of T_T-t'E in

Figure 3. 6; so the value of SL{j) turns out to be simply a2,
Thie, it was agreed, ig 17. 6; so the value of a is 4. 2.

Thus a marginally detectable intensity profile of this shape
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is similar to that at the top of Figure 3. 6, but multiplied by a
factor of 4. 2; and thus has a peak to valley range of about
three units. In the case that SE(j) is a maximum and the
phenomenon is edge-like, one may assume the approximate
shape of the intensity profile is that given by the middle curve
of Figure 3. 6. By a similar argument, the marginally
detectable sample of this sort has a range, in thie case net
intensity difference, of about 1. 7 units. The central feature
of the scan in the upper right of Figure 3. 7 has a value of
Q#* at threshold; and the amplitude of the peak at the center
may be compared with the former of the two theoretical
values just referred to. The intensity range for the whaole
scan 18 17 units, from which it is easy to see that the peak to
valley height of the small peak in the center is about four units.
This compares well with the theoretical value of three units,
Clearly the amplitudes of marginally detectable lines
and edges must be congidered in relation to the noise level.
Noise may in general be due both to time noise, random
fluctuations in intensity measured at a point under constant
illumination; and to space noise, which consists in random
fluctuations in intensity as one scans across a surface. F:X
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combination of the two may be obtained from an analysis of
successive differences in intensity of the above samples in
areas away from the known features. This analysis yields a
etandard error of successive differences of about two in all
cases. Since the variance of successive differences is twice
the variance of individual values aboul a mean, then the
standard error of the latter should be about 22, or about
1.6. This is approximately the value of the standard error
involving time noise only, as reported in (3. 5} Consequently,
the space noise is in this case negligible, which is not
gurprising in view of the deliberate choice of emooth-suriaced
objects. In any case, the marginally detectable amplitudes
of 3 units and 1, 7 units for lines and edges respeclively
should be thought of in relation to an underlying noise level
whose standard error is 1. 5. For example, using the 25
point geometry previously deseribed, one may state that a
marginally detectable peak has = peak to valley range of
twice the noise level, and a marginally detectable edge has a
net intensity difference of about 1.2 times the noise level.
4ix additional examples are given in Figure 3. 7.
The left-hand upper-middle scan was taken from the same
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cube and under the same lighting conditions as the top two in
the illustration. The other five were obtained from a scan
acrogs the vertical forward edge of a second cube under
various lighting conditions. The lower-middle pair, marked
NEDGEZA and NEDGE3IA, were taken under identical lighting
conditions, but at different heights along the vertical edge.
Thig cube is uniformly painted, but the edges are slightly
rounded, accounting for the pronounced highlight (dip in
intensity, since the values are actually Log(l/intensity))
apparent in some of the profiles, particularly the one marked
NEDGEZA.

There i a certain weakness in the use of so great a
region width as 50 units, namely that the intensity profiles
acrosg a region may have non-negligible gradients toward
the edges of the region, appearing, e.g., like the profiles
in Figure 3. 8. For this reason, it is useful to generalize
the thresholding procedure so far described by computing
values 5L, (i), ... , SL_{j), SE;(3), ... . BE(j} for a set
of n peaked profiles and m edge profiles, and using a
maximum of all these values in place of the maximum over
two elements as in 3. 41. Denoting this generalized version
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of ¥ by Q'#*, we may exprese it in two slightly different

foarms:
QUHY) =
Max (SL;(j), SE(j)} - SH(j} - 27.5 =
i,k
Max (SL.(j) - SE(j), SEk{j} - SE(j} - 27. 5. (3, 43)
i,k

This generalized formula will be used in the program described
in the next chapler. In the remainder of this chapter we will
discuss its application to the previously analyzed data of
Figure 3. 7.

For present purposes, we shall consider only a possible
multiplicity of paradigm peak profiles. Four additional
paradigm profiles besides the one in Figure 3. 6 are illusirated
in Figure 3. 8, and denoted by WPEAK, CPEAE, BEPEAEK, and
APEAK respectively. [t is instructive to compute individually
the values whose maximum gives the value of @'#% according
to the second expression in (3. 43). [In particular we shall
congider £ix values in the following order:

SL.l{j}-EHﬂj}, corresponding to the paradipm WPEAK;

ELE{j}—SH[jL corresponding to the paradigm CPEAK;
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SLS'[j]'-SH{j]', corresponding to the paradigm BPEAK;
SL4(3)-5H(j}, corresponding to the paradigm APEAK;
SE(j)-58H(j), corresponding to the edge paradigm of

Figure 3. 6;

ELE{j]—SH{j]I, corresponding to the peak paradigm of

Fipure 3. 6.

In Figures 3. % and 3. 10, we have these six "components” of
@' individually graphed above the corresponding intensity
profile, in the above order top to bottom, in 8 manner aimilar
to that used in Figure 3. 7.

One may make a series of obgervationg concerning the
various curves in Figures 3. 9 and 3. 10. Comparing the
lowermost two component curves in the upper left of Figure 3. 5,
it is easy 10 see that the pair of peaks in the upper left
illustration of 3. 7 were due to the peak-detector profile
entirely. This follows from the fact that the peaks appear
only in the lower of the pair of curves from 3. 9 just mentioned.
Regarding the same profile, one may see that the major peak
from among the component curves is the uppermost. This
corresponds to the profile WPEAK, which is a wide peak.

Evidently the feature represented by the maximum of this
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curve is the inverted wide peak to the left of the center of the
intensity scan. Another observation concerns the lower right
example in 3. 9. It is reassuring to note that although the
digcontinuity present in the intensity profile is quite large,

it was "noticed” by none of the peak-detector profiles. This
is evidenced by the faet that in the top four component curves,
and in the bottom one, the curves are not above threshold in
the vicinity of the extreme intensity discontinuity. On the
other hand, the nexi-to-bottom curve, corresponding to an
edge, has an extreme peak at this location. Lastly, one may
make the general observation that the maximum of all six
component values of @'#* may be thresholded at a considerably
higher level than @*#, for example at a value corresponding
to a@Q'# value of . 89, and still detect all edges, but at a
congiderably better signal-noise ratio. Observation of the
figures shows that at this level a few false positives remain,
€. g., the peak to the right of the large discontinuity in the
lower right example in Figure 3. 9. An examination of the
intensity curve itself would appear to justify the contention
that there really was "something there'" after all, perhaps

& spot on the cube, or an insensitive spot on the vidissector
photocathode,
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CHAPTER 4

A COMPUTER PROGRAM FOR FINDING LINES
L. INTRODUCTION

PN
iy j\iﬂx LI _uﬁ%‘*ﬁ?ﬂ
*‘ﬁmi Y

| | :

