A COMPUTATIONAL MODEL OF

SKILL ACQUISITION

by

GERALD JAY SUSSMAN

August, 1973

ARTIFICIAL INTELLIGENCE LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge, Massachusetts 02139

-~

,K‘“\"

The views and conclusions contained in this document are
those of the authors and shoﬁld not be interpreted as
necessarily representing the official policies, either
expressed or implied, of the Advanced Research Projects

Agency or the U.S. Government.

B e N O,

BIBLIOGRAPHIC DATA Ilf"ﬁeport No.

s

T A L e s ks g .

3. Recipieat's Accession No,

SHEET AI TR-297 .
4. Tidle and Subtitle ' 5. Report Date
] Issued 8/73
A Computational Model of Skill Acquisition 6.
7. Author(s) ' ' - ~ ‘ - — 8. gerforming Organization Rept.
Gerald Jay Sussman o o ° AT TRgfgzsﬁ}ﬁa__

9. Petforming Organization Name and Address

ARTIFICIAL INTELLIGENCE LABORATORY;

10. Project/Task/Work Unit No.

11. Contract/Grant No.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

545 Technology Square, Cambridge, Mass. '02139,(7

NO0014-70-A~0362-0003

12. Sponsoring Organization Name and Address
Covered
Office of Naval Research

Department of the Navy

Technical Report

13. Type of Report & Period

14,
Information Systems Program, Arlington, Va. 22217

15. Supplementary Notes

16. Abstracts

This thesis confronts the nature of the process of learning an intellectual
skill, the ability to solve problems,efficiently in a particular domain of
discourse. The investigation is synthetic; a computational performance
model, HACKER, is displayed. HACKER is a computér'problem—sblving system
whose performance inproves with Practice. ' ’
HACKER maintains performance knowledge as a library of procedures indexed by
descriptions of the problem types for which the procedures are appropriate.
When applied to a problem, HACKER tries to use a procedure from this "Answer
Library". 1If no procedure is found to be applicable, HACKER writes one using
more general knowledge of the problem domain and of programming techniques.
This new program may be generalized and added to the Answer Library.

17. Key Words and Document Analysis; lk‘7c;|; Describtér#]

Skill Acquisition by a Computer
Computer learning

Problem-solving

Automatic Programming

Linear Approximation

Bootstrapping
Artificial‘Intelligence

Computer Program Debugging Procedure

17b. Identifiers/Open-Ended Terms

17c. COS?:FI Field/Group

18. Availability Statement : 19. Security Class (This Z1. No. of au
Report) ;
imA ; : : UNCLASSIFIED i
Ul?llmlted DlSt%‘le‘{:lOn 20. Security Class (This 22 Price
Write A.I. Publications Page b
) - UNCLASSIFIED i

i

i4:

FARM NTISIETREY. 3-72) THIS FORM MAY BE REPRODUCED

ca-

TOCTNA T

o

Work reported herein was conducted at the
Artificial Intelligence Laboratory, a Massachusetts
Institute of Technology research program supported
in part by the Advance Research Projects Agency
of the Department of Defense and monitored by the
Office of Naval Research under Contract
N0O0014-70-A-0362-0003.

Abstract for:
A Computational Model of Skill Acquisition
by Gerald Jay Sussman

Submitted to the Department of Mathematics on July 23, 1973
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

This thesis confronts the nature of the process of
learning an intellectual skill, the ability to solve
problems efficiently in a particular domain of discourse.
The investigation is synthetic; a computational performance
mode!, HACKER, is displayed. HACKER is a computer problem-
solving system whose performance improves with practice.

HACKER maintains performance knowledge as a library of
procedures indexed by descriptions of the problem types for
which the procedures are appropriate. When applied to a
problem, HACKER tries to use a procedure from this "Ansuer
Library". If no procedure is found to be applicable, HACKER
urites one using more general knowledge of the problem
domain and of programming techniques. This new program may
be generalized and added to the Answer Library. In any
case, the performance program (either just uritten or
retrieved from the Answer Library), when run on a particular
problem, may manifest a bug. These bugs result from
unanticipated interactions betueen steps of the proposed
solution or unrealized assumptions about the situations to
which it would be applied. I1f a bug shows up, HACKER
applies some general debugging knowledge which results in a
patch to fix the bug. Thus the performance knouledge is
modified to learn from mistakes. In fact, in some instances
the bug discovered is abstracted and summarized in such a
way as to prevent the future construction of programs uWith
similar bugs.

The design of HACKER elucidates several important
concepts in problem solving, such as: the relationship of
efficiency and modularity, the idea of a "linear
approximation”, the idea of a "bug", the relationship
between learning and problem-solving.

Thesis Supervisor: Seymour A. Papert
Professor of Applied Mathematics

To
The Maharal of Prague
(Rabbi Judah Low ben Bezalel! ¢.1525-1689)
who noticed that
"And God created man in His own image"

is recursive.

Acknouwledgements

I would like to express my thanks to all of the people who
aided and encouraged this work:
to Seymour A. Papert, my supervisor, and
to Marvin L. Minsky, a reader, who with Seymour Papert
created the intellectual environment in which this kind
of work is possible;
to Patrick H. MWinston, a reader, whose criticism and
encouragement were very valuable:»
to Terry Winograd, Drew V. McDermott, Ira Goldstein, and
Allen L. Broun, with whom I had many long discussions
and who asked just the right questions at the right
times;
to Carl Hewitt, with whom 1 disagree almost everywhere,
but whose techniques are often valuable;
to Richard Greenblatt, for getting me started on this
work;
and especially
to Bill Gosper, whose philosophical outlook on the nature
of the art and science of programming has had a
profound inflbence on my ouwn outlook;
to Joel Moses, whom I cannot bully;
and to Julie Sussman, who contributed to the technical
content, presentation, and preparation of this

document, as well as to the sanity of the author.

Table of Contents

Abstract.Oo-oocclo.nooooo.o.on'..oool.oo00'00
Dedicationo.ooo'o-'oooooo'o'.o‘oo-oooa.noloit

ACknON'BdgementS.-.o....-........o.o.o..--o.o

—f
o)
o
®
(=]
-+
(]
Q
3
lad
L]
3
-+
(7]
N 0O O & wN

II. The scenario-.o"cc'ooooooCt'lioo'coooo l

IIIQ OVEPVieu Of HACKEROOQ.O."l'..'.......l 38

Iv. Scenario Section 1 Explained..vvvee.... 4B
V. Scenario Section 2 Explained.evvvves... 59
vVI. Scenario Section 3 Explainedivseeenen.. B7

VII. Scenario Section 4 Explained........... 84
VIII. Scenario Section 5 Explained.evveusen.. 94
IX. Types of BUGS. ittt iiiiiiiieennnneens. 98
X. Generalization and Subroutinization....127
XI. Critic Compilation.eeeeeeeeesnnsenneesald7
XII. Details of Program Construction........145
XIII. The Protection Mechanism.......000vv...153
XIV. Anomalous Situations.......0o0vvinve....158
XV. Formal Ubjec{s.........................155
XVI. Conclusions.....................,......188
Notes..187

Bib'iographuocD-O.lo.oo-‘nloolooo‘o...coo‘oo.lss

Introduction 6 —

I. Introduction

What is a skill? We say that a plumber is skilled at
plumbing, an engineer is skilled at design. Just what do we
mean? One dictionary [Note 1] says:

"The ability to use one's knowledge effectively and
readily in execution or performance"

"A learned pouwer of doing a thing competently"

An important property of a skill is effectiveness. It
wouldn’t be enough to memorize all of the facts in the
plumber’s handbéok, even if that could be done. The
knouledge Qould not then be in an effective, usablie form.
One becomes skilled at plumbing by practice. MWithout
practice it doesn't all hang together{ When faced with a
problem, a novice attacks it slowly and awkwardly, painfully
having to reason out each step, and often making expensive
and time-consuming mistakes.

Thus the skill, ﬁlumbing. is more than just the
information in the plumber’s handbook; it is the unuritten
knouwledge derived from practice which ties the uritten

knowledge together, making it usable.

Just uhat is this unuritten knowledge? How is a
skilled person different from a knouwledgeable,
unskilled one?

What is the process by which a person develops a
skill through practice? o

Introduction 7

The research reported in this document is an attempt to
provide these questions with precise, mechanistic ansuers by
the construction of a computational performance model, a
computer program which exhibits behavior identifiable with
skill acquisition. The computer program [Note 2] is HACKER,

@ probliem solver uwhose performance improves with practice.

A theory of problem-solving:

A human problem-solver, when attacking a problem (in
his domain of competence), first tries to classify the
problem into a subclass for which he has a solution method.
If he can, herapplies that method. If he cannot so classify
the problem he must make Up a new solution method using some
general problem-solving techniques applied to his knouledge
of fhe domain., In constructing the new method he is careful
to avoid certain pitfalis he has previously encountered and
he may use methods previously constructed to solve
subproblems of the given problem. The new method is
remembered so that it can be used to solve similar problems
in the future. 1If any method, new or old, fails on a
problem for which }t is expected to work, the failure is
examined and analyzed. As a result, the metﬁod may be
modified to accommodate the new problem. Often the mode of
failure, when understood, can be abstracted, classified, and

remembered as a pitfall to avoid in the future when

Introduction 8

constructing new methods.

How HACKER embodies this theory:

HACKER, when attacking a problem (in the Blocks Worid
(Note 3]), first checks to see if he has a program in his
Ansuer Library whose pattern of applicability matches the
problem statement. I[f so, he runs that program. [f not, he
must write a neuw program, using some general knouwledge of
programming techniques applied to his knouledge of the
Biocks World. In constructing the new program he is careful
to avoid certain bugs which he has previously encountered
and he may use subroutines previously constructed to solve
subproblems of the given problem. The new program is stored
in the Ansuer Library, indexed by an applicability pattern
derived from the statement of the problem for which it uas
written, so that it can be used to solve similar problems in
the future. [f any program, new or old, manifests a bug
when it is applied to a problem which matches its pattern of
applicability, general debugging knouwledge is used to |
classify and understand the mode of failure. As a reéult.
the program is patched to work in the new case. Often the
bug itself can be éeneralized and remembered, to be avoided
in the future when constructing new programs.

I consider the previous parallelism truly
fundamental. [often wax anthropomorphic because 1

believe that HACKER represents hou people use
knouwledge to do and learn. I refer to HACKER as

—

Introduction 9

"he" and say such things as "he knouws" or "he
notices". In these statements I am not trying to
imply that the detailed mechanisms in HACKER reflect
analogous mechanisms in people, but rather that the
development of HACKER was guided by introspection on
my ouwn problem solving behavior along the lines of
this parallelism.

A theory of skill:

From this point of view a skill is a set of ansuer
procedures, each indexed by a description of the problem
types for uwhich it is appropriate, along with a set of

pitfalls to avoid when it is necessary to construct a new

ansuer procedure. A skill is acquired by the construction
of such a store of "runnable" knouwledge -- canned ansuers to
problems -- by "compiling” it from knouledge of the problem

domain suppiied in a more "intelligible" form -- a form
designed more for communicatioﬁ than for use as ansuwers to
probliems. One becomes skilled in a particular domain by
going through a training sequence (apprenticeship) in which
one is confronted with a series of increasingly complex
problems. The solution to each neu problem builds on the
skill developed by former problems or points out some
modification or generalization required. Thus, a skilled
problem-solver -- ene with an extensive store of runnable
knouledge -- should find it easier to learn to solve a neuw
class of problems than a relatively unskilled one. Practice
is a process of incremental compilation. In this

compilation, knouledge of the particular problem domain is

Introduction 180

combined with more general knouwledge about construction and
debugging of procedures. The unuritten knouledge which is
acquired during practice is that knouwledge implicit in the

structure of the procedures constructed.

This theory in historical perspective:

Problem-solving has long been an important issue in
Artificial Intelligence. Efficiency and extensibility are
among the traditional desiderata for an intelligent problem-
solver, Historically, problem solvers have fallen
‘naturally into two classes, the "experts" and the
"generalists" (though we rarely see the pure form of either
class). The experts are optimized for efficiencu, the
generalists are optimized for extensibility.

The experts are huge, nearly incomprehensible systems
Wwhich achieve impressive results in a narrow field but are
difficult to extend. These systems are written by expert
programmers who are also experts in the narrou field for
Which the program is wuritten. In this class we find DENDRAL
<Buchanan 1869>, SHROLU <Winograd 1971>, Greenblatt’s Chess
Progfam <Greenblatt 1967>, and MACSYMA <Bogen 1973>.

The generalists claim generality of applicability and
easy extensibility, In this class we find such programs as
QA3 <Green 1968a,b> and GPS <Newell 19539>, Typically a

generalist applies a uniform procedure which massages a

Introduction 11

uniformly represented data-base which is'hfgh in declarative
and low in impeéative content. (The resulting system is
usually "complete", in some mafhematical sense.)
Generalists, however, solve feu interesting problems -- for
tuo reasons. First, they are plagued by combinatorial
explosion. That is, as the number of data-base facts is
increased the performance declines precipitousiy, even on
problems that were solvable in the smaller data-base.
Second, the language used to represent knoufedge in these
systems -- often some form of predicate calculus -- is
extremely weak in expressivity thus making it very difficult
to formalize the statements of problems.
Uf course, one might argue that the LISP interpreter
is a "uniform procedure which massages uniformliy
represented data". Thus, since most of the "expert"
programs cited are written in LISP the classification
proposed is useless. This misses the point., The data
massaged by the LISP interpreter is extremely high in
imperative content; indeed, it is a program.

In a sense, the first class of probliem solver is too
complex to be understood and the second class is too simple
to work. The experts have good performance but lack
extensibility and the generalists are (perhaps) extensible
but have unacceptable performance. How can we combine the
desirable,features‘of each class of problem solver? UWhat
are the organizational characteristics of each type of
problem solver which contribute to the features desired?

The expert program offers performance. I claim that

the performance is due to the procedural representation of

Introduction 12

knowledge in the expert. For each kind of probliem it knous
houw to solve, a procedure is available which, uhen
interpreted, performs the required manipulations in a
directed way. It implicitly "knows" (embedded in the
structure of the procedure by the programmer) the correct
sequence to perfornm, including the order of steps and how to
avoid or fix destructive interactions betueen them. It
knows to set up for steps that will later need some
condition to be true by prior execution of steps which
achieve the required prerequisites. An expert program is a
fully developed "Ansuer Library".

The generalist program is said to be extensible. It
can "easily" assimilate a new fact (though the new fact may
be very difficult to express). In a predicate calculus
theorem prover |ike 0A3, the data-base consists of a set of
true propositions. Knouwledge expressed as true propositions
is additive in that any new true proposition can be added to
the data-base without changing any previously resident
proposition. Thus we see that the desirable feature,
extensibility, is the result of modularity of the knouwledge.
Modularity, however, in a less extreme form, means locality
of interaction, The feature we desire is that the addition
of a new fact to the knowledge base of the system should not
require a massive edit of the old information. Knouwledge,
which is at best additive, should be at worst only locally

interactive.

Introduction 13

Now, the bind we are in should begin to reveal itsel f.
The efficiency of procedural representation is a result of
interaction! Sequencing, setting up, cleaning up,
interfacing -- the very essence of the procedural concept
which provides the sense of direction which the generalist
lacks, and thus the performance of the expert, but destroys
its modularity -- are the specifications of the interactions
between components of knowledge. We see that the expert is
efficient because it is not modular! No wonder it is
difficult to build an efficient and extensible prablem
solver!

I's the situation hopeless? The HACKER theory avoids
the diffigulty_bg storing the knowledge in two different
forms: A modular representation, for communication with
the user of the problem solver, and a highly interwoven and
thus efficient procedural representation for performance.
This, of course, requires a method of translation from'thei
modular form to the efficient procedural representation of
the knowledge -- that is, a programmer. We see that we need
@ programmer component in a problem solver which features an
extensible knowledge base and efficient per formance. The
programmer also bugs us an extensible command language.
After all, we can always ask our programmer to impiement a

new feature...

Introduction 14

Evolutionary Programming:

It seems that we need an "automatic programmer"”
[Note 4] as a component of an extensible, efficient problem
solver. Many people working on automatic program synthesis
expect that a system can be built which uillg given a
description of the'problem to be solved, synthesize a
"correct" program [Note S5]. | believe that this approach is
a mistake. In real situations the complete specification of
a problem is unknown, and what we really see happening is an
evolutionary process. The sloppily formulated problem is
given to the programmers, who produce a concrete
realization. The users then complain about those properties
of the realization which do not refiect their needs. This
process iterates until the users are satisfied. As the
users debug their ideas of what they need, the programmers‘
debug their programs. At no point in this process do either
the users or the programmers believe that they fully
understand the problem. The iteration usually doesn’t
terminate because the users continue to evolve new ideas and
requirements; so the programs must continually undergo
revision due to "bugs" resulting from a misunderstanding or
changing of intent: This remains true even in the case
where the users are the programmers. Consider hou difficult
it would be to completely specify an unuritten time-sharing
system or compiler. It is monstrously difficult to

precisely document even running systems. If this weren’t

Introduction 15

enough, what would we do about a program to understand
English or play chess? | belijeve that the only hope of
producing a useful automatic program synthesizer lies in
capturing the concept of program evolution. In the
evolutionary approach, if a program is to be extended to
satisfg a new type of request, the neu feéture is
implemented by building on previously constructed components
or subroutines. If an old feature is to be extended to a
new situation the code which implements that feature is
modified to take into account the newly imposed
requirements. If a new piece of knowledge of the problem
domain is to be included then the relevant parts of the
gxiating‘pfogram are dissected out and patched
abpropriatelg.

The advantages of such a scheme are manifold. First,
there is the efficiency of using old subroutines in neu
features, so that we don't have to re-invent the wheel for
each new vehicle type. Second, when trying to extend an old
feature to a new situation, we can try the old feature on
the new situation, and see how it fails. This focuses
attention on the source of the difficulty, lowering the
problem complexity: Thus, we extend existing code to neu
situations by "debugging" the cause of failure in the neu
situations. The old code serves as a "plan" for the new
code. Not only are we saved from re-inventing the wheel but

if new information becomes available which improves the

Introduction 16

wheel, any program uhich uses the uheel subroutine will
benefit from the improvement.

This scheme has a major disadvantage, as well. At no
time does the programmer step back from the local patching
and fixing to discover a better organization. This is a
major problem which I have not attacked.

Debugging, then, is an important aspect of programming,
and evolutionary programming is a natural paradigm for skill
acquisition. But debugging is even a bigger and more
powerful idea than that. It is important in other kinds of
learning, as well. Winston's system [Note 6] for learning
descriptions of simple structures suitable for recognition
may be viewed as a "theory" débugger. Indeed, Winston’s
description nets may be considered theories of the
structures they describe. A description net has a "bug" if
it matches a scene which it shouldn’t or vice versa. A bug
is fixed by "patching" the description net. Thus debugging
is an important concept in generalization from examples.

The idea of thinking of bugs as important concepts
rather than unmentionable pests may seem surprising. But ue
suspect that isolating and systematizing them may become as
important in psgch;Iogg as classifying interactions has

become in physics! (See <Minsky 1970>, section 3.)

Scenario 17

II. The Scerario

A. At this point please notice an important structural
property of this document: This chapter, the Scenérib. is
critical to the entire document. Its examples are basic to
most of the succeeding chapters. The Scenariq is an
annotated conversation with HACKER, putting him through his
paces. In this chapter you are not to expect to understand
how HACKER accomplishes his tasks, but rather just what he
does accomplish. The succeeding chapters will, in detail,
examine the structure of HACKER and the method by which each
step is accomplished. Thus the Scenario is a living index
~to the remaining chapters and holds this entire document

together.

B. In the text that follous we Will encounter various
scenes in the Blocks World, containing a table and various
blocks. The primitives for moving objects allow that only
one object be moved at a time; thus an cbject to be moved
must have no other objects on it. The movement primitives
also require that no two blocks occupy the same place at the
same time. If either of these tuwo conditions is violated by
a HACKER program, an error condition is the result. All

errors transfer control to the debugging routines in HACKER‘_

Scenario 18

C. In the text a distinction is made between the program-
manipulating (uriting/debugging) part of HACKER and the
programs manipulated. The program manipulated is often
called the performance program, and the manipulator is often'

referred to (somewhat imprecisely) as HACKER.

D. The Scenario is broken up into sections in which a
particular cluster of concepts is being learned, and
subdivided into problems, the specific situation and command
wuhich HACKER is given., Each scene is set up by the trainer
before the problem statement is given, so a probiem really
is the combination of the scene and the problem statement.
Thus HACKER is really being asked: "In this situation howu
would you ...?". The Scenario is, however, a éontinuous
training sequence, so any general principles learned are

retained throughout the rest of the Scenario.

Scenario 19

The Scenario

Section 1: Learning about CLEARTOP

Initially, HACKER has no performance programs other

than the Blocks World primitives. These, however, are

sufficient for the first problem. UWe set up the scene:

TABLE
Problem 1.1: (MAKE (ON A B))

Without hesitation, HACKER performs the movement required to

achieve the goal. The scene now looks |ike:

I now introduce a neu object, C:

Scenario 28

Problem 1.2: (MAKE (ON B C})

This time the performance program fails because it is just a
call to a primitive and cannot move B without moving A. The
angry primitive delivers an error message. The program
manipulator receives the error message and computes a patch
to the performance program which, When rerun, nouW wWorks:

A is put on the TABLE

B is placed on C

The world now looks like:

What has been learned? Consider:

PN

Scenario 21

Problem 1.3: (MAKE (ON C A))

Now, with no hesitation, the program resulting from 1.2 puts

B on the table, then puts C on A, as required. This results

ins

TABLE

HACKER has learned the skill of putting one object on
another when the first has something on it. But that’'s not

all! Consider the new scene:

Problem 1.4: (MAKE (ON A B))

Scenario 22 —

The performance program written in 1.2 solves this problenm,
too, without modification or error! The patch made was

sufficiently general:

Steps: Wants to put A on B
Notices C,D on A
Puts C on TABLE
Wants to put D on TABLE
Notices E on D
Puts E on TABLE
Puts D on TABLE
Puts A on B

This results in:

Scenario 23

Section 2: Learning that ON-chains must be built from the

bottom up.

Consider the scene with 3 blocks - A, B, and C:

] o] [

TABLE

Problem 2.1: (MAKE (AND (ON A B) (ON B C)))

In the absence of any known caveat, HACKER's general
pProgramming knouwledge assumes that conjunctive subgoals can
be achieved sequentially and independently, a good first-

order theory. The initial program thus:

Step 1: Puts A on B
Step 2: MWants to put B on C
Notices A on B (as learned in section 1)

Puts A on TABLE

HACKER watches hisbprogram run and at this point realizes
that there is a bug because step 2 requires undoing the
result of step 1. HACKER analyzes the bug and, as a result,
interchanges the steps, resets the scene, and reruns the

program. The second version Works: B is put on C, then A

Scenario 24

on B. The resulting 3-touwer looks like:

c

l TABLEl

Not only is this bug fixed, the program patched, and

this problem solved; but HACKER will not fall into this trap
again! The structure of this bug is abstracted and

remembered so that:

Problem 2.2: (MAKE (AND (ON A B) (ON C D) (ON B C)))

Now HACKER will write a program to build this 4-high touwer
correctly the first time using the caveat learned in Problem
2.1.

Thé kind of knouledge learned in this section is
different from the kind learned in section 1. MWhereas in 1

a library routine was improved in generality, in 2 a general

principle about Blocks programming was learned.

Scenario

25

Scenario 26
Section 3: Learning about space allocation.
The primitive block movers can place an object only in

a free (empty) place. MWhat do we do about making free space

when there isn’t any? First consider:

Problem 3.1: (MAKE (ON C B))

This problem is solved immediately because there is space

for C on B to the right of A:

By the way, if there is a choice, the place chooser wilil
aluways choose the middie of a block to put another on.

Suppose we have:

Scenario 27

Probliem 3.2: (MAKE (OGN C B))

This time the performance program fails because there is not
enough room on B for C. (NB This is not the same problem as
1.2, In 1.2 the difficulty was that the object to be moved
had something on it. Here, there is not enough room on the
specified surface to accommodate it.) The angry primitive
delivers an error message. The program manipulator receives
the error message and computes, from more general knowledge

about space, a patch to the performance program, which when

rerun nou:

Pushes A to the left on B

Puts C on B

This results in:

Scenario 28

A C
B
TABLE
Suppose we now introduce O:
A I C
B
TABLE
Problem 3.3: (MAKE (ON D B))
The strategy used in 3.2 (call it "compacting") doesn’t work
here -- there is no place to push A or C. Another strategy,
call it "flushing", is found, which removes objects until

there is enough space. The program is patched so that, if
compacting fails to free up enough space, then flushing is

tried. In this case HACKER:

Removes C from B and places it on the TABLE

Puts D on B (where C was)

o

Scenario 29

Now the world looks |ike:

Sometimes we want a problem solved with certain restrictions
on how it is to be solved. Suppose in the current scene we
want HACKER to (MAKE (ON C B)) without allowing him to

remove A. We stipulate this by:

_Probiem 3.4: (PROTECT (ON A B))
(MAKE (ON C B))

HACKER will find, as above, that he cannot push anything
over, so either A or D has to go. But we have forced A to

remain, so D is flushed and C is placed where 0 was.

