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ABSTRACT

One very useful idea in Al research has been the notion of an explicit model
of a problem situation. Procedural deduction languages, such as PLANNER, have
been valuable tools for building these models. But PLANNER and its relatives are
very limited in their ability to describe situations which are only partially specified.
This thesis explores methods of increasing the ability of procedural deduction
systems to deal with incomplete knowledge. The thesis examines in detail,
problems involving negation, implication, disjunction, quantification, and equality.
Contral structure issues and the problem of modelling change under incomplete
knowledge are also considered. Extensive comparisons are also made with

systems for mechanical theorem proving.
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1. Introduction
1.1 The Other Problem with PLANNER

One useful idea that has come out of Al research seems to be the
notion of an explicit model of a problem situation. A model! of this kind
might record that a certain block is in a certain place, or that Black's
knight is threatening to win White's king paun. A problem solver can ask
questions of the model in order to plan its actions and test their effects.

In early programs, these models either represented all their knowledge
directly, or derived it by predetermined computations. In more complex
situations, however, it is not possible to anticipate every question which
might be asked. Truly intelligent programs have to be able to derive neu
knowledge by combining old knowledge in unexpected ways. In other words,
they must be able to reason.

There are several approaches to constructing models which might be
called reasoning progfams. The newest of these, the "frame" approach
<Minsky 1375>, is still in a preliminary stage of development. At this
point it is difficult to obtain agreement on what a frame is, and even
harder to evaluate its capabilities. Another approach is logical theorem
proving, particularly resolution-based theorem proving <Chang and Lee
13973>. This approach suffers from at least two major problems. First, the
research effort has been concentrated on proving theorems in the first-

order predicate-calculus, a language which is very limited in its



expressive power. Second, very little progress has been made in
controlling deductions, so that a theorem prover tgpicalfg wanders off
making inferences that have very little to do with the problem that it is
supposed to be solving.

Finally, there is "procedural deduction", an approach embodied in
PLANNER <Hewitt 1972> and related programming languages. This approach
starts with the more promising idea that how a fact should be used is as
important as what the fact asserts. As a3 resu't of this emphasis, these
languages have been given sophisticated control structures which make it
possible to write far more efficient reasoning and problem solving programs
than those which have been based on uniform proof procedures. But these
languages are still very limited in expressive power; in some wWays even
more limited than first-order predicate calculus. The goal of this thesis
is to investigate ways of extending the expressive power of procedural
deduction systems.

To understand the claim that existing systems lack expressive power,
one must distinguish between the true but uninteresting fact, "Programming
languages are universal, so they can express anything;" and the more
substantive question of what features are actually available for
constructing descriptive models of situations. This thesis explores ways
of increasing the ability of procedural deduction systems to express and
reason With incomplete models of situations. MWe will break this down into
two subproblems, modelling static situations, and model ling change. The

bulk of the thesis is devoted to the first of these subproblems; some



preliminary ideas about the second are presented in Appendix A. The
follouwing sections discuss the |imitations of the PLANNER paradigm in these

areas.

1.2 Modelling Static Situations in PLANNER

Procedural deduction systems start from the idea that a situation is
modelled by a data base of procedures and symbolic statements. The data
base is interrogated by representing questions as procedures which search
and manipulate the data base. The basic construct that both questions and
statements are built from is some representation of a relationship among
individuals, In PLANNER this is done by assertions such as (ON BLOCK1
BLOCK2) where one of the elements is the relation and the remainder are its
arguments. These simple structures, however, are insufficient for
expressing complex information. A language for building model!s needs
features for combining simple items to make more complex structures.

For this purpose, the predicate calculus supplies logical comnectives
and quantifiers. Procedural deduction sgstéms have analogous constructs.
Micro-Planner <Sussman et. al. 1971> provides THNOT, THOR, and THAND to
express negation, disjunction, and conjunction; antecedent and consequent
theorems to express implication; and pattern matching to handle
quantification. Using these features in a straight~foruward way,
however, leads to difficulties when dealing with incomplete knowledge.

By incomplete knowledge or an incomplete model of a situation, we mean



that there are questions Within the realm of discourse of the model whose
answers are unknown. HModels constructed using PLANNER-Iike languages have
almost invariably been complete in this sense. I[n SHROLU <Winograd 1371>
for example, there are no blocks which the robot does not know about, and
the robot knows the color, shape, size, and location of every block. While
the robot does not know, say, the weight of the blocks, this question is
really outside the domain of the program. So, uithin its domain, SHROLU is
omniscient.

Now let us consider the features of Micro-Planner that make it

difficult to model incompletely known situations.

Negation

The only negation operator in Micro-Planner is THNOT. (THNOT P)
succeeds if and only if P fails, THNOT is typically used in the construct
(THNOT (THGOAL P)) to represent (= P). Since (THGOAL P) fails whenever P
cannot be inferred, rather than when P is knoun to be false, this ammounts
to an assumption that whatever is not knoun to be true must be faise. This
is obviously an inference rule which is unreliable in a great many
circumstances. For instance, we would not assume that a casual
acquaintance was unmarried simply because we did not know that he was

married.



Disjunction

Micro-Planner's disjunction operator is THOR. For the expression
(THOR P Q) to succeed, either P must suceed or Q must succeed. So to
answer yes to the question "Is P or Q true?" one must know that P is
definitely true or that Q is definitely true. Knowing only that P or Q is
true, but not knowing which, will not do. In fact, Micro-Planner really
has no way of representing this state of affairs - asserting (THOR P Q) has
no special meaning for the system. One might try looking for (THOR P Q)
explicitly asserted, as well as evaluating it, but this fails in many
cases. For example, suppose we know that P implies R, Q@ implies R, and P
or Q. If we wanted to prove R, we could use the first fact to generate P as
a subgoal and the second to generate Q as a subgoal, but the effort would
fail because "P or Q" never explicitly appears as a goal. If a person
knous that John ouns either a dog or a cat, however, he has no trouble

concluding that John owns an animal.

Quantification and Equality

Micro-Planner offers limited quantification by way of variables in its
pattern matcher. A variable will match anything, so a variabilized pattern
of a theorem is universally quantified. So (P 8?X) in a3 theorem pattern
means the same as (¥x (P x)). In a goal this matching convention gives

variables an existential interpretation, so (THPROG (X) (THGOAL (P $?X)))



means “"Prove (3Ix (P x))".

Existential assertions and universal goals, houever, cre
problematical. There is really no way at all of making an existential
assertion like "Something is P," without specifying which thing is P. There
is no operator specifically for universal goals, but in SHROLU goals of the
form "Are all P's Q?" are approximated by the expression:

(THNOT (THPROG (X) (THGOAL (P $?X))

(THNOT (THGOAL (@ 87X)))))

This procedure looks at all the known P's, trying to find one that is not
knoun to be a Q. If there is no such P, then all known P's are Q and the
entire expression succeeds, due to the outermost THNOT. This corresponds
to replacing (¥Yx ((P x) 5 (@ x))) by (= Ix ((P x) A (= (g x)))), but
because of the use of THNOT, the quantification is only over knoun P's.
This is insufficient in many cases. I[f a middle-class American were asked
“Oo all people have telephones?" the ansuer would probably be no, but the
person might not be able to name any. Even in situations |ike SHRDLU's
blocks world where this procedure is reliable, it can be very inefficient.
It does not permit taking direct advantage of a universal assertion to
answer a universal question. Even if we had a theorem which contained the
information that all cubes are blocks, to answer the question "Are all
cubes blocks?" would require enumerating all cubes and using the theorem
repeatedly to verify that each is a block.

Finally, the only equality operators Micro-Planner has are LISP



equality operators. This makes it difficult to model situations uwhere
there is not one unique name for each individual. [f MAN1 is the man we
sauw on the bridge yesterday and MAN2 is the man who was found in the river
today, we might want to consider whether MAN1 = MANZ.

Although Micro-Planner was one of the earliest procedural deduction
languages, its limitations in these respects are shared by its successors.
CONNIVER <Sussman and McDermott 1972>, QA4 <Rulifson et. al. 1972>, and
POPLER <Davies 1973> have made advances in control structure, data types,
and multiple data bases, but they share PLANNER's biases towards requiring
complete knowledge of situations being model led. There have been
suggestions as to how some of these problems might be handled (which we
Will consider in subsequent sections), but no systematic study has been

made of these problems as a group.
1.3 Modelling Change in PLANNER

The previous section discussed the problems that arise when incomplete
knowledge is introduced into PLANNER-type reasoning about static
situations. MWe now want to consider what happens when incomplete knowledge
is introduced into PLANNER's reasoning about change.

PLANNER-type systems handle change by creating a series of data baSes.
each being a "snap-shot" of the process being described. The typical
PLANNER data base consists of theorems (procedures) which are always

present, and simple assertions which may be asserted or erased as the



result of performing an action. It is fairly straightforward to write
procedures for each action which assert and erase the appropriate
statements. The STRIPS problem solving system <Fikes and Nilsson 1971> has
a similar, though less flexible, mechanism in its add and delete lists.

Several new difficulties come up when incomplete knouledge is allowed.
First, instead of simple assertions, we may have arbitrarily complex pieces
of knowledge which must be dealt uwith by the asserting and erasing
procedures. For instance, suppose we are told that all pyramids in the box
have been moved to the table. I[f we have a complete PLANNER-type model, we
simply check each pyramid to see if it is in the box, and if so, erase the
statement that it is in the box, and assert that it is on the table.

In an incomplete model we might not know very much about particular
pyramids, but know instead "All yellow pyramids are in the box." The
procedures associated with the action should erase this statement, and
leave us in a sttuation where we can deduce "All yellow pyramids are on the
table." UWhat we need are systematic methods for dealing with complex
assertions, given the effects of an action on simple assertions.

Another problem is that many actions have conditional effects: moving
A from Pl to P2 will also move B from Pl to P2 if and only if B is on top
of A. In complete modeis conditions such as this can aluays be evaluated;
in incomplete models they cannot. In the above example, if we know that B
is at Pl but not whether B is on A, then following the action we would like
to know that B is at P1 if B was not on A, and B is at P2 if B was on A.

Finally, we would like to consider situations where performing an



action results in a loss of information: that is, situations where the
action itself is non-deterministic or incompletely described. If A and B
are in the box, and we are told that one block has been removed, then ue no
longer know if A is in the box or if B is in the box. We do still know
houever, that either A or B is in the box.

| It seems worth noting two general observations about the extensions to
the PLANNER paradigm that will be required to handle examples like these.
First, it will be necessary to incorporate names of world states into

assertions. This is because sometimes our knouwledge about the results of

an action will be statable only as a relation between the state before an
action and the state after the action. (Recall "B is at Pl if it was not

on A.") In PLANNER and its relatives, every statement must be made
completely within a data base representing a state of the world. Second,
it will be necessary to examine and manipulate complex assertions. In
PLANNER-|ike systems it is difficult to do anything except execute them as
procedures. So to this extent the system must be less prbcedural and more

declarative.
1.4 Other Work

Besides the procedural deduction systems discussed above, there are
two other research efforts which are related to the question of reasoning
from incomplete knowledge. The first is the work of Collins's group

<Carbonel| and Collins 1973> <Collins et. al. 1975>. They alsc deal with
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incompletely described situations ("open worlds" in their terms), but they
attack a somewhat different problem. Rather than trying to make logically
correct deductions from incomplete knowledge, they explore the use of
heuristics that "fill in the gaps" in that knowledge. One of their
heuristics is to classify types of assertions according to their
importance. Then they assume that if you know facts of relatively little
importance about a certain topic, then any assertions of significantly
greater importance which are not stored are probably false. For example,
in their domain of South American geography, they consider the question
"Ooes Uruguay have any 0il?", The answer to this question is not stored,
so the system looks around its data base for similar assertions. It finds
that Venezuela has oil and that this fact is very important. Since the
system knows facts about Uruguay that are much less important, it assumes
that if Uruguay did have oil, it would know this. So the system replies
“No". Collins's system, however, does nét deal with any of the questions
We have raised such as handling disjunction, quantification, equality, etc;
so there is actually very little overlap betueen this research and ours.
The other relevant research effort is Kowalski’'s <Kowalski 1973,
13974>. Kowalski has explored applying PLANNER-1ike control structure
directly to sets of predicate calculus axioms. Since predicate calculus
has representations for many of the things PLANNER doesn't handle, this
might seem to be an attractive approach., Kouwalski develops his theory,
however, only for sets of Horn clauses. In the terminology of resolution

theorem proving, a clause is a disjunction of literals, uhere a literal is
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an atomic formula (positive literal) or its negation (negative literal).
So a typical clause might be ((P x) v (- @ y) v (R x yl). There is a
theorem of logic that any set of axioms can be turned into clausal form,

A Horn clause is a clause that contains at most one positive literal.
Kowalski divides Horn clauses into three types. Clauses with one positive
literal and no negative literals, are treated as simple assertions.
Clauses which have a positive |iteral and some negative literals (which can
be uwritten as Al neeen Ah -> B) are treated like PLANNER consequent
theorems. Clauses with no positive |iterals are treated as goals. Since
resolution is a refutation-based system, ((~ A) v (= B) v (= C)) ecan be
viewed as (GOAL (A A B A C)).

This system, however, is even more restricted than PLANNER. We cannot
assert a disjunction, and we do not have even THNOT-style negation or
antecedent theorems. Kowalski points out these difficiencies with examples
much like ours, but he seems to advocate a general purpose resolution
theorem prover as the solution. We will attempt to expain later why this

i8 not sufficient.

1.5 A Scenario

In order to put the preceding discussion in perspective, we offer the
following blocks-world scenario. The reasoning necessary to ansuer these
questions involves incomplete knowledge which systems |ike SHROLU and

HACKER <Sussman 1973> cannot handle.



12

The situation is a typical blocks-worid scene having a table, a box,
and some blocks. The robot is blind, so that it knows only those things
abouf the scene which we tell it. The operation "grab" involves reaching
into the box and taking out a block, but without the robot knowing which

block he has grabbed. MWe first describe the scene to the robot.

1. A and B are green blocks in the box.
. C is a block on the table,

I like one of the blocks in the scene.

SO wWw N

. A, B, and C are the only blocks in the scene.

The robot has to be able to represent that | like one of the blocks without
knowing which one. [t also has to realize that just because it does not

know what color C is, it does not mean C has no color.
S. Are all the blocks in the box green? YES.

The robot must reason that any block in the box is in the scene, and so
must be either A, B, or C. It then must reason by cases that it could not
be C, because C is on the table and therefore is not in the box, and that
if it is A or B then it is green. This question involves proving a

universal and reasoning about disjunction.
6. Are all the blocks in the scene green? | OON'T KNOW.

This also involves reasoning by cases, but one of the cases, "ls C green?"

cannot be answered. The robot has to know that this does not make it
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false.

7. Do I like any block in the box? [ DON'T KNOW.

The robot can neither prove nor disprove that the block | like is in the

box.
8. Is any block on the table on top of a block? NO.

Since there is only one block on the table, C, it cannot be aon top of

another block.

9. Put C in the box. OK.

18. Do I like any block in the box? YES.

The robot still does not know which block I like, but now all the

possibilities are in the box.

11. Is any block on the table? NO.
12. Is every block in the box green? [ DOON'T KNOW.

13. Is at least every block in the box but one green? YES.

12. and 13. illustrate hou complicated reasoning about change can become in

the absence of total knowledge about the situation.

14. Grab a block from the box and put it on the table. OK.
1S. Is there a green block on the table? | DON'T KNOW.

16. Is there a green block in the box? YES.
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2. Negation and Implication

2.1 Procedural Interpretations of Declaratives

A first step in reasoning about negation explicitly is to represent
negation explicitly - like (NOT A). The question is how to satisfy goals
containing negatives and how to use assertions containing negatives. UWe
can simplify the problem by deciding to "push through" negations to the
level of atomic statements. Thus (NOT (OR A B)) will become (ANO (NOT A)
(NOT B)), (NOT (FOR-ALL ?X (FOO ?X))) will become (EXISTS ?X (NOT (FOO
?X))), (NOT (NOT A)) will become A, and so forth.

Nouw the problem is reduced to how to prove negated atomic goals and
houw to use negated atomic assertions. The key issue is how negatives
interact with antecedent and consequent theorems. Hewitt has made the

point that an implication (A 5> B) has at least two possible uses:

1. To prove B, try to prove A.

2. 1f A is asserted, assert B.

