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Abstract

This thesis investigates what knowledge is necessary to solve mechanics
problems. A program NEWTON is described which understands and solves
problems in a mechanics mini-world of objects moving on surfaces.

Facts and equations such as those given in a mechanics text need to be
represented. However, this is far from sufficient to solve problems. Human
problem solvers rely on "common sense" and "qualitative" knowledge which the
physics text tacitly aésumes to be present. A mechanics problem solver must
gmbody such knowledge. Quantitative knowledge given by equations and more
qualitative common sense knowledge are the major research points exposited in
this thesis.

The major issue in solving problems is planning. Planning involves
tentatively outlining a possible path to the solution without actually
solving the problem. Such a plan needs to be constructed and debugged in the
process of solving the problem. Envisionment, or qualitative simulation of

the event, plays a central role in this planning process.
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1.0 INTRODUCTION
Ll Introduction

This thesis is an investigation into problem solving in mechanics. A program NEWTON
will be described which solves problems in the mechanics mini-world of "roller coasters™ (the
kinematics of ob jects moving on surfaces). We exclude from this investigation the issues of
linguistically comprehending the natural language statement of the problem, analyzing the visual
scene or manipulating the mathematical expressions. Instead we are interested in what reasoning
takes place in what happens after the problem has been "understood” until a solvable set of
mathematical equations has been produced. The mathematical expertise is based on routines culled
from MACSYMA <Mathlab et.al, 74> and the visual and linguistic difficulties are evaded by a
simple problem description language which describes the scene and presents the question.

One problem in the roller coaster mini-world is the well known loop-the-loop problem:

Om

An ob ject of mass m starts from rest and slides along a loop-the-loop of radius R as shown in the
figure. 'What should the initial height z be so that the ob ject successf ully completes the loop-the-
loop?

NEWTON would be presented this problem as:

(DEF INE-PROBLEM LOOP-THE-LOOP
(SCENE (C1 CORNER x S1 -1)
(S1 SEGMENT C@8 C1 INCLINE PLUS 1)
(C CIRCLE @ (C2 CORNER S1 ?S @)
8 (X CORNER ?S x -1)
POSITIVE NIL 1 4 R))
(PLACE C1 ON ABOVE 2)
(ASSIGN (HEIGHT S1) x)
(QUERY (REACH X)))

The resulting solution NEWTON gives is:



gloﬁalconstraints:
SR
(HEIGHT-S1 - ---) > 8
: 2

One immediate place to look for information about the kind of knowledge involved in simple
mechanics is the introductory text. At least at first glance these texts appear to outline the kinds of
knowledge required to a sufficient degree to be formalized very easily. The difficulty appears when
we observe how a student comes to acquire a competence at mechanics from studying this text. The
student arrives with a vast amount of common sense knowledge about mechanics and problem
solving and his competence comes from assimilating the new information into an aliready existing
framework. Close examination of the physics text reveals an implicit assumption on the authors
part that this framework be present. This pre-physics knowledge forms the basis and the vast bulk
of the student’s general physics knowledge.. Newly acquired pieces of knowledge can only be
understood against this background. |

Classical mechanics has a well worked out mathematical formalism, however, people also have
a great deal of intuition about mechanics and use that intuition to solve problems. Interaction
between this quantitative or more mathematical knowledge and more qualitative intuitive reasoning
plays a fundamental role in problem solving. NEWTON embodies both these kinds of knowledge.
For example, qualitative knowledge is used to guide more formal mathematical manipulation and
mathematical peculiarities which arise in the formal solving process are reinterpreted in qualitative
terms. |

In NEWTON this notion of qualitative vs. quantitative is further refined. Four basic
aspects of mechanics problem solving are identified: question answering, envisioning, planning and
quantitative reasoning. Question answering involves identifying the kind of question asked and
generating a high level meta-strategy to deal with that question type. Envisioning involves
intuitively visualizing the event in order to produce a qualitative description of the event. Planning

takes the high level meta-strategy provided by the question answering and the qualitative



description provided by the envisioning to produce an explicit plan for the quantitative reasoning
to follow. Quantitative reasoning employs the mathematical expertise to solve the relevant equations
and these resulting equations are interpreted by the planning and question answering knowledge to
decide how to proceed.

Most of the interaction is at the level of one kind of knowledge identifying what parts of the
problem it cannot deal with and relegating this unsolved subproblem to another kind of knowledge.
It can happen, and often does happen, that no new subproblems are discovered and the problem
can be solved completely. For example, the question asking whether an object which is supported

will fall can be answered without resorting to quantitative reasoning.

1.2 Relationship to Classical Science

One obvious place to look for both a description about the content of science and the
representation of its knowledge is science itself. Such descriptions, unfortunately, lack good
computational models. The development of such computational models is the one of the
fundamental purposes of this thesis and is one of artificial intelligence’s ma jor contributions to
science and education.

Most sciences are described in some mathematical formalism and any information which
cannot be described in the formalism is usually poorly or never stated and left up to “intuition.”
This distinction between the mathematical knowledge and the intuition seems to be important and
this research will articulate the distinction more clearly. We have termed this intuitive knowledge
the qualitative, and knowledge involving recourse to mathematics and equations the quantitative.
Not surprisingly then science suggests formalisms for the quantitative knowledge (i.e. mathematics),
but nothing for the qualitative knowledge. This apparent dichotomy between quahtitative and
qualitative knowledge was the initial insight into this research.

We can still use this dichotomy to get valid insights into the structure of mechanics
kn;)wledge. This dichotomy will be examined in the acquisition of mechanics knowledge by

students and the development of mechanics in history. In people there is a great resistance to using




quantitative knowledge. The solution is alway; attempted qualitatively and only if that breaks down
is mathematics used. As is so often the case, the historical development of mechanics is very similar
to its development in people. Mechanics was more or less understood qualitatively as far as
recorded history; however, the quantitative understanding of mechanics did not really get
developed or used extensively until the middle ages. Galileo and later Newton were the ma jor
figures in the completion of its development. Ernst Mach discusses this in T he Sctence of Mechantcs
<Mach, 60>. The development of mechanics is described as passing through the three periods of
observation, deduction and formalization. The last period in which all the quantitative knowledge
of mechanics now lies is characterized as: "Here it is sought to put in a clear compendious form, or
system the facts to be reproduced, so that each can be reached and pictured with the least
intellectual effort.” From a practical, educational, and historical viewpoint the quantitative
knowledge comes last and is used as a last resort. It is, however, the natural outgrowth of the
qualitative knowledge.

Unfortunately, that is all that science really has to say about mechanics knowledge. Even
more unfortunate, what science call "formalization” is equivalent to being expressible in
mathematical equations. This mathematical formulation is at great variaﬁce from what Mach

claims for it: ".. so that each [fact] can be pictured with the least intellectual effort.” The search

will have to look elsewhere than science to discover what is contained in qualitative knowledge.

1.3 Relationship to Previous Research

Much of current artificial intelligence research into the representation of knowledge is
relevant to this thesis. The current interest in the “chunking of knowledge” influences this research
<Minsky, 74>. Only a few researchers have, however, attempted to represent physical events and
solve equations about them in the sense this thesis does.

One such investigation was Bobrow's work with STUDENT <Bobrow, 68>. This was a
program which could solve algebra word problems. Its Deductive Model solves the problems once

they have been transformed from one's original English formulations. The major effort in this



work was in the transformation, not in the Deductive Model which was in essence very simple.

A later work by Charniak was CARPS <Charniak, 68> which could solve calculus rate

problems expressed in English. Charniak used a more sophisticated description for events than
Bobrow, but the major emphasis was still in the understanding of natural language. Charniak
does, however, recognize the necessity for common sense knowledge. As an example he discusses a
problem which on the surface appears solvable by CARPS, but which in fact is not:
"A barge whose deck is 10 ft below the level of a dock is being drawn in by means of a cable
attached to the deck and passing through a ring on the dock. When the barge is 24 ft from and
approaching the dock at 3/4 ft / sec, how fast is the cable being pulled in?"
Which has the obvious sketch:

3/4 FT/SEC 10FT

—

MW
\————’-‘/

24 FT

CARPS assumes that "approaching the dock” means in direction of the pulling cable. It does
not contain enough knowledge to be able to determine what "approaching the dock”™ means.
CARPS neither knows that cables flex or that gravity constrains the barge to move along the
surface of the water.

This problem points out the basic distinction between CARPS and NEWTON. CARPS uses
general natural language strategies to set up equations using little or no real world knowledge.
NEWTON, on the other hand, employs the strategy outlined in the preﬁous section of first
attempting to solve the problem using real world knowledge alone and only if that fails using that
failure to guide further quantitative analysis. As a consequence of using real world knowledge

extensively NEWTON can only solve problems from a very much smaller world than CARPS.



Within those areas that NEWTON knows something about it will be able to solve much harder
problems and display far more common sense.

More recently, Charniak pursued an investigation into representing elementary electrostatics
knowledge %Charniak, 71> (chapter one of <Purcell, 65>). Although the interest was again to
develop "a firm semantic basis for a natural language understanding program”, this work went
further than the previous investigations in that he introduced a great deal more structure to the
understanding. Many of the observations he made in his paper barallel ideas presented here,
particularly the idea of a model. His arguments failed to be convincing since his domain and
knowledge structure were so limited that there was rarely any choice in what to do next. He also

failed to recognize the importance and necessity of qualitative knowledge.



20 A SURVEY OF MECHANICS KNOWLEDGE
2.1 Protocol Scenarios

This chapter is a survey of some of the basic kinds of knowledge used in solving mechanics
problems. This will be done by a sequence of three worked out problems. Each problem is chosen
to demonstrate a particular kind of knowledge. The purpose of these scenarios is to lay a
framework for the fundamental ideas. With such a framework the later chapters which explain in
much greater detail the kinds of knowledge represented and how NEWTON actually represents
them can be read almost independently of each other. Chapters 3, 4, 5 and 6 present the relevant
details. Chapter 7 summarizes the results.

The style of each scenario will be a statement of the mechanics problem which, except in the
first case, is a standard college freshman physics problem, a possible protocol of how a student
might solve the problem and then an analysis of that protocol to study the kinds of knowledge
involved. Although some details of how NEWTON solves the problems are given, the later

chapters will explain NEWTON's reasoning in far more detail.

The protocols given are hypothetical and no student would probably give such protocols..

There is much more detail than the typical student might give; however, the basic structure seems
correct. The difficulty is that an actual student will always direct his protocol at the level of
expertise he expects from the protocol taker or himself and for the purposes of this discussion we
are interested in all levels.

There is of course the question about what protocols, even hypothetical ones, are good for. It
is clear that in people much more goes on in the problem solving process than is actually captured
in the protocol and the protocol may in fact only be a sequence of after the fact rationalizations.

First, this research is not interested in modeling human behavior to the extent of duplicating
the same difficulties the student gets into, that is, not interested in modeling bugs. Second, the
protocols are reasonable in the sense they are able to communicate the ability to solve the problem.
Last, the reasoning is logically correct and could be formally carried out. Whether or not the

protocols are rationalizations they do express, at least at a general level, knowledge that must be



present to be able to generate the protocol (or rationalization) and furthermore, it would be a step

forward in expert problem solving if NEWTON could solve these problems in the way these
protocols outline. |

The description for NEWTON outlined in the subsequent chapters will show how the
following scenarios can be handled. Currently, however, the implementation of NEWTON in
MACLISP at the MIT AI Lab can only handle the first two problems as the knowledge about

inferencing and functional dependencies is not complete enough to handle comparison problems.

2.2 A Sliding Problem

' C4(x)
o )
C3 /T
h, I St S2 thz

C2

]

A small block slides from rest along the indicated frictionless surface. Will the block reach the
point marked X?

As is the case with most physics problems, this problem has many possible solution hethods.
The one presented here is not necessarily the best one. It has been chosen to illustrate the
knowledge about envisioning and equations. Although NEWTON can solve the problem in the
method described in the protocol, it would choose another "better” solution. These other solutions
for this problem will be discussed at the end of this section.

"The block will start to slide down the curved surface without falling off or changing
direction. After reaching the bottom it starts going up. It still will not fall off, but it may start
sliding back. If the block ever reaches the straight section it still will not fall off there, but it may

change the direction of its movement. To determine exactly whether the block reaches X we must



study the velocity of the block as it moves along the surface. The velocity at the bottom can be
computed by using conservation of energy:
v, -(Zglnl)'/"
Similarly using this velocity and conservation of energy we can set up an equation which can be
soived for the velocity (v,) at the start of the straight section:
l2mol2=112mo?-mgh,
If the solution for v, is imaginary, we know: that the straight segment is never reached. At the
straight section we could use kinematics to find out whether the block ever reaches X. The
accelération of the block along the surface must be:
a=gsinT

The length of the straight segment is L / cos T, so using the well known kinematic equation relating
acceleration, distance and velocities:

| vaz-vzz-ZLgtanT
Again if v, is imaginary, X is not reachable.”

In this protocol we see the interplay of qualitative and quantitative knowledge. The possible
path to reach X is described, obstructions in this path are recognized, equations are set up when the
solution to the obstructions cannot be‘determined and then the solution to the equations are
interpreted with respect to the qualitative ambiguity.

The first part of the protocol which involved identifying a possible path to reach X is
envistoning. To envision is meant to intuitively imagine the event taking place. More formally,
envisioning means generating a progression of scenes (which are encoded in some description)
which describe what might or could happen. Features of this progression of scenes are used to
obtain initial insights into the problem.

Envisioning describes (and so limits) the problem space formed when we 'ignore’ the values
of the variables (i.e. let the variables have arbitrary values). The problem had variables hy, hy T
and L which were required for the solution but the protocol (before the decision to calculate

velocities) held true for a wide range of values for these variables. The reasoriing depended on A,
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>0, "z >0,L >0, 0 < T <90 and the facts that all the curves were concave from the perspective of
the ob ject and that the curves were differentiable everywhere. All this information could be
assumed from the diagram. Everything that was predicted by the envisioning was achievable for
some values' of the variables and every possible assignment of values to variables was described.
Here we see what envisioning consists of: it considers only qualities (such as the sign of the slope of
the surface) and then qualitatively describes all and only those possibilities which could possibly
occur with those qualities being true.

The envisionment NEWTON would generate for this problem is:

C1

|
(TRANSFORM S1)
S1

|
(SLIDE D)
C2

' |
(TRANSFORM S2)

S2
I |
(SLIDE D REVERSE) (SLIOE U)
S2 C3
I |
(SLIDE D) (TRANSFORM S3)
C2 S3 -
I | |
(TRANSFORM S1) (SLIDE D OSC S2 REVERSE) (SLICE U)
S1 Cé4
| I |
(SLIDE D 0SC S2 REVERSE) (SLIDE U) (FALL)
C1
|
(FALL)

The top of the tree indicates the initial point from which the object starts sliding. At each
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subsequent node in the tree there is a descriptor (enclosed in parentheses) followed by the name of a

corner or surface. The details of the descriptors will be explained in chapter 4. Each fork in the

tree indicates that a number of possibilities occur there. The initial part of the tree can be read as:

the ob ject starts at corner Cl, slides through segment Sl, reaches corner C2, slides through segment
S2, either slides back on segment S2 or reaches corner C3, and so forth.

The previous paragraphs describe what envisioning is; we will now examine the role it plays
in problem solving. In the protocol we see that the initial approach to the problem is that of
envisioning. One would expect that if the question was simpler it could be answered by envisioning
alone. Questions such as "Will it reach the bottom?" are answerable from the envisionment.
Envisioning fails to answer the problem when it predicts a number of possibilities. When the block
was sliciing up the hill, it could not be determined when or if it would start sliding back. It is in
identifying these multiple possibility points that envisioner sets up specific problems. Even when
further reasoning is required to resolve such a qualitative ambiguity, envisioning identifies those
possibilities it must distinguish between. Although there was the problem of determining whether
the block would slide back or not on the curve, the possibﬂity of the block falling off had been
eliminated by envisioning. In summary, envisioning gives local and very specific problems for
further analysis and on a global scale envisioning provides an organization and plan to solve the
entire problem. The trace of the possibilities through time provides the bases for such a plan.

In the protocol the solution method was to solve for each fork in the tree sequentially. This
is one possible strategy. In NEWTON the question answering procedures could have realized that
a positive solution to the second qualitative ambiguity would have also meant a positive solution for
the first qualitative ambiguity.

In order to disambiguate between the possibilities occuring at each fork quantitative
knowledge is used. Quantitative knowledge is represented in RALCMs (Restricted Access Local
Consequent Methods). Each RALCM contains knowledge about a particular kind of situation. For

example, one possible RALCM might be that collection of the trigonometric relationships which

hold within a triangle.
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On the following page a few of the possible RALCMs used to solve the current problem are
given and then a scenario is outlined describing how these RALCMs can be used to solve the
problem. In order to understand that scenario a brief oversimplified description of RALCMs will
be given here. Chapter 5 will present everything in much more detail.

It is important to note that RALCMs are not procedures in the usual sense, instead they
describe dependencies and assignments between variables. These dependencies are then examined
by a general procedure IRALCM for the desired variable. RALCMs can complain back to the
RALCM(s) that invoked them when they have a dependency which references the desired variable,
but which also requires some other unknown variable. The first list of variables (designated by ’?’s)
of the RALCM body is its primary variables which must all be given when the RALCM s
invoked. The primary variables describe the ob jects about which the RALCM is computing. The
next list is the secondary variable a-list. Egch of its elements describes a secondary variable. The
first element of the pair is the atom which is used in the later equations. The second element of the
pair is the global binding. This global binding must be expanded by substituting in for the
primary variables.

The MASS-MOVEMENT RALCM knows about movements of ob jects on surfaces but is

not concerned about the possibility that the ob jects may fall off the surfaces.

(DEFINE-RALCM MASS-MOVEMENT (?0BJECT ?SURFACE ?T1 ?T2)
((A (ACCELERATION ?0BJECT)))

(FCOND ((FEQ (TYPE ?SURFACE) ’STRAIGHT)
$if the surface is flat, try simple kinematics
(FPROG ((THETA (ANGLE1 ?SURFACE)))
(RALCM RTRI (?SURFACE))
(RALCM KIN (?0BJECT ?SURFACE ?T1 ?T2))
(VSETQ A (x $%XG (SIN THETA))) )))
(RALCM ENERGY (?0BJECT ?SURFACE ?T1 ?72)))
- senergy Will work for arbitrary shapes
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(DEFINE-RALCM ENERGY (?0BJECT ?SURFACE ?T1 ?T2)
((VI (VELOCITY ?0BJECT ?T1))
(YF (VELOCITY ?0BJECT ?T2))
(H (HEIGHT ?SURFACE)))

(EQUATION (= (+ (xx VF 2) (- (xx VI VI)) (x -2 $%G H)))))
;vfz-viz-Zgh

(DEFINE-RALCM RTRI (?TRIANGLE)
((H (HEIGHT ?TRIANGLE))
(L (BASE ?TRIANGLE))
(HYP (DISTANCE ?TRIANGLE))
(T1 (ANGLE1 ?TRIANGLE))
(T2 (ANGLE2 ?TRIANGLE)))

(EQUATION (= HYP (SQRT (+ (xx H 2) (xx L 2)))))

(EQUATION (= (SIN T1) (// H HYP)))
(EQUATION (= (SIN T2) (// L HYP))) )

(DEFINE-RALCM KIN (?0BJECT ?SURFACE ?T1 ?T2)
((VF (VELOCITY ?0BJECT ?72))
(VI (VELOCITY ?0BJECT ?T1))
(D (DISTANCE ?SURFACE))
(T (TIME ?T1 ?72))
(A (ACCELERATION ?0BJECT)))

(EQUATION (= VF (+ VI (x A T)})))

svf = vi + at

(EQUATION (= (xx VF 2) (+ (xx VI 2) (x 2 A D))))
svfl = viZ 4+ 2 a3 d

(EQUATION (=D (+ (x VI T) (x .SA T 1))
3d = vi t + .5 a t?

In order to get a better understanding of how RALCMs interact in the problem solving
process we will artificially make A, by T and L unknown and only provide their values when
necessary. Later we will see what procedures must exist between the envisioning and the
quantitative knowledge of RALCMs. For the moment let us call the knowledge not directly
involved with RALCMs qualitative knowledge. In this scenario the RALCMs will fail back to the
qualitative knowledge.

