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COMPUTER AMALYSIS OF VISUAL PROPERTIES OF CUBVED OBJECTS®
Abstract

A method is presented for the visual analysis of
objects by computer. It is particularly well suited
for opague objects with smoothly curved surfaces. The
methed extracts information about the object's surface
properties, including measures of its specularity,

texture, and regularity. It also aids in determining
the ohject's shape.

The application of this method to a simple recog-
nition task -- the recocgniticn of fruit == is discussed.

The results on a more complex smoothly curved object, a
human face, are alsoc considered.

EThis report reproduces a thesis of the same Eitle submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, Tn partial fFulfillment of the re-
quirements for the degree of Doctor of Philoscphy, June 1970,
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Chapter | The Problem

Consider the problem of proaramming & computer to
recognlze objects with smoothly curved surfaces, such as
the cbject in the photoaraph of flgure 1.1. Images such
as these can be digitized by an Image-dissector camera,
20 thet the plcture 15 represanted by a raster of
intfensities at closely spaced szample points, represented
numerically in figure 1.2, We will consider a method of
processing such input with the vl timate goal of
recognizing the object in the image.

There are numerous more or less adecuate known
techniques for classifying an imaoge once significant
features have been extracted from [+, but the problem of
extracting such features from The basic optlical data is
less well understood. The methods which will be
discussed here are "low=-level", in that they manipulate
actual plicture points and try to extract salient
features, rather than working with high=level
descriptions and attempting fo produce an identification.

It must be recognized, howaver, that tha so-
cal led high=- and low=level aspacts of vision cannot

really be cleanly separated. There [s no foolproot



Figure 1.1:

A Simple Smoothly Curwved

Object
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Fipure 1.2:

The intensities in this srray have heen scaled to

of figure 1.1

0 and 99

Sampled Light Intensities from the Apple
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completely local way to find features, as there will
always be ambiguities which can anly be resolved Through
the use of context, For example, one must know the |lght
intensity {(at least roughly) in order to determina
whather an abjoect is white or black, as & white objec® in
very dim |ight can easily reflect less light than a black
object in sunlight, A plum cannot be eas|ly
distinguished from an Isclated grape, unless the size Is
known ., Highl ights on a smocth surface cannot ba
understood unless the form of the 1llumination is known,
The context can of course be determined partly
from the scene [tself, For example, a real scene will
generally confaln surfaces with a wlde ranoge of
reflectivities. This establ ishes a |ight infensity
frame of reference In which the [lghter objects will
appear white and the darker ones black., One cannot tTell

the slze of a white sphere alone in a photooraph, but If

It Is shown next to a tennis ball, Its slze Is known by
compar [ son, (It is possible, but unlikely, That the

tannis ball Is actually a scaled=up model tThrea feet In
dlameter., This usually happens enly on movie sets,) In

a similar manner, the highllaht on a known object glives
Information about the Iighting which can be used to

interpret the highlights on other abjects In the Image.



so far, the use of context has been considered
anly en the level of cbject identification. Actually,
context Is even more necessary at the level of finding
visual parts of objects, such as edges, A Iine-finding
program can be saved an emnormous amount of work [f it Is
Told approximately where to look. [If a program thinks it
Is seeing an apple, it can know that a good way to verlfy
this hypothesis Is to lock on top for a stem,

A pregram can only make use of these cues,
however, If It can pass informatlion resulting from a
partial ldentification back to the low=level feature=
finding routines., This sort of system shall be referred
tc as "vertical", in the sense that control passes
frequently between high- and low=level routines, The
term "horizontal™ refers to a system which works In
stages, each of which produces a more abstract
representation of the scere. Much of the previous work
in vislon has been of this sort. A typical ssquence
might be to remove noise, enhance features, extract
features, group them, and then Identify objects. Since
no provision Is made in a horizeontal system for passing
information back down this chaln, the system cannat make

use of context Informaticon obtelined from the Imaae

[tself,
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The methods which will be presented hare are
intfended to fit infto a vertical system in Two ways,

First, they can be used to start off a vertical system
with information good encugh to get it going. Second,
they extract features which are useful for object
identification. These features will be extracted in
such @ manner as te allow easy advantaope to be derived
from context Information,

This work is Intended to be a step towerds making
computers see. This goal is Irteresting for a number of
reasons, Computers with vwislon would be useful for
applications In automation, and would be able to Interact
better with humans. Compufter vision may well provide
Instructive models for the understanding of human vislon,
The problem Is also very interesting In I+s own right, as

an aspect of the study of Artificial Intelligence,



Chapter 7 Previcus Wark

Techniques have been Irvestioated which could be
applled to smoothly curved objects as & step towards

recognition.

2.1 Shape from Shading

It Is possible to find 2 great deal| about the
shape of & smoothly curved object from a single monccular
image, given a knowledge of Its surface reflect jon
properties and the positlien and nature of the Ilght
sources, Horn [10] generates curves Iying on the
surface of the object by an iterative sclution of a sa+
of differential equations relating shape to the intfens ity
of Image peints, Similar methods have been epplied to
the analysis of lunar topography from Lunar Orbiter
photographs [14,5],

This method requires a uniform ebject surface,
Its reflectance must be a smooth function of the anale
the surface makes with the Inclident and exlt rays. Any
marks on the surface will disrupt the solutlens +o the

differential eguations, although very small marks can be
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ignored by appropriate averaging techniques,

Since his results depend so heav!ly upon the
cbject surface properties, Horn [19] has undertaken an
investigation of how typical surfaces behave. To within
a reasonable approximation, the reflectance ot a real
object can be considered & be a simple linear
superposition of matte and specular components, The
epecular component refers to the light reflected such
t+hat the anale of incidence equals the anole of
reflection, as 1f the surface ware mirrored. The matte
cemponant 1s Ilght which Is scattered by the surface,
The simplest model of 2 matte surface Is a "lambertian®
surface, which emits light uniformly in all directlons,
regard less of the inclident angle, The physical effects
which produce these twe components are different, as
shown by the fact that they fregquently have different
spectral properties. The specular component has The
spectral distribution of the Incident Iight, while The
matte component, which penefrates the surface more deap ly
before belng scattered, Is spectrally distributed as the
product of the incident Ilght spectrum and the spectrum

ef the cobject pigment,



2.2 Detecticon of Optical Edges

Much research has gone into the detection and
tracing of contrast edges in an image. These edges can
be emphasized by differentiation preprocessing

operations, such as the gradient or Laplacian,

2.2.1 Plane-surfaced Objects

Edoge detection Is particularly attractive for
planea surfaced objects. Since the edges are straight
lines (the intersection of two planes), & determination
of the position of the edges completely specifies fThe
pasition af tThe plane zurface which they enclose, and an
edge itself can be located in terms of just a few of 1ts
points,

A program by L. G. Roberts recognizes white plane
surfaced objJects on a dark backoround C15]. He considers
objects which can be put together out of 2 set of given
sub-shapes, such as rectangular parallelopipeds and
wedpes, The image iz first differentisated. Lines are
then found in the resulting picture by a multiple-step
procedure, first fitting short lines fo local areas,

eliminating tiny loops, then fitting longer and longer



lines to the shorter cnes, and finally generating a
least =miean=square line which s takern *o raepresant +he
original edge.

