Technical Report 266

Toward A Model Of
Children's Story
Comprehension

Eugene Charniak

MIT Artificial Intelligence Laboratory

BIBLIOGRAPHIC DATA . |1 Report No. 2
SHEET AI-TR-266

3. Recipient's Accession Noc.

4, Title and Subtitle

Toward a Model of Children's Story Comprehension

December 1972

5. Report Date

6.

7. Author(s)
Charniak, Eugene

8. Performing Organization Rept.

No- AT TR-266

9. Performing Organization Name and Address ’
Artificial Intelligence Laboratory
Massachusetts Institute of Technology
545 Technology Square, '

Cambridge, Mass. 02139

10. Project/Task/Work Unit No.

11. Contract/Grant No.

N00014-70-A-0362-00(

12. Sponsoring Organization Name and Address
Office of Naval Research
Department of the Navy
Information Systems Program:
Arlington, Va. 22217 -

13. Type of Report & Period
Covered -~

Technical Report

14,

15. Supplementary Notes

16. Abstracts

example, consider "Janet wanted Janck's paints.
picture he was painting and said,
look funny'".

the story to background real world knowledge.

along.
as it goes along.

reference.

How does a person answer questions about children's stories?

She looked at the L::

'Those paints make your picture

The question to ask is "Why did Janet say that?".

We propose a model which answers such questions by relating

The model tries to

generate and answer inportant questions about the story as it goes
Within this model we examine two questions about the story

Within this model we examine two problems, how

to organize thi#s real world knowledge, and how it enters into more

traditional linguistic questions such as deciding noun phrase

For

7. Key Words and Document Analysis. 17a. Descriptors

Compuytational Linguistics
Computer Problem Solving
Disambiguation

Language Comprehension
Machine Understanding
Pragmatics

Pronoun Reference
Question Answering
Semantics

17b. Identifiers/Open-Ended Terms

Artificial Intelligence
Computer Aided Cognition
Natural Language Understanding

17¢. COSATI Field/Group

18. Availability Statement 19.. Security Class (This 21. No. of Pages
o . . . Report) 304 i
Unlimited Distribution UNCLASSIFIED . _
Write A.I. Publications 20. Security Class (This 22. Price ¢
T Page
%JNCLASSIFIED J

FORM NT!8:35 (REV. 3-72)

THIS FORM MAY BE REPRODUCED

L.I”-. DIM-D O

3

Roof WPY

TOWARD A MODEL OF CHILDREN'S STORY COMPREHENSION

Eugene Charniak

December 1972

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge Massachusetts 02139

Second Printing January, 1974

TOWARD A MODEL OF CHILDREN'S STORY COMPREHENS 1ON¥

ABSTRACT

How does a person answer questions about children's
stories? For example, consider ''Janet wanted Jack's paints,.
She looked at the picture he was painting and said, 'Those
paints make your picture look funny'". The question to ask is
"Why did Janet say that?'.

We propose a model which answers such questions by
relating the story to background real world knowledge. The
model tries to generate and answer important questions about
the story as it goes along. Part of the information connected
with a "concept" is the set of facts which might be relevant
to stories which include the concept. When the concept occurs
in the story these facts are ''made available'" in the sense
that they can then be used to make deductions. In general all
the necessary information to make a deduction may not be
around at the time the fact is made available. Hence the
facts are allowed to wait around "looking" for the necessary
information. For this reason these facts are called 'demons'.
This model also sheds light on some problems of reference and
disambiguation (such as interpreting "funny'" as ''bad" in the
above example). The demons (serving as 'context') can assign
a particular meaning to a word, or a particular referent to a
noun phrase,

A major problem is formalizing our real world knowledge
to fit into the comprehension model and we explore in detail
one small topic (piggy banks). HNote that it is the
researcher, not the model, who discovers and organizes the
basic facts. That is, the model does not learn,

An earlier version of the model described in the thesis
was computer implemented and handled two story fragments
(about 100 sentences). The problems involved in going from
natural language to internal representation were not
considered, so the program does not accept English, but an
input language similar to the internal representation is used.
Naturally this is only a first attempt at a model for
children's stories and many suggestions for further work are
included.

¥fhTs 15 a revised version of a dissertation submitted to the
Department of Electrical Engineering on August 25, 1972 in
partial fulfillment of the requirement for the degree of
Doctor of Philosophy.

ACKNOWLEDGMENTS

My thanks to Professor Marvin Minsky (thesis supervisor),
Professor Joel Moses and Seymour Papert (thesis committee),
Jeff Hill, Gerry Sussman, and Terry Winograd (listened and
commented from the beginning) and Carl Hewitt, Mitch Marcus,
and Andee Ruben (read and commented on later versions of the
thesis).

The work reported herein was conducted at the Artificial
Intelligence Laboratory, a Massachusetts Institute of
Technology research program supported in part by the Advanced
Research Projects Agency of the Department of Defense and
monitored by the Office of Naval Research under Contract
Number NOO0O14-70-A-0362-0003.

The views and conclusions contained in this document
are those of the author's and should not be interpreted as necessarily
representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the
U.S. Government.

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGMENTS
TABLE OF CONTENTS

Introduction

1 What This 1Is All About
2 An Example

3 Some Comments

4 A Note to the Reader

An Overview

2.1 From Natural Language to Internal Representation
2.2 Internal Translation and Its Problems

2.3 Demons and Base Routines

2.4 Bookkeeping and Fact Finders

2,5 Facts and Search

Reference and Deduction

1 Kinds of Information Used in Reference Decisions
2 Deciding Reference Requires Complex Deductions
3 Using Common Sense Knowledge in
Reference Problems
4 oOther Ways to Use Context in
Reference Determination
3.5 Demons and Details

4 A Few Details

5

6

4,1 The Internal Representation
L.,2 What Demons Look Like
4.3 Summary of Flow of Control

Piggybanks and the Problem of Formalizing Knowledge

5.1 Getting Our Feet Wet

5.2 LOOK-BACK and Generalizations on Demons
5.3 Jumping to Conclusions

5.4 Demon-Demon Interaction

5.5 Putting Money into a Piggy Bank

5.6 Sound and Choosing Semantic Representation
5.7 Accessing the Information

5.8 Further Topics

Problems of Reference

N oo o=
-—] - O\ o SN

N
w

24
31
35
b5
51

56

58
62

7

8

9

10

What's in The Words

Syntax Information for Reference
Introducing New Ohjects
Over-Specified Noun Phrases
Determining Indefinite Reference
Further Topics

[o) Weptio) Jho) Jos Jel
L]
DV W N —

The Rough Organization

7.1 Ordering the Sections
7.2 An Addition to DSP
7.3 Bookkeeping Again

Some Details of DSP

ASSERT and Related Issues
The Assignment Problem
Demon NDestruction

More on Bookkeeping

[o= e JoeRoo)
. L]
W N —

Problems in Ambiguity, and Why Characters Ask Nuestions

1 Information for Deciding Meanings of Have
2 Where Information Is Placed, and

Some Implications

Using Demons to Determine Meaning
Ambiguous Situations

The Problem of Spread Out Knowledge

What a Solution to the '"Question"

Problem Might Look Like

Necessary Subgoals and Reminders
“"Information For Necision" Tvpe Questions
Further Problems

(¥« R Vo)

*
VW

O W W W WWwWw
L4 L]
W O

A Summing Up

10.1 Looking Back
10.2 Looking Forward

NOTES

REFERENCES

APPENDIX A - Actual Input for Example in Chapter 0One
APPENDIX B - Special Words and Abbreviations

155
159
164
166
173
193

198

200
208
212

217

217
222
228
234

239
240

246
249
251
252

254
259
263
269

271

271
275

279
288
292
300

1 Introduction

1.1 What This Is All About

Let us consider the problem of constructing an abstract
model of story comprehension. To determine what the model, or
program, has '"understood'" about what it has read, we will ask
it questions. (Note 1) (All "notes' are at the end of the
thesis.) So a typical story might start:

Fred was going to the store. Today was Jack's
birthday and Fred was going to get a present.

Some typical questions would be:

Why is Fred going to the store?

Who is the present for?

Why is Fred buying a present?
There are two points which we should note about such
questions. First, they are not answered explicitly in the
text, That is, the story did not say "Fred was going to the
store because he ,.." The story does not even contain a full
implicit answer; one cannot logically deduce an answer from
the statements in the story without using general knowledge
about the world such as:

Objects ''got" at stores are usually '"bought'.

Presents are often bought at stores.

If a person is having a birthday, he is likely to

get presents.
Our use of questions that go beyond the story as a test of

understanding the story raises a methodological problem. How

far beyond the story may the questions go? It would obviously

be absurd to allow any questioﬁ. however remotely connected.
However , we have no way to draw a line formally and so will
have to rely on an intuitive sense of what constitutes an
"ordinary question' '"directly related'" to the story.

The average reader of our 'story'" has no difficulty in
answering a question like '""Who is the present for?'", In fact,
he often has to go back to the story before he believes that
the story did not give the answer explicitly, It would seem
that one applies "every day knowledge' o the story as one

goes along., But how does one do it? How do we incorporate

common sense knowledge into the process of understanding

natural language? This thesis is an attempt to elucidate this

question,

As the story is '"read'" our model will be making decisions
on the basis of common sense knowledge. (! will also use the
term "real world knowledge'. In all cases | mean the kind of
facts which are shared by most people in a given culture, like
middle class USA.) An example of a particular kind of
decision that is involved in "understanding'" is reference
decisions., That is, what previously mentioned object does a
noun phrase refer to? Consider:

Janet and Penny went to the store to get presents
for Jack., Janet said "I will get Jack a top"
"Don't get Jack a top' said Penny. '‘He has a top.
He will make you take it back, "

The trouble here is the "it" in the last sentence. 1 f we were

naively to decide that it referred to the last inanimate

object mentioned, we would conclude that the referent was the
top Jack currently has. But, this is not the way the story is
understood, This example will be covered in detail later.

.

Suffice it to say that it is our knowledge of “"presents', and
returning presents, which is coming into play.

To explicate the role of world knowledge in
understanding, we will describe a model which answers

questions about children's stories. Here are some of the

issues, and an outline of the strategy | will adopt.

1) I have decided, as a first approximation, to divide the
problem into two parts. The first half concerns taking

.

the natural language and translating it into an
"internal representation'". This internal
representation is a form which is convenient for making
deductions. 'Internal translation'", as we shall call
the first part, will be restricted to processes which
could be performed by a person seeing the line

completely out of context. The second part of our two

part division will be called '"Deep Semantic Processing

(psp).

2) Rather than consider the entire problem of natural

language comprehension, only DSP will be considered in

this thesis.

3)

L)

5)

The model will try to "fill in the blanks'" of the story
on a line by line basis. That is, as it goes along, it
will try to make connections between events in the
story (usually causal connections) and fill in missing
facts which seem important (such as who was going to

receive the present).

The model will huild up a data base which contains the
facts given by the story along with any deductions made
in accordance with (3) above). The model will try to

keep this data base consistent and non-redundant.

A fact is only ''"made available" for making deductions
when there is reason to believe that it is relevant to
the story. For example, going back to our first story,
the fact ''people get presents from others on their
birthdays" would be associated with the concept
""birthday", and would hence be introduced to the data
base by the line '"Today was Jack's birthday".
Typically the model will immediately try to use the
newly introduced fact. However, in our "birthday"
example it is not until the next line, "Fred was going
to get a present' that we find anybody obtaining a
present, and so it is then that our fact can be used
and allow us to conclude that the present is for Jack.

So in many cases facts introduced earlier in the story

10

are used to interpret lines which occur later in the

story. Such facts are called '"demons'",

6) The model will attempt to handle many kinds of
statements about intentions, desires, and
responsibilities which frequently come up in children's
stories. In particular, they will cause portions of
our general knowledge to become relevant to the story.

Hence this information can affect later lines, as in

(5).
7) The problem of reference will be covered in some
detail. | will try to show how the information which

is used to "fill in the blanks" (see (3) above) can be

directly used to help with reference.

Needless to say, what follows is not a complete answer to the
problem of incorporating world knowledge into the

understanding process.

1

1.2 An Example

To provide a better idea of what is involved in
understanding children's stories, this section is devoted to a
detailed example. This example was handled by a computer
program written by the author. It was given the story and the
questions, and it responded with the indicated answers. The
computer version is not, however, identical to the model

presented in the thesis,
What the Program Does

The program's input (and output) is not English, but "pre
processed!" English, in the sense that it has already been put
into a form which closely resembles the internal format. This
however leaves open the question of what information is
explicit in the input, and what the program deduces for
itself. We adopt the policy that the only information which
can be included in the input is information which a normal
reader can get solely out of an individual sentence without
recourse to context. For example, since any noun phrase might
be referring to an object which was introduced by an earlier
line of the story, such reference decisions are not resolved
in the input language. The actual input is given in Appendix
A,

This story is taken directly from "Up and Away'', a first

grade reader published by Houghton Mifflin (Mc Kee et al. 66).

12

Several sentences have been deleted for brevity. Many of the
examples throughout this thesis were inspired by stories in
the first two books of this series, though this example is the

only one | have quoted directly,
The Example

Jack and Janet were in the house., Jack was holding a box
of pencils and a box of paints,
Everything indented at this level is commentary for
the reader. The first two lines of the story are not
in the original version which has a picture instead.
"Janet, see the paints and pencils that Daddy got for us,"
said Jack, |
Janet went to look at them.
“"Are the paints for me?'" she asked.
"No, the paints are mine,'" said Jack. '"The pencils are for
you, Janet."
g;estion: Did Daddy get the paints for Janet?
Answer: No, Daddy got the paints for Jack.

It should be noted that the original sentence about
getting the paints and pencils for Jack and Janet was

ambiguous. It might have meant that they were for
the children to share. |If we had asked this question
3 lines ago the program would have responded "I don't
know'',

Janet said to herself, "l want the paints."
Jack began to paint a picture of a red airplane. Janet
went to look at it,

"Those paints make your airplane look funny,'" she said.

13

""You could make a good picture of a red airplane with these
pencils,"
Question: Why did Janet say that the paints were bad?
Answer: She wants the paints,
This question involves several points. The program
interprets "funny" as "bad" in this context (this is
not done for it in the input format). Janet really
said that the picture was bad, and it is necessary to
transfer this to the paints., We must know that if
you want something another person has, you may make
nasty comments about it in order to get it. Also, if
we had asked, '"Is the picture funny?", the response
would have been (in essence) ''"No, she said so but she
had an ulterior motive.'" At this point it should be
realized that the program needs a lot of information
about wanting, trading, giving, owning, and
strategies for getting something from another person.
While this example shows that the program has some
knowiedge of these topics, it knows virtually nothing
about everything else.
(Janet continues)”" 1 will let you have the pencils. | will
take the paints."
Question: What does Janet want to do?
Answer: Trade the pencils for the paints.
Jack looked at the pencils,
"No, thank you, Janet,'" he said. "l want to paint more
pictures,"
Janet said to herself, "l do not want these pencils."
Soon Janet came back with something for Jack.
"Jack, here is a toy cat to put your money into," she said,
"I will give you this cat and all my pencils for your paints."

Question: Why did Janet get the toy cat?

Answer: To trade with Jack.

14

The program realizes that ''something"” (in "Soon Janet
came back with something for Jack.'") and toy cat are
the same object. (Again, this is not done in the
input language.) It has to know that returning to a
place where you just were with a given object
constitutes getting the object. We might note that
we could remove the ''for your paints'" from 'l will
give you this cat and all my pencils for your
paints,'" and still understand Janet as meaning
"“"trade'. O0f course, ''give' does not always mean
trade; only in certain contexts. This and the
"funny' example point out the fact that inference is
also necessary for deciding "meanings".

Question: Why did Janet offer to give Jack the cat and the
pencils?

Answer: She wanted the paints, and Jack would not trade for
the pencils,

"I have no money," said Jack. "What do | want with a toy

cat? | want to paint more pictures."
Question: Will Jack trade?

Answer: HNo.

Question: Why won't Jack trade?

Answer: He doesn't want the cat and he wants the paints.
Actually "What do | want with an X" is treated as an
idiom, meaning "l don't want an X" and is input this

way to the program.

"1'11 have to get some money for Jack,'" Janet said to

hersel f,

Soon she came back with it. '"Jack, here is some money to
put into the toy cat,'" she said. '"Now you will have some
money, a toy cat, and all these pencils.,"

The phrases '"'some money' and '"a toy cat" out of
context may or may not refer to the cat and money

Janet is holding. The program decides that they do
since it is anticipating a trade offer, and this can
only be construed as a trade if the objects in
question are Janet's,

Jack laughed and said, "Take your things and go away.

Question: Will Jack trade?

Answer: HNo.
The program interprets the phrase ''go away'" as
implying that the person who said it does not want to
do any current or suggested activity,

| want to paint pictures.”

Question: Why did Janet kick Jack?

Answer: | was not aware that Janet kicked Jack.

Question: Where is Bill?

Answer: 1| don't know, but it seems like a silly question since

no Bill is mentioned.

Question: When did Janet get the cat?

Answer: Before she offered to trade the pencils and the cat

for the paints,
"When'! questions are answered by mentioning an event
which happened at roughly the same time. The major
problem is making sure that the event used is
important enough in the story so that the reader will
he certain to remember it. In a longer story this
becomes very important, though even here it makes a
difference. The response could have been "Just after
Jack looked at the paints'" which occurred a few lines
before Janet goes to get the cat. However, this
response seems much less natural than the one given.
Currently the test for importance is checking that
the line has causal links with other parts of the
story.

Question: Does Jack know that Janet wants the paints?

Answer: Yes, he was there when she offered to trade which

16

implied that she wanted the paints.

When Janet said "l want the paints'" she said it to
herself. While the program can make use of this
information, Jack cannot. So instead the system
notes that '"'wanting the paints'" is the reason for

Janet offering to trade. It then assumes that Jack
could figure this out also.

17
1.3 Some Comments

In this section | would like to clarify a few points
which, in my discussion of my work, | have found to be

potential sources of misunderstanding.

Learning

Many people in artificial intelligence seem to believe
that a program, in order to be considered 'smart'", should be
able to do its tasks without knowing very much. 'Learning" is
typically held out as a way to accomplish this task.

When this bias is combined with the fact that children's
readers are intended to help children "learn" to read, many
people assume that a program to read stories must be a
"learning program'

In this regard | would like to emphasize that the chief
concern motivating the model discussed here is relating a
large body of knowledge to a particular story, (To get some
idea of how much | believe is needed the reader might take a
glance at section 5.1 where | try to list what ought to be
known about piggy banks.,) This knowledge is '"put into'" the
program by hand. How to acquire such knowledge is not the

main concern here.

18
The Relation of the Program to the Thesis

The program which did the example in 1.2 handled one
other story fragment, also about trading, which was roughly
twice as long as the example given. At that point, rather
than extending tﬁe progfam to more stories | considered what
should be done if | were to start all over again. The model
presented in in the following pages is the result of this
speculation. In the presentation of the '"thesis model" | make
no attempt to specify the exact points of correspondence with
the computer program though for the most part the two are
quite similar. Hence the existence of the computer program
does not ''guarantee' that the '"thesis model" is completely
specified, or at least could be extended to become completely
specified. The reader will have to decide for himself how
precise my model is. This is as it should be,

There seems to be a myth that a model is shown to '"work"
by making it into a working computer program. But most
advanced programs in Artificial Intelligence handle only a few
kinds of selected test examples., HNo one is interested in a
program which works for three cases. What makes such a
program seem important is the belief that it could do more, or
perhaps, if the program were extended in some easily
imaginable way, it could handlie more examples. But deciding
that this is the case means the reader must understand the

ideas presented, work out a few test cases of his own, and

19

mentally simulate these cases himself. But such a check out
procedure can usually also serve to convince the reader of the
validity of a non programmed theory.

This issue should not be confused with a separate, but
related belief. This is that programming makes for good
mental hygiene. It seems to me that hygiene is a personal
issue, and if a person wishes to keep himself '"honest' by
programming his ideas, that is up to him,

As | said, the model presented in this thesis is the
result of rethinking the computer model. There were many
reasons for not actually continuing with the program. | had
the usual problem of poor design decisions which needed
correcting but which would require rebuilding virtually the
entire program. The major reason, however, is that making a
working program involves solving a large number of
tiﬁe-consuming but theoretically uninteresting problems. Even
more seriously, it does not allow the possibility of solving
one sub=-problem at a time. Very often one can have very good
reasons for believing that some process must exist, which has
a certain well-defined effect, even though one has no idea of
how to construct such a process. One should not bhe restrained
by this from studying other processes which depend on this

unknown one.

20
A Note on the Examples Used

With the exception of the example in 1.2, the examples
used in the thesis are not '"real stories' but specially
contrived examples to illustrate the point at hand. Most real
stories have many different things going on in a given
sentence so it is hard to determine the influence of the issue
being discussed. To figure out all the factors in the story
would mean continually straying from a logical development of
"the ideas. Since these examples are designed to be as simple
as possible, they tend to be dry and somewhat unnatural,

By sticking to such examples | am excluding the more
complex developments which can take place only in longer
stories, However, the shorter examples can be considered
fragments of larger stories, so the machinery we develop will

be applicable to more realistic stories,

21
1.4 A Note to the Reader

The reader who only wants to get a taste of this thesis
is advised to read chapters 1, 2, the first three sections of
chapter 3, and chapter 10. |If you are interested in reading
more, | recommend the rest of chapter 3, all of 4, and the
first four sections of chapter 5. The rest of 3 is optional
in the sense that later chapters do not depend on it. Chapter
4L, however, is must reading before going on to later chapters.
(On the ofher hand, since chapter 4 is primarily concerned
with notation you might try proceediing without it and if you
encounter some unintelligible notation you can just look it up
in 4,) Once chapter 4 is out of the way, the later chapters
(5 6 7 89) can be read in most any order, though the given
order is slightly preferable. |

The program which did the example in 1.2 was written in
LISP and Micro Planner, While later chapters assume a slight
knowledge of LISP, it should be possible to read this thesis
without knowing Micro Planner, (Probahly the easiest way to

become familiar with LISP is with (Weissman 67).) For those

who do know Micro Planner | should point out that in my
attempt to simplify Micro Planner syntax, | have removed the

TH from the front of function names. Hence THCOND comes out
COND, which is the name of the similar LISP function.
Througout this thesis it should be assumed that in such cases

I am referring to the Micro Planner function.

22

Finally as an aid to the reader, Appendix B is a list of
abbreviations and special terms. It gives the unabbhreviated
forms and one or more pointers to portions of the text which

explain the terms' significance.

23
2 An Overview

Section 2,1 discusses what tasks have to be done in going
from natural language to our proposed internal representation,
Section 2.2 gives examples in which "understanding" is
necessary to accomplish some of the tasks mentioned in 2.1.

We use such examples to explain the advantages of a system
which understands as it goes along, over one that does
deduction only when asked a question., Sections 2.3 and 2.4
introduce the four main components of inference or deep
semantic processing (DSP) as | shall call it. They are:
Demons - Facts which are introduced by '"concepts"
occurring in the story are called '""demons"
since in many cases they must wait for further
information, In such cases we can think of
them '"looking" for the appropriate fact. So

""'not being willing to trade'" might put in a
demon looking for a better offer.

These constitute what we know about a
""concept' independent of "context'" So, for
example, if A gives B to C then C now “has' B.
This is not dependent on what happened earlier
in the story,

Base routines

Bookkeeping = This does chores like keeping the data base
relatively consistent and non-redundant. So,
should a person in the story change location,
we must update the old location statement.

Fact finders These are utility routines for doing standard
deductions which aren't worth asserting
separately., A typical fact finder might say,
""If you want to know if person P knows fact F,
just see if when F occurred, (or was said by

some character in the story) P was around.'

24

2.1 From Natural Language to Internal Representation

Finding the Relations

Several sentences can have (pretty much) the same

meaning, as in:

(2.1) A woman who is pretty painted the room.

(2.2) A pretty woman painted the room. -

(2.3) The room was painted by a pretty woman.

(2.4) The room was painted by a woman who is pretty.

We are told that a certain woman painted a certain room, and
furthermore that this woman is pretty. One trouble with
natural language is that its syntax is quite complicated. So
in both (2.1) and (2.2) we are speaking of a "pretty woman',
yet in (2.1) "pretty" occurs after "woman'" in the sentence,
while the reverse is true in (2.2). We would like an internal
representation to provide a simpler syntax. So we might
express (2.1) - (2.4) as:

(2.5) (PAINT WOMAN ROOM)
(2.6) (PRETTY WOMAN)

Now one might dject that (2.1) - (2.4) do not have the
same meaning, hence representing them all the same way is a
mistake. So while (2.1) and (2.2) are about a certain woman,
(2.3) and (2.4) are about a room. The sentences do not have
the same focus. To put this another way, in chosing passive
or active forms, the story teller has made a decision about
what is important in the story. However, he made a more

important decision when he chose to tell us that the woman

25

painted the room, as opposed to, say, "blew it up". In this
thesis we will be concerned with what it means to '"paint" or
"blow up". While the shifts in meaning caused by the active
passive distinction, and the positioning of modifiers are
interesting, they are second order effect.

Objects such as (2.5) will be called "assertions." An
assertion will be assigned a standard word order. (In (2.5)
and (2,6) the first item in the assertion is called the
"'predicate',) So in (2.5) the fact that WOMAN comes before
ROOM will be taken as meaning that it was the WOMAN who did

the painting. We could have decided on an order like:
(2.7) (ROOM PAINT WOMAN)

but once we have decided on the order inside the assertion it
cannot be changed. Of course, we haven't accomplished a great
deal by putting PAINT first, or having all the words in
capital letters. We still won't know that (2.6) implies that
the woman is not ugly, but at least there is no longer any
doubt about what '"pretty" refers to, or the fact that it was
the woman who painted the room, and not the room who painted
the woman, Establishing the relations in a sentence is
probably the most important part of the translation from
natural language to internal representation.

I should mention that | have expressed the relations in
prefix notation simply because it is the most natural for me,

There are arguments about the desirability of prefix vs., infix

26

notation. These arguments deal primarily with the ease of
expressing certain grammatical rules with the two notations,
While these arguments are clearly beyond the scope of this
thesis, the reader might want to consult (McCawley 1970).

The internal representation of a line from the story will
enter the data base. In the course of processing the line we
will deduce new facts about the story, and this will cause
other assertions to enter the data base. To avoid confusion,
when | speak of the internal representation of a line | do not
include any assertions which may be deduced from the original

assertions,
Separéting Word Senses

How consider the sentences:

(2.8) Jack caught a cold,

(2.9) Jack came down with a cold,

(2.10) Jack got a cold.
Most people would agree that these have the same significance.
If we were to represent (2.8) - (2.10) as:

(2.11) (CATCH JACK coLD)

(2.12) (COME-DOWN-WITH JACK cOLD)

(2.13) (GET JACK coLD)
every time we had to answer the question "Is Jack i117" we
would have to look for each possible format. Clearly it would
be better, since we agree that they all have the same

significance, to translate all the sentences into a single

format. Since we can disambiguate these examples without

27

further context, we will not be concerned with such cases; the
words will be disambiguated in the input. A system which did
handle these cases would have to know facts about possible
meanings of ''catch' 'get'" and others.

But if we assume that (2.8) - (2.10) will be translated
into, say,

(2.14) (BECOME-SICK-WITH JACK CcOLD)

we will have to separate meanings of words. That is, we would
not want

(2.15) Jack got a ball,

to become

(2.16) (BECOME-SICK=WITH JACK BALL)

Then our second translation activity is to separate meanings
of words so that a given fact will "tend" to be represented in
a single form in the internal representation., The '"tend" is a
qualification due to imprecision in what constitutes "a given
fact'". While it is clear that (2.8) - (2.10) are all the same
fact, what about:

(2.17) Jack caught the ball,

(2.18) Jack got the ball by placing some part of his
anatomy in the flight path of the ball and after
the ball hit that part of his anatomy he did not
let it go.

While (2.17) and (2.18) are in some sense giving the same
information, the differences in expression are quite large.

In general, only when the differences are "small' as in (2.8)

- (2.10) can we assume that the internal representation will

28
be identical.
Determining Reference

When we say that '""Jack has a top' we mean that he has a
particular top, which can be distinguished from, say, the top
which Mary has. Our internal representation must use
different symbols for the two objects, so as not to confuse
them, as in (HAVE JACK] TOP1). We put a number after the
"top'" to distinguish it from other tops. (To be consistent we
have also put numbers after JACK since there could possibly be
more than one person in a story with a given name.)

Henceforth an "object" is an indexed element in an assertion.
However, when we talk, we don't mention TOP2, we say '"Mary's
top" and rather than TOPl we might say "The one Jack got". So
it is necessary to translate between the English descriptions
and our indexed objects. This, simply, is the problem of
reference, and it is another problem syntax and semantics must

deal with,
Syntax and Semantics

| have introduced the transformation into internal
representation by looking at the properties we want of our
internal format, | could equally well have started by looking
at what aspects of language current syntatic and semantic

theories account for. Syntax with its divisions of words into

29

categories like nouns and verbs, and its "rules of syntax'',
can account for much of thestructure of language. To use my
terminology, syntax helpsdetermine the relations in a
sentence, While syntax is far from being completely
understood, there exist several competent syntactic parsing
programs (Dewar et al. 69), (Winograd 71), and (Woods 69).

Semantics also aids in determining the sentence structure
besides helping to separate word senses. 'Semantics'" means
different things to different people, from the study of how to
use language more effectively, to deriving the significance of
diplomatic communique, to everything about language not
included in syntax. When ! use the term, | simply mean what
is called semantics in much current linguistic work, See
(Chomsky 65), (Fodor and Katz 64), and (Lakoff 71).
“"Semantics' in this tradition is limited to “"linguistic
information'" as opposed to "non-linguistic information", the
latter roughly corresponding to what | call "real world
knowledge'. This level of analysis has been incorperated into
several comprehension programs to date, (Alexander 71),
(simmons et al, 68), and (Winograd 71).

I will define "internal translation" as these two
processes (syntax and semantics) and henceforth drop the words
syntax and semantics, The important fact about internal
translation is how little information it uses since its

usefulness is directly related to this limitation. One wants

30

to get some toehold on the sentence to start the analysis. It
seems to be easiest to construct models where the initial
analysis uses little information. Hence it is the paucity of
information used in internal translation which makes it useful
as a way of getting "into'" the sentence. On the other hand,
as we will see in the next section, this lack of information
will also insure that internal translation will not be able to
complete the transformation of the sentence into the internal
representation. We will call the result of internal
translation the "input format" since, it is the input to DSP,.
The relation between input representation and internal
representation is expressed in the diagram.

o Voo :
cmecemae- 1 Internal 1 1 tnput | ceese-- l Internal |
| Story 1-+21 Trans- 1--3] Format 1==31 DSP 1-=3] Format & |
S eoeocoese-e l lation l bl btk Sl ‘DeduCtiONSI

The arrow from DSP back to input format is to indicate that
the input will be steadily modified in the process of applying

DSP,

31
2.2 Internal Translation and Its Problems

In order to do a complete job of translating into
internal representation, we need information which we have not
made available to internal translation. For example, consider
the problem of establishing the relations in the following
sentence:

(2.19) I saw the man on the hill with the telescope.
This is three ways ambiguous, depending on whether "with the
telescope'" modifies ''see', "hill" or "man". There is nothing
in the sentence which tells us one way or the other, although
there seems to be a natural order of preference, with "“see"
the most likely, and "man' the least likely to be modified by
"with the telescope'". This would suggest that we might try
the possible sentence structures in order of likelihood, but
no matter how we do it, we will need to interrogate our data
base to see who or what is known to have a telescope. This
would be part of the information about the particular story,
hence not part of our internal translation information.

Just separating the senses of a word like “give" can be
quite complex. |If Bill gave his knife tovJack, does it mean
that Jack now owns the knife, or merely that Jack is now

holding it? Consider:

32

(2.20) Jack, Bill and Jack's dog Tip were outside. Bill
said, "l like Tip. Will you trade him to me, Jack?
I will give you my pogo stick." 'I don't know"
said Jack. "I will have to ask my father.'" '"Show
him the pogo stick'" said Bill. '"He will like it,"
So Bill gave Jack the pogo stick and Jack went
home.

The first time Bill mentions 'give" he clearly means “trade"
and a change of ownership, However, the second time, we
understand that Bill is only giving Jack the pogo stick
temporarily, and hence the "give'" means '"hold", and not "own'.

Determining reference is just as complex. We saw one
example in the introduction. We give a slightly modified
version here,

(2.21) Today was Jack's birthday, Penny and Janet went to
the store. They were going to get presents, Janet
decided to get a top. ''Don't do that" said Penny,.
""Jack has a top. He will make you take it back."

Would he make Janet take back the new top or his (old) one?
It's obvious to us, but why? In the next chapter | will try
to demonstrate that much of thestory must come into play in
determining the correct referent for the "it" in the last
sentence. It seems that there are no particular limitations
on the information which can come into play in determining

reference. Let us now focus on one particular implication of

this assumption,
Making Deductions as One Goes Along

One popular conception of English comprehension has the

program applying internal translation to each input sentence,

33

but not applying what | am calling deep semantic processing
until a question is asked that requires the program to connect
the events in the story to make a coherent whole. This mode |
seems to be assumed by work using predicate calculus theorem
provers as a ''back end" for natural language question
answering systems (Black 68), and (Green 69). (This is also
observed by Simmons in (Simmons 70).)

Such a ''delayed deduction' model has many problems.
Suppose in doing a deduction we needed a particular line L
which has a pronoun like "it" in it. If it is indeed the case
that deductions from anywhere earlier in the story might
effect our interpretation of "it" we would have to go back and
"understand' all the story previous to L. (By "understand" |
just mean make the kind of deductions which | intend to do on
the fly.) If this is the case, then there would certainly be
no point in waiting to make deductions at all.

In the case of a pronoun we at least know that we need
prior deductions in order to complete our understanding of the
sentence. But what about a sentence like:

(2.22) Jack got on the elephant.
There is nothing in this senteﬁce toyfndfcate that it does not
mean ''what it says'", But it could be preceded by:

(2.23) Jack, Fred, and Ann were playing circus. Fred said
"That rock over there is an elephant'.

So it would seem that any sentence in the story could have its

significance altered in a major way by earlier lines in the

34

story. Naturally, this is problematic for a delayed deduction

scheme.
Another Comment on the Input

In chapter 1 | said that the input to DSP was
pre-processed, with the limitation that it could not contain
information which could not be derived from the sentence
totally out of context. Actually, given the development so
far, a more natural limitation is what can be done by internal
translation. To see the difference, consider a sentence like
"Jack slid into second base'", Out of context we would guess
that Jack is playing baseball and was involved in a close play
at second., Nevertheless, such deductions would not be part of
internal translation, since the d¢ductions seem to require
information which goes beyond the bounds of internal
translation,

Since internal translation works on individuai sentences
wi thout context, it is clear that the internal transtation
restriction is a stronger one than the 'out of context"
restriction. While | have actually adopted the 'context"
restriction, since it is more precisely statable, in ihe
thesis | have tried to limit myself to the "internal
translation" restriction since it seems to define the most

natural breaking point for the problem.

35

2.3 Demons and Base Routines

Consider a fact like:
(2.24) "If it is raining" and
""I'f person P is outside' == '"P will get wet"

We have an intuitive belief that (2.24) is a fact about
"rain", rather than, say, a fact about "outside'". Many things
happen outside and getting wet is a very small part of them.
On the other hand only a limited number of things happen when
it rains,

We will embody this belief in our system by associating
(2.24) with "rain" so that only when "rain'" comes up in the
story will we even consider using rule (2.24), We will say

that rain is the '"topic concept' of (2.24), (By "concept" |

mean a symbol without an index (TOP! has an index, GO does
not) other than tense, type and negation markers (see 4.1)
which appears in assertions, or relations between such
symbols,) To put this another way, when a concept is brought
up in a story, the facts associated with it are ""made
available'" for later use. (Wewill also say that the facts
are "put in" or '"asserted".,) So, if “"circus', say, has never
come up, the program will not be able to make deductions using
those facts associated only with "circus".

Note however that we are not saying that '"rain" has to be

mentioned explicitly in the story before we can use (2.24).

%
It is only necessary that there be a '"rain" assertion put into
the data base, Other parts of the story may provide facts
which cause the program to assert that it is raining. For
example: '

(2.25) One afternoon Jack was outside playing ball with
Bill. Bill looked up and noticed that the sky was
getting dark, "I think we should stop" said Bill,
""We will get wet if we keep playing."

Here, the sky's getting dark in the afternoon suggest that it
is going to rain, |If this is put into the data base it will
be sufficient to bring in facts associated with “rain",
(Actually, to account for (2.25) we would need to modify

(2.24) slightly, since (2.24) requires that it is raining, and

in (2.25) we only suggest that it will rain, However, | am

not suggesting that (2.24) is a real fact the program must
know. It is simply used for illustration.)

Also note that at topic concept need not be a single "key
word'", A given set of facts may not become available to the
system until a complex set of relations appear in the data

base. How this can be implemented will be seen later,

Looking Forward, Looking Back

Only considering facts after we have seen the "topic"
concept allows that we might see the topic concept before we
have all the information needed to make use of the fact. This
would be no problem in a delayed deduction scheme because a

rule is only used when the user askes a question, |If the

37

facts which enable the rule to work are missing, it simply
means that the rule will not be used. But, when making
deductions 'on the fly", if the necessary information comes in
after the rule has been introduced we want to make the
deduction when the information comes in. So we might have:

(2.26) Jack was outside. It was raining.
(2.27) It was raining. Jack was outside.

In (2.26) there is no problem. When we introduce "rain' we
have sufficient information to use (2.24) and deduce that Jack
is going to get wet. But in (2.27), we only learn that Jack
is outside after we have mentioned rain, If we want to use
(2.24) we will need some way to have our fact '"look forward"
in the story. To do this we will break a fact up into two
parts, a pattern and a body (a program). We will execute the
body of the fact only when an assertion is added to the data
base which matches the pattern. So with (2.24) the pattern
would be ''someone outside'. Hence in (2.27) we introduce
(2.24) when we see "rain", At that time no assertion matches
the pattern. But the next line will create a matching
assertion, so the body of the fact will. then be executed,
Hence we will say that a fact is "looking forward'" when the
assertion which matches its pattern comes after the assertion
which made the fact relevant to the story., When the assertion
which matches the pattern comes before we will say that the
fact is "looking backwards',

We can see how important looking forward is with a few

38

examples.

(2.28) In example (2.21) we interpreted the line "Jack has
a top' as meaning that he did not want another.
The common sense knowledge is the fact that in many
cases having an X means that one will not want
another X, This piece of information would
probably be filed under "things to consider when
about to get something for somebody else'.
Naturally it was an earlier line which mentioned
that Janet was thinking of getting Jack a top.

(2.29) ""Jack was having a birthday party. Mother baked a
cake.'" The second line is interpreted as meaning
"for the party'" on the basis of information about
birthday parties brought in by the first line.

(2.30) "Bill offered to trade his pocket knife for Jack's
dog Tip. Jack said 'l will ask Janet, Tip is her
dog too.'" The last line is interpreted as the

reason Jack will ask Janet because of information
about the relation between trading and ownership,.

(2.31) ""Janet wanted to get some money. She found her
piggy bank and started to shake it., 3he didn't
hear anything." The last line means that there was
nothing in the piggybank on the basis of facts
about piggybanks.

In each of these cases it is an earlier line which contains
the information which is used to assign the interpretation.

So in the first example there is nothing inherent in the line
""Jack has a top'" which means '"don't get him another", Suppose
there were. Changing the example to "Jack has a ball',
something in the line would have to key a check for the

following situations as well:

(2.32) "Bill and Dick wanted to play baseball. When Jack
came by Bill said "There is Jack. He has a ball. "

(2.33) Tom asked his Father if he would buy him a ball,
""Jack has a ball'" said Tom.

