Technical Report 283

A Planning System For
Robot Construction Tasks

Scott E. Fahlman

MIT Artificial Intelligence Laboratory

This blank page was inserted to preserve pagination,

ABSTRACT

This paper describes BUILD, a computer program which generates plans
for building specified structures out of simple objects such as toy
blocks. A powerful heuristic control structure enables BUILD to use
a number of sophisticated construction techniques in its plans.
Among these are the incorporation of pre-existing structure into the
final design, pre-assembly of movable sub-structures on the table,
and the use of extra blocks as temporary supports and counterweights
in the course of the construction.

BUILD does its planning in a modeled 3-space in which blocks of various
shapes and sizes can be represented in any orientation and location.
The modeling system can maintain several world models at once, and
contains modules for displaying states, testing them for inter-object
contact and collision, and for checking the stability of complex
structures involving frictional forces.

Various alternative approaches are discussed, and suggestions are
included for the extension of BUILD-like systems to other domains.
Also discussed are the merits of BUILD's implementation language,
CONNIVER, for this type of problem solving.

ACKNOWLEDGEMENTS*

| would like to express my sincere gratitude to the many members of

the Artificial Intelligence Laboratory whose direct and indirect
support made this work possible. Particular thanks must go to Patrick
Winston for suggesting this topic originallyand for patiently advising
my research, even though the pace was often maddeningly slow; to

Terry Winograd for performing the initial reconnaissance of this problem
area; and to Gerry Sussman, Drew McDermott, Carl Hewitt and Jon White
who provided many good ideas and helped me slay many bugs. Finally,

I would like to express my appreciation - to my wife, Penny, for

helping with the typing and diagrams, but mostly for putting up with

it all.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for
the laboratory's artificial intelligence research is provided in part
by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract N00O14-70-A-0362-0005.

*This report reproduces a thesis of the same title submitted to the
Department of Electrical Engineering, Massachusetts Institute of
Technology, in partial fulfillment of the requirements for the degrees
of Bachelor of Science and Master of Science, June 1973.

PAGE 4

TAFLE OF CONTFNTS

PBSTRACT -
ACKNCVWTETCFMENTS =

TAPIE OF CONTENTS 4

Chapter 1: Irtrcduction 5
1.1 The Role of Protlem Solving ir 2 Rotot 5
1.2 The PUILD Syster: Goals, Abilities, 2nd Timitations 8

Chapter 2: The Modeling Syster 4=
2.1 Overview : £z
2.2 Information Management 44
2.2 FTormat of 2-D Models 48
2.4 Display Routines 52
Chapter *: The Touch Test 54 ;
7.1 General Requirements 54
7.2 The Recursive Test 52
Z.2 The Simrlex Test 5€
7.4 The Line-Face Tect se
Z.5 The Seperating Plzne Test €C
2.6 The FINDSFACF Prcroser 64
Chapter 4: The Statility Test 66
4.1 General Reguiremerts 66
4.2 The Blum—Griffith-Neumanr Test 67
4.2 The Heuristic Test 62
Chapter ©: The PUILD Cortrol Structure 83
£.1 TLANNFR ard CONNJVER 88
£.2 Control lMecherisms Used in PUILD o5
Charter €: The Plamring Svstenr 106
€.1 The Frimitive Corls: MOVF ard MCOVEC 106
6.2 The Pasic Planning Meodules 110
€.Z lMovatle Sub-Assermblv 118
€.4 Scaffclding ard Ccurterweight 124
Chapter 7: Corncluding Rerarks) 131

PIPLTCGRATHY 142

PAGE 5

Chapter 1: Introduction
1.1 The Role of Frotler Solving in a Robot

One of the goais of artificial intelligence research is
the creatior of robots, artificial slaves that will do ran’s
bidding and relieve him of ény tasks .that he finds
dangerous, cdistesteful or uninteresting. At present,
rachines exist with muscular anc computational powers fzar in
excess of human capebilities but, except in the most
standardizec ana predictable tasks, they require constant
humen supervisicn ard contrcl. Part of the problem results
from the machines® inadequate means of sensing their
environzent; until an effective computer vision system is
developed, ren will continue to be depended upon for their
eyes. FEqually important, however, is the machines’ weakmess
and dependericy in the area of vlanning and rroblem solving.
Somehow, given & goal, a situation, and a set of constraints
that must be met, a plan ﬁust be generated to accomrlisk
thai goal. This plen-generating process is the subect of
this thesis. |

If a rcbot is to deal effectively with a wide variety
of tasks anc situations, it will need .tc kncw a numter cf

tecl.nigues, procedures, and tricks, and will have tc be able

PAGE €

to choose and arply these techniques at appropriate times.‘
Some of these techniques will be quite general and can be
used to solve whole classes of rroblems in widely varying
Sets of circumstances; cthers will te useful oniy in a few
rarticular cases, but could result in large savings of
effort or ir success where the more general methods failed.
In order to chocse an apprépriate technique, then, it will
te necessary for the robot to be able .tc recognize and
classify the prcblers that confront it s it works on its
assigned tasks.

Even with = gocd technique selector, sometimes the
firet method tried will fail. Similarly, an artitrary
decision will scmetimes have to be nade and this may later
prove to have been the wrong chcice. When the failure is
discovered the robot will need to undo any damage it has
done to its own datz bases (and perhaps to its external
env@ronment), while at the same time preserving any
information it kas discovered which night aid it in making
. the next chcice or ;erhaﬁs in accomrlishing some other
rending goal.

It is clearly rnot desirable to have this groping and
tlurdering cccur in the real pPhysical world. Questions of
efficiency &side, a simple failure could result in a gross

alteration cf the rcbot’s envircnment or anatomy, or, at the

z - PAGE 7

very least, destruction of some structure that has just been
laboriously built. For this reason it is essential that the
robot have sore mental model of the world in which it is
working. Using this model the robot can test in advance any
step or series of steps in its plan and get what is
hopefully a good indication of the results. Sometimes, of
course, a discrepancy will occur due to inaccuracy or over-
simplification in the model, but these events will be far
less common than would be the case with no model. Ideally,
the robot could discover patterns in these discrepancies,
and irprove its model accordingly.

Except in very special cases it is not worth the extra
computation tc prodube a truly optimal plan, but the plan
should not be blatantly stupid by human standards. For
example, if the robot were told to move a thousand small
parts across the room, it should find a container to carry
them in, not make a thousand separate trips. On the other
hand, we would not corplain too much if it chose a route
that was a co&ile of steps too long or if its hand did not
follow the best traveling-salesman route in picking up the
objects. Similarly, it is less important that the robot do
well on very hard protlems than that it consistently succeed
in overcoring the simple problems that it will face far more

often. A useful robot need not be a genius, but its

z PAGE &

programs must be organized in such a way that they do not
exhibit the typical collapse when scme combination of simple
circumstances leads to a program bug. Other technicues
should be tried or, if all else fails, the robot should
realize that it is losing and call for help. Again ideally,
if ihe robot is shown a way to accomplish scme task that is
betier than its own plan, we would like it to figure out
where it went wrong and alter its own programs accordingly,
or to generalize the better plan and store it away as a new

technique.
1.2 The BUILD System: Goals, Atilities, and Liritations

It would of course be impossible tc attack the entire
area of robct problem soclving at once. Therefore, 1 have
. limited my own investigation to the set of problems that a
one-handed robot would encounter while atterpting tc build
specified structures out of simple objects such as toy
blocks. The wofza of blocks is.ideal for this type of study
beczuse it pr6Vides difficult and interesting problems, but
nevertheless is very simple and self-contained. Since the
robot needs to know only a few concepts about gravity,
support and frictior, it is possible in such a worlé to

study the organization of planning rrograms without facing

- PAGE 9

the difficulties of collecting, maintaining, and effectively
using a huge tody of real-world knowledge. Games such as
chess share this closure property, but are farther removed
from the type of useful real-world activity which we would
like the robot eventually to perform.

In the course of this investigation I have written a
set of progrars, ‘collectively called BUILD, which, by
crerating on internal 3-dimensional models, produces a plan
for converting some present state of a table full of blocks
into some desired or goal state. The present state is given
to the system in the form of = complete 3-dimensional model
indicating the size, shape, position, and rotation. of each
block in the scene. Such a model could be input directly by
a human operator, or it could be produced by another program
such as a vision system looking at the table or a language
system working from a verbal description. The goal state is
rresented in an identical format, except that it may be
incomplete. Any block which appears in the present state
but not in the goal state is assumed to be unimportant in
the final design; BUIID is free to put such a block
anywhere, as long as it ends up out of the way of the
specified structures. The plan produced consists of 2z list
structure containing, in their proper sequence, all.of the

block movements that are to be made, along with information

- PAGE 1C

as to why each move was made at that particular time. This
goal informatior is saved because it will be useful to other
programs which compare cr modify plans.

Though much of the necessary groundwork has been laid,
BUILD does not at present carry its planning down tc the
level of actual hand movements and finding paths through 3-
space. In most cases this. is a fairly trivial process, but
a good general solution would have to deal with several
difficult problems that are not yet solved. One of these is
the developuent of a good way to model empty space, for the
rurpose of efficient path—finding. It has been my feeling
that since hand motion can te neatly isolated from the
remainder of construction plamning, I could better use the
available time by ccncentrating in the other areas. BUILD
therefore orerates as if the blocks could be moved bty magic,
diszppearing frcm one position and reappearing in another.

BUILD can deal with plane-faced blocks of any rre-
defined shape in any position and rotation in srace. The
stability—testing rcutines cén deal with any fricticnal
forces that arise. At present, adding a new shape to the
system requires that a large number of facts and relaticns
- be input by hand, but shape-learning prograns of various
degrees of complexity are not hard to envision. A very

clever rrogram cf this type might even notice interesting

PAGE 11

relations between the various shapes, such as, "One of these
and two of those can fit together to form a brick". For‘hy
current work, bricks (perpendicular projections of
rectangles) and wedges (perpendicular projections of right
triangles) of arbitrary dimensions are sufficient, and are
thus the only shapes currently defined in BUILD.

Some examples will perhaps serve to indicate BUILD’s
level of competence. In each case the problem is to convert
the present state SP into the goal state SG. Where ST is
not shown, assume that the current state is something
uninteresting, like all blocks neatly separated at the side
of the table. We will begin with the simrle test shown in
figure 1-1. First, block A must be moved out of the way. E
is then set aside in crder to free block B, which is then
moved to 2 position corresponding to block 4 of SG. E is
then rlaced on top of it, corresponding to block 3. Note at
this point that block 2 must be placed before block 1, or an
instability will result. Note, too, that although both
blocks C and L match biock 2, C is the better choice because
it is free to move and D is not. Therefore, C is placed in
position 2 and D is then placed in positibn 1, comrpleting
the plan.

‘henever possible, BUILD tries to leave undisturbed any

blocks already in the proper position. In figure 1-2, for

5G-goal state

SP-present state

a = ' j

figure I-la
basic construction

TACE 17

after step |- move E

= A

L

after step 2- move A

m

figure I-Ib

ofter step 3 - moveB

figure I-lc

after step S-move C

after step 6- move D

figure I-Id

/i3

SP-present state

P

5G-goal state

figure 1-2

PAGE 17

instance, the plan generated is simply to move B away and to
place A in position as block. 1. Sometimes, however, a biock
initially in the proper position cannot be left there, at
least without some great extra effort. An example.of this
is shown in figure 1-3. (If blocks yith the same name
arpear in both SP and SG they will only match each other.)
Here, there is no reasonéble.way to swap 1 and 3 without
moving 2. The tower nust be completely dismantled and
rebuilt in the new order.

BUILD makes use of the concept of movable sub-
assemklies of blocks, sets of blocks that can be moved
together bty the single hand. For a set of blocks to
qualify, there must be some block in the set which surports
all the others, with no outside supports being necessary.
The whole sub-assembly can then be moved by grasping this
supporting block. (BUILD does not recognize cases where the
hand, by some cleverly chosen grip, is able to grasp more
than one block—directly.) It is also necessary that no parts
of the sub-assembly aré So precariously balanced that they
will fall off when the structure is moved. Tc see the
usefulness of the sub-assembly concept, cbnsider the problem
in figure 1-4. The structure in SG, which I call the
seesaw, 1is one of the classical problems in the area of one-

handed construction. Looking first for simple solutions,

TAGE 1€

™

SP-present state

SG-goal state

figure 1-3

IAGE 19

S gy [7N

S5G-goal state

oﬁc)>]

SP-present state

figure I-4a
sub-assembly

after step |- move p

IAGE 2C

after step 2- move B

- figure |-4b

IACE 21

after step 3 - move C

B < A
>

after step 4 - move g (BQ)riding D

figure |-4c

PAGE 22

BUILD places block A in position 4, sets aside blocks B and
C, and places block D in position 3. This, however, leads
to a dead end. By further analyzing SG, BUILD discovers
that tlocks.1, 2, and 3 form = movable sub-assemnbly which
can be assembled on the table, and then, by grasping 3, can
be lifted onto block 4. BUILD could, at this point, move
block D back onto the table, but since this premature move
has occurred only in the model and not in the real physical
world, BUILD will instead alter the plan so that the wasted
motion is eliminated. To accomplish this, BUILD
reconstructs the scene as it existed prior to the decision
tc dig up and move block D. A spot on the table is chosen
in which the sub-assembly will be built, in this case the
current position of block D. B and C are Placed in the
positions relative to D that 1 and 2 hold relative to S
The structure B-C-D is then grasped by block D and lifted
into position. This sequence of actions replaces the
sequence “"Remove B, Remove C, Place D" in the former plan.
If there were subsequeﬁt steps in the previous plan, they
would now be checked to see if the change has made it
necessary to alter other, later steps as well. In this
case, there are no sutsequent steps in the o0ld plan, and the
rlan is complete at this point.

Fany variations on the sub-assembly idea are possible.

PAGE 23

In figure 1-5, the structure A-B-C-D-E is too delicate to be

figure I-5

moved, so the sub-assembly technique is not arpropriate.
The steadiness of the hand is a parameter supplied by the
programmer. If desired, BUILD could be altered to give
hand-movement commands that specified how gentle the motion
should be. -~

In figure. 1-6, blocks A and B are too precariously
balanced to be part of a movable sub-assembly, but can be
added after C-E-F has been lifted into place. Note that
BUILD might first have worked out a plan to place D, C, B,
and A, and only then have discovered that E and F should
have been added at the same time as C. BUILD would go back

- PACE 24

C
(>

—_—_—

figure 6

apd modify the "Place C" step and then verify that 4 and B
can be rlaced as previously planned. If, for instance, a
lot of planning went into freeing A and B from their former
positions, this verification will be much easier than
reccmputing the necessary steps.

In figure 1—Z}qthe sub-assembly technicue will not work
because block F requires surport frcm outside the group, and
there is nothing else that will balance block A.

In figure 1-8, the solutior is surprisingly easy
beczuse BUILD recursively calls itself when constructing the
sub-assenbly on the table, and thus has available all of the

power that it can use on its top-level goals. G-H-I is

B E
c
p
figure 1-7
B
c
G |} =
| 1
J

figure I8

PAGE 26

built on the table. The two mini-seesaws are built on the
table and lifted into place. Finally, the entire sub-
assembly is lifted and placed onto J.

Figure :1-C shows a problem for which thé sub-assembly

A
1
® , .
Py _ 2
D ' -]
| m 3

SP-present state .~ $G-goal state
figure 1-9

technique must be used to dismantle a structure rather than
build one. Because it can neither look again at the scene
nor predict where the blocks.will fall, BUILD will not
simply knock down difficult structures. Instead it reverses
SF and SG, calls itself récursively to see how the_offending
structure could have been built, and reverses the ensuing
plan. In this way, all of the~construction techniques can

be used for destruction as well, without the necessity of

PAGE 27

keeping around both forward and backward versions. In this
example, A-B-C is lifted down to the table, and then
dismantled.