The next phase Is recoonlition of polygens in the
line drawing, followaed by the matching of sets of
polygons against the possible medels., The matching is
first done on a stralght topoaraphical basis, The two-
dimensional projection of a brick, fer Instance,
aenerally contains three guadrilaterals with one corner
peint in coemmen. No such point exists on a wedge,
Assuming, them, that this point corresponds to the corner
of & brick, the program can match the other lines and
paints in the quadrilaterals to what must them be the
correspond ing lines and points of the model. A least-
mean=square error matrix procedure is them used te find
the best brick (ln 2-space) which generates the given
two-dimensional line drawing, |f the least-mean-souare
error |s small enough, the fit Is accepted as correct,

when a set of lines are matched by a model, the
model can then be projected back onto the line drawing,
but now with all of the hidden |ines present. The model
is now "removed" from the |line drawling, which may entail
the deleticn of some |lnes, but also may entaill the

additien of some others., The procedure s now iterated
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until all of the lines of the Input flgure have been
gccounted for. Thus cbjects are recoeonized as being
compounded of a numbar of the basic buildine blacks,

Roberts depends on a hiah denree of precislon of
measuremant of The position of the edges, since ha uses
perspective In an essential way. Unfortunately, his
procedure §is useless for objects lacking straight line
edges, One particularly interesting aspect of Roberts'
work is his use of 2 powarful internal model of the
potential abject in the imace. A similar approach might
be useful for scenes consisting of regular smoothly
curved cbjects such as spheres and cylinders, but it s
difficult to envislion successful results using more
amorphous forms,

A program by B, W, Gosper visually locates white
rectangular parallalepipeds on a hlack table., Due to the
high reflectance difference between the objects and the
bac koround, the outer edoges are very clearly defined.
(The program also finds Interior edpes of the object
where tThe contrast between ad]acent faces s high
encugh,) The edpes are found by an algorithm which scans
in a line perpendicular *o the edge, and moves this line
glong the edge from one and to the other. From the

position of the edges in the I[mage, and the knowledge
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that the object Is rectanpular and rests on & table whose
position is known, the exact three-space position of the
object can be calculated from its hexagonal outline,

Griffith [8] has made a study of The edoes of
geometrical objJects, and has developed a theery of their
optical detection in the presence of nolse. His system
is designed to be easily Integrated Into & vertical
vislen system, and includes a high=-level line proposer
and verifier,

Guzman [9] "parses™ a stralght=line drawing into
its component plane=-surfaced objects., His work is
notable here in that It depends |ittle upon accuracy of
measurement, and |5 concerned with dissecting a complex
scene into individual objects prier to determining their
exact position or shapa. In these respects it has ooals
similar to those of tThis work with respect to smoothly
curved objects. Guzman's technlgues could In fact be
extended to smoothly curved objects, and used to
complement the methods discussed In the next chapterjy his
methods do not depend so much upen the edges being
straight, as do Hoberts and Gosper.

Different recognition methods call for different
degrees of precision In the final determination of |ine

pasition, Roberts requires high precision, because of
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his use of second-crder perspective effects, The use of
stereoc distance determination would also reculre such
high precision. Gosper requires only madium precision.
His goal is te actually pick up the block, which anly
reguires locating 1t to within a centimeter or se. Ho
perspoective, stereo, or other second-order effects are
used, so the celculated position is not as sensitive to
small errors In the line position. The proagrams of
Guzman and Griffith regulre only low precision, except In
a few parts which make use of the parallellsm af two

| Taes,

2.2.2 Curved Edges

There has been much study of recognition of
a8 | phanumer ic characters. Black characters on a white
background provide high-contrast edges, and some
character-recognition programs work by tracing around the
character's edoe. There has been |ittle edge-oriented
research on images derived from three-dimensional
objects, and the results of the two=dimensicnal work has
little relevance to this problem.

It 1s censlderably easier to find 2 stralght edge

than & curved cne, since only two points determine a
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stralight line, and additicnal points can then be verified
by very sensitive tests, If many tests are positive
along a straiaht | ine, the existence of the edoe can then
be asserted with a high statistical confidenca, as by
Griftith's programs., These techniques can be used only

over a short interval for a curved edge.

2.3 The "Regiens™ Approach

Instead of looking for hligh-confrast edges, some
pattern recognition methods look for homopencous areas of
lew contrast., Analysis then proceeds from the shape and
interelations betwsen these "reoloens". There are a
number of techniques for characterizing the shape of a
reglen, such as various mements (2], or more complicated
shape descriptors (3], Kirsch [11] analyzes
photemicrographs of cells by building a tree structure of
image regiens with varicus levels of hemogenelty. His
methods are the closest in the llterature to those which

gre developed In this thesis.



£l

2.4 Textural Information

The optical behavior of an object depends very
much on the texture of its surface. The word "texture"
may refer to either marklings or departures from a smooth
surface, but Iin either case they must be small compared
with the size of the ebject In order to be considered
texture., Texure anealysis may be done by 2 wide variety
of methods, svch as Fourler analysls or cross-
correlation, Texture has been used to advantage in a
range ot studies, In such aress asrecognition of terrain
types [ 16] or cell images [13]. Different types of

texture will be discussed further in section 3.9.
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Figure 3.,1: The Intensity-region Tree
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Chapter 3 Representing an Image as an Intensity=reoion

Traee

3.1 The Basic Method Used

Cons ider an Image, I, defined on a rectangular
raster of points, so that Ii{p) is the light intensity at
the point p., For any glven |leht Intensity thresheld 1,
define 2 set of points S(t) = {%!I{ph{&, the =zat of
points of Infensity t or greater., Etach of the eight
plctures In figure 3,1 (previous page) shows such a set
of polnts, for some thresheld, For any t, the seft 5(t)
can be partiticned inte disjeint connected subsets R, (1],
which will henceforth be called "reglions®™, Thus:

st = Ryt Ryt )= - -lUrytty,

wher e RinRJ’:ﬁ if 1#j, and each R; is a connected szet
of points, MNofe that EfTIJE;EiT,J if t,>%, , so each
reglon at threshold t, must be & subset of scme resion at
t+,. The reglens thus fall naturally into a tree
structure basedan this subset relation, as shown In
figure 3.1,

Another particularly graphic way of looking at

the tree 15 to visvalize the intansity fumction ploetted
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In the form z=fix,y). Slicing this function with a
horizontal plane at seversal tThreshoid levels, The free
can be pictured as in figure 3.2Z. An Intensity contour
map of the pear 15 shown In figure 3.3 in order fo show

how the regions are actually nested.

3.2 Quantization

Choosing 2 set of threshold levels {H} is
equ ivalent to gquantizing the lioht intensities in the
image, in terms of the information retalned in the tree,
The more threshold levels in The sat, the greater the
depth of the tree generated using these levels, We will
generally consider threshold sets which are evenly spaced
in the locg of the |ight Intensity, althoush & tree could
be generated from any arbitrary set of levels, Using The
len af the light intensity penerates a tree whose
structure remalins basically the same [f the [llumlination

Is scaled up or down by a constant factor.

3.3 Geometry of tThe Tree

In the |imit of a8 centinucus trea {(in which the

spacing between threshold levels approaches zero), the



Figure 3.2: The Region Planes Shown as Slices of the Intensity
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tips of the branches represent local maxima in the imape,
Baginning a2t 2 branch tip and mov ing aleng It Im the
direction of lower intensity, the repion expands from the
maximum point to include other nearby points, assuming
the intensity functien I continuous in *hat area. Each
tree branch can thus be thouaht of as a growing reglion,

A fork in the tree cccurs whenever twe or more of these
reglons combine, forming one new larger reglon., In this
case, The branch associated with the sub-region of
largest area shall be considered the "main branch™, and
The other breanches shall be called "sub-branches"., |f
the original Image is slightly noisy, then as a reglon
"expands" (meving along a tree branch from hich to low
intensity), it will engulf larce numbers of smaller
regions which sppear ahead of (ts advancing edoa,
resulting In many short sub-branches on the tree. When
two regions of substantial ares are combined, it is not
really Important which Is considered the sub-branch,

The highest region en the tree represents the
brightest point In the Imzae. If the thraeshold Is
lowered far encugh, all of the reglons will eventually
merge into one reglon containing all of the Image polints.

This shall be referred te as the "reot" of the tree,
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3.4 Trees with Incomplete Regien Information

In the preceeding dliscussion, tThe regions
themselves have bean considered to be the elements af the
tree., Let us now consider an abstract tree structure In
which the elements of the tree are not the regions
themse Ives, but nodes containing informatlion about thase
reglons. Such a tree shall be called an "Iimage Tree",
¥ each node eontains a2 complete description of The
reglon te which it corresponds (that is, if R1I+J] s
glven for all i and TJJ,
data to be able to re-construct the Image exactly, to

then the tree contains enough

within the |imits imposed by the euantization,

¥ each node contains only statistics of the
corresponding reglen, rather than a complete description
ef the region, Then the tres contains less Information
than the original image. These are the Interesting
trees, despite the fact that the Image cannot be
reconstructed from them. The problem of pattern
recognition can be viewed as one of throwing away
information 1n a selective way, To go from a picture of
an apple to the word "apple” represents an enormous
reduction In information ("a plcture 15 worth & thousand

woards").
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In general, the ncdes may caontain any arbitrary
set of functions of the corresponding regfon, In
particular, the ones which will be used are the pasition
of the region's center of mass (x.,vy.), the area A af +he
regicen (i.e. the number of points In it), and & measure
of tThe sacond moment about tha center af mass, called +he
eccentricity e,

The eccentricity Is defined by
2 2

e = ,2_111 (xp=x_) 4+ l!'g.rp--,.',;‘.l
A

all pts p

In ragion
e is 1.0 for & parfectly circular reglon, and 1s larger
for a more elongated region.