39

(2.34) Bill's ball of string was stuck in the tree. He
asked Jane how he could get it out. Jane said "You
should hit it with something. Here comes Jack. He
has a ball,"

Those familiar with Planner might notice that our '"facts"
look quite similar to Planner antecedent theorems, with the
exception that our facts can "look back'" as well as "look
forward'". Antecedent theorms are only designed to look
forward. Another difference is that while antecedent theorems
are automatically executed when a relevant assertion is
entered into the data base, demons will be called some time
after the assertion has been created. | initially formulated
facts as antecedent theorems because | was so impressed with
the need to "look forward'". However, rather than call the
facts antecedent theorems, we will call them "demons'" since it
is a shorter name. '"Demon" is also the older term first

coming into computer literature with (Selfridge 59) and

(Minsky 63),
Possible Futures

We require a concept to be introduced by the story before
facts associated with it become available for making further
deduction. One aspect of this decision is the significance it
gives to statements about future events, In general,
statements in future tenses are problematic. While it is
usually clear what a present tense statement means, what is

one to make of some statement that "Jack must buy a new suit"?

bo

It does not mean that we can be certain that at some point in
the future we will see Jack buying a new suit., It certainly
does not mean that Jack is currently at the clothing store.
So what is one to do with such a statement? |In the system |
propose, the answer is fairly clear. Such statements

("possible futures') introduce facts that can be used to

interpret some of the things which may happen in the story.
Once we see "must buy a new suit" we will be looking (forward)
for the person's going to a clothing store and, when and if he
does so, we will know why. Note that this analysis applies
equally well to '"can buy a new suit'", "will buy...", "should
buy...," etc. This is not to say that all these phrases mean
the same thing. Rather, the concept of possible future is
designed to capture what they have in common. Their
differences will have to be accounted for bY other means.

In some sense the name '"possible future" is of a
misnomer, since it does not really describe a '"future" at all,
but at best some aspect of the future. Perhaps a better name
might be "possible features of the future'". In this respect
it corresponds roughly to what Mc Carthy calls "fluents",
though the two concepts are used somewhat differently in their

respective schemes (Mc Carthy and Hayes 1968).
Specification and Removal of Demons

It should be emphasized again that the model does not

b

"learn'" the information contained in the demons. On the other
hand, the demons are not specific to the story in the sense
that they mention Jack, or "the red ball", Rather, they talk
about "a person X" who at one point in the story could be
Jack, at another, Bill. In chapter 4 we will briefly discuss
how a demon will get the correct assignments-for its
variables,

We want demons to be active only while they are relevant
to the story. A story may start by talking about getting a
present for Jack, but ultimately revolve around the games
played at his party. We will need some way to remove the
'"present getting' demons when they have outlived their
usefulness., (an irrelevant but active demon not only wastes
time and space, but can cause us to misinterpret a new line.)

This will be discussed later in 8.3.

Base Routines

So far we have said that demons are introduced to the
story when the proper concept has been mentioned. But this
implies that there is something attached to the concept name
telling us what demons should be put in.

If we look at a particular example, say (2.30), it is
Bill's offer to trade the pocket knife for Tip, which sets up

the context for the rest of the fragment. So we must have

some information, which this line somehow accesses, telling us

L2

to activate certain demons. We will assume that this
information is in the form of a program. Such routines, which

are available to set up demons, will be called "hase routines"

and will be designated by -BASE at the end of their name, as
in TRADE-BASE which is activated when an assertion with the
symbol TRADE is placed in the data base,.

These base routines will be responsible for more than
setting up demons, Suppose we are told that Jack had a ball,
and Bill a top. Then Jack traded his ball to Bill for the
top. One question we might ask is "Who now has the top?"
Naturally since questions of '"who has what'" are important in
understanding stories we will want to keep tabs on such
information., 1In this particular case, it must again be the
"trade" statement which tells us to switch possession of the
objects. To be more formal, we would say '"trade'" entails the
fact that the objects have switched owners, (Though note that
| am not using the formal logical definition of Yentails")
Since every time a trade occurs we will want to exchange
objects, it must be the casethat whenever we see '"trade' we
execute TRADE-BASE., Of course, the program can't be too
simple minded, since it must also handle "1 will trade..." and
perhaps even "Will you trade .., 67"

A good test as to whether a given fact should bhe part of
a base routine or a demon is whether we need several lines to

set it up or whether we can illustrate the fact by presenting

43

a single line., (Naturally several lines could be made into
one by putting "and's" between them, but this is dodging the
point., | am only suggesting an intuitive test.) S0 we saw
that '"Jack has a ball" was not enough by itself to tell us
that Jack does not want another ball. Hence this relation is
in a demon, not in a base routine for, say, "have', On the
other hand, often a single line can tell us quite a bit as in
"Jack slid fnto second base'", This indicates that the base
routine for 'second base'" interacts with "slide" to tell us
that we are talking about a baseball game.

There is some question as to whether demons and base
routines are really distinct entities., When a demon is
looking forward it is waiting until an assertion is added to
the data base which matches its pattern. This is exactly what
a base routine does, but while the demon will only be asserted
when we have encountered the proper concept, base routines are
always available,.

0f course, we are only looking at children's stories.
Will we want the same set of base routines for reading both
fiction and chemistry, or will base routines also be shuffled
in and out, like demons, but only on a broader scale? Rather
than being added and removed within the confines of a single
story, they might be added and removed depending on the type
of literature we are reading. While | tend to think of base

routines and demons as distinct, in practice the view adopted

b4

does not seem to make too much difference in the course of the

thes‘s.

hs

2.4 Bookkeepingand Fact Finders

Updating and Bookkeeping

Up to this point we have introduced two parts of pDse,
demons and base routines. |In this section we will introduce
the remaining two parts

Again let us consider the situation when Jack had a ball,
Bill a top, and they traded. When we say that Bill now has
the ball, it implies that Jack no longer does. That is to
say, we must somehow remove the fact that Jack has the ball
from the data base., Actually we don't want to remove it,
since we may be asked '"Who had thetall before Bill did?". 1In
this particular case we might be able to construct the answer
from the fact that there was a trade, though we would also
have to be on the lookout for '"give" and even Jack losing the
ball and Bill finding it. While this would be difficult, in
other cases such an approach would be seemingly impossible. -
For example, suppose Janet wanted a doll, and she did several
things to get it, but then decided that she didn't want a
doll, but a paint set. If we were to erase the fact '""Janet
wants a doll" we would no longer be able to answer questions
like "Why did Janet go to the toy store?" since we would have
erased the reason. |Instead, we want to mark the assertions in
some way to indicate that they have been updated. So, going

back to Bill, Jack and thetrade, we might have:

L6

(2.35) (N1 HAVE JACKIBALL1) TROUBLE:(NEG=UPDATE NL)

(N2 HAVE BILLI TOP1) TROUBLE:(NEG-UPDATE N5)

(N3 TRADE BILL1 JACKI TOP1 BALLI)

(N4 HAVE BILL)] BALL1)

(N5 HAVE JACK1 TOP1)
The Nl etc. are names given to the individual assertions so we
can refer to them. The TROUBLE marker is on the property list
of the assertion. It basically says that the assertion cannot
Be taken as currently true., NEG-UPDATE indicates that the
reason is that the assertion has been negated at a later date.
There are other ways an assertion can get a TROUBLE property.
For example, in our story in chapter 1, when Janet said "Those
paints make your airplane look funny", we gave the assertion a
TROUBLE: (ULTERIOR-MOTIVE JANETI) property. (The distinction
between an assertion and its property list is a function of
the workings of Micro Planner in the same way the distinction
between an atom and its property list is a function of the
workings of LISP,)

Throughout this thesis we will assume that there is a

separate section, pretty much independent of the rest of DSP,

which is responsible for doing such updating. We will call

this section bookkeeping. However, there are some problems

with this conception of things, and in 7.3 we will consider
(and reject) an alternative (having the base routines do
updating). Besides updating, bookkeeping will also he
responsible for noting if the new assertion is a duplicate of

an old assertion (children are constantly repeating things in

b7

children's stories). 1If the new line is a duplicate it will

not be re-entered into the data base.

Fact Finders

.But even deciding that one statement updates another

requires special knowledge. Suppose we have:

(2.36) Jack was in the house. Sometime later he was at
the store,
If we ask '"Is Jack in thehouse?'", we want to answer "No, he
is at the store.'" But how is bookkeeping going to figure this

out? There is a simple rule which says that ((state) A B)
updates ((state) A C) where C is not the same as B. So (AT
JACK FARM) would update (AT JACK NEW-YORK). But in (2.36) we
can't simply look for Jack AT (someplace which is not the
store), since he is IN the house. To make things even worse,

we could have:

(2.37) Jack was in the house. Sometime later he was in
the kitchen,

To solve this problem we will add a theorem which knows about

location., Such a theorem, we will call it AT-NOT-FF, might

go:

L8

(2.38) To establish that PERSON is not at location LOC
Find out where PERSON is, call it X
If X = LOC , then theorem is false so return ""No'',
If X is part of LOC then return '"'‘No',

This handles, given appopriate
information, cases like (2.37).

If LOC is part of X, then try to find a different X
Else return "Yes"

In (2.36) the bookkeeper would try to prove that Jack is not
at the store, and it would succeed by using AT=-NOT-FF and the
statement that Jack is in the house. Bookkeeper would then

mark the earlier statement as updated. Theorems |ike (2.38),

called fact finders, will be indicated by =FF at the end of

their names, such as AT-NOT-FF,

Like demons, fact finders have a pattern and a body. A
particular fact finder is called when something else (either a
demon, base routine or bookkeeping) wants to establish a goal
which matches the pattern of the fact finder. This is
different from demons which are called when we encounter a
given fact. In Micro Planner fact finders are Consequent
theorems, while demons, as we have already mentioned, are
Antecedent theorems.

We introduced fact finders via bookkeeping. However,
fact finders are needed elsewhere, and in fact, are a more
Secure part of the model than is bookkeeping. To take one
example, we could have:

(2.39) Jack was in the house. Janet was at the park,

b9

We would then ask the program "Is Jack at the park?" and
AT-NOT-FF would supply the answer. To take another case,
typically when a person offers a trade, we will want to make
sure he owns the object being traded. One good rule of thumb
is if you don't have an explicit "own" assertion, then the
person who introduced the object into the story is the owner.
This rule came into play in the main example in chapter 1.
Naturally, this rule is also a fact finder.

The basic idea behind fact finders is that they are used
to establish facts which are comparatively unimportant, so
tha; we do not want to assert them and hence have them in the
data base. So in (2.36) we do not want to assert “Jack is not
in the house'" as well as "Jack is at the store''. In the same
way we will have a fact finder which is able to derive the
fact "(person) knowns (Fact) " by asking such questions as '"was
the (person) there when (fact) was mentioned or took place?",
Again, since this information is easily derivable, and not all
that important, so there would seem to be no reason to include
it explicitly in the data base.

Fact finders, then, act llke axioms in traditional
theorem provers in that they are used for making chains of
deductions., Hence there is the traditional problem of
infinite or exponential search. | am assuming that the extra
machinery which a Planner based systenm gives one will be

sufficient to handle this problem. (Since this is one of the

50

features of Planner, any discussion of the language will
describe how it helps eliminate infinite or exponential search
problems.) Whether this assumption is justified is a topic
for future research.

In the current scheme of things fact finders are always
around in the same way that base routines are. They are not
activated and deactivated according to the context. Such an
ability would not be inéonsistent with the rest of the model,
but it has not been needed so far. Presumably this is because
such context dependent facts have been important enough to

include in the data base so they can be handled by demons.

51
2.5 Facts and Search

To answer questions one must have (1) the relevant facts,
(2) the ability to access them, and (3) the ability to do
deductions. In this section | will make a few comments on the
first and second problems. Since | have, in some sense, been
"thinking" in Planner, and since Planner itself determines how
deductions are made, | have given little thought to methods of

making deductions,
Infinite Stories, Finite Facts

Just as a theory of syntax must account for an infinite
number of sentences with a finite number of "rules of
grammar', a theory of story comprehension must account for an
infinite number of stories with finite''every day knowledge'.
If we are going to accomplish this task, the facts we include
in the system must really capture the facts that people use,
and must not be special cases. (Though technically we could
still need only a finite number of facts if we used a finite
number of special case facts for each 'real" fact.)

Capturing the facts which people use ié no easy process.
Let us look at a fact used in last chapter's example, We
wanted to be able to understand why Janet said "Those paints
will make your airplane look funny," (from chapter 1). The

rule we suggested there was as follows:

52

(2.40) If a person P wants an object X, then look for P
saying that X is "bad", |If P does this it is
because P wants X.
We can easily see that this rule does not completely capture

what people know. Consider:

(2.41) Janet had decided that she would bake a cake that

afternoon. WhenJack came by she said, "Jack, | am
going to make a cake this afternoon, would you like
to help?'" '"I am going to the beach this afternoon'
said Jack., "It will be cold" said Janet,

While our intuition says that the same thing is happening in
both the example of the last chapter and (2.41), (2.40) will
not handle (2.41), So, while superficially reasonable, (2.40)
is only a special case of the rule which people seem to know.
In other cases we can easily fall into false
generalizations, It is not unreasonable to believe that the
phrase ''take (object back'" means 'take object to a place were
the object was at some prior time'". But, this is falsified
by:
(2.42) Bill and Frank were out camping and looking for
indian relics. Bill found a large bowl., After
cleaning it off some he said, 'l really need some

of the tools we left at the campsight. | will take
it back now and give it a careful cleaning."

Search Planner Style

The method of finding relevant facts which was used in
the forementioned program, and which was in the back of my
mind while writing this thesis is the method which is most

natural in Planner, (Also Micro Planner, Though the

53

differences between the two are many, at the level of
generality found in this section the two can be considered the
same.)

Demons, fact finders and assertions are stored in
separate data bases, according to a filing system based on
their patterns. (We have already mentioned the patterns of
demons and fact finders. The pattern of an assertion is just
the assertion "proper', as opposed to the property list
attached to the assertion.) So, for example, when we
encounter a given concept, an associated demon is put into the
appropriate data base on the basis of its pattern. When we
want to find whether there are any demons looking for a given
assertion, we use the same filing scheme to look in the demon

data base,

Subtopics and Search

There are naturally many other search schemes. Some of
these are realatively straight forward modifications of the
system already outlined in the sense that the major
assumptions of this chapter are left unchanged. So, for
example, rather than asserting all the demons associated with
a given topic, perhaps one could cluster the demons into
larger groupings. So, the facts about 'present" (gift) might
be clustered about subtopics like '"buying'", "surprise',

"choosing'", etc. These subtopics themselves become demons of

54

a sort, but since there are many facts, and only a few
subtopics, we would save a lot of time by asserting only the
“"subtopic demons'. Naturally, when new assertions enter the
story they will look to see if there are any subtopic demons
whléh might be applied to them, |If there are, then there will
be pointers from the subtopic demon to the 'real' demons, and
the rest of the deduction procedure will be the same,

There are two important questions to ask about this
scheme. First, will there be enough demons connected with any
given topic to make this scheme worthwhile? And second, will
the demons fall easily into subtopics? Before we can answer
these questions we need a large body of established facts.
Since we do not have such a body, | have not pursued this idea

any further,
Significant Search Differences

The subtopic search scheme just presented leaves all the
basic assumptions of this chapter unchanged, so our ability to
do deductions remains unchanged. More important search issues
actually call these assumptions into question.

For example, in section 2.3 we suggested that no demon
would be assefted until its topic concept had appeared in an
assertion. Can we stick to this assumption? Naturally, we
can keep this assumption by asserting a topic for the sole

purpose of putting in the necessary demons, Of course, if we

55

were forced to do this we would instead admit that the '"topic"
restriction on demon assert?ng should be relaxed. This will
be discussed in section 5.7.

In the last section we added fact finders to our model,.
They, along with actual assertions, are our only way to answer
a question, whether the question is asked by the user, or
generated internally in the course of making some deduction.
We might ask whether these two are sufficient., In section 5.4
we will suggest that the answer is no. In particular we will
argue that demons must also be allowed to '"answer questions.'
(Keep in mind that demons, as we have formulated them do not
“"answer questions' but simply respond to the presence of
assertions which match their patterns, They may produce
assertions which answer later questions, but demons, so far,
are never called upon to answer a specific question.)

To the extent that our suggestions in chapter 5 are
correct, we will have demonstrated that the model presented in
this chapter is incorrect. However, the changes required in
chapter 5 can be viewed as extensions of the model presented
here, so it seems best to present the simpiified model first.

O0f course, these are only a few of the assumptions we
have made in the course of this chapter. For a brief
discussion of some of the others the reader might consult

section 10,2

56
3 Reference and Deduction

In this chapter we will see how complicated deductions
can come into reference decisions. | am singling out this
topic for several reasons. First, in section 7.1 we will
discuss ordering the parts of the comprehension model
presented in chapter 2. The arguments put forth there will
depend primarily on the model of reference we outline in this
chapter. Secondly, | find the way reference fits into my
comprehension model very "natural", This "naturalness'", it
seems to me, constitutes a powerful argument for the merit of
the all-over model. Finally, although we have been discussing
"understanding'" a story, "understanding'" is a poorly
understood term, Reference, however, is clearly defined.

Yet, most of the process which we would call "understanding"
seem to be necessary to decide reference. Hence, reference
can be viewed as a paradigm of "understanding'.

We saw in 2.2, particularly in example (2.21), that
fairly complicated deductions can be necessary in choosing the
correct referent. For convenience we repeat (2.21) here as
(3.1).

(3.1) Today was Jack's birthday. Penny and Janet went to
the store. They were going to get presents. Janet
decided to get a top. 'Don't do that" said Penny.

""Jack has a top. He will make you take It back.,"

(3.2) Penny wanted to go to Bill's party. Mother had to
tell her that she had not been invited,

(3.3) When Penny heard about the costume ball she started
thinking about what Mother could wear. Mother had
to tell her that she had not been invited.

in (3.1) the problem is choosing the correct referent for the
"it" in the last line. In (3.2) and (3.3) the second sentence
remains the same, but due to the difference in first lines we
understand the last ''she'" differently in each case,

In an example such as (3.1) we will be making deductions

in order to answer questions like:

(3.4) Why did Janet and Penny go to the store?

(3.5) Who are the presents for?

(3.6) Why would Jack make Janet take the top back to the
store?

In this section we will suggest a way to determine references
while making such deductions. That is, the routines we
introduce to handle such questions will also aid in reference
decisions. (I will 1imit discussion to definite noun phrases.
For further discussion of reference see chapter 6.)

Note that we would need some means of answering (3.4) -
(3.6) even if the story (and questions) were given to the
machine with all the referents already determined (i.e. the
input would explicitly mention TOPl etc.) That such routines
will also help in deciding reference is the '""naturalness"

mentioned above.

58
3.1 Kinds of Information Used in Reference Decisions

We decided that deductions about the story allowed us to
pick the right referents in (3.1) - (3.3). However we did not
argue the point, but rather relied on the reader's intuitive
understanding of the factors which can influence the choice of
referents. Let us take a closer look at exactly what some of

these factors are.
Descriptive Information

When we say "Jack", or "the ball" we know that the object
in question is named Jack, or is a ball, We could further
specify the object by adding adjectives, as in "the red ball',
A slightly less trivial example, '"Jack's house'", specifies
some house which satisfies a possessive relation with respect
to Jack. In the case of '"house'" it probably means the house
in which Jack and the rest of his family live. |f we needed
even further specification we could add subordinate clauses,
as in '"the red ball which was thrown on the roof yesterday".

The information in these cases is "descriptive" in the

sense that the noun phrase describes the referent it is aiming
at. In most cases it is easy to use descriptive information.
When we look for the referent for '"the ball" we can exclude
anything which is not labeled "ball'", Other cases can get
more complex however. We can't just look for a house which

Jack owns when we see '"Jack's house'. We need information

59

about houses to tell us that often a possessive applied to
"house' means that the person's family lives there.
Nevertheless, "Jack's house'" gives us a great deal of
information about the house under consideration, and it is
this information which | call "descriptive".

Most natural language programs make use of descriptive
information. Probably themst complete and satisfactory
account is found in (Winograd 72). HNaturally, in examples
(3.1) = (3.3) descriptive information played a role (we didn't
even consider the possibility that "it" might refer to Janet),
but by itself, descriptive information was not sufficient,
since in (3.2) and (3.3) the '"she'" could refer equally well to
either Mother or Penny, and in (3.1) "it" or 'the top'" could

refer to either top.

Recency Information

One simple kind of information is '"recency" information.
If | am talking to you and mention '"the fig" | am referring to
the one | mentioned two sentences back, not the one | last

mentioned in our conversation two weeks ago. Such information
plays an even more crucial role in determining pronoun
reference, since in most cases the major clue to the identity
of the referent is the fact that it most likely has been
mentioned in the last two or three sentences,

Differences in '""recency'" do not have to be very large in

60

order to be significant. Consider:
(3.7) Bill threw Jack a green ball,
Jack was holding a red ball,
Jack threw it to Dick.
(3.8) Jack was holding a red ball,
- Bill threw him a green ball,
Jack threw it to Dick.
Since we wish to emphasize context, we will choose examples

where recency information by itself is insufficient to choose

the referent, such as (3.1) - (3.3).
Syntactic Information

Syntax also has a role in reference. Consider the
sentence "Bill washed him." We know that "him'" does not refer
to Bill, since if it did we would have to say '"Bill washed
himself." There are several ways to convince ourselves that
this is fact. First we needed no context to make our
decision. Also, we could replace "wash" with a nonsense word
like "setan" and we would still know that in "“"Bill setaned
him" "him" is not the same as "Bill", Furthermore, if we knew
that "him'" did refer to "Bill" we would say that the sentence
was ungrammatical, in the same sense that "I washed me'" is
ungrammatical. The meaning of "I washed me" ijs perfectly
clear, so its rejection must he on the basis of syntax,

Such grammatical rules are only capable of ruling out
possible referents., So while in "Bill washed him" wké know

that "him'" does not refer to "Bill" we do not know to whom it

61

does refer. | might point out that for more complicated
sentences the rules which govern pronoun behavior are poorly
understood. We will come back to this point later in section

6. 2.
Selectional Restrictions

Verbs often have "selectional restrictions' on what kinds

of things can serve as their subject or object. For example,
in '"He told Bill about the riot," '"he'" can refer to Jack or
“"the boy in the yellow shirt'", but not '""my dog Rover'". |In the
same way '"it" in "“She kicked it'" cannot refer to ''the race'",
though in ""She won it'" it could,

To summarize, we have seen the following kinds of
knowledge being used to decide reference:
Descriptive
Recency

Syntactic rules
Selectional restrictions

EWN -
N et o

But these four are not capable of deciding the referent for
(3.1) - (3.3) so we need to add on:

5) Other Contextual Information
Exactly what is subsumed under this heading is not clear., It
will certainly include the effect of multiple step deductions,

which is the topic of this chapter. (Note 2)

62
3.2 Deciding Reference Requires Complex Deductions

In many cases we need to understand a lot of the story to
get the referenéés right. rBut understanding is not a
monolithic thing. One can understand more, or understand
less. Then how much ‘understanding' do we need? What do we
need to understand? In particular, are the facts which need
to be understood to solve reference problems the same as those
we will find in our attempt to "fill in the slots" of the
story? Again let us consider example (3.1) repeated here as

(309):

(3.9) 1) Today was Jack's birthday.
2) Penny and Janet waent to the store.
3) They were going tc get presents.
h) Janet decided to get a top.
5) '"Don't do that' said Penny.
6) "Jack has a top.
7) He will make you take it back."

A good guess at the rule which deduces that "it' refers to the

"present top' might be:

(3.10) Since Jack may not want a top he may have it
returned to the store

(There are other candidates for the “"rule" operational in
(3.9). We will discuss one other in section 3.4). If our
model were "expecting'" such a situation to take place, this
expectation would lead to assigning "it" to the present Janet
is thinking of getting. So we need to understand the story
well enough to apply (3.10). But (3.10) assumes that we know

that Jack may not want a top. How do we know that? The story

63

never said so, (That is, no single previous sentence, when
taken out of context, would imply that Jack may not want a
top.) Presumably we know that in the context of buying an X
as a present for someone, if he has an X then he may not want
another X. But how do we know that Janet intends to buy a top
for Jack? Again the story never said so., We can carry this
chain of argument back till we get to the first line of the
story. When we are done we will need roughly the following
deductions (listed by the line number when the deductions
should be made):
(3.11) Line 3: Realize the present is intended for Jack.
Line 4: The top would be Janet's present for Jack.
Line 6: That Jack already has a top suggests that
he might not want another., That he might
not want another suggests that Janet should

not get him one

Line 7

The reason he might make Janet return the
top is that he doesn't want another one.

Note that every one of these facts will be needed to answer
questions like (3.4) - (3.6). If our model is going to answer
such questions '"on the fly'" then the deductions like those in
(3.11) must be made and left in the data base for future use.

Or look at the "party" example (3.2). |In that case we
might ask "Do you think Janet was disappointed?'". In order to
answer that question we would have to combine Janet's wanting
to go to the party with Mother's comment that Janet had not

been invited. Intuitively at least, it is an interaction like

6h4

that which leads to our understanding of 'she' as Janet in
(3.2).

As for '"how much understanding' we need to determine the
referent, in the '"top' example most of the crucial points of
the story as listed in (3.11) are needed in helping to
determine the referent. MNaturally in longer stories we would
not expect every line to come into play, Even in the "top"
story we could delete the second line and still get the
reference correct, However | see no way to delimit which
information in a story can be used to determine a particular

referent,

65
3.3 Using Common Sense Knowledge in Reference Problems

In this section we will sketch a method for using
multiple step deductions based on common sense knowledge in
the reference decision. Let us suppose that when we initially
encounter a noun phrase we apply definitional, syntactic and
selectional information to get a quick list of which objects
in the story might be the referent. (For pronouns we will
only consider '"recently mentioned' objects, in which case we
will be using recency information also.) We will call the

objects found “Possible referents' (the list of them is called

the PRL), and we will call the process Finding Possible

Referents (FPR)., We are interested in the case where there is
more than one possible referent.

I have been assuming that the English sentence gets
translated into some internal represenation. So we might
have:

(3.12) Jack's top is on the table.
(3.13) (ON TOP2 TABLE1)
(Only the major assertion of (3.12) is represented in (3.13).)

Presumably in (3.12) we know that TOP2 belongs to Jack.
I|f we further assume that we know of only one top which
belongs to Jack, by the time we are done with definitional
information we are able to reduce the number of possible
referents to one, We then take the one remaining item, TOP2,

and place it in the proper position in (3.13). We need to go

66

through a similar analysis for "the table'",

A logical extension to the case where we have more than
one possible referent would be to put in a "variable" in the
proper position in the assertion. We will indicate a variable
with the prefix ? so ?X is the variable X. (As necessary,
we will introduce special syntax, usually based on
Micro-Planner (Sussman, et. al. 72).) In the case where Jack
had more than one top, example (3.12) would become:

(3.14) (ON 27X TABLE1)
Now ?X cannot be any possible object; we want to limit it to
the tops which belong to Jack. We will say that 72X is
“"restricted" to the possible referents already determined by
FPR. Restrictions on variables are checked before the
variable is assigned a value, to insure that the value is
consistent with the restrictions.

Once we have placed the restricted variable in the
assertion we will go on and do our various deductions as if we
knew the objects being talked about. That is, we finish the
processing of the sentence with the variable "replacing" the
undecided noun phrase (NP)., There is one obvious limitation,
however. We cannot allow ourselves to ask directly '""What is
X 7", since we don't know the answer to that question., Now
this seems like a very serious limitation, and it might appear
that we have tried to make the problem go away by législating

it out of existence. But the key phrase is "ask directly',

67

As we shall now see, there are ways to " ask indirectly'" about
X.

We saw earlier that, even ignoring the problem of
reference, in order to answer the question "Why would Janet
have to return the top?'" we would need a rule of deduction
something like (3.10). That is, something which says, if a
person doesn't want a present it might be returned to the
store where it was bought. Rephrasing this slightly we get:

(3.15) If we see that a person P might not like a present
X, then look for X being returned to the store
where it was bought., |If we see this happening, or
even being suggested, assert that the reason why is
that P does not like X,

The phrase "look for (something happening)" in (3.15) suggests
that it is a demon.

What might it mean for (3.15) to see the activity it is
looking for? In particular, (3.15) is looking for X being
returned to the store. lInstead, in (3.9), we get the line
"Jack will make you take it back'", Now, the internal
representation for '"returning an object' and ''taking an object
back!" will presumably be the same since they mean the same
thing. However, even assuming this much, there will still be
a major difference between what we are looking for and what we
find, We are looking for the present (i.e., the top Janet Is
thinking of getting) being returned. We are told that "it"

will be returned where we are not sure what "it" is, except

that it is restricted to the two tops. The logical thing to

68

do would be to let the demon choose TOP2 (the potential
present) since that is the one which it is expecting. This is
exactly what we do, and by choosing TOP2 we get the correct
referent for the "it". HNow in some sense our demon did ask
'What is 27X 2. It was told that the variable did not have a
value as of yet but that either TOP! or TOP2 would be
acceptable, (Also note that by the same process we get "it"

being returned to the store, though the original sentence did

not state where the object was to be returned.)

To summarize briefly, when we encounter a noun phrase we
immediately apply FPR, which uses definitional, syntactic,
selectional, and sometimes recency information., |If this is
not sufficient to determine the referent uniquely we put a
variable in the place where the internal symbol for the object
would go if we only knew what it was. The variable will be
restricted to the list of possible referents. |If the variable
is ever matched against one of the possibilities, it will be
assigned that value. (If more than one possibility matches we
can just further restrict the possibility list,) This
happens, for example, when the current line matches a demon.
In the process we will permanently assign the variable to its
new value, and hence assign the noun phrase its referent. |If
the variable is never assigned, we will finally fall back on

the '"last mentioned rule'" (LMR) to pick the referent. (Later,

in 5.1 we will see that base routines can also assign

69

referents. Still later, in 6.5, we will argue that in special

cases even bookkeeping comes into play.)

70
3.4 Other Ways to lUse Context in Reference Determination

In the last section we outlined, in a general way, a
method of using context to help decide referents. Referring
to our method of 3.3 as the "restriction method"” we will now
Lonsider. and reject, a few alternatives to the restriction
method. Naturally, the few methods discussed do not exhaust
the possibilities. Nor do the alternatives rejected here
correspond to any published proposals for applying contextual
information to reference, since, as far as | know, | am the
first to present such a scheme. Rather, these alternatives

are attempts to formalize partially schemes which have been

suggested during discussions of my work with others.
A Backup Scheme for Choosing Referents

At a glance the '"last mentioned rule" is a pretty good
rule. |If we apply our early referent analysis to get a list
of possible referents, and then pick the one most recently
mentioned, probably ninety percent of the time we will get the
correct referent. Perhaps rather than go through the bother
of creating a dummy variable, and hoping that eventually it
gets assigned to an object, we could assume that the last
mentioned object is the correct one unless it somehow gets us
into trouble., (Note 3)

This scheme can be characterized as a "backup'" method

since it assumes one possibility until that is proved

71

incorrect. Since all backup schemes need a "plausibhle move
generator' to decide in which order the possibilities will be
tried, our proposal is characterized by a "“"recency" method for
picking "plausible moves'. Other "move generators' will be
discussed later,

There are several reasons why a backup approach might be
the wrong way to do things. One obvious reason is that the
number of possibilities necessary to try would be so large as
to be prohibitive. However, since we are seldom left with
more that three or four possible referents after early
referent analysis, this reason does not apply. A really
serious problem in using backup is finding a way to decide
when one possibility has failed and we should try the next.

The difficulty will arise because in the backup method,
when we decide that a particular referent is 'bad'", we must do
so without looking at the other possible referents, and in
particular without comparing the chosen referent with the
other possibilities. So, for example, we would not be able to
do something like 'pick the referent which 'fits' best'" since
that requires comparison,

To get some idea of how a backup scheme might work, let
us again consider our "top" story (3.1). Let us suppose that
our system had a rule which went:

(3.16) If an object X is returned to the store then it
must just have been purchased.

72

Presumably when we try Jack's top as the referent of "it" we
would reject this decision on the basis of (3.16). HNow it
seems to me that there are serious difficulties with this
analysis.‘ Our particular story did not specify that "it"
would be returned to the store. Furthermore, while we do not
know that Jack's top had just been purchased, it is not clear
that that is sufficient reason for believing that it wasn't.
While | believe that these are valid objections, we can better
illustrate our basic point, that it is necessary to compare

referents to decide on the correct one, with another example.

(3.17) Mother made some cookies and left one out on a
plate. She put the plate on the kitchen table, and
went into the living room, "I am sure Janet will

like it' thought Mother.

On the basis of recency, the list of possiblities, for the
last "it", in order of preference, would be:

(i) the living room

(ii) the kitchen table

(iii) the plate

(iv) (the) one cookie
The problem is deciding that "it" does not refer to (i), (ii),
or (iii). Since the backup method requires that we '"get into
trouble" in order to eliminate the preferred (i.e. "last
mentioned') referent, the problem boils down to determining
what in (i), (ii) or (iii) will cause trouble,

There are many possible facts which could lead us to the

decision that the "it" refers to the cookies. For example:

(a) Children are more likely to "like" cookies than the
other objects listed

73

(b) People are more likely to be concerned about
whether others like things which they have had a
hand in making

(c) Since Janet is presumably aware of the other things
in the list, the cookies are the only things about
which Janet must form a new opinion,

But none of these is absolute in the sense that if disobeyed
the story would be nonsense. So rule (c) which is, in nmy
opinion, the most likely explanation, would not prevent Mother
from saying "'l am sure Janet will like this dish." We could
easily imagine mother going on to say 'l bought it just for
her.'" Rather, each of these rules simply says, in effect, "If
| had the choice, | would pick ...'" But this means that the
rules must be able to compare possible referents, and we have
already seen that backup schemes do not allow for such
comparison,

We have seen other cases earlier in which one referent
simply fits better, (3.2) and (3.3). There is no reason why
Mother could not be the person 'not invited" in example (3.2).
Nor, of course, does it suffice to say that '""Mother's not
being invited doesn't make any sense since we were talking
about Penny going.'" What matters is not that Mother's not
being invited would make no sense, it is that Penny's not
being invited would make more sense. Indeed, if we had been
told, "Penny was told that Mother had not been invited,'" we
would have understood as best we could. Perhaps we would have

waited for a line like '""Penny knew that Mother would never let

her go alone,'" We might try to handle (3.2) and (3.3) by

74

postulating a rule which rejects '"mother' as the referent
since the sentence with her as referent does not '‘advance' the
story. However, this is quite dangerous since in many cases
((3.7), (3.8)) neither referent advances the story, and such a
rule would then lead to rejecting all the referents,.

So far we have formulated our backup scheme with the

preferred referent being the last mentioned referent. There
are other possibilities. One interesting one is to have the
program define an object, or set of objects, as '"topic' or
“"important objects'. These objects would be tried first by
our backup scheme. Such a proposal would seem to help in
(3.17) where we could argue that the story was 'about'" the
cookie Mother left for Janet, This referent would then be
tried first and it would go through without any problems.
There is, of course, the problem of deciding that the story is
about the cookie, but even ignoring this, our latest proposal
has seemingly fatal problems.

(3.18) Mother was baking a cake. It would be done in an
hour, at which point Mother would put the cake on a
plate to cool. Meanwhile, she went into the living
room and sat down in the easy chair. 'l am sure
Janet will like it'" thought Mother.

(3.19) Mother was baking a cake. It would be done in an
hour, at which point Mother would put the cake on a
plate to cool. Meanwhile, she went into the living
room and sat down in the easy chair. |t collapsed.

While in (3.18) the "it" is understood as '"the cake', in

(3.19) "it" is "the easy chair'". |If the story is "about" the

cake (as would be necessary to explain (3.18)) then we should

75

understand "it" as being the cake in (3.19) also.
Or again, consider a modification of (3.1):

(3.20) Today was Jack's birthday. Penny and Janet went to
the store. They were going to get presents. Janet
decided to get a top. ''Non't do that'" said Penny.
“"Jack has a top. It is green.,"

If in accounting for (3.1) we had ''the present top'" as the
topic of the story, our topic rule should give us '"the present

" as the "it" in (3.20). In fact, we understand the last

top
"it" as referring to Jack's top.

So while "topic'" seems to help 'backup' methods, it does
not seem to help enough., This does not mean that the concept
“"topic'" is useless in general. |Indeed a more complete theory

will surely include it. It just is not sufficient to enable

“"backup'" methods to work.
A Breadth First Method

The idea behind the restriction method was that since a
demon represented a potentially relevant fact, it should be
allowed to assign a referent to an undecided noun phrase.
However, it is quite possible to have several demons looking
for similar patterns, in which case only one of them (the most
recently added) will get to select the referent, since by the
time the others get to the assertion the NP will no longer be
undecided,

Our breadth first method removes the asymmetry between

the first demon to apply and all the rest. |In this method we

76

go through DSP once for each possible referent, keeping the
facts learned in each case separate. That is, we process the
sentence several times, each time assuming a different
referent for the undecided noun phrase. (We can think of the
different referents being tried in parallel.) The referent
which allows the most causal links between the current
sentence and previous facts is the one selected and the facts
generated by the other referents are to be discarded. The
idea here is simple. We have been suggesting that the
referent we want is the one which "fits" best. That might be
the referent which allowsthe most links to what has already
happened.

Such a scheme would seemingly require much more
computation than the restriction method, especially when we
consider what happens when more than one referent is left
undecided by early referent analysis. So, unless we had
strong evidence that it were necessary we would not want to
implement it. | have no stories which indicate that this
method is needed.

The reader may then wonder then why | even brought the
topic up. The reason is that there are several potential
problems associated with the restriction method which do not
apply to the breadth first method.

First, suppose we are executing a demon or base routine

and we come to some conditional where the alternatives are

77

equally likely, For example, part of TRICK-BASE might ask "is
the animate object which is going to do the 'trick' a person
or animal?" (it helps to know in order to decide what
constitutes a trick.,) If we do not know who the animate
object is, we may have no way to answer. On the other hand,
in the breadth first method we will "know'" who the animate
object is, even though later we will throw out all the
possibilities but one. While this is a problem for the
restriction method, in chapter 7 we will discuss a possible
solution which involves only a minor change in the model,

The seccond potential! problem deals with the restriction
methoq's asymmetry between first applied demons and later
demons. One can easily imagine that at certain points in a
story some demons will be more "important' than others.
Perhaps they will explain more of the events of the story. At
the same time, there may be other, '"minor', deméns also
asserted, Further, let us assume that some of the minor
demons would not assign the same referent to a particular NP
as the major one would., 1In the breadth first method the minor
demons would be overruled by the major one. In the
restriction method however, we could have the stiuation where
a "minor' demon picks up an assertion and assigns a referent
so that the major one would not even apply. | have not
constructed an example of this sort since by and large when

analyzing a story | have only considered the most important

78

demons which could apply..Only when we are more advanced, and
have also included "minor" demons, might we encounter this
situation., Hence, while my personal opinion is that the
breadth first method will not prove to be necessary, it is

still a possibility.

79
3.5 Demons and Details

Section 3.3 gave the basic ideas about getting context
into reference determination, |In this section we want to
elaborate the idea of demons., Demons, as used in this paper
stem from the programming language Planner, designed by Carl
Hewitt (Hewitt 69).