HACKER has been trained to try compacting before flushing --

@ non-optimal strategy. Consider the scene:

Scenario 30

TABLE

Problem 3.5: (PROTECT (ON C B))
(MAKE (ON D B))

HACKER first tries compacting. Only C has open space on its
left, so C is pushed to the middle of B. There is still not
enough space for 0 on B. Next, HACKER tries flushing A to
make space for D. This cannot help because C is still
biocking the middle of B and C cannot be flushed. Things
are not allowed to get this far, however. As A is being
moved HACKER notices that C suddeniy has space on its left
again! So the compactness of the top of B has been violated
by removing A. As in Scenario section 2, an analysis
indicates that the flushing strategy must be tried before
compacting is tried, if best results are to be expectéd.

The interchange is made and the new version uWins:

A is removed from B and placed on the TABLE

D is placed on B

Scenario 31

This results in:

A neuw scene is needed for probliem 3.6:

TABLE

Problem 3.6: (PROTECT (ON C B))
(MAKE (ON A B))

Since Cvcannot be flushed, it must be pushed over. But C
has D on it and the physics of the Blocks World requires
that D must be removed before C is pushed. (Only one object
can be moved at a time.) The initial PUSH program, |ike the
initial ON program, does not consider this. Thus it fails

for the same reason that the initial ON program failed in

Scenario 32

1.2. HACKER notices the similarity and extracts the patch
to ON made in 1.2, subroutinizes it, and replaces the patch
by a subroutine call. He also patches PUSH with a call to
the same routine. The program now works. It puts D on the

tablie, pushes C over, and puts A doun on B, resulting in:

c A

TABLE

S —

Scenario 33

Section 4: Simultaneous spatial allocation.

We set up the scene:

Problem 4.1: (MAKE (AND (ON A C) (ON B C))

TABLE

As in probiem 2.1 HACKER urites a program which achieves the

goals sequentially and independentiy:

Step 1: Puts A on middle of C
Step 2: Puts B on C

As learned in 3.2, step 2 must push A rather than

remove it because step 1 protected A on C.

HACKER uwatches his program run and is disturbed by the fact
that A was moved tuice in the same probiem. (This is a
piece of "esthetic" knowledge.) From this he Iearné a neu
caveat: 1If more than one object is to be placed on another
object, a plan must first be made for where they are to go.
A patch is made to implement the fix and the program is

rerun, The result is:

Scenario 34

c

I TABLEI

To see what HACKER has learned, consider the scene:

TABLE

Problem 4.2: (MAKE (AND (ON A D) (ON B D) (ON C D)))

How does HACKER do the problem this time? He uwrites a
program uwhich takes into account the interdependence of the

subgoals learned in 4.1. The result is a 4-step program:

Step 1: Plans where to put A, B, and C on D
Step 2: Places A on D as planned.
Step 3: Places B on D as planned.

Step 4: Places C on D as planned.

Now the blocks get placed correctliy the first time:

—

Scenario

35

Scenario

Section 5: Shouwing Off

This last problem brings together all the skills developed

so far:

D F C

A E ' B
' TABLE.

Problem 5: (MAKE (AND (ON D A) (ON B E) (ON A E) (ON C E)

(ON F D)))

HACKER nou urites a program which works immediately:

Step 1: A plan is made for the top of E
F is placed on the table
Step 2: A is placed on E
D is placed on the TABLE
Step 3: B is placed on E
C is placed on the TABLE
Step 4: C is placed on E
Step 5: D is placed on A

Step 6: F is placed on D

36

s—

Scenario 37

rThe result looks like:

Overvieuw 38

III. Overview of HACKER

Before entering the detailed discussion of how HACKER
attacks the Scenario, it is appropriate to stand back and
look at his overall structure. In this way we wWill
establish a vocabulary of HACKER's anatomy and some idea of
the various functions and ihterconnections of his parts.

Please turn to figure 1. In this "flow diagram" HACKER
has been broken up into some parts that we will refer to
throughout the text. Polygons represent computations and
circles represent bodies of knowledge. Control flowus along
the solid arrows and data flous along the dotted arrous;
(Many of the divisions are purely conceptual and do not
really represent segmentation of the actual program. The
bodies of knowliedge are, for example, all uniformliy
represented as items and methods in a CONNIVER data-base
[(Note 7). The diagram is incomplete in that only major
paths are shoun.)

HACKER accepts commands, i.e., problems to be solved,
from the user. A problem is stated to HACKER as a pattern,
such as (MAKE (ON A B)). UWhat is then done wWwith the
problem? First HACKER asks himself: "Do I know hou to
solve problems of this general kind?". That is, is the
problem, as stated, an example of a generalized problem for
which a generalized method of solution is known?

Specifically, is there a program in the Answer Library whose

SOILIHO
40
S3dAl

song
40
S3dAl

L 94nb1y

-

AHITIVO Advuan
" S.OILIYD
I
|
| | I

r——-—--- T————=—- |m e m - tom—m———-——

! o ¥ ¥ ! AdvHE \
oNg WYHDOHd Wvdoodd | i_ [3oa31mONY
HOLVd 3ZID1L14D 3S0d0oYd n aTHOM

" fonq y 3 : “ SHO019
| | 1
[}
| “ _
|
! |
| 1
ong I “
JZIHYWNNS " I
|- !
! i
’/ /
~ \
i S
I S~
¥
ona AYYHEN AHVHEIT
¥ Adissv10 i ST SHNY 257777 wameny
q v_o,_\
anoa HILN3

Overview 49

pattern of applicability matches the problem (has the
problem as a substitution instance)l? Thus, for example, the
program:
(TO (NAkE (ON a b))

step 1

step 2

step 3

o)
would match the probliem statement. Here we see a convention
used in this document. Pattern matching syntax is
exceedingly compliex (for good reasons). Houwever, the fine
points of pattern matching are usually irrelevant to the
essential ideas displayed. In this document precision will
be sacrificed for legibility wherever possible, by
simplifying the pattern matching syntax so that variables
Wwill be distinguished from constants by giving them lower-
case nahes. Variable instances which are syntactically
distinguished in the real HACKER, only for some
uninteresting subtlety, will appear here identically. For
more complete discussions of pattern matching see [Note 8].

Another thing to note is that the atoms MAKE, ON; A, B

are all just abstract pattern sgmbots. They have no a
priori meaning to ;he HACKER-structure, but are defined by
their use in the various knowledge bodies. The reader
should be able to infer their meanings from context. MWe
Will meet other symbols which do have a priori meaning. TO,

for example, is the definition syntax for an Answer. Others

Overview 41

Will be explained as they appear,

Suppose that an appropriate program is found in the
Ansuer Library. It is then run (interpreted step by step).
The running of an ansuer may cause subproblems to be
generated, initiating a recursive call to HACKER (not showun
in the figure; boxes which can initiate such recursive calls
are marked with a star). If the program is successfully
executed, HACKER returns control to the user. The user‘can’
then supply another problem, or if he is unhappy uwith the
result, he can tell HACKER to restore the state (of HACKER
and his world) to the one prevailing before the last command
was executed, and rerun the last problem in CAREFUL mode --
in which HACKER is careful to check everything he does. As
described so far, HACKER is a pattern-directed problem-
solving interpreter |ike PLANNER [Note 9]. This is fine as
long as everything is Wworking correctly, but what happens
when either

1. There is no program in the Ansuwer Library matching
the problem statement?
or
2. The program fetched fails to operate correctly in the
prevailing problem environment?
HACKER is a combuter programmer! If he doesn’t have code
available to solve a problem he writes some, and if any of
his programs fail to operate correctly, he debugs them.

Consider the first kind of problem, that there is no

Overvieuw 42

knowun program for solving the problem given. (This kind of
problem can easily come up in debugging. The debugger may
suggest the insertion of a patch to achieve a specific
purpose. There may be no library routine around for that
purpose, however.) Control passes to the program proposer
(often referred to as the code-uriter or code-builder)

which, using information about the problem domain (found in
the Blocks World Knowledge Library) and about generalized
programming technique (found in the Programming Techniques
Library), proposes a program to solve the problem. Usually
there are several possible ways of writing a program to
solve a particular problem. The program proposer attempts
to select the most specific plan available (as measured by a
fairly gross syntactic criterion). If that eventualily fails
(it may be undebuggable or unrefinable) more general methoas
are tried until one is found to be usable. Thus, the
program proposer contains an implicit combinatorial search.
In the discussion I will only show the ultimately succeésful
paths. The program proposed to solve a particular problem
may be entirely new, or it may be just a reorganization of
previously uritten code. For example, code written to solve
some previoys prob}em may be generalized to work in the
current case. Thus new subroutines may be formed and placed
in the Answer Library. All code written by HACKER is
extensively commented in HACKER's Notebook for debugging and

future subroutinization.

Overvieuw 43

The proposed progfam is then passed to a criticizer,
Wwhich checks to see if the program proposer has fallen into
any of the known traps. [f a potential bug is found, a
patch is concocted to prevent it. The patch is commented in
HACKER’s Notebook and the program is recriticized. If no
potential bugs are found, the new code is then passed to the
interpreter for running (all new code is run CAREFUL 1y).

Suppose a piece of code is run and a bug becomes
manifest (it was overlooked by the criticizer). A call is
made to the error system, which analyzes the sifuation in
light of general knowledge about the types of bugs that can
occur. The bug is classified. In some cases, uwhere excess
caution was applied and we have a false alarm, the program
is continued at the point of interruption. In other cases,
it is a known type of bug for uwhich a patch can be made, and

sometimes abstracted (summarized as a critic) so that it

Wwill not be overlooked at criticism time in the future. 1f

the bug cannot be classified it is called an Anomélous
Situation for which HACKER proceeds in a special mode.
Underlying this whole mechanism is a classical |
(PLANNER-1ike) pattern-directed problem solver. What we are
looking at, the HA&KER-Structure, is the mechanism by uhich
the search is directed, and by which the results of search,
both success and failure, are Where possible generalized and
summarized for future use. HACKER-Structure is the

mechanism by which skill is acquired.

Overview 44 —

This organization, the HACKER-Structure, has an
important virtue: The knowledge of the Blocks Worid is not
spread uniformiy throughout the system. In the initial
(unskilled) state of HACKER, specific Blocks World
information is contained only in some primitives in the
Answer Library and in some definitions and facts contained
in the Blocks World Knowiedge Library. As HACKER practices
(and becomes more skilled) the Answer Library, HACKER’s
Notebook, and the Critics’ Gallery come to contain a deeply
- intertwined mess of Blocks World Knowledge and Programming
Knouwledge. The initial programming knowledge -- as
contained in the bodies of knouwledge -- Programming
Techniques Library, Types of Bugs, Types of Critics, and
Types of Patches -- as well as the structure of HACKER, is
generally applicable to any problem domain (though it is
sufficientiy complete only for a world as simple as the
Blocks Worid). Thus HACKER possesses a very strong kind of
generality: The problem domain is independent of the
problem-solving mechanism. 'HACKER can therefore be applied
to other domains u}thout modification, though the
Programming Techniques Library, Types of Bugs, Types of
Critics, and Types of Patches would certainly have to be
extended. Extension of HACKER may not be all that easy.

Though the initial Blocks World knouledge is maintained in a o

Overvieu 45

very modular form, the programming knowledge is not at all
modular. Any addition to or change in the Programming
Techniques Library Wwill require classification of the
appropriate Types of Bugs, Types of Critics, and Types of

Patches.

Section 1 48

IV. Scenario Section 1 Explained

In problem 1.1 HACKER examined his Answer Library for a
subroutine whose pattern of applicability matches the

problem statement:
(MAKE (OGN A B))
He finds a subroutine which matches:

(TO (MAKE (ON a b))
(PUTON a b))

This subroutine is just a call to the primitive block-moving
subroutine PUTON which puts the object a (the value of
variable a), on the surface b (the top of any flat object is
a surface), provided that there is nothing on a and there is
a place for a on b. Thus, when this answer is run, it
successfully solves problem 1.1.

This subroutine we dredged out of the Answer Library
must be understandable by HACKER, for debugging. Thus
HACKER must be able to comment it, and its parts. Special
structures are pro;ided to supply the program and its parts
Wwith names for use in cominents. In this case we see that
the program is given the name MAKE-ON and the first (and

only) step is named MO1l:

Section 1 47

(TO (MAKE (ON a b))
(HPROG MAKE-ON } .
(LINE MO1 (PUTON a b))))
For the sake of clarity I will often leave out these
syntactic details when they are irrelevant to the
discussion.
HACKER’ s Notebook contains some initial comments about

this program:

(GOAL MAKE-ON (MAKE (ON a b)))
(PURPOSE MO1 (MAKE (ON a b)) MAKE-ON)

These are not very exciting, but such comments can be very
important.

In problem 1.2, this simple program cannot work because
A is on B so B cannot be moved by PUTON (only one object can
be moved by a primitive!). The probiem, (MAKE (ON B C)),
however, matches the applicability pattern of MAKE-ON so it

is tried. The bug is manifest in PUTON who complains:
(BUG UNSATISFIED-PREREQUISITE (NOT (ON A B)))

It is saying: "I cannot do my job because A is on B." This
calls the debugging mechanism, specifically a program for
UNSATISFIED-PREREQUISITE type bugs, which attempts to

classify the bugs into subclasses which determine the kind

Section 1 48

of action to be taken. The subclassification is based
solely upon the structure of the process in which the bug
occurred, and not on any properties of the problem domain.
Details of bug classification, and what | mean by the
structure of the process, are made clear in Chapter IX,
Types of Bugs. The bug classifier decides that this is a
bug of the form PREREQUISITE-MISSING (an UNSATISFIED-
PREREQUISITE might, for example, be caused by the
prerequisite being clobbered). Just what is the generalized
prerequisite which is missing, and how should it be patched?
Looking up the stack, HACKER finds the line, MOl, that the
bug appeared in. The code for that line is (PUTON a b). He
then does a pattern-directed search of the data-base lodking
for prerequisites of (PUTON a b). One such statement is

explicitly in the Blocks World Knouiedge Library:

(FACT (PREREQUISITE (PUTON x y) (PLACE-FOR x y)))
Is this the guilty party? A subproblem is generated (which
requires code to be written to answer it; we Wwill ignore

this detail):

(TEST (PLACE-FOR a b))

Section 1 43

This test returns TRUE, there is a place on b=C for a=B. So

this cannot be the problem. Looking more deeply, HACKER

finds:

(FACT (PREREQUISITE exp (CLEARTOP obj))
(HAVE () (MOVES exp obj)))

Wwhich says: "An expression has the prerequisite
(CLEARTOP obj) if its execution will move that object."” But

HACKER knows that the primitive PUTON moves things:

(FACT (MOVES (PUTON x y) x))

Hence, another subproblem is generated to see if this is the

culprit (also writing code to answer jt):
(TEST (CLEARTOP a))

But (CLEARTOP a) where a=B is false so this must be the bug-
causing prerequisite. (If none can be found, something
strange is happening, see XIV, Anomalous Situations.) The

bug is finally classified:

(PREREQUISITE-MISSING MAKE-ON MOl (CLEARTOP a))

How is the bug to be fixed? The bug description (above)

from the classifier is sent to the patch generator who looks

Section 1 50

up a patch:

(FACT (PATCH (PREREQUISITE-MISSING prog line preregq)
(NEWLINE prog
(ACHIEVE prereq)
(((ACHIEVE prereqg) line)))))
which says, "To fix this kind of bug, insert a new line in
the buggy program to achieve the prerequisite." The inserter
then inserts (see XII, Details of Program Construction) a

line to (ACHIEVE (CLEARTOP a)) for MOl in the program MAKE-

ON. The program now reads:

(TO (MAKE (ON a b))
(HPROG MAKE-ON
(LINE L1 (ACHIEVE (CLEARTOP a)})
(LINE MOl (PUTON a p))))

The HACKER’s Notebook now also contains the "comment":
(PURPOSE L1 (ACHIEVE (CLEARTOP a)) MO1l)

HACKER then restores the state of the world to the beginning
of MAKE-ON, and restarts the program there. |
Note: Like MAKE, ACHIEVE has no a priori meaning to HACKER.
(ACHIEVE exp) is used so as to mean: "If exp is untrue,
MAKE it true".

Line L1 is run, but there is nothing in the Ansuer
Library to match (ACHIEVE (CLEARTOP a)). Thus a call is

made to the code-uriter for help. The code-wuriter looks

Section 1 51

around for a fact matching:
(CODE (ACHIEVE (CLEARTOP a)) code)

[t finds nothing quite so specific, but in the Programming

Techniques Library it comes up With:

(FACT (CODE (fun pat) code)
(HAVE (mean) (MEANING-OF pat mean)
(CSETQ code !"(fun mean))))
Sorry about the fancy syntax; | have no better way to wurite
it. Anyuway, this means that if you are trying to write code
for a function (in this case ACHIEVE) of a pattern (in this
case (CLEARTOP a)), and if the pattern has a meanfng. then
you can substitute the meaning for the pattern. Now, in the
Blocks World Knowledge Livrary there is:
(FACT (MEANING-OF (CLEARTOP x)
(NOT (EXISTS (y) (ON y x))))

ive. cleartop(x] <==> 3 y on [y,x]

Thus the probliem has been transformed from (ACHIEVE
(CLEARTOP a)) to (ACHIEVE (NOT (EXISTS (y) (ON y a)))).
Doesn’t look too géod, does it? But, in the Programming

Techniques Library, a nice fact is found:

Section 1 52

(FACT (CODE (ACHIEVE (NOT (EXISTS vars pat)))
(UNTIL vars (CANNOT (ASSIGN vars pat))
- (MAKE (NOT pat)))))

Thus the problem (ACHIEVE (CLEARTOP a)) has become:

(UNTIL (Q) (CANNOT (ASSIGN (y) (ON y al}))
(MAKE (NOT (ON y a))))

A program! UNTIL is a canned loop which binds the variables
which are the first argument. Then it runs its second
argument and terminates if truth is returned, else it runs
the third argument and repeats.i Hence these instructions
say: "Remove objects from the top of a until there are no
more." As each of these transformations is performed, the
old code is displaced by the results of the transformation,

80 now the subroutine reads:

(TO (MAKE (ON a b))
(HPROG MAKE-ON
(LINE L1 (UNTIL (y) (CANNOT (ASSIGN (y) (ON y al}))
(MAKE (NOT (ON y a)))))
(LINE MO1 (PUTON a bl)))
HACKER reruns the modified L1. UNTIL evaluates the
predicate (CANNOT (ASSIGN ...)). One of the primitive
abilities in the Blocks Worid is to be able to find an

object on a given one; in fact, the Answuer Library contains

a primitive: {We won’'t show you the body)

Sectjon 1 53

(TO (ASSIGN (u) (ON u v)) ...)

Thus, since A is on B and a=B, y is assigned to A and the
predicate fails. The program proceeds to (MAKE (NOT (ON A
BY}). The Ansuer Library is devoid of anything for this,

but we find in the Programming Techniques Library:

(FACT (CODE (fun pat) code)
(HAVE (suf) (SUFFICES-FOR pat suf)
(CSETQ code !"(fun suf))))
Just like the one about meanings, this says that we can

substitute a sufficient condition for a pattern. Nouw in the

Blocks World Knouledge Library we just happen to have:

(FACT (SUFFICES-FOR (NOT (ON x y)))
(EXISTS (z) (NOT (= z y)) (ON x z))))

i.e.: w~onlx,yl<==3 z=y onlix, z]

That is, for x not to be on y it suffices that there be a
z=y Which x is on. Note that here EXISTS has three
arguments: the list of bound variables, the qualifier, and
the quantified expression. This is the standard form of a
restricted existential quantifier, as used by
mathematicians. [have chosen to use this rather than the
logicians’ "equivalent", in which the qualifier and
quantified expression are conjoined, because this form is

more expressive, as uwe shall see. The previous instance of

Section 1 5S4

EXISTS, in the definition of CLEARTOP, used the unrestricted
quantifier. This is treated by HACKER as an abbreviation
for the restricted case in which the qualifier is empty.

So (MAKE (NOT (ON y a))) is displaced with
(MAKE (EXISTS (z) (NOT (= z a)) (ON y z))). In order to
make this true, we must pick out a zm=a for which it is
possible to satisfy (ON y z), aﬁd then use that z to make
(ON y 2) true. In the Programming Techniques Library it

says just that:

(FACT (CODE (MAKE (EXISTS vars qual scope))
(CHOOSE vars sels
(AND (TEST qual)
- (TEST (POSSIBLE scopel))
(MAKE scope)})
(CSETQ seis (SELECTOR vars)))

Hence, (MAKE (EXISTS (z) (NOT (= z a)) (ON y z))) is

displaced uith:

(CHOOSE (z) ((SURFACE z))
(AND (TEST (NOT (= z a)))
(TEST (POSSIBLE (ON y z))))

(MAKE (ON y 2)))
This program binds the variable z and selects a value for it
from the set of SURFACEs. It tests that z=a and that
(ON y z) is possible. If z passes the test, the
(MAKE (ON y z)) is executed and the CHOOSE returns. I[f 2z

doesn’t pass, the next surface is tried. It should be a

mystery to you how HACKER knous that z is to be selected

Section 1 55

from the set of SURFACEs, rather than, say, OBJECTs. This
mystery is resolved in chapter XV, Formal Objects. Let's
just assume here that it works by magic.

The new expression is run and z is assigned to a
SURFACE. (A SURFACE is either the TABLE or any OBJECT with
a flat top.) The surface is now tested. By some elementary

facts:

(FACT (CODE (TEST (NOT (= x y))) (NOT (= x y)))
(FACT (CODE (TEST (POSSIBLE exp))
(NOT (PROTECTED?. (NOT exp))))

the test is simplified. The first SURFACE chosen is aluways
JTABLE, TABLE=a and we have no reason to avoid putting y on
TABLE. (For an explanation of PROTECTED? see XILI,
Protection Mechanism.) So control passes to (MAKE (ON y z))
With z=TABLE. But this is a call to the MAKE-ON just
patched. Hence y=A is put on TABLE, then there are no more
y's on B so B is put on C and the program returns to command
level, solving problem 1.2. After problem 1.2 the program

in the Ansuwer Library is:

(TO (MAKE (ON a b))
(HPROG MAKE-ON
(LINE L1 (UNTIL (y) (CANNOT (ASSIGN (y) (ON y all))
(CHOOSE (z) ((SURFACE 2z))
(AND (NOT (= z a))
(NGT (PROTECTED?
(NOT (ON y 2)))))
(MAKE (ON y 2)))))
(LINE MOl (PUTON a p))))

Section 1 56

I have neglected to tell you about the comments tHat get
attached to each expression constructed by macro expansion
and displacement, indicating how it was constructed. These
‘Will be used in subroutinization. (See chapter X,
Generalization and Subroutinization. A description of these
commments may be found in XII, Details of Program
Construction.)

I have also neglected to show you, as you have been
warned, the failure paths uwhich were explored in the
construction of the code for CLEARTOP. You have only seen
the successful resuit of the search process. It is
important to notice that this result has been generalized,
summarized, and remembered as a patch in an important
routine in the Answer Library. Thus the search for how to
(ACHIEVE (CLEARTOP a)) need never be done again. Indeed, as
we will see in chapter VI this result will become more
valuable when it is further generalized to become a
subroutine in its oun right. This summarization process is
an essential part of skill acquisition.

This program, MAKE-ON, as modified in problem 1.2, is
just tested in 1.3 on an isomorphic problem. In 1.4 ue see
its generality. Rather than just patching in for one case,
HACKER has really uﬁderstood the problem with the original

MAKE-ON as demonstrated by its failure in 1.2.

Section 1 57

Philosophical Note:

Before continuing, I want to make a point of the
generality and extensibility of the methods demonstrated in
this section; It is important to see how independent HACKER
is of the problem domain. Clearly the Programming
Techniques Library cdntains facts totally independent of the
probfem domain, and to change problem domain we need only
supply a different Blocks World Knowledge Library. The
debugging of the unsatisfied prerequisite is also done in a
perfectly self-contained way. We might say that HACKER
really knows how to solve broblems in tuwo distinct subject
areas: the Blpcks World and Computer Programming, and he
uses techniques from both in this example. I like to say
that HACKER is an example-driven problem solver who operates
out of a "bag of tricks," special macros which offer, for
each kind of problem encountered, a chunk of program
appropriate to that kind of problem. A kind of trick which
is not in HACKER's Programming Techniques Library but which
Would be necessary for, say, a HACKER whose domain is
numerical analysis, would be the concept of successive
approximation, as }n square root. We all know the form of

program:

Section 1 58

<pick a first approximation>
LOOP(COND ((<is the approximation good enough?>
(RETURN <the approximations)))
(SETQ approximation (better approximation))

(GO LOOP)

To make an expert computer programmer out of HACKER one
Would have to formalize this into a FACT in the Programming
Techniques Library, along with all of the others I have
ignored. How many are there anyuway? Is it 50, 588, 58887

I do not know, but I bet it’s closer to 58 than 5888. I
have formalized several kinds of bugé'in HACKER as well. I
haven’t put in such obvious ones as "fencepost", but I
could. How many bugs does an expert programmer know? We’ll

have to wait and see.