I[f (A > B) is true, houever, ((NOT B) > (NOT A)) is also true, and this

fact has the corresponding uses:

3. To prove (NOT A), try to prove (NOT B).

4. 1f (NOT B) is asserted, assert (NOT A).
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At this point ue could simply say to use whatever combination of these
four procedures is needed; but only three of the sixteen possitle
combinations seem to be really useful. It would rarely be useful to have
both 1. and 2. since they perform the same inference; similarly for 3. and
4. Also whenever we have one of the positive inferences (1. or 2.), we
Wwould probably want to have one of the negative inferences (3. or 4.). If
we know tHat all cubes are blue, and that A is green, it is trivial to see
that A is not a cube. Presumably, this is done by inferring that since A
is green it is not blue, and since it is not blue, it is not a cube. So
although we have been given a fact in the form "All cubes are blue," we
have no trouble using it in the form "Anything that is not blue is not a
cube."”

This eliminates all bﬁt four of the possible combinations. For the
remaining useful ones, we will introduce some special notation. We will
Write the combination of 1. and 4. as (B <- A) and the combination of 2.
and 3. as (A -> B). The idea is that the arrou expresses the direction of
the inference, and the left-hand subexpression is the pattern which invokes
the procedure. UWe do not really need both -> and <-, since (A -> B) is
equivalent to ((NOT A) <- (NOT B)), but it seems convenient to have both.

As an example of a fact that might be used in this way, consider "All
cats are animals". This fact can be used to infer that something is an
animal if it is a cat, or that something is not a cat if it is not an

animal. I would argue that the procedures to do this should be:



17

[f "x is 3 cat" is asserted, assert "x is an animal".

To prove "x is not a cat", try to prove "x is not an animal®".
Formally, this is expressed by:

((CAT 2X) -> (ANIMAL ?X))
or equivalently:

((NOT (CAT 2X)) <- (NOT (ANIMAL ?X)))

To see that this is the preferred form, consider how "Felix is an animal"”
could be inferred from "Felix is a cat". If this type of inference were
done in a consequent-directed manner, it would result in a search through
all the knoun types of animals, until "cat" was stumbled upon. The
antecedent-directed method requires only that an "animal" assertion be made
whenever a "cat" assertion is made. By analogy, this strategy would also
require assertions for other impor tant supersets - perhaps "living thing",
“physical object", and a few others - but surely the number of these is far
smaller than the number of different types of animals.

In inferring "Truck37 is not a cat," by showing "Truck37 is not an
animal", similar considerations suggest that a consequent-direﬁted strategy
be followed. [t would be far too costly to add assertions for all the
tyres of animals that something is not uwhen it is asserted to be a non-
animal. Searching through a few important supersets seems much easier.

The third useful combination of procedures is 1. and 3. We Wwill wurite
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this as (OR (NOT A) B). MWe will show later that this is consistent with
the other uses of OR. We can extend this to (OR Aj...A.), uhere any of the
Ai can be proved by showing that all the others are false. Note that since
any component of an OR assertion can act as a pattern, each must be either
an atomic statement or its negation. The non-pattern part of an

implication can, of course, be non-atomic. As an example, we might want to

have:
(OR (NOT (PLANT ?X)) (NOT (ANIMAL ?X)))

This says that to prove something is not a plant, try to prove it is an
animal, and to prove something is not an animal, try to prove it is a
plant.

This combination would also be useful for expressing assertions that
are "just facts" and have no systematic connections to our knouwledge
structure, such as "John ouns either a dog or a cat." Since we have no a
priori reason for treating the two components of such an assertion
differently, it seems appropriate to use a construct Iike our OR, which
treats them symmetrically.

The last remaining combination, 2. and 4., does not seem to be very
useful. the reasons for this are somewhat complex. The argument turns on
the fact that 1. and 4. wuhile expressing different inferences, perform
identical or at least isomorphic computations. To see this, compare trying
to prove A with asserting (NOT A), given (A <- B). In the first case ue

have (GOAL A) generating (GOAL B). In the second we have (NOT A)
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generating (NOT B). In a direct proof procedure, we succeed if (GOAL A)
matches an assertion A. In an indirect proof procedure we succeed if (NOT
A) contradicts an assertion A. Computationally, all we have done is
substitute the symbo! NOT for the symbo! GOAL!

This parallel extends to AND and OR. [f He have (GOAL (AND A B)) we
have to match this against both A and B. [f we want to prove (AND A B)
indirectly, we negate it, getting (OR (NOT A) (NOT B)). To contradict this
we have to match it against both A and B. For (GOAL (OR A B)) to succeed we
need to match it against either A or B. Negating this we get (NOT A) and
(NOT B), so that either A or B will lead to a contradiction. In each case
the behavior is the same. All we have done is substitute NOT for GOAL and
exchanged AND and OR. For a fuller and more formal development of these
ideas, see <Kowalski 1973, 1974>.

These observations have some very interesting consequences. First and

foremost, there is no essential computational difference between direct

proof methods and proof by contradiction. It is not the case, as is

sometimes argued (e.g. <Winograd, p.215>), that refutation procedures are
inherently "bottom-up" rather than “goal-oriented" or "top-down". For a
refutation-based procedure to be goal-oriented, it needs only to
concentrate on contradicting the negation of the goal and its descendents.
This is, in fact, just the set of support heuristic of resolution theorem
proving <Chang and Lee, Chapter 6>.

Now let us return to the original question of whether 2. and 4. form a

useful combination of procedures. If as we have argued, 1. and 4. are
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really the same computaion, then it is foolish to use 4. without also using
1. To use 4. without 1. would be to say "I will do this computation if it
is not needed to satisfy an immediate goal (i.e. antecedently), but I will
not use it if it is needed to satisfy an immediate goal (i.e,
consequently)." A similar argument applies to 3. and 2. What we are saying
is that we should be Wwilling to do at least as much computation to satisfy
@ goal as to explore the consequencesrof an assertion, but the 2.-4.
combination of procedures does the opposite of this.

It is important to realize that We are not claiming that top-down
strategies are aluways better than bottom-up. We have already given
examples to the contrary. What we are saying is that due to the semantics
of implication, there turn out to be two distinct inferences, that can be
implemented by isomorphic computations. In that case, if the antecedent
implication is efficient and desirable, then surely the corresponding

consequent implication is as well.
2.2 Hierarchies - An Example of Structuring Knouledge

In thé preceding section we argued that the basic computational
operations of a procedural deduction system are really the same as a
refutation-based theorem prover (including resolution theorem provers). s
there, then, no difference at ail? The answer is that, yes, there is a
difference; and that difference is primarily in the control of the

deductive process. We wil] discuss control structure issues in more detail
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later, but we have already developed enough structure to illustrate some of
the short-comings of uniform proof procedures in this regard.

We argued above that of all the possible combinations of the four
procedural interpretations of (A > B), only two or three (depending on
Wwhether -> and <- are regarded as distinct) are useful. Virtually all
resolution systems force every formula to be used according to the same
procedural interpretations, regardless of whether those interpretations are
appropriate for that formula. General, or unrestricted, resolution treats
every formula as having all four procedural interpretations. (In the case
of formulas more complex than (A > B) there can be many more than four!)
This is clearly redundant, since it treats every implication as both an
antecedent and consequent-driven procedure.

More sophisticated resolution systems avoid this redundancy, but at
the cost of extreme rigidity in the procedural interpretation of formulas.
Most can be viewed as either totally antecedent-driven (bottom-up) or
totally consequent-driven (top-down). Kowalski <1874, p. 28> gives an
enumeration of which systems fall into which class. We have already given
examples which demonstrate the inefficiencies of this sort of rigidity, but
a more elaborate case may serve to drive home the point.

The problem of hierarchies provides _a very nice domain to illustrate
the various procedural interpretations of implications. Hierarchies have
received some attention in Al lately <Fahiman 1975> <Grossman 1975>, as
being a type of structure which should be very easy to reason about. A

typical hierarchy might be the following:
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HOUSE
BASEMENT MAIN-FLOOR ATTIC

LIVING-AREA SLEEPING-AREA

/N N

KITCH DR LR BATH BR1 BR2

This is a space hierarchy. Any object which is in one of the locations
represented by a node in this tree is also in every location represented by
a superior node, and is not in any locations represented by other nodes.
This implies that if an object is not in the location represented by a
particular node then it is not in any locations represented by inferior
nodes. MWe will not assume this hierarchy is exhaustive; we might have
forgotten to mention the garage, for example. We can efficiently imglement

reasoning about this hierarchy by the following assertions:

(INCOMP (IN ?X BASEMENT) (IN ?X MAIN-FLOOR) (IN ?X ATTIC))
((IN ?X BASEMENT) -> (IN ?X HOUSE))
((IN ?X ATTIC) -> (IN ?X HOUSE))
((IN ?X MAIN-FLOOR) -> (IN ?X HOUSE))
(INCOMP (IN ?X LIVING-AREA) (IN ?X SLEEPING-AREA))
((IN ?2X LIVING-AREA) -> (IN ?X MAIN-FLOOR))
(INCOMP (IN ?X KITCH) (IN ?X OR) (IN ?X LR))
((IN ?X KITCH) -> (IN ?X LIVING-AREA))
({IN ?X DR) -> (IN ?X LIVING-AREA))
((IN ?X LR) -> (IN ?X LIVING-AREA))
((IN ?X SLEEPING-AREA) -> (IN ?X MAIN-FLOOR))
(INCOMP (IN ?X BATH) (IN ?X BR1) (IN ?X BR2))
((IN ?2X BATH) -> (IN ?X SLEEPING-AREA))
((IN ?X BR1) -> (IN ?X SLEEPING-AREA))
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((IN ?2X BR2) -> (IN ?X SLEEPING-AREA))

(INCOMP Al...An) is an expression whose logical interpretation is that the
arguments of INCOMP are pair-uise'incompatible. and whose procedural
interpretation is the same as (AND (OR (NOT Al) (NOT A2)) (OR (NOT Al) (NOT
A3)) ... (OR (NOT An-l) (NOT Ap))).

These assertions form a highly structured set of procedures for using
this hierarchy. Checking our definitions for -> and OR Nill verify that we
have implemented the following algorithm: When asserting that A is in B,
assert that A is in all the superiors of B. To deduce that A is in B look
only for that explicit assertion. To deduce that A is not in B, prove that
A is in a brother of B or (recursing) that A is not in the immediate
superior of B. When asserting A is not in B, make no further assertions.

To analyze the efficiency of this algorithm, consider the case of a
balanced hierarchy of depth m and branching factor n. Proving A is in B and
asserting A is not in B each require only one step. Asserting A is in B
requires at most m steps, one step for each superior of B. Proving that A
is not in B can take up to mxn steps. In the worst case, we must check
whether A is in any of the n-1 brothers of B and whether A is not in the
immediate superior of B. This may be repeated m times for all the superiors
of B.

Compare this with either a totally bottom-up or totally top-down
strategy. For the bottom-up strategy, any proof is one step, but asserting

A is in B can require m" steps if B is at the bottom of the hierarchy. We
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would get assertions that A is in every superior of B and assertions that A
is not in the places represented by any other node. Similarly, if B is the
top node of the hierarchy, asserting that A is not in B will take m" steps
generating assertions that A is not in any node of the hierarchy.

The top down strategy is just as bad. Here, assertions require oniy
one step, but proofs are exponentially expensive. I1f B is the top node of
the tree, proving A is in B may require checking every node of the tree.
If B is a leaf node, proving A is not in B may require checking every node.
So the mixed antecedent/consequent strategy is linear in the wWworst case,
Wwhere both the other strategies can be exponentially explasive.

Not all theorem provers are rigidly top-down cr rigidly bottom-up.
Nevins's theorem prover <Nevins 1974a> and Kowalski's connection graph
theorem prover <Kowalski 1974> are examples. But these, and virtually all

other theorem provers which have some flexibility, rely on strictly local

criteria for deciding to do an inference in a consequent or antecedent
direction. For the connection graph thecrem prover, Kowalski recommends
_the heuristic of picking the formula with the feuwest connections to other
formulas to do inferences from. 1f this formula is a goal, the system will
be acting in a consequent-directed manner. [f this formula is an
assertion, the system will be antecedent-directed.

It is easy to show that local heuristics like this are not good
enough, however. Consider some of the connections to one of the nodes of

our space hierarchy, MAIN-FLOOR:
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HOUSE

MAIN-FLOOR

LIVING-AREA SLEEPING-AREA

The assertions which represent these connections are:

({IN ?X MAIN-FLOOR) -> (IN ?X HOUSE))
((IN ?X LIVING-AREA) -> (IN ?X MAIN-FLOOR))
((IN ?X SLEEPING-AREA) -> (IN ?X MAIN-FLOOR))

Why did we express these inferences in this direction? Was it because of

any local features of the facts about MAIN-FLOOR? The ansuwer is no, it was
a global property of the data base - the fact that these assertions were
embedded in a downuard-branching hierarchy - that led us to express them
this way. [If the overall structure had been upward-branching, relative to
the piece of substructure illustrated, we would have uritten these
assertions as:

((IN ?X HOUSE) <- (IN ?X MAIN-FLOOR))

((IN ?X MAIN-FLOOR) <- (IN ?X LIVING-AREA))

((IN ?X MAIN-FLOOR) <- (IN ?X SLEEPING-AREA))

Failure to adapt these assertions to the global nature of the
structure leads to the exponential inefficiencies previously discussed, but
no local heuristics could possibly hope to be sensitive to that global

structure. Koualski acknowledges that local heuristics are not generaliy
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sufficient, and advocates use of an auxiliary control language as the
solution to the control problem. He cites <Hayes 1373> as presenting
convincing arguments for this approach. Hayes's principal argument is that
an effective deductive system has both logical and procedural aspects, and
the semantics of the system are made clearer by separating the two.

This may be true in some cases, but in regard to the antecedent/
consequent distinction there are over-riding pragmatic reasons for
combining the two types of knowledge. First, if the information about how
an assertion is to be used is not encoded in the assertion itself, then the
assertion will have to be indexed according to all its possible uses, even
those that are ruled out on pragmatic grounds. So, assertions such as:

((CAT ?2X) -> (ANIMAL ?X))
((00G ?X) -> (ANIMAL ?X))

.
.

would all have to be indexed under ANIMAL, even though they should not be
used in that way. MWorse yet, if we wanted to prove (ANIMAL FRED), we might
have to retrieve all these useless assertions, and use our separate control
information to throw them out. Another alternative, clearly uworse, would
be to look at every consequent theorem, and check for patterns which match
(ANIMAL FRED). Fundamentally, we need to store and access assertions
according to their use. This makes separation of pragmatic and logical

content impossible.
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3. Disjunction

3.1 Three Principles of Disjunctive Reasoning

Our treatment of disjunction is governed by the following three

reasoning principles:

1. (AvB) |-CifA|-Cand |- (~8)
2. (AvB) |-CifA|-CandB |- C
3. |-C ifA|-Cand (-A) |-C

(|- C means "C is provable" and A |- C means "C is provable given A.") 1.
and 2. are the two important possible uses of a disjunctive assertion., 1.
is handled by the procedural interpretation we have already given for OR.
If we know (OR A B) and we generate A as a sufficient subgoal of C (which
establishes A |- C) then we generate the goal (NOT B). UWe can do this
completely within the framework of existing PLANNER-1ike systems. (OR A B)
could be compiled into two consequent theorems:

(THCONSE A (THGOAL (NQT B)))

(THCONSE B (THGOAL (NOT A)))

2. is the principle of reasoning by cases. This principle is harder
to handle; there is no simple compilation for it, as there is for 1. 3. is
actually a special case of 2., since (A v (- A)) is always true. 3. seems

to be more difficult to handle than 2., however. In 2., we at least have
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the explicit assertion (A v B) to deal with; in 3. the (A v (=~ A))

assertion is implicit, and, of course there is an assertion of this form

for any possible formula. For this reason, we will deal with 3. first.
To see the usefulness of the reasoning principle involved in 3.,

consider the following problem. Suppose we have three blocks stacked A on

BonC. A isgreen, C is blue, and the color of B is unknown:

A green

B ?

