REASONING MODELED AS A SOCIETY OF COMMUNICATING EXPERTS

LuC STEELS

June, 1979

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

54z



. ABSTRACT

This report describes a domain independent reasoning system. The system uses a
frame-based knowledge representation language and various reasoning techniques
including constraint propagation, progressive refinement, natural deduction and explicit
control of reasoning. A computational architecture based on active objects which operate
by exchanging messages is developed and it is shown how this architecture supports
reasoning activity. The user interacts with the system by specifying frames and by
giving descriptions defining the problem situation. The system uses its reasoning capacity
to build up a model of the problem situation from which a solution can interactively be
extracted. Examples are discussed from a variety of domains, including electronic circuits,
mechanical devices and music.

The main thesis is that a reasoning system is best viewed as a parallel system whose
control and data are distributed over a large network of processors that interact by

exchanging messages. Such a system will be metaphorically described as a society of
communicating experts.
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PREFACE

PREFACE

We have designed and implemented a domain independent reasoning system. This system,
known as the XPRT-system, accepts definitions of concepts and consults these definitions
when it is asked to solve particular problems.

Every attempt to construct or study reasoning systems has to address at least three
questions:

(i) What is the architecture of a reasoning system?

(i) How should knowledge be represented and organized?

(iii) How should knowledge be activated? and

(iv) How do we model complex problem solving?

Concerning the architecture problem we will propose that a reasoning system is best
implemented as a parallel system whose control and data are distributed over a large
network of processors that interact by exchanging messages. Such a system will be
metaphorically described as a society of communicating experts.

The fundamental unit of the system is an active, independently operating object, called an
expert, which contains a body of knowledge about a certain (limited) subject-matter, and
a script specifying how the expert should respond to messages from other experts. A
group of experts that have the same task-structure or whose subject-matters are part
of the same domain will be called a society. Reasoning behavior will be studied in terms
of patterns of messages that are exchanged between experts of such a society.

Concerning the problem of representing knowledge, we will develop a theory based on
the notion of a frame. A frame is a collection of important questions that should be asked
about a limited subject-matter. A frame is the basis for constructing descriptions. A
description is a way to refer to individuals by specifying what role they play in a frame,
i.e. to what question they are an answer.

A frame contains partial answers to its questions in the form of descriptions which are

always true, descriptions which characterize the range of an answer, methods to find the
answer, etc.

Concerning the problem of activating these frames, we will propose a concrete reasoning
system based on the metaphor of a question-answering activity. Because a frame is
viewed as a collection of important questions, reasoning about the subject-matter of the
frame is viewed as finding the answer to the various questions posed by the frames that
become active in a given problem situation. Some ‘of these answers may come from the
initial specifications of the problem, others may come from the descriptions attached to
the frames.

This question answering activity is mechanized in terms of the society of experts
metaphor: An expert is created for each question posed by a frame. These experts start
out with the answers available in the frame. By communicating with other experts they
try to accumulate more information thereby progressively refining the answer to the
question they are responsible for.

Sophisticated problem solving is obtained by viewing a whole society of experts as one
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PREFACE

single expert. This expert tries to solve complicated problems by interaction with other
(complex) experts. For example there could be different experts for each point of view
from which the problem can be approached. Or there could be pairs of experts where
one proposes solutions and the other criticizes them. Complex problem solving is
therefore also approached in terms of the society of experts metaphor.

CONTRIBUTIONS

We believe that this work makes a number of important contributions to the state of the
art in reasoning and knowledge representation. Here are some of the most important
ones of these contributions:

(i) We have been able to construct a synthesis of werk on procedural deduction and
work on knowledge representation languages. Our system has all the capabilities of a
procedural deduction system but accepts knowledge in the form of natural-language like
descriptions. From this perspective the present work is an important step towards
systems that are able to learn by being told (instead of programmed).

(i) We have been able to define a system based on the idea of a network of
independently operating computational objects that perform reasoning by communicating
messages. The importance of this result is twofold. On the one hand it is a giant leap
forward in the amount of reasoning that can be done given a certain stretch of real time.
This might prove crucial in the construction of intelligent systems which have to perform
in real time. On the other hand a parallel systems architecture proves to be more
satisfactory in modelling the human brain because this is a parallel system itself.

(iii) We have explored a synthesis of declarative and procedural ways of representing
knowledge, not by viewing everything as a procedure (as is done in the ‘procedural
embedding of knowledge paradigm’ of the ACTOR-school), or by requiring that
procedures are attached in order to activate the frames (as is done in other
frame-systems like FRL) but by viewing everything as a description and by viewing the
activation problem as a reasoning problem. The importance of this result is that we
obtain a “cleaner’ system of knowledge representation and that the user has to specify
less information than used to be the case. It will be shown that we nevertheless retain
sufficient control over the reasoning processes by applying the explicit control of
reasoning paradigm.

(iv) We have constructed an efficient reasoner. The time required to perform a
deduction does not significantly increase with the amount of knowledge available or the
number of facts already deduced. This is so because knowledge is structured in a way
that rules are selectively activated based on their relevance to the subject-matter being
reasoned about and that facts are not stored in a global database but organized in units
based on their subject-matter thus enabling lookup based on content rather than form.
Further efficiency is obtained by using powerful heuristics based on criteriality and
projectivity properties of concepts in order to find the referents of descriptions.

HISTORICAL REMARKS
This document reflects the author’s state of research in May 1979 Many issues have

been explored since then and there is no doubt that there are many more issues
remaining. This work should therefore be seen as the first step on a path towards a
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system that is able to learn by being told knowledge in a natural-language like
description language. The major issue we have tackled since finishing this work is to
represent and reason about prototypes. Prototypes are our solution to certain problems
of quantification, representation of sets, nonmonotonic reasoning, a.o. The introduction of
prototypes has lead us to reorganize substantially the present system: we have
introduced physical sharing of descriptions instead of copying as is done here, we have
introduced experts for prototypes in addition to experts for objects in a particular
problem situation. We have also introduced a new internal representation of descriptions
making the network of processors that constitute a society more like a semantic network.
Each node in this network is an active object. Travel from one node to another can
occur in any direction and scenarios for accomplishing cognitive goals (such as finding the
most specific concept given a collection of concepts, finding whether a certain object is
described in terms of a certain description, etc) are executed in parallel. These new
developments will be documented in papers now in preparation.

Although much further work is needed, the framework sketched in this document proved
to be a sound base for exploring more advanced issues of cognition. The fact that
several serious applications are now in the planning stages is an additional source of
satisfaction.

STRUCTURE OF THE DOCUMENT

The text is organized in a modular fashion and can therefore be.read on several levels of
detail. The first section of every chapter is devoted to presenting and justifying a
series of principles. A principle is a fundamental hypothesis. The justification of a
principle will be in the form of a functional argument: we will try to show why a certain
hypothesis is plausible or necessary given the task-structure of a reasoning system.

The second section of every chapter is devoted to introducing a conceptual framework, a
concrete system based on this framework and a number of examples from a variety of

domains. If possible we try to use examples that have been used in the literature to
make comparisons easy. ‘

Before we start the main text, an overview of the capacities of the reasoning system is
given in an introductory chapter. This overview should give the reader an intuitive idea
of what is possible with the system as it has been developed so far.
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INTRODUCTION INTRODUCTION

1. INTRODUCTION

In this first chapter we will give an intuitive idea of the reasoning capabilities we have
been able to circumscribe. We will do this by interacting with the current implementation
of the reasoner. The reader should not worry if something in this demonstration is not
understood. All will be explained in much greater detail later on.

We will concentrate on two examples. One from the domain of family relations and one
from the domain of physical devices, in particular electronic circuits. We start by
introducing some concepts for family relationships, such as parent, person, mother, etc. A
concept has aspects for the important questions to be asked about the situation to which
the concept applies. Thus we define that the concept for parent has a child-aspect by
writing
( PARENT
(WITH CHILD))

Each concept has a SELF-aspect. This is an aspect pointing to the object to which the
concept applies. Thus we say

(PARENT
(WITH SELF)
(WITH CHILD))

or

( PERSON
(WITH SELF)
(WITH BIRTHDAY) ...).

A description is a way to talk about an instance of a concept. An instance of the
~ERSON concept is represented as

(A PERSON)
Or an instance of the PARENT concept is represented as

(A PARENT).

Some concepts are special in that there is only one possible object that can ever fill its
self-aspect. Such concepts will be called individual-concepts. If the concept is an
individual concept we do not write the indefinite article in a description using this
concept. For example we just say

JOHN
if we want to talk about the instance of the individual concept JOHN (because there is
only one JOHN anyway).

We can also talk about an object as playing a particular role in an instance of a concept.
This role is one of the aspects of the concept and will be called the view of the
description. For example one can refer to an object as a child of a parent by writing

(A CHILD OF A PARENT).
‘Child’ is the aspect that is the view here. If we know that there is only one instance
satisfying a certain description we will use the definite article as in
” (THE CHILD OF A PARENT)
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INTRODUCTION INTRODUCTION

The aspects of an instance of a concept are ‘filled’ by particular individuals. To indicate
which individual is filling an aspect in a particular instance we will attach descriptions
- describing this individual. Attachment is represented by writing the description after the
aspect-name. Suppose for example that we want to talk about an object as a parent
whose child is John. Then we can do so by saying

(A PARENT

(WITH CHILD JOHN))

A description can also be further constrained by giving a description of the instance
itsetf. For example if we want to introduce an object by saying that it is the child of a
parent who is Mary, then we can do this as follows:

(THE CHILD OF A PARENT

(WHO IS MARY))

The description (WHO IS MARY) restricts the scope of the parent in this description.

It is possible to introduce constraints on every instance or on the objects filling the
aspect of every possible instance of a concept by attaching descriptions to the aspects
in the definition. For example, if we want to say that every female-person is a person,
then we can do so as follows:
(FEMALE-PERSON
(WITH SELF
(A PERSON)))

Attachment now works like implication: every time an instance of a female-person is
considered, the reasoner will deduce that this instance is a person.

A frame is a concept with a series of aspects and with descriptions attached to these

aspects representing constraints on what objects can play the roles indicated by the
ispects.

Here is another example. Suppose we want to say that every mother is a parent, then
we can do this by attaching a description to the self-aspect of the mother frame:
(MOTHER
(WITH SELF
(A PARENT))
(WITH CHILD))

Now suppose we want to be more specific and say that every mother is a parent such
that the child of the mother is the child of the parent. This is done by introducing
co-referential-links in a frame. Co-referential links are represented by assigning a
(local) name to the object filling the aspect in the instance of the frame under

consideration and repeating this assignment at every aspect that is co-referentially
linked.

For example, we need co-referential links between the child-aspect of ‘mother and the

child-aspect of the description making reference to the ‘parent-concept. Let us use the
name ‘THE-CHILD’, then we can say
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(MOTHER
(WITH SELF
(A PARENT
(WITH CHILD (= THE-CHILD))))
(WITH CHILD (= THE-CHILD))) :
This frame now contains the information that every mother is a parent whose child is the
child of the mother.

It is allowed to use a conjunction of descriptions as in:
(MOTHER '
(WITH SELF
(AND (A FEMALE-PERSON)
(A PARENT :

(WITH CHILD (= THE-CHILD)))))
(WITH CHILD

(= THE-CHILD)))
which says that every mother is a female-person AND a parent whose child is the child
of the mother. Other connectives like OR, XOR and NOT can be used as well.

Let us now feed these frames to the reasoner and start up a little discussion. The

reasoner prompts with a >>-sign. Input is in small letters (except for the frames).
Output is in capital letters.

First we say that Mary is a mother whose child is Joan;
>> Mary is (a mother (with child Joan))

The reasoner has stored this fact and has deduced all consequences of the situation
introduced by this fact. We can find out about this by asking questions. First we check
whether the initial description is there:

>> Is Mary (a mother (with child Joan))?
YES

HAR; IS (A MOTHER (WITH CHILD JOAN)) -
We can also perform queries based on partial descriptions:

>> Is Mary (a mother)?
YES

MAR§ IS (A MOTHER (WITH CHILD JOAN))

We can ask informative questions:

>> Who is (a mother (with child Joan))?

MARY IS (A MOTHER (WITH CHILD JOAN))

And it is of course possible that the answer is not known:

>> Is Joan (a mother)?
I DON'T KNOW

The reasoner knows also about the child:

>> Is Joan (a child of a mother (who is Mary))?
YES,
JOAN IS (A CHILD OF A MOTHER (WHO IS MARY))

~ And it knows all implications of the fact that Mary is a mother. One of these implications

's that she is a parent:
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>> Is Mary (a parent)?

YES,

MARY IS (A PARENT (WITH CHILD JOAN))

Another implication is that Mary is a female-person and therefore a person:

>> Is Mary (a person)?
YES,
MARY IS (A PERSON)

Now we illustrate another capability of the reasoner: the ability to justify its beliefs. We
start by asking why the last statement is believed:
>> Why? :
MARY IS (A PERSON)
BECAUSE
MARY IS (A FEMALE-PERSON)
We can continue asking questions:
>> Why?
MARY 1S (A FEMALE-PERSON)
BECAUSE
MARY IS (AND (A FEMALE-PERSON)
(A PARENT (WITH CHILD JOAN)))

>> Why?
MARY IS (AND (A FEMALE-PERSON)

(A PARENT (WITH CHILD JOAN)))
BECAUSE

MARY IS (A MOTHER (WITH CHILD JOAN))

>> Why?
MARY IS (A MOTHER (WITH CHILD JOAN))
BECAUSE

YOU TOLD ME SO

This is of course the ultimate justification.

We can perform much smarter forms of reasoning: the reasoner has complicated methods
for finding the referent of a descriptions, it can deal with partial descriptions, conditional
descriptions, anonymous objects, method frames, etc. All of this will be discussed more
extensively later on. One of the most important properties of the system is that it is
completely domain-independent and accepts at any time definitions of new concepts. It is
therefore more like a learning system, learning in the sense of having a teacher (or a
dictionary for that matter) that explains new concepts and their meanings. For the
domain of family-relations we could therefore introduce concepts for family, uncle,
brother, etc, and then feed whole family trees to the reasoner and perform all the
queries we want to.

By introducing the right concepts, we can talk about any domain. To illustrate that we
will look at many domains in this document. Right now we will look at one other domain:
physical devices. In particular, we will redo the example of circuit analysis discussed in.
Sussman and Steele (1978). One thing you are allowed to do is attach (LISP) procedures
instead of descriptions to an aspect in a frame. The result of the procedure is then one
of the constraints on what object fills that aspect. For example, we can introduce a
frame for SUM with aspects for the addend and the augend. This frame acts like a
constraint among the value of a set of objects. The procedures attached to the various
slots make sure that whenever sufficient information is there all values are computed.
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(SUM
(WITH SELF

(PLUS (= THE-ADDEND) (= ‘THE-AUGEND)))
(WITH ADDEND

(DIFFERENCE (= THE-SELF) (= THE-AUGEND)))
(WITH AUGEND

(DIFFERENCE (= THE-SELF) (= THE-ADDEND))))
So if we describe something as
(A SUM
(WITH ADDEND 5)
(WITH AUGEND 10))

then this means the same as describing it as 15.

Here is a frame for product:
(PRODUCTY
- (WITH SELF '
(TIMES (= THE-MULTIPLICAND)(= THE-MULTIPLIER)))
(WITH MULTIPLICAND
(QUOTIENT (= THE-SELF)(= THE-MULTIPLIER)))
(WITH MULTIPLIER

INTRODUCTION

(QUOTIENT (= THE-SELF) (= THE-MULTIPLICAND)))).

PLUS, DIFFERENCE, TIMES, and QUOTIENT are LISP-functions.

We will use these frames in studying a simple circuit. We start by introducing some

frames for components of circuits. First comes a frame for

potential (represented by the voltage-aspect) and a current:
( TERMINAL

(WITH SELF)

(WITH VOLTAGE)

(WITH CURRENT))

a terminal. A terminal has a

We can put two terminals tdgether into a two-terminal node or 2-node. In a 2-node the

potentials of the two terminals are equal and the sum of

G' apl ’ica"y this iS repr esented as
|....J. 0.0
+

o

the currents has to be 0.0.

2 -nNoDe_

This can be expressed in descriptions by saying that a 2-node is an object with aspects

for two terminals: terminall and terminal2. The -terminal?

is described as a terminal

whose voltage is equal to the voltage of the terminall and whose current is the augend
of a sum whose result is 0.0 and whose addend is the current of terminall:
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(2-NODE
(WITH SELF)
(WITH TERMINAL1)
(WITH TERMINALZ
(A TERMINAL
(WITH VOLTAGE
(THE VOLTAGE OF A TERMINAL

(WHICH IS (= THE-TERMINAL1))))
(WITH CURRENT

(THE AUGEND OF A SUM
(WHICH IS 0.0)
(WITH ADDEND
(THE CURRENT OF A TERMINAL
(WHICH IS (= THE-TERMINAL1)))))))))

A resistor involves two terminals and a resistance which are related via two
SUM-constraints and a PRODUCT-constraint as illustrated in the following diagram:

‘re,‘ W\M‘ P (-
>~ O ° O
é-}‘
* e StSThN (A

Terminalla, o b

fesist o0

The resistor-frame itself has aspects for the resistor itself, two terminals called
terminall and terminal2 and a resistance. The current of the first terminal is described
as the augend of a sum whose result is 0.0 and whose addend is the current of the other
terminal. The voltage of the first terminal is described as a sum with the voltage of the

other terminal as addend and the product of the resistance and the current of the first
terminal as augend.
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(RESISTOR
(WITH SELF)
(WITH TERMINAL2)
..... (WITH RESISTANCE)
(WITH TERMINALI1
(A TERMINAL ,
(WITH CURRENT (= THE-CURRENT-OF-TERMINAL1)
(THE AUGEND OF A SUM
(WHICH IS 0.0)
(WITH ADDEND
(THE CURRENT OF A TERMINAL

(WHICH IS (= THE-TERMINAL2))))))
(WITH VOLTAGE

(A SUM
(WITH ADDEND
(THE VOLTAGE OF A TERMINAL

(WHICH IS (= THE-TERMINAL-2))))
(WITH AUGEND

(A PRODUCT

(WITH MULTIPLICAND (= THE-RESISTANCE))
(WITH MULTIPLIER

(= THE-CURRENT-OF-TERMINAL1)))))))))

We will now look at a simple-circuit which involves two resistors connected by a 2-node
as illustrated in the following diagram:

A-woole. l
—— "V NANANA T VVNANANNASTTTTTT

nesistory rescston 2

In other words the terminal2 of the first resistor is connected to the terminall of the
2-node and the terminal2 of the 2-node is connected to the terminall of the second
resistor. This information can be represented easily by describing the first resistor of a
simple-circuit as a resistor whose terminal2 is the terminall of the 2-node and by

describing the second resistor as a resistor whose terminall is the terminal2 of the
2-node.
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(SIMPLE-CIRCUIT
(WITH SELF)
(WITH RESISTOR1
(A RESISTOR
(WITH TERMINALZ
(THE TERMINAL1 OF A 2-NODE

(WHICH IS (= THE-2-NODE))))))
(WITH RESISTOR2

(A RESISTOR
(WITH TERMINALI
(THE TERMINALZ OF A 2-NODE

(WHICH IS (= THE-2-NODE))))))
(WITH 2-NODE))

Here is a dialogue with the reasoner based on these frames. First we create an
instantiation for a simple-circuit and call it S-C.
>> S-C is (a simple-circuit)

One thing we can do is inquire whether S-C is indeed a circuit:
>> Is s-c (a simple-circuit) ?
YES
S-C IS (A SIMPLE-CIRCUIT
(WITH 2-NODE 2-NODE-1)
(WITH RESISTOR2 RESISTORZ-1)
(WITH RESISTOR1 RESISTOR1-1))

RESISTOR1-1, RESISTOR2-1, etc. are the internal names of the object-experts that have
been created for the various components of the circuit. Each of these components is

worked out completely as illustrated by the following queries:
>> Is resistorl-1 (a resistor) ?
YES
RESISTOR1-1 IS (A RESISTOR
(WITH RESISTANCE RESISTANCE-2)
(WITH TERMINAL2 TERMINAL1-1)

(WITH TERMINAL] TERMINAL1-2))
>> Is Terminall-1 (a terminal) ?
YES

TERMINALL-1 IS (A TERMINAL

(WITH VOLTAGE VOLTAGE-1)
(WITH CURRENT CURRENT-1))
etc;

Now- we start supplying values to certain parts of the circuit. First we specify the
voltage of the first terminal of the first resistor in the.circuit:

>> (the terminall of a simple-circuit
(which is S-C))
is
(a resistor
(with terminall
(a terminal (with voltage 10.0))))

Next we specify some of the parts of the second resistor in the circuit:
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>> (the resistor2 of a simple-circuit
(which {s s-c))
is
(a resistor
(with resistance 9.0)
(with terminall (a terminal (with voltage 3.0)))
(with terminal2 (a terminal (with voltage 0.0))))

At this point sufficient information is available to deduce the values of all the
components of the circuit. Let us probe for one
>> What is (the resistance of a resistor

(which is (the resistorl of a simple-circuit
(which is s-c)))) ?