Séction 2 539

V. Scenario Section 2 Explained

In problem 2.1, (MAKE (AND (ON A B) (ON B C))), there
is8 no subroutine in the Ansuer Library which matches the
problem. The code-uriter is then called for help. The
code-wuriter looks for a way to urife the required code.
There is a Programming Techniques Library method for AND of
any number of subgoals. The implications of this technique
are very complex and represent a major section of HACKER's
theory of programming because most bugs arise from the
unexpected interaction of simultaneous subgoals. Houever,
in the absence of experience with the particular subgoals
being considered, the AND%technique makes the "linear"
assumption that the subgoals are independent and thus can be
sequentially achieved in an arbitrary order (it chooses the
order of the problem statement). Now, in general, as ue see
in 2.1, this is not true, but it is a good uorking
assumption provided that we realize that it is an assumption
and are prepared to catch and fix the bugs that result when
the assumption proves false. Thus the initial piece of code

which HACKER urites looks |ike:

(HPROG AND2 ‘
(LINE L3 (ACHIEVE (ON A B
C

)))
(LINE L4 (ACHIEVE (ON B C))))

Section 2 68

HACKER also supplies comments:

(GOAL AND2 (MAKE (AND (ON A B) (ON B C))))
(PURPOSE L3 (ACHIEVE (ON A B)) AND2)
(PURPOSE L4 (ACHIEVE (ON B C)) AND2)

This means that, for example, the purpose of line L3 (the
source) is to (ACHIEVE (ON A B)) for AND2 (the target).
Line L3 attempts to run, but there is no Ansuer Library

program for (ACHIEVE (ON A B)), only for (MAKE (ON A B)).

But the Programming Techniques Library tells HACKER:

(FACT (CODE (ACHIEVE goal)
(UNLESS (TEST goal) (MAKE goal))))

So L3 gets clobbered by macro-expansion to:

(HPROG AND2
(LINE L3 (UNLESS (TEST (OGN A B))
(MAKE (ON A B))))
(LINE L4 (ACHIEVE (ON B C))))
UNLESS is a conditional which executes its second arghment
if its first argument is false. It is a primitive ability

of the Blocks World to be able to test if one block is on

another, so the Ansuer Library contains a subroutine:

pp——

Section 2 681

(TO (TEST (ON x y)) ...)

This subroutine returns FALSE, so we proceed to

(MAKE (ON A B)) using the routine generated in Scenario
Section 1. Next uwe try to run line L&. Again, we do not
have an answer in the Ansuer Library which matches

(ACHIEVE (ON B C)), so the code-uriter is called. The code-
Wwriter notices (See chapter X, Generalization and
Subroutinization for an explanation of houw) that it has
Wwritten code for just such a goal (in line L3), and there is
no reason to believe that that code cannot be generalized.
The piece of code is extracted, subroutinized, and placed in

the Ansuer Library:

(TO (ACHIEVE (ON u v))
(HPROG ES , i
(LINE L& (UNLESS (TEST (ON u v})
(MAKE (ON u v)))))
The point in AND2 where the code Wwas created is replaced by

a8 subroutine call:

(HPROG AND2
(LINE L3 (ACHIEVE (ON A B)))
(LINE L4 (ACHIEVE (ON B C))))
Looks like we're back where we started, but now we have a

neu subroutine in the Ansuwer Library. Line L4 tries to run

again. B is not on C so we (MAKE (ON B C)). This calls

Section 2 B2

P

MAKE-ON (from chapter IV). Line L1 in MAKE-ON finds that A
is on B, and that will never do; so a place on TABLE is
chosen for A and a recursion is made to (MAKE (ON A TABLE)).
Line L1 finds that}A has nothing on it and so |line MOl runs
to (PUTON A TABLE). If¥ tﬁings were just what they seemed to
be, the program would now just put A on the TABLE, and then,
satisfied that B had a clear top, would place B on C, and
return, grinning. But HACKER, since he has just uritten
AND2, and since he knous that new code cannot be trusted,
watches the execution very closely (by interpreting the code
in CAREFUL mode). 1In this mode the comments associated with
each line of code are also interpreted, in a special way:
For each line interpreted, on entry, those PURPOSE comments -
having the current line as the target are de-acti?ated. The
line is then run. Afteruards, each comment whose source is
the currént line is activated. During the time a comment is
active, the purpose is protected so that if some side effect
occurs which destroys the purpose of that comment, an
interrupt to the error system is initiated (See XIII,
Protection Mechanism). The target of a purpose may, as in
this case, be a program name. The scope of such a purpose
terminates uwhen th; program returns., Thus in this case ue

have:

Section 2 83

(PURPOSE L3 (ACHIEVE (ON A B)) AND2)
(PURPOSE L4 (ACHIEVE (ON B C)) AND2)

We see that the purpose comment of L3 was active during the
execution of L4. Thus during the execution of
(PUTON A TABLE) to (CLEARTOP B) for (PUTON B C) for L4 an

interrupt occurred to the error system complaining:
(BUG PROTECTION-VIOLATION <L3>)

This erroF comment goes to the bug classifier which looks at
the structure of the process. The ciassifier decides, by
techniques independent of the problem domain (See IX, Types
of Bugs), that this bug is of the form PREREQUISITE-
CLOBBERS-BROTHER-GOAL; that is, in prbgram AND2 the subgoal
of line L3, (ACHIEVE (ON A B)), was clobbered by the
prerequisite (CLEARTOP B), of the brother subgoal

(ACHIEVE (ON B C)). This is formalized:

(PREREQUISITE-CLOBBERS-BROTHER-GOAL AND2 L3 L4
(CLEARTOP B))

This is sent off to the patch-generator, who finds in his

bag of tricks:

. Section 2 64

(FACT (PATCH (PREREOUISITE-CLOBBERS-BRDTHER—GOAL
prog linel line2 prereq)
(BEFORE 1ine2 linel)))

an instruction to change the ordering of L3 and L4 in AND2.

Let us return to the original trick for AND
expressions. We see that it produces a program consisting
of a series of lines. A program is inherently ordered and
there are often constraints on this ordgring. For example,
it is necessary that if the purpose of one line is to do
something for some other |ine then‘the former must precede
the latter. These constraints leave arbitrary some choices;
they usually do not yield a unique program. Every program
Wwritten or patched by HACKER is at that time sorted
according to the ordering constraints. (See X111, Details of
Program Construction.) In chapter IV, uhere the prerequisite
(CLEARTOP a) was inserted in MAKE-ON, line L1 found its

place before MOl because of its purpose:

(PURPOSE L1 (ACHIEVE (CLEARTOP a)) MO1)

Back to AND2. The patcher has decided to reorder L3
and L4 in AND2 by adding a constraint forcing L4 to precede

L3. AND2 is then re-sorted with this criterion, yielding:

(HPROG AND2
(LINE L4 (ACHIEVE (ON B C)))
(LINE L3 (ACHIEVE (ON A B))))

Section 2 65

This program is then backed up to the beginning (restoring
the configuration of blocks at its start) and re-executed.
It works.

ANDZ has been fixed, but it would be nice to be able to

abstract the essence of the bug and patch which were so
carefully worked out here and make use of it at the level of
prbgraﬁ construction so that we do not make the same mistake
‘again. A general mechanism for this purpose, called
criticism, has been provided in the code-uriter.
Essentially, before a program is released for use, it is
held up to criticism. The code-urijter effectively reads the
program aloud (by adding the PURPOSE comments on each |ine
to the data-base, in the order the lines appear). This
airing is observed by critics (uho are IF-ADDED’methods
[(Note 18]) uwho leave nasty messages for the code-uriter if
they determine that there is a bug. (See X111, Details of
Program Construction.) At the end of the reading the code-
uriter looks in his mailbox and finds the complaints. They
may instruct him to insert lines, or re-sort them if another
ordering rule is found. The code-uriter executes the
criticisms and then re-airs the program. This process
terminates when ei;her the mailbox is empty or an
impossibility is discovered (such as tuo lines, each of
Wwhich has to be before the other).

In this case, a critic is compiled (see XI, Critic

Compilation) to formalize the lesson of AND2:

Section 2 66

(WATCH-FOR (ORDER (PURPOSE 1lline (ACHIEVE (ON a b)) t)
(PURPOSE 21ine (ACHIEVE (ON b c)) t))
(PREREQUISITE-CLOBBERS-BROTHER-GOAL
current-prog lline 2line
(CLEARTOP b)))
The variablization of A, B, and C is done by the same
mechanism as is used for subroutinization. This statement,
which is further compiled into an IF-ADDED method, says that
if, in the order specified, you see two purpose comments
matching the ones shoun, then leave a message to patch for
the given kind of bug.

It is important to note here that criticism, |ike
patching and subroutinization, is a way of summarizing and
remembering knowledge gained by experience. Subroutines and
patches retain, in a useful form, knowledge of positive
results, how to do things correctly. Critics, however,
retain important negative results. They remember the bad
results of mistakes, so that they can be recognized in the
future.

It should not be surprising that the caveat generated
by solving problem 2.1 solves 2.2 as uell. It is a general
statement of the fact that structures are to be built
bottom-up. Since this fact is now available to the program
sorter, no error of ordering of this kind will ever again

occur.

Section 3 87

VI. Scenario Section 3 Explained

This chapter is about "space," a very general and
exceedingly difficult concept. Spatial ideas are not just
used in the descriptions of the motions and relations of
physical objects. Space is an effective metaphor in most
other aspects of symbolic human thought. The computer
programmer thinks of "space" in memory and speaks of "high
core," "the top of the stack," "under the loader." Not only
is he using spatial terms |ike high, top, and under to
describe relationships between entities in this abstract
space, he also thinks of the entities themselves as physical
Objects which one can stack Up or as enclosures to be
Ioéded. Even in budgetary matters we see spatial metaphors:
“Another ten-thousand dollars would give me 'room’ to
maneuver." Mathematicians have named abstract structure
classifications, for example, "vector space," "topological
space," and "function space" to emphasize their historical
relationship to an intuitive spatial model. Even more
striking, however, is the mathematician’s extensive recourse
to the diagram as a heuristic aid. Even those Wworking in so
abstract a subject‘as category theory "picture" their
thoughts with arrows on the Worksheet.

This generality of the notion of space is a mixed
blessing. Anything we can say about space is generally

applicable to a variety of problem solving situations, but

Section 3 68

it is generally very difficult to say anything about space.
Though space is a primitive notion in the description of
many phenomena, wWe have a rather poor vocabulary for
precisely describing spatial relations. The generality of
the spatial concepts we can describe gives them great pouwer.
"Twuo things cannot occupy the same place at the same time"
applies equaliy to data in registers and to blocks in a
scene. The difficulty of description of spatial concepts
makes them difficult to manipulate. Though CLEARTOP has an
explicit meaning and we can formulate a sufficient condition
for NOT-ONness, no such simple constructs work for PLACE-
FOR. Here uwe must rely upon various strategies, no one of
which is guaranteed to wWork, nor is the failure of one an
indication of ultimate failure. Each strategy is expected
to bring us "closer" to the goal (PLACE-FOR a b). Thus,
uhole new structures must be introduced to enable the
effective use of each strategy in each instance and to
coordinate them uhen such is called for.

Space is a "stuff" that comes in quantities, or

"chunks." A chunk may be either "free" or "used" but not
both. If used, a chunk has one or more "users" who "occupy"
subchunks. A chunk can be returned to the free state bg
"moving" each of its users to a disjoint chunk. Implicit in
the notions "stuff" and "chunk" are conservation of quantity

(the total amount of space is a constant) and a notion of

contiguity (that chunks are contiguous blocks of space).

Section 3 69

Space also has directions.

In problem 3.1 HACKER examined his Ansuer Library for a

subroutine whose pattern of applicability matches the
problem statement: (MAKE (ON C B)). The matching
Subroutine, last patched in Scenario Section 1 is:

(TO (MAKE (ON a b))
(HPROG MAKE-ON
(LINE L1 ...)
(LINE MO1 (PUTON a b))))
This program worked fine in 3.1 because there was enough
space on B for C, satisfying the requirements of PUTON.
In problem 3.2, houwever, this program is tried and

fails to work because no place is found for C on B, as A is

smack in the middle of B, PUTON complains:
(BUG UNSATISFIED-PREREQUISITE (PLACE-FOR C B))

As in Scenario Section 1, this bug is patched by
prerequisite insertion in the program MAKE-ON. The patch

is, as before, introduced as follows:

(TO (MAKE (ON a b))
(HPROG MAKE-ON
(LINE L1 ...)
(LINE LS (ACHIEVE (PLACE-FOR a b)))
(LINE MO1 (PUTON a b))))

where:

Section 3 78

(PURPOSE L1 (ACHIEVE (CLEARTOP a)) MO1)
(PURPOSE LS (ACHIEVE (PLACE-FOR a b))} MO1)
(PURPOSE MOl (MAKE (ON a b)) MAKE-ON)
(GOAL MAKE-ON (MAKE (ON a b)))

Line LS5 is run, but there is no ansuwer in the Answer Library
matching (ACHIEVE (PLACE-FOR a b)). The code-uriter is

called, who finds a Programming Technique, introduced

earlier:

(FACT (CODE (ACHIEVE goal)
(UNLESS (TEST goal) (MAKE goal))))

which transforms the problem into:

(UNLESS (TEST (PLACE-FOR a b))
(MAKE (PLACE-FOR a b)))

HACKER knows how to test (PLACE-FOR a b) (even the primitive

PUTON can do it!) as there is an ansuers:
(TO (TEST (PLACE-FOR x y)) ...)

The test is run (a;C. b=B) and returns FALSE. Thus the
interpreter contiﬁues. executing (MAKE (PLACE-FOR a b)).
There is again no answer in the Answer Library matching
this, so the code-uriter is called. PLACE-FOR has no

explicit meaning or sufficient condition; nor does it have a

Section 3 71

nice (known) form like (NOT (EXISTS ... }). The code-wuriter

does find, however, a Programming Technique:

(FACT (COBE (MAKE goal) code)
(HAVE (culprit) (MAY-HURT goal culprit)
(COND ((TESTL culprit)
(CSETQ code (TRYOUT goal culprit))))))
This says, "Do I know of any condition (the culprit) the
truth of which might inhibit the truth of the goal pattern?
I[f so, and if the culprit is currently true, write code
Which tries tc improve things." (TRYOUT is a function uhich

Writes the code; we shall see the result.) Just such a

condition is found in the Blocks World Knowledge Library:

(FACT (MAY-HURT (PLACE-FOR x y) (NOT (COMPACT y))))

I's (NOT (COMPACT b)) a possible culprit? A subproblem,
(TEST (NOT (COMPACT b))) where b=B, is generated (and some
code is uritten for it; we ignore this detail). The ansuer

is yes, as:

(FACT (MEANING-OF (COMPACT x) _ 7
(FORALL (y) (ON y x) (LEFTMOST yll))
That is, every object on x has no space on its left. But A
is on B and has space on its left. Thus this is a possible
reason why (PLACE-FOR C B) is false, so TRYOUT urites the

following code which displaces (MAKE (PLACE-FOR a b)):

Section 3 72

(STRATEGIES-FOR (TEST (PLACE-FOR a b))
(HPROG S6

(LINE L7 (TRY (COMPACT b)))))

with comments:

(GOAL S6 (MAKE (PLACE-FOR a b)))
- (PURPOSE L7 (TRY (COMPACT b)) S6)

STRATEGIES-FOR is a control primitive designed for running
strategies for solving a problem. It binds one internal
variable to its first argument, the success condition, and
another to its control frame [Note 11]. 1[It then evaluates
its second argument, the strategies themse!ves. As we shall
see, a strategy will use this fnformation to periodically
test whether it has succeeded, and if so, to exit from the
STRATEGIES-FOR. If control ever returns to the STRATEGIES-
FOR from the evaluation of its second argument, the
strategies tried have failed, and HACKER is called for help.

Next, line L7 is run. By meaning substitution, uwe get:

(STRATEGIES-FOR (TEST (PLACE-FOR a b))
(HPROG S6
(LINE L7 -
(TRY (FORALL (z) (ON z b) (LEFTMOST z))))))

How is the COMPACT strategy to be implemented? MWe could
(ACHIEVE (COMPACT b)) using:

Section 3 73

(FACT (CODE (ACHIEVE (FORALL vars qual scope))
(UNTIL vars n
(CANNOT (ASSIGN vars
(AND qual (NOT scope))))
(MAKE scopel))})

to get:

(UNTIL (z) (CANNOT (ASSIGN (z)

(AND (ON z b) (NOT (LEFTMOST z)))))
(MAKE (LEFTMOST 2z)))

However, it would be foolish to completely compact the top
of an object with many objects on it; we might only have to
move one block to make space. Thus, every time we move a
block (increasing the‘compactness). He should check if there
is now a PLACE-FOR a on b. This Programming Technique is a

slight perturbation of the above:

(FACT (COBE (TRY (FORALL vars qual scope))
(UNTIL vars
(CANNOT (ASSIGN vars
(AND gual (NOT scopel))))
(MAKE scope)
(DONE?)))

Which expands our stuff into:

{STRATEGIES-FOR (TEST (PLACE-FOR a b))
(HPROG s6
(LINE L7 (UNTIL (z)
(CANNGT (ASSIGN (z)
(AND (ON z b}
(NOT (LEFTMOST z)))))

(MAKE (LEFTMOST 2z))
(DONE?))))

Here DONE? is a function which executes the first argument
of STRATEGIES-FOR (as accessed via the internal variable

o~ bound to it). If the test succeeds, the strategy has

Section 3 74

succeeded and DONE? performs an exit from STRATEGIES-FOR.
This new program begins to run. It tries to

(ASSIGN (z) (AND (ON z b) (NOT (LEFTMOST z)))). This has no

known answer, but an ASSIGN can always be turned into a

CHOOSE via a complex fact

(FACT (COBE (ASSIGN vars exp) (CHOOSE ...))) which is very

hairy but not worth explaining. This expansfoﬁ results in

(for readability we will suppress |line and program labels

uniess they are relevant):

(STRATEGIES-FOR (TEST (PLACE-FOR a b))
(UNTIL (z) (CANNOT (CHOOSE (u) ((OBJECT uw))
(TEST (AND (ON u b)
(NOT (LEFTMOST w1l))
(CSETQ z u)))
(MAKE (LEFTMOST 2z2))
(DONE?)))
The same magic (explained in XV, Formal Objects) was used
here as in chapter IV to realize that u is to be selected
from the class of OBJECTs. The
(TEST (AND (ON u b) (NOT (LEFTMOST uw)))) is run (on the

first object selected) and expanded into

(AND (TEST (ON u b)) (NOT (TEST (LEFTMOST u)))) via:

(FACT (CODE (TEST (NOT exp)) (NOT (TEST exp))))

and:

Section 3 75

(FACT (CODE (TEST (AND expl exp2))
(AND (TEST expl) (TEST exp2))))

(actually this is generalized to any number of expressions

using fancy pattern matching syntax).

The Blocks World has the primitive perceptual ability to
(TEST (ON u b)) and (TEST (LEFTMOST u)). Hence since b=8,
the only u on b is A, which is not as left as possible,
hence z is set to A. The next step interpreted is

(MAKE (LEFTMOST z)). This further reduces to (PUSH z LEFT)

via a Blocks World Knowledge Libéarg fact:

(FACT (CODE (MAKE (LEFTMOST a)) (PUSH a LEFT)))

Thus the final code looks like:s

(STRATEGIES-FOR (TEST (PLACE-FOR a b))
(UNTIL (z) (CANNOT (CHOOSE (u) ((OBJECT u))
(AND (ON u b)
(NOT (LEFTMOST w)))
(CSETQ z u)))
(PUSH z LEFT)
(DONE?)))

This code pushes A:to the ieft, making room for C on B. [t
then returns control to STRATEGIES-FOR, which returns to LS,

Which proceeds to MOl, which puts C on B as required by

problem 3.2,

Now let’s go on to problem 3.3. In this case the top

Section 3 76

of B is completely filled with A and C, and the problem is
(MAKE (ON D B)). MAKE-ON is called with a=D and b=B. D has
a clear top so we go to LS. There is no place for D on B so
the test fails and we enter the strategies and thus COMPACT.
In this case, however, there is no block on B which has
space to its left, so the COMPACT strategy fails.
STRATEGIES-FOR has no more strategies so it calls HACKER for
help. HACKER keeps a list of the strategies already used in
building S6. He looks in the data-base to see if there are
any around uwhich haven't been incorporated. Of course, one

is found:

(FACT (MAY-HURT (PLACE-FOR x y) (CLUTTERED y)))
where
(FACT (MEANING-OF (CLUTTERED a)
(EXISTS (z2)
(POSSIBLE (NOT (ON z a)))
(ON z a))))
Hithout going into the gory details (as before) this

strategy is inserted:

(HPROG S6
(LINE L7 .v.)
(LINE L8 (TRY (NOT (CLUTTERED b}}})))
Wwith comment:
(PURPOSE L8 (TRY (NOT (CLUTTERED b))) S8B)

L8 is nouw run, and expanded into:

Section 2 77

(LINE LS8
(UNTIL (z) (CANNOT (ASSIGN (z)

(AND (POSSIBLE (NOT (ON z b)))
(ON z b)}))
(MAKE (NOT (ON z b)))
(BONE?)))

using the Programming Technique:

(FACT (CODE (TRY (NOT (EXISTS vars qual scope)))
(UNTIL vars (CANNOT (ASSIGN vars

(AND qual scope)))
(MAKE (NOT scope))
{(DONE?))))

The (ASSIGN (z) ...) is run, expanding, as before, into a

CHOOSE expression:

(CHOOSE (u) ((OBJECT u))
(TEST (AND (POSSIBLE (NOT (ON u b))) (ON u b))
(CSETQ z w))
the test expression of which expands into:

(AND (NOT (PROTECTED? (ON u b))) (TEST (ON u bl))

Now both objects A and C are on B and the position of
neither is protected. Thus, if C is selected first {as in

problem 3.3) z gets assigned C. Control then passes to the

business end:

(MAKE (NOT (ON.z b)))

Now, something interesting happens! Did you notice it?
HACKER once before had to remove an object from another; in
the expansion of (ACHIEVE (CLEARTOP al) it was necessary to

Write code for (MAKE (NOT (ON y al)). HACKER notices this,

Section 3 78

and by magic (see X, Generalization and Subroutinization)
extracts the code uritten before, subroutinizes it, and adds
it to the Answer Library, so it can be used here (and

elseuhere, if needed):

(TO (MAKE (NOT (ON y a)})
(HPROG E9
(LINE L1
(CHOOSE (z) ((SURFACE z))
(AND (NOT (= z a))
(NOT (PROTECTED? (NOT (ON y z}))))
(MAKE (ON y z))1})))
So nouw, E3 is called, and as a result, C is placed on the
table. Control then passes to the (DONE?) uhich succeeds
and so 0 is placed (by MOl) where C was on B. Thus, HACKER
has solved problem 3.3.
At this point we should look at MAKE-ON for some

perspective, leaving out LINEs and HPROGs:

Section 3 79

(TO (MAKE (ON a b)) - |
(UNTIL (y) (CANNOT (ASSIGN (y) (ON y a)))
(MAKE (NOT (ON y a))))
(UNLESS (TEST (PLACE-FOR a b))
(STRATEGIES-FOR (TEST (PLACE-FOR a b))
(UNTIL (2) |
(CANNOT (CHOOSE (u) ((OBJECT u))
(AND (ON u b) (NOT (LEFTMOST u)))
(CSETQ z u)))
(PUSH z LEFT)
(DONE?))
(UNTIL (z)
(CANNOT (CHOOSE (u) ((OBJECT u))
(AND (NOT (PROTECTED? (ON u b)))
(ON u b))
(CSETAQ z w)))
(MAKE (NOT (ON z b)))
(OONE?)))))
(PUTON a b))

Remember how this rather complex program started out (at the
beginning of IV)? It still isn't finished; as we shall see,
there are some bugs to attend to, but the worst is over. [
really haven’t been honest about the comments; there are
expansion comments (HPROGs and LINEs) all over this program
(for truth, see XII, Details of Program Construction) but
they have been systematically suppressed everyuhere except
the most interesting places, to improve legibilitg.

As for problem 3.4, ue see that this program uworks
immediately. The COMPACT strategy is immediately rejected
S0 We go on to the CLUTTERED strategy. In choosing an
object to remove from B, only D passes the test because
(ON A B) is protected, so D is removed, making room for C,
Wwhich is then placed in the neWwly cleared space.