C blue

We want to know whether there is a green block on top of a non-green block.
In order to ansuwer this question, we need one additional fact; being green
is incompatible with being blue. We can express this by (OR (NOT (GREEN

?X)) (NOT (BLUE ?X))). So our data base has the following assertions:

Al. (ON A B)

A2. (ON B O)

A3. (GREEN A)

A4. (BLUE C)

AS. (OR (NOT (GREEN ?X)) (NOT (BLUE ?X)))

[f ue tried to satisfy our goal using a PLANNER-Iike system (given the

macro-expansion for OR) we might get the following goal tree:
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(AND (ON ?X ?Y) (GREEN ?X) (NOT (GREEN ?Y)))
Al A2
(AND (GREEN A) "(NOT (GREEN B))) (ANO (GREEN B) (NOT (GREEN C)))
A3
(NOT (GREEN B))
AS

(BLUE B)

The problem has been set up so that we look at pairs of blocks such that
one is on top of the other, and we try to show that the first one is green,
and the second is not green. The first pair we try is A and B. We knouw
that A is green, so we go on to try to show that B is not green. LUWe have
one possible way to do this, showing that B is blue. This fails, so we go
back and try another pair, B and C. We have no way of showing that B is
green, so we fail. Notice, houever, that one branch of the tree has the
subgoal (NOT (GREEN B)) and another branch has a subgoal that contains
(GREEN B). Since one of these must be true, if the other associated
conditions are satisfied then we can establish our goal. We can take
advantage of this fact by introducing the following rule for combining

goals:

Suppose (AND A Bl...Bn) is a goal and (AND (NOT A') 8n+l"’8m)

is an alternative goal, such that A and A’ match. Then we can
make (AND 81'...Bm') a goal, where B.’ is B, altered by the

match betuween A and A’.
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(It is important to note that by a goal, we mean a complete set of
conditions sufficient to satisfy a top level request.) Applying this rule

to our problem gives us the following goal structure:

(AND (ON ?2X ?Y) (GREEN ?X) (NOT (GREEN ?Y)))
Al A2

(AND (GREEN A) (NOT (GREEN B))) (AND (GREEN B) (NOT (GREEN C)))
A3

(NOT (GREEN B))

AS
(BLUE B) (NOT (GREEN C))
AS
(BLUE C)
A4
SUCCEED

With this new rule, when we generate the goal (AND (GREEN B) (NOT (GREEN
C))) we can combine it with (NOT (GREEN B)) to get (NOT (GREEN C)). We can
establish this by showing that C is blue.

There are several important observations to make about this rule.
First, it represents a major break from PLANNER-type control structure.
All the operations in PLANNER are local operations on single goals. This
rule represents a global operation on the goal tree. In order to use this

rule, we must have explicitly available the failed branches of the goal
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tree. In PLANNER-I|ike systems, a branch that fails is normally destroyed,
80 a major change in implementation would be required.

Second, this rule isg really an application of the resolution-
principle. [f we consider how this rule would work in a refutation system,
it would mean combining (OR A Bl...Bn) with (OR (NOT A) Bn+l“‘Bm) to give
(OR By...B,). It is, however, a highly restricted form of resolution. It
applies only to pairs of goals, and since it applies only to goals we can
restrict it even further - only the left-most components of goals are
candidates for matching. The reason for this restriction is quite simple.
Suppose we had the goals (AND A C) and (AND B (NOT C)). UWe could combine
them to get (AND A B), but this is unnecessary. In the goal (AND A C), A
is the component we are currently trying to solve. Unless we can solve A,
however, there is no point in Worrying about C, since applying our new rule
to C (or any other rule, for that matter) does not get rid of A. A similar
argument applies to B. If A and B can be satisfied, we wWill eventual ly be
left with C and (NOT C) as goals. MWe can apply our rule at this point to
broduce the proof we wanted. This is a very strong restriction. [f we
have goals with m and n components respectively, there are mxn possible
ways to combine them. MWith this restriction, we need only consider one of
those ways. We will call this procedure restricted goal resolution (RGR).

Finally, we want to ask uhether RGR is necessary. Even with the
restrictions we have placed on it, RGR is a very powerful rule., It is
especially suspicious because it is entirely syntactic; the semantics of

the problem domain do not enter into its application. Despite these
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reservations, it seems there is no getting around the need for this rule.
Look back at our example. In order to solve this problem, it is necessary
to consider tuo cases; either B is green or it is not. Is there any
aspect of the problem statement or the domain that would have told us that
these uwere the tuo cases to consider? [f there is, I cannot see it.
Rather it appears that it is the topology of the goal tree, produced by
this particular question interacting with these particular facts, that made
this dichotomy the important one. |f this is true, then we can do no
better than a rule that iooks at the form of the goal trees.

We have presented procedures which implement principles 1. and 3. of
disjunctive reasoning. MWe now turn our attention to orinciple 2. It turns
out that we do not need an additional procedure to handle 2. Suppose in
attempting to prove C ue generate A as a goal and uwe have (OR A B) as an
assertion. By principle 2., we can establish our goal by showing B |- C.
But we must also try principle 1., because B might simply be false. So we
need our definition of OR to generate the goal (NOT B). So far our goal

tree looks like this:

(NOT B)
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Now suppose that, indeed B |- C. If this is the case there must be some
intermediate D, such that asserting B causes 0 to be asserted by antecedent
processes, and the goal C generates D as a subgoal by consequent processes.
D can, of course, be much more complex than an atomic assertion, but the
argument should generalize. [t can also be the case that 0 = B or O = C,
in which case the path from B to C is either totally antecedent, or totally
consequent. Using our procedural interpretations of -»>, <-, and OR,
Wwhenever there is an antecedent path from B to D, there will also be a
consequent path from (NOT B) to (NOT D). So the (NOT B) in our goal tree
Wwill eventually generate (NOT D) as a subgoal. If this branch fails, we
Wwill eventually get around to generating D as a subgoal of C. This leaves

us uwith the following goal tree:

(NOT B)

(NOT 0}

Now we can apply our RGR principle to 0 and (NOT D) and we are done.
For a simple concrete example, suppose that A and B are two blocks,

and we know that A and B are both green, and either A is on the table or B
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is on the table. We might represent these facts as:

Bl. (GREEN A)
B2. (GREEN B)
B3. (OR (ON A TABLE) (ON B TABLE))

Trying to show that there is something green on the table might generate

this goal tree:

(AND (GREEN ?X) (ON ?X TABLE))
o1/ G
(ON A TABLE) (ON B TABLE)
83
(NOT (ON B_TABLE))

SUCCEED

We start by looking for green things and we find A. Then we try to show
that A is on the table by showing that B is not. We have no way to do this
so we fail. Looking for more green things, we find B. We generate the goal
of showing that B is on the table, but we notice that we already have a
goal showing B is not on the table; so it really does not matter which is
true - we are done.

It is interesting to observe that if ue reverse the order of the goals
- looking for things on the table before green things - ue get a less

intuitive, but no less efficient solution:
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(AND (ON ?X TABLE) (GREEN ?X))
83
(AND (NOT (ON B TABLE)) (GREEN A))

(AND (GREEN B) (GREEN A))
B2

(GREEN A)

Bl

SUCCEED

Starting out looking for things on the table, we try to show that A is on
the table, by shouwing that B is not on the table. This gives us the goal
(AND (NOT (ON B TABLE)) (GREEN A)). UWe can match this against an instance
of the original goal, (AND (ON B TABLE) (GREEN B)). Combining these two

yields the goal (AND (GREEN B) (GREEN A)), uhich can be satisfied

immediately by assertions,
3.2 Interactions among Complex Assertions

The inference procedures we have described so far do not form a
logically complete deductive system, even for propositional logic. (We
have not yet considered either quantification or equality, of course.)
Part of this is by design. [f we have (A -> B) and ({NOT A) -> C), then we

have in effect chosen not to be able to deduce (OR B C), although it
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logically follows from these assertions. A case uWhere this is clearly
desirable is a definition like A if and only if EXP, where EXP is some
compliex expresion. We might choose to represent this as (A <- EXP) and (A
-> EXP). If ue used conjuctive normal form, as in resolution, we would
have (A v (- EXP)) and ((-~ A) v EXP) which would allow us to make such
useless inferences as (A v (-~ A)) and (EXP v (- EXP)).

In fact, we would argue that being necessarily complete is a very
undesirable feature for a deduction system, contrary to the presumption of
most theorem proving reasearch. For instance, a number theory theorem
prover, if asked to disprove Fermat's Last Theorenm, might try whatever
special tricks it knows; but it should certainly give up rather than try
all possible counter-examples. What we want is for the user of the system
to have control over how complete or incomplete the deductive process is.
We attempt to provide this control by supplying different notations for
each of the useful procedural interpretations of an assertion.

There is, houever, one large class of inferences which we have-
completely omitted up to this point - antecedent inferences made from two
complex assertions. MWe will show examples where such inferences are
necessary, but this type of inference must be approached with great
restraint. In relatively unrestricted resolution systems, these inferences
can be a source of tremendous inefficiency. Many resolution systems, given
the equivalent of (A > B) and (B 5 C) will produce (A > C). This may seem
innocent enough - It gives us a shorter way to prove C given A. Suppose,

however, we want to prove C, but don’t know A. An exhaustive search would
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end up trying tuwo equivalent search paths, C to B to A, and C directly to
A, before failing.

In more complex cases, this can get really horrible. To go back to
our study of hierarchies, assume we know P and we want to show (= Q) where
P and Q are bottom nodes of the hierarchy, and their only common superior
is the top node. Using the techniques for reasoning about hierarchies
which we discussed, there would be only one deductive path between P and (-
Q), having length tuice the height of the tree (say 2m). 1f we allowed
unrestricted inferences of the form (A 5 B), (B 5> C) |- (A 5 C), then there
would be 22m such paths, one path for each possible combination of
intermediate nodes. So called "deletion strategies" can cut this search
Space back to a managable size by checking each subgoal or assertion to see
if it has been previously generated, but the point is that this enormous,
redundant search space should never have been generated in the first place.

We noted previously that, at least in the case of hierarchies,
completely top-down deduction could be just as bad as completely bottom-up
deduction. Yet, in the folk-wisdom of theorem proving, there seems to be a
sense that top-doun strategies are more efficient. | think that this may
be due in part to the fact that bottom-up systems normally include those
inferences which combine assertions in uways that redundantly expand the
search space. It is interesting to note that some of the more efficient
theorem proving systems uwhich do allou bottom-up inferences have
restrictions which block combinations of this sort. Nevins's system, while

allowing (A > B) to be used in either a consequent or antecedent direction
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(uhich is itself redundant), does not allow (A > B) to combine with (B8 >
C). One of Bledsoe's systems <Bledsoe and Bruel! 1973> allows antecedent
deductions, but only if one of the assertions contains no variables. The
deductions we want to block are vasically those which involve two
procedures, both of which would normally contain variables.

There are, as we mentioned, some cases where it is desirable to allowu
antecedent deductions involving two complex assertions. One way this
situation can arise is in using our second princple of disjunctive

reasoning:
(AvB) |-CifA|-CandB |-C

We have shown how our rules for OR will implement this principle once
either A or B is generated as a subgoal. The problem is that if the paths
from A to C and from B to C both include antecedent inferences, neither A
or B will ever be generated as a subgoal. In the simplest case, using only
the rules we have developed so far, from (A -> B), (C -> B), and (OR A C),
we would be unable to conclude B. If either of the first tuwo assertions
were expressed using <-, we would be able to generate either A or C as a
subgoal and complete the deduction. Deducing'“Fred is an animal,” from
"Fred is either a cat or a dog," is an instance of this reasoning schema.

So, in order to reason -effectively and efficientliy with complex
assertions, ue must separate them into two types; first, the procedures
which form the basic knowledge structures of the doméin. and second, the

assertions which are "just facts" - situation specific assertions which may
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be haphazard connections betueen otherwise unrelated concepts. We might
just happen to know that either John's father is a plumber or his wife made

a blunder in the commodities market. (We conclude this from the ammount of

scrap copper in his basement.) From now on we will refer to the former as
procedures, the latter as facts, and both as assertions. We will assume

that the programmer declares which assertions are of which type.

Procedures should not be allowed to interact with each other, whereas
facts can interact with each other and With procedures. [t should be the
case that in most common sense situations, the great majority of complex
assertions will be procedures rather than facts. The decision to restrict
inferences involving procedures is supported by the observation that in a
well structured set of procedures, these inferences are super f luous.
Suppose that (A -> B), (C -» B), and (OR A C) are all procedures. MWhat do
We do about the fact that B cannot be inferred? The answer is that this
problem should never have come up. [f these assertions really are
procedures, they should not be expressed this way, but rather by something
like (OR A C) and B. Since B is aluays true, (A -> B) and (C -> B) become
irrelevant. Any system is doomed to hopeless inefficiency if it holds open
the possibility of radically restructuring its basic view of the world
every time it is asked a question.

Given that we need antecedent deductions from complex facts, how do we
go about it? Let's return to our prototype example - procedures (A -> B)
and (C -> B), and the fact (OR A C). The difficulty is that we have

selected, presumably for good reason, to infer B from A antecedently; but
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the A in (OR A C) is blocked from triggering (A -> B) because it is not a
simple assertion. One way to get around this problem is the following:
Compile (OR Al"‘An) into the set of consequent-directed procedures that it
embodies. These would be (A <= (AND (NOT Ao}, .. (INOT A D)), (A5 <= (AND
(NOT Ap) (NOT Az)... (NOT A ))), etc. (He use <= to indicate a purely
consequent procedure.) For (OR A C) this would give us (A <= (NOT C)) and

(C <= (NOT A)). We then supply the following rule:

If (A -> EXP1), or equivalently ((NOT A) <- (NOT EXP1)). is an

assertion and (A’ <= EXP2) is a fact, then assert (EXPl’ <= EXP2')

as a fact, where EXPl' and EXP2' are derived from the match

between A and A’.
The idea is that (A’ <= EXP2) is just the simple assertion A’ with an extra
condition EXP2, so that it is treated like A' except that the extra
condition must be added if A’ is used to satisfy a goal. [n particular,
when A’ triggers the antecedent procedure (A -> EXPl), EXP2 is dragged
along.

Using this rule, we can do the deduction "Fred is an animal," from
"Fred is a cat or a dog." MWe start with these assertions:

Cl. ((DOG ?X) -> (ANIMAL ?X))

C2. ((CAT ?2X) -> (ANIMAL ?X))

C3. (OR (CAT FRED) (DOG FRED))

Applying the new rules we have just created will eliminate the OR statement

and add the following assertions:

C4. ((CAT FRED) <= (NOT (DOG FRED)))
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CS. ((DOG FRED) <= (NOT (CAT FRED)))
C6. ((ANIMAL FRED) <= (NOT (DOG FRED)))
C7. ((ANIMAL FRED) <= (NQT (CAT FRED)))

The goal tree for showing that Fred is an animal would then be:

(ANIMAL FRED)
ce

(NOT (DOG FRED))
Cl
(NOT (ANIMAL FRED))

SUCCEED

One way of showing that Fred is an animal is to show that he is not a dog.
Recalling the double interpretation of ->, we can do this by showing that

he is not an animal. This is the negation of an earlier goal, so by RGR we

are done.
Since OR has no antecedent interpretation, there will be no
interactions between OR statements. Also, note that there will be no more

assertions generated by (OR Al...An) than by Al...An asserted separately.
This is in contrast to the combinatorial increase of some resolution
me thods.

There may also be occasions when we Will want to represent a complex

fact using -> or <-. In that case we need the follouwing rule:
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I't (A -> EXP1) is an assertion and (A’ <- EXP2) is a fact. then

assert (EXP1’ <- EXP2') as a fact, where EXPl’ and EXP2'are

derived from the match between A and A'.

Of course, any assertion using -> or <- may be replaced by the equivalent
assertion using the other.

[f we put the expressions involved in this rule in disjunctive form,
the rule becomes ((- A) v EXPl), (A’ v (=~ EXP2)) |- (EXP1’ v (=~ EXP2')).
This turns out to be just the same procedure as RGR, applied to assertions
rather than goals. [f we expressed all asser*ons using only -> and <-,
and used this procedure as our only inference rule. we would have a system
very much like Boyer's lock resolution <Chang and Lee, Chapter 6>.