Envisioning determines that there is never a possibility that the object will fly off. Also it
isolates the problem into the two necessary subproblems: first it must be determined whether the

ob ject reaches S3 and then whether it slides back on S3.

First the velocity at the end of SI must be found. To do this MASS-MOVEMENT must be
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invoked:
(MASS-MOVEMENT (Bl S1 TIMEL1 TIME2) )
Before MASS-MOVEMENT can be invoked variables must be assigned values and meanings:
(VELDC’I TY‘ Bl TIME1) - known '
(VELOCITY Bl TIME2) - unknown
'Unknown’ indicates that this is the value MASS-MOVEMENT is required to find. When MASS-
MOVEMENT is invoked IRALCM attempts to find a value for this variable. By searching
through the RALCM it is found that there are two places in MASS-MOVEMENT in which a
possible assignment to VF take place. IRALCM quickly discovers that the assignment in the
FCOND is impossible to reach as (FEQ (TYPE ?SURFACE) °*STRAIGHT) is unsatisfiable. The
only alternative is the ENERGY RALCM. When ENERGY is invoked it complains back that it
was given insufficient information, namely it was not provided with the HEIGHT. Every possible
attempt to achieve a value for VF has now failed, the alternative is to examine the reasons for
these failures and attempt to eliminate them. The complaint blocking the only path to VF is that
HEIGHT is unknown. There are no accessible references to HEIGHT in the RALCM so it fails
back to the qualitative knowledge complaining that it was not provided with height of the surface.
The qualitative knowledge must now find the height or find the problem impossible to solve.
HEIGHT is given. IRALCM can now complete its examination of ENERGY and return a value
for the unknown VF which MASS-MOVEMENT subsequently returns to its caller. This value is
remembered and the segment S2 is examined in much the same way using the VF on Sl as VI on
§2:
(MASS-MOVEMENT (B1 S1 TIME2 TIME3))

Note that ENERGY returns an “impossible” result if the equations result in .an imaginary solution,
thus indicating that the ob ject cannot traverse S2.

On S3 IRALCM has two possible paths to a solution. If ENERGY is tried it fails because
HEIGHT is unknown. Since (FEQ (TYPE ?SURFACE) 'STRAIGHT) is satisfied KIN can be tried

immediately for a solution. KIN complains back that it must know the value for either D or T
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before it can proceed. Again every path to VF is blocked and these complaints must be examined
to see if they can be satisfied. The two alternative complaints that block the path for finding VF
are (I) find HEIGHT and (2) find D or T. There are no other references to T in the RALCM so
T cannot be achieved in MASS-MOVEMENT. The two variables HEIGHT and D can be found
by the RALCM RTRI. RTRI is then invoked on segment S3. Of course there is not enough
information io solve for the variables so complaints are generated back up to the qualitative
knowledge. The qualitative knowledge sets values for TI (angle of surface) and L (base length of
surface) in the instantiation of RTRI on $3 and IRALCM proceeds. Now RTRI returns with
values for both D and HEIGHT. IRALCM has a choice whether to restart KIN or ENERGY to
solve the problem. Depending on whether this results in an “impossible” solution or a particular
value for VF the question of whether C# is reachable has been answered.

The solution outlined here is not necessarily the best one. There a number of other solutions
NEWTON would generate first. If the envisioner was told explicitly that X was higher than Cl it
would have elimihated the possibih'ty of sliding back on S3 or $2. Furthermore, if h, and A, were
given as numbers the qualitative comparison between the heights would have been generated. Or,

a global strategy could have immediately decided to just attempt to compute the height between X

and Cl.-

2.3 A Loop-the-Loop Problem
This problem is intended to further illustrate envisioning and also to elucidate the kind of

reasoning which must take place between the envisioning and the quantitative analysis.

oM
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A small block of mass m starts from rest and slides along a frictionless loop-the-loop as shown in the
figure. What should the minimal initial height z be so that the block successfully completes the
loop-the-loop?

"The 6b ject will slide down the incline into the loop, it may slide back on the way up, fall of f
before it reaches the top or it may fall off after the top. The crucial point is the top where the
gravitational force pulling down on the object must be less than the centripetal force due to its
circular motion if the block is not to fall off. For the object to just stay on the surface these forces
must be equal:

| mvilramg
In order to calculate v, conservation of energy could be used.
112mo2amg(z-27)
Solving for z:
z=5/21"

The envisionment for this problem is:

C1
|
(TRANSFORM S1)
51
|
(SLIDE D)
c2
|
(TRANSFORM S2)
§2
| I
(SLIDE D 0SC C1 REVERSE) (SLIDE W)
c3
|
(TRANSFORM S3)
S3
| l
(SLIDE U) (FALL)

Ca
|
(TRANSFORM S4)
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I |
(SLIDE D) (FALL)

CS
|
(TRANSFORM S5)
S5
|
(SLIDE D)
cé

The envisionment for this problem is much more difficult. For NEWTON to envision this
problem correctly it had to know that ob jects moving underneath can surfaces fall off but, that if
the surface was convex with respect to the ob ject it might stay on.

In this problem we see an example of a global reasoning strategy. Using the local strategy of
the previous chapter we would have had to solve three sequential problems: sliding back on S2,
falling off on S3 and falling off on S4. In fact the problem could be solved this way; however, the
global strategy realized that if the object did not fall off on S3 and reached C4, the other two
difficulties would automatically be resolved. This is a very powerful local vs. global principle:
find those local problems whose positive solution will automatically determine the desired solutions
for the other local problems. Often the desired local point to select is the last one, but that is not
always the case. For example, there might be no global procedure to handle the problem; all global
strategies presuppose something about the local situations they span, the usual energy law applying
in this loop-the-loop problem would be inapplicable if there were friction on S2.

There are many different kinds of question types. These will be described in much more
detail in chapter 4. One fundamental distinction lies between boundary conditions and fiﬁal result.
In the sliding problem the boundary conditions were specified and the question was about the
result. In this loop-the-loop problem the result is specified and the boundary conditions which lead
to that result need to be determined.

This loop-the-loop problem illustrates the distinction between variables, parameters and
values. An actual solution will require a numerical value and if the equation for the result contains

an unknown variable it is not in general an acceptable solution. In some circumstances the problem
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can explicitly give a variable for which the value is not necessarily known yet is allowed to appear
in the final solution. Such a variable is called a parameter of the problem. In the loop-the-loop
problem r was a parameter and the final solution for 4 is stated in terms of it. A parameter is then
a variable wﬁich can be treated as if it were known, yet have no numerical value. Usually, as in the
loop-the-loop problem, the parameters are explicitly given. Some problems require that the problem
solver choose the appropriate set of parameters. In any case NEWTON will try to find a solution
employing a minimum number of parameters. If the parameters were explicitly given it will try to

choose the minimum possible, if it has to choose its own parameters it will try to find a minimal set.

2.4 A Comparison Problem

A B

Two spheres of equal mass roll down an inclined plane without slipping. Both spheres are of equal
mass and radii, 5ut sphere A has a uniform density and sphere B is hollow. Which one will reach
the bottom first?

"Both spheres roll down the plane. If one of the spheres reached the bottom faster it would
have reached any point in between faster so all we have to do is compare velocities at any point.
The velocity at any point is directly proportional to kinetic energy of translation. The change in
potential energy is proportiona! to the height through which the sphere moved The only other
place this energy was used was in the kinetic energy of rotation. The kinetic energy of rotation
varies directly with the moment of inertia of the object and its angular velocity. Since there is no
slipping, the angular velocity is directly proportional the translational velocity. So the higher the
moment of inertia is the higher the energy of rotation is and the less energy is in the translational

motion. Hence, given that the mass and radii are fixed the sphere with the lower moment of inertia
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will reach the bottom faster. The answer to the problem is then sphere A"

This problem and its solution are radically different than the previous two problems. First,
envisioning played only a minor role and second, apparently no quantitative knowledge was used.
The problem might have been solvable using quantitative knowledge by substituting in for the
variables, or just solving for the time in general and then comparing the resulting equations. Or,
substituting numbers and comparing might also work but one has to then know that the quantities
vary monotonically with each other.

Such a quantitative way to solve this problem seems very poor and the quantitative strategy
would break down if the spheres were rolling down an unspecified surface (but guaranteed not to
fall off). For this more complex problem the above argument still holds almost exactly but the
quantitative strategy would completely fail.

The kind of knowledge used to solve this problem was about how which quantities depended
on what and how. Such knowledge about the functional dependencies between variables makes
certain problems much easier to solve, and even allows one to solve problems which previously were
unsolvable. The ability to manipulate functional dependencies allows the expression of many more

kinds of knowledge.

2.5 Summary

Many of the different kinds of knowledge involved in solving physics problems have been
discussed in this chapter. The following chapters will develop these kinds of knowledge in much
greater detail along with other kinds of knowledge. There remains many kinds of knowledge that
will not be considered here. For example, the problem of learning this knowledge or just using this
knowledge in new situations which violate some of the prerequisites for applicability. The physics
student is a model builder, learning a model and spending a long time discovering exactly under
what circumstances the model is valid and under which it is not. There is the ability to handle
metaphor and analogy; how can we use this knowledge about mechanics to understand current flow

in electronics? More specifically there is no ability to quantify over structure, there is only an ability
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to quantify over something that is parameterizable as a variablee. NEWTON neither qualitatively
or quantitatively understands the calculus of variations. In fact NEWTON does not even know
enough calculus to realize that integration is a quantitative operator. NEWTON does not represent
the kind of knowledge that would make it possible to construct a program like itself. Althouvgh
NEWTON may employ a large amount of common sense reasoning ability, it understands nothing
of the common sense reasoning the author used to develop it or that Galileo <Galileo, 60> used to
break away from the shackles of Aristotelian physics .

From this chapter it should be even clearer that the distinction between qualitative and
quanﬁtative is very fuzzy. There are many kinds of qualitative knowledge such as envisioning and
question answering, and there are many kinds of quantitative knowledge such as that contained in
- our RALCM and some aspects of comparison. The position of question answering and comparison
is not very clear. For purposes of discussion we will use qualitative and quantitative to refer to the
kinds of knowledge listed above collectively. In subsequent chapters these lists will become longer

and fuzzier.
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3.0 ENVISIONING
3.1 What it is

The most basic and primitive knowledge about physics is envisioning. Intuitively,
envisioning .is imagining an event taking place. For NEWTON envisioning means generating a
progression of scenes encoded in a symbolic description which describe what could happen. Both in
NEWTON and in people the envisionment of the event is the first step in the understanding of the
problem.

In fact, envisioning is necessary to understand the event at all. To understand that a pencil
mighf roll off a table requires the ability to envision that event without actually seeing it happen.
We see, then, that envisioning is pre-physics knowledge and its presence is independent of the goal
of solving mechanics problems. Envisioning is, however, the fundamental building block for
understanding mechanics. |

The process of studying mechanics involves, in a large part, the building of connections
between the enVisioning knowledge and the mathematical knowledge. The learning of mechanics
will involve acquiring a better understanding of the world the envisioning was about and
consequently that education would refine the envisioner. Any refinement that does take place is
minor and fits within the original framework.

The resulting envisionment is used as a basis for further reasoning. This envisionment
involves the two most fundamental ideas of problem solving. First, the envisionment (with its
connections with quantitative knowledge) produces a description and representation of the problem
appropriate for further analysis. For example, envisioning recognizes the geometry of the event.
Second, the envisioning gives rise to a plan to analyze the problem which is linear in time. ‘Simple
quantitative techniques for following such plans exist and further reasoning can be conveniently

done on such linear plans to find better nonlinear plans.
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3.2 How Envisioning is Done

The envisioner consists of three sections: local experts, global experts and control structure.
The local and, to some extent, the global experts are domain dependent and capture knowledge
particular to the given domain. The control structure is essentially domain independent and
interacts with the local and global experts through fixed and predetermined interfaces.

The scene being envisioned must be encoded in some description. This description divides
the scene into physically local sections. The exact nature of this description will be left until after
the local experts have been presented. There are two kinds of local experts: feature experts and
action experts. The feature experts take into account local features and deduce subsequent actions.
These actions take place over time. The action experts take a given local area and an action and
deduce which next local area should be examined. All this interaction is monitored by the control
structure which also keeps a record of all the interactions. Because the same feature expert can
generate many actions, the control structure has to decide which action to try next. The resulting
record is a tree with forks appearing where multiple actions are possible. This tree is subsequently
pruned by the global experts.

There are six basic kinds of actions that arise in our mini-world. Each action must look at
the description of the environment to determine which local area should be examined next. There
is the possibility of no action: STOP. On a surface movement along it can occur: SLIDE. Sliding
through a point is considered different than sliding over a segment: TRANSFORM. An ob ject
can fall off the surface: FALL. It can also fly off: FLY. At a corner the ob ject can collide with
another surface: COLLIDE. Some of these actions may have an argument associated with them to
give particular details of the action.

Ignoring, for the moment, the velocity, the folloQing five possibilities can arise at a

microscopic level on a surface. At the microscopic level all curves are linear.
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Ob ject is off the surface:

-> FALL

Ob ject is below the surface:

-> FALL

Ob ject is on a horizontal surface:

->STOP

Ob ject is on an incline:
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If the ob ject is moving with a nonzero along a horizontal surface:

o —

->SLIDE
The analysis so far has only examined a microscopic section of any curve, we would like to
employ these experts on larger sections. Taking into account larger sections of the curve introduces

the feature concavity. With concavity taken into account two other possibilities arise.

If the object is moving on top of a surface which is concave away from the motion, the ob ject

might fly off:

.\

->FLY

If the object is moving underneath a surface which is concave into its motion the ob ject might

remain in contact with the surface:
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->(SLIDE D)

Ob ject is on a vertical surface:

->FALL

With zero initial velocity there is never any doubt what happens. If the object had, however, an

initial velocity there could be another possible action.

The ob ject is moving up against gravity:

o

->(SLIDE U)
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e

->(SLIDE U)

At corners, which are considered as points not on a segment, three possibilities can occur. [If

the curve has a continuous derivative at the corner the ob ject remains on at the corner:

->TRANSFORM

The corner could be sharp, folding back into the path of the ob ject:

->COLLIDE

The corner could be sharp, folding away from the path of the ob ject:
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->FLY

These rules must be combined to perform a complete envisioning. Although concavity has
been recognized there still is no way to combine the rules to produce a complete envisionment. The
answer lies in the description of the environment. The rules already imply a great deal about how
the environment should be described. The crucial quantities are the first and second derivatives of
the curve. One of the most powerful principles of envisioning is that in between the singularities
and zeros of a quantity affecting an action, the effect varies continuously. More simply, the
singularities and zeros are the points at which violations of the rules are most likely to occur. This
important principle is embodied in the rules for vertical, horizontal and inclined surfaces. All
inclines are equivalent as far as acceleration is concerned. If the environment is described in terms
of the desired zeros and singularities the rules can be used. We will formalize the notion of a
segment and corner. Points on the curve at which singularities and zeros occur will be called
corners and the sections of the curve between them, segments.

We still do not have all the details to be able to envision movement on a segment. One
simple minded way is to apply the rules, observing the resulting changes and applying induction. A
second principle of envisioning saves us from this undesirable option. If the actions indicated by
the rules do not change the description of environment which the rules rely on, then the analysis for
every point on the curve will be the same. With one exception, which we will now rectif Y. this

principle can be applied to all the rules outlined so far.
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If an object were placed on the indicated surface with a zero initial velocity, the object might fly
off. This possibility would not be detected by any of the rules. Rules that take into account the
velocity of the ob ject should take int§ account both actual and potential velocity. This observation
leads to the introduction of a single rule to handle the above case.
The state of the ob ject can be encoded in a triple indicating whether the ob ject is on or off
the surface, above or below the surface and the sign of its velocity:
{{on,off},{above,below},{velocity-u,velocity-d,velocity-z})

An ob ject sliding up an inclined surface would be described as:

o

(on,abave,velocity-u)
A segment is described in terms of its first and second derivative,
(SEGMENT name ({incline,harizontal,vertical},{minus,zero,plus})
A corner is described by the change of slope occuring there.
(CORNER name {minus,zero,plus})

The environment of the sliding block problem of chapter 2 could be described:
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C3
St

S2
C2

(SEGMENT S1 INCLINE PLUS)
(CORNER C2 PLUS)
(SEGMENT S2 INCLINE PLUS)
{CORNER C3 ZERO)
(SEGMENT S3 INCLINE ZERQ)

The rules can be conveniently expressed as productions. The left side of the production is in
terms of the features of the environment and the right side indicates the resulting possible actions.
All applicable productions are applied to determine the possible actions. By the second principle of
envisioning the actions of the left hand side should never produce a change in the features so that
each production need only be examined once.

The rules for a segment are:

(1 off - fall

(2) below - fall

3) horizontal A on A velocity-? - slide-?
(4) incline A above A on -+ slide-d

(5) vertical A on - fall

(6) velocity-u A incline A above A on - slide-u
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¥ convex A on A above - fly
(8) concave A on A below A velocity-? -+ slide-?

The rules for a corner are:

9) Zero - ¢
(10) plus - fall
11 minus - collide

The control structure for the envisioning is very simple:

END
-
SELECT =
—> APPLY SELECT NEXT
1 RULES ENVIRONMENTS
START

The resultant trace of the interaction is the envisionment and takes the form of a tree.
As an example the envisioning for the sliding block problem will be examined in detail. The

ob ject is placed at the start of segment S1 with zero initial velocity. The initial state is then:

{on,abave,velocity-z}
(SEGMENT S1 INCLINE PLUS)

Production (4) applies, giving slide-d. This single possibility results in the movement to corner C2.
{on,above,veiocity-d}
(CORNER C2 ZERQ)

Only production (9) for the corner applies, so the next segment is selected. Since a downward

velocity from Sl and across C2 implies an upward velocity on S3, that feature must be changed.
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{on,abave,velocity~u}
(SEGMENT S3 INCLINE PLUS)
Productions (4) and (6) apply. This results in two possibilities slide-d and slide-u These two
possibilities result in the selection of C2 or C3. If the C3 option is chosen an identical analysis takes

place on S3. This short scenario has resulted in the generation of a tree:

C1

|
(TRANSFORM S1)
Sl

I
(SLIDE D)
C2

!
(TRANSFORM S2)

S2
| |
(SLIDE D REVERSE) (SLIDE U)
S2 C3
l |
{TRANSFORM S3)
S3
| | |
(SLIDE D REVERSE) (SLIDE U)
S3 C4

| |
(FALL)

3.3 Global Experts

Global experts observe features of the tree as it is being generated and prune it. The
necessity for the most important global expert arose in the example envisionment of the previous
section. The envisioner goes into an infinite loop when oscillation is present. The only other global
expert that NEWTON uses is a qualitative conservation of energy expert. NEWTON uses the

relative heights to eliminate certain possibilities in the tree. NEWTON can be told explicitly about
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the global features of relative heights and the envisioner will prune the envisionment according to
the implications of conservation of energy.

Oscillation occurs when a state is repeated. The state of an ob ject is given by its velocity and
position. There is, however, a more elegant and generalizable characterization of oscillation.
Consider those points for which the velocity is momentarily zero. We will call these the stagnation
points. A possible path can have either zero, one, two or more stagnation points. If the path has no
stagnation points the ob ject has been given an initial velocity and the velocity never went down to
zero. A path with a zero initial velocity and one stagnation point has the same analysis. A nonzero
initial velocity and one stagnation means that one velocity reversal took place and the ob ject
eventually left the surface. In every case where there are two stagnation points oscillation takes
place. If the initial velocity was zero one of these stagna.xtion points is the initial point on the
segment, otherwise the ob ject was given an initial velocity on an oscillatory path. Oscillation can
then be simply recognized by keeping track of how many stagnation points have been encountered.
When oscillation is detected the action (OSC point) is inserted in the tree indicating the ob ject
would oscillate back to the specified point. The envisioner then stop.s envisioning that particular
path. |

NEWTON has a procedure to handle inferences about partial orders. The relative heights
of the points on the curve form such a partial order. The envisioner has a simple theory of
conservation of energy which uses this partial order to determine if velocity reversal could take
place. For NEWTON to be able to make any useful inferenées it must be told something about the
relative heights in the diagram. Each path is marked with the highest points in the partial order
that it has reached. If local experts deduce that a stagnation point is possible on a segment then the
heights of fhe endpoint is compared against the heights of that path so far. If comparison is

possible the correct choice can be made.
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3.4 The Role of Envisioning

The tree generated by the envisionment is used to guide further analysis. The forks in the
tree are points at which the envisioner could not disambiguate the possibilities. As we shall see in
the next chapter this same tree can be used in many different ways. For example, it can be used to
determine whether a given question is absurd or answerable.

