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: Abstract

A model is presented that deals with problems of motor control, motor learning,
and sensorimotor integration. The equations of motion for a limb are parameterized and
used in conjunction with a quantized, multi-dimensional memory organized by state
variables. Descriptions of desired trajectories are translated into motor commands
which will replicate the specified motions. The initial specification of a movement is
free of information regarding the mechanics of the effector system. Learning occurs
without the use of error correction when practice data are collected and analyzed.

The model was implemented using a small computer and the MIT-Scheinman
manipulator. Experiments were conducted which demonstrate the controller’s ability to
learn new movements, adapt to mechanical changes caused by inertial and elastic
loading, generalize its behavior among similar movements, and use a variety of

- coordinate systems for learning. A second generation model, based on improvements
suggested by these experiments, is discussed.

The following are features of the implemented State Space Model:

1) Complexity: The computations performed by the model are quite
simple, and especially suited to a parallel processing device.

2) Mechanical Interactions: Systematic compensation is provided for
interactions between joints. '

3) Constraints: Only weak constraints need be placed on the geometry
of the limb under control, its actuators, and its sensors.

4) Remapping: The sensory information used by the model may be
related to the joints of the limb, to visual space, or to any of a large
class of coordinate systems. -

5) Learning: The system demonstrates gradual improvement in
performance as it gains experience from self-produced practice
movements. The performance of selected movements can be more
rapidly improved through intensive practice. '

6) Generalization: Practice of one movement can improve performance
of other similar movements, thereby showing a kind of transfer of
training.

7) Adaptation: Adaptations to mechanical and certain sensory changes
take place without an explicit error correction procedure.




Acknow!adgments 4 Marc Raivsart

Acknowledements

This werk could not have basn dona without tha patient halp of Fred
Drenckhahn. He kept the Scheinman manipulator in goed health and working order
despite experimentation which often l=ad to its abuse.

My thanks go to Tomaso Peggio _for intreducing me to the generalized
inversa. Thanks also to Nancy Cornelius, John Hollerbach, Berthold Hbrn, David
Marr, Matt Mason, Ron Pankiewicz, Andres Polit, and Whitman Richards for their
critical readings. Nancy Cornelius also helped prepare the figures. -

Special thanks ars due Whitman Richards whose encouragement helped me

over the hump, and Nancy Cornelius for putting up with it all.

R ¢



Table of Contents 5 Marc Raibert

Table of Contents

Abstract . . . . * L] L] L] . L] L] L] L] L] L] L] . . . L] 3
Acknowledgements . . . . . . . . . v v e e e e e . 4
Table of Contents . . . . . . . . .+ + « v « v « < . 5

List of Illustrations e e e e e e e e e e e e e e 9

Chapter 1  Introduction . . . . . . . . . . . . . . 11
B 0 <.} O ¥
1.2 Organization of Report . . . . . . . . . . . . . 13
1.3 A Model for Motor Learning and Sensorimotor Integration:
An Overview . . . . . . . . . . + .+ . . 13
1.3.1 Introduction . . . . . . . . . . . . . . 13
1.3.2 Model Description . . . . . . . . . . . . 18
1.3.3 Properties of the Model . . . . . . . . . . 20
1.3.4 Methods . . . . . . . . . . . . < . . 22
1.3.5Results . . . . . . . .« .+ + + « . . 25
1.3.6 Discussion . . . . . . . . . . . . . . 33
1.4 Analytical Equations vs. Table Look-up:
A Unifying Concept . . . . . . . . . . . . 34
1.4.1 Introduction . . . . . . . . . . . . . . 34
1.4.2 Parameterization . . . . . . . . . . . . 36
1.4.3 Parameterizing Equations of Motion . . . . . . 37
1.4.4P=0, N, 2N, 3N . . . . . . . . . . . . 38
1.4.5 State Space Model (SSM) . . . . . . . . . . 41
1.4.6 Configuration Space Method (CSM) . . . . . . . 42



Table of Contents 6 Marc Raibert

Chapter 2  The Problem . . . . . . . « ¢« « o « +« « . 45
2.1 Constraining the Issues . . . . . . . . . . . . 45
2.1.1 Many Factors at Work . . . . . . . . . . . 45

2.1.2 Emphasis on Pre-planning . . . . . . . . . . 46

2.1.3 High- and Low-Level Specialization . . . . . . 49

2.2 Mechanical Problems . . . . . . . « .« « « + . . 982
2.2.1 Equations of Motion for aLimb . . . . . . . . 52

2.3 One Control Problemor Two? . . . . . . . . . . . 57

Chapter 3 The State Space Model (SSM) . . . . . . . . . 59
3.1 The Forward Computation -- Translation . . . . . . . 59
3.2 The Inverse Computation -- Learning . . . . . . . . 61

3.2.1 Historical Perspective . . . . . . . . . . 61
3.2.2 The Inversion Equation . . . . . . . . . . 63
3.2.3 The Command-Torque Relationship . . . . . . . 65
3.3 The State Space Memory and the Temporary Buffer . . . . 66
3.4 Combined Operation of the Components . . . . . . . . 68
3.5 Properties of Model . . . . . . . . . . . « . . 70
3.6 Discussionof Model . . . . . . . . . . . . . . 713

Chapter 4 Implementation and Test . . . . . . . . . . . 73
4.1 Facility . . . . . . ¢ + « v v ¢« v « . 79
4.2 Information Proces#ing e 1)

4.2.1 Computation of the Inverse . . . . . . . . . 85
4.2.1.1 Invertability Index . . . . . . . . 85
4.2.1.2 Use of the Generalized Inverse . . . . . 86

4.2.2 The State Space Memory . . . . . . . . . . 88
4.2.2.1 Initialization . . . . . . . . . . 91
4.2.2.2 Time Constants . . . . . . . . . . 91

4.2.3 Translation . . . . . . . . . . . . . . 9
4.2.3.1 The Neighborhood Function . . . . . . 93

4.3 Tools for Testing . . . . . . . . . « . . . . 94

4.3.1 Prototypes . . . . . . . . . . < < . . 048

4.3.2 Two Types of Movements . . . . . . . . . . 96

4.3.3 Performance Indices . . . . . . . . . . . 98




Table of Contents 7

4.3.3.1 Competence Index
4.3.4 Practice Algorithm .
4.4 Test Procedures . . . . . . .

Chapter 5 Results and Discussion . . .
5.1 Control and Learning . . . .
5.2 Generalization e e e

5.2.1 The First Generalization Test

5.2.2 The Second Generalization Test .

5.2.3 Type II Generalization . .
5.3 Adaptation . . . . . . . . .
5.3.1 Inertial and Elastic Loads .
5.3.2 Reorientation of Gravity . .
5.4 Flexibility of Coordinate System
5.5 General Discussion « e
5.5.1 Distributed vs Massed Trials
5.5.2 A Use for Error Data
5.5.3 The SSM and Optimal Control .
5.5.4 A Fair Test of the Model?
5.6 Improvements to the Model .

5.6.1 Insuring the Command-Force Relationship .

5.6.2 Practice Improves Practice
5.6.3 Decaying Measurement Vectors

.

.

Marc Raibert

99

. 101
. 107

109

. 109
. 116

116
123
126
133
146
142
144

. 146
. 150
. 150
. 151
. 182
. 153

153

. 155

157



Table of Contents 8

Chapter 6 Concluding Remarks
6.1 Derivative and Alternative Models

6.1.1 The Measurement Space Model .

6.1.2 Configuration Space Method

6.1.3 Multiple Spaces Model .

6.1.3 Visually Locate and Move .
6.2 Problems for Further Research .

6.2.1 Measurement + Error Corraection

6.2.2 Plan ¢ Servo . . . . .
6.2.3 Practice . . . . . .
6.2.4 High Level Processes . .
6.3 Sunmary . . . . . . . . .
Bibliography e e e e e e e
Appendix: Experimental Conditions

Glossary of Terms . . . . . . . .

Glossary of Variables e e e e e .

Marc Raibert

160
160
160

. 161

162
163
165
165
166
166
167
168

170

177

178

181



List of lllustrations 9 Marc Raibert

List of lllustrations

Chapter 1
Fig. 1.1 Block diagram of model 3 |

1.2 The manipulator used for testing . . . . . . . 24
1.3 Loads are applied to the manipulator . . . . . . 26
1.4 Learning and adaptation curves . . . . . . . . 27
1.5 Variations of the memory's time-constant . . . . 29
1.6 Learning curves showing generalization . . . . . 30
1.7 Generalization gradients . . . . . . . . . . 32

Chapter 2 :
Fig. 2.1 Writing with various 1imbs . . . . . . ., . . 50

2.2 Schematic of arm showing position dependencies . . 54

Chapter 3
Fig. 3.1 Block diagram of themodel . . . . . . . . . 69

Chapter 4
Fig. 4.1 The MIT-Scheinman manipulator . . . . . . . . 80

4.2 Interactions between joints . . . . . . . . . 82
4.3a Repeatability of acceleration estimates . . . . . 83
4.3b Information content of acceleration estimates . . . 84
4.4 Overconstrained use of the generalized inverse. . . 87
4.5 Usable regions of motor space . . . . . . . . 89
4.6 Memory time-constant . . . . . . . . . . . 92
4.7 A typical prototype . . . . . . . . . . . 97
4.8 Distribution of practice data . . . . . . . . 100
4.9 A series of practice movements . . . . ., . . . 102
4.10 Varying practice parameters . . . . . . . . . 105
4.11 Practicebyparts . . . . . . . . . . . .106



List of lllustrations 10
Chapter 5

Fig. 5.1 Test movement series, PR-11 . . . . . . . .
5.2 Learning curve, PR-11 . . . . . . . . . .
5.3 Test movement series, PR-12 . . . . . . . .
5.4 Learning curve, PR-12 . . . . . . . . . .
5.5 Learning gravity compensation . . . . . . .
5.6 Prototypes PR-10,11,12,13 . . . . . . . .
5.7 Generalization learning cdrves. PR-10,11,12,13 .
5.8 Generalization gradients, PR-10,11,12,13
5.9 Normalized competence learning curves, PR-10,11,12
5.10 Prototypes PR-20,21,22,23,24 . . . . . .
5.11 Generalization learning curves, PR-20,21,22,23,24
5.12 Generalization gradients, PR-20,21,22,23,24 .
5.13 Learning with previous experience . . . . . .
5.14 Comparison of learning with and without experience
5.15 Application of inertial and elastic loads . . .
5.16 Adaptation curves, PR-11,12 . . . . . . . .
5.17 Transient behavior when changing conditions. .
5.18 Re-initializing the temporary buffer . . . . .
5.19 Varying the memory's time constant, . . . .
5.20 Re-initializing the state space memory . . . .
5.21 Arm mounted onwall . . . . . . . . . .
5.22 Simulation of Cartesian coordinate sensors . . .
5.23 Cartesian prototype, PR-11XYZ . . . . . . .
5.24 Learning curve for cartesian coordinates . . .
5.25 Memory decay with increasing time-constants. .

Marc Raibert

110
112

. 113

114
117

. 118
. 119

121
124
125
127
129
131

. 132

134
136

. 137

138
140
141

. 143

145
147
148
159



Introduction 11 Marc Raibert

1 Introduction

The human motor system is characterized by properties which are not exhibited
by traditional man-made machines. Most basic of these properties is the ability to
learn. Initially the human infant exhibits discoordinated movements which have no
apparent purpose and are skillessly executed (Twitchell, 1965; 1970). But as the child

develops, his movements take on a different character. They become directed and
effective, smooth and graceful. The improved dexterity is attributable in part to the
experience the developing organism receives from his own attempts to move (Bilodead, ‘
1966; Conolly, 1970; White, 1970; Held & Bauer, 1974). The adult, moreover, is able
to select particular movements and center his attention upon them through practice
until a high level of performance has been reached. The human is not limited to making
only those movements wﬁich have been the subject of previous practice -- it is often
the case that a movement which has never before been attempted can be executed
with a fair degree of precision (Mednick, 1964; Welford, 1968). |

Not only are we able to gain motor control of our bodies through ontogeny but
we are able to maintain this control. Under normal circumstances we make the
adjustments needed to control our limbs even though the masses and sizes of the
various parts of the body undergo large changes throughout ontogeny. In the
laboratory we are able to compensate for experimentally induced distortions made to
our sensory inputs or the environment (Hein & Held, 1962; Held, 1961; Young, 1969;
Kornheiser, 1976).
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Finally, our I-c'mbs are useful tools only if they will do our bidding, but our wishes
are phrased in a language which motoneurons and muscle do not understand. If we
start with the simple, perhaps schematic instruction, "Close your eyes and move your
hand so that the tip of your finger. travels a path which is a straight line. " we are able
to comply. We are able to comply even though this specification of the movement of
the finger gives no explicit information about the requisite joint movements or muscle
forces. This means that our motor system is able to convert a description of a
movement given in one coordinate frame into a set of commands which are suited to act
in an entirely different frame -- that of bone, joint, and muscle (Marr, 1969; Gelfand et k
al., 1971; Arbib, 1972).

1.1 Goals

The purpose of this thesis is to attack two related questions: First, how is the
human nervous system able to achieve such exquisite motor control? Second, how can
we make machines that perform with similar elegance? More specifically, by presenting
a model and working implementation that exhibit properties remeniscient of human
performance, | will examine a number of issues of fundamental importance to motor
control and motor learning. | take the point of view that there is on]y one control
problem which governs man-made mechanical arms and biological limbs (which are also
largely mechanical in nature). We know that solutions to the limb céntrol problem are
possible because the human provides a superb existence proof. Demonstrating that the
same solutions apply to both domains is made difficult at times, however, because no

proofs of uniqueness are available and, indeed, may not in principle be possible.
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1.2 Qrganization of Thesis

In the next section of this chapter, (Section 1.3), | highlight the important features
of this work by presenting the problem, the Sfate Space Model, and some of the
experimental findings, all in a nutshell. By showing the relationship between the
proposed model and other hethods of arm control, Section 1.4 helps the reader to view
this research in the proper perspective.

The details of the work are presented in the remaining chapters: Chapter 2
focusses on the problem of controlling a multi-linked arm as it moves through
3-dimensional space. Chapter 3 presents details of the State Space Model, and a
description of its properties. In Chapter 4 | discuss the practical problems associated
with developing an implementation of the model that is used to control a physical arm.
Experimental data that illucidate the model’s behavior are presented and discussed in
Chapter 5. Chapter 6 concludes this report by prop;:sing lines along which the

research can continue.

1.3 A Model for Motor Learning and Sensorimotor Integration: An Overview

1.3.1 Introduction

After tWo decades of intepsive study, control theorists, interested in controlling
more complicated non-linear devices (Bryson & Ho, 1969), and physiologists, guided by
experimental findings (Hammond, 1956; Melvill Jones & Watt, 1971a), have begun to
look beyond the servo control feedback mechanism in order to examine the merits of
pre-planning and the central program (Evarts et al,, 1970; Melvill Jones & Watt,

1971b). For a limb comprised of interacting degrees of freedom, the transformation
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from a desired tra]‘ectory into such a motor plan, a set of actuator control signals, is a
computationally expensive operation. Yet the nervous system’s ability to use motor
plans interchangebly with a number of effector systems argues that the problem has
been efficiently solved (Raibert, 1976). Moreover, the biological solution allows the
organism to learn through practice, to generalize training between similar movements,
and to adapt to mechanical and sensory changes (Held & Hein, 1963; White, 1970;
Miles & Fuller, 1974; Gonshor & Melvill Jones, 1976).

txperiments by Held (1961) and Hein and Held (1963), and a model proposed
by Marr (1969) have combined to motivate a new model for motor control, motor
learning, and sensorimotor integration. The idea that an internal signal, Helmholtz’s
efference copy (1867), distinguishes an organism’s self-produced movements from
externally induced movements lead to Held and Hein’s now classical experiments. Their
results, showing that active movement is essential to motor learning and sensorimotor
adaptation, suggest the nervous system assesses the response characteristics of the
limbs using an input-output analysis. The problem remains to formulate the extremely
complicated equatioris of motion characterizing a limb’s mechanical behavior in a way
which permits such an input-output analysis. Marr supplies the clue in his cerebellar
model by stating that the context in which an elemental movement is made influences
the movement’s execution. Extensions of this idea show that using state variables as
parameters produces dramatic simplifications in the equations of motion, a result which
lays the groundwork for the present model (Raibert, 1977b).

Two interacting processes plus auxiliary memory functions explain learning of
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new movements, transfer of training between similar movements, and adaptation to

mechanical and sensory changes. Parameterization, the process of restating an equation

with a subset of the independent variables held constant, recasts the equations of
motion into a very simple form that allows learning based on practice. The
parameterized equations, however, must be used in conjunction with a
multi-dimensional memory in which constants of mechanical description, also
parameterized by state variables, are stored. Learning, the process which supplies
data to this tabular memory, takes place when torque vectors applied to the limb, L™
are correlated with resulting accelerations vectors, §. Properties of the memory, its
time-constant and accessing function, contribute to adaptation and generalization.

The power and simplicity of the model derive from the combined use of
parameterization and learning. Without learning, the constants that make the
parameterized equations usable can only be found by evaluating extremely complicated
equations. Learning without parameterization, on the other hand, requires inversion of
non-linear trigonometric differential equations comprised of thousands of terms.

Parameterization makes learning possible, and learning makes parameterization usable.

1.3.2 Model Description
When each of the terms contributing to the torque acting on the joints of a limb

are included, Newton’s equation for rotary motion may be expressed schematically as:
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T = G(8) - B(4) - C(0.4) = J(0)0 (eq 1.1)

where:
Tpy is the actuator torque vector

G is a vector-function for gravitational torque

B is a vector-function for frictional torque

C is a vector-function for Coriolis torque

J is a matrix-function for moment of inertia

8,8, and § are the position, velocity, and acceleration vectors.
The full set of time-varying, non-linear equations with explicit expression of § - and
# -dependencies has been worked out by Kahn (1969). His equations involve about

1600 terms and 13,000 muitiplications for a general 3 degree of freedom limb.

The Translation Equations
By treating the state variables # and § as parameters, (le. letting them assume a
number of fixed values), a simplified parametric form of Kahn’s equations can be found:
Tm = Glg=a) = Blig=p) ~ Clp=ag=p) = g =a)¥ (e 120
where: |
a parametric position vector
g parametric velocity vector
Or, more compactly:
Tm = Gy - Bg - Cag = Jo ¥ (eq 1.2b)
Here, each of the vector-function relationships G(#), B(§), C(8,4), and J(@) has become
a parameterized set of constants. By grouping terms and making the equation explicit
in muscle torque one further simplification can be made:
Tm = Ja"a' + Kaﬂ - (eq 1.3)

where:
Kaa = Ga + Bﬁ + caa
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Eq 1.3 is the tranislation equation. It is linear in § and without hidden dependencies on
0 ord.

We now define a state space having 2N dimensions, and associate one state
variable, {8 102 0N 010 2 - -8 N} with each dimension. For any point in this space,
(a,8), there exists a set of values for Jq and Kaﬂ' such that Eq. 1.3 describes behavior
of a limb when its state passes through that point. Furthermore, since the values of

the components of J and K vary smoothly throughout the space, ie:

v j,.)."Il <w (i=1,2 . N; j=1,2. . .N)
\% ki,aﬂ <o (i=1,2 . .N)
where:

V is the gradient operator
the space can be divided into a large number of hyper-regions throughout each of
which the behavior of the limb, and the corresponding values of J and K, are reasonably
uniform. This approach becomes useful when values of J and K corresponding to
~ particular (8, §) are available from a well organized tabular memory: Desired
trajectories, §j(t), are processed by Eq. 1.3 after division into intervals of duration At,
where different values for J and K for each interval are obtained from the state space
memory.

Since data will not always.be available for every hyper-region, (assuming the
system begins tabula rasa), performance will be more robust if a memory accessing
function is used that takes into account the gradual variations of mechanical behavior
through state space -- if data from a particular hyper-region are not available, data

from neighboring regions may be used instead. In addition to robustness, transfer of
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training between similar practiced and unpracticed movements is an expected

consequence of such an accessing function.