Figure 4. 1
Figure 4.1 illustrates the first stages in the analysis
of acenes by the program to be described in thig chapter. On
the left is & photograph of a set of objects placed before a
random access optical input device connected to a digital
computer. Programs in the computier have access o
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intensities in the field of view at arbitrary locations on a
Eﬂﬂ'ﬂﬂa by 200005 grid. Intensities are obtained by the program
along 50 vertical and 50 horizontal scans of 500 intensities each.
The intengities are converted into "feature points”, as
illustrated in the center illustration of 4.1. Feature points are
locations where the scans are adjudged, by spatially local
procesging, to intersect with an edge of an object in the real
world., Often noise in the real world or within the vidissector
will produce an intensgity configuration along part of a scan
which is edge-like and gives rise to a 'false positive' feature
point. The right-hand portion of Figure 4.1 illustrates the
output of a program which extracts lines from an array of
feature points and which is degigned to ignore these

extraneous Talse positive" poinis by detecting chains of
lined-up feature points. A final stage of the analysis, not
illustrated in Figure 4.1, is the proposing and verification

of lines not located by the above procedure. Lines are proposed
on the basis of lines already located, in places where figures

appear to be incomplete.
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IT. A DESCRIPTION OF SCENES ANALYZED

In this chapter we will describe an object recognition
program based on the theory so far developed. This section
will be devoted to a discussion of the restrictions imposed
by the theory on the scenes analyzed, and on the optical input
device used. Various scenes conforming to the restrictions
will be illustrated,

The theory developed in the preceeding chapters is
applicable to certain types of scenes, and to optical input
devices satislying certain conditions. Stated informally, the
restrictions on the scenes are:

1.1} The scene consists entirely of relatively homogeneous
regiong bordered by edge lines.

1.2) The edge lines are all straight.

1.3)  The objects of the scene may be recognized entirely
from the edge lines.

The first of these restrictions is fundamental. It is
virtually equivalent to the assumption that an intensity profile
Acrose a scene consiste of a series of smooth curves bounded
by discontinuities as in Figure 4.2,
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HYPOTHETICAL INTENSITY PROFILE ACROSS A
SCENE IN THE ABSENCE OF ELURRING AND NOISE

Figure 4.2

The second of these assumptions is essential if one is
applying an edge test only to narrow rectangular regions, as
ig the case in the program under consideration. Of course
oné could develop a theory, analogous to the foregoing, for
amalgamating local feature point information over curved bands,
and thereby detect edge lines of arbitrary shape. However we
have not done this; it almost certainly would require computation
of an order of magnitude above that used in the eurrent program.

The third restriction is a matter of convenience.
Actually the program may be presented with scenes not
conforming to this restriction without any impairment of its
behavier. For example, it might be presented with an edge-on
view of a cylinder, and successfully recognize the outline.
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The roundness, though detectable by the vidissector from the
intensity gradient across the surface, would not be detected by
the present program.

These restrictions are summarized in Figure 4.3.

NOT APPROPRIATE:

f v

APPROPRIATE:

) O

ATTENTION WILL BE LIMITED TO A
CERTAIN CLASS OF SCENES

Figure 4.3
The theory requires certain restrictions on the
ingtrument which obtains the intensities from the real world.
These are, in summary:
2.1}  The extent to which the input device blurs the image
received must be uniform over the whole field,
2.2} The extent to which the intensities are modulated by
noise must be uniform over the field, and independent
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of relative intensity.

Stated more specifically, the first assumption says
that if I{x, ¥) represents the intensity of the scene over the
field of view, D; then the intensity received by the optical
input device in the absence of noise is:

[#(x, v) = ﬁ{x—u, y=v)f{u, v) dudv

]
for some blurring function f(x, y).

These assumptions are summarized in Figure 4. 4:

“““ R B W e

ACTUAL INTENSITY

BLURRED INTENSITY
INTENSITY VALUES ]
—

— "l".* . ,.:
ELURRED INTENSITY
WITH MOISE

FROM OPTICAL 8

INFUT DEVICE

THE INTENSITIES OBTAINED FROM THE
OPTICAL INPUT DEVICE ARE UNIFORMLY
SUBJECTED TO BLURRING AND NOISE

Figure 4. 4



Some scenes analyzed by the program are shown in
Figure 4. 5.

It is easy to see that criteria 1.2 and 1. 3 are
satisfied by scenes of this sort, However, it is not readily
apparent that criterion 1.1 is satisfied. This follows from
the fact that real lines such as highlights and cracks between
cubes, in the absence of blurring and noise are never of zero
width as stipulated in the definition of a line. However it is
easy to see that they may be of nonzero width so long as they
are sufficiently narrow to be indistinguishable from zero-width
lines under the blurring function. This blurring function was
discussed in Section II of chapter three. From its properties
it is easy to see that blurred versions of lines of less than
about five unite width, where one unit is 1/2000 of the
vidigsector field width, are virtually indistinguishable from
each other and from blurred versions of lines of negligible
width. Criterion 1.1 has thus been satisfied for these figures
by keeping the apparent widthe of the edge lines below the
aforementioned five units.

Criterion 2. 2 has been met by the optical input device
used, an Information International vidissector, by the nature
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of its design. However certain care is required to satisfy 2.1,

and it can not be completely satisfied by the instrument used.
The blurring inherent in the vidissector is a function

of optical focus, of internal electronie focus, and of the gize

of the internal aperture used to collect intensity data from a

point in the visual field. The latter two matters have been

discussed at length by Horn (Horn 196%9), and in the literature on

the instrument itself. Suffice it to say here that there is a

more or less uniform degree of blurring inherent as a result

of these two factors, though & certain amount of non-uniformity

is detectable by careful measurements. It is fortunate that the

order of magnitude of these effects is somewhat greater than the

optical blurring of the system when it is focused to minimize

this blurring. By keeping the objects in the field of view in a

sufficiently flat plane, it is possible to have the non-optical

olurring effects dominate the optical effects even for portions

of the field which are relatively out of focue. Thisg, to a first

order of approximation, ingsureg a uniformity of over-all

blurring, despite the fact that the purely optical blurring is

quite non-uniform. The criteria for "a sufficiently flat plane’
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for the image is given by laws of opticg., From the well known
relation that:
1/F=1/a+1/b

Where:

a = object distance

b = image distance

F = focal length of the lens,
it follows that:

daldb = - a?/b,
Hence for a given displacement Aa of the objeet from perfect
focus, the image displaces by an amount —I!d.a]{lag.n"azl. This
quantity, divided by the focal ratio f, gives the amount an image
is blurred by displacing the object a distance Aa frem perfect
focus. Thus the allowable scene depth for a particular
maximum allowable amount of blurring depends on the square
of the scene-distance image-distance ratio; and inversely on
the f-ratio. If a particular object or arrangement of objects
increases in absolute size, and its distance from the lens
increases proportionately (and if the object distance is large
relative to the lens-image distance), its image remains

approximately constant in size, but the depth of the object
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remaining in good focus increages linearly relative to the size
of the object. It is thus possible, for a given arrangement of
objects to keep the blurring over the whole [ield down below
any pre-assigned limit by making the f-ratio sufficiently large,
and by making the objects gsufficiently large. In practice, due
to the low sensitivity of the vidissector it was often impossible
to insure adequate depth of field by the use of a suitably small
aperture alone. [n particular, in the case of the objects
illustrated in Figure 4. 5, it was necessary to make an effort
to make the objects as large as possible to satisfy criterion 2. 1.
111, THE DETERMINATION OF FEATURE POINTS FROM

INTENSITY INFORMATION

In this section we will be concerned with a discussion of
a procedure for extracting information from a set of intensities
taken over a visual field, as a first step in the determination
of the locations of lines in the field. The relevant theory,
developed in the previous chapter, will be reviewed; and an
algorithm for reducing intensity information to ''feature points"
will be discussed.

