AI-TR-419

TRUTH MAINTENANCE SYSTEMS

FOR PROBLEM SOLVING

Jon Doyle

January 1978

This blank page was inserted to preserve pagination,

Truth Maintenance Systems for Preblem Solving

by

* Jon Degle

Massachusetts Institute of Technology

January 1978

This report is & revised version of a dissertation M to the Department of Electrical
Engineering and Computer Science of the Massachusatts Justitute of Technalogy on May 12,
1977 in partial fnﬁﬂmd&mhhmﬁmﬂﬁm

This research was conducted o the w nlligence Labarntor

B MASSACHUZITYS METISE GF TROMR0I0 Y 1002

Abstract:

The thesis developed here is that reasoning programs which take care to record
the logical justifications for program beliefs can apply several powerful, but simple, domain-
independent algorithms to

{I} maintain the consistency of program beliefs,

{2} realize substantial search efficiencies, and

{3} automatically summarize explanations of program beliefs.
These algorithms use the recorded justifications to maintain the consistency and well-
founded basis of the set of beliefs. The set of beliefs can be efficiently updated in an
incremental manner when hypotheses are retracted and when new information is discovered.
The recorded justifications also enable the pinpointing of exactly those assumptions which
support any particular belief. The ability to pinpoint the underlying assumptions is the
basis for an extremely powerful domain-independent backtracking method. This method,
called Dependency-Directed Backtracking, offers vastly improved performance over
traditional backtracking algorithms.

These techniques of recording and using justifications also indicate methods for
structuring the deductive process so that the justification-derived arguments for certain
-types of deductions can be automatically summarized. The levels of detail in a hierarchical
problem solver can be separated from each other by this summarization. The separation is
accomphished by replacing a set of beliefs at one level by the higher-level beliefs from which
they derive. This is important in improving the coherence of explanations, and in further
improving the search efficiency of dependency-directed backtracking. Modest extensions of
this method are useful in automatically generalizing the results of certain forms of
computations. '

This report describes techniques for representing, recording, maintaining and
using justifications for beliefs. In addition, we present an annotated implementation of a
domain-independent program making these functions easily available to programs in a wide
range of applications.

T hesis Supervisor: Gerald Jay Sussman
Title: Esther and Harold E. Edgerton Associate Professor
of Electrical Engineering and Computer Science

Acknowledgements

I owe much to many for their attention and cooperation during this research. Many of the
ideas in this report are due, directly or indirectly, to Gerald Jay Sussman and Richard M.
Stallman. Much of my progress on these problems has derived from the patient advice,
inspiring encouragement, and .close cooperation of Gerald Sussman. Guy Steele’s
philosophical ideas were a civilizing influence on my thought. Tomas Lozano-Perez, Drew
McDermott, Johan de Kleer, Scott Fahiman, Richard Brown, Howard Shrobe, Charles Rich,
Marilyn Matz, Kurt VanLehn, Richard Waters, Joseph Schatz, and Marvin Minsky helped
with many discussions. Gerald Sussman, Guy Steele, Johan de Kleer and Chuck Rich
supplied many ideas as the first users of the TMS. Johan de Kleer, Marilyn Matz, Richard
Stallman, Charles Rich, Candace Bullwinkle, Richard Brown and Patrick Winston helped
me debug this document. The Fannie and John Hertz Foundation supported my research
with a graduate fellowship. '

On the cover: A picture with an undisclosed and purely personal meaning for the author,
who is solely responsible for its presence. I thank Karen Prendergast and Kim Chevalier
for much assistance in the preparation of the covers ‘

This research was conducted at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the Laboratory’s artificial intelligence research is
providea in part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract number N00OI4-75-C-0643.

I

HI:

IV,

Notes:

CONTENTS

Introduction

A. Overview of the Report

B. A Functional Description of the Truth Maintenance System
C. An Example

Truth Maintenance Systems Applied
A. Introduction
B. Representing Knowledge About Beliefs
C. Problem Solving Structures
1. Default Assumptions
2. Unordered Sets of Alternatives
3. Linearly Ordered Sets of Alternatives
4. Equivalence Class Representatives
E. Generalization and Levels of Detail

Truth Maintenance Mechanisms

A. Introduction

B. Well-Founded Support Relations
C. Truth Maintenance

D. Conditional Proofs

E. Dependency-Directed Backtracking

Discussion

A. Summary of the Key Ideas

B. Comparison with Other Work
C. Future Work

References

Appendices

I. A TMS Glossary
2. Monotonic Truth Maintenance Systems
3. An Implementation of a TMS

10
13

23
23
25
29
20
32
34
36
38

15
45
47
53
61
63

70
70
73
77

81

84

87
91
94

I. Introduction

A. Overview of the Report

The thesis developed here is that reasoning programs which take care to record
the logical justifications for program beliefs can apply several powerful, but simple, domain-
independent algorithms to

{1} maintain the consistency of program beliefs,

{2} realize substantial search efficiencies, and

{3} automatically summarize explanations of program beliefs.
These algorithms use the recorded justifications to maintain the consistency and well-
founded basis of the set of beliefs. The set of beliefs can be efficiently updated in an
incremental manner when hypotheses are retracted and when new information is discovered.
The recorded justifications also enable the pinpointing of exactly those assumptions which
support any particular belief. The ability to pinpoint the underlying assumptions is the
basis for an extremely powerful domain-independent backtracking method. This method,
called Dependency-Directed Backtracking, offers vastly improved performance over

traditional backtracking algorithms.

These techniques of recording and using justifications also indicate methods for

structuring the deductive process so that the justification-derived arguments for certain

types of deductions can be automatically summarized. The levels of detail in a hierarchical
problem solver can be separated from each other by this summarization. The separation is
accomplished by replacing a set of beliefs at one level by the higher-level beliefs from‘ which
they derive. This is important in improving the coherence of explanations, and in further
improving the search efficiency of dependency-directed backtracking. Modest extensions of
this method are u.seful in automatically generalizing the results of certain forms of

computations.

This report describes techniques for representing, recording, maintaining and
using justifications for beliefs. In addition, we present an annotated implementation of a
domain-independent program making these functions easily available to programs in a wide

range of applications.

The first chapter of the report introduces the function and operation of the Truth
Maintenance System (TMS). This is a particular domain-independent program embodying
the techniques described in the remainder of this report. An example of problem solving

using the TMS is presented to lend substance to the following discussion.

The second chapter develops a new method for representing knowledge about
beliefs. This representation, called a non-monotonic dependency system, is closely related to
representations used in certain methods of natural deduction. It extends these

representations by incorporating the ability to represent non-monotonic dependencies. Non-

monotonic dependencies can be used to express certain forms of hypothetical assumptions, as
well as ordinary deductions and conditional proofs. This representation is invaluable in
maintaining the consistency of program beliefs in the pre‘sence of assumptions and in
dependency-directed backtracking. The discussion then pre‘sents methods for using this
representation in describing several common problem solving structures. These include
default assumptions, sets of alternatives, and equivalence class represehtatives. Finally, a
method for imposing a hierarchical structure of summarizations on argurﬁents for beliefs is

described.

The third chapter details the mechanisms behind the techniques of the preceding
chapter. An important problem in using justifications to determine the set of current beliefs
is the occurrence of circular proofs for beliefs. The solution of this problem requires the
maintenance of well-founded support for all program beliefs. The chapter discusses this
problem and the mechanism of truth maintenance used to incrementally derive well-founded
support for beliefs following the addition of new justifications and the retraction of
premises. Mechanisms for handling conditional proofs are then described. These involve a
mechanization of the deduction theorem of mathematical logic to find the grounds for belief
in an implication. Conditional proofs play a major role in the following presentation of the

mechanism of dependency-directed backtracking.

The final chapter provides a summary discussion of the key ideas developed in

the report: the importance and uses of recorded justifications for beliefs. This summary is

followed by discussions of the relation of this research to other work, and a list of topics for

future research.

Three appendices provide information on other topics. The first appendix
contains a glossary of the concepts and terms employed in our discussion of truth.'
maintenance systems. The second appendix outlines the structure and mechanisms of a
related representational system, the monotonic dependency system. This representation
allows a simplification of the algorithms used in truth maintenance over the corresponding
algorithms used in the non-monotonic system. However, the monotonic system requires :
substantial additional complexities on the part of other algorithms. In particular,
hypothetical assumptions and dependency-directed backtracking require other mechanisms
for their implementation. The third appendix presents an annotated implementation of a

version of the TMS program.

Footnotes are indicated in this report by a superscript mnemonic. The notes

themselves, indexed by these mnemonics, are located immediately preceding the references.

10

B. A Functional Description of the Truth Maintenance System

The Truth Maintenance System is a program for recording knowledge about
deductions. A reasoning program interacts with the TMS by distinguishing a set of
program structures as describing the set of program beliefs. These structures are typically
those derived by program operation, and then used to derive further such structures. For
instance, the set of assertions and procedures in a PLANNER-like data base may be taken
as the set of program beliefs. The TMS associates a TMS-node with each of these
structures. These nodes are used for recording several types of: information about belief in
the corresponding program structure. The most important piece of information is the set of
justifications for a node. These justifications describe the reasons for believing the
knowledge represented by the program structure associated with the node. Each time the
reasoning program determines a new belief or assertion, it informs the TMS of a
justification for the node corresponding to the new belief. This justification is in terms of
the nodes of the other program structures used in the derivation. The TMS then adds this

new justification to the set of justifications attached to the TMS-node of the new belief.

Each time a new justification is provided, the TMS checks to see if any changes
in beliefs are indicated by the new justification. If so, the process of truth maintenance is
invoked. This involves examining the recorded justifications to redetermine well-founded
support for the nodes whose justifications depended on the changéd beliefs. The program

is then notified of the changes made by the TMS. To allow this, the program can associate

several functions with each of the TMS-nodes associated with its own structures. To signal
the occurrence of changes in beliefs, the TMS simply invokes the function associated with
the changed TMS-node and the nature of the change that has occurred. The program
structure associated with the changed node is used as the argument passed to the function.
In this way, the program can arrange that changes in its beliefs can initiate any desired

changes to its structures.

The program can also tell the TMS that a certain node represents a contradiction.
The TMS remembers this, and attempts to ensure that the node is never believed. It does
this by invoking the dependency-directed backtracking system whenever well-founded
support is derived for the contradiction node. The backtracker will then try to invalidate
the support of the contradiction by removing one of the assumptions underlying the

contradiction. Contradictions which cannot be removed by this process are tolerated.

The TMS provides many useful functions for interrogating the structure of the
current set of program beliefs. Whenever well-founded support for a TMS-node is
determined, the TMS also records a set of antecedent nodes and a set of consequent nodes.
These sets are derived from the justifications used in determining the well-founded support.
The set of antecedents is the set of nodes on which the belief depends. The set of
consequences is the set of nodes whose justifications depend on the belief. The TMS may
thén be queried for the antecedents or consequences of a particﬁlar belief, or for other

information derived from these relationships between beliefs. For instance, the set of

premises and mw«mmawm.‘

" these nhmm mumusm'

13

C. An Example

On the ground,

Sleep sound.

I'll apply

To your eye,

Gentle lover, remedy.

When thou wakest,

Thou takest

True delight

In the sight

Of thy former lady’s eye.

And the country proverb known,

That every man should take his own,

In your waking shall be shown.
Jack shall have Jill,
Nought shall go ill,

The man shall have his mare again and all shall be well.

William Shakespeare, A Midsummer Night's Dream

This section presents a simple example involving the making of assumptions,
truth maintenance, and dependency-directed backtracking. For this example we set modesty
aside and attempt to imitate William Shakespeare in designing the plot of A Midsummer
Night's Dream. The play is to be a comedy. The major problem in this undertaking is to
depict the foolishness of mortals while preventing the story from turning into a tragedy.
This is done with a truth maintenance system. The structure of the plot, in terms of the
player’s attitudes, is determined by truth maintenance. When events threaten tragedy,
dependency-directed backtracking is invoked to change their attitudes. These steps
eventually determine a consistent (happy) set of attitudes for the élayers. Disappointingly,

this report can only describe the mechanisms behind truth maintenance and dependency-

14

directed backtracking. We must surrender the explanation of the magic of Puck to future

research.

The problem involves the four individuals Demitrius, Helena, Hermia, and
Lysander. Initially, Hermia loves Lysander, Helena loves Demitrius, and to make the story
interesting, both Demitrius and Lysander love Hermia. We first specify the loves of the
women to our reasoning program.

(Assert (loves Hermia Lysander) (Premise))
F-1 (LOVES HERMIA LYSANDER) (PREMISE)

(Assert (loves Helena Demitrius) (Premise))
F-2 (LOVES HELENA DEMITRIUS) (PREMISE)

The information and rules of our example will be framed in the AMOR DAMORD

problem
solving system. Assertions, as above, are of the form (ASSERT <assertion pattern>
<justification>) and should be read as "belief in <assertion pattern> is justified by
<justi fication>." The justifications refer to functions which will accept the infofmation
transmitted in the justifications and implement the necessary TMS justifications between

facts. Facts are referenced in justifications by means of a unique name of the form "F-nn”

for each fact.

The next specification is that of the amatory preferences of the men. In contrast
to the solid beliefs of the women, the men are easily swayed by flowers and dependency-

directed backtracking.

15

(Assume (loves Demitrius Hermia) (Premise))

F-3 (ASSUMED (LOVES DEMITRIUS HERMIA)) (PREMISE)

F-4 (NOT (LOVES DEMITRIUS HERMIA)) () ; No justification specified

F-S (LOVES DEMITRIUS HERMIA) (ASSUMPTION F-3 F-4)
Assumptions are the fundamental use of non-monotonic justifications in the dependency
system. The assumption of F-5 above is accomplished by asserting the reason (F-3) for the
assumption and establishing belief in F-5 based on this reason and on the lack of belief in
F-4. This mechanism will be explained in more detail in the next chapter. Its effect is to
ensure that F-5 will be believed as long as there are no reasons for believing otherwise. At
this point, F-4 is not believed, for no reasons exist supporting its belief. F-5 is believed,
since F-3 is believed and F-4 is not.

(Assume (loves Lysander Hermia) (Premise))

F-6 (ASSUMED (LOVES LYSANDER HERMIA)) (PREMISE)

F-7 (NOT (LOVES LYSANDER HERMIA)) ()

F-8 (LOVES LYSANDER HERMIA) (ASSUMPTION F-6 F-7)

(Rule (:n (not (loves Demitrius Hermia)))
(Assert (loves Demitrius Helena) (Quality-not-quantity :n)))

This rule specifies Demitrius’ love if he falls from love with Hermia by providing the
alternative of Helena. The first component of the rule is a pattern, which specifies both a
variable (marked by the colon prefix) to be bound to the fact name of the matching
assertion, and the pattern against which assertions are to be matched. The body of the rule
follows the pattern. If a matching assertion is present, the rule will bind the variables of the
pattern to the values derived from the match and evaluate each expression of the body. If
it becomes known that Demitrius does not love Hermia, the above rule will justify the belief

that Demitrius loves Helena. Lysander’s second choice is described similarly.

16
(Rule (:n (not (loves Lysander Hermia)))
(Assert (loves Lysander Helena) (Love-in-idleness :n)))
- Next, we add some real-world knowledge about the troubles of men.

(Assert (jealous Lysander) (Premise))
F-3 (JEALOUS LYSANDER) (PREMISE)

(Rule (:j (jealous :x))
(Rule (:11 (loves :x :y))
(Rule (:12 (loves :z :y))
(if (not (equal :x :2))
(Assert (kills :x :z) (Jealousy :j :11 :12))))))
This rule embodies the knowledge that jealous people tend to react unpleasantly against
others who also love the object of their jealousy. The conditional of the rule body ensures
that jealousy is not self-applicable.
(Rule (:11 (loves :x :y))
(Rule (:12 (loves :y :2))
(if (not (equal :x :2))

(Assert (kills :x :x) (Unrequited-love :11 :12)))))

This rule expresses the depression and consequent action resulting from unrequited love.

The final rule provides the means by which the happy nature of this comedy is
ensured. This is done by declaring all murders to be tragedies. The occurrence of a
tragedy is declared to be a contradiction. (Actually, tragedies can be interpreted as
signalling the contradiction of a particular murder with the general principle (not (kills
:x :y)).) This contradiction will lead to changing the set of assurﬁptions about the loves
of the characters which lead to the tragedy.

(Rule (:k (kills :x :y))
(Assert (tragedy :k) (Contradiction :k)))

17

With these assertions and rules we begin the analysis of the conflicts between the
desires of the four lovers. AMORD does not specify the order in which rules are to be
applied to matching assertions. We will choose an order of application which provides for

maximal entertainment.

The first derived assertion notes the conflict caused by Lysander’s jealousy.
F-18 (KILLS LYSANDER DEMITRIUS) (JEALOUSY F-9 F-8 F-5)
This is noticed to be a tragedy, and so ruled out as a happy state of affairs.

F-11 (TRAGEDY F-18) (CONTRADICTION F-18)

The derivation of belief in a contradiction indicates the inconsistency of the set of
beliefs used in deriving the contradiction. To restore the (apparent) consistency of the set of
beliefs, the TMS notifies the dependency-directed backtracker of the contradiction. The
backtracking process consists of tracing backwards through the antecedents of the
contradiction to find the set of assumptions underlying the contradiction. One of these
assumptions must be removed to remove the contradiction. The proper justification for the
removal must be specified. The reason for retracting an assumption is that the assumption,
when combined with the other assumptions, provides support for the contradiction. This
reason is valid only under certain circumstances -- those in which the combination of the set
of assumptions provides support for the contradiction. Thi; is the statement of a

conditional proof. That is, the justification for not believing a particular assumption is that

18

the other assumptions are believed, and that if all the assumptions are believed, the
contradiction follows. Dependency-directed backtracking improves on traditional
backtracking mechanisms in two ways; irrelevant assumptions are ignored, since the set of
inconsistent beliefs is determined by tracing dependencies; and the cause of the
contradiction is summarized in terms of this set of inconsistent assumptions as a conditional

proof which remains valid after the contradiction itself has been removed.

In the case at hand, this process begins by examining the reasons for the
contradiction in order to Ibcate the inconsistent set of assumptions underlying the
contradiction. The contradiction F-11 depends upon F-18, which in turn depends upon F-
9, F-8, and F-5. F-8 and F-5 are recognized as assumptions by the system, since the reasons
for their beliefs include the lack of belief in F-7 and F-4 respectively. Beliefs supported by
a lack of knowledge in other assertions are suspect. This is because an inconsistency based
on the lack of a reason for believing some fact can be interpreted as providing a re#son for
believing that fact. For instance, a robot miy decide that it is safe to cross the street
because of its failure in attempting to prove that it is unsafe to cross the street. If the robot
then gets run over, that contradicts its belief in the safety of its actions. The natural

conclusion is that it was unsafe to cross the street.

The backtracking system will try to reconcile the conflicting assumptions by
making sure they are not all believed at once. This is accomplished by choosing one of the

suspect assumptions at random and disbelieving it. The disbelief is brought about by

19

justifying belief in one of the supporting facts whose former lack of valid justifications
allowed belief in the selected assumption. This new justification is made on the basis of the
beliefs in the other assumptions underlying the contradiction and that part of the support

for the contradiction which does not depend on these assumptions.

Note at this point one of the efficiencies of dependency-directed backtracking
relative to the traditional chronological backtracking schemes. In the above, the set of
inconsistent assumptions underlying the contradiction is a subset of all extant assumptions,
for I neglected to mention my assumptions about the loves of Theseus, Hippolyta, Oberon,
Titania, Bottom, Pyramus and Thisby. These other assumptions may have been
determined after the current choices for Lysander and Demitrius. Chronalogical
backtracking systems for choosing alternatives might search through sets of choices
involving these independent assumptions. The dependency-directed system will only

consider those assumption actually affecting the discovered contradiction.

The next step in the backtracking procedure is the creation of a
NOGOOD,NG0 5 a5sertion summarizing the support for the contradiction which is
independent of the inconsistent set of assumptions.

F-12 (NOGOOD F-11) (cpP F-lnl (F-8 F-5))
This statement of independent support is made by means of a conditional proof
justification, stating that F-12 should be believed if when F-8 and F-5 are believed, so is

F-11. In the present situation, this reduces to the question of belief in F-9. This is because

20

F-9 can be combined with the assumptions F-8 and F-5 to support belief in Demitrius’

murder. In effect, belief in F-12 is supported solely by belief in Lysander’s jealousy.

We must not believe all the assumptions in the set of inconsistent assumptions at '
the same time. To ensure this, the NOGOOD is used to justify belief in some of the
assertions underlying these assumptions. The assertions to justify are those whose lack of
belief was used in the support of the assumptions. The minimum that is necessary to
accomplish this is to provide a valid justification for belief in one of the unbelieved
assertions supporting one of the assumptions. Logically, any one of the assumptions in the
inconsistent set can be removed. However, unimpeachable reasons may later be found for
believing some of the assumptions. It is necessary to make sure that each assumption will
be retracted in turn if the remaining assumptions cannot be doubted. By describing each of
the possible ruling-out of beliefs through these new justifications, knowledge of the
inconsistency is preserved even if an assumption is retracted and later rejustified.

F-7 (NOT (LOVES LYSANDER HERMIA)) (NOGOOD F-12 F-5)

TRUTH MAINTENANCE PROCESSING DUE TO F-7.

F-4 (NOT (LOVES DEMITRIUS HERMIA)) (NOGOOD F-12 F-8)
Note that truth maintenance occurred after the new support for belief in F-7, since belief in
F-8 depended on a lack of belief in F-7. The invocation of truth maintenance affected only
those beliefs determined from the changed belief -- F-7, F-8, F-18, and F-11. All other facts
are known, by means of the recorded dependencies, to be independent of these changes.

Following truth maintenance, F-7 is believed, and F-8, F-18, and F-11 are not. Since F-8

is not believed, the following justification of F-4 via F-12 and F-8 fails to support belief in

21

F-4.

With the backtracking concluded, we can continue the analysis of the
consequences of the rules. The next focus for attention is Lysander’s change of lover. His
love for Hermia was retracted by the backtracker, so he now turns to Helena.
Unfortunately, this means that Hermia has now lost her love and kills herself in a fit of
despondence.

F-13 (LOVES LYSANDER HELENA) (LOVE-IN-IDLENESS F-7)

F-14 (KILLS HERMIA HERMIA) (UNREQUITED-LOVE F-1 F-13)
F-15 (TRAGEDY F-14) (CONTRADICTION F-14)

Another ‘bout of backtracking is invoked. This time, tracing backwards through
the antecedents of the contradiction leads to F-14, F-13, F-1, F-7, F-12, and F-5. Of these,
only F-5 is an assumption. The NOGOOD mechanism then forces the retraction of the
assumption that Demitrius loves Hermia.

F-16 (NOGOOD F-15) (CP F-15 (F-5))

F-4 (NOT (LOVES DEMITRIUS HERMIA)) (NOGOOD F-16)

TRUTH MAINTENANCE PROCESSING INVOKED BY F-4.
In this situation the support of the NOGOOD consists of the beliefs F-1 and F-12. . This
invocation of truth maintenance involves checking the beliefs in F-4, F-5, F-7, F-8, F-13,
F-14, and F-15. The supporting of belief in F-4 now removes support for F-5, which was
- the reason for the retraction of Lysander’s love for Hermia. Truth maintenance determines

that F-4 and F-8, are believed, and that F-5, F-7, F-13, F-14, and F-15 are not. This

means that Lysander is now back with Hermia.

Théud»&:m\wmumtlmfﬂkmdhu ways (with a
little help from the backtracking system). |
F-17 (LOVES DEMITRIUS HELENA) (DUALITY-NOT-QUANTITY F-4)

, This satisfies Helena's love. Since Hermia and Lyssnd mmmmu invocation

of truth maintenance, all is now well.

23

II. Truth Maintenance Systems Applied

A. Introduction

A truth maintenance system provides a representation for describing properties of
beliefs and relationships between beliefs. These properties and relationships are interpreted
by the TMS as constraints on the current set of beliefs. The duty of the TMS is to record
these constraints and to maintain the current set of beliefs in accordance with these
constraints. The following chapter describes mechanisms for efficiently achieving this
concordance. This chapter describes the basic types of information accepted by the TMS,
and their use in describing more complex relationships of importance in problem solving

programs.

The TMS accepts two forms of information; justifications for beliefs, and
declarations of contradictions. Justifications specify conditions under which a belief is to be
held. These conditions involve questions about whether certain other beliefs are held.
Contradictions specify conditions under which a belief is not to be held. Beliefs which are
declared to be contradictions indicate that an inconsistent set of hypotheses is in force. The

inconsistency is resolved by invoking the process of dependency-directed backtracking.

The second section of this chapter describes the representation of reasons for

24

holding beliefs. This representation can be used to describe non-monotonic deductions and
conditional proofs. The third section uses this representation to model several important
relationships between beliefs in problem solving systems. These include default
assumptions, sets of alternatives, and equivalence class representatives. The final section

describes how beliefs may be automatically organized into hierarchical levels of detail.

25

B. Representing Knowledge About Beliefs

Everything’s got a moral, if you can only find it.

Lewis Carroll, Alice in Wonderland

A truth maintenance system has two basic components; beliefs, and justifications
for beliefs. A node is used to represent a component of program knowledge which may be
invested with belief. For instance, each assertion in a PLANNER-like data base might
have an attached node to represent the assertion in the TMS. A justification is used to

vrepresent a reason for believing the knowledge represented by a node. Justifications for
belief in a node are predicates of other nodes. These predicates have an internal structure
which is accessible to the truth maintenance system. This allows the TMS to extract several

types of dependency relationships between nodes by examining justifications. The two most

important types of dependencies are those of the antecedence and consequence relationships

between nodes.

A node may have several justifications for belief. The node is believed if at least
one of these justifications is valid. A justification is valid if it evaluates true. We say that a
node which is believed is in, and that a node without a valid justification is out. The
distinction between in and out is not that of true and false. The former denote conditions
of knowledge about reasons for belief; the latter, belief in a piece of knowledge or its

negation.!o%® of Belief e say that a node which is in has a support-status of IN, and that a

26

node which is out has a support-status of OUT. IN and OUT will also be used as

predicates of sets of nodes in justifications.

The basic types of justifications for belief are premise justifications, deductive
justifications, conditional proof justifications, and assumption justifications. Nodes believed
due to premise, deductive, conditional proof, or assumption justifications are called,

respectively, premises, deductions, implications, and assumptions.

Premise justifications correspond to the constantly true predicate. Premises are
therefore always in, independent of any other beliefs. Premises are useful in expressing the

basic knowledge of a program, and in hypothetical reasoning.
Deductive justifications express that one belief follows from belief in each node of
a set of nodes. Deductive justifications are the most common form of justification in normal

computations.

Conditional Proofs are justifications for supporting belief in a node on the basis

of the derivability of one node from other nodes. A conditional proof justification has two
parts; a single node, called the consequent of the conditional proof, and a set of nodes,
called the hypotheses of the conditional proof. The support implied by the conditioﬁal
proof justification is the subset of the support of the consequent which does not derive from

the hypotheses. Nodes justified by conditional proofs have the meaning of an implication.

27

The most important applications of conditional proof justifications are in summarizations.
I.n dependency-directed backtracking, for example, conditional proofs are used to note the
reasons for the inconsistency of a set of assumptions. Even after some of the assumptions
are retracted, the conditional proof remains valid. This prevents the same mistake

occurring in the future.

Assumption justifications support beliefs on the basis of a lack of knowledge.
They are justifications which are valid only if specified nodes are out. Assumptions
represent non-monotonic knowledge. Unlike other types of justifications, assumption
justifications can be invalidated by the addition of new justifications for beliefs. The
typical use of an as.sumption justification is in deriving one belief through an inability to
prove it false. For instance, one may assume a node F true unless proven otherwise by
Jjustifying F with the predicate (OUT ~F). If ~F is a node representing the negation of F,

this justification will support belief in F as long as there are no valid reasons for believing

w F THNOT

These types of justification can be captured in two forms of predicates. The first
of these, the support-list justification, is represented by a predicate of the form
(AND (IN <inlist>) (OUT <outlist>)).
A support-list justification is valid if each node in its inlist is in, and each node in its outlist
is out. Premise justifications are support-list justifications in wﬁich both the inlist and

outlist are empty. Deductive justifications are those in which the outlist is empty.

28

Assumption justifications have a non-empty outlist.

Conditional proof justifications cannot be represented by a support-list

Jjustification. Conditional proof justifications will be represented by a predicate of the form
(CP <consequent> <inhypotheses> <outhypotheses>).