The Inversion Equations -

Von Holst and Mittelstaedt used the efference copy, an internal copy of the
motor command, to account for the fly’s ability to distinguish between internally and
externally produced changes in sensory stimulation (von Holst, 1954; Mittelstaedt,
1958). Their notion was that the relationship between an externally generated signal
describing changes in sensory stimulation and an internally generated signal describing . <
impending changes in the position of the sensory surface would always give
unambiguous information about movement in the external world. in Held’s model, (1961;
Hein & Held, 1962) the Holstian view was augmented to allow attainment of perceptual
accuracy even after changes were made to the meaning of the sensory signals. The
efference copy was used to elicit the trace of previous reafference, which in turn was
compared to the current afference. In 1965 Young and Stark modelled the ability of
humans performing a tracking fask to change control strategies when there were
changes in the dynamics of the controlied element (Young & Stark, 1965). In that model
the efference copy was used to.drive an internal dynamic model of the controlied
element, the output of which was compared with afference from the control task.

In the present mod§| the relationship betweeh efference copy, T,,, and
reafference, §, is used to compute descriptions of the mechanical properties of the
limb, represented in Eq. 1.3 by J and K. The approach is somewhat similar to MacKay’s

idea of evaluation as opposed to elimination (MacKay, 1972). Here reafference is
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obtained from measurements of the acceleration vector made from the limb’s sensors,
or other sensors which can monitor the limb's activity. Efference copy is a record of
the actuator torque vector, internally available from the source of motor commands or

possibly from actuator sensors. The use made of the efference copy in this model is

somewhat unique in that there is no comparator, no error signal is calculated, and no
error correction procedure is used. Rather, the limb’s properties are found by
examining the relationship between input and output, command and response. As a
result the local minima problems associated with search procedures are avoided
(Tsypkin, 1971).

Since the simplified equations of motion are linear, values of J and K can be
found in a straightforward manner, provided that sets of measurements,

{(T 10 1) (T 28 5) - - .} are available:

J=71-§! (eq. 1.4a)
K=Tg-[1 6114, (eq. 1.4b)
where:

T=lTyiTot - TND = [TNat Tt - T

O =[50 iUN] - [UNa1iONagi- - - PTNe1D

T; and §; are the i’'th measurements of T and §.

Xav denotes the average: (X +Xo+ . .. +Xn,1)/(N+1).
(note: all torques are motor torques -- the m subscript

has been dropped.)
Eq. 1.4 is the inversion equation. These calculations can be performed if N+1
input-output pairs, (T;8;), also called measurement vectors, are available. All
measurements contributing to such a calculation must have been made while the limb

was near a single hyper-region of interest. A temporary buffer is postulated to store

such measurements until appropriate sets are available for inversion. The resulting
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values of J and K .iare then stored in the state space memory in combination with
previously stored data. The dynamic updating of the state space memory, adding data
as they are available and combining them with old data, allows the system to adapt to
changes in the limb’s kinematic and dynamic properties, in addition to improving
immunity to the effects of inverting noisy measurements, typically a problem when
inverting physical data.

The block diagram shown in Fig. 1.1 summarizes the model's operation: High level
pProcesses produce descriptions of desired movements, § pt), which are presented to
the translator. The desired movement is sectioned into time intervals, each of duration ‘
At. For each time slice Eq. 1.3, the translation equations, used in conjunction with the
constants of mechanical description, J and K values from the state space memory,
generate a motor plan that will replicate the desired trajectory. The calculated force
commands are issued to the limb and, during the movement, a copy of the command, Ty
and a copy of the sensory signals that indicate progress of the movement, §, are stored
in a temporary buffer. Subsequently, the contents of the buffer and the inversion
equations, Eq. 1.4, are used to calculate values of J and K, which are stored in the
state space memory in combination with data that might have been stored there

previously.

1.3.3 Properties of the Model
Initial performance will be quite poor since every attempt to use information
about the mechanical character of the limb will be frustrated -- the state space

memory will be tabula rasa -- empty. As movements of the limb are made, data



T =Jdg¥ + Kaﬂ

Desired Motor
HIGH Movement Command
LEVEL —¥  TRANSLATOR = LIMB
op Tm
PROCESSES
4
L™ (]
STATE
SPACE TEMPORARY
J&K BUFFER
MEMORY
J=7-91

K -Tav - [r.e-l].."v

Fig. 1.1 Major components of the model. The translator converts descriptions of
desired trajectories into motor commands suited to the kinematic and dynamic
properties of a particular limb. The operation employs the tabular equations of
motion in conjunction with the state space memory. Each movement of the limb
generates data which, when processed by the inversion equations, contribute to
the state space memory, and consequently, to future transiations.
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describing the mechanics of its operation become available. During this period of data
acquisition the quality of translations will gradually improve. Practice will facilitate
mastery of a practiced movement, while similar, (but not identical), movements will be
_ improved more slowly. If the mechanical properties of the limb or sensors should
change then the model adapts, since new constants of mechanical description are
continuously being computed and stored.

The State Space Model can control limbs having a wide variety of dynamic and
kinematic properties. A single translator can learn to control almost any limb or body
pert. This is a direct result of the tabular nature of the equations which describe the . t
mechanical system. Though the development given above deals with torques applied to
the joint, the actuator terms given in Eqgs. 1.3 and 1.4 can be force applied to a tendon.
In fact, actuators and sensors need not be affiliated with any one joint or subset of
joints. Reafference can take the form of visual feedback just as readily as joint
oriented proprioceptive feedback, provided the choice is made before learning
commences and desired trajectories are described in the chosen coordinate system.

In order to evaluate and verify the power of the model, a set of computer
programs embodying the various elements are used to control a mechanical arm. Tests

of this implementation reveal thé model’s weaknesses and illustrate its strengths.

1.3.4 Methods
A PDP-11/45 computer is used to perform all computations, to issue commands
to the manipulator, and to make measurements. The three joints of the MIT-Vicarm

manipulator that allow the wrist to be positioned arbitrarily within the arm’s work
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space, are use&, (N=3) (Horn & Inoue, 1974). See Fig. 1.2. Each joint is powered by a
DC torque motor and provided with a potentiometer and tachometer. When a
movement is made the computer specifies the torque delivered by each motor and
measures angular position and velocity every 10 msec. In addition, velocity samples
taken every 500 usec allow the limb’s average accelerations to be estimated over 60
msec intervals using least-mean-square error techniques, (At=60msec).

State Space Memory

Though only N+1 measurement vectors are theoretically required for each
inversion, (here N+1=4), improved noisel immunity is obtained by using the generalized
inverse (Rust et al., 1966; Albert, 1972) to invert sets of 8 vectors. The resulting data
are stored in a hash coded disk memory in weighted combination with data previously
stored for the same hyper-region. Each new entry receives a weight of 1/7, and
previous data a weight of (T-1)/7, where 7 is the memory’s time constant.

The memory is 6 dimensional, (one dimension for each state variable), and
quantized. Each dimension is partitioned into 10 ranges producing 106 possible
hyper-regions. A single hyper-region measures (15 deg)3 by (13 g—:-%)a. These
regions are quite small and the mechanical properties of the arm are fairly constant
throughout. Each access of t'h‘e memory yields a weighted average of data from the
desired hyper-region and all closest neighbors. Data from the desired hyper-region
are given a weight equal to the number of times data were stored in that region.

Neighbors are given a weight of 1 if any data are present, otherwise zero.
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Fig. 1.2 Layout of the first three joints of the MIT-Vicarm manipulator. The
manipulator is about the size of a human arm; base-to-shoulder = .273m,
shoulder-to-elbow = elbow-to-wrist =.203m. Each joint is provided with a DC
torque motor, a potentiometer, a tachometer, and a clutch-type brake.
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Practice and Test

Input-output data are generated by exercising the arm under control of a
practice program. This program generates a sequence of approximations to a
pre-specified desired movement, called a prototype. Periods of practice, analysis of
practice data (Eq. 1.4), and execution of test movements, generated by Eq. 1.3 to test
performance, are alternated during a learning session. Each test movement is
evaluated by finding the root-mean-square position-error (RMS PE) or
final-position-error, (RMS FPE) for the three joints.

After a baseline of practice is established, adaptation is measured by a
manipulation of the mechanical state of the arm, (see Fig. 1.3_), followed by continued
training. Generalization of training is measured by testing performance of a set of
prototypes, after practice of only one. The menqbers of this set vary systematically in
similarity to the practiced prototype. A learning index, LI, facilitates pres;ntation of

the generalization data:

Ll = E(eﬂ - el.)
Ze,

where:
e; is the RMS FPE for the i’th test movement
e, is the pre-training performance value.
Z is the sum from i=] to n-1
n is the number of test movements

1.3.5 Results
The left half of Fig. 1.4 is a learning curve for 3000 practice trials. As predicted,

performance improves as more practice data are generated and analyzed. Rapid jumps
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Fig. 1.3 Two methods of applying loads in order to disturb the manipulator’s
behavior are shown. A) A .19 kg. weight is attached to the third link of the
manipulator. B) A 1.85 kg/m spring is attached from the second link to ‘ground’.
When movements start the spring is stretched .83m between coordinates
(.17m,.Om,.25m) and (.02m,.70m,1.20m); see Fig. 1.2
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2200 *

moem UVwIXXD

PRACTICE TRIALS

Fig. 1.4 Left) Acquisition of prototype PR-12 is shown as 3000 practice trials are
executed and analyzed. Arrow) One of the two loads shown in Fig. 3 are applied.
Right) The time course of adaptation to the two types of load is recorded. (r=10)

\
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in performance ari_ée when new hyper-regions of the memory are first provided with
data, (asterisk in Fig. 1.4). When a load is applied to the arm, (arrow in Fig. 1.4),
adaptation slowly takes place during the next 2500 practice trials under the new
mechanical regime, as shown on the right side of Fig. 1.4. Modification of r, the
memory’s time constant, results in improved rates of adaptation, though very small
values of r also introduce sonie instability. (See Fig. 1.5.) |

Verification of the model’s ability to generalize data derived from the practice of
one movement to other similar movements is illustrated in Figs. 1.6 and 1.7.
Throughout a 2400 trial learning session performance of the practiced prototype,
PR-20, improves the most (Fig. 1.6a). Each of the other prototypes exhibit various
degrees of improvement depending on their similarity to PR-20. (See caption to Fig.
1.6.) These generalization data are summarized quantitatively in Fig. 1.7 (diamonds),
where the learning index, LI, is plotted for each prototype. To control for the
possibility of gradients due to the particular choice of prototypes, a different member
of the prototype set, PR-23, was practiced. The results, shown in Figs. 1.6b and 1.7
(triangles), reveal a similar pattern: the practice prototype shows the most
improvement, with other movements improving according to their similarity to the
practice prototype.

Figs. 1.4 through 1.7 verify the model’s basic attributes:

1) Motor commands are generated suited to the kinematic and dynamic
properties of the effector mechanism.

2) The quality of the motor commands improves with practice, though no
error correction is used.
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PRACTICE TRIALS (HUNDREDS)

mo=m wX»

PRACTICE TRIALS (HUNDREDS)

Fig. 1.5 The memory’s time-constant is systematically varied Smaller values of ¢
yield more rapid, but noisier adaptations. A) inertial load; B) spring load;
(prototype PR-11). Closed circles indicate pre-adaptation levels.
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PR-23

PR-22

T .

- | , . PRACTICE
0 25 PROTOTYPE

PRACTICE TRIALS (X100)

Fig. 1.6a Five learning curves that show generalization when prototype PR-20
was practiced and prototypes PR-20, PR-21, PR-22, PR-23, and PR-24 were
tested. These prototypes share a common ending position and duration, but vary
systematically in starting position; ((.285m,~.145m,.12m), (.265,-.145,.1),
(.245,-.145,.3), (.245,-.165,.6), (.245,-.185,.9), respectively).
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Fig. 1.6b Learning curves generated when prototype PR-23 was practiced and the
entire set, PR-20, PR-21, PR-22, PR-23, and PR-24 was tested.
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GENERALIZATION GRADIENTS

XKMOBre OE—RRV>PMr

PROTOTYPE

Fig. 1.7 Generalization curves summarizing the data of Fig. 5 are shown.
Diamonds) Prototype PR-20 was practiced. Triangles) Prototype PR-23 was
practiced.
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3) Practice ;f one movement improves performance of others, provided

they are similar to the practice prototype.
4) Control of the arm is maintained or reattained, despite changes in its
mechanical properties.
1.3.6 Discussion

Examination of Eq. 1.4 reveals that § p is absent from the computation of J and K,
the constants of mechanical description. Without knowledge of the desired response an
error signal cannot be computed. The present system is able to learn without error
information and is, therefore, somewhat unique among models for control. Systems that
do use error correction rely on the signed magnitude and sometimes the derivatives of
error in selecting the next, and hopefully, better command (Fu, 1971; Tsypkin, 1971).
Unfortunately, local error data are not always useful in finding global maxima that
correspond to best commands, and hill-climbing problems may result. The parametric
equations are so simple, however, that a search procedure is not required for solution.
Application of Eq. 1.4 only requires that N+1 independent measurements be available
for the same hyper-region.

A mechanisms has been described that pre-computes a set of motor commands
which are executed in the absence of feedback. Few practical applications, (biological
applications included), can tolerate the imprecision of such open-loop operation, yet the
problems of motor planning can probably be best developed in this type of isolation.
Ultimately it will be necessary to find a compromise between pre-planning and servo
control, and the compromise will yield dividends: The same data that are so useful in

planning will facilitate on-line error correction, both processes benefitting from
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experience. For the sake of clarity of results and presentation, h;awever, consideration
of the plan+servo approach has been postponed.

Young and Stark (1965) and others have proposed the use of an internal dynamic
model to allow learning and adaptation. Their idea is that information describing the
response of the plant to commands can be used to adjust an internal dynamic model
that will be used in future selection of commands. Although this idea can be made to
work, another concept which represents a different point of view is stressed here --
the internal inverse dynamic model (Paul, 1972; Waters, 1974). The idea of the
inverse is that the a motor learning system should have a transfer function which
converts responses into commands -- the inverse of the operation performed by the
mechanical device. When the inverse and the device are operated in cascade the
transfer function is the identity matrix -- the desired result. The internal dynamic
model allows simulation of the inverse function with an approach similar to analysis by
synthesis (Eden, 1962). Because it uses sets of extremely simple equations to
describe the plant’s behavior, however, the present model calculates the required

inverse functions directly, for each region of space.

1.4 Analytical Equations vs. Table Look-up for Manipulation: A Unifying Concept

1.4.1 Introduction

Solution of the complete equations of motion for a serial link manipulator is
computationally quite expensive and is usually not possible in real-time. Even off-line
calculations frequently require simplifying approximations. Stanford’s hand-eye project

uses such simplifications in their approach to arm control (Paul, 1972). They begin with
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the complete set éf dynamic equations, and ignore inertial coupling and velocity
interactions between joints. This allows them to pre-compute torque trajectories in a
reasonable amount of time.

An alternative approach is to trade large amounts of computation for large
amounts of storage. Albus (1975) proposed a controller, CMAC, which reduces the
computational burden at the expense of a large hash-coded memory. CMAC in its
simplest and most useful form may be characterized by: 1) elimination of complicated
real-time computations, 2) a very large memory containing data descriptive of the
arm’s mechanical nature, and 3) a simple procedure for acquiring the memory's data
from practice, without having an analytical model of the manipulator.

Though Albus’ pure table look-up and Stanford’s approximate analytical
approaches are quite different, through introduction of some ideas on the nature of
parameterized equations these apparently divergent approaches to the control problem
can be brought together under one conceptual roof. Furthermore, a number of
~ computationally intermediate formulations that had not been identified previously, have
been isolated for study.

The main point of this paper is that the equations of motion for a manipulator can
be dramatic.;ally simplified if a subset of the independent variables are treated as
parameters. In order for the parameterized equations to be useful, however, simplified
forms must be available for a large set of parametric values. Therefore, one
complicated equation is traded for a set of simpler ones. (Of course, only one of the -

simplified equations need be evaluated for a given situation.) The particular choice of
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variables submitted to parameterization determines the balance between computational
complexity and storage. As a corollary effect of simplification, parametric forms of the
equations of motion can be used to acquire information about the mechanics of the

controlled device.

1.4.2 Parameterization
Consider the equation:
y = {X) (eq. 1.5)
where:
X is a vector of the function’s independent variables.
(Capital letters denote vectors.)
The value of y can be found by specifying values for the independent variables of the
equation. As the independent variables change, the vaiue of y will vary as dictated by
the functional relationship, f.
In many cases, making one or more of the variables in an equation a parameter,

that is, holding it equal to a known constant, will greatly simplify the functional

relationship. For example:

y = f(xy,x5) = X] + X + XX + xlz (eq. 1.6a)
If: X1=1
then: y'(xl=l) = f(xl=l)(x2) =2+ 2x2 (eq. 1.6b)

Of course, the original relationship is not expressed here unless the function fi 1(xz) is
available for every Xy of interest. In general a function is simplified by taking some
subset Xp, of X as parameters and recasting the functional relationship in terms of the

remaining independent variables, Xy
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=ty (X,) (eq. 1.7)
Yix, XoXv
where: ,
X = [Xpi Xyl -
Xp are the variables held constant, the parametric variables.
X, are the remaining independent variables.
’ indicates transpose.
1.4.3 Parameterizing Equations of Motion
For a mechanical arm the problem at hand is to find the functional dependence of
motor torque on position, velocity and acceleration. Generally, if the mechanical system
has N degrees of freedom it is described by a non-linear vector function, I', with
- independent variables 8, 4§, and §, each an N-vector: The generic equations of motion
for the general manipulator can be written as:
T=T0,0,0) (eq. 1.8)
where:
T is the motor torque vector.
0,0, 8 are the position, velocity and acceleration vectors.
Applying the parameterization procedures introduced above, a subset of the
independent variables are assigned values and become parameters of the equations.
When the equations are evaluated, substituting the parametric values for the
parametric variables, simplified éxpressions result. For example, if § =K, then @ is a
parametric variable, and the expression for torque is denoted: TI(O =K) = Ty (0.8).
Let P be an indicator equal to the number of variables in Xp. By varying P,
0<P<3N, a continuum is defined along which the character of the equations of motion

gradually changes from the completely analytical form (P=0), to a form where all

variables are parameters and no analytical expressions exist (P=3N):

. &
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T = T(0.,4.5) - T X » Tx (eq 1.9)
For P=0 the equations are analytical. Only one equation need be evaluated for every
possible combination of independent variables. For P=3N a different equation must be
evaluated for each combination of independent variables. (For P=3N the equations are

all constant: Py =K)

1.44P =0, N, 2N, 3N

I'(0,8,0) is simplified by defining Xp as a subset of the independent variables,
and X,, as the remaining independent variables. In principle, the selection of the
independent variables for the two subsets, Xp and X,, can be made with complete
freedom. P may assume any integer value between 0 and 3N. While many
partitionings of the independent variables may lead to simplified expressions, the
present discusgion is limited to the important class of subdivisions that result when all
components of an independent N-vectors, 8, §, or ¥ are assigned to one subset or the
other. For example:
If: o € {Xp} holds for any i (eq. 1.10)
then: o € {Xp} holds for all i, 1sisN
Therefore, the points on the P-continuum of interest are P=0, N, 2N, 3N. The functional
forms of the parameterized equations of motion for these values of P are given in

columns 1 and 2 of Table 1.1.
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k Table 1.1
P Expression No. of Eq. =u=y=M
N T=Ty(8) N mN
T=r408 N MmN
T =Ty(0,8) N mN
2N T =Ty 4@ ANN m2N
T=T, Fi ANN m2N
T=Ty0  WNN m2N
3N T= I‘o'o'b- XNpNvN M3N

Selection of P still does not always completely constrain the form of the
equations of motion, since the selection of variables to serve as parameters is not
specified. The equations which represent each extreme of the P-continuum, P=0 and
P=3N, are of unique form. (This would be so even if the restriction described by Eq.
1.10 were not in force.) The intermediate cases, P=N and P=2N, however, are each
characterized by three alternate forms. (See Table 1.1, columns 1 and 2.)

The number of equations required to represent any one of the forms listed in
Table 1.1 can be determined by assuming that each independent variable takes on a
djscrete set of values. Since representation of an equation by a finite set of
parameterized equations is only an approximation, the number of values required for
each variable must be determined in context of the application. The number of
parametric values can be chosen to produce an approximation of any desired accuracy.
Let A be the number of values assumable by each component of @, u by each

component of §, and v by each component of §. The number of equations needed to
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represent PXP(XV; is given in Table 1.1, column 3. If all parameters are limited to the
same number of values, M, (\=y=y=M), approximately MP equations are required;
Table 1.1, column 4.