We have ended up in a rather peculiar situation. UWe have attempted to
come up with a set of rules that would implement a heuristic deduction
system based on common sense reasoning principles, but it turns out that
each of our rules can be viewed as some version of the resolution
principle. The net result, however, is something with a very different
structure from the typical resolution theorem prover. To be specific, the
type of system that our rules would produce would he sensitive to the

follouwing semantic features of a problem domain:

1. The distinction between goals and assertions.

2. The distinctions among the various procedural interpretations
of complex assertions.

3. The distinction between facts and procedures.
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Some traditional theorem proving systems share some of these
properties. Most take account of l., but then impose a rigid top down
search strategy. Lock resolution provides some |imited capabilities in
regards to 2. In lock resolution, the literals in a clause have numerical
indicies, and only the literal with the lowest index can be resolved upon.
So (Al v (= Bz)) is equivalent to (A <- B), and (A2 v (= Bl)) is equivalent
to (B -> A). But lock resolution provides no way to implement OR in our
sense, nor does it take account of 1. or 3., Other systems, like Kowalski's
connection graph system, give different procedural interpretations to
different formulas, but do so on the basis of purely local features.
Finally, Nevins's system takes some account of 3., as we mentioned before,
but not 1. or 2.

So, as far as uwe know, no traditional theorem proving system takes
account of all these semantic features, although all are necessary for
effective reasoning. We have given examples which show that ignoring 2.
and 3. can lead to gross inefficiency, and 2. of course, depends on 1.
PLANNER-type systems on the other hand are sensitive to all these aspects
of reasoning, but they are limited in the types of situations which they
can handle. These past sections illustrate the kind of synthesis of the

tuo approaches which we hope to achieve.
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3.3 Splitting

There is another technique for reasoning With disjunction called
splitting, which seems to be more intuitive than the types of rules we have
proposed, and seems to be quite different from resolution. The technigue
combines our principles 1. and 2. of disjunctive reasoning in a very
straightforward manner.

To prove ((A v B) o C) set up tuwo distinct data bases.

In the first try to prove either (= A) or (A >C). In the

second try to prove (-~ B) or (B> C). If both subproofs

succeed, the entire proof succeeds.

Two comments - First, this procedure obviously generalizes to disjunctions
involving more than two terms. Second, in a refutation based procedure
asserting A is the same as trying to prove (= A). The only difference is
whether to regard the formula A as a goal or not. [f A is a goal an
attempt is made to involve A in the contradiction to be derived. So by
assuming a refutation procedure (or a procedure Wwith rules like our oun
RGR), we can state the method more simply as:

To prove ((A v B) > C) set up two distinct data bases.

In the first try to prove ({~ A) v C). In the second

try to prove ((= B) v C)).

We have made the rule less intuitive, but since we have already argued that
the computations involved in asserting A are just a subset of those
involved in proving (- A), it would be foolish to duplicate these

computations. The rule, more or less in this form, is used in the theorem
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provers of Bledsoe <13971>, Reiter <1973>, and Nevins. Bledsoe uses this
procedure on (A v B) only if A and B are independent - i.e. they have no
variables in common. Reiter and Nevins use techniques which can handle
dependent sets of disjuncts as well. Nevins seems to make the most
sophisticated use of this idea, so we will use his procedure for more
detailed analysis.

The question we really want to answer is whether splitfing can be used
more efficientliy than the other techniques we have presented. In the
following example it would seem so. Suppose we want to prove (3 x ((P x) A
(@ x))) and we know ((R x) > (P x)), ((S x) > (P x)), and ((R a) v (S a)).
We might represent these facts as:

Ol. ((P 2X) <- (R ?X))

02. ((P ?2X) <~ (S ?2X))

03. (OR (R A) (S A))

Then if we attempt to prove (AND(P ?2X) (Q ?X)) we get the following goal

tree:
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AND (P ?2X) (Q ?2X))

A

(AND (R ?X) (Q ?X)) (ANO (S ?X) (Q ?X))

03 03

(AND (NOT (S A)) (Q A)

\'_/

(AND (Q A) (0 A) (AND (Q A} (0 A))

AND (NOT (R A)) (Q A))

(0 A)

We start out trying to satisfy (P ?X). One way to do this is to satisfy (R
?X). This matches (R A) in (OR (R A) (S A)), so we try to prove (NOT (S
A)). UWe have no way to do this so we fail and backup. Another way to
satisfy (P ?X) is to satisfy (S ?X). MWe have two ways to satisfy (S ?X).
One way is to use RGR with the goal that contains (NOT S A). The result of
applying RGR to these two goals is (AND (Q A) (Q A)). This simplifies to
(@ A), but we have no way to satisfy this goal, so we again backup. The
other way to satisfy (S ?X) is to use (OR (R A) (S A)) and try to show (NOT
(R A)). The only thing we can do with this is to apply RGR with (AND (R
?X) (@ ?X)). This again generates (AND (Q A) (Q A)) which simplifies to (Q
A). If we are clever, ue recognize this as a goal we have previously
generated and ue fail.,

We failed, .as we should have, since we could not prove (Q A); but it

seems |ike we went through a lot more manipulations than necessary. In
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fact we did two nearly equivalent deductions. In one we got rid of (R ?X)
using (OR (R A) (S A)), and (S ?X) by RGR. In the other we got rid of (S
?X) using (OR (R A) (S A)) and (R ?X) by RGR. The suspicious aspect seems
to be that (OR (R A) (S A)) was invoked twice in what turns out to be an
example of reasoning by cases.

Compare this with what happens when we use splitting. If we split (OR
(R A) (S A)), we assert D4. (R A) and then try to prove (AND (P ?X) (Q
?X)). The worst that can happen is that we select (S ?X) first as a way to

satisfy (P ?X):

(AND (P ?2X) (Q ?2X))
02 01
(AND (S ?2X) (@ 72X)) (AND (R ?2X) (@ ?X))
04
@ A)

Since we cannot prove (Q A) He do not have to go on to the second case, (S
A).

What makes the spiitting method more efficient than the resolution
method? MWe can answer this question by looking at the problem in the
following way: There are basically three ways that (A v B) can be used to

prove C.

A |-C and |- (- B)
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B |- C and |- (- A)

AJ|-CandB |-C

The tuwo methods cover these three possibilities differently. Splitting

covers them with (B |- C or |- (~B)) and (A |- C or |- (-~ A)). For our
resolution based method, invoking (OR A B) by matching A invokes (A |- C
and |- (- B)). RGR invokes B |- C whenever |- (- B) is invoked, so ue get

A |- C and (|- (-~ B) or B |- C). Since (OR A B) can also be invoked by
matching B, we also get B |- C and (|- (- A) or A |- C), so the entire

method can be summarized by:
(A |-Cand (|]- (~=B) or B |-C)) or (B |-C and (|- (=~ A) or A |-0C))

This expression covers the A |- C, B |- C case two different ways.
Therefore, whenever reasoning by cases applies, there will be two search
paths that yield the same result. The splitting method, on the other hand,
covers each possibility in only one way and avoids this redundancy.

While splitting is more efficient in this respect, it has some
problems of its own. . Suppose (Q A) were provable. In that case, we would
have gone on to the second data base, where DS. (S A) is asserted and the

goal tree would have looked like this:



43

(AND (P ?2X) (Q ?2X))
02
(AND (S ?2X) (Q ?X))
0S

(@ A)

One minor point is that the top part of the goal tree is repeated in each
case. Nevins handles this by postponing splitting until after all other
methods have been exhausted, and the goals established at this point are
inherited by both of the split data bases. Another problem is that in each
data base we have to prove (Q A). [f the proof of (Q A) is long and
invoived, it would be quite inefficient to repeat it. In the non-splitting
method we faced this problem also, uhen ue generated the goal (AND (Q A) (Q
A)). Here it was a simple matter of eliminating the repeated subgoal.
Perhaps a similar technique could be developed for the splitting method,
but it looks like a more difficult problem.

The most serious problem with splitting, however, is deciding what
formulas to split. Suppose we have a goal A which we are unable to prove
Without splitting. [f we decide to split (Bl V... vB]), and this turns
out to be irrelevant to the proof of A, then the same proof of A Will be
repeated n times. I[f we pick another formula (Cl V oieo V Cm) which is
also irrelevant, then for each Bi' we Will go through all the Ci's. giving
us mxn data bases, and mxn identical proofs. We have a serious danger of a

combinatorial explosion, so picking only relevant assertions to split is
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very important.

This typically is less of a problem in mathematical theorem proving,
because disjunctive assertions are not added to a problem statement unless
they are relevant to the goal. It would be considered misleading to ask
for a proof of ((A vB) >C) if C is provable by itself. In common sense
world modelling the situation is quite different. Here we expect to have a
data base that can be used to answer many different questions. Only some
of the assertions are used to answer any one particular question.

The obvious criteria for a split being relevant is that at least one
of the disjuncts should contribute to solving a goal. MWe faced this
problem before with our other interpretation of (OR A B). If the paths
from A and B to the goal are antecedent paths, then we will be unable to
invoke (OR A B) for splitting. MWe can handle this problem by a technique
similar to that used before. For each of the disjuncts A, in {OR Al"'An)
we can generate the antecedent deductions that would follow from Ai' and
combine them into a conjunction, EXP,. Then (OR A;...A ) would be replaced
by (OR (AND Al EXPl)...(AND An EXPn)). Then the split would be triggered
by a goal matching any subexpression in this longer disjunction.
Furthermore, all of the antecedent deductions fo[ each case would be pre-
computed.

Nevins has a quite different solution to the relevance problem uhich
is very interesting and possibly more elegant than the solution proposed
above. Nevins's idea is to postpone checking the relevance of a split

until a case has been solved. Then if the split was not involved in the
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solution, the other cases of the split do not have to be tried. For a
simple example suppose we knouw (A > B), (C>8B), (AvC), and (D v E), and
we want to prove B. Without splitting we generate the goals B, A, and C.
Since none of these goals has been solved, we have to use splitting.
Suppose we chose to split (D v E) first. We would add 0 to the data base
and try again. MWe still cannot get anywhere, so we try another split, (A v
C). UWe add A to the data base and find we have a proof. Then we try C and
Wwe also have a proof. So now we have "solved" the case where D is true.
[f we look at the solution, however, we discover that it did not depend on
D.- SO uWe can go back to the next higher level (in this case, the top level)
Without bothering with the other pseudo-case, E. Splitting (0 v E) has cost
us only whatever inferences are made from O alone, and the combinatorial
explosion of cases is avoided.

It turns out that there is a mechanism which Works much like Nevins's
technique, but without the overhead of the multiple data bases requfred by
splitting. In fact, it amounts to nothing more than treating a fact (A v
B) with the deductive procedures we have associated with the fact (A <-
(NOT B)). Recall that in section 3.2 we introduced the rule that if (A ->
EXPl) is an assertion and (A <- EXP2) is a fact, we assert (EXPl <- EXP2)
as a fact. UWe needed this rule because of the problem of antecedent
deductions from complex facts.

If we treat the fact (OR A B) in a corresponding fashion, we would

have the following rules:



1. If (OR A Bl"‘Bn) is a fact and (AND A Cl...Cm) is a goal,

allow (AND Cl"'cm (NOT Bl)...(NOT B,) to ve a goal.

2. If (OR A 81...Bn) is a fact and (OR (NOT A) Cl...Cm) is a fact,
assert (OR Cl...Cm Bl...Bn) as a fact.

3. a. If (OR A Bl"'Bn) is a fact and (A -> EXP) is a procedure,
assert (OR EXP Bl...Bn) as a fact.

b. If (OR A Bl...Bn) is a fact and ((NOT A) <- (NOT EXP)) is
3 procedure, assert (OR EXP Bl...Bn) as a fact.

Of course, these rules generalize to inferences that require matching
betueen A and some A’. Aiso note that 3.a. and 3.b. are the same rule
because of the procedural equivalence of (A -> EXP) and ((NOT A) <- (NOT

EXP)). Finally these rules should be understood to cover degenerated cases

such as (OR A B), (NOT A) |- B (a special case of rule 2.). We will use
these rules for facts of the form (OR Ap.. ALl Ue still need procedures
Wwhich embody the multiple-consequent-theorem idea, however, so we will keep

our old interpretation for (OR Aj...A.) as a procedure.

To see the relationship between this method and Nevins's, think of (OR
A Bl"‘Bn) as a split where A is asserted with a pointer to the other cases
Bj...B,. It really behaves this Way, because only the left most
expression, A, can trigger inferences. The other cases By...B, are
appended to the results of these inferences, and when the A case is
"solved" the next case, Bl' becomes active with the others held in reserve.
If the solution to the problem does not involve A, then just as in Nevins's

system, the other cases associated with A will never be considered. To see

this work, look again at one of our previous examples. Dl. ((P ?X) <- (R
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?X)) and D2. ((P ?2X) <- (S ?X)) are procedures, 03. (OR (R A) (S A)) is a

fact, and (AND (P ?X) (Q 2X)) is the goal:

(AND (P ?2X) (Q ?X))
01 02
(AND (R 2X) (@ ?X)) (AND (S ?2X) (Q ?X))
03
(AND (NOT (S A)) (Q A))

(AND (@ A) (@ A))

@A

Comparing this to our previous resolution-based method, we can no longer
generate the double search path, because the (S A) in (OR (R A) (S A))
cannot be invoked until the (R A) has been eliminated. The cost of this is
seen in the following example: Suppose we know (OR A B) and (NOT A), and
we want to prove B. Before, we could have matched the goal B against the
(OR A B) and generated the goal (NOT A). Now, however, we have to do the
inference (OR A B), (NOT A) |- B in the antecedent direction SO0 we can get
to B for solving the goal. On the other hand, the antecedent inferences
that we would have had to do involving Bl"‘Bn in (OR A By...B,), now do
not have to be done until all the preceding possibilities have either been

contradicted by an assertion, or used to solve some goal.
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It is worth pointing out that since almost all resolution theorem
provers, except lock resolution, aliow (OR A B) to be invoked either by
matching A or B, they all share the multiple path problem in situations
Wwhere a case analysis applies. Nevins does not seem to be aware of this
advantage of his system over resolution, but he does cite two other
advantages. The first is that by using multiple data bases. the formula
generated in solving one case can be deleted before the next case. Nevins
claims that this is more efficient, but th:t would be true only in an
unindexed data base (which Nevins uses). In the type of indexed data base
used in PLANNER-|ike systems, these extra formulas would get looked at only
if they matched some goal. There is no a priori reason to believe that
these matches are less useful than others; they simply represent
inferences that Nevins's system cannot do.

The other point that Nevins makes is that his system does not require
putting all expressions into conjunctive normal form. [f we know something
of the form (A v (B A C)), resolution systems force us to express this as
tuo assertions (A v B) and (A v C). If there are a lot of inferences to be
made from A, then they have to be made tuwice. Equivalently, if (A v (B A
C)) is a goal, this gets expanded to two goals, (A v B) and (A v C); so
the subgoél A may have to be solved twice. This is required by neither
Nevins's system nor ours, so both are superior to traditional resolution

systems in this respect.
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4. Quantification and Equality

Subsequent to Micro-Planner and SHRD‘LU. there has been one idea which
has come up repeatediy as a solution to the problem of quantification in
procedural deduction systems. The idea is that to prove a universal
assertion (VYx (P x)), create a previously unused name, say G@123, and prove
the assertion with this neu name substituted for the quantified variable,
(P GB123). Since we have no information about GB123, if we can prove (P
GB8123), then P muét be true of everything. The analogous idea for
assertions is to represent (Ix (P x)) by (P G3218); i.e., just assign an
arbitrary name to the individual whose existence is being asserted.
Variations on this idea are found in <Moore 1973>, <Davies 1974>, <Hewitt
1375>, and <Rich and Shrobe 138755>.

In fact this technique is nothing more than eliminating quantities by
use of Skolem functions, as is done in resolution. This is clearly the
case in the treatment of existential assertions. The case of universal
goals may be less clear, but recall that in a refutation system the
negation of the goal is asserted. So (Vx (P x)) becomes (-~ (Vx (P x))),
Hhich becomes (Ix (-~ (P x))). Eliminating the quantifier now gives us (-
(P GB123)). Since we previously showed that (= EXP) in a refutation system
is equivalent to (GOAL EXP) in a direct-proof system, we end up with the
same goal that we had before, (P G8123).

This technique handles quantification very nicely, but it requires

having an effective mechanism for reasoning about equality, since an
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expression introduced by Skolemization might turn out to name the same
individual as some expression already in the data base. PLANNER-Iike
systems, however, assume that every individual has one unique name. This
makes reasoning about equality trivial; two expressions are equal only if
they are identical. This is not sufficient for the more complex situations
we want to model.