Envisioning is a fundamental piece of knowledge required to be able to reason about
mechanics. The envisioner presented in this chapter can be generalized in many ways; however, its
structure would have to be fundamentally modified to be able to do the envisioning required for
general mechanics. The organization of the envisioner makes the fund;mental simplifying
assumption that all the interesting interaction taking place at any given time occurs in one small
local area. It has only one center of attention. This leads to difficulties that have to be resolved
before general mechanics envisioning can be done. The first difficulty is that two physically
unrelated centers of attention may interact in the future. NEWTON is totally incapable of

envisioning a collision involving two ob jects.

Where will the ob jects collide?
This requires the envisioner to understand relative times.

The other difficult situation is two interacting centers of attention.
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Will the ob ject make the loop-the-loop?

Clearly the block is too large. NEWTON cannot envision anything other than a point mass.
Envisioning an object with a volume requires paying attention to all the boundaries of that ob ject.
The same problem arises in understanding a lever or a string.

The assumptions that the ob ject really is a point mass and that there is only one center of
attention gives a good basis to build the envisioner upon. There are usually only a smail number of
centers of attention in any problem. The handling of nonlocal physical interactions required
different features descriptions and actions, but this sophisticated interaction would still result in a
tree of possibilities. In any case the matter requires more serious research, especially into
descriptions of ob jects and actions.

There remain some interesting generalizations to the envisioner that have not yet been
discussed. Friction fits within the simple envisionment paradigm. Unfortunately, the introduction
of friction requires modification of all the global experts. Damped oscillation becomes a possibility.
Collisions with surfaces can easily be added. If the issues of boundary interactions could be ignored
rolling balls or other larger ob jects could be handled. There remain many other possibilities.

However, NEWTON can currently only do the kind of envisioning that has been outlined in this

chapter.



35

4.0 QUESTION ANSWERING
4.1 Examining the Question

The mechanics problem as presented to NEWTON consists of an event and a question about
that event. NEWTON always does at least a partial envisionment of the event regardless of the
specific question asked. Envisionment is necessary to understand the problem at all. The
envisionment sets up an information structure describing the event. Only after this structure has
been built is the specific question about the event examined. For example the envisionment
references the appropriate fragments of quantitative knowledge so that when a quantitative question
is asked a search for information about it can be limited to only those fragments of quantitative
knowledge in the structure. There are many different kinds of questions and each different kind
uses the information structure generated by the envisionment in a different way. In this chapter
some of these different question types will be examined and strategies outlined to handle them.

Questions can be divided among many different dimensions. The most fundamental division
exists between questions about final effects derived from given boundary conditions and questions
about boundary conditions given the final effect. A question can be quantitative "What is the
velocity?” or qualitative "Will the block fall?* Some questions quantify over structure: "Where will
the block fall off?" Other questions request information about global quantities: "What was the

average velocity of the block?"

4.2 Common Sense

NEWTON can understand the same problem at many different levels. So far we have seen
three of the levels: envisioning, question answering and quantitative knowledge. The general
strategy is to attempt to solve the problem at the simplest possible level and use the problems the
simpler analysis gets into to guide the more sophisticated further analysis. If the envisionment
describes an event different than specified in the question the question must be absurd. If the QAs,
which observe more global featurés, notice that the envisionment does not have the appropriate

features the problem is also absurd. It is this combination of envisioning and question answering
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. knowledge that gives NEWTON much of its common sense. These first two levels of knowledge
are extremely general and versatile, being able to accurately identify exactly those points at which
further problem solving has to be done. (Often the quantitative analysis will be incapable of
dealing with the identified difficulty). Simple questions are dealt with simply and absurd question
are recognized immediatedly.

One fundamental step is to realize that any question has many implicitly unstated
preconditions. These preconditions are less complex than the final problem and their examination
even if proven positive provides more information for further analysis. If negative, the final
problem cannot be solved (it is absurd) since its implicit preconditions are violated. For example,
given the qualitative question "Does the ob ject reach X?" it should be ascertained whether there'is

any path to X. A similar analysis applies to quantitative questions. The gquestion "What is the

velocity of E at X?" implies that the simpler qualitative question that the point X is reachable at all.

4.3 Simple Descriptive Questions

The simplest kind of question is just a request for a description of the event given the initial
conditions. We will use the strategies to answer this question to illustrate the basic pieces of
knowledge that will have to be used for more sophisticated question types.

The envisionment produces a description of the event containing forks or qualitative

ambiguities. Consider again the envisionment for the sliding block problem of section 2.2.
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C1

|
(TRANSFORM S1)
S1

|
(SLIDE 0)
C2

4 |
(TRANSFORM S2)

52
l |
(SLIDE D REVERSE) (SLIDE U)
S2 Cc3
I I
(SLIDE D) {TRANSFORM S3)
C2 . S3
| | | -
(TRANSFORM S1) (SLIDE B 0SC S2 REVERSE) (SLIDE W)
S1 C4
I I I
(SLIDE D 0SC S2 REVERSE) (SLIDE W) (FALL)
C1 :
|
(FALL)

To determine what happens, the first fork is examined and disambiguated.. This procedure is
repeated on the next fork. The result is a (partially qualitative) description of the event. If the left
branch is taken at the second fork event would be an oscillation between a point on SICI) and a
point on S2. If the right branch is taken the ob ject subsequently leaves the surface.

The envisioner of the previous chapter can only generate five different kinds of qualitative
ambiguity. (For the purposes of qualitative ambiguity the action OSC is really a loop back into the
tree and hence really is a SLIDE action.) The possible forks, their meaning and an example of

each are:
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SLIDE-SLIDE:

The object is moving and a deceleration is being applied which may result in a velocity

reversal.

%

I

The object may be being accelerated or decelerated, however, it may fall off from moving

FALL-SLIDE:

underneath the surface. Velocity reversal is not an issue here since if the ob ject ever achieved zero

velocity underneath the surface it would instantaneously fall of f the surface.

R

The ob ject is being accelerated to the point where its velocity may eventually be great enough

FLY-SLIDE:

to fly off the surface.

0\
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FLY-SLIDE-SLIDE:
The ob ject is being decelerated but the velocity in either direction may be sufficient for it to

fly off the surface.

\e

TRANSFORM-TRANSFORM:

This is the only qualitative ambiguity which is considered at a point. The previous
ambiguities may occur at a point but they are considered in the context of the surrounding segment
and not at the point itself. This qualitative ambiguity is unsolvable and external advice is

necessary. The object has reached a point of unstable equilibrium. -

These are the fundamental kinds of qualitative ambiguity. In later chapters others will be
introduced as the envisioner is made more sophisticated.

For each kind of qualitative ambiguity there exists a collection of RALCMs which can be
used to resolve that ambiguity. Many of the RALCMs for different ambiguities reference each
other. We have already seen one such collection of RALCMs for SLIDE-SLIDE: MASS-
MOVEMENT. To obtain a simple description of the event the envisionment is performed to
obtain a tree and the quantitative knowledge is applied to resolve the ambiguities at the forks.

This is all that has to be done to obtain a simple of the event, but often other f;eatures are

desired regardless of whether a fork occurred. For instance, the velocity at a particular point may
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be desired. Even if a fork occurs one might want to know where the object falls and not just
whether it falls off. In most cases the precise value of the desired parameter can easily be
calculated by the RALCM:s resolving that particular ambiguity. The parameter need not necessarily
be determined in the process of the resolving the ambiguity, however, the collection of RALCMs
used to resolve the ambiguity must provide sufficient information about the desired parameter so
that it can be determined.

Unfortunately for the purposes of obtaining exact values, the envisioning and the QAs
predict possibilities without necessarily involving the exact parameters of the possibility. The
nature of the ambiguity may be eliminated or grossly changed by the global experts and the QAs so
that the ambiguity is so simplified that its RALCMs no longer mention many of the possible
parameters. These are the cases for which there is no qualitative ambiguity yet the quantitative
parameters remain unknown. For example, global experts may have eliminated the possibility that
the ob ject reaches C2 because the slope is vertical there.

Ci S1

C2

Hence the object must fall off on Sl and there is no ambiguity. In order to determine the exact
point of leaving the surface the original ambiguity on Sl generated by the local experts must be
used. The result is the collection of RALCMs used to resolve FLY-SLIDE. In some cases the local
experts may not predict an ambiguity. One such case is SLIDE and that is handled as a special
case (the SLIDE-SLIDE RALCMs are used).

Now we can see more clearly the connection between the quantitative RALCMs and the
original ambiguity generated by the envisioning. Basically there are two issues that arise in the
roller coaster mini-world: the ob ject can change its direction of movement or the ob ject can leave

the surface. The first possibility concerns velocity; the second concerns normal forces. These issues
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are present everywhere, but on any given section of the curve very simple qualitative reasoning can
determine exactly which issues are relevant. This is what envisioning does. Envisioning recognizes
that an ob ject will not fly off a flat surface. The envisioning recognizes the issues that might cause
ambiguity and constructs an information structure including only that quantitative information
relevant to the current issues. QAs using more global knowledge than the envisioner then use the
constructed information structure to resolve the issues the envisioning determined to be important.
It was the envisioning that determined that the normal force between the ob ject and the surface was
not relevant to any ambiguity that might occur there.

The general method for when solving for a point within the segment is to hypothesize a
point. The conditions which must be met at this point are determined (e.g. zero velocity for a
velocity reversal ambiguity) and the position of the point solved for within some coordinate scheme.

The actual mechanics problems that have to be solved for each of the ambiguities are as

follows:

SLIDE-SLIDE:

The final velocity at the endpoint of the surface should be calculated. If this velocity is
positive no velocity reversal has taken place: if the velocity is negative or imaginary a velocity
reversal has taken place. (This simple strategy will have to be modified and be much more
sophisticated about the meaning of positive, negative and imaginary. That will only become
apparent when we examine the mathematical expertise required to solve the equations and will be
left for the next chapter.) If the exact point of velocity reversal is desired, then a hypothetical point
is created at which the velocity is zero. The position is then solved for. Note that if a velocity
reversal takes place the final velocity will be equal to initial velocity, but, in the opposite direction.

The global principle embodied in this observation will be seen later.

FALL-SLIDE:

The curvature of the surface is keeping the ob ject in contact as it moves along the bottom of
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the surface. The object remains in contact with the surface as long as the force exerted by the
constrained movement exceeds the force of gravity. The difference between these two forces is the
normal force of the surface on the ob Ject. If this normal force becomes negative the ob ject leaves
the surface. Currently NEWTON assumes that this normal force changes sign when it reaches zero
(except for the degenerate parabolas). NEWTON solves for the point at which the normal force
becomes zero. If this point does not exist or would occuf after the actual endpoint of the segment
the ob ject remains on the surface. Otherwise the ob Ject falls at the point at which the normal force
becomes zero.

The following method can solve for that point in general. First the surface must be
parameterized in terms of its angle @, height A(8) and radius of curvature r(8). This
parameterization is invertible and hence useful only because the envisioning has identified all the

discontinuities and zeros so that © must be monotonic over any segment.

The gravitational force:

fs =mgcos ®
Force derived from constrained motion:
fe=mo 2)y
Normal force at surface:
fn=fy- 1,

The point at which the normal force goes to zero must be solved for:
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mgcs@=mv?r
Conservation of energy can be used to derive the velocity:

2
initial

v2-2gh-v
Which results in the final equation:
%) 1 (8)

The actual parameterization of the surface must be calculated and substituted solving the above

gcos® =(2gh(@)- v,
equation for 6 or any other reasonable parameter. The applicability of this strategy depends
crucially on how many zeros fy has on the segment. If fy has only one zero on the segment the
strategy will succeed. This property depends both on the segment's length and on its curvature.
The circle is, obviously, a curve for which the strategy succeeds. One example of a segment which

does not meet the criteria is the following.

N

<\FALL OFF

STAY ON

This ambiguity is an example where different strategies can be used depending on the
desired goal. Because fy is proportional to the square of the velocity, the property of remaining on
the surface is independent of the direction of the velocity. Consider an ob ject sliding down
underneath a surface. If fy increases monotonically only the top point of the surface needs to be
checked: if fy is sufficient at the top to prevent falling the ob ject will not fall off anywhere on the
surface; if fy is insufficient the object will fall off somewhere on the surface. A sufficient
condition for f, to be monotonically increasing (ailowing the applicability of the simple strategy) is
that the radius of curvature decreases monotonically. That is not, however, a necessary condition
(the vertical parabola is the limiting case). NEWTON knows this criteria for some curves. It can

also be told explicitly in the problem. If fy indicates the ob ject will fall, the point of falling has not



14

necessarily been determined. Only if the top point was the initial point on the segment has the

point of leaving the surface been determined. Usually, the more difficult strategy presented earlier

must be used.

FLY-SLIDE:

The strategy for this kind of ambiguity is identical as that for the FALL-SLIDE ambiguity.

FLY-SLIDE-SLIDE:

This ambiguity can best be resolved in two steps. First a check is made ignoring the
possibility of velocity reversal treating the ambiguity as if it were FLY-SLIDE. If the ob Jject does
not fly off a further check is made to see if a velocity reversal occurs by treating the ambiguity as
SLIDE-SLIDE. If a velocity reversal occurs it is not necessary to check to see whether the ob ject
falls off on the way back. The previous derivation for the FALL-SLIDE and FLY-SLIDE proved
that remaining in contact with the surface depended only on the magnitude of the velocity, hence, if

the ob ject did not fall off on the way up it would not fall off on the way down.

4.4 The Data Base

The envisioner and the QAs examine features of the problem and make inferences. We
have already seen how the envisionment tree is used to represent many of these inferences. Other
inferences which are made are stored in an assertional data base. Although examples of its use will
not be given until the next chapter it is the QAs that add most of the assertions to this data base.
Some of the basic assertions that the QAs make will be given here.

The data base used in NEWTON is a derivation and simplification of the CONNIVER
data base <McDermott & Sussman, 74>. Contexts are not used, and the data base is used only to
store assertions. The two basic access functions are ASSERT and F ETCH. ASSERT adds a datum
to the data base. FETCH retrieves from the data base. The retrieval pattern may contain pattern

variables in which case FETCH returns a list of a-lists, Two other auxiliary functions are used in



45

relation to FETCH. The function TRYNEXT is used to examine the a-lists returned by FETCH.
The function TRYNEXT is called on the ob ject returned by the FETCH and explicitly SETs the
variables in the first a-list. The function FETCHI, which is the most common access function, first
calls FETCH on its pattern and then if that FETCH only matched one datum calls TRYNEXT to
instantiate the pattern variables.

The scene is described in the data base and some of the more important assertions are its
description:

(HIGHER segment pointl point2)
(CONCAVITY segment type)
The segment joins two points. The first point is the higher of the two. To find the high point of
segment Sl one would do the following fetch:
(FETCH ’ {HIGHER S1 !>highpoint !>NIL))
NIL as a pattern variable means that the value it matched should be thrown away.

As NEWTON solves a mechanics problem, it uses the data base to record its progress. One
of the structures that gets built is the description of the disambiguated event. It should be noted
that NEWTON stores physical properties of the event by their time of occurrence rather than their
location of occurence. This is because the velocity at a point can be ambiguous. Assertions about
sequential times are stored as:

(TIME-SEQUENCE timel time2)
timel comes directly before time2. Note that time on a segment is used to denote a generic time.
When the QAs have not yet disambiguated all the possibilities at a point the following fetch returns
multiple times.
(FETCH ’ (TIME-SEQUENCE time !>next-time))
Since the envisionment is a tree there is never any ambiguity about the previous time.
(FETCH * (TIME-SEQUENCE !>previous-time time))
This fetch returns only a single possibility. With each time the associated location is stored.

(AT object location time)
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These are but a few of the more common assertions that NEWTON adds to the data base. Later,
when quantitative knowledge is examined we will see how these assertions are explicitly used.

The internal design of NEWTON s such that most of the information that it builds is
either attached directly to the envisionment or asserted in the data base. This makes it convenient
to build more knowledge into NEWTON without having to be concerned with the details of all the
other routines. It also explains why there are many more assertions in the data base than has been

presented here.

45 Definite and Indefinite Questions

As was noted in the introduction of this chapter, mechanics problems generally consist of an
event and a question about that event. The question itself can be divided between an aspect of the
event and a request for a feature about that aspect. In the question "What is the velocity at point
X?" the aspect of the event is when the ob ject reaches X and the requested feature is its velocity.
The analysis of the entire event using the strategy of the previous section can be used to answer the
actual question. The resuitant event structure is scanned for the presence of the requested aspect
and then the necessary features the question requests are determined; however, if the question were
examined earlier, before the event was completely analyzed, the work could often be considerably
lessened. The question may only ask about a small part of the event so that not all the information
needed to resolve the entire event needs to be present to resolve the partial event. If the aspect
refers to a point that can be determined a priori, the question will be termed definite. "Will the
ob ject reach X?" is a definite question. "What is the velocity of the object when it falls of f?* may
be definite or indefinite depending on the places in the envisionment where the ob ject might fall
off. All indefinite questions must, however, become definite questions if they are ever to be
answered. (Except in degenerate cases, where, the velocity at both possibilities can be determined to
be equal.)

This section outlines a strategy to handle definite questions. Indefinite questions, which must

eventually become definite, are handled as if they were purely descriptive questions until the
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problem has been sufficiently reduced that they refer to definite points.

Whether the question is quantitative or qualitative, the possibility of reaching a definite point
must be determined. A possible path must be discovered to the point. (Unfortunately, there may be
many such paths.) This path and the identification of ambiguities within it constitutes a linear

Plan to solve the problem. A plan for the sliding block problem might be:

Solve SLIDE-SLIDE on S2 and if C3 is not reached fail.
Solve SLIDE-SLIDE on S3 and if X is not reached fail.

The same RALCMs that were used to answer "What happens?” type questions can be used to
resolve these ambiguities in the plan. The results of the quantitative analysis will, of course, have
to be treated slightly differently. Depending on the result of the analysis, analysis either proceeds

on to the next statement as in "What happens?” questions or halts indicating the point was not

reachable.

The plan may have branches in it.

S2

C2
C1

If the ob ject were given an initial velocity to the right at C2, would it reach CI?
The plan returned would be different depending on whether a velocity reversal occurred on S2.

In the solution to the original sliding block problem, the first step in the plan, the SLIDE-
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SLIDE step on S2, could have been ignored. In the loop-the-loop problem two steps in the plan
were, in fact, never solved. Other information in the problem can be used to eliminate steps; that
is not saying that the ambiguities do not need to be resolved. It séys that with respect to the
question asked certain ambiguities to not have to be explicitly solved. NEWTON contains a
collection of strategies which examine the pProposed plan and simplify it.

The most important of these strategies is recognizing which steps in the plan need not be
examined. That is, failure to reach the goal would be detected whether or not that specific step in
the plan were examined. In the sliding block problem a SLIDE-SLIDE step could be ignored and
in the loop-the-loop problem a SLIDE-SLIDE and a FALL-SLIDE step could be ignored. This
global strategy is useful mainly because of the existence of global quantitative knowledge, namely
conservation of energy. The crucial question is when can steps be ignored and when are they

important.

Falling off can Precon ition of reaching
be ignored. here cannot be ignored.

Sliding back can
be ignored.

In the case of going over the peak to an ultimately lower position the global strategy of calculating
final velocity gives a positive, yet false, solution. The applicability of such giobal strategies depends
critically on local features of the area they span. Often a much simpler analysis, envisioning, can
identify these relevant features. The height of the hill cannot be ignored because for any given
initial velocity there exists a hill which the ob ject would fail to climb. Another example of a local
precondition for a global strategy is that a path exist in the first place. The global strategy of

energy must take into account whether there is local friction or local non energy preserving events.
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Let us examine the plan for the hill traversal problem to see what kinds of steps can be ignored
and which cannot.