Problem 3.5 is, houwever, an interesting tuist on the

Section 3 808 o~

kind of debugging demonstrated in chapter Y. The comments

on lines L7 and L8 are:

(PURPOSE L7 (TRY (COMPACT b)) S6)
(PURPOSE L8 (TRY (NOT (CLUTTERED b))) S6)

In trying to get D on B fn problem 3.5, we find that there
is no place for‘D. Compacting is tried. This results in C
being pushed left to abut A. No more compacting can be done
because all objects on B are in their LEFTMOST position.
Next we try uncluttering B. The only removable object is A
because (ON C B) is protected. Thus A is selected for
removal. In attempting to put A on the TABLE, houwever, a
protection violation happens because removing A makes B no
longer COMPACT, as C suddenly has space on its left, and ue
are still in the scope of the purpose of line L7. An
analysis of this situation suggests, but does not guarantee,
that L7 and L8 should be interchanged. (See IX, Types of
Bugs, for details of the method of debugging.) The

situation is described as:
(STRATEGY-CLOBBERS-BROTHER S6 L7 L8)

Since there is no knoun reason why they shouldn’t be
interchanged, they are interchanged, and a neuw critic is

entered for future reference: ' —

Section 3 81

(WATCH-FOR ,
(ORDER (PURPOSE linel (TRY (COMPACT b)) t) ,
(PURPOSE 1ine2 (TRY (NOT (CLUTTERED b))) t))
(STRATEGY-CLOBBERS-BROTHER current-prog linel |ine2))
The program is now backed up to the beginning of S6; C is
back where it started. The neu program then removes A
first, generating enough space for D, which is then placed
correctly, completing the task required.

Scenario problem 3.6 just once again demonstrates
prerequisite insertion and subroutinization. It is
necessary to (PUSH C LEFT) to compact the space on B so A
can be placed. However, as in PUTON, PUSH wil| not move

—~ more than one object at a time. Since D is on C, PUSH

complains:
(BUG UNSATISFIED-PREREQUISITE (NOT (ON D C)))

Now the debugger decides, as in chapter IV, that this is a

bug of type PREREQUISITE-MISSING. Since:
(FACT (MOVES (PUSH obj dir) obj))

(CLEARTOP z) is the culprit as in chépter IV. UWhere do we
insert (ACHIEVE (CLEARTOP z))? I have nicely avoided
showing the expansion comments around (PUSH z LEFT) in L7.

They were created when the expression (MAKE (LEFTMOST z))

Section 3 82

was expanded to (PUSH z LEFT). We need them now, so use
your big magnifier to see that what I wrote as (PUSH z LEFT)

really is:

(HPROG E38@
(LINE L31 (PUSH z LEFT)))

The prerequisite is now inserted:

(HPROG E30
(LINE L32 (ACHIEVE (CLEARTOP 2)))
(LINE 31 (PUSH z LEFT)))

With comments:

(GOAL E38 (MAKE (LEFTMOST z)))
(PURPOSE L31 (MAKE (LEFTMOST z)) E38)
(PURPOSE L32 (ACHIEVE (CLEARTOP z)) L31)

Time is backed up to the beginning of E38 and then the
program is continued., The interpreter encounters

(ACHIEVE (CLEARTOP z)) but HACKER remembers writing code for
that in Ll.l The code is extracted and placed in the Ansuer

Library:

(TO (ACHIEVE (CLEARTOP a)}
(HPROG E33 .
(LINE L34 (UNTIL (y) (CANNOT (ASSIGN (y) (ON y al)))
(MAKE (NOT (ON y al))))))

Ll is patched to call the neuw routine:

(LINE L1 (ACHIEVE (CLEARTGOP a)))

Section 3 &3

Now O is removed from C and put on the TABLE, C is moved to
the left, and A is placed as required,.

We leave Scenario Section 3 Wwith a well developed
mechanism for making space, if none is available, and tuo
new routines in the Ansuer Library:

(TO (MAKE (NOT (ON a b))) ...) and

(TO (ACHIEVE (CLEARTOP a)) ...). It is appropriate to take

a final look at MAKE-ON in its mature form with all HPROGs

and LINEs suppressed:

(TO (MAKE (ON a b))
(ACHIEVE (CLEARTOP a))
(UNLESS (TEST (PLACE-FOR a b))
(STRATEGIES-FOR (TEST (PLACE-FOR a b))
(UNTIL (z2)
(CANNOT (CHOOSE (u) ((OBJECT u))
(AND (NOT (PROTECTED? (ON u b)))
(ON u b))
(CSETQ z u)))
(MAKE (NOT (ON z b)))
(DONE?)1)))
(UNTIL (z)
(CANNOT (CHOOSE (u) ((OBJECT u))
(AND (ON u b) (NOT (LEFTMOST u)))
(CSETQ z u)))
(ACHIEVE (CLEARTOP 2))
(PUSH z LEFT)
(DONE?))
(PUTON a b))

Section 4 84

VII. Scenario Section 4 Explained

At first glance, Scenario section 4 appears to deal
with a (perhaps minor) inefficiency. In the mind of an
experienced programmer, houever, apparent inefficiency is
not a minor consideration; it may be an indication of a
fundamental difficulty. What may seem, on the surface to be
an intelligent person uasting hours over a few microseconds,.
may in facf be an agonizing algorithmic analysis which will
result in a qualitatively "better" progranm.

For example, suppdse problem 4.1 uas
(MAKE (AND (ON A C) (ON D A) (ON B C))) rather than simply
(MAKE (AND (ON A C) (ON B C))). In this case, A would be
placed on the middle of C, D on A, and then, to put B on C
it would be necessary to push A, which has D on it. Hence D
must be removed, resulting in a PROTECTION-YIOLATION. Thus
uhat looked like a minor matter of efficiency has turned out
be be a bug!

In order that HACKER be aware of this kind of
situation, those Blocks World primitives which actualig move
objects (PUTON and.PUSH) check, when one is executed in
CAREFUL mode, if the object which it is about to move has
ever been moved before. (As described in IX, Types of Bugs,
HACKER retains the entire history of the problem-solving
process until it returns to command level. This information

is used to answer the question.) If it is discovered that

-

Section 4 3%

an object, say A, is being moved for the second time, a call
is made to the error system to check the possibility of
trouble:

(BUG DOUBLE-MOVE A)

Usually, as we shall see in the next chaﬁter. no trouble is
developing and the error system just dismisses the interrupt
as a false alarm, allouwing the program to proceed.

In problem 4.1, however, the command is
(MAKE (AND (ON A C) (ON B C))). As usual in cases of no
special knowledge, HACKER makes the "linear" assumption,
that the goals do not interact, and that they can be

achieved |inearly and independentiy:

(HPROG AND11 ‘
(LINE L12 (ACHIEVE (ON A C)))
1))

(LINE L13 (ACHIEVE (ON B C)

Wwith the standard comments:
(GOAL AND11 (MAKE (AND (ON A C) (ON B C)})))

(PURPOSE L12 (ACHIEVE (ON A C)) AND11)
(PURPOSE L13 (ACHIEVE (ON B C)) AND11)

L12 is run and A is placed in the middlie of C (using the

subroutine (TO (ACHIEVE (ON u v))...) developed previously).

Section 4 &6

A is moved and a note is made of this. Next line L13 is
run. B is not on C so a call is made to (MAKE (ON B C)). B
has a clear top but thére is no (PLACE-FOR B C) because A is
in the way. The strategies developed (in the previous
chapter) are tried. Since (ON A C) is protected by L12,
nothing can be removed from the top of C. The next strategy
tried, compaction, discovers that A is not in a LEFTMOST
position on C and thus tries to (PUSH A LEFT). At this
point it is noticed that A is being moved for the second
time in this problem, resulting in the error call:
(BUG DOUBLE-MGVE A).

Observing that brother lines L12 and L13 are fighting

over the prerequisite calculations:

(ACHIEVE (PLACE-FOR A C))
(ACHIEVE (PLACE-FOR B C))

the error system (see [IX, Types of Bugs) classifies the

situation:

(PREREQUISITE-CONFLICT-BROTHERS AND11
((PLACE-FOR A C) L12)
((PLACE-FOR B C) L13})

This is sent to the patch-generator for a fix. The patch-

generator |ooks for a patch which matches; he finds:

Section 4 87

(FACT (PATCH (PREREQUISITE-CONFLICT-BROTHERS prog
{(prel linel)
(pre2 tine2))
(NEWLINE prog ‘
(RESOLYE (ACHIEVE prel) (ACHIEVE pre2))
(((ACHIEVE prel) linel)
((ACHIEVE pre2) 1ine2)))))

Actually, this fact is uritten for any number of |ine-

prerequisite pairs but it is shoun here for two for clarity.

Thus the patch will be effected by executing:

(NEWLINE AND11 ‘
(RESOLVE (ACHIEVE (PLACE-FOR A C))
(ACHIEVE (PLACE-FOR B C)))
(((ACHIEVE (PLACE -FOR A C)) L12)
((ACHIEVE (PLACE-FOR B C)) L13)))
But this will insert a new line in ANDI11:

(HPROG AND11 , , :
(LINE L14 (RESOLVE (ACHIEVE (PLACE-FOR A C))
{ACHIEVE (PLACE-FOR B C))))
(LINE L12 (ACHIEVE (ON A C1))
(LINE L13 (ACHIEVE (ON B Ci))
Hith comments:

(PURPOSE L14 (ACHIEVE (PLACE-FOR A C)) L12)
(PURPOSE L14 (ACHIEVE (PLACE-FOR B C)) L13)

Before looking at what L14 expands into, and thus how
the new AND11 uork;, it is necessary to understand more
about HACKER’s notions of space, specifically the deeper
structure and interaction of the primitives PUTON and
{TO (TEST (PLACE-FOR a bl))...). In order to understand how

to control the placing of A on C so that room is left for B,

Section 4 88

we must examine how a place is chosen for A on C. MWith a
really big magnifier, we can look inside the "primitive"
PUTON (though HACKER never does). MWe find, essentially (but

simplified):

(CDEFUN PUTON (obj surface)
(MUST (OBJECT obj) (SURFACE surface))
(UNLESS (FIRST-MOVE obj)
(BUG DOUBLE-MOYE obj))
(UNLESS (CANNOT (ASSIGN (z) (ON z obj)))
(BUG UNSATISFIED-PREREQUISITE
(NOT (ON z objl))))
(UNLESS (TEST (PLACE-FOR obj surface))
(BUG UNSATISFIED-PREREQUISITE
(PLACE-FOR obj surface)))
(MOVE obj (GHOST obj surface)))
First it declares the types of its arguments (this is used
in chapter XV, Formal Objects). Next it checks if the
object has been mbved before. Then it makes sure that there
is nothing on the object about to be moved. Next it checks
that there is space available. If all the checks are 0K, it
moves the object to the coordinates specified by
(GHOST obj surface). MWhat is the GHOST and houw did it
appear? To ansuer this question, we note that PUTON called
(TEST (PLACE-FOR obj surface)). This test is truly
perceptual magic, detaiis of which are discussed in
(Note 121, the FINDSPACE Problem. In any case, this test
first checks if either obj or a GHOST of obj is already on

the surface. If so, it is immediately satisfied. If not,

it searches (by number-crunching the analytic geometry

Section 4 39

descriptions of the objects) for an open space on surface
big enough to hold obj. If it finds one, obj is "imagined"
centered there. This is represented by the erection of a
GHOST of obj in that place on surface. A GHOST is not the
object it represents. A GHOST can be imagined to be
somewhere even if the object it represents cannot be moved
because stuff is piled on it. A GHOST is a purely
perceptual entity. It "occupies" the space of the object it
represents, and thus is a kind of reservation for space to
be filled later. No object can be moved into the chunk of
space occupied by the GHOST of another object. Any
perceptual calculations dealing with space, such as another
(TEST (PLACE-FOR objl surface)) must contend with the GHOST,
which is as real for these calculations as an object. A
GHOST is not, however, an object. It cannot be referred to
in non-primitive code; nor can it be moved. A GHOST
generated during the execution of a program disappears uwhen
either the object ft represents is moved to fillijt or the
system returns to command level.

The first argument of (TEST (PLACE-FOR argl arg2)) is
not limited to atomic objects. If a list of objects is

passed, for example:

(TEST (PLACE-FOR (A B) C))

Section 4 90

the test determines if there is simultaneousiy room
available for A and B on top of C, and if so, erects GHOSTs
for both A and B. Thus if (PUTON A C) and (PUTON B C) are
later executed, A will fill its GHOST and B will fill its
GHUST. Since both GHOSTs were on C, the places which A and
B will occupy are guaranteed disjoint. Hence, this is the

solution to our problem, houw to expand Ll4:

(RESOLVE (ACHIEVE (PLACE-FOR A C))
(ACHIEVE (PLACE-FOR B C))).
We return to AND1l which is now backed up and rerun.,
The Blocks World Knowledge Library must know all this stuff

about GHOSTs, in fact:

(FACT (CODE (RESOLYE (ACHIEVE (PLACE-FOR x 2))
(ACHIEVE (PLACE-FOR y z)})
- (ACHIEVE (PLACE-FOR (x y)} 2))))
Actually, this fact is stated here for only a two-way fight

to give you an idea of how it works. HACKER reaily knous

this in the general case. Thus the final code is:

(HPROG AND11 -
(LINE L14 (ACHIEVE (PLACE-FOR (A B) C)))
(LINE L12 (ACHIEVE (ON A C}))
(LINE L13 (ACHIEVE (ON B C))))

Now, hou is this patch knowledge generalized to make problem

4,2 uwork immediately?

—

Section 4 931

Ll4 is like nothing we have ever encountered previousliy
in this document. It is a prerequiste for tuo lines,
neither of which would need help if standing alone. Such
lines are often found in programs uritten by people. In

fact, programs abound wWwith |ines Which are not directliy
related to achieving the goal of the program (unlike L12 and

L13; I call these main steps), nor are they prerequisite to

any other specific step, but rather they are present to
prevent destructive interference betueen other steps. We
call these variously setups (like L14), interfaces (if they
go between steps), and cleanups (if they go after the steps
in question). For example, consider the problem of
computing the values of both x/3 and x+4, where x is the
contents of accumulator X, in PDP-18 assembly language.
Each subcalculation can be achieved in one instruction
(IDIVI X,3 and ADDI X,4). Either instruction, however,
destroys x, so a copy must be made before either is

executed:

MOVE A,X
IDIVI X,3
ADDI A,4

In this case, things are even hairier than in AND11 because
the ADDI must fetch its argument from A rather than X to
Work correctly. HACKER must be able to handle such probliems
of interface. In this case, a new critic is compiled for

the bug of type PREREQUIS'TE-CONFLICT-BROTHERS (see X1,

Section 4 92

Critic Compilation, for details of how), to oversee future
program construction (see XII, Details of Program
Construction, for how it is used). The new critic is:
(WATCH-FOR (GIVEN (c t)
(MORE-THAN-ONE (a line)
(PURPOSE |ine (ACHIEVE (ON a c)) t)))
(PREREQUISITE-CONFLICT-BROTHERS current-prog
. (EXPAND (line (PLACE-FOR a c)))))
This watches for any surface c and purpose target t for
which more than one line is being compiled with the purpose
of putting more than one object a on c for t. [f such a
case is found, the bug PREREQUISITE-CONFLICT-BROTHERS should
be expected. The prerequisites in conflict are the '
(PLACE-FOR a c)’é for all the lines so noticed.
Thus, for probliem 4.2, (MAKE (AND (ON A D) (ON B D)
(ON C D))), the main steps are to achieve each subgoal.
This program is held up for criticism and our new critic
complains that there will be a bug uniess a patch is made.
Thus the program-uriter does the patch before releasing the
new program. The resulting code is:
(HPROG AND15 ,
(LINE L16 (RESOLVE (ACHIEVE (PLACE-FOR A D))
. (ACHIEVE (PLACE-FOR B D))
; (ACHIEVE (PLACE-FOR C D}))
(LINE L17 (ACHIEVE (ON A D)))

(LINE L18 (ACHIEVE (ON B D)))
(LINE L13 (ACHIEVE (ON C D))})

£

Which works immediately, when L1B is expanded.

Section 4 83

Section 5 94

VIII. Scenario Section 5 Explained

In this section we just watch HACKER do one problem,
(MAKE (AND (ON D A) (ON B E) (ON A E) (ON C E) (ON F D)),
in Which the skills developed in the previous training
sequence are displayed. Since there is no ansuwer in the
Ansuer Library for this conjunction, the problem goes off to
the code-uriter who first proposes, to himself, the |inear

theory program:

(HPROG AND28
(LINE L21 (ACHIEVE (ON D A)))
(LINE L22 (ACHIEVE (ON B E)))
(LINE L23 (ACHIEVE (ON A E)))
(LINE L24 (ACHIEVE (ON C E)))
(LINE L25 (ACHIEVE (ON F D)))
The comments on this code are nouw read to the critics.
Besides the built-in critic who insures that prerequisites
go before the |lines they serve, we nouw have tuwo neu critics
Wwhich embody the knowledge that: "Before anything is placed
on an object, that object must be placed" and "If more than
one object is to be placed on one surface, space must be
reserved for each of the objects on the surface before any
is placed." These critics could be named the "Touwer Critic"
and the "Floorplan Critic."
L21 is read off, but nothing much happens. The reading

of L22 is similarly uninteresting. L23, however, fires off

both critics. The Touwer Critic notices that A is being

Section 5§ 95

moved (to put it on E) after D was put on A. This is an
order'error which requires that L23 be brought before L21.
The Floorplan Critic notes that since both B and A are being
placed on E, some preliminary planning will be needed. .Next
L24 is read off causing the Floorplan Critic to amend his |
advice to include C on E along with B and A. When line L25
is read off nothing bad is noted. The code-uriter now reads
his mail and implements the changes requested, that L23 be
before L21 and that there be a special space-planning |ine
inserted before L22, L23, and L24. The resulting program

looks |ike:

(HPROG AND28 . o o
‘ (LINE L26 (RESOLVE (ACHIEVE (PLACE-FOR B E))
(ACHIEVE (PLACE-FOR A E))
(ACHIEVE (PLACE-FOR C E))))
(LINE L23 (ACHIEVE (ON A E)))
(LINE L21 (ACHIEVE (ON D A)
(LINE L22 (ACHIEVE (ON B E)
(LINE L24 (ACHIEVE (ON C E)
(LINE L25 (ACHIEVE (ON F D)

The program is nou re-aired. Since no more criticisms
accrue, it is released for use. Line L26 is run and

expanded into:
(LINE L26 (ACHIEVE (PLACE-FOR (B A C) E)))

Currently there is no space for anything on E because F is

on E. The two-strategy program wuritten and debugged in

Section 5 96

chapter VI is called. The first strategy is tried: 1Is
there any object on E which can be removed? F is on E
Wwithout good reason, so it is removed and placed on the
table. The test is now rur, and now there is room on E for
the composite object (B A C). Hence the test succeeds,
after erecting ghosts on E for B, A, and C. Line L26
returns to AND28 and next L23 is run. A is to be placed in
its ghost (on the middle of E}). But D is on A so when L1
(the CLEARTOP line wuritten in chapfer IV) is run, D is
placed on TABLE, then A is moved to fill its place on E.
Next line L21 is run, and D is moved for a second time -- an
interrupt occurs uwhich examines the situation and determines
that it is OK, not one of the known bug fgpea; the interrupt
is dismissed -- and placed on A. L22 is run, B is to be
placed on E, but first B must have a CLEARTOP so C is
removed and put on TABLE. Then B is put on E. L24 is run
and C is placed on E. Here again, an interrupt on DOUBLE-
MOVE is made and dismissed. (In a more intelligent system
than HACKER this particular manifestation would not be so
easily dismissed. It is easy to see that C didn't ha;e to
be moved tuWice becguse it could have been placed correctly
the first time. Fixing this, however, uould require a
complete reorganization of the CLEARTOP program so that it
could take non-local advice from a free variable whose value
would be set by AND28 initially., Perhaps this is an

indication of where one could attack the "overview"

Section 5§ 97

problem.) Finally L25 is run, F is balanced on D. F has
also been moved twice, but no error is noted and the program

proceeds as expected, completing the problem.

Bugs 98

IX. Types of Bugs

In this chapter we will examine the processing of bugs.
We will follow this processing from the point at which a bug

is detected through the time at which a patch is determined.
A. Entry to the error system

There are three ways by which aibug may become knoun to
the error system:
1. A primitive may be called to perform a task impossible
for that primitive. For examplie, PUTON may be told to move
an object which cannot be moved (as a primitive operation)
because there is an object supported by the object to be
moved. The primitive makes its complaint directly to the
error system, passing it the error comment UNSATISFIED-
PREREQUISITE and what it would need to be true (in this
instance) for the commanded action to be possible. In
conventional programming, most error comments are of this
type. If, for example, one tries to divide by zero o} take
the square root of.a negative number, any reasonable
programming system will complain and not allow the program
to continue. (Clever systems allow the user to specify what
to do in such a situation, if he wants to extend the
meanings of the primitives.)

2. The error system may also be called from the protection

Bugs 93

monitor (see XIII, The Protection Mechanism) if a protected
subgoal is clobbered between the time it is established and
the time it is no longer needed. This results in an
interrupt of the performance program, a call to the error
system uwith the error comment PROTECTION-VIOLATION and a
specification (to be explained) of the protection violated.
This kind of error comment does not reaily occur in
conventional programming, though good programmers often
insert consistency checks into their programs to test for
"impossible" situations.

3. Finmally, the error system mag be called if the
performance program violates some "aesthetic"” principle of
the particular knowledge domain being manipulated. For
example, in the Blocks World it is unaesthetic to move an
object twice in the same problem. This may not be a real
bug, but it is worth investigating because it may point at
an important interaction. In the Blocks World primitives
there are explicit checks for double move problems, which
result in calls to the error system with the error comment
DOUBLE-MOVE and a descriptor of the first move. Agaiﬁ. in
human programming ?here is no counterpart to an aesthetic
interrupt, unless for example the programmer notices that
his program is doing something stupid, |ike calculating.the

same result tuwice.

Bugs 108

In any case, when a (potential) problem is noticed and
passed off to the error system, we say that a bug has becdme
manifest.

Before we go on to examine in detail what happens when
a bug becomes manifest we should consider just what class of
bugs can be caught by these kinds of "local" processing
techniques. Is it possible, for example, for a program to
have no UNSATISFIED-PREREQUISITE or PROTECTION-VIOLATION
errors on a particular problem and still be incorrect in the
sense that the program terminates Wwith the overall goal
unachieved? The protection mechanism prevents a program
from continuing after clobbering a result which is needed
later. Thus, the only way a program can terminate with its
goal unachieved is for some parf of the goal never to be
achieved. This can happen in only two ways: Either there
is no step in the program, one of whose purposes is to
achieve the missing part of the goal; or the step in the
program whose purpose is to achieve the missing part of the
goal is not working correctiy. In the latter case we are
back where we started from -- we have a step terminat}ng
Without achieving its purpose. Thus, if there are no
infinite loops or recursions, the only way we can have a
program failure get by without a protection scope violation
is for the program to have a faulty plan -- one uhich makes
no attempt to achieve some'part of the goal.

In general, HACKER's debugging system can only handle

Bugs 181

almost-right programs -- programs which requite only a
slight perturbation such as rearrangement of steps, or
insertion of auxiliary steps to provide for prerequisites or
interface with other steps. This is consistent with the
overall philosophy of evolutionary programming -- a program
is aluways almost right, it just needs a small patch to make
it work in the new situation. This of course puts a heavy
burden on the program-proposer to propose good first
approximations. The burden is not fatal, houwever, because a
bad plan will usually fail badly in the situation for which
it is proposed, causing the proposer to backtrack and choose

a new (and hopefully better) plan.

It is interesting to note that because of the
comprehensive error detection system, HACKER has a far
easier task than the human programmer. For the human there
is often a problem in isolating the manifestation of a bug:
@ good deal of debugging time is spent "catching" and
identifying the manifestation. Primitives often, for the
sake of efficiency, do not check their prerequisites.‘ In
MIT-AI LISP I[Note }3]. for example, CAR when applied to an
atom does not complain., It returns a useless undefined
quantity which can be passed around Without difficul ty.
Only later, when some other primitive tries to operate on
the result, does the system stop and complain. By this

time, of course, an indefinite computation has happened and

Bugs 182

it may be difficult to find out uhere the original problem
occurred. The protection mechaniém, under CAREFUL
evaluation, also provides the ability to localize a bug.
before it propagates. 1 have often spent long hours trying |
to find out how a variable whose value | am depending upon
has been clobbered., It would be nice, when uriting the
code, to be able to specify (as a comment) those lines uwhich
depend upon a value being preserved, and then to be warned

if the value is clobbered in the scope of such a protection.

B. Bug Classification

When an error enters the error system we say that a bug
is manifest; it is not yet, howsever, understood, in the
sense that a patch can be rationally concocted to fix it.

It is the function of the bug classifier to take a manifest
bug and understahd its underluying cause so as to instruct
the patcher about a fix.