A justification of this form is valid if the consequent node is in whenever each node of the
inhypotheses is in and each node of the outhypotheses is out. Standard conditional proofs
in natural deduction systems specify a single set of hypotheses. Our conditional proofs
require that the set of hypotheses be divided into two disjoint subsets, since nodes may be
derived both from some nodes being in and other nodes being out. Some natural deduction
systems also allow a set of consequents in a conditional proof. We restrict our conditional
proofs to a single consequent for the purpose of efficiency. Note that if multiple consequents
-were allowed, in the form of a set of in consequents and a set of out consequents, support-list

justifications would be representable as conditional proofs with empty sets of hypotheses.

29

C. Problem Solving Structures

Or, if there were a sympathy in choice,

War, death, or sickness did lay siege to it,
Making it momentany as a sound,

Swift as a shadow, short as any dream,

Brief as the lightning in the collied night,

That, in a spleen, unfolds both heaven and earth,
And, ere a man hath power to say, "Behold!"

The jaws of darkness do devour it up:

So quick bright things come to confusion.

William Shakespeare, 4 Midsummer Night's Dream

These basic types of justifications can be employed to represent more complex
relationships between beliefs. This section is devoted to describing some of these. The
relationships presented below describe choice structures. In these, the justifications are
arranged to select one alternative from a set of alternatives. In most cases, this choice is
backtrackable. That is, if a contradiction is derived which depends on the choice, the
backtracking mechanism can cause a new alternative to be chosen from the set of
alternatives. In the equivalence class representative selector, the choice is not backtrackable.
" In some of the backtrackable choice structures, new alternatives will be chosen in a specified
order as previous alternatives are ruled out. In others, random choices are'made from the
set of yet acceptable alternatives. An additional complexity involves the extensibility of the
_ structures. Some of the structures can be augmented at any time by new members of the set

of alternatives. Other structures are fixed at creation, and cannot be augmented.

30

C.1 Default Assumptions

One very common technique used in problem solving systems is to specify a
default choice for the value of some quantity. This choice is made with the intent of
overriding it if either a good reason is found for using some other value, or if making the
default choice leads to an inconsistency. In the case of a binary choice, such a default
assumption can be represented by believing a node if the node representing its negation is
out. The more general case can be represented by the following generalization of the binary
case. Let {F, .. , F,} be the set of the nodes which represent each of the possible values of
tHe choice. Let G be the node which represents the reason for making the default
assumption.NE":m"'o'CE Then F; may be made the default choice by providing it with the
justification |

(AND (IN G) (OUT Fy ... FyyFyq oo Fpl).
If no information about the choice exists, there will be no reasons for believing any of the
alternatives except F;. Thus F; will be in and each of the other alternatives will be out. If
some other alternative receives a valid justification from other sources, that alternative will
become in. This will invalidate the support of F;, and F; will become out. If a
contradiction is derived from F; the dependency-directed backtracking mechanism will
recognize that F; is an assumption by means of its dependence on the other aiternatives
being out. The backtracker may then justify one of the other alternatives at random, as

described in the following chapter, causing F, to go out. In effect, backtracking will cause

the removal of the default choice from the set of alternatives, and will set up a new default

3

assumption structure from the remaining alternatives.

The above structure is not extensible. No new alternatives can be added to the
set once the default assumption justification has been made. Such extensibility is necessary
when specifying a number as a default due to the large number of possible alternatives.-
For cases like this the following structure may be used vinstead. Retaining the above
notation, let ~F, be a new node which will represent the negation of F;. We will arrange
for F; to be believed if ~F; cannot be proven, and will set up justifications so that if F ; is
distinct froh F, Fj fvill imply ~F;. This is done by giving F, the justification

(AND (IN G) (OUT ~F))),
and by giving ~F; a justification of the form
(AND (IN F) (0OUT))

J

for each alternative F | distinct ‘from F i As before, Fi will be assumed if no reasons for
using any other alternative exist. Furthermore, new alternatives can be added to the set
simply by giving ~F; a new justification corresponding to the new alternative. This
structure for default assumptions will behave as did the fixed structure in the case of an
unselected alternative receiving independent support. Backtracking, however, has a
different effect. If a contradiction is derived from the defaiilt assumption supported by this
structure, ~F; will be justified so as to make F; become out. If this happens, no alternative

will be selected to take the place of the default assumption. The extensible structure

requires an external mechanism to construct a new default assumption whenever the default

is ruled out.

32

C.2 Unordered Sets of Alternatives

Another common problem solving structure is the unordergd set of alternatives.
Such unordered sets occur in Micro-PLANNER as the set of methods retrieved for solving
a goal when no recommendation lists are specified. This structure can be represented as a
number of overlayed default assumptions as described in the previous section. By setting
up justifications as follows, one of the assumptions will be chosen at random. As before, let
{F, .. , F,} be the set of nodes representing the alternative choices, and let G be the node
repregenting the reason for making the choice. One node of the set of alternatives will be
randomly chosen to be in if each F, is provided with the antecedent

(AND (IN G) (OUT Fy «.v Fy Fyy oee Fpl),
that is,
(AND (IN <reason for alternative set>) (OUT <other alternatives>))

With this structure, the alter.native which is selected will be believed unless either a
contradiction causes another alternative to be believed, or if one of the other alternatives
receives an independent justification for belief. The derivation of a contradiction from the
selected alternative will cause another alternative to be selected at random. This in turn

will cause the retraction of the previous choice.

This structure does not prevent more than one of the F, from being in via an
independent means of support. To impose this exclusiveness, it is necessary to state that

each pair of alternatives is inconsistent. This can be done by supporting a contradiction

3

with a justification (IN F; Fj) whenever each of the pair of alternatives F; and Fj

becomes in.

This structure does not allow the addition of new alternatives to the set of
alternatives. To effect such extensibility, the following structure is necessary. For each
_ possible alternative F;, two new nodes, P4; (meaning "Fi is a possible alternative™) and
N SAi‘ (meaning "F ; is not the selected alternative”) should be created. Each PAi should be
justified with the reason for having F; in the set of alternatives. Each F;and NSA; should

be justified as follows:

F. (AND (IN PA,) (OUT NSA))

{or: (AND «<is alternative> <is selected alternative>)}

¢ J

{or: <no other alternative selected>}

NSA;: (IN F) {for each j distinct from i}

New alternatives can be added to the set by collecting all existing alternatives and creating
the above justifications for the the new alternative node and for all of the not-selected-

alternative nodes.

34

C.3 Linearly Ordered Sets of Alternatives

Linearly ordered sets of alternatives are useful whenever heuristic information is
available for making a choice. One way such situations arise is by using recommendation
lists in .Micro-PLANNER. Another use is in heuristically choosing the value of some
quantity, such as the state of a transistor or the day of the week for a meeting. These types
of sets of alternatives can be described by the following justifications. The justifications are
arranged so that backtracking will cause sequencing through the set of alternatives in the
specifigd order. For each alternative Ai' three new nodes should be created. These new
nodes are P4; (meaning "A; is a possible alternative”), NSAiY (meaning "A; is not the
selected alternative”), and ROA,; (meaning "Ai is a ruled-out alternative”). Each PA; should
be justified with the reason for including 4; in the set of alternatives. Each ROA; is left

unjustified. Each A4; and NS4, should be given justifications as follows:

A (AND (IN PAi NSAI NSAH) (ouT ROAi))
{or: (AND <is alternative> <no better is selected> <is not ruled out>)}
NSA; (OUT PA) , (IN ROA)

{or: (OR <is not a valid alternative> <is ruled out>)}

With this structure, processes can independently rule in or rule out an alternative by

justifying the appropriate alternative node or ruled-out-alternative node.

N | SURTE .

This structure is also extensible. New mm’ be added W’ by
constructing the appropriate justifications 3 sbove. Fiese additions are restricted to

appearing: at the end of the erder. That is, new shermatiom saamet be spliced im0 the

36

C.4 Equivalence Class Representatives

In many cases, a value may be computed independently by several different
methods. Sometimes different values will be computed for the same quantity. It is desirable
to check the consistency of each of these values with all other values for the same quantity.
This is a way in which different parts of program knowledge can constrain each other,
either by combining two representations of the same value to compute a new quantity, or by
declaring the two representations to be contradictory.Pr2®" Each new representation of
the value in question should be compared with the previously discovered representétions to
check for coincidences and contradictions. The new representation should then be added to
the list of alternate representations for checking further representations. Since any value in
the set of consistent representations is equivalent to all the others, queries made for the
value of the quantity should be answered with a single representative. Successive queries
should be answered with the same representative. In addition, since all the possible values
are equivalent and consistent, backtracking should not attempt to choose a new representive

if the selected representative is used in deriving a contradiction.

The following structure describes a mechanism whereby a single representative
can be chosen from a set of equivalent objects. The justifications are arranged so that one
member of the set will be distinguished as the representative member. This representative
will not depend upon the choice from the set. This is done as foilows. For each member,

M,;, create two new nodes PR; (meaning "M, is a possible representative”) and SR,

37

(meaning "M ; is the selected representative”). Each PRi should be justified with the reason
for believing M; to be a consistent member of the equivalence class. Each M; and SR;

should be justified as follows:

SR;: (AND (IN PR (OUT SRy ... SR;)
{or: (AND <is a member> <no previous is selected>)}

{or: (CP of <selected alternative> relative to <those not selected>) }

The alternative mechanism selects one of the members PR; as the representative SR;. The
choice is hidden from the backtracking system by the conditional proof justifications for the
representatives. These conditional proofs remove all dependence of the representative on
the choice mechanism, so that M, depends only on PR;. Because of this, the backtracking
system will not attempt to select another member of the set if the selected representative is
involved in an inconsistency. The representative will be changed only if én assumption is
retracted which supports the membership of the representative in the set. This structure is
extensible. New members of the equivalence class can be added to the end of the list of

members.

38

E. Generalization and Levels of Detail

The lunatic, the lover, and the poet,
Are of imagination all compact.

William Shakespeare, 4 Midsummer Night's Dream

Hypothetical reasoning is useful in modifying arguments for beliefs. Conditional
proofs allow the relativization of beliefs with respect to a set of beliefs. .lf the original belief
is justified by the support of this conditional proof, the argument for the belief has been
generalized. Alternatively, the belief may be justified by the conjunction of the support for
the conditional proof and a set of beliefs which is semantically equivalent to the set of
hypotheses of the conditional proof. If the new set of beliefs is smaller than the set of

replaced hypotheses, the argument has been summarized.

One technique for solving a problem is to generalize from the solution of a
particular instance of a problem to a solution of the problem itself. This technique is useful
when a result valid for each member of a set is desired, but computations can be performed
only on specific members of the set. Conditional proofs may be used in such cases to
generalize the jystification of the specific result by removing its dependence on the specific
member used. For example, an electronic circuit analysis program might require a specific
(numerical) input voltage to calculate the gain of a circuit. This would produce a specific

gain which depends on the particular input voltage used. Actually, the computed gain is

-39

valid over the entire linear region of the device. The gain for all input voltages can be
computed by using a typical numeric val= of the input voltage to compute an instance of
the gain, and then generalizing the argument for this instance. This is done by justifying
the general gain value as the conditional proof of the specific gain value relative to the
particular value of the input voltage used. (This neglects the problems introduced by the

dependence of the computation on inequalities.)

This technique of generalization is a special case-of a powerful method for
separating levels of detail. This method uses conditional proofs to support results in terms
of the names of the methods used to compute them. In this way, the lower level of 'detail is
summarized and replace by the name of the method which produceci it. This technique is
critically important in hierarchical systems employing truth maintenance. Without such
summarizations, explanations of results involve huge numbers of intermediate results from
the lower levels of detail used in computing the final result. This not only produces
incredibly long and incomprehensible arguments, but also degrades the effectiveness of

backtracking and other processes which must trace through arguments for beliefs.

One way to introduce hierarchical structure into computations is to separate -
knowledge into levels of detail. These levels can be reflected in the dependency structure by
a mechanisms analogous to function calling in programming languages. When one level of
knowledge needs to use a lower level to compute something, the higher level "calls” a lower

level routine. The components of higher level knowledge to be used in the computation are

40

the "arguments” of the function call. These are mapped into corresponding components of
lower level knowledge. These corresponding components represent the "parameters” of the
lower level routine. The low level routine, the "function”, then performs the desired
computation using the parameters, and passes the resulting values back up to the higher

level of knowledge.

This analogy is implemented as follows. Routines are attached to named
boundaries of knowledge. A boundary consists of two sides and a set of paired terminals.
Each terminal on one side of the boundary has a corresponding terminal on the other side.
One side of a boundary represents the external view of the routine, that is, the "call” on the
routine. The other side of the boundary represents the internal view of the routine, that is,
the “parameter declarations” of the routine. When knowledge appears at one side of a
terminal of a boundary, it is transmitted to the corresponding terminal on the other side of
the boundary. A value is transmitted frpm an outside terminal by justifying the same value
for the cofresponding inside terminal. The justification used is in terms of the value's
appearance on the outside terminal in conjunction with a node representing the name of the
boundary. A value is transmitted from an inside terminal to the corresponding outside
terminal by justifying the outside value as the conjunction of the node representing the
boundary name and the conditional proof of the inside value with respect to the boundary
name. By using the conditional proof, all dependence of the value on knowledge inside the
boundary is removed. This knowledge is replaced by adding the Boundary name back into

the justification after the conditional proof has been performed '™erfeces

|

The following example demonstrates the use of this technique in a hypothetical
hierarchical electronic circuit analysis program. This example is loosely based on an actual

program (that ran at least once) written by G. J. Sussman, M. Matz, and myself.

The basis of the example will be the conservation of current by a resistor.
Resistors are modelled by overlaying two constraints on the basic resistor deviceS™*® These
are the constraints of 2-terminalness (conservation of current) and ohms-lawness.

(Rule (:t (type :r resistor))
(Assert (type :r 2-terminal) (Overlay :t))
(Assert (type :r ohms-law) (Overlay :t)))

In this example we will ignore the ohms-law aspect of the resistor. The implementation of
- the 2-terminal constraint is in terms of a lower level of detail. Thi; lower level implements
equations as adders and multipliers connected together. The arithmetic level of devices is
used to compute and propagate numerical constraints. This computation is uninteresting to
the higher levels dealing with electrical laws and devices. The mechanism of conditional
proof will be used to isolate the higher level of detail from the lower.

(Rule (:t (type :d 2-terminal)) .
(Assert (implementation :d (arithmetic-boxes 2-terminalness))
(Method :t))
(Rule (:impl (implementation :d (arithmetic-boxes 2-terminalness)))
(Assert (type (kcl :d) adder) (part :t :impl))
(Assert (map (current (#1 :d)) (al (kcl :d)) :impl)
(Make-map :t :impl))
(Assert (map (current (#2 :d)) (a2 (kcl :d)) :impl)
(Make-map :t :impl))
(Assert (value (sum (kcl :d)) @)
(Implementation :t :impl))))

Here the 2-terminal constraint is implemented as an adder. This adder constrains the

42

currents of the terminals of the resistor to sum to zero by first mapping each of the currents
to an addend of the adder, and then declaring the sum of the adder to be zero. These
mappings will serve as the boundary separating the electrical level of detail (the currents on

resistor terminals) from the arithmetical level of detail (the connections of adders).

The following rule defines the behavior of the boundary mappings.
(Rule (:m (map :varl :var2 :impl))
(Rule (:f (value :varl :val))
(Assert (value :var2 :val) (INMAP :f :m)))
(Rule (:f (value :var2 :val))
(Assert (value :varl :val) (OUTMAP :f :impl))))
This rule sets up the channels by which pieces of information, in this case v.alue assertions,
are transmitted acrosg the boundary. The INMAP justification does nothing special; it
merely_ transmits the value across, adding the map assertion to the justification in passavge.
The OUTMAP justification is the means by which the higher level is separated from the lower
level. The OUTMAP justification operates by asserting the value being transmitted at the
higher level. The justification removes the dependence on the lower level of detail byAusing
the conditional proof of the lower level value node relative to the implement'ation node.
That is
(QUTMAP :f :impl)
translates into
(CP :f (zimpl) O).

Since both the mapping structure and the lower level internal structure depend upon this

implementation node, they are absent from the resulting explanations.

43

As a particular example, we demonstrate the passage of current through a resistor.

(Assert (type rl resistor) (Premise))
F-1 (TYPE R1 RESISTOR) (PREMISE)

F-2 (TYPE R1 2-TERMINAL) (OVERLAY F-1)
F-3 (TYPE R1 OHMS-LAW) (OVERLAY F-1)

‘This defines a particular resistor, R1. The next level of detail is then implemented.
(IMPLEMENTATION R1 (ARITHMETIC-BOXES 2-TERMINALNESS)) (METHOD F-2)

(TYPE (KCL R1) ADDER) (PART F-2 F-4)

F-4

F-5

F-6 (MAP (CURRENT (#1 R1)) (Al (KCL R1)) F-4) (MAKE-MAP 4
F-7

F-8

-2 F-4)
-2 F-4)

F
(MAP (CURRENT (#2 R1)) (A2 (KCL R1)) F-4) (MAKE-MAP F
(VALUE (SUM (KCL R1)) 8) (IMPLEMENTATION F-2 F-4)

With the wiring of the resistor completed (the wiring of the ohms-law constraint
has been omitted for brevity), we can specify the current on one side of the resistor and
examine the resulting explanations.

(Assert (value (current (#1 rl)) 7) (Premise))

F-3 (VALUE (CURRENT (#1 R1)) 7) (PREMISE)

F-18 (VALUE (Al (KCL R1)) 7) (INMAP F-3 F-6)

F-11 (VALUE (A2 (KCL R1)) -7) (SUBTRACTION F-5 F-18 F-8)
F-12 (VALUE (CURRENT (#2 R1)) -7) (OUTMAP F-11 F-4)

The lower level rules implementing the arithmetic constraints of addition and multiplication

have also been omitted for brevity.

A query for the explanation of the last node, F-12, produces the following result,
in which the level of arithmetic detail is absent by means of the OUTMAP conditional proof of
the computed value, as given in F-11, relative to the implementation node F-4. The

conditional proof is used to derive the set of higher level beliefs supporting the computed

14

value. These are the nodes used in the explanation. (The mechanism for deriving sets of
supporting beliefs from conditional proofs is described in Chapter III.) Since there is only
one possible implementation of a resistor, the IMPLEMENTATION node does not appear in the
explanation. In other devices, such as transistors, there may be several possible
implementations depending on the state of the device. In such cases, the implementation
choice should bé iﬁcluded in the justification for the higher-level result.

(Explain 'F-12)

PROOF OF F-12 = (VALUE (CURRENT (#2 R1)) -7) (OUTMAP F-11 F-4)

333 THE INDEPENDENT SUPPORT OF (OUTMAP F-11 F-4) IS (IN F-9 F-2 F-1).
(VALUE (CURRENT (#1 R1)) 7) (PREMISE)

F-3
F-2 (TYPE R1 2-TERMINAL) (OVERLAY F-1)
F-1 (TYPE R1 RESISTOR) (PREMISE)

This example has indicated the usefulness of conditional proofs in clarifying
explanations by separating levels of detail. More important benefits are possible in
improving the information examined by backtracking systems. Just as concise explanations
are more useful to humans, improved explanation structures relating beliefs can ease the
task of dependency-directed backtracking. Concise explanations reduce the number of
nodes involved in the support of a contradiction. This allows the backtracking system to
opefate more efficiently. This also means that better reasons are developed in summarizing

the reasons for inconsistencies.

45

III. Truth Maintenance Mechanisms

A. Introduction

The previous chapter presented the descriptive language for imparting
information about beliefs t§ a truth maintenance system. Descriptions in this language
concern logical, time-independent relationships between beliefs.. Particular descriptions can
be given to the TMS in any order. The purpose of this chapter is to describe mechanisms
by which the TMS can maintain the consistency of the set of beliefs with the constraints

imposed by new justifications and declared contradictions.ComPlexity

This section of this chapter describes the basic components of the world of the
TMS; nodes and justifications for belief. The second section presents the problems caused
by circularities in dependency relationships. Circularities arise through circular proofs, and
require careful handling in the process of determining the support of a belief. The third
section discusses the process of truth maintenance. This process is invoked whenever new
justifications or the retraction of premises cause beliefs to change. These changes mean that
the support of any beliefs affected by the changes must be rederived. The fourth section
discusses the handling of conditional proofs. The fifth section combines all these

mechanisms to describe dependency-directed backtracking.

46

Little elaboration is needed on the concepts of nodes and justifications introduced
in Section IL.B. The internal structure of justifications is accessible by the TMS to allow
efficient processing. To the TMS, a support-list justification (hereafter referred to as a SL-
Justification) is simply a pair of lists of nodes, the inlist and the outlist. A conditional proof
justification (a CP-justification) has a single consequent node, and two lists of nodes, the
inhypotheses and the outhypotheses. The set of justifications of a node is called its

justification-set. From these justifications we derive a dependency relationship between

nodes. Each node has a list of consequences. These consequences are other nodes which
have justifications mentioning the antecedent node. Each consequent node has either a SL-
justification containing the node in question in the inlist or the outlist, or has a CP-
Jjustification containing the node as either the consequent of the conditional proof, or as one

of the hypotheses.

17

B. Well-Founded Support Relations

Clear your mind of cant.

Samuel Johnson

Consider the situation in which the node F represents the assertion
"= (+ XVY) &),

G represents

=X 1),
and H represents

"=V 3"
If both F and G are in, then belief in H can be justified by (AND (IN F G) (OUT)). This
Jjustification will cause H to become in. If G subsequently becomes out due to changing
hypotheses, and if H becomes in by some other justification, then G can be justified by (AND
(IN F H) (0UT)). Suppose the justification supporting belief in H then becomes invalid.
If the decision to believe a node is based on a simple evaluation of each of the justifications
of the node, then both G and H will be left in. This happens because the two justifications
form circular proofs for G and H in terms of each other. These justifications are mutually

satisfactory if F, G and H are in.

48

Belief in nodes on the basis of circular proofs can be avoided by only believing
nodes for which there exists a non-circular argument from premises and assumptions. This

is accomplished by distinguishing a supporting-justification in the justification-set of each

in node. The supporting-justification is a valid justification whose validity was determined
by examining only nodes with well-founded support. Once a node is believed on the basis
of a supporting-justification, it continues to be believed until its supporting-justification
becomes invalid. If the node’s supporting-justification becomes invalid, the node and any
nodes using the node in their well-founded support are examined to see if other

justifications can provide new means of support.

It is possible to generalize the supporting-justification of a node to a set of
justifications, each of which provides well-founded support for belief in the node. This
scheme is attractive because it allows one form of work to be avoided. A node will be
believed as long as there is at least one supporting-justification. This makes it unnecessary
to reconsider the support of the consequences of a node if the invalidation of one of the
node’s supporting-justifications leaves the set of supporting-justifications nonempty. There
are several problems with this approach. One problem is that the support of node must be
checked with each change in its set of supporting-justifications, even if there is one
supporting-justification which is always valid. If only one supporting-justification was
maintained, this invariant justification could allow the checking process to completely ignore
the node. Another problem is that a major use of the recorded jﬁstifications is in tracing

backwards through the arguments for belief in a node. If multiple supporting-justifications

19

are used, then processes like dependency-directed backtracking and explanation generation
can become very complex and costly. To handle the multiple justifications for beliefs, these
processes would have to trace many branching arguments in parallel. Because of these
problems, the approach used here is that of maintaining a single supporting-justification for

each believed node.

If any of several justifications can provide well-founded support, the best choice
for the supporting-justification is the justification which will remain valid the longest. The
problem of determining which justification is the most stable is intractable in general, like
the problem of selecting pages to swap out of memory. Rather than select a supporting-
Justification completely at random, some (rather dubious) heuristics can be used. One
simple heuristic, the one used in the programs of Appendix 3, is to choose the
chronologically oldest of the possible justifications. This heuristic is based on the theory
that chronologically older justifications are likely to be more "fundamental” in some sense,
and thus less susceptible to change. Alternatively, a "self-organizing™ heuristic such as
bubbling the more stable justifications to the front of the order may be used to modify the
order of the justification-set of the node. The current research has not included any
expefimen;ation to see if benefits accrue from the use of these heuristics, or. to see which
provides the better performance. One might also imagine schemes in which a "certainty
factor” is associated with each node. In such a scheme, the “certainty” of a justification
might be computed from the certainty factors of the nodes mentioned by the justification.

The heuristic then chooses the justification with the largest certainty factor as the

50

supporting-justification. Most such measures of certainty require the use of domain-specific
knowledge about the meaning of the nodes and justifications involved. In addition, the
semantics of a measure which is not a formal probability measure is very unclear. The use

of certainty factors has not been persued here for these reasons.

For the purpose of tracing through justifications, it is convenient to extract
another dependency relationship from the supporting-justifications of nodes. The
-antecedents of a node are those nodes which currently support belief in the node. Thus an
out node has no antecedents, and the antecedents of an in node are just those in the
(necessarily disjoint) union of the inlist and outlist of the node’s supporting-justification. (As
will be explained in more detail later, CP-justifications never are the supporting-
Jjustification of nodes. Instead, a CP-justifiﬁation is used to generate a new SL-justification
summarizing the independent support of the conditional proof. This SL-justification is

then used as the supporting-justification.)

The antecedence dependency is not the only useful dependency relationship of this
nature. When beliefs change, it is necessary to check not only the believed nodes which
depended on the changed beliefs, but also any nodes which might now be believed by
virtue of the changes. To make this efficient, the set of nodes affecting the current support-

status of each node is collected into the node’s set of supporting-nodes. The supporting-

nodes are the same as the antecedents for in nodes, since any change in one of the

antecedents of a node may cause the node to become out. The 'supporting-nodés of an out

51

'node are found by selecting one node from each justification of the node. Each of these
nodes is selected because its support-status led to the invalidity of the corresponding
Justification. This means that each of the out supporting-nodes of an out node is in the
inlist of one of the node’s justifications, and each in supporting-node is in the outlist of some
justification. This definition does not specify a unique set of nodes as the supporting-nodes
of an out node, but any such set suffices. The intent is for the supporting-nodes of a node
to be a small set of nodes which, if unperturbed, indicates that belief in the supported node
cannot change. In odd cases this definition allows inclusion into the supporting-nodes of a
node some nodes that do not influence the support-status of the node. For example, the silly |
Jjustification .(AND (IN) (OUT f1) might cause f to be included in the supborting-nodes.
even though the justification is constantly false independent of the support-status of f. Note
also that circularities can occur in the relationship of one node being a supporting-node of
another. The algebra example above demonstrates such a case, for if the two nodes

involved in the circularity are both out, they will have each other as supporting-nodes.

From the supporting-nodes of a node, we define additional concepts as follows.

The affected-consequences of a node are those nodes whose current support-status rests on
the node; precisely, the affected-consequences of a node are those consequences of the node
such that the node is a supporting-node of each of these consequences. The foundations of
a node are those nodes involved in the well-founded support for belief in the node;
precisely, the foundations of a node are the transitive closure of thé antecedents of the node

under the operation of taking antecedents. The ancestors of a node are those nodes

52

involved at some level in determining the current support-status of the node; _precisely, the
ancestors of a node are the transitive closure of the set of supporting-nodes of the node
under the operation of taking supporting-nodes. The repercussions of a node are those
other nodes whose support-statuses are affected at some level by the support-status of the
node; precisely, the repercussions of a node are the transitive closure of the affected-

consequences of the node under the operation of taking affected-consequences.

53

C. Truth Maintenance

And we'll talk of them too,
Who loses, who wins, who's in, who's out,
And take upon’s the mystery of things.

William Shakespeare, King Lear

Truth maintenance is a process invoked whenever the support-status of a node

changes. This process consists of redetermining the support-statuses of the node and its
repercussions. This involves examining the affected nodes to find well-foqnded support.
The presence of several types of circularities in the dependency structure complicates
matters. These circularities call for a more elaborate mechanism than a simple bottom-up

support analysis.

Nodes can change their support-status in two ways. The normal reason for
change is the addition of a new valid justification to an out node. This causes a change of
support-status from out to in. The other way that a change can occur is if the justification

of a premise is retracted.

Different actions are required depending upon the validity of the new justification
and the support-status of the justified node. A justification added to an in node requires
only adding the new justification to the justification-set of the node. In this case, the new

Justification cannot cause a change of support or support-status. A new justification added

54

to the justification-set of an out node requires truth maintenance processing if the new
justification is valid. A non-valid justification can be added to the justification-set of an out
node without causing truth maintenance, but this requires that the set supporting-nodes of

the node be updated to include a node responsible for the invalidity of the new justification.

Truth maintenance processing is not required if a node has no affected-
consequences. The support-status of the node can be changed without affecting any other
beliefs. This special case routinely occurs after newly created nodes are given their first
Justification. Truth maintenance is also not required when retracting a node which does not
have a premise justification for its supporting-justification. In this case, the retraction can
remove any premise justifications from the justification-set without affecting the node’s well-

founded support.