SLIDE-SLIDE

FLY-SLIDE-SLIDE

FLY-SLIDE
In this problem and the loop-the-loop problem a sequence of SLIDE-SLIDEs appears, the first of
these can always be eliminated. Basically SLIDE-SLIDE only calculates the final velocity so that
SLIDE-SLIDE followed by any other step requiring the calculation of velocities can be ignored.
Note, however, that this analysis works only if no other expertise has eliminated some possibilities.
If some possibilities have been eliminated by other expertise or by externally given advice this
information must be taken into account so that plan steps are not incorrectly deleted. For example,
the sequence SLIDE-SLIDE followed by FLY-SLIDE is an impossible sequence and should not be
amalgamated, since the intermediate step of FLY-SLIDE-SLIDE is missing.

There are many other reasons why steps can be eliminated. The elimination of the FALL-
SLIDE step in the loop-the-loop solution gives us two more elimination strategies. The first is that
. even though the envisionment divided the circle into four different segments, these segments were
still in many senses one complete whole -- a circle. The crucial point for falling off can be
identified to be the top, and this was how the problem was solved. The other possibility was the
employment of symmetry. The first two steps of SLIDE-SLIDE and FALL-SLIDE could have been
amalgamated into FALL-SLIDE and, using the special strategy for CIRCLEs presented in the
previous section, the normal force would be calculated at the top to determine whether the ob ject
reached the top. Since the circle is symmetrical about the vertical and the ob ject remained on the

surface on the way up, it will remain on the surface on the way down.

4.6 Boundary Conditions
A problem can specify the boundary conditions and ask about the resultant effect (eg. the

sliding block problem) or it can specify a resultant effect and ask about the necessary boundary
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conditions to produce it (eg. the loop-the-loop problem). In all of the examples discussed so far the
boundary conditions are the initial conditions. The previous two sections have discussed, at length,
how from given initial conditions the event can be traced forward through time. Tracing back
through time to find which conditions must of held true for the desired final result to hold can be
handled using almost the same strategy. (We will assume we are dealing with definite questions.)
To progress forward in time results were calculated and tests made on these results to determine
how to proceed. In progressing backwards in time these tests are constraints that the initial
conditions must satisfy. (If there were dis junctions in the forward plan, there will be dis junctions in
the constraints on the initial conditions.) The loop-the-loop problem, although treated as an initial
condition problem, was solved using this strategy.

There are other interesting ways to look at this strategy. The desired initial condition may be
hypothesized using a variable, then calculation proceeds adding constraints to that variable until it
is finall'y determined. The current mini-world is independent of the direction of time so the entire
problem could be run backwards using the desired effect as the initial conditions. With such a
strategy all problems can be solved by forward reasoning through time only. Unfortunately, this
strategy is only convenient when the desired final result implies only a single initial constraint to
build the hypothetical initial conditions. All of these possible methods are isomorphic in that they
all lead to identical kinds of quantitative analysis no matter how different the qualitative analysis
for them appear to be. NEWTON currently uses the strategy of hypothesizing parameters
(variables assumed to be known but without values) for desired initial conditions and determining

what constraints resultant conditions impose on them.

4.7 Limitations

This chapter has illustrated the basic question types and has laid the groundwork for a
connection between the envisioning of the previous chapter and the quantitative knowledge of the
next chapter. Chapter 6 will show many detailed examples of the interaction of these pieces of.

knowledge.
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We have seen the kinds of questions NEWTON can answer with the strategies outlined in
this chapter. The following are some examples of the kinds of questions which NEWTON cannot
yet deal with.

"Which path is the fastest?"
"How can the path be made faster?”
"Construct the fastest path?”
"Where does the ob ject go the fastest?”
"How many times does the ob ject cross SI?"
"What is the acceleration of the object on a flat segment?"
"What is the period of oscillation on a cycloid?”
"Why is the acceleration on a flat surface constant?”
"Does the mass of the ob ject affect the final velocity?”
NEWTON contains sufficient information to solve most of these problems, but it does not have

enough QAs to understand these questions.
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50 REPRESENTATION OF QUANTITATIVE KNOWLEDGE
5. Desiderata for a Quantitative Representation

The envisionment produces an initial plan for solving the problem. This plan is
subsequently analyzed by the QAs and if the possibilities within the event cannot be disambiguated
or if the problem explicitly asks for a quantitative value, quantitative knowledge is used. The
representation of this quantitative knowledge is the topic of this chapter.

That quantitative knowledge is just another kind of knowledge available to NEWTON
enforces many constraints and allows for many freedoms in its design. The discussions concerning
the QAs have described the interaction between quantitative knowledge and the rest of NEWTON.
The envisioning and planning that has proceeded any problem posed to the quantitative knowledgeA
permits it to ignore problems of searching large spaces. The rest of NEWTON communicates with
the quantitative knowledge through the top level RALCMs and the data base. The QAs reference
the top level RALCMs and any part of NEWTON can access the information that the quantitative
knowledge adds to the data base.

The dichotomy between qualitative and quantitative knowledge has become rather obscure as
it was ascertained wﬁat kinds of knowledge could be considered as qualitative. Nevertheless it will
be useful to re-examine this dichotomy as we begin to investigate quantitative reasoning.
Qualitative reasoning involves studying features of the problem while quantitative reasoning is
characterized by assigning variables to the features observed by qualitative reasoning, ignoring the
physical meaning of the variables, artif icially manipulating equations consisting of these variables,
and reassigning physical meaning to the results. This loss of meaning of variables leads to
abstraction in the manipulation process and gives mathematics its generality and power.
Unfortunately, this loss of meaning makes the transference and selection of relevant equations very
susceptible to error. Quantitative knowledge handles these transferences and the selections of
equations.

The key to understanding the nature of quantitative knowledge is to examine how people

solve problems. People rarely use general methods to solve problems. Instead, the knowledge is
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divided into a heirarchy of special cases such that the "simplest” applicable strategy is used. This is
in great contrast to a general strategy which uses the same strategy regardless of the problem. (A
good example of a general strategy is the electronic circuit simulator which applies the same strategy
to one resistdr as it does to a complete amplifier.) The ma jor portion of a mechanics text consists of
a description of the heirarchy of special cases; hence, once the representation is developed, the
pieces o—f knowledge can be obtained directly from the text.

In NEWTON the quantitative knowledge is organized into a collection of interrelated pieces
called RALCMs. Each RALCM specializes in certain aspects of the general problem being fixed.
Some examples of RALCMs might, for example, be the principle of conservation of energy or the
trigonometric relationships within a triangle.

A ma jor demand on this representation is the ability to to express the conditions for which
the strategies are applicable. A considerable part of any RALCM will then contain information
about when it is applicable (or which sections of it or other RALCMs are applicable). These
RALCM descriptions are examined by an interpreter, IRALCM, to answer questions. A RALCM is
invoked when IRALCM tries to apply it to solve a problem. RALCMs can only be invoked for the
purpose of discovering the value of a particular variable. This purpose must be made explicit
when the RALCM is invoked. The invoker of a RALCM requires the value for a certain variable
and knows that the RALCM it invoked knows something about that variable.

When a RALCM is invoked the search for information about the desired variable will
include every possible piece of the knowledge in the RALCM. Only after that search fails will it
return with a detailed explanation about that failure. This is based on a theory, for which we see
some evidence in people solving mechanics problems, of trying to use knowledge local to that aspect
of the problem currently being examined. Of course, this depends crucially on the representation.
Consider the example of a right triangle RALCM given the base and the altitude and asked for the
hypotenuse. It might find an equation relating the sine of an angle and the altitude to the desired
hypotenuse, but it should not immediately complain that it needs the angle and instead search

further, discovering the pythagorean theorem. This seemingly unimportant decision to maintain the
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localness of interaction within the representation has, as we shall see, momentous consequences for

the internal structure of IRALCM.

5.2 Some Consequences of the Desiderata

The desiderata of the previous section lead to many consequences for the organization of
IRALCM and the actual representation of the RALCMs. There are many ways the theoretical
principles can be employed. The following is a description of how they are used in NEWTON.

When a RALCM is invoked, IRALCM -looks at the purpose for the invocation and then
examines the RALCM to see where in its description it makes a possible assignment to that
variable. This possible assignment can either be an explicit assignment or a reference to another
RALCM. This assignment may have a number of prerequisites which have to be met. Many
possible assignments may be found, each with different prerequisites. One of these must be chosen.
Much of the syntax for RALCMs involves how such preconditions can be structured.

RALCMs act at various levels of the problem solving process: one RALCM might be
concerned about using an energy method versus a Newton’s Law method while another RALCM
might be concerned about the base length of a sliding block. In a usual LISP-like representation we
would either have to pass down all relevant variables from the top-level or use free variables.
Passing variables down from higher levels has the problem that the top-level RALCMs have to be
concerned about many details which are irrelevant to them. Free variables have the problem that
more than one RALCM must know their names. The RALCMs we propose here are not invoked
with argument lists, neither do they explicitly refer to free variables. Instead, the name of a
~ Variable is only local to the RALCM that defines it. Communication is achieved by assigning
meanings to every variable and constructing bindings between variables with matching meanings.
These meanings, which are stored in the data base, can then be accessed by both other RALCMs
and other parts of NEWTON. This solves the problem of variable names and makes it possible
for the other knowledge to examine the state of a quantitative computation.

Any RALCM under consideration by IRALCM has an environment. This environment
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contains the current variable bindings (A-LIST) and the current state of the computation. The
same RALCM may be under consideration with a number of different environments. A RALCM
combined with a particular environment is an instantiation of that RALCM. So far this paper has
often used RALCM to méan an instantiated RALCM; the context of the word RALCM will
indicate which meaning is intended.

A record is kept of all computation that is done within an instantiation. When a RALCM is
unable to meet its purpose it fails and explains why it failed. The invoking RALCM can either try
to resolve the complaint or, as is often the case, just ask the same RALCM a different question.
Any computation that was done on the first purpose will not be repeated. If the new purpose was a
complaint of the old purpose the RALCM can immediately return because it has already done
everything possible to resolve that pﬁrpose. Note that having asked the instantiation for two
purposes does change the fact that two different complaints have been returned and superior
RALCMs will try to resolve either of these complaints.

Let us examine a RALCM. For the moment we will ignore the syntactic details of the
description.

(DEFINE-RALCM KIN (?0BJECT ?SURFACE ?T1 ?T2)
((VF (VELOCITY ?0BJECT ?72))
(VI (VELOCITY ?0BJECT ?T1))
(D (DISTANCE ?SURFACE))
(T (TIME ?T1 ?72))
(A (ACCELERATION ?0BJECT)))
(EQUATION E1-KIN
(= VF (+ VI (x A T))))
(EQUATION E2-KIN
(= (x VF VF) (+ (x VI VI) (x 2 A D))))
(EQUATION E3-KIN
(=D (+ (xVIT) (x.5ATT

It is important to bear in mind that RALCMs are not procedures in any sense, instead they
describe relations among variables. “The variables of the first list of the RALCM body are the
primary variables which must be supplied when the RALCM is invoked. The primary variables

describe the ob jects about which the RALCM is concerned. The next list is the secondary variable

A-LIST. Each of its elements describes a secondary variable. The first element of the pair is the
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atom which is used in the later equations. The second element of the pair is the global binding
which must be expanded by substituting in for the primary variables. Whenever a RALCM s
instantiated it must be given an instantiation pattern, a short description of the scene about which
the RALCM is solving problems. For example the KIN RALCM is given a four-tuple indicating
the ob ject about which it is solving kinematic problems, the surface this ob ject is moving on and
the times of this movement. This pattern serves two purposes. First, it gives a name to every
instantiation so that all references to a RALCM with the same scene will be to the same
instantiation. So, the same instantiation can have multiple invokers. Second, this name is used to
give meaning to the secondary variables. If a secondary variable is to have a nonlocal binding it
must be given a meaning which can match with other meanings. These meaning descriptions
contain primary variables which must be assigned the names of the specific ob jects under
consideration. In the description of the secondary variable VF in KIN, the primary variable
?SURFACE must be assigned the value SI. The values for the variables are derived from matching
the pattern at the beginning of the RALCM with the instantiation pattern.

Since the meanings of these secondary variables cannot be elaborated unless all the primary
variables have assigned values, a RALCM cannot be instantiated unless all of its primary variables
are given values. The formats for instantiation patterns and meanings are very simple. Patterns
and meanings must match exactly or they do not match at all. The format of instantiation patterns
is arbitrary, but the invoker and invokee both must know this format. The descriptions of
variables have fixed formats and a variable can only be of certain types. A meaning description
consists of a type such as VELOCITY or ACCELERATION and an ordered list of modifiers
thch indicate such information as the name of the moving object or the time span of the
movement.

The data base is used to keep track of variable meanings and instantiation patterns.
Whenever a new secondary variable reference is made the meaning description is elaborated by
substituting for the primary variables and then looked up in the data base. So the A-LIST for an

instantiation contains local variable name - global data base pointers, not local variable - value
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pairs. It is the data base that reaily describes the current environment and not any A-LIST or stack
structure. Thus, unbinding in the conventional LISP sense becomes a vacuous concept.

RALCMs can reference other RALCMs, indicating that the referencee knows something
relevant about the topic of the referencer. Every time a reference link is created, the variable
meanings for the referenced RALCM are matched with the data base. (In the remainder of this
chapter variable will be used to refer to secondary variable unless explicitly indicated otherwise.)
Added to the property list of a variable is the fact that there is a new RALCM which knows
something about that variable. Associated with that fact is a reference path or plan for how to
reach that instantiation. So whenever a value for a particular variable is required its property list
can be examined to find where it is referenced. If all these references fail, other RALCMs can be
looked for in other referencable instantiations and new references created.

Whenever an individual attempt to find a value for a variable fails there is the choice of
trying to deal with the failure or trying another alternative. Earlier we have taken the general
position that computation should remain local for as long as possible. This means that alternatives
outside (above) an instantiation should be considered only after all attempts to resoive the failures
have also failed.

This control structure will be clarified with an example problem for the KIN RALCM.
Suppose KIN was invoked for the purpose of discovering A with VF and VI known. KIN might

return a complaint list consisting of items:

EI-KIN: KNOWN(T)
E2-KIN: KNOWN(D)
E3-KIN: KNOWN(D)ZAKNOWN(T)

If the reader desires a more detailed scenario of how these RALCMs interact to solve a mechanics

problem the sliding block problem presented in chapter 2 should be re-examined.
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. 5.3 Basic RALCM Syntax and Semantics
A detailed description of the syntax of RALCMs will be presented. It will be shown how the
semantics meet the conditions of the previous discussion. Some example RALCMs about physics
will be shown.
A RALCM definition consists of a list of specifications and a body:
(DEFINE-RALCM <name> <pattern> <variable |list> <body>)
<pattern> is a list of primary variables, upon instantiation these will be bound to values which will
be used in the expansion of variable meanings. The <variable list> consists of all tﬁe variables that
can pbssibly be bound into the data base. |
<variable list>: ({a, 7)) ..(a =)
The a, are the names of these variables and the r, their corresponding descriptions. A variable
description consists of a list whose first element is a type and the remaining elements, primary
variables. The types that will be dealt with in the examples of this chapter are:
(ACCELERATION object) |
(VELOCITY object time)
(DISTANCE surface)
(TIME timel time2)
(HEIGHT surface)
(BASE surface)
(ANGLEl1 surface)
(ANGLE2 surface)
The <body> is formed from é sequence of forms. Abstractly these forms are an unordered set of
nonconflicting pieces of knowledge about the variables. The forms can be considered in any order
or in parallel. IRALCM decides which of the fo(rms should be considered and in what order.
The most basic form relating variables is the EQUATION:
(EQUATION <name> <expression>)

<name> is a tag NEWTON will use to refer to this equation, if omitted, a name will be created of
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the form EOO0l. <expression> is an arithmetic expression in conventional LISP notation (or
using the well known abbreviations) expressing a mathematical relation between the variables.
Unless the <expression> contains an EQUAL (or =) it is assumed that <expression>=0. Usually
the equation has to be explicitly solved for the desired variable. If this form fails it returns a
complaint list just as a conventional RALCM would. We have already seen a simple kinematics
RALCM. As an another example consider a possible RALCM for a right triangle:
(DEFINE-RALCM RTRI (?TRIANGLE)
((H (HEIGHT ?TRIANGLE))
(L (BASE ?TRIANGLE))
(HYP (DISTANCE ?TRIANGLE))
(T1 (ANGLE1 ?TRIANGLE))
(T2 (ANGLE2 ?TRIANGLE)))
{EQUATION E1-RTRI
(= HYP (SORT (+ (x HH) (xL L))
(EQUATION E2-RTRI
(= (SIN T1) (// H HYP)))
(EQUATION E3-RTRI
(= (SIN T2) (// L HYP))))
It is possible to explicitly give a variable a value:
(VSETQ <variable> <expression>)
The VSETQ will fail back with a complaint list if any of the variables <expression> references
are not known. Knowledge about an ob ject moving along a straight line might be given by:
(DEFINE-RALCM STRAIGHT (?0BJECT ?SURFACE ?T1 ?T2)

(VSETQ A (x 8 G (SIN THETA)))
LN ] )

So if only the angle was given the acceleration could be deduced, but the angle could not be
computed given the acceleration. In the above case one would normally have used an EQUATION
but the example illustrates in what kind of role the VSETQ can be used. Shortcomings in the
mathematical expertise, which will be discussed later, will require it. The VSETQ can be used to
evade problems of redundancy. If the equation is unsolvable by the mathematical expertise, a

VSETQ can be used either to explicitly give NEWTON the solution or prevent it from trying to

solve something for which it does not have sufficient expertise.
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To reference another RALCM the RALCM form is used:
(RALCM <name> <instantiation-patterns)
<name> is the name of the referenced RALCM and <instantiation-pattern> a list of primary
variables deﬁcribing the scene which will become the name of that instantiation.

Local variables can be created by the FPROG form. The syntax of the FPROG is similar to

that of a DEFINE-RALCM definition: |
(FPROG <variable list> <body>)
In order to express dependence relations between assignments the FCOND form is used.
(FCOND (<condition> <body>)
(<condition> <body>))
Only the first <body> which has its corresponding <condi tion> met is considered.

A RALCM passes through two phases, an instantiation and a subsequent interpretation.
Dun’ng the instantiation process variable meanings are expanded. RALCMs can include forms
which are examined only at instantiation time. These forms can only reference the primary
variables. The purpose of these forms is to make simple deductions about the primary variables
and deposit their results in tertiary variables. Tertiary variables are prefixed by '’ and are treated
identically to primary variables except that they cannot appear in the instantiation pattern of the
RALCM.

The <condi tion>s of an FCOND are presumed to be evaluated at instantiation time. An
explicit instantiation time evaluation is effected by the EVAL statement:

(EVAL <variables> <b6dg>)
The <body> consists of a list of statements to be EVALed by LISP. The result of the EVAL
statement is the result that LISP returns. The <variables> is a list of primary and tertiary
variables which <body> references. Any changes that are made to these variables by <body>
during its evaluation by LISP becomes permanent. Aithough the RALCM is by no means a

procedure, at instantiation time it is scanned as though it were, executing the EV AL statements and
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<condi tion>s in the conventional LISP order. An EVAL is used within ENERGY to determine
the sign of the height difference:
(DEFINE-RALCM ENERGY (?0BJECT ?SURFACE ?T1 ?T2)
((vI (VELOCITY ?0BJECT ?T1) POSITIVE) -
(VF (VELOCITY ?0BJECT ?T2) POSITIVE)
(H (HEIGHT ?SURFACE) POSITIVE))
(EVAL (?PT1 ?PT2) (FETCH1 ' (AT ?0BJECT !>?PT1 ?T1))
(FETCH1 ’ (AT ?0BJECT !>?PT2 ?72)))
(FCOND ((FETCH ’ (HIGHER ?PT1 ?PT2))
(EQUATION (= (x VF VF) (+ (x VI VI) (x 28 G H)))))
((FETCH * (HIGHER ?PT2 ?PT1))
(EQUATION (= (x YF YF) (+ (x VI VI) (x -2 $ G H)))))))
The body of an EVAL can include arbitrary LISP expressions, but most commonly they are simple
requests of the data base. The basic primitives to access assertions from the data base have been
discussed in chapter 4. A ' "’ prefixing a pattern indicates that any forms within it which are
prefixed by a’,’ must have their current values substituted before the fetch is done.
Some minor modifications to the syntax of RALCMs will be introduced later as the need for

them becomes apparent.

5.4 An Implementation

The system as specified so far still has many unelaborated areas and many different
implementations are possible. In this section an implementation will be presented. This
impleméntation has many problems and some ideas will be presented later on how to improve it.