21.0

Further justifications will show how this value was obtained.
>> Why ?

RESISTANCE-2 IS 21.0

BECAUSE

1. : CURRENT-4 IS 0.333333332

2. : AUGEND-1 IS 7.0

3. : RESISTANCE-2 IS (QUOTIENT AUGEND-1 CURRENT-4)
>> Why ?

CURRENT-4 1S 0.333333332

BECAUSE

1. : CURRENT-2 IS -0.333333332

2. : SUM-2 1S 0.0

3. : CURRENT-4 IS (DIFFERENCE SUM-2 CURRENT-2)

>> Why ?

CURRENT-2 IS -0.333333332

BECAUSE

1. : CURRENT-1 IS 0.333333332

2. : SUM-1 IS 0.0

3. : CURRENT-2 IS (DIFFERENCE SUM-1 CURRENT-1)

>> Why ? '

CURRENT-1 IS 0.333333332

BECAUSE

1. : RESISTANCE-1 IS 9.0

2. : AUGEND-2 IS 3.0

3. : CURRENT-1 IS (QUOTIENT AUGEND-2 RESISTANCE-1)
>> Why ?

RESISTANCE-1 IS 9.0

BECAUSE

RESISTANCE-1 IS

(THE RESISTANCE OF A RESISTOR
(WITH TERMINAL1 TERMINAL1-1)
(WITH TERMINAL2 TERMINAL2-1))

>> Why ?
RESISTANCE-1 IS (THE RESISTANCE OF A RESISTOR
(WITH TERMINAL1 TERMINAL1-1)

(WITH TERMINAL2 TERMINAL2-1))
BECAUSE

RESISTANCE-1 IS (A RESISTOR
(WITH RESISTANCE 9.0)
-(WITH TERMINAL1 (A TERMINAL (WITH VOLTAGE
(WITH TERMINAL2 (A TERMINAL (WITH VOLTAGE

oW

-0)))
0))))

.
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>> Why 7
RESISTANCE-1 IS (A RESISTOR

(WITH RESISTANCE 9.0)

(WITH TERMINALL (A TERMINAL (WITH VOLTAGE 3.0)))

(WITH TERMINALZ (A TERMINAL (WITH VOLTAGE 0.0))))
BECAUSE YOU TOLD ME SO

There are many other features of the reasoning system that will be discussed later on.
We hope however that these illustrations give a good initial idea on its capacity. Let us
therefore start documenting the principles and the conceptual framework on which it is
based.
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2. FRAMES AND DESCRIPTIONS

It is now widely accepted that reasoning involves the construction of models based on
knowledge about the domain of the model, These models and therefore also the
knowledge on which they are based take the form of symbolic descriptions.

It follows that there are three types of problems we have to address:
1. Problems concerning the domain knowledge consulted to construct the model:;
- What language is used to represent knowledge?
- How is the knowledge structured and organized?
- How is information extracted from a model for use in later tasks?

2. Problems concerning the models themselves:
= What is the structure of a model?
- What are its symbolic conventions?

3. Problems concerning the process of model construction:
- What are the principles of the construction process?
- What kind of mechanisms interact with the model to resolve a particular task?

next chapter will be devoted to the description-manipulation processes: we will develop
a computational architecture that is necessary and sufficient to allow the construction of
reasoning systems. Subsequent chapters will make use of these two developments in
order to construct and study actual reasoning systems. '

Then we will build up a framework of concepts of knowledge representation reflecting
these constraints. This framework is illustrated with concrete examples.

1. THE PRINCIPLES

1. 1. THE ISSUE OF MODULARITY

The first problem we will look at is this: It is intuitively clear for everyone who reflects
on the matter that a mind has to have access to thousands of facts about all sorts of
things in order to deal successfully with the problems posed by the environment in which

it operates.

Here are some figures to get an idea of the magnitude of information involved, The
average speaker of English uses actively about 15,000 words and understands about
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25,000 words, although James Joyce used about 250,000 different words ! (Figures are
taken from Ogden,1968). Each of these words has about five different meanings (actually
a low estimate) which gives us 25,000 x 5 = 125,000 different shades of meaning. Each
of these meanings plays a role in knowledge structures which are presumably even more
extensive and are interlinked in ways that allow planning, language understanding, theory
making, etc. It is clear that we are dealing here with tremendous amounts of information.

But now notice that this complexity does not bother a human mind. Only the relevant
facts seem to ‘spring up’ when we think about a certain problem. We resolve word
sense ambiguities without any apparent effort, we apply far-fetched common sense facts
in order to understand even simple stories, etc,

How do we explain this efficient use of such an enormous store of facts?

A plausible explanation for this phenomenon is that the knowledge base is modularized. A
particular piece of knowledge would only be accessible when the module in which it )
resides is active, or, as soon as a particular module becomes active, the ‘knowledge
contained in it wants to be applied. This would also explain that we sometimes have
difficulty finding a fact when it is ’out of context’.

Hence the following principle:

PRINCIPLE 1: ’
KNOWLEDGE RELEVANT TO A CERTAIN DOMAIN IS GROUPED TOGETHER.

What exactly is meant by a domain? There seem to be two opposing views here: the
micro-world view vs. the general-expert view,

The MICRO-WORLD VIEW says that we should put every aspect of a.particular
class of tasks (such as playing with blocks, dealing with electronic circuits or
going to a restaurant) together, i.e. knowledge about time, space, physical
objects, planning capacities, etc., are all specialized for each task and grouped
together in a single structure which is called a micro-world.

The GENERAL-EXPERT VIEW says that we should try to construct experts for
each of the aspects of reality: an expert for time, one for space, one for
physical objects, etc. Faced with a particular class of tasks, the experts
somehow manage to get together and solve the problems of that type of tasks.

The main advantage of the MICRO-WORLD view is that because of specialization, it is
easier to tune processes and representations to the task at hand. This will give us a
firmer grip on the two major problems we are facing: see to it that the model comes
within physically manageable boundaries and have fast access to relevant information.
The advantage of the GENERAL-EXPERT view is that because of the general applicability
of the experts, the system can cope more easily with a larger number of tasks, although
maybe not that well with each task. Clearly what we need is some sort of synthesis of
the two views.
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Let us step back here and extract a dilemma which could be called the general-special
dilemma:

SPECIALIZATION leads to better performance on specific tasks but to a more
restricted scope of application
GENERALIZATION leads to a wider scope of application but often to a bad
performance on specific tasks.

One could also argue that each side of the dilemma represents different stages of
development: Presumably specialized mechanisms would have to be postulated in early
stages, whereas in later stages abstractions are performed leading to mechanisms with a
more general scope of application.  That explains on developmental grounds the
necessity for constructing a synthesis of the two approaches.

1. 2. THE ISSUE OF MODULARITY CONTINUED

Grouping knowledge in terms of domains is an important step. But within each of those
domains, there will still be thousands of facts, so that the complexity issue still remains

PRINCIPLE 2:

KNOWLEDGE OF A SINGLE DOMAIN IS ORGANIZED IN UNITS THAT REFLECT
THE CONCEPTUAL STRUCTURE OF THAT DOMAIN. .

What will be the criterion for being a unit? There seem to be two possible solutiong
again: the prototype view vs. the predicate view.

The PROTOTYPE VIEW says that because we are concerned with the process of building
up models of problem situations, it is natural to let the units represent prototypical
model situations. In other words a unit would be a fairly extensive knowledge structure
with slots for the entities that fill prototypical roles in the situation and contain ways to
specify what the important questions are that have to be asked about a particular
object. They would also contain information about the things which are always true for
those kinds of situations, ways to specify where specialization occurs, etc. .

The PREDICATE VIEW says that the main unit of organization is an atomic predicate or
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prototypes) are actively formed at the time of model construction,

Prototypes are useful because they enable the reasoner to construct whole chunks of a
model! at once. This is helpful for two reasons:

(i) Certain facts become immediately accessible - even if they are not yet
available as premises to the model constructor. Thus we are able to solve the
technical problems associated with gestalt-type reasoning.

(i) We gain enormously in efficiency because the models are ’pre-compiled’
so to speak.

o the activation and consultation of knowledge can be made'conlext-dependent, just
as the micro-world puts constraints on what facts become available in terms of domains,
the prototype puts constraints on what facts become available once inside a domain.

one does not want to invoke possibly huge piles of information attached to boy-souts,
trip-making, Barbados, radios, the Second World War, museums, captains, France...

A synthesis can be reached by adopting the prototype-principle as major organization
without abandoning the possibility of postulating units for simple concepts.

1. 3. THE ISSUE OF ORGANIZATION

So far we agreed that knowledge is grouped in domains and that knowledge inside a
domain is grouped in units reflecting the conceptual structure of the domain. The
question is whether this is sufficient to cope with the complexity issue, and whether
there are no further principles that would contribute to a better grip on this important
"problem. It turns out that there is indeed a further step we can take. If the units in a
domain would show some sort of internal organization, and if it would be possible to

make use of this organization then we would improve our chances to deal with great
amounts of information.

often be organized into hierarchies. The word hierarchy is ambiguous. It can refer to

generalization hierarchies or to "aspect’ hierarchies. We mean hierarchy here in both
senses.

A generalization or class/superclass hierarchy is a structuring of prototypes or concepts,
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MATTER
I

| |
LIVING-MATTER NON-LIVING-MATTER

| | I
PERSQN  PLANT ANIMAL SOLID LIQUID

Generalization hierarchies are important because they allow us to exploit the
generalizations that are present in the domain: If certain properties are common to all
concepts descending from a certain concept, then we have to store these common
Properties only once. For example, all properties that living things have in common would
be grouped within the unit for living-matter. Al depending units inherit all the
descriptions attached to the units above them in the hierarchy. The unit for PERSON
would automatically obtain all properties of the concept of living-matter - which
automatically obtains all properties of the concept of matter, etec. '

Another reason to have such generalization hierarchies is that they reflect the process of
concept formation. One important type of concept formation consists in specializing a
given concept or in generalizing a series of concepts based on a common property. If we
organize the knowledge inside a domain in terms of structures which reflect the way
they are formed, we will be in good shape to tackle these problems later.

An aspect hierarchy is a structuring of prototypes or concepts based on the roles they
play in each other. In general, an aspect is an important question that should be resolved
when a particular frame is instantiated. For example, if we are reasoning about a

PUT-ON action (as in planning a certain manipulation of children’s blocks) these questions
could be

who is the actor?

what is the object?

what is the new support?

what is the action that needs to be taken?
etc.

A typical example of an aspect hierarchy is one based on part-whole relations, like
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ROOM
|
I I ! |
WINDOW DOOR CEILING FLOOR
l I I I
! | | I N ST e
FRAME GLASS SILL CASE PANEL KNOB LOCK

But the word aspéct indicates that "aspect hierarchies’ can be more than just part-whole

or constituent structures. Height or weight of a person could be aspects that will form
part of the aspect hierarchy descending from person. Or the sub-actions of a certain
action are aspects working out the action itself, like in the following hierarchy:

PUT-ON
I

| I I |
CLEAR-SURFACE ~ GRASP-OBJECT  MOVE-TO-SUPPORT  RELEASE
I | I I
| I |
OPEN-HAND ORIENT CLING

Aspect hierarchies are important because we want the prototype structures working out
aspects of a certain prototype or concept to be closely connected, so that when we are
exploring a prototype, the prototypes working out its aspects will also become active,
Alternatively, prototypes for parts will activate ‘the prototype for the whole. Because
aspects represent the finite set of important questions we want to ask about a certain
topic we are thinking about, they organize the model in a way that helps to control the
reasoning process. '

These considerations lead us to adopt the following strong principle about relationships
between units. .

PRINCIPLE 3:
UNITS IN A DOMAIN SHOW HIERARCHICAL ORGANIZATION.

1. 4. THE ISSUE OF REPRESENTATION

We have arrived at the idea that knowledge is structured in hierarchically organized
units which each contain information about a prototype or concept of the domain. The
next question is how to represent this information.

reference to an individual of the domain of discourse. For example, the answer to the
question "Who is the actor”™ in a particular application of the concept PUT-ON is an
individual who is the actor of that PUT-ON action. The answer to the question "What is
the object?” is a reference to 3 particular block, the answer to "What is the
old-support?” is a reference to the surface on which the block is located before the
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PUT-ON operation takes place, etc.

But now we observe an interesting thing: - There is usually no way to uniquely
characterize the individuals of the domain. Sure, there might be a unique name, like
"John_Doe", but usually objects do not have such unique names. The bed in my bedroom
has no unique name. The only way | can talk about it is by indicating its role in an
instance of a concept, i.e. by saying that it is the bed of my bedroom.

This is summarized in the following principle:

PRINCIPLE 5
THE INFORMATION IN A UNIT CONSISTS OF DESCRIPTIONS, WHERE A
DESCRIPTION SPECIFIES THE ROLE OF AN OBJECT IN AN INSTANCE OF A
CONCEPTUAL UNIT.

1. 5. MULTIPLE VIEWPOINTS

For most nontrivial problem areas, a single viewpoint on the objects is insufficient to
effectively describe the object, because it usually plays a role in many different

prototypes, where each prototype implies a particular way of conceptualizing a certain
piece of reality.

For example, we may think of a natural language sentence as describable from the
viewpoints of phonetics, phonology, morphology, constituent structure, grammatical
categories (like noun or verb), grammatical relations (like subject or predicate), case
relations (like agent or patient), organizational structure (like theme/rheme or
topic/focus), etc. All these different viewpoints determine a specific aspect of the
linguistic forms occurring in the sentence and each of the viewpoints refers to a
particular aspect of its meaning.

The curious thing is that often it is impossible to do analysis or synthesis of an object

without maintaining models that describe the object from all its different viewpoints. This

is so because one viewpoint does not contain enough information to proceed and only a

cooperation between the different viewpoints provides -enough constraints to come to a

solution.

For example one soundstructure may lead to many possible phonological structures, a
phonological structure may lead to many different morphemes, one morpheme may have a

' variety of different meanings, a certain constituent structure may embody several

different dependency structures, a declarative sentence structure may signal a variety of

speech acts, etc.

Each of these structures can be constrained by structures from other viewpoints.

For example, a declarative sentence structure can in principle signal a question but

additional constraints from intonation may help to make a decision anyway.

But in order to explore these inter-viewpoint relationships. we have to maintain a
description from multiple viewpoints, hence the following principle:
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PRINCIPLE 6: '
A MODEL OF A PROBLEM-SITUATION CONTAINS A DESCRIPTION OF THE
OBJECTS FROM VARIQUS VIEWPOINTS.

It is important to realize that the need to maintain a description from multiple viewpoints
has been recognized in all micro-worlds that have been studied so far, and it is probably
an epistemological universal. ,

In reasoning about circuits we want to maintain descriptions from the viewpoints of DC
analysis, HF analysis, midband analysis, S-plane analysis, elc.

In geometry, we want to describe and reason about objects in Euclidian terms (using
concepts like LINE, ANGLE, etc.) and Cartesian terms (using X-Y coordinates).

And similarly for other domains.

DISCUSSION

The alternative to modularization is to have a 'flat’ representation, such as a database in the form
of a linear list of patterns, a set of nodes and links without further internal structure, and rules in
the form of linear lists without any further organization, Examples of non-modularized/non-organized
systems are resolution theorem provers (Robinson,1965), early pattern-directed invocation systems
(such as Hewitt, 1969, el.al), the first generation of production systems (Newell and Simon,1972) and
early semantic networks (such as Quillian,1968).

All these researchers were well aware of the complexity problem but they assumed that it was a
technical problem which could be overcome by finding suitable mechanisms. Examples of such
mechanisms are hash-coding of the database of patterns (as discussed in McDermott,1975), powerful
computational mechanisms like parallel marker passing in semantic networks (as discussed in
Fahlman,1977), a.0. '

This view is not shared by another group of people who believe that an important principle must
be behind our dealing with complexity. This principle is modularization and organization of
knowledge. The modularization movement was lead by Minsky’s frame-paper (Minsky,1974). Right
now there seems to be widespread agreement that modularization and organization is necessary:
production systems are organized in packets (Lenat,1976), semantic networks are partitioned in
spaces (Hendrix, 1975), etc.

The micro-world view is developed in Minsky and Papert (1971). and is vividly illustrated in
Winograd (1972). A related notion is that of a problem-space (Newell and Simon,1972). The general
expert view is for example advocated and illustrated in Kahn (1975) who has constructed a
" time-specialist. '

Arguments between prototype and predicate advocates were the focus of attention in the mid
seventies. The major first paper on prototypes was Minsky’s influential frame-paper (Minsky,1974),
The predicate view had before been advocated by systems based on predicate calculus or
organized around ‘conceptual primitives® like Schank [1975]) and Wilks [1972]). See Wilks (1976) for
arguments against the prototype-hypothesis. At present, the matter seems to have been resolved
in favour of the prototype view. For example, researchers who concentrated on conceptual
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primitives earlier on have now incorporated these primitives in a broader framework that uses
prototype-like structures such as plans and scripts (Schank and Abelson, 1977) or pseudo-texts
(Wilks,1978). Note also that the notion of a frame is very similar - if not identical - to Piaget’s
concept of a schema (see e.g. Piaget, 1968). The importance for problem solving of finite models of
the domain, ie. the principle that we should organize knowledge such that a finite number of
questions needs to be asked is a central hypothesis in Minsky’s frame-theory (Minsky,1974),

The idea of a hierarchy is a very old one and has been an important part of research on semantic
networks (cf. Quillian (1968)) or frames (Minsky,1974). The idea also developed within the context
on research on problem solving itself. In fact the difference tables of the means-ends analysis of
GPS (Ernst and Newell,1969) leads naturally to the notion of a hierarchy of actions that are
discriminated by the purpose of the action. Such a structure is further worked out by Rieger (1975)
who talks about bypassable caysal selection networks, slressing the fact that although the hierarchy
is the main skeleton for organization, there must be ways to bypass that structure.