This step is necessary because, unfortunately, there is
no one-to-one corrgspondence betueen bug manifestations and
under lying causes. For example (and let us call this
example NO-1-2.1 for later), sﬁppose that in the Scenario,
section 1 never happened. Then in problem 2.1 the program
MAKE-ON would not have line L1 in it to set up a

(CLEARTOP a) for line MOl, (PUTON a b). If we pose problem

Bugs 183

2.1, the program for (MAKE (AND (ON A B) (ON B C)))

initially reads:

(HPROG AND2)
(LINE L3 (ACHIEVE (ON A B)))
(LINE L4 (ACHIEVE (ON B C)))

When this program is run, L3 puts A on B and L4 tries to put

B on C. But A is on B so PUTON complains:

(BUG UNSATISIFIED-PREREQUISITE (NOT (ON A B)))

However, in the real Scenario, Wwith section 1 before

section 2, the "same" bug became manifest as:
(BUG PROTECTION-VIOLATION <chrontexts)

where what I mean by the same bug is that the underlying
cause of both instances is the same -- that a prerequisite
of making (ON B C) true, (CLEARTOP B), is incompatible with
the truth of (ON A B). Prerequisite insertion in this
example is only a side issue, as such insertion will only
convert the bug manifesta*ion from an UNSATISFIED-
PREREQUISITE to a PROTECTION-VIOLATION.

Now that we see Wwhy the bug classifier is needed, we
should turn our attention to how it works. This is,

houever, a rather difficult problem, as the current bug

Bugs 104

classifier in HACKER is an ad-hoc program and thus, the body
of knouledge (called Types of Bugs in the overview
flouchart) on uwhich it operates is difficult to separate out
and display. This, of course, makes Types of Bugs also very
difficult to extend. The Hope is, however, that Types of
Bugs is essentially independent of the problem domain and
need only be expanded Wwhen new problem-solving methods (the
Programming Techniques Library) are introduced. An
important area for development of HACKER-like problem~
solving methods would be the systematization of the
knowiedge in Types of Bugs in a ﬁore modular form.

The bug classifier was uritten by introspection. I
careful ly watched myself debug programs having bugs of the
types we shall examine and attempted to abstract the
mechanism from my behavior. Thus another difficulty with
explaining the bug classifier is that we must be sure to
separate the actions of the bug classifier from the
arguments for those actions and the deductions on uhich they
are based due to the author.

First let us make some general observations. Nhét does
a human programmer do when he haé his program stopped at the
first place uhere ;omething has manifestly gone wrong?

First He says, "What the \ex! is my program doing?" and then
he starte thinking. [actually think that his comment is
revealing -- he is thinking about what his program is doihg

-- its dynamic behavior. Assuming he has a debugging system

Bugs 185

available, he examines:

l. the (lexical) locus of failure, reading nearby
comments in his listing;
2. the dynamic environment -- the stack and the

dgnamic registers (variables) in this section of

code.

He thinks about why control got here and how it did. The
Why can usually be ascertained from the stack and the
comments; it looks |ike a string of "A called B to
accomplish C for reason D." The houw is more difficult, as
it has a chronological component. He tries to reconstruct
previous states of the computer and apply this how-uhy
analysis to them. (Usually this is very difficult because
information is lost.) In short, he produces a (partial)
abstract model of the process which his program produced.
This model contains both a temporal (how) and a teleological
(uhy) component. The model is used in conjunction with the
manifestation to compute the underlying cause, hence Ehe
patch. Please notg that in this document the words "how"
and "why" are technical words. They are being given precise
meanings. MWords are chosen to take on technical meanings by
virtue of the mnemonic value of their everyday meanings
Which are perceived to relate to the technical meanings

hassigned to them. Numerous other such words have been used

Bugs 186

Without comment, such as "burpose" and "goal".

Here again, HACKER has a distinct advantage over the
human programmer. When in CAREFUL mode, a HACKER program
leaves a chronological trace behind it, using the CONNIVER
context mechanism [Note 14]. For each side effect, a neu
context frame is pushed on this chronological trace, the
CHRONTEXT, so that at any point, say when a bug becomes
mani fest, HACKER has available to him a sequence of worlds,
each incrementally different from the next, representing in
reverse chronological order the series of states the world
has been through as a result of the execution of the
program. HACKER also has available to him the current
control stack, and for each of the frames of CHRONTEXT he
has the control stack as it was at the time of creation of
that frame. This ability derives from the CONNIVER control
structure in which both HACKER and the programs he urites
are embedded. HACKER is also aided by the fact that his
code is completely commented with active comments which
define the teleological structure of the process. The
currently active PURPOSE comments are accessible by the bug
classifier. They describe what the program is trying to
accomplish. Let’'s see now how HACKER uses these structures
which are available to him. |

We have seen that there is no one-to-one correspondence
between bug manifestations and underlying causes, so given a

particular manifestation more information is needed to pick

,BUQSA 187

out a particular underlying cause. [claim that the bugs
can be disambiguated by asking questions of and about the
history and teleology of the process. For the bug types
which I have classified there are six questions which
perform this disamﬁiguation. There are three possible
manifestation types and six possible outcomes of which four
are recognized underliying causes. Figure 2 gives an
overvieuw of bug classification. The questions and those
paths through the classifier which occur in the Scerario
Will be discussed in the text following. Some of the
questions are rather complex and cannot be reasonably
presented without their explanation. For reference,
however, the under lying causes are:

PCB Prerequisfte-Conflict-Brothers

PM Prerequisite-ﬁissing

PCBG Prerequisite-Clobbers-Brother—Goal
SCB Strategy-Clobbers-Brother

Going back to Scenario section 1, when (PUTON B C)
failed because A was on B, it complained to the error. system

by executing:
(BUG UNSATISFIED-PREREQUISITE (NOT (ON A B))).

The BUG function dispatched on the manifestation type,
UNSATISFIED-PREREQUISITE. to some code prepared to handle

DOUBLE
MOVE

UNSATISFIED
PREREQUISITE

PROTECTION
VIOLATION

figure 2

ANOMALOUS

Bugs 1883

that kind of manifestation. MWe note that PUTON sent an
argument, (NOT (ON A B)), explaining specifically what it
Wwas upset about -- PUTON requires (NOT (ON A B)) to be true.
Now, (ON A B) may be part of a currentiy protected subgoal.

Thus the first question is:

1. Would it conflict with any of my current goals to make
(NOT (ON A B)) true now?
The ansuwer to this question is obtained by postulating a
hypothetical world in which (NOT (ON A B)) is true and
seeing if the protection on any éurrentlg active PURPOSE
comment is violated in that world. (See details in XIII,
Protection Mechanism.) In the real Scenario, in section 1,
the ansuer to this question is NO. (In the situation
discussed at the beginning of this section, NO-1-2.1, the
answer is YES! so this test separates them.) But knowing
that there is no conflict is not all; perhaps the program is
fighting with itself and there is a more efficient

technique. Perhaps we should check for this:
2. MWas (NOT (ON A B)) ever true before in this probliem?

The answer to this question is obtained by searching back
through CHRONTEXT looking for a time when (NOT (ON A B)) uas
true. In the real Scenario section 1 bug, the ansuer is NO.

At this point the bug classifier has decided that the bug is

Bugs 118

not due to interference from other steps, it is just a
simple case of PREREQUISITE-MISSING (PM). UWe now know just
what kind of patch is necessary, insert the prerequisite,
though we do not yet know uhat prerequisite to insert. This
is explained quite explicitly in chapter IV, so it will not
be repeated hére.

[f, houwever, the answer to question 1 was YES as in
NO-1-2.1, we see that the current step is really fighting
some previous step. If we tried to establish the
prerequisite here we would get a PROTECTION-VIOLATION. The
ansuwer to question 1 is not simply a YES, but rather the
CHRONTEXT of the protector of the violated subgoal. This
takes us into the diagnosis of PROTECTION-VIOLATIONS.

When a protection violation occurs, the protection
violator is interrupted and a call is made to the bug

classifier:
(BUG PROTECTION-VIOLATION <PCHRONTEXT>)

where PCHRONTEXT is the CHRONTEXT of the protector ofvthe
violated subgoal. .Consider, for example, problem 2.1 from
the scenario. The questions which are to be asked to
classify PROTECTION-VIOLATIONs, questions 3 and 4, uwill be
much more complex than questions 1 and 2. Some preparation
is necessary (for both us and HACKER) before the questions

can be answered (or even stated). Please examine Figure 3.

awmn

€ aunbyy
o

CANV

NO-3A3IHOV b1

SS3TINN

0
(ON B C)T

NO-3IMVIN

IOW

(ON BC)

(CLEARTOP B

TLNN:LT

NO-IIVIN

NO.LNd :IOW

#

(ON A TABLE)T

IX3LINOHHD

T

(ON A B)

1X31NOYHOd

Bugs 112

You are looking at a model of the information available to
the bug classifier at the time of failure in 2.1 due to the
PROTECTION-VIOLATION. This is a chronological model; time
increases to the right. It is not a linear representation
Wwith respect to time; I have expanded those sections of
interest and shrunk those | am not interested in.
Vertically, you are looking at the height of the control
stack. Arrous pointing to the right are the scopes of
PURPOSE comments; those which point into space are the
purposes of main steps. There is one prerequisite arrow
labeled (CLEARTOP B) pointing from the stack frame labeled
L1:UNTIL to the one labeled MOl. Near the middle of the
bottom line (the time base) is a small arrow marking the
present (the bug manifestation point). Thus only stuff to
the left of that arrou exists; the stuff to the right is
deduced as follous:

We (the bug classifier) are given PCHRONTEXT and
CHRONTEXT, the current state of the world. From CHRONTEXT,
we can find the top of the stack, that frame marked
MO1:PUTON. Somehouw, it is violating the protection oﬁ the
scope of the commept originating on L3 (from PCHRONTEXT).
Why are we in MO1:PUTON? MWe can look up the purpose of MOl
in HACKER’s NOTEBOOK: |

(PURPOSE MO1 (MAKE (ON a b)) MAKE-ON)

Instantiating the current values of a and b (A and TABLE) wue

find that this is a main step of MAKE-ON. That, houever, is

Bugs 113

a subcalculation of L1:UNTIL uhiéh is a prerequisite
calculation for an MOl (yet to be called) Wwhich is a main
step of MAKE-ON, which is a subcalculation of UNLESS, which
is a subcalculation of L4:ACHIEVE-ON, which is a main step
of theAANDZ. Thus, by looking at the stacks pointed at by
PCHRONTEXT and CHRONTEXT, and the comments in the data-base
about the code, we can construct an abstract teleological
process model. This model is constructed and looks like
Figure 4. In this figure, a box signifies a computation, an
arrod a teleological link labeled by the subgoal. A
te1eological link points from the computation wuhich makes
the subgoal true to the computation which requires its
truth. A plain arrouw is a main-step link; a special arrou
is used for prerequisites. Any number of consecutive main-
step and subcalculation Iinks form one main-step. The
friangles labeled pc and c are the PCHRONTEXT and CHRONTEXT
pointers respectively.

Now that we understand what a teleological process
model looks like and how it is constructed from the
information available at bug manifestation time, we can
understand the meaping of question 3 and how it is to be

ansuered.

3. Is the protection vioclator a prerequisite calculation
(perhaps hypothetical) for a step whose purpose is to
satisfy a brother goal (of a conjunction) to the one
violated?

Bugs 114

This question, about the structure of the teleological
process model, is a pattern which is matched against the
mode | (#igure S). If the pattern matches, the bug is
classified as of type PREREQUISITE-CLOBBERS-BROTHER-GOAL
(PCBG). The PROTECTION-VIOLATION of problem 2.1 and the
UNSATISFIED-PREREQUISITE of NO-1-2.1 are both of this type.

For 2.1, the actual statement of classification is:

(PREREQUISITE-CLOBBERS-BROTHER-GOAL
AND2 L3 L4 (CLEARTOP B))

Now that we have the underlying cause of the bug in
problem 2.1, how can we patch it? The offending
prerequisite must, in any case.‘be done before its step.
Its scope must extend until that step. But since the first
and second steps are brothers (they are both for the same
target), their scopes must overlap. Thus, since the scope
of the first step and the scope of the prerequisite of the
second step are incompatible, the only way to prevent
overlap is to move the second step before the first. This

is summarized as:

(FACT (PATCH (PREREQUISITE-CLOBBERS-BROTHER-GOAL
prog linel line2 prereq)
(BEFORE !ine2 linel)))

which when executed forces |ine2 to move up to before |linel.

In Scenario problem 3.5 we encounter a different kind

MO1
l(on A TABLE)
L1

CLEAR-
P L4

L3
(ON A B) (ON B C)
AND2
command
figure 4

The abstract model of the PROTECTION—VIOLATION manifestation
problem 2.1.

AND

figure 5
The pattern represented by question 3.
The dotted line is any structure containing no prerequisite links.

Bugs 1186

of protection violation. We won’t go through the
teleological model generation here, as it is just like
before. The resulting abstract teleological process model
for the bug manifestation occurring here is shown in

Figure 6. There are several good reasons why question 3 is
false here. For one thing, there is no conjunction
computation at all. In fact, here we are seeing a fight
between two (hopeful ly) cumulative strategies for impfoving
the chance that the desired goal, (PLACE-FOR D B}, is tfue.
In order to spot this kind of interaction so that it may be
removed (if possible) to improve cooperation betueen the

strategies, the bug classifier asks:

4. 1Is the protection violator a brother strategy to the one
violated?

This question (see Figure 7) matches the situation in

problem 3.5. The bug is recognized and classified by this

pattern match as a STRATEGY-CLOBBERS-BROTHER (SCB). The

underlying cause is:

(STRATEGY-CLOBBERS-BROTHER S6 L7 L8)

Now that we have classified this bug we must decide
what to do to fix it. It is interesting to note that if we
were in a conjunction, rather than a STRATEGIES-FOR, this

would be a very touchy situation. The actual step causing

L7 L8

(COMPACT B) (NOT (CLUTTERED B)

(PLACE-FOR B)
S6 H-HHHHHHHHHHHD MAKE-ON

l(ON DB)

command

figure 6

The abstract model of the PROTECTION-VIOLATION manifestation
in problem 3.5.

STRATEGY-FO

figure?7
The pattern represented by question 4. Here the dotted line

indicates any computation containing not more than one
prerequisite link.

Bugs 118

the PROTECTION-VIOLATION is (PUTON A TABLE), a main step of
the strategy (NOT (CLUTTERED B)), rather than a prerequisite
step. In a conjunction both (COMPACT B) and

(NOT (CLUTTERED B)) uwould be expected to be true at the end
(to satisfy the conjunctive goal). If (NOT (CLUTTERED B))
and (COMPACT B) were truly incompatible (contradictory) the
required program uwould be impossible. Since we are in a
STRATEGIES-FOR, however, there is no requirement for either
(NOT (CLUTTERED B)) or (COMPACT B) to be true when
STRATEGIES-FOR returns, only that (PLACE-FOR D B) be true.
Hence even if we cannot resolve the conflict, this
PROTECTION-VIOLATION is non-fatal. HACKER, however, hopes
that the strategies are cumulative on the real goal, (PLACE-
FOR D B). It is advantageous to reduce conflicts, if
possible. It may help to interchange the strategies; thus

the suggested patch:

(FACT (PATCH (STRATEGY-CLOBBERS-BROTHER
prog linel line2
(TRY-BEFORE line2 linell))

TRY-BEFORE is not binding like BEFORE; if the resulting sort
is over-determined, a TRY-BEFORE may be ignored. In this
case the hope that the strategies are cumulative is
realized.

[f a PROTECTION-VIOLATION bug occurs which cannot be

recognized by either of the two previous patterns, it is

Bugs 119

deemed anomalous. An example of such a problem and how it
is handled can be found in XIV, Anomalous Situations.

In chapter VII uwe meet another kind of bug call,

(BUG DOUBLE-MOVE <PCHRONTEXT>), from the Blocks World
aesthetics. It has much of the flavor of a protection
violation. Whereas in a PROTECTION-VIOLATION we are
presented with an argument betueen the protector and the
violator, here we are presented with a less serious argument
betwueen the first and second mover of an object,'in this
case A. | have only worked out the classification of one
type of DOUBLE-MOVE situation chéradterized by a YES to
question 5. MWe will see that question 5 is more complex
than any of the preceding classifiers and must be broken
into several steps.

First, ue look at the abstract teleological process
model of the problem in question (see Figure 8). Because uwe
are in a complex situation, a brief summary of the facts
leading to this model is in order. At the present time (the
bug is manifest) we are in (PUSH A LEFT) which is a main
step for the (COMPACT () strategy for (PLACE-FOR B C). (A
strategy of a STRATEGY-FOR is a main step.)

(PLACE-FOR B C), however, is the goal of L5, a prerequisite
calculation for MO1: (PUTON B C). MOl is a main step of
HAKE-ON. which was called by UNLESS, which is a main step of
ACHIEVE-ON, which was called by L13, a main step of ANDll. a

result of the command. The first move of A was in

Bugs 128 o

MOl: (PUTON A C), a main step of MAKE-ON, which was caligd by
UNLESS, which is a main step of ACHIEVE-ON, which was called
by L12, a brother step of L13 in ANDLL.

We see that Figure 8 is similar to Figure 4, The first
component of question 5 reflects that similéritg in its
similarity to question 3:

5.1. 1Is the second mover a prerequisite calculation for a
step whose purpose is to satisfy a brother goal (of a
conjunction) to the first mover?

Question 5.1 is diagrammed in Figure 9. You will note that,

in the pattern match, the prerequisite link is remembered in

the variable pre. (Actually, in all the matches made, all
boxes and |ines aré remembered for construction of the

under lying cause specification. Here, however, the use is

more conscious.) If 5.1 answers NO, question 5 fails. If

5.1 ansuers YES (as in problem 4.1, being discussed), we go

on. The next subquesfion is:
5.2. UWas pre ever true before in this problem?

This subquestion is answered (as was question 2) by
searching doun CHRQNTEXT for the first place where
(PLACE-FOR B C) was true. In 4.1 it was certainly true at
the beginning of the problem. [t was not true after L12,
(ACHIEVE (ON A b)). It was certainly not true after

(PUTON A C). But it was not true even before the PUTON was

executed. It became false when (TEST (PLACE-FOR A C)) was N

(PUSH A LEFT)

W

Li2

LS

The abstract process model for the DOUBLE-
in problem 4.|.

(PLACE-F LI3

AND

!

command

figure8

MOVE manifestation

5

Y

AND

figure

9

The pattern represented by question 5.1.

Bugs 122

executed because that is when the GHOST of A was placed in
the center of C. But that was done to

(ACHIEVE (PLACE-FOR A C)), a prerequisite of (PUTON A C),
the first mover of A. Let us call the CHRONTEXT where
(PLACE-FOR B C) became false FCHRONTEXT, and extend our
process model to include it (see Figure 10).- The final step

in the chain is:
5.3. 1Is FC a part of a prerequisite calculation for PC?

As uwe see in figure 11, 5.3 is TRUE. This completes the
chain of reasoning of question é successfully, resulting in
the diagnosis of a PREREQUISITE-CLOBBERS-BROTHERS (PCB):

(PREREQUISITE-CONFLICT-BROTHERS AND11

((PLACE-FOR A C) L12)
((PLACE-FOR B C) L13))

This diagnosis is certainiy complex enough. Before ue
lose the forest for the trees let's informally go through
the diagnosis again. (ACHIEVE (PLACE-FOR A C)) is a
prerequisite of (PUTON A C), a main step of one of a pair of
brother subgoals. The other brother’s main step,

(PUTON B C), has (QCHIEVE (PLACE-FOR B C)) as its
prerequisite. The (ACHIEVE (PLACE-FOR A C)) is choosing a
place to put A. When (ACHIEVE (PLACE-FOR B C)) is called to
find a place for B it finds itself moving A. Cleariy there
is a conflict. It would be nice to fix the conflict so that

A wouldn’t have to be moved twice. This would require that

P

‘I'y JO |3POJN SS8201d PapuaIxg ayL

I

0l ainbyy
puewwo)
T
11NV
(08 NO) (O V NO)
&n s1 211

-_
+
-l
E 3
L]

Jd

figure 1l

Bugs 125

the 6hoice of place for A know about the need for a place
for B. But no one except AND1l knous that both A and B are
going to be put on C. If anything can be done to fix this
problem it must be done at the level of AND1l -- If two
employees of an organization are fighting, the trouble is
Wwith their imnediate joint superior: he must parcel out the
tasks in such a way that they do not conflict. That is just
Wwhat the diagnosis said: "There is trouble in AND11l, a
conflict between L12 and L13. The trouble is that their
prerequisites, as listed, conflict." Now, the bug patcher
doesn’t know how to resolve the conflict as that is a detail
of the problem domain. He does, houwever, know that such
conflicts can be resolved by a speciél setdp line before
either L12 or L13, as described in chapter VII:
(FACT (PATCH (PREREQUISITE-CONFLICT-BROTHERS prog
(prel linel)
(pre2 1ine2))
(NEUWLINE prog
(RESOLVE (ACHIEVE prel) (ACHIEVE pre2))
(((ACHIEVE prel) linel)
((ACHIEVE pre2) line2)))))

I't should also be clear that a PCB bug can be manifest
as an UNSATISFIED-PREREQUISITE; that was what question 2 was
about. I will not go into the precise description of
question 6 which does this recognition. If you understood

this chapter, you should have no trouble deriving it

yoursel f.

Bugs 126

Note to the Reader:

I hope you got through this sectioﬁ. I know that it is
pretty tough, | had to write it! Oebugging of computer
programs is a difficult, intellectually challenging
activity; we should expect it to be complex. [have only
catalogued a few types of bugs, because it is so difficult.
The important thing to see, however, is that debugging is at
least to some extent independent of the problem domaing
that some bugs are purely a result of the procedural
representation (that things are done in sequential discrete
steps); and that there is such a thing as a "programmer," an

expert at procedural matters.

- i

Gen and Sub 127

X. Generalization and Subroutinization

The central feature of HACKER is that he learns from
experience, that he gets better ujth practice. In order
that this be possible, HACKER must be able to app!g the
knouledge learned in the solution of a specific problem to
the solution of new problems.

In some cases this is easy, as in the insertion and
expansion of CLEARTOP in Scenario section 1. The system
knew (could deduce) from Biocks World Knowledge, that for
any value of a in (PUTON a b) it is necessary that
(CLEARTCP a) be true. Since this éeneral prerequisite was
inserted into, and expanded in, a program of general
usefulness, MAKE-ON, the benefits of this discovery are
automatically passed on. The essential improvement of
per formance comes from the fact that after this is learned,
it becomes "second nature" to CLEARTOP an object before
trying to put it on something. HACKER no longer has to
Wworry about that particular compliaint from PUTON, nor does
he ever again have to perform the search (for how to
CLEARTOP) summarized by the expansion. In Scenario
section 3, learning about space allocation, much the same is
true; HACKER is again patching a generally useful program.
Even the fix of the strategy misordering can proliferate to
any program using MAKE-ON.

[f there were no subroutines in the Answuer Library,

Gen and Sub 128

| ike MAKE-ON, each problem would lead to the construction of
é new program, and thus, even though uwe can force future
programs to be uritten correctly, using critics, all of the
expansions would have to be done for each case, and an
expansion can entail an exponential search. Thus
subroutines are an excellent means of maintaining a summary
of valuable knouledge which has been deduced in creating and
fixing them. [t thus is appropriate for HACKER to attempt
to subroutinize if possibfe, so that if a patch is made to a
piece of code, the benefits are felt everyuhere that code is
called. This is not to say, however, that every
intermediate step in an expansion should be subroutinized;
this would only clog the Answer Library with large numbers
of subroutines, most of which would never be called except
from one other routine. This would so break up tﬁe Ansuer
Library that debugging would be more difficult -- the
structure of the problem would not be reflected in the
structure of the program. Hence, HACKER only subroutinizes
when he notices fhat he i3 about to expand the "same"
pattern for a second time. In this chapter I will explain
how HACKER decides that tuo patterns are the "same". This
is used not only in subroutinization, but also in compiling
critics, as We shall see.

Consider the problem of determining just what it means
for two problems, say (ACHIEVE (ON A B)) and

(ACHIEVE (ON B C)), to be the "same". We COMBINE the tuwo

Gen and Sub 1283

patterns, getting (ACHIEVE (ON {A B} {B Ci})) [Note 15]. The
tuo problems are the same with respect to any manipulation
(say the one which is the solution of the first probiem)
Wwhich does not depend upon the bracketed expressions being
constant. Thus, a program written to solve
(ACHIEVE (ON A B)) can be used for (ACHIEVE (ON B C)), with
the appropriate substitution, if it was uritten without
depending upon particular properties of the objects A and B.
The problem, then, is to distinguish just what constants in
the goal pattern (and the program) can be consistentiy
variablized. As ue shall see iﬁ detail, HACKER solves this
problem by monitoring what various expressions are matched
against in the execution of the program under consideration
for generalization. HACKER decides that a constant is
unconstrained and hence may be variablized only if it is
never matched against itself in the execution of the program
-- if it is always matched against variables only.