Another of BUILD’s methods for dealing with difficult
structures is the use of extra blocks in the scene as
temporary supports and counterweights. This method may
often be used in cases such as thcse in figure 1-10, vhere
sub-assembly is not possible. Figure 1-11 shows the use of
a temporary support in the construction of a seesaw. Figure
1-12 shows a larger block being used as a counterweight in
the same construction. |

The temporary structures used can take many different
forms, depending on the shape and dimensions of the extra
blocks available at the time. Several of these forms are
shown in figure.1-13, with the temporary tlocks marked by an
X. A and B are simple scaffolds rade of several tlocks. In
C the wedge is used to provide a variable extra height for
the tcwer. Of-course, the wedge rust not slope too steeply
or it will be pushed off to the side. In part D the
unstable parts are blocked from above rather than below. E
shows a multi-block counterweight, while F shows a tower
resting on one of the permanent blocks rather than the
table.

The place chosen by BUILD for construction of a

TAGF zg

figure [-10

5G-goal state

1AGE ¢

= |

SP-present state

prg

figure I-lla
scaffold

1pCF 70

after step 1- move A

after step 2- move E

c;)‘..
m

figure I-l1b

TAGE 71

after step 3 - move B

m

after step 4 - move C

figure I-llc

JrCT F2

after step 5-moveD

after step 6 - move B

P |m

figure I-11d

TIGE 7

5G-goal state

n 2

£ [

SP-present state

figure I-12a
counterweight

1ACF T

after step 1- move A

after step 2 - move E

m

figure 1-12b

after step 3 - move D

ofter step 4 - move B

‘%ﬂ_.o

m

figure I-12c¢

after step S- move

after step 6- move D

{1]

figure I-12d

B TAGE 77
X XN\

X X

C D
A
X

BN F
;f: | X
K

figure 1-13

] PAGE 3&

temporary structure may already be occuried by other blocks.
In this event, EUILL must choose one of several options: It
may be possible to tuild the structure elsewhere, either
nearby or, for instance, under the opposite side of a
seesaw. If the offending blocks are steady encugh and
precent a fairly level upper surface, .the structure could be
built on top of thex. It is, of course, usually possible to
remove the intruding blccks, or to alter the sequence of the
rlan so that the temporary structure is built, used, anc
dismantled tefore the other blocks are ever placed. The raw
materials for the temporary structures can, if absolutely
necessary, te taken from other existing structures. Once
;again, rlan alteration can te used to minimize wasted
movements due tc premature rlacement of certain blocks.

Care must be taken not to fall into loors where two
structures each require the temrorary use of parts from the
other. '

Cne fairly obvious method that BUILD does not employ is
the technique of sliding 'a block or changing its positicn
whiie maintaihing its pressure on scme other block. Figure
i=14 will demonstrate what I mean. If the wedge were picked
up completely, the seesaw wculd toprle. An obvious solution
is to rotate the wedge in place, maintaining its pressure on

the cross-arm. BUIID is unsble to do this, 'and instead

SG-gool state

A

./

SP-present state

figure 1-14

- PAGE 4C

would 1lift the sub-essembly to the table, remove the wedge,
replace it in reversed rosition, and then replace the whole
sub—assembly. The problem with implementing sliding moves
is =imply that there is no general way of determining
whether an uninterrupted sliding path exists without
attacking the path-finding rroblem as a whole and, as I said
earlier, this is an issue I have chosen to avoid.

Because of the visual simplicity of blocks, they are
the favorite subject matter of computer vision researchers
at M.I.T. and elsewhere. The M.I.T. vision group has
demonstratec the carability of looking at very simple block
scenes with the computer’s vidisector eye and copyirg them
_with a mechzniczl ccmputer—ariven hand. The construction
planning portion of this system consists of some sicple
heuristics involving above-below relaticnships tetween block
images on the 2—dimensicna1 retina. The system does not
nake use of any real 3-dimensional models of the scene
befcre it. A secondary goal of my work, then, is tc prcvide
BUILD as a ruch more powerful planning module for this
sysiem. Sdne'very €xciting possibilities exist for
cooperation between the vision-hand system and EUILL:

Visual feedtack can tell BUILD vhether its rlans are having
the desired effect, as rredictec by BUILD’s internal mocel.

leanwhile, EUILD s zbility to analyze the support and touch

PAGE 41

relationships in a model can help the vision system choose
the most reasonable of several possible interpretations of a
$cene. Since Terry Winograd’s natural language
understanding system <WINOGRAD 1972> uses >-dimensional
models of blocks and block structures as subject matter,
BUILD could be fairly easily interfaced to these as well.
This would result in a computer system that could receive
commands in plain English, do some fairly complex planning,
and execute these commands in the real world.

While BUILD does not do anything that could be properly
considered learning, I feel that it provides a good
laboratory for research in this direction. Plans, as well
as structures and individual blocks,.could be compared and
classified by a description—comparing program similar to the
one described by Winston <WINSTON 1970>. By this means,
plans that are demonstrated to the programs or derived by
inefficient general methods can be generalized and saved as
special-purpose-techniques to be used again when similar
situations arise. BUILD can provide the necessary framework
and utilities to make such work possible.

lost of the planning for BUILD was done with the
intention of implementing the system in MICRO-PLANNER.

There were, however, some fairly serious problems associated

with the use of this language in my particular application.

- PAGE 42

CCNNIVER, which appeared while this investigation was in
progress, seemed to solve many of these problems for me,;so
BUILD was converted to this new language. I will have some
comments in section 5.1 concerning the relative merits of
the two languages for this type of problem—solving.

To some extent, BUILD can be considered a descendant of
the "blocks world" portion of Terry Winograd’s language
system. Both systems, after all, solve problems about
blocks using 3>—dimensional models. However, since
VWinograd‘s main interest was in language rather than in
construction rroblems, his models were so restricted that
the type of problems discussed in this section could not
even be represented, let alone solved. Therefore,
Winograd‘s actual programs have been useful to me only as
inspiration and as examples of good problem-solving style.
The Stanford University hand—eye project has made some use
of 3—dimensional models <PAUL, FAIK, FELDMAN 1969>, but
their publications to date do not indicate that they have
used these extensively in canstruction planning, excert in

the area cf collision avoidance.

- PAGE 43

Chapter 2: The lMcdeling System

2.1 Overview

BUILD can te rcughly divided into two major parts. One
rart, the planning system, consists of the network cf
CONNIVER prcgrans that control 211 of BUILD s planning and
decision making. The other part, the modeling system,
contains the prograns that do all of the work: creating and
updating the models, testing blocks for collision and
contact, testing structures for statility, finding empty
rlaces to put things, and so on. The modeling system will
_be described first, since the planning system can be better
explained once it is clear what information it has to work
with and what resources it can call upori. 7This charter will
cover various aspects of the models themselves; charter 3
will cover the touch and collision test; chapter 4 will
describe the stggility test.

Though the physics and geometry of the blocks world are
simple and vwell-understood, the programming of the modeling
systemn vwvas not particularly strzightforward. BUILD s entire
understandirg of its world resides, in the form of
rrocedures, in the nodules of this system. The programs

rust be accurate and comprehensive enough to deal ccrrectly

PAGE 44

witl 2ll situations of interest, and must provide the
plarning system with a rich enough flow of information to *
make intelligent decision-making possible. If, for example,
the statility test were a simple win/lose predicate, BUILD
would be forced to use a strategy of blind trial ana error.
Beczuse of these recuirements, some of the simpler
algcrithmic methods for touch and stability testing had to
be abanaoned in favcer of more ccmplicated methods with a
higher infeorration yield. The various methods considered

for each test are described belcw, along with a description

of ihe methods uvltinately chosen.
2.2 Information kanagement

The information used by BUILD can te divided into two
types according to its source. One type, which I will call
primary data, is received from outside and is irreplaceable.
Such things as the- size, shape, and initial position of each
block in a scene are primary data, at least until BUILD is
conr.ected to a visicon systen which can obtain such cata froo
the environnent at will. The other class, secondary data,
is nuch larger, and consists of data items that BUILD can
derive from the primary data by various routines resident in

the modeling system. Scme examrles of data iters in this

PAGE 45

category are the three-dimensional positions of the block
vertices and face planes, information about the points.éf
contact between blocks, and the network of support relations
found by the stability test. :

Since some of these secondary data items are relatively
costly to derive, it would be wasteful not to save the
results for subsequent references. Care must, of course, be
taken not to use old data items that are no longer valid. -

One common aprroach to this problem is to create a large

O B

data base containing all of the derivable information, and
to keep this constantly up to date by making all of the
necessary modifications whenever anything is changed. This
method works well for very simple problem domains, but the
data base becomes ridiculously large when used with a system
erploying a large variety of types of knowledge. In such a
syster every small change would have a large number.of
consequences, very few of which wouid ever be referenced.
Much computation would be wasted in deriving all of this
useless information. °

Since'BUILD is intended to be a sort of prototype for a
syster employing a great deal of knowledge about the world,
I have not used the complete—data-tase method described
atove. Instead, I use a schere in which secondary data is

only derived when it is required, but is then saved for

PAGE 4¢

subsequent references as items and properties in COMNIVER's
pseudo—associative data base. Tor examrle, consider a g
progran that needs to know whether block A touches tlock B,
"and, if so, at what points. BUILD will look first in the
data base tc see if it already knows that A touches B. If
this succeecs, it will return the inforrmaticn about points
of contact stored in the same data item. If, instead, the
search fails, BUILD will see whether it knows that A anc B
are not touching. Failing this, it will lock for equivalent
forms such as B TOUCHES A. Cnly if 211 these searches fail
will BUILD invoke the tcuch testing routiine, which coes the
necessary wcrk reqguired to find the answer. In addition to
_returning thLe arswer, this routine stores it away as a new
date item sc thet the search phase will succeed the next
time this informaticn is recuired. If tlock A is ever
moved, 11 c¢f the tcuch infcrmation invclving A, and any
other secondary information that depends on A’s position,

will be erased by the systen derons (if-added and if-rerovec

-~

rethods).

This syStem has several advantages: No computation is
ever mace when it is not needed, and no comrutation is
needlessly repezted. Great flexibility is available to the
rrograns in this system, because functicns can te callec

from anyvhere, withcut regard fcr whether the proper data

PAGE 47

bese environment has teen set up. If storage becomes
crowded with items of secondary data, any or all of these
items can be erased, resulting only in degraded performance,
not in disaster. The programmer is freed from continual
decisions about whether a given datum is useful enough to
save.

Several extensions to this idea, not currently
implerented, suggest themselves. The routines that create
these secondary data items could note (on the datum’s
property list, perhaps) how hard this particular item was to
derive. In the touch test, for instance, it is harder to
tell whether blocks are touching if they are very close than
if they are at oprosite ends of the table. When the time
comes to throw out sorme of these secondary data items, those
that were won most easily will be the first to go. Another
useful item to save with a datum is some rough heuristic
estimate of how useful the information is expected to be in
the future. _This, toc, can be used by the system in
deciding what to forgét. Even if this heuristic estirmate is
wrong, it can only slightly degrade performance; as long as
the heuristics do better than chance, overall efficiency
will be gainec.

This type of memory management is not entirely new,

though I know of no other modeling system which uses it

Lo
sl

PAGE 4¢&

nearly this extensively. (Winograd makes tcken use of a
similar system in his CLEARTOP predicate.) Some sort of *
lisi—structured asscciative memory, such as PLAKNER and
COLNIVEE provide, seems almcst essential for the storage of
seccndary data items. Without this facility, one would be
almocst forced tc use cumbersome fixed-length tatles to store
the data for easy retrieval and this, in turn, would be a
strong inducement tc return to fixed, ccmplete data bases.
The GOAL function ir. PLARNEK, which first checks the data
tase for assertions of the cesired form, then resorts to
theorems to achieve the goal, was intended for the type of

nemory management I have descrited tut, at least in its

This will be discussed in secticn 5.1.

2.3 Format of 3D Mcdels

BUILD s world consists of a table (of any specified
dimensicns) and a pcpulation of movable objects called
blocks. These blocks can be any shape which BUILD
recognizes (currently bricks and right-triangle wedges) and
can have any dicensions. They can be in any spatial
position and rotaticn. The specificaticn of the mocel nust

.be complete; dezsling with uncertainties of size and position

- PAGE 46

is & probler for ancther thesis (see, for instance, <BOEERG
1972>). BUILD nust be able to store several world-models or
sitates at once, without confusing them. It might, for
instance, have models of the world”s present stzate, the goal
state tcwara which it is working, some hypothetical prorosed
state which is being investigated, and a list of the states
it has rassed through in the course of its solution. This
was a problem in MICRO-FLANKER, but the context structure of
the CONHIVER data base rrovides exactly the facilities
needed. It is not too expensive to save many slightly
different ccntexts Lecause shared inforration is not
recopled in each context. In this thesis the words "state",
;"context", and “"scene" are used more or less
interchangeebly.

Blocks exist independently of states. A given block
may appear in severzl states or in none at all, and may
occupy & different rosition in each state. A block will
have the sane size and shape wherever it aprears; these
prroperties are placed in ‘the data base when the block is
defined. Other inveriant properties, such as cclor, could
be treated likevise. Tlre size cf a block is a vectcr of
.parcmeters vhose length and interpretation deperds upon the
block”s share. FYor bricks the size vector has length 3 and

is simply the three dimensicns in any order. ZFcr wedges the

A

: PAGE 5C

size vector again has length 3 and specifies the two legs of
the triangle and the thickness. More complicated blocks *
will recuire that mncre rarameters be specified. In this
system 1t never makes sense to talk about size .excert in
relation to a particular shape.

Points are simply represented by their 3-space
coordinates (x y z). Planes are rerresented by 4-tuples of
the form (x y z w), where (x y 2) is the unit ncrmal vector
to the rlane and w is the distance along that vector frcm
the origin to the plane. Each plane divides space into two
half-spaces, which 1 will call the inside and the outside;
the norral vectcr pcints toward the outside. A point (A B
' C) lies on the flane (x y z w) if AX+BY+CZ-k=0. If this
quantity is greater than zero, the roint is outside; if 1less
it 1s inside. 7This quick test will be useful in the touch
testing sysiems. |

Generalized positicns cf otjects (rosition and
rotzation) are indicated by 4x3 arrays callec AT arrays.
These are really equivalent to homogenecus coordinate
arrcys, except that the right-hand column is choppec off.
In the zbserce cf scaling transformations this column is
alweys O 0 O 1, so rno inforraticn would be gained by keeping
it. The first three rows of the array consist of a 3x3
rotetion matrix, while the last row simrly contzins the x,

¥, and z displaceme;ts of the object. ~To find the real B—ﬁ

PAGE 51

pcsition of a point whose position relative to a block is
known, one sirply multiplies the given (X Y Z) vector by the
urper 3x3 matrix, then returns the vector sum of the result
and the bottor row of the array. These AT arrays can be
thought of as mappings from. one set of spatial coordinates
to another, usually from the block’s coordinates to the
"real world". It is possible, however, to have one block’s
AT array relate to the space defined by another block, so =,
that when the second block is moved, the first moves also. i
When it becores necessary to generate the vertex
positions or face plane equations of a block in some state,
the necessary formulas are retrieved from among the
properties of the shape name. These are LISP functions
which generate all of the vertex coordinates and face plane
coefficients using parameters supplied by the block’s size
property. These are generated for a block at the origin and
unrotated, and are then converted to their true values using
the block’s current AT array for the state in question. As
described in section 2.2, these final values are saved for
future reference. The shape 2lso has properties giving
formulas for weight, center of gravity, and meximum distance
-of any point on the block from the "center point". This
last cquantity provides a quick way for the touch test to

eliminate distant objects. Also among each shape’s

PAGE 52

properties is a wealth of topological information: which
vertices and lines surround each face, which faces meet at

each vertex, which faces are adjacent, and so on.
2.4 Display Routines

In order to present BUILD’s activities and plans in an
intelligible form, I have written routines which are able to
display any state generated by BUILD on the system CRT, and
to produce hard copy on the X-Y plotter. These routines
meke extensive use of the LISP display utilities provided by
Jerome Lerman and Jon White.