The principle of hierarchy has also been realized by other disciplines which have to cope with large
amounts of information, such as catalogues in libraries, language thesauri like Roget’s, corpora of
legal laws, etc. It also interesting to observe that Simon (1972) introduces modularization and

hierarchy as the two prime methods for reducing complexity in any system and he links the success
in evolution to these two factors.

The idea of multiple-viewpoints was introduced by Moore and Newell(1973) and formed an important
part of the heterarchy-idea (cf. Minsky and Paper (1971), Winograd(1972)). Another word for
viewpoint is knowledge source (cf. Erman and Lesser (1975)). Multiple viewpoints are the focus of
attention in recent knowledge representation efforts, especially KRL (Bobrow and Winograd,1977).

2. THE FRAMEWORK

We discussed a number of issues in the previous paragraphs and argued for a particular
stand on each issue. Each stand was then expressed as a certain principle. We will now

develop a number of theoretical concepts which substantiate the principles advanced so
far. . . :

2. 1. FRAMES

The first concept, that of a frame, is postulated in the light of the principle that
knowledge of a domain is organized in units reflecting the conceptual structure of the
domain.

A frame is a structure that contains information about a particular conceptual unit of the
domain under study. A frame has a frame-name and a number of aspects or slots. A slot
is filled by entities that play a particular role or illuminate a certain aspect of the
situation described by the frame. These aspects represent the finite set of questions or
the components of a certain prototype - thus realizing the principle of hierarchical
organization of knowledge (hierarchy in the sense of aspect-hierarchy). We will give
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names to such aspects and call them aspect-names. To each slot information is attached
about the entities that fill the slots,

A frame can be visualized as follows

{frame-name)

Caspect-name-1) cee . {aspect-name-n)»

Here are some examples:
+ A frame for a prototypical family with roles for a father, mother and child:

FAMILY
I
I l |
FATHER MOTHER CHILD
1 I |

+ A frame for the arithmethic operation SUM with aspects for the addend
augend and result:

SUM

ADDEND - AUGEND RESULT
| I |

+ A frame for the action of putting an object which is resting on an old-support in a
certain begin-situation on a new-support in a certain end-situation:

PUT-ON
I
J I | | ! | |
ACTOR  ACTION OBJECT BEGIN-SIT END-SIT OLD-SUPP NEW-SUPP
I I I | | I I

As we go on we will develop a language that enables us to represent information along

the ways prescribed by the theory. So for each theoretical concept, we will introduce a
syntactic notation.

The syntactic form of a frame will be a list structure
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(<frame-named
(WITH {aspect-name-15)

(.{JiTH <aspect-name-n))).
The ordering of the aspect specifications does not affect the meaning.

For example, the syntactic representation of the FAMILY-frame is
(FAMILY
(WITH FATHER)
AWITH MOTHER)
(WITH CHILD)).
Here is the PUT-ON frame:
(PUT-ON
(WITH ACTOR)
(WITH ACTION)
(WITH OBJECT)
(WITH OLD-SUPPORT)
(WITH NEW-SUPPORT)
(WITH BEGIN-SITUATION)
(WITH END-SITUATION)).

What is the meaning of these representations? As said before, intuitively speaking a
frame represents a class of typical situations. If we would want to explicate in terms of
a Tarskian-style model theoretic semantics what is meant by this, we would say that the

extension of a frame is a set of configurations of individuals which are in the situation
indicated by the concept of the frame.

Let us call such a set of configurations the instantiation-set of the frame. Each
configuration will be called a possible instantiation. The set of individuals that may fill up

a particular position (j.e. may fill a particular slot in a frame) are called the set of
- possible slot-fillers of that slot. '

For example, the instantiation-set of the SUM-frame is the set of numbers which are in
the sum relation: {<2,1,l>,<3,1,2>,<3,2,1>,...}. A particular configuration like <2,1,1> is a
possible instantiation of SUM. The set of numbers that can be the addend of a sum:
{1,2,..} are the possible slot-fillers of the ADDEND slot.

THE SELF-SLOT

Often it is necessary to talk about an instance as such - without specializing to a
particular role. For example we might want to attach properties to the room-frame that
every room will have, or we might want to refer to an object as a room, not the window
of a room or the door of a room, but simply the room itself. There are two ways to
incorporate these capabilities. Either we can attach descriptions to the room-frame as
such and introduce special mechanisms to talk about instances, or we can introduce a
special aspect, which will further be called the self-aspect or self-slot, which has as its
filler an object that is an instance of the concept mentioned in the frame.

The advantage of this second method is that we gain in economy of representation (which
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(FAMILY
(WITH SELF)
(WITH FATHER)
(WITH MOTHER)
(WITH CHILD)).

The self-slot in the family frame is filled by objects which are a family.

2. 2. BASIC DESCRIPTIONS

A description is a construct used to refer to an individual by saying that it plays a

particular role, i.e. fills a certain aspect in an instantiation of a frame. This role will be
called the view.

The syntactic representation of a description is constructed by taking the syntactic
representation of a frame and putting the name of the aspect that is the view in the
description in front:

(<first-article) <VIEW> OF {second-article) <FRAME-NAME>
(WITH CASPECT-NAME-1>) .... )

as in
( THE MOTHER OF A FAMILY

(WITH FATHER)
(WITH CHILD)).

The articles give a hint on how the referent of the description should be found. If the
first article is a definite article (i.e. THE), then the description is a definite description,
i.e. the referent is a specific individual. If the first article is an indefinite article (i.e. A or
AN), then the description is an indefinite description, i.e. the referent is an arbitrary
individual from the range of the description.

For example, because a family can have many children, we might have a description like

(A CHILD OF A FAMILY
(WITH FATHER)(WITH MOTHER))

particular one, we might say something like
(A CHILD OF THE FAMILY ved)

If the concept used in the frame is an individual-concept, i.e. there is only one object

that can fill its self-slot, then we write no article at all. (More about individual-—concepts
will be said later on))

For example suppose we have a frame for JOHN:
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( JOHN
(WITH SELF)
(WITH AGE))
Then we can refer to the age of John by saying
(THE AGE OF JOHN)

A partial description is a description where not all aspects that are in the frame of the
concept used in the description are mentioned. For example, we could refer to
(THE DOOR OF A ROOM)

~without saying anything about the window, floor, ceiling, etc.

A second type of basic descriptions allows us to refer to a particular instance itself.
Such a description is written as

(<article) {FRAME-NAME)>
(WITH <ASPECT-NAME-1>) ced)
Where the article is the definite article if the referent is definite, an indefinite article if
the referent is an arbitrary element of the range of the concept and no article if the
concept is an individual concept.

The following are examples of basic descriptions referring to an instance of g concept:
JOHN
(A ROOM)
(A FAMILY)

Note that 3 description has the flavor of a function. Indeed if the description is
guaranteed to point uniquely to a particular individual, it is a function that has this

attached to a slot in a description. Attachment will be represented by writing the
description after the aspect-name, as in

(A FAMILY (WITH FATHER JOHN) (WITH MOTHER MARY))
which can be read as "a family whose father is John and whose mother js Mary™. The
descriptions attached to the father and mother aspect respectively refer to an object
which is an instance of John and an instance of Mary.

When a description is attached to an aspect in a frame, it means that all possible
slot-fillers of that aspect are described by that description. In this case attachment

female-person, where there is a frame for female-person that looks like this:
(FEMALE-PERSON
(WITH SELF))

then we can do so by attaching the description (A FEMALE-PERSON) to the mother slot
of the family-frame:
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(FAMILY
(WITH SELF)
(WITH MOTHER
(A FEHALE-PERSON))
(WITH FATHER))

It is also possible to further constrain the instance itself by writing
(<relative-pronoun> IS <descr1ption>)

after the frame-name in the description. The relative-pronoun s WHO if the instance
refers to a person, otherwise it is WHICH,
Suppose, for example, that we had a frame for MOTHER:
(MOTHER

(WITH SELF)

(WITH CHILD))
then we can refer to an object by saying

(A CHILD OF A MOTHER
(WHO IS MARY))

reasoner. For example, a description of the form
(THE CHILD OF A FAMILY)
is internally represented as
(CHILD FAMILY)
Or a description of the form
(A CHILD OF A MOTHER (WHO IS MARY))
is represented as
(CHILD MOTHER (WITH SELF (SELF MARY)))

The more elaborate syntax has been introduced for the convenience of the réader and
the user of the reasoning system.

2, 3. ASPECT-SPECIFICATIONS
PROJECTIVITY

Now we observe that it is usually possible to divide the set of instantiations of a frame
into groups, further called instantiation-groups. Each instantiation in such a group has a
certain set of aspects in common,

children, it makes sense to divide the instantiation-set of the family frame into groups
where each group corresponds to one family. Al instantiations in thig group have the
same father and the same mother. They differ in that the child-slot could be filled by a
different individual. We will call the aspects that have the same filler in a given
instantiation-group projective aspects. The other aspects are called non-projective. It is
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For example, if a certain person is described as
( THE MOTHER OF A FAMILY (WITH FATHER JOHN))
and a little while later this same person is described as
(THE MOTHER OF A FAMILY (WITH FATHER MR-JONES))
Then we know that John and Mr-Jones are referring to the same person because the

object, then from now these objects should be considered identical. We say in such a
case that the two objects are merged Or if Mr-Jones was not yet known, then the
description Mr-Jones should be predicated for John or vice-versa.

CRITERIALITY

But sometimes more than one aspect has to co-operate in order to find what
instantiation—groUp is intended. In a frame of LINE-SEGMENT like
(LINE-SEGMENT ‘

(WITH SELF)

(WITH BEGIN)

(WITH END)

(WITH DISTANCE)),
begin and end are criterial because there are no two line-segments with the same begin
and the same end. In the same frame the self-aspect is also criterial. But the begin
aspect on its own is not criterial, because there can be two lines with the same begin.

The importance of knowing what series of aspects are criterial is that they provide
essential information for finding the instantiation(group) of a description.
Take for example the following description:
(A LINE-SEGMENT

(WITH BEGIN POINT1)

(WITH END POINT?2)) .
In order to find out what line-segment is referred to, the reasoner looks at a series of
aspects that are criterial and for which the description contains specific information. In
the. example given here the reasoner knows that begin and end are criterial, it can
therefore look whether the objects pointl and point2 are described already as the
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begin and end of a line-segment. If that is so it knows already about this particular

instance of the line-segment concept and can infer the other individuals in this
instantiation.

example, when a particular object is at one point described as
(A LINE-SEGMENT
(WITH BEGIN POINT1)
(WITH END POINT2))

and at another point as
(A LINE-SEGMENT
(WITH DISTANCE 3_CM))
then we know that each time we are talking about the same line-segment. We know this

because the SELF-siot of line-segment is criterial and therefore the object can only once
be described as a line-segment.
In contrast,

(THE FATHER OF A FATHER-CHILD-RELATION
(WITH CHILD GEORGE))

and

(THE FATHER OF A FATHER-CHILD-RELATION
(WITH CHILD JOHN))

do not have to merged because somebody can be the father of more than one

father—child—relation, i.e. the father slot in the frame for father-child-relation js
non-criterial.

It is interesting to observe that although in natural languages articles give a hint on the
status of a description, information of what aspects are criterial is a much more robust
way to figure out whether a description is supposed to be definite or not. That is why

reason why certain languages (such as classical Latin) do not have articles but can still
function properly. :

INDIVIDUALITY

that can ever fill this aspect. In such a case we say that this aspect is individuating. We
will call a concept whose self-aspect is individuating an ino’ividual—concepl.

The importance of knowing whether an aspect is individuating is that it tells the reasoner
which descriptions are individual-descriptions, i.e. which descriptions refer to a unique
individual. We will see later that the reasoner builds up a list of individuals which are

accessible by way of these individual—descriptions, so that the referent can be retrieved
when the description occurs.

A further refinement of the notion of an individuating aspect is to specify that it is a
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respect to a certain group as different from any other individual introduced by an
individual concept of that group.

CONVENTIONS

Let us now establish some conventions for representing this information. What we will
do is add a list of so-called aspect-specifications at the end of an aspect-list. The
aspect-specifications are a list of specifications of the form (<type-of-specification>
<case-1> .. <case-n>) where a case is an aspect or a list of aspects if the-
type-of-specification is criteriality, that salisfy the property mentioned in the
<type~of—specification>.
The type-of-specification is

CRITERIAL if the cases indicate series of aspects which are criterial,

NON-PROJECTIVE if the cases are non-projective aspects.

INDIVIDUATING if the Ccases are individuating aspects.

For the LINE-SEGMENT frame this leads us to
(LINE-SEGMENT

(WITH SELF)

(WITH BEGIN)

(WITH END)

(WITH DISTANCE) -

(ASPECT-SPECIFICATIONS:

(CRITERIAL: (BEGIN END) (SELF))))

The default for projectivity is projective. The default for individuality is non-individuating
and the default for criteriality is non-criterial, |f the default is not violated we do not
write any aspect-specifications. In the rest of the text these aspect-specifications will
only be written if they are needed to prove a point.

Here are some more examples: A frame for the individual concept John_Doe:
( JOHN_DOE
(WITH SELF)
(ASPECT—SPECIFICATIONS:
(INDIVIDUATING: SELF)))
When we want to add that the self-slot of JOHN_DOE is individuating with respect to
people, we write this as follows:
( JOHN_DOE
(WITH SELF)
(ASPECT-SPECIFICATIONS:
(INDIVIDUATING: (WITH-RESPECT-TO PEOPLE SELF))))

An individual concept can be individuating with respect to a variety of domains.
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The family frame Wilh projectivity and criteriality declarations:

(FAMILY

(WITH SELF)

(WITH FATHER)

(WITH MOTHER)

(WITH CHILD)

(ASPECT-SPECIFICATIONS:
(CRITERIAL: (FATHER)(MOTHER) (CHILD)(SELF))
(NON-PROJECTIVE: CHILD)))

2. 4. THE CONNECTIVES

The next extension of the descriptive apparatus will enable us to specify tighter
constraints on a particular slot-filler by the use of more than one description which is
combined with one of the logical connectives AND, OR, XOR or NOT.

A description like

(AND (THE FATHER OF A FAMILY
(WITH MOTHER MARY))
(THE CHILD OF A FAMILY

of a family whose father is John. In other words the interpretation of a conjunction of
descriptions is an individual out of the intersection of the possible slot-fillers of the view
of each description.

The disjunction of descriptions, represented with the connective OR, is an individual out
of the union of the possible slot-fillers of the view of each description.

Finally, an exclusive-disjunction of descriptions, represented as XOR, is an individual out
of the range of the first description, or the range of the second description but not. of
the intersection of these two ranges. '

For example, a person can be described as either being a male or a female person:

(PERSON
(WITH SELF
(XOR (A FEMALE-PERSON)
(A MALE-PERSON))))

Sometimes we want to express the fact that an entity does not play a role in a certain
instantiation of a frame. This type of specification is particularly relevant if we are
working with incomplete worlds, i.e. when we have insufficient information to construct a
complete closed model of a certain problem situation.

Such a negative description will be expressed by a description of the form (NOT
<description>) where <description> is a description. For example,

(NOT (THE FATHER OF A FAMILY
(WITH MOTHER JOAN)))

is a negative description. Its extension is an individual which is not the father in an
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instantiation of the family-frame whet;e an individual which has the name of Joan plays
the role of the mother,

The relationships between connectives known from propositional calculus hold for
. descriptions with connectives.
For example, based on DeMorgan’s law

(OR (NOT (A FEMALE-PERSON))
(NOT (A MALE-PERSON)))

is equivalent to

(NOT (AND (A FEMALE-PERSON)
(A MALE-PERSON)))

2. 5. CO-REFERENTIAL DESCRIPTIONS

is attached to the aspect.
For example in
(THE RESULT OF A WRITE
(WITH ACTOR (A PERSON))) ,
The actor of this write-instance is specified as being co-referential with a filler of the
self-aspect of a person-instance. .

. Attachment allows us to express co-referentiality between one aspect of an instance of
a frame and one aspect of an instance of another frame. But in many cases we want to
express co-referentiality between more than one aspect. Here s an example of a
representation problem where this is needed. Suppose we have the concept of a
parent-child-relation as in :
(PARENT-CHILD—RELATION

(WITH SELF)

(WITH PARENT)

(WITH CHILD))
and the concept of a MOTHER-CHILD-RELATION with aspects for the mother and the child
as in
(HOTHER-CHILD-RELATION

(WITH SELF)

(WITH MOTHER)

(WITH CHILD)).
Now we want to specify that the pair mother-child corresponds to the pair parent-child.
Note that something like
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(MOTHER-CHILD-RELATION
(WITH SELF)
(WITH MOTHER

(THE PARENT OF A PARENT-CHILD-RELATION))
(WITH CHILD

(THE CHILD OF A PARENT-CHILD-RELATION)))
is not a sufficient constraint because it does not say that the mother is the parent of the
same instantiation of the parent-child-relation as the child is the child of.

What we will do is say that the child slot of the parent-child-relation in the description
attached to the mother slot s co-referential with the child slot in the
mother-child-relation frame. Co-referential links will be represented by writing

(= CREFERRING-NAME)>)

after each slot that is co-referentially related. Such an expression is called a
co-referential description. The referring-name is lexically scoped within one frame.
For the MOTHER-CHILD-RELATION frame, this leads us to

(MOTHER-CHILD-RELATION
(WITH SELF)
(WITH MOTHER
(THE PARENT OF A PARENT-CHILD-RELATION
(WITH CHILD (= THE-CHILD))))

(WITH CHILD (= THE-CHILD))).
This frame now expresses the fact that the mother of every mother-child-relation is the
parent of a parent-child-relation whose child is co-referential with the child of the
mother. Observe the co-referential descriptions attached to the child-slot in the

mother-child-relation frame and the child-slot in the description based on the
parent-child-relation frame.

The default name for the fillers of the frame itself is

A (= THE-<aspect-name)) :

For example, the default name for the filler of the child aspect in a mother-child-relation
is THE-CHILD. We therefore can write

(MOTHER-CHILD-RELATION
(WITH SELF)
(WITH MOTHER
(THE PARENT OF A PARENT-CHILD-RELATION

(WITH CHILD (= THE-CHILD))))
(WITH CHILD))

Here is another example of co-referential links inside a frame. An uncle of a

niece—or-—nephew can be described as the brother of the parent of this niece-or-nephew
or the husband of the aunt of this niece-or-nephew:
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(UNCLE
(WITH SELF
(OR (A BROTHER .
(WETH BROTHER-OR-SISTER
(A PARENT (WITH CHILD

(= THE-NIECE-OR-NEPHEW)))))
(A HUSBAND

(WITH WIFE
(AN AUNT (WITH NIECE-OR-NEPHEW

(= THE-NIECE~0R-NEPHEV)))))))
(WITH NIECE-OR-NEPHEW (= THE—NIECE-OR-NEPHEV)))

Where reference was made to a frame for brother:

(BROTHER
(WITH SELF)
(WITH BROTHER-OR-SISTER))

husband:

(HUSBAND
(WITH SELF)
(WITH WIFE))

and aunt:

(AUNT
(WITH SELF)
(WITH NIECE-OR-NEPHEW))

There are some important issues that are underlying the representation mechanisms
Proposed so far. One of them is that we insist on local rather than global contexts: An
aspect has only nieaning within the context of the frame in which it is located. A
co-referential description has only meaning (i.e. a binding) within the local text that
surrounds it, etc. The major reason for doing this is because we fear that in a large.
knowledge system the occurrence of global elements is dangerous, especially if the
system is developéd over a longer period of time by several people. Because the

. representations are local, the writer of descriptions here only has to worry about the
immediate text. ' '

2. 6. CONDITIONAL DESCRIPTIONS

Conditional descriptions are necessary when we want to make a predication conditional
on the presence of a certain constraint. For example, we might want to represent the
information that a parent is a mother when she is a female-person.