In applying the line predicate to various regions on
the visual field, we shall obtain intensities along scan lines
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perpendicular to the axes of the vidissector. In particular we
shall use intensities obtained from scans parallel to the x-axis
in applying the line predicate io long rectangular regions
oriented within + 45° of the y-axis. Similarly, whenever a

line predicate is applied to a region within + 45° of the x-axis,
intensities from scans parallel to the y-axis will be used. We
may thus henceforth without lose of generality assume that we
are dealing with regions oriented within + 45° of the y-axis, and
with intensities obtained from scans taken parallel to the x-axis.
A scan shall consist of 500 intensities taken at intervals of

2 unite along a line, where, as in the previous chapter, one
unit is 1/2000 of the full field width. The line is centered
laterally in the field. Fifty scans will be taken at intervals of
20 units, with the 25-th scan half way up the field of view. The
set of scans will thus encompass a square area exactly centered
in the field of view, whose edge length is 1000 units, or one

half the edge length of the entire field of view. The reason

for not using the entire field is simply that there are various
physical problems at the edges, one of which involves an
aperture which prevents obtaining intensity values at the corners.
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The central square used is approximately the largest useful
square region in the field of view. For purposes of visualizing
the following explanationg, it may be assumed that an entire
get of 2500 intensities is obtained at once, prior te any further
processing. This is not entirely true, but may as well be
considered to be the case.

We will want to be able to apply the line predicate to
any of approximately fifteen million rectangular regions in the
field of view. This figure is obtained from the fact that we
are considering regions extending between pairs of scans, and
the latter number 50-48/2 = 1250; we are considering regions
at any of fifty orientations; and we are congidering regions
with any of 5300 different intercepis. In fact we shall apply a
modified version of the predicate to all of a subset of these,
namely those which traverse the field entirely, which number
50500 = 25, 000. This will be discuseged in Section IV. Also
the predicate will be applied to shorier subregions of those
among the latter which appear to contain a line somewhere
along their lengths. Further the predicate will be applied to
regions proposed on the basis of lines already found. This will
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be discussed in Sections V, VI and VII.
The application of Q% to a region on the field of view
consists in computing the value given by (3. 13):
n
-3 B =
Q#Jy)

CL{J’} )+ CE{J?]‘

::L.uf} + CE{JJ’-‘J ¥ CH{JE‘J

where CL(J')) is given by (3.28), and CE:J?} and cm;?a are
given by similar forrmulas. A region whose maximum minus
minirmum y-distance is & units intersects with lls/20llscan
lines, where |lill means the closest integer to i. Instead of
assuming that a region is of a particular fixed width measured
perpendicularly to its length, we shall asgume it has a fixed
x-direction width of 50 unite. Consequently the intensities
along a particular scan which lie within a rectangular region
will be exaetly 25 in number, since the separation of intensity
points along a scan is two units. We shall glso assume that
the length of a sub-region, instead of being a lixed quantity

as measured aleng the axis of a region, has a fixed y-direction
length of 20 units. Also sub-regions will be taken to be
vertically centered on a scan line. This arrangement is
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diagrammed in Figure 4. 6.

SUB-REGIONS

BCAN

LINES
SUB-REGION RECTANGULAR REGION TO
SCAN :
SEGMENTS WHICH PREDICATE IS APPLIED

Figure 4. 6
We may thus identify a segment of a scan enclosed within a
region with a particular sub-region. The advantages of this
sort of geometry were discussed at the end of the previous
chapter. We shall use a specific term for the segment of & scan
which we are associating with a particular sub-region, namely

a sub-region scan segment. In Ssummary, a region of length

a consists of lla/200l = m sub-regions; and the value of Q* is
computed from the m sub-region scan segments by caleulating
values of CL, CE, and CH according to formulas of the form
given by (3. 29).

Evidently the intensities of a particular sub-region
scan segment enter into the computation of @+ for several
thousand regions enclesing the segment. Examining (3. 28)
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it is apparent that, e. g., in computing CL, it is necessary to
compute a value ﬁj, ” from the intensities in this segment, and
also a value a’i‘i K and that CL is determined entirely from these
valueg, It is not hard to see that these values are the same for
a particular segment, when the enclosing regions are all at the
same inclination. Further, it was pointed out in some detail

in the last chapter that these values for a particular segment

do not vary a great deal with orientation of the enclosing
rectangular region assuming, as we are, that the regions

remain within + 45° of a normal to the scan lines. Thus, as

before, only values of K_

i,k etc., for two region orientations,
F

10%and 30°, need be computed. This is done, as in the previous
chapter, by using two paradigm profiles of different widths.
Finally, we may recall that at the end of the previous chapter
the procedure of computing a single value of R, R', ete., for

a particular segment and orientation was generalized to the
computation of several, corresponding to different possibilities
of the shape of the intensity profiles toward the edge of the
region. Consequently, for a given sub-region scan segment,

we will compute exactly the values R, R .

LRI Yk

a® poees , @¥ » R! s +or s B! . @l
]Jkll JJHpE JJI{'?I ’ jrkJE‘ J,k,li
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a'# , and also R and a"'# . The six R's and a*'s are
ik, 5 ik Ik

computed as in (3. 25) and (3, 23) from six different peaked
profiles EU:. Ce Uiﬁ‘.l, ces g [UEJ con g UEE‘J of various widths
and with various combinations of gradients towards the ends.
Similarly the R''s and a'#'s are computed from five different
cliff-like profiles. Clearly, no such multiplicity is necessary
in the case of R" and a'"#, which corresponds to a homogeneous
region. These paradigm profiles, 25-tuples of values I[U:,

- T_]‘::E}. etc. , from which the R's, a*'s, R''s, a'®#'s, and
R'" and a"+ are computed, are illustrated in Figure 4. 7.

Sinee values of R:ia K, 1* ag" K1t T R;I.R; 5 a.;fk- 5’

R;,lf.' and a.lirfli will be required for every sub-region scan
gsegment, they are all computed. Since there are 475 50
sub-region scan segments, and 24 values computed per segment,
thig is & matter of 250, 000 intermediate values, an order of
magnitude more than the 25,000 intensity values from which

the values were computed. However, the derived set of

values admits of considerable compactification. First, for

a particular sub-region scan segment, it is necessary to retain
only the minimum of all the R's and R'"'s, together with the

corresponding value of a* or a'%*. Secondly, consider the
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values of R minus thie minimal R or R' for the 475 successive
gub-region scan segments along a particular scan. Then there
exists a threshold for these differences such that most values
lie below the threshold and indicate with virtual certainty that
a line does not traverse a region containing that segment.