While six forms of I‘XP(XV) are possible for P=N, 2N, the goal of reducing
complexity of the equations at the expense of storage, (ie. more equations), is not
served equally by each possibility. In order to estimate the cost of each form, a count
is taken of the number of adds, multiplies, and trigonometric function evaluations
required for each form. The amount of storage required per cell, and the number of
cells (assuming A=u=y=M) are also counted. Table 1.2 shows very rough estimates for ‘

these costs.

Table 1.2
P Form Muts  Trige  Cell size Cells
0 T=To4d) N N N 1
N T =Ty(0,4) P CHTC (N+N2+N3) mN
T =Ty(8.4) NN W MN
T=T;(0.4) NN N MN
2N T =Ty ;@ N2 0 N+N2 m2N
T =Ty ;) NN 0 N+NS m2N
T =T ;0 NN N m2N
3N T=Ty4j o 0 N m3N

*Very difficult to estimate for the general manipulator.

it is clear from Table 1.2 that § must be a parametric variable to yield
computational efficiency. One can understand this result by examining the mechanical

nature of manipulators comprised of coupled, serial degrees of freedom. In general,
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elements of the mément of inertia tensor, (both off diagonal and on diagonal terms),
gravitational terms, and Coriolis terms are sums of products of trigonometric functions
of angles between links, and sums of these angles (Kahn, 1969). Only when @ is made

a parameter do these computations become unnecessary.

1.4.5 State Space Model (SSM)
The SSM, described more fully by Raibert (1976; 1977), results when P=2N and
8 and § are parametric variables (XP=[050]’):
T=T‘o,o"" (eq. 1.11)
When each of the terms contributing to the torque acting on the joints of an arm are
included, Newton’s equation for rotary motion may be expressed schematically as:
T -G(0)-B(8) - Co,8) =J0) (eg 1.12)
where:
T is the actuator torque vector
G is a vector-function for gravitational torque
B is a vector-function for frictional torque
C is a vector-function for Coriolis torque
J is a matrix-function for moment of inertia
(Remember, the full set of time-varying, non-linear equations with explicit expression
of 8- and § -dependencies are not shown here.) Parameterizing the state variables, ¢
and §:
T~ Glo=a) ~Blg-p) ~Cho-ap=p) =Jg-a)¥ (eq 1139)
where:

a parametric position vector
B parametric velocity vector
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Or, more compactl’y:

T -G, -Bg-Cug=Jgb (eq. 1.13b)
Here, each of the vector-function relationships G(#), B(4), C(9,§), and J(#) has become
a parametric set of constants. By grouping terms and making the equation explicit in
motor torque one further simplification can be made:

T=J,8 +Kyg (eq. 1.14)

where:
Kaa = Ga + Ba + caa

An important property of this formulation is that values for Ja and Kaﬂ’ the
variables that characterize the equations, can easily be computed from input-output

data obtained during motions of the manipulator:

J=1-¢1 (eq 1.15a)
K=Tay-[1 611 4, (eq. 1.15b)
where:

T=TyiTal TN - [TNeg T E T
O=[07:02 - (0N -[INapiONG1: - iON4 )
T; and §; are the i’th measurements of T and §'.
Xqy denotes the average: (X +Xo+ ... +Xp,1)/(N+1).
in general, as a corollary effect of simplification, forms of equations near the P=0 end

of the P-continuum are easily invertable and learning is facilitated (Raibert, 1976).

1.4.6 Configuration Space Method (CSM)
CSM is obtained when P=N and # is the parametric variable (xp=a):
T=Te08) (eq. 1.16)
Since velocities are not parameterized they still appear as arguments in the functional

expression for motor torque. The equations of motion become:
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Tm - éa - B(9) - C(8) = J (¥) (eq. 1.17)
Neglecting friction and making the dependency on velacity explicit:
T = Gy = [87C1 08:0°Co 8l . J0Cy 8T = U (6)  (eq 1.18)

where:
Ci a is the Coriolis matrix for joint i evaluated at state a.

Note: The Coriolis force is determined by a vector of
terms each quadratic in § (Bejczy, 1974).

Many control schemes used in practice ignore inertial interactions between joints
and Coriolis forces, yet these terms can be important during high velocity motions. This
compromise has important implications for industrial applications where the throughput . .
of a manipulation process depends on the arm’s speed. The importance of CSM is that }
these terms can be included at low computational cost with reasonable amounts of
memory. Real-time trajectory calculations may also be possible, aspecially in the
context of a distributed computation employing multiple microprocessors
(Raibert & Horn, 1977).

CSM is primarily of interest to those interested in robotics, though the approach
is not out of the question for explanation of nervous function. The disadvantage for
biological systems is that the inversion operations required for learning are much more
complicated than those characterizing P=2N and P=3N systems. For robotic
applications, however, configuration space data can be calculated in advance, based on
an analytic model of the mechanical device. This will be a one-time calculation for each
manipulator. Compared to SSM and CMAC, (which thearetically also do not ignore
inertial coupling and Coriolis forces), this approach offers the advantage of reduced

storage requirements at the expense of increased run-time computation. While the
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SSM requires abo&t 2N2 operations for evaluation and (MZN)(N+N2) memory locations,
CSM requires about 3N2+2N3 operations for evaluation and (MN)(N+N2+N3) memory
locations.

The relationships among the parameterized systems discussed are summarized in

Table 1.3, where computational and storage costs are ranked.

Table 1.3
Rank Rank
Storage Comp.
P Form Cost  Cost Approach
0 T=T0,0,8) 1 4 Analytic Eq. [4]
N T=Ty(h,8) 2 3 CSM (7]
2N T=T, ,0('0' ) 3 2 SSM [5,6]
T =T ;) Not yet studied.

3N T=Te44 4 1 CMAC [1]
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2 The Problem

2.1 Constraining the Issues

2.1.1 Many Factors at Work

An often neglected first step in the study of the motor system is the selection of
a class of behavior upon which attention may focus. The human body is a versatile
mechanism capable of a staggering variety of movement. Its nervous system is also
extremely versatile and employs a number of control strategies. Sometimes a limb is '
moved with great deliberation and precision using simultaneous activation of agonist and ‘
antagonist muscles. Other times more free-flowing motions are made in which agonist
muscles accelerate the masses of a limb to high velocity, after which it coasts until
slowed and stopped by the force of antagonist muscles (Kelley, 1968). Contrast, for
example, the motion of a delicate paint stroke to that of a baseball pitch. Sometimes
interaction with the environment is quite predictable and adjustments are virtually
unnecessary while at other times the movement is nothing but a set of constant
adjustments to external disturbances. When walking down a flight of stairs the position
of each step and moment of foot contact is quite predictable. Conversely, standing still
in a moving trolley car requires .major adjustments at each lurch on the track. The aim
of a movement may be to achieve a certain position, to move at a certain velocity, or
to contact an object with a certain force. When one presses a button the position of

the finger is important, while the velocity at which the violinist draws his bow

influences the sounds which result. Imagine the effects of a masseur who cannot
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regulate the force of his ministrations.

For each of these types of movement the problems of control are different and
one reasonably homogeneous solution would not be expected to apply to every case.
In order to develop a model that can help us to better understand movement we begin
by acknowledging this diversity, and restrict study to a class of movement which is
produced by one, unified control scheme or strategy. Of course, our readiness to make

this choice indicates our belief in a certain discreteness of control function.

2.1.2 Emphasis on Pre-planning o

After twb decades of near fanatical interest in and devotedness to servo control :
and feedback mechanisms, physiologists and control theorists, motivated both by
experimental findings (Evarts et al., 1970) and a desire to deal with non-linear, time
varying devices (Schultz & Melsa, 1967; Bryson & Ho, 1969) have begun to look at the
merits of pre-planning.

Servo theorists correctly state that no controller can predict the disturbances a
mechanical device is likely to encounter in the real world. Even the parameters of the
mechanical device cannot be known exactly. Therefore one must, if one wants accurate
control, use feedback to assess and correct errors produced during operation.
Unfortunately, servo advocates often stop there. However, there are a number of
basic problems with servo-mechanisms for controlling arms. Briefly:

1) Simple servos are not designed to work with non-linear mechanical

devices. They can be made to work, but the degree of success usually

depends on the degree to which the system can be modelled as linear
(Townsend, 1970).
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2) When multiple degrees of freedom are involved, the simple servo
usually cannot guarantee that all joints will pass through particular
points at the same time. The usual methods of avoiding this problem
result in jerky movements or relaxation of the accuracy with which the
trajectory can be followed.

3) When errors are expressed in a coordinate system other than joint
coordinates corrections cannot be generated without a transformation.
For example a Imm error in any one direction requires correction at a
number joints, but the degree of involvement at each joint is not
constant. For this reason, a servo controller without the ability to
transform coordinates cannot correct for wsually ascertained errors.
(This objection may be somewhat unfair, since pre-plannmg does nothing
to correct the problem.)

4) Servo controllers often require errors for the continued production of
control signals.

Feedback is very important, but unable by itself to achieve the kind of flexible,
accurate trajectory control we are after. More recent work has stressed the use of
feedback ﬂ!ﬂl an open-loop plan. The approach is to pre-compute a set of commands
which will drive the non-linear plant along the desired path in the absence of
disturbances. Since this computation is done off-line there is time to use complicated
analytical models of the plant, usually in the form of equations of motion. Furthermore,
it only has to be done once for each trajectory since the planned commands are stored.
During execution the commands are strobed from the memory and issued to the plant.
A simple servo controller may be used in addition, to correct for residual errors
(Bryson & Ho, 1969). The advantage of this scheme is that the servo is only
responsible for producing control signals which will compensate for small deviations
from the desired trajectory -- deviations for which behavior of the system is usually

nearly linear.
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Physiologist;‘ are also thinking along these lines. Now that the notion of the
simple follow-up length servo for muscle control, (Merton, 1972; Marsden et al,, 1972;
1976), has been substantially discredited (Severin et al., 1967; Murphy, 1975), ideas
about pre-planned movement are gaining ground. (Ideas about preplanning have been
around for quite a while (Lashley, 1951), but the servo story has obscured their
impact.) Especially important are papers by Hammond (1956) and Melvill Jones & Watt
(1971). They show that substantial corrective responses to mechanical disturbances
are produced with a latency of about 120 msec. This does not imply that feedback is
not used, but substantial computation is possible between the time such a disturbance ' l
is sensed, and the corrective action is taken.

One idea is that a new plan, one suited to the disturbance énd designed to return
the arm to the desired trajectory is formulated between disturbance and response.
Rather than using a pre-plan or error correcting servo, this scheme advocates
reprogramming. A variation of the open-loop movement is used that is composed of a
number of short, open-loop segments executed in sequence. The sensory information
produced during one segment only influences production of subsequent segments. This
variation, dealt with in passing in this thesis, is mentioned in order to suggest the
ultimate usefulness of solutions to the open-loop control and learning problems.

This thesis is aimed at the problems of producing a usable, pre-computed plan.
Though plan-p}us-servo is probably the only practical approach to these control
problems (practical for biological as well as man-made systems), for the sake of clarity

of results and crispness of presentation the work done here excluded the use of
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servos and feedback. Once a movement is' initiated no sensory information is used to
alter that movement during its execution. Such movements are open-loop, but it should
be realized that, ultimately, the loop is closed -- though the sensory information
obtained during a movement is not used to alter the progress of that movement, it may
be used to alter the motor system in such a way that subsequent movements are

affected.

2.1.3 High- and Low-Level Specialization
The model under consideration here was not designed to account for all motor |
function. In addition to restricting the class of movements under study, we have limited °
the type of processing to be described. This means that other motor processors work
along with the sub-system described here and the learning or execution of even a
single movement probably relies on a number of processing elements. Figure 2.1 is an
example of a familiar demonstration. Each of the orthographic strings shown in this
figure are very similar, but the mechanical systems used to produce them, and
therefore the motor commands, were quite different. Unless the subject learned to
produce each form of output separately, (this was not the case in the example shown)
we may draw two conclusions: .
1) Motor plans exist in the nervous system which are expressed in a
language which is independent of muscular and kinematic considerations.
One such plan can be used to produce movements in any of a number of
limbs or body parts.
2) Mechanisms exist in the nervous system which can translate general

motor programs (as described in 1) into explicit instructions suitable for
the muscles, mechanics, and sensors of a particular limb.
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Fig. 21 Each of these orthographic strings are quite similar though different
muscle and skeletal systems were used to produce each. The pen was moved by
A) right hand, B) right arm, C) left hand, D) mouth (gripped in teeth), and E)
right foot (taped to foot). The subject had essentially no previous experience
writing with any body part other then A. A division of function into high- and Jow-
level processes is suggested.
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This type of ~architactural arrangement and the transiation process have been
discussed in the literature (Marr, 1969; Gelfand et al,, 1971; Arbib, 1972; Waters,
1974). The power of such an arrangement is quite attractive. High level processors
may formulate new movements or modify and combine old ones without having to take
the mechanical properties of the effectors into consideration. It is supposed that these
processors may perform symbolic operations through which planning and strategy
decisions may also be made. They specify to the translator what the output of the limb
should be.

The translating mechanism, on the other hand, is not organized around motor
programs, but around the muscular, mechanical, and sensory systems with which it
communicates. It is free from the responsibilities of strategy and planning, and need
not be capable of performing symbolic operations. Its only duty is to accept detailed
descriptions of movements and translate them into appropriate muscular commands.

But to perform this function information about the kinematic, dynamic, sensory, and
muscular properties of the limb must be available in a usable form. This information
may not be present in the infant, and certainly must change as the organism grows.
Effective translation therefore requires maintenance of an up-to-date source of
limb-specific mechanical informaiion

The translating mechanism which converts descriptions of desired output into
motor commands plus the support mechanism which acquires mechanical information and
stores it in a usable form are the topics of interest in this paper and will be referred -

to collectively as the translator. The terms controller and translator are used
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interchangeably th;oughout this paper.

2.2 Mechanical Problems

What mechanical problems must the low level system face? The human motor
system deals with the mechanical nature of the skeletal and muscular systems, and the
laws of physics which they must obey (Meriam, 1966). The forces and torques created
by a muscle often influence a number of joints, even when the muscle is of the simple,
single joint variety. Each joint is influenced by a number of muscles, not only because
there are many muscles across the joint, but because reaction torques are produced
when muscles accelerate other joints of the body. The degree and pattern of
interaction is not constant, but depends on the limb’s position. Yet our nervous control
system effectively compensates for these mechanical interactions when precise
movements are called for. Here we examine the nature of each of these factors in a

somewhat conceptual way by developing a general form of the equations of motion.

2.2.1 Equations of Motion for a Limb

Let us begin by laying out the computations required by the translation process.
Descriptions of movements must be converted into motor commands. The acceleration
of an object, taken with its initial conditions, gives a complete description of its
movement and the force on an object is that which commands its every motion. For
this simple, unconstrained system we can specify the desired acceleration and use
Newton’s equation, F = Ma, as a translator to find the necessary force. Of course, this

also applies to rotary motion, T = J'§, where T is the torque, J is the moment of
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inertia, and § is th.'e angular acceleration. If only a limb were as simple as that.

What is the acceleration of a limb? If we take the simple case where the
coordinate system of intérest is that of the limb’s joints we can describe the
acceleration by an N-vector, §, N being the number of joints or degrees of freedom.
Newton’s equation still applies, but the torque is now an N-vector and the moment of
inertia must be expressed as a square matrix of rank N. This matrix, J, specifies the
relationship between the torques and the resulting accelerations at each joint in the
limb; j;,. = (torque applied to joint k) / (acceleration at joint i). Unfortunately, the
élements of J, though dependent on the masses of the links, are not constant. They
vary during each movement. (Note: Here we are not talking about the gradual changes
in limb mass or geometry caused by growth.) |

The off-diagonal elements of J, jik for i=k, represent inertial interactions between
joints. The amount of interaction between two joints also depends on the position
vector, 8. For some configurations of the limb interactions are pronounced, while for
others they are small. Figure 2.2 illustrates this point. In Fig. 2.2a the geometry of
the joints are arranged to allow large reactions at joint 2 for torques applied to joint
1. In Fig. 2.2b the magnitude of interaction is greatly reduced. On-diagonal elements of
J, jjk for i=k, represent the moments of inertia for each joint. They too vary with
configuration. The effective moment of inertia of a joint is determined, not only by the
masses of the links which are moved, (a link is that part of a limb between two joints)
but also by the distances between the masses and the center of rotation. In Fig. 2.2c

the moment arm, and therefore moment of inertia, are large, while in Fig. 2.2d they are
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Fig. 22 Schematic diagrams of a limb that illustrate configuration dependent
properties. Acceleration of joint 1 will cause a larger reaction torque about joint
2 in A than B due to the difference in position of joint 2. In C) the moment of
inertia of joint 1 is maximum because the center of mass of link 2 is far from the
center of rotation. D) Here the moment of inertia is almost minimized. The
gravitational torque depends on the moment arm through which gravity acts. In E
it is maximum, but no torque is produced in F.
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small.

The torque shown in Newton’s equation is only the net torque acting on the
joints. In addition to the torques applied by the muscle, (or motor), we must consider
the acceleration of gravity and the damping forces due to friction. The acceleration of
gravity must be represented by an N-vector because each mass in the limb will be
accelerated individually. As is true of the inertial terms, the gravity factors also
depend on configuration. Since the moments through which gravity acts varies with
configuration, so do the gravitational torques. (See Figs. 2.2e and 2.2f.)

Frictional torque, also an N-dimensional vector, is independent of 8, but depends’ ‘
on velocity of the moving joint, §. The friction function can be expanded into a number a
of simple terms, none of which depend on variables related to other joints:

bi(d) = by#2 - bejsen(d) + by 1 () (eq. 21)

where:
bv,i is the i’th viscous friction term.

bc,i is the i’th coulomb friction term.
bs,i is the i’th stiction term. (8’_1 is similar to a doublet.)

Unlike the gravitational and moment of inertia terms, which may be calculated from a
blueprint of the limb, the frictional terms depend on factors which usually cannot be
predicted by analysis, but must be measured. These factors are summarized by a
single net friction term, B(§), in the equations below.

A final factor relevant to the equations of motion that only introduces appreciable
torques at high velocities, is the Coriolis term. This torque is produced by
simultaneous rotation of an object about two orthogonal axes; the direction of its

action is about a third axis orthogonal to the plane of the first two. The magnitudes of
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Coriolis forces de;;‘end on the velocity and position vectors.

Standard formulations of equations of motion for limb-like devices do not include
terms for elasticity. This is because most man-made arms have no elastic forces acting
on the joints, or because such forces can be associated with the actuator’s properties.
Such terms are similar to gravity in that they depend only on configuration. For our
purposes, therefore, the gravity function is augmented to include torques due to elastic
elements.

Rewriting Newton’s equation to include each term introduced above:

T - G(O) - B(d) - C(0,8) = JO)§ (eq. 2.2)

where:
T is the actuator torque vector

G is the augmented gravitational torque vector

B is the frictional torque vector

C is the Coriolis torque vector

J is the moment of inertia matrix

8, #, and § are the position, velocity, and acceleration vectors.

This equation may still look manageable, but there is one more fly in the ointment
that aggravates and accentuates the other problems. We have shown in a schematic
way that some of the terms in Eq. 2.2 depend on positions of joint but have not
worked out the exact relationships. While the schematic argument was simple and
easy to understand intuitively, tf\e evaluation of these factors in practice is extremely
complicated (Peiper, 1968; Kahn, 1969; Bejczy, 1974). The problem is especially acute
for a serial-link mechanical device because each set of interactions must take into

account the geometry associated with interceding links. The system of coordinates

determined by the joints are not orthogonal so there is a proliferation of residual
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terms. Kahn (196-5, see his appendix A) has worked out the explicit dependencies
using a computer program which performs algebraic manipulations. His results for a
general limb having three links and three joints (N = 3) but no friction are almost
intractable, (the equations involve about 1600 terms and 13,000 multiplications) and

virtually useless for a theory of motor function.

2.3 One Control Problem or Two?

At this point it is necessary to take a short digression so that an important
question can be raised: "Is there one control problem that applies to biological and
man-made limbs, or must there be two separate problems?” This thesis is based on
the premise that for an important level of understanding there is only one.

There are differences. Human arms grow and are made of flesh and bone.
Man-made arms are constructed from metals and plastics and must be bolted, welded
or glued. But beyond these obvious, superficial differences lie important questions for
which the similarities are more significant.