Conditional descriptions are expressed as follows. First we introduce the entity for which
the conditional holds by using a referring-name introduced by a co-referential
description. Then we give a list of pairs where the first element is the condition that the
entity has to satisfy in order for the second element to be a valuable description. The
condition-indicator in front denotes the type of condition.

All this is represented as
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(<CONDITION-INDICATOR) CREFERRING-NAME) IS
(CCONDITION-1> (RESULTING-DESCRIPTION-l))

(<CONDITION-N> <RESULTING-DESCRIPTION-n>))

As in
(IF THE-PARENT IS
((A FEMALE-PERSON) :
(A MOTHER (WITH CHILD (= THE-CHILD)))))
which says that if the referent of THE-PARENT is described as a female-person, then
this description is equivalent to
(A MOTHER (WITH CHILD (= THE-CHILD)))
If we now attach this description to a frame:
(PARENT .
(WITH SELF (= THE-PARENT)
(IF THE-PARENT IS
((A FEMALE-PERSON)
(A MOTHER (WITH CHILD (= THE-CHILD))))))
(WITH CHILD (= THE-CHILD)))
then this means the same as saying that every parent who is a female-person is a
mother whose child is the child of the parent.

When the condition in a conditional contains co-referential descriptions that do not yet
have a specific reference, then they are ‘bound’ by a matching process to a particular
individual and aspects which occur within the scope of that condition and which are
co-referential are then known to have the same individual as referent.
r example, in
(PERSON
(WITH SELF (= THE-PERSON)
(IF THE-PERSON
((A FATHER
(WITH CHILD (= A-CHILD)))
(A PARENT
(WITH CHILD (= A-CHILD)))))))
The co-referential-description (= A-CHILD) will obtain a specific reference when the
condition itself is compared with a description predicated for the-person. Later
references obtain the same referent. So if the following description holds for the
referent of THE-FERSON:
(A FATHER (WITH CHILD JOHN))
then the resulting-description will be
(A PARENT (WITH CHILD JOHN))

Let us explore turther the various components of a conditional description. First the
condition-indicator. There are two dimensions along which conditional descriptions can be
classified. The first dimension is based on the order in which the conditions are tried
out. Either we can try out all conditions at once, in which case we have a parallel

conditional, or we can try one’ condition after the other until one matches. This will be
called a sequential conditional,
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The second dimension concentrates on the time for which the conditional has to remain
active. Here we see three possibilities: Either the conditional s exercised only once, i.e.

continuous conditional,

Each of these types has different applications. For example, the first one can be used to
look around in the state of a model at a certain moment of time, and make a decision
based on that state. The second one is used to derive a certain description but we

Moreover there is a natural relation between these conditionals. Clearly an instantaneous
- conditional is only useful if sequential. The reasoner should look around for cases until it

one of the conditions is true and then perform an action. So we end up with three types
of conditionals: instantaneous/sequential, continuous/parallel and single-event/parallel,
For each of these types we introduce an indicator:

IF-NOW for instantaneous/sequential conditional

IF for single-event/paralle! conditional

WHEN for continous/parallel conditional.

“Consider for example,

(PARENT
(WITH SELF (= THE-PARENT)
(IF THE-PARENT IS
((A FEMALE-PERSON)
(A MOTHER (WITH CHILD (= THE-CHILD))))))
(WITH CHILD))

This description says that when the individual which is the referent of the-parent is
known to be described as a female-person, then the description

(A MOTHER (WITH CHILD (= THE-CHILD)))
holds for the filler of the self-slot. Clearly it is only necessary to exercise this

be known at the time the condition enters the reasoner whether the person is female or
not.

Here is a conditional with two cases.
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(PARENT (= THE-PARENT)
(WITH SELF (= THE-PARENT)
(IF THE-PARENT IS
((A FEMALE-PERSON) :
(A MOTHER (WITH CHILD (= THE-CHILD))))
- ((A MALE-PERSON :
(A FATHER (WITH CHILD (= THE-CHILD)))))))
(WITH CHILD))

Now comes:an example of a continuous, parallel conditional. Suppose we want to express
transitivity of a certain relation in a way that causes the addition of a new description
each time the parts are known. For example, suppose we are working in the
blocksworld domain and we want to set up a frame such that when an object is above
another object and this object is above another object itself, then the first object is
above the latter object. This can be accomplished as follows:

(ABOVE-RELATION
(WITH SELF)
(WITH LOWER-0BJECT
(WHEN THE-UPPER-OBJECT IS
((THE LOWER-OBJECT OF AN ABOVE-RELATION
(WITH UPPER-OBJECT (= ANOTHER-0BJECT)))
(THE LOWER-OBJECT OF AN ABOVE-RELATION
(WITH UPPER-OBJECT (= ANOTHER-0BJECT))))))
(WITH UPPER-OBJECT))
The above-relation has aspects for a lower-object and an Upper-object. Attached to

the lower-object aspect is a conditional description which looks out whether the
upper-object is described as the lower-object of an above-relation. As soon as that is

condition that is always true.

When the condition is a conjunction then the object referred to by the referring-name
has to be described in terms of all of the conjuncts in order for the corresponding
resulting-description to match. When it is a disjunction then the cbject has to be
described in terms of any of the disjuncts, and when it is an exclusive disjunction, it has
to be described in any of the disjuncts and in the negation of the others.

The following is an example of a more complex condition:

Page - 41



FRAMES AND DESCRIPTIONS CONDITIONAL DESCRIPTIONS

(PERSON (= THE-PERSON)
(WITH SELF
(IF THE-PERSON 1§
((AND (A MALE-PERSON)
(A PARENT
(WITH CHILD (= THE-CHILD))))
(A FATHER (WITH CHILD (= THE-CHILD)))))))

2. 7. EXPLICIT PREDICATION

It sometimes happens that the conditional descriptions become very complicated. In such
cases it is often no longer clear what the object is to which the final
resulting-description has to be predicated. In order to make that clear again, we
introduce the notion of explicit predication, - .

An explicit predication is of the form
(<a-referring-name) IS {description))
As in
(THE-PERSON IS (A FATHER (WITH CHILD (= THE-CHILD))))
A referring-name is a name introduced by a co-referential description somewhere else in
the frame. The meaning of an explicit predication is simply that the description holds for
the referent of the referring-name.  In other words that the referent of the
referring-name is co-referential with the referent of the description.
In this case that the description
(A FATHER (WITH CHILD (= THE-CHILD)))
holds for the object referred to by THE-PERSON.

Thus the previous frame for person could have been written as

(PERSON

(WITH SELF (= THE-PERSON)
(IF THE-PERSON IS

((AND (A MALE-PERSON)

(A PARENT
(WITH CHILD (= THE-CHILD))))
(THE-PERSON IS
(A FATHER (WITH CHILD (= THE-CHILD))))))))

2. 8. HIERARCHY

Another important principle of the frame-theory which underlies the language presented
in this section is that knowledge is organized in generalization or class/superclass
hierarchies. The idea js that frames lower in the hierarchy inherit descriptions attached
to generalizations of this rame h

The way we represent hierarchies is by describing a particular aspect of a frame in
terms of another frame, i.e. by attaching a description to that aspect and by establishing
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co-referential links between other aspects if necessary. Thus in the
mother-child-relation frame ‘
(MOTHER-CHILD-RELATION
(WITH SELF)
(WITH MOTHER :
(THE PARENT OF A PARENT-CHILD-RELATION
: (WITH CHILD (= THE-CHILD))))
(WITH CHILD (= THE-CHILD)))
Parent-child-relation is a generalization or superclass of mother-child-relation.
Inheritance is guaranteed because of the co-referential links. The mother of every
mother-child-relation is described as the parent of a parent-child-relation. Now suppose
that we have another description attached to the parent of a parent-child-relation:
(PARENT-CHILD-RELATION
(WITH SELF)
(WITH PARENT (A PERSON))
(WITH CHILD )) A
then because this description, i.e. "(A PERSON)", holds for every parent of a
parent-child-relation it holds ipso facto for the parent which is the mother of a
mother-child—relgtion. :

Again we have made certain decisions here that are not shared by other systems. In
particular we see another application of the principle of modularity. A frame does never
inherit aspects of another frame because that violates the locality assumption. An aspect
would need to have meaning outside the frame in which it is defined.

Let us do another more extensive example to illustrate the representation of hierarchies.

The example is concerned with a hierarchy of possession-transfer and has been
discussed by other authors. :

The subject of the example is transfer of possession. First we need a frame for
Possession itself. Possession involves an entity which has possession (the HAVER), an
object that is being posessed (the OBJECT), and a situation in which this state of affairs
occurs (the SITUATION): '

(POSSESSION
(WITH SELF)
(WITH HAVER)
(WITH OBJECT)
(WITH SITUATION)).

The hierarchy of trans»fer-of—posses:\si?rlw actions we will look at looks like this:
‘ CTION

I
POSSESSION-TRANSFER
|

I I
SINGLE-TRANSFER MUTUAL-TRANSFER
| |
| | | I
GIVE TAKE BUY SELL

This hierarchy contains of course only a small subset of the transfer-of-possession
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prototypes that might be in use, but the reader can easily imagine how to extent this
hierarchy.

We discuss two types of possession-transfer: a situation where there is a single
transfer: the old-owner no longer has an object and the new-owner gets the object, and

a situation where there is a mutual transfer: the old-owner no longer has the object but
gets something in return.

A single-transfer is further subdivided into three types: one where the old-owner
performs the action, or is viewed as performing the action (GIVE), and one where the
new-owner performs the action - maybe even without the old-owner knowing it (TAKE).

A mutual-transfer is worked out for the case where the exchange-object is money. Also

here the action can be viewed as being performed by the old-owner (SELL) or by the
new-owner (BUY).

We now construct frames for each of the nodes in the hierarchy that work out these
specifications. The top-frame for ACTION has aspects for the action itself, for the actor,
for the begin-situation and the end-situation;

(ACTION
(WITH SELF)
(WITH ACTOR)
(WITH BEGIN-SITUATION)
(WITH END-SITUATION)).

A transfer of possession can now be defined as being an action, such that in the
begin-situation the old-owner has a certain object and in the end-situation the
new-owner has the object :

(POSSESSION-TRANSFER
(WITH SELF
(AN ACTION
(WITH ACTOR (= THE-ACTOR))
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))
(WITH END-SITUATION (= THE-END-SITUATION))))
(WITH ACTOR)
(WITH OLD-OWNER ,
(THE HAVER OF A POSSESSION
(WITH OBJECT (= THE-OBJECT))
(WITH SITUATION (= THE-BEGIN-SITUATION))))
(WITH NEW-OWNER
(THE HAVER OF A POSSESSION
(WITH OBJECT (= THE-OBJECT))
(WITH SITUATION (= THE-END-SITUATION))))
(WITH OBJECT)
(WITH BEGIN-SITUATION)
(WITH END-SITUATION)).

This structure can be paraphrased as follows. The action of a possession-transfer is an
action whose actor is co-referential with the actor of the transfer, whose begin-situation
is co-referential with the begin-situation of the transfer and whose end-situation is
co-referential with the end-situation of the transfer. The old-owner of the
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possession-transfer is described as the haver of a possession whose object is the object
of the transfer and whose situation is the begin-situation of the transfer. Finally the
new-owner is described as the haver of a possession whose object is the object of the
possession-transfer and whose situation is the end-situation of the transfer.

Now we specialize into single or mutual transfer. Single transfer does not have to be a

seperate frame because it would be the same as POSSESSION-TRANSFER itself. But for
MUTUAL-TRANSFER we get

(MUTUAL-TRANSFER
(WITH ACTOR)
(WITH OLD-OWNER)
(WITH NEW-OWNER)
(WITH OBJECT)
(WITH EXCHANGE-OBJECT)
(WITH BEGIN-SITUATION)
(WITH END-SITUATION)
(WITH SELF
(AN UNORDERED-COMPOSITION-OF-TVO-ACTIONS
(WITH ONE-ACTION
(A POSSESSION-TRANSFER
(WITH ACTOR (= THE-ACTOR))
(WITH OLD-OWNER (= THE-OLD-OWNER))
(WITH NEW-OWNER (= THE-NEW-OWNER))
(WITH OBJECT (= THE-OBJECT))
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))

(WITH END-SITUATION (= THE-END-SITUATION))))
(WITH OTHER-ACTION

(A POSSESSION-TRANSFER
(WITH ACTOR (= THE-ACTOR))
(WITH OLD-OWNER (= THE-NEW-OWNER))
(WITH NEW-OWNER (= THE-OLD-OWNER))
(WITH OBJECT (= THE-EXCHANGE-OBJECT))
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))
(WITH END-SITUATION (= THE-ENO-SITUATION)))))))

So, a mutual transfer is described as an unordered composition of actions where the first
action is a possession-transfer where the old-owner is co-referential with the old-owner
of the mutual-transfer and the object is co-referential with the object of the transfer.
The second action is a possession-transfer where the old-owner is the new-owner of
the transfer and the object is the exchange-object.

Use was made of an auxiliary frame for unordered composition of actions, i.e. actions
that do not have to be in a specific ordering: :

(UNORDERED-COMPOSITION-OF-TVO-ACTIONS
(WITH SELF)

(WITH ONE-ACTION)

(WITH OTHER-ACTION)).

Next we specialize SINGLE-TRANSFER into two types: one where the action is performed
by the old-owner (GIVE), and one where the action is performed by the new-owner
(TAKE). We do this by attaching a description invoking an instantiation of

Page - 45



FRAMLS AND DESCRIPTIONS ‘ HIERARCHY

POSSESSION-TRANSFER to a slot in the GIVE-frame and establishing co-referential links

to enable flow of information from GIVE to POSSESSION-TRANSFER.
(GIVE ‘
(WITH OBJECT)
(WITH OLD-OWNER)
(WITH NEW-OWNER)
(WITH BEGIN-SITUATION)
(WITH END-SITUATION)
(WITH SELF
(A POSSESSION-TRANSFER
(WITH ACTOR (= THE-OLD-OVNER))
(WITH OBJECT (= THE—OBJECT))
(WITH OLD-OWNER (= THE—OLD-OWNER))
(WITH NEW-OWNER (= THE-NEV-OWNER))
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))
(WITH END-SITUATION (= THE-END-SITUATION))))).

Note how the actor of ‘the possession-transfer is made co-referential with the
old-owner. Similarly for TAKE: ,
(TAKE
(WITH OBJECT)
(WITH OLD-OWNER)
(WITH NEW-OWNER)
(WITH BEGIN-SITUATION)
(WITH END-SITUATION)
(WITH SELF
(A POSSESSION-TRANSFER
(WITH ACTOR (= THE-NEW-OWNER))
(WITH OBJECT (= THE-0BJECT))
(WITH OLD-OWNER (= THE-OLD-OWNER))
(WITH NEW-OWNER'(= THE-NEW-OWNER))
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))
(WITH END-SITUATION (= THE-END-SITUATION))))).

Note ;how the - actor of the possession-transfer is made co-referential with the
new-owner.,

A similar specialization of mutual transfer leads to a subdivision into BUY and SELL.
(BUY
(WITH OBJECT)
(WITH OLD-OWNER)
(WITH EXCHANGE-0OBJECT
(AN AMOUNT-OF-MONEY))
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))
(WITH END-SITUATION (= THE-END-SITUATION))
(WITH SELF
. (A MUTUAL-TRANSFER
(WITH ACTOR (= THE-NEW-OWNER))
(WITH OBJECT (= THE-OBJECT))
(WITH OLD-OWNER (= THE-OLD-OWNER))
(WITH NEW-OWNER (= THE-NEW-OWNER) )
(WITH EXCHANGE-OBJECT (= THE-EXCHANGE-OBJECT))
(WITH BEGIN-SITUATION (= THE-BEGIN—SITUATION))
(WITH END-SITUATION (= THE-END-SITUATION)))))

Note how the actor of the mutual-transfer js co-referential with the new-owner.
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(SELL
(WITH OBJECT)
(WITH OLD-OWNER)
(WITH EXCHANGE-OBJECT
(AN AMOUNT-OF -MONEY))
(WITH BEGIN-SITUATION)
(WITH END-SITUATION)
(WITH SELF
(A MUTUAL-TRANSFER ‘
(WITH ACTOR (= THE-OLD-OWNER))
(WITH OBJECT (= THE-OBJECT))
(WITH OLD-OWNER (= THE-OLD-OWNER))
(WITH NEW-OWNER (= THE-NEW-OWNER))
(WITH EXCHANGE-OBJECT (= THE-EXCHANGE-OBJECT))
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))
(WITH END-SITUATION (= THE-END-SITUATION))))).

Note how the actor of the mutual transfer is co-referential with the old-owner.

The exchange-object was in both cases restricted by reference to a frame for a certain
amount of money:

(AMOUNT-OF -MONEY
(WITH SELF)).

So far we have constructed the hierarchy such that a bottom-up flow of information is
possible, ie. if we know that something is a buy-action, we know that it is a
mutual-transfer and thus we inherit the fact that it is a transfer-of-possession and an

action. Now we add descriptions to allow a flow of information in both directions. This is
done using conditional descriptions.

We will attach a description to a frame higher up in the hierarchy indicating what frames
are specializations of the concept and on what basis the specialization is made. The
result is a sort of discrimination network that can be searched based on conditional
descriptions. One example is sufficient to give an idea.

Suppose we have the possession-transfer frame given earlier and we want to create
downward links to give and take. What we do is attach a conditional expression to the
self-slot, saying that when the actor of the action is equal to the old-owner, the action is
a give action, and when the actor of the action is equal to the new-owner, the action is a
take action:

Page - 47



PRAMES ALD DESCRIPTIONS HIERARCHY

(POSSESSTION-TRANSFER
(WITH ACTOR)
(WITH OLD-OWNER)
(WITH NEW-OWNER)
(WITH OBJECT)
(WITH BEGIN-SITUATION)
(WITH END-SITUATION)
(WITH SELF
(IF THE-ACTOR IS
((= THE-OLD-OWNER)
(A GIVE
(WITH OLD-OWNER (= THE-OLD-OWNER))
(WITH NEW-OWNER (= THE-NEW-OWNER))
(WITH OBJECT (= THE-OBJECT))
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))
(WITH END-SITUATION (= THE-END-SITUATION))))
((= THE-NEW-OWNER)
(A TAKE
(WITH OLD-OWNER (= THE-OLD-OWNER))
(WITH NEW-OWNER (= THE-NEW-OWNER))
(WITH OBJECT (= THE-OBJECT))
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))
(WITH END-SITUATION (= THE-END-SITUATION)))))))

DISCUSSION

The standard way of developing concrete theoretical proposals in Al is to construct a language
which contains primitives that embody concepts advanced as necessary and sufficient by the theory.
If it is discovered by experimentation, i.e. by trying to construct reasoning systems for particular
problems, that certain constructs are not necessary or that the constructs are not sufficient - or
even worse harmful - the language is abandoned and a new stage of development is entered.