Each display is created relative to some viewpoint. A
viewpoint is a list containing an AT array, a scale factor,
and an indicator showing whether the display is to be an
orthogonal or a perspective view. The AT array gives the
position and orientation of the eye, which can be turned and
mcved just as though it were a block. The scale factor
controls the size of the image and the extent of the field
of view, like the foczl length of a camerz lens. The
endpoints of each line are mapped into "eye space" using the
eye’s AT array. _The resulting X and Z coordinates, times
the scale factor, become the horizontal and vertical

coordinates of the points on the scope. If perspective is

PAGE 53

to be used, these values are first divided by the Y
ccordinate of the point in eye space; i.e. the distance of
the point from the plane of the eye pupil.

The system currently eliminates only those hidden lines
which are formed by the meeting of two faces, both facing
away from the eye. Thus single convex objects appear
correctly, but objects behind them will show through. With
scme extrza effort a true hidden line algorithm could be
irplerented, along with a module to generate shadow lines,
given an arbitrary position.of the light source. This could
be of great use to the vision system by providing a sort of
feedback loop. For any proposed 3-D model of a scene,

. whether arrived at by deduction or guesswork, the display
syster could generate the correspcnding line drawing. This
could be compared with the data coming from the eye, and on
this basis the model could be accepted, rejected, or altered
slightly and tested again.

-

4
L

Chapter 2: The Touch Test
3.1 General Requirements

For obvious reasons, PUILD requires z means for
determining wvhether two tlocks are tcuchirg, not touchirg,
or collidirg (tryirg to cccupy the same volume of srece).
Thre handling of touch inforration, cnce fourd, is described
in Cection 2.2; thir sectior will be devected to the test
iteelf, ané the variour 2lternative methrods thet were
censidered. This test cught to accorodate the cotjects cf
ertitrary shere, corcave or convex, thet we would lilke
eventuelly to use, and, since it must scretires te vsed
reretitively while an object is teirg moved, should Te
feirly fast. Since the floatins-roint rurbers vsed ty the
rnodeling system exhitit rcundoff errcr, touching rust te
defined in terms of a2 prograrmer-ret tolerarce: Two objects
touch if thev arrreach within this tclerarce cor cverlar tyv
less than it. .

thenever tvo otjects are touchirg, 2dditioral
irferiaticr is recuired for vse by the rte2bility test. 2
list rurt te created giving the Z-srace ccordinetes of 211
pcints of certact tetweer the otjects. Tf the centact is

made 2lcrg 2 lire segrent or cver ar erez, the erndrcirts cr

PAGE 55

vertices are returned and treated as the sole points cof
contact. (While this is sufficient information for
stability testing, more data about the area of contact would
be necessary if the system were to use glue ‘in its
constructions.) The touch test must also report the normal
vector at each point of contact. This is just the normal of
a plane separating the two objects at this point. Without
this information it would be impossible for the stability =
test to separate the normal and frictional components of a 2
force. For two convex objects a single normal vector is
adequate, since a single plane must pass through all points

of contact.
3.2 The Recursive Test

Cerald Sussman has described two methods for collision-
testing and has studied the efficiency of these methods for
randorly-generated 3~dimensional bricks <SUSSMAN 1971>.
Sussman only considered collision detection, not the problem
of charactérizing the points of contact. His first method,
which he calls the recursive test, generates inscribed and
circurscribed spheres around each brick. If the
circumscribed spheres do not intersect, the blocks are known

to be clear of one another. If the inscribed spheres

PAGE 56

intersect, the blocks are known to be colliding. If neither
is the case, each brick is divided into two parts and tﬁ%
test is recursively arplied to each part.

This method works very quickly for blocks very far
arart or severely overlapping, but slows down drastically
for blocks that are almost touching. If two blocks are
exactly touching over some area, a large number of recursive
branches will have to run until the spheres reach the
syster ‘s touch-tolerance level in size, a very costly
process. Since most blocks in a BUILD state touch at least
one other block, this method is clearly not approrriate. In
addition, this method works.only on standard shapes. The
basic unit could be a tetrahedron instead of a brick, and
all polyhedral objects could be divided into collections of
these, but this is a very difficult and costly process.

3.3 The Simplex Test

-

Sussman ‘s second .technique, useful for blocks.of any
convex shape, makes use of a form of the Simplex technique
from linear programming. (For a full discussion of this
technique, see <ZUKHOVITSKY, AVDEYEVA 1966>.) Each block is
represented by a set of linear inequalities in X, Y, and Z,

ccrresponding to the faces of the block. A point is inside

PACE 57

the block if it satisfies all of the inecualities defining

that tlock. If the two tlocks in question are colliding;

there will te scme Toint that lies withir beth tlocks, arnd
vhich must thus satisfy 211 of the irequalities of toth.
Findirg such a poirt, or determining that nc such peint

exists, is a commor protlem in linear rrogrammirg ard well
develored technicues exist for systematically searchirg

spece fer this point. The inegualities are rerreserted in 2 =,
rotrix (12 ¥ 4 for twe tricks) and carefully selected row 2
cutsrtitutions are performed, tyrically about four ir nurber,
until the arswer is reached. To a2llow for the roundoff
tolerance, this operaticn must be perforrmed twice, once with
each plane roved outward by the tolerance value, ané agein

with each plare moved inward bty the same amount. Flocks are
declared to be touching if they iIntersect while expended,

but not while contracted.

There ere rroblems with this method also. Concave
otjects rmust be broken ur into convex rerts tefore this test
is vused. erthermore,.it is quite hard to extract the
reccssary rcint-of-contact inforration.vsirg this test. Cne
Toint of cortact is returned as the roirt vhich satisfies
211 of the inequalities, but I coulé fird nc good wvey tc

extract the cother pecints or the norrmel vectors.

PACE 5€

2.4 The Line-Face Test

The lirear proframring test was imrlemented but,
tecouse of the rrobléms noted above, this rethod socn gave
vay to cre nmore geometric ir flavor. This geometric test
crerates bty checking each edre line of ore ctiect against
epack face of the other cotject, and vice versa. If any line
is feurd tc renetrate a face, the otjects are colliding.
This lire-face test is faster then might be suprcsed. A
ovick check is first rur to see vhether the objects are too
far apart tc be touching, using what amounts to
circunscribed srheres. 1If the otjects are close encugh, the
line—face testirg proceeds. Most of the lire-face tests
return gt orce tecause toth endroints of the lire are found
to te or the same side cf the face plane. If this is not
the case, the intersection of the line ard the face rlare ir
fourd, and the torder of the face itself is traced cut to
determine whether this roint is inside the border ard thus
or the face. Fecause of the two levels of yre-testirg, very
few of fheSe costly borcer tracirgs are performed ir
aralyzirs ear enfire scere.

There are 2 numnber of excertioral situvations which
risht te found durirg the lirne-face testing, andéd each of

these reguires its cwn excepntior-hardlirg routire. Such

PAGE 59

exceptions occur .when one of the endpoints of a line is
found to lie cn a face (within the touch tolerance, .of
course) or when a line grazes the boundary of a face along
an edge or at a vertex. These exceptional points usually
either indicate a collision.or a point of contact, according
to the local geometry. Whenever an exception handler finds
a contact point, it compdtes the appropriate normal vector
and adds both items to a list. A certain amount of
bookkeeping is reguired to.keep the programs from
investigating these points several times, once for each line
and plane involved.

This test has several advantages. Unlike the Sirplex
test, it produces a ccmplete list of touch points and normal
vectors. In addition, it can operate directly on blocks
with concavities.without first dividing them into convex
pieces. It is, however, quite a large and complicated
systen and runs rather slowly, despite its pre-testing. 1In
compiled IISP ferm, the test took a fairly constant 1€ to 20
seconés of CPU time for‘pairs of nearly-touching bricks.
Tcuching btricks took slightly longer, while colliding bricks
tcok around 3-5 seconds. This compares with sbout three
seconds for the uncomriled Sirmplex test. These times, of
course, are extrerely sensitive to machine speed and

programming details; I include them only to give the reader

R

FAGE 60

some rough idea of how these algorithms compare in

efficiency.
3.5 The Separating Plane Test :

The touch test currently used in BUILD was stumbled
upon by the author while trying to improve one of the
exception-handling modules of the line face test. .This new
test works only for convex objects, but makes up for this 5
limitation by being very much faster than the older line
face test. The new test depends upon the observation that
if two convex objects can be separated at all, they can be
separated by a plane (not necessarily unique) through two
vertices of one object and one vertex of the other. Either
block may be selected to contribute the two vertices, since
a solution will exist in either case. The separating plane
must rass between the centers of gravity of the two blocks,

and all of the vertices of each block must be either on the

-~

plane (within the system‘s roundoff tolerance level) or on
the szme side as the block’s.center of gravity.

Given these constraints that must be met by any
separating plane, it would be possible to find if such a
plane exists by conducting an exhaustive search. This

search would ratch each pair of vertices from one block with

y PACF 61

everv verter of the other, construct the plane through these
three pcints, aré then checl- vhether the certers of rra&ity
ené vertices are indeed seperated by this plane. As
rerticred ir sectior 2.3, these rcirt-plere ‘comyarisors ere
cvicl, reauiring orly ¥ rultirlies, 4 adds, ané a2 correre
for erch. If 2 good serarating rlare is fournd bty this
prccess, it is relatively easy to find the contect roints;
crly thcse vertices and edges that lie on this rlane reed tc
Yo checle@ for coinciderce. The norral vectcr 2t 211 cof 4
these ccntact peints is just the norral vector to the
serarating plane. If the otjects are net tcuchirg 2t 211,
there vill te & seperating rlene but ro ccntact reirts. If
the exhaustive search is unetle to find 2 sereresting rlere,
the objects are collidirf.

In fact, much of this exhaustive search car te avoided
ty using a nore efficiert search stretegyr. First, the
sycter: firds the two vertices cof the first Tloclk, P1, which

ore the clorest to the center cf the second tlocl, F2. The

-

vertices of P2 =zre then scazrred in the order of their

closeress tc P1°s center urtil cre is feund vhich, =long
wvith the twc P1 poirts, forrs e rlare cuvttirg betveer the
twe certers of gravity. Usvally this firct rlere is the
derired sercrater, vith ro vertices of either block on the

vreng side of it. T nct, cnly the coffcide verticer, 2lcrg

FAGE 62

with the initial three, need to be considered in the
subsequent search. _

This test is much faster than the line-face test. For
distant objects, the same maximum distance cutoff is used as
for the older test. For touching or nearly touching bricks,
the new test averages about..4 seconds to find the
separating plane, with an additonal second or so being

required to determine all the contact points. These times _

13

.

are for the compiled LISP version. The new test does -
scmewhat worse with colliding blocks, since it tries very
hard to find a2 separating plane. In the worst cases it

takes about 1.5 seconds to determine collision.

In theory, this test is very similar to the Simplex
test described above. Instead of looking for a point that
simultaneously satisfies a set of linear constraints
representing the plane faces of the objects, the new test
lcoks for a plane to fit the linear constraints supplied by
the object vertices. Each of these points must end up on
the proper side of the plane. The W, X, Y, and Z of the
plane are the unknowns. The test could have been
reprogramred to use the Simplex method on a matrix, but
after some consideration I decided that the current form cf
the program is probably faster for all but the most complex

otjects, due to the overhead cost of setting up the matrix.

PAGE 63

To use this test with concave objects, it is first
necessary to divide them into convex pieces. One method’%or
doing this is to extend planes through concave edges until
the plane hits another plane from the inside.* A two-

dimensional illustration of this is given in figure 3-1.

D

figure 3-1

Line E—C is extended through the concavity at C until it
intersects liné~5—E at point X. D-C is likewise extended to
point Y. This process forms two maximal convex objects A-B-
X-E and D-Y-E. It does not matter that these overlap, since
perts of the same object will never be tested against one

another. This object divider is not currently implemented.

PAGE 64

3.6 The FINDSFACE Prorposer

The FINDSPACE proposer is not really a part of the
touch test, but is intimately related to it, ‘so I include a
description of it here. Whenever BUILD needs to find an
arbitrary place to put some block, it calls FINDSPACE, which
searches around the table for a place where the block in
question will fit. This is necessary whenever a block has -
to be set aside, either because it is in the way, or because ii
it is resting on some other block which must be moved. The
table is assumed to be large enough to hold all of the
blocks with no trouble, so FINDSPACE never tries to pile
blocks on top of other blocks.

FINDSPACE consists of two major parts, the proposer and
the tester. The proposer suggests various new locations for
the block in gquestion, and the tester sees if the block can
be placed there without hitting other blocks. The tester
is, of course,-simply the touch and collision testing module
described above. The current FINDSPACE proposer is quite
simple, but works adequately well if the table is not too
crowded. First, the faces of the block are scanned to find
the srallest one upon which the block can stand and still
be reasonably stable. The proper rotation and height for

the block are computed, in order to bring this face into

PAGE 65

contact with the table. A coarse scan of the table is then
initiated, using fixed increments of X and Y. The block‘is
4imagined at each of these X,Y points and the touch test is
run. This continves until a good position is' found, or
until the scan is completed, in which case FINDSPACE gives
ur. JSome ideas for a better proposer are discussed in
Chapter 7.

The current proposer has two other features which are
of use to BUIID. First, any location produced by FINDSPACE
can be rejected by the caller and returned for a new value.
FINDSPACE is simply called again vith the old value as an
optional extra argument. The X-Y scan is re-initiated from
this point. Also, FINDSPACE can opticnally receive a list
of other contexts whose blocks are to be avoided just as if
they were present in the current context. The normal use
for this feature is to prevent FINDSPACE from placing blocks
in locations that are earmarked for later occupation by

blocks in the gosl state.

PAGE 66

Chapter 4: The Stability Test

4.1 General Requirements

The heart of BUIID is the stability test, the module
that looks at a state of the blocks world and decides
whether anything is going to fall. Since BUILD does not
have the real-world feedback that humans use so extensively,
it cannot start to release a tlock and grab it again if it
begins to fall. All questions of stability must be decided
correctly by the stability test if BUILD s plans are to
succeed. Since, to mszke BUILD s problem domain interesting
and realistic, friction was included in the world model, the
stability test has to deal with cases where frictional
forces occur.

A construction planning system cannot make intelligent
choices if its stability testing module provides only yes or
no ansvers. True, it is possible to try rlacing the various
blocks in position in some random order, using the stability
predicate to determine which of the moves are legal. In
many very simple cases this process will produce a legal
plan, though not in a very efficient manner. When, however,
the situation requires that more complex methods be used,

BUILD must be able to gain sore understanding of the nature

: FAGE 67

of the difficulty it has encountered, in order to know vhat
solutions tc try. fThis need arises even in such a simple
case as a biock buried by other blocks. BUILD tries to move
thic block, but the statility predicate comrlains.
Cbviously scme cther blcck cr blocks must be moved away
firset, but vhich ones? Since the stability predicate is
unatle to repori which btlocks are falling, the rlanning
rrograms must engage in a sort cf "Iwenty Questions"
diaiogue with the stability test in order to determine the
culprits. 1his is clearly ridiculous; it is even mcre
ridiculous to attemrt tc find mcvable sub-assemtlies or to

position terporary supports under such conditions.
4.2 The Blun—Griffith-Neumann Test

In 197C, a short time tefore the start of my own
research, Blum, Griffith, and Neumann <ELUM, GR1FFITH,
NEUMARN 197C> gg§cribed an zlgorithm that essentially sclved
the protlem of stability tésting in cases with friction.
Unfortunately, this test was of exactly the yes/no type that
I have teen concemning end, beczuse of this, it proved to be
useless for my rurpcses. Their method rakes use of linear
programming methods very similar to those used in the tcuch

test descrited in secticn 3.3, tut on a much larger scale.

PAGE 68

The unknowns in this case are the X, Y, and Z components of
the forces at each contact point in the scene. For each
block, six equations are derived: The sum of the forces on
the block, including gravity, must equal zero in the X, Y,
and Z directions, and the X, Y, and Z moments must also
equal zero. More constraints, in the form of inequalities,
are derived from conditions at each point of contact: The
ncrmal force component must be zero or positive, since a
negative force would mean that something (glue, perhars, or
chewing gum) is holding the blocks together. Also, the
frictional force at a point:can be no larger than some
ccnstant, MU, times the normal force at that point. All of
these equations and inequalities are represented by their
coefficients in a large matrix. Row substitutions are then
performed to eliminate the equalities. Additional row
substitutions are performed until either all of the
inequalities are satisfied, indicating a stable state, or
some inequality—is found which cannot be satisfied,
indicating an unstable state.