Are we being too simplistic when we characterize the inervation of a muscle in
terms of a commanded force or position? It is easy to speak of motor commands when
considering a manipulator. There is usually only one current or voltage for each
actuator, and only one actuator working on a joint. Each muscle of a human arm,
however, is enervated by thousands of motor neurons (Henneman, 1968), and several
muscles simultaneously move a joint. Are we treating the elegance of the nervous
system unfairly when we reduce thé messages of thousands of receptors to the bare

essentials and say they are signaling a joint’s position, velocity, and acceleration? Just
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because a typical ;fnanipulator may be equiped with a single position and velocity
sensor for each joint are we to assume that only a single signal can be important?
These questions cannot yet be answered. We can only promise to proceed with
caution.

Despite these important differences, | feel that there is a level of approach to
the arm control problem at which the biological and man-made arms are very similar
indeed. Both are mechanical devices. The equations of motion developed in the last
section apply equally well to the links, joints, and masses of either type of arm.
Biological limbs are mechanical manipulators, and man-made manipulators are limbs.
Though the particular configuration of parts, and materials used are different, to the
extent we can talk about actuator commands and position, veIocify and acceleration
measurements, the control problems are identical.

One more point. There is an interesting parallel between the physiologists
question, "What are the control variables?” and the engineer’s question "Should we use
torque motors, hydraulic positioning devices, or velocity servos?”. Both groups,
motivated by different goals are searching for answers to the same question. The final
answer to this question is not yet known by either group. Evarts finds cells in motor
cortex that seem to encode force (Evarts, 1973), and Bizzi argues that muscles
understand final position commands (Bizzi et al., 1976; Polit & Bizzi, 1977). Meanwhile,
Victor Scheinman designs arms that use DC torque motors and the Unimate is driven by

hydraulic actuators under control of & velocity servo.
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3 The State Space Model

In this section the elements of the State Space Model are presented along with a

description of the system’s operation and expected behavior.

3.1 The Forward Computation -- Translation

Before we totally discard the equations developed in Section 2.2.1, let us
examine a special set of circumstances under which simplifications can be made. During
a very short interval of time we observe that Eq. 2.2 still describes the behavior of
the limb, but each term can be simplified. During a short interval, call it a time slice, or
just a slice, we see that the position and velocity for each joint only change by small
amounts. We may neglect these small changes or reduce the duration of the slice to
the point where they may be neglected. Once this is done each element of a vector or
matrix in Eq. 2.2 which had been dependent on the state of the system becomes a
constant. (The state of the limb is uniquely determined by the positions and velocities
of all the jqints.) The simplified equations of motion can be represented as:

Tm - Gl =a) ~ Bliy=p) - Cho-ap=p) = =¥ (ea 312
where: )
a is the position vector during the slice
B is the velocity vector during the slice
Or, more compactly:
T = Gy - Bﬂ - Caﬂ =J,0 (eq. 3.1b)
By grouping terms and making the equation explicit in torque exerted by the muscle

one further simplification can be made:
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Tm = Ja"a' +Kyp (eq. 3.2)

where:
Kaﬂ = Ga + Bﬂ + Caﬁ

This is the translation equation. It must be remembered that this equation only applies
to the motion of the limb during one time slice. Nothing prevents application of Eq. 3.2
to other time slices provided new values of J and K can be found (or are available) for
the state of the system prevailing during those slices. Eq. 3.2 may be described as the
piece-wise constant version of Eq. 2.2; the state for which the constants are chosen is
the operating point. Although the development so far indicates that this equation
calculates the torque needed at each joint of the limb, the value calculated can be the. k
net force exerted by a muscle on the tendon, or a special version of the command to
the muscle. (See Section 3.2.3) |

Supposing the required constants are available, one can take the description of
an entire movement, slice it up into enough time intervals so that the change in position
and velocity for each joint is negligible, and determine the muscular torque needed to
produce the desired acceleration for each interval. If the appropriate initial conditions
are satisfied and each torque is applied for the duration of the interval for which it is
computed, the resulting movement will closely resemble the originally specified
movement. The error can be made arbitrarily small by reducing the duration of the
time slices, provided the constants needed are available for each of these new, shorter
slices.

This scheme will only work if the accelerations present in the description of the

desired movement are limited in magnitude to those produceable by the limb’s
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actuators. Violation of this restriction will result in specification of a torque vector
which is not achievable and the resulting motion, assuming that some attainable torque
is used instead, will not conform to the desired response. It should be realized that
thi§ prdblem must be faced by any solution to the translating problem and is not unique

to the solution given here.

3.2 The Inverse Computation -- Learning

The solution given so far is only a partial description of the computations
performed by the translator since we have not yet indicated how the constants that ) .
describe the mechanical nature of the system are found, nor how they are affected by

motor experience and changes in the mechanical system.

3.2.1 Historical Perspective

von Holst and Mittelstaed (von Holst, 1954; Mittelstaedt, 1958) developed a
model designed to account for the fly’s ability to descriminate between the sensory
consequences of the fly’s own self-produced movements, and externally produced
movements. Their model used the relationship between an externally generated signal
describing changes in sensory stimulation, reafference, and an internally generated
signal describing impending chanées in the position of the sensory surface, Helmholtz’s
efference copy (Helmholz, 1867), to provide unambiguous information about movement
in the external world.

Held (1961), and Held & Hein (1962) extended the Holstian view to allow

attainment of perceptual accuracy even after changes were made to the relationship
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between activity |n the external world, and the sensory stimulation produced by that
activity. In this model the efference copy was used to "elicit the trace of previous
reafference”, which in turn was compared to the current afference.

Young and Stark (1965) proposed an elaborate model in order to account for
human performance in a tracking task. They were not directly interested in how we
control our limbs, but in how we use our limbs to control the external world. In their
model the efference copy was used to drive an internal dynamic model of the
controlied element, the output of which was compared with the afference from the
control task.

In the State Space Model all learning centers around determination of the
constants of mechanical description. The relationships between the efference copy and
the reafference are used to determine these constants that describe the mechanical
behavior of the limb to the translating mechanism. Reafference corresponds to
measurements of the acceleration vector made from the limb’s sensors, or other
sensors that monitor the limb’s activity. Efference copy is a record of the actuator
torque vector, available from the source of motor commands or from actuator sensors.
(See 3.2.3)

This model makes rather dnique use of efference copy in that no error signal is

calculated, there is no comparator, and no error correction procedure is used for

learning. Instead, the simplified form of the translation equation allows information
about the mechanics of the limb to be found by examining the limb’s input-output

relations. Mechanical properties are derived directly from the results of the organism’s
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attempts to move. Furthermore, the State Space Model represents a rather direct
example of Paul’s and Waters’ idea of an internal inverse dynamic model (Paul, 1972;

Waters, 1974).

3.2.2 The Inversion Equation _

We return,.once more, to the simplified equations of motion which governA the
system’s behavior during a time slice, with the understanding that what must be found
are the N2+N constants which comprise each J and K. (Note: It is no longer necessary
to distinguish between net torque, T, and actuator torque, Trp 90 the subscript has ‘
been dropped: T=T,, The a and § subscripts have also been dropped and should be
assumed.) For the scalar equation, (N=1):
| t=jb +k (eq. 3.3)

It is known that j and k can be found solving two simultaneous equations in two
unknowns. Once measurements are made of the torque and acceleration for two

movements j and k are calculated:

tl'tZ .
k=t - —<. eq 3.4a)
1 01_’2 01 (eq
ty -
j= 17t (eq. 3.4b)
0102
where:

k, j, and t are scalar versions of K, J, and T.
For the case where N«1, (a limb having a number of joints), N2+N measurements of
torque and acceleration must be made in order to solve N2+N equations. By analogy to

eq. 3.4
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J=7-8§1 (eq. 3.5a)
K=Tgy-[r 8115, (eq. 3.5b)
where:

T=ITyiTol . ETND - [TNe 1 T - - et ]

O =[0yidg . 10N - [NgiONai- - - HNe]

T; and §; are the i’th measurements of T and §.

Xav denotes the average: (X +Xo+ ... +Xn+1)/(N+1).
This is the inversion equation. These calculations can be performed if N+1 sets of § i
and T; are available, where the acceleration vector is the response produced by issuing
the torque vector to the limb as a command. These computations derive information
about the mechanical system from the relationship between the efference copy, T, and’ ‘
the reafference, §. Once again, the values of the N2+N constants appropriate to a .
particu_lar time slice can only be found when each me}asurement contributing to the
computation, (Eq. 3.5), was made while the limb was near the state prevailing during
the slice.

The procedure for finding the values of the mechanical constants J and K for one

time slice are given above, but the goal is to process movements which are composed
of many slices, each of which may correspond to different mechanical states of the limb.
To insure the achievement of this goal the operations of collecting data and calculating
constants must be organized. The necessary organization arises by considering a

discretized state space and the use of two types of memory; the temporary buffer and

the state space memory.
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3.23 The Comman;i—Torque Relationship
Until now discussion has centered around the torque applied to the joint rather
than the command issued to the actuator. Unfortunately, the model constrains the
relationship between the motor command and the actuator force. This relationship must
be linear in the following sense:
t =a(0,§)u+ble,g) (eq. 3.6)
where:

t is the force applied to the tendon

u is the motor command

a(0,§) and b(#,§) are state dependent constants.
This restriction says that for any given state of the limb, incremental changes in the
motor command must produce proportional changes in the torque delivered to the joint.
This is a weak restriction. The actuator torque need not be proportional to the motor
command, nor must it be constant if the command does not change. (Indeed, if a human
arm is moving and the command to the muscle does not change, the force at the tendon
will increase if the muscle is stretched and decrease if unloaded.) The only

) requirement is that given the same mechanical conditions (ie. the state does not
change) all increases in command produce changes in force which are related by a
constant multiplier.
Assuming the nature of the actuator does not conform to this restriction, the

requirement can be satisfied by introducing local torque or force feedback. The
problem solved by this local process, making sure the motor-command/actuator-output

relationship is linear in the sense of Eq. 3.6, is only one dimensional: It can be solved

easily because there are no dependencies on variables related to other joints.
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3.3 The State Space Memory and the Temporary Buffer

The system cannot have stored, nor can it calculate the constants needed for
every attainable state of the limb, for the number of such constants is infinite. The
best it can do is let each state be near a state for which data are stored or can be
stored. Let us divide the range of each dimension of the state space, (one dimension
for each joint’s position and velocity) into M intervals. The 2N dimensional state space
is then partitioned into M2N hyper-regions. If M is chosen to make the size of each
hyper-region reasonably small, and the values of J and K ére available for one state in
the hyper-region, then all the states in that hyper-region can be said to be near a
state for which data are stored. If all the measurements contributing to the calculation
of a set of constants were generated while the state of the limb was in one
hyper-region, the assumption can be made that the constants correspond to a state in |
that hyper-region. This statement will surely be true for large M.

If one keeps in mind this notion of a discretized state space, the operation of the
translator with respect to the acquisition of constants of mechanical description can be
made clear. During self-produced movements data are generated which must
subsequently be used to calculate the constants of mechanical description. The data
for these computations are pairs of simultaneously generated acceleration and torque
vectors. These pairs of vectors cannot always be used immediately because each
application of Eq. 3.5 requires N+1 sets of vectors from the same region of state
space. Since the state of the limb is constantly changing, only a limited amount of data

from each movement is pertinent to a given region of the state space at a time, and



The Model 67 Marc Raibert

the data that are ::ivailable must be saved. Hence the temporary buffer. Although its
use is quite different, the type of data stored in this buffer is similar to that of Held's
correlation store (Held, 1961).

When N+1 pairs of vectors from the same region of state space accumulate in
the temporary buffer, J and K are calculated by the translator, and they are saved.
The state space memory is organized so that it can store N2+N constants for each
hyper-region of the space -- (N2+N) ' (MZN) constants in all. In certain cases values
for J and K will be calculated for regions of the space for which previous results exist.
In order to reduce noise and provide the ability to adapt to changes in the mechanical ‘
properties of the system, new and old values of J and K are averaged with some sort "
of weighting which favors recent data.

Two ideas regarding access to the state space memory are important if the
translator is to realize its full power. A full treatment of these ideas must take into
account details of the implementation, (type of storage, dimensionality of the space,
slice duration, speed of computation, etc.), and are therefore only introduced here.

A direct interpretation of the arguments advanced in the previous section would
indicate that translation of one slice of a desired trajectory requires only one memory
access. Only data for the state of interest should be used. But suppose no data are
available for the desired state. Since the mechanical behavior of the limb varies
smoothly throughout state space, data from nearby regions could be used as
substitutes. Such a procedure has a distinct advantage during the early stages of

learning, and during generalization testing when there is a shortage of data. At these
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times it will be de;irable to make maximum use of available data, even if the values
are somewhat deviant. At least the signs will usually be correct and movement will be
possible. Responsibility for this procedure rests with the neighborhood function, an
example of which is given in Section 4.2.3.1.

The tabularized equations embodied in the state space memory are only.
piecewise constant. Each time data for a state are desired, data for a nearby state are
returned. One can imagine substantial improvements in accuracy of the resulting data if
interpolation is used. Many possible interpolation schemes exist, some involving
increased storage demands, others increased memory access and computation. A
version of the model that implicitly combines a neighborhood function with an

interpolation function is given in Section 6.2.1.

3.4 Combined Operation of the Components

Figure 3.1 is a diagram of the system under discussion. Its operation can be
summarized as follows. High level processors produce descriptions of desired
movements, § D(t), which are presented to the translator. These descriptions explicitly
state the time course of the movement so that position, velocity, and acceleration
information are available for each dimension of the coordinate system in use. The
desired movement is sectioned into time intervals or slices, each of duration At. For
each time slice Eq. 3.2, the translation equation, used in conjunction with the mechaniéal
information in the state space memory, generates a force plan that will replicate the
desired trajectory. The calculated force commands are issued to the limb and, during

the movement, a copy of the command, the efference copy, and a copy of the sensory
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Fig. 3.1 Major components of the model. The translator converts descriptions of
desired trajectories into motor commands suited to the kinematic and dynamic
properties of a particular limb. The operation employs the tabular equations of
motion in conjunction with the state space memory. Each movement of the limb
generates data which, when processed by the inversion equations, contribute to
the state space memory, and consequently, to future transiations.
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signals that indicat:e progress of the movement, the reafference, are stored.in the
temporary buffer with labels indicating the region of the state space to which they
apply. Subsequently, the contents of the temporary buffer and the inversion equation,
Eq. 3.4, are used to find values of J and K. These results are stored in the state

space memory in combination with data that might have been stored there previously.

3.5 Properties of the Model

Initial performance of the translating mechanism will not be good. Every attempt
to use information about the mechanical character of the limb will be frustrated
because the state space memory will be empty. Data describing the mechanics of the
limb are only available after movements have been processed. If no data from the
state space memory are available two things can happen. The translator could use
some preset or genetically encoded constants and proceed to generate a set of
commands even though the resulting movement may be quite different from the one
desired. Alternately, some other control system can take over when the translator
finds that it has no usable information. Under this circumstance the controller will not
take part in the production of the movement. In either case it is important that the
remainder of the translator’s fuqctions. (ie. the analysis of the efference copy and the
reafference by application of the inversion equation), be performed when the
movement is executed, even though the resulting movement may bear little
resemblance to that specified by the high level processor. If this were not the case
the system would never have the opportunity to build up its memory and improve.

(This would be something like the fellow who cannot get a job because he has no



The Model 71 Marc Raibert

experience, and cé‘nnot get any experience without a job.)

As more and more movements of the limb are made, more and more data
describing the mechanics of its operation become available to the transiator. During
this period of data acquisition the quality of movement produced by the transiator will
gradually improve. Intensive practice, repeated approximations to the same movement,
will facilitate mastery of a specific movement because a higher percentage of the
incoming data are relevant to the regions of the state space memory accessed during
replication of the movement of interest. It is also true that more movement data of any
kind are available during intensive practice. - ‘

While heavy practice of one or a group of movements should improve the ability
to execute the practiced movements, other movements will also be facilitated if they
are similar to those practiced. The type of transfer described here, from a highly
practiced movement to a similar, but less practiced one also contributes to the
appearance of a general improvement in motor performance. In fact, the characteristic
which prompts one to call the improvement general is that movements are performed
with only modest amounts of error, though never before explicitly practiced. It must
be understood that the effectiveness of intensive practice upon the .practiced and
similar movements may be inﬂuénced, to a large degree, by the details of the practice
strategy -- details considered in Section 4.3.4. Since neighboring regions are only
defined in terms of the neighborhood function, it is also important in this regard.

The State Space Model places very few restrictions on the dynamic and kinematic

properties of the limb being controlled, or the geometries of the limb’s sensors and
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actuators. A single translator can learn to control almost any limb. This is a direct
result of the tabular nature of the equations that describe the mechanical system. Each
member of the chain of transformations between response and cdmmand:

1) sensor signal - sensor acceleration (Qg.xs af (mm/secz)/volt)

2) sensor acceleration = joint acceleration (og. x4 af (rad/ucz)/(mm/ucz))
3) joint acceleration - joint torque (eg. X3,a8 (nowton—motor)/(rad/ucz))
4) joint torque - actuator force (eg. X2 a8 newton/newton-meter)

5) actuator force +» command signal (eg. X1 a8 volt/newton)

can be represented in terms of a éet of constants for a particular state. None of these .

transformations need be known in advance, nor are they ever known individually. The
translator uses the inversion equation to compute a .@ tfansformation representing the
total of these operations. Note that no p.articu|ar units need be used; the controlier
‘thinks’ in terms of actuator control signals and raw sensor readings.

From a practical point of view, this geometric freedom means that the joints can
be revolute or sliding. The forces applied by the muscles can undergo non-linear
transformations due to the joint-tendon geometry, without consequence. In fact,
actuators and sensors need not be affiliated with any one joiﬁt or subset of joints.
Reafference can take the form of visual feedback just as readily. as joint oriented
proprioceptive feedback, provid;d the choicq be made before learning commences and

desired trajectories are described in the chosen coordinate system.

To recapitulate, the controller described here will exhibit the following desirable |

properties. It will use practice to learn to translate descriptions of desired trajectories
into motor commands. Training will transfer among similar movements and the system

will adapt to mechanical changes. The geometry of sensory, linkages, and actuators is

| 8
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quite flexible.

At this point | must reiterate that all properties of the motor system are not
being attributed to the transiating mechanism. Just because the translator learns and
adapts does not mean that other processes do not also learn and adapt. It is assumed

that they do.

3.6 Discussion of the Model

It should be stressed that the reason there is learning is nat that errors in
Previous movements are explicitly corrected, nor that errors in the constants which
specify the mechanical properties are explicitly corrected. Movement errors can only
be detected if desired and produced trajectories are compared, but this is never done

by the system presented here. Motor performance is gradually improved with

experience for two reasons:

1) Each movement submitted for translation requires data from a number of
regions in the state space memory. More of these data are available
when the system is more experienced, because these data are
generated directly from the movements which comprise experience.

2) If there is any noise in the system (there always is noise in physical
systems) the data available from the state space memory become more
accurately specified when they are calculated a number of times
because noise is reduced through averaging.

When the constants for a region of the state space memory are calculated a
number of times, the average of those calculations will converge upon the true value of
the mechanical properties they represent provided the mechanical properties of the
limb are constant and there is zero mean noise in the system. In the event the

mechanical properties are not constant -- a situation which can occur when the
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organism grows, th.‘e muscles get stronger, or the sensory elements change -- repeated
calculations of the mechanical constants will reflect the changing properties and
ultimately converge some time after the limb stabilizes. The exact nature of this
adaptation process depends on the rules of combination that apply to the storage of
new data into the state space memory. The only statement on this score to be made
here is that a weighted average which favors recent data performs in an adaptive way.
Improved noise rejection is demonstrated, however, if the time-constant of the memory
is as long as possible, while still being short with respect to the time-constant of
changes in the mechanical properties of the limb.

There are two reasons for generalization between similar movements:

1) Two similar movements will use data from the same hyper-regions of
the state space, or from neighboring regions. (This type of transfer
might correspond to Thorndyke’s identical elements theory, though he
probably had a higher level process in mind (McGeoch, 1952;

Hilgard & Bower, 1975).)

2) Due to variations occuring during practice, training of one movement may
generate data appropriate to other similar movements, even if no
hyper-regions are in common.