Let us construct a demon to account for the following
example:

(3.21) Janet wanted a nickel. Her piggy bank was in her
room, so she went there and got it. 'l will get
that nickel" she said. She shook the piggy bank
very hard., Finally it came out.

Again we note that we will need a demon to answer the
questions '"Why did the money fall out?" and '"Did Janet get the
money?". (What follows is a very simpfified e*ampie. For
more detail see chapter 5.)

Now the incoming sentence 'It came out" might look like:

(3.22) (6o 21T \)

Actually, afl assertions have 'names", so in (3.22) we will
point from the '"go' assertion to the '"out of'" assertion by
mentioning the latter's ''name'. However, it is easier to go
through the example if we ignore the names. ?IT is a variable
restricted to the two possible referents NICKEL] and
PIGGY-BANKI. The ?PUNMENTIONED is an unrestricted variable
which represents the answer to the question ''came out of

what?". The demon which picks up (3.22) is outlined on the

8o

next page.,
How (3.22) will activate this demon since it matches the
pattern of PB-0UT-0F, Compare:

(OUT=-0F 21T ?PUNMENTIONED)
(OuT-0F M 7PB)

During this match 21T and ?M are linked up (that is, anything
~which happens to ?M will also happen to 21T), as are
?UNHEQTIONED and ?7PB, When ?IT and 7M are linked, the
variable ™ also becomes restricted to the possible referents
for "it'", NICKEL! and PIGGY-BANKI. When we check (in the
second box) that ?M is some form of money, we will be looking
for objects which are labeled MONEY. 1In the data base we will
have the assertion:

(1S NICKEL! MONEY)
which is to match the pattern:

(1S M MONEY)
This will cause ?M to match NICKEL]. This value will be
checked against the restriction on ?M which came from 21T via
the linking'mentioned earlier. Since NICKEL]! Is an acceptable
referent, the match will go through. When the theorem has
been executed ?IT will remain assigned to NICKEL] even though
the variable ?M will no longer "exist". 1In this way we decide

that "it" in example (3.21) must refer to the money.

PB-0UT-OF

This is a demon called PB-0UT-0F,
The local variables are (M PB PERSON)

(OUT-0F 7M 7PB)

This is the pattern of the theorem. Since 7M and 17PB
have no value at this point the pattern will match
any assertion about one object coming out of another.

Look for an assertion in the data base which says ?7PB 1
is a piggy bank, This means looking for something like

(1S 7PB PIGGY~-BANK)

1

1

\l/

1 Look for an assertion of the form 1
1 1
1 (1S M MONEY)]
1 1
1 This insures that ?M is money. 1

1

1

\V

Look for

(SHAKE ?PERSON ?PB)

one of these searches fails to find a matching item in
the data base the entire theorem fails and there is no
net effect. (Note 4)

-) ot omt b -t —

1
]
1
1
This checks that someone is shaking the piggy bank. If 1
1
1
1

1 Place new assertions in the data base stating that the |
1 money came out because of the shaking, and ?PERSON now |
1 has the money. 1

81

82

4 A Few Details

In previous chapters we have presented basic ideas, but
suppressed details about the representation of facts, etc. In
this chapter we will specify some details needed in the rest
of the thesis., For brevity | have eliminated justifications
for most decisions. Often alternative méthods seemed quite

reasonable, and some will be discussed in chapters 8 and 9.

4,1 The

(4.1)

Iinternal Representation

We represent a statement like

83

Bill got the ball before he went to the park

by several assertions:

(4.2)

1]
IINIII. N
referenc
associat

keep the

(N1 BEFORE N2 N3)
(N2 GET BILLY BALL3)
(83 GO BILL! PARK1)

2" etc are '"names'" (assertion n

umbers) for cross

e of assertions. In a given story each name will be

ed with only one assertion, but

names unique in the thesis.

I will not attempt to

We need to represent the tense of a statement, which

we will assume to be either past (PAST), present (PR), or

future (

three, b

FUT). MNaturally there are more

ut they will do for the stories

tenses than these

we will be working

with, The type of sentence may be imperative (IMPERATIVE),

question

(QU), or statement (ST). We w

ill put the necessary

markers right after the predicate in the assertion, so we will

have:

(4.3)

(4.4)

(4.5)

(We will

page.)

Jack is at the park, .
(N4 AT PR ST JACKI PARKI1)

Did Jack go to the park?
(NS GO PAST QU JACK! PARKI1)

Will Jack go to the park?
(N6 GO FUT QU JACKI1 PARK!)

discuss the representation of

imperatives on the next

84

Except for chapter 9, we will only be concerned with
statements, as opposed to imperatives or questions. Also,
most of the statements will be in present tense. Hence, iIn
the interest of readability, we will suppress all PR and ST
markers., So (4.3) will look like:

(4.6) (N7 AT JACK) PARKI)

We mentioned ih 2,3 that future tense statements were
to be considered "possible futures" in that associated with
the concepts introduced by the possible future would be facts
which might interpret later parts of the story. We also
mentioned that certain other types of statements should have
the same effect. It doesn't make very much difference, from
the standpoint of what we are looking for, whether we say:

can
should
(4.7) Janet said, "I{ will bake a cake,'
must
want ¢t
This suggests that we represent statements 1ike these in such
a way that they have a common core which expresses the ''bake a

cakeness' of the statement. So we will have

(N8 WANT JANET! N9)
(N9 BAKE FUT JANET1 CAKE!)

Now, suppose Jack and Janet are outside, and they decide
to pretend they are eating supper, |If Janet says
(4.8) '"Jack, get a plate"
we would want to interpret Jack's going into the house as part

of getting the plate. Hence (4.8) and other imperatives act

85

like possible futures. For this reason we will represent
(4.8) as:

(N10 IMPERATIVE Ni1)
(H11 GET FUT JACKI] PLATEI)

Negation will be indicated by a NOT in the assertion. So
we get:
(4.9) Jack was not in the house
(N12 IN NOT JACK! HOUSE!D)
Besides singular specific objects like HOUSEl, we need
plural objects like '"the pencils'" which constitute a set of

unknown number, and ''non-specific'" objects such as '"a ball",

as in '"Jack wanted a ball", which may refer not to any
particular ball, but to any one of the set of all balls.
Finally we will allow definite sets where we know all the
members such as "The ball and the top'" in:
(4.10) "Jack was holding the ball and the top."

(N12 HOLD JACK! DGROUP1)

(N13 MEM TOP1 DGROUP!)

(N14 MEM BALL1 DGROUPI)
We will call such groups DGROUPS for Definite GROUPS. (Nofe
5)

So far we have only discussed the gross structure of the
internal representation. There are many fine points which
will have to be decided., For example, how would we represent

(4.11) Jack put the money in the piggy bank,

Some possibilities are:

86

(N15 PUT=-IN JACK] MONEY! PB1)

(N16 PUT JACKI N17)
(N17 IN MONEY! PBI1)

(N18 PUT IN JACK] MOHEY! PB1)

There are many decisions of this kind which need to be
‘made. I will try to explain my choice whenever a new
representation is introduced. 1| do this because | believe
that representation is best discussed in the context of how it
is going to be used, and my chief concern usually is with what
makes deduction easiest. There have, however, been several
more abstract studies of possible internal representations for

English, see (Sanderval 72), (Shank 69) and (Simmons 70a).

87

4,2 vhat Demons Look Like

At the very end of section 3.5 we used a simplified
diagram to described a demon which connected money coming out
of a piggy bank with the person who shook the PB now having
the money, In this section we give a more detailed notation,

The basic form of a demon is:

(DEMON (demon's name)

(1ist of variables)
(pattern the demon is looking for)

(el)
(e2)
. Program to be run if the
. proper assertion is found
(en))

So our PB-0Q0UT-0F demons would have the outline
(DEMON PB-0UT-0F

((variables))
(7N OUT=-0F 7M ?7PB)

)

To fill in the est of the demon we will need two primitives,

GOAL and ASSERT,
The Primitive GOAL

GOAL, as used in this thesis corresponds to THGOAL in
Micro Planner, (Those who know Micro Planner, however, should
still note the names given to GOAL specifications, as
mentioned in the second half of this sub-section, since | do

not use standard Micro Planner notation.) GOAL is primarily

88

an information-obtaining primitive. So for example:

(GOAL (IN JACK HOUSE))
asks if the assertion (IN JACK HOUSE) is in the data base. If
the answer is Yes, the next line of the demon will be
executed; if no, then, roughly speaking;'the demon will "“fajIn
and the system will act as if the demon had never been run,
If we just want to know if Jack is in anything we would ask:

(GOAL (1IN JACK 7))
Anything will match a "7 SO any assertion which has IN in the
first position, JACK in the second, and anything at all in the
third will be retrieved. (1f several matches are possible,
the first one found will be used, and the others “"saved". The
purpose of '"saving" the rest will be described later.) If
there still is nothing which satisfies the pattern the GOAL
will fail as in the first case. A more useful form uses a
variable instead of a ", as in:

(60AL (1IN UACK 7X))
Variables are allowed to be '"unassigned" in which case 17X
would match anything, and in the process get assigned to the
object it matched. Hence if the last example matched (IN JACK
BAR) ?X from that point on would have the value BAR. However,
if 7x already had the value STORE our pattern would only match
(IN JACK STORE) .

It is possible to add further specifications to the GOAL

command, We will only be interested jn two particular

89

specifications. We can add restrictions (or filters) to what
kind of assertions we want to match our pattern, Usually
these filters will refer to the property list of the
assertions. For example, we will often use filters that say
we are only interested in assertions which are currently true.
That is, we don't want any updated or otherwise untrue
assertions., Since the TROUBLE tag is placed on the property
list of assertions which are no longer true, our filter will
simply look for this tag. We will indicate this filter by a
$TRUE following the pattern in the GOAL statement. So we
wouid have:

(GOAL (IN ?P HOUSE) S$TRUE)
Another modification of the GOAL statement is to tell it to
use fact finders (consequent theorems) in trying to establish
the GOAL. While in general it is possible to tell GOAL which
or what kind of fact finders should be used, we will always
request all fact finders whose pattern matches the GOAL
pattern, We indicate this by including a $DEDUCE in the goal
statement. So if we wanted to establish that Jack is
currently in the house, we might ask:

(GOAL (? IN JACK HOUSE) $TRUE $DEDUCE)
In this example the first "?'" says that we don't care what
assertion number the assertion has. Note that a GOAL
statement may have side effects. For example, a fact finder

called by the GOAL may put new assertions in the data base.

90

The Primitive ASSERT

The other needed primitive is ASSERT which is somewhat
like THASSERT in Micro Planner. Like THASSERT, ASSERT adds a
new_assertion to the data base. Unlike THASSERT, it also puts
tﬁe asseftion on the TO-BE-DONE list, which is a list of
assertions which still have to be processed by DSP. The exact
role of the TO-BE-DONE list will be given in the next section.

The other difference between ASSERT and THASSERT is that
since in most cases when we assert a new assertion we will not
have chosen a particular "name'" for it (like N38), we will let
ASSERT make up a name. So if we have:

(ASSERT (? IN JACK HOUSE))

ASSERT will interpret the initial '"?" as meaning that it

should give a name to the assertion.
Failure and Backtracking

At this point we can fill in the demons which we
initially started with, It will look like

(DEMON PB=0UT-0F
(NOLD PB PERSON M N)
(?N OUT-OF 7M 7PB)
(GOAL (? 1S ?2PB PIGGY=-BANK))
(GOAL (? 1S ?M MONEY) $NDEDUCE)
(GOAL (?NOLD SHAKE ?PERSON 7PB) $TRUE)
(ASSERT (7 HAVE ?PERSON 7M))
(ASSERT (? RESULT 7N ?NOLD)))

Earlier we said that should a GOAL fail, the entire demon

fails. A little closer look reveals that this is not exactly

91

the behavior we want. Suppose wé have two piggy banks, PBI
and PB2, and it is PB2 which is the one which Jack is shaking.
Furthermore, suppose that the first PB to be found by:

(GOAL (7 1S ?7PB PIGGY-BANK))
is PBl, Our third GOAL:

(GOAL (? NOLD SHAKE ?PERSON ?PB))
will then fail, Rather than having the entire demon fail, we
will simply go back to the first GOAL and try the other
possibility, PB2. That is to say, when a failure occurs, the
program is backed up to the last choice point (in the sense
that the program chose between PBl1 and PB2) and then trys
again. In Planner or Micro Planner this backup will go into
previously called sub programs and sometimes into the program
which called the program with the failure, Such capabilities
are needed for the deductions in children's stories, in
particular when we use a chain of fact finders to establish a
GOAL. However, in the thesis we will not discuss any cases

where it is necessary to take this into account.
Specification of Demons

Let us take a closer look at one of the lines in
PB-0UT=-0F:
(GOAL (7NOLD SHAKE ?PERSON ?7PB))
In the demon this line has the effect of checking that the

piggy bank which the money is coming out of is the one which

92

was shaken., It also binds the variable ?PERSON to the person
who shook the PB so that in a later line we will know who it
is that now has the money. However, this demon will not be
Put in until we see the '"shake PB" assertion. Hence at the
time the demon is put in we know which PB we are interested
in, and who the person is who will get the money in case it
comes out. So at the time the demon is put in we will pass on
this };%ormatioh directly in the demon. The way we will do it
is by "specifying" the variables in the demon. So just before
we put the demon in we will change the demon so that ?PERSON
will be bound to JACKI (assuming he is the one who is shaking
the PB), etc. The net result will be:
(DEMON PB-0UT-0F]

((NOLD 'N59) (PB *PB1) (PERSON 'JACKI) M N)

(7N OUT-0F M 7PB)

(GoAaL (? 1S M MONEY))

(ASSERT (7 HAVE 7PERSON ?7M))

(ASSERT (? RESULT 7N ?NOLD)))
The variable declaration list now says that ?PB is bound to
PB1, ?PERSON to JACK! and NOLD to N59, which we will assume is
the assertion number of the "shake' assertion, (In all demons
the variable ?NOLD will be bound to the assertion number of
the assertion which caused the demon to be asserted.) Note
that by specifying these variables the demon can dispense with
two of the GOAL statements which were in the original

formulation, namely the one which would have checked that 7PB

is a piggy bank, and the one which would have looked for the

"shake' assertion,

93

Also note the change in the name of the assertion. It

.

now has an index after the name. The reason is that it is
quite possible that we could need the same demon for two
different situations, where the people and objects are
different. Hence when we specify the demon we are really
creating a new instance of the demon, which is given a unique
indexed name,

There are two primitives which put in demons, D=-ASSERT
(Demon=-ASSERT) and LOOK-BACK. They both have the same syntax.

(D-ASSERT (PB-0UT-0F 'N59 'PBI '*JACK1))

In general we can have more than one demon asserted by a
singlec D-ASSERT statement. For each demon we need to specify
the name, and a list of variable specifications. D=ASSERT
just asserts the demon and binds its variables., LOOK-BACK

does this plus applies the demon to the information in the

data base (see section 2.4).

94
4,3 Summary of Flow of Control

In chapter 2 we introduced four parts of DSP. We did not
explain in what order we apply these parts when we get a new
assertion. Actually we only need order three of the four
sections, since fact finders are called when one of the other
three sections wants to prove a given fact, not whenever a new

assertion comes in.

1) Apply internal translation to the sentence to get it in
assertion format, This will include FPR as mentioned in

chapter 3.

2) Place all assertions on the TO-BE-DONE list and in data

base,

3) Take each entry on TO-BE DONE in turn and apply first the

demons, and then base routines.

4) At any point in (3), if a new assertion is generated, put

it at the end of TO-BE=-DONE.

5) When (3) and (4) are finished, begin TO-BE-DONE again, and

apply bookkeeping to each assertion.

95

5 Piggybanks and the Problem of Formalizing Knowledge

As we have seen, it is necessary for us to take our
everyday knowledge, and put it in a form which can be used by
the machine, 1In this chapter We will ‘study one topic in great
detail, The . subject is piggy banks.

I will be trying to do two things at once in the chapter,
The primary goal is‘to articulate some parts of a complex body
of information on a given topic. At the same time, | will try
to give some idea of the kinds of problems one encounters
while formalizing a body of knowledge. The second emphasis is
the development of several ideas based on examples drawn from

piggybanks.,

96
5.1 Getting Our Feet Wet

We start out just writing down various things we know
about piggy banks (PB's henceforth).

PB's come in all sizes and shapes, though a

preferred shape is that of the pig. Generally the

size will range from larger than a doorknob, to

smaller than a bread box. Generally money is kept

in PBs, so when a child needs money he will often

look for his PB. Usually, to get money out you

need to be holding the bank, and shake it (up and

down). Generally holding it upside down makes

things easier, There are less known techniques,

like using a knife to help get the money out. |If,

when shaken, there is no sound from inside, it

usually means that there is no money in the bank,

If there is a sound it means that something is in

there, presumably money. You shake it until the

money comes out. We assume that after the money

comes out it is held by the person shaking, unless

we are told differently., If not enough comes out

you keep shaking until you either have enough
money, or no more sound is made by the shaking

(i.e., the bank is empty). In general the heaver

the PB the more money in it. Some piggy banks have

lids which can be easily removed to get the money

out, Sometimes it is necessary to smash the PB to

get the money out. To put money in, you need to

have the money and the bank. The money is put into

the slot in the bank, at which point you no longer

are directly holding the money. Money is stored in

PBs for safe keeping. Often the money is kept

there during the process of saving in order to buy
something one wants. PBs are considered toys, and

hence can be owned by children. This ownership
extends to the money inside. So, for example,
is considered bad form to use money in another
child's PB, Also, a PB can be played with in the
same way as, say, toy soldiers, i.e., pushed around
while pretending it is alive and doing something.

it

Though the above is not exactly a short list, it is not all
that long either, and surprisingly enough it contains almost

everything | can think of about piggy banks. There are some

97

facts which pertain to PBs which are not included in the above
list because they are really facts about much bhroader
classifications., For example, we could say that one can throw
a PB but this applies to small objects in general, and would

most likely appear in a discussion of "throw'".

PB as Container

On the other hand, some of the facts listed above could
be generalized somewhat from PBs. The trick of shaking a PB

s in it applies to other containers

to find out if anything
also. 1In treating such cases | have ignored the more general
aspects of the problem and instead acted as if the facts were
local to PB, My belief is that the best way to proceed in
these cases is by treating individual containers, say,
separately and only trying to combine the facts after we have
had experience with several specific examples,

Of course, we cannot use the information in ;he form it
has on the previous page It is not at all clear how our
system would use a fact like '"Money is stored in PBs for safe
keeping.'" The basic problem then is to take such information

and get it into a more usable form., We will do this by
presenting very short story fragments along with a question,
which together illustrate the fact being examined., We will

then propose a way to answer the question. As we shall see,

often we will have to go back and revise our solutions when

98

later examples are considered.

What | am proposing then is to study special cases,
particular\stories. particular containers., This leaves many
questions unanswered., Which are the best containers to study?
How can we be sure we have all the facts about topic X? To
answer such questions one would need a theory of the structure
of knowledge, and neither | nor anyone else has one., My
belief is that the only way to obtain such a theory is to plow

ahead, as we shall do in this chapter.
Allowable Assertions

Before we can get started on this program we should say a
word about what kinds of assertions we will allow to be used
in describing our facts about piggybanks. .Naturally we will
need some standard ones !ike:

IN also other location assertions

HAVE A has B

RESULT A is the result of B

SHAKE A is shaking the object B
However, note that SHAKE is a composite activity, consisting
of many smaller motions. We might have the policy of trying
to replace composite activities with their subactions, though
in the case of shake there would be little point since its
subactions have no significance by themselves. 0On the other
hand, do we want to allow a composite activity like:

(5.1) (N6 GET=-FROM FUT JANET] PIGGY-BANK] MONEY1)

This says that there is a possible future with Janet getting

99

money from the PB. 1| will allow (5.1) since it and other
composite activities embody my belief that a story (or real
life) is not just a linear string of actions. Rather those
actions are structured in many ways. One particular way is
that actions are clumped together into larger activities., So,
getting the PB, shaking it, listening to see if there is
anything in it, grabbing the money as it falls out, are all
part of trying to get money out of the PB,

Furthermore, not having composite activities would
complicate the process of answering questions about composite
activities such as '"Why did Janet get money from her PB?". We
are not interested in why Janet moved the PB upwards, then
downwards, or why she turned the PB upside down, We want to
know why she did all of these things. At best we would be
forced to have a separate RESULT assertion linking each
activity to Janet's desire to get money from the PB, At worst
we might have trouble screening out '"noise'" such as '"the
reason Janet shook the PB was that she could‘not find a knife

to use to get the money out',

100

5.2 LOOK-BACK and Generalizations on NDemons

LOOk-BACK

Suppose we were given:
(5.2) Janet needed money. She got her piggy bank.
Even at‘this point, were we to be asked what Janet is going to
do with the PB we would still say, '"get money from it." This
suggests that when we enter our PB base routine we want to
check if the actor needs money, and if so, assert that the
intention here is to get money from the PB.
However, we could have the story go like:
(5.3) Janet got her PB, "I want a nickel" she said.
In (5.3) we don't find out about the need for money until
after the statement concerning the PB, This implies that
PB-BASE will have to put in a demon looking for '"want money"
if it can't establish it already. The only alternative would
be for ''want money" to look for "getting a PB", This seems to
be less reasonable, since there are many ways of getting
money, but only a very limited number of reasons a person gets
a PB, Besides, unless we use a demon we must place the
information under both PB and '"want money'". With the demon it
need only appear once.

This demon would look something like this:

101
(DEMON PB~NEED-MONEY
(NOLD PERSON PB N1 MONEY N)
NOLD is specified to the assertion number of
the ''get PB'" assertion, which is the assertion
which caused this demon to be asserted. PERSON
is specified to the person who got it, PB is
specified to the piggy bank,
(7H HAVE FUT ?PERSON ?MONEY)

The demon is looking for a possible future
with the person "having" money,

(GOAL (? 1S ?MONEY MONEY))
Make sure that what the person needs is money.

(ASSERT (?N)1 GET-FROM FUT ?PERSON ?PB TMONEY))
(ASSERT (? SUB=-ACT 7N1 ?N))

Says that the 'get-from' assertion is a sub
action of wanting to get money,

(ASSERT (? SUB=ACT 7NOLD ?N1)))

And getting the PB is a subaction of getting

money from it.
To account for (5.3) we suggested that PB look for the person
wanting to get money, and then assert statements about how
getting the PB fitted into his goal. This is exactly what this
demon does, except that the demon waits for the 'want"
statement to be made, whereas the PB routine will look back to
see if we already know the fact. We can collapse these two
activities into one by using LOOK=-BACK (see sections 2.3 and
L.2). LOOK-BACK not only puts the demon in, but also looks
back in the data bhase to seeif it already contains an

assertion which matches the demon's pattern. |f there is a

102

match in the data hase, then this demon is applied to the

assertion,
A Second Demon

So far we have written one demon which captures a small
part of the relationship between piggy banks and money. Let
us go on to another,

(5.4) Janet shook her piggy bank. Finally she got a
nickel,

We could ask several questions
(5.5) How did Janet get the nickel?

Where was the nickel before Janet had it?

Is the nickel in the piggy bank now?
The last question is not trivial, even If we assume that we
have some way to place the nickel in the PB before Janet got
it. The problem is that usually we say that a person has (or
even "is holding') an object if he is holding something which
contains the object. So for example, if Jack is holding a box
and in the box is a kitten, were we asked '"Is Jack holding a
kitten?" we would say '"Yes." So when we are told that Janet
got the nickel, it is by no means obvious that this inplies
that the nickel is not in the PB., The conclusion must be that
we know that when dealing with piggy hanks, ''getting'" the
object means getting it out of the piggy bank.

The following demon is proposed to handle such problems,

It will be put into circulation when we first encounter "get

PB". (Note that it assumes, as we have all along, that 'get"

- | 103

entails "have',)

(DEMON PB-HAVE=-MONEY
(NOLD PB PERSON N1 M N)

NOLD, PB, PERSON are specified as before.
(?7H HAVE 7PERSON 17M)
Look for the person currently having money.
(GOAL (? IS ?M MONEY))
(1F-NEED (?N1 GET-FROM FUT ?PERSON ?PB ?M))
(1F-NEED (7 IN PAST 7M ?PB)))
IF-NEED does an ASSERT provided the item is not
already in the DB, So we are asserting (If we
don't already know) that the person got the
money from the PB,
(VF-NEED (? IN NOT M 7PB))
Now assert that it no longer is in the PB,

(ASSERT (? T-RESULT 7N 7N1))

Getting the money is a Trivial=RESULT of
getting the money from the PB.

(ASSERT (? SUB=ACT ?NOLD ?N1)))
Getting the PB is a sub action of getting
money from the PB,

A Digression on T=RESULT

We have introduced a new predicate here: T-RESULT
(Trivial=RESULT). When we say that A is a T=-RESULT of B we
mean that ''by definition'" B leads to A, To put this another
way, there are some actions which are partially '"defined" by
their results, such as "trade'", "find", “drop'", "kill" Y“eat"

""paint something a given color", etc. So, "the ball is red"

104

is a T-RESULT of "painting the ball red". T-RESULT differs
from RESULT in one important way. If X is a T-RESULT of Y
then X is not a T-RESULT of Z unless Z = Y, This means that
if Jack got a certain object by finding it in the woods, he
could not have gotten it from Mother. If we painted the ball
red, it could not haQe“Become red for any other reason. MNote
that for RESULT this is not the case, i.e., a given action can
be the result of several other actions. For example, in our
opening story, when Janet offers Jack both the toy cat and her
pencils for the paints she does it because she wants the
paints, and because Jack won't trade for just the pencils.
Other possible evidence for the distinction between

T-RESULT and RESULT comes from the distinction between “"how"
and "why'" questions in English. Consider:

How

(5.6) did Jack get the ball?

*Why

Bill gave it to him.

How

(5.7) did Jack dispose of the grape?

*Why

He ate it.
In each of these cases the * before the "why" indicates that
the answer given would not be acceptable if the question
started with "why'" rather than "how'. My theory is that this
is related to the distinction between T-RESULT and RESULT.

However, 'how' and '"why" usage in English is sufficiently

105

complex that more work will have to be done before we can be

sure., (Note 6)
Two Demons Into One

Returning to our demons, there seems to be some
duplication of information in the two demons we have written.
One recognizes why a person would get his PB, and the other
recognizes the results of his action. We might write this as:

Need money -- Try to get money from PB -- Have money
We might note that such a paradigm occurs elsewhere also. So
we have:

Want cookie =--> Get from cookie jar =<> Have cookie

Need new suit =< Go to tailors =--> Have suit

Want the chairr red -=> Paint the chair =< Chair is red

Want a cake =--<> Bake a cake --) Have a cake
What seems to be emerging is the fact that our two demons
represent cmly one fact, "PBs are useful for getting money."
This one fact is then used in two different ways, which-aré
related by the idea of '"goal oriented behavior'"., But our
representation of this information as two separate demons
would seem to indicate that there are two sepafate facts. ﬁow
we could combine the two demons, but this by itself will not
necessarily capture the generalization we have in front of us.
After all, we could just make one demon which consists of one
very large COND, which acts like one demon if the tense is
FUT, and the other demon if the tense is PR. What we really

want is some '"meta demon" format. Then into this format we

106

could stick "piggy banks are useful for getting money', or
“painting an object is useful for making it a given color",
Exactly how this is to be done is not clear, since it depends
on our analysis of 'paints', '"baking'", etc. However as a
start towards such a theory we might try to consolidate our
two demons in a natural fashon.

(DEMON PB=-FOR-MONEY
(NOLD PERSON PB MONEY N N1 TN N2)

As before, this demon is put in by ''get PB",
(7N HAVE ?TH ?PERSON ?MONEY)

Look for the person having had, having, or to
be having, money (that is, tense is variable).

(GOAL (? 1S ?MONEY MONEY)STRUE $DEDUCE)
(VF-HEED (?N1 GET-FROM FUT ?PERSON ?PB
(SR 7 (1S-0BJ ' (MONEY)))))

1S-0BJ and SR will be defined below.

(COND ((EQUAL ?TN 'FUT) (ASSERT (? SUB=-ACT N1 17N)))
EQUAL here is different from LISP EQUAL in
that if the first argument is unassigned, it will
he set to the second argument. Here we are
saying that if the person will be getting money,
then '"get from' is a sub-action of this desire.

((ASSERT (?N2 T-RESULT 7N 7N1)))))

Otherwise getting the money is a direct
result of '"get from',

Note that this demon does not account for the fact that if the
person now has the money it was previously in the PB. We
could put the fact into PB-FOR-MONEY, though at the cost of
separating the FUT and PR '"versions'" even further., (That is,

we would make the one demon look more like two different

107

demons put into the same shell.) Instead we should probably
give the question a lot more thought. For example we should
note that roughly the same information seems to be involved
in:
(5.8) Janet needed some money. She went to get her PB.
Question: Is there money in the PB?

Answer: Janet seems to think so,

IS-0BJ and $R

The expression ($R (variable) (predicate)) says that
(variable) is to be restricted so that it only matches objects
which satisfy (predicate). The restriction of variables
mentioned in chapter 3, is done by using the same symbol.

As for the new primitive in our demon, 15-0BJ, it does
the following:

When the pattern is used as a goal 15S-0BJ restricts the
variable (in this case the variable is simply a "?2") to
objects which are of the type given by the argument (in this
case MONEY), That is, 1S-0BJ will only allow itself to match
objects about which we can prove

(5.9) (? 1S (object) MONEY)

When the pattern is used to make an assertion I1S=-0BJ says
to create a new NP defined by its argument. This NP will fill
the spot in the assertion corresponding to that taken by
IS-0BJ in the pattern. HNote that it is possible for the NP

""money'" to refer to previously mentioned objects. Should

108

there be more than one the NP will be represented by a
restricted variable,.

We will see other uses for 1S=-0BJ in later sections.

109

5.3 Jumping to Conclusions

Why we Jump to Conclusions

Hote that PB-HAVE-MONEY works in situations like:

(5.10) Jack and Janet were outside. The ice cream man
came along and Janet needed money for some ice
cream, She went to the house and got her PB., Soon
she came back with a dime,

This is all well and good, since PB-HAVE-MONEY gives the
correct interpretation of (5.10), The trouble is that (5.10)

could go on to say:

(5.11) "Look, Jack, see the dime | found on the sidewalk]"
said Janet,

This shows that our program jumped to a (wrong) conclusion
when it asserted that Janet got the money from her PB.
To take another examplé, suppose we have:
(5.12) Janet needed some money. She got her piggy bank
:gd shook it, Finally some money came out of the

If we now asked, '"Does Janet have the money?" the best answer

would be yes, and could be answered with a demon like:

(DEMOH PB-0OUT-OF
(NOLD PERSON PB X N NI)

PERSON, and PB are specified as one would
expect. NOLD is pointing to a '"shake'" assertion
since we are assuming that this demon is
put in only when we have seen ''shake'.

(?H OUT=0OF 17X 7PB)
Look for the money being '"out of" the PB.

(ASSERT (7?7 RESULT 7N ?7NOLD))

Assert that it got this way because of the shaking.
Also assert that the person now has the money.

(ASSERT (7M1 HAVE 7?PERSON 7X)))

However, (5.12) could go on to say:

(5.13) “The money rolled under the bed."
Again, the problem we must solve is how to answer questions
when in actuality we don't have enough information, though we

have enough to give a plausible answer.
How to Jump to Conclusions

We will handle this problem by allowing an ASSUMPTION
marker on assertions, indicating that the assertion may be
false. (Actually, when we get a story like '"Janet went to the
store, She wanted to get a ball," we are assuming that
"getting the ball'" was the reason for ''going to the store'.
While this might be false, if it were we would (justly) accuse
the story teller of trying to mislead us. An assertion will

only receive an ASSUMPTION tag if the fact could be false

111

wi thout our feeling misled.,) So, when we see that the money
came out of the PB we will assert that Janet now has it, but

mark the assertion "ASSUMPTION" so that if the ensuing lines

somehow contradict the assumption we will know that it can be
safely dumped. We will check for contradictions in
bookkeeping when we look for facts which must he updated by
our latest fact. |f the old fact is a recent assumption thé
program should not update it, it should erase it. (Note 7)

The ASSUMPTION tags will be placed on the assertions by a
function in the demon which deduced the assumed assertion. In
PB-0UT-0F we would add one more line of code, (ASSUMPTION
IN1). Later, when (5.13) followed (5.12), bookkeeping would
automatically look to see if '"money under the bed'" updates any
previous information, |In this case it would update the fact
that Janet has (in the sense of "immediately controls') the
money. But before we marked the ''have'" statement as updated
we would note that it is just an assumption, and that it was
assumed quite recently (say within the last 5 lines or so).

So rather than updating the fact, we could erase it. The idea
is that we want the program to jump to conclusions, with the

proviso that it can retract them later. (Note 8)
Un-assuming an Assumption

We also need to be able to "un-assume' an assertion.

That is, we need to have the ability of removing the

ASSUMPTION tag but leaving the assertion in tact so that it
can no longer be erased by contradictory evidence. For
example, suppose we have assumed that Janet got the money when
it fell out of the PB. Now suppose the next sentence is:

(5.14) Janet gave the money to Betty for her jump rope.
Presumably "give" will specify that Betty now has the money.,
But this contradicts the fact that Janet has the money, as
aséumed by our demon., O0On the other hand, suppose we knew that
Betty was around when the money came out. |If the next
sentence were

(5.15) Betty got the money
we would interpret this as contradicting the assumption that
Janet got it. The problem is resolved by the fact that "give"
must also check to see if Janet has the object which she is
giving away, and if we don't have the fact available, assert
it. So, when we try to establish that Janet has the money, we
will stumble across our assumption that she got it when it
fell out of the PB. We then "un-assume'" that fact, since it
is necessary for the consistency of the story.

Note that there is some question about exactly what is
capable of ""un-assuming' an assertion. We will assume that
only consistency checks have this ability, Hopefully when
more research is done on assumptions in stories we will get a

more definite answer,

113

When Do We Jump to a Conclusion?

The mechanism detailed here for removing incorrect
assumptions is probably adequate for our immediate purposes
but there remains a problem, deciding exactly when we have an
uncertain situation., At this point we must actually write
into the code of a particular demon that its results are
uncertain. However, a given demon can produce very reliable
facts in one situation, but much less reliable information in
another., We have actually seen this in our examples, but not
being able to go into everything at once, | chose to ignore it
until now. Consider:

(5.16) Jack got his PB, He shook it and shook it.
Finally he got some money.

as opposed to:

(5.17) Jack went home and got his PB. He had a nickel
when he got back to where Bill was waiting.

In both cases, our PB-GET~MONEY demon should operate. In the
(5.16) its result (that Jack got the money from the PB) can be
completely relied upon; in (5.17), it can't. At first glance
the difference seems to be that the '"get'" statements differ in
tense., (Because the narrator always talks in past tense,
anything he says in simple past should be interpreted as
present tense with respect to the story. Hence in (5.16) we
have a present tense statement, whereas (5.17) is a past tense
statement.) We might reasonably arque that in general,

present tense statements lead to more reliable conclusions

114

than past tense statements. This seems often to be true, but
the reason goes deeper., Consider:

(5.18) Jack and Bill were outside. The ice cream man came
along, but Jack had no money. Jack went home and
soon he was back. ''Where were you?'" asked Bill.

"I went home and got my PB'" said Jack. '| shook

and shook it. | got some money and came back here."
This seems perfectly clear. We should have no doubt that he
got the money from the PB, even though his statement is past
tense.’ So what seems to matfe}‘is how reliably we can pin
down the time when the money was "got". In (5.16) and (5.18)
we can know the time fairly exactly. It was right after he
shook the PB, which also implies it was while he was holding
the PB. This means that there was not enough time for
anything else tc happen. !n (5.17) we cannot be so sure, All
we know is that he got the PB and some indefinite time later
(after he returned to the place he had been hefore he went
home) he had some money. This leaves, say, five minutes in
doubt.

Assuming this analysis is reasonably correct, several
questions arise. 1) Who is doing this analysis? The demon
in question, or some specific routine designed for doing it?
| would suspect the latter since the process would seem to be
a complicated one, but then, how do we transfer this
information to the demon in question? (0r does the demon in
question call the program?) 2) What is the algorithm

involved?

115

A clear problem for future research is to collect

examples of "jumping to conclusion" problems, and working out

suitable procedures to explain them.

116
5.4 Demon-Demon Interaction

in section 2.5 we discussed some of the assumptions we
had made earlier in the chapter. One particular assumption
was that explicit questions (i.e., GOALs) could only be
answered by assertions and fact-finders. In this section we
will argue, in effect, that this assumption is incorrect. We
will see that in some instances the information needed to
respond to a GOAL is bound up in a demon. Rather than
duplicate the information and include it in a fact-finder

also, it would be more economical to somehow use the demon to

answer the goal.
Evidence of the Phenomenon

Getting presents for someone often requires money. So if
we saw

(5.19) Janet was going to get a present for Jack. She
needed some money.

or

(5.20) Janet needed some money. She was going to get a
present for Jack.

we would assert that the reason she needs money is to get a
present for Jack, Since the ''need money'" statement can occur
on either side of the ''get present' statement, it is clear
that we want ''get present' to apply LOOK-BACK to a demon which

says "If the ‘getter' needs money, it is because of 'getting

present','" But now consider the following fragment:

117

(5.21) Janet was going to get a present for Jack. She
went to get her PB.

Once again we want to assert that Janet gets her PB because
she wants money. But this time there is no previous assertion
which says that she needs money. Of course, what is at work
here is the fact that often presents are bought, in which case
the person will need money to do the buying. But, ogiginally
we represented tﬁis fact as a demon, and so far we have no way
for two demons to interact with one another. That is, somehow
we want our new '"need money" demon to make use of the previous
"need money" demon which was activated by '"present". So
roughly speaking, when LOOK-BACK does a GOAL on the pattern of
PB-FOR-MONEY it will find not a fact-finder, but the
PRESENT-NEED-MONEY demon. This mechanism {we will call it

demon~demon interaction) is a clear extension of our basic

model as described in chapter 2.
“"Implementing' Demon-Demon Interaction

We will extend LOOK-BACK so that not only does it try to
find an appropriate fact earlier in. the story, but it also
"“pseudo-asserts' the demon pattern, Asserting a fact
involves, in general, two distinct activities. The most
obvious is putting it into the data base, the other is placing
the assertion on the TO-BE-DONE list. When we pseudo=-assert
something, we only look for applicable demons. Now, suppose

we specify in LOOK-BACK that if any pseudo-asserted pattern

118

activates some demon which succeeds (that is, we get through
the entire demon) then the pattern will actually be put into
the data base., To make this clearer let us take the example
at hand. The first line of (5.19) ("Janet was going to get a
present for Jack,'") puts in a demon which is looking for
Janet's needing‘money (PRESENT-NEED-MONEY). Its pattern is:
(2N HAVE ?TN 7PERSON ?MONEY)

We now come along to the second line ("She went to get her
PB.") and PB=-BASE is going to assert the demon PB-FOR-MONEY by
using LOOK-BACK. PB-FOR-MONEY's pattern is identical to the
one abdve (the pattern of PRESENT-NEED-MONEY), and in both
cases ?PERSON is assigned to Janet. |If we now pseudo-assert
the pattern of PB-FOR-MONEY, it wil} naturally match the
pattern of PRESENT-NEED~MONEY, which will then be executed.
LOOK=-BACK, noting that the pattern successfully activated a
previous demon, (PRESENT-NEED=-MONEY) puts into the data base
the pattern which it originally just pseudo-asserted. (This
will be the pattern of PB-FOR-MONEY,) Naturally, this new
assertion causes PB-FOR-MONEY to be activated., The net result
is that we now have the fact that Janet needs money in the
data base, plus the facts generated by the two demons (that
she needs money to get the present, and she got her piggy bank
in order to get money),

In our explanation we have skipped over one point,

Notice that we end up with an assertion in the data base which

119

mentions ''money'". But ''"money'" was never mentioned in the
story. Both demons (PB-FOR-MONEY and PRESENT=NEED=MONEY) will
have a check to insure that the object needed is money. These
checks will naturally fail, since we have not said that the
object needed is anything at all. The solution to this
problem makes use of 1S-0BJ, Rather than specifying that the
object must be money by using

(GOAL (? IS ?MONEY MONEY)$TRUE $DEDUCE)
as in PB-FOR-MONEY, we can specify the fact in the demon's
pattern with:

(?N HAVE ?TN 7PERSON
(SR ?MONEY (1S=-0BJ ' (MONEY))))

In this way we will both specify that the object must be money
when the pattern is used as a goal, or as a demon pattern, and
when it is asserted we will "create'" the needed "money"

symbol, (Note 9) We might then rewrite PB-FOR=-MONEY as:

120
(DEMON PB-FOR-MONEY2
(NOLD PERSON PB N N1 N2 TN MONEY)
This demon is put in by a "get PB" assertion.
(?N HAVE ?TH 7PERSON ($R ?MONEY (1S=-0BJ ‘' (MONEY))))
Still is looking for the person having had,
having, or to be having, money, only now the
pattern itself requires that ?MONEY be money.
(VF-NEED (7N} GET=-FROM FUT
7PERSON 7PB
(SR 7 (15-0BJ *(MONEY)))))
(1 F-NEED (7 SUB-ACT 7NOLD 7N1))

Assert, if needed, that getting the PB is a
sub action of getting money from the PB.