For a while I was unable to devise a better algorithm,
sc I implemented this test in the hope that the necessary
additional information could be extracted from the remains
of the coefficient matrix. This proved to be a forlorn

hope. VWhen the state was unstable, the inequality that

: PAGE 69

ultimetely failed often bore no decipherable relation to any
of the falling blocks. When the state was stable, the set
of returned forces was full of spurious entries. ZForces
arpeared at random contact points for no reascn at all, only
to be balanced by frictional forces that would otherwise not
have existed. In addition to these problems, the test used
a huge amount of core and was very slow. If B is the number
of blocks in a state and P is the number of contact points,
the coefficient array has 6B+2P rows and 3P columns, and at
least 6B complete passes over the array are required. For a
scene with ten bricks, this means that at least 60 passes
will be made over an array with about 170,000 entries. This
is true whether the bricks are piled in a complex structure
or are sitting in a row on the table. Because of all these
problemns, I was forced to abandon this test in favor of a

more heuristic approache.

4.3 The Heuristic Test

In caliing my current stability test heuristic, I do
not mean to impiy that it is approximate or that it is prone
to incorrect conclusions. I use the term merely to indicate
that the flow of control in this test is flexible and data-

dependent, at least compared to the methodical matrix

PAGE 70

crunching of the older test. Vhile the system of inter-
block forces in any given structure arises from a '
simultaneous attempt of all the blocks to balance the
gravitational forces acting upon them, it does not
necessarily follow that a stability testing program must be
based upon sirultaneous equations. A consideration.of any
assortment of real block structures will show that in most
cases the inter-block force relations fall into clear chains=;
of cause and effect: Block A, acted upon by gravity, exertsii
certain forces at some set of points on block B below it; |
block B, acted upon both by gravity and the force from A,
exerts greater downward forces on C; and so on. These

simple causal chains of forces can be determined on a block-
by-block basis, without resorting to simultaneous solution
methods. Of course there are cases of equilibrium or mutual
support which do require a-simultaneous solution, but these
can be handled by deriving and solving a very small local

set of sirultaneous equations or, as is actually done in the
current test, iteratiﬁg to a solution.

It might, at first glance, seem that this ap@roach
merely sutstitutes a slow and roundabout method for a fast
direct one. In fact, however, the new test has a rather
dramatic speed advantzge in all but the mcst perverse

scenes. 7The reason for this is that the new test only has

- PAGE T1

to deal with the forces and imbzlances that actually aprear
in the scene at handc—not with 21l rotential motions and *
interactions, the number of which can be immense. If a
block is acted upon only by the downward force of gravity,
for instance, the new syster will never have to worry about
the constraints on sideways motion or on rotation arouna a
vertical axis. The problem just doesn’t arise. Actual
perfornance figures will be discussed later.

Preserving the causality structure of the rroblem
yieids other benefiis as well, and these are far more
impcrtant than nere speed. With the new test it is possible
to determine not oniy that & force exists between two
blocks, but alsc which block is pushing and which is being
pushed, or, in cther words, which block is supporting the
other. This information is obviously useful in deciding
which block to rlace or remove first. Similarly, if a tlock
is found to have an unccrrectable imbalance of forces, this
is a clear indicgfign that the tlock will fzll in whatever
way these forces dictate.® The tlocks pushing on this block
will then have imbalances of their own, and so cn. Any
insiability in & structure is thus clearly decirherable as
. to type, locaticn, and cause, rather than arrearing as zn
inability tc satisfy some frictional constraint on & blcck

far from the scene cf the disasier. The availatility of

PAGE 72

such information makes it much easier to find ways to
correct the instability.

Vhenever it is determined that one object, Bl, is
exerting a force on another object, B2, an item of the form
(E1 SUP-BY B2 (P F) (P F)) is added to the data base.
SUP-BY is short for supported-by. The (P F) pairs indicate
the points of contact where the pressure is being exerted
and the force vector at each of these points. If B1 also
presses on another block, say B3, then (B1 SUP-BY B3 . . .)
is added as well. The absence of any (B1 SUP-BY.. . .)
items in a context indicates that B1 has not}yet been
considered by the stability test, and that its supports are,
at present, unknown. In the rare case that a block doesn‘t
need any supports, either because it is weightless or
because its weight is exactly balanced by incoming forces, a
dumnmy itew of the form (B1 SUP-BY NIL) is added.

The stability test begins by creating a list of 211 the
blocks in the.seene whose supports are unknown. One by one,
in some random order, these blocks are removed from the
unknown list and passed to a function called CHECKSUP. This
function gathers together all the forces known at the time
to be acting on the block, including the block’s own weight
and the forces applied by other blocks as indicated by the

SUP-BY items. From these forces it computes the net force

PAGE T3

acting on the block and the net rotational moment around its
center of gravity. Next, a list is created of all the ’
points of contact between the block in question and
neightoring objects. CHECKSUP scans down this list, looking
for a point where it can apply an outgoing force that
counteracts at least part of the net force or moment or

both. Each applied force must, of course, be legal by local

criteria: The normal component of the force must be positive =

R

(pushing), and the frictional component must be less than
the normal force times the coefficient of friction. Vhen
such 2 point is found, the applied force is recorded, a new
net fcrce and moment are computed around this point, and the
whole process is repeated. Whenever CHECKSUP has a choice
of points that can accept a force, it prefers to put the
force all in one place instead of dividing it between
points, and it prefers to create normal forces rather than
frictional ones. Whenever possible, it will correct an
irbalance by removing an old force rather than by creating a
new one. '

CHECKSUP iterates until either the net force and moment
are completely eliminated, indicating a stable block, or
until they can be reduced no farther. In the latter case
the block is deemed unstable and is place on 2 list of

lcsing blocks. With it is stored the remaining net force

PAGE 74

and moment, and the pivot point around which the block is
expected to topple (unless the imbalance is in force oniy,
indicating a translational motion). This will sometimes
result in a new force being applied to an object that has
already been tested by CHECKSUP. Such a block must be
returned to the uriknown list to be tested again. This is
true even if the tlock is on the loser list, since the new
force might be exactly what is needed to balance the block -
and make it stable. Forces applied to the table or to .
blocks declared to be immovable (glued down) do not result
in new unknowns, nor does a block return to the unknown list
if' the new force added is smaller than the system’s roundoff
tolerance level. Infinite looping only occurs in certain
rare and contrived cases in which roundoff errors,
compounded by long lever arms, create spurious forces which
keep pushing the program away from the point of convergence.
When no tlocks remain in unknown status, the loser list
is inspected.—If it is empty, the stability test succeeds,
leaving all of the SUF-BY iters in the data base. If there
are losing blocks, the blocks that are pushing on the losers
are checked to see if they could be supported by something
else instead. In figure 4-1, for example, it could have
been decided that B is supported by A and D, and that D,

urnable to support this force, was about to torple in a

PAGE 75

figure 4-|

counter-clockwise direction around the upper-left correr of
E. Before returning, the .system checks B to see if another
block could absorb some or all of the force being exerted on
D. The alternative support provided by C is found, the
force is applied there instead, and everything succeeds. If
blocks remain on-the loser list after this process, the
stability test fails and returns the list. All of the
losing blocks are thus reported, along with specific
inforration as to which way each one will move or pivot.

A detailed example will perhaps bring the entire)

testing process into better focus. Consider the structure

shown in figure 4-2. We will assume that the coefficient of

PAGE 76

figure 4-2

friction is such that A would normally slide down the face
of B, but that the added force from C is enough to hold it.
The structure is therefore stable; the steps that the
stability test follows in determining this are given below.
Remember that the order in which unknown blocks are
consicered is\;gndom, so this represents only one possible

sequence.

UNKNOWNS = (A B C)

1. CHECKSUP first considers block A. Since there are
no known external forces acting on A, only the force of
its own weight is considered. A is found to be
rressing down and to the left on B. Some of the down—
right sliding force of A is passed on to B as

PAGE 77

fricticnal force, tut not enough to prevent A from
sliding. Elock C doesn”t help at all, since the motion
of A is alcng its surface and there is no known normal’
force tetween the two. (A SUP-BY E . . .) is added,
for the force that was found, and £ is placed on the
loser list, with an indicaiion that it will slide down
and right. ' .

UNKNOWiLS = (B C)

2. B 1s ccnsidered next, taking into account toth its
own weight and the applied force from A. 1t is found
to be rressing down and very slightly to the left
against the tatle, and to te stable. (B SUP-BY TAFLE .
. .) is added.

UNKNOWES = (C)

3. C 1s tested next. CHECKSUF determines that it is
pressing down and to the left against A and down and
slightly tc the right against the table. The rightward
fricticnal force against the table is small enough
compared tc the downward normal force to be passed on
to the table with no problems, so the tlock is statble.
(C SUP-BY 1ABLE) and %C SUF-BY A) are added to the data
base, and Lecause of this rnewly aprlied force A is
{emoved frcm the loser list and returned tc the unknown
ist.

UNKNOWL.S = (A)

4. A is re-tested, this time under the aprlied force
from C, as well as its own weight. Agzin it is
pressirg down and left against B, btut this time the
force is greater. This mezns that B can ncw accept all
of the down-right frictionz2l force, so A is now stable.
The old (A SUP-BY E . . .) iter is deleted and a new
one, indicating the new greater force, is addea in its
place. Since the new and cld applied forces are
significantly different, B must be placed cn the
unknowr. 1lict for re-testing.

5. B is ncw re-—checkec anc¢ is again found to te

steble, pressing dcwn and slightly left agzinst the
tatle, but with a cifferent force.than before. A rew

PAGE 78

(B SUP-BY TARLE . . .) item is added in place of the
old one. :

UNKNCWNS = NIL

€. There are no more unknown blocks, and the loser
list is empty. The stability test thus'returns with an
indication that the structure is stable. The data base
is left with the following items in it:

SUR-BY A . . .)
SUP-BY TABIE)
SUR-BY B . . .)
SUP-BY TABLE)

Wrea0

This example is typical of most normal structures in
that the solution was arrived at more or less directly,
without the necessity for looping and slow convergence to
scme equilibrium of inter-block forces. There is,. of
course, some looping and shifting around of forces within
each call to CHECKSUP, but this is of a very local nature
and is therefore not too costly. The number of CHECKSUP
calls required for a given structure depends cn the system’s
luck (or skill) in arranging blocks on the unknown list.
If, in the above examrle, the initial unknown list had been
(C A B) instead of (A B C),. only three calls to CHECKSUP
would have been mz=de instead of five. The optimal strategy
is for the test tc work its way down the tree of support
relations; that is, whenever A is supported by B, A should
be considered before B. Unfortunately, these support

relations are what the stzbility test is trying to find, so

PAGE 79

they are not svailable for ordering the initial list.
Remarkably good efficiency is, however, obtainable by tﬁe
simple expedient of sorting the unknown blocks by the height
of their centers from the table, and considering the higher
blocks first.

Despite all efforts to minimize the need for iterative
ccnvergence on a solution, there are some cases where such
iteration is inevitable, usually because the inter—-block
forces are in some sort of equilitrium or act upon each

other in 2 loop. In figure 4-3, for instance, block A might

figure 4-3

PAGE 8C

first try tc distritute its weight equally at bcth ends.
Block B, receiving & force cn its left end, pivots and
exerts an ecual upward force at its right end. A is
rechecked and, in view cf the new urward force at its
center, reduces the force at both ends. Blcck E is checked
again and, with léss force applied to its left end, it
reduces the upward force it is exerting at the center of A.
A, in response, applies a little more force at toth ends,
and so on. This is not an infirite loor; gradually the
inter-block forces sre converging on the steady-state
solution, which in this case is 1/3 of the force aprlied at
each end anc the center. As this value is neared, cne cf
the applied forces will differ from its previous value Ly
lesc than scme small tolerance and the looping will be
halted. If this tolerance is set at .0CO1 of block A’s
weight, about 12 iterations will be required, a slow but not
impossitle rrocess. Figure 4-4 shows a situation where the
support relations fcrm a locp: A supports E, B suprorts C,
and C supports 4. lﬁ this case the testing rrogram would
have to cyclie arounc the loop several times, but, as above,
the sysiem converges to an answer eventually. It would be
roscible for the syster to recognize when it 1is loé;ing,
derive ithe equations governing the loop (usuvally few in

numier and very sinrle) and solve directly for the final

FAGE 81

figure 4-4
(seen from above)

forces, but since the looping cases are not common and speed
is not a main goal of my research, I have not worked on
this. —_

The speed of this test, while far from optimal in the
abtove cases, is still quite respectable overall. Figure 4-5
shows a number of scenes, with the CPU time required to test
ezch. The figures given are for the compiled LISP version of
the test, as run on the PDR-10, and they do not include the

time required to find the touch relations in the scene. I

1ACE &2

2.7 sec

Q.6 sec

7.9 sec

figure 4-5

- TAGE 83

do not, unfortunately, have comparable times for the Blum-
Griffith-Neumenn test, but I can report that I spent over
two hours one afternoon.waiting for the test to finish a
four-block seesaw, a period of time which must:certainly
have corresponded to 10 or 15 minutes of CPU time. When I
stopped the test, it was about half completed. As far as I
have teen able to determine, my test handles correctly all
of the structures that the other test does, except for some
obscure cases that are bothered by roundoff error, but since
my test is much more complicated than the older one it is
much harder to feel confident that all possiblé cases have
been cdealt with. It is clear that it works well for the
-relatively tare scenes that are encountered in typical
block-building, and for several hard test cases as well. It
should be noted in this regard that there exists a class of
structures whose stability is indeterrinate from
ccnsiderations of macroscopic georetry alone. Figure 4-6
shows one such case. The inward force of the grippers will
be aprlied either to A or to B or to toth. If only one
block receives this force, the other will fall, but if both
receive half of it the scene is stable. In the real world,
the issue is decided bty microscopic imperfections on the
block faces, and ty deformation of the materials at the

surface of contact. The old test is always optimistic for

PAGE 84

FORCE FORCE

— [B | <

figure 4-6

stability; my test is likely to be arbitrary, usually in the
direction of ressimismk.

It should be noted that the tree of support relations
represented by the SUP-BY iters that the test returns nay
not be unique. To be perfectly general, a block’s supports
can only be expressed as an OR condition of sets of.other
blocks. For example, in figure 4-7, A’s supports are (C B
E) or (CDE) or (CDF). If any of these sets are all
present, A will be stable. To find these sets a stability
test would have to try essentially all of the subsets of a
scene. Since this is not done, it is not really the case

that a block cannot be placed until its known suprorts are

FAGE 85

c
D | E F

figure 4 -7

in place, since other supports might serve as well.
Nevertheless, this rule is a useful plamning heuristic which
can be abandoned if trouble arises. Similarly, it is not
always true that a block can be placed if its known supports
are in place. A block might also depend upon the forces
from the blocks-it supports if it is to be stable. Figure
4-8 shows such a case: The data base will show only (& sup-
byB...), (BSUP-BYC), and (C SUP-BY TAELE . . .),
but B depends on the presence of A as well. This is really
a case of mutual support, with A and B depending on each
other. Usually the data tase will show support only in one

direction in such cases. If the system ever finds an

PAGE 86

"
B
-

figure 4 -8

instability resulting from the placement of a block whose
known supports are in place, it will know that mutual
support is involved and that sub-assembly or some other
trick will be required to place the mutually-supporting
blocks simultaneously. It would be possible for the
stability test_to find all such mutual surport cases in
‘advance, but it is easier to ignore them until they are
encountered by the planning programs.

Lote that moving a single block does not necessitate
starting the whole test from scratch. The block that was
mcved becomes unknown, along with all of the blocks that it

was inmediately supporting. Any blocks that were involved

PAGE 87

in the suppoft of the moved block, all down the support
tree, become unknown as well. A number of blocks will thus
need re—checking, but often large areas of the scene will
not need any checking as a result of the move. Like any
other items of secondary data (see section 2.2), the support
items can be thrown out when memory gets crowded. Any
request for a block”’s supports will restart the stability

test if the items are not found. If-removed methods are

-,
te

:i -

present to insure that if any support items are thrown out,
a consistent set is thrown out so that no blocks appear to
have known supports when some of the relevant data—base

entries are actually missing.