Truth maintenance processing starts by producing a list containing the invoking
nodes and their repercussions. Each node on this list is marked with a support-status of
NIL to indicate that it Iack; well-founded support. (A NIL support-status exists only during
the process of truth maintenance. Outside of truth maintenance, all nodes have a support-
status of either IN or OUT.) This marking is used to determine if a justification supplies
well-founded support for a node. Next, each of the nodes on this list must be examined.
This is a recursive procedure taking action only if the node being exarr;ined has a support-

status of NIL. If so, the justification-set of the node is evaluated with respect to well-

foundedness. This is a careful evaluation procedure described below. Examination of this

55

node terminates if well-founded support cannot be found. If well-founded support is found,
the support-status of the node is set appropriately, the supporting-nodes are installed, and if
the node is now in, the supporting-justification is installed. Since the newly determined
support of this node might now allow determination of support for its consequences, each of

the consequences of the node is examined in turn.Efficiency

Justifications can be evaluated in a way which indicates whether they provide
well-founded support. This is done by evaluating the justifications with respect to the three
values T, F and NIL. SL-justifications evaluate to T if each node of the inlist is in and
each node of the outlist is out; to F if some node of the inlist is out or some node of the
outlist is in; and to NIL otherwise. CP-justifications evaluate to T if all inhypotheses are
in, all outhypotheses are out, and the consequent is in; to F if the first two conditions hold
and the consequent is out; and to NIL otherwise. A node is considered in if any of its
justifications evaluates to T, out if all its justifications evaluate to F, and otherwise lacks

well-founded support.

The above process of examination will determine well-founded support for the
majority of nodes, but can leave some nodes without well-founded support. These are nodes
which are involved in circularities in the dependency relation, or whose possible support
depends on nodes involved in circularities. There are essentially three different kinds of
circularities which can arise. The first and most common is a circdlarity in which all nodes

involved can be considered out consistently with their justifications. Such circularities arise

routinely through equivalences and simultaneous constraints. One of these circularities is
present in the algebra example of the previous section. In that example, an equation
produces a circularity between the nodes G and H. If neither of G or H is supported by

justifications not involved in the circularity, both G and H should be considered out.

The second type of circularity is one in which at least one of the nodes involved
must be in. An example is that of two nodes F and G, such that F has an justification -of
the form (OUT G), and G has an justification of the form (OUT F). Here either F must be
in and G out, or G must be in and F out. This type of circularity arises in defining
unordered sets of alternatives. The other types of ordered alternative structures avoid such

circularities.

The third form of circularity which can arise is the unﬁatisfiable circularity. In
this type'of circularity, no assignment of support-statuses to nodes is consistent with their
justifications. An example of such a circularity is a node F with the justification (OUT F).
This justification implies that F is in if and only if F is out. Unsatisfiable circularities are
bugs, indicating a misorganization of the knowledge of the program using the truth
maintenance system. Unsatisfiable circularities are violations of the semantics of in and out,
which can be interpreted as meaning that the lack of reasons for belief in a node is
equivalent to the existence of reasons for belief in the node. (It has been my experience that
such circularities are most commonly caused by confusing the conﬁepts_ of in and out with

those of true and false. For instance, the above example could be produced by this

57

misinterpretation as an attempt to assume belief in the node F by giving it the justification

(OUT F).)

The second step of truth maintenance handles these circularities. This step
consists of a relaxation process in which the nodes not supported during the search for well-
founded support are specially examined. Like the regular examination procedure, this
special examination proceduré also ignores nodes possessing a non-NIL support-status. It
first checks for well-founded support, as in the previous examination process, and if it finds
-such support installs it and then processes the node’s consequences as described below. If
well-founded support is still lacking, the SL-justification set is specially evaluated. This is
done by considering a support-status of NIL in a referenced node to be equivalent to OUT.
That is, the SL-justification set is evaluated under the assumption that all unsupported
nodes are OUT. (The CP-justification set is ignored during this evaluation. This will be

discussed later.) This evaluation determines the node to be either in or out.

Once the examination finds the support-status for the node, it must check the
consequences of the node. If the node was determined to be out, then a simple recursive
examination of the consequbences is sufficient. More care is required if the nodé was
brought in. Any affected-consequences of the newly supported node had had their support
determined on the assumption that the newly supported node was out. The inning of this
node means that this assumption was mistaken. This requ-ires that the affected-

consequences of the node must be remarked and reexamined. If the node had no affected-

58

consequences, the examination can continue by recursively examining the consequences of

the node.

This relaxation procedure will devolve into an infinite loop if unsatisfiable
circularities are present. Such circularities, as previously mentioned, are really erroneous
uses of the truth maintenance system. This possibility of an infinite loop can be avoided at
some expense by making a well-foundedness check before a node is brought in. This check
operates by checking the ancestors of the inned node to see if they include the node itself. If

this condition holds, an unsatisfiable dependency structure has been detected A™"®®

The above process is incomplete in its treatment of nodes justified via conditional -
proofs. CP-justifications are never used as supporting-justifications. They are instead used
to génerate new SL-justifications. This is done whenever a node is brought in on the basis
of a CP-justification. The FINDINDEP procedure described in the next section is used to
trace backwards from the consequent of the CP-justification to collect the sets of nodes .
which support the consequent but are not themselves supported by the hypotheses of the
CP-justification. These sets (one of in nodes, the other of out nodes) are then made into a
new SL-justification. This new justification is made the supporting-antecedent of the node

and added to the justification-set of the node.

CP-justifications are not evaluated if they are out of context, that is, if an

inhypothesis is out, or if an outhypothesis is in. Rather than perform the hypothesizing of

59

beliefs necessary to evaluate the conditional proof justification, the justification is ignored.
This is an incompleteness in the current system, and a problem for exploration and solution

by future research.

The current partial solution to this problem is to pass over the examined nodes
after truth maintenance has decided their support-statuses. Each node can have a CP-

consequent-list associated with it. This list is used to record the set of other nodes which

use the node as a consequent of a CP-justification. If a node has some nodes on its CP-
consequent-list and is in, then new SL-justifications are derived (if possible) for the nodes
possessing the CP-justifications. Those nodes are then justified with any new justifications
that result. If this step causes truth maintenance, the scan must be restarted to check fbr

further changed nodes.

A related check performed during this scan is that of looking for in nodes marked
as contradictions. If such nodes are found, the backtracking mechanisms is invoked and the

scan restarted.

Once well-founded support has been derived for all the nodes affected by truth
maintenance, the external system can be notified of any changes in beliefs that have
occurred. This is easily done by allowing the external system to associate two functions with

each node. One of these, the signal-recalling function, is called with the external

representation of the node as its argument if the node’s support-status has changed from out

6l

D. Conditional Proofs

Some mistakes we must carry with us.

Larry Niven, Ringworld

The Deduction Theorem of mathematical logic states that if C is derivable from A
and B, then (IMPLIES B C) is derivable from A alone. This theorem forms the basis for
the conditional proof mechanism u;ed in a truth maintenance system. This mechanism,
called FINDINDEP,FINDINDEP ¢ 5 procedure which uses a proof of the belief C to find a
justification for (IMPLIES B C) in terms of A. Conditional proof justifications have a set of
inhypotheses and a set of outhypotheses. - If each node in the inhypotheses is in, and each
node in the outhypotheses is out, then FINDINDEP can be applied to compute the set of
support of the implication of any in node C by these hypotheses. That is, it computes the
support of the implication

(IMPLIES (AND (IN <inhypotheses>) (OUT <outhypotheses>)) C).

This is done by finding the set of nodes in the foundations of C. This set is pruned by
removing all of the inhypotheses and outhypotheses, as well any nodes that are
repercussions of inhypotheses or outhypotheses. The remaining set of nodes is the set of
support for the above implication. This set can be pruned further. Each of the nodes in
this set has affected-consequences. Some of the affected-consequences are among the
foundations of C. If all such affected-consequences of a node afe in the derived set of

support, the node can be removed from the set of support. This is admissible because the

62

node supports C only through other nodes in the set of support. This pruning leaves a

reduced set of support which can be combined with the hypotheses to support C.

FINDINDEP consists of two basic steps, each of which is a recursive scan of the
foundations of the consequent C of the conditional proof. The first step consists of tracing
backwards through the antecedents of C until inhypotheses, outhypotheses, or premises are
reached. The search then follows the paths traced out in the opposite direction. Tracing
upwards from the terminal nodes, the scan marks each of the nodes encountered that is
either one of the hypotheses or is a repercussion of a hypothesis. At the end of this step, all
unmarked nodes are in the set of support of C. The second step finds the reduced set of
support. This step again traces backwards through the antecedents of C. This tracing stops
when an unmarked node is reached, or when a hypothesis is reached. When an unmarked
node isA encountered, it is included in the reduced set of support. Finally, all of the marks
are removed. The nodes collected as the reduced set of support are separated into a set of
in nodes and a set of out nodes. These can be used to create a SL-justification to support

the implication.

63

E. Backtracking

"I should have more faith,” he said; "I ought to know by this time that
when a fact appears opposed to a long train of deductions it invariably
proves to be capable of bearing some other interpretation.”

Sir Arthur Conan Doyle, 4 Study in Scarlet

Systems engaging in hypothetical reasoning require mechanisms for reconciling
beliefs upon the introduction of new hypotheses. Two types of hypotheses can be
distinguished; speculative hypotheses and counterfactual hypotheses. Speculative
hypotheses are those which are consistent with existing beliefs and justifications.
Speculative hypotheses are useful when a lack of knowledge forces.the making of.an
assumption for the purpose of exploration. Counterfactual hypotheses, on the other hand,
contradict previous beliefs. Such hypotheses are useful in exploring the results of actions

and in deriving constraints existing in different worlds.

There is an overlap between these two forms of hypotheticals in a truth
maintenance system.' This overlap results from the orientation of the truth maintenance
system towards apparent consistency. Since the only notion of inconsistency is that of
contradictions, any set of beliefs not supporting a contradiction lnode is considered
consistent. New information added by the external system may later show these beliefs to be
inconsistent. Thus what may have originally been speculative ﬁypotheses may later be

discovered to be counterfactual hypotheses requiring special treatment. This treatment is

64

called backtracking.

The procedure for dealing with contradictions is to determine the set of
hypotheses underlying the contradiction. This set is inconsistent, and the inconsistency is
resolved by rejecting belief in one or more of these hypotheses. It is desirable to discard as
few hypotheses as possible, so the handling of counterfactuals has been characterized as the
selection of a maximal consistent subset of the set of inconsistent hypotheses. This process
of selection requires domain-specific knowlédge, since as far as logic and truth maintenance
systems are concerned, premises are independent of all other beliefs. This independence
means that there are no inherent relations to other beliefs which can be used in

discriminating among premises in consistent subset selection.”MMCS

Unlike premises, assumptions can be related to each other and to other beliefs.
Assumptions can be related to the reasons for their introduction and to the specific lack of
information which permits their belief. An inconsistency involving assumptions indicates
not only that one of the assumptions must be retracted, but also that belief is justified in one
of the nodes whose lack of valid justifications lead, through the assumption, to the
inconsistency. Thus, an inconsistency can be used to derive new information which controls

the introduction and consideration of further assumptions.

These mechanisms are embedded in truth maintenance systems in two ways. The

making of speculative hypotheticals and the necessary reconciliation of these hypotheses

65

with previous justifications for belief are handled by the normal mechanisms of assumption
justifications and truth maintenance processing. Backtracking is implemented in a truth
maintenance system as the method of dependency-directed backtracking. This method uses
the dependency relationships to provide the raw material for the analysis and

summarization of the inconsistent set of hypotheses.

The first step in the process of dependency-directed backtracking is the
recognition of an inconsistency by means of a contradiction. This is a node, justified by the
inconsistent beliefs, which the external system declares to represent a false belief. All
contradictions have the semantics of false, so there need be only c;ne such contradiction
node, with new inconsistencies recorded as new justifications for this node. As far as the
truth maintenance system is concerned there can be several representations for false, each of

which is represented by a distinct contradiction node.

The second step of backtracking is the determination of the inconsistent set of
hypotheses underlying the contradiction. The wisdom of premises and monotonic
justifications is inscrutable to the truth maintenance system. Therefore, the only hypotheses
of interest to the backtracker are those based on incomplete knowledge. These are the
assumptions. The assumptions are located by tracing backwards from the contradiction
node through its antecedents, and watching for nodes which have out nodes among their

antecedents.

66

Although the set of all the assumptions supporting the contradiction is easily
calculable, recording the inconsistency of this set directly may be inefficient. There is a
definite structure relating these assumptions. Since the support of nodes is well-founded, the
nodes may be arranged into a partial order. In this partial order, one node is "less than”
another node if the first is an antecedent of the second. The complete partial order is
derived as the transitive closure of this antecedence-based relation. Some assumptions will
be independent of other assumptions in this order. Other assumptions will be dependent on |
lower level assumptions. This information is useful, because only those assumptions which

are maximal in this partial order should be considered for retraction.

An assumption should not be retracted if the contradiction depends on it by
means of other assumptions. The backtracking procedure only makes logically necessary
retractions based on the observed occurrence of contradictions. In general, there is not
enough information to logically rule out lower level assumptions. That is, assumptions are
retracted using their inconsistency with the set of other assumptions in force as a reason.
The retraction of non-maximal assumptions would then depend on the continued belief in
the maximal assumptions which depend on the lower level assumption. Since these higher

level assumptions will in general depend crucially on the lower aSsumption, the attempt at

retraction must fail.

Other types of information can also be derived from the partial order. These

allow discriminations on the basis of the height of an assumption in the partial order, or on

67

the size of the component of the partial order containing the assumption. Different
strategies for ranking the assumptions correspond to different local search strategies. For
instance, retracting the maximal assumption of greatest height in the partial order might be
interpreted as a kind of depth-first strategy. However, from a global perspective,
dependency-directed backtracking is neither depth-first nor breadth-first, since the global
search order is determined primarily by the history of the search, and not by the local order

of choosing among alternative assumptions for retraction.

The third step of backtracking is the summarization of the inconsistency of the set
of hypotheses underlying the contradiction. Suppose that S = {A, B, .. , Z} is the set of
inconsistent assumptions. The backtracker then creates a NOGOOD, a new node
signifying that S is inconsistent. The NOGOOD represents the fact that

A A ..AZ> false,
or alternatively, that
~(AA..A2).

S is called the NOGOOD-set of the NOGOOD. The summarization is accomplished by

justifying the NOGOOD with a conditional proof of the contradiction relative to the set of ‘
assumptions. In this way, the inconsistency of the set of assumptions is recorded as a node
which will be believed even after the contradiction has been disposed of by the retraction of
some hypothesis. Note also that the NOGOOD will depend on any non-maximal
assumptions not included in the NOGOOD-set. This means that-future backtracking can

reject each of the assumptions in the NOGOOD-set and still have some assumptions left to

reject.

The last step of backtracking uses the summarized cause of the contradiction,
represented by the NOGOOD, to both retract one of the inconsistent assumptions and to
prevent future contradictions for the same reasons. This is accomplished by deriving new
justifications for the out nodes underlying the inconsistent assumptions. The.new
Jjustifications will cause one of these out facts to become in, thereby causing one of the
offensive assumptions to become out. This step is reminiscent of the justification of results
on the basis of the occurrence of contradictions in reasoning by reductio ad

absurdum, Combinatorics

These new justifications are constructed as follows. Let the inconsis;ent
assumptions be A;, .. , A,. Let §;, .. , S be the out nodes of the justification supporting
belief in the assumption A;. To effect the retraction of one of the assumptions, 4,, justify
§;7 with the predicate

(AND (IN NG Ay «.o Ay g Ay oo Ay) (OUT Spp ooo Sp)),
that 1s

(AND (IN <NOGOOD> <other assumptions involved>)
(OUT <other denials of this assumption>))

This will ensure that the justification supporting A; by means of this set of out nodes will
no longer be valid whenever the NOGOOD (NG) and the other assumptions are believed.

This process may be repeated for each assumption in the inconsistent set to try to ensure

69

that the contradiction will be removed even if some of the assumptions in the nogood-set
have alternate means of support. However, this strategy will create a circularity containjng
these ‘new justifications. While later backtracking may make this unavoidable, the
immediate creation of a circularity can be avoided by making only one new justification.
This new justification will neutralize the justification of one of the assumptions. If other
support can be found for this assumption, then backtracking is repeated. Presumably the
new invocation of the backtracker will find that the previous culprit is no longer an
assumption. Backtracking halts when the contradiction becomes out, or when no

assumptions can be found underlying the contradiction.

70

IV. Discussion

A. Summary of the Key Ideas

The major point stressed here is that careful recording of the logical support for
program beliefs permits many important efficiencies and capabilities in reasoning programs.
We feel that truth maintenance systems should be thought of as a systemic function of
problem solving systems. Just as pattern-directed data bases form a nat-urally used

subsystem of many problem solvers, so, we feel, should a truth maintenance system.

. This report has elaborated the structure and use of a non-monotonic dependency
system fqr representing knowledge about beliefs, the mechanisms by which a truth
maintenance system can employ this representation of knowledge to maintain béliefs
consistent with recorded justifications, the application of dependency relationships in
effecting backtracking, and mechanisms for separating levels of detail and their

dependencies.

The non-monotonic dependency system formalizes several ways of justifying
beliefs including: premises, beliefs which are independent of other beliefs; deductions,
beliefs derived from other beliefs; conditional proofs, beliefs sumrﬁarizing the derivability

of one belief from others; and assumptions, the non-monotonic justifications in which a

n

belief is based on a lack of contradictory knowledge. These basic representational
techniques combine to allow perspicuous implementations of several common belief
structures used in problem solving systems, including default assumptions, sets of

alternatives and selectors of equivalence class representatives.

Beliefs consistent with recorded justifications can be efficiently determined via
truth maintenance, a process invoked whenever beliefs change due to the addition of new
information or the retraction of hypotheses. Truth maintenance involves an examination of
those beliefs explicitly linked, by means of the dependency system, to the changed beliefs.
The truth maintenance system exercises the care required to avoid spurious beliefs produced

by circularities among the justifications for beliefs.

Exploiting all the facilities provided by the dependency and truth maintenance
systems, dependency-directed backtracking examines the well-founded support recorded for
beliefs involved in' inconsistencies to determine the set of hypotheses underlying the
inconsistency. Retraction of premises supporting an inconsistency is outside the domain of a
truth maintenance system, but the dependency relationships involving non-monotonic
assumptions can be analyzed to provide a basis for the retraction of assumptions. The
causes of the inconsistency can be summarized via a conditional proof, and this summarized
cause can then be used to retract one of the underlying assumptions. This is done by

providing new knowledge which rules out belief in one of the assumptions.

72

Finally, the mechanism of conditional proof can be used to separate hiérarchical
levels of detail in explanations. The hierarchy is maintained by modifying arguments for
beliefs. The modification consists of replacing a set of beliefs at one level by the set of
higher-level beliefs frqm which they were derived. This is done by justifying information
at one level in terms of the higher-level beliefs and the conditional proof of the
corresponding information at the lower levels relative to the higher-level structures. This
separation is important not only in improving the clarity of explanations, but in aiding
processes like dependency-directed backtracking which must interrogate these explanations.
In the case of dependency-directed backtracking, the separation of levels of detail reduces
the number of belief involved in an inconsistency, thereby incre;sing the efficiency of the

backtracking process.

73

B. Relation to Other Work

There are systems oriented towards hierarchical representations of knowledge, but
none of these systems deal with recorded justifications for beliefs. None of these systems
address the problems raised by integrating the methods of truth maintenance and

hierarchical representations of knowledge.

There are several systems employing some form of data dependencies. One class
of these uses explicit justifications for belief. These include the systems of Fikes [1975],
McDermott [1975, 1977], Stallman and Sussman (1976}, and London [1977). Fikes' data base
system records sets of support for deductions, and uses these in automatically erasing data
derived from other erased data. His system does not use multiple justifications for single
beliefs, and does not use the dependencies to control search. McDermott's earlier system also
uses sets of supports as a data erasing mechanism, and allow multiple justifications for
beliefs as well. These must lead to problems in his system, as no truth maintenance
mechanism is used. McDermott’s later system is somewhat more developed, but incorporates
a number of extraneous forms of information into the recorded data dependencies, thereby
obscuring the problems of truth maintenance and control. Stallman and Sussman’s ARS
electronics analysis system employs multiple sets of support and a monotonic truth
maintenance system. ARS employs a mechanism for computing the sets of support of
conditional proofs, but does not make these explicit as justificatjoﬁs. Instead of recording

conditional proof justifications, the set of independent support is computed on the spot, and

74

never recomputed. ARS is a single-level system, and does not address the problem of
separating levels of detail. London employs an extended Fikes-like dependency network in

updating a simulation model.

Another class of systems each use mechanisms suggestive of dependency’
mechanisms. These systems include Hayes' [1975] planning systemy Cox and Pietrzykowski's
(1976] theorem prover, and Srinivasan’s [1976] MDS. Hayes' system is organized so that
eaéh decision made is associated with the set of other decisions which influenced the
making of the deci;ion. When surprises during plan execution invalidafe a choice, these
records are used to erase all decisions influenced by the invalid decision. Procedural
methods seem to be used to connect decisions with the underlying domain knowledge. Cox
and Pietrzykowski's graphical deduction system builds a proof in graph structure. When
backtracking leads to the removal of a unification from the graph, the unification histories
are employed to erase only that part of the graph that depended on the removed
unification.v Srinivasan’s system associates with each assertion a set of other assertions

which were accessed in checking the consistency of the assertion with the existing data base.

Several -.systerﬁs employ forms of careful back,trackin’g mechanisms. Stallman and
Sussman’s [1976] ARS'sys‘t._e.m introduced the mechani;m .‘of dependéhcy-directed
backtracking. Katz and Manna (1976] use recorded dependencies Eetween program
~ invariants when an attempted proof of correctness fails. The depehdencies are used first to

search for a program statement to modify, and then to direct the updating of the other

75

invariants. Cox and Pietrzykowski’s [1976] graphical deduction system analyzes the
unification histories recorded in building a proof graph. If progress is halted, the analysis
performed by the backtracking algorithm indicates a unification which, if discarded, will
allow further progress in the search. Nevins [1974] presents a theorem prover which
examines the proof graph wheﬁ a splitting attempt fails. Berliner’s [1974] chess program
uses a perturbation technique (called the Causality Facility) to analyze the dependence
features of the board situation on past moves. He also proposed the use of "lemmas” to
record the reasons for ruling out possible moves. These lemmas are similar in nature to
domain-specific NOGOODs, as they specify the conditions under which a move is bound to
be bad. Latombe [1976] has indicated that his TROPIC system also performs clever

backtracking.

One related mechanism is the context mechanism employed by CONNIVER
[McDermott and Sussman 1974] and QA4 [Rulifson, Derksen and Waldinger 1973). The
basic objective of both context and truth maintenance systems is the ability to reason
without confusion when using several mutually contradictory sets of beliefs. Such
conflicting sets of beliefs arise in reasoning about sequences of actions and in reasoning
about hypothetical assumptions. Context mechanisms are fortuitously useful for reasoning
about sequences of actions. This is because action sequences generate trees of incrementally
diffefént situations, and context systems are structured into trees of incrementally different
contexts. In addition to being similar in structure to the trees of situations arising from

action sequences, contexts allow simultaneous access to distinct situations. This means that

76

the properties of objects in one situation can be compared to the properties of the objects in
another. Because truth maintenance systems cannot easily inspect different situations,

reasoning about actions in a truth maintenance system is awkward.

On the other hand, contexts are inappropriate for reasoning about hypothetical
assumptions. Many hypotheticals are naturally independent. This allows changes of beliefs
derived from one assumption to be unaffected by changes in beliefs in independent
assumptions. Truth maintenance systems handle this_ easily. In context systems,
hypothetical extensions of a context must be made in some particular order. This means
that anomalous dependencies are unavoidable. Eecause of these anomalous dependencies,
discarding one assumption by popping the corresponding context layer can result in
discarding information derived from independent assumptions. This Iead; to the loss of
useful information and wasted search efforts. Contexts can be viewed as approximating the
logical dependencies between data. The problems introduced by the use of contexts are
therefore avoided: by u;ing the logical dependencies themselves to compute beliefs, rath.er

than the approximate relationships of context membership.

7

_C. Future Work

You know my methods. Apply them.

Sir Arthur Conan Doyle, T he Sign of Four

Many of the topics discussed in this report offer opportunities for future A
exploration and elaboration. Some of these concern the use of a truth maintenance system
in explanation and hypothetical reasoning. Other problems are in improving the technical
details of implementing truth maintenance systems. This section discusses these areas for

future research.

A major application of the dependency relationships determined by a vtruth
maintenance system is the explanation of computed entities in terms of the knowledge by
which they were computed. The recorded justifications for beliefs only form the raw
material from which explanations are to be constructed. The explanations produced by
simple examinations of the justifications or foundations of beliefs are often cluttered with
énno_ying details. . Some of this unnecessary information can be removed by using the
con.ditional proofs to restructure and summarize arguments. This report has indicated
techniques for using this mechanism in structuring the knowledge of a program into
hierarchical levels of detail, but much interesting work seems possible in developing
techniques by which query routines can perform dynamic restfucturing of arguments.

These restructurings rhight take into account the knowledge available to the listener and the

78

purpose of the explanation. (Cf. [Carr and Goldstein 1977))

Several topics of interest concern domain-independent methods in hypothetical
reasoning. As indicated in the discussion of backtracking, there are several possible criteria
for analyzing the structure of assumptions involved in inconsistencies. Further exploration
of backtracking schemes employing these criteria might provide added efficiencies in
backtracking. Related topics include the use of the dependency relationships alone as
.measures of the strength or stability of arguments, and in estimating the effects of changes

in beliefs.

A theoretical problem arising in the system is the development of a formal
semantics for non-monotonic inference. Drew McDermott [personal communication] is

developing one such semantics.

The power of dependency-directed backtracking calls for integration of this
method with knowledge-based methods of hypothetical reasoning. Programs with
knowledge of the semantics of nodes can greatly increase the efficacy of the knowledge-free
automatic methods by supplying measures for the soundness of premises and arguments in
backtracking and differential diagnosis. McDermott’s (19741 TOPLE program, for instance,
constructs what might be called abductive data dependencies to explain away
inconsistencies. It would be interesting to investigate such method$ in a system which alsq

provided the deductive justifications presented here. Similarly, knowledge of the meanings

79

of the premises involved might be used in methods for generalizing the information derived

from inconsistencies into more widely applicable rules.

On a technical level, there are several algorithmic improvements to be made in
the basic truth maintenance process itself. Speedups in truth maintenance processing might
be gained if a better understanding is developed of the best order for examination and the
analysis of circularities is improved. Efficient (or even correct) methods for evaluating
conditional proof justifications when their hypotheses are not valid and: for switching
between sets of hypotheses need to be developed.’™ »H""’ The use of multiple supporting-
Justifications for beliefs is a topic for study, especially with respect to the impact of such a
mechanism’on the other truth maintenance mechanisms of backtracking and conditional
proofs. Truth maintenance is an incremental process in the sense that only those beliefs
affected by changes are updated, but there is another sense of incrementality in which the
effects of changes in assumptions are calculated only if actually necessary. Unfortunately,
the only methods I know for implementing such a call-by-need truth maintenance system
require examining all beliefs, not just those affected by changes. David McAllester [1977]
has developed a truth maintenance system based on a representation using propositional
clauses in conjunctive normal form. This representation allows several algorithms (such as

truth maintenance and dependency-directed backtracking) to be unified into one algorithm.

One important problem is the detailing of methodsAintegrating the use of

dependencies with the sharing of data. Fahlman's [1977] NETL system avoids explosions of

80

computation space by using "virtual copies” of pieces of information. Straightforward
schemes for using recorded justifications require explicit copies of the information, and
cannot deal with shared structure. It would be very valuable to develop methods for this

integration, perhaps of the nature of shared or virtually-copied dependency structures.

Finally, there are many interesting applications of dependencies to problems of
control in problem solving systems. Explicit justifications allow the separation of the control
and the knowledge embodied by the problem solver, since the problem solver can make
derived knowledge depend only on non-control information. At the same time,
dependencies permit e#plicit linking of control decisions to the information and decisions
they are based on, opening the possibility for careful failure analysis by the problem solving
interpreter. (Cf. [de Kleer, Doyle, Steele and Sussman 1977]) There are many problems for
investigation in explicit reasoning about the justifications themselves (for instance, in

reasoning about the existence of multiple proofs for some result).