Such values may be omitied, thereby indicating that they fall
within thie category. Also, only the local maxima of the values
above threshold need be considered. Conseguently an entire
collection of 475 sets of values may be reduced to somewhere
around ten sets. These latier seis need only consist of 4
values: the value of R" minus the minimal R or R' which is
locally maximal; the value of a* or a'#+ corresponding to the
minimal value of R or R'; an indicator as to which R or R'

was minimal; and the x co-ordinate of the point in question.
Such a four-tuple, together with the y co-ordinate of the scan

from which it was derived, will be termed a feature point.

We will not justify in detail here why the 5370, 000 values can
be reduced to approximately 500 feature points. However we
shall point out that the subsequent use made of derived
information in the computation of @% and similar values uses
no more than the reduced feature point data; that many of the
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values can be considered to be in a single null category; and
that the remaining values have sufficient regularity to be
gpecifiable in terms of their local maxima only.

The program (GETFP X 3) obtains intensities for a
gingle gcan and performs the calculations sketched above.
The second argument is 1 or 0 depending on whether a scan is
to be made vertically or horizontally respectively. The value
of X is the appropriate ordinate or abcissa on a scale from 0
to 500, Five hundred intensities are taken acrosg the field
along the line defined by the arguments and are processed
according to the slgorithm sketched above. The output is a
series of 4-tuples as described above. A schematic diagram
of this process appears in Figure 4. 8,

In the line finding program which has been developed,
the sub=program GETFF isg called 50 times for vertical scans
and 50 times for horizontal scans. This procedure is illustrated
in Figure 4. 9. In this figure, the ghort lines indicate the
locations of maxima previously described. Their lengths are
proportional to the corresponding values of R" = Min(R, R')
for amall values of this difference. For values of this difference
above a certain threshold, a constant length of line is used
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corresponding to this threshold value. These points will be
termed feature points. Rasters of feature points corresponding
to the illustrations in Figure 4. 5 are given in Figure 4. 10.
IV. A GLOBAL PROCEDURE FOR EXTRACTING LINES
FROM ARRAYS OF FEATURE POINTS
If one were to examine the feature point rasters of
Figure 4. 10, one would be able to pick out almost all the lines
in the figures they represent. The perception of some of the
lines may depend on complex global perception processes,
for example, the use of obvious lines to provide clues as to
the existence of less obvious ones. A computer approximation
to this process will be the subject of subsequent sections. On
the other hand, some of the lines are cbvious without either
reference to other parts of the figure or a priori knowledge
of what constitutes a plausible figure. This is because the {eature
points are both strong (represented in 4.10 by long lines), and
they line up very exactly. This section describes a program,
LINES, which takes advantage of the obviousness of certain
lines to find them in an array of feature points, by a rather
simple and not overly lengthy procedure,
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The problem of locating lines by accumulating locally
obtained information has been approached by line following
procedures. (Roberts) This often runs into the problem that
the line follower gets lost, since, in effect, it is making a
series of decisions (whether or not to continue the line) on
the basis of local considerations. This problem becomes
greater as the number of lines in the scene increases. Line
followers are also subject to the problem of never having
"attached' themselves to certain lines in the first place. It
is thus desirable to use a more exhaustive and global procedure,
for example, covering the feature point raster with a very large
number of narrow rectangles, and applying a thresholded
predicate to the feature points within each rectangle. The
apparent tremendous cost of such a procedure can be greatly
reduced by observing that if a certain narrow rectangle contains
evidence of a line, then so does a rectangle with the same
orientation but extending across the entire field. The converse
of this statement is not true, since a rectangle across the
whole field may contain a large amount of line evidence in the
form of scattered noise and spurious values due to feature points

slong lines intersecting the rectangular region at some angle.
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However, the testing of narrow rectangles across the whole field
does provide a sort of screening procedure. Any relatively
strong lines will fall within at least one of these bands, and thus
be detected. On the other hand, it is necessary to further analyze
the contentg of one of these bands which has a large amount of line
evidence in it in order to determine both if there really is a

line within the band; and if so0, where it is.

The procedure for assessing the total amount of evidence
for the existence of a line within a band is based on the idea of
projecting a two dimensional array inte a one dimensional line.
For example, if an array of points l:xi, }ri]' is given, and it is
desired to determine the locations (x-intercepis) of vertical
bands containing a large number of points, then it is merely
necessary to histogram the x-co-ordinates of all the points.

The resulting histogram has large values for x-intercept

values of bands containing a large number of pointg. By this
procedure, all vertical bands are investigated in parallel.

The procedure is gimply modified for arbitrary orientations,

by histograming numbers of points versus a quantity

X; + ay,, where a depends on the orientation under consideration.
This corresponds to projecting the raster of feature points onto
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the x-axis at some angle.

The program (PROJ X SL) earries out this projection
procedure on an array of feature points X, projecting at an
angle SL. The main program calling PROJ uses 100 values of
gL. For 50 values, the feature points obtained from horizontal
gcans (parallel to the w-axis) are used. The values of 5L 1in this
case correspond to orientations between T 45 degrees with the
vertical (the y-axis). The remaining 50 projections use the
feature pointg from the vertical scans, and involve angles
between + 45 degrees with the horizontal. The values histogramed
are not gimply numbers of points, but sums of integer weights
attached to the various feature points. These integers have
values from 1 to 4, and depend monotonically on the value of
1" - Min({R, R'), the first feature point value, for a particular
point. Thus, for a particular band, it is not simply the guantity
of feature points within it that is congidered, but something
approximately equal to the sum of the values of R" - Min(R, R')
for points within it. This gives extra weight to distinct lines,
and may be shown to approximate @¥ in some Sense. The value
returned by (PROJ X 8L} is the sel of x-intercepts of centerlines
of bands of slope SL which have a large amount of line evidence

142



in them. The algorithm employed by PROJ is diagrammed in
Figure 4. 11,

The set of outputs of (PROJ X 5L) must be analyzed to
extract the actual lines in the scene. One problem which must
be taken into account arigses from the fact that a particular set
of feature points may give rise to an intercept value in the
output of several applications of PROJ, for successive values
of SL. This is a result of the fact that a given set of feature
points which fall in a line along the vigual field are contained
within several rectangles of almost identical slopes. Another
problem is that the output of PROJ containg a large number of
falge-positive values due to spurious effects described
previously.

The program LINES, which calls PROJ for various
values of the arguments, takes these factors into account by a
complex process of:

1) retrieving the feature points in sets from areas

suggested by the output of PROJ,

2) eliminating sets which do not actually conatitute lines,
3) eliminating spurious points from sets which do represent
lines,
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Figure 4.11
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4) sorting by the apparent strength of lines,

5) eliminating redundant sets of points by considering the
set in the order imposed by step 4 and eliminating sets
which are highly redundant with {more distinct) sets
which had previously been considered,

B) fitting lines to the resulting sets of points.