TAGE 88

Chapter 5: The BUILD Control Structure

5.1 PLANNER and CCNNIVER

In the past few years it has become increasingly
obvious that the'simple recursive control structure of LISP
is not really adequate~for probler—solving programs such as
BUILD. This is not to say that LISP is not computationally -
general — indeed, both MICRO-PLANNER and CONNIVER are
written in LISP — but simply that additional mechanisms are
needed for such tasks as recovery from bad choices, creating
and invoking demon processes, maintaining multiple world
models and multiple processes for exploring then,
establishment of a hierarchy of goals and subgoals, and so
on.

For years, every programmer working in the area of
problem solving‘had to create his own control mechanisms to
hendle any of these problems which he encountered. Pseudo-
associative pattern metching data bases were frequently re-—
invented as well. Finally, an attempt was made to create,
once and for s11, a package of standardized control and data
structures that would contain the elements which most
problem-solving progrems have in common, vhile retaining

enough generality to handle a wide range of probler domains

PAGE 89

and levels of sophistication. This package, the PLANNER
language, was intended not cnly to make this tyre of

rrosramming easier, but to eliminate some of the Babel of °
muliiple conventions as well. full-scale PLANNER is still
in the rrocess of being implemerited (and, from time to time,
rcdefined) tut a subset called LICRC—PLANNER has been
avazlable for scme time and has, indeed, stimulated a great
deai of protlem-solving activity.

As increasingly ambtiticus [LICRC-PLANNEER prograns were
attecpted, however, protlems were encountered with many of
MICRC-FLANNLR s features. Some of these prcblers were due
to mere implementation details, but others cast doutt on
some of the central features of the PLAKNER language itself,
especially the autonatic backtrack control structure. A
consensus was reached arnong many PLANNER users that the
language was toc specialized; that in far too meny
éituations it provided &lmost, tut not guite, what the
programmer rieeded, and that this, arplied avtomatically, was
often wcrse than.poething at all. In an attempt to rrovide
the user with PLANNiR-like capatilities, but with mcre
flexibility and control, Sussman and McLermott created
another langsuage, CONNIVER. The PLANKEK control structure
can easily te ikplerented ir. COLNIVER, but alternative

control setups are 10ssible as well.

PAGE 90

As I mentioned earlier, BUILD was planned with MICRO-
FPLALNER implementation in mind, but for several reasons, it
was ultimately implemented in CCKNIVER. The details of the*
two languages are well documented elsewhere (see <HEWITT
1972>, <SUSEMAN, WIKOGRAD, CHARLIAK 1971>, and <McDERMOIT,
CUSEMAK 1972>), as is the process that led to CCNNIVER’s
creation <SUSSMAN, l.cDERMOTI 1972>. It would, therefore,
serve little purrose to repeat this information here.
Since, however, one of the major gozls of my investigation
has been to test the carabilities of these two languages in
a complex problem dcmair, I will mention some of the
specific prcblems I had with MICRO-FLANLKER and some of the
features of CONLIVER which have alleviated these problerns.

) The first cifficulty was encountered in constructing
the modeling system. Since MICRO-PLANNER has nc mechanism
for maintaining distinct multiple world models, it was
necessary tc tag sets of assertions with a state name. (B1
AT SOMEWHERE) thus tecame (S B1 AT SOMEWHERE) where S is the
name of the state_in which this assertion is valid. States
cowd nct share comron items bf data, so each state
contained a large number of asserticns. Under this system,
it was clearly too costly tc recember ezch state in the
history of the rlan; only one copy was kept, and this was
rodifiec at each step. This led to a real rrobler when, as

often happened, BUILD needec to examine some astect of =

PAGE 91

previous state. The old state could, of course, be reached
by iailing, but only at the cost of losing 211 information®
derived more recently. Instead, each block movement was
reccrded on a list structure (distinct from the. MICRO-
FLALNER backup tree) and, when necessary, a copy of a
Frevious state could -be created fror this informaticn. This
new state initially contained only block positions; other
information was filied in as needed by the varicus modeling
system routines. The data ranagement scheme of Section 2.2
was almost indispensable during this period. licne cf these
problems arise in CCNKIVER or in full-scale FLALNER, both of
which have rultiple data-base contexts and facilities fer
'§haring comron data between contexts. In these languages it
.is entirely feasible to remember each siate in the solution
of cimple problems and several important states in the
solution of large problems.

Another major difficulty lies in MICRO-FLALNERs
infilexitility with respect .to search strategies. Consider
the case in which BUILD has made a choice between two
alternatives anc is well into the exploration of the chcsen
one when a large but not impossible difficulty is |
enccuntered. At this pcint, BUILD woulcd like tc suspenc all

work on the first path and try the second one, hopirng tc

PAGE 92

find an easier solution. If the second path is just as bad
or worse than the first, work on the first path would be
resuned from the point at which it was stopped. In MICRO-
FIANNER, either goals must be pursued to the bitter end or
they rust be zbandoned entirely, along with all the work
invested in them. Note that what is needed is not
simultaneous'.computation, but just the means for saving the
state of a process and returning to it later. If the
running process can examine the data environments of the
suspended processes and use the information found therein,
so much the better. This is exactly the sort of multi-—
process system provided by CONNIVER. Full-scale PLANNER
also rrovides a multi-process capability, though in what
arpears to be a somewhat clumsier form.

-~ With the choice of a goal or method representing so
serious a comritment in MICRO-PLANNER, one would like to be
very careful in maeking such choices, employing heuristics
whenever possible to estimate in advance the chances of a
path’s succeeding and the amount of effort that should be
srent before the next choice is tried. Even this is not
usually possitle, however, since most MICRO-PLANNER choices
are made implicitly as a result of multiple matches in the
data-tase. If, for instance, the system finds several

methods under one goal pattern or several assertions

TAGE 93

matching a pattern, it will keep the list of these to itself
and dispense the members in the arbitrary order in which
'they were found. Each new element can only be obtained by
rejecting the previous one with a failure. Thus, the
various possitilities available at the choice point cannot
be inspected, pre-sorted, or even counted. It is true that
there are ways to defeat this mechanism, but they are

painful tc use and lead the-programmer to wonder whether a -
language is useful if it must be continually fought with for E
control of the process. In CONNIVER, instead of trying to
handle choices itself, the system makes the list of data-

base ratches available to the programmer to handle however

he wishes, creating at least the potential for well-
considered choices. The list of matches is also program—
accessable in full-scale PLANNER.

NICRC-PLANNEE presented 2 number of less important but
equally irritating problems as well. Failure messages were
consistently wnable to carry all the useful information back
from a failure. Far éﬁperior is CONNIVER’s ability tc save
the complete environment of the disaster for rost mortems.
Since MICRO-PLANNER is not extensive in its range of
functions, frequent interaction is required with the LISP

syster in which CONNIVER is embedded. Due to separate

variatle tindings and other cemplications, the two languages

PAGE 94

interact awkwardly at best. Occasionally some hapless
function would return a value of NIL and a spurious faiiure
would propagate through the system, destroying all data in
its path. Properly containing and controlling failures was
a constant distraction. In CONNIVER, the interaction with
LISP is much cleaner, though still far from optimal, and
automatic failure backup does not exist at all. Such things
as data-base interrogation functions can be assembled to
order from CONNIVER primitives, for instance to implerent
the mechanisms of Section 2.2. The packaging of PLANNER
discourages the use of any but the pre—defined mechanisms.
The reader will have noticed that full-scale PLANNER,
as it is currently specified, is not prone to many of the
problems that I have outlined for MICRO-PLANNER. In rany
cases this is because, as problems were pointed out, the
specifications for PLANNER were patched to correct them,
with each patch and each new feature adding its small
increment of -size and complexity to an already ponderous
system. This is my main objection to PLANNER: While
CONNIVER supplies the programmer with a swall, elegant set
of well-chosen primitives to combine according to his needs,
PIANNER tries to anticipate all of the data and contrcl
structure needs of its users and provide for them directly.

As a result of this difference in philosorhy, PLANNER is not

FAGE 95

yet available while CONNIVER, its intellectual descendant,
has been alive and well for months. In all fairness,‘
hcwever, the theoretical contributions of PLANNER must be
acknowledged. Without PLANNER there would' be no CONNIVER,
and, even if there were, it would be hard to know how to use
it without PLANNER‘s precedent.

5.2 Control Mechanisms Used in BUILD -

.

In the previous section I outlined several objections
to the ready-made control structure of MICRO-FPLANNER, at
least for the specific needs of the BUILD program, and
argued that a CONNIVER control structure, specifically
constructed for the problem at hand, could aveoid most of
these problems and lead to much better overall system
performance. In this section I will describe the CONNIVER-
based control structure that I have devised for BUILD.
Despite the-emphasis I have Placed on made-to—order control
systems, I do féel that the BUILD control primitives could,
with some modification, be useful in many other types of
problem solving. At the very least they will, I think,
demonstrate a number cf CONNIVER ‘s more interesting
features.

In writing this section, I must assure that the reader

PAGE 96

has some acquaintance with the CONNIVER language. Since,
however, this secticn is essential to a real understanding
of BUILD s cperation, I will try to explain a few of the
mwore important roints of COKNIVER, in the hope that readers
not familiar with this language will be able to comrrehend
at least the brcad cutlines- of what is to follow. The
greatest difference between CONLIVER and LISF is that the
control and data environment in which a CONLIVER functicn is
executed car be saved, even after the function has returned
or control has left it by means of a GO statement. This is
acccnplishec by creating and saving a tag (or staterent
label) while the function is rurning. As long as scme
external progranr holds on t¢ this tag, .the environment from
which the tag came will continue to exist. At any time, the
external prcgran can resume execution of the tagged function
by COing to the tag, or it can €xamine, use, or modify the
tagged function’s data environment by evaluating other
functions relative to the tag. This all adds ur to a very
flexible sort of nulti-rrocess system with excellent
comrunicaticn between the running process and various
suspended ores.

In PLALNER, every rajor furction call is accomrlished
by neans of & call to GCAL. The argunent to this function
is & statement cf the desired gcal such as (MOVE B1

SOMLWHEKE). The data base is searched for one cr mcre

(]

PAGE 97

methods which match this pattern, and which thus claim to be
akle to accomplish this goal. Since, in BUILD, I always
want to control exactly which method will be'used at any
given time, this data base search gains me nothing and is
nct used. The goal function in BUILD, which, to avoid
confusion, I will call BGOAL, performs some housekeeping
chores common to all major function calls, then simply
evaluates its argument. (BGOAL (MOVE B1 SOMEVHERE)), for
instance, simply calls a function named MOVE with B1 and
SCMEWHERE as arguments. Selection between various methods
is performed either in choosing which goal to call or by
code inside the goal functions, not by the random order in
which methods are found in the data base.

Most of the housekeering chores performed by BGOAL
consist of binding pointers back into the previous higher-
level goal. A variable called REASON always contains a list
of the current goal, the goal that called it, and so on up
to the top level.call to BUILD. By looking at the current
REASCE, the system can always find out what it is working on
and why, in the-sense that it knows the higher-level goal of
which each goal is a part. Winograd has demonstrated the

usefulness of such introspective information in answering

external questions, but I include it in BUILD mainly for its

PAGE 98

potential usefulness to the program itself. At present‘this
inforration is only used in trivial ways, but to a more;
advanced system erploying learning and self-criticism some
explicit knowledge of its own motives would be
indispensable. If the purpose of a goal is to prepare for
some other goal, rather than to accomplish sorething
directly, BUILD calls PGOAL instead of BGOAL. These two
functions are identical except that PGOAL‘s REASON is tagged)
toc indicate that it is a preparatory step for some other ;%
goal. N
EGOAL also saves the old values of CONTEXT and PLAN, so
that these critical variables can be restored if necessary.
CCNTEXT indicates which of the many data-base contexts
represents the state of the.world at the current point in
the plan. PLAN is an ordered list of the steps required to
accomplish the top-level goal, and is put together by BUILD
as the problem solving progresses. Goals like MOVE, which
dc sorething directly rather than by calling other gozals,
are calleé priﬁ;five goals, énd it is these goals which are
represented by steps of the-plan. Each step includes a
staterent of the primitive goal, its REASCN list, and a pair
of contexts indicating the states of the world before and

after the step is executed. This PLAN is the output which
BUILD procuces.

PAGE <9

A final function of BGOAL is the invocation of any IF-
TRIED methods that match the argument pattern. These are
demon procedures, placed in the data tase by Ehe user or by
other Programs, which are activated and run if a goal of
Scme rarticular form is ever called for. This mechanism is
useful for implemenfing many kinds of temporary program
patches. Say, for instanée, that we want BUILD to assemble
Some structure in its usual way, but to avoid touching any
objects that are_red-hot. This could be accorplished by
Teproframring, and this might be the proper course if this
restriction is to be rermanent, but g temporary restriction
could easily be added using an IF-TRIED method for the goal
-(LOVE B ?SOMEWHERE) . Whenever MOVE is called, this method
wculd be activated and would check whether B is red-hot. If
S0, the goal would be aborted. At Present, BUILD rakes no
real use of IF-TRIED methods itself, but this mechanism does
look like a useful feature for more advanced Programs which
could use this -sert of temporary self-modification to
ccmmunicate between highef and lower goals, or to change
their own behavior under special circumstances.

Functions analogous to the PLANNER failure backur are
performed by what I call a choice angd &gripe mechanism.
Every function which rakes a major choice (which block to

place next, whether to us€ sub-assembly or terporary

ZAGE 100

support, etc.) is called a choice function and must abide by
certain conventions: Variables named MESSAGE and BACKTKG are
bound but not used in every choice functicn. Another
variatle, *CHCICES, hes a new tag added to whatever list it
already represents. This tag points to a part of the choice
function called the gripe handler, whose duties will be
explained shortly. Once these conventions are taken care
of, the choice function is free to examine its possible -
choices, pick one that looks good, call any necessary
subgoals, and, if successful, return.

Suppcse, however, that down in one of these subgcals
scmething goes wrong. In this case a function named CRIPE
is called, with an argument indicating the nature of the
disaster. If, for example, MOVE were to find B2 in the spot
where it wants to place B1, it would pass (HIT B1 B2) to
GRIPE. It is GRIPE’s duty to report the disaster to the
gripe handler of the most recent choice function, which is
pointed to by the first tag on the current *CHOICES list.
Using this tag for rélative evaluatior, the MESSAGE variartle
of the choice function is set to the disaster message which
was given to GRIPE, and BACKTAG is set to a tag in the body
of the GRIPE function. Control is then transfered to the
gripe handler by GOing to the *CHOICES tag.

The gripe handler is in an ideal position to decide

PAGE 101

what to do abcut the problem. The MESSAGE variable gives a
terse description of the problem, somewhat equivalent to the
PIANNER failure message, but the gripe handler is not
limited tc such sketchy information as this.* Since it is a
part of the choice function, it has direct access to any
inforration concerning the choice which it might require.
Such things as whether there are other good choices
available, why the losing choice seemed best originally, and
how good the next best choice appears to be could all be
used in its decision. Furthermore, by means of the BACKTAG,
the handler has full access to the enviornment of the
disaster, and can investigate this for any information it
needs. It can even modify this environment, or a copy of
it, in order to determine whether the problem can: be cleared
ur by some sm=ll change in conditions. If the gripe handler
should decide that the disaster in question is not the
result of a decision made on its levél, but of some higher
decision,-it simply pesses control to the next higher gripe
hendler indicated on the *CHOICES list.