81
Notes

AMORD

AMORD [de Kleer, Doyle, Rich, Steele and Sussman 1977] is a simple problem
solving system devioped to illustrate the technique of using explicit control statements and
dependencies in the control of reasoning. [de Kleer, Doyle, Steele and Sussman 1977]

NOGOOD ' _
Records indicating sets of inconsistent assumptions were called NOGOODs in
Stallman and Sussman’s [1976] ARS.

Logics of Belief

Hintikka [1962] and other philosophers have made extensive studies of the logics
of knowledge and belief. A logic of beliefs seemingly related to that used in a truth
maintenance system is discussed by Belnap [1976]. -

THNOT

The non-monotonic assumption justification are the dependency system analogue
of Micro-PLANNER’s THNOT primitive. [Sussman, Winograd and Charniak 1971] Other
related concepts are McCarthy and Hayes' [1969) CONSISTENT predicate, Sandewall’s
(1972] UNLESS predicate, and McDermott’s [1977] PRESUMABLY. The non-monotonic
assumption justifications have an advantage over these systems in that the nature of the
assumption is made explicit and accessible in future deductions. This allow data derived
from an assumption to be automatically discarded when new information overrides the
assumption.

NEEDCHOICE

ARS [Stallman and Sussman 1976] represents the reasons for making assumptions
as NEEDCHOICE assertioris. Since ARS uses a monotonic dependency. system, procedural
mechanisms are necessary to connect these NEEDCHOICE assertions with the assumptions
they control during backtracking and truth maintenance.

Propagation
Equivalence classes arise naturally when using methods which propagate

information through a fixed knowledge structure. A good example is the EL electronic
circuit analysis program. [Stallman and Sussman 1976] This program makes a fundamental
use of coincidences and contradictions between voltages and currents in its method of the
propagation of constraints. ' '

Interfaces _
The mechanism for separating levels of detail also applies to interfaces between
independent systems. In these interfaces, each side of the boundary looks like a call on the

82

other side. Such interfaces can be described by using conditional proofs to transmit
information in both directions. This requires that the names of each of the sides of the
boundary to be attached to the boundary.

Slices

Slices [Sussman 1977] are a way of representing multiple overlapping views of
objects. They provided a major source of the motivation for developing our methods of
separating levels of detail in explanations.

Complexity :
Part of the abstract problem of truth maintenance is to find an assignment of

states to nodes consistent with a set of logical constraints relating these states. This is
reminiscent of the problem of finding a satisfying assignment of values to variables in a
propositional formula. It is easy to construct a correspondence between truth maintenance
and the satisfaction of propositional formulas. I attempted to use such a correspondence to
show that the problem faced by truth maintenance was NP-complete. [Cook 1971, Karp
1972] 1 failed because the set of constraints relating beliefs is guaranteed to be satisfiable
(since unsatisfiable constraints are ruled out as program bugs). This foiled my attempts to
invoke the NP-completeness of problems like CNF-SAT and DNF-UNSAT in my proof.

Efficiency

There are several variations on the algorithm for truth maintenance presented
here. The major dimension for variation concerns the order in which the graph of nodes
and justifications is searched. Our algorithm uses a depth-first search. Other orders are
possible. The most desirable would be one which always found support for the node being
searched, and determined the set of nodes involved in circularities with as little trouble as
possible.

Analysis ,
The efficiency of the relaxation process might be improved by using some form of

analysis of circularities. For instance, the set of nodes left unsupported by the first step of
truth maintenance can be analyzed as a graph to find the strongly connected components.
These components are related by a partial order. The most efficient procedure would to
determine support for nodes in the components which are minimal in this partial order,
since these might provide support for node in non-minimal components.

FINDINDEP

This procedure was given the name FINDINDEP in Stalilman and Sussman’s
(1976] ARS system.

PMMCS
Nicholas Rescher [1964] presents a solution to the problem of counterfactual
conditionals based on the concept of Preferred Maximal Mutually Compatible Subsets of

83

beliefs. His method partitions the set of all beliefs into compatible subsets of beliefs. Some
of these sets may be preferable to others. For instance, if an inconsistency involves an
experimental hypothesis and a law of nature, it is preferable to surrender the experimental
hypothesis (as in "Back to the drawing board.”). If such preferences were available to the
dependency-directed backtracking system, it would be possible to retract premises as well as
assumptions. On the other hand, one can argue that the partial order discrimination used
in selecting assumptions for retraction is in fact a dynamically computed preference measure
on the different our nodes involved in the inconsistency.

Combinatorics

Dependency-directed backtracking offers two main sources of efficiency over
chronological backtracking methods, such as that used in Micro-PLANNER. (Sussman,
Winograd and Charniak 1971] One advantage is that irrelevant choices made
chronologically later than a faulty choice are ignored. This saves the system from
considering many useless combinations of choices. In addition, it allows deductions made on
the basis of faulty choices to be distinguished from those stemming from irrelevant choices.
This means that the truth maintenance system need only discard those deductions based on
retracted assumptions. Another advantage of dependency-directed backtracking is in the
summarization of the inconsistency of certain sets of assumptions. Because these
summarizations are valid beyond the existence of the inconsistency, the system automatically
prevents any future set of assumptions from including the inconsistent set as a subset. This
leads to the avoidance of more pointless combinations of assumptions. The power of
dependency-direction is illustrated by Staliman and Sussman [1976], who present an example
in which traditional methods of backtracking would consider a number of states equal to
the the product of the sizes of the independent choice-sets. The use of dependency-direction
reduces the number of states considered to the sum of the sizes of the independent choice-
sets. G. J. Sussman has informed me of a specific example of interest. In a particular six
transistor circuit, dependency-directed backtracking reduces the number of contradictions to
only 2. This is using a standard heuristic order when choosing transistor states.
Traditional backtracking methods might consider 3::6 = 729 states in this example. The
number of contradictions increases to only 13 when the heuristically worst choice is made in
each decision.

Too Hard _

The problem of evaluating the validity of conditional proofs may be too hard in
general. If the hypotheses of the conditional proof are not valid, that is, if the inhypotheses
are not in and the outhypotheses are not out, the evaluation requires switching beliefs so
that the hypotheses are valid. This may require recursive truth maintenance, which in turn
may call for further evaluation of conditional proof justifications. I have no algorithms for
this process. It may be that the difficulty of this problem requires that such conditional
proofs be left to the problem solver, reserving only the simple cases for the truth
maintenance system.

84
References

(Belnap 1976]
N. D. Belnap, "How a Computer Should Think,” in Contemporary Aspects of Philosophy,
Gilbert Ryle, ed., Stocksfield: Oriel Press, 1976.

(Berliner 1974]
Hans J. Berliner, "Chess as Problem Solving: The Development of a Tactics Analyzer,”
CMU Computer Science Department, March 1974.

[Carr and Goldstein 1977] .
Brian Carr and Ira Goldstein, "Overlays: A Theory of Modelling for Computer-Aided
Instruction,” MIT AI Lab, Memo 406, February 1977.

[Cook 1971) :
S. A. Cook, "The Complexity of Theorem-Proving Procedures,” Proc. 3rd Annual ACM
Symp. on the Theory of Computing, 1971, pp. 151-158.

[Cox and Pietrzykowski 1976)
Philip T. Cox and T. Pietrzykowski, "A Graphical Deduction System,” Department of
Computer Science Research Report CS-75-35, University of Waterloo, July 1976.

[de Kleer, Doyle, Rich, Steele and Sussman 1977)
Johan de Kleer, Jon Doyle, Charles Rich, Guy L. Steele Jr., and Gerald Jay Sussman,

"AMORD: A Deductive Procedure System,” MIT Al Lab, Memo 435, September
1977. '

[de Kleer, Doyle, Steele and Sussman 1977)
Johan de Kleer, Jon Doyle, Guy L. Steele Jr., and Gerald Jay Sussman, "Explicit Control of
Reasoning,” MIT Al Lab, Memo 427, June 1977.

(Fahiman 1977]

Scott E. Fahiman, "A System for Representing and Using Real World Knowledge,”
forthcoming MIT PHD thesis. :

[Fikes 1975]

Richard E. Fikes, "Deductive Retrieval Mechanisms for State Description Models,” / JCAl4,
September 1975, pp. 99-106.

[Hayes 1975]
Philip J. Hayes, "A Representation for Robot Plans,” / JCAl4, September 1975, pp. 181-188.

85

[Hintikka 1962]
Jaakko Hintikka, Knowledge and Belief, Cornell University Press, Ithica, New York, 1962.

(Karp 1972]

R. M. Karp, "Reducibility Among Combinatorial Problems,” in Miller and Thatcher,
editors, Complexity of Computer Computations, Plenum Press, New York, 1972, pp.
85-104.

[Katz and Manna 1976]
Shmuel Katz and Zohar Manna, "Logical Analysis of Programs,” Comm. ACM, Vol. 19, No.
4, pp. 188-206.

_ [Latombe 1976] '
Jean-Claude Latombe, "Artificial Intelligence in Computer-Aided Design: The TROPIC
System,” SRI Al Center, TN-125, February 1976.

[London 1977]
Phil London, "A Dependency-Based Modelling Mechanism for Problem Solving,” Computer
Science Department TR-589, University of Maryland, November 1977.

[(McAllester 1977] '
David A. McAllester, Implementmg Truth Maintenance Systems with Bidirectional
Disjunctive Clauses,” MIT EE&CS Bachelor’s Thesis proposal, October’ 1977

[McCarthy and Hayes 1969] _ o
J. McCarthy and P.]J. Hayes, "Some Philosophical Problems from the Standpoint of
Artificial Intelligence,” in Meltzer and Michie, Machine Intelligence 4, pp. 463-502.

[(McDermott 1974]
Drew Vincent McDermott, "Assimilation of New Information by a Natural Language-
Understanding System,” MIT Al Lab, AI-TR-291, February 1974.

[(McDermott 1975)
Drew V. McDermott, "Very Large PLANNER-type Data Bases,” MIT AI Lab, Al Memo
339, September 1975. .

[McDermott 1977]
Drew V. McDermott, "Flexibility and Efficiency in a Computer Program for Designing
Circuits,” MIT AI Lab, TR-402, June 1977. .

[(McDermott and Sussman 1974]
Drew V. McDermott and Gerald Jay Sussman, "The CONNIVER Reference Manual,” MIT
Al Lab, Al Memo 259a, January 1974.

86

[Nevins 1974]
Arthur J. Nevins, "A Human-Oriented Logic for Automatic Theorem Proving,” JACM 21,
*4 (October 1974), pp. 606-62L.

(Rescher 1964]
N. Rescher, Hypothetical Reasoning, Amsterdam: North Holland 1964.

[Rulifson, Derksen and Waldinger 1973]
Johns F. Rulifson, jan A. Derksen, and Richard J. Waldinger, "QA4: A Procedural Calculus
for Intutitive Reasoning,” SRI AI Center, Technical Note 73, November 1973,

[Sandewall 1972]
E. Sandewall, "An Approach to the Frame Problem, and its Implementation,” Machine
Intelligence 7, pp. 195-204, 1972.

[Srinivasan 1976] :

Chitoor V. Srinivasan, "The Architecture of Coherent Information System: A General
Problem Solving System,” IEEE Transactions on Computers, Vol. C-25 No. 4,
April 1976, pp. 390-402.

[Stallman and Sussman 1976]

Richard M. Staliman and Gerald Jay Sussman, "Forward Reasoning and Dependency-
Directed Backtracking in a System for Computer-Aided Circuit Analysis,” MIT Al
Memo 380, September 1976. Revised version published in Artificial Intelligence,
Vol. 9, No. 2, (October 1977), pp. 135-196.

(Sussman 1977]
Gerald Jay Sussman, "Slices: At the Boundary Between Analysis and Synthesis,” MIT Al
Lab, Memo 433, July 1977.

[(Sussman, Winograd and Charniak 1971]
Gerald Jay Sussman, Terry Winograd and Eugene Charniak, "MICRO-PLANNER
Reference Manual,” MIT Al Lab, Al Memo 203a, December 1971.

87

Appendix 1. A TMS Glossary
Aldiborontiphoscophornio!
Where left you Chrononhotonthologos?
Henry Carey, Chrononhotonthologos
The AFFECTED-CONSEQUENCES of a node are those nodes whose current support-

status rests on the node; precisely, those consequences of the node such that the node is a
supporting-node of each of these consequences.

The ANCESTORS of a node are those nodes involved at some level in determining the
current support-status of the node; precisely, the transitive closure of the set of supporting-
nodes of the node under the operation of taking supporting-nodes.

ANOMALOUS CHRONOLOGICAL DEPENDENCIES are present when beliefs depend
unnecessarily on other, logically independent beliefs. A good example of such anomalous
dependencies are those seen in Micro-PLANNER, where each assertion depends on all
-chronologically previous choices, regardless of considerations of the logical relations between
the assertion and the choices.

The ANTECEDENTS of a node are those nodes which currently support belief in the
node. The antecedents of a node are the same as the SUPPORTING-NODES if the node
is in. Nodes which are out have no antecedents.

ASSUMPTIONS are nodes justified by non-monotonic justifications. The addition of new
knowledge can cause the justifications for belief in assumptions to become invalid.
Specifically, an assumption is a node believed on the basis of a lack of knowledge about
some other belief. A typical form of an assumption is a node F whose justification is the
predicate (OUT ~F), where ~F denotes the negation of F. In this case, belief in F will be
Justified as long as contradictory knowledge is not present.

BACKTRACKING is the process of undoing a failure or inconsistency by retracting some
premise or assumption underlying the failure or inconsistency.

BELIEF in a node results from knowledge of a valid justification.

CHRONOLOGY describes the dependence of actions on the temporal ordering of their
execution. ‘

88

CIRCULARITIES can occur in dependency relationships. These circularities require
special processing during truth maintenance.

CONDITIONAL PROOFS are justifications which support a belief if a specified belief
(the consequent of the conditional proof) is believed when given specified hypotheses (the
hypotheses of the conditional proof).

“The CONSEQUENCES of a node are those nodes such that the node occurs in an
justification of each consequence.

A CONTRADICTION is a node which has been designated as an inconsistency to the
truth maintenance system. The backtracking mechanisms attempts to ensure that no
contradiction is believed.

The CP-CONSEQUENT-LIST of a node contains those nodes possessing a CP-
JUSTIFICATION with the node as the consequent of the conditional proof.

A DEDUCTION is a type of justification for belief in a node in which belief in the node is
justified if each node in a designated set of nodes is believed.

DEPENDENCIES are relationships between beliefs. The most generally useful
dependencies in a truth maintenance system are the relations of ANTECEDENTS,
CONSEQUENCES, SUPPORTING-NODES and AFFECTED-CONSEQUENCES.

DEPENDENCY-DIRECTED describes processes, such as DEPENDENCY-DIRECTED
BACKTRACKING, which operate on beliefs by searching through the nodes related by
- dependencies to the beliefs.

FINDINDEP is a procedure for determining the set of nodes which are the independent
support of a belief relative to a specified set of beliefs. This procedure is the basis for
mechanisms dealing with summarization by conditional proofs.

The FOUNDATIONS of a node are those nodes involved in the well-founded support for
belief in the node; precisely, the transitive closure of the antecedents of the node under the
operation of taking antecedents.

A HYPOTHESIS is an underived belief, that is, either a PREMISE or an
ASSUMPTION. Hypotheses of conditional proof justifications need not be premises or
assumptions -- they are just treated as such for the purposes of the conditional proof.

IN describes the condition of a node which is believed to be true due to knowledge of a
valid justification supporting this belief.

89

An JUSTIFICATION of a node is a representation of a reason for belief in the node.
There are two basic representations used in the truth maintenance system presented here,
~ called support-list justifications (SL-JUSTIFICATIONS) and conditional-proof justifications
(CP-JUSTIFICATIONS).

The JUSTIFICATION-SET of a node is the set of justifications for belief in the node.

MONOTONIC TRUTH MAINTENANCE SYSTEMS are systems in which belief in a
node cannot be predicated upon a lack of belief in some other node.

A NODE is the fundamental entity to which justifications for belief can be attached.

A NOGOOD is a node summarizing the independent support of a contradiction relative to
the set of assumptions underlying the contradiction.

A NOGOOD-SET is a set of assumptions designated to be inconsistent by a NOGOOD.

NON-CHRONOLOGICAL describes processes in which the order of actions does not
affect the results, so that the relationships between the data produced can be summarized in
time-independent, logical terms.

OUT describes the condition of a node for which no valid justifications are known.
A PREMISE is a belief which depends on no other beliefs.
The REPERCUSSIONS of a node are those other nodes whose support-statuses are

affected at some level by the support-status of the node; precisely, the transitive closure of
the affected-consequences of the node under the operation of taking affected-consequences.

A SL-JUSTIFICATION consists of a two lists of nodes, the inlist and the outlist. It is valid
if each node in the inlist is in, and each node in the outlist is out.

The STATUS of a node normally refers to the SUPPORT-STATUS of the node.

The SUPPORT for a belief is a generic term and may refer to the SUPPORTING-
JUSTIFICATION, ANTECEDENTS, SUPPORTING-NODES, FOUNDATIONS or
ANCESTORS of the node, depending on the context of usage.

The SUPPORT-STATUS of a node is another name for the inness or outness of the node.

The SUPPORTING-JUSTIFICATION determines a proof of belief in the node in terms
of other nodes with well-founded (non-circular) support.

90

The SUPPORTING-NODES of a node is the set of nodes affecting the current support-
status of the node. '

TRUTH MAINTENANCE refers to the process by which beliefs are redetermined when
other beliefs change due to the addition of new information or the retraction of premises.

TRUTH MAINTENANCE SYSTEMS are systems in which beliefs are determined from
recorded logical justifications.

UNSATISFIABLE DEPENDENCY RELATIONSHIPS are cycles of justifications such
that no assignment of in or out to the nodes involved is consistent with the justifications
recorded for belief in the nodes.

VALID JUSTIFICATIONS are justifications which as predicates evaluate to true.

WELL-FOUNDED SUPPORT for a belief is an argument in terms of the recorded
justifications from the basic premises and assumptions. of the system upwards with no cycles
in the arguments.

9l

Appendix 2. Monotonic Truth Maintenance Systems

In monotonic truth maintenance systems, no belief can depend upon other nodes
being out. With this restriction, the inning of a node cannot cause the outing of another.
Truth maintenance processing is simpler to implement in a monotonic system. than in the
non-monotonic system described in the text. The monotonic system also has many of the
same uses and general properties. The basic limitation of the monotonic dependency system
is its inability to model assumptions. The lack of non-monotonic justifications means that
procedural mechanisms for making assuhptions must be used. These procedural devices
must be able to handle all the problems involving circularities that are exhibited in the
non-monotonic system. The procedural mechanisms must be able to effect non-monotonic

inferences, and connect assumptions with the reasons for being made.

The representation of justifications can be simplified somewhat in a monotonic
truth maintenances system. A SL-justification becomes a single list of nodes. CP-
justifications have only one list of hypotheses. The concepts of consequences, supporting-
justifications, supporting-nodes; ancestors and repercussions are as in the non-mon(;tonic
~ case. In a monotonic system, the list of supporting-nodes of a node is identical to the list of

nodes in the supporting-justification.

92

The process of truth maintenance is simplified somewhat in a monotonic system.
It is conveniently divided into two processes; outing and unouting. The process of outing
occurs whenever a node is changed from in to out. It proceedes by {1} making a list of the
invoking node and its repercussions, {2} setting the support-status of each of these nodes to
out, {3} removing the supporting-justifications from each of the nodes. After these steps

have been performed for each of the nodes in the list, each of the nodes is unouted.

The unouting of a node proceeds by examining the justification-set of the node
for an SL-justification containing only in nodes. If such an justification is found, it is made
the supporting-justification of the node, the node's support-status becomes in, and all out
consequences of the node are unouted recursively. The handling of CP-justifications is

essentially unchanged from that described previously for non-monotonic systems.

The major effect of monotonicity is that the mechanisms for making and
maintaining assumptions must be done by means external to the truth maintenance system.
One method for effecting non-monotonic relationships is that of using forget and recall
functions, which are functions attached to the node. A forget function is ruAn whenever th_e‘
attached node is outed, and a recall function is run whenever the attached node is inned.
To implement the assumption of a node F using such functions, a forget function can be
attached to ~F such that if ~F is outed, F will be made in (as a premise), along with a
recall function on ~F thch will out F (by retracting it) if ~F is ivnned. In addition, these

functions should also check to make sure that the node representing the reason for making

93

the assumption is in. The use of a mechanism like this dangerous. Because functions are
being used instead of explicit justifications, the recognition and handling of circularities and
inconsistencies are obscured. Because of the chronological nature of these functions, no
guarantee can be made that all feasible selections of statuses can be made in the event of
circularities. Also, unsatisfiable circularities in the dependency structures may be

undetectable, ensuring an infinite loop of assuming, unouting, outing, and reassuming.

Many of the applications of the general truth maintenance system are also possible
using a monotonic system. The uses of dependencies in explanation, generalization and
separation of levels of detail, and in dependency-directed backtracking are similar to those
in the non-monotonic system. Backtracking is affected by the fact that assumptions can not
be made through the use of the dependencies. Because of this, each node representing an
assumption must be explicitly marked as such so that the backtracker can recognize it as an
assumption. In addition, while nogoods are representable as before, the ruling out of
inconsistent sets of assumptions cannot be done by means of new justifications, but must

|

operate by external mechanisms.

94

Appendix 3. An Implementation of a TMS

This appendix presents the February, 1978 version of the TMS. A set of
descriptions of the functions are provided, followed by the MacLISP programs.

TMS-MAKE-NODE -- (THS-HAKE-NODE <external-name>)
This function creates a new TMS-node with a given name.

TMS'SL-]USTIFY == (THS-SL-JUSTIFY <node> <insupporters> <outsupporters> <argument>)

This function gives a TMS node a new support-list type justification, which is valid
if each of the nodes of the insupporters list is in, and each of the nodes of the outsupporters
list is out. The argument is an uninterpreted slot used to record the external form of the

justification, and is retrievable via the TMS-JUSTIFICATION-ARGUMENT function
described below.

TMS-CP-JUSTIFY
== (THS-CP-JUSTIFY <node> <consequent> <inhypotheses> <outhypotheses> <arguments)
This gives a TMS node a new justification which is valid if, when the inhypotheses
are in and the out hypotheses are out, the consequent node is believed. As in TMS-SL-
JUSTIFY, the argument is an uninterpreted record of the external form of the justification.

TMS-PROCESS-CONTRADICTION
== (THS-PROCESS-CONTRADICTION <name> <node> <type> <contradiction-function>)

This declares a TMS node to represent a contradiction. The name and type are
uninterpreted mnemonics provided by the external system to be printed out during
backtracking. The contradiction-function, if supplied, should be a LISP function to be
called with the contradiction node as its argument when the backtracker can find no
backtrackable choicepoints.

TMS-SUPPORT-STATUS -~ (TNS-SUPPORT-STATUS <node>)
This function returns the support-status, either "IN or 'OUT, of a node.

TMS-JUSTIFICATIONS -- (THS-JUSTIFICATIONS <node>) '
This function returns the list of justifications of the node. Thns list contains both
the support-list and conditional-proof justifications attached to the node.

TMS-SUPPORTING-JUSTIFICATION -- (THS-SUPPORTING-JUSTIFICATION <node>)
This function returns the current justification of the node.

95

TMS-JUSTIFICATION-ARGUMENT -- (THS-JUSTIFICATION-ARGUNENT <justification>)
This function returns the external argument associated with the given justification.

TMS-ANTECEDENTS -- (THS-ANTECEDENTS <node>)

' This function returns the list of nodes determining well-founded support for the
given node. This list is extracted from the supporting-justification if the node is in, and is
empty if the node is out.

TMS-CONSEQUENCES -- (THS-CONSEQUENCES <node>)
This function returns the list of nodes whose list of antecedents mentions the given

node.

TMS-EXTERNAL-NAME -- (THS-EXTERNAL-NAHE <node>)
This function returns the user-supplied name of a node.

TMS-IS-IN -- (THS-IS-IN <node>)
This predicate is true iff the node is in.

TMS-IS-OUT -- (THS-15-0UT <node>)
This predicate is true iff the node is out.

TMS-RETRACT -- (THS-RETRACT <node>)
This function will remove all premise-type justifications from the set of justifications
of the node. :

TMS-PREMISES -- (THS-PRENISES <node>) ,
This function returns a list of the premises among the foundations of the node.

TMS-ASSUMPTIONS -- (THS-ASSUNPTIONS <node>)
This function returns a list of the assumptions among the foundations of the node.

TMS-INSTALL-SIGNAL-FORGETTING-FUNCTION
==, (TNS-INSTALL-SIGNAL-FORGETTING-FUNCTION <node> <fun>)
This function sets the LISP function that the TMS will use to signal the changing
of the support-status of the node from in to out. When such a change occurs, the supplied
function will be called with the external name of the node as its argument.

TMS-INSTALL-SIGNAL-RECALLING-FUNCTION
© == (TNS-INSTALL-SIGNAL-RECALLING-FUNCTION <node> <fun>)

This function sets the LISP function that the TMS will call with the node’s external
name as its argument when changing the support-status of the node from out to in.

96

The TMS also generates new “facts” internally during backtracking. These will
therefore occur in explanations and antecedents of the nod :s requested and justified by the
external systems. The internal facts generated by the TMS are atomic symbols with certain
properties. The following functions are provided to manipulate these internal facts.

TMS-FACTP -- (THS-FACTP <thing>) _
This predicate is true iff the thing is an internal TMS fact.

TMS-FACT-NODE -- (THS-FACT-NODE <fact>)
This function returns the TMS node associated with an internal fact.

TMS-FACT-STATEMENT -- (THS-FACT-STATEMENT <fact>)

This function returns the symbolic statement of the meaning of an internal fact.
This statement refers to the external names of th- other facts, such as contradictions and
assumptions, which were involved in the making of the fact.

The folldwing two functions are supplied for debugging purposes.

TMS-INIT -- (ms-1N1T)

_ This function clears the state of the TMS by resetting all internal variables and
clearing all properties and internings of TMS nodes.

The TMS has the following switches which may be set for wallpaper purposes.

Variable (Default value)

*TMS-SEE-TMP-SWx 1L
Announces truth maintenance processing.

*TMS-SEE-TMP-INVOKER-SWs (
Controls printing of nodes invoking truth maintenance processing if ¢TMS-SEE-
TMP-SWi is set.

*TMS-SEE-JUSTIFY-SWx (1L
Announces the addition of a new justification for a node.

*TMS-SEE-CONTRADICTIONS-SWe (0
~ Announces the processing of a contradiction.

The program as follows uses several macros.

97

(LET ((varl initl) -—- (varn initn)) body)
is equivalent to
((LANBDA (varl -— varn) body) initl =— initn).

, (EQCASE exp (vall bodyl) ——)
is effectively equivalent to
(COND ((eq exp 'vall) bodyl) ---).
The last clause in an EQCASE may begin with the value ELSE, which forms a catch-all
clause at the end of the COND. The macro-character " quotes the following form,
substituting in the values of any forms preceded by the macro-character , and inserting as a
list segment the value of any form preceded by the macro character e.

TRUTH MAINTENANCE SYSTEM GLOBAL VARIABLES "APPNDX 3 Page 1

el
0882
883
884
885
886
887
888
889
8le
811
812
813
814
815
816
817
818
819
828
821
822
823
824
825
826
827
828
829
838
831
832
833
834
835
836
837
838
839

848 -

841
842
843
844
845
846
847
848
849
858
851
852
853
854
855
856
857
858
859
868
861
862
0863
864

865 -

(COMMENT TRUTH MRINTENANCE SYSTEM GLOBAL VARIABLES)

533 VTHIS DECLARATION SPECIFIES ALL OF THE SWITCHES NECESSARY TO COMPILE THE TMS.
333 THESE INCLUDE THE LOADING OF A FILE OF MACROS USED IN THE TEXT, AND DECLARATIONS
333 OF SOME LISP FUNCTIONS USED BY THE PROGRAM.

(DECLARE (MARPEX T) ;OPEN CODE LOOPS .
(EXPR-HASH T) ;ENABLE RECOMPILATION HACKS
(MACROS NIL) ;RETRIN NO MACRO DEFINITIONS
(FASLOAD LINIT FASL DSK AMORD) ;LOAD IN MACROS

(SPECIAL BASE *NOPOINT)
(xFEXPR GCTHR))

THIS DECLARATION SPECIFIES ALL OF THE GLOBAL VARIABLES USED IN THE TMS.
#TNS-NOTED-IN-NODES# IS USED DURING TRUTH MAINTENANCE TO RCCUMULATE A LIST

OF ALL NODES EXAMINED BY TRUTH MAINTENANCE WHICH WERE IN UPON ENTRY TO

THE EXAMINATION PROCESS.