Exactly this problem comes up in the example in

Scenario section 2 uhere HACKER is trying to solve:
(MAKE (AND (ON A B) (ON B C)))

The AND trick proposes that this be solved by:

Gen and Sub 138

(HPROG AND2
(LINE L3 (ACHIEVE (ON A B)))
(LINE L4 (ACHIEVE (ON B C))))

where:

(GOAL AND2 (MAKE (AND (ON A B) (ON B C))))
(PURPOSE L3 (ACHIEVC (ON A B)) AND2)
(PURPOSE L4 (ACHIEVE (ON B C)) AND2)

One difficulty with AND2, besides the order error, is that
at that point HACKER did not know how to (ACHIEVE (ON A B)),
but onliy how to (MAKE (ON A B)). Thus in the running of L3

the fact

(FACT (CODE (ACHIEVE goal)
(UNLESS (TEST goal) (MAKE goal))})

was used to expand (ACHIEVE (ON A B)), getting

(HPROG AND2
(LINE L3 (UNLESS (TEST (ON A B)
(MAKE (ON A B)
(LINE L4 (ACHIEVE (ON B C))))

)
)))

Chapter V theh goes on to explain that when running
line L4 HACKER notices that the code uritten in L3 is good
for L4 as uell, and it gets extracted, generalized, and

subroutinized. We are now about to understand how this is

done.

Gen and Sub 131

At this point I'Il have to admit that the code uritten
for L3 is really slightly more hairy than 1 shoued you.
(You’ I| excuse my lying for clarity of exposition; the
honest truth is explained at length in XII, Details of

Program Construction.) The truth is:

(HPROG AND2
(LINE L3
(HPROG ES
(LINE L6 (UNLESS (TEST (ON A B))
(MAKE (ON A'B))))))
(LINE L4 (ACHIEVE (ON B C))))

Not much different, except for tags to add comments:

(PURPOSE L6 (ACHIEVE (ON A B)) ES)
(GOAL ES (ACHIEVE (ON A B)))

These aren’t very exciting either, so I left them out
before, but the key is what happens to the GOAL comment on
ES. The fun began back when we selected the FACT used to
Wwrite ES. As the pattern match was done in CAREFUL mode,
the code-uriter took notes on what he did. The actua] match

Has:

(CODE (ACHIEVE (ON A B)) code)

Gen and Sub 132

against:
(CODE (ACHIEVE goal) (UNLESS ... 1))

where gcode wanted to be assigned a value. Notice that in
the calling pattern, the only constant in (the original) L3
matched against a constant in the FACT was ACHIEVE. This

caused the following notation to be made:
(CONSTANT ACHIEVE).

Next, ES is written, displacing the (ACHIEVE...) in L3. ES
is run, also in CAREFUL mode. The first thing it does is
(TEST fON A B)) uhich matches (TO (TEST (ON x yl))...). This
match is also monitored and two more notations are made in

HACKER’s notebook:

(CONSTANT TEST)
(CONSTANT ON)

Next, the (MAKE (UN A B)) is evaluated. It matches against

(TO (MAKE (ON a b))...), causing:

(CONSTANT MAKE)
(CONSTANT ON) - already present

~ Gen and Sub 133

ES returns, after doing its job successfully, to the code-

writer. The code-uriter then picks up
(GOAL ES5 (ACHIEVE (ON A B)))

a commgnt he urote, and goes through it, looking up the
notations that have been made on the constants it contains.
The only CONSTANT matches were on ACHIEVE and ON; A and B
were matched against variables only (all the way doun to
primitives!). Thus we did nothing which limits this code to
Wwork for constants A and B oniy. (This is also an
expository lie; actually there are some restrictions, see
XV, Formal Objects.) Thus it is a good bet that if we
substituted anything else for A or B the program would
continue to work. The code-uriter then formalizes this

conjecture by adding the comment:
(NOTICE (ACHIEVE (ON u v)) E5 ((u A) (v B)))

Now it should be clear what is happening. MWhen L4
begins to run,‘the.code-uriter is again called upon to urite
code for (ACHIEVE (ON B C)). Nouw the code-uriter, like all
reasonable hackers, is lazy. Before uriting code for a
specific goal he checks to see if there is any nice chunk
lying around that might work. It is easy to see that

(ACHIEVE (ON B C)) matches (ACHIEVE (ON u v)), and thus he

Gen and Sub 134

notices the possible subroutine. He then extracts the
subroutine, by replacing ES with a call to ES5 (from the GOAL
comment), and then substitutes u for A and v for B in the
code for E5 (and in all comments on ES), and defines it as a
subroutine, getting the applicability pattern from the
NOTICE comment.

No magic, but then again, it's pretty fancy sleight-of-
hand. Just how far does it go? Houw general is this method?
What bugs will it produce in more complex cases? [don’t
know, in general; much work remains to be done. Just what
is happening here? HACKER generalizes by observing just
what he thinks he can get away wWwith, and then trying it out.
Introspectively, it feels like just what I do when writing a
program. I write a special purpose piece of code, using as
general techniques as | can, and then realize that the same
code can be used elsewhere because the techniques employed
in that code do not completely restrict its use to the case
for which it was uritten.

One bug uWith the scheme described above is
overvariablization due to incidental identification of
constants. It is most cleariy illustrated by an example in
a completely different domain, that of LOGO turtie geometry
problems [Note 16].

Ira Goldstein was observing a child in MATHLAND <Papert
1972a,b>. The child had constructed a procedure for drauing

an equilateral triangle. The general program (not the one

Gen and Sub 135

the child had) is:

FORWARD :x

RIGHT 128
FORWARD :x
RIGHT 129

FORWARD :x

for a triangle of side length x. The child’s progranm,
however, was a macro-expansion (it seems) of the general one

for side-length 128:

FORWARD 129

RIGHT 128
FORWARD 128
RIGHT 129

FORWARD 128

The child then decided to change the side length to 98:

FORWARD 98
RIGHT 99
FORWARD 98
RIGHT 98
FORWARD 98

He was quite surprised at the result! Of course, his
problem is that he forgot that some of the 128s are
measurements of side-length and others are angular rotation.

The accidental equality of the constants, combined with

forgetting the semantics of the situation, caused this mild

disaster.

That child, and the algorithm described above, have the

Gen and Sub 136

same bug! They both forgot the semantics of the constants
in the code. A better algorithm would not forget, but this
is another good "linear" approximation. VYarious people have
suggested schemes by which the semantics of the constants
can be remembered for use in later generalization. They
essentially amount to commenting each instance of each
constant in a program with information about hou that
constant ended up uhere it is. Is it the result of a
substitution for a variable in a macro expansion? -- if so,
where are other instances of that variable? MWas it a
constant in some macro expanded? etc. Probably some work
should be done on this problem.

Both the variablizer and the COMBINE function described
above are available to the critic compiler (see chapter XI)
Wwho must generalize on the purpose comments of |ines of code
which are interacting to cause a bug. In problem 2.1, for
example, if the purpose comments 6f the interacting lines,
L3 and L4, are simultaneousiy variablized (With respect to
the same dictionary -- the correspondence of variables to
constants they replace), they become (ACHIEVE (ON a b)) and
(ACHIEVE (ON b c)) because at debugging time, the constants
A, B, and C were unrestricted, in the sense of HACKER’'s
algorithm, and could thus be replaced by variables. Since,
however, B appeared in both expressions, it was replaced in

both instances by b.

.Critics- 137

XI. Critic Compilation

When code is wuritten to achieve a conjunctive
expression, unless something special is known about the
conjuncts, HACKER assumes that they are independently
achievable in any order. This assumption may fail in a
variety of ways. We have seen that fhere may be a necessary
(but not aluways sufficient -- see X1V, Anomalous Situations)
order of achievement of subgoals because one subgoal may
necessarily destroy another. It may also be the case that
subgoals interact so as to fight over some resource, such as
space, uwhere if they can be induced to cooperate, the
conflict disappears. Interaction problems can also occur
betueen (cumulative) strategies in heuristic programs, such
as the space allocator. As we have seen (in IX, Types of
Bugs), HACKER can distinguish among various types of
interaction problems and concoct patches to fix them. As
the program patched may be some generally useful subroutine,
such as the space allocator, a part of MAKE-ON, the benefit
of the debugging can be felt in the solution of futuré
problems; HACKER has learned something. In other cases,
houever, such as building a three-high touer, the resulting
program, even.uhen variablized, is not of much general use.
In fact, HACKER cannot even recognize the fact that
(MAKE (AND (ON A B) (ON B C))) is the "same" problem as
(MAKE (AND (ON B C) (ON A B))) or that ft is a subproblem of

Critics 138

(MAKE (AND (ON A B) (ON B C) (ONC D))). It would be
painful to have to do the same debugging for each instance
of the problem in the four-high tower above, but the
essential problem is the same: Structures must be built
from the bottom up. How can we make HACKER learn this in
general, from one example, so as not to make the same
mistake again? The ansuWer is the criticism mechanism
wherein programs being written are criticized for
interaction bugs and patched before they are released for
use. The critics watch over the shoulder of the code-
uriter. For each line inserted in the neu program, the
code-uriter adds its purpose comments to the data-base. The
critics are IF-ADDED methods [Note 18] who trigger on
purposes of particular forms. [If a critic discovers an
error, he leaves a message for the code-uriter, who then
retracts the proposed program, edits it as directed, and
then re-exposes it to the critics. (See XII, Details of
Program Construction, for the types and interpretations of
the mgssages.) In this chapter we examine how critics are
constructed from bug descriptions.

For each tgpe.of bug iﬁ Types-of-Bugs that HACKER knous
hou to describe there are specific instructions in Types-of-
Critics (in the form of a macro to expand from the bug
description) on how to compile a critic (if any is to be
compiled) for an instance of that type of bug. MWe go

through each of the bug tgpés here and describe its

Critics 139

associated critic type.

PREREQUISITE-MISSING bugs do not form any critics
because such bugs are simple to patch; no backtracking in
the "real" Blocks Worid is done because the program has done

nothing wrong yet.

PREREQUISITE-CLOBBERS-BROTHER-GOAL bugs, as in the
three-high tower example, houever, must compile critics so
as to avoid similar troubles in the future. In problem 2.1,

the three-high tower problenm, thé bug was characterized as:

(PREREQUISITE -CLOBBERS-BROTHER-GOAL
- AND2 L3 L4 (CLEARTOP B))

This means that: "In AND2 the goal of line L3 was clobbered
by the achievement of (CLEARTOP B), a prerequisite of L&,
This type of bug is specifically a pairuwise conflict betueen
ordered brother lines (lines whose purpose comments have the
same target) in a conjunctive situation. Thus, to spot this
bug at code-uriting time we just need to keep an eye bpen
for trying to achieve goals of the form (ON a b) and
(ON b c) in that order for the same target. The critic
compiler knows this by looking up the instructions for
compiling a critic for this kind of bug in Types of Critics

(see Overview flouchart, figure 1):

Critics 148 PN

(FACT (CRITIC (PREREQUISITE-CLOBBERS-BROTHER-GOAL
prog linel line2 pre)
(WATCH-FOR (ORDER (PURPOSE lline goall target)

(PURPOSE 2!ine goai2 target))
(PREREQUISITE-CLOBBERS-BROTHER-GOAL

current-prog lline 2line prereqll)
"AUX" ((DICT O))
(CSETQ goall (VARIABLIZE (GOAL linel))
goal2 (VARIABLIZE (GOAL |ine2))
prereq (VARIABLIZE pre)))

This instructs the critic compiler as follouws: In thfs
general fact, prog=AND2, linel=L3, 1ine2=L4,

pre=(CLEARTOP B). Next, goall is set to the result of
variablizing the goal of L3, the second slot in its purpose
comment. Since the goal of L3 is (ACHIEVE (ON A B)), this
yields, by the magic in chapter X, Generalization and
Subroutinization, (ACHIEVE (ON a b)). Next, the goal of L&,
(ACHIEVE (ON B C)) is variablized under the same dictionary,
yielding (ACHIEVE (ON b c)), which is given to goal2. Next,
(CLEARTOP B) becomes (CLEARTOP b) and is given to prereq.

The resulting critic is:

{WATCH-FOR _
(ORDER (PURPOSE lline (ACHIEVE (ON a b)) target)
(PURPOSE 21ine (ACHIEVE (ON b c}) target))
(PREREQUISITE-CLOBBERS-BROTHER-GOAL current-prog
lline 21ine (CLEARTOP bl))

This is further compiled into an IF-ADDED:

(IF-ADDED (PURPOSE 11ine (ACHIEVE (ON a b)) target)
(ADD (CLOSURE
(IF-ADDED (PURPOSE 2iine
(ACHIEVE (ON b c¢))
target)
(RECOMMEND
(PREREQUISITE-CLOBBERS-BROTHER-GOAL o

Critics 141

current-prog 1
)

ne 2line
(CLEARTOP b))))

li
))
which when translated into English from CONNIVER says: If a
purpose of the form (PURPOSE 1line (ACHIEVE (ON a b))

target) is added to the data-base, then set up an IF-ADDED
to lay in wait for another (PURPOSE 2line (ACHIEVE (ON b c))
target). I[f one of these comes up, then recommend that the
code-uriter patch a bug of this type in the program he is

currently writing.

In Scenario section 3 a similar (ordering) bug comes up

and is patched:
(STRATEGY-CLOBBERS-BROTHER S6 L7 L8)
For this type of bug, the critic compiler finds:

(FACT (CRITIC (STRATEGY-CLOBBERS-BROTHER
prog linel |ine2)
(WATCH-FOR (ORDER (PURPOSE lline goall target)

(PURPOSE 2line goal2 target))
(STRATEGY-CLOBBERS-BROTHER

current-prog 1lline 2line)))
"AUX" ((DICT O))

(CSETQ gdall (VARIABLIZE (GOAL linel))
goal2 (VARIABLIZE (GOAL line2))))

Now since (GOAL L7)=(TRY (COMPACT B)) and
(GOAL L8)=(TRY (NOT (CLUTTERED B)Y)), the only variablization

made is B-->b. Hence the critic iss

Critics 142

(WATCH-FOR
(ORDER
(PURPOSE 1line (TRY (COMPACT b)) target)
(PURPOSE 21ine (TRY (NOT (CLUTTERED b))) target))
(STRATEGY-CLOBBERS-BROTHER current-prog lline 21 ine))
which further compiles, as in the previous critic, into a

nest of IF-ADDEDs.

In Scenario section 4, we encounter a new type of
interaction bug. Tuwo objects, A and B, were being placed on
C when HACKER discovered that a fight over space was

developing:

(PREREQUISITE-CONFLICT-BROTHERS AND11

((PLACE-FOR A C) L12)

((PLACE-FOR B C) L13))
In bugs of this general type there is no reason to expect
that there are only two conflicting lines, but there must be
at least two for there to be a conflict at all! In this
kind of bug, all of the conflicting lines are trying to do
the "same" thing. MWhat is it? They are all trying tﬁ put
something on one o?ject. Thus to write this critic we need
a way of determining, given several expressions such as
(ACHIEVE (ON A C)) and (ACHIEVE (ON B C)), what they have in
common, and a way of expressing the result. There is a
simpie-minded function (described in X, Generalization and

Subroutinization) which attempts to COMBINE a list of

Critics 143

expressions by Writing one of which they are all an example.
If it is given ((PLACE-FOR A C) (PLACE-FOR BC)) it will
return (PLACE-FOR {A B} C). So, armed with this COMBINE
function, we see that the critic compiler has a very complex

fact for compiling critics for this tupe of bug:

(FACT (CRITIC » ‘
(PREREQUISITE-CONFLICT-BROTHERS prog . con)
eed))

the details of which are hairy and unimportant. In any

case, it makes a list of lists of the purpose comments of

the complaining lines and their fighting prerequisites:

(((PURPOSE L12 (ACHIEVE (ON A C)) AND11) (PLACE-FOR A C))
((PURPOSE L13 (ACHIEVE (ON B C)) AND11) (PLACE-FGOR B C)))

This is then COMBINEd and variablized, giving:

((FURPDSE {linel line2} (ACHIEVE (ON {a b} c¢)) target)
(PLACE-FOR f{a b} ¢))

(The bug type is used for knowing that the line labels and

target label could be variablized.) This is then used to

construct the critic:

(WATCH-FOR (GIVEN (c t)
(MORE-THAN-ONE (a tine)
(PURPOSE 1ine (ACHIEVE (ON a ¢)) t)))
(PREREQUISITE-CONFLICT-BROTHERS current-prog
-+ (EXPAND (line (PLACE-FOR a ¢)))))

Critics 144

This further compiles into an [F-ADDED, which catches every
line inserted into a program With purpose (PURPOSE Iine
(ACHIEVE (ON a c)) t). This IF-ADDED keeps a table,
containing for every unique such pair, (c t), a set of the
associated pairs, (a line). If that set ever gets bigger
than one element long, he mails advice to the code-uriter
saying, "Patch for a bug of tuype PREREQUISITE-CONFLICT-
BROTHERS. The lines and their prerequisites which conflict

are in my table as follows: ..."

Program Construction 145

XIl1. Details of Program Construction

A program is a method for solving a problem. A line in
@ program is a step in the solution. Thus, every program
has associated with it a goal -- the problem of which it is
a solution. Every line has associated Wwith it its purposes
-- the parts it plays in the overall problem solution. A
line in a program is a main step if by its execution the
overall goal is approached. For example, code whose goal is
bto achieve a conjunction of subgoals may have a step for
each conjunct which makes it true. Each of these is a main
step. In MAKE-ON, MOl is the main step because the goal of
MAKE-ON, its‘pygrqjl pyrpo;q,“js,(NAKEwION;a b)) and MOl is
the actual cali td PUTON so before MO1, (ON a b) is false,
and after MOl returns (ON a b) is true.

Besides the main steps, programs often have auxiliary
steps. These are steps which do not directly contribute to
the problem solution but rather are uritten to make the main
steps work. An auxiliary step may be inserted to set up for
a main step, as in prerequisite insertion, or to serve as a
mediator of conflicts between main steps, as in an interface
or a double prereqbisite. Thus L1 and LS are auxiliary
steps, prerequisite to MOl in MAKE-ON. Certainly, in
complex instances, a prerequisite may have further
prerequisites and tuwo prerequisites for the same step .may

conflict, requiring further interpolation of auxiliary

Program Construction 146

steps. In human programming, most steps are auxiliary.

When a problem (or a subproblem) is attacked, HACKER
first looks in the Answer Library for a hethod uhose pattern
of app!icabilftg matches the problem. [f none is found, the
code-writer (program proposer) is calied. The code-uriter
first looks around for a chunk of code wWwhich might work if
subroutinized (and perhaps variablized - see X,
Generalization and Subroutinization for details). If none
is found, it is necessary to construct some code. The code-
uriter advertises for a method to wurite code for the goal.

For example, if the goal were:
(ACHIEVE (NOT (EXISTS (y) (ON y x))))

the code-uriter advertises for the answer by invoking

methods whose applicability patterns match:
(CODE (ACHIEVE (NOT (EXISTS (y) (ON y x)))) code)

expecting an answer in the form of an assignment of the
variable "code" to a program chunk which will perform the

~desired goal. In this case, a method is found:

(FACT (CODE (ACHIEVE (NOT (EXISTS vars exp)))
(UNTIL vars (CANNOT (ASSIGN vars exp))
(MAKE (NOT expl)))))

Program Construction 147

Thus code is assigned, by simple pattern substitution, the

value:

(UNTIL (y) (CANNOT (ASSIGN (y) (ON y x)))
(MAKE (NOT (ON y x))))
The code-writer then compiles a one-line program with this
as the main step, generating new symbols for the program

label and line label:

(HPROG EB9
(LINE L78 (UNTIL (y) (CANNOT (ASSIGN (y) (ON y x)))
(MAKE (NOGT (ON y x))))))
(where EB9 and L78 are the newly generated symools; the
" number ié‘incremented by 1bfor each new symbol.)

The overall goal and purpose of the line are indicated

by comments inserted into the data-base:

(GOAL EB9 (ACHIEVE (NOT (EXISTS (y) (ON y x)))))
(PURPOSE L78 (ACHIEVE (NOT (EXISTS (y) (ON y x)))) EB)

These ACHIEVEs have to be copies of the original expression
Which came to the code-uriter, because the original
expression is destroyed by displacement with the code just
Written. In that way, the program uwhich contained the

original expression

Program Construction 148

(ACHIEVE (NOT (EXISTS (y) (ON y 2))))

is modified to point at the new code. The code-uriter has,
by now, added the comments to the data-base, and since no
criticism is made in this case, the displacement is
performed and the code-uriter‘returns to his caller, who
then reruns the expression, nouw modified, which caused the
Wwriting of code.

Conjunctive goals, such as (MAKE (AND (ON A B)
(ON B C))) do not produce just one main step: How does this

work? When the code-writer advertises for:
(COBE (MAKE (AND (ON A B) (ON B C))) code)
he invokes a general program for AND stuff:

(FACT (CODE (function (AND . 1)) program)
(CSETQ program (CONJUNCTION function 1)}))

This program is rather hairy. It knows about all functions
(TEST, MAKE, ACHIEVE) of conjunctions of any number o¥
conjuncts (the Iis} is in 1). The AND trick takes on the
responsibility of code-uriting., It constructs the "linear"
theory program for the conjunctive expression. It produces
one main step per conjunct, whose purpose is to achieve that
conjunct, and returns them, with an HPROG and program |abel

it generated, to the code-uriter through the variable

Program Construction 149

"code". Thus the trick for AND actually generates, in the

case (MAKE (AND (ON A B) (ON B C))) (in problem 2.1j,

(HPROG AND2
(LINE L3 (ACHIEVE (ON A

B))
(LINE L4 (ACHIEVE (ON B C))

)
))
Which it passes back to the code-uriter. The code-uriter
always checks if the first element of the stuff returned to
it is HPROG. If so, it knows that the method generated the
program and line labels, and wrote and added the commenté.
Hence all the code-uriter need do is examine his mailbox for
criticisms generated by the AND trick, and act on them if
there are any, and‘if not, justvdisplace the calling pattern
With the given codéband return to the éalier. So ue see
that conjunctive goals lead to programs with multiple main
steps. It is important to note here that the |inear theoﬁg
of a conjunction does not aluways yield an almost-right
program -- one that can be debugged to achieve the
conjunction. A good example is that of the ARCH:

(ACHIEVE (AND (ON A B) (ON A C)))
The error is a combination of a DOUBLE-MOVE and a
PROTECTIONfVIDLATIDN. I have spent ueeks (Iiterallg!)
trying to understand houw to "debug" the linear theory
program for this goal but I have not come up Wwith a
satisfactory solution. Perhaps some problems depend so

strongly upon the interactions betuween subgoals that the

Program Construction 158

linear-theory solution is not a sufficient starting point.
Currently, therefore, HACKER can only construct programs for
which the |inear theory is almost-right.

Now uhat about criticism? MWhen problem 2.2,
(MAKE (AND (ON A B) (ON C D) (ONB C))), is run, the

experience of debugging 2.1 has left around a critic (See

XI, Critic Compilation):

(LATCH-FOR (ORDER (PURPOSE 11line (ACHIEVE (ON a b)) t)
(PURPOSE 21ine (ACHIEVE (ON b c)) t))
(PREREQUISITE-CLOBBERS-BROTHER-GOAL
current-prog liine 2line (CLEARTOP b)))
The trick for AND compiles, in its stupid way:
(HPROG AND71
(LINE L72 (ACHIEVE (ON A B

}))
(LINE L73 (ACHIEVE (ON C D)))
)))

(LINE L74 (ACHIEVE (ON B C)

After compiling this, it starts reading it:
(GOAL AND71 (MAKE (AND (ON A B) (ON C D) (ON B C))))
(PURPOSE L72 (ACHIEVE (ON A B)) AND71)

The critic perks up his ears (lline=L72, a=A, b=B, t=AND71)
and sets a trap for things of the form:

(PURPOSE 21ine (ACHIEVE (ON B c)) AND71).

The reader continues reading:

Program Construction 151

(PURPOSE L73 (ACHIEVE (ON C D)) AND71)

Another trap is set, this time for

(PURPOSE 21ine (ACHIEVE (ON D ¢)) AND71)

The reader continues:
(PURPOSE L74 (ACHIEVE (ON B C)) AND71)

The first trap snaps with 2line=L74 and c=C. The advice is

mailed:

(PATCH (PREREQUISITE-CLOBBERS-BROTHER-GOAL
AND71 L72 L74 (CLEARTOP B)))

Also, another trap is set for
(PURPOSE 21ine (ACHIEVE (ON C ¢)) AND71). The AND trick nowu
returns to the code-uriter, who is chagrined to find the

Wwarning in his mailbox. He executes it; but it turns itself

into:

(BEFORE L74 L72)

via:

Program Construction 152

(FACT (PATCH (PREREQUISITE-CLOBBERS-BROTHER-GOAL
prog linel |ine2 prereq)
(BEFORE 1ine2 linel)))
The BEFORE adds itself to the data-base and sets a flag in

the code-uriter to sort the program. The program is re-

sorted, yielding:

(HPROG AND71
(LINE L74 (ACHIEVE (ON B C)))
(LINE L72 (ACHIEVE (ON A B)))
0)»))

(LINE L73 (ACHIEVE (ON C)

This is still not quite right, but the old traps are
deactivated, and the program is re-aifed. In this iteration
L73 is moved up before L74, fixing the bug, and only now is
the code released to be run, correctly the first time!
Initially, there is only one criterion built into the system
which causes programs to be ordered: Prerequisites must
come before the lines which are the targets of their
purposes. To enforce this, every program is sorted at

least once before it is released.