(conND ((EQUAL ?TN 'FUT) (ASSERT (? SUB-ACT N1 7N)))
((ASSERT (?N2 T=-RESULT 7N 7N1)) (ASSUME N1 7N2))))

A Restriction on Demon-Demon Interaction

We should add that demon-demon interaction is probably
more complex than we have indicated so far. Consider:

(5.22) Janet was going to get a present for Jack. "I will
get something for him at the store' she thought.

It would not be unlikely that both '"present" and "“store'" would
put in a '"need money' demon. However, in (5.22) we cannot
assume that Janet really needs money, For all we know she has
as much as she needs in her purse. |f demon-demon interaction
were as simple as we have made it out to be, the two instances
of the '""'need money'" demon would join up to produce a 'need
money' assertion., So it is not sufficient for two demons to
be looking for the same pattern. Looking at example (5.21) we

note that one of the demons gave a reason why Janet might need

121

money, and the second suggested that needing money was the

cause of a certain action. So we have:
Will get present --> Need money =-> Will get PB

To put this in everyday terms, in (5.21) we have both a motive
for needing money (getting present), and a result of needing
the money (go and get PB). In (5.22) we have two motives.
The natural suggestion is that demon-demon interaction be
restricted to cases where we have both motive and result.

How do we recognize when we have both motive and result?
As it stands now one demon looks pretty much like any other,
We might just try to label all demons as '"motive" or "result'
with respect to their pattern. In fact, we already have seen
some justification for this. PB-FOR-MONEY was differentiated
somewhat in section 5.2 where it was called a "géal;o}iented
behavior'" type demon. |If we look back, we see that all the
examples given were of the '"result!" variety. However, it
would be premature to formalize such concepts at this point.
We simply don't know enough. But it seems that this is the

path we must eventually follow,

122

5.5 Putting Money into a Piggy Bank

The primary concern of this section is to give another
example of demon-demon interaction. At the same time, this
example is one of my best illustrations of fact determination.
We commented in section 2.5 that it is necessary to decide
exactly what facts a person uses to make a given deduction.

In this section a deduction which at first seems to stem from
a single fact about piggy banks will be shown to result from

at least two separate facts.

A Piggy Bank Problem

One fact we know about PB's is that they are good places
to keep money. This fact seems to come into play in:

(5.23) Penny said to Janet, "Don't take your money with
you to the park. (You will lose it.,) Go and get
your PBI"

(5.24) After Janet helped Ms, Jones with her groceries Ms,.
Jones gave her a dime. Jack came along and said
“Come with me to the park, Janet.'" "OK" said
Janet. '"But first | am going home to find my PB.
| do not want to take the money to the park,"

(5.25) Janet put some money on the sink. Mother said, "“If
you leave the money there it may fall in the drain.
Let's find your PB."

In each case the natural question is, "Why should Janet
get her PB?'" Now we might try to construct a "piggy bank"
demon which responds to some common element in (5.23) - (5.25)

and then make the necessary assertions. A close look at the

examples even gives a start at what such a common element

123

might be, say '"a particular location for the money is
negatively evaluated." The trouble with such a solution would
be that it would not account for:

(5.26) Janet said "l am going to put my money away. |
will get my PB.,"

(5.27) Janet helped Ms. Jones with her groceries. Ms.

Jones gave Janet a dime. Jack came along and said
“"Janet, let's go to the park," '"OK," said Janet.
“"But | want to put my money in a safe place. | am
going to get my PB."

Now there is nothing saying that our demon needs to account

for (5.26) and (5.27). However, it seems quite obvious that

we are using the same information in all the examples above.

The only difference is that in (5.23) - (5.25) we are

expressing the need for a ''safe place'" by making negative

comments about another location. Again, if this is a single

fact we would like a single demon to express it, The trouble

is finding what (5.23) - (5.25) have in common.
A Non=-Piggy Bank Problem

In the course of looking at examples like (5.23) - (5.25)

I noted examples like:

(5.28) Penny said to Janet, "Don't take your money with
you to the park. Put it on the shelf,"

(5.29) After Janet helped Ms. Jones with her groceries Ms,
Jones gave her a dime. Jack came along and said

“"Come with me to the park, Janet.' 'OK' said
Janet, ''But first | am going to put my money in
the house, | do not want to take the money to the

park,"

124

(5.30) Janet put some money on the sink. Mother said, "If
you leave the money there it may fall in the
drain." Janet put the money in a drawer.

(5.31) Janet said "l am going to put my money away. |
will put it in my toy box.,"

(5.32) Janet helped Ms., Jones with her groceries, Ms,
Jones gave Janet a dime. Jack came along and said
"Janet, let's go to the park.," "OK," said Janet.
"But | want to put my money in a safe place. Then
Janet went into the house and put the money in her
room.

These examples exactly mirror (5.23) - (5.27), except that
(5.28) - (5.32) don't mention PB's. Naturally, in these
examples the question to ask is "Why did Janet put the money
in the drawer?", or "Why will Janet put the money in the
house', etc.

Such examples tend to indicate that the probiem facing us
ﬁs wider that just PB's. We will name this wider problem the
""put away'" problem, However it is not the case that our
problem with PB's can be completely reduced to the "put away"
problem. So while in (5.28) on, we mention that Janet has or
actually intends to "put'" the money some place, in the PB
examples all we needed to say was that Janet was going to get
the PB. To put this another way, our knowledge of PB's
allowed us to interpret '"get PB" as meaning that Janet was
going to put money into jt. However our knowledge of houses

or shelves does not allow us to make similar deductions in

(5.28) - (5.32),

125

The Put-Away Demon

Ignoring piggy banks for the moment, what would a
solution to (5.28) - (5.32) look like? We will have some
demon, called the PUT-AWAY demon, which is activated by lines
like:

(5.33) Don't leave the money by the sink.
(5.34) I do not want to take my money to the park.
(5.35) I will put my money away.
These lines will put in a demon looking for "put away'",
Ultimately we will want a theory of why people put things away
(i.e., what lines put in the "put away' demon), but it is not
necessary to know this in order to continue our study of piggy
banks., Our "put away'" demon would have a rough outline like:
(DEMON PUT-AWAY
(NOLD 0BJ PERSON LC TN PL N)
(78 (SR ?2LC LOC) ?TN ?0BJ ?7PL)

Look for assertion which says that 0BJ
is at (will be at) some location

(Code goes in here which will check to make sure that
?PL is an "appropriate'" place to 'put away' ?0BJ.)

(ASSERT (? RESULT 7N ?NOLD)))
(Note 10) The check needed to make sure that the place is
"appropriate'" is complicated. Finding good rules is a problem
for further research. But we will need such a demon, and the

demonstration of its usefulness is independent of our problems

with PBs,

126

The Piggy Bank Demon

What we will now see is that if we assume the PUT-AWAY
demon, all the examples in (5.23) - (5.27) fall out easily,
plus a few others which we haven't even looked at vyet. But
ffrst we need to consider a new PB demon entitled PB=MONEY=IN.
It is parallel to PB-FOR-MONEY, but while the latter was for
recognizing that money was going to be taken out of the PB,
PB-MONEY-IN is for recognizing that money is going to be put
in.

(DEMON PB=-MONEY-IN
(NOLD PB PERSON N1 N M TN)
(78 1IN FUT (SR 7HM (15S=-0BJ ' (MONEY))) 17PB)

We are assuming that ?NOLD is bound to
the ''get PB'" assertion. We are looking for
money to he in the PB,

(ASSERT (?N1 PUT=-IN FUT ?PERSON 7PB 7M))

The intention is to put the money in the PB,

(ASSERT (? SuB-ACT ?NOLD ?N1))
And getting the PB is a sub-act of that intention.
(conNpD ((EQUAL 7TN 'FUT)
(ASSERT (? RESULT 7N1 7N)))
((ASSERT (7 T-RESULT 7N 2N1)))))

This demon will account for examples like:

(5.36) Ms. Jones gave Janet a dime. Janet went to get her
PB. 'l want the money to be in my PB" she thought.

(5.37) Janet got her PB and dropped some money in.

127

(5.38) After Ms Jones gave Janet a dime, Jack came by and
asked Janet if she wanted to go to the park, '"OK",
said Janet., "l will go home first and get my PB.,"

Soon Janet came back and said '""My money is in the
PB, let's gol"

Demon=-Demon Interaction

Now, if we assume demon-demon interaction as discussed in
section 5.4, PB-MONEY-IN plus PUT-AWAY will interact to solve
all the examples from (5.23) to (5.27). Let us see how this
will happen,

First note that the restrictions we placed on demon-demon
interactions are met here, That is, in 5.4 we said that we
needed both a motive and a result hefore we could '"combine"
demons in this manner, |In the case at hand, PUT-AWAY is a
motive for having the money in the PB, and '"get PB' is a
result of intending to put money in the PB, So when we hand
PB-MOMEY=-IN to LOOK-BACK, it will pseudo-assert the pattern,
which essentially says '"look for some money in this particular
piggy bank", This aséertion will activate PUT=-AWAY which is
looking for "this particular portion of money being at some
location', PUT-AWAY naturally goes on to check that the
location is "appropriate', but this test should be easy for
PB's to pass.

Finally, note that this solution extends to the following

case:

(5.39)

128

Janet got a dime from Ms. Jones. She said "l am
saving my money to bhuy a bicycle. | am going home
to get my PB.Y

Here we know that Janet is going to put the money in the PB

because of the "save" statement. However, we immediately note

that we have cases like:

(5.40)

Naturally,

PUT=-AWAY,

Janet got a dime from Ms. Jones., Janet told her "|
am saving my money to buy a bicycle. | am going
home to put the money away. (I am going home to
put the money in my drawer.)

(5.40) indicates that "save' must activate

I'f this is the case, then (5.39) is accounted for

in exactly the same manner as all the initial examples. \lhile

the reader may not be surprised at this result, | am, since

initially | thought that the relationship of "save'" with piggy

banks would need a separate PB demon.

129
5.6 Sound and Choosing Semantic Representation

Another possible story fragment:

(5.41) Janet went and got her PB, She shook it. She
heard- the PB rattle,.

We might now ask if there is anything in the PB, and expect to
get the answer ''yes'. O0r, if Janet went on to say, "Good,
there is something in there,'" we might ask how she knew. Or
again, if she hears nothing, we can draw parallel but opposite
conclusions. It would be easy enough to write a demon which
basically says that sound implies something in the PB and no
sound implies the PB is empty. One immediate problem in
formulating such a demon however, is the many ways we can talk
about an object or action making a sound. For example:

(5.42) The PB (coins) made a sound (noise).

(5.43) The PB (coins) rattled (jingled).

(5.44) Janet heard a coin (the PB),

(5.45) She heard a coin (the PB) rattle (make a noise).

(5.46) She heard a noise (rattle).

(5.47) There was a noise (rattle).

(5.48) A sound came out of the PB,

(5.49) A sound came from the PB,

(5.50) Janet heard a sound from the PB,

(5.51) She heard the coins hit the inside of the PB,
Ultimately, this profusion of ways to say much the same thing
is a problem for the semantic portion of the program, and as
such really should not be covered here. The problem is that
we don't know what our demon should look for until we have
created some order out of the chaos. Certainly we can't

afford to have a separate demon looking for each individual

situation. We must figure out what all these forms have in

130

common, so we can force all of them into a few standard forms,
and just have demons looking for them.

Fortunately it seems to be possible., Let's start with
(5.42). It says that a particular object "made a sound". Of
course, the ''made' seems to be somewhat superfluous, since, as
we see in (5.43) we can just say "rattled" "jingled" or if the
coins were very heavy, '"banged". What we might do to
standardize (5.42) and (5.43) would be to say

(N9 SOUND (coins, PB, etc.))
which would he translated into English as "The PB 'sounded'',
Note that N9 does not specify if the sound was a "rattle" etc.
There are several ways to do this, but it doesn't seem to be
recessary to go into it now. Then {(5.4%7) would become:
(N1O SOUND UN-MENTIONED3)
Carrying on the same way, we translate the sentences of the
form '"Janet heard (an object, a sound, an object make a
sound)." (i.e., (5.44) , (5.45), and (5.46)) as:
(N11 HEAR JANET n12)
(N12 SOuND PB1)
or
(N12 SOUND COINY)
or
(N12 SOUND UN-MENTIONEDA)
Hote that what we have done so far is to translate every line
into a SOUND assertion plus, in some cases, a HEAR statement.
If we wanted to be even more uniform we might say that the

statements which don't mention that someone heard the sound

should be translated into a "hear" statement anyway, since

131

someone must have heard it., But there doesn't seem to be much
reason for this. Our PB demons for example will just be
looking for the SOUND assertion, and will ignore the HEAR
statement anyway. Furthermore there is a very good rule for
sound and sight, which says that if a sound (or a visual
presence) is at a certain location at a certain time, anybody
there will have heard (seen) it unless we have specific reason
to believe otherwise.

The last four sentences (5.48) - (5.51) are still not
accounted for. Example (5.50) is easy once we have (5.49); we
just add a '"hear'" assertion. After looking at some examples
we find we can account for (5.48) and (5.49) with the
following rule:

(5.52) "A sound came out of (from) X" gets translated as
follows

a) if X is capable of making a sound by itself
(N13 SOUND X)

b) If X is a container (in the loose sense that it
is usually considered to have an inside and an
outside ~ »

(N1h IN UN-MENTIONEDL X)
(N15 SOUND UNMENTIONEDA) A

c) If X)is part of a very large container (house
size

(N16 OTHER-SIDE=-OF UNMENTIONEDS X)
(N17 SOUND UNMENTIONEDS)

Examples illustrating part (a):

(5.53) A sound came out of (from) the loudspeaker.
(5.54) A sound came out of (from) the radiator.

Examples illustrating part (b):

132

(5.55) A sound came out of (from) the PB,.

(5.56) A sound came out of (from) the building.

(5.57) A sound came out of (from) the wall.
Examples illustrating part (c):

(5.58) A sound came out of (from) the window.
(5.59) A sound came from the roof.

Though the fact that we cannot say ''came out of the roof"
indicates that there is some distinction between the two
phrases which we have not yet captured.

There is some question as to exactly where this
translation process will be carried out in these cases. For
example, for "out of' we might have internal translation
produce a more literal translation, saying that an NP named
""sound" has moved from inside the PB to outside. Then G0-BASE
would look and see that what "‘went' wasn't a physical object,
and it would translate the rest of the way to our format as in
N13 - N17. However, it would probably be better if this were
done immediately, or else we will have a slight bit of trouble
with our 'come out of PB implies get'" demon which would see
this object coming out of the PB and assert that Janet got it,
completely oblivious to the fact that it is only a sound. Of
course, this could be rectified by the demon checking to make
sure that the object is physical, but then we would have to
make at least two checks on its '"physicalness", whereas if we
checked immediately in internal translation, and translated
accordingly, we could have the whole thing over and done with,

At this point we have only (5.51) to deal with, Al though

133

this particular example has an awkward phrasing, sentences
like (5.51) are a common form of statements about sound. For
example "Janet heard Jack come into the house.'" "Janet heard
the leaves fall to the ground." ‘'Janet heard Bill talking to
Dick.'" are all statements which say that Janet heard some
action taking place., However, such statements do not fit our
scheme of having "hear'" always refer to a '"sound'" assertion,
since our '"sound" assertions take an object as their argument,
not an assertion. There are several possible ways out. We
could allow "sound'" to take an assertion as argument and get:
(N19 HEAR JANETI N20)
(N20 SOUND N21)
(N21 HIT COINS PIGGRY=BANK~SIDE)
The trouble is that our '"sound'" demons (for PB and any other
action which depends on sound) will have to make a special
check to see if the '"sound'" assertion is referring to an
object or an assertion., We would like to avoid this if at all
possible,
A second possibility is to do a more radical translation
énd get:
(N22 HEAR JANETI N24)
(N23 HIT COINSI PIGGY=-BANK=SIDES)
(N24 SOUND COINST)
(N25 T-RESULT N24 Hu23)
But while it would work for this situation it would produce
unhappy results for '"Janet shook her PB and dropped it. She

heard the PB hit the floor." This would create a "PB sounded"

assertion which our demon would pick up. To prevent this from

134

being interpreted as something being in the PB we would have
to add a check in the demon to note what caused the sound.
Note that we get exactly the same problem if we try to
convert all our "sound" statements so that they take an
assertion as their argument. We might fepresent (5.43) as:

(N26 SOUND N27)
(N27 MOVE PB1)

instead of "the PB 'sounded'', but we still have the problem
that we saw before. If we just say we heard the PB we want
our demon to work, but if we have "hear the PB hit the ground"
or '"'slap against her hand" or whatever, our demon should
remain inoperative,

This all seems to be suggesting that when we say '"heard
the PB'" we are saying that the PB is emitting sound in some
way, and it is this "emitting'" which our demon responds to.
But when we say '""hear (some action)'" any conclusions we draw
from this fact should be based on the action itself; the
PB-SOUND demon should not come into play. Further evidence
for this view is provided by:

(5.60) ""When Janet picked up the PB a few coins hit the
side of the PB.,"

While (5.60) does not mention '"hear' or ''sound'" at all, we
still understand that the coins are in the PB. So whatever
tells us in (5.51) that the coins are in the PB is independent
of sound. Then since we don't need, or even want "hear

(action)" to use the '"sound" predicate we can translate (5.51)

135

as:

(N28 HEAR JANET! N29)
(N29 HIT COINS) PIGGY-BANK=SIDE1)

It is only now, after this lengthy analysis of "sound"
that we can go on to write our PB demon.

(DEMON PB-SOUND
(NOLD PERSON PB X N N1)

PB and PERSON are specified as hefore.
Since the demon is only for present tense
statements we will assume that NOLD is

a present tense '‘have PB' assertion,

(?N SOUND 17X)
(CoND ((EQUAL 72X 7PB)

As in '""the PB made a sound'" or "There was a sound"
in which case we assign PB as the '"sounding'" object

(1 F-NEED (7N1 IN (SR ? (1S=-0BJ '(SOMETHING))))))

If we are simply told that the PB '""made a sound"
we just want to assert that something is in the PB,

((AND (GOAL (? SIZE 72X SMALL) STRUE S$DEDUCE)
(GOAL (? HARD ?X)S$TRUE SDEDUCE))
(1F-NEED (7?N1 IN 72X 7PB)))

If we are told "(obj) made a sound'" where (obj) is
hard and small, then assert that (obj) is in the PB,

((GOAL (7N1 IN 27X 7PB)$TRUE S$DEDUCE))) -

If none of the above, and we can't deduce that 17X
is in the PB then we have picked up a stray fact
like "Janet heard Jack'" and we should fail, (If a
COND has no successful branch then we fail.)

(ASSERT (? RESULT ?N 7N1))

Assert that the sound is a result of something
being in the PB and the shaking.

(ASSERT (? RESULT 7N ?NOLD)))

136

The corresponding demon for no sound being made:

(DEMON PB-NO-SOUND
(NOLD PERSON PB N X N1)

NOLD is the '"shake' assertion.

(7N SOUND NOT 7X)
(conND ((EQUAL 7Xx 1?PB)

As in "the PB didn't make a sound' or '""There wasn't
a sound", We assert that nothing is in the PB.

(L F-NEED (7Nl IN-NOT
(SR 7 (1s-0BJ '(SOMETHING)())))))
((AND (GOAL (? S1ZE 7X SMALL) S$STRUE $DEDUCE)
(GOAL (? HARD ?X)$TRUE $DEDUCE))
If the thing which didn't make a sound is hard and
small then it is not in the PB., Otherwise the no
sound assertion has nothing to do with PBs.

(1 F=-NEED (7M1 IN NOT 72X ?PB))))
(ASSERT {2 RESULT 2N 7N1)))

One trouble with these two demons is that they really

.

represent the same fact, "If a PB is shaken, there is
something in the PB if and only if the PB makes a sound'". In
order to combine the two we will most likely need a new form
for negation. Rather that having the NOT in the assertion
proper, we could put it on the property list. This way "there
was a sound'" and ''there wasn't a sound" could match the same
pattern, only the latter would have a tag on its property
list., However, | am not sure of all the implications of this

change in notation, so | have only adopted the new negation

notation for this one demon.

137

(DEMON PB=-SOUND=-BOTH
(NOLD PERSON PB X N N1 TAG)

!'TAG will be NEG if the assertion is negated, POS
otherwise. 1?NOLD is still the "shake" assertion.

(7N SOUND 7X)
(coND ((EQUAL 72X 7PB)
(1F-NEED (2N1 IN
($R 7 (1S=-0BJ ' (SOMETHING) ())) 7X)
(PROP (LIST 'POLE ?TAG))))

If the PB did (not) make a sound then something is
(not) in the PB., We put the appropriate negation
tag on the IN assertion's property list,

(CAND (GOAL (7 SIZE 72X SMALL) S$TRUE SDEDUCE)
(GOAL (? HARD ?X)$TRUE $DEDUCE))

If 72X is hard and small then it is (not) in the PB.
(1F-NEED (?N1 IN 72X ?PB) (PROP (LIST 'POLE ?TAG))))
((AND (EQUAL ?TAG 'POS)
(GOAL (?H1 IN ?X ?PB)S$STRUE SDEDUCE))))
(ConD (%EQUAL ?TAG 'POS) (ASSERT (? RESULT 7N 7NOLD)))
T))
(ASSERT (7 RESULT 2N 2N1)))

We will need another routine to pick up the "not in PB"
assertion generated by PB-NO-SOUND and transliate that into a
statement that Janet will no longer try to get money from the
PB. This should be a separate demon since we also need this

to account for:

(5.61) Janet needed some money. She got her PB. There
was nothing in it.

Presumably we could now ask '"Will Janet get money from the

PB7"

138
(DEMON PB-EMPTY
(PB PERSON TN 0B 0BJ 0B)
This demon is put in by a ''get from PB'" assertion.
7PB and ?PERSON are bound as usual. 0B is bound
to the object which is to be removed from the PB,
(? IN ?2TN NOT ?08J 7PB)
(SUBSUME 708 70BJ)
(ASSERT (? GET-FROM FUT NOT ?PERSON ?0B ?PB)))
The "subsume' function just checks to make sure that whatever
was said not to be in the PB can be construed as referring to
the thing the person wanted to get out of the PB, So
"nothing'" would subsume pretty much everything, while '"money"
would subsume 'the nickel', but not '"a paperclip". While it
is clear that we need some such check, at the moment SUBS UME
seems somewhat ad hoc, coming out of nowhere as it does,
However, we do need something. For example, we certainly
don't want this demon applying if Janet is trying to get a

N
<paperclip out of the piggybank, but comments as she is trying

to do so that there is no money in it,

There is an uneasiness about introducing a function like
this without any idea if it is really needed in general, or if
it is needed just for this particular demon. While | suspect
that the former is the case, it would be comforting, when

introducing a new function like this, to be able to find many

situations where the same function is needed, as we did with

1S-08J,

139

5.7 Accessing the Information

At this point we have constructed several demons for
piggy banks, PB-FOR-MONEY, PB-SOUND-BOTH, PB-OUT=-0F, PB-EMPTY,
and PB-MONEY-IN. We suggested that these would be put in by
the piggy bank base routine. On the other hand, we might want
to argue that PB-BASE does not activate PB-SOUND-BOTH, or
PB-0UT-0F. The argument will revolve around the acceptability
of story fragments like:

It made no sound.

(5.62) Janet got her piggy bank, She could hear the
coins rattle.

Some money came out,
In each case the story is clearly acceptable if we insert "She
shook the PB'" between the two lines. We will need a PB-SHAKE
demon anyway to account for the connection between '"shaking
PB'" and ''getting money from PB'". So, if we feel that a given
fragment is unacceptable without '"'shake'" then PB-SHAKE could
put in the corresponding demon. |If not, then PB=BASE should
put it in., | personally have no strong feelings one way or
the other. | find the stories definitely "odd" but

understandable.
Significant Sub-Actions

Throughout this chapter we have assumed that the line

which started us off on piggy banks was "(person) got piggy

140

bank.'" However, we could equally well have " (person) get
(money) from PB" as our initial '"piggy bank' line.

(5.63) Janet needed some money., ''|l will get some money
from my PB," she said,

(5.64) Jack and Janet were outside when the ice cream
truck came along. 'l am going to get some money
from my PB," said Janet. Soon Janet came back with
some money.

In these cases we would like to use PB-FOR-MONEY to connect
the "get from" assertion to the ‘have money' assertion. While
we might use other means, since we already have this demon
available, we might as well use it, The only trouble is that
if we look at PB-FOR-MONEY we see that it assumes that '"get
piggy bank"™ is the assertion which is pointed to by INOLD. |If
we started out with ''get from" we would get such silly
statements as ''getting money from the PB is a sub-action of
getting money from the PB". Nor is this an isolated example.
A quick look at PB-MONEY-IN reveals that exactly the same
problem occurrs there,

What we are seeing here is not a simple bug in our code.
The problem is actually quite widespread; let us look at it
from a slightly different angle.

The two lines which might set up a '"piggy bank'" context
are quite different. The line ''get money from PB" is a
description of a complex activity. On the other hand '"get PB"

is only a part of the complex activity described by ''get

from'", and it can be part of other activities, like "put

141

into'". But, when we combine the ''get PB" line with the fact
that the person needs money, we are able to quess that the
person intends to perform the complex '"get from" activity. So
what we have done is to take two facts which are part of the
"get from'" complex, put them together, and deduce that we are
witnessing the ''get from'" activity. In a sense we are
deriving more encompassing contexts from specific facts. So a
fact like ''get piggy bank' can be viewed in two ways., First,
it relates a small activity to a known larger activity.
Secondly, if we were not aware of this larger activity, our
fact gives evidence that this larger activity is indeed taking
place.
Other examples of this dual usage:
(5.65) Today was Jack's birthday. Mother got a cake.
(5.66) Jack went to get his hammer. His play house was
broken,

In both cases we deduce a larger activity (birthday party and
fixing toy house) from more particular facts (getting a cake,
and getting a hammer) which are part of the larger activities.

We might call such particular actions "significant

sub-actions', since not all sub-actions lend themselves to

dual usage., For example:

(5.67) Jack got some string and went outside.
(5.68) Jack got his kite and went outside.

Here, (5.68), but not (5.67), can be interpreted as "going to
fly a kite'", even though both '"get string'" and "get kite" are

sub-actions of "fly kite", Ultimately we will want a theory

142

of the exact circumstances under which such things happen.
For the moment we will just note that adapting the
PB-FOR-MONEY (or PB~MONEY-IN) demon so that it can serve a
dual purpose will also enable it to handle both "get PB" and
"get money from PB" being bound to INOLD, which was the

problem we started out with,
Significant Sub=Actions and Search

The concept of signficant sub-actions suggest that it
might be necessary to modify the rule that g demon can only he
made available when jts ““topic'" concept is introduced. The
reasoning goes as follows: Topic A says look for topic B
(birthday says look for "party"). But c, a significant
sub-action of B is sufficient by itself (given A) to indicate
B (get a cake + birthday == party). Suppose the demon
relating C to B has B as its "topic concept" (get cake has
"party" as its topic). Then whenever we set up a demon
looking for B (party) we also want to also activate those
significant sub-actions of B which can serve as evidence for
B. Hence we would be activating demons whose "topic'" had
hever appeared in the data base,

However, there is a crucial assumption in the above,
namely that C has B as its topic concept. We might arque, for
example, that "get cake' is not @ sub-action of “"party" but of

"birthday'" itself, As evidence one way or the other we might

143

use the following example.

(5.69) Today was the Fourth of July. Mother got a cake.
If the average reader understands (5.69) as inplying that
Mother got the cake for some Fourth of July celebration, then
the connection is definitely between "party'" and 'cake'" rather
than "birthday" and 'cake". While I find (5.69) odd, my
informants have no problem in interpreting it correctly,

But even if we accept that the connection is between
"party' and '‘cake'" we are still have not shown that we need to
change our topic rule, for if it is “cake" which is looking
for "party" then we only need demon-demon interaction, |In
(5.65) both "birthday" and "cake" would be looking for party,
and we have both a "motive'" (the fact that it is someone's
birthday) and a "result'" (getting a cake). On the other hand,
if "party" looks for '"cake'" then we need to change our topic
rule to account for (5.65) since "birthday" looks for "party"
which in turn looks for "cake'". So the evidence is not
conclusive in either direction.

Looking at (5.66) we see that again the crucial
assumption is whether '"get hammer' has the toplic concept
"fix". If so, then we need a new "topic'" rule. If, on the
other hand, ''get hammer" itself puts in a demon looking for
"fix" then we again can make do with demon-demon interaction,
That is, both "get hammer' and "broken" will be looking for

"fix" and we will have the necessary ""motive'" and '‘result',

144

When Do We Execute PB-BASE?

All the demons we have written assume that the PB has
some purpose being in the story, So, if we were describing a
room and mentioned that a PB was on the shel f, none of our
demons would be célled for.l This suggests that perhaps
something like |
(N31 HAVE (tense) (person) (PB))
should bevrequired before we will activate PB-BASE.

There is still a loose link in all this. Suppose that we

have a ''have PB' .assertion coming into the data base. At what

point in the processing do we execute PB-BASE? When we
initially defined base routines, we said that they were
executed whenever they were mentioned in the internal
representation. Since all our initial examples dealt with
base routines connected with predicates, we have tacitly
assumed that DSP took a particular assertion, looked at its
predicate and got the appropriate hase routine. We cannot use
this simple method with base routines connected with objects,
however. (We will distinguish the two kinds of base routines
as ''predicate base routines' and "'object base routines'".) So
if Janet gets her PB, what appears in the assertion is not
"piggy=bank" but PBl, or some indexed object. Furthermore, a
given object can appear in more than one assertion. Do we

call the base routine more than once?

145

Another problem is that in the case of pronouns, we can't
call the object base routine until we know the pronoun's
referent (except in the odd case that we can't decide hetween
two objects of the same type). However, we can't postpone
calling the object base routines until after we know all the
referents since sometimes object base routines themselves can
be useful in deciding other referents. For example:

(5.70) Janet was going to buy a present. Today was Mary's
birthday. She got her PB and shook it.

In this case the '"'she'" seems to be determined by the
previously mentioned demon demon interaction between "'Janet
needing money' and '"she gets PB'", Note that the later demon
o

is put in by PB-BASE, Hence if the call to the object base
routines took place after all the referents had been decided,
the '"she'" would already have been incorrectly assigned to Mary
before we got into PB-BASE. |

Instead, we will call object base routines just before
the assertion goes into bookkeeping, and if necessary, just

after bookkeeping also., Also note that in many cases it is
not really necessary to know the correct referent, since "the
piggy bank'" should call the PB base no matter which PB js

being referred to.

146
5.8 Further Topics
Tense and Time

So far we have concerned ourselves primarily with present
tense statements. Our demons have reflected this fact. For
example, PB-SHAKE specifies that we are to look for a person
shaking a PB, Sincé the pattern specifically requests a
present tense statement (by our convention of chapter 4 we
left out the PR marker), this demon will not work for other

tenses. But we also need to handle future tense:

(5.71) Janet and Jack were outside., Janet needed some
money. She said "I am going home. | will get my
PB. I will shake and shake it."

While this may sound slightly stilted, it is nevertheless
clear, and we are capable of answering the question '"Why will
Janet shake her PB?" In exactly the same way we need to

handle past tense:

(5.72) Jack and Janet were outside and saw the ice cream
man, Janet ran home. Soon she was back. Where
were you? asked Jack. "I went home and got my PB.

| shook it and got some money."
As a first attempt to handle (5.71) and (5.72) we could
replace the (deleted) PR in the pattern of PB-SHAKE with a
variable ?TENSE. 1In this way our demon would also be executed
in the last two examples.
However, allowing different tenses creates problems. For

example, we could have:

147

(5.73) Jack asked Janet if she wanted to go to the movies.
Janet said "l need some money. | will get my PB."
""But you got a quarter earlier" said Jack.
We do not want this last past tense statement to activate the
PB=-GET-MONEY demon which would then assert that the money came
from the PB which Janet has not yet gotten. This seems to
imply that the ''get-money'" demon will have to check explicitly
that the money was received after the person decided to get
money from the PB.
We can solve the problem in an ad hoc way by including in
PB-FOR=-MONEY the check:

(COND ((EQUAL ?TN 'PAST) (GOAL (? BEFORE ?N1 7N)))
))

((
(T
though even this has some‘difficulties._ But the pfoblem is a

very general one, Sub-activities of a super-activitf will be

partially ordered in time with respect to each other. Such a

basic fact should ultimately be expressed in the very notation
we use to describe facts. How such a scheme would work is

another open problem,
Necessity and Surprise

Consider:

(5.74) Janet got her PB and shook it, She was going to
put some money in it, There was no sound. She put
the money in and shook it again.

Two questions to ask are, "Will there be a sound this time?"

and "Why did Janet shake the PB the first time?" Now, our

current scheme will not handle the first question. I f we had

148

said '""Janet heard a sound," then our demon would be able to
say why. But we have no way at present to predict what will
happen.,

What we need is the ability to use the same fact both to
account for known facts (in my model this means acting like a
demon) and answering explicit questions about what is likely
to happen whenever a person asks (this means acting like a
fact finder). Since both my system and Planner make a firm
distinction between the two, both seem to be inadequate in
this respect. This is another situation which indicates the
need for allowing demons to respond to GOAL requests.

One very different solution might be to use a predicate
calculus theorem prover. 1In such a system we might have the
rule:

(5.75) "shake PB" == "sound"{==> "money in PB"
Presumably we could use this rule to deduce the fact that
there would be a sound. However, this would still leave a
problem with:

(5.76) Janet got her PB and shook it. She was going to
put some money in it., There was no sound. She put
the money in and shook it again. There was still
no sound. She was surprised,

The question now is, "Why was Janet surprised?”. While we
might be able to patch such a predicate calculus scheme to
account for this example, it really appears that our
"expectation" approach is more realistic. However, if we are

going to account for hoth examples with demons, then most

149

likely we will need some concept of a "must occur' demon.
Probably, when shake puts in the demon it can he made to look
to see if there is anything in the PB., If so then PB=SOUND is
in a "must occur'" situation and should he so marked.
Presuﬁably, when we have made PB-SOUND and PB-!N0-SOUND into a
unified fact, knowing that "sound" must occur will mean that
"no sound'" should be surprising.

Hote that '"must occur' is not applicable to all demons.
So getting a PB does not necessarily imply that the person
will be geting money from it. ''‘Myst occur" only seems
applicable in those situations which seemingly depend only on
the laws of physics, so to speak. Again we seem to need a

classification of demons.
Other Problems

The second question about (5.74) was "Why did Janet shake
the PB the first time?'" We do not want to qet fhe answer “She
was trying to get money from the PB." This is problematic ’
because initially when we see the ''shake' assertion that is
exactly what we assume, Once we recognize that this
conclusion is contradicted by the next line, by '"She was going
to put some money in it,'" then our "assumption' mechanism is
sufficient to remove the offending assertion from the data

base, and the worst that could happen is that the model would

respond "l don't know'" which is not all that unreasonable,

150

But it is not that easy to have the model recognize that this
is a contradiction., So after the first line in (5.74) we
would have internally something like:
(5.77) (N33 GET JANET! PB1)

(N34 SHAKE JANETI PB1)

(M35 GET=-FROM FUT JANET! MONEY! PBI)

(N36 SUB=-ACT N33 N35)

(N37 SUB=-ACT N34 N35)

When we get the second line in we will have added:

(5.78) (N38 PUT=-IN FUT JANET! MONEY! PB1)
(N39 SUB-ACT N33 n38)

The only real clue we have to go on is the fact that N33, the
'"get'" assertion, is now a sub-action of two different main
activities, '"put in" and '"take out'". But in general a given
activity is allowed to be a sub-action of two different

activities, So we have:

(5.79) Janet and Jack were outside, Jack said "Janet, |
was looking at your PB and it had a crack in it."
"I will go to see," said Janet. '"I need some money

anyway.'" Janet went to get the PB.

In this case '"get PB" is a sub-act of both "'seeing the crack"
and ''getting money from the PB", What we need to know in this
case is that taking money from a PB and putting it in are
mutually incompatible. Again the necessary information is
there, the incompatible (and ""contradictory'") end results of
the two activites., Again the problem is making use of it,

If we are told that Janet had taken money from her PB
this implies many things,most of which are really irrelevant

given that the action is over with, such as the fact that she

151

shook the PB, Suppose we were asked if she did so? Do we say
"I don't know'"? Do we assert "shake' when we are told that a
person got money from the PB? Do we use some other technique
to get a yes answer? The same problem applies on any complex
activity, such as baking a cake. It doesn't seems as if we
would want to list out in the data base every action which
goes into the activity. So what do we do?

I f Janet went home to get her PB and comes back and says
that there was no money in it, it implies that she at least
tried. How do we know this? There seems to be an interaction

between ""know' and PB8s.,

Ownership and Possession

When we listed the facts we knew about PBs we mentioned
that PBs are owned by a person, and this extends to the
contents of the PB under normal circumstances. Now we might
ask about the significance of ownership., That is, what
difference does it make who owns a particular object? This,
as we shall see is a very complicated question, and probably
not really part of piggy banks, since it applies to all
objects which are owned by a particular person., We can also
see that it will probably present very different problems of
analysis than we have seen for piggy banks. After all, we
only looked at two kinds of '"piggy bank' behavior, putting

money in and taking it out., Both are goal oriented, and hence

152

have a certain strucure as we have indicated. Finding the
significance of ownership first requires isolating situations
in which ownership makes a difference, and then trving to
specify what can happen in such situations so we can have
demons on the lookout,

If you don't own a particular object and you break
it, some possible responses are: an apology to the
owner, buying a new one, offering to do so,
pretending you didn't do it. You may not sell
something which you don't own, unless you have
permission, I|f you are using someone else's toy,
and the owner wants to use it, you should surrender
the toy to the owner, |If you want to use someone
else's toy, you should ask permission, though if
you are not taking it from where it was put by the
owner (or at least from where you found it) this
rule is not imperative. (That is, you won't bhe
considered '"bad" if you disobey it.) |If you do
take it away from its former location, and the
owner comes looking for it, he has the right to be
angry at you. Finally, if you are part owner of an
object you still are restricted from selling
without permission, and the consequences are
roughly the same for breaking it (your guilt in
this case is roughly that of a person who had
permission to use the object.) On the other hand,
it is not usually necessary to get permission to
use the object from the other owner and in cases
where both owners wish to use the object, a
complicated negotiation process is likely to ensue.