*THS-NOTED-OUT-NODES+ RCCUMULATES ENTERING OUT NODES DURING TRUTH MAINTENANCE.
#THS-PROCESS-QUEUEs IS USED TO QUEUE UP NODES FOR EXAMIMINATION FOR WELL-FOUNDED
SUPPORT DURING TRUTH MAINTENANCE.

#TMS-CONTRADICTION-ASSUMPTIONS% IS USED DURING BRCKTRACKING TO ACCUMULATE AN ALIST
OF ASSUMPTION NODES AND THE LISTS OF OUT NODES THEY DEPEND UPON.)

#THS-F INDINDEP-IN-LIST+ ACCUMULATES IN NODES DURING THS-FINDINDEP PROCESSING.
#THS-F INDINDEP-OUT-LIST# ACCUMULATES OUT NODES DURING THS-FINDINDEP PROCESSING.
#THS-SEE-JUSTIF ICATIONS-SHx CONTROLS WALLPAPER PRINTING DURING THE TNMS-XX-JUSTIFY
FUNCTIONS.

#THS-SEE-THP-SWx CONTROLS WALLPAPER PRINTING DURING THE MRIN TRUTH MAINTENANCE FUNCTION.
*TMS-SEE-THP-INVOKER-SHx CONTROLS WALLPAPER PRINTING DURING THE MAIN TRUTH MRINTENANCE
FUNCTION OF HHICH NODE CAUSED TRUTH MAINTENANCE.

*THS-SEE-CONTRADICTIONS-SHx CONTROLS WALLPAPER PRINTING OF BACKTRACKING DUE TO
CONTRADICTIONS.

#THS-SEE-CULPRITS-SWx CONTROLS WALLPAPER PRINTING OF THE ASSUMPTIONS UNDERLYING
CONTRADICTIONS DURING BACKTRACKING.

#TNS-GENS= STORES THE CURRENT GENSYM NUMBER.

%*THS-GENS-LIST+ ACCUNULATES A LIST OF ALL SYMBOLS GENSYMED BY TMS-GENS.
%*TMS-INTERN-SHx CONTROLS THE INTERNING OF GENSYMED SYMBOLS MADE BY TMS-GENS.

e We We We We We WE We We e We We We We wWe We Ne Ve We we wWe we we
W We Ve We We We e We We We We We We we We We We we Wwe We we we We
We We We We We We We We We We We We We We We We We Wwe We we we we we

STIMULATE IS A FUNCTION CALLED WHEN R NODE GOES FROM IN TO OUT DURING TRUTH MRINTENANCE.

IT IS GIVEN THE EXTERNAL NAME OF THE NODE AS ITS ARGUMENT. .
DESTIMULATE IS A FUNCTION CALLED WHEN R NODE GOES FROM OUT TO IN DURING TRUTH MAINTENANCE.
IT IS GIVEN THE EXTERNAL NRME OF THE NODE RS ITS ARGUMENT.

we we we we
ws we we we
we we we we

(DECLARE (SPECIAL sTMS-NOTED-IN-NODES%
' #TNS-NOTED-OUT-NODES*
*TNS-PROCESS-QUEUEx

#TNS-CONTRADICTION-ASSUNPTIONS=

#THS-F INDINDEP-IN-LISTe
+THS-F INDINDEP-OUT-LIST#

#THS-SEE-TMP-SU%
#TNS-SEE-THP-INVOKER-SH#
#THS-SEE-JUSTIFICATIONS-SHs
#*THS-SEE-CONTRADICTIONS-SHs
THS-SEE-CULPRITS-SH

#THS-GENSx
#THS-GENS-LIST2
#TNS-INTERN-SHs)

(+EXPR STIMULATE
DESTINULATE))

TRUTH MAINTENANCE SYSTEM GLOBAL VARIABLES APPNDX 3 Page 2

801
862 ;;; THIS FUNCTION IS THE MEANS BY WHICH THE TMS GENERATES NEW SYMBOLS.

863 ;;; THE SYMBOLS GENERATED RRE RECORDED ON A LIST TO FACILITATE REINITIALIZATION.
804 ;;; NORMALLY, THE SYMBOLS ARE NOT INTERNED.

885 ;;; BASE AND +NOPOINT ARE SPECIAL LISP VARIABLES.

866 ;;; THEIR REBINDING AVOIDS PROBLEMS DUE TO USER SETTINGS OF THESE VARIABLES.

807

888 (DEFUN TMS-GENS (X)

809 (SETQ #TNS-GENS# (1+ #TNS-GENS#))

818 ((LAMBDA (NAME)

el (AND *TMS-INTERN-SW= (INTERN NANE))

812 (SETQ #THS—-GENS-LISTs (CONS NAME sTNS-GENS-LISTs))

813 NANE)

814 (MAKNAM (RPPEND *(T M § -)

815 (AND X (NCONC (EXPLODEC X) *(-)))

816 ((LAMBOA (BASE sNOPOINT)

817 (EXPLODEC #TMS-GENS#))

818 8. NN

819

828 (SETQ %TMS-GENS= 8)

821 (SETQ =TMS-GENS-LIST# NIL)

822 (SETQ *TMS-INTERN-SHx NIL)

823

824 ;;; THESE INITIALIZE THE SYSTEM SWITCHES CONTROLLING WALLPAPER PRINTING.
0825

826 (SETQ *TMS-SEE-TMP-SWx NIL)

827 (SETQ *TMS-SEE-THP-INVOKER# NIL)

828 (SETQ %TMS-SEE-JUSTIFICATIONS-SWs NIL)
829 (SETQ *TMS-SEE-CONTRADICTIONS-SH% T)
838 (SETQ #*TMS-SEE-CULPRITS-SWe NIL)

831

832 ;;; THIS FUNCTION INITIARLIZES THE INTERNAL STATE OF THE m™s.
833 ;;; IT CAN BE CALLED ANY NUMBER OF TIMES.

834 ;33 AFTER IT IS CALLED, NO TMS DATA STRUCTURES SHOULD REﬂﬂIN
835 ;;; EXCEPT THOSE POINTED TO BY USER VARIABLES.

836

837 (DEFUN TMS-INIT O

838 (SETQ *TMS-NOTED-IN-NODES# NIL)

839 (SETQ #TMS-NOTED-OUT-NODESs NIL)

848 (MAPC ’ (LAMBDA (G) (MAKUNBOUND G) (SETPLIST G NIL) (REMOB G))
841 #THS-GENS-LIST#)

842 (SETQ #TNS-GENS-LIST# NIL)

843 (SETQ #THS-GENS= 8)

844 (GCTHAR T)

845 *DONE)

846

847 (THS-INIT)

TRUTH MAINTENANCE DATA STRUCTURES APPNDX 3 Page 3

CEJY
882 (COMMENT TRUTH MAINTENANCE DATR STRUCTURES)
203
884 ;;; TMS NODES HAVE THE FOLLOWING ATTRIBUTES KEPT IN A SPECIAL DATA STRUCTURE:
885
886 ;;; TMS-FINDINDEP-MARK
887 ;;; THIS IS A BIT USED TO INDICATE WHETHER THE NODE IN QUESTION HAS BEEN
888 ;;; EXAMINED BY THE TMS-FINDINDEP SHWEEP PHASE.
209
818 ;;; TMS-SUBORDINATES-MARK
811 ;;; THIS BIT IS USED IN THE UPWARD PHASE OF THE TMS-FINDINDEP PROCESS
812 ;;; TO MARK EACH NODE WHICH HAS ANY OF THE HYPOTHESES OF THE CONDITIONAL
813 ;;; PROOF OR THEIR CONSEQUENCES RMONG ITS SUPPORTERS.
814 '
815 ;;; TMS-SUPERIORS-MARK
816 ;;; THIS IS A THREE-WAY INDICATOR USED DURING BRCKTRACKING TO SHOM WHETHER THE
817 ;;; NODE HAS ASSUMPTIONS AMONG ITS CONSEQUENCES, DOES NOT HAVE SUCH CONSEQUENT
818 ;;; RSSUMPTIONS, OR HRS NOT BEEN EXAMINED YET.
819
828 ;;; TMS-TMP-MARK
821 ;;; THIS BIT SHOWS WHETHER THE NODE IS QUEUED UP 1O BE EXAMINED DURING TRUTH
822 ;;; MAINTENANCE PROCESSING. IT SAVES DOING A MENQ DOMN A FREQUENTLY LARGE LIST.
. 823
824 ;;; TMS-NOTED-MARK
825 ;;; THIS BIT SHOWS WHETHER THE NODE HAS BEEN REACHED BY THE CURRENT INVOCATION
826 ;;; OF TRUTH MAINTENANCE. IT SAVES DOING A MEMQ DOWN ANOTHER FREQUENTLY LARGE LIST.
827
828 ;;; TMS-SUPPORT-STATUS
829 ;;; THIS THREE-WAY INDICATOR SHOWS WHETHER THE NODE IS IN, OUT, OR IS STILL BEING
838 ;;; EXAMINED (NIL).
831 :
832 ;;; THS-SL-JUSTIFICATIONS
833 ;;; THIS IS A LIST OF ALL OF THE SUPPORT-LIST JUSTIFICATIONS POSSESSED BY THE NODE.
834
835 ;;; TMS-CP-JUSTIFICATIONS
836 ;;; THIS IS A LIST OF ALL OF THE CONDITIONAL-PROOF JUSTIFICATIONS POSSESSED BY THE NODE.
837
838 ;;; TMS-SUPPORTING-JUSTIFICATION
839 ;;; THIS IS A POINTER TO THE CURRENTLY SUPPORTING JUSTIFICATION IF THE NODE IS IN,
848 ;;; OR NIL IF THE NODE IS OUT. THE POINTER IS ALWAYS TO A SUPPORT-LIST JUSTIFICATION,
841 ;;; NEVER TO A CONDITIONAL PROOF JUSTIFICATION. CP-JUSTIFICATIONS ARE CONVERTED TO
842 ;;; SL-JUSTIFICATIONS USING TMS-FINDINDEP.
843
844 ;;; TMS-SUPPORTING-NODES
845 ;;; THIS IS A LIST OF ALL NODES USED IN DETERMINING THE STATUS (IN OR OUT) OF THE NODE.
846 ;;; IF THE NODE IS IN, IT IS JUST THE LIST OF ALL NODES MENTIONED IN THE SUPPORTING
847 ;;; JUSTIFICATION OF THE NODE. IF THE NODE IS OUT, IT CONTRINS ONE NODE FROM ERCH OF THE
848 ;;; JUSTIFICATIONS IN THE SL AND CP SETS, SUCH THRT EACH OF THESE NODES IS RESPONSIBLE
843 ;;; FOR THE INVALIDITY OF THE CORRESPONDING JUSTIFICATION.
858
851 ;;; TMS-CONSEQUENCES
852 ;;; THIS IS A LIST OF ALL NODES WHICH MENTION THE PARTICULAR NODE IN ONE OR MORE
853 ;;; OF THEIR JUSTIFICATIONS.
854
855 ;;; TMS-EXTERNAL-NAME
856 ;;; THIS IS THE THING IN THE EXTERNAL SYSTEM TO WHICH THE NODE IS CONNECTED. ALL
857 ;;; SIGNALLING FUNCTIONS, WHICH SIGNAL THE EXTERNAL SYSTEM OF CHANGES OF STATUS,
858 ;;; USE THIS EXTERNAL NANE RS THEIR ARGUNENTS. THAT IS, THE EXTERNRL SYSTEM IS
859 ;;; NOTIFIED IN TERMS OF ITS OWN DATA STRUCTURES, AND NOT IN TERMS OF THE INTERNAL
868 ;;; TMS NODES.
861
862 ;;; TMS-NODE-MARK
863 ;;; THIS IS A BIT USED TO INPROVE THE EFFICIENCY OF THE ALGORITHMS USED TO MANIPULATE
864 ;;; SETS OF NODES.
865
866 ;;; THS-EXPLAIN-MARK
867 ;;; THIS IS A BIT USED TO IMPROVE THE EFFICIENCY OF THE EXPLANATION ALGORITHMS. IT
868 ;;; SERVES BASICALLY THE SAME FUNCTION RS TMS-NODE-MARK, BUT ‘IS A DIFFERENT BIT SO
869 ;;; THAT EXPLANATIONS PRODUCED DURING BREAKPOINTS, ETC. WILL NOT SCREM UP ONGOING
878 ;;; SET COMPUTATIONS.

TRUTH MAINTENANCE DATA STRUCTURES APPNDX 3 Page 4

801

862 ;;; THE FOLLOWING ATTRIBUTES OF NODES ARE KEPT ON THE PROPERTY LISTS OF NODES:
883 .

884 ;;; TNMS-SIGNAL-RECALLING-FUNCTION

885 ;;; THIS OPTION MAY BE ATTACHED TO ANY NODE RS A FUNCTION TO BE CALLED WITH THE
886 ;;; EXTERNAL NAME OF THE NODE RS ARGUMENT WHENEVER THE NODE CHANGES STATUS FROM
887 ;;; OUT TO IN.

888 ;;; IT IS IGNORED IF IT IS THE SYMBOL ®IGNORE.

889

818 ;;; TMS-SIGNAL-FORGETTING-FUNCTION

29
811 ;;; THIS OPTION MAY BE ATTACHED TO ANY NODE AS A FUNCTION TO BE CALLED WITH THE
812 ;;; EXTERNAL NAME OF THE NODE RS ARGUMENT WHENEVER THE NODE CHANGES STATUS FRON
813 ;;; IN TO OUT.
814 ;;; IT IS IGNORED IF IT IS THE SYMBOL ’ IGNORE.
815
816 ;;; TNS-CP-JUSTIFICATIONS
817 ;;; RS DESCRIBED ABOVE. MOST NODES HON’T HAVE ONE, SO IT ISN’T IN THE BRSIC NODE STRUCTURE.
818
819 ;;; TMS-CP-CONSEQUENT-LIST :
828 ;;; THIS IS A LIST ATTACHED TO A NODE IF THE NODE IS THE "CONSEQUENT® OF ANY CONDITIONAL
821 ;;; PROOF JUSTIFICATIONS. IF SUCH JUSTIFICATIONS EXIST, THE NODES THEY JUSTIFY ARE PUT
822 ;3; ON THIS LIST. THIS IS TO DETERMINE THAT FINDINDEPS SHOULD BE DONE TO PRODUCE NEW
823 ;;; SUPPORT-LIST JUSTIFICATIONS FROM CONDITIONAL PROOF JUSTIFICATIONS WHEN THE CONSEQUENTS
824 ;;; OF THE CONDITIONAL PROOFS COME IN.
825 '
826 ;;; TMS-CONTRADICTION-NAME :
827 ;33 THIS IS ATTACHED TO A NODE WHICH IS A CONTRADICTION. IT IS SOME ARBITRARY
828 ;;; OBJECT THE EXTERNAL SYSTEM HAS CALLED THE NAME OF THE CONTRADICTION.
829
838 ;;; TMS-CONTRADICTION-TYPE
831 ;;; THIS IS ATTACHED TO A NODE WHICH IS A CONTRADICTION. IT IS SOME ARBITRARY
832 ;;; OBJECT THE EXTERNAL SYSTEM HAS CALLED THE TYPE OF THE CONTRADICTION.
833
834 ;;; TMS-CONTRADICTION-MARK
835 ;;; THIS IS A MARK USED TO DISTINGUISH NODES DECLARED TO BE CONTRADICTIONS FROM
836 ;;; NORMAL NODES.
837
838 ;;; TMS-CONTRADICTION-FUNCTION
839 ;;; THIS IS AN OPTIONAL ATTACHMENT TO A CONTRADICTION NODE WHICH CAN POINT TO
848 ;;; A FUNCTION TO CALL WITH THE EXTERNAL NAME OF THE CONTRADICTION AS ARGUMENT
841 ;;; HHENEVER THE CONTRADICTION NODE COMES IN AND NO ASSUMPTIONS CAN BE FOUND
842 ;;; RAMONG ITS SUPPORTERS - THAT IS, R CONTRADICTION WHICH CAN’T BE REMOVED.
843

844 ;;; THMS-CONTRADICTION-NOGOODS

845 ;;; THIS IS A PIECE OF DEBUGGING INFORMATION ATTACHED TO CONTRADICTIONS WHICH
846 ;;; LISTS THE NOGOODS THAT HAVE BEEN PRODUCED IN RESPONSE TO THE CONTRADICTION
847 ;;; COMING IN.

848

843 ;;; TMS-NOGOOD-ASSUMPTIONS

858 ;;; THIS IS A PIECE OF DEBUGGING INFORMATION ATTRCHED TO NOGOODS WHICH LIST
851 ;;; THE ASSUMPTIONS FOUND BY THE BACKTRACKER FOR THE CONTRADICTION WHICH
852 ;;; PRODUCED THE NOGOOD. .

853

854 ;;; THMS-NOGOOD-CONTRADICTION
855 ;;; THIS PIECE OF DEBUGGING INFORMATION ATTACHES THE CONTRADICTION THAT PRODUCED
856 ;;; A NOGOOD TO THAT NOGOGD.

TRUTH MAINTENANCE DARTR STRUCTURES APPNDX 3 Paqe S

881

882 ;;; CURRENT STORAGE ORGANIZATION OF THE SPECIAL DATA STRUCTURE:

883

884 333 THS NODES ARE HUNKS, ORGANIZED AS FOLLOWS:

885 333 THE TWO BITS FIELDS ARE USED TO STORE THE VARIOUS SMALL MARKERS RS
886 333 PARTS OF FIXNUMS. THERE ARE THO SUCH FIELDS SO THRT THE FIXNUMS
ee7 333 INVOLVED WILL BE SMALL ENOUGH TO NOT REQUIRE NUMBER-CONSING.

868 ;;; AN ADDITIONAL NOTE: AS WILL BE DESCRIBED LATER, NOGOODS ARE NOT NOOES,
889 333 BUT ARE SYMBOLS WITH NODES ATTACHED.

ale

81l ;;; SLOT USE

812

813 ;;; 8 PROPERTY LIST

814 ;;; 1 THS—EXTERNAL-NAME

815 333 2 TMS-SL-JUSTIFICATIONS

816 333 3 THS-SUPPORTING-JUSTIFICATION

817 333 4 TMS-SUPPORTING-NODES

818 333 5 THS-CONSEQUENCES

819 3533 6 TMS-BITS!1

828 ;;; . THS-NODE-HARK

821 ;;; THS-TMP-MRRK

822 3, THS-NOTED-MARK

823 533 TMS—-F INDINDEP-MARK

824 333 THS-SUBORDINATES-MARK

825 ;;; THS-EXPLAIN-MARK

826 ;;; 7 THS-BITS2

827 ;33 THS-SUPPORT-STATUS (2 BITS)

828 533 THS-SUPERIORS-MARK (2 BITS)

829

838 ;;; THIS MACRO IS USED TO ALTER COMPONENTS OF DATA STRUCTURES.
831 ;;; THE FORMAT IS (MAKE (COMPONENT OBJECT) VALUE).

832

833 (DEFMAC MAKE (X Y)

834 (CONS (IMPLODE (RPPEND (T M S - MW A K E -) (CODDDR (EXPLODEC (CAR X)))))
83S (RPPEND (COR X) (LIST Y))))

836

837 ;33 THIS MACRO PRODUCES RCCESSING FUNCTIONS FOR HUNK STRUCTURES.

838 :

839 (DEFMAC HUNKFN (NAME SLOT)

848 (LET ((CN (IMPLODE (RPPEND *(T H'S - M A K E -) (CODDOR (EXPLODEC NRNME))))))
841 " (PROGN *COMPILE

842 (DEFUN ,NRME (NODE)

843 (CXR ,SLOT NODE))

844 : (DEFUN ,CN (NODE NEW)

845 (RPLACX ,SLOT NODE NEW)))))

846

847 (HUNKFN TMS-EXTERNAL-NRME 1)

848 (HUNKFN TMS-SL-JUSTIFICATIONS 2)

849 (HUNKFN THMS-SUPPORTING-JUSTIFICATION 3)
858 (HUNKFN TNS-SUPPORTING-NODES 4)

851 (HUNKFN TMS-CONSEQUENCES 5)

852 (HUNKFN THS-BITS1 6)

853 (HUNKFN TNS-BITS2 7)

TRUTH MAINTENANCE DATA STRUCTURES APPNDX 3 Page 6

881
882
883
884
885
886
887
888
889
8le
811
812
813
814
815
816
817
818
819
828
821
822
823
824
825
826
827
828
829
838
831
832
833
834
835
836
837
838
839
848
841
842
843
844

333 THESE FUNCTIONS DEFINE THE VARIOUS BIT STRUCTURES USED IN NODES.
335 THIS MACRO PRODUCES RCCESSING FUNCTIONS FOR BIT STRUCTURES.

(DEFMAC BITFN (NAME POS)
(LET ((CN (IMPLODE (APPEND (T M'S - M R K E -) (CODDDOR (EXPLODEC NAME))))))
" (PROGN °*COMPILE

(DEFUN ,NRME (NODE)

(BTON (THMS-BITS1 NODE) ,P0S))
(DEFUN ,CN (NODE NEW)

(COND (NEW (MAKE (TMS-BITSi NODE)

(BOR (TMS-BITS1 NODE) ,P0S)))
(T (MAKE (TNS-BITS1 NODE)
(BCLR (THS-BITSL NODE) ,P0S))))))))

(BITFN TMS-NODE-MARK 1.)

(BITFN TMS-THP-MARK 2.)

(BITFN TMS-NOTED-MRRK §.)

(BITFN TMS-FINDINDEP-MARK 8.)
(BITFN TMS-SUBORDINATES-MARK 16.)
(BITFN THMS-EXPLRIN-MARK 32.)

333 THESE DEFINE THE REMAINING MULTI-BIT FIELDS.

(DEFUN THS-SUPPORT-STATUS (NODE)
(LET ((V (BAND (TMS-BITS2 NODE) 3.)))
(COND ((= V 1.) ’0uT)
(= V 2.) 'IN))))

(DEFUN THMS-MAKE-SUPPORT-STATUS (NODE NEW)
(COND ((EQUAL NEW ’IN) (MAKE (TMS-BITS2 NODE) (BOR (BCLR (TMS-BITS2 NODE) 3.) 2.)))
((EQUAL NEW ’OUT) (MAKE (TMS-BITS2 NODE) (BOR (BCLR (TMS-BITS2 NODE) 3.) 1.7))
(T (MAKE (TMS-BITS2 NODE) (BCLR (TMS-BITS2 NODE) 3.)))))

(DEFUN THS-SUPERIORS-MARK (NODE)
(LET ((V (BAND (TNS-BITS2 NODE) 12.)))
(COND ((= V 4.) ’NO)
(= V 8.) *YES))))

(DEFUN TNS-MAKE-SUPERIORS-MARK (NODE NEW)
(COND ((EQUAL NEW °YES) (MAKE (TMS-BITS2 NODE) (BOR (BCLR (TMS-BITS2 NODE) 12.) 8.)))
((EQUAL NEW *NO) (MAKE (TMS-BITS2 NODE) (BOR (BCLR (TMS-BITS2 NODE) 12.) 4.)))
(T (MAKE (TMS-BITS2 NODE) (BCLR (TMS-BITS2 NODE) 12.)))))

TRUTH MARINTENANCE DATA STRUCTURES APPNDX 3 Page 7

-1:)1 .

882 ;;; THIS MACRO IS USED TO DEFINE ACCESSING FUNCTIONS FOR PROPERTY-LIST STRUCTURES.
883

884 (DEFMAC ACCESSFN (SLOTN PROPN)

885 (LET ((CNRME (IMPLODE (APPEND *(T M S - M A K E -) (CODDOR (EXPLODEC SLOTN)))))
886 . (PN (OR PROPN SLOTN)))

087 " (PROGN *COMPILE)

888 (DEFUN ,SLOTN (NODE) (GET NODE ’,PN))

889 (DEFUN ,CNAME (NODE NEW)

818 (COND (NEW (PUTPROP NODE NEW *,PN))

811 (T (REMPROP NODE ’,PN)))))))

812

813 (ACCESSFN TMS-SIGNAL-RECALLING-FUNCTION)

814 (ACCESSFN THS-SIGNAL-FORGETTING-FUNCTION)

81sS (ACCESSFN TMS-CP-JUSTIFICATIONS)

816 (ACCESSFN THMS-CP-CONSEQUENT-LIST)

817 (RCCESSFN TMS-CONTRADICTION-NRME)

818 (ACCESSFN TMS-CONTRADICTION-TYPE)

819 (ACCESSFN TMS-CONTRADICTION-MARK)

828 (RCCESSFN TMS-CONTRADICTION-FUNCTION)

821 (ACCESSFN TMS-CONTRADICTION-NOGOODS)

822 (RCCESSFN THMS-NOGOOD-ASSUMPTIONS)

823 (ACCESSFN THMS-NOGOOD-CONTRADICTION)

824

825 ;;; THESE FUNCTIONS INSTALL SIGNALLING FUNCTIONS AND THEM CALL THEM IF REQUIRED.
0826

827 (DEFUN TMS-INSTALL-SIGNAL-FORGETTING-FUNCTION (NODE FUN)

828 (MAKE (TMS-SIGNAL-FORGETTING-FUNCTION NODE) FUN)

829 (AND FUN (TMS-IS-OUT NODE) (FUNCALL FUN (THS-EXTERNAL-NANE NODE))))
838 -

831 (DEFUN TMS-INSTALL-SIGNAL-RECALLING-FUNCTION (NODE FUN)

832 (MAKE (TMS-SIGNAL-RECALLING-FUNCTION NODE) FUN)

833 (AND FUN (TMS-IS-IN NODE) (FUNCALL FUN (TNS-EXTERNAL-NAME NODE))))
834 :

835 ;;; THIS FUNCTION GENERATES A VIRGIN NODE WITH A GIVEN EXTERNAL NAME.
836 ;;; SINCE IT HAS NO JUSTIFICATIONS, IT IS OUT.

837

838 (DEFUN TMS-MAKE-NODE (NAME)

839 (LET ((NODE (MAKHUNK 8.)))

040 (MAKE (TNS-SUPPORT-STATUS NODE) °*OUT)

841 (MAKE (THS-EXTERNAL-NANE NODE) NANE)

842 NODE))

TRUTH MAINTENANCE DATA STRUCTURES APPNDX 3 Page 8

861

882 ;;; THE FOLLOWING DEFINE THE STRUCTURE OF JUSTIFICRTIONS.

883 ;;; JUSTIFICATIONS ARE ALWAYS PRIRS: THE FIRST PART OF WHICH IS THE INTERNAL
884 ;;; THS DATA STRUCTURE, AND THE SECOND PART OF WHICH IS THE EXTERNAL REPRESENTATION
885 ;;; OF THE JUSTIFICATION.

886 ;;; THE DIFFERENT TYPES OF HAYS R SUPPORTING NODE CAN RFFECT A JUSTIFICATION ARE
887 ;;; EXPLICIT IN THE STRUCTURE OF THE JUSTIFICATION. THUS WITHIN ANY SUBLIST
888 ;;; (THE TMS-SL-JUSTIFICATION-INLIST, FOR EXAMPLE), THE ORDER OF THE NODES

889 ;;; LISTED CANNOT MATTER.

818

811 ;;; GENERAL PAIR STRUCTURE:

812

813 (DEFUN TMS-JUSTIFICATION-ARGUMENT (JUST) (COR JUST))

814 (DEFUN TMS-JUSTIFICATION (JUST) (CAR JUST))

815

816 ;;; SUPPORT-LIST (SL) JUSTIFICATION STRUCTURE:

817

818 (DEFUN TMS-SL-JUSTIFICATION-INLIST (JUST) (CAR (TMS-JUSTIFICATION JUST)))

819 (DEFUN TMS-SL-JUSTIFICATION-OUTLIST (JUST) (COR (TMS-JUSTIFICATION JUST)))

828 (DEFUN THS-MAKE-SL-JUSTIFICATION (INLIST OUTLIST EXTARG) (CONS (CONS INLIST OUTLIST) EXTARG))
821

822 ;;; CONDITIONAL-PROOF (CP) JUSTIFICATION STRUCTURE:

823

824 (DEFUN TMS-CP-JUSTIFICATION-CONSEQUENT (JUST) (CAR (TMS-JUSTIFICARTION JUST)))

825 (DEFUN TMS-CP-JUSTIFICATION-IN-HYPOTHESES (JUST) (CADR (TMS-JUSTIFICATION JUST)))
826 (DEFUN TMS-CP-JUSTIFICATION-OUT-HYPOTHESES (JUST) (CDOR (TMS-JUSTIFICATION JUST)))
827 (DEFUN THMS-MRKE-CP-JUSTIFICATION (CONSEQUENT INHYPOTHESES OUTHYPOTHESES EXTARG)

828 (CONS (CONS CONSEQUENT (CONS INHYPOTHESES OUTHYPOTHESES)) EXTARG))
829

838

831 ;;; THESE FUNCTIONS PREVENT RECORDING DUPLICATE JUSTIFICATIONS FOR NODES.