The output of (LINES X) ia & set of lines retrieved from the aset

of feature points X. LINES is applied once to the feature points

from the vertical scan; and once to the feature points from the
horizontal scan. The result of applying LINES to the sets of

feature points illustrated in Figure 4. 10 is shown in Figure 4. 12.

V. LINKING LINES TO FORM PARTIAL FIGURES

Having located a certain number of lines in a scene by
the methods of the previous section, a logical next step is to
jein them together and form figures. This may be viewed as a
terminal step, provided all lines have been located by the
projection procedure. This would not, in general, be the case;
and the joining procedure described in this section is actually

a first step in the location of the remaining lines of the figure.
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We shall assume that the output of LINES, when applied
io a set of feature points, does not include all the lines of
intereat in the original scene. This is, in fact, the case for 3
out of 4 gcenes in Figure 4.12. It is a reasonable hypothesis
that the lines found, together with some assumptions about the
nature of the scenes examined, provide some clues as to the
locations of the remaining lines. [t appears not to be the lines
individually which suggest the locations of other lines, but
rather collections of lines which form a figure which is
incomplete relative to a model of how the actual figures appear.

An example i8 shown in Figure 4. 13.

THE SOLID LINES HAVE E.»EEI'-I IDENTIFIED,
THE DOTTED LINE I3 SUGGESTED EY THEM,

Figure 4,13
It would be desirable to join the lines into groups which would
sugpest the possible location of other lines. A line verifier
could then be applied to the locations suggested. This
procedure requires that all locations of missing lines ultimately
be proposed. Otherwise, some lines would never be found by
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either procedure. It is thus important that the whole mechanism

for line proposing be liberal in proposing lines. Any excess lines

proposed will almost certainly be rejected by a suitably powerful
verifier.

Prior te the application of the linking procedure, &
merging procedure is applied to the lines. This is necessary

to eliminate redundant lines from tWo Sources:

1} [ines which are at approximately at a 45-degree angle
with the vertical, and appear in the output of LINES
applied to both the vertical and the horizontal scans.

2) Single lines which appear, for one reason or another,
as a pair of contiguous lines in the output of LINES.

The eriterion for merging lines is given in Figure 4. 14,

e e S B e = S =

d<10 and ¢ <107

_

|d|+]e|+|d+e [ <50

CRITERIA FOR MERGING LINES

Figure 4. 14
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If two lines are to be merged by this criterion, the palr is

replaced by a single line which best fits the endpoints of the

two original lines.

The joining procedure consisis in applying directed

links from one line to another. There are four possible types:

1)

2)

Regular links, denoted by the symbol T. If any part of
line B lies within a neighborhood of radius 10 units
around A, then A is given a directed T-link to B.

This is illustrated in Figure 4. 15.

Extension links, denoted by the symbeol E. If any part
of line B lies in a particular region near the end of A,
or if the end of line B lies within another more distant
region extending away from the end of line A, then an
E-link from A to B is established. These regions are
illustrated in Figure 4. 15. The motivation for this type
of link i8 that possibly a segment of A extending to B, or
a longer segment extending to the end of B, has been
omitted. The reason for postulating a rather long
extension to the end of another line is that a line's

end, lining up with a given line, provides strong
evidence that the original line may actually extend to
that end.
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EXTENSION-LINK REGIONS
not linked REGULAR LINK REGION
u

k/’ regular link

- extensien link
L
+  possive link

P
k

A LINK IE EETABLISHED FROM LINE A

TO LINE B ON THE BASIS OF THE INTERSECTION

OF B WITH CERTAIN REGIONS ARODUND A

Figure 4. 15

3) Passive regular links, denoted by PT. If line B links
to line A by a T-link, but A does not link to B by either
type of link, then a PT-link is established from A to B.

4) FPassive extension link, denoted by PE. This is similar
to a PT-link, but is applied if B links to A by an E-link.
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An illustration of the links applied to one of the sets of
lines from Figure 4,12 ig given in Figure 4. 16. [t should be
emphasized that, in accordance with the necessary liberal
policy underlying the propoging of lines, the lines are over-linked.
These links are not intended to be those applied when all the lines

have been located,

VI. HEURISTIC LINE PROPOSING

This section describes the program {(PROPOS X), which
proposes additional lines from a possibly incomplete set X of
lines from a scene. FEach line is considered in turn, and
additional lines suggested by it, and by lines linked to it, are
proposed. A verification program, to be explained in the last
section, is applied to each proposed line. If the verifier claims
that the line actually exists, it is added to the list of lines,
together with links between it and other lines; and it may be
used subsequently in proposging further lines. When no more
lines can be proposed from the {possibly augmented) set of lines,
PROPOS returns the entire set.

The proposing procedure is based on the premise that if
a line is missing from a set 5, then at least one line having a
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L
(link)

LINK:S BETWEEN MEMBERS OF THE OQUTPUT, OF LINES

Figure 4, 1§
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common end-point with the missing line is in the set X, or can
be successfully proposed from X. This is illustrated in

Figure 4.17.7 It is further assumed that vertices have no more

(missing)”

IT IS ABSUMED THAT IF A LINE OF THE
ORIGINAL FIGURE WAS NOT AMONG THOSE
OUTPUT BY LINES, THEN AT LEAST ONE
LINE CONNECTING TO IT WAS,
Figure 4. 17

than three or possibly four lineg radiating from them. It
follows that lines should be proposed from the ends of lines
already found, provided that there are not already many lines
inecident with a particular end.

It is in general not entirely clear where a line generated
by LINES actually terminates. This is partially due to the
rough "'mesh' of the scanning grid, and partly due to the fact

that the feature point generator gets confused in the neighborhood

of a vertex. In order to propose lines from the ends of known
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lines, it i8 necessary to make a reasonable estimate as te

exactly where the ends lie, The first step in proposing lines

from a given line is to dispose of the ends in the following
manner:

1} If two lines intersect within ten units of the end of a given
line, the point on the line (possibly extended) closest to
the intersection is taken as the end or "terminus".

2) If a terminus is not determinable by criterion 1, but a
line intersects the given line within 25 units of the end,
this intersection is taken as the terminus.