These are just some situations where ownership is important,
If we want to start considering what can happen in such cases
the amount of information gets much larger. Let's just
consider what might happen if person A takes 0BJ which belongs
to B. Person A then sells it,
Person B might never notice it was missing. He
might note that it was not there, but think that he

himself mislayed it., Noting it is gone, B goes
around asking who has it, or he might go around

153

accusing everyone of taking it. He may immediately
decide that A must have done it and go after him,
or go to tell Mother that someone (perhaps A) took
0BJ. If B eventually finds A what happens? A
might deny having done anything, hence becoming a
liar, and hence a had person., A could admit doing
it, but maybe there had been a legitimate mixup,
say A and B were brother and sister, and A thought
the ball was his, when it was really B's, A could
say "l am sorry" and give B the money (or the
object he got in trade)or offer to try to get the
object back. A might admit doing it, but say
"tough luck', In such a case B is allowed to
retaliate by doing something nasty to A, though
Mother might try to talk him out of it.

154

6 Problems of Reference

We saw earlier that our internal representation must have
symbols to represent the objects being talked about, and hence
it became necessary to go from an English description to the
correct internal symbol. Then in chapter 3 we briefly
outlined how various contextual features would be included in
the inputs to the reference decision., In this section we will
accomplish two goals. The first is to take a closer look at
what we previously called "finding possible referents'', In
particular we will look at definitional information in section
6.1 and syntactic information in 6.2, | have nothing to add
on recency or selectional information.

The rest of the chapter will be concerned with completely
new topics, First we will consider what happens when an NP
does not refer to a previously mentioned object at all, but
rather introduces a new object into the story. Then in 6.4
and 6,5 we will consider special cases of the reference

problem and observe how they place special demands on DSP,

155

6.1 What's in The Words

That a noun phrase can systematically be converted into a
description of its referent is not a new idea. Many
comprehension programs use the fact (Craig et al, 66),
(Quillian 69), (Woods 68)., The most complete use of such
information is in Winograd's program. This section is based
on his work,

In this and the next several sections we will only be
considering definite NP's, like ''the ball,” "it," '"my kite,"
but not like "a ball," or "one of the kites.'" Such NPs are
more likely than not going to refer to particular objects in
the world, As we shall see later, deciding what does or does
not refer to particular objects is not easy, but there are
clear cut cases, and we shall concentrate on them for the
moment.,

Given the NP ''the red ball'" the program will collect each
word's DESCRIBES property. For example, the entry under BALL
would be:

(6.1) (HEAD 'BALL)
Note that the entries are programs to bhe evaluated. In this
case the HEAD program would produce:

(6.2) ((GoAL (7 1S ?B1 BALL)S$TRUE S$DEDUCE)
(NOT (PLURAL 7B1)))

This simply says that the object is currently a ball and is

singular., The symbol ?B1 is a variable assigned to this NP,

156

Collecting the DESCRIBES properties from all the words in '"the
red ball" we would get:
(6.3) ((coAL (? 1S 178} BALL) STRUE $DEDUCE)
(NOT (PLURAL 7B1))
(GOAL (? COLOR 7Bl RED)$TRUE $DEDUCE)))

This would be handed off to the program in charge of deciding

what internal objects are possible referents. it would
create:
(6.4) (FIND ALL
781 says to find Bl's
(B1) variables to be bound

(6OAL (? 1S ?B1 BALL) S$TRUE $DEDUCE)

(NOT (PLURAL 7B1))

(GOAL (? COLOR ?B1 RED)STRUE SDEDUCE))
This program, (6.4), would then be run, and would produce a
list of all the red balls the program knows about (called the
Possible Referent List (PRL)). If the PRL has only one member,
we can assume that it is the correct referent.

Let's consider a more complicated example, “"Jack's
kittens." Since my programs don't do any syntactic analysis
(or very little) this NP would come in as ((JACK) 'S PLM
KITTEN) where 'S indicates a possesive relation and PLM stands
for PLural Marker. (In the first example the HEAD routine
knew the NP was singular by the absence of a PLM.) The routine
for 'S calls the top level reference routine recursively on
(JACK) and in the manner described earlier we produce and
execute:

(6.5) (FIND ALL B2 (B2)
(GOAL (7 NAME 7B2 JACK)$TRUE $DEDUCE))

157

This should find the symbol used for Jack. Then this symbol
is inserted in (7 POSSESSIVE x%% #*%%) in the first #%*
location and it is made into a goal statement. 'S also will
insert the fact that the NP is determined, so the final
PLANHER expression will be:

(6.6) (FIND ALL 7B3 (B3)

(GoAL (7 IS 17B3 KITTEN)STRUE $DEDUCE)
(PLURAL ?B3)
(coAL (? POSSESSIVE JACK! ?B3)$TRUE $DEDUCE))
Subordinate clauses are handled in pretty much the same
way. For example "the boy who gave Jack the ball' would come
in as:

(6.7) (THE BOY SUBCL (? GIVE PAST *¥* (JACK) (THE BALL)))
SUBCL will process the clause which involves determining the
referents for (JACK) and (THE BALL). If these can both he
determined uniquely, the result would be:

(6.8) (FIND ALL ?B3 (B3)

(GOAL (7 1S 7B3 PERSON)$TRUE $DEDUCE)

(GOAL (? SEX ?B3 MALE)$TRUE $DEDUCE)

(GOAL (7 AGE ?B3 YOUNG)S$STRUE $DEDUCE)

(NOT (PLURAL ?B3))

(GOAL (? COLOR ?B3 RED)STRUE $DEDUCE)

(coAL (7 GIVE PAST 7B3 JACK! BALL1)STRUE
$DEDUCE))
0f course, we may not be able to determine, say, ''the ball',
As we mentioned in chapter 3, when this happens we put in a
variable which is restricted to the members of the PRL for the

NP. The PLANNER expression would then be:

(6.9) (FIND ALL ?B3
(B3 ($R B4 (MEMQ '(BALLI BALL3))))

L)

(GOAL (? GIVE PAST ?B3 JACKI 7B4) $TRUE $DEDUCE))

158

It may be that our description is not sufficient to
determine the referent, in which case the next type of
information to be used is '"recency'". |If one possible referent
was used recently (say in the last five sentences) and all the
others were last used considerably prior to that (say at least
ten earlier) we can be reasonably sure that the most recent

one is the intended referent,

159
6.2 Syntax Information for Reference

The '“she' in
(6.10) She hit the girl next to Mary.
cannot refer to "Mary'". This phenomenon is syntactic in
nature, in that it does not seem to depend on context or
meaning., The questions we would like answered are 1) what are
the rules which govern this phenomenon, and 2) how can we
incorporate these rules into our procedures for determining

reference?
The Lees and Klima Rules

The answer to the first question is still not known,
despite the labors of many linguists. It turns out that the
behavior of pronouns is quite difficult to explain when
complex sentence structures are considered. However, all the
cases which come up in children's stories can be accounted for
with two rules postulated in (Lees and Klima 63).

1) If a particular object is referred to twice within the
same '"'simple'" sentence, the second occurrence must be made
a reflexive pronoun,

2) If a particular object is referred to in both the "matrix"
sentence and an embedded sentence, the reference in the
embedded sentence must be pronominalized. (The matrix
sentence in (6.10) is "She hit the girl.,", the embedded

sentence is "The girl was next to Mary.')

160

Hence in (6.1) if "she" did refer to Mary, by rule 2 we would
have had to make it a pronoun, These two rules are expressed
in a generative format., That is, they say what to do when we
are generating the sentences. We now want to use them in our
interpretive context, As a start, we can translate the Lees
and Klima rules into the following interpretive pronoun rules
(1PRs).

IPR1) 1If a pronoun is reflexive, it must refer to previous
NPs in the same simple sentence (call it SS1).

IPR2) Else, remove from the PRL
a) all NPs in SSI
b) All non-pronoun NPs in sentences which are
embedded in SS1
IPR] covers '"He washed himsel f'', [IPR2a covers '"He gave him
the ball" saying that '"he' and '"him' are different. |IPR2b
covers "He hit the girl next to him'" and allows '"he" and "him"

to be the same, but would not allow '""He hit the girl next to

Jack'" to have "he' and "“Jack' the same,

Using the Rules

What we must decide next is when to use the IPR's. When
we discussed '"definitional knowledge'" this question never came
up, we just assumed that we used definitional information
first, With our IPRs we have to be more careful. Suppose we
assume that we apply the IPRs as soon as we see the pronoun.
What would we do with a sentence like '"He hit Jack'"? We want

to remove Jack from consideration as a possible referent for

161

"he", but when we first see 'he' we haven't yet seen "Jack',
much less figured out to whom this name is referring. What we
need then is a converse to IPR2. It would read:
IPR2-COHV) If we know the referent for an NP in SS}i:
a) Unless the NP is a reflexive pronoun, remove
the referent from the PRLs of all other NPs in
SS1
b) 1f the NP is not a pronoun, also remove the
referent from the PRLs of all HPs in SSI1 or
sentences which embed SS1.
In this way, when we find that 'Jack'" refers to JACK! (in "He
hit Jack"), we removed JACK! from the PRL of 'he'',

We have assumed that the rules for pronouns should be
applied when the pronoun is encountered. Suppose that instead
we wait and first apply definitional information to all the
NPs in the sentence. We could then go through all the NPs and
just apply IPR2-CONV to the ones whose referent had been
determined. This scheme has the advantage that we can
eliminate IPR1 and 2,

The program uses the method first proposed (applying IPR
(1 and 2) when the pronoun is first encountered) hecause that
is the method | thought of first. While this new scheme seems
to offer a slight simplification, there are potential problems
with it. However, the issue does not seem to be very important

at this stage of development, so we will skip it.

162

Other Work on Syntax and Co-referentiality

The Lees and Klima Rule is only sufficient for the
simplest sentence constructions. Consider the following
sentences, in each case interpreting '"he'" and '"Jack'" as
coreferential:

(6.11) Jack went to the store before he had bhreakfast.,
(6.12) Before he had breakfast Jack went to the store.
(6.13) *He went to the store before Jack had breakfast.
(6.14) Before Jack had breakfast he went to the store.
Now a quick look back at our Less and Klima formulation will
show that it is not sufficient to account for (6.11) - (6.14),
In particular it does not predict that (6.13) will be bad.
Rules which account for both our earlier examples and (6.11) -
(6.14) were found independently by Ross (Ross 69) and
Langacker (Langacker 69). The basic idea is that a pronoun
is not allowed to appear earlier in the sentence than its
referent if it “"commands" the referent. ('"Command' is a term
invented by Langacker,) Basically A commands B if the clause
which contains B is a portion of the clause which contains A,
In (6.13) the "he'" is in the main clause which contains the
subclause '"before Jack had breakfast!. So in this case '"he"
both commands and precedes '"Jack'.
But things get even more complex. So in (Lakoff 68),

Lakoff comes up with examples like:

(6.15) *In John's apartment, he smokes pot.
(6.16) In his apartment, John smokes pot.

163

Again, the * on (6.15) is for the interpretation with '"he'" and
"John'" coreferential. In this case our ''command'" rule does
not predict that (6.15) is incorrect. (Note 11)

So far we have only looked at '"he and ''she'". |f we
consider pronouns like '"each other" or '"both,'" things get even

more complicated as shown in (Dougherty 69).

164
6.3 Introducing New Objects

There are times when an NP does not refer to a previously
mentioned NP, namely when the NP introduces a new object into
the story. MNaturally this happens often. So in

(6.17) Jack and Janet went to the store.
we must introduce three new objects, Jack, Janet and the
store. There is some question about how to tell when an NP is
introducing a new object. As a first approximation we will
assume that if, after applying definitional information there
are no possible referents, then the NP is new. We shall see,
in sections 6.4 and 6.5 that this is not necessarily the case,
but we can worry about the exceptions then.

Once we have decided that the NP is new we want to
a) create a new symbol for it, and
b) assert all the properties of the new symbol (e.g. that it
is "a top" and “blue" etc.).

Generating a new symbol is easy; part (b) is slightly harder.
Here the idea is to take the PLANNER program constructed as in
6.1 and extract from it a list of appropriate assertions with
the new object substituted for the variable, So if we took
(6.4) which was the expression to locate “"the red ball" we
would want to get:

(6.18) (7 1S BALL2 BALL)
(7 COLOR BALL2 RED)

The other two facts,

165
(6.19) (NOT (PLURAL BALL2))
(SPECIFIC BALL2)
should be interpreted immediately and the facts would be
placed on the property list of BALL2.

These assertions would then be added to the front of the
list of assertions to be handed over to DSP, and would be
processed like any other assertions. |In particular, they
would be put into the data base, and the base routines would
be allowed to entail other assertions where appropriate. So
“"Jack! would become:

(6.20) (? NAME JACK1 JACK)
but NAME-BASE would entail:
(6.21) (? 1S JACK) PERSOHN)

(? SEX JACK! MALE)
(? AGE JACK! YOUNG)

166

6.4 Over~-Specified Noun Phrases

So far we have been concerned with the application of
knowledge to NPs where the definitional information was not
sufficient to determine the correct referent, i.e., when the
PRL had more than one member. There is another possibility,
however, when we are done with the definitional information,
there might be no possible referents. This can occur for two
reasons, Possibly a new object is heing introduced into the
story, or it might be that the noun phrase refers to a
previously mentioned object, but contains new information
about it, We will be concerned in this section with the
latter situation,

We have seen an over-specified NP (henceforth referred to
as EEEEE) already in the first spoken line in the story in the
introduction, ''Janet, see the paints and pencils which Daddy
got for usl" The previous line said that Jack was holding
paints and pencils, but we did not specify where they came
from. So a system as we outlined in section 6.1, finding that
it knew of no pencils which Daddy got for Jack and Janet,
would promptly decide that the NP described some object that
it hadn't heard about yet. O0f course, this is not the
conclusion we want to reach, so something has to be done.

To my knowledge OSNP's have not been studied to any great
degree in the literature on reference. In fact, | am only

aware of one study (Vendler 67) which even considers the

167

possibility at all, and he seems to indicate that an OSNP can
never refer back to an earlier mentioned object, though he is

not completely clear on the point.
Some Easy Solutions That Don't Work

One way out might be to say that subordinate clauses
actually act to give us new information about the object,
rather than to specify it further, and even in the cases where
it was used as specification, we could probably do without it,
depending instead on NSP to find the correct objects.

The trouble with such a scheme is that not only do we
lose the often considerable selective power of subordinate
clauses, but the problems that motivated this scheme still
persist, as indicated by the following story fragment.

(6.22) Jack and Bill went outside to fly a kite. After
some trouble they managed to get it to fly,.
Suddenly the string hroke and Jack said, "My new
kite is flying away."
In "my new kite'" the over-specification comes not from a
subordinate clauses in '"the paints and pencils which Daddy got
for us', but rather from the adjectives 'my' and '"new',

The next simplest strategy is that in the cases where we
have over-specified the NP, we can go back and find the object
which satisfies the largest number of the attributes mentioned

in the NP, This would work for both the examples we have

given, but would produce nonsense if we changed the last line

of (6.22) to read:

168

(6.23) "That is OK" said Jack. ''My new kite is at home.'
Here over-specification is used to indicate that the object
mentioned is not the one we were previously talking about.
Note that if the story had gone

(6.24) "That's OK" said Jack. '"The kite is at home."
the reader would be quite confused. Iin much the same way, the
first story line in chapter 1 could have been

(6.25) "Janet, the paints and pencils which Daddy got for
us will be here tomorrow."

and we would have understood the referent quite differently.
Do We Look for Positive or Negative Information?

What seems to be happening is that there is something in
the sentence which either hints that the OSNP is the one we
are familiar with, or hints that it isn't, So when we are
told that the kite is flying away, we are not surprised since
we know that the string broke. In (6.23) we would suppose
that if the kite is in the house it cannot be the one which we
know to be outside. The question then becomes, do we assume
that the object is the one we know about unless we have reason
to believe that it isn't, or do we assume that it is a new
object unless we have reason to suspect that it is the old
one? (We shall call these the conservative theory and the
radical theory respectively.) The evidence is not particularly
strong in either direction., Suppose the first spoken line of

the chapter | story had been:

169
(6.26) "] like the paints and pencils which Daddy got for
us.'" said Jack.

"See'" as an imperative offen implies that the object is there
to be seen, so it offered reasons to believe that the paints
and pencils were there. 'Like," on the other hand, has no
such implication. The trouble is that since we said that the
paints and pencils are for Jack and Janet, we have reason to
suspect that he has them, though it is not completely clear.
However, let us change (6.26) to read:

(6.27) ") like the paints and pencils which Bill got from
the store'"

} still read it as meaning the ones he is holding though the
sentence is almost a non sequitur in the story context,
However, the evidence seems to he leaning toward the
conservative theory. But, as we shall see later, a complete
theory, even one hbased on the conservative theory , will also
have to accomodate positive information. That is, information

which says '""the sentence is hetter if the referent is X",
The NDouble NHegation Technique

Having decided on this, let us make a first attempt to
specify exactly how we will decide that a given OSNP either
may or may not bhe a previously mentioned NP, One thing we can
be sure of; if the NP says it's a ball, we can restrict
consideration to balls. So we can create a tentative PRL

consisting of all objects which have the head 'ball", (Note

170

12) In particular, if there aren't any previously mentioned
"balls'" we may assume that the NP is new and treat it as
speclfied in 6.3.

Now if our NP were '"the red ball'" we certainly would not
accept green balls as possihle referents., This suggests that
we want to go through the other modifiers and '"loosen' their
hold, but not to the extent that we allow in objects which
contradict the modifier., So we might replace

(6.28) (GOAL (? COLOR ?B5 RED) S$STRUE $DEDUCE)
with

(6.29) (NOT (GOAL (? COLOR NOT 7B5 RED) S$TRUE $DEDUCE))
The latter statement says that we should not accept obects
which can be shown not to be red., O0f course, for this to
work, our program will need to know that If an object is some
color other than red, it is not red, but it would have needed
to know this anyway. For future reference, we will call this
the '""double negation'" technique,

As our examples have shown, the place where we run into
trouble might not be in the NP proper, as in example (6.23),
where we knew that it was a different kite because of the
stated location, This implies that we have to apply our
double negation technique to the main assertion(s) which
contain the NP, In this way for (6.23) we would not consider
any kites definitely known not to be in the house, e.g., the

kite Jack and Bill were flying. To restate, applying our

,,,,,,,,,,,

171

"double negation technique to the statement that the kite is in

the house gives us:

(6.30) (NOT (GOAL (? IN NOT 7B7 HOUSEl) S$STRUE S$DEDUCE))
However, we would be able to establish that the kite being
flown is not in the house, so it would be eliminated from
consideration. Presumably in the case that all the possible
referents are eliminated, the program decides that a new
object is being referred to and creates one as discussed in

the last section,
Why .DSP Must Come Into Play

Some serious problems remain with this analysis,
Consider the following story fragment:

(6.31) Janet was in her room plaving with her paints.
When she finished, she put them in the drawer and
left the house. When she came back, Jack was in
the living room. \hen she walked in Jack said
"Janet, see the paints which Daddy got for us''"

Presumably the fact that we noted earlier, that for something
to be seen it has to be there, applies here to eliminate
Janet's paints from consideration, although we might argue
that ''seel' implies in some cases that the object is not known
to the listener. (In fact, | will argue later that this fact
must be the crucial one.) But in either case, if we take a
close look at exactly how this is supposed to take place we

find things amiss. We said earlier that we would have to

apply double negation to the main assertions the OSNP appears

172

in., In this case that would be the imperative '"'see'". . The
question we must ask ourselves, if we are going to negate
this, is what does it mean to negate an imperative? Or for
that matter, what does it mean to derive an imperative,
negated or not? The best answer seems to be that we don't
want to negate the imperative, we want to see if any of the
conclusions which we derive from the imperative are negated.
So ''see' as an imperative usually implies the object can be
seen or is new to the listener. |f we can show that the
relevant assertion is not true, we will have shown that our
OSNP is inconsistent with the imperative. This same point is
shown by the following example (Note 13):

(6.32) Jack was outside. He was holding a red ball.
Janet came up to him and said, '"Why is the beach
ball in the middie of the lake?"

We lave assumed that entailment is one of the functions
of the base routines. |f deciding OSNP's depend on
entailment, perhaps we want to do something like we did with
under=-specified NPs (géﬂf - NPs where we can find more than
one possible referent) - hand OSNP's off to DSP in the form of
a restricted variable and let DSP do the work.

There is other evidence that this is what we must do.
Consider:

(6.33) Jack was outside playing with a ball, Bill came
by. ''What was that smoke | saw' asked Bill., ''My

father burned my yellow ball'" said Jack. '"Why did
he do that?" asked Bill.

173

We do not understand ''my yellow ball' as the one Jack is
playing with, presumably because if it had been burned it
would be useless as a ball. But this, of course, is an
entailment of "burn', Unless we allowed DSP to act on OSNPs
we would have gotten the last example wrong. (Note 14)

The third example of needing DSP to help with OSNPs is
fairly complicated, | will first show that in example (6.31)
it is the "newness" criteria which is doing the selection,
Then | will argue that the ''newness' rule is properly a part
of DSP. First let's show why we can't depend on the fact that
the paints which Janet was using are not in the living room.
Consider:

(6.34) when Jack got up one morning he looked out his
window and saw a cat on the fence of the yard.
Jack got dressed and went downstairs to have
breakfast. After breakfast he put on his coat and
went outside. The yellow cat was on the stairs.
Most people understand ''the yellow cat' as referring to the
one mentioned earlier. But, if we take our double negation
theory seriously, then the fact that it is on the stairs,
mcontradicts' the fact that it is on the fence. The answer is
that really there is no contradiction here, the cat had plenty
of time to get from the fence to the stairs. But this does
indicate that we cannot use the double negation technique
unmodified. We will have to change it so that rather than
looking for "updates" (which is what it is currently looking

for) it will look for real "contradictions' in some sense.

174

Now, in (6.31) there is no reason for assuming that the paints
Jack mentions could not be the same as Janet's paints, purely
on the basis of location, since there was plenty of time for
the paints to be brought into the living room from Janet's
room. So the real influence must be the ''newness criterion"
(assuming that there aren't others | haven't thought of.)

What | want to show next Is that deciding when a ''seel"
implies that the object is new to the listener is not trivial,
and requires a degree of semantic processing which could only
happen in DSP, To see this, consider:

(6.35) When Jack walked outside, Janet and Tip were there.
Janet said '"Look Jack! See Tip!'"

(6.36) Janet had taken the large box from the basement and
painted it bright colors. When Jack came into the
house she said '""Look Jack! See the box!"

(6.37) Jack went into the house. Janet was in the living
room with a large box. She said '"Look Jack! See
the box!"

In (6.35) and (6.36) we do not assume that Jack is not
familiar with the object. 1In (6.35) we simply know that Jack
already knows of Tip's existence, whereas in (6.36) the
combination of the fact that the box was previously in the
basement, and that Janet has another reason for calling Jack's
attention to it, lead to not asserting that it is new to Jack.
in (6.37) however, since we have nelther of these reasons, we
assume that it is new to Jack. Such analysis seems to me
clearly part of DSP, so we have satisfied the second half of

the argument

........

175

We mentioned earlier in passing that we would need to
include positive information in the process also. Consider:
(6.38) Jack went out to fly a kite. After a while he

managed to get it up. Bill came by and watched.

Suddenly Jack shouted "My new kite is flying away."
Presumably we will have a demon looking for such a situation,
since it is one of the problems involved in kite flying, and
one thing this demon should do is assert that Jack no longer
has control over the kite, Given our current model, since
this contradicts the fact that Jack has control over therkite,
we would conclude that it must not be the same kite. The
irony of the situation is the fact that the demon which
asserted that he no longer had control would only work
provided that the kite referred to was the same kite, The
solution fortunately is easy. We simply allow demons the same
selection power over OSNPs which we give them over USNPs. In
fact, we can make the two look almost identical to DSP. When
we realize that we might be dealing with an OSNP we make up
its PRL and restrict the variable exactly the same way in both
cases, except, with an OSNP we add one extra possible
referent, a new symbol representing the case that In reality
the NP is not meant to refer to a previous one at all, but

really introduces a new object.
How to Handle OSNPs

Let us now summmarize how we shall treat OSHPs,

1)

2)

3)

b)

5)

6)

7}

176

We recognize the situation when the '"find all" created
in descriptive information finds no suitable objects.
Create a PRL of all NPs which match the head noun.
Then take each modifier in turn and remove all NPs
from the PRL which conflict with that modifier.
Eventually, one modifier will cause all the NPs to be
deleted from the PRL. Call all modifiers prior to
this one '"tested" modifiers. This last modifier, plus
all remaining ones are the '"untested'" modifiers.
Re-instate the PRL prior to the point when all NP's
were deleted,

Make up a new symbol for the possible new object, and
add it to the PRL.

All the tested modifiers should bhe asserted about the
new symbol, so that DSP will know the appropriate
facts about it, However, these assertions will not be
processed by DSP themselves unless we decide that the
object is a new one, in which case they will be
processed as in the ''new object" situation.

All untested modifiers plus any other assertion in
which the OSNP appears will have the double negation
test applied to it, and will then be handed off to DSP
for normal processing

tf in DSP we generate any statement assertion which

contains an undecided OSNP we will apply the modified

177

double negation test to it immediately.
8) If the NP is decided to be an old one, the assertions
generated in step 5 will be erased, otherwise they
will be processed by DSP as mentioned in step 5.
Note in particular that really, except for step 7, DSP
need take no account of whether a particular NP is over or

under-specified.

178
6.5 Determining Indefinite Reference
The Existence of Non-Specific Objects

In chapter 3 we noted the distinction between the
definite NP ''the ball'" as in:
Jack was hplding the ball,
and the indefinite NP '"a ball" as in:
Jack wanted a ball,
There is a real distinction bhetween definite and indefinite
NP's, Consider:

(6.39) Jack wanted a kitten. Bill had a kitten and Jack
of fered to trade his ball for the kitten, Bill
wanted to keep his kitten, so Jack went to look for
George who also had a kitten., George was willing
to trade so Jack got his kitten,

In this example the "a kitten'" in the first line cannot refer
to any particular object, not even a particular object which
is not yet known to us. Suppose it did refer to a particular
object. Then when Jack offered to trade with Bill, in order
to answer the question "Why does Jack want to trade' we would
have to assume that the kitten Bill has is the particular one
Jack wants. Of course, then, when Jack offers to trade with
George we are in a bind since then we need to assume that it
is really George's kitten that Jack wanted. Naturally, the
answer is that Jack does not want any particular kitten.

Rather, he wants one of a class of objects called "kitten',

It so happens that both Bill and George have objects which are

179

members of that class.

The Relation Between (Non)Specifics and (in)Definites

We will call the class object a '""non-specific' object.
The alternative is a "“specific'" object. Specific and
non-specific are '"semantic'" in the sense that they refer to
the meaning of the referent. DNefinite and indefinite are
""syntactic'" in that they refer to the form of the noun phrase.
In this section we will assume that objects can be marked +,~-
specific. Nevertheless, there is evidence that this is not
exactly true (Karttunen 71), (Jackendoff 71). However, this
simplification should have no effect on the basic points in
this section,

The distinction between specific versus non-specific
objects is often mirrored by definite vs. indefinite. This,
however, is not always the case. In fact we can find

exceptions in both directions as illustrated by:

(6.40) Janet said "!| want a ball, The ball must have a
blue stripe."
(6.41) Janet wants to marry a man who plays the violin for

the Boston Symphony Orchestra (BSO).
in (6.40) the "the ball" refers not to any particular ball,
but rather to the '"a ball' mentioned in the first line. We
could have replaced '"the ball" in (6.40) with "my ball" or
“"this ball" and we would have still understood it the same
way. (In passing we should point out that the existence of

examples like (6.40) indicates that non-specific objects

180

should also be represented by unique internal symbols.) In
(6.41) on the other hand we understand the '"a man who plays
violin for the BSO0" as a particular person, while in

(6.42) Janet wants to marry a man who plays the violin
the "a man who plays the violin'" could be either a class
reference, or a particular person,

So the "indefinite reference problem'" really becomes two
problems. First, when is an NP non-specific? Second, finding
the object to which the NP refers. Prior to this point we
have only considered examples in which all the noun phrases
were definite. HNow we want to expand our scope to handle
indefinites.,

When Does an NP Refer to a Non-Specific Object? The Setting
Constraint

An indefinite NP can only be a class referent in certain

settings. So in

(6.43) Janet picked up a ball,
we recognize the '"a ball'" as bheing a particular ball. Those
interested in an exact formulation of what ''settings' do and
do not allow non-specific interpretations might consult
(Jackendoff 71). For children's story purposes we should
recognize that some settings which allow class objects are
modals, negation, questions, imperatives, and certain verbs
which indicate that the indicated activity has not occurred,

e.g., like, want, intend. These are illustrated respectively

181

(6.44) Jack might get a ball.,

(6.45) Jack does not have a ball,

(6.46) Does Jack have a ball?

(6.47) "Jack, get a halll"

(6.48) Jack wants a ball,
On the other hand, straightforward past and present tense
statements generally do not allow class interpretation as in
"Jjack had (has) a ball", We will refer to settings which

allow non=specificity as non-specific settings. Those which

don't will be call specific settings.
Semantic Considerations in Determining Specificity

We have already noted that when an indefinite NP does not
refer to a prior object it may still be either specific or

non-specific as indicated by:

(6.49) Janet wants to marry a man who loves music.

(6.50) Janet wants to marry a man who plays the violin.

(6.51) Janet wants to marry a man who plays the violin for
the BSO,

Most people consider (6.49) non-specific, (6.50) ambiguous,
and (6.51) specific.

These examples are misleading in that they seem to
indicate that the number of people who satisfy the description
is the relevent factor. While this is probably a factor in
some cases, it does not work across the board, as in:

(6.52) | want an early Rembrant etching.
(6.53) Janet wants to marry a Beatle.

Wwhile | don't know how many early Rembrant etchings there are,

182

for all | know it could be less than the number of men playing
violin for the BSO. Certainly the four (ex) Beatles number
fewer than the violin players in the BSO0.

This is an interesting problem, hut it is not one which
is crucial to children's stories. In our simple stories we
can (and will) assume that any new indefinite NP in the proper

setting will be non-specific.

Determining Reference = Definite NPs

We saw earlier that only non-specific settings allowed an
indefinite NP to he interpreted as non-specific. The other
way to look at this is that specific settings force the
indefinite NP to bhe interpreted as specific. The same is true
for definite NPs., Consider:

(6.54) Janet wanted a ball, She would give it to Jack as
a present,
(6.55) *Janet wanted a hall, She gave it to Jack as a
present,
The difference is that "would' creates a non-specific setting
so the "it'" can be the non-specific '"a ball" introduced by the
first line, On the other hand, the past tense ''gave' creates
a specific setting so the "it" must be a specific object.
Since the only object around is the non-specific 'a ball'", the
line sounds quite strange.

Actually, what makes (6.55) strange is not especially

dependent on the ''ball" in the first line being non-specific.

Consider:

183
(6.56) *Janet wanted the red ball in Macy's window. She
gave it to Jack.
in both (6.55) and (6.56) the problem is that one simply can't
give something away which one dosen't have. But note that one
can "get" an object which one does not have, hence we find
examples like the one in our story of section 1.2,

(6.57) Janet said "l must get some money for Jack.' Soon
she came back with it,

Here the "it" is in a specific setting and is accordingly
interpreted as specific., However, the 'it" is also
interpreted as heing '"money' which is '"for Jack'", To use
conventional terminology, we would say that the "it' shared
"identity of sense' with the 'some money', but not “"identity
of reference',

Given the above analvsis, we can now extend the reference
procedure for definite NP's to cover the possibility of
non-specific referents.

1) In early referent analysis, do not bother to
distinguish between specific and non-specific
referents. Put both on the possible referent list.

2) Allow normal selection mechanisms in base routines and
demons to operate., So, for example, the consistency
check in GIVE-BASE will prefer objects which the giver
has, hence explaining (6.55) and (6.56).

3) Just after applying the '"last mentioned'" rule, see if

we have a non-specific referent in a specific setting.

184

If we do, create a new specific object which will
replace the non-specific referent in all new
assertions,

L) At the same time, take all facts known about the old
non-speci fic referent, and assert as facts about the
new specific referent. This will account for the fact

that "it" in (6.57) is hoth "money'" and "for Jack'.
How No Indefinite NP's Refer?

Before we get started on extending our reference
procedure to handlie indefinite NPs we should first decide in
what sense indefinite NP's refer. (Actually, we will only
consider indefinite NPs with heads, so we will not consider
HPs like "some" or 'one'". Some of the problems connected with
"one'" will be discussed in 6.6.) |If we are presented with a
line like '"Jack bought a ball" in isolation, we create a new
specific object BALL!, say. So indefinite NPs can refer to
newly created objects, but can they refer to previously
mentioned objects? |f they do, it is with far greater
difficulty than definite NPs., fonsider:

(6.58) Janet was playing with her top. Jill came along
and they were bhoth playing with it for a while.
"That was fun,'" said Jill. "! want to get a top."

(6.59) Mother and Jack were in the living room. Since the
ceiling light was off, when the sun went down it

became dark there. Jack said "I will turn on a
light."

185

(6.60) Janet was in the house playing with a ball. Some
time later when mother came home, Jack was outside
playing with a ball.

(6.61) Jack wanted a green ball. Bill wanted a green ball
also.

In (6.58) and (6.59) we have indefinites (""a top'" and "a
light" respectively) with possible referents which are
definite ("“Janet's top' and the living room light). 1In both
cases however we do not assume that the definite is the object
referred to. In (6.60) we have a syntactic indefinite and
semantic definite with a possible referent which is also
syntactically indefinite and semantically definite. Again we
don't assume that the second "a ball'" refers back to the
first. In (6.61) we have two semantic indefinites, both
being ''a green ball', it would appear that assigning the
same internal symbol to both NP's would get us into trouble if
our example (6.61) went on to say:

(6.62) Jack wanted his to have a red stripe. Bill's
should have pink dots.

However, there are cases where it is reasonable to assume
that an indefinite is referring to a prior NP,

(6.63) Janet wanted to get a dog. When Ms. Jones gave
her a dime, Janet said, '"l| am saving my money. |
want to get a dog."

(6.64) Jack traded a yellow ball for Bill's top. When
Jack got home, Mother asked him where he got the
top. "l gave Bill a ball for it'" said Jack.

(6.65) Jack and Bill were outside flying a kite, A strong
wind came hy and the string broke. Janet and Alice
were outside the house. Janet looked up and said,
"Look Alice, there is a kite flying away."

186

In (6.63) there seems to be no reason for not using the same
symbol for both occurences of Janet's wanting to get a dog.
In fact, not to use the same symbol would seem to imply that
there are potential differences between the dog she wanted in
the first line and the one in the last,

On the other hand, there are potential reasons for
assigning a new symbol to the '"a bhall" in (6.64), For
example, we could ask, '"Does Mother know that the ball which
Jack traded was yellow?'" |f we created a new '"a ball" then we
would have associated with it only those properties which Jack
tells Mother (plus some indication that the two balls are
really the same.) On the other hand, we could equally well
solve this problem by keeping the same internal symbol, only
including the modifiers in the data bhase description of the
sentence. Since we will see in the next section that we will

need the modifiers anyway, we will adopt the latter solution.

Bringing DSP into the Process

Both (6.63) and (6.64) can be handled by our standard
procedure of looking for data base redundancies during
bookkeeping. (That redundancy checking should be done by
bookkeeping is so far just an assumption. in chapter 7 | will
try to indicate why this should be the case.) Example (6.65)
on the other hand seems to depend on our expectation that once

the string breaks the kite will fly away. Hence it is a demon

187

which would assign the '"a kite'" in Janet's sentence to the one
Jack and Bill were flying.

Furthermore, the base routines also come into play.
Suppose the first line of (6.63) were changed from "Janet
wanted to get a dog'" to '"Janet wanted a dog'", the latter being
transliated in the data base to something like '"Janet wanted to
have a dog." The responsibility for bridging the gap between
""get' and '"have'" falls on the base routines. (That is, 'get"
entails a '""have' assertion, and it is the latter which matches
up with the new first line of the story.) The conclusion is
that, just like definite NPs, indefinite NPs should be left
open (with a variable holding the place) so that DSP can work

on the assertion,
The "Immediately Aware Of' Rule

As we initially pointed out, indefinites do not refer
back to previously mentioned NPs with the '"ease'" of definite
NPs (as illustrated by examples (6.58) - (6.61)). While it
might be possible to account for those examples by simply not
using the '"last mentioned rule'" on indefinite NPs, other
examples seem to show that we need something like an "inverse
last mentioned rule', Consider:

(6.66) Jack offered to trade his kite for Janet's top.
Janet said "That is a nice kite, and | do want a

kite,"

In this example, a demon would presumably pick up the "I do

188

want a kite'" and indicate that the line sheds some light on
the possible outcome of the trade offer. But the trade offer,
and hence the demon, is concerned with the particular "kite"
which Jack has. Hence if the '"a kite'" were a variable, it
would be assigned to the kite which Jack has. But we
understand the '"a kite'" as a non-specific, applying to kites
in general, not simply Jack's.

The solution to this problem comes from considering why,
if a person is referring to an object which was previously
mentioned, would he use an indefinite, rather than a definite
NP? The intuitive answer is that the speaker is not sure that
if he used the definite form the listener would be able to
identify the referent correctly, or that the object in
question, while known to the reader, is new to the speaker.

We saw an example of the latter in (6.64), In (6.64) while
Jack knew which ball he had traded, he did not expect Mother
to be aware of it,

Actually, the speaker can know that the listener is aware
of the object and still use the indefinite, as in:

(6.67) Jack came home with a top., Mother asked him where
he got it. 'l got it from Bill in exchange for a
ball, It was the beach ball which you said |
should throw out."

Suppose we had already encountered bhoth the conversation
between Jack and Mother where she told him to throw the ball
out, and the trade between Jack and Bill, We would still be

able to have a conversation like (6.67) in spite of the fact

189

that we know that Jack knows that Mother had previous
aquaintance with the traded ball. So we really want to know
if the listener is "immediately aware'" of the object in
question,

To account for these cases, we will add a rule which says
that if a specific NP has occurred in a conversation, it
cannot be the referent of any indefinite NP later in the
conversation. This can be checked simply by looking for the
last time the object was mentioned in conversation (or was
physically present) and making sure that (1) it was in the
current scene (no ''gaps' in the events separating then and
now), and (2) both speaker and listener were present at the
time. (Hote 15)

Given that (6.67) seems to indicate that the
"immediately-aware-of' rule has precedence over demons, the
application of the rule should be during early referent

analysis.

Some Possible Difficulties With "Immediately-Aware=-0f"

As formulated there are several problems, or potential
problems, with our immediately-aware-of rule. For example,
when we get to more complicated stories, we could have a
situation where the story jumped back and forth between two
conversations, both mentioning a particular object X. In

conversation B we note that the last time X was mentioned

190

neither participant in B was present (because it was mentioned
in conversation A). Needless to say however, this would not
be relevant to whether the participants in B were immediately
aware of X. So we will ultimately need to refine our
definition of conversation,

There are also problems with examples like the following,
which is taken from our opening story (section 1.2).

(6.68) "Now you will have some monevy, a toy cat, and all
these pencils."