832 ;;; MY THEORY OF THIS IS TRADITIONALLY FUZ2ZY. IN A SYSTEM LIKE THE CURRENT
833 ;;; ONE IN WHICH THERE ARE EXTERNAL FORMS FOR JUSTIFICATIONS, IT SEEMS LIKE
834 ;;; JUSTIFICATIONS WITH DISTINCT EXTERNAL FORMS SHOULD BE MRINTRINED SEPARATELY,
835 ;;; SINCE THE RETRACTION OF ONE EXTERNAL FORM MIGHT NOT MEAN THE RETRACTION OF
836 ;;; ALL INTERNALLY-IDENTICAL JUSTIFICATIONS. IN R SINGLE-PURPOSE, INTEGRATED
837 ;;; SYSTEM SOME BETTER STRATEGY MIGHT BE POSSIBLE.

838

839 (DEFUN THS-SL-JUSTIFICATION-MEMBER (JUST JUSTS)

840 (D0 ((JS JUSTS (COR JS)))

841 . C(NULL JS))

842 (AND (EQUAL (TMS-JUSTIFICATION-ARGUMENT JUST)

843 (THS-JUSTIF ICATION-ARGUMENT (CAR JS)))

844 (THS-EQUAL-LIST (TMS-SL-JUSTIFICATION-INLIST JUST)

845 (THS-SL-JUSTIFICATION-INLIST (CAR JS)))

846 (THS-EQUAL-LIST (TNS-SL-JUSTIFICATION-OUTLIST JUST)

847 (TNS-SL-JUSTIFICATION-OUTLIST (CAR JS)))

848 (RETURN T))))

849

858 $33;CP
8s1 ZDEFUN THS-CP-JUSTIFICATION-MEMBER (JUST JUSTS)

852 (D0 ((JS JUSTS (COR JS)))

853 ((NULL Js))

854 (AND (EQ (TMS-CP-JUSTIFICATION-CONSEQUENT JUST)

855 (THS-CP-JUSTIF ICATION-CONSEQUENT (CAR JS)))

856 (EQUAL (TMS-JUSTIF ICATION-RRGUMENT JUST)

857 (THS-JUSTIF ICRTION-ARGUMENT (CAR JS)))

858 (THS-EQUAL-LIST (THMS-CP-JUSTIFICATION-IN-HYPOTHESES JUST)
859 (THS-CP-JUSTIF ICATION-IN-HYPOTHESES (CAR JS)))
868 (THS-EQUAL-LIST (TMS-CP-JUSTIFICATION-OUT-HYPOTHESES JUST)
861 (THS-CP-JUSTIF ICRTION-OUT-HYPOTHESES (CAR JS)))
862 (RETURN T))))

863

864 ;;; THIS IS EQUAL SPECIALIZED FOR LISTS TREATING HUNKS RS ATOMS.

865 '

866 (DEFUN THMS-EQUAL-LIST (X Y)

867 (PROG ()

868 LP (COND ((NULL X) (RETURN (NULL Y)))

869 ((NULL Y) (RETURN NIL))

878 ((EQ (CAR X) (CAR Y))

871 (SET@ X (COR X))

872 (SETQ Y (COR Y))

873 (GO LP))

‘874 (T (RETURN NIL)))))

TRUTH MAINTENANCE DATA STRUCTURES APPNDX 3 Page 9

881
882
883
884
885
086
887
888
889
818
811
812
813
814
815
816
817
818
819
828
821
822
823
824
825
826
827
828
829
838
831
832
833
834

THESE DEFINE THE FORMAT OF INTERNALLY GENERATED FACTS (LIKE NOGOODS, ETC.)

DUE TO THE FACT THAT CONTRADICTIONS MAY COME IN SEVERAL TIMES, THE THS

HUST BE ABLE TO GENERATE INTERNAL NODES FOR NOGOODS. SINCE THESE WILL OCCUR

; IN EXPLANATIONS IN THE EXTERNAL SYSTEM, EITHER THE IMPLEMENTATION DETAILS

; OF THS NODES (RS HUNKS OR PLISTS, ETC.) MUST BE MADE AVAILABLE TO THE EXTERNAL
USER, OR ELSE R SIMPLE EXTERNAL STRUCTURE CAN BE GENERATEO FOR THESE NODES.

I HAVE TRKEN THE LATTER APPROACH. NOGOODS ARE SYMBOLS (CALLED INTERNAL FACTS).
THEY HAVE R SYNBOLIC ASSERTION-LIKE STATEMENT ATTACHED TO THEM, DENOTING THE

3 REASONS FOR THEIR CRERTION, AS WELL AS A TMS NODE ATTACHEO.

e we we we W we we we we
Mo we wWe we we we we we wo
We we we we we we we we we

333 THIS FUNCTION CHECKS WHETHER AN ATOM IS AN INTERNAL TMS FACT.
(RCCESSFN THS-FACTP)

333 THIS FUNCTION GETS THE STATEMENT OF AN INTERNAL THS FACT.
(RCCESSFN THMS-FACT-STRTEMENT)

335 THIS FUNCTION GETS THE TMS NODE OF AN INTERNAL TNS FACT.
(RCCESSFN TNS-FACT-NODE)

333 THMS-MAKE-FACT GENERATES R NEW INTERNAL FACT OF R GIVEN TYPE
333 (WHICH IS SPLICED INTO THE NAME OF THE FACT) AND A STATEMENT.

(DEFUN TMS-MAKE-FACT (TYPE STATEMENT)
(LET ((FACT (TMS-GENS TYPE)))

(MRKE (THS-FACTP FACT) T)
(MAKE (TMS-FACT-NODE FACT) (TMS-MAKE-NODE FACT))
(MAKE (THS-FACT-STATEMENT FACT) STATEMENT)
(MAKE (TNS-SIGNAL-RECALLING-FUNCTION FACT) *IGNORE)
(NAKE (TNS-SIGNAL-FORGETTING-FUNCTION FACT) *IGNORE)
FACT))

TRUTH MAINTENANCE SUPPORT FUNCTIONS APPNDX 3 Page 18

ggé (CONMENT TRUTH MRINTENANCE SUPPORT FUNCTIONS)

ggz 333 THE ANTECEDENTS OF A NODE IS THE SET OF OTHER NODES IN ITS IMMEDIATE WELL-FOUNDED
885 ;;; SUPPORT. OUT NODES HAVE NO WELL-FOUNDED SUPPORT, AND SO NO ANTECEDENTS.

:gg (DEFUN TMS-ANTECEDENTS (NODE) (RND (TMS-IS-IN NODE) (TMS-SUPPORTING-NODES NODE)))

ggg 533 THS-IS-IN AND TMS-IS-OUT TEST SINGLE NODES FOR INNESS OR OUTNESS.

gig (DEFUN THMS-IS-IN (NODE) (EQ (TMS-SUPPORT-STATUS NODE) ’IN))

812 (DEFUN TMS-IS-OUT (NODE) (EQ (TMS-SUPPORT-STATUS NODE) ’0UT))

giz 333 THS-ARE-IN AND TMS-ARE-OUT TEST LISTS OF NODES TO SEE IF ALL ARE IN OR OUT.

gi: (DEFUN TMS-ARE-IN (NODES)

817 (D0 ((NL NODES (COR NL)))

818 ((NULL NL) T)

819 (OR (TMS-IS-IN (CAR NL)) (RETURN NIL))))
820

821 (DEFUN TMS-ARE-OUT (NODES)

822 (DO ((NL NODES (COR NL)))

823 C(NULL NL) T)

824 ‘ (OR (THS-IS-OUT (CAR NL)) (RETURN NIL))))
825

826 ;;; THIS FUNCTION RETURNS A LIST OF ALL JUSTIFICATIONS POSSESSED BY A NODE.
827
828 (DEFUN TNS-JUSTIFICATIONS (NODE)

829 (RPPEND (TMS-SL-JUSTIFICATIONS NODE) (TMS-CP-JUSTIFICATIONS NODE) NIL))
838

831 ;;; THIS FUNCTION RDDS A NODE TO THE LIST OF CONSEQUENCES OF A NODE

832 ;;; IF IT WASN’T THERE ALRERDY.

833

834 (DEFUN TMS-ADD-CONSEQUENCE (NODE CONSEQUENCE)

835 (OR (MEMQ CONSEQUENCE (THS-CONSEQUENCES NODE))

836 (MAKE (TMS-CONSEQUENCES NODE)

837 (CONS CONSEQUENCE (TMS-CONSEQUENCES NODE)))))

838

838 . ;;; TMS-AFFECTED-CONSEQUENCES RETURNS A LIST OF JUST THOSE CONSEQUENCES
848 ;;; OF A NODE WHICH ACTUALLY MENTION THE NODE IN THEIR CURRENT SUPPORTING-NODES.
841 ;;; THIS IS ALL THE NODES WHICH ACTURLLY DEPEND ON THE GIVEN NODE DIRECTLY.
842

843 (DEFUN TMS-RFFECTED-CONSEQUENCES (NODE)

0844 (D0 ((CL (TMS-CONSEQUENCES NODE) (CDR CL))

84S (ANS NIL))

846 ((NULL CL) ANS)

847 (AND (MENMQ NODE (TMS-SUPPORTING-NODES (CAR CL)))

848 (PUSH (CAR CL) ANS))))

849

858 ;;; TMS-AFFECTS-NODES IS BASICALLY THE PREDICATE (NOT (NULL (TMS-RFFECTED-CONSEQUENCES X))J.
851 ;;; SINCE IT JUST TESTS FOR THE EXISTENCE OF AFFECTED CONSEQUENCES, IT DOESN’T HAVE TO CONS.
852

853 (DEFUN TMS-RFFECTS-NODES (NODE)

854 (D0 ((CL (TMS-CONSEQUENCES NODE) (CDR CL;))

855 ((NULL CL) NIL)

856 (AND (HEMQ NODE (TNS-SUPPORTING-NODES (CAR CL))) (RETURN T))))
857

858 ;;; TMS-BELIEVED-CONSEQUENCES RETURNS A LIST OF ALL IN NODES AMONG THE AFFECTED CONSEQUENCES
859 ;;; OF A NODE.

868

861 (DEFUN THMS-BELIEVED-CONSEQUENCES (NODE)

862 (D0 ((CL (TMS-CONSEQUENCES NODE) (CDR CL))

863 (ANS NIL))

864 ((NULL CL) ANS)

865 (AND (MENMQ NODE (TMS-ANTECEDENTS (CRR CL)))

866 (PUSH (CAR CL) ANS))))

TRUTH MAINTENANCE SUPPORT FUNCTIONS APPNDX 3 Page 11

876

.88l
862 ;;; THE FOLLOWING FUNCTIONS RETURN ALL NODES OF THE SPECIFIED TYPE
883 ;;; IN RELATIONSHIP TO THE GIVEN NODE.
8084
885 ;;; THIS RETURNS ALL NODES REACHED BY RECURSIVELY TAKING ANTECEDENTS.
886 ;;; TMS-NARK-FOUNDATIONS COLLECTS UP A NON-REPETITIVE LIST, AND
887 ;;; TMS-FOUNDATIONS UNMARKS AND RETURNS THE LIST.
o838
889 (DEFUN TMS-FOUNDARTIONS (NODE)
818 (LET ((NODELIST (MAPCAN ’TMS-MARK-FOUNDATIONS (TMS-ANTECEDENTS NODE))))
81l (MAPC * (LAMBDA (N) (MAKE (THS-EXPLAIN-MARK N) NIL))
- el NODELIST)))
813
814 (DEFUN TMS-MARK-FOUNDATIONS (NOOE)
81s (COND ((NULL (TMS-EXPLRIN-MARK NODE))
e16 (MRKE (TMS-EXPLAIN-MARK NODE) T)
817 {CONS NODE (MAPCAN *TMS-MARK-FOUNDATIONS (TMS-ANTECEDENTS NODE))))))
818
819 333 THIS RETURNS ALL NODES REACHED BY RECURSIVELY TAKING BELIEVED CONSEQUENCES.
828 ;;; TMS-MARK-REPERCUSSIONS COLLECTS UP A NON-REPETITIVE LIST, AND '
821 333 TNS-ALL-REPERCUSSIONS UNMARKS AND RETURNS THE LIST.
822
823 (DEFUN TMS-REPERCUSSIONS (NODE))
824 (LET ((NODELIST (MAPCAN *®TMS-MARK-REPERCUSSIONS (TNS-BELIEVED-CONSEQUENCES NODE))))
825 (MAPC ’ (LAMBDA (N) (MAKE (TMS-EXPLRIN-MARK N) NIL))
826 NODELIST)))
827
828 (DEFUN TMS-MARK-REPERCUSSIONS (NODE)
829 (COND ((NULL (TMS-EXPLRIN-MARK NODE))
83e (MAKE (TMS-EXPLAIN-MARK NODE) T)
831 (CONS NODE (MAPCAN *TMS-MARK-REPERCUSSIONS (TMS-BELIEVED-CONSEQUENCES NODE))))))
832
833 ;;; TNMS-PREMISES AND ITS SUBFUNCTIONS COLLECT UP A LIST OF ALL PREMISES IN
834 333 THE RECURSIVE WELL-FOUNDED SUPPORT OF R NODE. PREMISES RRE NODES WHICH
835 ;;; ARE IN BUT DEPEND ON NO NODES (THAT IS, HAVE NO ANTECEDENTS.)
836 '
837 (DEFUN TMS-PREMISES (NODE)
838 (LET ((PL (TMS-PREMISESL NODE)))
839 (THS~-PREMISES2 NODE)
848 PL))
841
0842 (DEFUN THS-PREMISES1 (NODE)
843 (COND ((NOT (TMS-EXPLAIN-MARK NOODE))
844 (NAKE (TMS-EXPLAIN-MARK NODE) T)
045 (COND ((THS-ANTECEDENTS NODE) (MAPCAN ’THS-PREMISESL (TMS-ANTECEDENTS NODE)))
846 (T (AND (TMS-IS-IN NODE) (LIST NODE)))))))
847
848 (DEFUN TMS-PREMISES2 (NODE)
849 (COND ((TMS-EXPLRIN-MRRK NODE)
ese (MHAKE (TMS-EXPLAIN-MARK NODE) NIL)
sl (MAPC ’ THS-PREMISES2 (TMS-ANTECEDENTS NODE)))))
852
853 333 TMS-ASSUMPTIONS AND ITS SUBFUNCTIONS COLLECT UP ALL ASSUMPTIONS INVOLVED
854 333 IN THE WELL-FOUNDED SUPPORT OF R NODE. RSSUMPTIONS RRE NODES WHICH ARE IN AND DEPEND
855 ;;; UPON OTHER NODES WHICH RRE OUT, THRT IS, DEPEND UPON INCOMPLETE INFORMATION.
856
857 (DEFUN TMS-ASSUMPTIONS (NODE)
858 (LET ((AL (TMS-RSSUMPTIONS1 NODE)))
859 (THS-ASSUNPTIONS2 NODE)
868 AL))
861
862 (DEFUN THS-ASSUMPTIONS1 (NODE)
863 (COND ((NOT (TMS-EXPLRIN-MARK NODE))
064 (MAKE (TMS-EXPLAIN-MARK NODE) T)
865 (PROG (FLAG ANS)
866 (MAPCAN ’ (LRMBDA (R)
867 (COND ((TMS-IS-OUT R) (SETQ FLAG T))
868 (T (SETQ ANS (NCONC (THS-ASSUMPTIONS1 R) ANS)))))
869 (THS-ANTECEDENTS NODE))
e7e (RETURN (COND (FLAG (CONS NODE ANS))
871 (T ANS)))))))
872 :
873 (DEFUN THS-ASSUMPTIONS2 (NODE)
874 (COND ((TMS-EXPLRIN-MARK NODE)
87s (HAKE (TMS-EXPLAIN-MARK NODE) NIL)
(MAPC *THS-ASSUNPTIONS2 (TMS-ANTECEDENTS NODE)))))

TRUTH MAINTENANCE SUPPORT FUNCTIONS APPNDX 3 Page 12

801

882 ;;; THIS KLUDGE TAKES R LIST OF NODES AND CLOBBERS IT TO BE A NON-REPETITIVE LIST
883 ;;; OF THE SAME NODES. THE SPECIAL CASE OF TWO OR FEWER NODES IN THE LIST IS HANDLED
884 ;;; SPECIALLY FOR SPEED.

885

886 (DEFUN TMS-NODE-SET-CONDENSE (L)

887 (COND ((NULL L) NIL)

888 ((CODR L)

8069 (PROG (PTR NEXT)

810 (SETQ PTR L)

ell (SETQ NEXT (COR L))

812 (MRKE (TMS-NODE-NMARK (CAR PTR)) T)

813 LP (COND ((NULL NEXT)

814 (MAPC ’ (LAMBDA (E) (MAKE (TNMS-NODE-MARK E) NIL)) L)
815 (RETURN L))

816 ((THS-NODE-MARK (CAR NEXT))

817 (LET ((R (COR NEXT)))

818 (RPLACD PTR R)

819 (SETQ NEXT A))

828 (GO0 LP))

821 (T (SETQ PTR NEXT)

822 (SETQ NEXT (COR NEXT))

823 (MRKE (TMS-NODE-MARK (CAR PTR)) T)

824 (GO LP)M)

825 ((EQ (CAR L) (CADR L)) (COR L))

826 aun

827 -

828 ;;; THIS FUNCTION PRINTS R MESSAGE AND NODE FOR WALLPAPER & DEBUGGING PURPOSES.
829

830 (DEFUN TMS-PRINT (TEXT NODE)
831 (TERPRI) (PRINC TEXT) (PRINC ’| |) (PRINL (THS-EXTERNAL-NAME NODE)))

TkUTH MAINTENANCE SYSTEM COMMANDS APPNDX 3 Page 13

881’

882 (COMMENT TRUTH MAINTENANCE SYSTEM COMMANDS)

883 .

884 ;;; TMS-SL-JUSTIFY CAN BE USED TO SUPPLY A NEW JUSTIFICATION FOR

885 ;;; A NODE, AND TO THEN DETERMINE ITS SUPPORT STATUS. IF THE NODE

886 ;;; LACKS WELL FOUNDED SUPPORT, TRUTH MAINTENANCE OCCURS.

887)

888 ;;; THERE IS AN EXTRA LAYER OF HAIR INVOLVED IN ALL THE MAJOR EXTERNAL FUNCTIONS.

889 ;;; THE BASIC PROBLEM IS THAT SUPERFLUOUS STATUS CHANGE SIGNALLING SHOULD BE

818 ;;; AVOIDED. SINCE ONE INVOCATION OF TRUTH MAINTENANCE CAN TRIGGER OTHER INVOCATIONS,
811 ;;; DUE TO CONTRADICTIONS AND CONDITIONAL PROOFS, THIS MERANS THRT ALL STATUS CHANGE
812 ;;; SIGNALLING SHOULD BE DELAYED UNTIL THE RCTUAL RETURN TO THE EXTERNAL SYSTEM.

813 ;;; THIS REQUIRES THAT THERE BE INTERNAL VERSIONS OF THE FUNCTIONS FOR JUSTIFYING NODES,
@14 ;;; INVOKING BACKTRACKING, ETC. THE EXTERNAL VERSIONS ALL CONSIST OF A RATHER

815 ;;; STANDARD BLOCK OF CODE WRAPPED RROUND THE CALL TO THE INTERNAL VERSION.

816

817 ;;; TMS-SL-JUSTIFY RETURNS NIL IF NO CHANGE IN STATUS OCCURRED, T OTHERWISE.
818
819 (DEFUN TMS-SL-JUSTIFY (NODE INS OUTS EXTARG)

828 (LET ((xTMS-NOTED-IN-NODES# NIL)

821 (xTNS-NOTED-OUT-NODES# NIL)

822 (OLDSTATUS (TMS-SUPPORT-STATUS NODE)))

823 (THS-SL-JUSTIFY1 NODE INS OUTS EXTARG)

824 (THS-TMP-SCAN)

825 (THS-SIGNAL-CHANGES)

826 (NOT (EQ OLDSTRTUS (TMS-SUPPORT-STATUS NODE)))))
827

828 ;;; TMS-SL-JUSTIFY1 RETURNS T IF THE JUSTIFICATION CAUSES TRUTH MAINTENANCE, NIL OTHERWISE.
829
836 (DEFUN TMS-SL-JUSTIFYL (NODE INS OUTS EXTARG)

831 (LET ((JUST (TMS-MAKE-SL-JUSTIFICATION INS OUTS EXTARG)))

832 (COND ((LET ((JS (TMS-SL-JUSTIFICRTIONS NODE)))

833 (COND ((NOT (TMS-SL-JUSTIFICRTION-MEMBER JUST JS))

834 (MAKE (THS-SL-JUSTIFICATIONS NODE) (NCONC JS (LIST JUST)))
835 »n»n

836 (MAPC * (LAMBDA (N) (TMS-ADD-CONSEQUENCE N NODE)) INS)

837 (MAPC ’ (LAMBDA (N) (TMS-ADD-CONSEQUENCE N NODE)) OUTS)

838 (AND *THS-SEE-JUSTIFICATIONS-SHs (TMS-PRINT * |JUSTIFYING| NODE))
839 (EQCASE (TMS-SUPPORT-STATUS NODE)

840 (IN NID)

841 (OUT (EQCASE (THS-UF-EVAL-SL-JUSTIFICATION JUST)

842 (YES (THS-THP (LIST NODE)) T)

843 (NO (TNS-INSTALL-WF-SUPPORT NODE) NIL))))))))

TRUTH MAINTENANCE SYSTEM COMMANDS APPNDX 3 Page 14

881
882 33;CP
883 ;;; TMS-CP-JUSTIFY CAN BE USED TO PROVIDE A CONDITIONAL-PROOF JUSTIFICATION
884 ;;; FOR A NODE. THE CONDITIONAL PROOF IS OF THE FORM "THE SUPPORT

. 885 ;;; OF CONSEQUENT RELATIVE TO THE HYPOTHESES.® IT IS EQUIVALENT TO A SUPPORT
886 ;;; LIST JUSTIFICATION CONTAINING THE OTHER NODES SUPPORTING SUCH A PROOF.
887

888 ;;; TMS-CP-JUSTIFY RETURNS NIL IF NO CHANGE IN STATUS OCCURRED, T OTHERWISE.
863

818 (DEFUN THS-CP-JUSTIFY (NODE CONSEQUENT INHYPOTHESES OUTHYPOTHESES EXTARG)

811 (LET ((xTMS-NOTED-IN-NODESx NIL)

812 (xTHS-NOTED-OUT-NODES% NIL)

813 (OLDSTATUS (TMS-SUPPORT-STATUS NODE)))

814 (THS-CP-JUSTIFY1 NODE CONSEQUENT INHYPOTHESES OUTHYPOTHESES EXTARG)

815 (THS-TMP-SCAN)

816 (THS-SIGNAL-CHANGES)

817 (NOT (EQ OLDSTATUS (TMS-SUPPORT-STATUS NODE)))))

818

813 (DEFUN THMS-CP-JUSTIFY1 (NODE CONSEQUENT INHYPOTHESES OUTHYPOTHESES EXTARG)

828 (LET ((JUST (TMS-MAKE-CP-JUSTIFICATION CONSEQUENT INHYPOTHESES OUTHYPOTHESES EXTARG)))
821 (COND ((LET ((JS (TMS-CP-JUSTIFICATIONS NOOE)))

822 (COND ((NOT (TMS-CP-JUSTIFICATION-MEMBER JUST JS))

823 . (MAKE (TNS-CP-JUSTIFICATIONS NODE) (NCONC JS (LIST JUST)))
824 mn

825 (MAKE (TNS-CP-CONSEQUENT-LIST CONSEQUENT)

826 (CONS NODE (THMS-CP-CONSEQUENT-LIST CONSEQUENT)))

827 (THS-ADD-CONSEQUENCE CONSEQUENT NODE)

828 (MAPC * (LAMBDA (N) (TMS-ADD-CONSEQUENCE N NODE)) INHYPOTHESES)

829 (MAPC * (LAMBDA (N) (TMS-ADD-CONSEQUENCE N NODE)) OUTHYPOTHESES)

a38 (AND *TNS-SEE-JUSTIFICATIONS-SH« (TMS-PRINT ' |JUSTIFYING| NODE))

831 (AND (EQ (TMS-SUPPORT-STATUS NODE) ’0UT)

832 (EQCASE (TMS-WF-EVAL-CP-JUSTIFICATION JUST)

833 (YES

834 : (LET ((SUPPORT

835 (THS-F INDINDEP

836 (TNS-CP-JUSTIF ICATION-CONSEQUENT JUST)

837 (THS-CP-JUSTIFICATION-IN-HYPOTHESES JUST)

038 (THS-CP-JUSTIF ICATION-QUT-HYPOTHESES JUST))))
839 ' (THS-SL-JUSTIFY1 NODE (CAR SUPPORT) (COR SUPPORT)
848 - (THS<JUSTIF ICRTION-ARGUMENT JUST))))

841 (NO (THS-INSTALL-HF-SUPPORT NODE))))))))

TRUTH MAINTENANCE SYSTEM COMMANDS APPNDX 3 Page 15

131
882
883
8084
88s
886
887
888
863
818
811
812
813
814
81S
816
817
818
819
828
821
822
823
824
825
826
827
828
829
838
831
832
833
834
835
836
837
838
e39
848
841

THS-RETRACT REMOVES A PREMISE JUSTIFICATION FROM R NODE.

ACTUALLY, IT IS NOT QUITE RIGHT AT PRESENT, SINCE A RETRACTION

SHOULD SPECIFY THE EXACT EXTERNAL FORM OF THE PREMISE JUSTIFICATION

TO BE RETRACTED, LERVING OTHER PREMISE JUSTIFICATIONS UNTOUCHED.

THIS WOULD OBVIATE THE HAIR PRESENTLY EXISTING WHICH CHECKS TO AVOID

REMOVING PREMISE JUSTIFICATIONS DERIVED FROM CONDITIONAL PROOF JUSTIFICATIONS.

we we we we we we
we we we we we we
e we we we we we

PROBABLY THIS MEANS THAT TMS-RETRACT SHOULD BE GENERALIZED TO REMOVE
3 ANY TYPE OF JUSTIFICATION, GIVEN THE EXTERNAL FORM OF THE JUSTIFICATION
AS ARGUMENT.

e we w
.o wo we
e we we

(DEFUN TMS-RETRACT (NODE)
(LET ((xTMS-NOTED-IN-NODES# NIL)

(xTHS-NOTED-OUT-NODES# NIL)
(OLOSTATUS (TMS-SUPPORT-STATUS NODE)))

(THS-RETRACT1 (LIST NODE))

(THS-THMP-SCAN)

(TMS-SIGNAL-CHANGES)

(NOT (EQ OLDSTATUS (THS-SUPPORT-STATUS NODE)))))

333CP
(DEFUN THMS-RETRACT1 (NODELIST)
(DO ((NL NODELIST (CDR NL))
(TL NIL))
C(NULL NL) (AND TL (TMS-TMP TL)))
(D0 ((JS (TMS-SL-JUSTIFICATIONS (CAR NL)) (COR JS))
(CJS (TMS-CP-JUSTIFICATIONS (CAR NL))))
C((NULL JS))
(LET ((JUST (CAR JS))) .
(COND ((RAND (NULL (TMS-SL-JUSTIFICATION-INLIST JUST))
(NULL (TMS-SL-JUSTIFICATION-OUTLIST JUST))
(NOT (DO ((CS CJS (CDR CS)))
((NULL CS))
(AND (EQ (TMS-JUSTIFICATION-RRGUMENT JUST)
(THS-JUSTIF ICATION-ARGUMENT (CAR CS)))
(RETURN T)))))
(AND (EQ JUST (TMS-SUPPORTING-JUSTIFICATION (CAR NL)))
(PUSH (CAR NL) TL))
(MAKE (TMS-SL-JUSTIFICATIONS (CAR NL))
(DELQ JUST (TNS-SL-JUSTIFICATIONS (CAR NL))))))))))

TRUTH MAINTENANCE PROCESSING FUNCTIONS APPNDX 3 Page 16

881
882
883
884
885
886
887
888
803
8l1e
811
812
813
814
81S
816
817
818
813
820
821
822
823
824
825
826
827
828
8238
838
831
832
833
034
835
8386
837
838
833
848
841
842
043
844
845
846
047

(COHHENT TRUTH MAINTENANCE PROCESSING FUNCTIONS)

THE TRUTH MAINTENANCE PROCESSOR:

TRUTH MAINTENANCE PROCESSING OCCURS WHEN THE SUPPORT STATUS
; OF A NODE IS CHANGED. THE MAINTENANCE PROCESSING IS

; INITIATED BY CALLING TMS-THP WITH THE LIST OF NODES IN

; QUESTION.