3) If no terminue can be found by 1 or 2, that end of the
line is said to be of "indeterminate terminus, "

The determination of termini is diagrammed in Figure 4. 18,
Another assumption made by PROPOS, which is

independent of the first, s that the opposite sides of faces of

the figures are approximately parallel. If it is desired to
propose a line extending, e.g., downward from the left
terminus of a horizontal line, the direction of the proposed
line is then the same as that of another "secondary” line

extending downward from the given line. In particular, this

154



-
d

! if d<10

if d<25

|
[ ® terminus

THE "TERMINI" OF THE HORIZONTAL

LINES ARE AS INDICATED.
LINES PROPOSED FROM THE HORIZONTAL

LINES EXTEND FROM THE TERMINI,

Figure 4, 18
"secondary" line should be the first line "to the right" of the

left terminus, as that is the obvious candidate for an opposite

side to the proposed one. This determination of these secondary

lines, termed "directors” is diagrammed in Figure 4. 1%,

Having determined the termini and directors for a
particular line, the procedure for proposing lines from a

particular end is poverned by four cases:

1} The end of the line is of undetermined terminus;
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UFPPER DIRECTOR
FOR LEFT END OF A

LINE "aA"#

LOWER DIRECTOR -
FOR LEFT END OF
LINE A

NOT DIRECTORS
FOR LEFT END
OF LINE A

DIRECTORS ARE LINES WHOSE DIRECTION
SUGGESTS THE DIRECTION OF A MISSING LINE,

Figure 4. 189
2) Only one line intersects with the given line at the
gelected end;
3) Two lines lying on the same side of the given line

intersect the selected end; or
4) Something else occurs at the selected end.

In the firat case linea are proposed from either side of
the original line for which a director has been found. Three
parallel lines are proposed, 10 units apart, parallel to the
director, and with the end of the middle line coinciding with
the indicated end of the given line. The other ends of the

proposed lines are determined in this case, and in the cases
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which follow, by making the proposed line no longer than the
director, and truncating it so that it does not intersect any other
lines in the set. In case 2), lines are proposed on the opposite
side from the intersecting line, provided a director exists on
that side. Three lines are propesed ten degrees apart, all
extending from the terminus. Their lengths are determined

as above, and the middle line is again parallel to the director,
If no lines are found on the side away from the intersecting line,
then lines are similarly proposed on the same side as the
intersecting line, subject to the additional provision that the
proposed lines all lie between the intersecting line and the
director. If this were not the case, it would be impossible that
the proposed line and the director be opposite sides of a face.
In case 3), lines are proposed similarly to the first set
described for case 2). In case 4), no lines are proposed,
These cases are diagrammed in Figure 4. 20.

In summary, PROPOS goes down the list of linked lines
proposing in the manner described above, adding lines which it
finds to the end of the list. This procedure is applied to the
resulting list, and so on until no lines on the current list result
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1) LOWER TERMINUS OF "A" IS UNDEFINED,
FPARALLEL LINES PROPOSED:
DIRECTORS FOR

LOWER END OF "A"

- - — PROPOSED

TRt
LINE "4 A LINES

2) ONE LINE INTERSECTS LOWER END OF "A",
RADIAL LINES PROPOSED:

/ o TERMINUS

I LINE "'A" — —==PROPOSED

~ ; ] LINE "gB" LINES
—-—Z-Z=c==s==

"\ PROPOSED LINE TRUNCATED BECAUSE OF "B"

3) TWO LINES AT LOWER END OF "A" ON ONE SIDE,
RADIAL LINES PROPOSED ON OTHER SIDE:

o TERMINUS

LINE "a" | 7 = PROPOSED

e

——————m=me=a =T E === LINES

1) LINES ON EITHER SIDE OF LOWER END OF "A",
NO LINES PROPOSED:

LII NE IIAH

FPROPOSING OF LINES FROM AN END OF A GIVEN ONE
I GOVERNED BEY FOUR CASES,

Figure 4.20
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in the proposing of any further lines. At this point, the final
set of lines ig returned by the program. The process of

proposing lines i diagrammed in Figure 4. 21.
VIIL. A LINE VERIFIER

Line verification consiats in applying the function
Q*{J?} as given by (3, 13) and (3. 29), or some variant of it, to
the intensities J?, or some values derived from them, lying
in a region suggested by the line proposer. The region is
agssumed to be divided into n 8quare or nearly square sub-
regions, and @% or its variant is computed from the values

R

. ¥
i, 1" - Ra.n’ &

‘-] R ete., according to Formulas

(3.13) and (3. 28), or formulas derived from them. In most of
the remainder of this section we shall be concerned with a
generalization of Q*{J?} which has been suggested by the
discussion at the end of chapter three. This generalization

consists in assuming that the values of H, k and R! . are

1s ik
glven by:
R. = Min{R, A ' 4.1
JPI{ n{ JJL{J]' :IJRJ-E:I { :r
R' . = Min{R" s «.0 , R . 4.2
ik in{ k1 HJ.}L 51 (4.2)
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OUTPUT OF LINES APPLIED TWO PROPOSING PASSES
TO FEATURE POINTS IN 4.9

THREE ADDITIONAL FINAL SET
PROPOSING PASSES OF LINES

DIAGRAM OF THE PROCESS OF LINE PROPOSING,
SMALL NUMEBERS INDICATE THE ORDER OF PROPOSING.

Figure 4.21
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where the Hi: K, t's and Hi. K, u's are computed from the 25
intensities of the k-th sub-region scan segment according to
{3.25), and from the paradigm intensity profiles illustirated in
Figure 4. 7. According to the discussion in Section III, the
values in the feature point rasters are derived from the
values given by (4. 1) and (4. 2), and the present line verifier
draws upon exactly these values. In this section we shall
review the relevant theory in detail, describe the present line
verifier, and suggest possible improvements and generalizations
of it.

The present line verifier, in computing a variant of
Q#u'}} for a region, obtains the values of, e. g., Rj, k far
CL(j) of (3. 29) from the feature point rasters such as are
partially depicted in Figure 4. 10. In principle, if the region
encloses n 25 point sub-region scan segments of the original
gcang, then the values Hj; e etc., should be computed from
exactly these scan segments. These values were computed
for all possible sub-region scan segments, in the generalized
manner given by (4. 1) and (4. 2), by the feature point generation

procedure. However, most of the values of the R's and R''s
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were discarded during the compactification process. In fact it
was only locally maximal values of E, given by:

Ej " R;i‘ K" Min{Hj ! H:i k! i4.3)

where Rj k and R' kK are given by (4. 1) and (4. 2), that were

retagined. However, it turns out that we may obtain a

&

reasonable estimate of the value of E. K for the intensities of

a particular sub-region scan segment along a particular scan
from one of these maxima nearby along the same scan. In
particular, if Ej , 18 a desired value of E for a sub-region

A
scan segment along some scan, then let E,j X be the value of

E which is locally maximal along the same scan and is computed
from a sub-region scan segment closest to the one in question.
We assume that there exists a maximum within something like

15 units of the segment in guestion, else we assign E_ K the

L

A
value 0. If E.i | 89 defined actually exists, then the following

relationship holds:

2

-8 - oax ' (4, 4)

E -
ik 1.k
where a is some constant, and x ig the distance between the
A
sub-region scan segments {rom which Ej K and Ej Kk WEre
L ¥
computed. This relationship follows from the behavior of the

E curve in the neighborhood of a maximum, which may be
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observed in Figures 3. 2 and 3. 10. It will be seen later that
the n values of Ejplr. are all that are necessary to compute the
present variant of @#* used in the line verifier.