The eccentricity ls a dimensionlass quantity,
which remains the same If the regicon size is scaled up or
down. It represents & normallzed morent of Inertia about
& line thru the region center of mass perpendicular to
the reglion plane, It can be shown that no region can
have an eccentricity less than 1.0, and that any shape
other than a circle has a hicher eccentricity. This Is
because 2 circle has the smal lest moment of inertia for a
given area,

For 2 | by # rectangle, the eccentricity is



50

e = T /F & |
E i,

which is |.047 for a square, .31 for a 2 by | rectangle,
and 2.7?3 for a 4 by | rectangle. Fer & high elenaatien
§, 8 =M SE.

Nete that this definition of eccentricity Is not
the standard eccentricity of second order curves, The

eccentriclity of an elliptical region of semi-axes a and b

e=1fa+p
b al 4

which ranges from | to oo, Thae normal definition of The

is

eccentricity of an ellipse Is
- (b
aj , (bsal,

More complex region statistics could be stored on

which ranges fram 0 fo I,

the tree. |If the x and y second mements are stored
separately, then the "domlnent axis" thru the reglon
center of mass can be easily computed. This is a2 line In
the plane of the reaion polints through which the region
has minimum moment of ipertia, Higher moments could also
be computed, although their interpretation In terms of
high-level| shape descriptors is less clear, More
complete shape descriptors, such as the resul s of a

Med fal Axis Transform [41] could also be used,
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The cholce of more complex shape descriptors
depends on the particular recognition tasks being
performed., The slmple statistics of area, canter of
mass, and eccentricity can vield much wuseful Informetion,
however, and attention will be focused on them, It will
be seen That they are guite useful for the analysis of

surface properties and simple shapes,

2+% Sub-programs of the Image Tree System

Programs have been written to obtain the image
tree of a given scena, Measurements from 2 laboratory
scene are read Into an array by an Image-dissactor
camera, and a |lst=structure tree [s5 generated. The tree
can be printed cut, showino the parameters associated
with each node. Programs also can graph apainst the
thresheold any reglon statistic stored on the nodes, along
some path on the tree from a branch tip to the root. The
original Image can be displayed, and any arbltrary reclon
can be shown super imposed upon 1f. For more detail about

these programs, see the appendix,
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5.6 The Tree of a Matte Sphere

Let was consider the tree resulting from an Imaae
of a sphere witn a matte surface., A matte surface
exhibits &8 reflectance which is fairly uniform In all
directions rengardless of the angle of the incident Jlight,
The image of a sphere is a2 circle. I wee assume The
ref lectance to be completely uniform, and consider a
sphere | it from the camera position, then the Intensity
as & functien of radivs r over this circle Is

2 1/2
Itr) = 1 = (r/RY ],

whare B |18 the radius of the projected circle, and the
intensity is normalized to | at the central point., This
formula simply expresses tne fact that the projection of
& surface soen by & viewar is proportional %o the cosine
of The angle of The viewer from the normal to the surface
(see figure 3,4)., Thus, assuming uniform scattering, the
intensity of the light Is proportional to the cosine of
the Incident (and viewino) angle, The Intensity value
actually read from the vidisector is + = C + 3ZLog(I),
where C 15 The reading at the central poin®, | is The
Intensity, and the Log Is base 2. Sclving for the region

area as a function of the threshold +, we get



Figure 3.4: Formula for the Reflectance of a Sphere

The sphere is lit from the camera position.

I(r) = cos B
=4l - 8in_ 48
= 1 - (x/R)
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(t=C1/16
A =BLI - 2 1,

whare B is the area of the full circle. Its Image tree
should heve only a8 single straight branch, whose tip
corresponds fo tha ceantral point, Each of the nodes on
this branch represents a clrcular region centered about
this point.

A picture of a white sphere on a black backoround
was actually read into the computer from the vidisector,
and &8 tree was generated by the procedure previocusly
describad, The tree had essentially one main branch,

g lthough there were a few very short sub=-bBranches
representing regions of very small area, which were
neglected, The measured replon area and the theoretical
curve are plofted together in fioure 3.5,

Hote that the measured curve rises consliderably
above the theoretical curve in the central region, This
implies That the intensity is not linear In cosine of the
Incident angle, but is somewhat convex, as in fligure 3.6,
The sphere wsed for thase studies had an extremely matte
surface, and hence a negligible highllght. The sudden
rise at the end of the curve is due to the threshold
lowering to below the Intensity of points in the black

bac kground .



Figure 3.5%: Region Growth for a Sphere
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Figure 3.6: Actual and Assumed Surface Reflectance
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3,7 Effect of the Specular Component

As was discussed In chapter 2, the reflectance of
a surface can be considered to be a superpositicn of a
specu lar and a matte component, A mirrcred sphere would
give rise To a pure specular reflection, which would
clearly be an imzge of The light source, plus a
reflection of anything else in the room. |f the surface
is not highly mirrered, this specular component will be
greatly attenuated, so that it can be neglected, except
for the image of the bright |ight socurce, which will be
significant daspite the attenuation. This reflection of
the light source is called &8 "highl ight", and will
general ly be considerably brighter than the surrounding
points, The magnitude of this highl ight relative to the
matte component [s & measure of the specularity of the
surface,

Consider the effect of this highlight on the
Image tree, assuming *he light to come frem a small
(nearly point) scurce. This will preduce a small, bright
spot on fop of the local maximum in the matte component.
As a result, a long section of the tlp of the tree will
represent a small region of fairly constant area. This

is a8 result of the "spike™ in the |ight intensity
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funetion resulting frem the small, bright highlight,
Consider the set of sphares shown in floure 3,7,
Thay were all palnfed with a matte white paint, and then
coated with zero through seven coats of clear enamel,
giving them varying deoreas of specularity. A graph of
the regicon area vs, thresheld (fiqure 3,8) shows the
small flat section of the curve representing the
highlight, for one of the sphares. Figure 3.9 gives this
highlight depth h 2as a function of the number of coats of
laquer, 1llustrating how the surface specularity can be
measured In a simple manner, The Irreqularities in this
curve are probably due to the difficulty In applylng the

coats of laquer uniformly,

3.8 The Surface Convolution

Locally, consider a curved surface to be a part
of a2 sphere of the same radius of curvature. According
te classical optlies, a sphericel mirror has a focal
length of one half its radius R, and will form & virtual
image of the light scurce as shown In figure 3,10, It a
light of diameter d and distance L from the object is not
too far off the camera-object axis, then the diameter of

its Image Is about



Figure 3.7: Specularlty Test Spheres
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Figure 3.9: Highlight Depth wvs. Number of Laguér Coats
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dt = d I
I = 2L/R

(hs Res oo, d'—s d, a5 is indead the case for a flat
mirror.) Thus if the size of the |ight scurce and the
approximate distance of the object from the camera are
known, the curvature of the surface can be determined
near & highlight, Even 1f the size of the |laht source
iz not known, this method gives the relative curvatures
it there are several different highl ights In the scene.
A good way to determine the size of the source Is to take
advantage of verticality by knowing the approximate
curvature of some object In the Image.

Many surfaces will "smear out™ the Image ef the
| ight, resulting in & broader highlight than would be
gotten from a mirrored surface of eaquivalent curvature.
The highl Ight seen can be considered *o be the
convolution of the Image of the light source and the
"impulse response” of the surface reflectance, |f the
light scurce is a sufficiently small point, then Its
image can be considered to be an Impulse, and the surface
"smear" function can be read directly from the resien

area vs, thrashold curve.,
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3,9 Texture

"Texture™ refers to variations In the light
infensity which are very small In size compared fo The
objects baing recognlized., |f has two basic causes.