Vhat remedial actions are available to the gripe
handler? First of all, there is the PLANNER solution: Clean
ur the mess and try a different choice. In BUILD this
usually involves restoring the old values of CONTEXT and
PLAN, drorping the BACKTAG so that the disaster ervircnment

PAGE 102

can be garbage collected, re-arranging some list of pcssitle
choices, and jumping tack into the choosing part of the
choice function. A new choice will then be made, subgoals
will be called, and, if all goes well, the choice function
will return, just as though this were all happening for the
first time. If all the choices on one level are exhausted,
the handler can pass control to the next higher handler on
the *CHOICES list to try other choices at that level. If
this process reaches the end of the *CHOICES list, the gripe
message is printed out and CONNIVER goes into a listening
loop. This can be viewed either as an admission of defeat
on the part of BUILD or as an invitation for the human
orerator to act as a top-level gripe handler ty helping with
the solution.

A gripe handler does not always have to abandon the old
choice and make a new one. Sometimes, for instance, =
choice will be perfectly sound, but trouble will result
because of- insufficient preparation for a subsequent goal.
Consider once again the case .where MOVE finds another block
where it is trying to put something, and gripes to the
choice function which ordered the move. This function’s
gripe handler can simply call a PGOAL to remove the
offending block, and can then try the MOVE again. If the

disaster is far removed from the gripe handler in question,

PAGE 103

it is possible to reach down into the disaster environment
via the BACKTAG, splice in the PGOAL just prior to the call
to MOVE, then to restart the MOVE at its beginning, leaving
everything between the gripe handler and the ¥OVE
undisturbed. If the system of pointers running through the
goal tree is set up properly, this can be somewhat less
painful to do than to explain. The szme sort of rrocess can
be used when the problem requires not preparation, but a
slight re—definition cf the goal. Often, for instance, the
exact position of a temporary support will be arbitrarily
chosen, and will later require a slight ad justment to give
better support or to avoid an obstacle.

A gripe does not necessarily indicate a fatal disaster;
instead, it might indicate that the low level goal is
uncertain whether it can or should proceed, and is referring
the matter to a process with a more global viewpoint. In
such cases the gripe handler can decide to continue with the
‘low level -process by GOing to .the BACKTAG. A mechanism
(currently unused) exists for passing a message back to the
lcwer process, containing clarification, further orders, or
perhaps some words of encouragement. If the gripe indicates
that the lower process has encountered some unexpected but
not insurrountable difficulty, the gripe handler could save

the BACKTAG away and try some more attractive possibilities.

- PAGE. 104

If 211 of these fail, the o}iginal goal can be resumed from
exactly the point where it left off. :
Notice the difference between this control structure
and that of PLANNER. Here, each step in the handling of a
failure is under the control of an arbitrarily complex user-
supplied program-with full access to both the environment of
the disaster and of the choice which may have caused it.
This program can do any of several things, including .
mcdification or resumption of the failing goal. Most of the??
intelligence of BUILD is concentrated at the points where i
me jor decisions are made, namely in the gripe handlers and
the choice selectors. It is at exactly these points that
PIANNER tries to use simple automatic mechanisms. In
PLANNER, because of the cost and finality of a failure, it
is a good idea to carefully anticipate and correct any
difficulties before attempting a goal. Before calling a
goal to move a block, for instance,'the program should make
sure that it is not buried, that the destination is clear,
and so on. In BUILD, such anticipation can be used when it
results in greater efficiency, but it is equally possible to
attempt gcals without preparation and to deal with any
problems as they are encountered, as interruptions to the

main flow of processing. Since a robot wculd have to deal

with a2 huge number of low protability disasters (lightning,

B

Y
'y

2o 1

PAGE 106

Chapter 6: The Planning System
6.1 The Primitive Goals: MOVE and MOVEG

Now that the operation.of BUILD’s control structure is
hcpefully clear in the reader’s mind, it is possible to
describe the detailed operation of the various goal modules
that make up BUILD s planning system. The first group of
mcdules tc be described are the system primitives, MOVE and
MCOVEG. These modules do not call any subgoals, but rather
check the legality of the step called for and, if possible,
add the step to the forming plan. The data base is updated
tc reflect the action taken. Of course, the special status
of these two modules is strictly an artifice of my decision
to carry the plamning to this level and no farther. 1In an
expranded system, these modules would call subgoals to plan a
hand approach, grasp the block or blocks in question, find a
path to the destination, and so on, much as is done in
Winograd’s block system: Ultimately, the system primitives
would be specific comrands to the mechanical muscles
controlling the arm.

The argurents to MOVE are the nare of a tlock to be
moved, the AT array of its current location, and the AT

(array 6f its destination. MOVE first checks the data base

PAGE 107

to determine if the block in question is immovable. or i{ it
is already in a place matching some goal state block. 1In
either case MOVE gripes back to its callers. The IN-FLACE
gripe is not fatal; if the higher level modules dismiss the
complaint, MOVE will continue.

Lext, MOVE creates a new working context so that it can
make changes in the data base, while preserving the old
centext to fall back upon in case of failure. The moving -
block is eliminated from the new context and the resulting
scene is tested for stability. Any instability at this
pcint causes an UNSTAB-REF gripe to occur with the exact
nature of the instability included in the gripe message. As
will be seen later, it is essential for the higher-level
modules to know whether an-instability problem has occurred
with the removal of the moving block or with its rlacement
in the new position; the two cases are handled quite
differently. |

If the moving block has been removed successfully, MOVE
next tries addzhg it to the scene in the new position. The
touch test is Tun to see whether the block’s new position
causes it to collide vwith another object, and, if so, a HIT
gripe is generated with a message indicating the objects
involved. If there is no collision the stability test is

run again, generating an UNSTAB-ADD gripe if trouble is

PAGLE 10t

detected. Again, the gripe message contains a statement of
the exact noture of the instability, as determined ty the
stalility test. If HOVE survives all of these tests, it
adds to the current plan a new step consisting cf the old
coniext, the new context, and the current RLASOI list with
the MOVL call at its head. This plan is returned and the
new context replaces the .olc¢ one.

MOVEG is very ruch like MOVE, tut its purpcse is to
nove a whole group cf blocks together as a movatle sub-
aséembly. (ne tlock is designated the base, and the preseni
and goal locaticns given refer to positions of this block.
HCOVEG is also passea a list of cther blocks, called riders,
which are supported by the tase and ride alcng with it as
the base is grasped by ithe hand and moved.

The operation of MCVEG parsllels that of MCVE very
closely. The base and all riders are checked to see whether
any are immcvable or in place. A new context is created anad
all of the rLoving blocks are renoved. Ctability is tested.
The base is th;L adced -to the scene in its rew rosition, and
all the ridérs are added in positions which mairtain their
forrer locations relative tc the base block. Tris is done
by raking all of their AT arrays relative tc that of the
tase block, roving ithat block, then relating the AT arrays
tacl to the fixed threé—space oi the tatle. All the moved

PAGE 10¢

objects are then checkec for collision and stability, and
the plan is altered by addition of the new step. As with
MOVE, the arprorriate gripe is generatec if any of the zbove
tests fail. .

IOVEG coes rerform one function that has no counterpart
in MOVE, nanely the checking of the movable sub-assembly to
see whether it will hold together during transit. This is

done by imagining the base and riders tc be alore in the .
.universe, with not even the table present and with the tase :%
declarec immovatle. (Now and subsequently, wher I say the B
prograrn "imegines" some situaticn, I mean that a new context
1s created in which that situation holds, for the purpose of
checking various prcperties of that state.) The stability
test is run and, if any riders fall, the systen generates a
NOT-MSA grire with az message incdicating which blocks have
falien. To simulate the unsteaciness of the hand, the
stability test is run three or four more tines, with the
gravity Yectoz;goved slightly away from the vertical in
several directicns. The size and direction.of these
perturbatidns are progremmer—-set parameiers of the systen.

Any failure of‘the riders tc withstand the shaking &lso
results in & NC-MSA grire. Since this.testing is fairly
time—consuming, the calling codule can specify that MOVLG

skip this stepr if the czller is sure that the supplied lase

PAGE 11C

and riders c¢o indeec form a legzl movable sub—-assemtly.

v

6.2 The Basic Flanning Modules

This secticn will te devoted to the descrirtion of
BUILD, FLACL, DIGUP, GEi-RIL-OF, and UNEUILL, five goal
modules which tcgether do all of the system’s planning

except 1in cases where tricks like sub-assemtly and tempcrary
.

surport are requireq. =
BUILD is the tcp-level goal of the plarnning system,
though it can also Le called recursively from some cf the
other goal nodules. Beginning with the current context in
which it is called, BUILD assemktles a prlan to get tc the
goal state, another context which it receives as an
argument. EUILL"s first act is to check both the present
sitate (SP) and the goal state (SG) for collision and
instability. If prcblems are fcund, a EAD-SP or BAI-SG
gripe is gererated, indicating the exact nature of the
difficulty. Eﬂus, EUILL wili waste no time trying to
achieve an impossible goal state. lore valuable than the
tesis themselves are their side effects: A conmrlete set of
touch and support relations for each stzte is left in the
datez base. Alsc included in this Pre—-testing prase is a

check tc insure that all of the materials necessary to

PAGE 111

duplicate the goal state are present in the current state.
Feilure to pass-this test results in an UNMATCHAELE gripe
sPecifying which SG blocks have no counterparts in SP.

Following the pre-testing phase, BUIID sets SP to a new
centext sprouted from the old SP, so that any data base
changes it makes will be invisible from the outside. Each
block in SP is then checked to see whether it is already in
a place corresponding to a matching block from SG. It is
not necessary that the AT arrays of the two blocks be the
same, only that the blocks generate identical models in
srace; a cube, for example, can match another cube in any of
6 orientations. Vhenever one of these pre—positioned blocks
is found, an item of the form (IN-PLACE X Y) is added to the
data btase, where X is the SP block and Y is the SG block it
represents. Later, as other blocks are put into place, they
tco will be marked with_IN—PLACE items.

Now BUILID begins its real work. A list is made of all
SG blocks-that_have not yet been placed, as indicated by the
II'-PLACE items in the current context. Each of these
unplaced tlocks depends upon some set of objects for
support, as indicated by SUB-BY items in the goal state.
The list of unplaced blocks is searched for a block whose
irdicated supports are all in place. PLACE is then called
~ to place this SG block and, if PLACE is successful, BUILD

PAGE 112

ctarts looking for the rext SG tlock to place. If none of
the unrlacec btlocks has 211 of its scupperts in rlace, a loor
cf suppcrt relations is indicated; BUILD does not currently
hancle these relatively rare cases, though a élight variant
cf the scaffolding techrique would vork in many cases.

Eventually, if'no serious troutle is encountered, FUILT
will rur out of unplaced éoal state tlocks. Its job is not
quite over, however. Recall that ir section 1.2 I said that
extra Ylocks ir SP, those with no match in SG, couvld erd ur
anyvhere as long as they are "out of the way" of the
specified structures. BUILD ncw must check these remaining
SP tlocks and, if ary are "in the wvay", call GET-RID-OF tc
" move them awvay somewhere. Currently, blééks are only "ir
the way" if they actuslly touch some block that is in place.
Alternatively, 2 mirimum distance cculd be required, or some
rortion of the table could be designated as Siberia, with
211 unwarted blocks going there in the end. This entire
thase of EUILD—car be cancélled by an optional extra
argunent from the calier. Once this phase 1is complete,
EUIID is successful and returns the plan it has develored.
The actions taker by BUILD upon receivirg a grire from below
will be described later.

PIACE r:ceives a block in the goal state as its

argument; its job is to find a matching block in the

PAGE 113

state, then to call MOVE to put this block into a position
corresponding to that of the goal state block. First, a’
list is created of all the SP blocks with the same shape and
size as the SG block to be placed. SP blocks that are
irmovable or already in place are not considered. If there
are several matching SP blocks, the list is sorted according
to how deeply each block is buried by other blocks, as
indicated by the SUP-EY items in the current context. The
block supporting the smallest number of others is passed to
MOVE, with the location of the SG block in the goal state
being its destination. If the MOVE is successful, a new IN-
PIACE item is added to the data base and PLACE returns to
its caller.

Several types of gripe can come back to PLACE from the
MOVE telow it. IMMOVABLE and IN-PLACE gripes should never
be received, since these conditions have already been
checked for the block in cuestion. HIT and UNSTAB-ADL are
complaints that are not really directed to PLACE. . These
problems are a result of BUILD’s choice of an SG block, not
PIACE’s choice of a matching SP block, so these gripes are
pessed on up to BUILD. The UNSTAB-REM gripe is handled by
PIACE. Since this gripe indicates that the SP block in
question cannot be moved without other blocks falling, PLACE
calls DIGUP in an attempt to free this block. If DIGUP

PAGE 114

succeeds, the MOVE is tried again; if not, PLACE triecs the

next matching candidate on its list. If PLACE runs out 6f

candidates, it sends a NO-DIGABLE-CANTIDATES gripe on up to
BUILD.

BUILD, as we have seen, -can receive HIT and UNSTAB-ADD
gripes from-the MOVE below it, passed along by the PLACE
module. The HIT ressage ‘indicates which block or blocks are
in the way of the PLACE, and BUILD calls GET-RID-OF to move
each of these blocks to positions where they will cause no
further trouble. To avoid wasting the effort already
invested by the subordinate PLACE, BUILD reaches down into
the environment of the failing MOVE, executes the GET-RID-OF
goals just prior to the MOVE, and then re-tries the MOVE, as
explained in:section £.2.

The UNSTAB-ADD gripe usually indicates a more serious
problem. Since the known supports of the SG tlock, as
indicated by the SUP-BY items, are already in place, an
UNSTAE-ADD gripe indicates a mutuzl support situation, a
cese where somé SC block depends for stability on the blocks
it ié nominally <supporting. This generally means that a
trick will be required to place both blocks at once, but
often the problem will go away if other blocks are added or
removed. For this reason, BUILD saves the gripe message and

return tag on a list, keeping hold of the failing MOVE

PAGE 115

environment in this way, and loops back to find a different
goal state block to give to PLACE. If there are no ’
remaining unplaced SG blocks whose supports are in place,
BUILD tries to find unplaced SP blocks which‘are resting on
already-placed blocks and moves these away using GET-RID-OF.
If any of these steps is successful, BUILD resumes its
ncrmal cycle and eventually will try again to PLACE these SG
blocks which failed earlier. Only if it is completély stuck _
does BUILD pass-the list of failure messages on tc the ‘
routines that try movable sub-assembly and temporary
support. If these fail too, 2 BUILD-GIVES-UP gripe is
generated.

GET-RID-OF is a fairly-simple module which is passed an
SF block, calls FINDSPACE to find a safe location for it,
then calls MOVE to put the block there. If FINDSPACE is
unable to find room for the given block (a very rare
occurrence) a NG—SPACE'gripe is generated. If MOVE comes
beck with- an UNSTAB-REM gripe, GET-RID-OF calls DIGUP to
free the block. If this succeeds, GEI-RII-OF tries the MNOVE
again; if it fails, the gripe is passed on up to GET-RID-
OF’S caller. Unless FINDSPACE has made a blunder, GET-RID-
OF should never receive a HIT or an UNSTAE-ADD gripe.

DIGUP is called whenever the attempt to MOVE some block
results in an UNSTAB-REM gripe. The SP block in question is

PAGE 116

passed to DIGUP, 2long with a description of the nature of
the instarility. If this description is not readily '
available, DIGUP will derive it by imagining the given block
tc be absent and running the stability test ‘itself. DTIGUP
extracts from this loss description the names of all the
blocks that are immediately unstable and, if all of these
blocks are norinally supported by the block being dug up,
czlls GET-RID-OF against each of them to clear ther avay.

-,
13

If any of the losing blocks is not supported by the given 5!
block, a mutual support condition is indicatecd. Rather than A
deal with this probler directly, DIGUP makes a list of all

of the blocks that fall when the given block is removed and
pesses this to UNBUILL, which handles all of the hard cases
for DIGUP. Any gripes received by DIGUP are simply passed
along to the caller.

UNBUILD receives a list of support-related blocks from
its caller, usually DIGUP. UNBUILD’S job is to get all of
these blgcks safely to the table. This is accomplished by
creating = gégi state.identiéal to the present state, except
that all of the listed blocks are on the table instead of in
their current positions. The exact locations of these
blocks on the table are determined by FINDSPACE. BUILD is
then called to generate a plan for getting frcm this goal

state to the current state. This plan is reversed by

PAGE 117

swapping the origin and destination of each MOVE and MOVEG
and reversing the order of the steps, and is then graftéd
onto the rlan already formed up to the call to UNBUILL. In
this way, all of the construction power of BUILD can be
brought to the task of destruction as well.