This present variant of @* omits the second and third
terms in the exponent of, e. g., the value of CL as given by
(3. 29), and thus does not need the values of a; " a'#k and

x Js

a:'].',*k. The middle term may be ignored because it turns out to
be always very small relative to the other two. To see this,
recall that line verification in the present set of programs is
applied only to lines, or possible lines, which escaped
detection by the LINES program. They are thus lines which
have a net relative amplitude whose magnitude is small relative
to the average magnitude of relative amplitudes for lines in
general. One may observe that the denominator of the middle
term is dominated by its third term, so the term is approximately
( Eafkf n)/ pﬁ- This is approximately the square of the net
amplitude divided by its variance. Since the net amplitude

in situations under consideration is small relative to the
average magnitude of the net amplitudes, and the average net

amplitude over lines in general is zero; then the net amplitude
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is small relative to ifs standard deviation. The second term of
(3, 29) is thus in this case very small, being approximately the
square of the quotient of the net amplitude with the gtandard
deviation.

The omission of the third term of the exponent of (3. 29)
was based on the empirical observation that for the majority
of the scenes analyzed, this value seemed not to be related in
a reliable way to the existence of lines. A series of experiments
was begun to properly test whether any such relation existed.
The results appeared promising but not so far conclusive.
Consegquently the third term was omitted pending further
investigation.

The resulting variant of IF.}#{JT_-:]- is quite similar to the one
discussed at the end of the previous chapter. It 18 given by (3. 13),
where the various values, e.g., of CL are given by (3. 29) but
with only the first term in the exponent. This was the case in
the gituation described in the end of chapter three. Also, this
time we expect & scan of 500 poinis to intersect with about five
lines in the visual field, so the relation between P{CLJ}, PICE}
and PICH) remaing approximately the same as in the situation

at the end of chapter three. Finally, we may as before
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asgume that one of the terms in the numerator is considerably
larger than the other. Thus by an argument 8imilar to that
uged in deriving (3. 41) and (3. 43) we arrive at the function
Q'##(1) defined by:

] n =
QU#(IY)
Il
];max{SLk{j:--sHkij:-. SE, (j)-SH(j)) + K, (4. 5)

where, e, g., SL.k{j]I is like SL{j} given by (3. 37) with subscript
K in place of 1. As before, this function is approximately
monotone in Q*{J‘}} and hence thresholding it provides an
approximately sub-optimal regional decision predicate. One
may see from (3, 37), (3.38), (3. 39), (3.23), (3.24), (3. 25)
and a certain amount of algebra that:

SLy (1) - SH, () = R, - R,

and

SEL(j) - SHL(j) = Ry - Ry .

Using (4. 3) we may rewrite (4. 5) as:
It

Q'=#(17) = ];E‘j’k-l-K' (4.6)

with the values of Ej Kk obtainable via (4. 4) from values

*

ﬁj L which are available in the feature point raster. In
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gummary we have:

fy _ o 2
Quenr(a) = 3 By i - axi + K, (4.7)
E.  #0
i,k
recalling that if a suitably close feature point for obtaining a

A
value E,

did not exist, then the corresponding E, . was
] k Ri.]

assigned the value zero.

In practice it was found to give better results to
deviate lightly from a strict thresholding of (4. 7) in the
verification of lines. Prior to applying (4. 7} to a region it was
observed which of the E_j,l-: were given nonzero values. In the
case that the locations of the nonzero E ,]:IE were sparse or
concentrated in one place in the region, the thresholding
procedure was omitted, and a negative answer was returned
as to the existence of a line. This is approximately the same
as obgerving the pattern of the locations of feature points within
the region, and denying the existence of a line if they are all
clumped together or are sparsely scattered within the region.
These two situations are usually due to the existence of feature
points from lines that cross the region at non-negligible angles.
Another variation from (4. 7) which was found to be more

convenient, and in Some cases more accurale, Was to
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M

threshold the sums of the Ej k's and the sums of the x;i's
F

separately. Finally, instead of taking %, to be the deviation of

A
the E.

i k feature point from the center of the region, it was taken

ikt
to be the deviation of the Ej K feature point from a best-fit line

&

to the various EJ, K feature points.

The line verifier (VERIFY F1 P2) takea as arguments
the end-points P1 and P2 of the propoged line and outputs
either MNIL, if the line is thought not 1o exist by the above
criterion; or the end-points of the best fit line to the feature
points if the line i8 considered to exist.

In observing the line verifier in action in Figure 4. 21,
occasional failures are apparent. Although no lines are claimed
to exist which do not exist in the figure, several actually
existing in the figure were proposed but claimed, on the basis
of the feature point raster information, not to exiat by the
verifier. An examination of the feature point raster indicates
the presence of feature points in these regions. The problem
was principally that the region intersected with too few scans, on
the order of three to five; giving too few values for the threshold
function (4. 7) to work with. Evidently a finer scan would
eliminate this problem, as well as some other approaches to
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its improvement which are aboul to be discussed.

A major source of improvement for the line verifier is
for it to obtain a new set of intensities within the region to which
it is applied, at considerably higher density than that of the
original scan. This would eliminate the difficulty described in
the previous paragraph, wnu.ln-'l allow more accurate values of
the R's, E's or whatever, to be oblained, and would eliminate
the necessity of the approximation to the EI?J '8 in (4. 4).
Another improvement would result from the utilization of the
third term of (3. 289) and similar expressions. As was stated
previously, investigations in this area are still under way.

It seems plausible that the model in Section IV of chapter three
may have to be modified in agsumptiong 4) and 5) to admit of &

regular linear variation of "idealized" relative amplitude along

a noise-free ridge-like or cliff-like noise-free sample.
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CHAPTER 5

RELATED WORK

I. OTHER APPROACHES TO LINE FINDING

An early line-finding program was written by Roberts
(Roberts). This program analyzed photographs, of good
contrast and focus, of scenes whose confent was principally
defined by straight edge-lines. Feature points were obtained
from a predicate on four adjacent intensities of a 2 by 2 sguare
on the visual field. Feature points were organized into lines
by a sort of line-following procedure. Higher level heuristics
handled the resulting lines.

A comparison may be made between the behavior of
Roberts' four-point feature point predicate, and the present
feature point gathering procedure, This analysis iz a
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generalization of a procedure due to Binford and Herskovits
(Herskovits).

An upper bound on the performance of the former may
be inferred from theoretical considerations. Data on the actual
performance is not available. The feature point predicate is
applied to intensities :l::il it xi+1,j' xi.ji—l’ and xiﬂ,j-+1 at four
adjacent points in a square pattern on 4 256 by 256 point grid.