.o we we we we
e we we we we
e we we we we

THERE ARE THO PHASES TO THE TRUTH MAINTENANCE PROCESS.

THE FIRST PHASE CONSISTS OF LOOKING FOR WELL-FOUNDED SUPPORT FOR

ALL NODES INVOLVED IN TRUTH MAINTENANCE. SONE NODES MAY BE LEFT

WITH THEIR STATUS STILL NOT DETERMINED AT THE END OF THIS PHASE.

THE SECOND PHASE IS A RELAXATION PROCESS IN WHICH "NOT-WELL-FOUNDED" (NWF)
SUPPORT IS DERIVED FOR ALL REMAINING NODES. THIS INVOLVES CHECKING

FOR SUPPORT UNDER THE ASSUMPTION THAT ALL NODES HITHOUT WELL-FOUNDED
SUPPORT ARE OUT. THIS MAY BE DISCOVERED TO BE IN ERROR BY SUBSEQUENTLY
DERIVING SUPPORT FOR A NODE ASSUMED TO BE OUT, CAUSING FURTHER TRUTH
HAINTENANCE UNTIL THE DATA BASE RELAXES TO R STRBLE STATE.

e we we W we we we we we we

we we we we we we we we we we
we we we we we we we we we we

(DEFUN THS-TMP (NODELIST)
(COND (#THS-SEE-THP-SH#
(TERPRI)
(PRINC * | TRUTH MAINTENANCE PROCESSING INITIATED))
(COND (sTMS-SEE-THP-INVOKER-SH+
(COND ((NULL (COR NODELIST)) 333 JUST ONE INVOKER
(PRINC *| BY |)
(PRIN1 (TMS-EXTERNAL-NAME (CAR NODELIST)))))))
(PRINC *|. D))
(SETQ #TMS-PROCESS-QUEUEs NIL)
(LET ((NOTED-NODES (MAPCAN ’THS-MARK-AFFECTED-CONSEQUENCES NODELIST)))

(D0 ((N (TMS-DEQUEUE) (TMS-DEQUEUE))) 333 FIRST GROVEL FOR SURE STUFF
C((NULL N))
(AND (NULL (TMS-SUPPORT-STATUS N)) (TMS-WF-EXANMINE N)))

(DO ((NL NOTED-NODES (COR NL))) 333 FIND LINGERERS

((NULL NL))
(OR (TMS-SUPPORT-STATUS (CAR NL)) (THS-QUEUE (CAR NL))))

(D0 ((N (TMS-DEQUEUE) (TMS-DEQUEVE))) 333 THEN GROVEL DOUBTFUL STUFF
CNULL N))
(AND (NULL (TMS-SUPPORT-STRTUS N)) (THS-NHF-EXAMINE N)))

(MAPC ’ (LAMBOR (N) $33 CHECK FOR BUGS IN TMS

(COND ((NULL (TMS-SUPPORT-STRTUS N))
(PRINT (THS-EXTERNAL-NAME N))
(BRERK | NULL THS ERROR |))))
NOTED-NODES)
(COND (*THS-SEE-TMP-SH»
(LET ((BASE 18.) (+NOPOINT T)) (PRINT (LENGTH NOTED-NODES)))
(PRINC ’* [NODES EXAMINED.|)))))

TRUTH MRINTENANCE PROCESSING FUNCTIONS APPNDX 3 Page 17

881
0882
883
804
885
806
887
888
889
ale
811
812
913
814
81S
816
817
918
819
828
821
822
823
824
825
0826
827
828
829
838
e31
832
833
834
835
836
837
838
839
849
841
842
843
844
845
846
847
848
849
858
851
852
. 853
854
8ss

335 THIS UGLY LOOP SCANS THE LIST OF NODES INVOLVED TO SEE IF ANY ARE NOW ACTIVE

333 CONTRADICTIONS, OR ARE CP CONSEQUENCES WHICH CAN BE USED TO DERIVE NEW FINDINDEP’ED
535 SL JUSTIFICATIONS. IF ANY ARE FOUND, TMS PROCESSING MAY OCCUR, IN WHICH CASE

3i: THE SCAN MUST BE RESTARTED.

33:CP
(DEFUN THS-THP-SCAN ()
(PROG O
LoopP 333 SIGH...
333 THIS CLAUSE CHECKS FOR CONTRADICTIONS AMONG NOTED NODES.
(AND (DO ((NL %TMS-NOTED-IN-NODES% (COR NL)))
C((NULL NL))
(LET ((N (CAR NL)))
(COND' ((RND (TMS-IS-IN N) 333 THIS TEST IS NOT REDUNDANT!!!
333 *TNS-NOTED-IN-NODES+ CONTRINS NODES
333 WHICH WERE IN UPON ENTRY TO THE
333 THS. THEY MAY NOT BE IN NOW.
(THS-CONTRADICTION-NARK N)
(EQ (THS-PROCESS-CONTRADICTIONI
(THS-CONTRADICTION-NANE N) N
(THS-CONTRADICTION-TYPE N) NIL)
'FOUND-A-CULPRIT))
(RETURN T)))))
(GO LOOP))
333 VTHIS CLAUSE CHECKS FOR CONTRADICTIONS AMONG NOTED NODES.
(AND (DO ((NL *TMS-NOTED-OUT-NODESx (COR NL)))
C((NULL NL))
(LET ((N (CAR NL)))
(COND ((RAND (THS-IS-IN N)
(TNS-CONTRADICTION-MARK N)
(EQ (TNS-PROCESS-CONTRADICTIONL
(THS-CONTRADICTION-NAME N) N
(THS-CONTRADICTION-TYPE N) NIL)
' FOUND-A-CULPRIT))
(RETURN T)))))
(GO LOOP))
333 THIS CLAUSE CHECKS FOR THE OPPORTUNITY TO MAKE NEW SUPPORT-LIST
333 JUSTIFICATIONS FROM NEWLY INNED CONSEQUENTS OF CONDITIONAL PROOFS.
(AND (DO ((NL =TMS-NOTED-IN-NODESs (COR NL)))
((NULL NL))
(LET ((N (CAR NL)))
(AND (TMS-IS-IN N)
(TNS-CHECK-CP-CONSEQUENCES N)
(RETURN TH))
(GO LOOP))
333 THIS CLAUSE CHECKS FOR THE OPPORTUNITY TO MAKE NEW SUPPORT-LIST
333 JUSTIFICATIONS FROM NEWLY INNED CONSEQUENTS OF CONDITIONAL PROCFS.
(AND (DO ((NL =THS-NOTED-OUT-NODESs (CDR NL)))
((NULL NL))
(LET ((N (CAR NL)))
(AND (TMS-IS-IN N)
(TMS-CHECK-CP-CONSEQUENCES N)
(RETURN T))))
(GO LOOP))))

TRUTH MAINTENANCE PROCESSING FUNCTIONS _ APPNDX 3 Page 18

801

882 ;;; TNS-CHECK-CP-CONSEQUENCES REDERIVES SUPPORT FOR CONDITIONALLY PROVEN NODES
883 ;;; WHENEVER THE CONSEQUENT OF ONE OF THEIR CONDITIONAL-PROOF JUSTIFICATIONS
@84 ;;; COMES IN.

885

886 333CP

887 (DEFUN TMS-CHECK-CP-CONSEQUENCES (NODE)

888 (PROG (CHANGED)

809 (MAPC ’ (LAMBDA (CPN)

818 (MAPC ’ (LAMBDA (JUST))

811 (COND ((RND (EQ NODE (TNS-CP-JUSTIFICATION-CONSEQUENT JUST))
812 (TMS-NF-IN (TMS-CP-JUSTIFICATION-IN-HYPOTHESES JUST))
813 (THS-HF-OUT (THS-CP-JUSTIFICATION-OUT-HYPOTHESES JUST)))
214 (LET ((SUPPORT

815 (THS-F INDINDEP

816 . NODE

817 (THS-CP-JUSTIF ICATION-IN-HYPOTHESES JUST)
818 (TNS-CP-JUSTIF ICATION-OUT-HYPOTHESES JUST))))
919 (AND (THS-SL-JUSTIFY1 CPN

820 (CAR SUPPORT)

821 (COR SUPPORT)

822 (TNS-JUSTIFICATION-ARGUMENT JUST))
823 (SETQ CHANGED . T))))))

824 (TMS-CP-JUSTIFICATIONS CPN)))

825 (THS-CP-CONSEQUENT-LIST NODE))

826 CHANGED))

827

828 ;;; THIS FUNCTION CHECKS THE NODES INVOLVED IN TRUTH MAINTENANCE TO SEE IF ANY

0829 533 HAVE CHANGED IN STATUS AND SHOULD BE SIGNRLLED.

838 ;;; IT IS IMPORTANT THAT TMS-SIGNAL-STATUS-CHANGE DOES NOT CRUSE

831 333 FURTHER TRUTH MAINTENANCE UNTIL THE FOLLOWING LOOP IS COMPLETED.

832

833 (DEFUN TMS-SIGNAL-CHANGES ()

834 (MAPC * (LAMBDA (N)

835 (TMS-SIGNAL-STATUS-CHANGE N ’IN (THS-SUPPORT-STATUS N))

836 (HAKE (THS-NOTED-MARK N) NIL))

837 #THS-NOTED-IN-NODES*)

838 (SETQ =THMS-NOTED-IN-NODES% NIL)

838 (MAPC * (LAMBDA (N)

848 ' (THS-SIGNAL-STATUS-CHANGE N ’OUT (TMS-SUPPORT-STATUS N))

841 (MAKE (THMS-NOTED-MARK N) NIL))

842 *TMS-NOTED-OUT-NODES*)

843 (SETQ *TMS-NOTED-OUT-NODES# NIL))

844

845 333 STIMULATE AND DESTIMULATE SHOULD BE SUPPLIED BY THE USER AS THE

846 333 DEFAULT SIGNAL-RECALLING AND SIGNRL-FORGETTING FUNCTIONS.

847 333 THE SIGNAL-RECALLING AND SIGNAL-FORGETTING FUNCTIONS CAN ALSO BE

848 ;;; SET INDIVIDUALLY. THESE MAY ALSO BE THE ATOM ’IGNORE, IN WHICH

849 333 CASE THE CHANGE WILL BE IGNORED.

958 . '

8s1 (DEFUN TMS-SIGNARL-STATUS-CHANGE (NODE OLDSTATUS NEWSTATUS)

852 (COND ((EQ OLDSTRTUS NEHSTATUS))

853 ((EQ NEWSTATUS ’IN)

854 (LET ((RF (THS-SIGNAL-RECALLING-FUNCTION NODE)))

855 . (COND ((NULL RF) (STINMULATE (THS-EXTERNAL-NAME NODE)))

8s6 ((EQ RF ’IGNORE))

857 (T (FUNCALL RF (TMS-EXTERNAL-NARME NODE))))))

858 i ((EQ NEWSTATUS ’0UT)

859 (LET ((FF (TMS-SIGNAL-FORGETTING-FUNCTION NOODE)))

860 (COND ((NULL FF) (DESTIMULATE (TMS-EXTERNAL-NAME NODE)))

861 ((EQ FF ’IGNORE))

862 (T (FUNCALL FF (THS-EXTERNAL-NAME NODE))))))

863 (T .(ERROR ’THS-SIGNAL-STATUS-CHANGE NODE ’WRNG-TYPE-ARG))))

TRUTH MAINTENANCE PROCESSING FUNCTIONS APPNDX 3 Page 19

801

882 ;;; THE FOLLOWING FUNCTIONS PERFORM THE PROCESS QUEUE MAINTENANCE OPERATIONS.
883 ;;; THE POSSIBLE CONDITIONS OF R NODE ARE RS FOLLOMWS:

884 ;;; IF THE. TMS-NOTED-MARK IS NIL, THEN THE NODE HRS NOT BEEN EXAMINED BY THE THS
885 ;;; IF THE TMS-STATUS IS NON-NIL, THEN THE NODE IS QUEUED FOR TMS PROCESSING.
086

887 (DEFUN TMS-QUEUE (NODE)

208 (COND ((NOT (TMS-TMP-MARK NODE))

869 (OR (TMS-NOTED-MARK NODE)

18 (ERROR * [NON-NOTED NODE IN TMS-QUEUE| NODE ’HRNG-TYPE-ARG))
811 (MAKE (TMS-TMP-MARK NODE) T)

812 (PUSH NODE #TMS-PROCESS-QUEUE®))))

813

814 (DEFUN TMS-DEQUEVE O

815 (LET ((NODE (POP #TMS-PROCESS-QUEUE#)))

816 (COND (NODE

817 (MAKE (TMS-THP-MARK NODE) NIL)

818 NODE))))

819

828 ;;; THIS FUNCTION MARKS AND QUEUES ALL NODES WHICH MIGHT BE

821 ;;; AFFECTED BY THE CHANGE OF SUPPORT STATUS OF THE ARGUMENT NODE.

822 ;;; THE STATUS OF THE NODE BEFORE THE TMS PROCESSING IS ALSO NOTED

823 ;;; TO ALLOW NOTIFICATION OF STATUS CHANGES RT THE CONCLUSION OF TMS PROCESSING.
824

825 (DEFUN TMS-MARK-AFFECTED-CONSEQUENCES (NODE)

826 (COND ((NOT (TMS-TMP-MARK NODE))

827 (COND ((NULL (TMS-NOTED-MARK NODE))

828 (MAKE (THS-NOTED-MARK NODE) T)

829 (EQCASE (TMS-SUPPORT-STATUS NODE)

838 (IN (PUSH NODE #TMS-NOTED-IN-NODESs))

831 (OUT (PUSH NODE *TMS-NOTED-OUT-NODESs))

832 (ELSE (ERROR ’|STATUSLESS NODE IN TMS-MARK-AFFECTED-CONSEQUENCES |
833 NODE

834 ?WRNG-TYPE-ARG)))))

835 (MAKE (TMS-SUPPORT-STATUS NODE) NIL)

836 (MAKE (TMS-SUPPORTING-JUSTIFICATION NODE) NIL)

837 (MAKE (TMS-SUPPORTING-NODES NODE) NIL)

838 (THS-QUEUE NODE)

839 (CONS NODE (MAPCAN ’TMS-MARK-AFFECTED-CONSEQUENCES

0848 (THS-AFFECTED-CONSEQUENCES NOOE))))))

SUPPORT-CHECKING FUNCTIONS APPNDX 3 Page 28

881

882 (COMMENT SUPPORT-CHECKING FUNCTIONS)

883 ‘

884 ;;; TMS-WF-EXAMINE RECURSIVELY CHECKS NODES FOR WELL-FOUNDED SUPPORT.

885 ;;; THAT IS, IF IT FINDS WELL-FOUNDED SUPPORT FOR A NODE, IT QUEUES UP THE
886 ;;; CONSEQUENCES OF THE NODE WHICH STILL ARE LRACKING HELL-FOUNDED SUPPORT
887 ;;; TO SEE IF SUCH SUPPORT CAN NOW BE DERIVED.

8es

889 (DEFUN TMS-WF-EXAMINE (NODE)

8le (LET C((NEWSTATUS (TMS-WF-STATUS NODE)))

ell (COND (NEWSTATUS

812 (COND ((EQ NEWSTATUS ’IN) (MAKE (TMS-SUPPORT-STATUS NODE) ’IN))
813 (T (MAKE (TMS-SUPPORT-STATUS NODE) °'0UT)))

814 (THS-INSTALL-WF-SUPPORT NODE)

815 (MAPC ’ (LANBDA (C) (OR (TNS-SUPPORT-STATUS C) (TMS-QUEUE C)))
816 (THS-CONSEQUENCES NODE))))))

817

818 ;;; THS-NWF-EXAMINE SELECTS DUBIOUS SUPPORT FOR R NODE.

819 ;;; IT CHECKS FOR SUPPORT UNDER THE ASSUMPTION THAT ANY NODES WITHOUT

828 ;;; WELL-FOUNDED SUPPORT MENTIONED IN JUSTIFICATIONS ARE OUT.

821 ;;; PUT ANOTHER WAY, IT EVALURTES JUSTIFICATIONS UNDER THE RSSUNPTION THAT OUT = NIL
822 ;;; IN SUPPORT-STATUSES FOR NODES. THIS ASSUMPTION MAY NOT BE RIGHT,

823 ;;; AND THE NODE’S STATUS MRY LATER BE CHANGED IN THE RELAXATION PROCESS.
824

825 (DEFUN THS-NWF-EXRMINE (NODE)

826 (OR (LET ((STATUS (TMS-WF-STATUS NODE)))

827 (COND (STATUS

828 (COND ((EQ STATUS ’IN) (MAKE (TMS-SUPPORT-STATUS NODE) ’IN))
829 (T (MAKE (TNS-SUPPORT-STATUS NODE) ’0UT)))

838 (TMS-INSTALL-HF-SUPPORT NODE)

831 (THS-NWF -PROCESS-CONSEQUENCES NODE STATUS)

832 STATUS)))

833 (LET ((STATUS (TMS-NWF-STATUS NODE)))

834 (EQCASE STATUS

835 (IN (MRKE (TMS-SUPPORT-STATUS NODE) ’IN))

836 (OUT (MAKE (TNS-SUPPORT-STATUS NODE) *O0UT)))

837 (THS-INSTALL-NKF-SUPPORT NODE)

838 (TMS-NHF -PROCESS-CONSEQUENCES NODE STATUS)

839 STATUSY))

848

841 ;;; THIS FUNCTION CHECKS THE CONSEQUENCES OF NODES FOR WHICH DUBIOUS SUPPORT
842 ;;; WAS DERIVED BY TMS-NWF-EXAMINE. IT FIRST TRIES TO CHECK THEM FOR POSSIBLE
843 ;;; WELL-FOUNDED SUPPORT, AND FRILING THAT, SUBMITS THEM TO TMS-NNF-EXAMINE
844 ;55 TO CHECK FOR DUBIOUS SUPPORT.

845 ;;; THIS OCCURS BECAUSE IT MAY BE IMPOSSIBLE TO FIND WELL-FOUNDED SUPPORT
846 ;;; FOR A NODE EITHER BECAUSE IT IS INVOLVED IN R CIRCULARITY, OR BECRUSE
847 3;; IT DEPENDS UPON A NODE WHICH IS INVOLVED IN A ClRCULﬂRITY.

848

849 (DEFUN THS-NWF-PROCESS-CONSEQUENCES (NODE STATUS)

858 (COND ((EQ STRTUS ’IN)

851 (MAPC ’ (LAMBDA (C)

852 (COND ((NULL (THS-SUPPORT-STATUS C)) (TMS-QUEUE C))
853 ((MEMQ NODE (TMS-SUPPORTING-NODES C))

854 (THS-NARK-AFFECTED-CONSEQUENCES C))))

855 (TMS-CONSEQUENCES NODE)))

856 (T (MAPC ’ (LAMBDA (C)

857 (OR (TMS-SUPPORT-STATUS C) (TMS-QUEUE C)))

858 (THS-CONSEQUENCES NODE)))))

SUPPORT-CHECKING FUNCTIONS APPNDX 3 Page 21

881

882 ;;;TMS-NF-STATUS COMPUTES THE WELL-FOUNDED SUPPORT STATUS OF
883 ;;; A NODE FROM BOTH ITS JUSTIFICATION SETS.

884

885 (BEFUN TMS-WF-STATUS (NODE)

886 (EQCASE (TMS-WF-SL-SUPPORT NODE)

887 (IN *IN)

888 (OUT (TMS-WF-CP-SUPPORT NODE))

889 (ELSE (AND (EQ (TMS-WF-CP-SUPPORT NODE) *IN) *IN))))
818

811 ;;; TMS-WF-SL-SUPPORT COMPUTES THE WELL-FOUNDED SUPPORT-STATUS DERIVED
812 ;;; FROM ITS SUPPORT-LIST JUSTIFICATION SET.

813

8l4 (DEFUN THS-WF-SL-SUPPORT (NODE)

81S (D0 ((JS (TMS-SL-JUSTIFICATIONS NODE) (COR JS))

816 . F)

817 ((NULL JS) (RND WF ’0UT))

818 (EQCASE (TMS-NF-EVAL-SL-JUSTIFICATION (CAR JS))
819 (YES (RETURN ’IN))

8208 (NO)

821 . (ELSE (SETQ WF NIL)))))

822

823 333 THMS-WF-CP-SUPPORT COMPUTES THE WELL-FOUNDED SUPPORT-STATUS
824 333 DERIVED FROM ITS CONDITIONAL-PROOF JUSTIFICATION SET.

825

826 333CP

827 (DEFUN THS-WF-CP-SUPPORT (NODE)

828 (D0 ((JS (TMS-CP-JUSTIFICATIONS NODE) (COR JS))
829 (WF 7))

838 ((NULL JS) (RND WF ’0UT))

831 (EQCASE (TMS-WF-EVAL-CP-JUSTIFICATION (CAR JS))
832 ' (YES (RETURN ’IN))

833 (NO)

834 (ELSE (SETQ WF NIL)))))

835

836 ;;; THS-WF-EVAL-SL-JUSTIFICATION EVALURTES AN SUPPORT-LIST JUSTIFICATION.
837 ;53 THIS NMEANS CHECKING TO SEE IF THE JUSTIFICATION IS VALID.

9838

833 (DEFUN TMS-WF-EVAL-SL-JUSTIFICATION (JUST)

848 (EQCASE (THS-HF-IN (TMS-SL-JUSTIFICATION-INLIST JUST))

841 (YES (THS-WF-OUT (TMS-SL-JUSTIFICATION-QOUTLIST JUST)))
842 (NO ’*NO)

843 (ELSE NIL)))

844 '

845 33 TNS-WF-EVAL-CP-JUSTIFICATION EVALURTES A CONDITIONAL-PROOF JUSTIFICATION.
846

847 533;CP

848 (DEFUN TMS-WF-EVAL-CP-JUSTIFICATION (JUST)

849 (EQCASE (THS-WF-IN (THMS-CP-JUSTIFICATION-IN-HYPOTHESES JUST))

858 (YES (EQCASE (TMS-NF-OUT (TNS-CP-JUSTIFICATION-QUT-HYPOTHESES JUST))
851 (YES (EQCASE (TMS-SUPPORT-STATUS

852 (THS-CP-JUSTIF ICATION-CONSEQUENT JUST))
853 (IN *YES)

854 (OUT ’NO)

85s (ELSE NIL)))

856 (ELSE NIL)))

857 (ELSE NILY))

SUPPORT-CHECKING FUNCTIONS APPNDX 3 Page 22

881

882 ;;; TMS-WF-IN CHECKS R LIST OF NODES FOR WELL-FOUNDED INNESS.

883 ’

884 (DEFUN THS-WF-IN (NODELIST)

88s (DO ((NL NODELIST (COR NL))

886 WF)

887 ((NULL NL) (RAND WF ’YES))

888 (EQCASE (TMS-SUPPORT-STATUS (CAR NL))

889 (IN)

818 (OUT (RETURN ’NO))

11 (ELSE (SETQ WF NIL)))))

812

813 ;;; TMS-WF-QUT CHECKS A LIST OF NODES FOR WELL-FOUNDED OUTNESS.

814

815 (DEFUN TMS-HF-OUT (NODELIST)

816 (DO ((NL NODELIST (CODR NL))

a17 HF ™

818 C((NULL NL) (AND WF ’YES))

819 (EQCASE (TMS-SUPPORT-STATUS (CAR NL))

828 (IN (RETURN °NO))

821 ({1} p)

822 (ELSE (SETQ WF NIL))

823

824 ;;; TMS-NUF-STATUS COMPUTES THE (PERHAPS UNFOUNDED) SUPPORT-STATUS OF R NODE.
825 ;;; THIS MEANS EVALURTING JUSTIFICATIONS, ETC. UNDER THE RSSUMPTION THAT
826 ;;; A SUPPORT STATUS OF NIL IS EQUIVALENT TO A SUPPORT STATUS OF OUT.
827 :

828 (DEFUN TMS-NWF-STATUS (NODE)

829 (EQCASE (THS-NWF-SL-SUPPORT NODE)

e3e (IN *IN)

831 (OUT (EQCASE (TMS-WF-CP-SUPPORT NODE)

832 . (IN (ERROR *TMS-NWF-STATUS NODE ’WRNG-TYPE-ARG) °*OUT)
833 (OUT *0UT)

834 (ELSE '0UT)))))

835

836 ;;; TMS-NWF-SL-SUPPORT COMPUTES THE SUPPORT-STATUS OF R NODE FROM ITS
837 ;;; SUPPORT-LIST JUSTIFICATION SET BY EQUATING ’OUT AND NIL.

838 ;;; ITS SUBFUNCTIONS ARE ANALOGOUS TO THE WELL-FOUNDED CASE FUNCTIONS RBOVE.
839

848 (DEFUN TMS-NWF-SL-SUPPORT (NODE)

841 (D0 ((JS (TMS-SL-JUSTIFICATIONS NODE) (COR JS)))

842 ((NULL JS) ’*0UT)

843 (AND (TNS-NWF-EVAL-SL-JUSTIFICATION (CAR JS))

844 (RETURN *IN)))) :

84S

846 (DEFUN THS-NWF-EVAL-SL-JUSTIFICATION (JUST)

847 (AND (TMS-NUF-IN (TMS-SL-JUSTIFICARTION-INLIST JUST))

848 (THS-NWF-OUT (TMS-SL-JUSTIFICATION-OUTLIST JUST))))

849

858 (DEFUN TMS-NWF-IN (NODELIST)

851 (DO ((NL NODELIST (COR NL)))

852 ((NULL NL) T)

853 (OR (TMS-IS-IN (CAR NL)) (RETURN NIL))))

854

855 (DEFUN TMS-NWF-OUT (NODELIST)

856 (D0 -((NL NODELIST (COR NL)))

857 ((NULL NL))

858 (AND (TMS-IS-IN (CAR NL)) (RETURN NIL))))

SUPPORT-EXTRACTION FUNCTIONS APPNDX 3 Page 23

881
0882
883
884
885
886
2887
888
889
8le
811
812
813
914
815
916
817
818
819
828
821
822
823
824
825
826
827
828
0829
838
831
832
833
834
83s
836
837
838
839
840
841
842
843
844
84S
846
847
848
849
858
851
852
853
854
85S
856
857
858
853
868
861
862
863
864

(COMMENT SUPPORT-EXTRARCTION FUNCTIONS)

THIS FUNCTION IS COMPLETELY HRIRY RS IT TRIES TO FIRST CHECK TO SEE IF
ANY NEW SL JUSTIFICATIONS CAN BE DERIVED FROM CP JUSTIFICRTIONS.

IT THEN INSTALLS THE FIRST VALID SL JUSTIFICATION IT CAN FIND RS THE
SUPPORTING-JUSTIFICATION OF THE NODE, AND EXTRACTS THE APPROPRIATE
SUPPORTING NODES.

THERE IS A CRUCIAL TIME ORDERING USED HERE.

RATHER THAN HAVING THE FUNCTIONS WHICH CHECK THE SET OF JUSTIFICATIONS
FOR A VALID JUSTIFICATION RETURN THAT JUSTIFICATION, THIS PROGRAM MAKES
SURE THAT THAT CHECKING OF THE JUSTIFICATION SETS IS DONE IN R PARTICULAR
ORDER (SL-JUSTIFICATIONS FIRST, THEN CP-JUSTIFICATIONS.)

THE REASON FOR THIS IS THAT THE EXTRACTION ROUTINES BELOW, WHICH COMPUTE
A HOPEFULLY MINIMAL SET OF NODES WHICH DETERMINE THE SUPPORT STATUS

OF THE CURRENT NODE (EITHER IN OR OUT). THE DECISION OF WHICH SET TO
EXTRACT DEPENDS UPON WHETHER THE NODE IS IN OR OUT.

THUS THE STATUS CHECKING FUNCTIONS ABOVE COMPUTE NO SUPPORT SETS.

THIS TASK IS LEFT TO THE FOLLOWING FUNCTIONS.

THS-INSTALL-NF-SUPPORT USES THE FIRST VALID JUSTIFICRTION FOUND

IN A REPETITIVE CHECKING OF THE JUSTIFICATION SETS RS THE SUPPORTING
JUSTIFICATION, SINCE THIS IS THE FIRST VALIO JUSTIFICATION WHICH WAS ENCOUNTERED
BY THE STATUS CHECKING ROUTINES.