This was said by Janet near the end of the story in her last
attempt to get a trade. At this point Jack was clearly
immediately aware of hoth the money, and the piggy bank (the
toy cat), yet Janet used indefinites. The question we must
decide then is whether it is correct to assume that '"a piggy
bank'" in (6.68) should have identity of reference with the
piggy bank in Janet's hand, The alternative is that we
interpret the '"'a piggy bank' as non-specific, and then realize
that the PB in her hand is one possible object which she could
be referencing. In concrete terms, if we assume indentity of
reference, then the internal representation of her sentence
has her speaking of the particular piggy bank, If we assume
that '"a piggy bank" is non-specific, then the internal
representation of the line talks of a non-specific piggy bank,
and we must derive new assertions which state that she is
""really'" offering the PB in her hand., (We ultimately need to

make the connection in order to answer a question like "Why

191

did Janet get that PB?")

Since | know of no good evidence to decide between the
two possibilities, | will assume that the '"a piggy bank'" is
non-specific, since that allows keeping the '"immediately aware
of'" rule intact,

One other potential problem with the '"immediately aware
of" rule deals with how it applies to the narrator.
Presumably, the narrator (and reader) are 'aware of' everthing
which happens in the story. (We are talking of the
"intangible'" narrator who says things like '"Jack and Janet
were outside the house'.) So one would expect that the
narrator cannot use an indefinite to refer to a non-specific
previously mentioned object.

In some cases, like (6.60) there is some doubt whether
the newly mentioned non-specific indefinite is the same as a
previously mentioned object. |In these cases we normally note
the doubt, but assign the indefinite to a new object since it
seems clear that the narrator must at least intend usknot to
be sure whether the object is the same or not. There are
other cases however which are much more difficult, Consider:

(6.69) Jack and Bill were flying a kite, A strong wind
came by and the string broke, Janet and Alice were
outside Janet's house., When Janet looked up she
saw a kite,

My personal interpretation is that we are to assume that the
"3 kite" in the last line is the same kite which Jack and Bill

were flying. However, if this is the case, it would break the

192

“"immediately aware of' rule since both narrator and reader are
aware of that kite. What seems to be happening is that the
narrator is "empathizing'" with Janet's '"unawareness' of the
kite, and hence uses the indefinite form. How we should

handle this'problem is another open question,
Summary of indefinite NP Reference

1) Do early referent analysis without regard to the
specificity of the possible referents.,

2) Remove all specific NPs which fail the '"immedately
aware of' test, Create a new object as described in
section 6.3. |If the setting is specific, then the
object should be specific, if non-specific, then
non-specific.

3) Go through DSP as with definite NPs except the '"last
mentioned'" rule should not apply.

L) At some point after we have checked for redundancy, if
the indefinite NP has still not been assigned to a

referent, assign it to the new object created in (2).

193

6.6 Further Topics

There are many topics which have not even been mentioned.
For example while we understand the constraints that "it"
places on possibhle referents, '"this' and '"that'! are not so
clear., Broadly speaking, '"this'" means '"associated with the
speaker" and often refers to an association based on distance,
but it does not have to, as in "l don't like this situation,”

Another ignored problem is sentential reference, as in
"pon't do that'". To give some idea of how complex this can be
consider:

(6.70) A goat wandered into the yard where Jack was
painting a chair. The goat kicked the paint bucket
and got it all over himself, When mother came out
she saw the goat and asked, 'Jack, did you do
that?"

There is no one line in the story which is the referent of
“"that" in the last sentence. It seems to refer to something
like "“cause the goat to be covered with paint',

However, for the rest of this section we will only look

at a few problems which are closely related to issues which

came up in this chapter.
“"One' and '"Some"

Looking at "one', ("some" has similar problems,) let us
try to extend the procedure for handling syntactic indefinites
in the most straightforward manner possible. We will create

several new objects, each corresponding to the ''description"

194

of a possible referent.

(6.71) The boys were going to play ball at the park. Jack
brought a bat. Bill brought a ball., Sam brought
one also.

In (6.71) initially the "one'" may be either '"a bat" or "a
ball'" and we will create two new objects, one for each
possibility. Eventually we will decide on 'ball" because it
was most recently mentioned. (This seems to indicate that
while LMR does not apply on syntactic indefinites for
indentity of reference, it does come into play for identity of
sense. This would be a simple change to our theory.) But
there is a deeper problem here.

What constitutes the ''description' of the previous
object? A good rule seems to be '"anything mentioned in the
previous NP except for any information carried by a word which
also acts like a determiner. So we see:

(6.72) Jack brought a soft yellow ball and Bill brought
one also,

(6.73) Jack brought his soft yellow hall and Bill brought
one also.

(6.74) Frank said to James, "Jack found that soft yellow
ball, and Bill found one also.,"

In all three we understand '"one' as meaning '"a soft yellow
ball", This means that in (6.73) we ignored the fact that the
first ball belonged to Jack, and did not interpret the ‘'‘one'"
as meaning that the one Bill brought also belonged to Jack.

In (6.74) we interpret the one Jack found as being right there

with James and Frank. The one Bill found is not interpreted

195

that way. Such examples are the justification for the section
of the rule which says to ignore any information carried in a
word which also acts as a determiner., However, if we keep
looking at such examples we quickly find that things get very
complicated. All sorts of ambiguities arise.

For example:

(6.75) Jack brought a sword which had belonged to his
great-great-grandfather. Bill brought one also.

| find the last sentence at least three ways ambiguous. The
"one'" which Bill brought might have been originally owned by
Bill's great-great-grandfather, perhaps by Jack's
great-great-grandfather, or it could simply be a sword with no
implications whatever about who owned it first. One can
clearly get these readings by preceding (6.75) with the
following:

(6.76) The fencing committee was worried that not enough

people would bring swords to enable the match to

take place. However,...

(6.77) The topic of the historical society meeting was
early American weapons.

(6.78) The topic of the historical society was Jack's
great-great-grandfather who was a captain during
the Civil War,

How we will handle such examples is another topic for future
work.
As mentioned earlier, we will need information about what

the last NP specified about its referent. This is important

as seen in:

196
(6.79) Jack owned a yellow ball, He brought the ball to
the park. Bill brought one also.
in this case the '"one'" is still a ball, but it is not
necessarily yellow. In our model we have made no provision
for storing information such as what an NP specified about its

referent,

The Structure of Conversations

When we said that pronouns referred to some object
mentioned recently in the story, we arbitrarily set a limit of
five lines on how far back we would look, While in most cases
this limit is more than adequate it is not too difficult to
make up an exception. Consider:

(6.80) Janet, Bill, and Bill's sister Helen were outside.
Janet said, "Il can't keep this kitten. Would you
like to have it, Helen?" 'Yes," said Helen, Bill
said, "1 don't know. Remember how Mother objected

to that robin. She would not let us keep it."
"But Mother said that it is not good to keep a

robin indoors," sald Helen. "It is not fair to the
robin'. '"Look," said Janet, "Do you want it or
not?"

In (6.80) the last sentence to mention the kitten was seven
lines prior to the last line. Furthermore we could extend
Bill and Helen's conversation quite a bit and still would not
have any trouble interpreting the "it!" from the last line.
What is operational here is the fact that we have a
“"sub-conversation' going on, and Janet's comment brings us up

out of it, In such a case the length of the subconversation

197

is not important. This, of course, is not a theory, just an
indication that one is needed. We must specify the new
pronoun rule, and explain how we will recognize

sub-conversations,

198

7 The Rough 0Organization

In chapter 4 we outlined the order of execution of the
various parts of NDSP, The order we gave was
Demons
Base Routines
Bookkeeping
In section 7.1 we will try to justify this ordering. While
this organization has worked fairly well so far, we will see
examples in 7.2 where a base routine cannot complete its work
because it does not know the referent for a noun phrase. Such
examples have caused us to divide each base routine into two
parts. The new part will be ordered after bookkeeping. This
would give us:
Demons
Base Part |
Bookkeeping
Base Part 2
The primary difference bhetween the two parts of base routines
will be that the first section will not be able to depend on
knowing the referent of a particular NP and the specific
meaning of a potentially ambiguous predicate. (This is
necessary since, for example, many referents will still be
undecided at this point.) By the time control get around to
the second section these things will be known. Part one will
assert new assertions (like TRADE asserting two HAVE

assertions) and activate any demons which are put in by

LOOK-BACK. Base routines part 2 activates all other demons

199

and does deductions which depend on knowing the NP referents.
In section 7.3 we will take a closer look at bookkeeping.
The basic issue we will confront is whether the base routines
for verbs like '"trade" or '"eat', which cause a change in the
world, should be responsible for their own updating. This
issue comes up because we can show that '"trade', for example,
must look to see if the person doing the trade really has the
object. Hence if the base routine has gone this far, why not
go just a bit further and update the assertion right then and
there? We will not adopt this idea, however, since it seems

to lead to real problems in handling reference.

200
7.1 Ordering the Sections

In this section we will try to show that it matters in
what order things are done. Our arguments will be based on
the model of referent determination presented in section 3.3.

Before one can speak of 'ordering" sections of a process,
one must believe that the process does indeed break up into
those sections., |In chapter 2 in particular, and throughout
the thesis in general, we have tried to justify the '"reallity"
of our four part division of DSP, Note however that saying
that the model does something which corresponds to demon
application is not to say that there is necessarily any place
in its flow chart to which we can point and say '"That is where
it looks for applicable demons.!" |Instead we might have twenty
different kinds of demons, each checked at a different point
in the process. Now in working on a model of the sort we have
here, one always starts with simple assumptions, and only adds
complexitf}s when they are clearly justified. 1In the present
case there is only one kind of demon, and it does make sense
to talk of the '"time' when the process looks for applicable
demons.

However, this makes the whole argument seem to rest on
the correctness of the assumption that DSP will never get more
complicated. Since models in this domain certainly will
increase in complexity, we would seem to be left on shaky

footing. We shall argue, however, that the major points are

201

largely independent of the complexity of DSP.

First let us recall the scheme for definite noun phrase
referent determination which we gave in chapter 3. The idea
was that if early referent analysis was unable to narrow the
choice down to one, we would substitute a variable in the
assertion and allow portions of DSP (demons in parttcular) to
assign the referent. However, if a referent were not
assigned, we would finally just pick the most recently
mentioned of the possible referents (that is, we would use the
last mentioned rule, LMR).

This model was elaborated in chapter 6 in order to
account for indefinite and overly specified noun phrases,
Nevertheless our ideas about definite noun phrases have
remained intact, and it is this scheme we will be using in our
argument. Accordingly, throughout this section whenever we
refer to “"referents' we mean referents of definite noun
phrases,

Given this reminder, we can now outline the points we
want to make,

(7.1) There is a time in the process by which we must
know all the referents, or at least be able to say
that given the information we have so far in the
story it is not possible to decide,

(7.2) There are certain processes (demons in particular)
which know enough to be allowed to make

"suggestions' about referents. Hence these
processes must come before the point mentioned in

(7.1).

202

(7.3) There are other process (bookkeeping in particular)
which need to know the referents of NP's but which
cannot be allowed to make suggestions as in (7.2).
Such processes must come after the point mentioned
in (7.1).
When expressed in this fashion, the ideas of this section
become independent of our assumptions about the complexity of
our DSP model. So if at any point we wish to add another
section to the model we only need to see if it fits the
description in (7.2) or (7.3). If it fits both we are in
trouble and would be forced to adopt a more complex theory of
definite NP reference, or a more complex organization of DSP,
(That is, we might want DSP to be organized in such a way that
we could "skip around'" more in the processing of the sentence,
depending on what information we had available. So if we
didn't know a particular referent we could go on to other
portions of DSP which, while not requiring knowing that
referent, might shed some light on its identity. Such an

organization scheme has been called "heterarchical" (Winston

72).)
Demons Before Bookkeeping

To argue that demons should be applied before bookkeeping
we will show that in general definite NPs must be decided
before we can do bookkeeping., That is, we won't know which
previous "book on table' assertion to update if we don't know

which hook fell to the floor. On the other hand there are

203

cases where we might not know all the referents, but could
still update. So if Jack has BALL] and we are then told that
"she'" got BALLI, we can update the ''Jack has" assertion
without knowing the referent for ''she'. However, starting
again with the least complicated model, we will assume that
since bookkeeping in general cannot be done until after the
referents are known, we can then order bookkeeping so that it
will only apply after all definite referents are known.

Since in our current model all definite noun phrases are
finally decided by the ''last mentioned" rule, we will refer to
the LMR as the point before which we cannot he sure of
referents, and after which we can. There is however, nothing
in the argument which depends on this point heing the LMR.
Consider the story fragment:

(7.4%) Jack was outside. He wanted to play ball, but
didn't have one. Sometime later Janet met Mary in
the park. She told Mary that Jack really wanted to
play ball, but couldn't because he didn't have a
ball to play with, "We will make Jack happy'" said
Mary. "Bill has a ball. He is at home."

Assuming (incorrectly) that bookkeeping comes before we apply
LMR, the "he' in the last sentence will still be undecided

when we get to bookkeeping, since there is really no evidence
indicating if it should be Bill or Jack, except that Bill was
mentioned more recently than Jack. But bookkeeping must know
who "he'" refers to since if it Is Jack it needs to update his

location, whereas if it is Bill, no such action is needed. In

this particular case, if hookkeeping did nothing due to its

204

lack of knowledge everything would be 0K, but (7.4) could end

(7.5) "Bill has a ball" said Mary. "We will make Jack
happy. He is at home."

Since again we have no way to be sure that "he'" is Jack as
opposed to Bill, the '"he'" will still be unassigned when it
gets to bookkeeping, if bookkeeping occurs before applying
LMR. But if this is the case then we will not be able to
update our data base to reflect the fact that Jack is no
longer outside. Nor is it fair to object that we really don't
know that Jack is in the house, arguing that Mary's
information might be old. As we saw in 5.3, (jumping to
conclusions about money coming out of piggy banks), there is
very little in this world that we can really be sure of, but
somehow we go on doing the best we can. Any person reading
(7.5) would probably conclude that Jack is indeed in the house
unless given reason to believe otherwise. So we need to
update,

Since we already established in chapter 3 that demons
must bhe tried before we invoke LMR, we can conclude that

demons apply before bookkeeping,
Base Routines Before Bookkeeping

Next we want to show that the base routines come before
bookkeeping. The idea here is to show that we can't apply LMR

until after the base routines have applied. (Though note that

205

if we consider base routines a special form of demons as
suggested in (2.3) this would fall out automatically.)
Consider the following fragment which is a repeat of an
example in chapter 3.

(7.6) Janet wanted a nickel which was in her piggy bank,
She went to her room for her piggy bank, and she
shook it very hard. Finally she got it.

Once again, LMR would guess wrong, saying that "it" referred
to the piggy bank, rather than the nickel. But now, note that
the last line of (7.6) could have equally well been '"Finally
she had it" where all we have done is substitute 'had'" for
"got". So the question arises, what is the demon going to
look for, 'have', or 'get"? We could use two identical
demons, only differing in that one is keyed to ''have'" and the
other to ''get". MNaturally this is an unsatisfactory solution.
The way around it would be to note that "get" will entail the
fact that the '"getter'" now '"has' the object., Or for that
matter we might want to say that if we are told that a person
suddenly '"has' an object it means that he ""got' it somehow.
But no matter which way we solve the problem, the information
that "have' implies get, or vice-versa, will be in the base
routines for these predicates. So let's assume that the demon
looks for "have money'" and when we see ''get money' the base
routine for 'get'" will assert that the person now "has'" the
money. Then the demon for '"have money" will pick up this new

assertion and assign "it" to be the money.

206

The same basic argument can be constructed around another
repeated example:

(7.7) Penny wanted to go to Bill's party. Mother told
her that she hadn't been invited.

In the same way we substituted '"have' for ''get" in (7.5) we
can now substitute 'could not go" for '"hadn't been invited",
and the argument will go through as hefore,

We conclude from these examples that we must execute the
base routines before we apply LMR, since base routines are
needed to assert some new fact which in turn is needed to
determine the referent. But since bookkeeping occurs after
LMR it must come after the application of the base routines.

To make our ordering complete we would like to order
demon application with respect to base routine application.

It would seem that demons should come first, since often
context will modify the meaning of a predicate, changing it to
a different predicate as in (2.20). |In practice however the
situation is not very clear cut, and so for the moment we will
just have to assume that demon application comes before base
theorem application. (Though again, note that this would fall
out from an assumption that base routines are really demons,
This is because demons are applied in a last in - first out
fashion. This is desirable since we want the most recent
facts to apply first. But if we consider base routines as a
form of demon, then since they were put in before the story

started, they will he applied only after all the other demons

207

have been tried.)

What happens when one line of text becomes several
assertions? There are several ways we could order application
of the various DSP components on the different assertions,
However, the arguments will have the same form as before, so
going through them would just get repetitious. These
arguments would show that demons and base routines apply to
all assertions generated by a single sentence before

bookkeeping applies to any of them.

208
7.2 An Addition to DSP

As we have things organized now, the base routines are
responsible for entailment, and for putting in necessary
demons. (We will not consider it now, but in chapter 9 we
will see that the base routines must also take on some
responsibility for predicate disambiguation.)

Note though that since LMR comes after all base routines
have applied, our base routines must be able to work without
needing to know the arguments to the predicates, since it is
always possible that a given NP will be undecided at the time
the routine is executed, This is a very serious handicap, and
immediately raises the question, '"Can the base routines carry
out their function with this limitation?"

The answer seems to be no. Consider the following
fragment:

(7.8) Bill, Harry, and Bill's dog Mutt, were outside.
Harry said, "l saw George and Mutt in the park
yesterday. George was doing some funny things,
Mutt was doing some funny things too. He was doing
tricks."

Looking at the line ''"He was doing tricks,'" we presumably get
Mutt as the referent, rather than George, on the basis of LMR.
(This hypothesis is strengthened by the fact that if we
reverse the second and third from last lines in (7.8) we will
get '""he' as George.) The problem is that the action of the

"do tricks' base routine, or whoever handles the phrase must

necessarily be different depending on whether "he'" refers to

209

George or Mutt. For example, one thing we will probably want
to do is put out demons trying to identify a trick when one is
mentioned. If it is an animal doing a trick, we would want
to label as '"trick'" any verbal command which is obeyed,
Naturally this won't do for a person. Since the tricks people
do and those animals do have little to do with each other, one
would imagine that there would be separate sets of demons for
each., But if we don't know who is being referred to we don't
know which demons to put into circulation, Another similar
situation is:

(7.9) Janet went into Jack's room to find a top. In the
room was Jack's ball, She knew that Jack wanted to
play with it,

Again the demons looking for activities concerned with
"playing' will be different depending on whether "it" in the
lastsentence is ball or top, and again the only way to tell
is via the LMR rule.

So far we have needed to know the objects in order to
decide which set of demons to put in. There also seem to be
cases where the decision whether or not to activate a
particular demon depends on properties of the object being
referred to. In our main example from chapter 1, we needed
some demon to recognize '"those paints make your picture look
funny.'" The rule the current program has is, "If a person
wants something which is owned by another person, put in a

demon looking for statements saying that the object in

210

question is 'bad'., |If encountered, mark such statements as
having an ulterior motive." But this assumes that WANT-BASE
knows what object is wanted, since if it doesn't it can't tell
if someone else owns it. Or again, we might want the rule "If
a particular object is needed, and is not around, we will put
in a demon looking for the person who needs the object going
to the place where the object is.'" |If we are to know if an
object is around, we must know which object we are talking
about.

The conclusion is that our base routines cannot do all
their work without knowing the objects. But how are we to
reconcile this fact with our earlier conclusion that base
routines must be able to accept undecided NPs in the hope of
finding their referent?

Looking back, the only part of base routines which we
tied up in reference problems was related to entailment of
assertions. Those examples which required knowing the
referents all dealt with the activation of demons which would
have no effect until later lines of the story came in. These
are activities that do not help determine reference while we
are still processing the current line. So perhaps we can
divide each base routine into two parts. Section | of the
base routines.will be evaluated bhefore we apply LMR. It will
be in charge of entailment of further assertions, and any

other tasks which might help determine reference. (Asserting

211

demons with LOOK=BACK also can help determine reference.)
Section 2 will be evaluated after the LMR (and presumably
bookkeeping) have been applied to the assertion and hence will
be able to assume that all referents are known. Its task will

be to put in demons, and any other work which is not done by

section 1.

212
7.3 Bookkeeping Again

We are now in a position to take another look at
bookkeeping, and take up an issue we skipped earlier. The
problem is when and where bookkeeping gets done. Up to this
point we have assumed that it is done by a separate program
with help from fact finders, and have further argued that it
should be done pretty much after everything else, with the
exception mentioned in 7.2, There is however, another
interesting possibility, Perhaps bookkeeping should be done
by the base routines, in particular, by part | of the base
routines,

There is naturally an immediate objection. Haven't we
already shown that it must occur after the base routines? Not
completely. We saw in examples (7.6) and (7.7) that certain
things in base part 1 had to happen before LMR, and hence
before bookkeeping. (In particular, bookkeeping could only
occur after the entailment of other assertions, like 'give"
entailing '"have'.) However, perhaps bookkeeping could be
applied after entailment, but still within base part 1. As we

shall see, the evidence is still against this, and for this

reason | have rejected the proposal discussed in this section.
Then why am | proposing it at all?. The reason is that
at one time | though | had two good objections, and the fact

that one has disappeared has made me wonder.

The objection which disappeared is this: I|f we look just

213

at the problem of updating HAVE assertions, suppose we do give
the responsibility to the base routines. Then GIVE-BASE,
TRADE-BASE, etc., will all have to contain some duplicated
code which looks for previous HAVE assertions in order to
update them. This seems a waste if, as it would seem with the
independent hookkeeping proposal, we could do without. But |
have found in every case that | have examined, that even with
independent bookkeeping, most of the code just mentioned would
have to remain in the base routines. |In particular, GIVE-BASE
still has to look for the ''giver'" having the object, which is
the assertion which must eventually be updated. Now | am not
a great heliever in coincidences, and if all these base
routines need to be checking for updates anyway, then perhaps
they should actually be doing the updates. But let's take a
closer look,

Let's first look at 'give." Incidentally, everything
said about '"give" will be equally true about 'trade,' and
"get," and, to a lesser extent about "lose,'" "drop," throw,"
etc.

The claim is that if we assert that Bill gave the kite to
Jack, GIVE-BASE will have to look up the fact that Bill has
it. There are several reasons for this. I|f we don't know the
fact, then we will want to assert it. This way, we will be
able to answer the question '"Who had the kite before Jack?"

Secondly, as is well known, '‘have' and hence 'give' are

214

ambiguous. In particular the kind of 'give'" is dependent on
the kind of "have'" relationship between Bill and the kite. So
for example '"trade" is almost always an ownership change, but
not in:

(7.10) Jack and Janet rented horses for the day. At noon
Jack suqggested they trade.

In (7.10) we understand "trade'" as a change of control over
the horses since the people don't own the animals. For other
examples, see chapter 9. Finally, in 5.3, we saw how
consistency checks are needed to "unassume' earlier
conclusions which had an ASSUME tag on them. |In this case
making sure that no one other than the "giver'" has the object
is a consistency check.

Fach of these cases implies that RIVE-BASE must look to
make sure that the '"giver'" really has the "given'"., Since
GIVE-BASE will make this check anyway, why not also do the
updating there?

There still seem to he reasons against it. 1In section
7.1 we saw that we had to apply LMR before we could do
bookkeeping. MNaturally, if the hase routine is going to do
bookkeeping, at some point LMR will have to he applied in
those cases where it is needed. Let us suppose that we have
some method which will postpone LMR until we must have it in
order to do some hookkeeping in the middle of some base
routine. However, it seems that no matter how clever we are

about it, we are going to run into trouble. Consider:

215

(7.11) Jack and Bill were outside. 'l like your top,"
said Jack., '"This is my old top,'" said Bill.

"Would you like it? | have a new top in my

pocket.'" So Bill gave it to Jack.
One fact before we discuss the example., Since 'give'" and
"trade" need to know the state of the '"have'" relation between
the giver and the object to be given, this check, and
presumably the updating which we are suggesting would
naturally go along with it, would have to occur before we ever
get around to asserting the new 'have' assertion,.

How in the above example, unless some demon catches the
last line before we apply LMR we will get the wrong referent
for "it"., !n fact, there will! be a demon, which we will
encounter in the next chapter. But this demon will be looking
for HAVE since it must work equally well for 'trade', 'give"
and '"get'., But if this is the case, then LMR will be applied
before we ever get to the demon (since LMR will be applied
even before we assert the HAVE assertion). Hence we would not
get the correct referent for (7.11).

Another example:

(7.12) When Jack got home Mother said, ‘'Where is your
top?" Jack said "l lost it. | was playing with my
top at the lake, | was picking up a shell and |
dropped it in the water.,'

Again, if we adopt our suggestion we will seemingly get the
wrong referent,

Note that with our current scheme in (7.12) it is quite

possible for DROP-BASE to require that the object be held by

216

Jack only to note that two objects, the top and the shell, fit
this description. It could then leave it that way, and
eventually a demon would make the decision. However, once
again, if the base does the updating, it has to decide
immediately which "it" is.

As | mentioned in the beginning, it seems strange that
while the base routines do not do bookkeeping, they must be
aware of it., |t may be that this is evidence that the base
routines should do updating, and that the reference problem
should bhe solved with a much more complex organization of DSP.
However, what such an organization might look like | do not

know,

217

8 Some Details of DSP

This chapter is mainly devoted to justifying some of the
decisions made in chapter b. This includes such issues as why
we specify demons by binding some of their variables at
"assert time'", or why we want demons to have the ability to

self destruct.

8.1 ASSERT and Related Issues

When we introduced ASSERT in chapter 4 we noted that
besides entering data into the data base, it also put the
assertion on the TO-BE-DONE list, Thirdly, ASSERT would give
the new assertion an assertion number if it did not have one.

(Note 16)

Temporary Assertion Numbers

Wwhat we did not point out, however, is that the number
assigned is really only a temporary assertion number, It is
temporary because we might already know the fact, in which
case, rather than have two copies of it floating around, we
will give the new copy the same number and just not bother to
put it into the data base at all. In chapter 2 we stated that
bookkeeping would look for this redundancy, hence the
assertion number might only last until the assertion finally

reached bookkeeping, which we have shown comes fairly late in

nse.

218

But why not try to discover this redundancy immediately?
Then, if it were already in the data base, we could ignore the
new assertion completely, hence saving any time we might have
spent processing it, Presumably, if it weren't in the data
base, we could then assign a permanent assertion number. The
argument against this is similar to those we encountered in
7.1. Consider:

(8.1) Jack, Bill, and Fred were outside Jack's house.
Jack left to go to the park. Fred and Bill played
ball for a while, and then Fred left also. Soon
Bill's mother came by, She asked, ''Where did Fred
go?" Bill said, '""He went to the park,"

Given the scheme we proposed in chapter 2, we will get the
correct referent for the '"he' either on the basis of LMR, or
via some demon which is activated by the question. Presumably
this demon is on the lookout for an answer to the question.

We can actually show that it must be the latter since we could
also replace the last two lines of (8.1) with:

(8.2) Bill's mother said, '""Where did Fred go? | thought
| saw him here. | know Jack was here." Bill said,
"He went to the park,"

In (8.2) we understand '"he' as "Fred' even though Jack was the
last mentioned male, This suqggests that a question takes
strong priority in establishing reference, which is best
accounted for in our system with a demon.

But no matter how we establish that the '"he" refers to

Fred, we cannot do a GOAL on the assertion immediately to sece

if we know this fact already since the GOAL will find that we

219

do know the fact, but only by assigning 'he' to Jack rather
than Fred, which, naturally, is unacceptable. (Remember, at
this point in story (8.1) or (8.2) we know that Jack is at the
park, but we know nothing about Fred's location.) This means
that such a check must be postponed until whatever rule is
operating in (8.1) and (8.2) has had a chance to work. Since
the redundancy check is a routine activity which should be
done to all entering assertions it seems most natural to
include it in bookkeeping. Hence, the assertion numbers we

assign to an incoming assertion are temporary.

When Do the New Assertions Go Into the Data Base?

There has been a tacit assumption in all this, that we
really "assert' the incoming assertions before we apply DSP,
That is to say, there is some question as to whether we put
these items in the data base before or after the line has been
processed by DSP. We have been assuming that it is done
before. Actually, the question really is not whether or not
we assert the items. The same aeffect could be accomplished by
a theorem which establishes a fact by trying to find it on
TO-BE-DONE. The crucial question is, when we are
interrogating the data base, to what extent should our current
assertions "look identical" to ones asserted in earlier
sentences?

The answer is that the new assertions should look pretty

220

much the same. For the first example, consider PB-FOR-MONEY,
from chapter 6. This was a demon which looked back or forward
to see if the person needed money, which would in turn explain
why he got the PB, |If we are working on an example where the
demon is looking forward and finds the new line '""Janet needed
some money,' the fact that '"'some money' is MONEY will be a new
assertion, If we did not put new lines in the data base unti)
after the line were processed, our demons would not find the
MONEY assertion, and hence not work properly.

Another example concerns the PB-SHAKE demon which we
decided would not be activated until we had a '""have PB"
assertion., But suppose we opened a story with:

(8.3) ""Janet was shaking her PB,"
We would want to conclude that she was trying to get some
money. Our current scheme would indeed produce this result,
in the following fashion. “Shake PB'" would entail '""have PB",
and this in turn would activate (using LOOK-BACK) PB=~SHAKE.
PB-SHAKE would then pick up the "shake' assertion and assert
that Janet was trying to get money. This assumes however that
the main assertion was in the data base already (as opposed to
just being on the TO=-BE-DONE list).

Hence it would seem that in most cases we want new and
old assertions to '"look" the same as far as GOAL is concerned.
This is somewhat important since we cannot be sure that all

the NPs will be decided and there may be variables in the

221

assertion. HNeither Planner nor Micro Planner allows variables

to operate in this fashion.

222

8.2 The Assignment Prohbhlem

When we first introduced our formalism in chapter 4 we
noted that while our demons talk about "a person X" or "an
object Y," our stories talk about Jack and his piggy bank,
Hence it is necessary to give the variables in the demon
particular assignments. Let us review the assignment problem
with a new demon which is to account for stories like:

(8.4) Janet offered to trade her pencils for Jack's
paints. Jack said "I want my paints."

If we were now to ask, "Wil) Jack trade?" the answer would be
no. Ve might account for this fact with a demon which says
"If a person has been offered a trade and he makes any
statement which implies that he intends to hold on to the
object in his possession, assert that he will not trade."

This might look like:

223

(PEMON TRADE-LIKE-MINE
(PERSON OBJECT OTHERPER OTHEROBJ N NI)
(7N HAVE FUT ?PERSON ?0BJECT)
This is the pattern the demon is looking for.
Statements like "like (or want) the paints' are
translated into "like (or want) to have the paints'.
(GOAL (? TRADE FUT ?0THERPER ?PERSON 70THEROBJ ?0BJECT))

Make sure that the person has been
of fered a trade for his object.

(ASSERT (?N] TRADE FUT NOT ?PERSON ?0BJECT ?0THERPER
?20THEROBJ))

Assert that he won't trade.
(ASSERT (? RESULT ?H1 7N)))

Assert that the reason is the current statement.

As written, TRADE-LIKE-MINE assigns its variables with the
line:

(8.5) (GOAL (? TRADE FUT ?0THERPER ?PERSON ?0THEROBJ
?70BJECT))

This has the effect of checking that the person who likes the
object is the person who was offered a trade for it. In this
way our demon will not apply to the last line in:

(8.6) Janet offered to trade her pencils for Jack's
paints., Jack said "1 like those pencils."

In this case the GOAL will fail since it would be looking for:
(8.7) (7 TRADE FUT JANET! JACK! ?0THEROBJ PENCILI1)

which means that Janet offered to trade her paints for Jack's

pencils, whfch is not what happened. Also note that the GOAL

did other things for us. In order to make the ''won't trade'

assertion, we need to know exactly what other person-object

224

pair is involved in the trade. We will get hold of them
because ?70THERPER and ?0THEROBJ will be assigned
appropriately, We will call this method of handling the
assignment problem the '"GOAL method".

But this demon will only be activated when a trade has
been offered. So in some sense, the GOAL in our demon is
redundant. We already know that TRADE is in the data base, we
need only make sure that we have the objects right. We saw
this same situation in chapter‘h where our PB demon had to
look for the SHAKE assertion which activated it. We suggested
there that one way we might get around this redundancy is to
put the assignments in the demon at the time the demon is
activated, That is, when we assert the demon, we will assign
the variables. Hence for our TRADE=-LIKE-MINE demon, ?PERSON
70BJECT ?0THERPER ?0THEROBJ would be assigned to Jack, paints,
Janet, and pencils, respectively., This can be done in Micro
Planner in much the same way it is done in LISP though the
feature is little used in either language. The variable
binding list, rather than just giving the name of the
variahle, can also give its initial assignment. So our demon
would look instead like TRADE=-LIKE=-MINE2 where the variables

have been assigned as if we were in example (8.4),.

(DEMON TRADE-LIKE-MINE2
((PERSON '"JACK1) (OBJECT 'PAINT1) (OTHERPER 'JANET))
(OTHEROBJ 'PENCILI) N N1)
(7N HAVE FUT ?PERSON ?0BJECT)
(ASSERT (?N1 TRADE FUT NOT ?PERSON ?0THERPER ?0BJECT
70THEROBJ))
(ASSERT)(? RESULT N1 ?N)))

I call this process 'specification'. So we have two
binding methods, the GOAL method and the specification method.
One immediate advantage of the specification method is that we
no longer need the GOAL in the demon since we already have the
correct arguments. (We saw a similar saving in the PB example
of chapter 4.) And there are other advantages to the scheme,
Consider an example like:

(8.8) Jack, Bill, Joe, and Jack's dog Tip were outside.
"I like Tip." said Bill, "1 will give you my
pocket-knife for him." Joe said, "! like Tip too.
I will give you my pogo stick.'" Jack said, 'l want
Tip."

In (8.8) Jack's reply should be taken as a refusal of both
offers. However, if we used TRADE-LIKE-MINE we would only
find the second offer, and the first one would remain
unnoticed. With specification we would have two separate
instances of the TRADE-LIKE~MINE demon, one referring to Joe's
offer and one referring to Bill's. Hence we would Iinterpret
Jack's comment as applying to both. It might be possible to
change the GOAL method in some fashion so that it would work
in this instance, but | cannot think of any reasonable way.

Furthermore, as our model qets more complete, we would

hope to be able to use the same demon in many situations. [t

226

would seem that requiring the GOAL in the demon to find the
bindings would restrict its use., |In particular,
TRADE-LIKE=MINE would be restricted to '"trade'" situations. To
see how this might create problems, note that we will need a
demon to account for the following situation: |
(8.9) Jack had a kitten he could not keep. He offered to
trade it to Bill for some money, Bill looked at
the kitten, When Bill left he had the kitten,
0f course, if we asked how Bill came toAhave the kitten, the
dbvious answer is that he traded some money for it to Jack.
We need a demon then, which simply says that If a person who
has heen offered a trade is later seen with the object, it
means that the trade took place. This might look like (using
the binding via GOAL):
(DEMON TRADE=-W!LL=HAVE
(PERSON 0BJ N N1)
(?N HAVE ?PERSON ?0BJ)
(GOAL (?N) TRADE FUT ? ?PERSON ?0BJ 7))
(ASSERT (? T-RESULT 7N ?N1)))

However, note that we would like to use this same demon
in a situation where one person is just giving an object to
the other. That is, even if we aren't told that the 'give"
actually took place, if we see the ''receiver'" with the object,
then we can assume it did. Of course with the specification
method there is nothing to prevent the above demon's being
used in both cases, since the GOAL will not be there. Hence,
the specification version of the same demon will be named

WILL-HAVE,

227

It is for these reasons that | have adopted the
specification method.

There is one point about the specification method which
we did not cover in chapter 4, |f D-ASSERT (the function
which assertes demons) is called by a demon, the new demon
will not be activated immediately, but rather put on a list to
be handled just before the program goes on to a new sentence,
The reason is that all the objects may not be known at that
moment, due to normal referential ambiguity. By waiting until
the sentence has been completely processed we can be assured

that all the noun phrases have been assigned referents.

8.3 Demon Destruction
Update Destruction

A consideration mentioned in chapter 2 which hasn't been
mentioned since is the fact that we don't want demons
outliving their usefulness. Let's give a few examples of how
this might happen,

We needed TRADE-WILL~HAVE to account for (8.9). However,
we can quickly see that the demon can cause trouble if we
don't watch out. So we can have:

(8.10) Jack had a kitten he could not keep. He offered to
trade it to Bill for some money. Bill said that he
liked the kitten, but had no money. Jack said that
he would just give Bill the kitten. When Bill left
he had the kitten,

In this story we do not want to assert that the trade took
place. Let's look at another example which is somewhat

similar.

(8.11) Janet wanted to trade her pencils for Jack's
paints. '"They are good pencils," said Janet.

Presumably in a trade context we would assume that the comment
was inspired by Janet's wanting to trade. Again, we seem to
need a demon, which we will call TRADE-GOODMOUTH. And again
we must be careful in how we use it, as exemplified by the
following:

(8.12) Janet wanted to trade her pencils for Jack's

paints. He liked the pencils and so he traded.
Janet said '"They are good pencils."

229

Now, while Janet might be reassuring Jack that he made a wise
choice, we cannot say that she said it to bring about the
trade.

In both (8.10) and (8.12) we have a demon and a line
which under other circumstances would activate it. However,
due to other factors in the story we do not want the demon to
be successfully executed, Furthermore, note that the demons
are of no further use in the stories since the situations they
are designed to catch no longer can occur. (Naturally, we
could have another trade offer in the story in which
TRADE=-GOODMOUTH or WILL-HAVE plays a part, but the demon would
be re-activated when and if this second offer came about.)
Given this, we would like to '"deactivate' or ''destroy' the
demons. The question is, under what circumstances do we want
to do so?

What both of these situations have in common is that the
possible future on which they were based ceased to bhe 'true"
in the sense that it had been updated. In particular, in
(8.10) we had:

(8.13) (N4 TRADE FUT JACK! BILLY KITTEN! MONEY1)
which activated the demon. But the statement by Jack that he
would "just give'" Bill the kitten says that N4 is no longer a
possible future. Exactly how this is to be recognized is not
obvious, but we can certainly say that after the '"just give"

statement Jack no longer intends to trade the kitten away.

230

in (3.12) we had a TRADE FUT statement, but before the
"good'" line came along the trade actually took place, so it
was no longer a possible fututre. |In passing, we might note
that this update is somewhat different from those we have seen
earlier. The usual or NEG update says the this fact was true
at one time, but is now false. Here we have a TENSE update.
Technically we are still saying this assertion was once a
possible future, but it is no longer. However, TENSE updates
have different properties than NEG's., |In particular we will
want a rule like "If X is a TENSE update of Y, and we know
that 2 was the reason for Y, then Z is the reason for X',
This rule also applies to '"specification updates" (to he
mentioned in 8.4) but it clearly does not apply to NEG
updates.

While we have already seen reasons for preferring the
specification technique for variable assiqgnment over the GOAL
technique, at first glance the destruction problem might make
us wonder at the wisdom of our decision. In some sense the
GOAL method would seem to accomodate destruction in a very
natural way. So when using TRADE-W!ILL-HAVE we want to prevent
it from operating when the TRADE assertion is no longer a
valid possible future, We have already established a way of
preventing updated assertions from being taken as current
truths, (STRUE). Ve could possibly use STRUE also to prevent

the demon from working. The trouble is that while it will

231

prevent the demon from working, it is not clear how we can
make it destroy the demon under appropriate circumstances.