The thresholded value i8;

- @ o
7,5 = Vg, j¥ien, 1) * i, 9, 5005

wherao

Yi, i T NELI
Assume that the noise ig gaussian, and that the noise level, as
measured by the standard error about a mean of values of ¥
taken at a single point under constant lighting conditions, i& 8
for intensities in the vicinity of the average of the four y's in
question. It is not difficult to show that z as a function of tﬁe
random variables i, ¥it1, j* ¥i, j+1 and Yitl, j+i has a
median of about 28, and an upper interquartile point value of
shout 3s. In the context of the set of figures we are considering,
one would expect about one feature point per 100 quadruples of
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intensity. Thus for about 50% false positives, one would wish

to set the thresheld on z high enough that z falls above threshold
by chance once in 100 times. For a normal distribution, this is
about 2. 5 standard deviations, which corresponds to 3 times the
semi-interquartile range. Thug z should cut off at about 5s.
MNow it is not difficult to see what values of z would result for
various lines and edges of amplitude a oriented in various ways
with respect to the grid of squares. [n Fipgure 5.1 we have
computed such values for 12 cases. In the diagram, we are
assuming that the dimensions of the blurring funetion are such
as to give the line and edge profiles of the width shown. This
width appears to be about an optimum compromise. If
congiderably lower then more edges would have a relatively
high z=-value, but more lines would have a gero z-value. AB

the width increases, both lines and edges tend toward having a
zero z-value. From the diagram it may be estimated that the
average value of z for edges is sbout . 8a, and for lines about . 4a.
Thus the amplitudes of lines and edges respectively which are at
threshold are about 6. 38 and 12. 68. This may be compared
with the values 1. 25 and 2s obtained for @*% at the end of

chapter three. The difference is due to two factors. First,
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the Hoberts predicate has a support of only four points, whereas
the Q= tested had a support of 25 points. One would expect the
signal to noise ratios to differ by a factor of425/4 = 2. 5,

The actual difference is about 5, and the remaining factor of
two is probably due to the fact that the Roberts predicate is
isotropic, whereas Q% is directional.

The Topologist, based on the work of Binford, Sussman
(Sussman) and Herskovits (Herskovits), represents another
approach to the analysis of simple scenes. In this case, the
scene is divided into a set of emall square regions which are
individually tested for homogeneity. Adjacent homogeneous
regions are clustered into maximal homogeneous regions, which
are presumably the areas of the scene which lie between edge
lines. This procedure has the properties that edge linee need
not be straight, and that arbitrarily complex predicates for
homogeneity may be used.

Recently, & method of spatial frequency filtering and
matching has been applied to the problem of location of feature
points (Hueckel). This procedure is roughly a two dimensional
vereion of the feature point analysis presented here, For a
circular neighborhood, an estimate is given of the directional
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and amplitude parametiers of a possible edge through the
neighborhood. This procedure seems to be based on a rather
simple model of the nature of intensity profiles at edges. Also,
it seems to be relatively insensitive to the presence of lines.

An approach bearing some mathematical similarities to
the feature point detection procedure reported here, was
employed by Saunders (Saunderg) in an analysis of {ilmed
images of scope tracings. In this case it was necessary to
locate the intersectiong with parallel scan lines of the image of
a narrow trace along the film.

Worthy of mention here, though not specifically related
to line finding, i& the work in statistical decision theory of
Chow (Chow). The theorem in the first chapter is essentially
an adaptation and generalization of Chow's results in the theory
of optimal error reject trade-off.

II. RELATION OF THE PRESENT WORK TO THE

DEVELOPMENT OF A VISUALLY ORIENTED REAL-

TIME OBJECT MANIPULATOR

The program here described is part of a larger effort to
develop the visual-perception aspects of a real-time object
manipulator. (MAC Progress Report 1968) For the present,
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effort has centered on programs to obtain descriptions of scenes
composed of cubes and other prismatic gclids. By a description
of an object is meant a list of the spatial co-ordinates of its
vertices, together with a list of pairs of vertices defining edges
of the object. By a scene description is meant a list of object
descriptions, one for each object in the scene.

There is an obvious disparity between the output of the
present program and & corresponding scene degcription. The
former ig, or can easily be reduced to, a set of vertices and a
set of vertex pairs repregenting edge lines. A description
requires that these vertices and vertex pairs be grouped into
seta corresponding to the various objects in the scene. One
may regard the output of the current program as a set of lines
dividing the field into regions. The problem then becomes one
of grouping regions which correspond to faces of a single object,
and matching regions which may be parts of a single face which
has an occluding object in front of it which divides it info two
regions. This problem has been investigated in detail, and a
program called SEE (Guzman) performs the described grouping

and matching to reduce the output of the present program into a
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proper two dimensional scene description.

Several approaches io the problem of determining the
locations of objects in three dimensions have been investigated
in greater or lesser degrees of detail. One suggestion involves
the use of two light sources located close to the point of view of
the optical input device. One would be a point source, whose
intensity falls off as the square of the distance from the point of
view. The other would be a source placed "at infinity" by means
of lenses, whose intensity would fall off negligibly with intensity.
If illumination is rapidly alternated between these two sources,
and intensities obtained for a particular point under both
conditions, the relation between the two intensities would yield
the distance from the point of view 1o the point in the field.
Another approach to determining the distance from the point of
view to a point in the scene involves the use of optical focusing.
{(Horn 186&) By this procedure, a point in the scene is brought
into perfect focus and the position of the lens of the optical input
device is transmitted to the computer. After a suitable
calibration procedure, the absolute distances of objects may thus
be obtained automatically. A third approach {Horn) invelves the

use of intensity gradient to infer the shape of the contour of a
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curved surface. By this technique, relative distance information
may be obtained for points on curved surfaces. A final appreach
worked out by the present author, involving an analysis of the
scene from two different points of view, relates directly to the
current work., It is assumed that the present program has
examined a suitable scene from two different peints in space,
and that the resulting two sets of lines have been processed by
SEE. Central to this approach is a subroutine called WHERE
which is based on resulls in projective geometry, and is
deseribed in a recent Project MAC Artificial Intelligence Memo
(Minsky). This program takes as input the two dimensional
co-ordinates of a point from each scene. In many cases, WHERE
can determine that the two points are not images of the same
point in space. If the points are [rom the same point in space,
WHERE outputs the three-dimensional co-ordinates of that point.
One might apply this program in a straightforward manner to a
point in one scene together successively with all points of the
other. This would greatly reduce the possible ""'matches" of
features in the two scenes, but would, in general, not suffice to
determine the three-dimensional locations of all the vertices,
The problem of resolving the remaining ambipuities, as well as
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developing a more efficient point-matching procedure seems to
be quite complex. It seems likely that the organization that

SEE imposes in the lines wul.:-l& provide a basis for using
contextual clues to match the vertices. The problem is currently
under investigation.

A final problem worthy of mention is that of the
determination of the stability of a configuration of prismatic
golids, given a three-dimensional scene description of it.
(Blum) The relevance of this problem derives from the fact
that it is one of the goals of the object manipulator project to
be able to construct structures from rectangular blocks. In
order to direct the object manipulation device, a program
musgt first determine the order in which the blocks are to be
set down. It may be possible to construct a sub-configuration
of the desired configuration which has the property that adding
any additional bleck resulls in an unstable configuration. To
forestall such a possibility, it is necessary to be able to
detect instability in searching for an appropriate order in which

to build the structure,
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