UNBUILD is one of the system modules that could tenefit
from some additional development, not because it is failure-
prone, but because it tends to produce redundant steps.
Often a block will be moved to its FINDSPACE-produced
position, and then, almost immediately, it will be moved
somewhere else. This could be fixed either by making the
goal state generator more intelligent or by waiting until
the plan is produced and then cleaning out these redundant
steps in a second pass.

liote that throughout the basic system extensive use has
been rmade of the control structure of section 5.2. This
structure allows the EUILD—PLACE—MOVE sequence to proceed in
a headlong manner, with very little pre—-checking of
conditions. Trouble Is ret in a variety of ways when it
arises. The system thus works very fast for the usual sort
of prcbler where little or no trouble is encountered. Note,
too, that the SUP-BY items in the data base are used in
several places to guicde the course of the comrutation. The

planning is' thus guided in an important way by the system’s

PAGE 118

very detailed understanding of the problem domain.
6.3 Movable Sub-Asserbly

BUILL’S preferred method for dealing with mutual
support problems is the technique of sub-assembly, some
examples of which were given in section 1.2. When faced
with the problem of placing several blocks at once, the .
systen tries to find a movable sub-assembly (hereafter MSA) ?:
which contains these blocks, finds a spot on the table to '
assemble this MSA, calls BUILD to get the aséembly done, and
finally moves the MSA into place using MOVEG. The mocdules
involved in this planning, besides MOVEG, are TRY-MSA and
PIACE-MSA. Except when the sub-assembly technique is
specifically disabled by a glcbal system parameter, it is
always tried before the temporary support methods are
considered. This is tecause MSA produces shorter plans than
the other methods when it is successful, and tends to fail
more quickly when it is not. |

TRY-MSA is pessed the list of UNSTAB-ADD messages and
return tags: that BUILD has collected in the course of trying
to PLACE various objects. The mission of TRY-MSA is to use
this information to find an MSA in the goal state which

contains at least two currently unplaced blocks, then to

PAGE 119

call FLACE-MSA which assembles and moves this MSA. .Scme of
the blocks of the MSA may already be in place but, if oﬁly
one unplaced block is included, the placerent of the NSA
will surely fail, since every single-block addition to the
structure has already been tried.

TRY-FSA begins by creating a list of possible MSA bases
in the goal state. This is done by considering each of the
losing states in TRY-MSA’S argument list and finding, for
each, what blocks are falling in a.pivotal motion. (Recall
that the stability test indicates the way in which each
block is falling.) The first of these pivoting blocks along
a chain of support relations running down from the
tentatively placed block (and including this block) becomes
a prime suspect. If the support chain branches and leads to
two pivoting blocks, no suspect is found. These suspects
are current state blocks, so each is replaced by the
corresponding goal state btlock. The éuspect list is then
filtered to eliminate duplications and to insuvre that each
suspect is involved in the suprort of at least two unplaced
blocks, as determined by the SUP-EY items in the goal state.
This procedure usually succeeds in producing a very short
list of possible tase blocks, typically only one or two in
length. In scme cases no possible bases are found, and a

NC-MSA gripe is sent up to BUILD.

PAGE 120

TRY-MSA next picks the first possible base on the list
and deterrines the maximal set of blocks in SG that could
ride on this base in a legal MSA. This is accomplished by
iragining a state identical -to the goal state, except that
the table and all other immovable objects have been removed
and the base block has been declared immovable. The
stability test is then run and any blocks which fall are
thrown out of the scene. The scene is then shaken, as
described in MOVEG, by slightly perturbing the system
gravity vector, and again any falling blocks are eliminated.
Whatever blocks remain after this process form the maximal
set of riders for the base in question. This process is
relatively expensive in terms of computation time, due to
the large number of independent runnings of the stability
test. This is why so much effort was expended earlier to
trim the list of possible bases down to a manageable size
instead of, for instance, simrly considering all of the SG
blocks as bases.

The maximal MSA found by the above process is re-
ckecked to verify that it still contains at least two
unplaced blocks, and is then checked to ascertain whether it
can be safely put into position. This is done by imagining
a state containing all of the SG blocks currently in place,

plus the members of the MSA, rinus any currently-placed

Vo

PAGE 121

blocks surported, even in part, by an MSA member. If this
structure is unstable, the MSA cannot be placed in the
current scene. This is the sort of pre-testing which was
skipped in the basic system, but in this case there is the
potential for wasting a great deal of work in constructing
the MSA, only to find that it camnot be moved successfully
into place. If-the instability upon prlacing the MSA takes

the form of a pivoting block farther down in the structure, -

s .

this block is added to the list of possible bases. ~
At this point TRY-MSA is ready to call PLACE-MSA to get
the MSA in question built and moved into place, but first it
must decide whether these steps should take place at the
current point in the plan or, to eliminate wasted plan
steps, at some earlier point. In general, this alteration
of earlier plan steps is attempted only if the base block is
currently in place and if it was put in place at some point
in the current plan, as opposed to being there at the time
of the top level call to BUILL. Unless these conditions
hold, TRY-MSA simply calls PLACE-MSA and, if successful,
returns.
If the PLACE-MSA sters are to occur at an earlier
pcint, the plan is broken into three parts: The first part,
containing all of the steps that occur after the placement
of the base block, is saved for later consultation. The

PAGE 122

second part, consisting of the MOVE step for the base block
and any preparatory steps that imrediately precede this: is
discarded. The third part, containing all those steps
occurring prior to the MOVE and its preparation, becores the
current plan and supplies the context at this point to
become the current context. Of course, the o0ld plan and
context are saved in case the system decides to abandon this
exploration. PLACE-MSA can'now be called in this
reconstructed old environment.

If the PLACE-MSA goal is successful, TRY-MSA could
irmediately return to BUILD and continue the construction
from this point, but instead it tries to make as much use as
pcssible of the subsequent portion of the now-abandoned old
plan. Of course, it can not simply assume that this rlan
fragment is still correct, since the state that it is now
working with is different from the state for which the old
plan was derived. Each step of this plan fragment must be
verified if iE‘;s to be used. This is accomplished by
trying to execute each of these steps, in order, as
primitive goals in the new context, in order to see if any
gripes arise. MOVE’s whose blocks are not found at the
specified origin location are skirped over, since these
steps usuzally represent therplacement of blocks which, in
the new plan, were placed as part of the MSA. This

-

PAGE 123

verification continues until the remainder of the old plan
is exhausted or until one of the steps being verified
generates a gripe of any sort. In either case, TRY-MSA
simply returns-to BUILD, which continues the planning frorw
whatever point was reached. A more advanced system might
contain facilities for dealing with gripes encountered
during verification and continuing to verify, instead of
leaving this mode at the first sign of trouble.

Any gripes received by TRY-MSA from PLACE-MSA cause it
tc restore the original plan and context, pick the next
merber of the possible base list, and proceed to find the
next possible FSA. If the possible bases are exhausted, a
NC-MSA gripe is sent up to the caller. The only excertion
to this is a HIT gripe received from a subordinate MOVEG
step. In this case, TRY-MSA reaches down into the losing
context and moves the offending blocks away with GET-RID-OF,
just as BUILD does when MOVE generates a HIT gripe.

FLACE-MSA receives a base and a list of riders which
its caller, usually TEY-MSA, believes is a legal MSA.
PIACE-MSA must find a spot on the table where this MSA can
be assembled, iragine the MSA blocks to be in this position,
pess this imagined intermediate state to BUILL as a goal,
and, if BUILD succeeds in assembling the KSA in the
srecified place, call MOVEG to move the MSA into the

PAGE 124

pcsition it occupies in the goal state. If the least-buried
current state match for the base block is resting on the
table in the proper orientation, its position is used for
the assembly. Otherwise, FINDSPACE is used to pick a
position where the MSA blocks will fit. If necessary, this
position can conflict with unplaced SP blocks, since BUILD
will rove these away. Of course, by calling EUILD to
assemble the MSA, PLACE-MSA brings the full power of the
syster to bear on this problem. The recursive seesaw of
figure 1-€ is the type of case where this power is useful.
TRY-MSA always passes PLACE-MSA a legal MSA, so the MOVEG is
instructed to skip the MSA checking phase when it is called
from these two modules. Any gripes that FLACE-MSA receives
from BUILD or MOVEG are passed up to TRY-MSA.

6.4 Scaffolding and Counterweight

Vhenever BUILD finds itself unable to proceed by normal
means or by sub-assembly, it tries to find a way of using
sprare blocks in-the scene as temporary scaffolding or
counterweights, stabilizing the structure in this way so
that more blocks can te added. Examples of both the
scaffolding and counterweight techniques were given in

section 1.2. The modules involved in this planning are TEY-

PAGE 125

TEMP and its subordinates TRY-CWT and TRY-SCAF. Like TRY-
MSA, both TRY—CWT and TRY-SCAF can be disabled if desired by
the user.

The temporary support modules are far less fully
developed than the other portions of the EUILD system.
While the sub-assembly technique is basically a single idea
that can be applied in a fairly uniform way wherever it is
useful, the temporary support category seems to be a loose ..
grouping of a very large number of essentially incependent '
tricks. These tricks can be simple recipes for constructing 1
stable stacks of bricks, complicated recipes for creating
bridges (arch or cantilever) over cluttered areas of the
table, heuristics for proposing good locations for support
structures, methods for dealing with various difficulties
that might be encountered, and so on. Ideally, of course,
the system should be creative enough to derive from a few
basic principles . whatever tricks it needs in the given
situation and te add these to its repertoire for future use,
but this is still somewhat beyond the state of the art. In
the meantime, each such trick must be individually
programrec._into the system. To add to the system every
trick that I can think of would thus take years, and would
add little to the valve of BUILD as a prototyrical prcblen—
solving syster. Instead, I have tried to program a small

PAGE 126

set of tricks which work for a reasonably large class of
problems, demonstrate the principles of scaffolding and;
counterweight, and bring the system to a point where many
more features could be added in obvious ways with relatively
srall increments of programming effort.

TRY-TEMP receives from BUILD the same list of UNSTAB-
ATD messages end return tags that was passed to TRY-MSA.
Each of these message-tag pairs indicates the unstable
result of an attempt to add some unplaced block to the
structure being built. TRY¥-TEMP considers these losing
states one by one, and finds the miniral set of additional
unplaced SG blocks that must bte placed in order for the
structure to be stable once again. Such a set of SG blocks
is called a stable set or STABSET for this particular loss
and is found by imagining various single unplaced blocks to
be in place and.checking the results. If any of these
additions leads to a stable state, the block that was placed
is returned. \;f not, those states in which the original
lcss was reduced cr reveréed are noted, and another round of
block additions is performed on them. Since the goal state
itself is stable, there will always be one such stable set,
nemely the set of all unplaced SG blocks, though this set
may not be minimal. There may in some cases be several

distihct stable sets whose placement will counteract a given

PAGE 127

lcss.

Knowledge of these stable sets is essential for TRY—
TEMP“s next task, the formation of a list of spare blocks in
the current state. If a temporary support structure is
built to enable the system to place the losing block under
consideration, that support structure must, in general,
remain in place until the structure being built is once
again able to stand without.outside help. The stable set .
indicates exactly which blocks must be placed to reach this f?.
next jumping-off point. Obviously, a block should not be ‘
considered a spare block, available for use in a temporary
support, if it will be needed as part of the stable set
which must be placed. The spare blocks list thus contains
all of the SP blocks except the losing block whose placement
is being atterpted, matches in SP for the stable set
members, and SP matches for the SG blocks involved in the
support of the losing block and the stable set members. The
list cof spares is sorted so that the least buried blocks
will be ccnsidered first. Note that this list may include
some blocks that are already in place, as long as these are
not an essential part of the structure being worked on.

Once the statle set and list of spare blocks has been
determined, TRY-TEMP calls TRY-CWT and TRY-SCAF, in that

order. If either of these succeeds, TRY-TEMP returns to

PAGE 128

BUILD. Otherwise, it tries a new stable set for the same
losing block or, if these are exhausted, goes on to thé;next
lcss message on its argument list. If nothing succeeds, it
sends a NO-TEMP gripe back to BUILD.

TRY—-CWT finds all of the unstable blocks in the losing
state under consideration and selects from these a list of
all blocks whose centers of gravity are rising, either
because these blocks are pivoting or are being pushed up
from below. A ray is projected up from each of these
centers of gravity and if this ray pierces a level upper
surface of the sarme block, the intersection'point is checked
tc see whether it is covered by other blocks. If this point
is clear, TRY-CWT can consider placing a stack of
counterweights on it. The necessary weight of this stack
can be found by considering the unbalanced force or moment
acting on the block in question. Spare blocks are taken
from the list one by cne until the desired weight is
reached - and-are simply stacked with their centers.of
gravity in a vertical line. Wedges are laid on their sides
in this stack so that their parallel faces can be used.

The counterweight stack thus derived, along with the
lcsing block, the stable set, and the supports of these
blocks are passed to BUILD as a goal state. If anything

obvious is wrong with this-state, such as collision between

PAGE 129

counterweight blocks and others, the EUILD will fail at once
with an approprriate message. TRY-CWT could read this
message and try to move or alter the counterweight tower
appropriately, but at present it just goes on to the next
rising block or fails back to TRY-TEMP. If the lower BUILD
succeeds, TRY-CWT and TRY-TEMF return to the calling BUILD,
which dismantles the counterweight stack in the normal
course of its planning.

TRY-SCAF is very similar in structure to TRY-CWT. It
tries to find uncovered lower vertices of the falling blocks
which are moving downwvard. ZFor each such vertex, it tries
to find a tower of bricks and wedges on their sides which
will extend from the vertex down to the first level surface
beneath it, usually the table. A tower of the proper height
is found by considering each of the spare blocks in-each of
the allowable orientations, and exhaustively trying all
combinations of ~these. The tower may be capped by a wedge
lying upon its hypotenuse or by a wedge presenting a
slightly slanted upper surface to get a variable height,
though in both of these cases the tower must be particularly
solid, since it cannot be guaranteed that the applied force
will bear directly down on the line formed by the blocks”
centers of gravity. Additional modules could of course be

acded to propose support structures below other points on

PAGE 13C

dowrwaré-roving faces or edges, or to bleck upward moving
vertices from atove, as in figure 1-13D. Like TRY-CWT, TRY-
SCAF calls PUILD ard simply goes cn to another vertex if
trouvble arises. '

At rresent, nore of the terporery suppcrt modules tries
to save steps by going back and modifying earlier portions
of the rlan. This featu}e would be essentially the same as
that included in the sub-assembly modules, and it was my
feeling that one such implementation would bte sufficient for
demcnstraticn purposes. The temporary support modules are

nc more likely to fail because of this orission, but they

often prcduce wested plan steps.

PAGE 131

Chapter 7: Cocncludirg Remarks .

In this firal section I will try briefly to answer a
few global questiors that arise in relation to BUILD: Vhat
fFuicance car BUILD offer to programmers writing problem—

solving systems 1ir different areas? What were the

surrrises? Vhat locse ends, both major and minor, could use -

more werk? How closely do RUIID’S activities seem to

resemble those of humans faced with similar protlems? VWhat'

is the significance cf =211 +this? Many of the ideas
presented in this section will bte quite speculative and non-
rigcrous but, hopefully, scme will be of interest despite
this.

Several parts of the BUILD system should be at least
potentially useful to rroblem—solvirg programmers working or
other rrotlems. I think that the methods of storage
rmanagement described in section 2.2 and the choice-gripe
control struéture of .sectioh 5.2 fall most obviously intc
this category. Vhile subsequent programs mey tzke radically
cifferert arprrcaches from that exemplified by BUILD, the
existerce of this program will at least give them something
very srecific to be different from, which can sometimes be
as imrortant an organizetional factor as a positive

metaphor.