Protection 163

XIII. The Protection Mechanism

Essential to the ability to debug prdgrams is the
ability to know when a program is misbehaving. As in
programming systems used by pecple, bUgs in HACKER’ s
programs may manifest themselves by a primitive complaining
about the task it is asked to perform, as in UNSATISFIED-
PREREQUISITE type bugs. A program may fail to do its job
Without arousing ang primitive. The primitives may be asked
to perform legal hanipulations, but the overall result may
be incorrect. This may be the case if either some piece of
code fails to do its job or a nasty interaction undoes the
Wwork done by preViouslg executed code. The protection
mechanism is the method by which HACKER is made auare of
these more subtle diseases.

Human programmers, who are not provided with anything
more closely resembling the protection mechanism than the
address stop switch on the computer console {or the MAR
interrupt of ITS [Note 171), often Write special debugging
aids into their programs. These usually amount to scattered
tests for impossib]e (inconsistent with the assumed state)
situations. Carl Hewitt has proposed a uniform method,
called Intentions, of including such tests in a higher-lievel
language (see [Note 91, PLANNER). He has also proposed that
an extension of address stop, the Monitors, be included in

higher-level languages. Periodic tests, or Intentions, are

Protection 154

useful in verifying that a program is working correctly.
1f, however, a program fails, and this is noticed by the
failure of some test which was expected to succeed, we still
have not found out why it failed. If the test was true at
some previous time, then‘ue know that it was made untrue by
some code executed betueeé that time and the present.
Monitors, on the other hand, tell us, if we know that a bug
is being caused by the incorrect contents of some data
structure; the modifications to that data structure as they
occur. Such data is extremely valuable to the programmer.
HACKER's protection mechaniém is a combination of the
ideas of Intentions and Monitors under the unifying concept
of "the chronological scope" of a goal. (The idea that
goals have scopes was planted in my head by Marvin Minsky.)
This is directly related to HACKER's belief that each step
of a program has a (at least one) purpose. That purpose may
be either to contribute to the overall purpose of the
program, or to provide some part of the correct conditions
for later steps. Thus, the purposes of a step in a program
are not just its Intentions, the goals which can be agsumed
to be true after the step is run, but also the target users
of each of the goals achieved. Hence a program is operating
correctly, in that it accurately reflects the intent of the
programmer, only when each step achieves those goals that
the programmer intended it to, and each of those goals

remains true at least until the steps which depend upon its

Protection 155

being true are run (or the end of the program block if this
step is a contributor to the purpose of the program).

The protection mechanism in HACKER programs is armed by
the PURPOSE comments associated with each line of code

written by HACKER. Thus, in the program MAKE-ON:

(TO (MAKE (ON a b))
(HPROG MAKE-ON
(LINE L1 ...)
(LINE LS ...)
(LINE MO1 (PUTON a b))))

the commgnts are:

(PURPOSE L1 (ACHIEVE (CLEARTOP a)) MO1)
(PURPOSE LS (ACHIEVE (PLACE-FOR a b)) MO1)
(PURPOSE MO1 (MAKE (ON a b)) MAKE-ON)

The second position in a PURPOSE is the "source" line. When
executed, the source must perform the service indicated by
the third position for the "target", the fourth position.
Since the effect of (ACHIEVE (CLEARTOP a)) is to make
(CLEARTOP a) true, ue say that (CLEARTOP a) is protected
over the scope L1 to MOl. Similarly, (ON a b) is protected
over the scope MOl to (the end of) MAKE-ON. In this case,
since MOl is last in MAKE-ON, no trouble can happen. If an
expression is protected over some scope, then if we are

running in CAREFUL mode, it is checked for truth at the

Protection 156 ”‘

beginning of the scope (an error uilf result if it isn’'t
true) and during the scope an error will result if anything
happens to make the expression untrue.

Hou is_this implemented? At the entry to every HPROG a
CONNIVER context (see [Note 14]) is pushed and rebound.
Thus a HACKER program has a data-base structure which
reflects the dynamic structure of the program. This is in
addition to the chronological structure mentioned in Chapter
IX, Types of Bugs. After a line, say L1, is run, its
purpose comments are retrieved and activated by adding to

the dynamic (not chfonological!) context:
(ACTIVE L1 (ACHIEVE (CLEARTOP A)) MOL)

where A (say) is the value of a. This invokes the

protection mechanism by means of [F-ADDED methods:

(IF-ADDED (ACTIVE line (ACHIEVE exp) target)
L N)

or
(IF-ADDED (ACTIVE line (MAKE exp) target)
LI) .
These test the truth of exp, and if it passes the test, exp

is protected by adding (to the current context frame):

Protection 157

(PROTECT exp) e.g. (PROTECT (CLEARTOP A))

Later, when MOl is about to be run, all items (in the

current context frame) of the form:
(ACTIVE line goal MO1)

are removed from the current context frame because‘theg have
served their purpose. IF-REMOVEDs are used to clean up and
remove the protections which uwere inserted as a consequence
of the particular active comment. As the dynamic protection
context is popped when the HPROG returns, the protection of
(ON A B) generated by activating the comment on MO1
disappears.

Whenever a change is made to the worid model (the
chronological context) a test is made to see if any
protection has been violated. All currently protected
expressions are fetchéd from the dynamic context and tested
in the worlid model. An error results jf one is found to bev
untrue. Thus HACKER runs very slowly in CAREFUL mode.

PROTECTED? is_implemented as follows: A hypothetical
world model is created with the changes indicated by the
argument to PROTECTED? made. This requires IF-ADDEDs and
IF-REMOVEDs to produce a consistent result. The protected
expressions are then checked out in the hypothetical worild

and if none have been violated, PROTECTED? returns TRUE.

Anomalous Situations 158

XIV. Anomalous Situations

As we have seen in chapter IX, Types of Bugs, I have
worked out in detail the underliying causes of pnlg a feuw
tupes of bugs. Unfortunately, it turns out that this
classification is not sufficient for even all of tHe bugs
encountéred in Blocks World problems. Bugs may become
manifest to the error system for which none of the knoun
classifications is appropriate.

One apprbach to solving this‘problem is to attempt to
extend the number of bug types for uﬁich classifications,
patches, and perhaps generalizations are knouwn. .He can hope
that by diligent effort we can eventually classify all bugs
that can come up, and understand them sufficiently to knou
what kinds of patches to prescribe for each type. [feel
that this approach is very promising, houwever large the task
may seem nou. MWe in Artificial Intelligence have often been
pleasantly surprised at the remarkably small "size of
infinity" -- that is, the manageably small number of
features required to classify what initially seems to‘be'a
horrible problem.

Another appro;ch is to attempt to create a more general
theory of debugging -- one in Wwhich the properties of bugs
are derived from more general principles, and from which ail
bug types can be derived. | am more skeptical of this

approach. [expect that it will become profitable only

Anomalous Situations 159

after we see a more exhaustive survey of bugs in at least a
few distinct domains.

In any case, until we have a complete functional
taxonomy of bugs, it is necessary that problem solvers, |ike
HACKER, be provided uith ways of dealing with these
anomalous situations -- that is, error situations for which
no general classification fits. Even if the problem solver
is at a loss to debug and patch (hence learn about) this
kind of problem, he must be able to muddle through, however
inefficiently, and provide the user With a solution. In
this chapter wes will examine houAHACKER attempts to lose
gracefully in some situations which to him are anomalous.

Sometimes, one way to make a problem go away, if it
isn’t so critical that it has to be fixed immediately, is to
ignore it. In the case of DOUBLE-MOVE manifestations, which
are really warnings rather than clear errors; if the
situation is not a clear-cut case of a known bug, the error
system just notes the state of the performance program for
use in debugging if a serious bug appears later, and returns
control to the interrupted performance program. In Scenario
section 5§ (chapterBVIII) several such false alarms are
dismissed. The error system, to be sure that nothing is
missed, is really rather tuitchy in CAREFUL mode, and things
may seem to be in a bad way even if they are proceeding
smoothly.

[f the manifestation is more serious, and real mischief

Anomalous Situations 168

is afoot, HACKER cannot just run away from the problem.
Suppose, for example, that HACKER has already learned the
lessons of Scenario section 2, that structures are to be
built from the bottom up, and he is presented with the

probiem (first noticed by Alien Brown):

. D

Statement: (MAKE (AND (ON A B) (ON B C)))

TABLE

Certainly it is true that in any problem of this form, B
must be placed on C before A is placed on B because B cannot

be moved with A on it. Hence HACKER compiles the program:

(HPROG AND48

(LINE L4l (ACHIEVE (ON B C)))

(LINE L42 (ACHIEVE (ON A B))))
But notice the problem: If B is placed on C first, then
when A is to be moved (to put on B), A must be CLEARTOP
requiring the removal of C and thus the removal of B. A
very nasty PROTECTION-VIOLATION. It's a terrible pity, but
as ue see in 2.1, A cannot bé put on B first. What does

HACKER do?

Anomalous Situations 161

First, the error system attempts to classify the
manifestation into one of the known underlying causes. I
shall first show why this does not fit any of the knoun
groups. A process model is prepared (see Figure 12) as
usual. The classifier looks at this mode! and asks

(question 3 in chapter IX, Types of Bugs):

I's the protection violator a prerequisite calculation
for a step whose purpose is to satisfy a brother goal to
the one violated?

The answer is NO: The protection violator, (PUTON B TABLE),

is in fact a prerequisite calculation, (CLEARTOP C), for a

step, (PUTON C TABLE). But the purpose of this step,

(MAKE (ON C TABLE)), is not a brother of (ACHIEVE (ON B C)),

the goal being violated. In fact, (MAKE (ON C TABLE)) is
part of a prerequisite calculation, (CLEARTOP A), for a
brother goal.

We are also clearly not in a étrategg conflict like
problem 3.5. In fact, this protection violation is not
classified. HACKER has no plan for solving the problem
better than the one being executed. He has no choice but to

allow the protection to be violated, with the promise that

the violation will only be temporary -- that the goai whose
scope is being violated will be restored as soon as
possible. Thus HACKER remembers the goal whose scope is
being violated, by adding it to a special list called

Aw

MOI

(ON B TA wrmL\

LI

%(o dO14v31))

MOI

L4l

(ON B C)

(ONC TA w_.m;v

LI

§V dO.1HdVv310)

L42

(ON A B)

AND40

]

figure 12

Anomalous Situations 163

DEFERRED, and then allous the program to continue. When
DEFERRED is non-empty, HACKER runs in a special mode which
is even slower than CAREFUL mode. He wants very badly to
make DEFERRED empty, so at every opportunity, say finishing |
execution of a line of code, HACKER checks to see |f any of
the deferred subgoals can now be achieved -- that is, if
there is any deferred subgoal which no lohger needs to be
deferred (is not protected against -- see chapter XIII, The
Protection Mechanism). ‘

In the example we uwere following, (ACHIEVE (ON B C))
becomes a deferred subgoal, and HACKER allous the
(PUTON B TABLE) to proceed to clobber (ON B C).

(ACHIEVE (ON B C)) must be deferred unti| the scope of
(CLEARTOP C) is terminated. But (CLEARTOP C) is protected
until (ON C TABLE) is achieved. At this point, it becomes
OK to (ACHIEVE (ON B C)) so HACKER interrupts the running
program to replace B on C (C is nouw on the table). The
program is now resumed. It has succeeded in achieving
(CLEARTOP A), so A can be placed on B as expected. A is
placed on B, solving our problem.

Perhaps there‘is more to this process than meets the
eye? Currently, while in deferred mode, double moves are
ignored. There are indications that much can be learned by
studying the double-move structure of a problem-solving
process in defarred mode. Drew McDermott has suggested that

a bug-tgpe abstraction process might result from such a

Anomalous Situations 164

study. In any case, this technique of deferring violated
subgoals is very general. Computer programs uritten by
people are often forced to save the contents of an active
register to be restored later because some computation to be
done betuween the save and restore may clobber that register.
In the Blocks World it saves the day in many other
situations. For example, consider problem 3.6, with the
added constraint: (PROTECT (ON D C)). 1In this case, wue
cannot make room for A on B without pushing C. This,
however, requires that D be removed from C. It is necessary
to replace U before the problem fs completed. The
protection violation causes deferment of (ON D C) which is
re-established as soon as C is pushed. This is actually a

rather elegant solution.

Formal Objects 185

XV. Formal Objects

This chapter was reserved for the end because the
technique illustrated herein is not in the mainstream of
HACKER development and no effort was made to push it to its
logical conclusions. [believe that the formal object
technique is potentially a powerful one in the "bag of
tricks" of the problem-solver uriter. [ts present
incarnation, however, is rather immature and needs further
development.

[promised to explain how HACKER knew, in the expansion
of CLEARTOP in Scenario section 1, when confronted with the
problem (MAKE (EXISTS (z) (AND (NOT (= z a)) (ON y z)))), to
CHOOSE z from the set of SURFACEs. The truth is, I lied;
HACKER did not, at the indicated point, know how to CHOOSE
2. MWhat did he do?

One thing that can be done, which is what HACKER does,
is to apply the "wishful thinking" technique. The trick is
to assume that the choice can and has been made, and then
proceed in the hope that we'll find out soon enough.
Specifically, the FACT used in Writing code for
(MAKE (EXISTS (z) goal)) really expands into:

(CHOOSE (z) ((UNKNOWN z))
(TEST (POSSIBLE goal))
(MAKE goal))

Formal Objects 166

UNKNOWN is a very special selector which assigns to z a new
symbol (uniquely generated and having no properties except
that it is formally unknown) whose purpose is to collect
information and assumptions made about the expected contents
of z while the code using z is run. Associated with the
formal object is the process which created it -- the state
of the interpreter at the time it was chosen. Thus, uhen
sufficient information is acquired to clarify the situation
and determine the choice, or a choice is forced, HACKER can
find his way back to the place uhere the patch is to be
made.

Let us assume that z is assigned the formal unknoun F.
The program then continues into the test which expands and
runs as described in chapter [V. Certainiy F is not equal
to B (the value of a), and no information is picked up here.
Then (NOT (PROTECTED? (NOT (ON A F)))) is evaluated (A is
the value of y). The Protection Néchanismvfinds no reason
to fear (ON A F) and here uwe pick up nothing either. (A
more clever mechanism would note that F is something which A
can be ON.) Thus F seems to pass the choice test, ana ue go
to (MAKE (ON y z)) where y=A and z=F. A recursive call is
made to MAKE-ON. Inside MAKE-ON a=A and b=F. The recently
inserted (and currently under modification) line L1 cannot
assign y such that (ON y A); A has a clear top, so execution
proceeds to MOl uwhich tries to (PUTON A F). Now PUTON is a

primitive operator and, by convention, HACKER primitives

Formal Objects 167

must declare, upon entry, the type of each argument. PUTON
declares: (OBJECT A) and (SURFACE F). These declarations
are just added to the data-base wuhen HACKER is in CAREFUL
mode. Now PUTON actualiy attempts to go through the action
of putting A on F. That requires PUTON to figure out where
on F A should be placed. But F is discovered not to have a
size or shape. PUTON becomes unhappy at this point and

calls the error system uwith the message:

(BUG FUNNY-THING F)

This indicates that the complainer, PUTON, is unhappy With F
because it uas lacking a property that PUTON expects on F's
property list. The error system now investigates the origin
of F and determines that F is a formal unknown. Since the
error system also has access to the creator of F, the
CHOOSE, it passes control back to the creator, giving him a
pointer to the complainer. The creator, CHOOSE, looks into
the data-base of the complainer and sees that PUTON expected
(SURFACE F). Since PUTON cannot proceed with F unknoﬁn,
this complaint cannot be ignored, and SURFACE is taken to be
the UNKNOWN selector. CHOOSE then determines that y was the
variable which uas assigned F so the selection argument is
forced fo be (SURFACE y). It is so clobbered. Then CHOOSE
restarts itself, this time selecting a real surface, TABLE,

for y, and hence successfully terminating.

Conclusions 1868

XY1l. Conclusions

By now you are probably convinced that HACKER can solve
toy problems in the Blocks World, and even that his
performance improves with practice in that domain. So

what?!

A. The Basic Concepts Behind HACKER

I feel that HACKER elucidates the nature of several
Pouerful Ideas, ideas which are basjc to effective probiem
solving. I certainly do not claim that these ideas are
exhaustive, or even sufficient for the Blocks World. Others
With different points of vieuw may find a different set of
Pouerful Ideas in HACKER or see some that | have overlooked.
I do feel, houwever, that we would be hard pressed to find an
area of significant intellectual attainment in which these

ideas lack power.

1. The Bug

We usually consider a bug at best an annogance; We
rarely think of one as illustrating an important point
(excepf as a counterexample), and we aimost never think of
"BUG" as a pouwerful idea. This is rather surprising, as a
large portion of a computer scientist’s time is spent
debugging. It is even more surprising when we realize that

at least several professions (outside the computer field)

Conclusions 189

are largely concerned with debugging. MWe have physicians
for debugging our bodies, auto mechanics for our cars, and
psychiatrists for our emotions. Contrary to popular belief
about mathematicians, scientists, and engineers, complete
formal theories do not usually arise fully formed and wel |
understood. They are usually arrived at by a painful
process of successive approximation and refinement. Perhaps
the difficulty is cultural. We are taught in school that
mistakes are abhorrent and that only success should be
studied. Even as professionals, wue rarely see papers
published about negative results; Problem solving programs
have so far reflected this prejudice of their authors

(Note 18]. They are thought of as mechanisms to search some
"space of solutions" for solutions to problems. Much
thought has been given to "efficiently" searching this
space. Modern uwork on knowledge based systems is usual ly
aimed at providing special purpose problem solvers with
special purpose knouledge designed to guide the problem
solver so that only the most plausible paths are
investigated. Very little thought has gone into direéting
Wwhat happens when fhe problem solver findé itself at a dead
end; usually an automatic depth-first search mechanism is
provided for such contingencies with the hope that the
positive guidance will be sufficiently strong to prevent
combinatorial explosion.

HACKER, houever, considers Wrong choices to be just as

Conclusions 178 —

interesting as correct choices. The philosophy here is that
rather than ignoring a bug in the search for a correct
answer, understanding it is the source of poder over it. It
is often the case that the "basic idea" of a proposed
solution wWwill work if we can only isolate the problem and
patch it.

Bugs are so important that it is useful to classify
them and give the classes names. In real world problem
solving Wwe often give names to important classes of bugs.

In electrical engineering, for example, one class of bug is
"instability". It may be manifest as "thermal runaway" or
“spurious oscillation" in an amplifier. The underliying
cause is "positive feedback", and there are several possible o
cures (patches) which may be applied: "negative feedback",

or "isolation", for example. Debugging is only valuable,

houever, if the results of the debugging can be used to

guide the future operation of the problem solver. Somehowu,

the results of the debugging operation must be summarized

and made available to the éontrol structure to be useful.

We must somehow be able to "learn" from mistakes.

2. The Relationship between Learning and Problem Solving
In a sense, even an elementary exponential search

problem sclver learns during the course of solving a

particular problem. It remembers (perhaps by forgetting

them!) those paths which have proven unfruitful so that they .

Conclusions 171

Will not be repeatedly explored. (Many predicate calculus
type theorem provers lack even this rudimentary skill.)
There have been attempts to improve the performance of
problem solvers by the introduction of "“memory". These
efforts have ranged from rote memory of the results of all
searches made (so that no specific search is duplicated)
(Note 18] through tree-pruning algorithms such as alpha-beta
in tuo person games, to some rather sophisticated attempts
to generalize successful lines for use in future subproblems
[(Note 28]. 1In the last case the resulting "plans" are of
only limited utility because their application is carefully
limited to subproblems satisfying conditions which guarantee
correct operation of the stored plans -- bugs are not
allowed. In HACKER, bugs are encouraged by ruthless
generalization. The resulting subroutines, houwever bug-
ridden, are applicable to al| situations even vaguely
resembling the ones for which they were written. The
debugging prccess is called into play to determine how the
existing routine may be modified to fit the new situation if
a bug turns up. The results of debugging are summariééd and
hence remembered (or learned) as the patch concocted to fix
the bug. In some cases, the bug discovered is also
generalized and remembered as a critic, a daemon which
prevents the construction of a program having that kind of
bug.

Learning of procedures and critics of the kind of

Conclusions 172

general ity done by HACKER is quite amenable to cumulative
procedural learning -- across problem boundaries. This
skill acquisition is more project-oriented than problem-
oriented. An important iimitation of HACKER (which 1
believe is shared by people) makes it necessary to careuliy
plan the training sequence. This is because the actual

problem-solving power of the bug classifier is limited.

3. Separation of and Isolation of Bugs

Most interesting fand difficult) bugs result from
unanticipated interference betueen steps in a proposed
solution of a problem. If HACKER can recognize any one such
bug (if it has a description of that kind of bug) it can be
expected to be able to cope with situations where that kind
of bug pops up. There is a second-order kind of
inter ference, however, which HACKER (and most humans, I
believe) cannot handle. This occurs when there is a bug
manifestation which is the result of more than.one
under lying cause, or when the manifestation of one bug hides
(or cancels) the manifestation of another. Even an
individual bug manjfestation can have its significance
confused by its occurring in an overly complex situation.

[am fond of an example from electronic circuit design.
[f we ask a student who is just learning about the
appropriate way to bias a transistor so as to yield an

amplifier which is thermally stable, to design and construct

Conclusions 173

a tuned linear amplifier for 58 MHz operation, we should
expect him to have a very tough time, even assuming that he
is a whiz at linear circuit theory and thus should Have no
trouble with the input and output tanks. The difficulty is
that at S8 MHz a whole new class of instabilities rears its
ugly head. Besides the dc instability which he is currently
Learning to cope with, at 58 MHz the internal capacitances
in the transistor become very significant, so positive
feedback through that path leading to non-linear operation
(at best, and most subtiety), spurious oscillation, and even
thermal runaway becomes an important factor. I would be
exceedingly impressed with a student who could sort out the
tuo,different,underlging causes of the instability (the
manifestation) and come up With the appropriate patches, one
in the dc bias network, and the other the introduction of a
neutralization circuit.

In HACKER a similar kind of situation can occur if we
try to give him a problem which has the possibility of
interliocking bugs. Say, for example, that HACKER has not
yet learned about the ordering of towers (section 2) Qr the
planning for simulfaneous use of space (section 4) and we

give him the problem

(MAKE (AND (ON B C) (ON A D) (ONC D)))

Conclusions 174

where A, B, and C are on the table and D is just large
enough to hold A and C.

First, B is put on C, then A on D. Next C has to be
put on D. But B is on C and an attempt is made to remove it,
leading to a protection violation. The bug is analyzed and
it is decided that the program is to be reordered so C is
placed on D before B is placed on C. The program is patched
and the world is réstored to the beginning. The proéram is
rerun. Now C is placed in the middle of D and B is placed
on it. A cannot be placed on D because C is in the way.
Perhaps C should be pushed over, but that involves removing
B, another protection violation. This one is anomalous
{(cannot be classified as one of the currently knouwn bug
types). HACKER can muddle through, solving the problem in
Anomalous mode, however the secondary bug casts grave doubt
on the validity of the first patch (which was correct).
This patch and its critic survive, however. Furthermore.,
the secondary bug, by being anomalous, masked the double-
move of C, and hence the learning about planning ahead.

Thus, to make learning reasonably possible, it ié
important to constfuct a good training sequence. HACKER
points at one important criterion for such a training
sequence (for people as well as HACKER) -- that the bugs be
isolated and separated. Perhaps this might be an important
principle in curriculum design.

A good problem solver (say an intelligent human), when

.

Conclusions 175

stymied by a difficult problem, often "fools around" with
easier related problems before reattacking the Hard one
head-on. [f asked about what he is doing, he might reply,
“I am feeling out the lay of the Iand"; I submit that he is
creating related problems in the hope that solving them will
isolate some of the bugs in his approach uhich by their
confluence have impeded his progress. Creating one’s own
training sequences is in fact an important part of

intel lectual creativity.

In many hard problems, the subproblems which are
generated form a sufficient traiﬁing sequence. HACKER takes
full édvantage of that kind of fortuitous learning. In
other cases, like the one just described, HACKER cannot
separate out the problems. Perhaps an important next step
in the development of problem solving systems would be a
thorough investigation of the problem of effective
exploratory behavior. One shallouw suggestion, indicated by
the example above, is that in the case of a conjunction of

subgoals in which trouble is encountered, one should first
try solving the subproblenms indiv}duallg. then in paifs.
etc. Such a self-generated training sequence would bring
cut each bug separately (in the case shown) and thus be’

exactly what is needed to fix the confusion.