These two processes interact, and are not distinguishable in all cases. By similar |
mean that the same or nearby regions of the state space memory are used to generate
the movement. This definition is quite limited. All the problems of pattern recognition
and pattern description bear on this question of similar movements and more will need
to be known about task analysis and motor function before adequate definitions are

possible.

The ability to plan trajectories in a range of coordinate systems could contribute
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a high degree of added versatility to any controller. Such a device could be trained to
plan trajectories on the basis of measurements and targets in a Cartesian _coordinate
system, a polar system, a joint system, or any of a large class of other coordinate
systems. This idea is appealing if one thinks of visual information as being specified in
a cartesian or polar-like system while proprioceptive sensors work in joint coordinates.
This idea is especially important in view of the fact that it could allow an arm to be
controlled on the basis of on-line visual space errors, provided the transiator is used in
the reprogramming mode. A servo mechanism would require an additional coordinate
transformation process in order to perform this function. Due to the tabular nature of t
the state space memory the transformation of coordinates takes place in the SSM at no "
extra cost .

Young and Stark (1965) and others have proposed use of the internal dynamic
model as a mechanism for learning and adaptation. (These systems are also called
Model Reference Adaptation Systems (MRAS), (Landau, 1972).) They argue that
commands can be tested on the internal model and adjusted until they produce the
desired response. This idea can be made to work, but | would like to stress a concept
which represents a different point of view -- the internal inverse dynamic model (Paul,
1972; Waters, 1974). The idea here is that the a motor learning system should have a
transfer function that converts responses into commands -- the inverse of the
operation performed by the plant -- not commands into responses. The overall
transfer function is the identity matrix, I, the desired resuit.

The internal dynamic model allows one to simulate the inverse function with an
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analysis by synthe:sis type approach (Eden, 1962). The State Space Model, however,
because its uses sets of extremely simple equations to describe the plant’s behavior,
can directly calculate the required inverse functions for each region of space. It is only
fair to stress that | am arguing point of view rather than computational approach.
Iterative techniques for solving an inversion computation, (Young and Stark’s approach
is such an iterative procedure), are quite common and legitimate. But it is important to
conceptualize the operation in clear terms.

The areas of motor physiology that deal with details of motor control problems
have not advanced sufficiently to have developed a vocabulary suitable for discussion - ‘
of problems related to learning. | therefore take the liberty of using general |
psychological terms which convey the rough intent of my meaning. The terms transfer
and generalization are cases in point. They are used throughout this thesis to describe
various properties, yet most of the biological learning situations in which transfer and
generalization are defined and studied involve much higher-level tasks than those
studied here. In this regard, my use of these terms is perhaps metaphorical.

Generalization usually refers to a lack of discrimination between or among stimuli
and transfer refers to the effect a procedure has on a number of similar responses.
The distinction between sets of ‘stimuli and sets of responses cannot be drawn so
sharply here. Each request for data from the state space memory specifies a state.
This state acts as a stimulus, (Marr (1969) calls it the context), which is generalized by
the neighborhood function. On the other hand, practice of one movement often

produces data for remote states which are only appropriate to other movements. This
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effect is more like"vtransfer. The two affects combine to produce one behavioral resuit.
The two terms are used interchangebly here.

A set of experiments by Held and Freedman (1963) and Held and Hein (1963)
showed that self produced movements are required for motor learning and movements
produced by an external agent are not adequate for learning. The state space model
also behaves in this manner. Measurement vectors can be produced and learning can
take place, only if torques are generated in a way that makes the actuator commands
known to the system. If sensors are used to measure the torques applied at the joints
(Section 5.6.1) rather than storing an efference copy, the forces that accelerate the
limb must be applied in such a way that the sensors are stimulated. Biologically
speaking, this means that tendon receptors adequately measure the forces delivered to
the joints only if forces are applied through the tendons -- movement of the arm by a
cradle does not produce such stimulation. By the way, any mechanism that relies on a
form of the equations of motion for control and learning will probably have this

constraint. The system proposed in Section 6.2.3, however, does not.

- 1 8
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4 Implementation and Test

The predictions of the last chapter are based on reason and intuition; this
chapter and the next examines these predictions experimentally. | would like answers
to the following questions:

1) How well does the translator perform vis-a-vis its expected desirable
properties? '

2) How does the behavior of each component of the translator influence
overall performance and contribute to successes and failures?

3) What relationships can be drawn between the behavior of the translator
and that of the human?

4) How might the processes described here coexist with other models for
control?

Answers to these questions depend on data obtained using a variety of tests applied
to an implementation of the model which, it is hoped, adequately reflects its power and
its weaknesses. These data include measures of overall performance during learning
and adaptation, as well as information about the behavior of internal variables.

In order to evaluate and verify the power of the model, a set of computer
programs were developed to embody the various computational elements. These
programs are used to control a r;\echanical arm in order to study the detailed nature of
the resulting movement. A number of notions have been introduced -- the translation
equations, the temporary buffer, the inverse computations, the discretized state space
memory, desired trajectories, and a translation process -~ which now have to be made

concrete.
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4.1 Facility

A PDP-11/45 computer is used to perform all computations, to issue commands
to the manipulator, and to make measurements. The manipulator is the MIT-Vicarm,
manufactured by Victor Scheinman. It has six degrees of freedom; the three joints
used in this study, (N=3), allow the wrist to be positioned arbitrarily within the arm’s
work space. See Fig. v4.1. Each joint is powered by a DC torque motor and provided
with a clutch-type brake which can be used to hold the arm stationary when no
movement is in progress. The PDP-11 may, through suitable circuitry, specify the
current delivered to each motor. DC torque motors have the characteristic that the
torque they deliver is proportional to the winding current, independent of armature
velocity. Since the currents for each motor may be specified independently and
simultaneously the PDP-11 computes a vector which determines the torques applied to
the joints of the arm.

Signals proportional to angular position and velocity are available from
potentiometers and tachometers provided for each joint. When a movement is made
the computer makes position and velocity measurements every 10 msec. In addition
the velocities, sampled every .5 msec,, allow the accelerations to be estimated using
least-mean-square error techniciues. A record of each movement can be saved for
future use where each record represents up to 1.2 seconds of movement and contains
position, velocity, acceleration, and motor current information for each of the three
joints.

The mechanics of the joints are completely backdrivable -- the torque produced
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Fig. 4.1 Layout of the first three joints of the MIT-Vicarm manipulator. ¢ 1 acts
about the vertical axis. The manipulator is about the size of a human arm;
lo=.273m, h =/3=.059m, I2=14=.203m. Each joint is provided with a DC torque
motor, a potentiometer, a tachometer, and a clutch-type brake. The diagram is
from (Horn and Inoue, 1974) with modifications.
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by the motor plus:externally induced torques sum to determine the motion of the joint.
Consequently, the motions of each joint are a function of the torques applied to all the
joints. This fact, which is generally true of biological limbs, is illustrated in Fig. 4.2. A
step of current applied to the motor which drives joint 2 caused changes in the
trajectories of joints 1 and 3. For some manipulators, these interactions may be
ignored (Paul, 1972).

Accurate acceleration information is essential to the use of the inversion
equations. Since the Vicarm manipulator has no acceleration sensors, accelerations are
estimated by fitting straight line segments to the recorded velocity trajectory for each ‘
time slice. The duration of the slice, therefore, must be selected to optimize two i
conflicting factors affecting the quality of these estimates:

1) Constant acceleration estimates are only appropriate if the actual time-

varying acceleration is nearly constant. This is most nearly true during

very short time intervals.

2) When more velocity samples contribute to each estimate they are more
precise and noise-free. Therefore, longer intervals are called for.

| examined sections of 40, 50, 60, 80, and 120 msec. (with 2 khz sampling rate
per joint) in order to find an acceptable compromise. Figs. 4.3a and 4.3b show that 60
msec., the time slice duration usgd for all data reported here, was acceptable. The
variation in acceleration estimates for 10 repetitions of the same movement are shown
in Fig. 4.3a. The repeatability of most values is very good,.indicating an adequately
long estimation interval. Fig. 4.3b, showing a rather faithful reconstruction of an original
trajectory from its estimated accelerations, demonstrates that most of the information

present in the original time-varying acceleration trajectory is captured by the
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Fig. 42 These curves demonstrate the potential for mechanical interactions among
the joints of the Scheinman arm -- a property characteristic of biological limbs.
Each movement labelled I was made by applying constant torque to each joint. In
movement 2 the torques at joints 1 and 3 were unchanged, but a step was applied
to joint 2 after 500 msec. (at arrow). Note that the position and velocity
trajectories of all three joints were affected. P-position; V-velocity.
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Fig. 43a The variability of acceleration estimates was determined by executing
ten repetitions of the same movement. During most time slices there were only

small variations in estimated acceleration, indicating an adequately long sampling
interval.
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Fig. 43b These curves show that 60 msec. piecewise-constant estimates of
acceleration are informationally adequate for description of a typical movement.
During execution of the movement, position, velocity, and estimated acceleration
were recorded. The reconstructed position and velocity trajectories were
computed by integrating the estimates of acceleration. The correspondence
between the recorded and reconstructed trajectories is quite good.
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piecewise constant estimates.

4.2 Information Processing

4.2.1 Computation of the Inverse
4.2.1.1 The Invertibility Index

In order to calculate data for storage in the state space memory, the constants of
mechanical description, it is necessary to invert an N dimensional matrix of acceleration
measurements. (Actually these are acceleration differences taken from N+1 sets of
measurements. See Eq. 3.4) One can not invert a matrix if it is singular, but N sets .
of N measurements taken from a physical system are unlikely to be strictly linearly
dependent. Care must be taken that the matrix of acceleration estimates is well
conditioned, for inversion of an ill-conditioned matrix amplifies noise (Noble, 1969). In
order to avoid the potentially disastrous effects of inverting an ill-conditioned set of
noisy measurements, two precautions are taken.

Each group of vectors are screened before inversion by a conditioning index, x,

which determines the degree to which a set of measurement vectors afe independent:

X = lA’li A'zi A’3l (eq. 4.1)
A’ {I+IIA 11 +IA3H
where:
A’,- = A,—A4

A,- is a column vector of dimension N=3
l|A]l is the norm of A.

The numerator of this index will be small if the matrix, A, is nearly singular. The
denominator insures that very large vectors do not make a nearly singular matrix

appear to be non-singular. Only sets of measurements that meet a criterion value of
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the index contribu—{e to the state space memory. When a set of vectors fail the
conditioning test, the two least contributory vectors (smallest cross-product) are
averaged together and replaced in the temporary buffer. The criterion used in these
experiments was chosen after a crude examination of results with various values. The
value used in each experiment is listed in the Appendix.
© 4.2.1.2 Use of the Generalized Inverse

In theory, the calculations that produce data for the state space memory can be
performed when only N+1 measurement vectors have been collected. When the
computations are performed in this perfectly constrained manner, the effects of noise
can be quite large. The resulting inverse rigidly applies to the measurement data,
analogous to the way a straight line fits only two data points. More than N+1
measurements can be used to reduce the effects of noise, much the way a straight line
fit to more than two data points minimizes the influence of noise present at each point.
To perform the computation on more than N+1 measurements we have to use the
generalized inverse, since a matrix must be square to be inverted in the usual sense.
Using the generalized inverse any number of measurements can be regressed in an
analogous manner to the line fit mentioned above. This operation does, in fact, minimize
the error of the inverse in the mean square sense.

The value of using more than N+1 measurements is demonstrated in F ig. 4.4.
These histograms. were made by generating a set of measurement vectors relevant to
one region in state space and inverting them N’ at a time, where N’ was 4, 6, and 8.

The value distributed is one element of the resulting matrix. The figure shows that
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when more than tl'ie minimum number of measurements is used, N'>N+1, the results are
more consistent and less subject to extreme variations. Values of N'=12 and 16 were
also tested, but the additional computational burden was not justified by the resulting
improvements in noise rejection. For this report N'=8. A discussion of the generalized
or pseudo inverse is given by Albert (1972). The particular algorithm used here, an

extension of an orthogonalization method, is given by Rust et al. (1966).

4.2.2 The State Space Memory
The state space memory is organized into a large number of small regions, each .
corresponding to a different state of the manipulator. Two factors determine the .
effective size of these hyper-regions; the parameter M, the number of divisions along
each dimension of the state space, and the range of values each state variable is
permitted to assume. The details of dividing up the state space memory are given in
Table 4.1. For the implementation using joint variables as coordinate system variables
and with M=10, (M2N or 106 defined states (for N=3)), each hyper-region measures
(15 deg)3 by (13 g§§)3. These regions are actually quite small, and the 'mechanical
properties of the arm are fairly constant throughout. Fig. 4.5a gives an idea of the
region of joint space represented in the memory. Naturally, all six dimensions of the

space can not be displayed so only the positional dimensions are represented.
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Joint coordinates are used for measurement data. B) Cartesian coordinates are
used Coordinates shown are given in mm.
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Table 4.1
Joint Coordinate Measurement
Dimension Min Value Max Value Cell Size
Position: joint 1 -85 deg 67 deg 15 deg
joint 2 0 147 15
joint 3 -30 116 15
Velocity: joint 1 -12 deg/sec 112 deg/sec 12 deg/sec
joint 2 -112 12 12
joint 3 -12 112 12
Cartesian Coordinate Measurement
Dimension Min Value Max Value Cell Size
Position: X 0 mm 400 mm 40 mm
Y -400 0 40
y4 -200 200 40
Velocity: X -613 mm/sec 68 mm/sec 68 mm/sec
Y -613 68 68
Z -613 68 68

In some tests Cartesian coordinates were used for the state space dimensions.

For those cases each hyper-region measures (40 mm)3 by (12 %)3. The region of
Cartesian space represented in the state space memory is shown in Fig. 4.5b. Again,
only positional dimensions are shown. Although Table 4.1, Figs. 4.5, and the previous
discussion deal in physically dimensioned variables, the actual implementation works
entirely in sensor uniis. Only the range of the sensor variables need be specified in
advance since the relationship between sensor units and physical units is implicitly
determined during learning.

In order to make efficient use of storage resources, the state space memory is
hash coded. Collisions are avoided through a re-hash procedure. Though another
investigator has incorporated hash coded memory as an explicit component of a system

for control (Albus, 1975), in this work the hash coded memory is merely a concession
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to a practical prot;lem -- a shortage of storage. The hashing procedure is transparent
to the translator, and has no deeper implications for the system’s operation.
4.2.2.1 Initialization
An assumption of the state space model is that memory is initially tabula rasa.
But what does that mean? For a neuronal mechanism it might be connections of zero
strength, connections of random strengths, no connections, or nothing to do with
connections. Here | have distinguished between no data and zero values. The two
situations where this question arises, entering new data into the memory and applying
data from the memory, are treated separately and explained below.
4.2.2.2 Time Constants
When new data are computed for regions of the memory, they must be stored in

combination with data that are already present. Many procedures which combine new
and old data will produce adaptive behavior. Without a great deal of theoretical
justification, having designated = the memory time-constant, the following data
combination procedure was chosen:

If k<r where k is the number of times a hyper-region has been updated,

and k<r, each new datum is weighted by 1/(k+!) and the old value is

weighted by k/(k+1) -- the first r values are weighted uniformly.

When k>r the new value is weighted by /¢ and the old value by (¢~

1)/
r should be chosen to give good immunity to noise while providing rapid adjustments to
changes in the dynamics of the manipulator. There is a direct tradeoff between these

two goals. Fig. 4.6 demonstrates the time course of the weighting factor for each

piece of data stored in the memory for various values of r. Small values of 7 give a
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to a piece of data when stored in the state space memory. There is a tradeoff
between initially large weights and long lasting weights. Note that time is not a
direct factor, but rate of decay depends on rate of subsequent memory updates.



Implementation and Test 93 Marc Raibert

large weight to ne’;v data, and the effectiveness of the data are rather transitory.

Larger values of r result in small weights, but longer lasting effects. Unless otherwise
noted, r=10 in this report. The effects of varying r are described later. (it should be
understood that the reference to time in this context is indirect: more data enter the
memory as time passes. Therefore, r has units of 1/updates. Procedures for treating

time explicitly are discussed in Sections 5.6.3 and 6.1.1)

4.2.3 Translation

When presented with the description of a desired trajectory, the transiator uses )
the tabular equations of motion in conjunction with data which describe the mechanics
of the limb to produce a set of motor commands. After dividing the desired trajectory
into 60 msec. slices, (as is done to practice movements) and accessing the appropriate
regions of the state space memory, the computation defined by Eq. 3.2, the translation
equation, is performed in order to determine a set of motor currents. What are the
appropriate regions of the memory?
4.2.3.1 The Neighborhood Function

Surely, data from the desired hyper-region are appropriate, but data from nearby
states can also be ussful. Use of data from neighboring states is justified since the
mechanical behavior of our manipulater varies smoothly throughout the state space.
Data from these neighbors can be used to advantage whenever the desired hyper-
region has never been updated with information about the prevailing mechanical
properties of the limb. This situation arises when data generated in the learning of one

part of a movement are used to replicate other parts of the same movement, or when
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a new movement rﬁakes use of data originally derived from a separate but similar
movement. The distinction between these two cases can not always be drawn very
sharply.
Experimentation with a number of data combination algorithms lead to the
following simple and effective choice:
Each of the desired hyper-regions’ first order neighbors is accessed. (A
first order neighbor differs from the desired region by only one unit on
one dimension.) The contents of each are given a weight of one. The
contents of the desired hyper-region are given a weight equal to the
number of times that region has been updated with new information.
The weighted average is used.
The range of the neighborhood function can have important effects on the
generalization behavior of the system which are discussed more fully later.
Aside from considerations regarding generalization, the constants of mechanical
description might provide better approximations of the ideal values if neighbors were

used in an interpolation, rather than merely an average. Such procedures have many

implications and possibilities, but were not employed here.

4.3 Tools for Testing

In this section a number of constructs are introduced that allow the

implementation to be tested and evaluated.

4.3.1 Prototypes
Prototypes are internal representations of ideal movements. They are used to
specify desired trajectories to the translator in the production of test movements.

They are also used as target movement during practice sessions. Each prototype, is
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produced in one of three ways:

1) The arm is moved manually by the experimenter while position and
velocities are recorded from each joint, and accelerations are estimated.

2) A set of currents are selected by the experimenter and the arm is
driven by these currents during which time the positions and velocities
are measured, and accelerations are estimated.

3) A set of acceleration trajectories are selected by the experimenter and
they are integrated to obtain position and velocity trajectories.

Each of these three methods produces position, velocity, and acceleration
trajectories for each of the joints. Method (1) has the advantage that it facilitates the
generation of complicated spatial patterns, which are difficult to decompose into the
sensory system’s coordinates. It is also important because programming industrial
robots often makes use of this method. Method (2) has the advantage that the
experimenter knows, a priori, what set of currents will produce the movement. This
can be useful in conducting tests of competence rather than performance. Method (3)
has the advantage that a set of prototype movements can be generated which vary in
carefully controlled ways (eg. starting position, final position, maximum velocity,
duration, etc.) Although all three techniques were used at some point in this study,
most of the prototypes used to generate the data included in this report were
produced using method (3).

Using method (3) sets of prototypes were generated and used to test the
controller’s performance. In order to assess the system’s ability to generalize from a
practiced movement to other similar movements, prototypes were generated in sets

whose members systematically vary in similarity. The trajectories of another series

R 8
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share final positior’;s and durations, but differ in starting positions. These sets are used
to assess the model’s ability to generalize. A typical prototype, PR-11 is shown in Fig.

4.7. Other prototypes will be described with presentation of the data.

4.3.2 Two Types of Movements

Each manipulator movement may be classified according to the way the translator
processes it. In theory, any process can generate commands used to produce practice
movements. The important characteristic of the practice movement is that it generates
data for the state space memory via the inversion, Eq. 3.4. Test movements are those '
produced by translation of desired trajectories in order to assess performance. These. k
trajectories are converted into sets of motor commands using data from the state
space memory and Eq. 3.2 When these commands are issued to the arm a test
movement results. In principle a movement can be both test and practice, but for the
sake of clarity no such overlap was permitted here.