* A nice example of this methodology ‘can be seen by looking at the argumentation for going from
" PLANNER (Hewitt, ‘1969) to CONNIVER (McDermott and Sussman,1972) in McDermott and Sussman
(1973). :

been proposed earlier on,

The concept of a frame was introduced by Minsky (1974) in an attempt to construct a theory based
on the principles presented in the first section. His proposal triggered the development of a whole

series of so called frame-based languages that tried to elucidate this notion. These languages can
be classified into three categories:

The first category used statements (in the form of patterns) as basic representation tool to
assemble frames. Examples are MDS (Srinivasan,1976) and the fr- ¢ language developed by
Charniak (1977). The use of patterns reflects earlier work on paltern-directed invocation systems
(cf. Hewitt,1968) and the assumption is that techniques developed ir such systems (like
pattern-matching and invocation) would be used for implementing the reasoning system.

The second category is rooted in the tradition of semantic networks: a particular data structure is
proposed and a number of access and construction functions are defined. Major examples of this
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approach are FRL (Roberls and Goldstein,1976) and the language proposed in Kuipers (1977).

The third category to which the present language belongs is based on the idea of a description.
This idea was first explored in KRL (Bobrow and Winograd, 1977), which is a very baroque language
in the sense that it contains features of the {hree categories. Nevertheless there are many
similarities between the language presented in this chapter and KRL.

assume however that there is a unigue way of describing the answer to a particular question posed
by a frame (e.g. in terms of a numerical value) which makes them more restricted than a general
description language. At the same fime these languages do not allow for (what they call)-
meta-constraints which are here captured by the conditional description.

that will be discussed in upcoming sections will also be shown to be violated by predicate calculus,
This does not mean however that the representation schemes are incomparable. In fact it would be
a good exercise for the reader lo construct a mapping from the present language to predicate

calculus. See for arguments for and against predicate calculus Hayes (1974,1977) and Moore (1979)
vs. Minsky (1974) and Hewitt (1975).

modularization in a semantic network. Recently however most network designers (Hawkinson (1979),
Levesque (1977), a.0.) have proposed input-languages. These languages make use of modules and
use object-oriented descriptions. Although this is an important step toward modularization, it must
be noted that if the modularization is not maintained in the internal representation (i.e. has no effect
on the access-functions) the modularization principle is violated. On the other hand, partitioning (as

The examples made use of an important principle of conceptual analysis  first advanced by
McCarthy (1958) and McCarthy and Hayes (1968). This principle is known as the situational calculus
and consists in attaching situational tags to each predicate that is situation-dependent. The

possession-transfer example is a classical example and has been treated by many authors, see e.g.
Fillmore (1977), Schank (1975), a.0.)
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3. EXPERTS

The previous chapter was devoted to problems of representation. We addressed the
question how knowledge structures to be used for constructing models of problem

architecture of the activation mechanisms, and (ii) what are /n concreto the actions that
are taken while reasoning about a particular problem. In this chapter we take up the first
question. In particular, we will try to find out what possible computational architecture

1. THE PRINCIPLES
1. 1. THE ISSUE OF INDEPENDENCE

There are at least two ways in which a model of the problem situation can be maintained.
The first way is familiar from ordinary programming: when one writes a program to

In most problem solving situations where the method of solution is unknown in advance, a
Process that is able to create a datum usually does not know what other processes might
need it. The only thing it can do is make the new fact available to others.

On the other hand a process usually does not know where to go and look for its data.
Does a certain fact needed to understand the line in a story come from the previous
text, an inserted figure, or things you are supposed to know?

The notion of an independent model nicely solves these problems: If a process finds a
fact it adds it to the model, if a process needs a fact it looks into the model. Hence the
following principle:

PRINCIPLE 7:
THE MODEL BUILT UP BY THE REASONER IS AN INDEPENDENT OBJECT.

This means concretely that if all processes are finished, the model is still there, or that
an ’outside observer’ can look at a model even if this observer is not one of the
Processes initially involved in its construction.
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1. 2. THE ISSUE OF MODULARIZATION

Based on this principle a model can be viewed as a database of facts, where each fact is
a statement saying that a particular description holds for a particular object. But now we
observe that there is another complexity problem. Even for moderately simple problem
situations there will be thousands of facts. Fach of these facts might be relevant at any
point in the reasoning process. So how do we guarantee efficient access?

It is clear that we gain enormously in efficiency if we follow this principle. Even when
there are thousands of facts, the problem of searching through them becomes almost
trivial because we can access a description partly based on its content, i.e. on the
objects that play a role in the description. Thus the access to descriptions will not
significantly degrade when more objects are introduced.

This is summarized in the following principle;
PRINCIPLE 8:
A MODEL CONSISTS OF A COLLECTION OF UNITS, WHERE EACH UNIT

+CONTAINS ALL DESCRIPTIONS WHICH ARE TRUE FOR A PARTICULAR OBJECT:
IN THE MODEL. o ' :

Such a unit might be thought of as a frame that contains descriptions about g particular
object in the model of a particular problem situation,

1. 3. THE ISSUE OF MODULARITY CONTINUED

The ’substance’ that was studied so far consisted of passive, representational objects:
frames, descriptions, procedures. It is now time to turn to the active part of reasoning
system. A useful concept that will enable us to talk about this is the notion of a process.
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Now we observe that the complexity problem noted as regards the amount of knowledge
available, holds ipso facto for the processes that will be needed to activate knowledge. If
we have to deal with thousands of pieces of knowledge, we will need thousands of

The problem is how do we guarantee that all closures will be executed? Because there
are so many of them we do not want a closure to wait an arbitrarily long time before it
becomes active, in fact we want a closure to be executed as soon as possible. A second

in which the damage occurs.

Observe that, interestingly enough, biological organisms have similar problems. In an
organism like the human body thousands of reactions, i.e. processes, have to be
performed - even for simple maintenance. There must be some sort of guarantee that

We will do the same thing here: processes will be organized in units, so that processes
in a unit are ‘protected’ from what goes on elsewhere. And if we give each unit the
power to execute its own processes, then we solve the other problem as well, namely
that a process is executed as soon as possible after its closure is formed.

PRINCIPLE 9:
REASONING PROCESSES ARE LOCATED IN ACTIVE UNITS REFLECTING THE
CONCEPTUAL STRUCTURE OF THE DOMAIN OR THE MODEL.

Jased on this principle we arrive at a new theoretical unit that has three aspects:
(i) it contains knowledge about a particular (limited) subject-matter, i.e. a
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frame, .
(ii) it contains a set of (potential) processes related to the subject-matter
covered by the frame, and '
(i) it contains a locus of computation (the necessary energy so to speak) to
evaluate its closures. :
We call this new unit an expert because it knows everything that is known about a
limited subject-matter. Experts will be organized in terms of societies, where a society
is the procedural analogue of a micro-world. Because frames are hierarchically organized
in a microworld, the experts in a society will also be hierarchically organized. Using the
biological metaphor we could say that an expert corresponds to a cell and the society to
the organism.

Let us now explore further constraints on these new theoretical units. In particular we
investigate how interaction takes place, whether there are any constraints on possible
interactions and how experts are formed.

1. 4. THE ISSUE OF PROTECTION

Concerning the interaction between experts we see two alternatives: Either every
expert is allowed to do whatever it wants directly. For example, if an expert wants to
know something about another expert it simply looks inside that other expert, if an
expert wants to change the state of another expert, it changes the state, etc.

The alternative is to give every expert relative autonomy so that it can protect itself
from possibly undesirable actions by other units, i.e. one expert would not be allowed to
treat another expert as an object. The way to realize this idea is to postulate that all
interactions between experts must go by message passing: If an expert wants to see
anything done, it should send a message so that the other expert can decide for itself
whether it will accept the task of doing it.

There are some important technical reasons for adopting this second more cautious view.
One illustrative example problem is the so called airline reservation problem. If there is
one seat left on the plane and two travel agents both grab the seat at the same time
(because they both checked at the same time and the seat was empty), who is going to
get the seat? With a parallel process organization one needs greater protection because
a certain process might change the data of another process even though this other
process checked just a moment ago and therefore thinks the data are still there.

Another reason to give an expert relative autonomy is to protect delicate structures
“from being changed all the time. This problem will not come up in the present work but it
is - we believe - a crucial issue when learning is considered. Suppose one person telis
you something and you believe him, then you will at least show some resistance if a little
bit later another person telis you that the opposite is true. If we would instantly change
our knowledge structures whenever something was told to us, our knowledge would
show no coherence and one module would not be able to rely upon another module.
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This leads us to adopt the following principle:

PRINCIPLE 10:
INTERACTION BETWEEN EXPERTS IS PERFORMED BY MESSAGE PASSING.

1. 5. THE ISSUE OF LOCALITY

If all interaction is performed by message passing the next issue becomes whether there
are any constraints on communication. There are two possibilities: Either everybody is
allowed to communicate with everybody else, i.e. there are some general broadcast
mechanisms or methods to establish arbitrary communication links, or there are very tight
constraints on possible communications, i.e. there is only local interaction.

We will argue in favor of locality. Recall that one of our major problems is complexity. In
previous paragraphs we introduced various measures to do something about this, in
particular we proposed to modularize and organize the space of knowledge and
processes into units reflecting the conceptual structure of the domain. It is clear that if
we would now accept global interaction between all the units the modularization principle
would be seriously violated. That is why we adopt the locality thesis:

PRINCIPLE 11:

EXPERTS CAN ONLY COMMUNICATE WITH A LIMITED NUMBER OF OTHER
EXPERTS.

More specifically, because experts are organized in hierarchies, we will only allow
communication between experts that are hierarchically related. Thus experts dealing
_with aspects of a certain prototype can communicate with the expert dealing with the
object as a whole, etc. Nonlocal message passing like a general broadcast are excluded.

It should be clear that these constraints on possible communication are very strong. They

are so strong in order to prevent the system to come to a virtual halt because of
excessive communication.

1. 6. FORMATION

The final issue that will be raised here concerns the origin of the experts. There are a

number of potential solutions to this question but this is the one that seems most
promising.

An expert could come into existence as a copy of another expert which acts as its
prototype. In other words given an expert with a body of knowledge about a particular
subject-matter and a set of (potential) processes, it would have the capability to
construct a copy of itself and let this copy work on a certain problem that otherwise the
expert itself would have to work on, In practice this copy will be a virtual copy, i.e.
portions of the expert which remain the same are physically the same and it is only when
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differences occur that new objects are created.

The main argument for doing things this way is orderly organization of the activities and
economy of the system. If the same expert needs to keep track of many different
problem situations, we would need horribly complicated bookkeeping mechanisms.

We can now see also how hierarchies might be formed. Assume that at a given moment
of time there is some expert having a certain amount of expertise, i.e. a number of
descriptions organized in a frame and a series of (potential) processes. Suppose
furthermore that this expert is able to do something (maybe to its own surprise) and
experts in the environment of the expert notice this fact. For example, a particular
sensori-motor action, being looked at by a certain expert, is performed and has by
accident an interesting effect. If such a thing happens we postulate that the current state
of the expert is "frozen" and experts present at this moment make a record of what this
expert can be used for.

again discover new things about the particular instance it is working on, be preserved,
etc. This is the way the hierarchy constituting a society might get formed.

This is reflected in the final principle:

PRINCIPLE 12:
EXPERTS START OFF AS COPIES OF OTHER EXPERTS.

———

In this section, we proposed a number of constraints on a possible architecture for a
reasoning system. In particular, we proposed to modularize and organize processes along
the same lines as is the knowledge itself. This lead us to adopt a new unit called an
expert which is an active object that groups a number of processes. An expert comes
into existence as a copy of another expert acting as its prototype. Various constraints
were introduced on what this object can do: one expert cannot treat another expert as
an object, interaction goes by message passing, an expert can only communicate with a
limited set of other experts and experts operate in parallel.

From this section, first glimpses could be seen of the major metaphor we propose in this
work: reasoning modeled as a society of communicating experts. Before it will be fully
clear what is meant by this, we have to explore many other topics.

DISCUSSION

The idea that models have to be independent is the central thesis of pattern-direcled invocation
systems. The argument for the principle is due to McDermott and Sussman (1974),

The idea that frames should be turned into active objects which operate by exchanging messages
emerged soon after the frame-hypothesis was formulated, ie. around 1975, Realizations go under
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the name of AGENTS (Minsky and Papert,1976), ACTIVE SCHEMATA (Bobrow and Norman,1976),
BEINGS (Lenat,1977), STEREOTYPES (Hewitt,1975), etc. Our nolion of an EXPERT is meant to caplure
’ the essential properties of these closely related concepts.

From a certain viewpoint the productions in a production syslem (as in Newell and Simon,1972) can
be compared to the independent active objects we talked about. However there are important
differences which cannot all be discussed here. For example production systems operate on a global
data base, whereas here every object has its own database and others are not able to look at it

explicitly, etec. Production systems usually also assume a sequential mode of operation, whereas we
have argued for parallelism,

Some of the principles we have proposed here have been influenced by developments in
computation, especially concerning so called ‘message passing systems’, emerging from Smalitalk
(Kay,1976) and the ACTOR-theory of computation developed by C. Hewitt and his associates (Hewitt

form of a mathematical framework that is attractive as a foundation for the reasoning system
because it reflects many of the principles we introduced earlier on: (i) modularity and distribution of
knowledge, (ii) one unit cannot treat another unit as an object, (iii) basic interaction is message

Previous paragraphs. Then we will propose a concrete system which will be the basis for
mechanizing the reasoning behavior that will be Proposed in the next chapter.

2. 1. EXPERTS

The new fundamental unit of the system is the expert. An expert is defined to be an
active object that has 3 body of knowledge about a particular subject-matter (in terms
of a frame) and a script.

The script contains a number of rules, i.e. closures, which specify how the expert should
behave: how it should respond to requests for information about the knowledge it is

other experts, how it should maintain consistency of its descriptions by preventing the
introduction of contradictions, etc. Some of the rules may be active, others may be
waiting for messages coming in.
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The experts obey all the princirles discussed earlier:
+ Experts operate in parallel.

+ An expert cannot treat another expert as an object, i.e. all interaction is by
message passing.

+ An expert can only communicate with a limited number of acquaintances.

+ Experts are hierarchically organized due to the way they are created.

The ‘body of knowledge’ of an expert consists of a collection of descriptions possibly
embedded in control-indicators. The following is an example

(you-are-described-as (THE MOTHER OF A FAMILY)).
Each of those descriptions enters the expert as a message.

The ‘rules’ in the script contain a condition and an action. The condition is a predicate
which holds for a message that is sent to the expert. The action says how the expert
should respond to a message of the type described by the condition. It often happens
that the expert needs to wait for a message, in which case the rule is stored and tried
out on all messages until the one that matches comes in. It can also happen that the
condition concerns a description which arrived as a message prior to the formation of the
rule. In this case the expert compares the condition with the descriptions in its database
and will execute the action if the condition is satisfied. In these two cases a rule in the
script of an expert is like a pattern-directed invocation rule.

Experts themselves are fairly complicated objects. We will now describe their behavior
in more detail. We will do that using the ACTOR-theory of computation as framework.
This will show that there is not only parallelism between the various experts, but also
inside an expert.

An expert is an actor with two basic acquaintances: a database and a rule-set.

An expert has the following script:

1. It may receive a message to add a new description to its database, in which case it
sends this new description to its database.

2. 1t may receive a message to add a new rule to its database, in which case it sends
this new rule to its rule-set.

3. It may receive a message to tell more about a description with certain specifications
» in which case the request is sent to the database-actor and the reply will be forwarded
to the expert requesting the information.

4. 1t may receive a message to make a copy of itself and to send a particular task to
this copy.

The database of an expert is another actor which has as acquaintances a number of
descriptions.

The database-actor has the following script:

1. It may receive a message telling about a new description, in which case (a) the
description is added so that the database-actor will be able to respond to questions
about it later, and (b) a message is sent to the rule-set of the expert telling that a new
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description has been added.

2. It may receive a request to check whether a description with certain properties is
among its descriptions, in which case an answer is returned telling whether the
description is in the set or not and if so telling the known properties of the description.

The rule-set is an actor which has as acquaintances a number of rules. Each rule is in
turn an actor with two acquaintances: a so-called condition, which describes the
properties of a description, and a bedy, which contains a script to be executed when a
description in the database-actor is found that has all the properties described in the
condition.

A rule-actor has the following script:

1. It may receive a message telling to become active in which case it asks the
database-actor whether it knows of any description that meets its condition. If so the
script is executed, which means that new messages will be sent to some expert.

2. It could receive a more specific request telling to confront its condition with a
certain description in the database. If the description meets the specifications of the
condition, the script is executed.

The rule-set actor has the following script:

1. The rule-set-actor may receive a message telling about a new rule, if so the rule is
added to the existing stock of rules, and a message is sent to the actor to make it
become active.

2. It may receive a message that a new description has arrived in the database-actor in
which case every rule in the rule-set will be sent a message to become active.

Each expert has only a limited set of other experts as acquaintances, namely those of
which it knows the name (which may be available in the scripts or could be told by the
other expert) and its ancestor (i.e. the expert that sent the message to create the
expert). Also an expert is acquainted with itself.

A metaphor may help to visualize this communication network. One can think of an expert
as having a telephone and a telephone book with a very few numbers. An expert can
only call the experts it has the number of. As long as no other expert calls up, other
forms of communication are impossible, and even in this case the expert cannot call back
unless the other expert has given its number. Communicating with an expert which
functions like a prototype is similar to calling an information service (such as for airline
reservation). Here the person calling knows the number of the company but does not
know which person (or machine) will actually respond to its request.

2. 2. CONVENTIONS

In order to make all these proposals amenable to concrete experimentation, we have
designed and implemented a language which contains primitives for constructing reasoning
systems along the lines advocated in previous paragraphs. We will now present some of
the main functions in this language

Evaluation of the form
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(CREATE-EXPERT {name-of-expert))
creates an expert which is equipped with mechanisms to maintain a database of
descriptions, schedule and execute parts of its script, etc.
The <name-of-expert> can be a particular name, e.g. XPRT-1 or CHAIR, in which case the
expert from then on has the given name, or it can be the name of an already existing
expert preceded by an indefinite article, as in

(CREATE-EXPERT (a CHAIR)).
In this case the expert with the given name functions as a prototypical expert and the
resulting expert will have a unique new name and all the properties the prototypical
chair had at the moment of creating this expert.

Evaluation of the form

(TELL <name-of-expert) {description))
sends a description to an expert with name <name-of-expert>. The result is that after
the arrival of the message, the expert will include the description in its database.
<Name-of-expert> can be the explicit name of an expert or the name of a prototypical
expert preceded by an indefinite article. The latter way of calling up an expert will
result again in the creation of a copy of the prototypical expert and in the action of
sending this new copy the message. An expert can also send a message to itself in which
case the name of the expert would be :MYSELF.

Now we turn to mechanisms for installing a rule in an expert. There are three types,
mirroring the conditional-descriptions we introduced in the description language:

(i) A rule that will check at the moment of its creation whether its condition is met by a
description in the database. If that is not the case, it executes the action it has for the
case when the condition is not met. Then the rule aborts itself. If it is the case it
executes the action it has for when the condition is met and the rule aborts itself.