The techniques for handling equality which we will propose are all
based on one key idea - the principal role of equality in common sense
reasoning is to establish the identity of individuals. [f we know (3x (P
x)) and wWe represent this as (P G8123), we will be concerned with which
individual G@123 actually is. Or, we might know that John's only friends
are Bill and Mary, represented by ((FRIEND JOHN ?X) -> (OR (?X = MARY) (?X
= BILL))). Then if we are asked a question about all of John's friends, we
know we only have to consider Bill and Mary.

In other types of reasoning, equality is treated differently. In
proving mathematical theorems, an equality is frequently regarded as an
expression to be transformed into some other expression, and the question
of which individual is referredvto is meaningless. In engineering or other
applications of algebraic problem solving, an equality is a constraint to
be satisfied, and special techniques are required which manipulate sets of
#onstraints to produce solutions. The techniques required to handle these
situations are much more sophisticated and specialized than anything we
will consider.

[f we want to use equality to talk about the identity of individuals,
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He have to have some way to indicate when we knouw the identity of an

individual. To do this we will have tuo types of names - identified
constants whose identity will be considered known, and unidentified
constants whose identity is unknown. An identified constant will always be

unequal to any other identified constant; an unidentified constant might
be equal to other constants of either type. Skolem constants are, of
course, unidentified.

This distinction has two practical consequences. Firet, in doing a
deduction we need to consider looking for an equality substitution only if
an unidentified constant is involved. Second, uwe do not need explicit
assertions that identified constants are distinct. A common-sense world
model will normally contain many identified constants and only a feuw
unidentified constants. In SHROLU's blocks worid, it would be incredibly
inefficient to have to have assertions that each known block is distinct
from every other known block, or when trying to prove something about block
A, to have to consider whether block A might be the same as block B, C, D,
etc. On the other hand, for some unknoun object (GBl23, this may be exactly
what we want to do. The distinction between identified and unidentified
constants allous us to do this sort of thing only when necessary.

We can extend this idea to handle functions as well. If a function is
one-to-one, wWe can take an application of the function to be the canonical
name of its value. If we want to reason about lists, we will need a
function (call it CONS) to add an item to a list. Now if we know what A

and B are, we do not have to ask what the value of (CONS A B) is; it is
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simply (CONS A B). MUWe can, of course, introduce other notations for
convenience; say, let [A B C] be an abbreviation for (CONS A (CONS B (CONS

C NIL))). So, we can have identified expressions based on identified

functions. Two identified expressions are unequal unless they have the
same function and their respective arguments are equal. So if CONS and FOO
are identified functions, (CONS A B) and (FOO C D) are implicitly unequal.
(CONS A B) and (CONS C D) are equal only if A equals C and B equals D.
Many-to-one functions and all Skolem functions would be unidentified.

The basic operation in reasoning with equality is simply substitution
of equals for equals. The simplicity of this rule makes it very dangerous,
however. There are so many symmetries that the possibilities for
redundancy are enormous. The first symmetry to consider is the fact that
given (Gl = G2) we have a choice of whether to substitute Gl for G2 or G2
for Gl. [f we know (P Gl) and (Gl = G2), and we want to prove (P G2), wue
can either change the assertion to (P G2) or the goal to (P Gl). To try
both wWwould be redundant. UWe will adopt the convention that the left
arqument is to be replaced by the right argument.

In most common sense situations, it will be obvious which direction
the substitution should go. For instance, an unidentified expression
should always be replaced by an identified expression. There are two
reasons for this. The first reason is that by reasoning With the
identified expression the .possibilities for further equality substitutions
are reduced. Only unidentified expressions are candidates for matching,

where any expression would be a3 possibility if we used the unidentified
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expression. The other reason is that we probably know much less about the
unidentified expression, so that fewer substitutions will actually have to
be done.

Another typical case where the direction of the substitution is
obvious is a simplification or evaluation rule - ((MINUS (MINUS ?X)) = ?X),
((CAR (CONS ?X ?Y)) = ?2X), or ((FACT (SUC ?X)) = (TIMES ?X (FACT ?2X))).
The last of these gives a good illustration of the need for ascribing
procedural significance to the order of the arguments of =. The most
obvious local heuristic to use would be that the more compiex expression
should be replaced by the simpler expression. This works fine for MINUS
and CAR, but uwould make the wrong subs&itutions for FACT. It is the
semantics of the domain uwhich tells us that FACT is defined in terms of
VTIHES. and AOt the other way around.

Another choice we have to make is whether to do equality substitutions
in a bottom-up or top-down manner. The bottom-up approach is the obvious
substitution: if (P Gl) and (Gl = A) are asserted, assert (P A). The top-
down approach would ve: if (P A) is a goal and (P Gl) is an assertion,
propose (Gl = A) as a goal. There is a dual choice with respect to proving
inequalities. The bottom-up method is: if (P Gl) and (NOT (P A)) are
assertions, assert (NOT (Gl = A)). The top-down method is: if (NOT (Gl =
A)) is a goal and (P Gl) is an assertion, propose (NOT (P A)) as a goal.
As usual, the bottom-up method for equalities is computational ly equivalent
to the top-douwn method for inequalities, and vice versa. In refutation

systems they are the same.
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The usual equality rule for resolution systems, paramodul!ation,
embodies the bottom-up method for using equalities and the top-down method
for proving inequalities., MWithout the concept of an identified expression,
this is the only reasonable approach. Suppose we want to prove (P A) and
we know (P B), (P C), (P D), etc. We would not want to genarate (A = B),
(A =C), (A =D), etc. as goals, unless we had some reasonable hope of
proving one of them. MWith identified expressions cutting down the number
of such matches, however, this approach (call it "anti-paramodulation")
becomes more attractive. Of course, if there is a very large number of
assertions (P A), (P B), P C), etc. then anti-paramodulation can be
inefficient, But if there are power ful methods for proving expressions
equal - say ((?X = ?Y) <- (BIG-HAIRY-EXP ?X ?Y}) - then bottom-up equality
substitution can also be inefficient.

There are other problems. Suppose we know El. ((P 2X) <- (@ ?2X)), E2.

({@ ?X) <- (R ?X)), and E3. (OR (Gl = A) S), and we want to prove (P Gl):

(P G1)
E E3
(@ cn - (AND (P A) 9)
E2 E3 El
(R Gl1) (AND (Q A) S) (AND (Q A) S)
E3 €2 E2

(AND (R A) 9) (AND (R A) 9) (AND (R A) S)
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Basically, we have two Hays to prove (P Gl). MWe can prove (P Gl) directly,
or We can substitute A for Gl, and try to prove S as wuell. But
paramodulation allows us to perform the substitution over and over for
every subgoal of (P G1), producing repeated instances of the same goals.
This can be cut down by use of the deletion strategy, but these represent
inferences that never needed to be done. This is yet another example where
traditional theorem provers perform redundant computations. The simplest
cure for this problem is to restrict application of paramodulation to the
point where an expression is introduced into the goal tree. Using this

restriction we get a much simpler search space for our example:

(P G1)
El E2
(@ G1) (AND (P A) S)
E2 El
(R G1) (AND (@ A) 9)

E2

(AND (R A) S)

The method for reasoning wWith equality which we will use is a
variation of paramodulation. In particular, we Will take advantage of the
special case where ue have just (Gl = A) rather than (OR (G1 = A) EXP). If
we have just (Gl = A), we can replace Gl with A everyuhere and eliminate

Gl. With (OR (Gl = A) EXP) we have to keep around the old assertions about
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Gl, since it might turn out that EXP was true and (Gl = A) was false.

What do we then do about cases like (OR (Gl = A) EXP)? Here the best
solution may be to use a real data base split, like Nevins's. That way, in
one data base we uill have (Gl = A) by itself, and we can do the
replacement. This replacement stategy fits especially well with our idea
of identified constants. [f we can replace an unidentified constant Gl by
an identified constant A, we have completely gotten rid of an object whose
identity was in question. There is a serious problem in resolution-like
systems, in that two incompatible substitutions might be tried in different
parts of the goal tree, which later combine. [f the original substitutions
have been lost along the way, the program cannot tell that it is losing.

To illustrate this, suppose that A and B are identified constants and
We know in a particular situation that A is the only pyramid and B is the
only cube, and that either A or B is in the box. MWe could represent these
facts as:

F1. ((?X = A) <= (PYR ?X))

F2. ({(?X = B) <- (CUBE ?X))

F3. ((OR (IN A BOX) (IN B BOX))

If we have some unidentified object named by Gl, and we want to find out if

it is in the box, we might get this goal tree using paramodulation:
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(IN G1 BOX)

F1 F2
(AND (IN A BOX) (PYR G1)) (AND (IN B BOX) (CUBE G1))
F3

(ANO (NOT (IN B BOX)) (PYR Gl)

(AND (PYR G1) (CUBE G1))

In trying to prove (IN Gl BOX), we first try substituting A for Gl and
proving that Gl is a pyramid. MWe could prove A is in the box, if we could
prove B is not in the box. We cannot do this, so we back up and try
substituting B for Gl. We can now have one goal containing (IN B BOX) and
one with (NOT (IN B BOX)), so we can apply RGR. This leaves us with the
impossible goal of showing Gl is both a cube and a pyramid. What happened
was that we combined a goal derived from substituting A for Gl with a goal
which derived from substituting B for Gl. Since Gl cannot be equal to both
A and B, the resulting goal will be impossible to solve.

There are other Hways to state these particular facts to get around
this difficulty, but the problem is endemic to resolution-type approaches.
With the replacement/splitting approach this sort of thing cannot happen.
In the example above, suppose we restate the facts as:

(OR (?X = A) (NOT (PYR ?X)))

(OR (?X = B) (NOT (CUBE ?X)))
(OR (IN A BOX) (IN B BOX))
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Using replacement/splitting, we start with the goal (IN Gl BOX). HWe cannot
get anywhere without splitting, so we split (OR (Gl = A) (NOT (PYR G1))).
In the first case, we assert (Gl = A) and attempt to show (IN A BOX). We
could show (IN A BOX) if we could shouw (NOT (IN B BOX)). At this point we
fail. As in paramodulation we backtrack to the top level goal. In this
data base, the top level goal is (IN A BOX) rather than (IN Gl BOX). so no
further substitutions can be tried and the entire proof fails.

Notice that the concept of an identified constant is crucial in mak ing
this work. If A uere not an identified constant, we would try to
substitute B for A, and end up with the same set of impossible goals as in
the previous example.

Anothér important point is that relevancy is much easier to determine
for splitting equalities than for splitting in general. An equality split
of (OR (Gl = A) EXP) is relevant in tuwo cases. (Recall that (Gl = A) means
replace Gl by A, so Gl must be an unidentified expression). The two cases
are:

Case I: Gl is a subexpression of some goal.

case [I: Gl is a subexpression of some assertion which

would match a goal if Gl had the appropriate

value.
In contrast to a general splitting procedure, these two criteria can be
easily checked without doing any forward inferences from the assertion

being split. The basic idea behind this technique is simple enough, but

getting an efficient control structure for it is tricky. We propose the



65

following control structure:

If (G1 = A) is an existing atomic assertion or (NOT (Gl = A)) is an
existing atomic goal, and ue generate a new goal or assertion containing
Gl, replace Gl by A before processing. E.g., if we know (Gl = A) and wue
generate the goal (P Gl), replace this goal with (P A).

If Gl is an unidentified expression, and we generate a (Gl = A) as an
atomic assertion or (NOT (Gl = A)) as an atomic goal, replace Gl by A in
all existing assertions and goals. Then perform any inferences which were
blocked before by a failure of a match on Gl. E.g.. Suppose that (P Gl) is
a goal and (P A) and ((P ?X) <- (Q ?X)) are assertions. If we generate
(NOT (G1 = A)) as a simple goal, the goal (P Gl) would be replaced by (P
A). He would match this against the assertion (P A), because this match
Has not possible before. We would not match (P A) against ((P ?2X) <- (Q
?X)), however, since we would have already generated (Q Gl), and (Q A) will
be generated by replacing Gl by A here.

The only other rules we need for equality are a few basic

simplification procedures:

1. If (AND (A = A) EXP) is a goal, replace this goal with EXP.

2. If either (AND (?X = A) (EXP ?X)) or (AND (A = ?2X) (EXP ?2X))
is a goal, replace the goal with (EXP A).

3. If (AND (NOT (A = B)) EXP) is a goal, and A and B are distinct
identified expressions, replace this goa! uith EXP.
The degenerate cases of these rules and the dual rules for assertions

should be obvious.
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We turn nouw to the question of splitting. Suppose we have a goal (P
Gl) where Gl is an unidentified expression for which there is no immediate
substitution. MWe will first try to prove (P Gl) without substitutions
created by splits. ff this fails we will try those substitutions. Since
subgoais of (P Gl) will presumably also contain Gl, we have the potential
for invoking substitutions at that level as well. This is the same problem
Wwe saw uWwith unrestricted paramodulation. To prevent this we wWill invoke
substitution only at the point where a goal with Gl in its active part
first appears. In subgoals of this goal we will mark Gl with an x to
indicate that substitutions are not to be invoked. Ex: If we start out
with the goal (AND (P A} (P G1)), Gl is not in the active part of the goal.
[f we solve (P A) then (P Gl) becomes active. Subgoals of this would be of
fhe form (Q »Gl1).

[f we do need to try split-based substitutions for Gl we will collect
all the assertions of the form (OR EXP;... (Gl = A)...EXP_) and add them to
a list of assertions to be split later. UWe delay splitting until all other
deductions have been tried, so that the sub-data bases will inherit as much
as possible from the original data base. Since the same assertion may be
relevant to more than one goal, care should be taken not to add the same
assertion to the list more than once.

Another case to consider is the goal (P A) and an assertion (P Gl),
where Gl is an unidentified expression. Here we add to the list all the
substitutions for Gl which are compatible with A. Two expressions are

compatible unless they are distinct identified expressions. Finally, if a



67

goal of the form (AND (NOT (G = A)) EXP) is generated, this will also be
added to the list of formulas to be split (taking into account the duality
between goals and assertions).

Two additional points need to be made. First, if the goal is (P Gl)
and the relevant assertion is (OR (EXP; 2X)... (X = Al... (EXP, ?X)), we
Wwill add the specialized assertion (OR (EXPl Gl)... (Gl = A}...(EXP, Gl) to
our list. Second, in order to mesh nicely with the other deductive
procedures ue have advocated, it is convenient to split only assertions
Wwhere all of the disjuncts are equalities. (Note that this is not a
problem for goals.) This can be easily accomplished simply by aluays
putting equalities on the right when an assertion is generated. (OR
pl"'Pn (Al = Bl)...(Am = B,)) can be used in our normal inference
procedures until it is whittied down to (OR (Al = Bl)...(Am - Bm)).
Furthermore, this makes good heuristic sense. [f we express the fact that
A is the only cube by ((?X = A) <- (CUBE ?X)), this assertion could be
invoked every time we wanted to prove something about an unidentified
expression. [f, on the other hand, we write ((CUBE ?X) -> (?X = A)), this
assertion will be invoked only when we assert that something is a cube, or
We wWant to prove something is not a cube.

Once ue have constructed our list of possible splits, we can use
exactly the same splitting procedure Nevins uses. Since we used great care
to select only equalities which are reIeQant to our problem (helped by the
identified/unidentified distinction), in many cases we should have a far

smaller set of facts to split,
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There are special cases where this replacement strategy will not work.
The most obvious case is a commutative function (F ?X ?Y) = (F ?Y ?X).
Applying this rule to (F A B) would yield (F B A), but the rule applies to
(F B A) as well, yielding (F A B) again. The best way to handle
commutativity and associativity would probably be to build it into the
pattern matcher. At any rate, sophisticated mathematical manipulation is
not our goal.

We can hardly explore all of the consequences of our equality
techniques, but the first question in the scenario provides one simple
example. To recall the situation, A and B are known to be green, and A, B,
and C are the only things in the scene. MWe can represent this situation by
the following set of facts:

Hl. (GREEN A)

H2. (GREEN B)

H3. (LOC A BOX)

H4. (LOC B BOX)

HS. (LOC C TABLE)
HE. ((PRESENT ?X) -> (OR (?X = A) (?X = B) (?X = C))

We also need some procedures for reasoning about where things are.

H7. (INCOMP (LOC ?X TABLE) (LOC ?X BOX))
H8. ((LOC ?X BOX) -> (PRESENT ?X))
H3. ((LOC ?X TABLE) -> (PRESENT ?X))

These procedures interact with the previous assertions to produce new

assertions.