For example, we can't just say "if the GOAL fails, destroy the
demon', or else in example (8.6) we would destroy the demon
when we shouldn't. (in 8.6 the demon would be called in a
situation where it was not applicable, but there was still the
possibility that it might be needed at a later time.) What we
would have to do is first try the goal, and then if it
succeeds, see if it has been updated. But at this point it is
not noticeably simpler than what we would have to do to
accomodate the specification method to destruction. |In the
former we would have:

(8.14) (GOAL (?N1 TRADE FUT 7 ?PERSON ?0BJ ?))
(PESTROY? 7?N1)

inside the demon, With the latter we would have as the first
line of the demon:

(8.15) (PESTROY? 7NOLD)
where ?NOLD is specified to be the assertion number of the
original FUT assertion. DESTROY?, of course, looks at the
assertion with that assertion number, and if it is updated,
makes the demon inactive, (The demon which becomes inactive
is the demon we are currently executing, There is no
contradiction in this since deactivating a demon only insures
that we will not be able to get at that instance of the demon

in the future.) (Note 18)

Time Destruction

There is a need for other kinds of destruction also. It
can easily be the case that a qgiven demon is never executed.
For example, we can have a trade situation where no one ever
makes a comment abodt how good his object is, so
TRADE-GOODMOUTH will never get executed. However after we
have gone sufficiently further in the story, the demon is

irrelevant, since the trade which asserted it is either no
longer under consideration or forgotten completely, In the
case that we have explictly updated the possible future, if we
ever enter the demon, it will be destroyed. But, as likely as
not, no assertion will ever match the demon pattern, so we
will never get to the DESTRNOY?, This would mean keeping
unneeded demons around, which would involve overhead expense.
There is also the distinct possibility that such demons would
interact with sentences occurring much later in the story
giving incorrect interpretations. However, since | have not
been dealling with long stories | have no examples of this,
What we want is a way to remove demons automatically
after a long time has gone by. (We refer here to ‘reader"
time rather than "story" time. What will actually be counted
is the number of assertions which have gone by,) The easiest
way to do this in Micro Planner is to use a filter when we
look for applicable demons. Basically this filter would check

the demon under consideration and find the date it was

233

activated. The date can bhe found by gettinag the specification
for 7NOLD which activated it, (A1l assertion numbers have
the number of assertions from the beginning of time to the
time they were created on their property list. This way we
can tell approximately how old a given assertion is by
comparing its number to the current number.) If the assertion
is over a given age it will be destroyed. There are several
modifications which we might want to make on this scheme. The
most obvious is that we might give different kinds of demons

di fferent acceptable ages before destruction,

8.4 More on Bookkeeping

In the course of discussing other problems, we have been
accumulating tasks which we said should be done by
bookkeeping.

Boockkeeping should determine if the assertion is already
in the data base as mentioned in 8.1, All we need do here is
remove the temporary assertion number, replacing it with a
variable and do a G0AL., It will look like:

(8.16) (GOAL (?N AT JACK) HOUSE1)$TRUE)
We use STRUE to make sure the fact is currently known to be
true,

However, note that we did not use a SNDEDUCE in the above
GOAL. That is to say, we do not use fact finders when trying
to show that a given fact is already in the data base. The
reason is quite simple, Fact finders are often used to
establish a fact X which is not absolutely certain to be true,
but which is not contradicted in the data base. The idea is
that unless the story is grossly deceptive we may assume X is
true. However, if we are told at some later time that X is
true, we would want to keep the information since it is more
reliable than our fact finder,

To see how this could affect us, consider the fact finder
which we mentioned in 2.4, which we will write more explicitly

in Planner here.

235

(DEMON OWN=FF
(PERSON OBJECT N1 N2)
(? OWN ?PERSON ?0BJECT)
To show that ?PERSON owns ?0BJECT.
(NOT (GOAL (? OWN ? ?0BJECT)STRUE))

I f we know that anybody owns it then it can't
be ?PERSON or else we wouldn't need this theorem.

(GOAL (?N1 HOLD ?PERSON ?0BJECT)STRUE)
Find that the person was holding it.

(NOT (AND (GOAL(?N2 HOLD ? ?0BJECT)S$STRUE)
(GOAL (? BEFORE N2 7N1)))))

Make sure no one had it before him..
_______ If we used this theorem in establishing identity, what
would N5 be identical to?
(N5 OWN JANET1 TOP1)
The only possibility, though it would be very weak, is:
(N6 HOLD JANET1 TOPI1)
Already this seems unnatural. But things get worse. First

suppose we had:

(8.17) Janet and Bill were outside, Janet was holding a
top. The top belonged to Bill,

We would not want the third line in (8.17) to update the
second. Janet is still holding the top. On the other hand:
(8.18) Janet and Bill were outside. Janet was holding a
top. '"lIsn't my top pretty,'" said Janet. The top
helonged to Bill,
Now consider what will happen during the processing of (8.18)

if we use fact finders to determine whether a fact Is already

in the data base. When we get to the third line of (8.18) we

236

will see that we can already say that Janet owns it since she
“"introduced" it to the story. Hence we will not re-enter the
fact, When we get to the fourth line we will not see that
there is any contradiction in the story for the same reason we
did not find a contradiction in (8.17). In fact, what would
happen is that from the fourth line on, the program would just
assume that Bill owned the top. But this is not what we want.
We must note that there is a contradiction between what Janet
said and the fact which the narrator says is true.
Bookkeeping must also determine tense updates as
mentioned in 8.3. The GOAL will look like:
(8.19) (GOAL (7N AT ?TN JACK! HOUSE1)$TRUE)
If the original tense was present, and the new one is past, or
it was future, and we now find a present or past, we will mark
the old and new assertions as a tense update pair. Actually,
the GOAL will have to he complicated slightly since we must
also take into account the possibility of partial updates as
mentioned below.
Another function of bhookkeeping is looking for normal
negation updates. The GOAL will be:
(8.20) (GOAL (7N AT NOT JACK! HOUSE1)STRUE $DEDUCE))
Note that in this case we want the SDEDUCE since we will need
fact finders to establish the negation in most cases. Again
we will have to take account of partial updates.

Partial updates are a further job for bookkeeping. We

237

mentioned in a note to chapter 4 that one consequence of
allowing DGROUPS to appear as a single object in an assertion
is that we will be faced with situations where an old
assertion says that both Jack and Bill are at the store, where
the new one says that Jack left., We do not want to lose the
fact that Bill is still at the store, but we must mark the old
assertion as updated. In the case of negative updates the
form given in (3.20) will also find partial updates since one
theorem it will call will be GROUP~-FIND=-FF which attempts to
prove a fact about an individual by proving it about a group
he is in. For tense updates we will need to put in an
explicit (USE GROUP-FIND-FF) in the GOAL statement, (USE
recommendations in a GOAL are a way to tell the GOAL to use a
particular theorem to establish the GOAL,) We will consider
only the process for NEG updates, though virtually the same
things happen for tense.

When the GOAL comes back with an assertion to be updated,

we look to see if it contains a group with the person in it,
rather than the person himself. |If so, we update the old
assertion and create a new assertion., This new assertion is
the same as the old one except it has instead of the old
group, a new group which is the old one, minus the person
mentioned in the new assertion. Actually, the '"person"

mentioned in the new assertion mavy be a group which is a

sub-group of the group in the old and now updated assertion,

238

There is one kind of update we haven't mentioned, a
specification update. This is for situations like:

(8.21) Jack and Bill were in the house., Jack said "Will
you trade your kite to me, Bill? Will you take nmy
paint set?"

The first line should suggest a possible future concerning a
trade. As we saw earlier (8.8), the mere presence of a second
trade offer does not invalidate the first, but in (8.21) we
interpret the third sentence as a further specification of the
second, and we would not want demons from both being
operational. We could handle this either by physically
removing the former assertion, or by changing it and calling
the second a repeat of the first, or we could say that the
second updates the first. From the standpoint of bookkeeping,
it really doesn't matter very much which we do; its

responsibilities are the same,

239
9 Problems in Ambiguity, and Why Characters Ask Questions

This chapter contains the beginnings of two separate
theories. The first four sections of this chapter are
concerned with the problem of disambiguating the word 'have,"
a problem which cannot, in most cases, he solved with
selectional restrictions. The discussion will be concerned
with whether an adequate theory will be compatible with the
model presented in this thesis.

The last five sections are concerned with the problem of
answering questions about why a character in a story asks a
question. The knowledge that enables one to answer such a
question is a kind of knowledge whose organization seems quite

di fferent than that of, say, piggy banks.

240
9.1 Information for Deciding Meanings of Have

"Have' has many meanings. To name a few, there are
"own', '"hold", "immediate control', '"have as part" (as in '"he
has red hair'"), and even a vaque association defined by the
arguments to '"have' as in 'he has a lawyer'" or '"'she has a
home'',

In this section we will concentrate on the factors which
come into play in distinguishing between '"own'", "immediate
control" (1-C) and the ''vague associational have'". | choose
these three because they are the primary ones which come up in
children's stories, and | have had the most experience with
their intricacies. |In particular | am using 1=C rather than
""hold'" since if we look at some evervday situations, we find
I-C tends to be more important., |f Jack was using the can of
paint, which is standing next to him, then he has 1-C over it.
So, if a given activity requires a certain object, it always
requires that the person have |-C relation with the object,
but seldom that he be holding it, To eat cake does not
require holding the cake; it could be on a plate on the table
and painting a picture does not require holding either the
picture or the paint, but certainly requires 1-C over them.
Baking a cake requires I=-C over flour, a cake pan, etc, but at
any given time, one is unlikely to be holding a particular one
of them. Even in the cases where '"hold" is technically

necessary, in practice it is not wise to insist that it is

24

true. For example, we might be told that Janet was painting a
picture with a paint brush when really she had temporarily put
the brush down. The idea is that stories generally give the
broad outlines and not the details. 1-C is a broad outline
descriptor; in contrast, HOLD gives detail. So when we say
that an action requires an object, we are usually referring to
the 1-C relation, 1-C is also useful in cases like ''Where is
my dog Tip?" '"Oh, Tom has him." We don't mean that Tom owns
Tip, or that Tom is holding Tip, but the I-C relation is just
what we need,

But if "have' has these three meanings, so do 'give'"
"get' and "trade'", The following sets of sentences and
fragments give examples where they are used all three ways.

The correct meaning is given after each sentence.

(9.1) Janet went into the house and got a spoon. (I1-C)

(9.2) Janet went to the store and got a ball, (OWN)

(9.3) That was how Fluff got a home. (vauge)

(9.4) Bill wanted to look at Jack's knife, so Jack gave
it to him. (1=C)

(9.5) When Jack got a brand new knife, he gave the old
one to Bill, (OWN)

(9.6) We will give Fluff a home. (vague)

(9.7) Jack and Janet rented horses for the day. At noon
Jack suggested that they trade horses. (1-C)

(9.8) Jack traded his top for Bill's knife. (OWN)

(9.9) Jack and Bill wanted to trade parents. (vague)
The logical assumption throughout this thesis has been that
"trade,'" etc., all produce HAVE assertions. By retaining the
assumption here the related ambiguities in "trade', 'give'",

and '"'get" are all reduced to the ambiguity in the HAVE

assertion they each produce.
Let us try to isolate some factors which come into play
in determining which interpretation is assigned to a

particular HAVE.

1) The nature of the objects hbeing '""had". 'Get a home' means
the vague ''have' most of the time in children's stories
because homes are seldom hought or sold, and it could not mean
I-C because houses are too large to have immediate comtrol
over. |In most cases this type of information only
distinguishes hetween the vague '‘have' on one hand, and 1-C
and OWN on the other., This is simply because most objects
which a child can have 1-C over he can also OWN, One
exception is '"report card", and as expected

(9.10) "Jack got a reportcard."

is interpreted is |-C,.

2) "Context.,'" In "Janet went to the store. She got a ball."
it seems certain that the "store'" context is telling us that
""get'" means either '"get-own' or perhaps ''buy'. Another
example was (2.20), where in the context of trade we assumed
that the '"have'" in ''give'" meant OWN. But when Bill gave Jack
his pogo stick inorder that Jack could show it to his father,
the give was I-C. 0One interesting case is when the '"have"
statement is preceded by a '"where' question as in, "Where is

Tip? Jack has him." The interpretation is clearly 1-C.

243

Presumably we will handle such situations by having "where"
questions put in a demon looking for '"have'! statements as

answers.

3) "“Specificity.'" The more '"knowledge' the speaker has about

the HAVE assertion, the more likely it Is to mean I-C. (I use
the word "knowledge' in a metaphoric sense, as we shall see.)

So we have:

(9.11) Last week Janet got a top.
(9.12) Janet just got a top.

While (9.11) is clearly OWN, (9.12) is more ambiguous., There
are other cases which are quite similar. Suppose Jack was not
around when:

(9.13) Penny said, '"Jack has a ball.,"
We will almost always interpret this as OWN. On the other
hand, if Jack is there, the statement is ambiguous.

Or again, consider:

(9.14) Jack has a ball
VS .

(9.15) Jack has the bhall,
The former is much more likely to mean OWN than the latter.
Formulating the rules for this kind of information will be
quite difficult. |f we try a '"conservative'" rule, such as "If
the NP is indefinite, and the 'haver' is not there, then the

HAVE means OWN'" But we have situations like:

244

(9.16) Bill was wondering what happened to his ball,
Janet said "l| saw Jack at the park. He had a new
ball."

In this case the interpretation has something to do with the

time frame. 1.e., we understand that Jack had the ball while

Janet was watching him, which clearly means |-C.

4) What we know to he true., This is most commonly helpful
with "give' and "trade'". For example we saw in (9.9) that
even ''trade' is forced to mean |=-C when both parties clearly
don't own the things being traded, We can see a similar
phenomonon in:

(9.17) Jack and Janet were playing with a set of paints.
Jack offered to trade the red paint for the yellow.

(9.18) Jack and Janet were reading the Sunday Times. Jack
of fered to trade the Arts and Leisure section for
the Week in Review,

In each of these cases the objects being traded form a natural
set, so that we would assume that whoever owned one owned the
other. Hence we cannot have Jack owning one of the objects
and Janet the other, so we must mean |-C.

There are some cases where this applies to '"have' also.
For example in:

(9.19) Janet and Bill were outside, They wanted to play
ball, but didn't have a ball. Jack came along
holding his blue ball. Janet said "Bill, Jack has
a ball."”

First note that the statement ''but didn't have a ball" is

understood as I=-C since Janet and Bill need |I=-C in order to

play with the ball, Presumably this would be handled by the

demon which deduces the fact that the reason they weren't
playing was because they did not I-C a ball. However, the
line "Jack has a hall." cannot be accounted for in this

manner, since the same story, minus the fact that Jack was
holding a bhall, would allow the last line to be ambiguous.
That is, Janet could just be saying that Jack owns a ball,
Perhaps she hopes he will go back to the house and get it.

Clearly then, the fact that we already know that Jack is

245

holding a ball is what compels the 1-C interpretation of the

last line.

While information given earlier in the story is a special

case of '"context'" we should distinguish "what we know to be

true" from the type of information just discussed in (2).

The

information in (2) was handled by demons since it seemed most

reasonable that '"store'" was looking for GET (in order, at

least, to assert how the ''getting' took place). However, it

does not seem reasonable that '"Sunday Times'" in (9.18) is

looking for TRADE. Rather, the base routine for TRADE should

look to see what the most likely relation is between Jack and

Janet, and the Sunday Times. So, the distinction between

and (4) is between processes handled by demons, and those

handled by base routines.

(2)

246
9.2 Where Information |s Placed, and Some Implications

Without going into details, we can see that the theory
outlined in chapter 2 has other things to say about how such
information as outlined in (1) through (4) should be handled.
First, we know that the choice of predicate must be made
before we do bookkeeping, so that we will know which previous
facts must be updated. That is, when Mary gives Jack her top
do we want to update the fact that Mary owns the top, or that
she has 1-C over the top, or hoth? (Actually, as we shall see
in 9.4 there are cases where we cannot decide which
interpretation of 'have'" is correct without reading more of
the story. But if we can decide without reading more, then
our model should make the decision hefore bookeeping.)

Type (1), nature of the objects being had, could be
applied either in internal translation, before DSP gets the
assertion, or by HAVE-BASE. There are some problems with
having internal translation do the work, since we might have a
storv which revolved around buying and selling report cards,
perhaps in order to fool one's parents., While we would expect
our hase theorems to be able to take such context into
consideration, it would seem beyond the "filtering' capacity
of the semantic phase. Also note that this might be an
argument in favor of applying demons before base routines,
since we could then expect our HAVE to be marked as OWMN since

we were expecting ownership of report cards to be important.

247

Type (2), context, as we have already pointed out is
demon application. In the case of statements like '"Jack has a
ball", demon application will occur before any base routines
look at the assertion., 1In "Jack gave a ball to Bill" we would
first have the application of GIVE-BASE which would entail
HAVE and the demons would apply to the latter.

Type (3), "specificity" would probably be applied by HAVE
base. This seems most reasonable since this kind of
information is applicable to the entire '"have'" family.

Finally, type (4) information should be applied by the
respective base routines., We have already argued that demons
would be inappropriate, and since the way previous facts are
to be used will differ in the case of each predicate, it seems
most natural to have the base theorems for each predicate
apply the information rather than HAVE applying the
information for all. For example, while "have' just checks to
see if we already know that the "haver' 1-C's or OWN's the
object (9.19), "give" and 'trade'" also check the status of the
HAVE relation prior to the exchange (9.17).

Given this placement of information one might expect
interference between reference determination and predicate
determination. We have already established that the predicate
should be determined before we do bookkeeping, Note then that
type (1) information, nature of the object and type (4), what

is known, presuppose we know what the object is. But of

248

course, since the '"last mentioned" rule has not applied yet,
we cannot be sure that the objects will be known at tHis time,

The really interesting fact is that, as far as | can
tell, not only is there no interference, but predicate
determination seems to aid reference determination, The
evidence is not as strong as | would like, but it is
suggestive. Consider:

(9.20) The rock hid the stick. Jack went to get it,

In (9.20) we understand '"it" as referring to the stick rather
than the rock, Furthermore, we could change the first
sentence to '"The stick was hidden by the rock,'" and we would
get the same effect., This seems to indicate that we are
biased towards objects a person can 'own' or "control'.
Naturally, "it" would tend to be bound to such objects in the
course of applying type (1) information.

There is also evidence that type (4) information also
plays a helpful role in reference. Consider:

(9.21) Bill and Fred were in the park. Jack ran into the
park holding his bat. Bill was saying to Fred, ''We
need a bat. We need a ball too. Look, Fred, there
is Jack. He has one.'

While | do not find this the best of all stories, the fact
that | tend to understand the final '"'one'" as referring to

"bat" is, of course, significant.

249

9.3 UWUsing Demons to Determine Meaning

Before we can give explicit examples of demons
determining meaning, we must decide on a notation for HAVE and
its various meanings,

Presumably the incoming internal representation will have
unadorned HAVE's since a particular meaning has not yet been
chosen. We will select a particular meaning by placing a tag
on the assertion number, A demon will specify what meaning it
“prefers'" by placing a tag on the previously '"bare' HAVE
assertion. Consider:

(9.22) Jack and Bill were at the park. They wanted to
play baseball., Jack got a ball and returned to the
park, '

We will need some demon which will answer the question, '"Why
did Jack get the ball?" It might look something like:
(DEMON NEED-BALL

(PERSON NOLD BALL N)

(7N HAVE ?TN ?PERSON ?BALL)

This demon would be associated with bhaseball.

(PESTROY? ?7NOLD)

(GOAL (? IS ?7BALL BALL)STRUE SDEDUCE)

(ASSERT (? REASON 7NOLD 7N)))
Now this demon does not specify one crucial fact; the HAVE
must be I=-C., We could specify this with a restriction on the
assertion number (which we ha;e already said will receive the
tags) which might look like

(($R ?N 1=-C=-F) HAVE ?TH ?PERSON 7?BALL)

I=C-F is a function which does the following:

250

If 7N has an OWN tag, causes the match to fail.

If it has an |I=-C tag, allows the match to go on,

If it has no tag at all, will place an I-C tag on it.
Maturally, should the demon fail, presumably in this case
hecause the first GOAL failed, this tag must be removed,

In much the same manner we want to account for (9.2)
where '"store' implies that the ''get'" means 'own'"., Ignoring
the possibility of somehow including "buy" in the situation we

might use:

(DEMON GET-0WN
(PERSON NOLD N)

PERSON and NOLD will be specified
(($R 7N OWN-F) GET ?PERSON ?7)
(PESTRUCT? ?NOLD)
(ASSERT (? REASON ?NOLD 7N)))
In this case the demon is looking for GET rather than HAVE
since it seems at first glance that statements about '‘giving"

or “"trading'" are not subject to the rule which takes ''get'" as

meaning "own'',

251
9.4 Ambiguous Situations

There are cases where we cannot decide which meaning of

HAVE is meant. Consider:
(9.23) Mary and Bill were at the park. They wanted to
play ball but couldn't because they didn't have a
ball. Jack came by and Mary said "Bill, Jack has a
ball.,"
1f the next line were
(9.24) Jack threw his ball to Janet.
we would understand the HAVE in (9.23) as 1-C, and if it were

(9.25) Janet said, '"Jack, will you go home and get your
bat 1?2

we would understand it as OWN. Presumably, in ambiguous
situations there won't be any tags on the HAVE. When we get
to the line (9.24) we need to assume that Jack is holding the
ball, i.e., has 1=-C over it, in order to account for the fact
that he is able to throw it, Presumably the GOAL (it will be
in THROW-BASE) which is to estabhlish this fact will use I-C-F.
Then, as a matter of course, it will put the 1-C tag on HAVE.
Hence we have accounted for the situation in (9.24).

We can assume that (9.25) will imply that Jack is not
holding the ball since we need "will get' = 'not have now' for
independent reasons (see section 6.8). This deduction is not
a firm one. (Jack asked Janet if he could use the kite she
was holding. "I need it by tomorrow," said Janet. 'You will
have it tonight," said Jack.) Hence it is not clear how the

details will work,

252
9.5 The Problem of Spread Out Knowledge

In chapter 5 we looked at knowledge about piggy banks.
This body of knowledge seems both reasonably ''cohesive'" and
reasonably '"isolated." We could point to a few demons, along
with a base routine or two, and say '"That's what we know about
PB's," Furthermore, there were only a limited number of
situations which called for access to that knowledge. In
fact, we postulated that our information about PBs only needed
to be made available when we saw someone getting, or thinking
of getting a PB,

There are other bodies of knowledge which don't seem to
have such properties. Consider the concept of "mistake."

What constitutes a mistake depends on what a person is doing.
Furthermore the response to a mistake (or its significance)
will vary in much the same way.

Nne might then ask if there really is any substantial
knowledge about '"mistakes' in general, |f there is, it will
probably be in the form of generalizations concerning the
relation between the facts of a domain and its "mistakes'. So
perhaps there are a limited number of basic kinds of mistakes
that account for most situations,

Many other topics seem to be quite similar to "mistake"
in that they are not as easily '""localizable'" as was piggy
banks, like "forgetting,'" ''pretending," "friendship,"

"authority," to name a few. The topic we will examine next in

253

some detail is the question, ''why do people ask questions?"
We will see that in this case at least, there are useful
generalizations which can be made about “"why people ask the

questions they do'.

254

9.6 What a Solution to the "Question'" Problem Might Look Like

One of the most common reasons we give for asking
questions is '"curiosity'". |In this age we all recognize that

“curiosity'" is just a cover for ‘deeper motives. Such motives

are not in the domain of children's stories, however. What we

are interested in are motives which are closer to the surface.
Suppose we have:

(9.26) Jack wanted to talk to Daddy. He went up to Janet
and asked '""Where is Daddy?"

He asked because he wanted to talk to Daddy. Questions like
(9.26) related directly to activities and situations in the
story. It is this kind of question we will examine.

Now it should be clear that we could put in a demon
explicitly looking for a question as in (9.26), This would
correspond to the idea that each domain of knowledge must
handle its own questions, However, it would be nice if we
could find generalizations between domains so separate demons
wouldn't be necessary. The rest of this section will be
devoted to showing that this is a reasonable hope, and
establishing a modicum of extra baggage needed to cover a

large proportion of questions. Our plan is to find some way

to modify demons in such a way that not only will they perform

their normal deduction duties, but they will also serve to
recognize the logic behind a character's questions.

Let us start with:

255

(9.27) Jack wanted to talk to Daddy. He went to the
hardware store. Daddy was in the store looking at
tools.

Question: ''Why did Jack go to the hardware store?'" What we
hope to find is some relation hetween the normal deductions
concerning 'talking to a person', as in (9.27), and questions
concerning '"talking to a person' as in (9.26).

When we are told that Jack wants to talk to Daddy, we
note that he is not with Daddy, so we put in a demon which
looks for Jack going someplace. The demon checks to see if
paddy is there, and if so asserts that the reason Jack went
there is to talk to Daddy. Unfortunately in (9.27) this
doesn't work since we don't know that Daddy is in the store
until after we are told that Jack went there. So we need a
second demon, this one looking for Daddy's location, If it
finds it the demon will see whether Jack just went there, and
if so assert why. The pattern for this demon will be
something like:

(9.28) (?N AT PR ST DADDY! ?7PL)

(Since the rest of this chapter deals with questions we will
revert to including the type and tense markers in the
assertion (PR (present tense) and ST (statement) in (9.28)).
But note that if we generalized (9.28) to accept questions
also, it would match the question which we had Jack asking
Janet in (9.26), i.e., "Where is Daddy?" So we have found the

begining of a connection hetween (9.26) and (9.27). There is

256

a single demon whcih can be written so as to pick up both,

But finding a demon which could pick up both a fact
needed to make deductions and a question does not mean that we
have found a meaningful generalization. We must insure that
the demon works properly in both cases. If to do this we must
double the size of our demons, we have only disguised two
demons as one. That is, we might go from

(9.29) (PEMON (name) (variahles) (pattern) (exp 1)

(exp 2)
(exp n))
to
(9.30) (PEMON (name)
(variables)
(pattern)
(COND ((EQUAL ?TYPE 'STATEMENT)
(exp 1)
(exp n))
((EQUAL ?TYPE 'QUESTION)
(exp 1')
(exp n'))))

Instead of having two demons, we will have one which is twice
as long. What we really want is to show that only a small
modification to the deduction demon is necessary to accomodate
it to questions, To see if this is possible, let's look at
the LOC-0F demon in more detail. We will specify it to

reflect the '"Jack wanting to talk to Daddy" situation.

257

(DEMON LOC=-0OF
((NOLD 'N10) (PERSON *DADDY1) (PERSON2 'JACK!) OLDN TYPE
LOC NLOC)
(7 (SR ? LOCATION) PR ?TYPE ?PERSON ?LOC)
Look for Daddy at (in, on, etc.) some location.
(DESTRUCT? INOLD)
Make sure Jack still wants to talk to Daddy.

(60AL (($R OLDN LASTS5) 6O ? ST ?PERSON2 ?NLOC) S$TRUE)
(GOAL (?NLOC AT ? ST ?PERSON ?LOC) STRUE $DEDUCE)

See if Jack has, is, or will, go there. (Note 19)
(ASSERT (7 RESULT ?0LDN ?NOLD)))

Assert that you know why.

The problem is that our understanding of the question
"Where is Daddy?" does not depend on Jack's going to the
specified location. So, at least in this simple instance, it
doesn't seem that our question analysis will use much of the
program written for deduction., Furthermore, | would like to
suggest that this will generally be the case. |If we know that
Jack is at the heach, and we are told that the weather has
turned cold, we might look for Jack going home, or perhaps
packing up to go home, or the like. |If Jack asks Janet if she
wants to go to the beach, and she asks if it will be cold, we
are not interested in any of these things.

There is another possibility which would constitute a
solution to the ''question'" problem, |f understanding why a
question was asked were bhased on only a few facts, which were

the same for most questions, then every demon, after seeing

258

that it had caught a question, could call a single routine to
process the question, We shall see that this seems to be the

case.

.......... 259

9.7 MNecessary Subgoals and Reminders

Consider:

(9.31) Jack and Janet were outside the house. Jack said
"] want to talk to Daddy.'" Janet said "Where is
Daddy?"

(9.32) Jack was going to the beach. Janet asked him if
she could go along. Jack said that he would have
to ask Daddy. Janet asked '"Where is Daddy?"

in (9.32) but not in (9.31) we recognize Janet's question as
motivated by the possible future 'Jack talk to Father'. The
conclusion seems to be that the questioner must desire the
possible future, With this in mind, let us make a first try
at writing the necessary function.
""""" (SUB=ROUTINE QU=-HANDLE
(NOLD PERSON NOLDP NSD)
(7nNOLD)
Takes one argument, ?NOLD, the possible future.

(GOAL (? WANT PR ST $E (GETSPK) INOLD) $TRUE $DEDUCE)

$E simply says to evaluate the next expression

and use its value in the pattern. This GOAL

asks if we can establish that the speaker (found by
(GETSPK)) wants the relevant possible future.

(GOAL (7NDS SAID PR ST SE (GETSPK) SE (CURRENT)) STRUE
$DEDUCE)

This last line is simply to get the assertion
number (?NDS) of the current SAID assertion.

We then assert that the person said the question
because of ?7NOLD, the possible future.

(ASSERT (? RESULT ?NSD ?7NOLD)))

This will work for such questions as:

260

(9.33) Where is the baseball?

(when the speaker wants to play hall.)

(9.34) Will you go there?

(after the last question is answered.)

(9.35) How can | get the paints?

(9.36) Do you have a ball?

(9.37) Do you have any kleenex?

This, of course, is with the provision that the questions are
asked in the appropriate context, and we have a demon which
could handle the normal statement form deduction. That is, in
(9.37) the person would have a cold, or would be about to
sneeze, and we would have a demon which could answer the
question "Why did Janet get the kleenex'" in the story:

(9.38) Janet was about to sneeze. She got some kleenex.
In general, our routine QU-HANDLE will work for situations
where something is wanted, because it is a necessary subgoal
(NSG) of another situation, and we shall call this type of
question the NSG type.

NSG is not the only type. Consider:

(9.39) Jack was about to leave the house. Mother asked
him if he had his keys,

The reason Mother asked was to remind Jack that he should have
his keys because he was about to leave the house. We must
distinguish between this and the NSG case for two reasons: we
used the word '"remind" in describing Mother's motivation, and
it was not necessary to establish that Mother had any stake in
Jack's going out, as we did for NSG types. The distinguishing
feature seems to be that having one's keys is not necessary

for leaving the house in the sense that having a baseball is

261

necessary for playing with it., 0Or, to put it another way, you
don't have to remind Jack that he should have a baseball, when
he is about to go out and play with it., It should be noted
that not-strictly=-necessary-sub-goals (or REMINDERS as we
shall call them) are, from our point of view, a proper subset
of NSG types, since if Jack asked “"Where are my keys?' we
would handle it like a NSG. That is, we would say that he
asked because he was about to leave the house.

To illustrate the situation graphically, we have:

.

1

1

|

]

I REMINDER 1 1
1

|

1

The new version of our function appears on the next

page.

(SUB-ROUTINE QU=-HANDLE2

262

(NOLD PERSON NOLDP NSD QU=TYPE)

(?NOLD ?720QU=-TYPE)

Takes two arguments, the statement that a
person wants something and the kind of question,

(roND ((60AL (? WANT PR ST S$E (GETSPK) 7NOLD)STRUE S$SDEDUCE)

(SETQ ?QU-TYPE

If a reminder is

'NSG))

used in an NSGC situation it

becomes an NSG{ type question,

EQUAL ?7QU=-TYPE

((
(?NSD SAID PR ST

(coAL
(PUTPROP 7?NSD ?QU-TYPE

Mark the question

(ASSERT (? RESULT ?NDS

'REMINDER)))

SE(GETSPK) S$E (CURRENT)) STRUE
$DEDUCE)

'QU-TYPE)

type on the SAID statement.

2NOLD)))

263

9.8 "“Information For Decision'" Type Questions

In an earlier example, which we didn't go into in any
depth, we basically had:

(9.40) Jack asked Janet if she wanted to go to the beach
with him, Janet said '"Will it be warm?"

A little thought indicates that this example falls into
neither cateqory we have considered so far. Janet has not vyet
decided that she wants to do it (so it can't be NSG), nor is
she reminding Jack of anything. The idea here is that Janet
has to make a decision, and she wants more information in
order to make it., It is not necessary for Jack to have
actually asked Janet. He might have said 'l would like you to
go to the beach with me," in which case the situation would be
the same. Nor does the person asked need to be involved in
the proposed action, as in '""Mother, may | go to the beach?"
said Jack., "Will it be warm?" asked Mother. The common
denominator is that the asker must make a decision. The
decision can either be forced by a '"may'" question, or implied
by a possible future in which the askee will participate such
as, 'l want you to go to the beach with me."

We have seen that all REMINDER questions are also NSG 's,
This prompts us to ask about the relation between |FD
questions (Information For Decision) and the two previously

defined types. Consider:

264

(9.41) Jack was about to leave the house. He asked Janet
"Do you want to come with me?'" Janet said "Where
are your keys?"

The story does not make a lot of sense. The best we can do
with it is assume Janet either did not hear, or chose to
ignore Jack's question. HNote that if we really want to
stretch the matter we could interpret Janet's question as I|FD,
since having keys is useful for going out, and Janet's
decision concerns qgoing out. But most readers would regard
this as over-stretching the meaning. The conclusion, based
only on this one example (so far) is that REMINDERS cannot be
IFD's,

"Where will you go?" is clearly IFD, but it can't be
REMiNDER. The same goes for '"When will you go?" These also
seem to suggest that IFD's can't he REMINDER's, But our
complete separation of IFD's and REMINDERS is not absolutely

hard and fast.

(9.42) "Do you want to go to dinner with me, Janet?'" asked
Jack. "How much money do you have?'" asked Janet.

The last question is ambiguous. |If we know Janet is a
grasping little girl, we will interpret this as IFD; if Jack
and Janet have an easy-going relationship we will call this
REMINDER. However, (9.42) strikes me as a strange case., It
is the first case we have seen where the questioner's
motivation is clearly ambiguous. Then until further evidence
is gathered | will continue to assume that 1FD's and REMINDERS

are mutually exclusive.

Now, IFD's can be NSG's as indicated by:

(9.43) "| have to talk to Daddy, do you want to come with
me?" asked Jack. ''Where is Daddy?" asked Janet.

The last question is one we have already seen in the guise of
an NSG type. But not all IFD's are NSG's,

(9.44) Jack wanted to go to the beach., "Will it be warm?"
he asked,

The last question, if it can bhe understood at all, implies
that Jack is trying to decide if he will go. That is, even
following a statement which implies that Jack has already
decided to go, the question implies doubt. |f the question
could also be NSG, we could have understood It as ''He asked
because he was qoing to the beach," without any reference to
doubt. So there are really two kinds of IFD types, those
which can be NSG 's which we will still call IFD and those
which can't, which will be called IFDONLY, To make sure we
have the distinction clear, in the context of "'Will you play
ball with us?'" consider the questions '"When will you be
playing?" and '""Who will be playing". |f the first is asked
before the asker has decided it is IFD, if after, NSG. The
second can only be IFD, since if it is asked after the asker
has decided, it can only be chalked up to curiosity. So we

can diagram our types as:

266

Jmmmmmmemmmmcmceccaeoao- -1

NS G 1

R sl R T EEEEPE T 1

| REMINDER 1 1 + FD 1 IFDONLY)

Jomemamaman] T e

|

Jommeme- mmmmmmemena- cmmmemeen]

To say that a person asked a question because he needed
information for a decision implies that we know that he has a
decision to make, How can we determine this? To put this
another way, we want to determine if the speaker is making a
decision about some possible future. Clearly the questioner
cannot have already decided to participate in the possible
future, or else there would be no decision to be make. What
other conditions shouid we look for in trying to decide that a
decision has to be made?

1) The speaker is part of the possible future referred to in
the question. So in "Will vou qo to the store?" '"When?'" we
understand the last question as referring to the possible
future (questioner possibly going to the store). We say that
the questioner is directly involved in the possible future,

2) The questioner must decide on giving permission (but the
questioner will not be involved in the action). ''"May we go to
the beach, Mother?" '"When will you go?"

3) The questioner is not involved in the possible future
referred to in the question, but the question is whether the

questioner will do it also, as in '""Do you want to play

267

baseball with us?'" or "When will you play?"
4) There are other troublesome cases which we will mention
later, but which we will not worry about.

A routine incorporating these ideas is given on the next

page.

268

(SUB=ROUTINE QU=-HANDLE3
(NOLD QU-TYPE NOLDP N P NSD)
(?7NOLD ?20U~-TYPE)
(coND ((GOAL (? WANT PR ST SE (GETSPK) 7?NOLD)S$STRUE S$SDEDUCE)
(NOT (EQUAL ?2QU-TYPE 'IFDONLY))

NSGK is as bhefore, but we do not
accept IFDONLY's

(SETQ ?QU-TYPE 'NSG))
((EQUAL ?QU~-TYPE 'REMINDER))
((NOT (MEMQ ?72QU-TYPE '(1FD IFDONLY))))

l.e., the rest only applies to IFD's,

((GOAL (? WANT PR ST SE (GETSPK) ?NOLD)STRUE $DEDUCE)
(FAIL THEOREM))

If the possible future is desired
then IFD does not apply

((INVOLVED=IN (GETSPK) 7NOLD))
Covers Case | above.
((6O0AL SE(CREATE (72NOLD ?N) (4 QU)) STRUE S$DEDUCE)

Case 2. CREATE makes up a new
assertion based on ?NOLD, but

with ?IN in the assertion number
position and QU in the fourth position.

(GOAL (? LET PR ST $E (GETSPK) ?N) S$TRUE S$DEDUCE))
((6OAL SE (CREATE (?NOLD ?) (5 ?P))STRUE $DEDUCE)

Case 3.

(OR (EQUAL ?P SE (GETSPK))
(c0AL (? MEM SE (GETSPK) 7P)STRUE S$DEDUCE))))
(GOAL (?7NSD SAID PR ST S$E (GETSPK) SE (CURRENT)) S$TRUE

$DEDUCE)
(PUTPROP ?NSD ?720U-TYPE 'QU=TYPE)
(ASSERT (? RESULT ?NSD ?NOLD)))

269
9.9 Further Problems

So far, QU-HANDLE has only been called from demons. That
is, we have never called it from a base routine. |t seems
quite clear that at least for IFD's we will have to do so.
Consider "Will you go to the store?" '"When?". The second
question is handled from the base routine for time reference.
That is, when we mention a possible future, we don't always
put in a demon looking for statements talking about when they
will be done. Instead, should we get such a statement, we
look back to decide what it is referring to. So the base
routine finds ''vou possibly go to the store' and hands that
of f to the question routine as ?HOLD ., Now in principle there
is no difference, no matter where the information comes from.
But the fact that we have now included all hase routines as
possibly having to call QU=-HANDLE should cause us to wonder
exactly what demons and base routines can be the basis for
legal questions, and what type of questions they will be.

| don't know the answer to this question, HNor is it the
only remaining problem, A few others:

In the last section we tried to outline the necessary
relation between a possibhle future and the person who, we
suspect, is asking an IFD type question. The "troublesome"
cases mentioned there are cases like:

(9.45) Jack and Bill were outside. Bill said, "Will you

watch my dog while | am at the store?'" '"How long
will you bhe at the store?" asked Jack.

i
-

Note that the questioner is not going to the store, so the
possible future has nothing to do directly with Jack, It is
the time concurrence which makes the question relevant,
Another problem. There may be some overlap in what we
have discussed as clearly distinct categories. So, if vou are
driving a car, and someone says "How much gas do we have?" is
he reminding you that you might need gas, or getting
information to decide if vou should stop at the next station,
This may inditate that our definitions need further
sharpening, but more likely we need to recognize and know how
to handle the doubtful cases whfqh arise.
A kind of question motivation very different from what we
have seen seems to be involved in:
(9.46) Mother was standing in the yard. The family dog
came from behind the garage, covered with paint.
Jack and Janet were following the dog. '"What did
you do to the doq?'" asked Mother,
| f we asked '""Why did mother ask that?" a reasonable answer
would be '"Because the dog was covered with paint.'" Presumably
the paradigm here is 'any question about an unusual event was
caused by the event.'" All we have to do is define "unusua!

event'" and we are all set.,

271

10 A Summing Up

10.1 Looking Back

In trying to summarize this thesis we might look at some
of the threads which wander through many of the chapters.