In order to use a RALCM it must first be instantiated. The instantiation process builds an
instantiation record so that later requests for variables can be handled. To instantiate a RALCM,
its primary and secondary variables are expanded and a collection of plans are constructed about
how to achieve the values for the secondary variables. As these plans are being built up, all the
necessary EVALs are done, including the <condition>s of FCONDs. These plans are built
recursively by invoking other RALCMs which are referenced through RALCM statements and
including their instantiation record in the final resulting plans. The resultant instantiation record

for a RALCM may then include plans for variables that were not even referenced in the RALCM.
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For example if the MASS-MOVEMENT RALCM were instantiated on a flat surface it would
return the following plan for (DISTANCE ?SURFACE)

(DEFINE-RALCM MASS-MOVEMENT (?0BJECT ?SURFACE ?T1 ?72)
((A (ACCELERATION ?0BJECT)))

(FCOND ((FETCH * (CONCAVITY ?SURFACE ZERO))
;if the surface is flat, try simple kinematics
(FPROG ((THETA (ANGLE1 ?SURFACE)))
(RALCM RTRI (?SURFACE))
(RALCM KIN (?0BJECT ?SURFACE ?T1 ?T72))
(VSETQ A (x G (SIN THETA))) )))
- (RALCM ENERGY (?0BJECT ?SURFACE ?T1 ?T2)))
ienergy Will work for arbitrary shapes
(DISTANCE ?SURFACE)
-> FPROG -> KIN -> E2-KIN
-> E3-KIN
-> RTRI -> E1-RTRI
-> E2-RTRI
-> E3-RTRI
This plan is read: in order to find (DISTANCE ?SURFACE) the FPROG must be entered, within
the FPROG KIN or RTRI can be used, within KIN the equations E2-KIN and E3-KIN mention
the desired variable and within RTRI EI-RTRI, E2-RTRI and E3-RTRI mention the distance.
(Although it is possible to EVAL the FCONDSs later and include them in the plan, no use for such
a construct has been found.) Once a RALCM is instantiated and the plans generated, the RALCM
itself is never scanned again. The resultant instantiation record is a 3-tuple: the primary variable
A-LIST, the secondary variable A-LIST and plans for every variable the RALCM and its
references might know something about.

Before delving into the details of how IRALCM uses these plans it should be noted that the
search through the plans is neither breadth first nor depth first. A crude complexity measure is
instituted to insure that the mathematical derivations obtained are not too inelegant.

IRALCM is invoked on an instantiated RALCM and a variable. The plan for that variable
is accessed from the instantiation record and is scanned tracing through the FPROGs and

RALCMs until the leaf nodes of equations are reached. Each such equation is examined to see

what other variables need to be known before that equation can be used. If other variables need to
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be known an AND complaint is constructed. After all the substatements of a statement have been
examined an OR complaint is constructed referencing all the complaints of the substatements (if the
substatements were all equations these would be all ANDs)." If the plan for (DISTANCE ?SURFACE)
were being éxamined. these complaints would be:

E2-KIN -> (AND VI A VF)

E3-KIN -> (AND VI A T)

KIN -> (OR (AND VI A D)
(AND VI A T))

This procedure continues scanning the plan tree returning an OR complaint whenever there was an
OR in the plan. |

That would be the description of IRALCM if complaints were not handled. In accordance
with earlier presented theory each complaint is scanned to see whether it can be resolved. In our
example KIN might try to resolve its complaint by attempting to find a value for VI by using El-
KIN.

KIN -> (OR (AND (OR VI (AND VF A T) A VF)
(ANO (OR VI (AND VF A T)) A T))

KIN would scan the entire complaint and make similar attempts to resolve A, T and VF. In the
actual implementation the names of the statements generating the complaint would be included so
that when values were discovered for the complained for variables it could also be used to indicate
how computation should continue. This, of course, raises the issue of which variable request in the
tree should be evaluated first when a value for a variable is discovered. If one were only interested
in a solution, the order of processing the requests would not matter, but if a simple and elegant
solution is desired, order is important. A crude complexity measure is used to order requests. The
complexity of request is the number of equations which have to be examined before that request
can ever be used in the final solution. The number of equations necessary to use a variable is
approximated by the number of ANDs appearing above it in the tree. This crude complexity
measure, although it fails to take into account the breadth of the tree, almost always succeeds in

finding the simplest quantitative solution.
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The same statement can be examined many different times for different variables. In fact,
the same statement can be examined many times for the same variable. In order to make this
reasonably efficient we would not like to scan a‘ statement more than once for any variable. The
problem with this strategy is that the complaint returned by a statement might depend on the
examination of the problem so far: an expression can only be used once and it does not make sense
to return a complaint containing a variable that is currently being searched for. One solution to
this problem is to ignore the examination of the problem so far and only when the complaint is
returned examine it for validity in light of the current examination of the problem. The same
strategy that is used to prevent trying to achieve the same goal twice is used to prevent infinite
recursion. Whenever a goal is started a check is made to determine if the goal has already been
attempted or is in the process of being attempted. [f the goal is started, a record is made of it. In
both cases a partially built up complaint is returned. The complaint then becomes a graph and no

longer a tree. The AND-OR graph for KIN with no knowns might be:

~
/@\

E1-KIN

E2-KIN E3-KIN...

®

Indicate same node
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This AND-OR graph might seem a little large but it essentially represents all the mathematical
relationships within KIN. It is independent of the examination of the problem so far and this
graph could just as well be a complaint for any of VF, VI, A, T or D.

As the complaint is now a graph, the estimation of the complexity of a request within it
becomes more difficult. Complexity is the depth of the minimum path from the top goal. Parts of
the graph may later be resolved causing some links to disappear and eliminating minimum paths;
thus, nodes are doubly linked so that whenever a node is deleted minimum paths that went through
that node have to be recomputed.

Another problem that arises is fortuitous discovery. Suppose part of the graph has been
generated and IRALCM, calculating elsewhere, discovers a value that the originally generated tree
requires. That discovery could result in a sequence of discoveries within the partially generated
graph possibly eliminating the point at which IRALCM is currently searching. The problem with
the obvious solution of just immediately popping out of the section being searched is that the
partial solution existing at the time is probably inconsistent. The partially existing graéh could be
used later if it could at least be made consistent. There are two options: (I) pop out destroying all
the partial results determined so far or (2) complete the search until IRALCM naturally pops out.
In the current implementation the latter approach is used because it is both easier to implement and
desirable to prevent recomputation of partial results (although the final result will be thrown a;way).

The possibility of using the same equation twice or of solving a variable in terms of itself
can be disregarded. Once an expression is used to obtain a value for a variable there need to be no
concern about using that expression again because using the expression once indicates that all the
variables it references are now known. Similarily an equation can not be used until all but one of
the variables it references are known; the case of solving for a variable in terms of itself never
arises.

On the surface the graph strategy may appear different than the theoretical outline we
initially presented for RALCMs. If we examine closely we see that it does satisfy the theoretical

principles. RALCMs attempt to solve the problem as much as they can within themselves and only
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when they completely fail is a composite complaint returned. The complaints are clear statements of
where the RALCM failed and includes information about how to proceed once its complaints are
satisfied. The same instantiation can be used to request values for many variables, even though it
might havebsucceeded in finding values for some of its variables. Furthermore, IRALCM keeps
track of all computations made so that the same computation is never repeated.

This strategy enables NEWTON to carry through the quantitative dnalysis for the sliding
block and the loop-the-loop problems of chapter 2. This implementation does have many problems
and some modifications will have to made to handle these. These problems and their solutions are

the topic of the subsequent sections.

5.5 Simultaneity and Redundancy

The implementation and the theoretical motivations for RALCMs presented earlier made one
subtle oversight. In both discussions it was implicitly assumed that every quantitative problem could
be solved by consequent reasoning alone. One way of looking at a VSETQ is as a consequent
theorem: if the variable of the VSETQ is desired the variables in the equation can be checked and
if they are not all known a complaint is generated which guides further search. An EQUATION is
really just a set of VSETQs for each of the variables it references. The EQUATIONSs and
VSETQs can then be considered as consequent theorems, the order in which these consequent
theorems are examined is carefully controlled by IRALCM. Nevertheless NEWTON encounters a
difficulty that ordinary consequent theorem provers also run into. The mathematics of the problem

establishes a set of constraints on the variables:

Fil% e X ) = 0

FoEaps - 1) = 0

Where m’ is different for each constraint. IRALCM is given a goal x, it then looks at all the f,
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which mention x. If for some f, all the other X, except x are known, f. can be used to derive x.
Otherwise for every f; which references x but also has unknowns %, IRALCM is applied recursively
to obtain values for these x, Some sets of equations cannot be solved with this strategy:

fi(xy) :xsy=0

fo(xy) :x%-3=0
Searching for x, f, and f, are candidates, f, and f, both require.y which in turn requires x so no
solution is possible.

Antecedent reasoning, such as EL <Sussman & Stallman, 75> uses, is not of any help here
either. In antecedent reasoning the goal is ignored and the constraints are scanned for any
constraint that has only one unknown; then that variable is solved for. This process is repeated
until no new discoveries can be made. If the desired variable is discovered the strategy sﬁcceeds.
Since neither f, nor f, meet the criteria antecedent reasoning fails. This problem of simultaneity is
a common problem with consequent or antecedent reasoning. EL solves the problem by arbitrarily
hypothesizing a variable, NEWTON will also hypothesize a variable but the determination of
Whether simultaneity is present and which variable to pick will be decided more carefully.

A graph is solvable by simultaneity if it contains a subgraph which (1) includes every
subnode of any AND, (2) contains one subnode of any OR, (3) includes the goal node, (4) uses every
equation only once and (5) every node is either explicitly known or has a derivation in the
subgraph. The last condition is perhaps the most crucial; essentially it insists that every variable

must be derivable from the others in the subgraph. The graph for f,and f
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One subgraph meeting the criteria is:

Once such a subgraph has been constructed it can be used to solve for the desired variable.

The subgraph criteria of the previous paragraph is a necessary but not sufficient for a
solution to exist. The most serious problem is that the criteria fail to detect redundancy. The
following derivation in MASS-MOVEMENT traces out an apparently solvable subgraph. The
desired goal is v, and v,=0 and @ is known (note that MASS-MOVEMENT applies only to a
straight segment).

E2-KIN: v,z = 2ad needsaand d

E1-MASS-MOVEMENT: a = g sin @ known

E2-RTRI: d =4/ stn @ needs 4

EL-KIN: h=(y2-02)/2¢

‘SINMULTANEITY: v, has a solvable graph
Solving the simultaneous system we get z)f2 - vfz. This problem which satisfied our criteria fails to
deliver any result. The difficulty is that the set of equations we are attempting to solve is
redundant. Within the MASS-MOVEMENT RALCM there are many other examples of
redundancies: the equations of RTRI and of KIN are redundant. Some collections of equations are
redundant in all circumstances and others are redundant only when certain conditions are met. We
have just seen an example of the latter. When equations are redundant only in certain

environments it is probably because one is in fact a special case of the other. E2-KIN is actually a
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special case of EI-ENERGY when MASS-MOVEMENT is applied to acceleration down an incline.
In order to indicate simultaneity a new RALCM language statement has been added:
(INDEPENDENT <integer> <egnl> ... <egnn>)

The <eqi> can either be normal EQUATION statements or they can be names of other equations.
These names can also reference equations in other routines. If the name is an actual RALCM name
all the equations of that RALCM are included in the INDEPENDENT statement one at a time (i.e.
that is not to say that they are necessarily redundant with each other). The <integer> indicates
the maximal number of equations that can be selected from within that set. On a straight segment
MASS-MOVEMENT should instantiate the statement (INDEPENDENT | KIN ENERGY)
indicating that one but not both of KIN or ENERGY should be used.

In the current implementation the redundancies are not actually examined when searching
for a solution. Redundancies only cause problems when looking for possible simultaneities so
knowledge about redundancies just adds another constraint to the algorithm that searches the graph
for possible simultaneities.

The problem of simultaneity is not a consequence of our particular representation; it is an
important property of mathematics and physics. Most of the basic laws of physics are simultaneous
so to deal with simultaneity extra redundant formulations of the laws are often introduced. The
resulting problem of recognizing redundancy is a difficult one. (Many a student has solved a
complicated set of equations and obtained the well known solution " 0 = 0.") After gaining some
familiarity with a domain the student learns to recognize which equations are redundant. The
recognition of which equations introduce redundancies in a problem involves knowledge about the

causal physical reasoning behind them. Unfortunately, since this kind of reasoning is poorly

understood, NEWTON is restricted to somewhat mechanical tests for simultaneity and redundancy.

5.6 Parameters and Elimination of Parameters
Strategies, similar to those used for recognizing simultaneity, can be used to deal with

parameters and more importantly recognizing their possible elimination. Sets of equations may, on
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the surface, appear to be unsolvable because some particular parameter is unknown, while the
unknown parameters drop out when the equations are actually solved. In other cases parameters
cannot be eliminated and a minimum number of parameters needs to be selected. Both of these
problems can be dealt with in the simultaneity recognizing procedure by relaxing some of the
constraints for acceptable subgraphs.
In the loop-the-loop problem the equation relating centripetal force and gravitational force

had to be solved for v,

El:fc-mvler

E2:f =mg

E3: El = E2
Superficially it appears that the mass m needs to be known, however, the equations are solvable for

v,.
v=(gr) /2

‘To recognize this possibility in a graph is quite simple. First, subgraphs containing leaf

nodes should be allowed. From all such subgraphs, every path from an unknown parameter should

eventually join with another (different) path from that same parameter. Each such join indicates

that the variable could possibly be eliminated at that join. In our example the partial graph would

look like:
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This is a very trivial example but similar situations arise time and again in physics problems.

One more interesting example appears in <Polya, 62> in the section where he deals with
puzzling counterexamples to the heuristic of first verifying whether the problem is reasonable or
not:

A man walked five hours, first along a level road, then up a hill, then he turned round and walked
back to his starting point along the same route. He walks 4 miles per hour on the level, 3 miles
uphill, and & downhill. Find the distance walked.

Polya points out that information about the nonlevel part seems to be lacking and thus appears to
be, on the surface, an unreasonable problem.

NEWTON would set up the following equations:

El:d=4¢, +4t2*3t306t4
E25 =1, styst e,
E:tjme,

E¢ 31,=61, \

The equations have a possibly solvable subgraph:

t4 although unknown may possibly be eliminated by EI. When the actual substitutions are done this

is found to be the case.
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With simultaneity the existence of the valid subgraph was only a necessary condition for a
solution to exist. This is even more the case with this strategy for elimination of parameters which
can only be eliminated by chance structure in the joining equation. The internal structure of the
equation is éompletely ignored.

The strategy to discover minimal sets of parameters when elimination attempts fail should

now be obvious. Just choose the subgraph with the minimum number of unknown parameters.

5.7 More Problems of Consequent Reasoning

" The solution of quantitative problems seems to require purposef:: :lirected search and thus is
amenable to consequent strategies. Consequent reasoning eventually follows every possible path
back from the goal. This often results in a proliferation of subgoals. The problem of proliferation
of computation is also present in antecedent reasoning. This proliferation is rarely a problem in
NEWTON since earlier planning has sufficiently reduced the search space.

From a global question the planning produced a plan of local steps each of which was easily
solvable. Other subproblems such as those concerning the geometry of the scene do not have the
benefit of similar planning. Without planning the entire problem is left to IRALCM. If the
subproblem involves a limited search space it does not matter whether planning is done or not. It
should not be surprising then that IRALCM may fail (compute excessively) for such problems.

The most obvious place this problem arises in the roller coaster world is in the computation
of heights. If the problem involves only one segment the computation is locally to restricted to the
RALCM (ie. RTRI) for that segment type. With computing heights between arbitrary points an
explosion of information can easily occur. The relations between heights of the points of the scene
are:

A(xy) = A(xz) + h(zp)
Where z ranges over all the known points.
That relation results in an incredible number of equations. If the scene contained n points

nC,, such equations result. Of these equations only C, are independent. One way to reduce the
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number of equations is to introduce a hypothetical point G to which all heights are measured. The
C,, equations are:

h(xy) = K(x,G) - h(y.G)
Note that this results in n - I equations for each A(x,G). The elimination of parameters procedures
can then be used to eliminate the heights to G. Suppose 4(CI,C2) = A and A(C2,C3) = B and
A(C1,C3) is desired. The following equations would be involved:

A= hCIG)- H(C2,G)

B = h(C2G)- KC30)

_ A(C1C3) = ACI1G) - H(C3,G)
All the heights relative to G can 5e eliminated leaving the result:
A(CIC3)= A+ B.

The heights of segments may not be known and need to be computed, which heights should
be attempted? The organization of IRALCM and the complexity measure it uses are inadequate. It
~ould attempt far too many irrelevant subgoals and find inelegant solutions. Planning must be
done before giving the problem to IRALCM. The solution to the general problem is ‘difficult,
fortunately this particular version of the problem has one simplification. The only experts
(RALCMs) that know about heights involve the two endpoints of one segment. Those are the only
subgoals worth generating.

In planning, the parameter elimination strategy is used before IRALCM invokes any of the
local segment experts. The parameter elimination can be used at any time in the problem solving
process except that in this case the exact points where that strategy fails to eliminate a variable can
be used to guide further analysis. In the usual use these failures are thrown away. The procedure
for finding a height is as follows: (1) the equations relating all the heights to G are set up, (2) the
strategy for elimination of parameters is applied and (3) minimal sets of necessary parameters that
could not be eliminated are set up as problems for IRALCM.

Consider another more natural strategy. The height between x and y is desired. Start with x.

Find all points points z for which A(x,z) is known and then try to find A(zy). Otherwise find the
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two points ad jacent to x and use the local experts to try to find the heights to these points. Instead
of immediately invoking the local experts the rest of the path should be computed, and then that
path requiring the least number of new heights should be attempted. This procedure is almost
isomorphic to the previous one. The parameter elimination procedure does the equivalent work of
searching for the z’s and then trying the local experts. The only difference is that the former
strategy can immediately deal with any other constraints immediately while the latter strategy must
generate its plan and then let IRALCM include the other constraints. (An example of another
constraint occurs in the case where the problem specifies that the sum of certain heights is a
constant) NEWTON currently uses the parameter elimination strategy, not really for any good

reason, only that it is easier to implement as the tools are already all there.

5.8 Multiple Roots and Contradictions

The mechanics problem is eventually reduced to specific equations to be solved. Not all the
information about the problem can be explicitly encoded in the equations, hence the mathematical
solving of the equations searches a larger less constrained space for solutions. The mathematical
equation solving then can generate solutions consistent with the equations it was given but
inconsistent with other constraints in the problem. Equation solving produces such muitiple
solutions when it generates multiple roots. In order to select the correct root the constraints of the
original problem have to be examined. This section deals with representing these constraints and
then shows how these same constraints can be put to other uses.

As an example consider the simple pro jectile problem:
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A person throws a ball into the air vertically (up or down). The ball is released at an initial velocity
v; and height . When does the ball hit the ground? |
The solution to this prdblem employs the kinematic relation:
d=vt+ll2at?
In this case d = -Aand a = -g: |
te(vt(2e2gh)'? g
Ignoring for the moment the physics of the situation we find that the simplification of this
expression is extremely difficult. It cannot even be determined whether the expression is a real
number. If we were told that v; was real, g > 0 and 4 > 0 then ¢ could be determined to be real.
There then are two possible real solutions: |
| t =0+ (02025 1) 12))
ty= (- 02+ 2g 1) 12) ) g

These correspond to the two physical solutions:
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From the problem we know that ¢t >0 so ¢ = ¢,
Any root selection problem involving a multiple number of roots can be handled by this

method. If, however, the inverse function has an infinite number of values a slightly different

strategy must be used. In a triangle we know that:

0 =arccos (b /1)

0

b

Without looking at the diagram the correct sheet of arccos cannot be chosen. From the diagram, €
must be acute, hence the correct sheet is determined. NEWTON tags the arccos according to which
sheet it lies.