Conciusions 176

4, Planning and "Linear Theories"

As indicated previously, most interesting (and
difficult) bugs result from unanticipated interference
between steps in a proposed problem solution. Why is there
such unanticipated interference between steps? This takes
us back to the fact that we require extensibility of our
problem solver. Extensibility, however, demands modularity
of the representation of the knowledge from which the
solutions of problems are proposed. Modularity is the
restriction tkat an element of knouledge be self-contained,
that it not be dependent upon other coexisting elements of
knouledge. If it is necessary to propose a multi-step
solution to a problem from such knowledge elements which do
not know about each other, then the only way that the
proposer can operate is to propose a solution in which the
steps are assumed not to interact. Only after we have such
a "linear theory plan" can ue then bring to bear other
knowledge to refine the plan to a wWworking program. This
other knouwledge can be explicit and specific, hence
efficiently applicable for avoiding bugs (critics), o}
general and expensjve to apply (as is debugging
information),

This idea of "linear approximation" turns out to be a
powerful complexity limiting device, uhich is as important
in the history of science as it is in solving individual

problems. The key is to make believe, say in the case of a

R

Conclusions 177

conjunction problem, that the conjuncts are independent and
they won’t interact. This leads to a plausible plan for
solving the problem, the sequential independent solution of
the conjuncts, in the hope that the results are additive
(superposition). Often the linear theory works and we are
done. In other cases, the "|jinear theory" has a bug and
interactions must be debugged, but the mode of failure is
often indicative of the kind of interaction causing the
trouble, and thus the kind of patch or elaboration of the
theory needed. In some cases (as in ARCH) the linear theory
doesn’t help. In those cAses, the conjunction cannot be
broken up into its individual conjuncts but rather must be
achieved as a unit. Perhaps in these cases more subtle
analysis of the |inear theory would be fruitful? -- perhaps
something éan be done by merging plans?

The linearization approach is often used in synthetic
problem solving. Going back to electronic circuit design,
consider the design of a stereo high-fidelity amplifier.
Such a device consists of three subdevices, an amplifier
module for each channel and a pouer supply. The two
amplifiers are identical. On first pass, the engineer will
design the parts separately. He will design a high-fidelity
amplifier module, and a pouer supply capable of supporting
tuo of them. An engineer, being skilled, has a critic that
recognizes a possible interacton bug -- the amplifiers are

coupled through the pouer supply (any realizable supply has

Conclusions 178

a non-zero output impedance) leading to some loss of stereo
separation. (A beginner uwould probably build the circuit,
and then discover the bug, make a patch and compile a
critic.) The situation can be improved (the channels better
isolated) by lowering the impedance.of the power supply.
This can be achieved by the introduction of a voltage
regulator circuit uhich actively (by negative feedback)
attempts to maintain a constant output voltage of the power
supply. This further necessitates increasing the overall
ratings of the pouer supply to give the voltage regulator

room to maneuver.

B. The Basic Mechanisms in HACKER

HACKER is a rather complex probliem solving program
built from many diverse mechanisms. In this section I will
attempt to summarize the structure of HACKER and point out
the most important of these mechanisms. 0One mechanism which
deserves a name is the overall structure and flou of control
as described in chapter II]l as well as here, the HAQ&ﬁB;
Structure.

The overall intention is a skill-acquiring problem
solver to which knowledge may be added in a modular fashion.
Skill is acquired by remembering and using the ansuwers te
previously solved problems and remembering and avoiding the

traps previously fallen into. In general, a solution to a

Conclusions 179

problem is a sequence of actions (a program) which, when
executed, effects the solution. The sequence of actions for
a particular problenm depends upon the statement of the
problem and the situation (context) in which the problem is
posed. In order that such an answer be applicable to newu
problems in new situations it must be ruthlessiy generalized
and stored, indexed by the patterh Wwhich is a generalized
statement of the problem for which it was written. The
collection of’such generalized answers is called the Ansuer
Library. The scheme by which answers are generalized is
detailed in Chapter X.

The hope is that a problem with a "similar" statement
to one already solved wil} have a similar solutfon. Thus,
Wwhen an ansuer from the Answer Library is applied to a new
problem which matches its pattern of applicability, it
should (at least almost) work. Generalizations are made,
houever, very ruthlessly, so subroutines are often used in
situations very different from those prevailing when they
were Written. Bugs occur because proposed answers often
take advantage of special properties of the situations for
which the ansuers Wwere uritten., These bugs may be manifest
in a variety of Ways. A primitive may complain that its
prerequisites are unsatisfied or the Qﬁglggilgﬂ mechanism
(see Chapter XIII) may discover that a result which has been
established is being clobbered before the need for that

result has expired. Bugs may also be indicated by certain

Concliusions 188

aesthetic principles of the problem domain being violateq.

A debugging sustem ic provided to make it possible to
use an almost correct solution to a problem. If successful,
debugging results in a patch to the solution which extends
it to the current situation. The buggy program serves as a
higher level "plan" for the "correct" solution uwhich
replaces it. Thus the patches "improve" the subroutines in
the Ansuwer Library by making them applicable to the moré
general situations for which they are advertised to work by
their applicability patterns. Knowledge of successful
problem solutions is summarizéd and remembered in usable
form as subroutines and patches to them in the Answer
Library.

The debugging system first attempts to classify a bug
(see Chapter IX). The bug classifier examines the
manifestation and attempts to determine the underlying cause
of the bug. This is accomplished by matching a teleological
model of the process in which the bug became manifest
against a set of prototupical bug tupes. The teleological
mode! is constructed from the process structure (stacks) and
the comments associated with the code when it was
constructed. These comments specify, for each line of code,
why and how it was constructed. Every line has (at least
one) purpose. A purpose has a lexical scope and a goal. It
states that the purpose of the line in question is to

achieve the goal specified because the |line which is the

Conclusions 181

target of the lexical Scope needs that goal achieved. In

the process resulting from running a program, the lexical

scope of a purpose becomes a chronological scope (the goal
is needed until the target line is encountered). The

protection mechanism is implemented by activating daemons
Wwhich protect the goal of a purpose over its chronological
scope.

If the manifest bug can be classified, and the
under lying cause determined, a patch can be concocted.
Often it is the case that a whole class of such bugs can be
recognized before they ever become manifest. In such cases
a critic is compiled (see Chapter XI), which watches as new
answers are written. The critic will catch bugs of the type
for which it was compiled at the time the code is
constructed, and cause them to be patched before they ever
run, A critic is a way of summarizing and avoiding traps
previously fallen into. The group of critics which
represent knowledge learned from debugging is called the
Critic’s Gallery.

New code is uritten Whenever a problem appears f;r
which no current ansuer is applicable. The code proposer
draws upon two banks of facts called the Blocks World
Knouledge Library and the Programming Techniques Library.
Because of tHe intent to keep the Blocks World Knouwledge
Library facts independent of each other, and hence modular,

Vinteractiqng betueen_steps,,a‘common cause of bugs, are

Conclusions 182

ignored by the code proposer. Thus, unless appropriate
critics are around to prevent them, the code proposer can
often produce buggy code. It is the code proposer who
Wurites the comments specifying the purpose of each line of
code, houwever, so that the debugging system can uwork out any
troubles. The facts used by the code proposer are stated as

pattern-invoked macros and neuw code is uwritten by macro-

expansion,

C. Limitations of HACKER

It would be nice to be able.to say that all it takes to
make HACKER perform in a neu domain is to replace (or
preferably augment) the Blocks World Knouledge Library uwith
a library of facts and definitions appropriate to the new
domain, and to supply a few new domain-specific primitives
(appropriately documented as to their purposes and
prerequisites in the domain-specific knowledge library).
Unfortunately, there are séveral major impediments in this

direction:

1. The more genefal problem-solving knouledge found in the
Programming Techniques Library, Types of Bugs, Types of
Patches, and Types of Critics, is at best incomplete.

HACKER knouws nothing about such important general
programming uWorlds as data structures and numerical methods,

and the classes of bugs, etc. for such worlds. [believe

Conclusions 183

that this kind of knowledge could be added to HACKER's
repertoire, though the process js long and arduous. This
kind of knowledge, unlike the Blocks World Knowledge
Library, is not very modular. For each new kind of
programming structure there is a set of bug types to be
classified, and their associated generalized patches and
critics to be worked out. I am sure, for examplie, that the
Bug Classifier has inadequate problem solving pouwer for any
real extension, and that many different bug types would have
to be examined carefully before we would begin to understand
the real requirements. As it is nouw, understanding and

formalizing one neu bug type is an enormous effort.

2. It is not yet clear just how hard it is to formalize
the domain-specific knowledge necessary to urite the
analogue of a Blocks World Knowiedge Library for another
domain. | feel sure that it must be easier than uriting an
expert program for that domain because the facts required
for such a library are more modular. Indeed, the expert
needs to know (in its implicit, distributed way) all ﬁf the
ﬁfacts" which make up such a library, In addition, the
expert must have, embodied in its structure, the important
interactions betueen the facts, again distributed as
necessary. UWhat would appear as one "fact" in a knouledge
library would appear in many places in an expert program.

In an expert, specifications of the interactions themselves,

Conclusions 184

like how to resolve spatial conflicts (see Chapter VII)
would never appear explicitly, as in HACKER, but would be
implicitly used in any place uwhere such a conflict could
arise.

In summary, [believe that this limitation is more a

matter of conjecture than reality.

3. A more fundamental problem than either of the preceding
tuo is that HACKER lacks an important kind of overvieu
capability. I, as a programmer, usually find myself doing
the kind of thing which HACKER seems to be good at. I
extend a program by an evolutionary prbcess, "debugging" it
to work in neu situations for which it was not originally
intended, adding new features, and including new ideas.
Sometimes, houwever, | find myself doing what seems to be
qualitatively different. | look at the program and say to
myself, "This is getting to be an ugly kludge and it is time
to reurite it." I then proceed to understand the program as
Written as thoroughly as possible and then reorganize the
whole structure into a new and more pleasant form. I,am
being deliberatelg‘vague on this issue because I don’t
understand it, but I knouw that HACKER just doesn’t have

anything like that ability.

P

Conclusions 185

D. Directions for Future Research
All through this document I have tried to point out
Wwhere HACKER was inadequate and how he might be improved.

In particular, people should:

1. Extend HACKER-1ike problem solving techniques to other
wor lds.

2. Study more different classes of bugs.

3. Develop a language for description of bug types based on
whatever i3 needed in the Wway of problem-solving pouwer in

the bug classification stuff.

A world which is considerably more rich than the Blocks
World but uhich seems exceptionally accessibie at this time
is the world of electronic circuit design. I think that it
is not inconceivable that a program could be wuritten using
HACKER-1ike techniques which would learn to design
transistor amplifiers on a training sequence composed of
problem sets from the electrical engineering core
curriculum.

I also hope that this research will stimulate interest
in those problems which I haven't begun to attack but have

only alluded to:

Conclusions 186

1. The probliem of purposeful exploratory behavior.

2. The problem of seemingly global overvieuw and
reorganization.

3. Problems for uhich the |inear theory answer is not a

good first approximation.

Notes 187

Notes

From "Webster’'s Seventh Neuw Collegiate Dictionary",

G.8&C. Merriam Co. (1965)

Various versions of HACKER have been implemented, no one
of which has all of the features described in this
document. No difficulty is foreseen in a complete

implementation, however, and one is expected.

The Blocks World has been intensively investigated by
people interested in problem solving because of its
apparent simplicity and interesting structure. Terry
Winograd <Winograd 1971s> used it as the subject of his
semantic model in his natural language understandiﬁg
system. Recently, Scott Fahiman <FahlIman 19735 has
constructed a problem solver uHich shows remarkable
expertise in the Blocks Worid. Car] Hewitt

<Hewitt 1972> has used the Blocks World for severél

examples of Procedural Abstraction by protocol analysis.

For one man’s opinion about "Automatic Programming" and
related issues, look at Balzer's <Balzer 1972> report.
Besides trying to understand all of the issues involved,

Balzer provides an extensive bibliography, a summary of

Notes 188 S~

each approach, and a list of peopla invoived in the

field.

This approach is typified by the work of Waldinger and

Manna <Manna 1971> uwho use a resolution theorem prover

to compute the program which performs a completely

specified input-output transformation. The difficulties

of describing the [0 properties of a complex program are

thus compounded by the lack of expressivity of predicate
calculus and the general lack of directedness of theorem
provers.

In <Winston 1978> Patrick Winston describes a system for o
learning structural descriptions of Blocks World scenes
by abstraction from a carefully chosen training

sequence. These descriptions ére suitable for
recognition by model-matching. In his work Winston
makes use of the idea of a "near-miss", an example which
differs from the concept being learned in only one
essential way. This is closely reiated to the idéa-of a
simple bug in programming. That is, a bug which is due
to only one underiying cause. Indeed, both HACKER and
people find more compiex bugs difficult if not

impossible to debug.

Notes 1883

CONNIVER <McDermott 1972>, a descendent of PLANNER
<Hewitt 1972> used for the implementation of HACKER,
supports a pattern-directed data base Wwith pattern-

directed procedure invocation.

Pattern matching is a well known "bag of worms" in
computer science. Numerous languages have been devised
to formalize the ideas involved, including SNOBOL
<Farber 13864> and CONVERT <Guzman 1966>. Recently, the
introduction of pattern-directed data retrieval and
especially pattern-directed procedure invocation by

PLANNER <Hewitt 1972> and its descendents MICRO-PLANNER

- <Sussman 1378>, CONNIVER <McDermott 18972>, and QA4

<Rulifson 1971,1972> have further complicated the issues

and the associated syntax.

PLANNER <Hewitt 1972> is Car| Hewitt's language for
problem solving. It has raised many important issues
and the resulting controversies have caused it to spaun
a2 slew of descendents. CONNIVER <McDermott 1972> is a
descendent of PLANNER uwhich is the result of arguments
against the Automatic Backtrack Control Structure
espoused by PLANNER. The arguments are documented in
<Sussman 1972>. HACKER and the code he manipulates are

written in CONNIVER.

18.

11,

Notes 190

IF-ADDED methods are the CONNIVER <McDermott 1972>
equivalent of PLANNER <Hewitt 1972> Antecedent Theorems.
They monitor all items (assertions) added to the
pattern-directed data-base. If an item is added which
matches the invocation pattern of some IF-ADDED method,
the process is interrupted and the body of the method is
executed. Such data-base monitors are useful for
maintaining the consistency of the data-base by making
related changes or watching out for specific problems

when something is added.

CONNIVER <McDermott 1972> has a generalized control
structure featuring a list-structure control stack built
from objects called contro! frames. The user can (and
is encouraged to) access, retain and manipulate the
control structure. He can evaluate expressions with
respect to a selected control environment, or he can
continue, go to, or exit from such an environment. Thus
the user can easily construct such control mechanisms as
mul tiprocessing, time-sharing (With interrupts), and
backtracking. Bobrow and Wegbreit <Bobrou 13872> have
proposed an efficient means of implementing such stack

retention schemes.

12.

13.

14,

Notes 191

The FINDSPACE Problem is a perceptual problem
encountered by Blocks Worid problem solvers. The
problem is how to determine if there is space on a
surface for an object, and ¥ 8o, where. Though at one
level it is an elementary analytic geometry problem, it
quickly involves such difficult questions as how to
describe space and constraints on space so that they can
be manipulated on a symbolic level. The name "the
FINDSPACE probliem" originates in Terry Uinbgrad's system
<Winograd 1971> as the name of his functioﬁ which
performs the required geometric manipulations. Scott
Fahiman has given thought to this problem - see
<Fahlmén 1873>. Gregory Pfister has an excel lent
algorithm for the numerical processing involved

(personal communication).

MIT-AI LISP <White 1978> is a pouwerful version of LISP
<McCarthy 1365> developed at the MIT Artificial
Intelligence Laboratory. It is noted for its extremelg
efficient implementation, often at the ekpense of'its

error handling system.

CONNIVER <McDermott 1972» supports a data-base
mechanism in which the user may construct a tree of
Wor ld-models in which each node corresponds to an

incremental change from the model of its parent node.

16.

16.

Notes 1392

This structure is useful for doing hypothetical
reasoning and modeling time. DOrew V. HMcDermott
<Mcdermott 1973> has inade extensive use of this

mechanism in his plausible inference system.

This operation, COMBINE, was originally described by
Reynoids <Reynolds 13878> and Plotkin <Plotkin 13978>.
The set of patterns are partially ordered by
substitution instance. The resulting lattice has the
standard operations meet and join defined on it. Meet
corresponds to the "most genéral common instance" -- the
UNIFY operation of rezclution theorem proving. The join
operation is the "most specific common generalization" -

- the COMBINE operation used by the HACKER generalizer.

LOGO Turtlie Geometry is an exciting new approach to
teaching of mathematical concepts to children (see
<Papert 1872a,b>). In this approach, the children are
taught to program a computer to control a small robot
(called a "Turtie") which can drau patterns by dragging
a pen. Ira Goldstein has been designing a system which
Wwill debug elementary LOGO Turtle Programs. See

<Goldstein 1973> for more details.

——

Notes 183

17. ITS is the time-sharing system for a Digital Equipment
Corp. PDP-18 which uas designed for use by the MIT-AI
laboratory. It includes various pouerful features
Wwhich are described in <Eastlake 1972>. One of these
features, the MAR interrupt, is essentially the time-
shared equivalent of the machine's address stop switch.
A user may, if he so desires, receive an interrupt on

read, urite, or execute of any selected memory register.

18. Fahiman’s <Fahiman 1973> program [Note 3] does not
share this prejudice. Part of the expertise of his

Program is knowing what to do Wwhen something goes wrong.

19. In Greenblatt’s Chess Program <Greenblatt 1367>, every
board position investigated (in a given game) is
remembered in a hash-table and associated with its
backed-up score. Thus, a position need only bé searched
out once in any particular game.

Samuel’s Checkers Program <Samuel 1959> actualliy
improved significantly over time by using this kiﬁd of
rote learning Fechnique from game to game. Samuel’s
program also attempted to do some "generalization
learning”" in which modifications are made to the board
evéluation polynomial. Tuwo such methods uere tried. In
one, the coefficients of the polynomial are changed, and

in another, various terms in the polynomial were

28.

Notes 1394

replaced.

The STRIPS problem solver <Fikes 1872> has an
experimental system for assimilating and using
generalized (variabilized) robot plans produced during

its normal probiem-solving activity.

Bibliography
Bibliography
<Balzer 1972>
Baizer, Robert
Automatic Programming
USC-ISI Technical Memo 1 (Sept 1972)
<Bobrow 1972>
Bobrow, D.G. and B. Wegbreit
A Model and Stack Implementation of Hultiple Environments

Bolt, Beranek, and Newman Inc. Report No.2334 (1972)

<Bogen 1973>
Bogen, R. et al

NACSYMA User’s Manual
M.I.T. Project MAC (February 1973)

<Buchanan 1969>
Buchanan, B.G., G.L. Sutherland, and E.A. Feigenbaum

"HEURISTIC DENDRAL: A Program for Generating Explanatory

Hypotheses in Organic Chemistry"
in <MI4>

<Eastlake 1972>

Eastlake, Donald E.

1TS Status Report

Al Memo 238 MIT-Al Laboratory (April 1972)

<Fahiman 1973>
Fahiman, Scott

A Planning Sustem For Robot Constr _T.a_s_k_g

u
Master’'s Thesis (Feb. 1973) NIT—AI-Laboratorg

<Farber 1964> :

Farber, D.J., R.E. Griswold, and I.P. Polonsky
"SNOBOL, A String Manipulation Language"

JACM Vol.11, No.2 (Jan 1984)

<Fikes 1972> , '
Fikes, Richard E., Peter E. Hart, and Nils J. Nilsson
"Learning and Executing Generalized Robot Plans"
Artificial Intelligence 3 (1872), pp.251-288

<Goldstein 1973>

Goldstein, Ira

An Intelligent Monitor for LOGO
PhD Thesis (expected August 1973)
MIT-AI—Laboratorg

185

Bibliography 1386

<Green 19638 a>

Green, C.

"Theorem Proving by Resolutiori as a Basis for Question-
Ansuering Systems"

in <Ml4>

<Green 1963 b>
Green, C. 3

The Application gf Theorem-Proving to Question-Answering

SQS tems

PhD Thesis (1369)
Stanford University

<Greenblatt 1367>

Greenblatt, R. et al

"The Greenblatt Chess Program"

Proc. FJCC (139687) pp.881-818

also Al-Memo 174, MIT-Al Laboratory (13969)

<Guzman 1366>

Guzman, Adolpho and H.V. Mclntosh
CONVERT

CACM (August 13966)

<Hewitt 1972>

Hewitt, C.
Description and Theoretical Analuysis (Using Schemata) of
PLANNER: A Language for Proving Iheorems and Manipulating

Models in a Robot
PhD Thesis (June 1871)

Al-TR-258 MIT-Al-Laboratory (April 13972)

<Hewitt 1971>

Hewitt, C.

"Procedural Embedding of Knowledge in PLANNER"
Proc. IJCAI 2 (Sept 1371)

<Manna 1371>
Manna, Z. and R.J. MWaldinger

"Toward Automatic Program Synthesis"
CACM (March 13971)

<McCarthy 1965»>
McCarthy et al

LISP 1.5 Programmer's Manual
MIT Press (1365,13966)

Bibliography 197

<McBDermott 1972>)
McCermott, D.V. and G.J. Sussman

The CONNIVER Reference Manual . o :
Al Memo 253 MIT-AI Laboratory (May 1972) (Revised July 1973)

<McBermott 1973> _—
McDermott, D.V. - :
Assimilation Mmmuamm
Understanding Systen 5

Master’s Thesis (Feb. 1973)

MIT-AI Laboratory

<MI4>

Machine Intelligence 4

Meltzer, B. and D. Michie (eds.)
Edinburgh University Press (1989)

<MIS> Machine Intelligence §

Meltzer, B. and D. Michie (eds.)
American Elsevier Publishing Co. (1878)

<Minsky 1965>

Minsky, M.L.

"Matter, Mind, and Modeis"
IFIP (1985)

<Minsky 1966>

Minsky, M.L. '

"Why Programming is a Good Medium for Expressing Poorly
Understood and Sloppily Formulated Ideas"

Design and Planning (1968)

<Minsky 19708>

Minsky, M.L.

"Form and Content in Computer Science"
JACM (April 1879)

<Minsky 1972>
Minsky, M.L.

Report
Al Memo 252, MIT Al Laboratorg (Jan 1872)

<Newel| 1959>

Newell, A., J.C. Shaw, and H.A. Simon

"Report on a General Problem-Solving Program"

in Proceedings of the International Conference on
rmation Pgogggsing A

Paris:UNESCO House (1859)

Bibliography

<Newel |l 1872>
Newel |, Allen, and Herbert A. Simon

Human Prbglgm Solving : ~
Prentice-Hall Inc. (1972,

<Papert 13872a>
Papert, Seymour A.
"Teaching Children Thinking"

198

Programmed Learning and Educational Technology, Vol.S9, No.5

(Sept 1972)

<Papert 1972b>

Papert, S.A. g b

"On Making a Theoer for a Chlld“
Proc. +ACH Conference (Aug. ,13972)

<Plotkin 1978>
Plotkin, G.D.

- "A Note on Inductive Generalization"
in <MI5>

_ <Régnold§ 1978>
Reynolds, J.C.

 "Transformational Systems and the Algebraic Structure of

Atomic Formulas"
in <MIS>

<Rulifson 1971>
Rulifson, J.F.

QA4 Programming Concepts
Stanford Al Technical! Note 68 (August 1371)

<Rulifson 1972>
Rutifson, J.F.

"The QA4 Language Applied to Robot Planning"”
FJCC (1872)

" <Samuel 1959>
. Samuel, A.L.
" "Some Studies in Machine Learning Using the Game of
Checkers"
IBM Journal of Reséearch and Development (1353)
also in Feldman and Feigenbaum (eds.)
Computers and Thought (1863)

<Sussman 1378>
Sussman, G.J., T. MWinograd, and E. Charniak
Micro-Planner Reference Manual
Al Memo 283, MIT-Al Lavboratory (July 1378)
(revised December 1971)

Bibliography 199

<Sussman 1372>

Sussman, G.J. and D.V. McDermott Rk

"From PLANNER to CONNIVER - A Genetic Approach"
FJCC (13972) : L

<White 1978>
White, J.L. .

Interim LISP Progress Report) .
Al Memo 198, MIT Project MAC (March 13876)

<Winograd 1971s

Winograd, T.

Procedures as 2 Representation for Data in a Computer
Program for Understanding Natural Language s

PhD Thesis (August 13979)
and

- L

AI-TR-17 (MAC-TR-84) .
MIT Al Laboratory (Feb 1971) C

<Winston 1978>

Winston, P.H.

Learning Structural Oescriptions from Examples
PhD Thesis (Jan 1978) L
also MAC-TR-76 MIT Al Laboratory (Sept 1878) -~