In order to make use of a practice movement it must be divided into short
duration pieces slices, just as is a desired trajectory. The duration of the slice was
chosen to be the same as that used for translation and estimating accelerations, 60
msec. Once a practice movement has been divided into sections, vectors are produced
and stored in the temporary buf}er. These vectors contain a record of the motor
currents, one for each joint, a set of acceleration estimates, and information regarding
the state of the limb prevailing during the time slice. These measurement vectors are
collected in the temporary buffer until enough (N) are present for a single state to

perform an inverse computation.
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Fig. 4.7 These curves describe a typical prototype used to evaluate the model;
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4.3.3 Performance Indices
The behavior of the model is measured by applying performance indices to the
test movements. Learning curves are created by plotting the values of one or another
of these indices against the number of practice movements made by the system at the
time of the test. Each index is applied to an error curve found by comparing the
movement to the test prototype. These error curves are only used for analysis and do
not effect performance of the system. The indices in use are:
1) Root-mean-square position error - The mean square position error for
each joint and for all three joints is cumulated for the entire trajectory.
The square roots of these values are reported. (RMS PE)
2) Root-mean-square final-position error - The position error at the end of
a specified time interval is found for each joint. The total position error
is found by taking the square root of the sum of squares of the errors
for each joint. Since the joint coordinates are not orthogonal, this total
measure is not equivalent to a resultant error in cartesian space. (RMS

FPE)

3) Root-mean-square acceleration error - Same as RMS PE, but
acceleration error is found. (RMS AE)

4) Root-mean-square velocity error - Same as RMS PE but the velocity
error is found. (RMS VE)

Prototypes and movement plans have 1.2 sec. duration, but each performance
indices used in this baper are usually only applied to the first 500 msec. of the test
movement. This was done for practical and theoretical reasons:

1) Many movements made early in learning must be stopped before

completion to avoid damage to the manipulator. Therefore, they are
shorter than 1.2 sec. This argument does not apply to competence

indices.

2) Most of the data produced by the practice algorithm are only useful for
planning the first half the test movements. Fig. 4.8 shows that this was
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true for one typical set of 3000 practice trials for one practice
prototype. The extra investment of time needed to generate practice
data for all sections of a prototype seemed unjustified.
3) All available evidence indicates that open loop segments longer than
300 msec. are not necessary for good control and are not found in
nature (Hammond, 1956; Melvill Jones & Watt, 1971; Pew, 1974).
4.3.3.1 Competence Index
It is useful to distinguish between performance of the system and performance of
the manipulator under control of the system. The latter is measured by the
performance indices given above, while | feel the former should be assessed by a
competence index. Drawing this distinction between competence and performance
allows us to ignore extraneous factors related to the production of movement not
under the influence of the controller. Furthermore, we can evaluate the controller’s
behavior in terms of variables more closely related to its internal workings. Of course,
the only good contro'ller is one which causes production of quality limb movements, but
our success in finding such models and modifying existing ones is improved by
 measuring these internal variables in addition to terminal behavior. After all, do we
want to casually reject a controller which produces very nearly the right control just
Because the manipulator behaves poorly under that control? (This can occur, for
instance, when the mechanics of‘the manipulator include discontinuous non-linearities
like stiction.)
One added feature of a competence measure is that it can be used to evaluate

the entire 1.2 sec. duration of a movement while performance indices often must be

restricted. The following index conveys information about the competence of the
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Fig. 48 The measurement vectors produced by 3000 practice trials are shown
distributed on the time slices of practice prototype PR-11. Note that most of the
data apply to the first 10 slices. (10 slices are 600 msec.)
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- system to generaté motor plans while de-emphasizing the problems of production:

Root-mean-square motor-current error - Same as RMS PE but the
motor current error is found. (RMS MCE)

This index gives a measure of competence, but can only be used when the currents
which will reproduce the prototype trajectory are known. This is normally the case

only for prototypes generated from motor-current plans (see section on prototypes),

but it was possible to estimate the currents for the prototypes used here. Since

stiction plays an important role in the behavior of the Vicarm manipulator, there is not a
unique motor current that will hold the arm stationary. For this reason this index often ]

includes an artifactual constant term that does not improve with practice whenever a

test movement incorporates a period during which the arm is stationary.

4.3.4 The Practice Algorithm
The program which generates practice movements is not actually a part of the

- controller. Since the behavior of the translator during testing is so intimately affected
by the details of the practice algorithm, its operation is described here along with the
implementation’s other components. Once a movement is designated as the desired
movement the practice routine takes the following steps:

On each trial, for each section and joint, the Newton-Raphson method is

used to choose a motor current predicted to achieve the desired

acceleration. Only the previous two trials are used in making this

prediction. Whenever the acceleration errors on the previous trial are

within a set of limits for the section for all three joints, the motor

currents for that section are not changed.

An example of seven consecutive practice trials are shown in Fig. 4.9 where the nature

of progressive improvements is demonstrated. Since the duration of each practice



- 102

Trial No. Joint 1 Joint 2 Joint 3
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1] Time 12 sec
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Fig. 4.9 Seven consecutive trials from a typical practice session are shown. Each
curve includes the practice prototype, PR-11, and the attempted movement. At
the beginning of each trial the manipulator is servoed to the correct starting
position for the prototype. In order to avoid damage to the arm, most practlce
movements had to be terminated before completion.
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movement varies, the number of trials of practice does not precisely indicate the
amount of data generated for subsequent analysis.

It must be stressed that although the practice program relies on error correction
Procedures to ensure convergence, the learning displayed by the controller does not
rely on error data in any way. The selection of this particular practice algorithm was
made to simulate, in a simple way, the short term behavior of humans when practicing.
Levine has preliminary data which suggest that a similar iteration method may be used
by the cat when learning to make an optimal jump (Levine, 1975).

Originally it was assumed that the details of the practice algorithm would have
little effect on the performance of the system, but this turned out to be quite false.
The behavior of the translator depends on how many data are generated, how variable
they are, and to which regions of the memory they apply. The rules which govern the
former two of these factors are in direct conflict, at least for the simple algorithm used
in this project. In order to produce useful data the practice algorithm has to produce
movements which vary the output currents independently and by significant amounts.
Once the practice algorithm converges upon an acceptable set of accelerations,
(acceptable means within the acceleration limits; AL), the output currents are not
changed for that section. Therefore, thé same set of output currents are produced
repeatedly -- not good for calculating mechanical constants.

These acceleration limits (AL) do insure, however, that once the correct values
for the output currents are found, they are maintained so that subsequent sections can

be practiced and processed. When the allowable error for a section is reduced, a

M. ¢
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larger variety of movements is produced, but those sections late in the movement
rarely receive enough attention to produce adequate measurement vectors. The
effects of using AL = 50, 75, 90, and 115 are shown in Fig. 4.10. Limits of AL=75
provide a good tradeoff between variety of data and number of sections practiced.

This limiting effect can be overcome to some degree by practicing the movement
in parts. A simple servo program moves the arm to the correct initial conditions for a
point in the middle of the movement, after which the practice program continues with a
normal practice movement. People are known to use such a strategy when they break '
a complicated movement into parts during learning (Welford, 1968; Cratty, 1970). F ig; ‘
4.11 shows how this procedure can redistribute the effects of practice which would
normally generate data primarily for the initial sections of the praﬁtice movement (Fig.
4.11a). When the servo is used to start the movement, sections in the middle of the
movement also receive data (Figs. 4.11b, ¢, and d).

The choice of parameters has been described. In summary: Three manipulator
joints are used for testing (N=3). Each dimension of the state space memory is divided
into ten intervals, resulting in 108 hyper-regions (M=10). Movements are processed in
terms of 60 msec. sections and eight measurements are inverted at a time (N'=8).

When new data are stored into ihe memory they receive a weight of one tenth, and old
data receive a weight of nine tenths (r=10). When the memory is accessed, data from
the desired hyper-region and from the first order neighbors are used in combination.

The practice algorithm has been adjusted to ganerate moderately variable data while

remaining near the prototype trajectory (AL=75).
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Fig. 410 Manipulating the practice algorithm’s acceleration limit affects the
algorithm’s effectiveness. Three measures are plotted vs. the value of this limit:
1) Number of inverses computed for regions accessed directly by practiced
prototype. (+) 2) Number of inverses computed for neighbors of practice
prototype. (triangles) 3) Number of prototype sections for which data are
provided. (squares) Acceleration limit, AL, is 75 for data in this report.
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Fig. 4.11 Changing the starting section for a practice session redistributes the
session’s effect. For each histogram 250 practice trials were executed. At the
start of each trial a servo routine was used so that the movements could start
with time slice: a) 1, b) 6,¢c) 11, d) 16. The histograms show the number of
usable measurement vectors generated for each section of the practice prototype,
PR-1. The solid bars indicate vectors that apply to sections in the prototype,
while the open bars indicate vectors that apply to first order neighbors (see text).
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4.4 Test Procedures

During each practice session, the practice program, using one of the prototypes
as a goal movement, generates 100 practice movements. At the end of each of these
100-trial blocks, the movements are processed by the translator, creating data which
describe the mechanics of the manipulator. The prototypes are then used to plan test
movements using the tabular equations of motion and the data from the}state space
memory. After the test movements are executed and recorded the performance and
competence of the translator is measured. The resuits are used to construct learning
curves which plot the values of a performance index as a function of experience. This ‘
procedure lies at the heart of all data reported in this thesis. Testing for | ‘
generalization and adaptation, however, requires additional procedures.

To show generalization, sets of prototypes are generated which vary
systematically in one or more properties. One of the set is chosen as the practice
prototype and is used as the target of subsequent practice sessions. All members of
the series are tested after each practice session. In addition to presenting sets of
learning curves a learning index has been defined which allows learning curves to be

compared:

Ll = Z(eQ - ei)
2eo

where:
e; is the RMS FPE for the i'th test movement

eg is the pre-training performance value.

T is the sum from i=1I to n-1
n is the number of test movements

LI=0 if no learning takes place and LI+1 with total, immediate learning. This index is
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most useful when the learning curve is roughly monotonic. Generalization curves are
composed by plotting LI for each test prototype of a series.

Adaptation is tested by establishing a baseline of performance with one
prototype, after which the disturbing manipulation is made. Then additional practice is
processed and the post-manipulation adaptation curve is plotted along with an

indication of the pre-adaptation baseline performance.
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- 5 Results and Discussion

5.1 Control and Learning

Position trajectories for a series of test movements made during a learning
session are shown in Fig. 5.1a, each separated by 500 practice trials. The prototype
which described the desired movement to the transiator, PR-11, is also plotted. Each
succeeding test movement is a better replica of the desired movement than the
previous one, and the last movement shown is very similar to the prototype. Most of
the residual error after 3000 practice trials is caused by deviations from the desired - t
trajectory of joint three. Stiction forces in this joint are especially large, and are '
probably responsible for the observed deviations. Fig. 5.1b shows velocity trajectories
for the same set of movements. The velocity deviations for joint 3 shown here
support the stiction explanation for these errors.

The gradual improvement in performance indicated by Fig. 5.1 is expressed in
quantitative form in Fig. 5.2. The performance index, root-mean-square final-position
error (RMS FPE), was evaluated for each test movement and plotted against the
number of practice trials processed by the system. The learning curve shows a rapid
initial improvement with subsequent apparently asymptotic behavior.

Acquisition data for another test movement, PR-12, are shown in Figs. 5.3 and
5.4. (Same practice data as above.) Stiction was not a problem here because the
motor-currents planned to produce this higher-velocity movement were adequate to

overcome the static force on joint 3. (See last row of Fig. 5.3.) The learning curve
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Fig. 5.1a Attempts to replicate prototype PR-11 are shown. Each is separated by
500 practice trials and is plotted along with the desired trajectory. (Position
trajectories.)
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Fig. 5.2 After every 100 practice trials a set of test movements are produced
and the performance indices are applied. This learning curve shows the .
performance index, RMS FPE plotted against number of practice trials. These data
summarize Fig. 5.1. X
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Fig. 5.4 These learning curves summarize the data of Fig. 5.3. Two performance
indices and the competence index were used. A) RMS FPE, performance. B)
RMS AE; Note the irregular, non-monotonic behavior. C) RMS MCE, competence.

.
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shown in Fig. 5.4a"presents a more dramatic example of acquisition. The abrupt
improvement occuring after 1300 practice trials is characteristic of the SSM’s learning
behavior. These sudden improvements occur when new inverses are found for regions
of the memory for which data did not previously exist. They are also important
because they introduce ambiguity into the asymptotic nature of a learning curves.
Though the learning curve for PR-11 looks asymptotic after 3000 trials, (see Fig. 5.2),
a sudden improvement might occur at any time with additional practice.

One apparently peculiar resuit is that a set of test movements may show that the
RMS FPE and RMS PE are converging nicely to small values while the RMS AE behaves ‘
somewhat disorderly. (See Fig. 5.4b.) Although one might suppose that these two
measures are closely linked, some thought shows that small error in acceleration near
the beginning of a movement may contribute to very large position errors, while
acceleration errors near the end of a movement may not influence position error at all.
On the other hand, there may be no change in acceleration error, or even a net
decrease, while position errors have become quite large.

Fig. 5.4c shows that during the practice session the motor currents planned by
the translator approach those which are known to produce the desired movement. The
competence index, (RMS MCE), was used to produce this learning curve. As noted
earlier, this curve may be affected by a constant error because the friction
compensation term is not unique when the joint is stationary.

Gravity compensation could be tested separately from dynamic terms by using a

movement which has no accelerations. Translation of this degenerate trajectory resuits
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in an output determined by the non-inertial terms stored in the memory, the K terms.
Since the velocities for such a movement are all zero, Coriolis and frictional forces are
Zero and gravity compensation is the only factor. A learning curve for this null or
hold-still movement, PR-17, is shown in Fig. 5.5. The speed and completeness of
learning is unrivaled by any other curve presented in this thesis.

Figures 5.1 through 5.5 provide substantiation for our basic claim; the state
space model can acquire control of a limb-like mechanical device by processing data

collected during movements of that device, without the use of error information.

5.2 Generalization

In addition to learning to perform new movements when they are practiced, the
SSM should transfer training, or generalize from practiced movements to movements
which have never been practiced, provided they are sufficiently similar. Initial attempts
to verify this claim were only partially successful, though subsequent data provided
more complete support for these ideas. Both sets of resuits illustrate properties of

the state space model vis-a-vis generalization.

5.2.1 The First Generalization Test

Fig. 5.6 plots the set of pt:ototype trajectories first used to test for
generalization. The movements in this set consisted of a graded 'series, each having the
same initial and final position, but differing in duration, and therefore velocity.
Prototype PR-11 was practiced and the normalized learning curves of Fig. 5.7 plot

acquisition for each prototype of the set throughout a session of 3000 practice trials.
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Fig. 5.6 These prototypes, PR-10, PR-11, PR-12, and PR-13, have the same
starting and ending positions, but vary systematically in duration, (1080, 960, 840,
and 720 msec. respectively). They were used in initial assessments of
generalization.
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Fig. 5.7 Prototype PR-11 was practiced and each member of a graded set of
prototypes (shown in Fig. 5.6) was tested. The data for each curve are normalized
so relative improvement is shown.
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Though transfer was extensive, (every prototype showed substantial improvement), a
systematic deterioration of performance for dissimilar prototypes did not occur. In fact,
Prototype PR-12 showed substantially better learning than the practice prototype,
PR-11. In order to quantify these data the learning index, LI, was applied to the set of
learning curves and the resulting generalization are plotted in Fig. 5.8 (triangles). The
data show an unsystematic variation in generalization, despite the use of test
movements that vary systematically in their relationship to the practice prototype.

These data satisfy the strict definition of generalization, but they are peculiar in
certain respects. Normally, one expects a gradual deterioration in performance as the t
test movements become more and more different from the practiced movement. Such a ‘
systematic variation was not found among these performance curves. On the other
hand, practice of one movement is clearly shown to improve performance of the others.

Perhaps | should clarify why | am unhappy with results which indicate that the
controller does not generalize poorly among dissimilar movements. After all, the goal is
to find efficient solutions for learning, and a controller which performs well on a number
of movements with little practice is desirable. There are two very general principles
which govern such solutions. |

Principles of Generalization

1) A controller should maximize the use of available data by providing
access to them whenever possible.

2) A controller should minimize the misuse of data by restricting access to
them whenever necessary.

Since the dynamic behavior of the manipulator varies smoothly throughout state space,
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Fig. 5.8 These generalization curves were produced by applying the learning
index, LI, to sets of learning curves. (Triangles) The data from the normalized
learning curves, Fig. 5.7, are shown. There is no systematic generalization.
(Diamonds) The competence learning curves of Fig. 5.9 were analyzed. The

.generalization curve is more systematic, but differences between prototypes are
small (see text).
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data generated for_one region of the state space memory can be made available when
planning movements through other, nearby parts of the space. But this sharing of data
cannot go too far or the state dependent variations in mechanical properties will lead
to the generation of very poor trajectories.

Each of these principles should induce a generalization gradient in the controller’s
behavior. The first because inappropriate use of available data will produce bad
trajectories. The second because unavailability of data will produce bad trajectories.
For these reasons our data must show a gradient in performance in order to verify our
analysis of generalization.

One factor, closely related to these principles may be held responsible for thel
lack of observed regularity. Each trajectory was replicated with roughly equal
precision -- replication of prototype PR-13 was as good as PR-11. Since the range of
movements chosen for the tests was relatively small, none were sufficiently different
from the practice movement to involve substantially changed mechanical behavior. Nor
were much data required from unfilled regions of the state space memory. This
problem may be solved by selecting test movements which span a larger range of
movement space.

Another factof, related to -the individual characteristics of certain trajectories,
caused some to be replicated much more faithfully than the practice movement --
replication of prototype PR-12 was better than PR-11. A movement may be easier or
harder to learn and replicate for a number of reasons. it may have fewer low velocity

components, require more data from the memory, bear a particular relationship to the
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practice algorithm, etc. Some of these factors, those related to production rather than
learning, can be eliminated by examining competence rather than performance. (See
Section 4.3.3.1)

Fig. 5.9 plots the competence learning curves for the set of tests previously
shown in Fig. 5.7, and Fig. 5.8 (diamonds) provides a quantitative summary. The results
are somewhat more orderly for these data: The practice prototype is near the peak of
a unimodal generalization curve, however, differences between prototypes are fairly
small. The differences in form between the competence and performance generalization
curves shown in Fig. 5.8 verifies the existence of prototype-specific easiness factors. - ;

The lack of substantial differences between pairs of prototypes for performance
and competence measures, indicates a poor choice of test prototypes. Indeed,
practicing one movement facilitated performance of others, but the expected gradual

deterioration of performance as the test trajectory varies was not observed.

5.2.2 The Second Generalization Test

This time each prototype trajectory in the series of five was chosen so that
successive members shared fewer regions of the state space memory with the practice
prototype than the previous ones. All members of the series had the same ending
position and duration, but they \;aried in starting position. (They also varied in
velocity.) The members of the set are plotted in Fig. 5.10. In order to control for
gradients which might result from prototype-specific properties, two learning sessions
were run.

In the first of these sessions prototype PR-20 was practiced while all five



1.0

MoN" LWER

124

PRACTICE TRIALS (X100)

Fig. 5.9 The competence index, RMS MCE was applied to the learning data used to
generate Fig. 5.7. The resulting competence learning curves are plotted here.
Performance difficulties are eliminated here resulting in somewhat more systematic
generalization data. Also see Fig. 5.8 (diamonds).
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Fig. 5.10 These prototypes, PR-20, PR-21, PR-22, PR-23, and PR-24, have the
same ending positions and durations, but vary systematically in starting
position,((.285m,-.145m,.12m), (.265,-.145,1), (.245,-.145,.3), (.245,-.165,6),
(.245,-.185,.9), respectively). They were used in additional tests for
generalization.
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members of the se:ries were tested (PR-20 through PR-24). The learning curves are
shown in Fig. 5.11a. In the second session the same test prototypes were used, but
PR-23 was practiced. (See Fig. 5.11b.) The data from these two sessions are
summarized by the generalization curves given in Fig. 5.12. The gradients show just
the type of behavior we have come to think of as typical of human performance
(Mednick, 1964): Practiced movements are improved most and similar movements less.
The shift of peak learning with change of practice prototype, (see Fig. 5.12), rules out
the possibility that extraneous effects or the choice of test movements were

responsible for the observed gradients.

5.2.3 Type Il Generalization

So far only one type of generalization has been discussed -- that which is
typified by improved performance of one task after practice of a different, but similar
task. Let us call this Type | generalization. We now consider two other forms of
generalization, called here Type lla and llb. It may be an overstatement to call theme
types rather than measures, but the underlying mechanisms are somewhat different.