NEWTON currently relies on a very simple and primitive strategy to handle these
difficulties. The strategy, although sufficient for most problems, would have to be substituted with
a general inequality handler. Each variable and expression within NEWTON can be tagged with a
range. Ranges can consist of a pair indicating what range the expression may assume:

v:(x.y)

If x <ythen x <v<y,if y<xthenv<yand v>xand if x = ythen v = x = y. The high end of
the range may be inf and the low range minf which have the obvious meaning within the above
inequalities. A range can also be imag indicating that it is a complex number. Otherwise x and ¥y
must be numbers. NEWTON contains procedures for performing arithmetic on ranges so that the
range of an expression can be deduced from the ranges of its subexpressions. Not all possible
ranges that can occur in an expression are expressible in the formalism. If the arithmetic is
indeterminate the range of the result is (minf . inf).

When a root must be selected the ranges of the desired result and each of the possible roots

are determined. The range of each root is intersected with the range of the desired result. Every
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root that results in a empty intersection can then be eliminated as a possibility. Assuming that v, is

negative in the first example NEWTON would have to choose (assuming that ¢ was not zero):

t: (0. inf)
t, : (minf. inf)
ty: (minf. 0)

NEWTON would select ¢t = t,. Already we see a weakness in our scheme, t, should have been
determined to be positive, this deduction relies on the fact that v, appeared in two places.

A similar process takes place in the case of other multivalued functions:

8 :(0.n/2)
arccos : (minf . inf)
A specialist procedure would examine the range for @ and tag the expression indicating the sheet
that should be used. The tag for arccos in the triangle case is 0:
@recosx = arccosyx + fn
Where:
“m/2<arccosx<n/2

Every function that NEWTON knows about which has an infinite number of roots must have an
expert associated with it which can determine from the imposed range what the appropriate sheet
should be. These currently are the trigonometric functions: arcsin, arccos, arctan, arccsc, arcsec.

NEWTON can be told explicitly when presented with the problem what the ranges of the
variables are. Even if a solution to a desired variable cannot be found, the ranges of the desired
variables may be determinable and that might be sufficient to disambiguate among the possibilities.
In the secondary variable list of RALCM definitions the range assumptions that are made are
explicitly stated. For example, RTRI asserts that all the angles of the triangle are acute.

If a new range conflicts with an old range or if no root satisfies the range of the target
variable a contradiction has occurred. This is the only place where a contradiction might be
discovered. Contradictions are artifacts of making faulty assumptions. One common source of such

contradictions is the elimination of plan steps. The elimination of plan steps often implies an



.78

assumption that the outcome is as desired. Remember that plan steps could only be eliminated if
later plan steps would detect their possible failure (i.e. probably detected as é contradiction).
Assumptions can also come from other sources. One simple example is MASS-MOVEMENT's use
of ENERGY. The implicit assumption is made that velocity reversal does not take place. The
RALCM KIN, on the other hand, can be organized to give contradictions or not. Without ranges
KIN would sometimes contradict and sometimes return a negative final velocity depending on what
the givens were. If the final velocity in KIN were given a positive range MASS-MOVEMENT
would always contradict if velocity reversal took place.

Question answering expertise uses such contradictions to disambiguate among the
possibilities. Often a contradiction is the desired outcome. If the desired outcome is at variance
with the actual outcome a global contradiction occurs. As we saw in chapter 4 such a contradiction
forces processing on an indefinite problem back to the pfevious choice point and a global

contradiction in solving a definite problem implies the originally posed problem was absurd.

5.9 Mathematical Expertise

The point at which physics knowledge stops and mathematical expertise begins is unclear.
Much of the material of the previous sections bordered on this rather nebulous boundary.
Nevertheless, it is important where that point is put in NEWTON. Furthermore, it is important to
note why that particular point should be chosen, for after all, could we not have just given the
collection of all relevant equations to MACSYMA and Just let it solve the problem. In this section
we shall endeavor to show that such a solution is not possible. One fundamental reason is just the
recognition of relevant equations is very difficult. Another reason is that MACSYMA as it now
exists is incapable of doing what we would want of it. MACSYMA is a collection of operators on
mathematical expressions designed to be used interactively to solve problems, it is not a stand alone
problem solver. The final reason, which determines the precise point of the boundary between
mathematical expertise and knowledge about physics, concerns the design of MACSYMA itself: it

is too large and some of the hooks and routines that we would desire are not present. In this section
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we will elaborate these réasons, but first we will describe exactly what kind of mathematical
expertise the current implementation relies on.

The most basic piece of mathematical expertise is simplification. When values and equations
are substituted into other equations the resultant equation needs to be simplified to eliminate
unnecessary variables and expressions. The crucial properties that NEWTON relies on in the
simplifier are:

(1) That irrelevant variables be eliminated. (eg. ¢ = x + I - x is independent of x so it should not
appear in the simplified expression.)

(2) That if the expression contains only constants that the simplification process result in a single
constant.

(3) The structure of the expression be modified to a form convenient for pattern matching,
particularly for SOLVE.

NEWTON currently uses the general simplifier SIMP from MACSYMA and does not use

RATSIMP or RADCAN. This simplifier cannot of course meet even the first criteria in the

general case, however, it is sufficiently powerful for most of our mechanics problems.

The other piece of mathematical expertise that NEWTON relies on is the ability to solve a

single equation for a variable. SOLVE depends critically on the simplifier SIMP. The same

SOLVE is used for the mathematical manipulation required in simultaneity. SOLVE empioys the

MACSYMA pattern matcher SCHATCHEN <Moses, 67> to match for the possible patterns that
can arise. SCHATCHEN is used to match for quadratics and linears in common expressions.
SOLVE also knows about all the trigonometric functions and exponentials. SOLVE employs the
strategies of the previous section to select appropriate roots.

Currently that is the.sum total of NEWTON's mathematical expertise. If the expertise fails
NEWTON can often reformulate the problem and resubmit it to SOLVE, but more commonly it
Just gives up. The reasons why more mathematical expertise was not used in NEWTON will now

be outlined.

The single most important contribution of the RALCM organization is their encoding of the
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appropriate dependencies and equations. Of the necessity of encoding such knowledge there is no
doubt. The RALCMs also perform the crucial task of assigning the cﬁrrect names to the variables
$0 that no undesired conflicts and alil desired coincidences occur. The first point at thch there can
then be an ‘argument about where mathematical expertise could be used is after ail the relevant
equations have been recognized and instantiated.

At that point MACSYMA's ALGSYS could have been called to solve the problem. There
are many ob jections to this. On the theoretical side it violates some of the basic design tenets of the
RALCMs. There is no longer any sense of the local use of knowledge or of the originally intended
control structure. The issues of complexity are lost as we no longer even know which equations
were used in the derivation of the solution. On the practical side giving such a vast collection of
equations would be extremely inefficient. ALGSYS is unable to deal with redundancy in the way
NEWTON wants, nor is it able to generate any kind of complaints. ALGSYS does not contain the
appropriate ability to select the correct root or attempt to eliminate parameters. It does, however,
deal with the problem of simultaneity. |

~If we then agree not to use ALGSYS on the total problem and consider it only on single
variable subproblems many of the same problems reappear. Also the routines MACSYMA uses to
solve for even a single variable are so large as to be unwieldly. The problem of simultaneity is still
with us and ALGSYS cannot be used for that either. Not any collection of equations is
simultaneous and hence using ALGSYS to detect simultaneity would be extremely inefficient. If
simultaneity is detected it would be inappropriate since the strategy, as a consequence of detecting
the simultaneity, returns a graph which describes how the system of equations can be solved in
terms of single step SOLVESs.

This leaves us with the necessity for a single variable SOLVE which relies on the
MACSYMA simplifier and pattern matcher. Although the general simplifier is the weakest of the
MACSYMA simplifiers, it is relatively small and self-contained. It will sometimes fail, but even the
most powerful MACSYMA simplifiers cannot simplify some the expressions NEWTON generates.

This discussion should not be taken as an indictment of MACSYMA. As was noted in the
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beginning of this section MACSYMA was designed to provide operators on mathematical
expressions. It assumes that these operators can be treated as black boxes and are not designed with
the extra hooks that NEWTON needs. MACSYMA does not know about either mathematics or
physics. NEWTON knows about mechanics and wants to solve specific mathematical problems and
to solve these problems it needs some knowledge about mathematics. Unfortunately, to be able to

use the more powerful routines of MACSYMA it needs knowledge both about MACSYMA and

about mathematics.

5.10 Some RALCMs for Mechanics

s This RALCM knous the velocity and position of the object
imoving on the surface, it is however completely
signorant of the possibility of flying off.
(DEFINE-RALCM MASS-MOVEMENT (?0BJECT ?SURFACE ?T1 ?T2)
((A (ACCELERATION ?0BJECT)))
(EVAL (?0BJECT 2?72 ePOINT)
(FETCH1 " (AT ,?0BJECT !>ePOINT ,?T2)))
(FCOND ((PRESENT (CONCAYITY ?SURFACE ZERO))
;if the surface is flat, try simple kinematics
(FPROG ((THETA (ANGLE1 ?SURFACE) ACUTE))
(RALCM RTRI (?SURFACE))
(RALCM KIN (?0BJECT ?SURFACE ?T1 ?T2))
(FCOND ((PRESENT (HIGHER ?SURFACE !>NIL ePOINT))
(EQUATION
(= A (x 8 G (SIN THETA)))))
((PRESENT (HIGHER ?SURFACE ePOINT !>NIL))
(EQUATION
, (= A (x -1 8 G (SIN THETA)))))))))
(FCOND ((EVAL (eEXPERT @TYPE aPOINT ?SURFACE ?T2 ?0BJECT)
(FETCH1 " (TYPE , ?SURFACE !>eTYPE))
(FETCH1 " (AT ,?0BJECT !>ePOINT ,?T2))
(SETQ eEXPERT (GET @TYPE 'PARAMETEREXPERT)))
(RALCM @EXPERT (?SURFACE ePOINT))))
(RALCM ENERGY (?0BJECT ?SURFACE ?T1 ?T2)))
senergy wWill work for arbitrary shapes

;This RALCM knous about the principle of conservation of energy
; from a global perspective.
(DEFINE-RALCM GLOBAL-ENERGY (?0BJECT ?T1 ?T2)
((VI (VELOCITY ?0BJECT ?T1) PQSITIVE)
(VF (VELOCITY ?0BJECT ?T2) POSITIVE))
(EVAL (ePT1 ePT2 ?0BJECT ?T1 ?T72)
(FETCH1 " (AT ,?0BJECT !'>ePT1 ,?T1))
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(FETCH1 " (AT ,?0BJECT !1>ePT2 ,?T2)))
(FCOND ((ORDER ePT1 &PT2)
(FPROG ((H (HEIGHT ePT1 @PT2))) ‘
(EQUATION
(= (x VF VF) (+ (x VI VI) (x 8 G -2 H))))))
((ORDER ePT2 aPT1)
(FPROG ((H (HEIGHT ?PT2 ?PT1)))
(EQUATION :
(= (x VF YF) (+ (x VI VI) (x 8 G 2 H))))))))

3 This RALCM references knowledge about the local geometric relationships.
(DEFINE-RALCM LOCALHEIGHT (?SURFACE)
NIL
(FCOND ((PRESENT (CONCAVITY ?SURFACE ZERO))
(RALCM RTRI (?SURFACE)))
((EVAL (eEXPERT eTYPE @POINT ?SURFACE)
(FETCH1 " (TYPE ,?SURFACE !>eTYPE))
(FETCH1 " (HIGHER , ?SURFACE !>ePOINT I>NIL))
(SETQ eEXPERT (GET eTYPE *PARAMETEREXPERT) ) )
(RALCM @EXPERT (?SURFACE @POINT)))))

3 This RALCM knous about the principle of conservation of energy
;s from a local perspective.
(DEFINE-RALCM ENERGY (?0BJECT ?SURFACE ?T1 ?T2)
({VI (VELOCITY ?0BJECT ?T1) POSITIVE)
(YF (VELOCITY ?0BJECT ?T2) POSITIVE)
(H (HEIGHT ?SURFACE) POSITIVE))
(EVAL (ePT1 ePT2 ?0BJECT ?T1 ?T2)
(FETCH1 " (AT ,?0BJECT !>ePT1 ,2T1))
(FETCH1 " (AT ,?0BJECT !>ePT2 »?272)))
(FCOND ((PRESENT (HIGHER ?SURFACE ePTl ePT2))
(EQUATION (= (x YF VF) (+ (x VI VI) (x 2 8G H))I))
((PRESENT (HIGHER ?SURFACE ePT2 ePT1)) :
(EQUATION (= (x VF YF) (x VI VI) (x =2 8$GHNNIN

3 This RALCM knous about the relationships that hold within a right triangle.
(DEFINE-RALCM RTRI (?TRIANGLE)
((H (HEIGHT ?TRIANGLE) POSITIVE)
(L (BASE ?TRIANGLE) POSITIVE)
(HYP (DISTANCE ?TRIANGLE) POSITIVE)
(T1 (ANGLEL ?TRIANGLE) ACUTE)
(T2 (ANGLE2 ?TRIANGLE) ACUTE))

(INDEPENDENT 2
(EQUATION (= (+ T1 T2) (// 8 pi 2)))
(EQUATION (= (TAN T1) (// H L)))
i definition of tangent
(EQUATION (= (TAN T2) (/7 L H)))
: definition of tangent '
(EQUATION (= HYP (SQGRT (+ (x H H) (xL L)))))

i pythagorean theorem
(EQUATION (= (SIN T1) (// H HYP)))
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s+ definition of sine
(EQUATION (= (SIN T2) (/7 L HYP)))))
;s definition of sine

;This RALCM contains the three well known kinematic equations
(DEFINE-RALCM KIN (?0BJECT ?SURFACE ?T1 ?T2)
({(VF (VELOCITY ?0BJECT ?T2))
(VI (VELOCITY ?0BJECT ?T1) POSITIVE)
(D (DISTANCE ?SURFACE))
(T (TIME ?T1 ?T2) POSITIVE)
(A (ACCELERATION ?0BJECT}))
(INDEPENDENT 2 '
(EQUATION (= VF (+ VI (x A T))))
(EQUATION (= (x VF VF) (+ (x VI VI) (x 2 A D))))
(EQUATION (=D (+ (x VI T) (x .5A T T))))))

s ZERO-POINT tries to calculate the point
3at which the force on the object becomes zero and leaves the sur face
3?T2 is a hypothetical time and not necessary equivalent to
send of ?SURFACE
(DEFINE-RALCM ZERO-POINT (?0BJECT ?SURFACE ?T1 ?T2)
( (NORMALF (FORCE ?0BJECT ?SURFACE ?T2)))
(EVAL (eSPLITPOINT @SURFACE ePOINT ?0BJECT ?T1 ?T2)
(FETCH1 " (AT ,?0BJECT !>eSPLITPOINT ,?T2))
(FETCH1 " (AT ,?0BJECT !>ePOINT ,?T1))
(FETCH1 " {!>eSURFACE SEGMENT ,ePOINT ,eSPLITPOINT)))
(EQUATION (= NORMALF 8)) A
(RALCM SPLIT-SURFACE (?SURFACE e@SPLITPOINT))
(RALCM NORMALF (?0BJECT ?SURFACE ?T2))
(RALCM ENERGY (?0BJECT @SURFACE ?T1 ?T2)))

;s This RALCM knows how to set up an equation
s for the normal force.
(DEFINE-RALCM NORMALF (?0BJECT ?SURFACE ?TIME)
((Vv (VELOCITY ?0BJECT ?TIME) POSITIVE)
(NORMALF (FORCE ?0BJECT ?SURFACE ?TIME)})
(EVAL (eEXPERT aTYPE ePOINT ?SURFACE ?TIME ?0BJECT)
(FETCH1 " (AT ,?0BJECT !>ePOINT ,?TIME))
(FETCH1 " (TYPE , ?SURFACE !>eTYPE))
(SETQ eEXPERT (GET e@TYPE °'PARAMETEREXPERT)))
(RALCM eEXPERT (?SURFACE @POINT))
(FPROG ((THETA (ANGLE ?SURFACE ePOINT) ACUTE)
(R (CURVATURE ?SURFACE ePOINT) POSITIVE))
(EQUATION
(= NORMALF
(+ (/7 (x -1 Y V) R) (x 8 G (COS THETA)))))))

iThis RALCM is the canonical parameterization for a circle
(DEFPROP CIRCLE CIRCLE PARAMETEREXPERT) _
i The ?POINT can be an endpoint of the ?SURFACE or some other point
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3in betueen the endpoints.

(DEFINE-RALCM CIRCLE (?SURFACE ?POINT)
( (CURYATURE (CURVATURE ?SURFACE ?POINT) POSITIVE)
(RADIUS (RADIUS ?SURFACE) POSITIVE)
(THETA2 (ANGLE ?SURFACE ?POINT) ACUTE))

;The radius of curvature for a circle is fixed and equal to the radius
(EQUATION (= RADIUS CURYATURE))

;All paramterizations have their initial point at the lowest point
(EVAL (@SEGMENT @START ?POINT ?SURFACE)

(FETCH1 " (HIGHER , ?SURFACE !sNIL !>a@START))
(OR
(FETCH1 " (HIGHER !>@SEGMENT » ?POINT ,@START))
(SETQ eSEGMENT ?SURFACE)))
;Using this initial point, other quantities can be determined.
(FPROG ((THETA1 (ANGLE ?SURFACE @START) ACUTE)
, (HEIGHT (HEIGHT @SEGMENT) POSITIVE))
$1Since heights are always positive.
(FCOND ((PRESENT (CONCAVITY ?SURFACE PLUS))
(EQUATION
(= HEIGHT
(x RADIUS (+ (COS THETAL) (x -1 (COS THETA2))))))
((PRESENT (CONCAVITY ?SURFACE MINUS))
(EQUATION

(= HEIGHT
(x RADIUS (+ (COS THETA2) (x -1 (COS THETA1))))))1)))))

s SPLIT-SURFACE sets up some of the relations that
sneed to be present when a segment is gplit.
(DEF INE-RALCM SPLIT-SURFACE (?SURFACE ?SPLITPOINT)
((HS (HEIGHT ?SURFACE) POSITIVE))
(EVAL (eBOTTOM eTOP @SURFACEL @SURFACE2 ?SURFACE ?SPLITPOINT)
(FETCH1 " (HIGHER , ?SURFACE !>eTOP 1>eBOTTOM))
(FETCH1 " (HIGHER !>eSURFACE1 ,@TOP , ?2SPLITPOINT))
(FETCH1 *(HIGHER !>eSURFACE2 » ?SPLITPOINT ,eBOTTOM)))
(FPROG ((HS1 (HEIGHT eSURFACE1) POSITIVE)
(HS2 (HEIGHT @SURFACE2) POSITIVE))
(EQUATION (= HS (+ HS1 HS2)))))

5.l1 Critique

Many of the previous sections of this chapter can be considered as criticisms of the original
theory in that they described patches to the theory rather than a basic solution. Notwithstanding
these criticisms and those that follow, the organization as outlined does actually function correctly.
The criticism really is that the way it functions is fundamentally .incorrect and that this leads to
problems of inefficiency and communication with other knowledge.

Once a collection of RALCMs has been used to solve a problem the FCONDSs that were met
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can be used as tests to detect whether the same problem is being solved again. Thus a problem
type, once solved, need never be solved again. There is no fundamental reason this was not done in
NEWTON other than that this research was not interested in this simple kind of learning. The
observation does, however, point to a more interesting problem.

Suppose a RALCM is invoked with all its secondary variables unknown. This RALCM will
return a. general complaint involving all possible variables. Once such a complaint has been
generated the RALCM need never again be searched. Invoking the RALCM on different purposes
merely means that different top nodes will be returned, but the graph this node points to can always
be the same. Every time the RALCM is invoked this prototype complaint can be simplified
according to the variables that are currently known and the resultant complaint or success indication
returned. The general complaint expresses the dependencies between the equations and variables of
the RALCM in a graph form. Hence NEWTON should compile the RALCMs into the general
prototype complaint when the RALCM is read in and this graph searched instead of the original
awkward linear formulation of the dependencies.

Suppose RTRI were invoked without having any secondary variables known. Currently
IRALCM would search through all of its equations ignoring the well known fact that at least three
quantities about a triangle need to be known before it is uniquely determined. The compilation of
the previous paragraph partially resolves this problem in that a complaint is immediately returned
asking for any of the other variables. It still, however, does not contain the fact that three facts
about a triangle have to be known before it can be solved for.

With such modifications simultaneity and redundancy become problems; however, they need
re-examination anyway. The way IRALCM is currently structured it checks for simultaneity only as
a last resort. These checks should take place while the problem ‘is being solved, but that would
introduce incredible inefficiency in the solving process.