" jsyal texture" is due to varlatleons In the reflectance
of the surface, and "tactile texture" is due to minute
protruslons or depressions superimposed upon a basically
smooth surface (the sort of texture one can feel with a
finger), I+ the size of the texture 1s smaller than the
resolution with which the image has been sampled, *the
intensity variations will average ocut, and tThe fexture
will have little effect on the tree, aslde from affecting
the surface "smear" function, If the texture Is large
encuah to be discernable, however, 1t will produce &
dlistinctive effect on the tree.

Texture is & multi=d Imensiconal feature, and there
are a correspondinly large number of textural properties
which could be measured. We are not concerned here with
producing a complete description of texture, but rathar
with detecting features which might be useful In making
an ocbject identiflcation., Although such features can
help discriminate between objects, they do not give

enounh Information to re-construct the texture exactly.
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3.9.0 Visual Texture

Consider the two spheres shown In flgure 3,101,
The spheres were painted with a matte white paint, then
marked with red ink to produce visual texture, The same
two spheres are shown In red, white, and creen light.
Since the red ink Is highly reflective In the red, and
very absorptive in the green, these |ipghting conditions
preduce light, medium, and heavy texture contrast
respectively, with all other facfors being held constant,

There are two kinds of texture, with respect to
effect on the imazge tree. The right sphere shows small
disconnected |ight patches on a connected dark
bac kground, and the left sphere shows disconnected dark
specklies on a connected |ight background. A [ight spet,
be ing 2 locel maximum in the |l1ght intensity, will
preduce a tree branch, The nodes on this branch will
represent regions the size of the spot, and so will have
very small area, The length ef the branch will depend on
the relative brightness of the spot compared to [ts
neighbors, since when the thresheld reaches the intenslity
of the neighboers, the region corresponding te the spot

will be swallowed up by the larger reglon surround Ing It,
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Figure 3.11: Texture Test Spheres
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Light speckles will thus produce a large number of sub-
branchas whose lenoth represants the Intensity of the
speckla, and whose “size"™ (the size of the corresponding
renions) represents the size of the specklies. The tfree
correspond Ing to the light=speckled sphere photographed
In the green |ight (deepest textura) 1s shown In

flgure 3.12. Kete the many branches produced by The
speckles,

The number and length of the sub-branches
provides a measure of the decree of contrast of the
texture, These cuantlties are shown in fligure 2,13 for
the light=speckled sphere under the three |ighting
cond itions. MNote how these quantities thus provide an
Iindex of texture contrast, just as the highl ight depth
and surface smear function provide an [ndex of
specu larity, Infoermation about the details of the
texture can alsc be obtained, up to the |imits imposed by
the particular shape descripiors vwsed on the nodes of the
tree, HRound speckles will produce reglons of low
eccentricity, wherecas streaks will produce recions of
very high eccentricity, If the directlion of the doeminent
ax s of the region were recorded (corresponding to
recording the second moments in the x and vy directlons

separatelyl, the dominent axis of the streaked texture



Figure 3.12:; Tree of the Light-speckled Texture Tost Sphere
(mreen light)

All sub-branch nodes represent reglons of small area,
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could be determined as wall,

Dark speckles will have a different effect,
howaver, Since they are local minima in *he intens ity
function, rathar than local maxima, they will not produce
branches on the tree, but rather willl produce holes in
reglons, This is shown by the tree of the dark=speckled
sphere, shown In figure 3,14, The only effect of these
small holes ls to relse the eccentriclity of The arowing
region, as shown in figure 5,1%, which shows the maln
branch eccentricity vs. reglon area for the dark-speckled
sphere In the fthree different colored lights, Since the
eccentricity change s so small, these three curves can
be compared [n this way only because all factors except
the deagree of texture were held absolutely constant - the
sama sphere was viewed from exactly Pha same camera
position and with exactly The same |ight source. Nothing
was moved; only the f1|ter over the light was changed.

The difference beatween the trees for the dark
speckled and the light speckled spheres (figures 3.12 and
3.14) exposes a basic asymmetry in the image ftree with
respect te light and dark. This asymmetry Is not Just
confined to texture, of course., Llecally bright areas
will always produce reglons and hence tree nodes, while

locally dark areas will always produce holes In reglons,



Figure 3.14;

Tree of the Dark-speckled Texture Test Sphere
{preen light)




Figure 3.15: Eccentricity vs. Region Area for the
Dark-speckled Texture Test Spheres
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altering the statistics of nodes that would otherwlise
ax [t anyway,

The tres could easily be extended to find dark
speckles by generating an "inverted” tree for the area
inside each region. An lnverted tree s 2 tree in which
the regions represent image areas less than threshold,
Instead of greater than or equal to, This will be

further discussad in section 5,.4,2,

J3.9.2 Tactile Texture

small bumps on the surface of an object

essentially produce many tiny "micro-cbjects" with the

same surfece properties, ¥ the slze of these is below
the resoluticn of the Image samplino, the effect will be
enly on the surface smear functien, If the texture is

larger than that, and the surface Is falrly specular, the
result will be many +iny highlights, preducing the

eéquivalent of &8 light=-speckled visua!l texture,

3.10 Shape

The Image tree carries shape Information in two

wWays: In 1¥s form, and In the behaviecr of the reglon
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statistics stored along Its branches, The Interpretation
in terms of cobject shape of the simple region statistics
discussed so far depends upon the object being simply
shaped, since the eccentriclity does not give enouah
information te distinguish between differant complox-
shaped regions. MNevertheless, much usaful shape
informatlion can be obtained even with very simple
statistics, particularly in & reccgnition-oriented
applicatlien in which there can be restricticns on the

shapes considered,

3.10,1 The Main Branch

Censider the object shown In figure 3,16, |Its
tree Is a2 single main branch, just as In the case of a
sphere (& crude contour map s shown in fligure 3.17).
The simplest indicator of Its shape s the eccentriclity
of the entire object, which Is about 1.4, clearly
indicating it fo be auite elongated. The entire curve of
eccentriclity vs. threshold is shown In flgure 3,18, The
flatnass of this curve Indicates that the reglon probably
doesn't change |1ts shape very much as [t grows, and that
it has a smooth surface with no significant

Irregularities, This s not & unigue Interpretation of
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Figure 3.18: Eccentricity Curve of the Sguash
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the curve, but Is & reascnable inference given the
sssumption That the object is not highly irrequiar. The
bump in The eccentricity curve at the bright end is
typical of a small newly developing region. Since the
slope of the light intensity function is very small near
a local maximum, a small region about that point will
Tend Yo have jagoed edges, and hence a high eccenfricity.
As the reglion expands, The intensity gradient at the edge
incraases, so the adge bacomes straightar, and the
eccentricity 15 reduced,

Consider the plot of added region area, shown In
flagura 3.19%. Thils guantity shows the excess area added
te & region abova the sum of the areas of its sub-
regions. Singce tThe Intensity measured is a monotonic
function of The angle of the surface to the camera, The
added region area is the projected area ot that part of
the surface on the object with a particular slope. A
bump in this curve represents a large area of relativaly
low curvature, The only ona In this case is near the
highllght.