When a movement is practiced after a baseline of performance has been
established for a similar movemgnt, one can expect rapid learning. (An example might
be the rapidity with which the tennis player learns the correct stroke for squash.)
There are two factors which contribute to such an effect. First, the initial level of
performance will often be better than exhibited by the naive system. Any given level
of proficiency will then take less time to achieve. | will refer to this as Type lla

generalization though it is really only the result of previous Type | generalization.
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Fig. 5.11a Prototype PR-20 was practiced and prototypes PR-20 through PR-24
were tested. The resulting learning curves are shown. The practice prototype
shows the most improvement.
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Fig. 5.11b Prototype PR-23 was practiced and, once again, prototypes PR-20
through PR-24 were tested. The resulting learning curves are shown. The
practice prototype shows the most improvement.
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Fig. 5.12 Generalization curves for three conditions are shown. Diamonds)
Prototype PR-20 was practiced (Fig. 5.11a). Triangles) Prototype PR-23 was
practiced (Fig. 5.11b). Squares) After a baseline of 2400 trials of practice of
prototype PR-20, 2400 additional practice trials of prototype PR-23 were
executed. No Type Iib generalization is revealed. Prototype PR-21 shows
retroactive inhabition.
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Secondly, improve;hents may actually be more rapid: Since inversions only take place
when the required number of measurement vectors are available from the temporary
buffer, the presence of un-inverted, but accurate measurement vectors should facilitate
learning. This will be called Type Ilb generalization.

The practice data generated for the previous Section, 5.2.2, were re-used to
test for Type Il generalization. After establishing a baseline of 2400 trials with
practice prototype PR-20, 2400 additional trials were generated using PR-23 as the
target. Fig. 5.13 shows the set of learning curves generated under these conditions.
Fig. 5.14, an explicit comparison of acquisition of prototype PR-23, with and without
Previous practice, clearly demonstrates Type lla generalization. Performance of PR-23
is initially and subsequently better when the system has previous experience than
when it does not. The figure shows, however, that the rate and time-course of
learning for PR-23 are almost identical to the case when no previous data were
present; no Type lib generalization. The generalization curve depicted in Fig. 5.12
(squares) summarizes the data of Fig. 5.13. It further argues against Type b
generalization since the index used, LI, which only measures learning relative to the
starting value, yields about the same value for both cases. Type lib generalization is
not demonstrated.

Fig. 5.13 reveals another interesting process. Practice of PR-23 causes a slight
deterioration of performance for PR-21. This result is an indication that the second
principle of generalization is at work, (see Section 5.2.1), and can lead to retroactive

inhibition. Data generated for PR-23 were made available to PR-21 through the
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Fig. 5.13 A set of learning curves resulting when practice of prototype PR-23 is
preceeded by 2400 trials using PR-20 as the practice prototype. Though Type lib
generalization is not shown, some retroactive inhibition of prototype PR-21 was

observed. Also see Fig. 5.12 (squares).
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Fig 5.14 An explicit comparison of learning of prototype PR-23 with and without
previous experience reveals little difference. Note, however, that the
improvements accrued in the previous situation are not lost.
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neighborhood funcfion, even though they were not quite suitable. This points up the
care with which the neighborhood function must be chosen.

This test, learning with a baseline, is important because, in addition to testing for
another kind of generalization, it most nearly resembles normal steady-state operation
of the system. Only in the rare case of a brand new controller would the state space
memory and the temporary buffer be tabula rasa, yet almost all of the experiments
described in this report begin that way.

Figs. 5.6 through 5.14 show that the system can generalize between similar
movements, that intensive practice of a particular movement improves its execution
more than other movements, and that the system’s general level of performance

improves during practice.

5.3 Adaptation
5.3.1 Inertial and Elastic Loads

It is claimed that the model will adapt its motor commands to compensate for
changes in the mechanics of the arm. Fig. 5.15 illustrates how the arm is modified to
test this property. In one case (Fig. 5.15a) a .75 kg weight is attached to link 3 of the
arm. The moments of inertia of all links and the effect of gravity on links 2 and 3 are
increased. In the other case a spring, having a constant of 1.85 kg/m, is attached
between link 2 and ground. (Fig. 5.14b.) Only static properties of the limb are
changed by this manipulation.

The general finding is that application of a mechanical load causes a temporary

disruption of motor control, but control is restored after practice with the new

N 8
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Fig. 5.15 Two methods of applying loads in order to disturb the manipulator’s
behavior are shown. A) A .19 kg. weight is attached to the third link of the
manipulator. B) A 1.85 kg/m spring is attached from the second link to ‘ground’.
When movements start the spring is stretched .83m and runs from coordinates
(.17m,.0m,.25m) to (.02m,.70m,1.20m); see Fig. 4.1
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mechanical situatic;n This result is demonstrated by the data shown in Fig. 5.16.
These curves were produced by establishing a 3000 practice trial baseline upon which
the effects of disturbances were assessed. The figure shows that both types of load
cause a large increase in error which is subsequently reduced. Although these resuits
satisfy minimal expectations for adaptation, manipulations designed to improve the rate
of adaptation were performed. Two factors might be responsible for retarding
adaptation:

One factor arises because measurement vectors remain in the temporary buffer
until they are used in an inversion. Therefore, data generated during the period
following application of a mechanical disturbance are likely to result from computations
based on combinations of measurements taken before and after application of the load.
The éonstants obtained from these interim calculations may attain values which are
quite different from either pre- or post-adaptation values -- they do not necessarily
attain intermediate values. Fig. 5.17 demonstrates this counter-intuitive efféct.

Eight measurement vectors were recorded in each of two different states. For
each state a different set of mechanical conditions prevailed. As the ratio of
number-of-vectors-from-state-A to number-from-B changes monotonically, the data
produced by inversion vary non-monotonically. If one were averaging data from two
groups, however, the transition would be monotonic. To assess the effects of these
interim calculations, an adaptation test was conducted in which all data from the
. temporary buffer were removed when the load was applied. The heavier dotted line in

Fig. 5.18 shows that this procedure produces no clear improvement in rate of
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Fig. 5.16 A 3000 trial baseline having been established, adaptation to two types
of load are shown. The load is applied at practice trial 3000 and the time course
of adaptation is recorded. A) Prototype PR-11, B) Prototype PR-12. (r=10)
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VECTOR MIX

Fig. 5.17 A demonstration of the deleterious effects of ‘mixing’ measurement
vectors when inverting. Two sets of vectors were used, (sets A and B), each
consisting of 8 vectors generated for a mechanical situation. Nine inversions were
performed where the vectors contributing to each inversion were:
(81,82,83,84,85,86,87,88), (81@2,53,84,55,86,87,b8), (81,82,33,34,35,85,b7,b8). e
(bl.b2,b3,b4,b5,b5,b7,b8). The value plotted on the ordinate is one element of the
resulting J matrix.

A
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Fig. 5.18 The heavy dotted curve was produced by removing all measurement
vectors from the temporary buffer when the spring load is applied. The solid
curve is reproduced from Fig. 5.16a for comparison (r=10). (Prototype PR-11)
Closed circle indicates pre-adaptation level.
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adaptation.

The rate of adaptation is also retarded when old and new data are combined in
the state space memory by averaging. This factor can be adjusted by reduci.ng the
value of 7, the averaging parameter discussed earlier. (See Fig. 4.6) The results of
such a manipulation are shown by the curves in Figs. 5.19. Each successively smaller
value of 7 resuits iﬁ more rapid adaptation to the mechanical disturbance imposed by
the spring. While reduction of r improves adaptation rate, it may reduce the system’s
resistance to the effects of noisy measurements. (Data presently available do not
substantiate this point, but it is strongly expected to be true based on our
understanding of the model’s opération.)

‘While reductions in r decrease the effects of old state space memory data, they
do not eliminate them. An experiment was done in which all previous state space data
were eliminated at the time the load was applied. The temporary buffer was also

‘zeroed. The dotted curve in Fig. 5.20a reveals an extremely rapid and rather complete
adaptation. This is a dramatic resuit if compared to the adaptation rate shown in Fig.
5.19. Unfortunately, the improvement in adaptation rate is accompanied by an initial
loss of control. The level of performance following application of the load is
temporarily worse than that initially achieved when the memories are left intact (solid
curve in Fig. 5.19a). A more severe loss of control resulting from initialization of the
memories is shown in Fig. 5.19b. |

Held and Hein (1963) conducted a series of experiments designed to show that

initial learning and adaptations were merely two manifestations of the same process.
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Fig. 5.19 The memory’s time-constant is systematically varied. Smaller values of
7 yield more rapid, but noisier adaptations. A) inertial load; B) spring load;
(prototype PR-11). Closed circles indicate pre-adaptation levels.
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Fig. 5.20 The dotted adaptation curves were produced by removing all data from
both the temporary and the state space memories. In A extremely rapid and
complete adaptations resulted. In B rapid learning is accompanied by an initial

period during which performance is quite poor. Closed circles indicate pre-
adaptation levels.
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Their resuits, thou:gh not conclusive, were rather provocative. The essential design of
the SSM, (there are no provisions for zeroing memories), takes their notion as a
premise; no special mechanisms are used for adaptétion that aren’t used during initial
learning. The dramatic results presented in Fig. 5.20, however, argue strongly in favor

of re-examining this position.

5.3.3 Reorientation of Gravity Vector

A test for the system’s ability to acqmre control of the manipulator after
reorlentmg the gravity vector was comblned with some of the generalization tests o
reported above. Though this was not actually an adaptation test -- a manipulation was
not made after a baseline of performance had been established -- the results of such
an adaptation test can be inferred from the resulting data.

The arm was mounted with its base on the wall so that the gravity vector
influenced all three joints. (See Fig. 5.21.) This is an interesting manipulation since
joint 1 is normally unaffected by gravity and the gravitational torques exerted at joints
2 and 3 are normally not influenced by the position of joint 1. (By normal, | mean when
the arm is mounted as in Fig. 4.1) A practice session was conducted and the normal
_procedures were used to assess learning. All of the learning curves reported in
Sections 5.2.2 and 5.2.3 were generated with the arm in this position. It is clear from
the data presented there, Figs. 5.11 through 5.14, that learning takes place under
these circumstances.

In light of the results for the previous Section, 5.3.2, and the learning data from

Sections 5.2.2 and 5.2.3, there is every reason to believe that, had there been an
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ARM MOUNTED ON WALL

Fig 5.21 The manipulator was mounted sideways to examine the controller’s
ability to deal with a reorientation of gravity.
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established baselir}e of behavior with the normal orientation, the translator would have
adjusted its plan to accommodate the reorientation. | am prepared to argue this point
because the model’s operation clearly represents the view that adaptation is just the

form of learning which takes place when something else was learned first.

5.4 Flexibility of Coordinate System

Here the State Space Model’s ability to learn with measurement data from a
coordinate system other than those of the joints is demonstrated. The purpose of this
test is to show that sensors which operate in coordinates other than those natural to :
the manipulator can be used as a source of measurement data. Since the arm’s
potentiometers and tachometers are the only available sources of position and velocity
data, Cartesian coordinate data were generated by interpolating a computer program
between the generation of measurement data and the use of those data. (See Fig.
5.22) This program was merely a testing device and has no other function than to
allow simulation of the desired sensors. Naturally, the state space map had to be
modified to accommodate the new variable ranges. (See Fig. 4.5b.)

Cartesian coordinates were chosen for this test because they represent a large
class of coordinate QYstems. The most important characteristic is that the unit vectors
of the system do not coincide with those of joint coordinates. In fact, the relationship
between the unit vectors of the two systems is a function of position in space.
Cartesian coordinates are also attractive because they are a likely candidate for use by
a visual system. (Actually, polar coordinates may be a better choice for vision, but

joint 1 of the Scheinman arm coincides with the # coordinate of such a system. The
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Cartesian system \jvas chosen to provide a more convincing test.)

The first experiment was conducted in a way that allowed learning in XYZ
coordinates to be compared to learning in joint coordinates. Prototype PR-11 and all
the practice data used to test acquisition of this movement (Section 5.1) were
transformed into Cartesian coordinates. The resulting prototype, designated PR-11XYZ,
is plotted in Fig. 5.23. The practice data were processed in the normal way and the
resulting learning curve is plotted in Fig. 5.24. The learning shown here is quite good,
and verifies the point that the coordinate system used for specification of desired
movements is flexible.

A second test was conducted to emphasize the idea that high-level processes
can plan movements in sensory space without regard to the joint movements which will
be required. In this test a set of straight-line movements, (the tip of the manipulator
traverses a straight line), were used as the prototype. The prototypes and resulting
data, also used for the generalization tests of Section 5.2.2 and 5.2.3, are shown in

Figs. 5.10 and 5.11.

5.5 General Discussion

The amount of generalization exhibited by the controller is largely determined by
the range of the neighborhood function and the map that determines the quantization of
the state space memory. But these parameters should be chosen with some knowledge
of the behavior of the manipulator. That does not mean that a naive controller must
have a priori knowledge of correct values for these parameters, but optimum choices

must be postponed until some experience with the plant variables is gained. This issue
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Fig. 5.23 Prototype PR-11XYZ, the Cartesian version of prototype PR-11, is
shown. P-position, V-velocity, A-acceleration.
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were transformed into Cartesian coordinates. Prototype PR-11XYZ was tested to
yield the plotted learning curve.
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has not received s’.'ystematic attention here. The neighborhood function and state space
memory map were chosen and adjusted to give good performance. It is my opinion,
however, that simple mechanisms can be found that will perform these selections
automatically. Furthermore, such automatic selection could design memory maps and
neighborhood functions which compensate for the rate at which the limb’s properties
vary with state.

Another difficulty in studying generalization is the lack of a good, general
classification scheme for movement. As a consequence, the concept of similar
movements, nécessary for a precise study of generalization, is not well developed.
Each pair of movements can be easily classified if we are willing to limit our
consideration to a particular model or theory, but the results may be quite unappealing.

It has been shown that the SSM can control an arm mounted on the table or
mounted on the wall. Joint coordinates can be used for specification of desired
trajectories or Cartesian coordinates may be used. And the masses of the links and
elasticities of the joints may vary without a permanent loss of control. Taken alone
these results indicate a high degree of flexibility. Furthermore, these data lead to
inferences about the overall potential power of the model.

While the data derived using Cartesian coordinates directly show that the
coordinates used for measurement can be different from joint coordinates, these data |
indirectly suggest that the system of coordinates natural to the actuators can also be
different from those of the joints: An actuator may apply forces to two or more joints.

Indeed, the argument presented in Section 3.2.3 is based on a similar inference. The
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Cartesian coordina:te data, taken with the resuits on adaptation to mechanical changes,
also imply that the model can effectively compensate for sensory distortions such as
magnifications, inversions, and left-right reversals. Finally, though not explicitly
demonstrated, | think the data suggest that the SSM can learn to control a number of

kinematically and dynamically distinct limbs.

5.5.1 Distributed vs. Massed Trials

In a normal practice session, measurements vectors from temporally adjacent
practice trials are often similar. The beginning of a practice block, however, is unlikely. .
to include vectors similar to those at the end of the previous block. Since the :
invertibility index screens and combines sets of linearly dependent vectors, one would
expect more inverses to be found, (more learning), near the beginning of a practice
block than elsewhere. Taking this factor into account, one might expect more learning
when 100 practice trials are broken down into 5 blocks of 20, than when they are
practiced in one large block. This is reminiscent of behavior observed in humans and
other animals: Learning is more efficient when trials are distributed in time than when |

long sessions of practice are employed (Cratty, 1964; Welford, 1968;
Taub & Goldberg, 1973; Choe & Welch, 1974).

5.5.2 A Use for Error Data
It was shown that the rate of adaptation to mechanical disturbance was increased
when outdated data were removed from the memory. (See Fig. 5.10) Unlike reducing

the value of 7, however, this manipulation requires information indicative of the data’s
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obsolescence. Thé;t information was provided by the experimenter for the tests
described above, but a control system could provide those data for itself in a number
of ways. For instance someday, high-level processes might visually ascertain that a coil
shape object was now connected between arm and ceiling. Using its data base it could
determine that such a device was probably a spring and would probably change the
mechanical properties of the limb. .. Alternatively, a simple mechanism which merely
examines error data could quickly determine a loss of control.

It is interesting to postulate a system that uses error data to determine that
something went wrong, and measurement data to find out what went wrong. The
expected behavior of such a system, rapid adaptation when error information is
provided and moderately rapid adaptation when it is absent, is in 6greement with
experiments from the psychological literature (Pew, 1974). This combination of
feedback and feedforward may prove to be a powerful concept for future models of

adaptation.

5.5.3 The SSM and Optimal Control

The theory of optimal control describes how trajectories may be chosen to
satisfy a set of movement constraints, while minimizing a cost function for a particular
mechanical system (Bryson & Ho, 1969). The constraints might specify, for example,
initial and final positions and execution time, while the cost function provides penalties
for, say, errors in position, time of arrival, and expenditure of energy (the last of which
is minimized by humans during at least one motor activity (Ralston, 1976)).

We have supposed that the functions of motor control are divided into:
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High-level process:es which plan trajectories without considering the mechanics of the
motor apparatus, and low-level mechanisms which translate these trajectories into
commands understood by the limb. Since the optimization process generates
trajectories, one is inclined to include it with the high-level mechanisms mentioned.
When variables related to the manipulator enter the cost function, however, as they do
when energy is conserved, the optimization process threatens the presumed dichotomy
between high- and low-level functions. In order to optimize energy consumption, the
process which generates trajectories must know which motor commands will be
required for production, and that is the business of the low-level translator.

This apparent merging of high- and low-level functions is avoided if the
optimization process gets its information about energy costs, not from the translator,
but from another source which remembers the measured costs associated with previous

movements.

5.5.4 A Fair Test of the Model?

The ranges of certain variables have to be limited to satisfy technical
considerations. For instance, all velocities have to be below a maximum. When very
large velocities are allowed the current/force relationship for the DC motors is no
longer valid. This restriction is especially annoying, because some of the more
important properties of the control system are most clearly exhibited at high velocities.
For obvious reasons, the value of M, the state space quantizing factor, also has to be
restricted, thereby reducing the attainable precision df control.

Many combinations of the model’s parameters are possible. Limited time
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resources forced L}s to choose relatively few combinations for experimental
investigation. In most cases the experimenter was guided by his intuition derived from
previous experience, and the .results were satisfactory. We have no way of knowing,
however, what ‘pockets’ of unusual or revealing behavior may have gone undetected.
In spite of these difficuities, | feel that the tests presented here are
representative of the model’s abilities and power. From a research point of view,
these drawbacks are compensated in a rather direct way by the degree to which each

of the model’s variables and parameters are available for examination and manipulation.

5.6 Improvements to the Model

In the course of developing and testing this model, a number of ideas emerged
which were not included in the implementation presented above. Some were available
at the outset but were not used in order to keep things simple. Others presented
themselves after the experimenter became more familiar with the system’s operation.
Since they might be valuable for future work in this field, this section presents a brief
list of these ideas with some discussion of their motivation. Most of them are not well

developed and no plans exist for their implementation or test.

5.6.1 Insuring the Command-Force Relationship

Earlier it was pointed out that there are restrictions on the allowable
relationships between the command issued by the controller and the net force or
torque applied to the joint. The Scheinman manipulator used in these tests is powered

by DC torque motors. They have the characteristic that, neglecting friction, the torque
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produced is propo:itional to the current through the motor at all speeds. These motors
are driven by servo amplifiers which insure, for a certain range of inputs and velocities,
that the current through the motor is proportional to the voltage applied to the
amplifier. Since the amplifiers only have a finite voitage swing (28v) and the motors
produce a back emf when in motion, the amplifiers are not always able to drive the
desired current. In order to check for this condition the actual voltages across the
motors was monitored at all times. Whenever these values approached 28 volts during
a measurement, that measurement was ignored because the amplifier might have been
saturated and applied an unknown force.

A more systematic treatment of this problem could be developed if sensors were
used to measure the actual force delivered by the actuator. Then the force
measurement, rather than the command, could be stored with the resulting acceleration
measurement. Measurements of actual force delivered would automatically adjust for
any saturation effects in the actuator. On the other hand, the translator would only
determine the force to apply to a joint, rather than command -- another piece of
hardware would have to convert the desired force into a command which produced that
force. But that one\dimensional problem, involving data for only one joint, is easily
solved. This type of arrangement would also have the advantage that changes in
properties of the actuators which occur quickly, such as fatigue or warm-up, need not

effect performance of the translator.
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5.6.2 Practice Impf:oves Practice

In the present implementation, each practice session is totally independent from
every other practice session. Each session starts about the same, and often includes a
number of wild trajectories that are very different from the desired movement.
Therefore, although much of the data generated might be useful at some future time, or
for replication of some other movement, they are useless for the task at hand --
learning to replicate the desired trajectory.