All these problems are symptoms of the basic flaw in IRALCM. This thesis has advocated
planning, yet once a problem is posed to IRALCM no more planning is done. Basically we have

built a routine which takes a set of equations and grinds them within a black box isolated from the
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rest of NEWTON. It is not surprising then that IRALCM encounters many difficulties. IRALCM

should plan using the qualitative meaning of the equations and not use some uniform procedure to

grind equations.
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6.0 NEWTON SCENARIOS
6.1 Posing the Question
This chapter consists of a series of scenarios of NEWTON solving problems. Among those
problems solved are the two examples from chapter 2. |
The problem is posed to NEWTON through a DEFINE-PROBLEM statement.
(DEFINE-PROBLEM name forml form2 ...)
The name gives the problem a tag by which it can be referenced. The subsequent forms either
provide information about the problem or are requests to answer questions.
One ma jor part of the problem presentation is the description of the scene for the envisioner.
This is given by the SCENE form:
(SCENE descriptorl descriptor2 ...)
The descriptors are those developed for SEGMENT and CORNER in the chapter on envisioning.
A segment is described:
(name SEGMENT highpoint loupoint type concavity parity)
The parity has no theoretical significance, NEWTON uses it to keep track of right and left
internally. A corner is described by:
(name CORNER pointl point2 slopechange)
The scene for the sliding block problem is described:
(DEFINE-PROBLEM SLIDING-BLOCK
(SCENE
(C1 CORNER x S1 -1)
(S1 SEGMENT C1 C2 INCLINE PLUS 1)
(C2 CORNER S1 S2 8)
(S2 SEGMENT C3 C2 INCLINE PLUS 1)
(C3 CORNER S2 S3 @)

(S3 SEGMENT C4 C3 INCLINE ZERO 1)
(C4 CORNER S3 x -1))

.0.)

To place the ob ject in the scene the PLACE form is used:

(PLACE location contact position direction)

In our example:
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(PLACE C1 ON ABOVE 27)
To give values to a variable the ASSIGN form is used:
(ASSIGN variable value)
In the particular version of the sliding block problem presented here the ob ject will make it to the
straight section but will be unable to traverse it:

(ASSIGN (HEIGHT S1) 2)
(ASSIGN (HEIGHT S2) 1)
(ASSIGN (BASE S3) 2)

(ASSIGN (ANGLE1 S3) 1)

The QUERY form can be used to ask qualitative questions. To ask whether the ob ject makes it to a

particular position:

(QUERY (REACH C4))

These are the basic forms used to pose the problem, more will be introduced as new problems are

discussed.

6.2 The Sliding Block Problem

* The previous section outlined the complete presentation of the problem:

(DEF INE-PROBLEM SLIDING-BLOCK

(SCENE
(C1 CORNER x S1 -1)
(S1 SEGMENT C1 C2 INCLINE PLUS 1)
(C2 CORNER S1 S2 @)
(52 SEGMENT C3 C2 INCLINE PLUS 1)
(C3 CORNER S2 S3 8)
(S3 SEGMENT C4 C3 INCLINE ZERO 1)
(C4 CORNER S3 x -1))

(PLACE C1 ON ABOVE Z)

(ASSIGN (HEIGHT S1) 2)

(ASSIGN (HEIGHT S2) 1)

(ASSIGN (BASE S3) 2)

(ASSIGN (ANGLE1 S3) 1)

(QUERY (REACH C4))

If NEWTON was explicitly told that the point C4 was higher than the point Cl the
envisioning would deduce that C4 was unreachable. Let us assume that this information, which

might have been deducible from the diagram is not given.
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We have already seen the envisionment for this problem. As a reference, the diagram will be

given again.

C4
C1 S3
St C3
S2
C2

The initial unpruned plan implied by this envisioning is a SLIDE-SLIDE ambiguity on S2 and S3.
A global expert infers that fhe first step of the plan is unnecessary. NEWTON then invokes the
QA for a SLIDE-SLIDE ambiguity on S3. This QA instantiates the MASS-MOVEMENT
RALCM with a request for the final velocity, this results in instantiations of ENERGY, KIN and
RTRI. The QA fails and complains back. One of the complaints is that the initial velocity on S3
is unknown and the QA now tries to solve for that variable. Because the initial velocity at Cl is
known, the global energy strategy which requires the height difference between Cl and C3 is
attempted. This height is easily computed from the givens, the original MASS-MOVEMENT
RALCM returns with a contradiction and this results in the global contradiction that C4 is not
reachable.

NEWTON prints out a trace of its analysis as it solves the problem. From the discussion of
the previous paragraph this trace should be easily interpretable and explanations will be added in
italics wherever necessary. ‘

First the envtstonment is done and the assignment of times to
points is added to the data base:

(AT X C1 T71)

(AT X S1 T178)

(AT X C2 T69)

(AT X S2 T68)

(AT X C3 T87)

(AT X S3 T66)

(AT X Cé4 T65)

Attempting to determine if C4 is reachable:; plan:
S2 QA-SLIDE-SLIDE
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S3 QA-SLIDE-SLIDE

Deleting plan step: QA-SLIDE-SLIDE S2

Global height expert invoked for HEIGHT-C1-C4

T he global hetght expert constructs a RALCM which it will tnstantiate:
BEFINE-RALCM: HEIGHTS

ODEFINE-RALCM: BASICHEIGHTS

Instantiating HEIGHTS on NIL

Instantiating BASICHEIGHTS on NIL

1l plans for HEIGHT-C1-Cé& discovered.
PLAN:HEIGHT-S3

Attempting plan # 1

A RALCM is being tnvoked from a QA:

Attempting to find a value for (HEIGHT S3) in LOCALHEIGHT (S3)
Instantiating LOCALHEIGHT on (S3)

Instantiating RTRI on (S3)

IRALCM finds a path to a variable:

Solution found for HEIGHT-S3

Note that HEIGHT-S3 and (HEIGHT S3) are equivalent.
Solution found for HEIGHT-C3-GROUND

Solution found for HEIGHT-C2-GROUND

Solution found for HEIGHT-C1-GROUND

Solution found for HEIGHT-C1-Cé

IRALCM does not start solving the equations until it has found a
complete path to the goal.

Equation B153 from RALCM RTRI -»

HEIGHT-S3 = 2 TAN(1)

The RALCMs that NEWTON uses do not have names on their EQUATIONS

30 IRALCM has created names such as Bi53 for them.

Equation B288 from RALCM BASICHEIGHTS -»>

HEIGHT-C3-GROUND = HEIGHT-C4-GROUND - 2 TAN(1)

Equation B2@9 from RALCM BASICHEIGHTS -»

HEIGHT-C2-GROUND = HEIGHT-C4-GROUND - 2 TAN(1) -1

Equation B218 from RALCM BASICHEIGHTS ->

HEIGHT-C1-GROUND = HEIGHT-C4-GROUND - 2 TAN(1) + 1

Equation B283 from RALCM HEIGHTS -»>

HEIGHT-C1-C4 = 2 TAN(1) - 1

Now that the global height difference has been determined

the princtple of conservation of energy can be used to

calculate the velocity.

Attempting to find a value for (VELOCITY X Te65) .
in GLOBAL-ENERGY (X T71 T65)

Instantiating GLOBAL-ENERGY on (X T71 T165)
Solution found for VELOCITY-X-TBS5
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Equation B126 from RALCM GLOBAL-ENERGY -»>

Ranges on variable VELOCITY-X-T65 result in contradiction
T he veloctty has been determined to be imaginary and that

is a contradictory value for a veloctty.

The object fails to make the desired choice on or before S3

6.3 The Loop-the-loop Problem
Before discussing the loop-the-loop problem which was first presented in chapter 2, let us

examine how a simpler problem might be posed to NEWTON.

.

R=1

An ob ject moving at velocity v = g along the underside of a circular surface as indicated in the
diagram. The surface has a unit radius, will the ob ject fall of f?
NEWTON must be presented the description of the circular section. The information in the
SCENE form remains unchanged, however the ASSERT form is used to communicate facts such as
whether the surface is circular or not.
(ASSERT datum)
NEWTON has knowledge at various levels about some standard kinds of two dimensional curves.
Currently NEWTON understands circles and orthogonally oriented parabolas. All NEWTON
needs to understand a curve is its RALCM and the problem statement can easily include a RALCM
definition to describe any given curve. The fact that a curve is of a type about which NEWTON
knows something about is communicated by asserting (TYPE surface type) iﬁ an ASSERT form.
To indicate that the surface S is a circle:
(ASSERT (TYPE S CIRCLE))

Two important facts about how NEWTON represents certain variables are necessary to be

able to give it quantitative information about shapes. The tangent angle of a curve is given by an

ANGLE variable. The angle must always be acute, being the positive acute angle between the
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tangent and the horizontal. If no such angle is formed, it is assumed to be 0. Information provided
within the SCENE form for that section of curve can be used to determine the angle of the tangent
in some absolute coordinate scheme (e.g. if one wants to distinguish between positive or negative or
measure cloékwise rotation from positive horizontal axis). Usually an ANGLE variable references
the point at which the angle is measured and the name of the surface it is a part of:
(ANGLE surface point)
For a flat segment this angle is constant so the point specification can be ignored:
(ANGLE surface)

Within NEWTON heights are always positive. To determine the difference in heights
between two points the HEIGHT variable gives the magnitude of this height difference and
assertions in the data base (usually added by the SCENE form) are used to determine the correct
sign of this quantity. HEIGHT variables have three different formats.

(HEIGHT surface)
This gives the height difference between the top and bottom points of the surface.
(HEIGHT surface point)
This gives the height from the bottom of the surface to the given point.
(HEIGHT pointl point2)
This gives the magnitude of the height between the two points. These forms are never used
- interchangeably; the form with the least number of references to points is always used. The latter
form is the most general, but if the two points lie on the same segment and one point was an
endpoint one of the other two forms are used. If both points are endpoints the first form is used.
The simple problem we have been discussing would be posed as follows:
(DEFINE-PROBLEM SIMPLE-CIRCLE
(SCENE (C1 CORNER x S1 -1)
(S1 SEGMENT C1 C2 INCLINE NEGATIVE 1)
(C2 CORNER S2 x -1))
(PLACE C1 ON BELOW D)
(SEQUENCE (?INITIAL C1))
(ASSERT (TYPE S1 CIRCLE))

(ASSIGN (ANGLE S1 C1) 8)
(ASSIGN (ANGLE S1 C2) 8 P1/2)
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(ASSIGN (RADIUS S1) 1)

(ASSIGN (VELOCITY X ?INITIAL) 8 G)

(QUERY (FALL-OFF)})
This simple instance of the SEQUENCE form binds a temporary variable so that the VELOCITY
variable which references an as yet unknown time variable can be given a value. Later we shall see
more sophisticated uses of this form.

To describe a scene like that for a roller coaster a large number of assertions have to be
made to describe just the circle. The radius for each section must be individually given, the angle
at each end of each segment must be given and each segment must be explicitly given a CIRCLE
type. In order to express the problem in a more convenient way NEWTON contains a procedure
for automatically compiling the assertions for a circle. Just as there is a primitive for SEGMENT
and CORNER there is a primitive SCENE descriptor called CIRCLE. It is important to note that
the CIRCLE primitive merely expands into its constituent SEGMENTSs and CORNERS adding the
correct assertions to the data base. The circle primitive for the SCENE form is given as:

(name CIRCLE anglel cornerl
angle2 corner?2
concavityl clockuise parity points radius)

The angle and corner parameters describe the initial and final corners and the tangents at those
points. The concavi tyl indicates that initial concavity of the curve. The clockuise flag
indicates whether the circle is drawn clockwise or counterclockwise from its starting point. The
parity has its usual meaning. Points gives the number of quadrants of the circle that will have
to be generated and the radius gives the radius for the entire circle. The description of the simple
circle problem we have been considering can now be reduced to:
(DEFINE-PROBLEM SIMPLE-CIRCLE
(SCENE (C CIRCLE 8 (C1 CORNER x ?§ -1)
$ PI/2 (C2 CORNER ?S x -1)
NEGATIVE T1 1 1.9))
(PLACE C1 ON BELOW D)
(SEQUENCE (?INITIAL C1))
(ASSIGN (VELOCITY X ?INITIAL) 8 G)
(QUERY (FALL-OFF)))

The ?S variable indicates a slot that must be filled in by the CIRCLE macro as it creates the names
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of the segments that make up the circle.

We are now ready to see how the loop-the-loop problem could be posed:

(DEF INE-PROBLEM LOOP-THE-LOOP

(SCENE (C1 CORNER x S1 -1)

(S1 SEGMENT C8 C1 INCLINE PLUS 1)
(C CIRCLE 8 (C2 CORNER S1 7S 9)
B8 (X CORNER ?S x -1)
POSITIVE NIL 1 4 R))

(PLACE C1 ON ABOVE 2)

(ASSIGN (HEIGHT S1) x)

(QUERY (REACH X)))
The radius parameter of the CIRCLE primitive expands into a sequence of ASSIGN forms for the
radius. The value parameter for the ASSIGN form need not be a number. Any expression
appearing as the value is assumed to be a constant. So that in (ASSIGN (RADIUS C) R) the R is
assumed to be a constant and NEWTON will never attempt to obtain a value for it unless explicitly
asked to. The only possible advantage of using such a construct is to inform NEWTON that two
(perhaps separated) circular segments have the same radius. That fact may result in substantial
simplifications in the problem. The value can also be 'x’ indicating that this is a boundary
condition which must be resolved for. When NEWTON interprets the later QUERY form any
attempt to disambiguate between goals which fails because of '’ variables being unknown is
assumed to have a positive outcome. The constraint that the positive outcome has on the ’x'
variables is remembered as it is the constraints themselves which are the most interesting in such a
problem. .

The following is a trace of NEWTON solving the problem. Refer to the trace for the

sliding block problem for more details.

(AT X C1 T188)
(AT X S1 T199)
(AT X C2 T798)
(AT X S33 T97)
(AT X P25 T36)
(AT X S34 T95)
(AT X P26 T394)
(AT X S35 T93)
(AT X P27 T1392)
(AT X S36 T91)
(AT X C6 T9@)
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Attempting to determine if C6 is reachable; plan:
S33 QA-SLIDE-SLIDE

S34 QA-FALL-SLIDE

S35 QA-FALL-SLIDE

Deleting plan step: QA-SLIDE-SLIDE S33

Oeleting plan step: QA-FALL-SLIDE S35

Attempting to find a value for (FORCE X 534 T94) in NORMALF (X S34 T94)
Instantiating NORMALF on (X S34 T94)
Instantiating CIRCLE on (S34 P26)

Solution found for CURVATURE-S34-P28

NEWTON realizes that the velocity is required and it tries

to compute the global hetght. Note that NEWTON did not make
any tnferences about the hetght of the ctrcle when it read

the problem.

DEFINE-RALCM: HEIGHTS

DEFINE-RALCM: BASICHEIGHTS

Instantiating HEIGHTS on NIL

Instantiating BASICHEIGHTS on NIL

1 plans for HEIGHT-C1-P26 discovered.
PLAN:HEIGHT-S34 HEIGHT-S33

Attempting plan # 1

Attempting to find a value for (HEIGHT S34) in LOCALHEIGHT (S34)
Instantiating LOCALHEIGHT on (S34)

Solution found for HEIGHT-S34

Solution found for HEIGHT-P25-GROUND

Equation B85 from RALCM CIRCLE -»>

HEIGHT-S34 = R

Attempting to find a value for (HEIGHT S33) in LOCALHEIGHT (S33)
Instantiating LOCALHEIGHT on (533)

Instantiating CIRCLE on (S33 P25)

Solution found for HEIGHT-533

Solution found for HEIGHT-C2-GROUND

Solution found for HEIGHT-C1-GROUND

Solution found for HEIGHT-C1-P28

Equation B83 from RALCM CIRCLE -»>

HEIGHT-S33 = R

Equation B245 from RALCM BASICHEIGHTS ->
HEIGHT-P25-GROUND = HEIGHT-P26-GROUND - R

Equation B246 from RALCM BASICHEIGHTS -»
HEIGHT-C2-GROUND = HEIGHT-P26-GROUND - 2 R

Equation B247 from RALCM BASICHEIGHTS -»
HEIGHT-C1-GROUND = - 2 R + HEIGHT-S1 + HEIGHT-P26-GROUND

Equation B238 from RALCM HEIGHTS -»>
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HEIGHT-C1-P26 = 2 R - HEIGHT-S1

Attempting to find a value for (VELOCITY X T94)
in GLOBAL-ENERGY (X T188 T94)
Instantiating GLOBAL-ENERGY on (X T188 T34)
Solution found for VELOCITY-X-T34
W hen the velocity ts discovered IRALCM instantly realizes that a path
to the destred force has been discovered.
Solution found for FORCE-X-S34-T94
Equation B27 from RALCM GLOBAL-ENERGY ->

VELOCITY-X-T94 = SQRT(2) SGRT( G) SART(HEIGHT-S1 - 2 R)
Equation B77 from RALCM CIRCLE ->
CURVATURE-S34-P26 = R
Equation B74 from RALCM NORMALF ->
2 G (HEIGHT-S1 - 2 R)
FORCE-X-S34-T94 = R
R
Constraint on FORCE-X-S34-T94 implies that
) 5R -
(HEIGHT-S1 - ---) > 8
2
globalcoqstraints:
S5R
(HEIGHT-S1 - ---) > 8
2
6.4 The Great Dome Problem

We have, as yet, not discussed this problem. The great dome problem will be first worked

out so that the trace of NEWTON’s working out the problem can be better understood.
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A small block slides from rest from the top of a frictionless sphere of radius r. How far below the
top does it lose contact with the sphere? ;

The block will slide downwards. At the very start of its motion it will remain in contact with
the sphere since the surface is horizontal at the top.- If the block ever did reach the equator it
would have to immediately fall off as it would start sliding underneath the sphere. So the block
loses contact with the sphere somewhere between the pole and the equator. At any point the block
will either continue sliding along the surface or fly off, we know it will fly off before it reaches the
equator, but where is that point? The forces on the block must be examined. There are only two

forces acting on the block, one is gravity and the other is the reaction of the sphere.

To remain in contact with the sphere the component of the total force in the direction of the center
of the sphere must be sufficient for the block to continue in circular motion:

mo?lr
Since the direction of the reaction of the sphere is normal to its surface and thus away from its
center we can ignore that force and just solve for the point at which the component of the force of

gravity in the direction of the center is insufficient to maintain circular motion. This happens
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when:
muzlr-mgcosT

Where the angle T is as defined in the diagram:

The velocity of the block can be computed by conservation of energy from the distance the block

has already dropped through:
1/2mvz-mgr(1-cosT)
These two equations can be easily solved for T:

cosT =2/3.
This problem would be posed:

(DEFINE-PROBLEM GREAT-DOME
(SCENE (C CIRCLE 8 (C1 CORNER x ?S 8)
(C2 CORNER ?S x -1)
NEGATIVE T 1 1 R))
(PLACE C1 ON ABOVE 2)
(QUERY (FLY-OFF) (POINT ?POINT) (SURFACE ?SURFACE))
(QUERY (ANGLE ?POINT ?SURFACE)))

Following the aspect request of the QUERY form a sequence of pairs indicating variables of the

aspect to be bound to temporary variables so that quantitative variables about that aspect can be

referenced.

(AT X C1 T74)

(AT X S46 T73)

To solve this problem a hypothetical point at which

a obfect leaves the surface is created and its exact position calculated.