Figure 3,20 shows what the area added to a region
looks like = it is the area of a region minus the area of
all its sub-regicons., HNote that the statistics used are

such that from the statistics of a reglon A and those of



Figure 3,19: Added Region Area Curve of the Sguash
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Figure 3.20: Illuatration of

an Added Ares

&0



|

2 sub-region B, the statistics of the difference A=E can
be computed, (Te compute the eccentricity of region A=-B,
the eccentricity, region area, and center of mass
position of regliens A and B must 21l be known,)

Cemputing Information about the shape of such a
difference region gives information about bulges
developing In a region, direction of motlen af *he center
of mass, and ofher properties of all *hose points on the
surface within some given range of inclination to the
camera,

The added area curve would have two peaks for the
hypothatical object shown In figure 3.21, due %o the low
curvature of the annular region indicated, In this case
the eccentricity weould be constant a+ 1.0 and the center
aof mass position would be statlonary, since the recions
wou ld all be concentric clrcles due to the rotatlonal
symmetry. For the pear-like object In flgure 3,22, the
profrusion would also Increase the added area curve, but
in this case, the eccentriclty would increase as wall,

and the center of mass would shift,
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Figure 3,21: A Symmetrieal Object with Two Added Area Peaks
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Figure 3.22:

A Contowr Map of a Hypothetical Object with a
Protrusion
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3.10,2 Sub=bBranches

Frotrusions of the sort illustrated in
figure 3,22 will often produce signiticant sub=branches
on The tree., The meaning of a sub=branch must ba
intferpreted in conjunctlon with the Informaticon stored on
it, and on the main branch to which It attaches. The
attachment of a prefrusion regicon, for example, will
general ly produce a rise In the eccentricity of the main
region, and a shift In (ts center of mass. The possible
Interpretations of 8 sub-branch depend very heavily on
the particular identification for which the free is being
used, A discussion of the Interpretation of shape
information for a2 particular set of test cbjects will be

given in section 4.2.

5.10.3 Non=interference of Texture with Shape

Figure 3,23 shows graphs of the region area for
the speckled spheres of figure 3,11, normalized to the
light Intensity., These graphs 1llustrate that the basic
shape-describing parameters are not affected by object
texture In a significant way, This is basically due to

the averaging nature of the reglon descriptors used,



Figure 3.23: PRegion Area Curves for the Light-speckled
Texture Test Spheres
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This insensitivity to textural Inferference is a great
impravement over most proviowvs methods used an curved
objects, such 2s Horn's analytical methed, which is
complefely useless in the presence of texture, Edgea=-
finding methods are a2l so confused by sharp textfure. This
advantage is very importanmt in the recognition aof real

objects, as will be seen in the next chapter,
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Chapter 4 Use on Real Cbhjects

4,1 Pruning

Reglons generated by smooth objects with smooth
surfaces should In theory always have smoath boundarias,
In an actual image, however, minute surface fluctuaticons

and noise will cause the edos of the region to be highly

irregular, If the irregularitlies are great encugh, small
sactions of the region will be detached; That is, thay
will actually form separate small regions, Since the

area separating these smal!l regfons from the edge of the
nearby large region is only sllghtly dlmmer than the
region points, these small reglions will Join the main
region at a threshold only slightly lower than that at
which they started. They will thus produce very shart
branchas on the image tree, whose reglions are of small
area, These regions are essantially artifacts of the
particular levels at which the threshold is placed, and
thus have no particular significance, In order to avoid
the waste of space and time needed +o store and analyze
these branches, they camn be "pruned" away as the tree Is

generated, This Is done simply by removing branches
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which are shorter than a fixed lenath In intensity units
and which also represent recions smal ler in area tThan a
fized size,

Texture alse produces short, small branches, so
these thresholds must be ad justed so as not to throw away
too much., The geoal of pruming Is to eliminate all the
really tiny threshold-artifact branches without
¢l iminating branches which represent texture. Since the
grtifact branches will be only one or twoe threshold
levels deep, this can be accomplished by sdjusting the
spacing of tha levels so that ene level represents a
smaller incremant of intensity than the minimal intensity

tTexture ¥o be considered,

4,2 Soma Sample Trees

Yarious types of frult will be used as examples
of fairly simple real objects with smoothly curved
surfaces, In order to get a feel for how the Image tree
behaves on Interesting Images. Two sample images will
now be discussad to give a general ldea of what the trees
are like,

Consider the apple in figure 4,1, Starting at

the brightest node and plotting the reglon ares down the
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tree fo tTha root gives figure £,2, The small flat
section of the curve from 384 to 356 1s caused by the
bright highliaht. The reglon area then begins to grow in
a manner similar fo tha sphere previousl|y dliscussed. The
growth tapers off as the raglon expands fo fill The
object, Then, &t about Intensity 216, the reglon breaks
out of tThe ebject Inte the background.

The region center of mass 1s shown In figure 4.3,
It stays at the highl ight for 8 while, then shifts to the
left towards the 1it side of the apple. It then slowly
moves to the right towards the center of the apple, as
the reglion grows out fo the apple's edagas. The
eccentricity (floure £2,4) starts off falely high, but
rapidly reduces towards clrcularity, nearly reaching 1.0
whaen the eapple has filled out,

A portien of the tree, displaying only the reglon
area paramatar, 15 shown In fiogure 4,5, Although tha
tree Is fafirly simple, a significant regicon is added on
the the maim branch at level ZB6., The center of mass
shows this area to be above the main region, and It In
fact iz the bright reflection from the back of the stem
hollow on the top of the apple, which can be sean in thea
photograph in figure 4.1, It is very common o have such

8 branch on the trees of frults with stems, and higher



Figure 4£.2: Region Area of the Apple
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Figure &.3: BRegion Ceénter of Mass of the Apple
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Figure &.4:
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Figure &4.5: Tree of the Apple
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level recognition routines could take advantage of this
fact to help fing stem areas,

New consider the pear shown Ir figure 4,6, [
Tree, shown in figure 4.7, Is topologically simlilar o
the tree of the apple, Including a small sub-branch with
significant area. The graphs of the various parameters,
however, shown In figures 4,8, 4.9, and 4,10, reveal that
this sub=btranch has &2 different interpretation *han in
the case of the apple. Flirst, [ts center of mass shows
It to be pesiticned to the left of the main reglion,
rather than directly above It. Second, at the point at
which the fwo branches jolin, there is a rise In the
eccentricity in the case of the pear, whereas therea Is
not In fhe case of the apple, Finally, the eccentricity
of the apple Just before breakthrough Into the bac kground
was near |.0, whereas the eccentricity of the pear s
about 1.2, which Is significantly hioker. Information Is
also available concerning the surface properties of the
pear. The pear's highlight shows a wider "impulse
response®™, which Indlicates that its surface, although

somewhat shiny, is not as highly specular as the apple.
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Figure &.7:
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Figure &.8:
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Figure &, 10:
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4.3 Useful Fegtures for Frult Recognition

We will now attempt to list soeme features which
can be easily extracted from the Image tree, so that the
classification of fruit may be systematized. This |ist
Is mot infended fo be exhaustive. In fact, quite to the
contrary; it is intended to show that recognition of

fruit Is possible with only 8 few very simple features.

4.3.1 A Sample Set of Frult

In the course of studying the Image tree metheod,
a large number of frult were processed to study the
eftfects on real images. |In addition, 2 large number of
fruit were given identical processing under [denticeal
cond itions one day in order to gather szome statistics on
fhe various features which can be extracted. Fhotographs
of the fruit in this sample set are shown In fligure 4,11,
The fruit used were Bartlett pears, Maclntosh apples,
sweat pears, and oranges. The test Images Include five
views each of the Bartlett pears for a tofal of 25, two
views each of the apples (total 10}, three of the swaat
pears (ftotal 15), and one each of the oranges, Thrae

taped Images of peaches are also Included In the sample
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set, although they were recorded under different
circumstances, Poaches were unavallable at *he *ime the

sample set was run,

4.3.2 Specularity

As was discussed in Section 3.7, the "impulse
response” of the surface can be approximately cbtalined
from the region ares vs. vhreshold curve at a branch tip.
We would |ike tTo characterize this curve In order to
extract some significant features that are useful for
recognitien purposas., One way to do this 1s shown in
figure 4.12. At the branch tip, the second derivative of
the region area curve is5 positive due o the specular
cemponent, but negative due to the matte component, A
straight line titted to the curve at tThe inflection point
ls shown, extended to Intersect the axis., The
intersection point is called the "matte intercept™. The
value of the curve above this intercept is vsed as a
measure of The width of the surface function, as shown on
the figure. It is called s, for the highlight "smear"
width,

Ancther measure of the surface function Is +he

amp litude of the highlight, alsc marked In the flgure.



Figure 4.12: Characterizing the Reglon Area Curve
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This can be measured in various ways, but is here
measured as the amplitude of the highl ight above the
matte intercept.