The reader of a children's story must have a broad range
of knowledge available to be able to understand the story. At
any given point however, only a small portion of that
information is relevant. To cut down on the information which
could be used to make deductions we devised a ''topic'" rule,
which simply says that every piece of information has one (or
more?) "topic concepts'. A fact cannot be made available
until its topic concept appears in the data base. So
situations persistently arise in which the significance of a
line like "Jack has a top'" depends strongly on what ;appened
earlier in the story. In our model this implies that the
information which interprets the line has a topic concept
which appeared earlier. |In example (2.19), where Janet is
thinking of getting Jack a top, 'Jack has a top" implies that
she should not do it. The information set up by earlier events
gives the new line its interpretation. Hence we represented
the information as a demon which is on the lookout for a
particular kind of event in the story.

Refore we could use demons, however, there were several

problems which had to be ironed out. A demon should embody a

272

somewhat general fact about a situation Independent of the
particular people or objects involved, so we need machinery to
specify demons to specific situations. Again, if demons are
to repfesent the current relevant information, we need
machinéry for removing demons when no longer neceded. First
order solutions to some of these problems were proposed in
chapters 4 and 8. The major problem, constructing appropriate

demons, was examined in chapter 5 and to a lesser extent—in-

- v

chapter 9.
Closely related to the idea of demons is the idea of
"possible futures". Simply, a possible future is an assertion

about something which might occur in the future. These
include not only straight futures, ("i will do X") but-also
statements about '"want' or '"'must' or '"can'. Possible futures
are the major, but not sole source of the topic concepts which
introduce information which will not be used until later in
the story.

Another theme, not as prominent as demons, is the idea
that our program should make deductions as it goes along. Ve
originally argued that point in chapter 2, and much of the
rest of the thesis is directly dependent on this assumption,
in particular the discussion of reference in chapters 3 and 6.

"Deduction on the fly" is also an underlying basis for
other decisions in the thesis. For example, this is ng we

need the distinction between demons and fact finders. There

273

are a huge number of deductions which could be made ahout a
story. We don't want to make all of them, so we need some way
to distinguish those deductions which are worth making as we
go along from those which aren't. In our model, the first
become demons, the second, fact finders, HNaturally, in
delayed deduction models this problem does not come up because
the deductions one makes are those needed to answer the '"user"
questions,

Probably the most well developed idea running throughout
the thesis is the relation hetween complex deductions and the
reference problem. The topic first came up in chapter 2 as an
argument for '"understanding'" as we went along in the story,
rather than waiting for a question bhefore anything was done.
It came up again as the main point of chapter 3 where we
showed that our model could very naturally account for many
situations where past portions of the story influenced
reference decisions. What we found was that in the course of
trying to fill in the hlanks of the story, (such as
establishing the causal relations between lines) the model
would naturally have preferences about referents for undecided
noun phrases. But our method of handling reference forced us
to be very careful in organizing the model, and this was the
basic impetus for chapter 7 where we showed that the ordering
of the basic processes within the model made a difference in

our ability to handle reference problems. Reference also was

i
¢

274

the topic of chapter 6 where we found that with slight

modi fications our reference procedure would handle most cases
of undetermined noun phrases (like '"a ball" in "l want a
ball") and over-specified noun phrases (where the noun phrase
gives more detail about the object than we currently know).
Also, our analysis of amhiquity in chapter 9 was influenced by

the work on reference.

275

10,2 Looking Forward

Throughout this thesis we have constantly run across
problems which will require further attention. Some of these
problems are linguistic in nature. How does one determine
sentential references, as in "It took place in Joe's house"?
While a complete answer will depend on how our knowledge of
the world is organized, such questions are more about
"language'" than about '"real world knowledge'" as we have been
discussing it, Or again, how significant is the problem of
syntactic ambiguity? Do we need methods similar to those for

reference ambiguity? What is the semantic significance of

sentential connectors such as "but', "and', "so"? Questions
like these need to be answered, and at first glance it would
seem that given a rough model like the one proposed in this
thesis, they can be answered independently of more detailed
information about how our knowledge of the world is organized.
My main interests lie in trying to find how our common
sense knowledge should be organized. The way to proceed, it
seems to me, is by continuing to organize small "micro worlds"
of knowledge as we did with piggy banks, | expect to see
several kinds of results come out of such an effort. The most
obvious is that as we examine more domains more and more
generalizations will begin to appear. We will, for example,
be able to collect examples which amplify, or perhaps refute,

some of the tentative generalizations we made in chapter 5 by

276

looking only at piggy banks. Then, given more partially built
up sub-worlds we will be able to give more serious
considerations to more global problems, like the effect of
tense on the deduction process, problems of jumping to
conclusions, or the concept of making mistakes., These
problems all share the property that by their very nature they
enter into most sub-worlds.

Another purpose of studing micro worlds is to test our
assumptions about the basic structure of our model. |In
section 2.5 we looked at some of the assumptions we had made
up to that point, but there are many more, For example, our
model only interprets the story as It happens. In chapter 5
we briefly looked at one problem in trying to answer questions
about what is likely to happen later in the story, but
otherwise we only considered questions which interpreted
actions which were mentioned in the story. However, there are
other kinds of questions which depart from our
"interpretation" limitation, such as, ''What would you do if
your were Jack?", and "How would you get some money if you
needed it now?'" These questions point out the fact that a
child's knowledge is not there only to enable him to read
stories. He has it to be able to get about in the world. So
in some sense these "extra-story" questions are the most
""natural', yet they are questions which our model cannot

handle. However, such questions would involve us in the

277

storage of "personal information" (e.g., the fact that | keep
my money in an old shoe.) It is an open question whether such
"personal knowledge' is organized the same way as the 'every
day knowledge' we have been discussing. In fact, it is an
open question whether a hard distinction can even be drawn
between the two.

Another aspect of our model which we have not challenged
is the unstructured data base of knowledge about the story (as
opposed to our general "every day knowledge'). When we place
assertions in the data base they are filed away according to
their "“syntactic' structure, i.e., what symbols appear in the
assertion and in what order. We might ask how useful it wouid
be to have a more ''semantically' organized data base? What
would such a data base look like?

The model we have proposed is somewhat '"local', Demons
look for small pieces of information which they then try to
put together into somewhat larger patterns, But | certainly
never get to '"very large patterns' such as the '"topic'" of a
story. !s this a serious defect in the model!? How useful
would it be to have available the model's best guess at the
topic of a story? There is no question that people can
compute 'topic'", if only to answer a question like "What would
be a good title for this story?" The question is whether
“"topic'" is important in the understanding process. So further

study might indicate that "topic' can help decide which demons

278

should be asserted and which deductions made.

When we look at more complex stories there are other
"larger patterns' which we must consider. What are the
narrator's (or author's) biases, or attitudes about the story?
It is interesting to consider whether questions such as those
encountered in English literature courses can be answered by
""local" demons. Do we have specific information about
"detecting authors' biases" just as we have information about

"piggy banks'", or will other techniques prove to be necessary?

279

NOTES

1) Since my system is '"understanding" as it goes along, it is
not really necessary to ask a question in order to make sure
it knows the answer. Instead one can just look in the data
base to see if the answer is there. So when | say "To

determine what the model has understood we will ask it

questions,'" | do not really mean that such a behavioristic
test is necessary. Rather, | mean that the ability to answer
questions was what | had in mind as the definition, so to

speak, of understanding for the system,

2) Another probable constituent is what might be called
"conversational' information. Under this heading would fall
the well known rule that a pronoun is more likely to refer to
the subject of the last sentence than the object. For more

details see the last section of chapter 8.

3) The backup hypothesis is aimed at those noun phrases which
can be assigned a referent confidently before going on to read
the rest of the story. There are cases, however, where we
simply make a mistake, and we are only able to correct it when
we have read more of the story. In such cases we will have
chosen a referent which indeed gets us into trouble, and we

will have to go back and correct it., However, we should not

280

confuse the ""mistake' situation with the backup hypothesis.
When we make a mistake, we are conscious of going back and
revising our understanding of the story. |In normal reference
decisions, on the other hand, we don't even seem to be aware
that the NP has more than one possible referent, much less

that we have been backing up and changing our interpretation.

4) Actually, things are somewhat more complicated. When a
Planner theorem fails for any reason, the program tries to go
back and '"fix things up'" by seeing, for example, if there are
any other assertions in the data base which also match an
earlier goal. This way, if the GOAL binds any variables, we
may get a new value for the variable, which may allow the

theorem to go through the second time. See chapter 4,

5) We can see that we need DGROUPS because of sentences like

"Look, Janet'" said Jack. "See the paints and pencils
Daddy got for usl"

We do not know who will be getting what, or if the paints and
pencils will be shared. Until the line is disambiguated we
must leave it in some ambiguous form, and this requires
DGROUPS or their equivalent,

However, it should be noted that using dgroups is
somewhat costly in terms of deduction, since then, if we want
to prove that F is true of X, we must check to see if there is

some dgroup D such that F is true of D and X is a member of D,

281

Also, dgroups will complicate updating. |f we have a
single assertion which says that Jack and Bill are at the
store, and we are then told that Jack left, we must update the
old assertion, At the same time we want to keep the fact that
Bill is still at the store, so that will have to be reasserted

separately,

6) For example, we cannot ask a ''how'" question about a state,
as in:
*How
does Jack have the ball,
Why
A.so, when the subject of the question is a non goal directed
object we can use T-RESULT links to answer ''why'" questions, as
in:
*How
did the top fall?
Why

Jack dropped it.

7) One might consider an alternative to using ASSUMPTION
tags; don't assert the assumed fact, but put in a DEMON which
will handle questions hased on the assumed fact. |In our
particular example, the theorem would answer the question
"Does Janet have the money?" This scheme seems to offer the
possibility that we can answer the question ''Does Janet have
money?'" without really asserting that she does. To put it

another way, we don't commit ourselves to saying she has the

282

monevy unless we are specifically asked. But this dosen't
solve enough problems. HNote that our 'tag" scheme has two
components to the solution. First we need to say how we will
answer the question under normal circumstances (by having the
assertion in the data base), Then we need to specify how we
will decide that we were wrong (by allowing updates of assumed
assertions to erase the assumed assertions). However, our new
scheme does not have any mechanism for deciding we were wrong.
We could add a mechanism to remove the theorem when a later
statement contradicts it, but then we really have our tag
method; only complicated by the fact that we are using
theorems rather than assertions. So the tag method seems

better.

8) The other example of jumping to conclusions is harder to
correct., In essence we want to say that "find'" has as a
T-RESULT Janet's having the nickel., But the uniqueness of
T-RESULTs would then force us into denying that Janet got the
money from the PB, The problem with this analysis is that the
find could occur after the '"get from PB" in which case the two
are clearly not mutually exclusive. This leaves us with two
unsolved problems; 1), the general problem of determining the
order of past tense events, and 2), determining what
information tells us that the find did not occur after the

Yget from PB'",

283

9) In fact, there are three unassigned variables in the
pattern. That the assertion number is unaésigned is usual.

We discussed in 4.1 why our asserting function should assign
temporary numbers in such cases. That the tense is initially
unassigned is more of a problem. It is clear that the
assertion we want to end up with is FUT, in that we have
estahlished that Janet needs money, not that she has some.

And in fact, in the course of BP-FOR-MONEY the tense will be
assigned to FUT by the expression (EQUAL $?TN 'FUT). But this
seems almost a coincidence. | have no idea about what is

really going on,

10) Another problem with this demon as stated is the fact
that I-C is an indicator of location, but by our standard
ordering of argument to predicates, the object in an |=-C
relation is the last argument, while the argument in any other
location statement will be the second to last arguhent. This
could be corrected by changing either I~C or the various
location statements. Off hand there seems to be no reason not

to do so,

11) Actually, these examples by themselves do not commit us
to denying the '"command" rule, since it is possible to use

other facilities in transformational theory (which is the

284

basis for all the linguistics papers mentioned) to bring the
“"command'" theory and this most recent data into accord,
However, Lakoff in his paper (Lakoff 68) gives further

examples to eliminate these other posibilities.

12) Actually this is not quite true. One other possibility
is that we have a phrase like '"'the yellow one' which refers to
a particular object, even though we didn't previously know it
was yellow, We will not worry about this case. An even more
complicated problem would be NP's which were ""wrong' in the
sense that the name the person assigned to the object was not
correct for some reason. So a child might call an orange ball
an orange, either thinking that it was an orange, or perhaps
even hecause the distinction between the two was not

completely clear in his mind, Such problems are also beyond

our scope.

13) If we are to take this approach we no longer have the
simplicity of our original double negation technique. One
possible escape is to say that what happens is that the double
negation technique changes imperatives into statements for the
purpose of deriving éounter-examples. While this possibility
would work for the examples given so far, it would fail on
Jack and Janet were in the house. Jack was holding
some paints and pencils. When Janet walked into the

room she did not see them. Jack said '""Janet, see the
paints and pencils Daddy got for us."

285

We would, in fact, be able to derive the fact that Janet did
not see the paints and pencils, since we said exactly that.
We would thus eliminate them from consideration, giving a
clearly wrong result. The reason is that we treated the
imperative as a statement and tried to prove the negative of

the statement.

14) We might argue instead that we should have a fact-finder
which says "if you want to prove that X did not burn Y, show
that Y still exists'", Then this fact-finder would allow us to
prove that '"the yellow ball" could not be the one Jack is
using, without resorting to full DSP treatment. However,
unless we show that such a F=-F is needed for independent
reasons, the solution is ad hoc. If we try to ask, "Did
Father burn Jack's ball?" in the middle of some story where
Jack has been playing with a ball but Father hasn't burned
anything, it seems very unnatural, though the question is
answerable. |If father has burned something, then the question
can be answered without such a fact-finder. We would simply
say, '""No, Father burned the ,..". Then, if we had such a
fact-finder, we would be predicting that such a question would
be natural under any circumstances, |f, on the other hand, we
want to account for our ability to answer such questions, even
when they seem silly and irrelevant, we might postulate that

we assert that Father did burn the ball, and then note that

286

this implies that the object is no longer usahle, contrary to
what we already know. |f we postulated that questions which
force us to resort to such a mechanism are 'unnatural', our
model would not only exhibit the correct behavior, but would
even explain our reactions to certain types of questions.
Whether or not this suggestion will go through, it seems

certain that the fact-finder proposed is untenable.

15) It was Bob Moore (office mate and fellow MIT graduate
student) who convinced me that a rule like this is necessary,

and that (6.68) was not sufficient evidence against it,

16) The necessity of assigning a number immediately is not
completely obvious, since as we will see later, the system
allows assertions with unassigned variables. However, it is
not possible to leave assertion numbers unassigned. Suppose
we needed to go from (N1 RESULT N2 N3) to the assertion
represented by N3. |If, rather than N3 we had an unassigned
variable, locating N3 would be most difficult. |In fact, all
assertions with unassigned variable$ would match equally well

since Nl above gave no indication of what N3 looked like.

17) There is one final point which should be made explicit.
If we are going to put assertions into the data base before

applying DSP, and if we use the normal data base mechanism in

287

Micro Planner (which seems to be the simplest way) then we
will have to allow assertions with variables. This is

contrary to currently standard Micro Planner.

18) Since every demon will have as its first line DESTROY? in
a system specifically designed for our use, this could be made

part of the "definition" of a demon.

19) Those familiar with Planner might be somewhat confused
about a GOAL statement which specifies the assertion number of
the assertion to be used, while at the same time it allows
theorems to be used. Presumably one might think that if we
know the assertion to be used, then either it matches the
pattern or it doesn't, The reason this is not the case Is
because we will want to allow an assertion saying '"Jack is IN
the house'" to satisfy our goal which is asking, '"Where is Jack
AT?", To do this we will have a theorem which says, in
effect, if you want to know the location of a person, find an
assertion about him being IN, ON etc. In this case we have
also told this theorem the assertion number of the IN, ON etc.

assertion to be used,.

288
REFERENCES

(Alexander 71) Alexander, B. "A Question-Answering Program
for Simple Kernel Sentences,'" Technical Report No. NL-5,
Computer Assisted Instruction Laboratory, University of
Texas at Austin, 18971,

(Black 68) Black, F. "A Deductive Question-Answering
System,'" Semantic Information Processing. Ed. M, Minsky,
Cambridge, Mass.: MIT Press, 1968, pp. 354-402,

(Chomsky 65) Chomsky, N. Aspects of the Theory of Syntax.
Cambridge, Mass.: MIT Press, 1965,

(Craig et al. 66) Craig, J. A. et al. 'DEACON: Direct
English Access and CONtrol," Proceedings of the 1966 Fall
Joint Computer Conference. Baltimore, Md.: Spartan Books,
PP 365'3800

(Dewar, et al. 69) Dewar, H., Bratley, P., and Thorne, J. P.
"A Program for the Syntactic Analysis of English
Sentences,' Communications of the ACM, XII, No. 8
(August, 1969), pp. 476-479.

(Dougherty 69) Dougherty, R. C. "An Interpretive Theory of
Pronominal Reference,' Foundations of Language 5, pp.

4L38-519.

(Evans 64) Evans, T.G. '"A Heuristic Program to Solve
Geometric-Analogy Problems,'" Proceedings of the 1964
Spring Joint Computer Conference. Baltimore, Md:
Spartan Books, pp.32/7/-338, (An expanded version in
(Minsky 68)).

(Feigenbaum and Feldman 63) Feigenbaum, E. A., and Feldman,
J. (eds.). Computers and Thought. MNew York:
McGraw=Hill Book Company, Inc., 1963,

(Fodor and Katz 63) Fodor, J. A., and Katz, J. J. '"The
Structure of a Semantic Theory,'" Language, XXXIX
(April=Jdune, 1963), pp. 170-210,

(Green 69) Green, C. . "Application of Theorem Proving to
Question Answering Systems,'' Memo Al-96. Stanford
Artificial Intelligence Project, 1969.

(Hewitt 69) Hewitt, C. 'Planner: A Language for Proving
Theorems in Robots,'" Proceedings of the 1969
International Joint Conference on Artificia

289

Intelligence. Ed. D. E. Walker and L. M, Norton. 1969,

PP 195'3610

(Jackendoff 71) Jackendoff, R. S. "Modal Structure in
Semantic Representation,' Linguistic lnquiry, I, No. L.
(Fall 1971), pp. 479-514,

(Karttunen 71) Karttunen, L. 'Discourse Referents,"
Reproduced by the Indiana University Linguistics Club,
1971,

(Lakoff 68) Lakoff, G. 'Pronouns and Reference Parts | and

11," Reproduced by the Indiana Universtiy Linguistics
Club, 1968,

(Lakoff 71) Lakoff, G. '"On Generative Semantics,"
Semantics: An Interdisciplinary Reader in Philosophy
Lfnguistics and Psychology. D. D, Steinberg, and L. A,
Jakobovits Eds.. Cambridge: Cambridge University Press
1971,

(Langacker 69) Langacker, R. '"On Pronominalization and the
Chain of Command," Modern Studies in English, Eds. D. A,
Reibel and S. A. Schane. Englewood Cliffs, N,J.:
Prentice Hall, 1969, pp. 160-186,.

(Lees and Klima 63) Lees, R. B,, and Klima, E. S. "Rules for

English Pronominalization," Language, XXXIX, No. 1
(1963), pp. 17-29.

(McCarthy and Hays 68) McCarthy, J., and Hays, P. '"Some
Philosophical Problems from the Standpoint of Artificial
Intelligence,'" Memo Al=73. Stanford Artificial
Intelligence Project, 1968,

(McCawley 1970) McCawley, J. P, "English as a VSO Language,"
Language, XLVI, pp. 286-299.

(McKee et al. 66) McKee, P,, et al. Up and Away. BRoston:
Houghton Mifflin Co., 1966,

(Minsky 61) Minsky, M., "Steps Towards Artificial
Intelligence,'" Proceedings of the Institute of Radio

Engineers, XLIX (January, 1961), pp. 8-30. Also In
{).

Feigenbaum and Feldman 63

(Minsky 68) Minsky, M. (ed.,)., Semantic Information
Processing. Cambridge, Mass.: M.I|.T., Press, 1968,

290

(Quillian 66) Quillian M., R, "Semantic Memory,'" Semantic

Information Processing. Ed. M., Minsky, Cambridge, Mass.:
M.1.T. Press, 1968, pp. 216-270.

(Quillian 69) Quillian, M .R., "The Teachable Language
Comprehender: A Simulation Program and Theory of
Language,' Communications of the ACM, XII, No. 8.
(August, 1969), pp. 459- 475,

(Ross 69) Ross, R, J. "The Cyclic Nature of English
Pronominaiization,'" Modern Studies in English, Eds. D.
A. Reibel and S. A. Schane. Englewood Cliffs, N.J.:
Prentice Hall, 1969, pp. 187-200.

(Sandewall 72) Sandewall, E, 'PCF~2, A First=-Order Calculus
for Expressing Conceptual Information," Working Paper,
Uppsala University Department of Computer Sciences, 1972,

(Selfridge 59) Selfridge, 0. G, ''Pandemonium: A Paradigm for
Learning," Proceedings of the Symposium on Mechanisation
of Thought Processes. 2 “vols., National Physical
Laboratory, Teddington, England, London: H.M, Stationary
0ffice, 1959, pp. 511-529,

{Sharnk and Tesler 69) Shank, R. ¢. and Tesler, L. 6. '"A
Conceptual Parser for Natural Language,' Proceedings of
the 1969 International Joint Conference on Artificial
Intelligence,. Eds. D, E. Walker and L. M, Norton,
'9690 pp. 569'578-

(Simmons et al. 68) Simmons, R. F., Burger, J. F., and
Schwarch, R, M, '"A Computational Model of Verbal
Understandlng '"" Proceedings of the 1968 Fall Joint

Computer Conference. Washington, D.C.: Thompson Book
Co., 1968, pp. LhT-454,

(Simmons 70) Simmons, R.F. '"Natural Language Question
Answering Systems: 1969," Communications of the ACM,
Xitt, No. 1 (January, 1970), pp. 15=-30.

(Simmons 70a) Simmons, R. F. '"Some Semantic Structures for
Representing English Meanings,'" Technical Report No.
NL=1, Computer Assisted Instruction Laboratory, The

University of Texas at Austin, 1970,

(Steinberg and Jakobovits 71) Steinbherg, D. D., and
Jakobovats, L. A. Semantics: An Interdisciplinary
Reader in Philosophy Linquistics and Psychology.
Cambridge: Cambridge University Press .

291

(Sussman et al, 71) Sussman, G6.J., Winograd, T., and
Charniak, E. '"Micro Planner Reference Manual,'" Al Memo
No 203A. MIT Artificial Intelligence Laboratory, 1971.

(Tharp and Krulee 69) Tharp, A. L., and Krulee, G. K. 'Using
Relational Operators to Structure Long-Term Memory,"
Proceedings of the 1363 International Joint Conference on
Artificial Intelligence. pp. 579-586.

(vendler 67) Vendler, Z. "Singular Terms," Linguistics in
Philosophy, Ithaca, N.Y.: Cornell University Press,
1967. Also in (Steinberg and Jakobovits 71).

(Weissman 67) Weissman, C., LISP 1.5 Primer. Belmont
California: Dickenson Publishing Company Inc,, 1967.

i

(Winograd '71') Winograd, T. 'Procedures as a Representation
for Data in a Computer Program for Understanding Natural
Language,' MAC TR-83. Project MAC, MIT, 1971,

(Winston 72) Winston, P. H. "Summary of Selected Vision
Topics," Vision Flash 30, MIT Artificial Intelligence
Laboratory, 1972,

(Woods 68) Woods, W, A. '"Procedural Semantics for a Question
Answering Machine," Proceedings of the 1968 Fall Joint
Computer Conference. Washington, D.C.: Thompson Book
Co., 1968, pp. A57-471,

(Woods 69) Woods, W. A. 'Augmented Transition Networks for
Natural Language Analysis,'" Report No. CS=1 to the
National ‘Sciehce Foundation, Alken Computation
Laboratory, Harvard University, 1969,

292

APPENDIX A = Actual Input for Example in Chapter One

The input is divided first into pages (corresponding to
the pages in the original) and then into sentences. So we

have:

((sentence 1) the first page
(sentence 2)

(sentence n))

((sentence 1) the second page

.)
etc.

Within each sentence there are three sections, the last
two sections being optional. The first section is a list of
the assertions which represent the original sentence. The
second section is a list of tags. The only tags are:

SD (person) = Who said the sentence (only included if the
original English explicitly mentioned who the
speaker was.)

The person to whom the sentence was addressed
(again, only if explicitly stated)

T0 (person)

" - Indicates that the sentence started with an open
quote
"2 - indicates the presence of a closed quote (if a

sentence has a SN marker and both an open and
closed quote then both quote markers may be
deleted.)

The last section is just a copy of the original Enqglish

sentence,

293

So an individual sentence looks like:

(((assertion 1)
(assertion 2)

L]

(assertion n))

(tags)
(English))

To understand the syntax within an assertion one should
first read section 4.1. That describes the internal format,
which is almost identical to the input format. However there
are a few additions necessary for input. Since we naturally
don't know the assertion number for an incoming assertion, its
place is taken by either a Micro Planner variable (in the case
that the assertion is emhedded and another assertion of the
same sentence refers to it,) or a "?" when no other assertion
in the same sentence refers to it., So we have:

(? BEFORE ?A1 ?7A2)
(?A1 KICK JANET JACK)
(?7A2 KICK JACK JANET)

Also we don't know the internal symbols for the objects
in the story, so the ohjects in the assertions are usually
represented by the noun phrases used to describe them in the
original English, To distinguish a description of an object
from an actual part of the assertion, the descriptions have
parentheses around them. So iIf we really wanted to say '*Jack
kicked Janet'" we would have (including tense and type

markers):

294

(7 KICK PR ST (JACK) (JANET))
The program has only limited abilities with respect to
understanding the syntax of noun phrases. Some typical NP's
are

"the red pencil" =~ (THE RED PENCIL)

"the red pencils" = (THE RED PLM PENCIL)
"Jack and Janet" =~ (NDGROUP (JACK) (JANET))
umeu - (ME)

"my paints' - ((ME) 'S PLM PAINT)
"the paints | gave you'" = (THE PLM PAINT SUBCL
(? GIVE PAST ST (1) (YOU) #%x))
Any NP which will not fit into these molds has to be expressed
in terms of the actual assertions we will need to have in
order to describe the object in the data hase. The only
object in this story which required this was 'toy cat' which

is represented by:

((NIL NIL NIL) (7 1S PR ST 2CUR TOY)
(7 SHAPE PR ST 7CUR CAT)))

This says, ignoring the three NIL' s in the front, that the
object is a toy in the shape of a cat.

Sometimes a single NP will be a part of more than one
assertion, In such cases the second occurrence of the NP will
have a * as its first element, which tells the program that
this NP is identical with one it has already seen, Note that
the program first looks at the tags hefore it looks at the
assertions, so that any NP which first occurs in the tags (as
in SPD (JACK)) will he a repeat in the assertions. In the case
of long repeated NP's it is only necessary to give enough to

distinguish the NP from all others, starting from the

295

beginning of the NP, So for example if we only have one
dgroup in a sentence we can repeat it by saying (* DGROUP)
This should be enough to understand the representation of

the story.

((((? 1IN PR ST (NPGROUP (JACK) (JANET)) (THE HOUSE)))
(JACK AND JANET ARE IN THE HOUSE))

(((? HOLD PR ST (JACK) (nGRoOUP (A BOX OF PLM PENCIL)
(A BOX OF PLM PAINT))))
(JACK 1S HOLDING A BOX OF PAINTS AND A BOX OF PENCILS))

(((? SEE PR IMP (YOU)
(DGROUP (THE PLM MODM PAINT)
(THE PLM MODM PENCIL)
SUBCL
(7A3 GET PAST ST (FATHER) (* DGROUP))
(?7A2 GOAL ?Al ?A3)
{(7A1 GIVE FUT ST (* FATHER) (Us)
(* DGROUP)))))
(sp (JACK) T0 (JANET))
("JANET SEE THE PAINTS AND PENCILS THAT DADDY GOT FOR
US"SAID JACK))

(((?2A1 G0 PR ST (JANET) (UNM))

The sentence does not say where Janet went, so the
place where this information should be is filled with
(UNM) which just means "“unmentioned."

(? GOAL 7A2 ?7A1)
(7A2 SEE PR ST (* JANET) (THEM)))
(JANET WENT TO LOOK AT THEM))

(((? GET PR QU (ME) (THE PLM PAINT)))
(SD (SHE))
(""ARE THE PAINTS FOR ME?' SHE ASKED))

(((? POSSESSIVE PR ST (ME) (THE PLM PAINT)))
(sp (JACK))
(**THE PAINTS ARE MINE " SAID JACK))

The original was ''"No, the paints are mine.' Handling
"mo'" is not a particular problem, at least in this case
where the ''no'" negates the very last line, |In fact, the

reason for omitting the '"'no'" was to make sure that the

program would realize that the answer was ''no'".

(((? GET PR ST (You) (THE PLM PENCIL)))
("2 TOo (JANET))
(""THE PENCILS ARE FOR YOU JANET))

Two lines of the story are skipped at this point. One was
repetition and the other was '"When you get to be as big

as | am, you will get paints, too.'" which | had no idea
how to handle.

(((? WANT PR ST (JANET) 1?7A1)
(7A1 HAVE FUT ST (* JANET) (THE PLM PAINT)))
(JANET WANTED THE PAINTS))

(((? DISCOVER FUT ST (1) ?A1)
(?2A1 CAN FUT ST (= 1) ?A2)
(72A2 DISCOVER CAN ST (* 1) (unm))
(? WAY PR ST (* UNM) ?A3)

((?A3 GET CAN ST (* 1) (THEM)))
"2)

This line is a throw away in the sense that the program
does not really understand it at all. Any line
mentioned hare but net in chapter one is either a
repetition or a throw away.

(1 WiLL SEE

IF | CAN FIND A WAY T0O GET THEM " SHE SAID
TO HERSELF)))

((((? BEGIN PR ST (JACK) ?Al)
(7A1 PAINT PR ST (* JACK) (A PICTURE OF (A RED

AIRPLANE))))
(JACK BEGAN TO PAINT A PICTURE OF A RED AIRPLANE))

(((2A1 GO PR ST (JANET) (unM))

(7 GOAL ?7A2 ?A1)

(7A2 SEE PR ST (* JANET) (IT)))
(JANET WENT TO LOOK AT 1IT))

(((? RESULT ?7A2 ?A1)
(?A1 USE PR ST (UNM) (THOSE PLM PAINT))

(7A2 FUNNY PR ST ((YOU) 'S AIRPLANE)))
(SD (SHE))

("THOSE PAINTS MAKE YOUR AIRPLANE LOOK FUNNY * SHE SAID))

(((7? couLD PR ST (You) ?A1)

(?A1 USE=IN FUT ST (% YOu) (THESE PLM PENCIL) ?7A2)
(7A2 MAKE FUT ST (* yYou) (A G0OOD PICTURE OF

(A RED AIRPLANE))))

297

(IC‘)
(""YOU COULD MAKE A GOOD PICTURE OF A RED AIRPLANE WITH
THESE PENCILS))

(((? LET FUT ST (1) 7A1)
(7A1 HAVE FUT ST (YOU) (THE PLM PENCIL)))
(1 WILL LET YOU HAVE THE PENCILS))

(((? HAVE FUT ST (1) (THE PLM PAINT)))
(1 WILL TAKE THE PAINTS"))

Skipped over the line '""Jack looked at the pencils.,"

(((? nO))
(sp (JACK) TO (JANET))
(""NO THANK YOU JANET'" SAID JACK))

(((? WANT PR ST (1) 7A1)

(?AY PAINT FUT ST (* 1) (MORE PLM PICTURE)))
(llz)

(*'1 WANT TO PAINT MORE PICTURES"))

(({?2AY LOOK PR IMP (YOU) (THESE PLM PENCIL)))
(SD (JANET))
("BUT JUST LOOK AT THESE PENCILS ' SAID JANET))

(((? WANT FUT ST (You) ?A1)

((??1 HAVE FUT ST (* YOu) (THEM)))
ll2

(""YOU WILL LIKE THEM"))

(((? MORE PR ST 7A1 (UNM))
(?A1 NUM PR ST
(PLM COLOR SUBCL
(? IN PR ST #%%
((ME) 'S BOX OF PLM PAINT)))
(UNM)))

(sh (JACK))
("1 HAVE MORE COLORS IN MY PAINT BOX " SAID JACK))

(((? WANT PR ST NOT (1) ?7A1)
(?7A1 HAVE FUT ST NOT (* 1) (THESE PLM PENCIL)))
("1 sp (JANET) TO (* JANET))
(JANET SAID TO HERSELF "1 DO NOT WANT THESE PENCILS))

(((? cAN PR QU (1) (WHAT))
(? RESULT ?7A1 (* WHAT))

((?Al GET FUT ST (* 1) (THOSE PLM PAINT)))
llz) :

(WHAT CAN | DO TO GET THOSE PAINTS?")))

((((? SOON PR ST ?A1)
(7A1 60 PR ST (JANET) BACK)
(? CONCURRENT ?A2 .7A1)
(?7A2 WITH PR ST (* JANET) (SOMETHING))
(? GOAL ?A3 ?7A2)
(7A3 GIVE FUT ST (* JANET) (JACK) (* SOMETHING)))
(SooN JANET CAME BACK WITH SOMETHING FOR JACK))

(((? HOLD PR ST (* SHE)
((NIL NIL NIL)
(? 1S PR ST 7CUR TOY)
(? SHAPE PR ST 7CUR CAT)
(? CAN FUT ST (* JACK) 17A1)
(?2A) PUT FUT ST (* JACK) ?A2)
(7A2 IN FUT ST ((You) 'S MONEY) ?CUR))))
(sD (SHE) To (JACK))
(“JAC?)HERE IS A TOY CAT TO PUT YOUR MONEY INTO ' SHE
SAID

(((? TRADE FUT ST (1) (vyou)
(PDGROUP (THIS CAT) (ALL (ME) 'S PLM PENCIL))
((you) 'S PLM PAINT)))
(llz)
("1 WILL GIVE YOU THIS CAT AND ALL MY PENCILS FOR YOUR
PAINTS"))

(((? HAVE PR ST NOT (= JACK) (MONEY)))
(sp (JACK))
("1 HAVE NO MONEY ' SAID JACK))

(((? WANT PR ST NOT (1) 7A1)
(7A1 HAVE FUT ST NOT (* JACK) ((NIL NIL NIL)
(? 1S PR ST ?2CUR TOY)
(? SHAPE PR ST 7CUR
CAT))))
(llz) .
("WHAT DO | WANT WITH A TOY CAT?))

(((? GIVE=-UP FUT ST NOT (JANET)))
(STILL JANET DID NOT GIVE UP))

(((? MUST PR ST (1) ?2A1)
(A1 GET FUT ST (* 1) (SOME MONEY))
(? GOAL ?7A2 ?A1)
(7A2 GIVE FUT ST (* 1) (JACK) (* SOME MONEY)))
(sp (SHE) To (* SHE))
(™1 'LL HAVE TO GET SOME MONEY FOR JACK ' SHE SAID TO
HERSELF)))

298

((((? SOON PR ST ?A1)
(?7A1 60 PR ST (SHE) BACK)
(? CONCURRENT 7A2 ?A1)
(?2A2 WITH PR ST (* SHE) (I1T)))
(SOON SHE CAME BACK WITH IT))

(((? HOLD PR ST (=* SHE) (SOME MOMNEY))
(? CAN PR ST (* JACK) 17A1)
(?7A1 PUT FUT ST (* JACK) ?A2)
(?7A2 IN FUT ST (* SOME MONEY)
((NIL T NIL) (? 1S PR ST 7CUR TOY)
(? SHAPE PR ST 7CHR GAT))))
(SP (SHE) TO (JACK))
("JACK)HERE IS SOME MONEY TO PUT INTO THE TOY CAT '' SHE
SAID)

(((? HAVE FUT ST (You) (DPGROUP (SOME MOMNEY)
((NIL NIL NIL)
(? 1S PR ST ?2CUR TOY)
(? SHAPE PR ST ?2CUR CAT))
() (ALL THE PLM PENCIL))))
Il'
("NOW YOU WILL HAVE SOME MONEY A TOY CAT AND ALL THESE
PENCILS))

(((? SEE PR IMP (YOU) 72A1)
(2A1 NHUM PR ST
(THE PLM THING SUBCL
(7A2 TRADE FUT ST (UNM) (% YOU) #=xx
((you) 'S PLM PAINT)))
MANY))
(llz)
(JUST SEE HOW MANY THINGS YON WILL GET FOR YOUR
PAINTS1"))

(((? LAUGH PR ST (JACK)))
(JACK LAUGHED AND SAID “TAKE YOUR THINGS AND GO AWAY))

(((? TAKE PR IMP (YOU) ((YOU) 'S PLM THING))
(? 60 PR IMP (* YOU) AWAY))
("1 sn (JACK)))

(((? WANT PR ST (1) ?7A1)

((?Al PAINT FUT ST (* 1) (PLM PICTURE)))

llz)

(1 WANT TO PAINT PICTURES")))

300

APPENDIX B - Special Words and Abhbreviations

This gives pointers to the definitions of various terms used
in the thesis. For the moment the pointers are to the
sections numbers, in the final version the page numbers will
be given, When more than one number is given we will give the
first occurance of the term followed by the location of the
best discription of the term.

ASSERT - 90

Assertion = 25

Assertion number - 83

ASSUMPTION - 111

BASE - as in =-BASE, 42

Base routine - 23, 4l

Bookkeeping - 23, 45

D-ASSERT - 93

$DEDUCE - 89

Definite Noun Phrase = 178

Demon - 23, 35

Destruction - 228

DGROUP - 85

DSP - Deep Semantic Processing 8, 23

SE - 259

EQUAL - 106

FF - as in -FF, fact finders 23, 47

301

FPR—- Finding Possible Referents, 65, 58
FUT - 83

GOAL - 87

I-C - immediate control 240
Immediately Aware Of Rule - 187
Indefinite Noun Phrase ~ 178

Internal Translation = 29

I1S=-0BJ 107

LOOK=-BACK 93, 100

LMR - Last Mentioned Rule 68

NEG update - 46

HOLD - as in §TNOLD, 92

Non-Specific Object 85, 178

NP = Noun Phrase

Object - 28

OSNP - Over-Specified Noun Phrase 166
PAST - 83

PB - Piggy Bank

Possible future =~ 40

Predicate - 25

PRL - Possible Referent List 65, 156
PR - PResent tense, 83

QU - QUestion, 83

SR = Indicates a Restricted variable, 107

Recency Information - 59

302

Restricted Variable - 66
Significant Sub=Action = 141
Specification - 91

ST - STatement, 33
TO-BE=-DONE - 91

Topic Concept - 35

T-RESULT - 103

TROUBLE - 46

STRUE - 89

Update =~ 46

USNP - Under=-Specified Noun Phrase 172