H18. (PRESENT A)
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H1l. (PRESENT B)

H12. (PRESENT C)
We would also get three assertions like (OR (A = A) (A = B) (A = C)), but
these can be recognized as tautologies and discarded. They do serve as a
check on the consistency of the data base, houever,

What we want to show is that everything in the box is green.

Formally, this is:
((LOC Gl BOX) -> (GREEN G1))

Gl is an unidentified Skolem constant, so anything we can prove about it is
true in general. We are assuming that A, B, and C are identified
constants. MWe will prove implications by natural deduction, asserting the
antecedent and then deducing the consequent. So we assert H13. (LOC Gl
BOX), and from this we get the following additional assertions:

H14. (PRESENT G1)

H1S. (OR (Gl = A) (Gl = B) (Gl = C))
We now try to prove (GREEN Gl). MWe have no assertions which match this
goal, so we have to go directly to splitting. The only assertion our rules
Will pick to split is (OR (Gl = A) (Gl = B) (Gl = C)). UWe set up the
following three goals in three separate data bases.

(OR (GREEN A) (NOT (Gl = A))

(OR (GREEN B) (NOT (Gl = B))
(OR (GREEN C) (NOT (Gl = C))
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In the first two cases, the first goal is immediately satisfied. In the

third case we do the following deduction:

(OR (GREEN C) (NOT (Gl = C)))

(GREEN C) (NOT (G1 = C))
H14 H13
(NOT (PRESENT C)) (NOT (LOC C BOX)
H7
(LOC C TABLE)
HS

SUCCEED

The worst-case ordering of subgoals nas intentionally chosen to show the
entire search space. MWe start out by trying to prove that C is green but
have no way to do that. So we turn to trying to show (NOT (Gl = C)). All
the substitutions of C for Gl become subgoals of this goal. We know
(PRESENT Gl1), so we try showing (NOT (PRESENT C)). But we know C is
present, so this goal is abandoned. We also know (LOC Gl BOX), so we try
to shou (NOT (LOC C BOX)). MWe can attack this goal using (INCOMP (LOC ?X
TABLE) (LOC ?X BOX)), generating the goal (LOC C TABLE). MWe know that this
is true, so the proof is done.

[f this example seems too simple to be interesting, ‘consider that its

simplicity is a virtue and not a fault. Using our deductive strategies, we
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took a straight-forward representation of the problem and generated an
intuitively relevant set of goals. Contrast this with Nevins's procedure,
for instance. [f there had been other disjunctive assertions in the data
base, his theorem prover might have split any number of them, before
getting around to the one which was actually relevant to the goal. Our
procedure, on the other hand, would ignore all but those which suggested
substitutions for Gl.

There is one final refinement we can use to make our equality stategy
more efficient. In our example, we assumed that blocks were the oniy thing
in our domain. MWe didn't bother asserting that A, B, C, and Gl were
blocks, or make the distinction that any block in the scene is either A, B,
or C. If there is more than one kind of object éround. we should take note
of this fact. Suppose we had wanted to prove that all cubes in the box
Wwere green. Then ue would have asserted that Gl was a cube. [f we knew
that A was a pyramid, we would not want to consider the case (Gl = A).
Similarly, if we wanted to know whether C was green, and we knew that C was
a cube, We would not want to bother with the green pyramid G23.

We can handle these situations with a system of typed constants and
variables. [f we know that A is of type Tl (indicated by writing A as
A/T1) and Gl is of type T2, where Tl and T2 are incompatible, the pattern
matcher would reject any possible match betueen A/Tl and G1/T72. We can make
this system of types hierarchial so that, while A/CUBE will not match
G1/PYR, it will match G2/BLOCK. This idea of a hierarchy of types was

first worked out as a solution to a related problem, the "symbol-mapping
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5. Control Structure [ssues

Deductive techniques have been applied to a wide variety of problems,
including mathematical theorem proving, automatic programming, and robot
problem solving, as well as the sort of world modelling or common sense
reasoning which we have discussed. We would argue that each of these
problem domains is sufficiently differgnt from the others so that each
requires its own control structure. Consequently there is no such thing as
the “right" control structure for reasoning.

Take the domain of robot problem solving for instance. In this
domain, the question of whether a solution to a problem exists is usually
not too difficult to answer. [f there is no solution, either the goal
itself will be physically impossible, e.g. (AND (ON A B) (ON B A): or each
branch of the search tree will lead to an impossible subgoal. And physical
impossibility in these simple domains is usually easy to check. The hard
problem is that in a solvable problem the space of possible solutions is
extremely large, or even infinite. The nature of the problem is to find
the solution uhich is assumed to exist as quicky as possible.
Sophisticated control strategies, such as debugging <Sussman 1973>, are
needed to improve efficiency of the search.

Our domain is quite different. We have described what we are doing as
"world modelling" and "commom sense reasoning", but perhaps a better name
would be deductive information retrieval. In this domain we have no reason

to expect success when ue ask a system to try to deduce some goal. In
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fact, since we are particularly concerned With incomplete knowledge, we
must be prepared for the answer "I don't know". So in many cases the
entire problem space must be searched. This has two important
consequences. First, the problem space must be finite. In true
information retrieval situations this is not a serious limitation. In
border-line cases, an arbitrary cut-off may have to be set. More
significantly, the order in which the problem space is searched is
relatively unimportant; what is important is restricting the size of the
space. This is virtually the opposite of the robot problem solving
situation.

In searching a problem space we have a number of choices to make which
Wwill affect hou the space is searched. We will assume that at any point we
have a set of conjunctive goals, any one of which is sufficient to satisfy

our top level request. The choices we have to make are:

1. Which goal to attempt first.
2. Which component of the selected goal to attempt first.
3. What assertions are relevant to solving the selected component.

4. Which of the relevant assertions to try first.

Choices 1. and 4. affect only the order in which the space is
searched, and so are relatively unimportant. Choices 2. and 3., on the
other hand, affect the gize of the search space as well. So far in this
Paper we have concentrated on 3. The distinctions between antecedent and

consequent processes, facts and procedures, and identified and unidentified
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expressions, all serve to organize a data base so that we will not be faced
With overwhelming numbers of assertions being generated or selected as
being relevant to a goal. Beyond that, we have confined ourselves to
eliminating redundancies in the search procedure. We now turn our
attention to 2.

Choice 2. affects the size of an exhaustive search in two ways. I[f
the goal is (AND (P ?X) (Q ?Y)), and the goal can be proved, it does not
matter whether we solve (P ?X) first or (Q ?Y) first. Since these
Subproblems are independent, the solution of one will not affect the
solution of the other. [f, on the other hand, one of these subproblems
fails we would not have to look at the other one'at all. This would reduce
the search space, of course. Suppose (AND A B) is a goal where A and B are
independent, and we have estimates s and p for the size of the search space
and probability of success for each component. Then the expected cost of
trying A first is s(A)+p(A)xs(B), and the expected cost of trying B first
is s(B)+p(B)xs(A). Naturally, we want to choose the order which minimizes
this cost. Some special cases are of interest:

1. As pointed out above, if p(A) = p(B) =1, it does not matter

Khich order we try.

2. 1f p(A) << 1, p(B) << 1, then pick whichever subprobiem has
the smallest search space.

3. If ue have no estimate for p. then assume p(A) = p(B) and
pick whichever has the smallest search space.

4. If ue have no estimate of s, then assume s(A) = s(B) and pick
whichever has the least probability of success.
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This analysis generalizes easily to goals with more than one component, or
independent sets of dependent components.

There is one other point we need to make about independent
subproblems. [f A and B are independent, and we are solving (AND A B) left
‘to right, once we have solved A, no subsequent failure should be allowed to
backtrack into A, Contrast this with the following Micro-Planner program.

(THPROG (X Y)

(THGOAL (P 87X))

(THGOAL (Q $?Y)))
Suppose we execute this program and find a value for 8?X that makes (P 8?X)
succeed. Nouw suppose we cannot satisfy (0 $?Y). UWe will then backtrack
and try to find another value of $?X. [f we are using this program as a uay
of proving (3xy ((P x) A (Q y)}), this cannot possibly help. Micro-Planner
cannot knou this, however, since solving the goal (P 8?X) might have side
affects which are useful in solving (Q 8?Y). This is the result of THGOAL
being ambiguous between "achieve" and “prove”.

Since our goals are purely deductive, we have no side effects to worry
about. So ue will not allow backtracking between independent parts of a
goal. To be more precise, construct a graph in which each conjunct is a
node and two nodes are connected if they have a variable in common. The
maximal connected subgraphs are independent sets of dependent conjuncts.
This definition covers cases like (ANO (P ?X) (Q ?Y) (R ?X ?Y)), where the
first two conjuncts would be independent unless they were conected by the

third conjunct. To see that they are dependent, consider that the failure
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of (@ ?Y) might be due to a failure of (R ?X ?Y) for some particular value
of ?X and all values of ?Y. In that case we would want to backtrack from (Q
2Y) to (P 2X). |

It may seem that all this emphasis on independent goals is unnecessary
since most top level requests would probably be dependent, like "ls there a
red block in the box?" This could be represented by (AND (BLOCK ?X) (RED
?X) (IN ?X BOX)). Notice, however, that once we have picked a particular
block to try, say A, the goal we have left is (AND (RED A) (IN A BOX)). 1If
A is red but not in the box, we would not want the failure of (IN A BOX) to
send us searching for a different method of proving (RED A).

I't should be noted that resolution systems are capable of solving this
probiem by use of subsumption. In resolution, the goal (A A B) is
represented by the formula ((~ A) v (~B)). If A and B are independent and
A is solved, we will generate the formula (= B). (-~ B) subsumes ((-~ A) v
(= B)); so the latter may be deleted, and no more attempts, to prove A
Will be made. The advantage of partitioning a goal into independent parts
is that we know in advance that any solution to one part will generate a
goal which subsumes its ancestor, so the subsumption check can be sk ipped
and the deletion made automatically.

We turn now to the question of goals with dependent parts. MWe
mentioned before that the order of solving a conjunctive goal affects the
size of the search space in two ways. The second and most important way is
in the ordering of the dependent parts of a goal. Suppose we want to find

a red block, (AND (RED ?X) (BLOCK ?X)). If we know of n red things and m
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blocks, then looking for red things and checking if they are blocks will
yield a search space proportional to n; looking for blocks and checking
Whether they are red yields a search space proportional to m. This suggests
the following rule for solving conjunctive goals which Kowalski <1974, p.

S8> calls "the principle of procrastination":

To solve (AND Al...An) where Al...An are dependent, first solve
the Ai which has the smallest number of solutions.

This strategy for ordering goals is optimal so long as one condition
can be met - the cost of generating a solution to Ai must be approximately
the same as checking whether something is a solution to A, UWe will
postpone examining what happens when this condition fails, and consider
another question first. When we talk about the principle of
procrastination being optimal, that is in the context of a backtracking
control structure. Is there some other type of control structure which
allous even more efficient searching? In a modification to his theorem
prover, Nevins suggests the following procedure for so|vihg conjunctive
goals <Nevins 1374b>: [f (AND Aj...A,) is a goal, independentiy generate
all the solutions to Aj.++A, and intersect these solutions to find the
solution to the entire goal. Nevins is aware that this could be
inefficient if the number of solutions to one of the goals is very much
greater than some of the others, and he has ways of handling this problem.
But what about the more reasonable cases where the number of solutions of

each goal is about the same order of magnitude?
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The ansuer to this question depends on how efficientiy we can compute
set intersections. One very efficient way to compute the intersection of
tuo sets, if they are hash-coded, is to enumerate the smaller one and look
each member up in the hash-table of the other set. In fact, if we do not
have to include the cost of building the hash-tables, there could not be a
significantiy more efficient method. The cost of this method is linear in
the size o; the smaller set, and to intersect tuo sets we certainly have to
look at all the members of at least one of them. If we have a data base
indexed by hash-coding, this procedure is essentially the same as the
principle of procrastination, i.e. generate the smallest set, and test each
element to see if it is in all the others.

This discussion points out one case where the optimality condition on
the principle of procrastination holds, and the principle is easy to apply
as uwell. That case is uhere the goal matches only atomic assertions and no
procedures. The optimality condition is satisfied because generating a
solution and checking a solution each require only one data-base probe.
The principle is easy to apply because the number of solutions to each
component is simply the number of assertions which match it.

When a goal matches a8 procedure, things become more complicated.
First, we cannot always apply the principle of procrastination, since in
general the onliy Hay to tell how many solutions a procedure will produce is
to run it. UWe would have to have duxiliary knowledge giving us an estimate
of the number of solutions. Second, there is no reason to expect the

optimality condition to hold. An example where the optimality condition
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does not hold and the principle of procrastination does not work is the
following: Suppose we have an nth degree polynomial equation and a list of
m numbers. UWe uént to know whether any element of the list is a solution
to the equation. If m > n, the principle of procrastination would have us
solve the equation and then check the solutions against out list. Buyt
unless m >> n, that is clearly absurd. I[n general, it is far easier to
check a possible solution to a polgno&ial equation than to solve the
equation (especially for degree > 4!),

Of course, solving arbitrary polynomial equations hardly falls into
the category of information retrieval problems. In fact, most of the other
domains for deductive reasoning which we mentioned have the feature that
solutions are much easier to check than to find. We might want to take
this criterion as being what distinguishes "problem solving" domains from
"information retrieval" domains.

The optimality condition can fail in the other direction as well.
Perhaps surprisingly, there are some goals for which it is easier to
generate solutions than to check solutions. These are goals for which
there is a "generator", a procedure which generates solutions in a well-
defined sequence, and for which the only way of checking solutions is to
see if they are in the sequence produced by the generator. There are cases
of this which clearly do fall under the category of deductive information
retrieval, so this is a problem we have to deal with. Suppose we define

ABOVE recursively in terms of ON:
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((ABOVE ?X ?Y) <- (OR (ON ?X 2?Y)
(AND (ON ?2X ?2)
(ABOVE ?Z ?2Y))))

This can be interpreted as "?X is above ?Y if ?X is on ?2Y or ?X is on
something which is above ?Y".

Suppose we want to test whether A is above something red - (AND (ABOVE
A ?X)- (RED ?2X)). If we attack this goal‘in the order given, we will simply
enumerate all the things A is above and check to see if it is red. If all
color assertions are stored directly, checking for redness will take only
one step. Now suppose we try the other order, generating red things and
testing to see whether A is above them. To check (ABOVE A B) we ask "Is A

on B? If not, is whatever A is on, on B? If not, is whatever that is on, on

B?" etc. If there are n things which A is above and m red things, the

cost of attacking the goal the first Wway will be proportional to n; the
cost of the second Way wWill be proportional to mxn. The principle of
procrastination is completely irrelevant here. The first method will be

more efficient no matter what the values of m and n are.

The reason that generators behave this way is that since they produce
their solutions one at a time, they prevent us from taking advantage of the
parallelism of our hash-coded data base. As a result, if we want to find
the intersection of two generators, sag (AND (P 2X) (Q ?X}), using our
control structure, the best we can do is 3 search proportional to mxn.

In this situation Nevins's idea is Wworth reconsidering. Nevins,

himself, suggests nothing more sophisticated than a simple intersection
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technique which also requires mxn steps. [f m and n are large enough,
however, the extra expense of building and using a hash-table is warrant~d.
To be specific, suppose the cost of generating a P is a; and there are n
P’s, the cost of generating a Q is a, and there are m Q's, the cost of
storing an item in the hash table is hl' and the cost of looking up an item
in the hash table is ho. Using backtracking, the cost of finding all the
solutions to (AND (P ?X) (Q ?X)) would be ajnxaom, whichever order we use.
[f we build a hash table of P's and look up the Q's in it, the cost will be
(hlxaln)+(h2*azm). Since aj, 33, hy, and h, are constant, the second
method will be more efficient for sufficientiy large values of m and n.