A scatter diagram of the smear wldth s vs, the
highlight amplitude h is shown in figure 4,13, Hete that
the peaches, apples, and orange are saparated very wall
by their highlight properties, but that the two types of
pears not only have similar properties, but also show a
very high degree of variatien in these parameters, This
Is partly because thelir surfaces are rather lumpy and
uneven, which disrupts the highl ight regicon. As will be
seen later, this wunevenness can be used to help ident ity

Them,

4.3,5 Simple Global Properties

Two very simple properties of a fruit are its
brightness and Its size. These are both properties which
are useful only relative to some additional Information
not contfained in the image alone; specifically, the I Tght
intensity and fthe object's distance from the camera. |f
this information is available, these two features can
confribute recognition information. These quantities can

be obtained, In many cases, from cther known objects In
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the image, In the experiment descr lbed mext, The sample
fruit were all viewed with the same light intensity and
at the same distence from the camera, so that their
Intfensity and slze are comparable.

The brightness of an ebject is taken to be the
intercept of the strafght line approximation to The matte
:Dmpnnah? with the line of zero region area, thus
estimating the brightness of the surface 1f there were no
highlight, The overall area is estimated by scannino up
from the root of the tree untill the first local minimum
in the slope of the region area curve is fournd., The
region area of this node is taken as the ohject's
projected arce {(see fliogure 4,120,

A scatter dliagram of these two guantities is
shown in figure 4,14 for the sample frult. They are
clearly not very useful for distinguishing betwaan the
fruit in the sample set. They would be very helpful If
very large objects such as watermelons were Included,
howaver,

Another optical feature which could be usaed is
color, which would be very powerful for fruit, This
feature was not studied in our exper iments, because the
processing of different color Imeges of the same object

would have added complexities and delays without much
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Fipure 4.14: Brightness vs, Overall Area for the Sample Set
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added understand ing of the [mage tree.

4.3.4 Overall Shape

Our simplest shape descriptor s just the
eccentr icity of the entire frult ocutline reglfon, which Is
shown plotted with the highl ight depth in figure 4.15,
This parameter alone will identify a banmnana, which has
not been fnecluded in the sample set, MNote that oranges

and apples are extremely round,

4,3.,5 Sub=branch Types

50 far, we have used only information extracted
from the maln branch. Many propertles of an object
produce sub=branches. In understand Ing an imace we must
figure out what these sub-branches represent. Some types
of sub=branches wlll now be discusseed, and 2 simple sub-

bramch classiftication algorithm presented,

4.3.5.1 Tactlite Texture

Tha oranges [n the sample sat supply good

examples of tactile texture, A close examination shows
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their surface fo be covered by small bumps and valleys,
Since the surface is alse highly specular, this
graininess produces myriad small hiahlights, as discussed
in section 3.9,2, These produce small short branches an
the tree. Textural branches represent reglors of small
arca, and are near the tip end of the tree, The numbar
of sub=branches on 2 tree identified as fextural By the
classification algerithm shal| be dencted by the

variable T.

4.5%.5,.2 S5tems

The Bartlett pears show large, lona, light=
colored stems, The branches produced by these stems are
easily identified by their small size and l arge
eccentricity, The number of stem branches is denoted

by =.

4,3,5.3 Protrusions

A pear Is basically a spherical shape with a
profruding bump. These protrusions will frequently
produce & major sub-branch on the tree, as In the case of

the pear discussed In section 4.7, Such protruslons
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general ly have a large area, and wsually produce &
slgnificant jump In the eccentricity of The main branch
at the point where they Join it, The numbar of
protfrusions will be denoted by the letter P lusually

0 ar 1.

4,3,5.,4 S5tem Hollows

An apple has & somewhat conical depressicn on Top
in the spot the stem is attached. The stem itself Is
emal ler and darker than In the case of the pear, This
stem hollow will often preduce a separate branch on The
tree, as the light reflected from the back of the hol low
is surrounded by darker polnts on the rim of the hollow.
Furthermore, the dark stem will often bisect this region,
produc ing two sub-branches, Thus a significant sub-
branch which causes a drop In the maln branch
eccentricity when 1t jolns Is likely fo be a stem hallow,
and this is relnforced if there Is ancther simllar reglion
nearby, The number of stem hollow reglons is denoted by

thae letter H (usually 0, | or 2).
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4.3.5,5 Surface Irrequiarities

There are freguently a number of branches which
do not fall inte any of the above catapories. These
often are due to lrreqularities in the surface of the
object., These irregularities are larger than what Is
called factile texture, but smaller than these larae
encugh fo be called protrusicns. The number of such

branches shall be dencted By the letter T,

4,3,6 Sub=branch Classification

A very simple algorithm was writ+en o classify
sub=branches., |1t is shown In flow chart form in fioure
4.16. The parameter A represants the area of the sub=
branch just before It joins the main brampch, The
parameter Ae is the change In the eccentricity of the
main branch at the point whare the sub-branch Joins., Ae
Is positive if the sub-branch produces an increase |n the
eccentricity, and negative If it produces a decreasa.

The parameter j tells where or the main branch tha sub=
brerch is atteched, on a scale from 0,0 (matte Intercept)
te 1.0 (full object). 1+ the sub=-branch Joeins tha main

branch in the highlight region (above the matte



Figure &.16: Sub-branch Classification Algorithm
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interface), we set | to 0.

This algarithm was hand=computed for each of the
fruit in the sample, The flow chart is recommended over
the foellowing very sketchy description of the algorithm:
|¥ the biggest region represented by the sub-branch Is
large and increases the eccentricity of the maln branch
significantly, call it a preotrusion region P. Otherwlse,
if it increases the eccentriclity only slightly, and Is
not too small, it is an Irregularity I. If there Is no
change In the main branch eccentricity, or if a small
positive change is produced by a small regien, than the
sub-branch Is either texture T or an Irregularity I,
depend ing on whether it iz towards the tip or the root of
the tree. Finally, if the region is large enounh and
produces @ drop in the main branch eccentricity, and is
not at the tip of the tree, It 15 a stem hollow H. A
small region will be accepted as a stem hollow If there

is another stem hollow nearby.

4,3.7 Object Recognition

The flow chart of figure 4,17 preduces an object

fdent | fication once the sub-branches have been

characterlized. In essence, oranges are ldentified by
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Figure 4.17: 0Object Tdentification Algorithm
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having lots of texture branches and belnp very round.
Apples show sTem hollows and are very round. A stem area
ident ifies & Bartlett pear Immediately. The two types of
pears are sorted out on the basis of their eccentricity,
the number of protrusion branches, and the number of
irreqularities, Round objects with essentially no

hlghl lghts are pesaches.

The flow=chart shown correctly identified all of
the frult with the excepticon of one Bartlett paar (BPII]
which was identlitied as a swoet pear. The pertinant data
for each of the sample fruit are shown in figure 4,18,

Qur conclusion Is that recognition of images of
single frults Is relatvively easy, using the Imane tree,
The Image tree allows the easy extraction of encugh
information about surface properties, shape
Irregu larities, and general shape, as well as helping to
spot specific characteristics such as stem hollows and
stems, and the procedures which extract this information
are reasonably simple, More complex routines which take
the frouble to look more closely at the tree's statistics
cshould be even more reliable,

The recogniticn procedures described would be
disrupted {gs would many others) by occclusions, shadows,

missing stems, and object positlions which hide
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sigrificant features., Many of these problems could be
eased by & sultable vertical system, which could use
ether knowledge to explain and correct chanages in the
imege free, Other problems can be solved without higher-
level aid, simply by making the recegnition routines more
clever, For example, occlusicns can generally be
detected by the way in which fwe regions connect. Once
an object is known fo be partially eccludad, corrections
can be made to its reglion statlistics which glve an idaa
of Its form, under the assumption thet the visible and
the hidden parts are similar.

Even In the presence of severe occlusion
problems, the tree still gives valuabile local information
about highlights and texture. Although the stems agave
significant aid In identifying Bartlett pears, the stems
ware not seen In temn of the test ceses, yvet nine of these

were correctly fdentified.