Creating hypothetical point P16 which divides S46 into S47 and S48
(AT X P16 T75)
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Attempting to find a value for (ANGLE S46 P16)

in ZERO-POINT (X S4B T74 T75)
Instantiating ZERO-POINT on (X S46 T74 T75)
Instantiating SPLIT-SURFACE on (S46 P16)
Instantiating NORMALF on (X S48 T75)
Instantiating CIRCLE on (S46 P16)
Instantiating ENERGY on (X S47 T74 T75)
Solution found for CURVATURE-S46-P16
Solution found for FORCE-X-546-T75 .
IRALCM now detects that the equations are stmultaneous in the angle.
So it hypothesizes ANGLE-S46-P16 as a parameter.
SIMULTANEITY: 1 subgraphs.
Equation B184 from RALCM CIRCLE -»>
HEIGHT-S48 = COS(ANGLE-S46-P16) R
Equation B198 from RALCM SPLIT-SURFACE -»>
HEIGHT-S47 = R - COS(ANGLE-S46-P18) R
Equation B146 from RALCM ENERGY ->
VELOCITY-X-T75 = SQRT(2) SORT( G) SAQRT(R - COS(ANGLE-S46-P18) R)
Equation B176 from RALCM CIRCLE ->
CURVATURE-S46-P16 = R
Equation B165 from RALCM ZERQ-POINT ->
FORCE-X-S46-T75 = 8

Substituting, the angle s eliminated.
Equation B173 from RALCM NORMALF ->

ANGLE-S46-P16 = ACOS(g)
3
6.5 A Geometry Problem
NEWTON s primarily designed to solve problems in simple mechanics. Such problems
often involve subproblems about the geometry of the scene. In chapter 5, a procedure was outlined
for planning and determining the height between two points. The following is a simple problem

about heights.
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If the indicated heights are known, what is the height between C2 and C5.

(DEF INE-PROBLEM HEIGHTS
(SCENE

(C8 CORNER x S1 9)
(S1 SEGMENT C8 C1 INCLINE ZERO 1)
(C1 CORNER S1 S2 8)
(S2 SEGMENT C1 C2 INCLINE ZERO 1)
(C2 CORNER S2 S3 8)
(S3 SEGMENT C2 C3 INCLINE ZERO 1)
(C3 CORNER S3 S&4 8)
(S4 SEGMENT C4 C3 INCLINE ZERO 1)
(C4 CORNER S4 S5 8)
(SS SEGMENT CS C4 INCLINE ZERO 1)
(CS CORNER S5 x 8))

(ASSIGN (HEIGHT C8 CS) A)

(ASSIGN (HEIGHT C2 C4) B)

(ASSIGN (HEIGHT C3 C5) C)

(ASSIGN (DISTANCE S1) L1)

(ASSIGN (DISTANCE S2) L2)

(ASSIGN (ANGLE1 S1) T1)

(ASSIGN (ANGLEZ2 S2) T2)

(QUERY (HEIGHT C2 C5)))

Global height expert invoked for HEIGHT-C2-CS
DEFINE-RALCM: HEIGHTS

DEFINE-RALCM: BASICHEIGHTS

Instantiating HEIGHTS on NIL

Instantiating BASICHEIGHTS on NIL

Solution found for HEIGHT-C3-GROUND

Solution found for HEIGHT-CB-GROUND

In thts example IRALCM will attempt 3 bad plans before it succeeds.
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4 plans for HEIGHT-C2-CS5 discovered.
PLAN:HEIGHT-S3

PLAN:HEIGHT-S5

PLAN:HEIGHT-S4

PLAN:HEIGHT-S2 HEIGHT-S1

Attempting plan # 1

Attempting to find a value for (HEIGHT S3)
Instantiating LOCALHEIGHT on (S3)
Instantiating RTRI on (S3)

Plan fails on: HEIGHT-S3

Attempting plan # 2

Attempting to find a value for (HEIGHT S5)
Instantiating LOCALHEIGHT on (S5)
Instantiating RTRI on (S5)

Plan fails on: HEIGHT-S5

Attempting plan # 3

Attempting to find a value for (HEIGHT S4)

Instantiating LOCALHEIGHT on (S4)
Instantiating RTRI on (S4) :
Plan fails on: HEIGHT-S4
Attempting plan # 4

Attempting to find a value for (HEIGHT S2)
Instantiating LOCALHEIGHT on (S52)
Instantiating RTRI on (S2)
Solution found for ANGLE1-S2
Solution found for HEIGHT-S2
Solution found for BASE-S2
Equation B152 from RALCM RTRI -»

Pl
ANGLE1-S2 = --- - T2
2

Equation B156 from RALCM RTRI -»
HEIGHT-S2 = L2 C0OS(T72)

Attempting to find a value for (HEIGHT S1)
Instantiating LOCALHEIGHT on (S1)
Instantiating RTRI on (S1)

Solution found for HEIGHT-S1
Solution found for HEIGHT-C1-GROUND
Solution found for HEIGHT-C2-GROUND
Solution found for HEIGHT-C2-C5
Solution found for HEIGHT-C4-GROUND
Solution found for HEIGHT-S3
Solution found for HEIGHT-S5
Solution found for HEIGHT-S4
Equation B156 from RALCM RTRI -»

HEIGHT-S1 = L1 SIN(T1)
Equation B228 from RALCM HEIGHTS -»>

in LOCALHEIGHT (S3)

in LOCALHEIGHT (S5)

in LOCALHEIGHT (S4)

in LOCALHEIGHT (S2)

in LOCALHEIGHT (S1)
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HEIGHT-C8-GROUND = HEIGHT-CS5-GROUND - A

Equation B223 from RALCM BASICHEIGHTS ->

HEIGHT-C1-GROUND = - L1 SIN(T1) + HEIGHT-CS5-GROUND - A

Equation B228 from RALCM BASICHEIGHTS ->

HEIGHT-C2-GROUND = - L2 COS(T2) - L1 SIN(T1) + HEIGHT-CS-GROUND - A
Equation B217 from RALCM HEIGHTS ->

HEIGHT-C2-CS = L2 COS(T2) + L1 SIN(T1) + A
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7.0 CONCLUDING REMARKS
7.1 Limitations

By this time the reader may have concluded that NEWTON is a true expert in the roller
coaster worid and that further research should involve a more complex world. In actual fact
NEWTON understands very little about the roller coaster wbrld. Two major limitations are the
lack of forms of knowledge and an incomplete development of the forms of knowledge NEWTON
does have. Limitations in the forms of knowledge NEWTON has available preclude the possibility
of explicitly expressing plans. NEWTON's inability to envision rolling ob jects is an example of a
lack of development of a form of knowledge NEWTON has available. In this section these
limitations will be reiterated and viewed from a more global perspective. The next section discusses
what generalizations are possible within the current framework. Following that section the chapter

concludes with discussions about the generalizability of what has been discovered.

ENVISIONING LIMITATIONS:
The envisioner for NEWTON only knows about the roller coaster world. The envisioner
can be generalized to be able to handle more sophisticated problems, but this generalization would

be restricted to envisioning requiring only one focus of attention and requiring no consideration of

volume.

RALCM LIMITATIONS:

Anything that can be encoded into a RALCM can be used by NEWTON. Any deficiency in
quantitative knowledge can be easily rectified. However, certain kinds of problems cause excessive
computation to take place. The reason for this is not so much that the RALCMs are an inadequate
theory, but rather explicit planning must be done before giving the problem to IRALCM. An

example of this was the necessity for an expert about heights.
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QA LIMITATIONS:

In retrospect, it is the QAs that play the fundamental role in the problem solving. The QAs
use the other knowledge to produce plans and subsequently control their execution. It is not
surprising tﬁen that most of the problems of NEWTON eventually surface with the QAs. If other
knowledge in NEWTON is insufficient the QAs will not be able to instantiate the plans and if the
QAs themselves are deficient the plans will be unconstructable. In both cases the problem will seem
to arise with the QAs. |

The QAs themselves can be divided into different types. The reason that was not done in
NEWTON was that the nature of these divisions is not yet well enough understood. The first
division occurs between those QAs that deal with the statement of the problem directly to construct
a plan and those that subsequently interpret that plan. The task of building the initial plan can
also be divided into domain dependent and independent sections. The domain independent section
analyzes the structure of the question to determine the kind of question was being asked and the
domain dependent section instantiates the plan indicated by the problem type to the domain.

An example of domain independent planning is determining whether the boundary
conditions were enforced or inquired about. A problem requesting the boundary conditions for a
desired effect has a top level plan that is independent of any domain. A common top level plan is
to introduce hypothetical boundary conditions and see what constraints the desired effects have on
these hypotheses. This could be as much a ﬁlan for a mechanics problem as for an electronics
problem. The point is that there is a great deal of expertise about analyzing questions and
generating abstract plans for their solution that is completely independent of the domain the
question is set within. Currently NEWTON does very little of this metaplanning and hence is
incapable of handling many questions for which it contains sufficient knowledge to solve (if the
question were posed in a different way).

More examples of such metaplanning are handiing con junctive and disjunctive goals,
recognizing possible simultaneity and being able to delay finishing a plan until the problem has

been further analyzed. The basic kind of plan that NEWTON handles is envision-QA-RALCMs.
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Any variation or other interaction causes problems. NEWTON cannot handle interaction between
the envisioning and other knowledge. The envisioner produces one envisionment for the problem
and that is all. If more facts are discove?ed later that would affect the envisioner (eg. discovering
height information) the envisionment can not be modified. The neéessity that some problems had
for interaction between the QAs and the RALCMs was called indefiniteness in chapter 4.
Indefiniteness is that characteristic which makes it difficult to construct a complete plan for the

problem a priort. For indefinite problems the plan must be developed as the problem unfolds.

MATHEMATICAL LIMITATIONS:

The mathematical expertise that NEWTON uses does not always succeed. A more serious
shortcoming is that it does not know calculus. Although the mathematical expertise of handling the
mathematical operators of differentiation and integration is well known, the interface between this
mathematical expertise and the quantitative knowledge is a topic for research. The two principle
points of difficulty are the intreduction of unwanted redundancy and initial values. The
introduction of integration and differentiation as bperators means that many more equations are
redundant (e.g. KIN would only have one independent equation). Integration is a very peculiar
mathematical operator as it artificially introduces an unknown variable, namely the constant of

integration.

Although most of NEWTON’s problems manifest themselves in the QAs, the reason for the
difficulty can lie as much with a lack of knowledge or flexibility in the knowledge as with the QA:s.
The following is a (partial) list of problems which NEWTON cannot solve. Each question
annotated with a short comment explaining why NEWTON cannot handle it. Only from studying
such examples will it become clear what role planning plays in problem solving. For those problems
where a deficiency in the knowledge is the source of the difficulty, it will often be seen that it is not
so much a lack of knowledge but the inflexibility of using the knowledge that NEWTON does

have. Note that there are myriads of problems that NEWTON stands no hope of solving; the
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questions that follow are problems about which NEWTON knows at least something and should be

expected to know more.

"What is the period of an ob ject on a cycloid?”
-- integration

"What is the velocity where the ob ject flies off falls off?"
== con junctive goals

"What would be the answer to the loop-the-loop problem if the radius of the circle was equal to the
velocity of the block at the bottom (in MKS units)?"
-- peculiar constraints

"Would the ob ject still make it if the height of the hill was increased?"
== asking about the effect of modifying a problem

"What is the curve of shortest time between two points?”
-- variational calculus

"What is the velocity on the first curve that is not circular?”
-- too indefinite ’

"An object is moving along a circular section whose change in angle can encompass one or two
segments.”
== partial envisionment not possible

"Assuming that the ob ject won't fly off what is the final velocity?”
-- inability to take advice

"If the fall-off velocity is determined what must the initial height be?"
~~" quantitative constraints about hypothetical points

“The ob ject loops around the loop-the-loop 100 times and then exits.”
== envisioner cannot understand such a dynamically changing surface

"What is the velocity of the object if the velocity is equal to the length of the segment?” '
-- peculiar constraint

"An object moves along a surface of unknown concavity, what constraint does conservation of
energy impose?”

-- abstract reasoning

== No envisionment possible without total information

"Do ob jects collide?”
-- explanation

"The acceleration of the ob ject on a straight section of slope x is y."
-- redundant information is ignored
== possible contradictions are then also ignored
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7.2 Extensions to NEWTON

In the previous section we have seen where many of NEWTON’s limitations lie. The most
apparent lack of knowledge occurs in the planning ability of the QAs. Unfortunately we do not yet
know what this planning ability should be like. For that reason research should continue in
attempting to broaden the knowledge in NEWTON so that more plans can be constructed and these
plans investigated to see what kind of general planning ability is needed.

A number of the problems of 7.I were unsolvable mainly because NEWTON could not accept

artificial constraints. By creating a top level RALCM through which ail of the usual top level

RALCMs are invoked, external constraints can be at least quantitatively handled. A slight technical
difficulty is present in identifying the modifiers of the variables but the DEFINE-PROBLEM
forms can be developed to handle these more general constraints.

A deeper understanding of mechanics requires a knowledge of calculus. This is an obvious
addition to make in so far as the major modifications involve the RALCMs and the mathematical
expertise. The QAs remain exactly the same whether integration is possible or not. RALCMs
already understand operators, differentiation and integration can be introduced without ever
affecting the QAs. SOLVE when inverting operators would have to change integration into
differentiation and differentiation into integration with the addition of suitable constant of
integration (identifying the limits of integration).

Another natural extension is that of comparison. Examples of this are comparing two paths
to see which is faster, or modifying a problem and asking how that affects the final result. This
requires both the introduction of partial differential equations and knowledge about examining the
plans for a completed problem. Consider the example of the path over the hill 'discussed in section
4.5: would changing the height make any difference? The answer to that question is qualitative:
the final velocity does not change but if the height is made high enough the ob ject will fail to
make it over the peak. With such extensions the example of 2.4 can be handled.

The structure of the envisioner is sufficiently powerful to make some simple additions.

Tra jectories and collisions with surfaces can easily be envisioned.
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7.3 The Roller Coaster World in Mechanics

Physics problems that lie within the roller coaster world number no more than a dozen in any
text. However, the roller coaster world is a subdomain of almost evéry mechanics problem. Any
problem that involves any kind of sliding or constrained motion requires knowledge from the roller
coaster world. Consider the following sequence of diagrams and the problems they suggest. None

of the these problems can be understood without knowledge of the roller coaster world.

N A
L
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These problems require much more physics knowledge. An investigation into the knowledge
required to understand these other domains and how knowledge of different domains interfaces

with each other is required.

7.4 Principles for Representing Knowledge
NEWTON has tried to represent knowledge about physics. In the process of this research
many issues about representing knowledge about formal domains has become evident. These issues

are present in such diverse areas as network theory and thermodynamics.

QUANTITATIVE KNOWLEDGE:
Although knowledge that is explicitly given in a mechanics textbook must be represented,

other, more intuitive, knowledge about mechanic is also required.

QUALITATIVE KNOWLEDGE:
This more intuitive knowledge not involved with equations must be represented if the
quantitative knowledge can be ever be effectively used. One ma jor part of this knowledge is the

ability to qualitatively simulate or envision the event.

REDUNDANCY:

The necessity of representing the same information in many different forms results in the
problem of knowing too much. Knowing too much does not so much lead to excessive computation
as it does to undesired redundancy. For example if NEWTON knew about the rectangular and
polar representation for a circle it would think the radius of any circle was derivable if no
information about the circle was given at all. (NEWTON would set the problem in one coordinate
scheme, change coordinates, substitute in for the polar form of the circle and find simultaneity for

the radius, while the equations, if solved, would yield the redundant solution r = r.)
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PLANNING:

One of the biggest problems which has aiready been discussed at length is the necessity for
planning. Envisioning provides a great deal of planning, however, as we saw with the problem
with height#, it is not enough. RALCM presents a number of ideas that would make planning
easier. The envisioner and QAs make tests on the data basé for conditions to determine which
strategy to apply. Similarly RALCMs test conditions to see if their knowledge can be used by seeing
if there are sufficient knowns to apply their equations. When a test fails within the QAs or the
envisioner they just move on to another test while RALCM records the failing test a; a complaint
which when resolved causing computation to continue where the complaint left off. If the QAs and
* the envisioner could do this it would add greatly add to the flexibility of the plans that could be

generated.

7.5 On the Rela'tionship Between Mathematics and Physics

In many senses this research was an investigation into the relationship between mathematics
and physics (or just mathematics applied to some domain). One of the main observations in
chapter I was that classical science does indeed have a representation for encoding knowledge,
however, it is only a quantitative representation and is incapable of encoding any qualitative
knowledge. Although that was a starting point for this research, in retrospect this was a somewhat
misleading observation. |

NEWTON uses an equation as a constraint expression: given f(x,, .. x )=0 this relation is
used to determine any x, if all the other xs are known. There is much more information in an
expression! If all we are interested in is solving a set of equations looking at constraint expressions
may be a valid perspective. However, we are solving a physical problem in which a duality exists
between the mathematical structure of the equations and the actual physical situation we have
thrown away most of the information. To the the sophisticated student this duality is very clear

and the mathematical equation is far more than a constraint expression. For him, the expression

encodes a great deal of qualitative knowledge and every mathematical manipulation of the
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expressions reflects some feature of the physical situation. These are matters for further research.
One of the reasons that NEWTON made such a sharp distinction between the mathematical
symbol manipulation and the quantitative knowledge was the availablity of MACSYMA.
MACSYMA provides a collection of operators which, unfortunately, must be regarded a$ black
boxes. This made it impossible to study the duality between the mathematical manipulations and
the physical situations. The final point is that the mathematics of a domain is so intimately
connected with the qualitative understanding of the domain that both must be studied together and

any attempt to separate them at a clean boundary will be doomed to failure



112

REFERENCES:

<Bobrow, 638>
Bobrow, G.D., "Natural Language Input for a Computer Problem Solving System”, in Minsky (ed.),
Semanttc Information Processing, Cambridge: M.LT. Press, 1968.

<Brown, 74>
Brown, AL, "Qualitative Knowledge, Causal Reasoning, and the Localization of Failures.-- a
Proposal for Research”, Artificial Intelligence Laboratory, WP-61, Cambridge: M.LT., 1974.

<Brown et.al, 74>

Brown, John Seely, Richard R. Burton and Alan G. Bell, SOPHIE: A Sophisticated Instructional
Environment for Teaching Electronic Troubleshooting (An example of Al in CAl), Report 2790, A.L
Report 12, Cambridge: Bolt, Beranek and Newman, 1974.

. <Charniak, 68>

Charniak, E., CARPS, A Program which solves Calculus Word Problems, Project MAC TR-5],
Cambridge: M.LT,, 1971

<Charniak, 71>

Charniak, E, "A Note on an Electrostatics Problem Solver”, (unpublished), Artificial Intelligence
Laboratory, Cambridge: M.L.T, 1971.

<Galileo, 60>
Galileo, G., On Motion & On Mechanics, 1600, Drabkin & Drake (translators), Madison: The
University of Wisconsin Press, 1960.

<den Hartog, 48> :
den Hartog, J.P., Mechanics, New York: McGraw-Hill, 1948.

<Hewitt, 71>

Hewitt, Carl, "Description and Theoretical Analysis (using Schemata) of PLANNER: A Language
for Proving Theorems and Manipulating Models in a Robot", Artificial Intelligence Laboratory,
AIM-251, Cambridge: M.LT,, 1971

<Kleppner & Kolenkow, 73> ;

Kleppner, Daniel, and Robert J. Kolenkow, 4n Introduction to Mechanics, New York: McGraw-Hill,
1973. : |

!

<Levinson, 61>
Levinson, 1.]., Introduction to Mechanics, Englewood Cliffs: Prentice-Hall, 1961.

<Mach, 60> :
Mach, E,, T he Science of Mechanics, Lasalle: Open Court, 1960.

<Mathlab, 74>
Mathlab Group, "MACSYMA Reference Manual®, Cambridge: M.LT., 1974.

<McDermott & Sussman, 74>
McDermott, Drew, and Gerald Jay Sussman, "The Conniver Reference Manual", Artificial
Intelligence Laboratory, AIM-259a, Cambridge: M.L.T., 1974.




113

<Minsky M., 74>
Minsky, Marvin, "Frame-Systems: A Framework for Representation of Knowledge", Artificial
Intelligence Laboratory, AIM-306, Cambridge: M.LT, 1973.

<Moses, 67>
- Moses, Joel;, "Symbolic Integration”, Project MAC, TR-47, Cambridge: M.LT, 1967.

<Polya, 62>
Polya, George, "Mathematical Discovery”, vol. 1, John Wiley & Sons, Inc., 1962.

<Purecell, 65>
Purcell, M.E,, Electricity and Magnetism, New York: McGraw-Hill, 1965

<Sussman & Brown, 74>
Sussman, G.]J., and A.L.Brown, "Localization of Failures in Radio Circuits a Study in Causal and
Teleological Reasoning”, Artificial Intelligence Laboratory, AIM-219, Cambridge: M.LT., 1974.

<Sussman & Stallman, 75> :
Sussman, G.J., and R.MStallman, "Heuristic Techniques in Computer Aided Circuit Analysis”,
Artificial Intelligence Laboratory, AIM-328, Cambridge: M.L T, 1975.