In man, on the other hand, experience influences practice. The sophisticated
mover does not flail his limbs around each time he wishes to learn a new movement.
On the contrary, he may begin by executing a reasonably good approximation to his
goal on the very first try. After some practice he will be doing something very close
to the desired response, and each attempt at that level may be rich in measurements
usable by the learning mechanism.

This type of regenerative effect:

practice - learning - better practice -+ more learning - etc.
could be quite important for future studies. In order to make use of this approach, the
practice algorithm must use the translator’s expertise when planning movements.

In addition to accelerating learning, the practice-improves-practice approach
might be used to explain another important human ability. It is common when learning a
new movement to begin by practicing slowed-down approximations. The practice
movements are gradually increased in rate until the desired movement is performed at

required speed. If the translator uses the state space memory during practice, it too
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could perform in tl.iis way:

The basic idea is that it is easier to practice slower movements because dynamic
interactions are minimized. Once information is gained regarding slowed-down versions
of a movement, slightly faster versions could be efficiently practiced since the system
generalizes to neighboring states. The initial slow practice movement may not be
within generalization-distance of the goal, but an intermediate trajectory can be
improved. (Fig. 5.7 illustrates generalization from one movement to 3 slightly faster
versions.) Eventually the system can learn to practice and execute movements of any
speed.

Of course, not all skills are developed using the start-slow/speed-up paradigm.

In many situations it is important to establish the correct form or rhythm of movement
paying little attention to the details, which can be fine-tuned later. Here again, a SSM
with a practice-improves-practice approach may prove enlightening, though some hard
questions about the form of a movements may have to be answered first.

This scheme, the use of learned data during practice, is a large improvement over
the implemented system, which relies on the unchanging practice algorithm to generate
data for all appropriate states. We might note, however, that the methods of learning
fast movements by starting with slow ones and of fine-tuning movements of roughly the

correct gestalt will require help from relatively high-level processes.
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5.6.3 Decaying Me':asurement Vectors

During the normal course of an organism’s development, the mechanical properties
of a limb will change in a number of ways. As new measurement data arrive describing
these new properties, the translator’s equations of motion will change. But there is a
potential problem which impairs the translator’s ability to adapt, and even allows for
wildly deviant performance during the adaptation period.

At any given time there are usually a number of vectors stored in the temporary
buffer awaiting the arrival of others, at which time inversion takes place. Each of
these vectors may have been generated during different mechanical conditions, if the - ‘
mechanical properties of the system are changing rapidly or measurement data are
being generated slowly. If a single inverse computation includes vectors generated
during changing mechanical conditions, the resulting state space data are not likely to
be reliable. (See Fig. 5.17.) Even when the transition from old to new data is smooth,
this effect tends to prolong the amount of time and practice needed to completely
change the controls.

The translator described here does not know when its vectors are no longer
applicable, though performance measures could be used to help obtain such information.
Another solution is based on the notion of a decaying memory. If old measurement data
are removed from the temporary buffer, or given reduced weights, there will be a
reduction in the range of measurement dates found contributing to any one inversion.

Of course, the same sort of temporal decay could also be applied to data in the state

space memory. Observe that | am advocating a decay of weight, not a decay of value.
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An interestirig result comes from considering the consequences of applying a
particular decay function to the state space memory. Suppose, first of all, that all data
decay exponentially. During any time interval new, old, and intermediate data are all
reduced by the same fraction. When data do not enter the memory, all weights are
reduced, but the relationships among weights are the same and behavior remains
unchanged. If an exponential with a growing time-constant is used, (see Fig. 5.25), new
data will decay faster than old, and the system will tend to return to previously used
values. Of course, the time-constant need not be continuously growing. An exponential
decay function with a piecewise constant time-constants, (eg. short plus long term
memory; see Fig. 5.25b), would also give a temporary large weight to recent data.

Now consider the following case: A large amount of data have been collected
and stored. The mechanical properties of a limb are artificially manipulated and a
practice period is permitted. If memory weights decay exponentially, the level of
performance at any time after the adaptation period, but before new data are
generated, should be the same as that found immediately after the adaptation period.
A decay function that uses a growing time constant, however, should result in an initial
improvement in performance, followed by a gradual return to pre-adaptation levels.

Hamilton and é&ssom (1964), and Choe and Welch (1974) conducted prism
adaptation experiments under these circumstances. Hamilton and Bossom suggest that
their findings argue for a distinction between the mechanis‘ms responsible for initial
acquisition and those for adaptation. Their results, however, are consistent with the

alternative notion of a variable time-constant memory.
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Fig. 5.25 Examples of decay functions with variable time-constants. Examples of
two classes of such functions are shown a) Continuously varying time-constants:
r=-1, f--t"s, and rs-t"75; b) Piecewise constant time-constant: r={-2., 0<t<.75;

-.5, .75<t}. A combination of short and long term memory falls into this second
class.
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6 Concluding Remarks

6.1 Derivative and Alternative Models

The State Space Model has been presented, implemented, tested, discussed, and

put into perspective. We now examine cousins and decendents.

6.1.1 The Measurement Space Model
The following formulation incorporates a number of improvements into the design
of the State Space Model, while maintaining its desirable properties. The major
differences in the new formulation are:
1) The state space memory and temporary buffer are combined.
Measurement vectors are stored in a state space memory. Inversions
are only performed when data are used during translation. '

2) Hyper-regions are no longer discrete entities.

3) Each measurement vector is labelled with its time of generation. The
age of a vector contributes to its weight during inversion.

4) The neighborhood function, applied before inversion rather than after,
gives each measurement vector a weight determined by its distance
from the desired state.
5) During the planning of a movement the generalized inverse is used to
invert all measurement vectors found in the neighborhood of the desired
state.
This arrangement allows for a simpler, less ad hoc specification of the
neighborhood function. When data are taken from the memory they are weighted as a
function of their distance from the desired state. The neighborhood function can be

continuous and the broader it is more the data in the memory are shared in the
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production of diffe}'ent movements. A sharper function enables better replication of
movements which travel through non-linear portions of the movement'space. Since
each measurement vector carries information about its age, the advantages of a
decaying memory can be realized.

An invertibility index would no longer be needed because each use of the
generalized inverse yields an optimal estimate of the constants of mechanical
description in the mean square error sense. The procedure described in Section
4.2.2.2, averaging optimal estimates, is only sub-optimal. The proposed new method is
truly optimal in that each computation of the mechanical constants relies on the
maximum possible number of measurements -- all those present. Though large
inversions of this type are expensive in terms of time and memod for serial
computers, they present no special problems for computers characterized by large

- numbers of parallel interconnections.

6.1.2 The Configuration Space Method CSM

Many control schemes used in practice ignore inertial interactions between joints
and Coriolis forces, yet these terms can be important during high velocity motions. This
compromise has impbrfant implications for industrial applications where the throughput
of a manipulation process depends on the arm’s speed. The importance of CSM is that
these terms can be included at low computational cost with reasonable amounts of
memory. Real-time trajectory calculations may also be possible, especially in the
context of a distributed computation employing muitiple microprocessors (Raibert &

Horn, 1977). Some of the details of this approach are given in Section 1.3.6.
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6.1.3 Muitiple Spaces Model

The worst drawback of the SSM is the amount of storage required. It increases
as the power of the number of state variables; two for each degree of freedom, M2N,
For a fgw degrees of freedom this number is managably large, but it soon reaches
unreasonable proportions, even for the renowned capacity of the central nervous
system. (By some analyses the human arm and hand have a total of 35 degrees of
freedom.) There are, however, a number of ways in which the memories required for
each limb or manipulator can be kept to practical sizes.

A review of the terms entering the equations of motion for a manipulator reveals "
that, except for the Coriolis force, each is a function of the position state vector or the ‘
velocity state vector, but not both. (See Eq. 22) Gravitational forces and moments of
inertia are dependent only on the position vector, while friction is primarily a function
of velocity. Since Coriolis forces are typically small, one might propose the use of two
memories; one with N positional dimensions and one with N velocity dimensions.
Development of this approach could lead to practical control applications, especially if
used together with hashing techniques.

Under certain circumstances a controller that uses one memory with
dimensionality 2N can be replacéd by two controllers, each of which employs a memory
with fewer than 2N dimensions. This can be done whenever the mechanical properties
of the plant may be decomposed into non-interacting subsections, or when the
interactions are constrained to a few degrees of freedom. Then each controller will

have state variables which represent the net influence of coupling with the other
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mechanical compor{ent One could imagine the use of this type of arrangement in
controlling the interactions between the trunk of the body and each limb. Suppose that
each of two limbs had 4 degrees of freedom, and the trunk had another 3. Further
suppose that all the coupling at each shoulder could be represented in terms of 3
degrees of freedom. If the entire system were controlled from one memory it would
require 2(4+4+3)=22 dimensions. If three separate controllers were used, however, 3
memories would be required, of dimension 14, 14, and 12. Though these results are

still out of the question, we are encouraged to pursue this line of attack.

6.1.4 Visually Locate and Move

Man is able to guide his hands to visual targets. This is essentially a problem of
transformation between coordinates systems. He learns to do so in infancy and early
childhood (Held & Hein, 1963; White, 1970; Held & Bauer, 1974). Once established,
the relationship between these coordinate systems is maintained despite natural or
experimental changes to the visual and motor systems. The human mover can maintain
or re-attain correspondence between hand and eye when ihe relationship between
visual and motor worlds are disturbed by shifts, distortion, invertion, lateral re?ersal,
magnification, and mfnification (Held, 1961; Held & Freedman, 1963; Miles & Fuiler,
1974; Gonshor & Melvill Jones, 1976).

What mechanism could be responsible for such flexibility? Is it possible that the
motor learning we see in each of us is not primarily an expression of improved control,
but only an improvement in coordination? Glen Speckert and | designed and

implemented a controller that employed two processes: one that learns to transform
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trajectories from 2-d visual coordinates to 2-d arm coordinates, and another that
moves the arm along desired arm-coordinate trajectories (Speckert, 1976). Results
from this system (using a TV camera and the MIT-Scheinman arm) suggest that certain
forms of learning, adaptation, and generalization are possible even if the process
responsible for moving has no learning abilities. Rather, all improvements in
performance correspond to a a more effective transformation process. In particular,
the system can learn to pick up visually targetted objects when the visual data
provided to the system are disturbed by any of the distortions mentioned above. (Not
all of these have been demonstrated, but there is strong reason to believe that eéch o
will be correctly learned or adapted.) This is all done using no trigonometric operations
and no complicated mathematics. |

We assume that ihe transformation between a point expressed in visual
coordinates, V;, and the same point expressed in arm coordinates, A;, only changes
gradually as the point moves throughout space. When the coordinates for points are |
available expressed in both arm and visual coordinates, {(MI,A 1), (y_z,Az), .. etc} an
interpolation will yield the transformed coordinates of any new nearby point, P;. Since
topology is not changgd by transformation of coordinates, nearby points are nearby in
both systems.

The system is most useful when organized by a multi-dimensional table quiﬁe
similar to the state space memory, but only having dimensions of visual position
coordinates. (This makes sense since the dynamics of the problem are not included

here.) Pairs of coordinates are stored in this table when they become available during
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movement -- the ﬁosition of the hand in arm coordinates is recorded along with the
simultaneously observed position of the hand in visual coordinates. When a
transformation is necessary the memory is accessed through the visual coordinates of
the target point, V;. The pairs of nearby coordinates stored in the region of the space
allow the new A, to be approximated.

Of course, this is only the beginning of a theory. No mention has been made of
using two moving eyes on a moving head. Furthermore, there is no reason to prohibit
learning by the movement process. More complete work on this and related models
will lead, | hope, to better understanding of motor maps, sensory maps, sensorimotor

maps, and mappings.

6.2 Problems for Further Research

Many new ideas developed during the pursuit of this thesis. Those that were
well organized were presented in the last section. They consist of new approaches to
the manipulator control probiem. A number of problems which are less well

understood, but which bear more work are suggested here.

6.2.1 Measurement + Error Correction

Throughout this thesis | have emphasized the fact that learning by the SSM
cannot be attributed to error correction procedures. Many investigators have devised
quite effective adaptive controllers which do rely on error correction. (Virtually the
entire subfield of control theory called identification, serves as an example.) | feel the

most advanced learning controllers will probably result from the appropriate
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combination of the;e two ideas: measurement and error correction. But it is not clear
how this can be done.

In Section 5.5.2 | discuss a hybrid approach that uses errors only to detect
changes in the plant, with correction made by measurement techniques. An alternate
approach might make measurement adjustments until behavior ceases to improve, then
use error correction td make final, high precision adjustments. This might be especially
useful in overcoming one of the most important pitfalls of error correction learning
algorithms -- their susceptability to local minima (Tsypkin 1971, 1973). The
measurement data can be used to get the solution onto the correct hill, while error

data are used to climb that hill.

6.2.2 Plan + Servo

Just as the best learning will probably result when measurement is combined
with error correction, the best control will probably result from judicious combinations
of preplanning and feedback control. A number of possibilities in this area remain to be
studied:

1) Can state space data be used on-line in a reprogramming mode?

2) If the translator works in visual coordinates, can visual errors be used
to reprogram? '

3 Perhaps a simple servo-assistance mechanism is adequate in certain
circumstances. What are they?

6.2.3 Practice
The initial conception of this project described the practice algorithm as an

unimportant black box which ‘practices movements’. An important finding of this work
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has been, howeve;'. that the amount and type of learning, adaptation, and especially
generalization is intimately tied to what a system does when it practices. A few ’
parameters were adjusted (Section 4.3.4) but no systematic, comprehensive study was
made. | would like to know:

1) Are their special movements which provide the most learning for the
least practice (eigenmovements)?

2) Can state space data be effectively used during practice (Section 5.6.2)?

3) How much high-level planning would be needed to permit practice which
started slowly and increased in speed (Section 5.6.2)?

4) Can special probe movements, or probe components be incorporated in a
practice routine to accelerate learning? (Nashner 1976) advances this
hypothesis.)

5) What do psychologists mean when they talk about practice? (Few

realize that learning n repetitions of a task doesn’t mean n identical
sequences of stimulation and response (Mednick 1964 p.92).)

6.2.4 High-Level Processes

One of the important advantages of using a translator is that high-level processes
can plan in one language and use the resulting plans to move a number of limbs which
may speak different languages. The SSM was designed with this facility in mind, yet we
have not substantiaféci the utility of such an arrangement. A number of workers in
artificial intelligence may now be in a position to obtain such verification

(Lozano Perez 1976, Mason 1977, Will 1975).
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6.3 Summary

The human motor system acquires control of each limb in the body, adapts to
mechanical and sensory changes, transfers training between practice movements, and
performs coordinate transformations from sensory space to motor space. This thesis
presents the theory and implementation for a model which exhibits these properties.

A controller is proposed which translates descriptions of desired trajectories into
motor plans. The processes which provide input to this translator do not have to deal
with the mechanical properties of the manipulator, and the specified trajectories may
be expressed in a coordinate system appropriate to the available sensors. The
translator’s outputs are motor commands suited to the kinematic and dynamic
properties of a particular manipulator and its actuators.

The model employs parameterized equations of motion in conjunction with a
quantized, multi-dimensional memory organized by state variables. The memory is
supplied with data derived from the analysis of practice movements. The analysis
performed is quite simple and does not employ error correction or search techniques,
as do many learning schemes currently in use. Since iterative methods are avoided,
problems involving local minima are not encountered.

A small comthéf and three joints of the MIT-Scheinman manipulator weré used
to implement the controller and assess its properties. Tests have verified the
controller’s ability to:

1) acquire usable mechanical descriptions of the manipulator, and to use
those descriptions to pre-plan effective trajectories.

2) adapt to mechanical disturbances caused by inertial and elastic loads,
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and acqun'.'re control after the gravity vector is modified.

' 3) generalize information derived from the practice of one movement to the
execution of other similar movements.

4) use a Cartesian coordinate system for specification of desired
trajectories when measurement data are provided in that system, even
though motor commands are expressed in joint coordinates.
Since these tests were conducted on a physical manipulator the possibility of
undiscovered vaguaries are greatly reduced.
The nature of parameterized equations was investigated in order to bring the
State Space Model and a number of other models into one conceptual framework. In
addition to describing a number of alternate control schemes, improvements to the

present model were proposed and discussed. These included:

1) Employment of a subsidiary controller that maintains the command-force
relationship for each actuator.

2) The use of a more powerful practice algorithm
3) Inclusion of a decay factor in operation of the controller’s memory.
4) Methods for reducing the size of the state space memory.

S) Elimination of the discrete nature of the memory.
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Glossary of Terms

Devices which cause motion by exerting forces. Usually muscles,
motors, hydraulics, etc.

The adjustment of a control law appropriate to changes in the
mechanical or sensory properties of the plant.

A mechanical device, usually with serial degrees of freedom in the
form of links separated by joints. Used to move objects and apply
forces. Synonyms: limb, manipulator.

A type of arm grown from biological materials.

Cerebellar Model Articulation Controller: a controller proposed by
Albus. (Recently renamed: Cerebellar Model Arithmetic Computer.)

An information processing device which produces signals designed
to produce a desired response in another system.

A torque exerted about one axis of an orthogonal set caused by
simultaneous movement about the other two axes. Sometimes used
loosely in this report to include centrifugal terms.)

The Configuration Space Method of control. A method of control
currently under investigation by Berthold K. P. Horn and myself.

A record of the commands issued to a set of actuators.

A learning mechanism that compares the desired response with the
actual response.

Afference caused by movement in the environment not produced by
the organism.
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Hyper-region . A portion of 2N-dimensional space for which one set of constants, J
and K, are stored.

internal dynamic model A component of a controlier that mimics behavior of the plant
under control.

internal inverse dynamic model A component of a controller which, when provided with
a plant’s response, describes the corresponding input.

generalization The process whereby the general level of motor performahce is
improved as the result of a particular set of practice data.
Exhibited as transfer.

limb See arm. -

man-made arm An arm manufactured by man, usually made from metals and plastics.

manipulator See arm.
movement A change in the positions of an arm’s joints. Also refers to the path
the arm makes during the change.

parametric variable An independent variable held constant during parameterization.

parametlerization The process of simplifying a fu;\ctional relation by substituting a set
of constant values for a subset of the independent variables.

plant Any dynamic system.
. prototype Xn internal rapresentﬂtion of a desired trajectory
re-afference - The sensory signals produced by an internally generated movement.

state The position and velocity of an arm.

state space’memory A quantized, multi-dimensional memory organized by state
variables.
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SSM g The State Space Model.

tabular equations A set of equations for which a table of coefficients are required for
evaluation. The equations are usually simplified. Synonym:
parameterized equations.

trajectory The path an arm takes during a movement.

transfer Behavior characterized by improvement of one task after practice
of another. Closely related to generalization.

transiator A device which converts descriptions of desired trajectories into
appropriate motor commands. Also used in this thesis to include
the mechanisms which allow acquisition of this function.
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Glossary of Variables

A constant internal to the practice algorithm which influences the
degree of variability found in the practice movements.

A term in the equations of motion representing the force of frictional.
A term in the equations of motion representing the Coriolis force.

A term in the equations of motion representing the gravitational force.
A term in the simplified equations of motion which represents
equivalent moment of inertia matrix. ,

A term in the simplified equations of motion which represents the net
effect of gravity, friction, and Coriolis forces,

The state space memory’s time constant.

The learning index. .
The number of divisions on each dimension of the state space memory. :
The number of joints of a limb. '
The number of measurement vectors contributing to one inversion.

The parameterization indicator.

Root-mean-square acceleration error.

Root-mean-square final-position error.

Root-mean-square motor-current error.

Root-mean-square position error.

Actuator torque vector.

Index of invertability .

The independent variables of a function that have been parameterized.
The indep. variables of a function that have not been parameterized.

A parametric value of 9.

A parametric value of §.

One time slice. Usually 60 msec.

The position vector.

The velocity vector.

The acceleration vector.

The desired acceleration vector.
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