We We We WE WE We We We We We We We we We We we we we we we
We We We Wi we We We We We wWe we We We We We Ve we we we we
We We We e We We We We We we We We We We we we we We we e

NOTE: THE LOGICAL NECESSITY OF THESE REPETITIVE CHECKS ALL OVER THE
PLACE FOR OPPORTUNITIES TO DO FINDINDEPS SHOULD BE THOUGHT OUT
CAREFULLY, AND THE CODE REORGANIZED. ALSO, THERE IS SOME
SUPERFLUOUS STUFF IN THE EXTRACTION FUNCTIONS BELOW.

we we we we
e wo we we
we we we we

533CP
(DEFUN THMS-INSTALL-WF-SUPPORT (NODE)
(D0 ((JS (TMS-CP-JUSTIFICATIONS NODE) (COR JS)))
((NULL JS))
(EQCASE (TMS-WF-EVAL-CP-JUSTIFICATION (CAR JS))
(YES (LET ((SUPPORT (TMS-FINDINDEP
(TMS-CP-JUSTIF ICATION-CONSEQUENT (CAR JS))
(TNS-CP-JUSTIFICATION-IN-HYPOTHESES (CAR JS))

(TNS-CP-JUSTIF ICATION-OUT-HYPOTHESES (CAR JS)))))

(LET ((JUST (TMS-MAKE-SL-JUSTIFICATION
(CAR SUPPORT)
(COR SUPPORT)
(THS-JUSTIF ICRTION-RRGUMENT (CAR JS))))
(0JS (THS-SL-JUSTIFICATIONS NOOE)))
(AND (NOT (TMS-SL-JUSTIFICATION-MEMBER JUST 0JS))
(MRKE (TMS-SL-JUSTIFICATIONS NODE)
(NCONC 0JS (LIST JUST))))))
(ELSE)))
(00 ((JS (TMS-SL-JUSTIFICATIONS NODE) (COR JS)))
((NULL JS)
(MAKE (TMS-SUPPORTING-JUSTIFICATION NODE) NIL)
(NAKE (TNS-SUPPORTING-NODES NODE)
(THS-NODE-SE T-CONDENSE
(NCONC (MAPCAN ° (LAMBDA (J) (TMS-HF-SL-JUSTIFICATION-EXTRACT J))
(THS-SL-JUSTIFICATIONS NOODE))
(MAPCAN * (LANBDA (J) (TMS-WF-CP-JUSTIFICATION-EXTRACT J))
(THS-CP-JUSTIFICATIONS NODE))))))
(EQCASE (TMS-WHF-EVAL-SL-JUSTIFICATION (CAR JS))
(YES (MAKE (TMS-SUPPORTING-JUSTIFICATION NODE) (CAR JS))
(MAKE (TMS-SUPPORTING-NODES NODE)
(RPPEND (TMS-SL-JUSTIFICATION-INLIST (CAR JS))
(THS-SL-JUSTIFICATION-OUTLIST (CAR JS))
NIL))
(RETURN NIL))
(ELSEN))

SUPPORT-EXTRACTION FUNCTIONS APPNDX 3 Page 24

88l
882
883
884
885
886
887
888
889
818
811
812
813
814
815
816
817
818
819
828
821
822
823
824
825
826
827
828
0829
838
831
832
833
834
835
9836
837
838
839
848
841
842
843
844
845
846
847
8,

849
858
851
852
853
854
855
856
857

333 IF THE NODE IS BEING GIVEN DUBIOUS SUPPORT BY THE NOT-WELL-FOUNDED
333 RELAXATION PROCESS, THIS FUNCTION IS USED INSTERD OF TMS-INSTALL-HF-SUPPORT.
(DEFUN THS-INSTALL-NWF-SUPPORT (NODE)
(D0 ((JS (TMS-SL-JUSTIFICATIONS NODE) (COR JS)))
C((NULL JS)
(MAKE (TMS-SUPPORTING-JUSTIFICATION NODE) NIL)
(MAKE (THS-SUPPORTING-NODES NODE)
(TMS-NODE-SET-CONDENSE
(NCONC
(HAPCAN ’ (LAMBDR (J) (TMS-NWF-SL-JUSTIFICATION-EXTRACT J))
(THS-SL-JUSTIFICATIONS NODE))
(MAPCAN ’ (LAMBDA (J) (TMS-NWF-CP-JUSTIFICATION-EXTRACT J))
(THS-CP-JUSTIFICATIONS NODE))))))
(COND ((TMS-NWF-EVAL-SL-JUSTIFICATION (CAR JS))
(HAKE (TMS-SUPPORTING-JUSTIFICATION NODE) (CAR JS))
(MAKE (TMS-SUPPORTING-NODES NODE)

(THS-NODE-SET-CONDENSE (TMS-NWF-SL-JUSTIFICATION-EXTRACT (CAR JS))))

(RETURN NIL)))))

THESE FUNCTIONS ARE USED TO EXTRACT A HOPEFULLY SMALL SET OF NODES RS THE
; SET OF SUPPORTING NODES OF THE NODE. THE EXTRACTED NODES ARE ONES THAT MUST
BE CHANGED TO ARFFECT THE STATUS OF THE SUPPORTED NNODE.

we we we
we we we
.o we we

we we we
.o we we
.o we we

AN OUT NODE FROM THE INLIST, OR A IN NODE FROM THE OUTLIST.

(DEFUN THS-WF-SL-JUSTIFICATION-EXTRACT (JUST)
(EQCASE (TMS-WF-IN (TMS-SL-JUSTIFICATION-INLIST JUST))
(YES (EQCASE (TNMS-WF-OUT (TMS-SL-JUSTIFICATION-OUTLIST JUST))
(YES (RPPEND (TMS-SL-JUSTIFICATION-INLIST JUST)
(THS-SL-JUSTIFICATION-OUTLIST JUST)
NIL))

(N0 (TMS-WF-OUT-EXTRACT (TNS-SL-JUSTIFICATION-OUTLIST JUST)))

(ELSE NIL)))
(NO (THMS-WF-IN-EXTRACT (TMS-SL-JUSTIFICATION-INLIST JUST)))
(ELSE NIL)))

333 I DON’T KNOW WHAT THIS DOES RNYMORE.
33CP '

(DEFUN TMS-UF-CP-JUSTIFICATION-EXTRACT (JUST)
(EQCASE (TMS-WF-IN (THMS-CP-JUSTIFICATION-IN-HYPOTHESES JUST))

(YES (EQCASE (TMS-WF-OUT (TMS-CP-JUSTIFICATION-OUT-HYPOTHESES JUST))

(YES (EQCASE (TMS-SUPPORT-STATUS
(THS-CP-JUSTIFICATION-CONSEQUENT JUST))

(IN (ERROR °*THS-WF-CP-JUSTIFICATION-EXTRACT

JUST °HRNG-TYPE-ARG) NIL)

(OUT (LIST (TNS-CP-JUSTIFICATION-CONSEQUENT JUST)))

(ELSE NIL)))
(NO (ERROR ’ THS-HF-CP-JUSTIFICATION-EXTRACT-OUTS
JUST *HRNG-TYPE-ARG) NIL)
(ELSE NIL)))

(NO (ERROR ’TNS-WF-CP-JUSTIFICATION-EXTRACT-INS JUST ’WRNG-TYPE-ARG) NIL)

(ELSE NIL)))

IF THE JUSTIFICATION IS VALID, THIS RETURNS THE UNION OF THE IN AND OUT SETS OF NODES
MENTIONED IN THE JUSTIFICATION. IF THE JUSTIFICATION IS INVALIO, IT RETURNS EITHER

SUPPORT-EXTRACTION FUNCTIONS APPNDX 3 Page 25

881

882 ;;; THIS RETURNS THE ENTIRE LIST OF NODES IF ALL RRE IN,
883 ;;; OR THE FIRST OUT NODE IF THERE IS ONE.

884

885 (DEFUN TMS-WF-IN-EXTRACT (NODELIST)

886 (DO ((NL NODELIST (CDR NL))

887 F)

888 ((NULL NL) (AND WF (RPPEND NODELIST NIL)))
889 (EQCASE (TMS-SUPPORT-STATUS (CAR NL))

al1e (IN)

811 (OUT (RETURN (LIST (CAR NL))))
812 (ELSE (SETQ WF NIL)))))

813

814 ;;; THIS RETURNS THE ENTIRE LIST OF NODES IF ALL RRE OUT,
815 ;;; OR THE FIRST IN NODE IF THERE IS ONE.

816

817 (DEFUN TMS-WF-OUT-EXTRACT (NODELIST)

818 (DO ((NL NODELIST (CDR NL))

819 HF T))

828 ((NULL NL) (AND WF (APPEND NODELIST NIL)))
821 (EQCASE (TMS-SUPPORT-STATUS (CAR NL))

822 (IN (RETURN (LIST (CAR NL))))

823 oum

824 (ELSE (SETQ WF NIL)))))

825

826 ;;; THESE FUNCTIONS RRE ANALOGOUS TO THE CORRESPONDING WELL-FOUNDED CASE FUNCTIONS ABOVE.
827 ;;; THE ONLY REAL DIFFERENCE IS THAT NIL IS CONSIDERED OUT IN SUPPORT STATUSES.

828

829 (DEFUN THMS-NWF-SL-JUSTIFICATION-EXTRACT (JUST)

8380 (COND ((THMS-NHF-IN (THMS-SL-JUSTIFICATION-INLIST JUST))

831 (COND ((THS-NWF-QUT (TMS-SL-JUSTIFICATION-OUTLIST JUST))

832 (APPEND (TMS-SL-JUSTIFICATION-INLIST JUST)

833 (THS-SL-JUSTIFICATION-OUTLIST JUST)

834 NIL)) ‘

835 (T (THS-NWF-OUT-EXTRACT (TMS-SL-JUSTIFICATION-OUTLIST JUST)))))
836 (T (TMS-NWF-IN-EXTRACT (TNS-SL-JUSTIFICATION-INLIST JUST)))))

837

238 533CP
839 (DEFUN TMS-NWF-CP-JUSTIFICATION-EXTRACT (JUST)

840 (COND ((THS-NWF-IN (THS-CP-JUSTIFICATION-IN-HYPOTHESES JUST))

841 (COND ((THMS-NHF-OUT (THMS-CP-JUSTIFICATION-OUT-HYPOTHESES JUST))

842 (COND ((THS-1S-IN (THS-CP-JUSTIFICATION-CONSEQUENT JUST))

843 (RPPEND (TMS-CP-JUSTIFICATION-IN-HYPOTHESES JUST)

844 ‘ (THS-CP-JUSTIFICATION-OUT-HYPOTHESES JUST)

845 (LIST (THS-CP-JUSTIFICATION-CONSEQUENT JUST))))
846 (T (LIST (TMS-CP-JUSTIFICATION-CONSEQUENT JUST)))))

847 (T (THS-NHF-OUT-EXTRACT (TMS-CP-JUSTIFICRTION-OUT-HYPOTHESES JUST)))))
848 . (T (THS-NHF-IN-EXTRACT (TNS-CP-JUSTIFICATION-IN-HYPOTHESES JUST)))))
849

858 (DEFUN TMS-NWF-IN-EXTRACT (NODELIST)

851 (DO ((NL NODELIST (COR NL)))

852 ((NULL NL) (RPPEND NODELIST NIL))

853 . (OR (THS-IS-IN (CAR NL)) (RETURN (LIST (CAR NL))))))

854

855 (DEFUN TMS-NMF-OUT-EXTRACT (NODELIST)

856 (DO ((NL NODELIST (COR NL)))

857 C((NULL NL) (RPPEND NODELIST NIL))

858 (AND (TMS-IS-IN (CAR NL)) (RETURN (LIST (CAR NL))))))

I

DEPENDENCY-DIRECTED BACKTRACKING SYSTEM : APPNDX 3 Page 26

882 (COMMENT DEPENDENCY-DIRECTED BACKTRACKING SYSTEM)

883

804 333 THS-CONTRADICTION IS THE FUNDAMENTAL METHOD FOR DECLARING A SET

885 335 A SET OF NODES CONTRADICTORY. THE RARGUMENTS ARE A CONTRADICTION

886 333 TYPE, WHICH IS A MNEMONIC SYMBOL, A LIST OF NODES TO BE USED RS

887 333 VTHE SUPPORT OF THE CONTRADICTION, AND THE EXTERNAL ARGUMENT FOR

888 ;;; THE CONTRADICTION, RS IN TMS-SL-JUSTIFY. THE FINAL ARGUMENT IS THE
889 333 CONTRADICTION FUNCTION TO BE CALLED WHEN NO ASSUMPTIONS CAN BE FOUND.
818 :

811 (DEFUN TMS-CONTRADICTION (CTYPE SUPPORT EXTARG CFUN)

812 (LET ((CONT (TMS-MAKE-FACT *CONTRADICTION "(,CTYPE CONTRADICTION))))
e13 (LET ((CNODE (TMS-FACT-NODE CONT)))

814 (TMS-SL-JUSTIFY CNODE SUPPORT NIL EXTARG)

1S (THS-PROCESS-CONTRADICTION CONT CNODE CTYPE CFUN)

816 CNODE))) '

817

818 ;;; TMS-PROCESS-CONTRADICTION DIRECTS THE BACKTRACKING PROCESS.

8198 333 ITS RARGUMENTS ARE THE CONTRADICTION NAME, THE CONTRADICTION NODE,

828 333 THE CONTRADICTION TYPE, AND THE CONTRﬂDICTION FUNCTION. IF NO

221 333 CONTRADICTION FUNCTION IS SUPPLIED, IT IS IGNORED.

822

823 333 THE THEORY OF BACKTRACKING IN THIS FUNCTION IS RS FOLLOMWS:

824 335 THERE RRE 4 FLAVORS OF NODES RS FRAR RS THE BACKTRACKER IS CONCERNED:
825 333 RSSUMPTIONS -~ SUPERIORLESS IN NODES SUPPORTED BY OUT NODES.

826 333 SUSPECTS -- OUT NODES SUPPORTING ASSUMPTIONS.

827 333 IN-SUPPORT - NODES WHICH ARE IN INDEPENDENT OF ANY SUSPECTS.

828 ;;; OUT-SUPPORT —- NODES WHICH RRE OUT. INDEPENDENT OF ANY SUSPECTS.

829 333 BOTH TYPES OF INDEPENDENT SUPPORT RRE COLLECTED BY CALLING TMS-FINDINDEP
838 ;;; ON THE CONTRADICTION AND THE LIST OF ASSUMPTIONS.

831

‘832 ;;; »TMS-CONTRADICTION-RSSUMPTIONS= IS A LIST OF PAIRS OF ASSUMPTIONS AND THEIR SUSPECTS.
833

834 (DEFUN THS-PROCESS-CONTRRDICTION (CONT CNODE CTYPE CFUN)

835 (LET ((+THS-NOTED-IN-NODES# NIL)
836 (+TMS-NOTED-OUT-NODES# NIL))
837 (TNS-PROCESS-CONTRADICTIONL CONT CNODE CTYPE CFUN)
838 (THS-THP-SCAN)
839 (THS-S IGNAL-CHANGES)))
848
841 (DEFUN TMS-PROCESS-CONTRADICTION1 (CONT CNODE CTYPE CFUN)
842 (MAKE (THS-CONTRADICTION-MARK CNODE) T)
843 (MAKE (TMS-CONTRADICTION-NAME CNODE) CONT)
844 (MAKE (TMS-CONTRADICTION-TYPE CNODE) CTYPE)
845 (AND CFUN (MAKE (TMS-CONTRADICTION-FUNCTION CNODE) CFUN))
846 (AND (THS-1S-IN CNODE)
847 (LET ((+TMS-CONTRADICTION-RSSUMPTIONSs NIL))
848 . (COND ((THS—F INDCHOICES CNODE) _
849 (COND (+TMS-SEE-CONTRADICTIONS-SWs ;;; NOTIFY USER OF CONTRADICTION?
858 (TERPRI)
es1 (PRINC * |CONTRADICTION: |)
852 (PRIN1 CONT)
es3 (PRINC *| |)
ss (PRIN1 CTYPE)
855 (COND (sTHS-SEE-CULPRITS-SHs ;;; PRINT A LIST OF ALL ASSUMPTIONS?
8s6 (TERPRI)
es7 (PRINC * |SUSPECTS: |)
858 (MAPC * (LAMBDR (N) (THS-PRINT *| | (CAR N)))
es9 +THS-CONTRADICTION-ASSUNPTIONS$)
6o (TERPRI))
861 (T (PRINC *|)
62 (PRINC *|CULPRIT: |)
63 (PRIN1 (THS-EXTERNAL-NANE
864 , (CAAR #THS-CONTRADICTION-ASSUMPTIONSs)))
865 (TERPRD)))
66
867 333 THE FOLLOWING WILL CRUSE TRUTH MAINTENANCE, AND WILL RESULT
868 333 IN ONE OF THE RSSUMPTIONS OR CHOICES BEING CHANGED
69 (TMS-CONTRADICT ION-ASSERT-NOGOOD CNODE)
870 * FOUND-A-CULPRIT)
871
872 333 IF THERE WERE NO UNDERLYING ASSUMPTIONS FOUND,
873 333 CALL THE USER’S CONTRADICTION HANDLING FUNCTION IF IT EXISTS.
874 (T (AND (TMS-CONTRADICTION-FUNCTION CNODE)
875 (FUNCALL (THS-CONTRADICTION-FUNCTION CNODE)
876 (THS—EXTERNAL-NANE CNODE)))

877 * FOUND-NO-CHOICES)))))

DEPENDENCY-DIRECTED BACKTRACKING SYSTEM APPNDX 3 Page 27

881
882
883
884
885
886
887
888
889
818
811
812
813
814
815
816
817
818
819
8260
821
822

823 -

824
825
826
827
828
829
838
831
832
833
834
835
836
837
838
8339
040

333 CONTRADICTION-ASSERT-NOGOOD MAKES UP THE NOGOOD FOR A GIVEN CONTRADICTION.

NOGOODS ARE IMPLEMENTED AS DEPENDENCY RELATIONSHIPS, IN CONTRAST TO ARS,
SO THAT NO EXPLICT NOGOOD CHECKING IS NECESSARY - THE TRUTH MAINTENANCE
SYSTEM PERFORMS THRT TASK. THUS IT IS KNOWN THAT NO FORMER SUSPECTS

; THAT ARE OUT AT THE TIME OF A CONTRADICTION (OR ANY OTHER TINE)

; ARE IN CONFLICT HITH A NOGOOD SET, FOR A NOGOOD SET WOULD CAUSE A
SUSPECT NODE TO BE IN.

we we we we we we
we we we we we wo
e we we we we we

NOTE THRT OUTSIDE OF THE NOGOOD ITSELF, ONLY ONE NEW JUSTIFICATION IS

CREATED FOR OUT NODES SUPPORTING ASSUMPTIONS. THE NEW JUSTIFICATION

WILL NULLIFY THE CURRENT JUSTIFICATION OF THE FIRST ASSUMPTION ON THE LIST.

IF THRT ASSUMPTION HRS NO OTHER VALID SUPPORT, IT WILL GO OUT AND THE CONTRADICTION
SHOULD GO OUT AS WELL. IF THE ASSUMPTION IS STILL IN DUE TO OTHER SUPPORT,

OR IF THE CONTRADICTION HAS OTHER SUPPORT, BACKTRACKING WILL BE INVOKED

AGAIN BY THE TMS-TMP-SCAN LOOP. THUS OTHER NEM JUSTIFICATIONS MARY BE ADDED

LATER FOR THE OTHER ASSUMPTIONS SUPPORTING THE CONTRADICTION.

we Wi we we we we we we
e we we we we we we e
s we wé we we we we we

(DEFUN TMS-CONTRADICTION-RSSERT-NOGOOD (CNODE)
(LET ((AL (MAPCAR ’CAR *TMS—CONTRADICTION-ASSUMPTIONSs)))
(LET ((NOGOODF
(THS-MAKE-FACT
NOGOOD
" (NOGOOD . , (MAPCAR ’ (LAMBDA (N) (THS-EXTERNAL-NAME N)) AL)))))
(LET ((NOGOOD (TMS-FACT-NODE NOGOODF)))
(MAKE (TMS-NOGOOD-CONTRADICTION NOGOOD) CNODE)
(MAKE (TMS-NOGOOD-ASSUNPTIONS NOGOOD) AL)
(MAKE (TNMS-CONTRADICTION-NOGOODS CNODE)
’ (CONS NOGOOD (TMS-CONTRADICTION-NOGOODS CNODE)))
333CP
333 THIS COULD BE REPLACED BY A CALL TO TMS-FINDINDEP TO CONSTRUCT R NEW JUSTIFICATION.
(THS-CP-JUSTIFYL1 NOGOOD CNODE AL NIL
" (NOGOOD FOR , (THS-EXTERNAL-NANME CNODE)))
(LET ((P (CAR *TMS-CONTRADICTION-ASSUMPTIONS))
(R (CAR AL))) :
(TNS-SL-JUSTIFY1 (CRDR P)
" (,NOGOOD e(DELQ R (RPPEND AL NIL)))
(CODR P)
"(CULPRIT ,NOGOODF)))))))

DEPENDENCY-DIRECTED BARCKTRACKING SYSTEM APPNDX 3 Page 28

881

882 ;;; TMS-FINDCHOICES MARKS THE SUPPORT OF A CONTRADICTION TO FIND THE RELEVANT CHOICES.
863 ;;; IT TRIES TO RETURN THE MAXIMAL ASSUMPTIONS. THESE ARE THE ASSUMPTIONS INVOLVED

884 ;;; IN THE WELL-FOUNDED SUPPORT OF THE CONTRATICTION ON WHICH NO OTHER ASSUMPTIONS

885 ;;; IN THE WELL-FOUNDED SUPPORT DEPEND. THIS iS TO AVOID THROMING AMAY MORE INFORMATION
886 ;;; THAN IS NECESSARY. ALSO, IT IS PRAGMATICALLY USEFUL, SINCE THERE MAY NOT BE ENOUGH
887 ;;; INFORMATION TO LOGICALLY RULE OUT A NON-MAXIMAL ASSUMPTION. THE RULING OUT OF THE
888 ;;; ASSUMPTION MUST INVOLVE THE NODE THAT THE OTHER ASSUNTIONS ARE STILL IN: BUT IF THEY
889 ;;; ARE SUPPORTED BY THE RULED-OUT ASSUMPTION, THEY WILL GO OUT AND THE RSSUMPTION WILL
818 ;;; NO LONGER BE RULED OUT.

811

812 ;;; THE TMS-SUPERIORS-MARK OF A NODE IS

813 ;55 ’YES IF SOME CHOICE DEPENDS ON THE NODE

814 ;;; *NO IF NO CHOICE DEPENDS ON THE NODE

815 ;;; NIL IF THE NODE HRS NOT BEEN MARKED YET.

816 ‘

817 (DEFUN THMS-FINDCHOICES (NODE)

818 (TMS-F INDCHOICES1 NODE NIL)

819

828 333 THE FOLLOWING HEEDS OUT ANY SUBORDINATE ASSUMPTIONS SPURIOUSLY INCLUDED

821 333 IN THE LIST DUE TO CHRONOLOGICAL ACCIDENTS IN TMS—F INDCHOICES1

822 (SETQ «TMS-CONTRADICTION-RASSUNPTIONS#

823 (MAPCAN ’ (LAMBDA (S) (AND (EQ (TMS-SUPERIORS-MARK (CAR S)) °NO) (LIST S)))
824 *TNS-CONTRADICTION-ASSUNPTIONS#))

825

826 33 ;CLEANUP THE MARKS MADE BY TMS-FINDCHOICESL

827 (TMS-F INDCHOICES2 NODE)

828

829 33 ;RETURN AN INDICATION OF WHETHER THERE WERE ANY RSSUMPTIONS.

83e (NOT (NULL *TMS-CONTRADICTION-ASSUMPTIONS%)))

831

832 (DEFUN TMS-FINDCHOICESL (NODE SUPERIORSP)

833 333 SUPERIORSP IS WHETHER THE NODE HRS CHOICES RBOVE

834 (EQCASE (TMS-SUPERIORS-MARK NODE)

835 (YES)

9836 (NO (COND (SUPERIORSP 333 REVISIONS NUST BE PROPAGATED DOWNWARDS -
837 (HAKE (TMS-SUPERIORS-MARK NODE) ’YES)

838 (MAPC ’ (LAMBDA (R) (TNMS-FINDCHOICESL A SUPERIORSP))

839 : (THS-ANTECEDENTS NODE)))))

8480 (ELSE

041 (COND (SUPERIORSP (MAKE (TMS-SUPERIORS-MARK NODE) ’YES))

842 (T (MRKE (THS-SUPERIORS-MARK NODE) ’NO)))

843 (LET ((OUT-SUPPORT (MAPCAN ’ (LAMBDA (N) (AND (TMS-IS-OUT N) (LIST N)))
844 (THS-ANTECEDENTS NODE))))

845 (AND OUT-SUPPORT

846 (COND ((NOT SUPERIORSP)

847 333 ONLY SUPERIORLESS CHOICES ARE COLLECTED.

848 : 333 THIS NAY COLLECT ASSUMPTIONS WHICH ARE SUBORDINRTE.
849 (SETQ SUPERIORSP T)

850 (PUSH (CONS NODE OUT-SUPPORT)

8s1 *THS-CONTRADICTION-ASSUNPTIONS®))))

852 (MAPC ’ (LAMBDA (R) (TMS-FINDCHOICESL A SUPERIORSP))

853 (THS-ANTECEDENTS NODE))))))

854 :

855 (DEFUN TMS-FINDCHOICES2 (NODE)

856 (COND ((TMS-SUPERIORS-MARK NODE)

857 (NAKE (THS-SUPERIORS-MARK NODE) NIL)

958 (MAPC * THS-F INDCHOICES2 (TMS-ANTECEDENTS NODE)))))

CS-TR Scanning Project '
Document Control Form Date: 3 /N /L

Report# A \- TR -YI(9

Each of the following should be identified by a checkmark:
Originating Department:

TX Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

Qf\rechnical Report MR) [Technical Memo (TM)
O other:

Document Information = Number of pages: (36(139- mae=s)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
XSingle-sided or O Single-sided or
O Double-sided X Double-sided
Print type:

[0 Typewriter [0 offsetPress [] Laser Print
] inkietPrinter [] Unknown XOther:
Check each if included with document:

)Z(DOD Form jZl; Funding Agent Form]X; Cover Page
O spine O Printers Notes O Photo negatives
U Other:

Page Data:

Blank Pageswy page numben:

Photographs/Tonal Material pypage numbes:

Other (note description/page number) .
Description : Page Number:

ImAGCE MAT! (l Job)) untt ey T T PRCE . wvvrm#
P biNG AGCENT, &~ ‘77 APREDI XTI

[- Y
(162139,) ScancanTRal, CoVeR, Nob TRETS(3)

Scanning Agent Signoff: |
Date Received: J /&1/ 1¢ Date Scanned: _Y 1/ 17¢ Date Returned: _’j_/_é{_/_iﬁ

A
Scanning Agent Signature: OIAA/G/%AAJ(1/\/ v [67'042*“

Rev 9/84 DSALCS Document Control Form cstrform.ved

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
Al-TR-419
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Truth Maintenance Systems for Problem Solving Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(Ss) 8. CONTRACT OR GRANT NUMBER(s)
Jon Doyle NOOO14-75-C-0643

: 10. PROGRAM ELEMENT. PROJECT, TASK

9. PERFORMING ORGANIZATION NAME AND ADDRESS PROCRAM ELEMENT. PROJECT

Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DAT]E 8
Advanced Research Projects Agency January 197
1400 Wilson Blvd 3. 73?‘3“ OF PAGES

Arlington, Virginia 22209

14.

MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

fice of Naval Research UNCLASSIFIED
Information Systems
Arlington, Virginia 22217 1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

- DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

- SUPPLEMENTARY NOTES

None

- KEY WORDS (Continue on reverase side if necessary and identity by block number)

Artificial Intelligence Logic
Problem Solving Backtracking
Truth Maintenance Explanation
Dependencies Hierarchy

20.

ABSTRACT (Continue on reverae eide if necessary and identify by block number)
The thesis developed here is that reasoning programs which take care to

record the logical justifications for program beliefs can apply several pow-
erful, but simple, domain-independent algorithms to 1) maintain the consist-
ency of program beliefs, 2) realize substantial search efficiencies, and

3
scribes techniques for representing, recording, maintaining, and using justi-
fications for beliefs. Also presented is an annotated implementation of a
domain-independent program, : :

) automatically summarize explanations of program beliefs. This report de-

DD ,aa"s 1473 EoiTion OF 1 NOV 65 1S oBsOLETE

" S/N 01072-014+FAO1T |

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