(i) A rule that will check at the moment of its creation whether its condition is met by a
description in the database. If this is the case the rule executes the action it has for
when its condition is met and aborts itself. If the condition is not met by any description,
the rule patiently waits for other messages coming in which contain a description that
might satisfy its conditions. When such a description comes in the action is executed and
the rule aborts itself.

(ii) A rule that will check at the moment of its creation whether its condition is met by
a description in the database. If this is the case the rule executes the action it has for
when its condition is met but keeps on looking out for other descriptions that match its
condition. For each case where there is a match the action is performed. When there is
no description that satisfies its condition at the roment the rule is created, it will
continue waiting and will perform an action each time a match occurs.

Here are some syntactic forms for expressing rules of each type. The condition of these
rules is each time a description. '

( INSTANTANEOUS-ASK <{name-of-expert)
<condition) Caction-{if-success) <action-if—faﬂure))
installs a rule of the first type in an expert with name <name-of-expert>. The
<name-of-expert> can again be three things: the expert itself, in which case the expert
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looks whether it knows about a certain description and executes an action if this is the
case, the name of a particular (prototypical) expert, (e.g. an expert may ask the
CHAIR-expert whether chairs have legs), and finally the name of a prototypical expert

preceded by ’a’ or an’ which causes the creation of a copy which is then sent the actual
message.

The <action-if-failure> is optional.

For example,

( INSTANTANEOUS-ASK XPRT-1
;7 the condition:
(IS (A TABLE))
7+ the action if match occurs:
(TELL XPRT-2 (XPRT-1 IS (A TABLE)))
;s the action if no match occurs:
(TELL XPRT-2 (XPRT-1 IS (NOT (A TABLE)))))

When at the time of evaluating this form XPRT-1 contains the description
(IS (A TABLE)) |
. as one of the descriptions in the database, a message will be sent to XPRT-2 asking it to

add the description that XPRT-1 is (A TABLE) to its database. When XPRT-1 does not
contain the description

(IS (A TABLE))

XPRT-2 will be sent a message asking it to add the description that XPRT-1 is (NOT (A
TABLE)) to its database,

There are some complications in the sense that the condition may contain variables that
have to be bound to specific values and these bindings are to made known to the action

:VAR

One variable is already known for the start: :MYSELF which is bound to the name of the
expert containing the rule.

(SINGLE-EVENT-ASK <{name-of-expert)
{condition)
<action-1f—match-occurs>)

installs a rule of the second type. The name-of-expert can be the same thing as with the
previous form.
For example,

(SINGLE-EVENT-ASK XPRT-1

(IS (A TABLE))
(TELL XPRT-1 (IS (AN OBJECT))))

Here XPRT-1 will look out for a description of the form
(IS (A TABLE))
and once this description is found it will send to itself a message requesting to add the
description
(IS (AN OBJECT))
to its database of descriptions.
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Finally,
(CONTINUOUS-ASK <{name-of-expert)
{condition)
{action))

will install a rule of the third type. The expert with the given name will continuously look

out for a description matching its condition and will perform the action each time it is the
case.

These are some of the main operations of the system that have been built to simulate
the architecture implied by the model developed in this chapter. There are some other
functions which allow us to look into an expert, trace message passing, perform certain
types of initialization, etc. Also it is possible to give continuous input. But attention to

these details now would distract from the main lines of this work.

2. 3. EXAMPLES

The following examples may give the reader some idea of the message-passing behavior
that is made possible by these primitives.

The system prompts with a >>-sign. The following action creates a new expert called
TABLE. '

>> (create-expert TABLE)

The next example illustrates a TELL action. The expert prints out the messages it
received.

>> (tell TABLE (IS (A TABLE)))
==z)> TABLE receives the following message from USER:
" (IS (A TABLE))

The following is an example of a SINGLE-EVENT-ASK. The expert will find a description
Corresponding to its condition and execute the resulting action, which is a new TELL
action. :

>> (SINGLE-EVENT-ASK TABLE (IS (A TABLE))

(tell TABLE (IS (AN OBJECT))))
===> TABLE receives the following message from TABLE:
(IS (AN OBJECT))

Now follows an example of the creation of a copy of a prototypical expert. The copy

(called DESK-1) gets the message which would otherwise go to the prototypical expert
itself:

>> (tell (a TABLE) (IS (A DESK)))
===> DESK-1 receives the following message from USER:
(IS (A DESK)) )

The next example illustrates INSTANTANEOUS-ASK. This example also demonstrates
that DESK-1 inherits all properties from the TABLE expert. We never told DESK-1
explicitly that it has a table-top and nevertheless the description triggers an action,
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>> (INSTANTANEOUS-ASK DESK-1 (IS (A TABLE))
(TELL :MYSELF
(IS (THE TABLE OF A ROOM)))) :
===> DESK-1 receives the following message from DESK-1:
(IS (THE TABLE OF A ROOM))

The next transmission adds a new rule to the script of TABLE but nothing happens
because the description is not part of the descriptions this expert has.

>> (SINGLE-EVENT-ASK TABLE (IS (THE OBJECT OF A SQUARE-SHAPE) )
(TELL :MYSELF (IS (A SQUARE-TABLE))))

The following example illustrates that the script is inherited by each copy of a
prototypical expert. Because the copy of table receives a message that will trigger one
of the rules inherited from the prototypical expert it executes the action with a new
message-exchange as a result.

>> (tell (a TABLE) (IS (THE OBJECT OF A SQUARE-SHAPE)))
===> OBJECT-1 receives the following message from OBJECT-1
(IS (A SQUARE-TABLE))

DISCUSSION

There are two lines of development leading to the language introduced in this section:
pattern-directed invocation languages and message-passing systems.

The development of pattern-directed invocation languages was triggered by PLANNER (Hewitt, 1969)
and resulted in a whole series of Al-languages. Some of the major examples are CONNIVER
(McDermott and Sussman,1972), QA4 (Rulifson, et.al,1973), POPLER (Davies,1973), AMORD (deKleer,
et.al,1977), ETHER (Kornfeld,1979). The relation between these languages and the present language
is such that the-list of facts inside an expert can be viewed as a (tiny) database of patterns and
the rules in the script can be viewed as pattern-directed invocation rules. The description that
the database is modularized leads to a great efficiency in the lookup of patterns .

The other related development is made up by so-called message-passing languages. The first
language based entirely on message-passing is SMALLTALK (Kay,1976). Other languages are PLASMA
(Hewitt and Smith,1975), DIRECTOR (Kahn, 1978) and ACT1 (Hewitt and Lieberman,1979). These
languages have most of the primitives we postulated as necessary and sufficient and it should
therefore be straightforward to implement the reasoning system we envisage in one of them. We
have designed and implemented our own language mainly with the purpose of having a basic and
therefore efficient message passing system that is nevertheless sufficient for our purposes.
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4. REASONING

Chapter 2 discussed ways of specifying knowledge about a particular domain. Chapter 3
contained specific proposals for the computational architecture of reasoning systems. This
chapter is devoted to bringing these two lines of development together in order to
construct an actual reasoning system. Before we present in detail the reasoning
behavior adequate for the language in chapter 2 we will discuss first some issues that
will partly determine what this reasoning behavior will look like.

1. THE PRINCIPLES

In previous chapters we already introduced many important principles that determine
how reasoning will proceed. For example, it has been proposed that reasoning involves
the construction of a model of the problem situation, that this model is to be an
independent object that contains descriptions of the objects from multiple viewpoints,
that it will consist of a collection of experts that perform the construction by exchanging
messages, etc. There is little that we have to add to all this, except one additional
important principle. -

1. 1. THE MODE QF OPERATION

At issue is whether the construction should be goal-directed, i.e. be driven by the nature
of the solution of a particular problem and only working out parts of the model in as far
as they bring us closer to a solution, or whether the reasoner should expand the model
as complete as it can, i.e. develop all consequences of the initial specifications so that

~ possible goals will eventually be realized.
"The first mode of operation is often called backward chaining or consequent reasoning

because the actions are triggered by what one wants to obtain as result. The second
mode of action is often called forward chaining or antecedent reasoning because the
actions are triggered by the initial constraints of the problem situation.

It would be nice if we could let the construction of a model be determined completely by
the goals the system has at a particular point in time. However this turns out to be an
untenable position. We observe for example that if we have a hierarchy of animals with
probably thousands of specializations attached, then we would have to consider an
arbitrary sample each time we want to show that something is an animal.

But pure antecedent reasoning is equally bad. All knowledge about a particular person
will be accumulated, for example, even though we might only be interested in his age.

Nevertheless we will assume that antecedent reasoning is the basic mode of operation.
We can do this based on two conditions

(i) The goals themselves should be explicitly specified so that deduction can be based
on explicit goals (this topic will be explored in chapter 6)
and

(ii) The model is organized into a finite structure based on the idea that one can
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distinguish a finite set of important questions about the problem situation. This finite
structure is sometimes called a constraint network and the antecedent-reasoning in such
a network is often called propagation of constraints.

The reascning process can now be described as follows. The system starts off by
absorbing data from the problem specification. These data will cause the accumulation of
an initial set of answers, i.e. constraints, for the various questions.  These constraints
trigger various constraint relationships which will cause the (parallel) accumulation of
new constraints by local one-step deductions eventually leading to a complete analysis
or synthesis. This accumulation process is also known as progressive refinement

because the answer to a particular question is gradually refined by incoming descriptions.

The important thing about this constraint propagation methodology lies in the approach
towards the control structure problem. Rather than have one viewpoint of analysis be
responsible for controlling where computational resources will go, or have a general
supervisor that overlooks the analysis and allocates resources according to some
algorithm embodying a certain problem solving strategy, the constraints themselves are
put in charge of control. They will take resources when they feel that the current

problem situation supports the constraint, or refrain from operating when this support is
not or weakly available.

This leads us to the following principle:

PRINCIPLE 13;
THE PRIME MODE OF OPERATION IN THE CONSTRUCTION OF A MODEL IS
PROPAGATION OF CONSTRAINTS.

Note that 4l this fits nicely with what was developed so far. A frame is a series of
important questions that should be asked about a particular (limited) subject-matter. It
can therefore serve as the basis for developing the constraint network, which is the
global set of questions we want to ask about the problem situation. We also see now
that the experts which constitute the model are actually a constraint network. Each
node in the network corresponds to an expert. Propagation itself will be phrased in
terms of message passing. When a certain description arrives at an expert its
consequents will be propagated to the other experts that are involved in the

it is responsible for.

DISCUSSION

The standard paradigm for the basic mode of operation in reasoners until recently was
goal-directed, backward chaining reasoning (as in Moore,1975). A simpler version of the
propagation of constraint method was ‘discovered’ in vision research and known as the Waitz
algorithm (Waltz,1972). It is the contribution of Sussman to see the potential for reasoning itself.
Since then Propagation of constraints has been applied to a variety of domains, especially electronic
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circuit analysis and synthesis (cf. Sussman and Stallman (1976), dekleer and Sussman (1978)) but
also geometry (Doyle, 1976), or common sense physics (Forbus, 1979), '

A particularly interesting constraint system was developed by A. Borning(1979) and implemented in
Smalitalk (Kay,1976). :

A mathematical theory underlying the propagation of constraint methodology is discussed in Freuder
(1976).

One important difference with the present syslem and other constraint systems (like the one
developed by Sussman and Steele (1978)) is that these systems assume that it is possible to give a
unique description (usually a numerical value) as answer to a certain question. We did not make

Recall that there are two components in the reasoner: one component responsible for
knowledge about the domain (this is sometimes called the knowledge-base) and one

component responsible for accumulating information about a particular problem situation
(this was called the model). '

Recall also that we proposed the knowledge-base to be a collection of frames. Each of
‘these frames contains all the information about a certain subject-matter. Obviously
these frames will have to be consulted during the construction of the model. Within the
framework  of the experts-architecture proposed in the previous chapter, we
consequently propose to encapsulate every frame in an expert. Such an expert will be

called a frame-keeper. Thus there will be an expert for the MOTHER-frame, the
PERSON-frame, etc.

frame-keeper:
What are your aspects?
Give me your criterial aspects,
What description is attached to that particular aspect?
etc.
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and there is no other individual like it. Instead, individuals are to be viewed as
skolem-constants or ‘anonymous individuals’,
For example, consider a description like

(A PERSON)
- then we do not know which particular object is meant, instead we will consider the
referent of this description to be a typical representative of the class of persons. This
typical representative behaves for all purposes as a real individual except that it could
at any given time be said to be identical to another individual in which case we have to
merge the two. '

The principle of object-oriented model organization prescribes that an expert should be
assigned to each object in the model. We will call such an expert an object-expert. An
object-expert for a particular individual comes into existence as a copy of the
prototypical object-expert. This means concretely that there will be an expert for
TABLE-15, JOHN-1, etc. This expert has the same name as the individual it is thinking
about. It contains all descriptions which are true for the individual in the model.

The script of an: object-expert contains rules for performing the reasoning activity itself.
The basic activity in the system consists in sending a description to an object-expert.
This action has the force of a predication: It says that the description holds for the
individual for which the object-expert is responsible. The rules in the script of the °
object-expert will examine this new description in order to incorporate it with the other
knowledge this object-expert already has about that individual.

In order to incorporate new knowledge, the object-expert does two types of things to a
description that comes in. When the description is a basic description (i.e. contains no
connectives) then the object-expert will try to instantiate the description. By
instantiation we mean that experts are to be created (or found) for each of the aspects
of the frame used in the description. Once a description is instantiated all information
associated with the description has to be propagated to all the experts involved in it.
We call this phase propagation of constraints.

When the description that enters the expert is not a basic description, the
object-expert will try to decompose it so that the descriptions involved become basic
descriptions. Decomposition is achieved by applying rules of inference like
AND-elimination, DOUBLE-NEGATION elimination, etc.

‘We will now study these processes in somewhat more detail.

2. 1. INSTANTIATION

The process of instantiation involves two steps. First the reasoner must try to recover
the instantiation referred to by the description, if it exists already. This phase, which we
will call the search phase, is necessary because we want to be able to deal with
incremental descriptions. If the instantiation could not be found, new experts have to be
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created for each of the aspects in the frame involved that do not yet have known fillers.
We call this phase the creation phase,

First we look at the search phase. Let us introduce an example to make clear what the
task of this phase consists of. Given a description for MARY-1 as follows:
(THE MOTHER OF A FAMILY)

then because no instantiation already exists, the reasoner will create a new one, which
could for example look like this:
(FAMILY
(WITH MOTHER MARY-1)
(WITH SELF FAMILY-1)
(WITH FATHER FATHER-1)
(WITH CHILD CHILD-1))

Now next time the description
(THE MOTHER OF A FAMILY)

enters the expert for MARY-1, no new instantiation should be created (because a person
can only be the mother of one family). Instead in the search phase, it should be
recovered that
(FAMILY

(WITH MOTHER MARY-1)

(WITH SELF FAMILY-1)

(WITH FATHER FATHER-1)

(WITH CHILD CHILD-1))
is the instantiation behind this new description. How should the investigation to find this
instantiation proceed? We will consider two cases: for individual descriptions and for
non-individual descriptions.

(i) FINDING THE INSTANCE OF AN INDIVIDUAL DESCRIPTION

First we consider the problem of finding the instance of an individual description, i.e. a
description which makes’ use of an individual-concept. Recall that an individual
description is a description whose view is individuating. For example if we have a frame
for John_Doe as follows
( JOHN_DOE

(WITH SELF)

(WITH AGE)

(ASPECT-SPECIFICATIONS:

(INDIVIDUATING: SELF)))

then we know that a description like

JOHN_DOE
or
(THE AGE OF JOE)

is individuating.

In order to deal with individual descriptions, the reasoner must keep track of the
descriptions which have appeared already and of the individuals which have been
created to deal with them. Thus the method for finding out whether an individual concept
has already been instantiated s to check whether there is already a specific referent for
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the individuating aspect of this concept. If so, the reasoner can retrieve the filler. Once
the filler of the individuating slot s found the reasoner can go to that expert and
retrieve the rest of the instantiation.

(i) FINDING THE INSTANCE OF A NON-INDIVIDUAL DESCRIPTION

In order to find the instance of a description which is not an individual description each
object-expert goes through the following algorithm.

these aspects and if there is an instantiated description in one of these experts making
use of the concept in the description with the same view, then the reasoner can extract
all information from this instantiated description.

2. Try to find the referents for each of the aspects in this series, based on a
description attached to the aspect in the original description or a description attached to
the aspect in the frame for the concept in the original description,

3. If all referents are found, try to find an instantiated description in one of the
referents that contains the concept of the original description, the same view as the
target-referent plays in the original description, and the same fillers for the other
aspects in the series,

4. If this description is found, the instantiation has been discovered,

5. Further complications arise if one of the aspects is non-projective. In that case, try

has been found but not the particular instantiation.

If any of these steps fails, it is concluded that no instantiation already exists in the model
for this description,

line-segment:"
(LINE-SEGMENT
(WITH SELF)
(WITH BEGIN)
(WITH END)
(WITH DISTANCE)
(ASPECT-SPECIFICATIONS:
(CRITERIAL: (BEGIN END) (SELF))))

and two individuals POINT-1 and PQINT-2 which are described as A and B. Suppose
POINT-1 also contains the description :

(THE BEGIN OF A LINE-SEGMENT
(WHICH IS LINE-1)
(WITH END POINT-2)
(WITH DISTANCE DISTANCE-1))

We will consider the problem of finding the instance of the following description:

(A LINE
(WITH BEGIN A)
(WITH END B))

The result should be
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(LINE-SEGMENT
(WITH SELF LINE-1)
(WITH BEGIN POINT-1)
(WITH END POINT-2)
(WITH DISTANCE DISTANCE-1))

line-segment frame are criterial. According to step 2 we have to find the referents of
the descriptions attached to these aspects. This Causes a recursive call to the method
for finding the referent of a description. The description attached to the begin-aspect is
A and to the end-aspect is B, A and B are both individual-descriplions, we will assume
that their referents can be found and that the result is POINT-1 and POINT-2

besides the view are filled with the same individuals as predicted. In other words we
check whether PQOINT-1 has a description which matches with the following
source-description
(THE BEGIN OF A LINE-SEGMENT
(WITH END POINT-2))
By matching we mean that all aspects in the source-description have the same filler as in
the target-description but there could be more aspects in the target-description.

Now we see that POINT-1 contains the following description:
( THE BEGIN OF A LINE-SEGMENT
(WHICH IS LINE-1)
(WITH END POINT-2)
(WITH DISTANCE DISTANCE-I)).
which indeed matches with
(THE BEGIN OF A LINE-SEGMENT
(WITH END POINT-Z))
From this we can extract the instance which is
(LINE-SEGMENT
(WITH SELF LINE-1)
(WITH BEGIN POINT-1)
(WITH END POINT-2)
(WITH DISTANCE DISTANCE-I))

(iii) FINDING THE REFERENT OF A DESCRIPTION

particular, the referent s the filler of the view of the description in that particular
instance. For example, we can find the referent of the following description
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(A LINE-SEGMENT
(WITH BEGIN A)
(WITH END B))
easily, once we know that the instance referred to by this description is
(LINE-SEGMENT '
(WITH SELF LINE-1)
(WITH BEGIN POINT-1)
(WITH END POINT-2)
(WITH DISTANCE DISTANCE-]))

The referent is LINE-1, because LINE-] fills the self-slot of this instance.

Notice however that the referent of the description is only equal to the filler of the

view if the view is a projective aspect. If it is non-projective, we cannot know what the
referent is. -

(iv) COMPLICATIONS DUE TO CO-REFERENTIAL LINKS.