We have tuwo other points to make about control structure. So far we
have assumed that once we select a component df a goal, we uill obtain one
complete solution to that component before going on to the next component.
In practice, it is sometimes useful to interleave subgoals of one component
With subgoals of another. Suppose we want to find a red cube, where a cube
is defined to be an equidimensional brick. [f there are more red things

than bricks, we Will start by looking for cubes:
(AND (CUBE ?X) (RED ?X))
(AND (BRICK ?X) (EQUIDIM ?X) (RED ?X))

Once we have selected a partiéular brick, A, we will be left with the goal

(AND (EQUIDIM A) (RED A)). But (RED A) can be checked simply by look-up,
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where (EQUIBIM A) requires expanding a definition and some computation, so
He want to reverse the order of these tuo goals. Effectively, we want to
reduce (AND (CUBE ?X) (RED ?X)) to (AND (BRICK ?X) (RED ?X) (EQUIDIM ?X)),
uhere (RED ?X) is interleaved between the subgoals of (CUBE ?X). Notice
that our representation for conjunctive goals makes this interleaving
particularly easy. All ue have to do is reorder our |ist of conjuncts.
Nevins and Reiter, on the other hand, use splitting for conjunctive goals
(as well as disjunctive assertions). This puts the different conjuncts
into different data bases, which Would make interleaving subgoals extremely
difficult.

Our final point about control structure has to do with distinquishing
input énd output variables in procedures. In its simpliest form, a
procedure in a PLANNER-|ike language makes no distinction betueen input and
output variables. ((P ?2X ?Y) <- (EXP ?X ?Y)) can be invoked either by the
goal (P A ?Z) or the goal (P ?Z A). Koualski makes the same point about
the procedural intepretation of predicate calculus <Kowalski 1974, p. 61>.
Often this works very well and leads to a very compact representation of
what would be several different procedures in an ordinary programming
language, but there are cases where it leads to trouble.

Recall the definition of ABOVE which we used previously. Notice that
We could have equally well written the definition this way:

((ABOVE ?X ?Y) <- (OR (ON ?X ?Y)

(AND (ON ?Z ?Y)
(ABOVE ?X ?2)))
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Both procedures define ABOVE recursively in terms of ON. The difference is
that the first definition follows the ON-chain down from the (presumabiy)
higher block, and the second definition follows the ON-chain up from the
(presumably) lower block. Either of these procedures would work for
checking (ABOVE A B), but only the first is suitable for enumerating the
things A is above, and only the second is suitable for enumerating things
above A, .

To see what happens when we match a goal with the wrong procedure,
consider the goal (ABOVE A ?X) and the second procedure. MWe start off
enumeration with the object A is on, which is fine. Then we are left with
the goal (AND (ON ?Z ?Y) (ABOVE A ?Z)). If we attack the goal in the order
given, we will start finding random instances of (ON ?Z ?Y) totally
unrelated to A. [f we reverse the order, we start with (ABOVE A ?Z), but
this is essentially our original goal, so we are in danger of infinite
recursion.

Kowalski <1874, p. 73> presents an even more striking example.
Consider the relation (SORT ?X ?Y) to mean ?X is a sorted version of ?Y.
The simplest way to define SORT is as an ordered permutation, ((SORT ?X ?Y)
<- (AND (PERM ?X ?Y) (ORD ?X)). This procedure would be fine as a method
of checking (SORT ([134]) (341]), but it would be a terrible sorting
procedure. Not even interleaving subgoals of PERM and ORD would help. It
seems that what we need for SORT, ABOVE, and similar procedures are
restrictions on variables forcing them to be input variables or forcing

them to be. output variables. Restrictions similar to these have been
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implemented in CONNIVER <McDermott and Sussman 19745,

The moral of this chapter is that it is essential to have the
semantics of the domain influence the control of the deductive process, but
He do not as yet have a language for exercising such control. So, what is
the point? Many other authors have said much the same thing. The point is
that, at least for one type of problem domain, we have specified where we
need control and what kind of control we need. Also, we have specified
where we do not need domain dependent knowledge for control. MWe do not
need to worry about which of a group of alternative goals to pick first, or
which of a group of alternative methods to try first. And for conjunctive
goals we have a general ordering procedure (the principle of
procrastination) which works whenever only atomic assertions are
applicable. Things only become complicated when we have procedures
matching a conjunctive goal.

Languages which do have control primitives have sometimes controled
the uwrong things. Micro-Planner had recommendation lists which allowed
ordering alternative procedures, which does notvmatter very much. It did
not have dynamic ordering of conjunctive goals, however, which matters a
great deal. Kowalski <1974, p. S@> gives the impression that he believes
the principle of procrastination aluways gives the optimal ordering of
conjunctive goals, and that the only problem is that it can only be
estimated rather than computed. Finally, Kowalski and Hayes both argue for
a8 completely autonomous control language. We have tried to show, on the

other hand, that in distinguishing between antecedent and consequent
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6. Conclusions - Extensions and Limitations

This thesis has been about the application of procedural deduction
systems to a limited class of problems, what we called in the preceding
chapter "deductive information retrieval”. UWe believe that no system will
ever be suitable for expressing and solving every type of problem, and we
have made no attempt to design a system that will. Nevertheless, as we
pointed out in the first chapter, it is a truism that "programming
languages are universal, so they can express anything". So it is difficult
to say what the limitations of the current ideas are. For example, we
pointed out that the control structure we envision is specifically not
designed to cope with robot praobiem solving. The most natural way to
describe plans for achieving (as opposed to proving) conjunctive goals

would be:

((PLAN-FOR ?X [AND ?Y ?Z]) <- (AND (PLAN-FOR 2X ?Y)

(PLAN-FOR ?X ?Z)))
That is, ?X is a plan for ?Y and 2Z if 2X is plan for ?Y and ?X is a plan
for ?Z. This is a perfectly good way for checking plans, but a terrible way
to generate them. The problem seems to be that deductive languages are
purely applicative; they cannot make assignments to variables, they can
only bind them. Effective problem solving requires the ability to take an
almost correct plan and modify it to be a correct one (see <Sussman 1973>).

This idea seems to require assignment.
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Notice, however, that we can use the following hack:

((PLAN-FOR ?X [AND ?Y ?Z]) <- (AND (PLAN-FOR ?U ?Y)

(PLAN-FOR 2V ?Z)

(COMBINE ?X 2U 2V [AND ?Y ?2Z1)))
This would mean to find a plan for ?Y and ?Z, find a plan for ?Y and a plan
for ?Z, and combine them to be a plan for ?Y and ?Z. Warren <i374> uses a
similar technique in a planning system written in predicate calculus. The
trouble Wwith this is that it has lost all naturalness of the previous
assertion. What ue have done is to abandon using the language as a
straight-foruard representation system, and we have begun to use it just as
a general-purpose programming language. Whether having a clean interface
to the real deductive system outweighs its limitations as a programming
language is largely a matter of taste. At any rate, the question is not so
much what is possible, but rather what is appropriate.

With this in mind we Wwill end with a list of undeveloped ideas which
seem to be useful additions to the procedural deduction paradigm as we have
described it. Whether to regard these ideas as l|imitations or extensions
of what has gone before is an open question, but we will list them in order

of how easily they appear to fit into the. current paradigm.
1. Returning answers

The techniques we have used in this thesis fall short of most

procedural deduction systems in at least one respect. They are not very
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good about keeping track of the correspondence between variables in the
top-level goal and those in its subgoals. This makes returning ansuers a
problem. Even if this were cleaned up, the reasoning by cases mechanisms
make the final value of these variables of questionable utility. One easy
solution to this problem Would be to use the ANSWER predicate of Green
<1363>. UWhether this approach is ultimately satisfactory requires further
s tudy.

We can make one improvement on both PLANNER and Green's systen,
however, thanks to out notion of identified expressions. Suppose we know
that John has a telephone number, but we do not know what it is. We might
represent this as (PHONE-NUM JOHN G6987). |+ we ask the system what John's
Phone number is, G6987 would be a most un-helpful answer. UWe really want
ansuer variables to be restricted to matching identified expressidns. With
an attempt made to evaluate any unidentified expression that would

otheruise match.

2. Model ling change

One of the most pressing problems is the further development of ideas
about modelling change. The most serious limitation of the ideas in
Appendix A is that they do not handle facts which depend on other facts.
We currently assume that an action knows about all the relations which it
might affect. But we might want to define a new concept in terms of old

ones, without changing the specification of the actions which Wwould affect



it. We neeg to have Something |ike PLANNER érasing theorems extended tg

our more complex domain.
3. Contro| language

In the Preceding Chapter, ue Pointed oyt Where auxiiiarg control
information is needed to order Conjunctive Subgoals. e have ngo language
for expressing this information. however, McOermott <1974b> g currentiy

Horking on this problem, ang e hope to make use of his results,

are se!f—contradictorg. or more generally, goals which are easily shoun to
bo false, Resolution Systems have some |imiteqg Capabilities in this
regard. A seif-contradictorg goal s represented in a resolution System by
tautologous assertion, Khich jg €3asy to test for. Also, if 3 goal is
contradicteq by a single assertion, the subsumption Procedure uij|| delete
it. In other Cases, houever, Some deduction May be required. Suppose wue
could estimate the size of the space to be Searched in trying to prove a
goal, ang also the size of the search Space for jtg negation. ¢ the
latter were significantlg smaller, jt Would be worth trying to disprove the
goal first, before attempting to prove it,

The use of models gag goal filters in geometry theorenm provers
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<Gelernter 1963> <Reiter 13973> represents a kind of computational
filtering, as opposed to deductive filtering. This type of filtering is
more efficient, but not universal ly appiicable. It requires the ability to
easily construct a mode!, and most important to be éble to easily
distinguish the accidental vs. essential features of that model. In
geometry problems this is easy. The numerical values for |ine lengths and
angle sizes (except for 98 and 188 degrees) are almost always accidental.
Similarly, in electronic circuit models, the exact values for components
could be accidental. But in most common sense domains, |ike the blocks
Wworld, we know and ask about a lot of specific information 6f this kind, so

constructing filtering models would be much more difficult.
S. Repeated goals and shared partial goals

One ability any deductive system needs is to‘be able to recognize a
'goal that has been generated before. This always saves computational
effort, and when a goal is generated as a subgoal of itself, it prevents
the simpiest kinds of infinite recursion. In resolution systems,
Subsumption serves this function also.

There is a related problem, however, which subsumption does not
handle. Suppose we have (AND (P ?X) (@ ?X)) as a goal! and later we
generate (AND (P ?2X) (R ?X)). Neither of these goals subsumes the other,
but they do have the component (P ?X) in common. [f we try to solve the

second goal in the usual Hay, We will be solving (P ?X) twice. MWe can
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improve on this by remembering all the solutions generated by (P ?X) the
first time (i.e. assert them in the data base), and on subsequent goals
containing (P ?X) refrain from using procedures or conplex assertions.
There are two complications to this procedure. First, suppose another
goal like (AND (NOT (P A)) EXP) intervened betueen the first and the second
goals containing (P ?X). The second (P ?X) will have a possible solution
via Restricted Goal Resolution, which wuas not availabnie to the first (P
?X). Second if we interleave subgoals of (P ?X) and (Q ?X), we may not
have generated all the solutions to (P ?X). Some possible solutions to (P
?X) may have been rejected because they failed to satisfy some subgoal of
(Q ?X). A system that attempts to do goal-sharing would have to take these

problems into account.

6. Recognizing goals

All of the deductions we have done, have consisted of breaking down
goals into (hopefully) easier subgoals. Sometimes it uould be helpfui to
be able to reverse the process. In the preceding chapter we pointed out
that (AND (PERM ?X (3 1 2]1) (ORD ?X)) is a very poor uay to sort the list
{3 1 2]. But suppose these two goals came together by accident, perhaps by
being generated as subgoals of tuwo other goals, or by an application of
RGR. MWe would want the system to say, in effect, "Aha! This is a sorting
problem,” and transform this goal into (SORT ?X (3 1 2]). A HACKER critic

does much the same thing when it sees (AND (ON A B) (ON B C)), and
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recognizes it as a stacking problem.
7. Plausible inference

One common criticism of deductive systems is that they can do only
logically rigorous inferences. not the heuristic, plausible inferences of
common sense reasoning. As Collins <1975> says:

There are negative tricks, functional tricks, visual imagery tricks,

inductive tricks, and undoubtedly many more that people use to

circumvent the holes and uncertainties in their knowledge. These

all lie outside the deductive logic of which the advocates of

theorem-proving and the predicate calculus are so fond.

This criticism reailg misses the point, however. What is the difference
between the rigorous implication (A 5> B) and the plausible implication (A >
(PROBABLY B))? Very little, really. The only significant difference that
I can see, is that with the plausible inference if we run into a
contradiction we knou where to look for trouble. I[f no contradictions are
encountered the tuwo types of inferences behave essentially the same. So, a
plausible inference is simply one that we know how to debug.

Debugging inferences is by no means an easy problem. The only
significant work on the question seems to be that of McOermott <1974a>.
Collins has reported no such mechanism in his SCHOLAR system. So for all

his complaints about purely deductive logic, he might as well have used a

purely deductive system himsel f.
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8. Reasoning about knouledge and belief

Another criticism of traditional deductive systems, and one which is
justified, is Minsky's <13975> observation that they are monotonic. This
means that if A can be deduced, there is no further knowledge which can be
added that will make A not deducible. This is quite unlike human
reasoning. [f we decide that it is safe to cross the street, and it is
pointed out to us that a car is coming, We are perfectly capable of
retracting our previous inference. Having a mechanism for debugging
plausible inferences would help, but | believe thét an all out attack on
this problem requires pouwerful methods for reasoning about one’s ouWN
knowledge and beliefs. E.g., it is not adequate simply to always believe
that it is probably safe to cross the street. We have to examine our
knouledge to see if we believe anything that would be evidence against the
safety of crossing the street. MWe might express this formally as:

( (SAFE (CROSS | STREET)) <-

(NOT (DEDUCIBLE (PLAUSIBLE (NOT (SAFE (CROSS I STREET)))))))
PLAUSIBLE looks around for reasons why it might not be safe to cross the
street. DEDUCIBLE says whether any were found, so if none were found it is
safe to cross the street.

If the semantics of PLAUSIBLE are unclear, the semantics of DEDUCIBLE
are even less clear. ODEDUCIBLE cannot be simply a recursive call to the

deductive system. In one way or another, ue have hidden in there all the
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traditional philosophical problems of epistemic logic <Linsky 1971>. For
example, suppose we want to say something as simple as "] know everything
that is on the table." We could represent this as ((ON ?X TABLE) -»>
(DEDUCIBLE (ON ?X TABLE)). Suppose that the objects we knou are on the
table are A, B, and C. [f somecne asserts that some unidentified object
G7382 is on the table we will infer (OEDUCIBLE (ON G7382 TABLE)). If we
interpret DEDUCIBLE too literally, we Will produce a contradiction since
(ON G7382 TABLE) was not previously in the data base. What we want to
infer is (OR (G7382 « A) (G7302 « B) (G7382 = C)). This is just the

traditional problem of “quantifying in" in computational form.
3. Non-inferential invocation of know!edge

The final limitation of traditional deductive systems which we will
look at is the following: The only Way one goal or assertion can invoke
another is if there is an inferential connection between them. A goal A
invokes another goal or assertion B only if (B > A). An assertion A
invokes an assertion B only if (A > B). But there are other useful control
paths as well. In an active (as opposed to a passive) recognition system,
assertion of some key features would trigger the goal of recognizing a
particular object. In a system for reasoning about actions, a goal
involving a certain action could trigger antecedent deductions to deduce
the state of the world if that action were per formed. Then the goal would

be solved in a consequent-directed manner in the new state.
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Appendix A - Modelling Change

This section is an early discussion of an approach to reasoning about
change, given incomplete knouledge. [t is included as an appendix rather
than as part of the main body of the thesis because these ideas still
require much more development. There are no guarantees that these ideas
are completely compatible with the rest of the thesis, but | believe the
basic approach is sound.

As we mentioned before, one of the first problems that arises in
modelling change, when incomplete knowledge is introduced, is expressing
facts that involve more than one state of the world. ODevising a notation
is not hard. MWe will introduce an operator "S" which takes tuo
arguments, the name of a situation, and an assertion or goal. For example,
(S FOO (ON A B)) would mean that A is on B in situation FOO. We can then,
of course, build up expressions that mention more than one situation, e.g.,
((ON ?X ?Y) -> (S (MOVE ?Y ?2Z 24) (ON ?X 2W))). This could mean that if ?X
is on ?Y in the current'situation. then in the situation which results from
moving ?Y from ?Z to ?W, ?X will be at ?W.

We uwill implement situations as contexts, so asserting (S FOO BAR)
would assert BAR in situation context FOO, and the goal (S FOO BAR) wouid
be solved by proving BAR in context FOO.