4.4 Faces

Thls sectlion illustrates *he behavior af thea
image free preduced frem a more complex smoothly curved
object: a human face. It is included to show another

example of 2 real recognition tesk for which the imaoe
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tree is potentially useful, A tres was penerated from an
image of a face, seen full face and | it ftrom the front,
This tree Is shown In figure 4,12, BHBrerches of the tree
have baen labeled with the local maxima on tThe face to
which they correspend, and the shapes and positions of
these regions 1s shown In figure 4,20, These reglons
might be useful for face recegnition, at least for The
simple angle of view and lighting considered here.
Coantour maps at a single level of the tree are
showh In figure 4,21, for each of two levels (marked in
figure 4,1%). At level 313, most of the major reglons
saen in the photo appear, with the exception of The lower
|ip highl Ight, which is considerably dimmer., The contour
map at level 268 is rather Interesting. Consider not the
region Included within the contour, but the area
excluded, This includes most of the mouth, the eyebrows,
the eyalids (the eyes are closed), the nostrils, and a
shadow area on either side of the nose. These are
locally dark areas In the Image. These could be Isclated
by making an inverted tree = that is, by makling a free
with the Image negated, These locally dark areas are
probably better places to bogin face location, since
there are fewer of them than there are locally bright

areas, and they are more prominent. Indeed, There are
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Figure 4.1%: Tree of a Face
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Figure &.20: Some of the Reglons of the Face Tree
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Figure &.21: Zlices of the Tree at Two Threshaolds
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erper iments which Iindicate that as bables learnm o see
faces, they first fixate on the pair of eyes [1,6], Once
a face is roughly located, higher level routines can make
sense of the locally bright areas wlth less difficulty.
Flgure 4,22 shows & contour map with both levels

super imposed, with the dark reclions sheded,

Note that the image Tree can easily be used to
isolate facial features and determine thelr approximate
pesitien. In order to befter characterize their shapes,
more complex shape descriptors would probably be needed
than those which have been used so far., The Imasge tree
can be used to characterize tThe shapes of objJects, such
es noses, which have no "hard edge" boundary, This will

ba further d lscussed in sactien 5.2.4.
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Figure &,22: The Two Contour Maps Superimposed

Shaded ares below threshold 268
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Chapter % Discussion

5.1 Comparison with Previous Work

The Image tree can now be situated among the
pattern recognition mathods discussad In chapter 2, I+
is a "regions" method, rather than an edge detection
scheme, and does no differentiation or other pre-
processing of the Image. |t extracts Informaticon about
both the surface properties of am aobject and about Its
s ha pe, It does not require any high degree of precision
of measuremant with regard fo the exact location of
speciflic polnts In the image, and does nout make any
essent fal use of perspective tnformatlion. It does not
attack problems of the "parsing” of an image into its
componant parts directly, although 1t may ald this

process by the way it organizes the Image Information.

5.2 Advantages

The image Tree has a numbar of advanmtages for

pattern recognitlion over many previously used methods,
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5,2.1 Mo Edge Problems

By virtue of being a "reclons® method, the imare
tree is immune te many of the problems which beset edne
defectors, These include false edoes and gaps in raal

edges.

5.2.2 Nolise Immunity

The use of moments and averages as parameters en
the tree results in a system which does not reauire areat
precisicon of measurement, and which 1% insansitive +o

noise and distertion In the image.

5.2,3 Obtalns and Separates Surface and Shape Infarmation

The free also carries Information about both
surface properties and shape, The two forms of
information are well separated on the tree, with the
surface Information being cerried at branch tips, end the
shape Information appearing further down +the branch,

Indead, The free can be fthought of In a general
way as carryling detall Informatlen near the tips of
branches, and lower resoclufion Informetion towards the

root. For an image containing many objects, +he root
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wl 11 represent the entire scene, and various suvb=-branches
will represent sub-parts, and then sub-parts of fthe sub-
parts, The tres can thus be thought of as providing 2
range of measurements of differing degrees of aculty.
These notions of pattern recegniticn as a sort of

"measuring”™ preoblem are due to Kirsch,

5.7.4 Objects Without Boundarles

The image tree Is easy to apply fo the
recognition of objects without real edges or well-defined
bourdaries, such as & neose, or an object |it so that one
side fades off gradually Inte shadow, Assuming the
object produces & separate tree branch, T can be
analyzed frem the data at the tip of the branch, working
down towards the base until the parameters indicate That
the reglon is taking In too much extranecus area fo be
useful, Thus some informaticn about a nose can be
extracted even though It has no well-defined upper
boundary, because It has well-defined lower and side
boundar ies, This simple task can be rather complicated
for edge-oriented procedures, or for programs which are
regions oriented but which do not make a serles of

ralated measurements at different levels, as In the free.
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By fthe same arguments, the tree will contain Informat ion
about a smoothly curved object even [f 1t Is partially
obscured, provided it contains a local briantness

max | mum, The precedures which analyze the tree must be
able to detect the ccclusion and to try to compensate for

it.

5:3 Problems

The separation of coarse and fine informatien is
noet always maintained by the Tree, unfortunately, When
branches representing two different objects merge,
Infermation about those parts of the ebject not yet
filled out by the regicon may be lost., 1f a small
hilghlight area is swallowed up by a larger reglon before
achieving much depth fn [ts own right, the Information
that would have been obtained about the local surface
properties of that area are swamped out, When a region
representing some object In & scene joins with a larger
regicen representing the bac kground, the information about
the smaller object Is lest., One case in which +his can
cccur s when a dark cbject Is on a |ight background, or
rear a |ighter eobject, Or, alternatively, a realan may

exTend beyond the boundaries of an object on one side
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befere reaching the boundary on the other side, possibly
due to an overall gradient In the liaght Intensity. This
chall be referred to as a "breakthrough". Although It
can usually be easily detected by 17s effect on the
region parameters {(sharp rise In The region area and
eccentricity, and sudden shift in the center of mass), it
<t111 means a loss of Information about the slide of the

object which the region has not "filled®,

5,4 Further Considerations

B, 4,1 Other Statistics

So far reglon shape has been characterized by the
region area, eccentricity, and center cf mass position,
There are many other region statistlcs which could be
usad to characterlze the reglens, depending upon the
particular recognition fask at hand.

One very simple addition which could be made
would ba te compute the x and y second moments
separately, so that the major axis of the reglon could be
found, This is the axls about which the region has a

minimal moment aof Inertla. This would allow The ftres
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parsing programs to check highly eccentric renlons for
proper orientation, given some hypothesis about what the
region represents, Other higher moments could also be
vused, although their interpretation would be somewhat
more diftficult,

I+ would be very useful to know If 2 reglon has
any majer holes In 1t. It is very easy to fell if it has
any holes at all by calculating ifs euler number while
the connectedness of the region Is belng verified. This
number can be calculated on a local baslis, uvsing
procedures reported by Gray [7]. Since the euler number
gives the number of objects minus the number of holes,
and since the region is known to be one connected object,
the number of ho'es in It Is one minus the euler numbar,
Unfortfupnarely, this [s the topological number of holes,
rathas than the number of holes of large area. Of
course, thare can be no large holes if there are no holes
at all, so the euler npumbar can be used to see If a test
for significant holes is needed. Unfertunately, a large
percentage of regicns generated by real images will have
small holaes In them, especially near the edge, so this
test will net reject very many, |f 2 reglon Is known to
heve no major holes, and has a high eccentricity, then [t

must be elongeted. In the absence of a "major hole”
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pradicate, there s always the possibility that & high
eccentricity may be due te a perfectly round reglion, but
with & large hele in the middle.