When there are co-referential links in a frame or in the description to be instantiated,
things become more complicated. As soon as the filler of one slot has been found, the
results are to be propagated to the other descriptions attached in the frame. The
reasoner often has to go through several cycles of comparing descriptions and trying to
accumulate constraints on the co-referential links until the instantiation can be uniquely
determined. '

Here is an example. Supose we have a frame for family which looks like this
(FAMILY

(WITH SELF)

(WITH FATHER (A HUSBAND

(WITH WIFE (= THE-MOTHER))))
(WITH MOTHER)
(ASPECT-SPECIFICATIONS:
(CRITERIAL: (SELF) (FATHER) (HOTHER)))),

Also we know that John-1 js described as

(A HUSBAND (WITH WIFE MARY-1))

making reference to a frame for husband which look like this:
(HUSBAND
(WITH SELF)
(WITH WIFE)
(ASPECT-SPECIFICATIONS:
(CRITERIAL: (WIFE) (SELF))))
and that Mary-1 is described as -
(THE MOTHER OF A FAMILY
(WITH SELF FAMILY-1)
(WITH FATHER JONES-1)).
The problem is to find the instantiation of the following description for John-1;
(THE FATHER OF A FAMILY)

Again we go through the algorithm. First we try to find the referent for the
father-aspect. John-1 is not yet described as the father. On the other hand the
description attached to the father-aspect in the family-frame is
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(A HUSBAND (WITH WIFE (= THE-MOTHER)))
This yields a referent because John-1 is described as
(A HUSBAND (WITH WIFE MARY-1))

and a person can only once be the self of a husband. Based on this match the referent of
the co-referential description (= THE-MOTHER) in the family-frame becomes known. We

(THE MOTHER oOF A FAMILY
(WITH SELF FAMILY-1)
. (WITH FATHER JONES-1)) -
from this we can extract the other fillers. And the resulting instantiation is
(FAMILY :
(WITH MOTHER MARY-1)
(WITH SELF FAMILY-1)
(WITH FATHER JONES-1))

But now notice a certain anomaly. The filler of the father-aspect in this description is
JONES-1, but we knew already that the filler of the father-aspect in this particular
instantiation of the family-frame is JOHN-1. There is only one conclusion : JONES-1 and
JOHN-1 are co-referential. What we have to do in such a case is establish an
identity-link between the two object-experts which makes them virtualy identical. We

cannot make them actually identical because the identity might be context-dependent.
(More on contexts will be said later on)

This is a typical example of the kind of searching and relaxation that goes on when the
reasoner tries to find the instantiation of a description,

In many cases there is not yet an instantiation for the description that enters a certain
object-expert. In that case a new instantiation has to be created. This means that new
experts have to be created for each of the aspects that do not have a filler yet.
For example, the first time the following description enters the expert for MARY-1

(THE MOTHER OF A FAMILY) .
a new instantiation will be created:

(FAMILY
(WITH SELF FAMILY-1)
(WITH MOTHER MARY-1)
(WITH FATHER FATHER-1))

2. 2. PROPAGATION OF CONSTRAINTS
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(i) An expert is always told what its role is in a certain instantiation, For example, if we
~ have an instantiation like

(HUSBAND
(WITH SELF JOHN-1)
(WITH WIFE MARY-1))

then JOHN-1 has a description of the form
(A HUSBAND (WITH WIFE MARY-1))

and MARY-1 will have a description of the form
(THE WIFE OF A HUSBAND (WHO IS JOHN-1))

instantiation).

For example, if we have the following frame
(MOTHER
(WITH SELF

(A PARENT (WITH CHILD (= THE-CHILD))))-
(WITH CHILD))

then given an instantiation like

(MOTHER
(WITH SELF MARY-1)
(WITH CHILD GEORGE-1))

MARY-1 will be sent a description of the form
(A PARENT (WITH CHILD GEORGE-1))

(i) Finally we have to distribute the descriptions that were attached to the description
causing the instantiation. For example, if we have the following description
(THE CHILD OF A MOTHER
(WHO 1S
(THE WIFE OF A HUSBAND (WHO IS GEORGE-1))))
for MARY-1, and if we have been able to recover that the instantiation underlying this
description is

(MOTHER
(WITH SELF MARY-1)
(WITH CHILD GEORGE-1))

then MARY-1 should be sent the description -
(THE WIFE OF A HUSBAND (WHO IS GEORGE-1))

Each of the descriptions which thus arives at an expert will again be instantiated causing
other descriptions to be sent around, etc. At each moment of time each of the
object-experts in the model might be looking at new descriptions and trying to find out
the instantiation and its consequents. We get a high form of parallellism in the reasoner
because activities in one object-expert are not at all disturbed by activities in other
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propagated to a series of object-experts, we do not want each of these messages telling
about this instantiation to cause another attempt to find the involved instantiation. In -
order to make the difference between the two states of a description clear, we
introduce instantiation-markers in front of a description. The instantiation-marker for
uninstantiated is YOU-ARE-DESCRIBED-AS and the instantiation-marker for instantiated is
IS. Thus the following description;
(you-are-described-as (THE MOTHER OF A FAMILY))
is an uninstantiated description, whereas the following one

(is (THE MOTHER OF A FAMILY
(WHICH IS FAMILY-1)
(WITH FATHER FATHER-1))

might be its instantiated counterpart.

2. 3. DECOMPOSITION

can use well known rules of inference from propositional calculys. First we deal with the
connectives, then with conditional descriptions.

() THE CONNECTIVES

A typical decomposition rule is AND-elimination, which says that given a conjunction of
descriptions, predicate each of the descriptions. For example, if we have a description
of the form
(AND (THE MOTHER OF A FAMILY)
(THE WIFE OF A HUSBAND) )
this description can be decomposed into two seperate ones:
(THE MOTHER OF A FAMILY)
and
(THE WIFE OF A HUSBAND)

Because each of these descriptions is now a basic description, it can be instantiated
based on the methods we discussed in previous paragraphs.

each inference-rule, we can have a CONTINUOUS-ASK that will look out for descriptions
which match the condition of the inference rule. The body of the rule contains then
further message-passing as specified by the inference-rule. For the case of
AND-elimination we might have a rule which looks like this:

(CONTINUOUS-ASK :MYSELF

(you-are-described-as {AND :DESCRIPTION-] :DESCRIPTION-Z))
(TELL :MYSELF

(you-are-described-as :DESCRIPTION-I))
(TELL :MYSELF

(you-are-described-as :DESCRIPTION-Z)))
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This rule will be put in the prototypical object-expert and will therefore be inherited by
each object-expert that ever gets created. The rule looks out for incoming messages of
the form

(you-are-described-as (AND :DESCRIPTON-1 :DESCRIPTION-2))

For example, suppose the following description enters MARY-1:

(you-are-described-as
(AND (THE MOTHER OF A FAMILY)
(THE WIFE OF A HUSBAND)))

then this description would match with the condition in the rule where :DESCRIPTION-1 is
bound to

(THE MOTHER OF A FAMILY)
and :DESCRIPTION-2 to

(THE WIFE OF A HUSBAND)
The body of the rule can now be executed which yields two new message-passing
activities:

(TELL MARY-1

(you-are-described-as ( THE MOTHER OF A FAMILY)))

and

(TELL MARY-1 ‘ :
(you-are-described-as (THE WIFE OF A HUSBAND)))

Here are some other examples of inference-rules that have been implemented in a
similar fashion.

An exclusive disjunction of description can be eliminated if the negation of the other
disjuncts. For example, the connective in the following description
(XOR (A MALE-PERSON) (A FEMALE-PERSON))
can be eliminated in the following ways. When it becomes known that
(NOT (A MALE-PERSON)) :
we can deduce that
(A FEMALE-PERSON)
and when it becomes known that
(A MALE-PERSON)
we can deduce that
(NOT (A FEMALE-PERSON))
Similarly for the second description.

A non-exclusive disjunction can only be eliminated if the negation of all other disjuncts is
known. The two negations of a double-negation can be eliminated, etc.

Rather than discuss other well-known inference rules, we will turn our attention to
negation of a basic desciption like
(NOT (A FATHER))

Notice first of all that negations cannot be instantiated in the same way as positive
descriptions for the simple reason that the properties that are attached in the frame do
not necessarily hold for the negation, and neither does the negation of these properties
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hold. For example if we have a frame for WATER:
(WATER
(WITH SELF (A LIQUID)))

and we now say
(NOT WATER)

then we do not want do conclude (NOT (A LIQUID)) because the object in question might
very well be a different liquid than water.

On the other hand, it is not possible to leave the negated description uninstantiated
because if the matcher wants to find out whether a certain description matches with
another one it can only do so if the slot-fillers are described by their individual names,
and this instantiated status can only be achieved by instantiating the description. For
example, suppose we have
(NOT (THE FATHER OF A FAMILY
(WITH MOTHER (THE WIFE OF A HUSBAND (WHO IS GEORGE)))))

then we need to know the individual-name of the mother within the current model in
order to use this negative description.

These things are puzzling but fortunately we found an interesting solution: Whenever we
encounter a negation, we instantiate the positive description with a new anonymous
individual as the view of the description. Then we tell the slot-filler of the slot to which
the description is attached that it is not equal to this new anonymous individual and that
it does not play the role of the view in the (now instantiated) description.

This method works because the expert created for the anonymous individual starts
developing the consequents of having that description and if it is ever discovered that
the anonymous individual is identical to this new anonymous invidiual, a conflict will occur,
i.e. the system realizes it has arrived at a contradiction. At the same time we can use
the negation in matching because the actual object is described by the instantiated
negative description.

The introduction of negations introduces the problem of maintaining consistency in the
model. A model is inconsistent if both a description and its negation have been
predicated for the same object. When this fact is noticed by an object-expert it will
emit a conflict message. Examples of this will be studied later.

(ii) CONDITIONAL DESCRIPTIONS

Conditional descriptions like

(IF THE-PARENT IS
( (A MALE-PERSON) :
(A FATHER (WITH CHILD (= THE-CHILD)))))

are decomposed using the rule of Modus Ponens. The question is how this can be
mechanized given the computational apparatus introduced before.

Again we can set up pattern-directed invocation rules for each of these descriptions. In
general the condition of such a rule will correspond with the condition in the conditional
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description, the type of rule will correspond with the condition-indicator and the action if

there is a match will consist in sending a description to the appropriate expert
predicating the resulting description. '

Here are some more details. Let us look at the first type of condition- indicator. In
particular IF-NOW (an instantaneous/sequential conditional). This will lead to a rule
based on an INSTANTANEOUS-ASK. Because the conditional is sequential, we make an
embedded rule for each condition in the description.

Consider the following example:
(IF-NOW MARY-1 IS
((A MALE-PERSON)

(A FATHER (WITH CHILD GEORGE-1)))
((A FEMALE-PERSON

(A MOTHER (WITH CHILD GEORGE-1))))
(ELSE

(A PARENT (WITH CHILD GEORGE-1))))

Suppose this description enters the expert MARY-1. Then this will cause the following
rule to be set up:
( INSTANTANEOUS-ASK MARY-1
(is (A MALE-PERSON))
y+ action if match:
(TELL MARY-1

(you-are-described-as (A FATHER (WITH CHILD GEORGE-1)))
7y action if failure:

(TELL MARY-1
(you-are-described-as
(IF MARY-1 IS
((A FEMALE-PERSON

(A MOTHER (WITH CHILD GEORGE-1))))
(ELSE

(A PARENT (WITH CHILD GEORGE-1)))))))
Because MARY-1 is not described as a male-person the action if failure is executed
which will cause the creation of a new rule;’
(INSTANTANEOUS-ASK MARY-1
(is (A FEMALE-PERSON))
73 action if match:
(TELL MARY-1
(you-are-described-as
(A MOTHER (WITH CHILD GEORGE-1))))
;3 action if failure:
(TELL MARY-1}
(you-are-described-as
(A PARENT (WITH CHILD GEORGE-I)))))

This will not match either and the action if failure will be executed.

There are of course all sorts of technical details associated with mechanizing this
process. For example bindings for co-referential descriptions could be discovered which
then have to be added to the environment of the closures created for each of the TELL
actions, etc. But the main line of thought should be clear from these examples.
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Other conditionals are built up using the other rule-types. For example a
SINGLE-EVENT/PARALLEL conditional can be set up using the SINGLE-EVENT-ASK
rule-type. Rather than create embeddings for the various conditions, we create a

seperate rule for each conditional. Thus the following description for MARY-1
(IF MARY-1 IS
((A FEMALE-PERSON) (A MOTHER (WITH CHILD GEORGE-1)))
((A MALE-PERSON) (A FATHER (WITH CHILD GEORGE-1))))
will lead to the following two rules in the script of the expert for MARY-1:
(SINGLE-EVENT-ASK MARY-1

(IS (A FEMALE-PERSON))
(TELL MARY-1

(you-are-described-as (A MOTHER (WITH CHILD GEORGE-1)))))

(SINGLE-EVENT-ASK MARY-1
(IS (A MALE-PERSON))
(TELL MARY-]

(you-are-described-as (A PARENT (WITH CHILD GEORGE-1)))))

Finally if you have a CONTINUOUS/PARALLEL conditional, like
(WHEN MARY-1 IS '
((A FEMALE-PERSON) (A MOTHER (WITH CHILD GEORGE-1)))
((A MALE-PERSON) (A FATHER (WITH CHILD GEORGE-1))))

then the following rules will be created
(CONTINOUS-ASK MARY-1

(IS (A FEMALE-PERSON))
(TELL MARY-1

(you-are-described-as (A MOTHER (WITH CHILD GEORGE-1)))))

(CONTINOUS-ASK MARY-1
(IS (A MALE-PERSON))
(TELL MARY-1 '

(you-are-described-as (A PARENT (WITH CHILD GEORGE-1)))))

The condition in a conditional must always be a basic-description with no descriptions
attached to its slots, except names of individuals in the model or co-referential
descriptions that are to bound by the match. '

Further complications therefore arise if the condition in a conditional is itself a complex
description with connectives. When the condition is a conjunction of conditions, we set
up a pattern-directed invocation rule in the expert reasoning about the referring-name
that will look out for the first conjunct. When this conjunct is found we set up a new
rule for the second conjunct, etc. If all conjuncts match, the resulting description is sent
to the expert reasoning about the slot-filler.

When the condition is a disjunction of conditions, we set up a pattern-directed invocation
rule for each disjunct. As soon as one of them triggers, the resulting description is
propagated.

When the condition is an exclusive disjunction, the triggers. of the rules will contain a
disjunct and the conjunction of the negation of the other disjuncts. When such a trigger
is satisfied the resulting description is propagated.

Finally if descriptions are attached to a condition, we re-arrange the description so that
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a new conditional is created for this further constraint. For example, the following
description

(WHEN A-PERSON IS
((AND (A PARENT
(WITH CHILD JOHN))
(NOT (A MALE-PERSON)))
(A MOTHER (WITH CHILD JOHN))))

is actually transformed first into
(WHEN A-PERSON IS
((AND (A PARENT
(WITH CHILD (= A-DUMMY))
(NOT (A HALE-PERSON))))
(WHEN A-DUMMY IS
(JOHN (A MOTHER (WITH CHILD JOHN)) ) v
What we did here was create new referring-names for eachslot that contains further
descriptions (or names are used if they exist already) and a new conditional is formed

with this referring-name as referring-name and with the additional description as
condition.

(i) EXPLICIT PREDICATION

A finale note on how explicit predications like
(JOHN-1 IS (THE MOTHER OF A FAMILY))

These explanations should provide the reader with a fairly concrete picture of how
reasoning behavior for the language presented in chapter 2 can be implemented given

DISCUSSION

The reasoning processes prestend here are an exponent of existing work on reasoning. See e.g. the
overview in Nilson (1973) for earlier work on reasoning and papers by Hewitt (1975), Fikes and
Hendrix (1977), DeKleer, el.21(1977) a.o0. for a more recent discussion of some of the methods we
proposed here. On the other hand we believe that the present syetem is the first operational
reasoning system that is completely based on descriptions (rather than statements). This required us

to find new methods for certain problems, such as negative descriptions.

The question could be raised of what is the logical validity of the reasoning schemes proposed here.
We see that so far these mechanisms relate naturally to  mechanisms advanced for reasoning in
predicate calculus. |n parlicular, we see that we introduced the ability to match descriptions based
on the unification principle, i.e. that two descriptions match if the substitutions of the descriptions in
the slots match. We can do this very effectively because we transform all descriptions into
descriptions with unique names for the individuals. This was done by instantiating, which
corresponds to a skolemization in predicate-calculus based theorem provers. Skolemization raises
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the problem of identity that is later discovered and this has been effectively solved here by
merging the experts dealing with the objects. It can be shown ihat the methods of unification and
skolemization lead to logical completeness (Chang and Lee, 1973). For the composition of more
complex descriptions, we follow basically the methods of natural deduction (cf. Kalish and
Montague(1972) and Prawitz (1965).
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5. EXAMPLES

Chapter 2 introduced a frame-based description language. Chapter 3 introduced the
architecture and procedural primitives of a reasoning system. Chapter 4 combined
proposals of chapter 2 and 3 and contained specifications for a concrete reasoning
system supporting the description language of chapter 2.

This chapter contains some nontrivial examples illustrating the workings of this system.
We had three goals in mind when working out these examples: ‘
(i) They should show that the proposals have lead to working programs (all
the examples have been extracted from interactions. with an existing
implementation).
- (ii) They should enable the reader to find out more details and develop a
clearer picture of the description language and the reasoning mechanisms.
and

(iii} They should illustrate particular sorts of reasoning behavior.

The examples we will look at in this chapter come from the domain of common-sense
reasoning. Other applications will be studied later.

The first example illustrates in detail the message passing that goes on by way of a
demon which deals with a typical common-sense fact : if it rains, you get wet.

The second series of examples illustrates other aspects of reasoning. Within the context
of the generalization hierarchy for possession-transfer introduced earlier on, we will give
clear examples showing how inheritance works, how instantiations are triggered going up
and down hierarchies, how the merging of descriptions operates, how identity is
established and how negation works.

The final example is taken from the domain of algorithmic common-sense reasoning, in
particular we will deal with the infamous flush-toilet example. The example illustrates .
part-whole hierarchies, model construction and descriptions from multiple viewpoints. It
should provide the reader with a global idea of what is possible with the mechanisms
proposed so far.