,." | ! “‘

i PAGE 132

Also of possible interest, though somewhat less clear
than the featﬁres noted above, is the overall style of N
BUILD. As compared to the typical MICRC~-PLANNER program,
BUILD seerms to have more of a quality which,' for want of a
better term, I.will c2l1l1 looseness. By this I mean a sort
of flexibility of behavior, an ability to step back from
local jam—ups and look for a way around them, an inability
tc lock itself into inconsistent states or bad decisions
from which there is no escape. The storage management
scheme of BUILD contributes to this looseness by raking
irrelevant the distinction between data that has teen
derived and data that could be. A whole class of bugs is
thus eliminated. The control structure is likewise very
loose and flexible. Since the top-level loop of the BUILD
module is all-powerful and can work with practically any set
of block positions and IN-PLACE items, and since the system
gets back to this loop after practically every step, it is
very hard for_ BUILD to get itself into some kind of mess
from which it camnot rroceed. People, of course, possess
extrere degrees of locseness, including even the ability to
alter their own procedures.

There were two major surprises for me in the course of
programming BUILD. The first of thse was the extreme ease
of programming the planning-system. The second was the

PAGE 133

extrere difficulty of programming the modeling system,
especially the stability test. About 80% of the prograﬁhing
effort went into the rodeling portions of BUILD,

representing something on the order of a year of effort on

my part. I would claim, moreover, that this split owes very
little to my own rarticular tastes and prograrming style.

My initial estimate was ‘that the division of yrogramming
effort would be more like 60% planning system to 40% s,

S
o

mcdeling, and I made several attempts to replace modeling
pcwer with plamning heuristics, all to no avail.

The reasons for this disparity of difficulty are not
hard to find, at least after the fact. First, the
linearization of a2 basically simul taneous, multiply
entangled equilibrium problem like block stability, so that
what is going on can be understood by another program, is
sirply not an easy prcblem. ‘(In a morent I will explain my
theory of why three-year—old humans can do it.) On the
other hand, once this problem is solved and good descriptive
deta is available to the planning system, it is almost
always clear what to do at each point in the planning. Ko
doubt some readers were disaprointed at the lack of flashy
heuristics in the planning system, but the reazson for this
should now be clear: Heuristics are simply not needed in a

syster that has a good understanding of its problem. The

PAGE 134

ease of programming the planning modules was also greatly
aided by the.relative ease of using CONNIVER, as compa;ed to
HMICRO-PLAKNER, ané by the way that the control structure
broke the problem into relatively independent sets of choice
selectors and handlers for specific gripes.

A number of minor extensions to BUILD have been
suggested in the earlier chapters. Any number of small
changes could be rade to the planning modules to handle
assorted cases where the system now fails or is inefficient,??
though actually meking these changes would probably.only be
useful if someone really wanted to use the system for
practical purposes or needed practice in programming.
Somewhat more useful would be a real hidden line eliminator
for the display system.

One example of a non-trivial extension would be to
extend the system downward to the level of actual jéint
movements of a modeled mechanical hand. Not only would this
involve_changgs to the modeling syster and a whole new set
of goal quules to write, but it would force the programmer
to develor a much better way to model empty space than is
currently ﬁsed in BUILD. The blind search and test
algorithm used by the current FINDSPACE is just barely
adequate for locating spaces cn a nearly empty two—

dimensional ~table; it would be hopelessly lost in trying to

PAGE 135

find a path through 3>space for a hand carrying several
blocks. |
| Vhat the system really needs is a good way of dealing
with the very peculiarly shaped non-object that is the empty
space in the scene, of finding the major blobs that comprise
it and the size and shape of the connecticns tetween these
blobs. One obvious way of getting at these relationships
would be to erploy a rapping schere, dividing the 2-D table
surface or 3-D space up into squares or cubes and marking
each of these according to whether it is occupied or not.
The visual imege of the table seems to function as a
ccenvenient map for humans; any area of the tatle can te
quickly checked for occupancy, and the large blobs.of empty
space can be easily picked out. It might also be noteworthy
that people, except possibly for the blind, do not seem to
be very good at doing 3-D FINDSPACE tasks. without reference
to visual inputs; when they want to find whether doors will
oren or switches can te reached in a crowded area like a
srace capsule, they usually build a model or make a sketch.
The BUILD control structure seems, for the moment, to
need little added to it, since some of its powers are not
even used by the rresent system. It could, of course, use
scnme polishing to make it easier to use and more zttumed to

general needs than to the specific needs of BUILD. Two

PAGE 136

control structure areas do, however, come to ming as
cancidates for significant future wcrk. These areas are the
detecticn and avoidance of infinite loops, anéd the area of
inter-gcal cc-oreration. ‘

The very lcoseress of BUILD’S control structure which
keers it out of jJjam—-ur trouble seems to make it prone to

various types of infinite loops. In the present system this

has beern dealt with on a case-by-case basis, but I feel that -

e B

a general solution to the looping rroblem should be a part 't

of more advanced systems. It is notable, in this regard,
how free humans seem to be from lcoping, without any
conscious effort to avoid it. What seems to be haprening is
that a2 fairly comrlete trace or record of the person’s
rmental activities is saved, at least for a short time, and
some system demon occasionally checks the current mental
state against various previous states. If a match is found,
the demon sends an interrupt to some higher 1level which
could either Trerair the looring process to rake it converge,
or érop it - and go or ;o something else. Whether or not this
is an &gccurate view of human furctioning, such a module
could be of great benefit to problem-solving progranms,
elirinating another whole class of tugs. The format of the
reccrd kept, the way this record is indexed or hash-coded,

-and the nature of the matcher wculd, of course, require

PAGE 137

careful thought.

Fy inter-goal co-oreration, I mear the protection of
the eccerriishrents of one goz2l from Tremature destruction
ty later gozls, and the dissemiration of usefhl information
fourd ty ore goal to 21l of the other £oal rmodules that
right be interested. EUILD seems to be a very bad prograr
fer studying these thiﬁgs, since block tuilding requires
very little of this type of co-operation. The only results
that need to be protected are btlock locations, handled by
the IN-FLACE items, and possibly emrty spaces that have beer
cleczred. For a while, I wes protecting these empty spaces
by rutting "ghost" tlocks ir ther, tut this procedure proved
to be nore trouble than it was worth, so now empty sraces
are not protected. The system, after 211, can 2lways finc
another one. The only irter-goal communication used at
rresent is Petween superior and inferior gcals by means of
ergurents and grires, though the mechanism of IF-TRIET
rethods (See séctior 512) could be used for some other types
of communication. I rsuspect, however, that sll of this
ccul¢ te put irto some reasonatly clear and elegant form if
sOme worl” were cone on this protlem.

In ccm.enting about whether BUILD seems to work on its
rrotlems ir ways at all sirilar to the aprroaches taken by

reorle, I shculd erphasize at the cutset that my

f

PAGE 138

speculations are based primarily on rather harhazard
intrOSpection; not on careful psychological testing. !
Nevertheless, some interesting sirilarities and differences
seemn to stand out. The control structure, while far from
human in its capabilities, does seem better able to model
human behavior than, say, the predicate calculus or Newell
and Simon’s production systems <NEWEIL, SIMON 1972>. Such
human activities as setting up explicit goals, testing e
hypotheses, .switching back arid forth between two equally
promising branches, and giving up with some specific
complaint all seem to have clear counterparts in BUILL,
while'they cause troutle for other theories. The most
striking difference between BUILD and humaens, aside from
BUILD’S inability to learn, seems to be that BUILD’S models
are quantitative and depend heavily on floating-point
arithmetic, while people seem to prefer qualitative
descriptions. While BUILD has to work to discover that two
- blocks are touching along a face or aligned at an edge, a
person is likely to define -their relative positions in terms
of such facts and to have to'work to determine that some
block’s center is 6.3 inches from the table and 2.8 inches
from the back wall.

‘ ‘BUILD’S approach to stability testing also seems to be
| quite far from the usual human approach. Since BUILD has no

PAGE 139

access to the real world, it cannot propose steps that it
thinks might work and then test them by actually trying !
them. Since BUILD must be its own harshest critic, its
stability test cannot settle for rules of thurb, hypotheses,
and guesses. In this respect, BUILD’S problem solving is
closer to that of an engineer designing a bridge than that
of a child playing with toys. BUILD rmust have a stability
tester that can deal correctly with the worst cases it will
ever encounter, so it uses this powerful module on the
simple cases as well.

A child, on the other hand, is likely to develop a very
broad and shallow stability tester that is made up of a
. number of modules. At first, he might only know a few
simple rules: A brick resting on the table will not fall; a
brick resting on another brick will not fall unless it hangs
over too far; a brick on a slant will slide down until it
hits something. Iater, he might figure out or be taught the
concert of center of gravity, at least for bricks. Using
this, he can work probléms by visualizing spatial motions:
If the block tips over this way, it will have to 1lift the
center of this heavy block; therefore, it won‘t. Finally,
in high school or college, he will be taught about forces
and will be able to deal with lever arms and friction.

Incidentally, adding some of these special rules for easily

(X

PAGE- 140

recognized special cases (block flat on table, non—
overhanging stacks, etc.) could vastly speed up BUILD’s"
current stability test. In retrospect, I probably should
have tried adding this conglomerate type of ‘test to BUILD
instead of working on the single powerful test, though I
would probably never have been able to deal with complicated
things like friction. ' _
Finally, we come to the difficult question of BUILD’S
overall significance. It is my feeling that BUILD’S major ¥
contribution to-the field of artificial intelligence is in
bringing actual practice up to the level of theory. The
arrival of PLANNER, Winograd‘s blocks program and, later,
CCNNIVER led most AI researchers to believe that broad new -
areas of problem solving had-suddenly been made far more
accessible. Many, if asked to think about the problems
attacked by BUILD, could have sketched out the outlines of
such a system with little trouble. But having a vague idea
of hov to do something is a very different thing from having
a working program. My own original conception of BUILD’S
overall structure bears surprisingly little resemblance to
the prog:ém of today, though this can partly be blamed upon
the mid-course change of language. With BUILD as a solid
base to stand upon, we can look farther into the uncharted
” territory and begin to discern the vague outlines of the

01

PAGE 142

PIBLIOGRAPHY o e

<PLUF, CRI¥FITH, NEUMANN 1970>
Blur M, Griffith A K, and Neumann R
A Stzbility Test for Configurations of Rlocks
AT FMEMC 188 .
M.T.T. Artificial Intelligence Iaboratory
Fetruary 1970 '

<BOLERG 1972>
Boterg, Richard
Gererating Line Drawings from Abstract Scene Descriptions
Master ‘s Thesis

M.I.T. Department cf Electrical Engineering
October 1972

<HEVITT 1972>
Hewitt, Carl
PLANNER
AI-TR-258
M.I.T. Artificial Intelligence Laboratory
April 1972

<McLERMCTT, SUSSMAN 1972> :
McPermott D V and Sussman G J
CONNIVFR Reference Manuzal ,
AI MEMC 25¢

M.I.T. Artificial Intelligence Laboratory
lay 1972

<NEVELL, SIKON 1972>
Nevell A ard Simon H A
Humen Problem Solving
Prentice-Hall- - ~ -
Fnglewood Cliffs, N.J. 1972

<PAUL, FALK, FEIDMAE 1969>
Pavl R, Falk G, ané Feldman J 2

The Cor.ruter Representstiorn of Simrly Described Scenes
Stanford AI FEKO 1C1

Stenford Artificial Intelligence Project
October 19€9

<SUSSMAN 1971>
Sussman, Gerald Jay
The FIKDSPACE TIroblen
Vision Flash 18

B)
[’

PAGE 147

M.I.T. Artificial Intelligence Labcratory
AuFust 1971

<SUSESMAE 1972>
Sussnar, Gerald Jay
Teaching of Procedures — Progress Report -
AT VEMC 27C
M.T.T. Artificial Intelligence Laberatory
Octcber 1972

<SUSSMAL, McDERMCTT 1972>
Sussman G J and McTermctt D V
Forn PLANNER to COENIVER - A Genetic Arproach
Pages 1171-117¢
Prcceedings of the Fall Joint Computer Conference, 1977
A¥IPS Fress \
1972

<SUESKAK, VINOGRAD, .CEARNIAK 1971>
Sussmen G J, Winograd T, and Charniak F
MICRO-FLANIER Eeference Marual
AT MEMC 25¢
M.I.T. Artificial Intelligence Laboratory
iay 1972

<WINOGRAD 1S72>
Vircgrad, Terry
Understanding Fatural Language
Acaderic Press
Fevw York 1072

<VIKSTCK 1970>
Virstor, Patrick E
Teerrirg Structural Descrirtiors from Fxamrles
AI-TR-2%1 ~
E.T.T. Artificial Intelligence Labecratory
Sertemter 1970

<ZUYECVITSYY, AVDEYFVA 1966>
Zul'hovitsky S T and¢ Avdeyeva 1 T
Iirear and Convex Frogramming
Savnders
Philadelphia 1<66

o0 '“.4" 3‘

This blank page was inserted to preserve pagination,

CS-TR Scanning Project _ _
Document Control Form Date : L/ 30 196

Report # A "'T(R‘ 333

Each of the following should be identified by a checkmark:
Originating Department:

>Z(Artiﬂcial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

A Technical Report MR) [J Technical Memo (TM)
O Other:

Document Information Number of pages: 1'£7 (47 -ipnect)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
jﬂ'Single-sided or O Single-sided or
U Double-sided MDouble-sided
Print type:

O Typewriter [] offsetPress [] Laser Print
[inkietPrinter [Unknown \/&Other COPY

Check each if included with document:

\gLDOD Form O Funding Agent Form]X\ Cover Page
O spine O Printers Notes O Photo negatives
O other

Page Data:

Blank Pages ey page numben:

Photographs/Tonal Material oy page numben:

Other (note description/page number).
Description : Page Number:

@7 Zrace maet(1- 193) uvtt'e TiTLE PACE unwREST b ACkN,
Y-1 untFig 13 Nt Fig 5(3), - &Uw-ith@&&”
e £ s (), 37- 3’@ UrHP G Yo-]43

(Mq [99) SconceTh oL, COJ#‘-'—Q Poo, Tncf*rs(S')
@ MARK IV RGHT MrRAG N F"R,orv\ ><#‘Fu>& n/€
Scanning Agent Signoff:

Date Received: ¥ /79194 Date Scanned: >/ €, 1-9¢ Date Returned: z Iili3

~ N
Scanning Agent Signature: ()"/\AI/M }\/ IVVJ err?L

Rev 8/84 DS/LCS Document Control Form cstiform.vsd

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security claseilication of title, body of abatract and indexing annotation must be entered when the overall report 18 classitied)

1. ORIGINATING ACTIVITY (Corporate suthor) 26. REPORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology Unclassified
Artificial Intelltgence Laboratory 2b. 1;our
one

3. REPORT TITLE

A Planning System for Robot Construction Tasks

4 DESCRIPTIVE NOTES (Type of report and Inclusive dates) March 1973
Thesis -partial fulfillment of requirements for B.S. & M. S. in Electrical Engineerind

S. AUTHORIS) (Last neme, first name, initial)

Scott E. Fahlman

6. REPORT ODATE ’ 7a. TOTAL NO. OF PAGES 7. NO. OF REFS
May 1973 143 13

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERI(S)
N00014-70-A-0362-0005 :

b. PROJECT NO. AI TR'283

9. OTHER REPORT NOI(S) (Any other numbers that may be

€ assigned thias report)

.
d. .
10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

1. SUPPLEMENTARY NOTES . 12. SPONSORING MILITARV ACTIVITY
" None Advanced Research Projects Agency
3D-200 Pentagon
Washington, D.C. 20301

13. ABSTRACT

This paper describes a system which plans the construction of specified structures
out of simple objects such as toy blocks. The planning is done using a 3-D model
of the work space. A powerful control structure allows the use of such techniques
as sub-assembly, temporary scaffolding, and counterweights in the construction.

14. KEY WORDS

DD '3 1473 (M.LT.) ' | UNCLASSIFIED

—_ “ Security Classification
Idl - /.ZQ.),J.S JM'L (i

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.LI.T
Libraries. Technical support for this project was
also provided by the M.L.'T. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 9/94