In general, any sort of shape-descriptor
aloorithm can be applied to the replons, such as the Blum
algorithm (Medial Axis Transfarm) [3], | believe,
however, that one of the strengthszs of the Imane ftrea as a
maethod is to allow easy recognition with relatively
simple region shape descriptors. Using very complicated
descriptors not only will consume a great deal of
computer time, but will also complicate the analysls
required of the hioher=-level programs. A moere detalled
shapa analysis should probably be reserved for cases in

which problems arise in the simpler proceduras,

5,4,2 Reglon=hole Duallity

The tree procedures are not symmetric with
respect to |ight and dark, as has been pointed out
earlier, Thus 2 black spet an a Illght cbject is not
parcelved as an cobject, but as a hole in & region.
Furthermore, these holes are not detected by the
programs, and Insufficient Information Is stored an the

tree fo tell that they are there. Thus the effect of a
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hole 1s to decrease the region area, and increase the
region accentricity, but it is not detected as a hole per
se. |In the detection of texture, black speckles have &
completely differant effect than white spackles, AR
cobject is harder to recognize on a white backoround than
on a dark one.,

This is not a dasireable situatlion, An object
should be easy to recoonize on any highly contresting
background, regardless of whether it Is derker or lighter
than the cbject., A possible sclution would be to make
two trees, oneé with the Image negated. Thus one would be
the free already discussed in detalil, and The other would
be a fres of dark ragfﬂns on Iigh+er backgrounds, in
which the tips of the branches would represent locally
dark areas, rather fhan locally light enes. For the face
considerad n section 4,4, thesa dark branches wou ld
represant significant locally dark areas, such as the eye
soc kets, the nostrils, and the dark areas alerg the side
of the nose. The eye sockets and the nostrils, In
particular, are probably very Important Im orienting
wisually with respect o a face.

There is ne reasen why this procedure should net
be carried to more tham one level, Whenever a reglon IS

isolated, the contiguity scan routines could be called
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agaln, but scanning only inside the reglon, and with
their sense inverted, so that they would find holes.
amall holes could ther be el iminated, but if there were
any large ones, they would be neted on the tree,
Furthermore, the sense could then be inverted once more,
and the contiguity scan fried once agaln to find
additlional light regions Inside the dark holes.

This procedure wouwld succeed in finding a dark
apple on a llght background., The apple could be lsolated
by an inverted rum of the tree procedures, and then the
normal procedure could be carried out on the reglon thus

Isolated,

5.4.3 Complex Lighting

In the above discussion, It was assumed that the
Illumination was coming from 2 single polint source,
Changing the scurce of the [lluminaticn will change the
properties of the highlight region, but will noet alter
the basic properties of the tree. I+ the lllumination I1s
from a diffuse source, specularity informaticn is lost.
Light from several polint sources will produce multiple
highl ights, if the high level parsing routines know

about tha llight source, they cen compansate for thase
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ettacts, By making hypoetheses about the ebjects in the
image, these routines could equally well find out about

the |ighting from the image,
7.4,4 l|selations of Reglons

A by=product of the Image tree 1s the Isclatien
of regioens which can be used as data for other feature
extract loen pregrams, One might, for example, take a
fairly large region around the highlight, subtract cut
the small reglon confaining the highl Ight itself, and
hend this difference region to & textural analysis
program., This program could use this reglen to extract
texture Information in various ways, such as perferming a
Four ier transform, autoconvolution, or similar
processing, obtalning information about surface specklies
not avallable directly from the free, ﬁ51ng a ragion
generated from one of the tree nodes helps assure thet
the portion of the Image upon which the analysis Is

paerformed 1s & sulfable one,
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5.5 Summary and Conclusions

A procedure has been outlined for processing
imeges of three=d Imensional objects with smoothly curved
surfaces, The mothod s able to extract scme informatieon
about the surface properties of the objects, such as the
texture, specularity, and surface lrregularity.
Informat ion about shepe s also extracted., The
procedures are insensitive to noise ana distertion, and
can be used To perform resl recognition tasks, It is
hoped that this work will provide a stepping-stone In the

challenging study of computer vislion,
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Append ix: Description of Algorithms

This appendix conteins an outline of the
algorithms used in the tree generating program.

The Image tree ls generated conre threshold level
at a time, starting at the highest level (branch tips).
At each level, tThe image Is scanned, and the points above
the threshold are marked In 2 scratch array. This
scrateh array Is then scanned for marked points. When one
Is found, & contiguity routine is called, which visits
all marked points which can be reached from the start via
& connected path. The marks are erased by *his routine
as it goes, and statistics are kept on the regiocn thus
generated, such as the sums of the x and y ceardinates of
the polints, and the sum of the souares of the x and vy
coordinates (used to compute the center of mass and the
eccentricify), A tres node [s then made up for the
region, and the scan for marked points contlnues, A
special mark s left In the scratch array for each
ragion, When this mark Is encountered during the scan
at the next level, It is locked up on an assacliation
list. This establishes the |link between a regfon and

the regions which are & subset of It at the previous
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level = i,e, between a node and iTs sub=-nocdes.

The contiguity scan Is the most complex program.
I+ works by leaving directional pointers In the scratch
array, These are three-bit codes dencting one of the
eight possible neighboring polnts, The contigulty scan
s always started at a peint which Is on the bettom edge
of the region, It tfraces along this edge to the right by
moving from one marked point to the next, but always
keeping an un=-mar ked point to the rlght side. As It
goes, It erases the marks, so that for a reglon with
smooth boundaries, it will fellow & splral path fto The
center, "eating up™ the marks as 1t goes, like a lathe
with the tool continually advancing Into the work,

As the contiguity roetine scars, It lays down
back pointers in the scratch array which enable It fo
retrace its path back to the start., |If 2 dead end Is
reached (no more marked nelghbors), It fraces back along
this path, locking for marked polnts to the right. There
can be no marked points on the left side while
backtracking, since this was the right side oen The way
out, and the outgoling scan stayed as far te the right as
possible, |If a marked point is found on the backitrace,
it Is replaced with a pointer to the adjacent path

already traced out, and then a new path Is traced as [f
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this were a new starting point, When the backtrace
reaches the eriginal starting point, the conftiguity scan
is completed. The effect of this algorithm is fo
construct a tree of pointers In the scratch array, with
the starting point at the root. All peints which can be
reached via a conrected path from the starting point will
be a part of this tree, an example of which is shown In
flgure Al.

An algorithm developed by 5. Bryan [4] could
speed the contiguity scan considerably, It entfails
cod ing the scratch array line by line as strips, as in
figure AZ. Each strip is specified by its y coordinate,
and the x coordinates of [ts left and right end. The
contiguity ef these strips is then checked, rather than
operating on the individual polints, This algorithm not
only aveids scanning the entire scratch array, most of
which s blank, but alse requires fewer operations to
find all of the coentlguous polints, since they are
gathered Intoe groups. 1t thus takes advantage of the
fact that regions produced by real Images, as opposed to
random nolse, will tend to have the points clusterad into
bunches.

& number of other programs were written In the

course of this research, In order to make It convenlent



Figure Al:

The Tree of Pointers Lawved Down by the Contiguity
Bcan Algorithm

{Shown for am arbitrary region)

-
I

= marked point, included in region

-
i

pointer in direction of root
farrowhead not shown due to small size)

Boot of tree
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Figure AZ: A Reglon (oded as Strips

The same region iz used as in figure Al

I
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to study a large numbar of tfress, programs were wrltten
to print out the trees on the line-printer, with the
significant parameters assoclated with each node,
Furthermore, & program was produced to plot any paramater
we, Threshold along any sat of branches of the tree,

This program was vsed to produce the graphs in this
paper.

Programs were also written to display an
intensity modulated plcture of the image, using the saven
infensity levels of a DEC 340 display. Since our 340 has
no fast raster mode, a display compiler was written which
generates a display |ist In increment mode, allowing
fairly large images to be shown virtually flicker-free,
Other routlnes enabkle any arbitrary region in the Image
to be shown superimposed on this pleture. The pointer
method wused In The contiguity scan was actually written
for these display routines, which were developed flirst.
The existance of this program made the writing of the
contigu ity scan very simple, which is ene reason why
faster algorithms such as the Bryan algorithm were not
sought.

A large amount of code was required to back up
the programs mentioned above. This includes a dynamic

storage allocator for manipulating a large number of
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arrays of changing size, display and pletter routines and
other 1/0 routines, routines for manipulating |ist
structure, and routines which map arbitrary local
procedures over an array, The programs comprise over
5200 words of PDP=-10 MIDAS assembly language cede, not
including about 1700 words of fixed buffer and tables,
and not including the dynamically allocated array and
list structure area, which can grow to an arbitrary size.
Also used was The CNTOUR progrem [12], which
draws Intfensity contour maps of an image, and which was
written early in the course of this research, before the

eéxact area of study had been declided upon,
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