So far ue have not said very much. We have introduced a notation
which is essentially a variant of McCarthy's situation calculus <McCarthy

1968>. UWe differ from McCarthy, however, in assuming that the system will
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have a notion of "current situation", and that expressions not in the scope
of a situation operator will be interpreted as applying to that situation.
The importance of this will be seen later.

The serious prcblem that we have is to make use of this notation so
that, given an incomplete description of a situation and a (possibliy
incomplete) description of the effects of an action, we can express what ue
know about the state which results from performing that action in that
situation. This is the frame problem.

Our approach to the frame problem is an extension of the PLANNER
approach. MWe start from the observation that when an action occurs, it is
normally easier just to specify the changes, than it is to give a complete
description of the new situation. So at the simplest level, to record the
results of an action, we make a copy of the current situation context,
delete the assertions that can no longer be relied upon, and add the
assertions that we know the action makes true. The copy of the current
situation context could either be a distinct data structure, or it could be
a virtual copy, as is produced by the CONNIVER context mechanism. This is
where the difference between our notation and McCarthy's is significant.
I[f every statement had to have a situation operator, we would have to say
something like (S S8 FOO) to express that FOO is currently true. But then
We would have to have a different statement to express that FOO was true in
the succeeding situation. This blocks one situation context from
inheriting assertions from its predecessor.

The problem comes down to specifying the additions and deletions.
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Additions are relatively straight-forward. A name is created for the new
situation, and additions are made to that context. Conditional additions
are made as follows: if A is to be added to the new situation Sl on
condition B, then (B -> (S S1 A)) is added to the old context. This
differs from the usual PLANNER method where the condition is evaluated at
the time the new situation context is created. Since we are dealing wuith
incomplete knowledge, we need to leave this fact as an implication. UWe
also need to let these implications comtine Wwith more complicated
expressions. For example, if we knew ((ON A B) <- (S S1 (FOU A B))) and wue
per formed (MOVE B PLACEL PLACE2), we would know ((LOC A PLACEl) <- (S S1
(FOO A B))) in the resulting situation.

Deleting assertions is more complicated. Conditional deletions will
be expressed by something Ilike (REMOVE FOO UNLESS BAR). The use of
"UNLESS" is significant because, in order to keep the data base sound, an
assertion must be deleted, or at least modified, whenever there is any
doubt about its remaining true. To be more specific:

It (REMOVE (P ?X) UNLESS (Q ?X)) is activated in situation

S1, where (P A) is asserted, (P A) will be retained in the

new situation context if (Q A) can be shown, (P A) uill be

deleted if (NOT (Q A)) can be shoun, and (P A) will be

replaced by ((P A) <- (S S1 (Q A))) otheruise.

As an example, take the MOVE operation we have been considering. The other

side of the addition rule we looked at is the following deletion rule:

For (MOVE ?X ?Y ?Z), (REMOVE (LOC ?W ?Y) UNLESS (NOT (ON ?W ?X)))
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This says that if we move ?X from 2Y to ?Z, then for anything else at ?v,
we have to remove that fact, unless we can show that it is not on ?X. So if
we know (LOC A PLACEL) and (LOC B PLACEl), and we (MOVE A PLACEl PLACE2) in
situation Sl, we woul!d end up with:

({LOC B PLACE1) <- (S S1 (NOT (ON B A)}))

((LOC B PLACE2) <- (S S1 (ON B A)))

In deleting facts other than simple assertions, there are two sources
of complexity - first, quantification and identity, and second, logical
connectives. Problems of quantification and identity arise when the
pattern being deleted might match, but is not identical to the pattern of
the assertion. The troublesome cases are when the removal pattern has a
constant where the assertion has a variable; and when the removal pattern
and the assertion have non-identical constants which might be equal. For
the first case, suppose we know that everything is in the box. [f we move
A, ue want to remove the fact that A is in the box. So we might have to
match (REMOVE (LOC A BOX)) against (LOC ?X BOX). MWe cannot simply delete
(LOC ?X BOX), since we still know that everything except A is in the box.
So we have the following rule:

If the removal pattern is of the form (é Al...An) and

the assertion is of the form (P ?X1...?Xn), then the

assertion is replaced by ((P ?X1...2Xn) <- (OR

(NOT (?X1 = Al))...(NOT (?Xn = An)))).

In the example, this would leave us with ((LOC ?X BOX) <- (NOT (?X = A))).

The second case is similar. |f we know (LOC A BOX) and we want to
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remove (LOC Gl BOX) where Gl is an unidentified constant, then unless we
know that Gl is not the same as A, we can no longer rely on (LOC A BOX).
Instead we have to replace it by ((LOC A BOX) <- (NOT (Gl = A))). So the
rule in its most general form would be:

If the removal pattern is of the form (P Al...An) and

the assertion is of the form (P Bl...Bn), where for all i,

1 i sn, (1) Ai and Bi are both constants and at

least one of them is unidentified, or (2) Ai is a constant

and Bi is a variable, the assertion is replaced by

((P Bl...Bn) <- (OR (NOT (Bl = Al))...(NOT (Bn = An))))

The other source of complexity is logical connectives. If an action
has the effect of removing A, how does it affect (A <- B), (A -» B), or (OR
A B)? (It should be obvious that (AND A B) is not a problem.) The first
observation is that removing A may have no effect on these other statements
at all. If we inferred A from B and (B -> A), we do not knou a priori
whether to also remove B or (B -> A). It depends on whether the connection
betueen A and B is causal - B causes A - or accidental - we just happen to
know that in this situation A is true if B is true. If the connection is
causal, then when A is removed, B must be removed. I[f the connection is
accidental, then B is unaffected, but (B -> A) must be removed.

So, we will classify complex assertions as either causal or
accidental, replacing ->, <-, and OR with ->ps =>c» etc. For instance, the
fact that bachelors are unmarried might be expressed as ((BACHELOR ?X) ‘;C

(NOT (MARRIED ?X))), since if someone stops being unmarried, he stops being

a bachelor. But the fact that A is the only widget in the world would have
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to be expressed as ((WIOGET ?X) ->5 (?X = A)), since this assertion would
become false if we built another Widget. In fact, if we require that a
constant always refer to the same object, any assertion involving equality
Will be accidental, since no action can affect the fact that an object is
identical only to itself. For this reason, the equality and inequality
tests generated by pattern matching will always be accidentally related to
the expressions that produced them. E.g., if we have the assertion (LOC ?X
BOX) and we remove (LOC A BOX), we get ((LOC ?X BOX) <-p (NOT (?X = A))).

How, then, will we handle the removal of an accidental assertion? The
tuwo cases we have to consider are <-p and ORy (since ->) is reducible to <-
Al For <-, since (P <-p @) will be invoked only by a goal of P or an
assertion of (NOT P), (P <-p @) will be indexed only by P. This means that
if (NOT Q) is removed, the system will not notice that (P <-5 Q) should be
removed also. (Recall that removing (NOT Q) means that Q might have just
become true. Hence, it might now be the case that P is false and Q is
true.) For this reason, in accidental implications the right-hand side
must aluays be bound to the situation in which it Has asserted. So,
asserting (P <-, Q) in situation Sl will actually result in adding (P <-A
(S 81 @)) to the data base. In this form, the assertion remains true as
long as P is not removed. A similar argument would show that (P ->p Q)
should be asserted as (P ->5 (5 S1 Q). Equalities and inequalities are an
exception to this rule, however. Since no action can affect their truth
value, they do not need to be bound to a situation. So ((LOC ?X BOX) <=A

(NOT (?X = A))) can stay in that form.
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We can handle (ORy P Q) similarly. Since OR creates multi-pattern
consequent theorems, we will just treat them as such. (ORy P Q) would be
replaced by (P <=5 (S S1 (NOT @))), and (Q <=p (S S1 (NOT P))), where <= is
like <-, except it is used only in a goal-directed way.

To illustrate these rules ue use the following example: Suppose we
know that A is either at PLACEL or at PLACEZ. If we move everything at
PLACEl to PLACE2, how do we show that A is at PLACE2? First we define the
action MOVE-ALL. (MOVE-ALL ?X ?Y) adds (NOT (LCC ?Z ?X)), and adds (LOC ?Z
?Y) if we have (LOC ?Z ?X). That is, nothing is now at ?X, and anything
that was at ?X is now at ?Y. It removes any assertion that anything is at
?X, (LOC ?Z ?X), and assertions that ?Z is not at ?Y, unless ?Z was not at
?X, ((NOT (LOC ?Z ?Y)) UNLESS (NOT (LOC ?Z ?2X))).

Now suppose we perform (MOVE-ALL PLACEl PLACE2) in situation Sl where
((LOC A PLACE2) <=A (S S1 (NOT (LOC A PLACEl1)))) is asserted, producing

situation S2. Sl and S2 then contain the following assertions:

Sl: ((LOC A PLACE2) <-p (S S1 (NOT (LOC A PLACEL))))
({LOC A PLACEL) ->, (S S2 (LOC A PLACE2)))

S2: ((LOC A PLACE2) <-p (8 S1 (NOT (LOC A PLACEL))))
((LOC A PLACEl) ->5 (882 (LOC A PLACE2))))
(NOT (LOC ?Z PLACE1))

We can prove (LOC A PLACE2) in S2 if we can prove (NOT (LOC A PLACEl)) in
Sl. Since the second assertion in Sl is equivalent to ((NOT (LOC A PLACEl))

<-p (5 S2 (NOT (LOC A PLACE2)})), we can generate the subgoal (NOT (LOC A

PLACE2)) in S2. But this is the negation of our original goal, so, by the
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Appendix B - Inheritance of Properties

In his current thesis progress report <Fanhiman 1975>, Scott Fahliman
focuses on one of the central questions in the representation of knowledge:
How is it that uhen a person learns that an individual A is a member of a
class C, all the properties of C's seem to be attached to A without effort?
Fahiman's exampie is that when we learn that Clyde is an elephant, we can
easily ansuwer whether Clyde is gray, Wrinkled, or fond of peanuts.

To see that this is a problem, consider how we might try to handle it
in PLANNER. Specifically, suppose we have an assertion (ELEPHANT CLYDE)
and a goal (COLOR CLYDE GRAY). PLANNER gives us twc uays to express the
fact that all elephants are gray. One way is to have an antecedent theorem
Wwhich, whenever something is asserted to be an elephant, asserts that it is
gray. We would presumably have to have similar theorems, however, for all
other properties of elephants (urinkles, liking peanuts, etc.). Worse yet,
we have the problem of inheriting all the properties of superclasses of
elephants (mammals, animals, physical objects, etc.). This suggests that
asserting that Clyde is an elephant would cause hundreds or even thousands
of additional facts to be asserted.

The other alternative is to have a consequent theorem which attempts
to prove something is gray by proving that it is an elephant. But again we
Wwould have theorems saying sperm whales, battleships, etc. are gray. HWe
Wwould have to search through all the types of gray things until we stumbled

upon elephants.
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Fahiman's proposed solution to this problem is to represent these
facts as a network stored in special purpose harduare. The hardware would
allouw markers to be propagated in paraliel along superset links from the
CLYDE node, while monitoring the GRAY node to see if a marker reaches jt.
Fahiman's system also facilitates finding the intersection of any group of
sets, by propagating markers along subset links from the set nodes, and
collecting the nodes which recejve markers from all of the starting nodes.

We have a counter proposal to Fahiman's which, though less powerful
(it cannot do arbitrary set intersections), still seems to solve the
original problem, and is readily implemeqted on conventional hardware. In
fact, our proposal only requires modifying a PLANNER-type pattern matcher.

The main idea is to use class markers on both constants and variables.
The class markers on variables are somewhat like Micro-Planner's variable
restrictions, but are more powerful., Then we will represent the fact that
all elephants are gray by (COLOR ?x/ELEPHANT GRAY). This Way we can make
the pattern matcher do all the Wwork, and fine tune the indexer to make it
efficient.

The class markers will be chosen from a classification hierarchy. The
idea of such a hierarchy is is familiar in psychology <Collins and Quillian
1863> and is receiving increasing attention in Al <Martin 1974>. Fahliman
uses this idea as well, calling it the [S-A hierarchy.

An important point about the hierarchies we will want to use is that,
While they may be very bushy, they are never very deep. Probably the most

elaborate hierarchy in the real world is the taxonomy of animals. This
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hierarchy contains levels for species, genus, family, order. class, and
phylum. Here and there, there are things |ike sub-species, sub-class, and
sub-phylum. Above the phylum level, we might have markers such as ANIMAL,
LIVING-THING, NATURAL-OBJECT, PHYSICAL-0BUECT, PHYSICAL-ENTITY, and finally
just ENTITY. A classification hierarchy containing all these levels would
still have a depth of only fourteen or fifteen. And surely common sense
hierarchies are much shallower. COD IS-A FISH IS-A ANIMAL... is probably
typical.

The pattern matcher we need is basically a PLANNER-type matcher with
an additional type checker. A class marker will consist of a list of all
the superclasses of the item to which the marker is attatched. So
asserting (CLASS CLYDE ELEPHANT) will result in attatching to the constant
CLYDE a list like (PHYSOB ALIVE ANIMAL MAMMAL ELEPHANT). Variables will
have similar lists. The type checking will be done by comparing marker
lists. Since the lists should be short, this will be easy to do. Two
marker lists will match only if one list is an extension of the other. We
Will consider the cases that arise, assuming this condition has been met.
We will use "variable" to mean unassigned variables; assigned variables
act like constants.

1. Variable vs. variable - The variables are bound to each other as in

PLANNER, and they both get the more restrictive marker |ist.

2. Constant vs. constant - As in PLANNER, the match succeeds only if the
constants are identical.

3. Constant vs. variable
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a. [f the constant is more restricted than the variable, then the
variable gets assigned the constant and takes on its additional
restrictions.

b. 1f the variable is more restricted than the constant, the
variable gets assigned the constant, but we generate an extra
subgoal of showing that the constant meets the additional
restrictions on the variable.

For some examples, consider the following: If we know (COLOR
?x/ELEPHANT GRAY) and we want to show (COLOR CLYDE/ELEPHANT GRAY) we can do
this by straight-foruward matching. (We are using ELEPHANT as shorthand for
the list of markers mentioned above.) 1f we know (OCCUPY-SPACE ?x/PHYS0B)
and we want to show (OCCUPY-SPACE CLYDE/ELEPHANT), we again succeed because
comparing marker lists shows that ELEPHANT is a subclass of PHYSOB.
Finally, suppose we know that Clyde is an animal, but not what kind. 1f we
want to show (COLOR CLYDE/ANIMAL GRAY), we would match (COLOR ?x/SPERM-
WHALE GRAY) and (COLOR ?x/ELEPHANT GRAY), generating subgoals (CLASS
CLYDE/ANIMAL SPERM-WHALE) and (CLASS CLYDE/ANIMAL ELEPHANT). We would not
match (COLOR ?x/BATTLESHIP GRAY), however, since BATTLESHIP is incompatible
with ANIMAL. UWe would only match things that are compatible with what we
already know about Clgde.

This idea can be extended to classification schemes which are not
strict hierarchies. If we classify individuals along different dimensions,
a class might have a tree or a partial order of superclass nodes. We could
still do the same type of matching procedure, except we would be comparing

these more complicated data structures rather than simple lists. This

should work as long as the number of nodes above any given node remains
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small.

So far, it is not clear that we have gotten rid of our combinator a3l
problems, only that we have pushed them into the pattern matcher. But at
this level, we can pretty much get rid of them by the simple expedient of

indexing items by class markers, as well as by constants. There are

probably many good ways of doing this, but we will sketch one simple
scheme.
Suppose we add assertions to a bucket until it gets too large to

search efficiently; then we subdivide it into smaller buckets. The trick
is that whenever we subdivide a bucket, we do it in two ways, both by the
next level of class specification of the current element of the item, and
by the first level of class specification of the next element of the item.
The following example should make things clear. Suppose we have a bucket
With tuwo items, (A/(BC) D/(E)) and (F/(BG) H/(I)). We would call this the
1-B bucket, because it is the one which results from sorting the first
element by the classifier B. |f we wanted to subdivide this bucket, ue
would do it by the next class level of the current element, producing the
1-BC and 1-BG buckets, and by the first class level of the next element,
producing the 1-B,2-E and 1-B,2-1 buckets.

There are two points of detail worth mentioning. First, if there were
an item uwhose first element had only a B class marker, we would have also
created a 1-B bucket which could not be broken down further by subclass.
Second, when the class markers are exhausted, we can subdivide by constants

as in PLANNER.
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