1. COMMON SENSE DEMONS

A lot of common sense knowledge consists in knowing all sorts of tiny little facts that
pPop up when one is thinking about related objects. This activity is often compared to a
demon which jumps up when certain conditions in a model are met. The following example
introduces such a demon. It knows about the fact that physical objects get wet when it
rains. :

We will need the following concepts:
- a concept for a physical-object:

(PHYSICAL-OBJECT
(WITH SELF))

= a concept for the state of being located-at a certain location in a certain situation:
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(LOCATED-AT-STATE
(WITH SELF)
(WITH OBJECT)
(WITH LOCATION)
(WITH SITUATION))

- a concept for an outside location:

(OUTSIDE-LOCATION
(WITH.SELF))

- a concept for a wet-object in a certain situation
(WET-0BJECT

(WITH SELF)

(WITH SITUATION))

- a concept for a situation where it rains:

(RAIN-SITUATION
(WITH SELF))

The information that physical objects get wet when it rains can be expressed by
attaching a conditional description to the physical-object frame which looks out whether
the object is located at a location which is an outside location in a situation which is a
rain-situation. If that is the case the object is described as a wet object.
(PHYSICAL-OBJECT
(WITH SELF (= THE-OBJECT)
;s when the object has a particular location
(WHEN THE-OBJECT 1S .
((THE OBJECT OF A LOCATED-AT-STATE
(WITH 'LOCATION (= THE-LOCATION))
(WITH SITUATION (= THE-SITUATION)))
;s when there is rain in this situation
(WHEN THE-SITUATION IS
((A RAIN-SITUATION)
+; and when the location is an outside location
(WHEN THE-LOCATION
((AN OUTSIDE-LOCATION)
;3 then the object gets wet
(THE-OBJECT IS
(A WET-OBJECT :
(WITH SITUATION (= THE-SITUATION)))))))N)))

Also we introduce a frame for John which is described as a physical object, located-at a
certain outside-location : '
( JOHN
(WITH SELF
(AND
(A PHYSICAL-OBJECT)
(THE OBJECT OF A LOCATED-AT-STATE
(WITH LOCATION (AN OUTSIDE-LOCATION))))))

We will now try to illustrate some aspects of the reasoning process. The interaction and

output is at the very lowest level of the reasoning process, i.e. the message passing
level.

We start with the following message:
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>> (tell (an OBJECT)
(you-are-described-as JOHN))
The first thing what happens is that a new copy of the prototypical object-expert is
created (further called JOHN-1) and the message is sent to this new expert:
===> JOHN-1 receives the following message from USER:
(you-are-described-as JOHN) ,
An object-expert always tells itself its own name for later identification purposes:

===> JOHN-1 receives the following message from JOHN-]:
(is JOHN-1)

JOHN-1 now starts to instantiate the description. The instantiation in this case is fairly
simple because no new object-experts need to be created for other aspects. The only
thing that happens is that John tells itself its role in the John concept:

===> JOHN-1 receives the following message from JOHN:
(is JOHN)

Now JOHN-1 asks the frame-keeper for JOHN whether it knows any constraints that
objects’ which are described as the self of JOHN have. This frame-keeper replies with
the description attached to the self-aspect:

===> JOHN-1 receives the following message from JOHN:
(you-are-described-as
(AND
(A PHYSTICAL-0BJECT)
-(THE OBJECT OF A LOCATED-AT-STATE
(WITH LOCATION (AN OUTSIDE-LOCATION)))))

JOHN-1 looks at this message and uses its AND-elimination rule to decompose the
expression and to send each of the conjuncts as new descriptions to itself:

===> JOHN-1 receives the following message from JOHN-1:
(you-are-described-as
(A PHYSICAL-OBJECT))
===> JOHN-1 receives the following message from JOHN-1:
(you-are-described-as
(THE OBJECT OF A LOCATED-AT-STATE
(WITH LOCATION (AN OUTSIDE-LOCATION))))

JOHN-1 looks now both descriptions and will try to instantiate each of them. This leads
to the following message passing behavior:

===> JOHN-1 receives the following message from PHYSICAL-OBJECT:
(is (A PHYSICAL-0BJECT))

The PHYSICAL-OBJECT frame also sends a constraint along. Note “how the
indirect-reference THE-OBJECT has been resolved via'a binding to JOHN-1:
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==z> JOHN-1 receives the following message from PHYSICAL-OBJECT:
(you-are-descr ibed-as

(WHEN JOHN-1 IS
((THE OBJECT OF A LOCATED-AT-STATE
(WITH LOCATION (= THE-LOCATION))
(WITH SITUATION (= THE-SITUATION)))
(WHEN THE-SITUATION IS
((A RAIN-SITUATION)
(WHEN THE-LOCATION IS
((AN OUTSIDE-LOCATION)
(JOHN-1 IS
(A WET-0BJECT
(VITH SITUATION (= THE-SITUATION))))))))))

Now we turn to the other description, i.e.

(you-ar‘e-described-as
( THE OBJECT OF A LOCATED-AT-STATE
(WITH LOCATION (AN OUTSIDE—LOCATION))))

We notice first of all that this is a partial description (the situation is not mentioned). In
any event new object-experts need to be created for each of the aspects of the frame
that does not have an expert reasoning about it. This new experts will be called
SITUATION-1 (for the situation aspect) LOCATED-AT-STATE-1 (for the self aspect) and

LOCATION-1 (for the location aspect). Whenever a new expert is created it first tells
itself its name, so we get

- —

===> SITUATION-1 receives the following message from SITUATION-1
(is SITUATION-1))

===> LOCATED-AT-STATE-1 receives the following message from LOCATED-AT-STATE-1
(is LOCATED-AT-STATE-1)

===> LOCATION-1 receives the following message from LOCATION-1
(is LOCATION-1)

These new experts also receive descriptions specifying their role in the frame

===> LOCATION-1 receives the following message from LOCATED-AT-STATE:
(is (THE LOCATION OF A LOCATED-AT-STATE

(WITH SELF LOCATED-AT-STATE-1)
(WITH SITUATION SITUATION-1)
(WITH OBJECT JOHN-1)))

===> LOCATED-AT-STATE-1 receives the following message from LOCATED-AT-STATE :
(is (A LOCATED-AT-STATE

(WITH LOCATION LOCATION-1)
(WITH SITUATION SITUATION-1)
(WITH OBJECT JOHN-1)))

===> SITUATION-1 receives the following.message from LOCATED-AT-STATE:;
(is (THE SITUATION OF A LOCATED-AT-STATE
(WITH SELF LOCATED-AT-STATE-I)
(WITH LOCATION LOCATION-1)
(WITH OBJECT JOHN-1)))
===> JOHN-1 receives the following message from LOCATED-AT-STATE:
(is (THE OBJECT OF A LOCATED-AT-STATE
(WITH SELF LOCATED-AT-STATE-I)
(WITH SITUATION SITUATION-1)
(WITH LOCATION LOCATION-1)))

They also receive the descriptions that were attached to the description which was the
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source for this particular instantiation;

===> LOCATION-1 receives the following message from JOHN-1:
(you-are-described-as (AN OUTSIDE-LOCATION))

This description is again further instantiated leading to

===)> LOCATION-1 receives the following message from OUTSIDE-LOCATION:
(is (AN OUTSIDE-LOCATION)) '

Meanwhile the condition in the conditional-description waiting in JOHN-1 matches with

the description that JOHN-1 is the object of a located-at-situation. Based on this match,
the resulting description is released: '
===> JOHN-1 receives the following message from JOHN-1
(you-are-described-as
(WHEN SITUATION-1 IS
((A RAIN—SITUATION)
{ WHEN LOCATION-1 IS
( (AN OUTSIDE-LOCATION)
(JOHN-1 IS
(A WET-0BJECT
(WITH SITUATION SITUATION-I))))))))

Note how the indirect references have been resolved based on the matching process.

The model contains now everything that can be known at this point. A condition is
waiting for SITUATION-1 to be described as (A RAIN-SITUATION). So let us send such a
description to SITUATION-1: .

>> (tell SITUATION-1 (you-are-described-as (A RAIN-SITUATION)))

===)> SITUATION-1 receives the following message from USER:
(you-are-described-as (A RAIN-SITUATION))

After instantiation this leads to
===)> SITUATION-] receives the following message from RAIN:
(is (A RAIN-SITUATION)) ‘
The instantiation of this description matches with the condition. So a new description
results:
===> JOHN-1 receives the following message from SITUATION-1:
(you-are-described-as
(WHEN LOCATION-1 IS
((AN OUTSIDE-LOCATION)
(JOHN-1 IS
(A WET-OBJECT
(WITH SITUATION SITUATION-I)))))

But LOCATION-1 was already described as (AN OUTSIDE-LOCATION), hence the condition
matches and JOHN-1 is described as being wet:
===> JOHN-1 receives the following message from LOCATION-]:
(you—are-described—as (A WET-0BJECT (WITH SITUATION SITUATION-1)))
Instantiation of this description Ieads. to
===> JOHN-1 receives the following message from WET-OBJECT:
(is (A WET-OBJECT (WITH SITUATION SITUATION-I)))

===> SITUATION-1 receives the following message from WET-OBJECT:
(is (THE SITUATION OF A WET-OBJECT (WITH SELF JOHN-1)))

Looking at the messages that arrive at the experts does not give a good overview of the

Page - 84



AR LI W BV ) LAV D INO . LHLIVIVAING

process or the results that have been achieved. Fortunately there are two views one
can maintain on the process of model-construction: one can look at it from the viewpoint
of the objects (i.e. see what messages come in - as we did here) or one can look at it
from the viewpoint of the frames (i.e. see what instantiations are being made). The
second viewpoint turns out to yield a better overview of the process. The following is a
list of the instantiations for the previous example: '

>> (tell (an object) (you-are-described-as JOHNY))

causes the construction of the following instantiations
xR

(JOHN (WITH SELF JOHN-1))

xx

(PHYSICAL-OBJECT (WITH SELF JOHN-1))
xR

(LOCATED-AT-STATE (WITH SELF LOCATED-AT-STATE-1)
(WITH LOCATION LOCATION-1)
(WITH OBJECT JOHN-1) ‘
(WITH SITUATION SITUATION-1))

XN

(OUTSIDE-LOCATION (WITH SELF LOCATION-1))

When we now tell the relevant expert in the model that it rains:

>> (tell SITUATION-1 (you-are-described-as (A RAIN-SITUATION)))

the following additional instantiations are created:
xR

(RAIN-SITUATION (WITH SELF SITUATION-1))
xR :

(WET-OBJECT (WITH SELF JOHN-1)
(WITH SITUATION SITUATION-1))

2. HIERARCHIES

The next series of examples is set up to illustrate in detail various technical points. All

the examples are based on the generalization hierarchy for possession-transfer
discussed in chapter 2:

ACTION

|
POSSESSION-TRANSFER
|

| I
SINGLE-TRANSFER MUTUAL-TRANSFER
I I
| | | |
GIVE TAKE BUY SELL

We will use the frames that were given in that chapter, in addition to some frames for
JOHN, MARY and BOOK which have no constraints attached
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2. 1. UPWARD MOVEMENT IN HIERARCHIES

First we show how one can go from one node in the hierarchy to a node above it, in

particular from the frame for BUY via instantiations of mutual-transfer and
possession-transfer to action. 4

partial description. Descriptions attached to the old-owner, new-owner and object will
have to be sent to the object experts created due to instantiation of buy.

>> (tell (an OBJECT)
(you-are-described-as
(A BUY
(WITH OLD-OWNER JOHN)
(WITH NEW-OWNER MARY)
(WITH OBJECT (A BOOK)))))
Results in the following instantiations:
XX
(BUY (WITH SELF BUY-1)
(WITH OBJECT OBJECT-1)
(WITH OLD-OWNER JOHN-1)
(WITH NEW-OWNER MARY-1)
(WITH EXCHANGE-0BJECT EXCHANGE-OBJECT-I)
(WITH BEGIN-SITUATION BEGIN-SITUATION-I)

(WITH END-SITUATION END-SITUATION-1))
X

(MUTUAL-TRANSFER (WITH SELF BUY-1)
(WITH ACTOR MARY-1)
(WITH OLD-OWNER OLD-OWNER-1)
(WITH NEW-OWNER MARY-1)
(WITH OBJECT OBJECT-1)
(WITH EXCHANGE-OBJECT EXCHANGE-0BJECT-1)
(WITH BEGIN-SITUATION BEGIN-SITUATION-1)

(WITH END-SITUATION END-SITUATION-1))
X

(UNORDERED-COHPOSITION-OF-ACTIONS (WITH SELF BUY-1)
(WITH ONE-ACTION ONE-ACTION-1)

(WITH OTHER-ACTION OTHER-ACTION-1))
%%

(BOOK (WITH SELF OBJECT-1))

:SOHN (WITH SELF JOHN-1))

:;ARY (WITH SELF MARY-1)) )
EEHOUNT-OF-MONEY (WITH SELF EXCHANGE-0BJECT-1))

(POSSESSION-TRANSFER (WITH SELF ONE-ACTION-1)
- (WITH ACTOR MARY-1)
(WITH OLD-OWNER OLD-OWNER-1)
(WITH NEW-OWNER MARY-1)
(WITH OBJECT OBJECT-1)
(WITH BEGIN-SITUATION BEGIN-SITUATION-1)
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(WITH END-SITUATION END-SITUATION-1))
xR

(POSSESSION-TRANSFER (WITH SELF OTHER-ACTION-1)

(WITH ACTOR MARY-1)

(WITH OLD-OWNER MARY-1)

(WITH NEW-OWNER OLD-OWNER-1)

(WITH OBJECT EXCHANGE-0BJECT-1)

(WITH BEGIN-SITUATION BEGIN-SITUATION-1)
(WITH END-SITUATION END-SITUATION-1))

xR

(ACTION (WITH SELF BUY-1)
(WITH ACTOR MARY-1)
(WITH BEGIN-SITUATION BEGIN-SITUATION-1)
(WITH END-SITUATION END-SITUATION-1))
K ,
(POSSESSION (WITH SELF POSSESSION-1)
(WITH HAVER JOHN-1)
(WITH OBJECT OBJECT-1)
(WITH SITUATION BEGIN-SITUATION-1))

xR

(POSSESSION (WITH SELF POSSESSION-2)
(WITH HAVER MARY-1)
(WITH OBJECT OBJECT-1)

(WITH SITUATION END-SITUATION-1))
x %

(ACTION (WITH ACTION (CALLED XPRT-23))
(WITH ACTOR MARY-1)
(WITH BEGIN-SITUATION BEGIN-SITUATION-1)

(WITH END-SITUATION END-SITUATION-1))
xx

(TIME-SEQUENCE (WITH SELF TIME-SEQUENCE-1)
(WITH FIRST-SITUATION BEGIN-SITUATION-1)

(WITH SECOND-SITUATION END-SITUATION-1))
XX :

(POSSESSION (WITH SELF POSSESSION-3)
(WITH HAVER JOHN-1)
(WITH OBJECT EXCHANGE-OBJECT-1)

(WITH SITUATION END-SITUATION-1))
X ‘

(POSSESSION (WITH SELF POSSESSION-4)
(WITH HAVER MARY-1)
(WITH OBJECT EXCHANGE-OBJECT-1)
(WITH SITUATION BEGIN-SITUATION-1))

instantiated. This is also an example where the same frame namely the one for
possession-transfer gets instantiated several times.

2. 2. DOWNWARD MOVEMENT IN HIERARCHIES

We now go the other way, i.e. we specify information so that from a frame somewhere

near the top of the hierarchy conditional expressions direct instantiations toward points
lower in the hierarchy.

Page - 87



LAAMELEDS DOWNWARD MOVEMENT IN HIERARCHIES

But conditionals are only part of the story. Suppose the reasoner is going down in the
hierarchy and instantiates the frame for GIVE. When this frame becomes active it also
wants to propagate its descriptions, so it causes the instantiation of the
possession-transfer frame AGAIN ! If we are not careful here, the propagation would go
in circles. The way to prevent this is to supply another piece of essential information to
the reasoning system, namely the criteriality conditions. In the present example, if
something is described as a possession transfer action, that same thing cannot again be
described as a possession-transfer a moment later. Indeed if that is so we know we are
talking about the same possession-transfer and the descriptions can be merged.

Another thing that will be demonstrated is the use of individual descriptions using the
individuating specification, as in
( JOHN

(WITH SELF)

(ASPECT-SPECIFICATIONS: . .

(INDIVIDUATING: (WITH-RESPECT-TO PEOPLE SELF))))

The reasoner keeps track of a list of the individuals that are accessible via individual
descriptions. When the individual description occurs somewhere the instantiation process
will try to find the corresponding object-expert instead of creating a new one. Note also
that John is individuating with respect to people, i.e JOHN and (NOT MARY) would match
if MARY was also declared to be individuating with respect to people.

The source description that will be given in the following example uses the
possession-transfer frame and the hierarchy given earlier. The information that is
necessary to move downward is that the old-owner has to be the same individual as the
actor. We do this by specifying that the filler of both slots has the name JOHN. if the
individuating-specifications are properly taken care of, the system should figure out that
the fillers of these slots are the same.

Here is the hierarchy and the path that will be followed.
ACTION

|
POSSESSION-TRANSFER
I

l l
SINGLE-TRANSFER MUTUAL-TRANSFER
I |

I I ! l
GIVE TAKE BUY SELL

We start with the following transmission

>> (tell (an OBJECT)
(you-are-described-as
(A POSSESSION-TRANSFER
(WITH ACTOR JOHN)
(WITH OLD-OWNER JOHN)
(WITH NEW-OWNER MARY)
(WITH OBJECT (A B00OK)))))

Here are the resulting instantiations.
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xR

(POSSESSION-TRANSFER (WITH SELF POSSESSION-TRANSFER-1)
(WITH ACTOR JOHN-1)
" (WITH OLD-OWNER JOHN-1)
(WITH NEW-OWNER MARY-1)
(WITH OBJECT OBJECT-1)
(WITH BEGIN-SITUATION BEGIN-SITUATION-1)
(WITH END-SITUATION END-SITUATION-1))

Observe that the old-owner has been identified as identical to the actor based on the
individual-description attached to these slots.
b &

(JOHN (WITH SELF JOHN-1))
x %

(ACTION (WITH SELF POSSESSION-TRANSFER-1)
(WITH ACTOR JOHN-1)
(WITH BEGIN-SITUATION BEGIN-SITUATION-1)
(WITH END-SITUATION END-SITUATION-1))
xx

(MARY (WITH SELF MARY-1))
xK

(BOOK (WITH SELF OBJECT-1))
xx

(POSSESSION (WITH SELF POSSESSION-1)
(WITH HAVER JOHN-1)
(WITH OBJECT OBJECT-1)

(WITH SITUATION BEGIN-SITUATION-1))
XX '

( TIME-SEQUENCE (WITH SELF TIME-SEQUENCE-1) .
: (WITH FIRST-SITUATION BEGIN-SITUATION-1)

(WITH SECOND-SITUATION END-SITUATION-1))
xx

(POSSESSION (WITH SELF POSSESSION-2)
' (WITH HAVER MARY-1)
(WITH OBJECT OBJECT-1)
(WITH SITUATION END-SITUATION-1))

Downward movement now results in:
XX

(GIVE (WITH SELF POSSESSION-TRANSFER-1)
(WITH OBJECT OBJECT-1)
(WITH OLD-OWNER JOHN-1)
(WITH NEW-OWNER MARY-1),
(WITH BEGIN-SITUATION BEGIN-SITUATION-1)
(WITH END-SITUATION END-SITUATION-1))

Upward movement starts again from give. But no further action occurs because this

instantiation merges with the first instantiation of possession-transfer.
xR

(POSSESSION-TRANSFER (WITH SELF POSSESSION-TRANSFER-1)
(WITH ACTOR JOHN-1)
(WITH OLD-OWNER JOHN-1)
(WITH NEW-OWNER MARY-1)
(WITH OBJECT OBJECT-1)
(WITH BEGIN-SITUATION BEGIN-SITUATION-1)
(WITH END-SITUATION END-SITUATION-1))
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This example shows clearly that we can start from anywhere in the‘hierarchy and move
up and down - if sufficient information is there.

2. 3. MERGING OF OBJECTS

Now comes a more complicated example that uses the constraints on the frame to
establish identity-links between object-experts.

First we introduce some new frames, in particular one for an individual with the name

Ludwig, and an individual known as a blue-book that is possessed by Ludwig at a
situation called yesterday
(BLUE-BOOK
(WITH SELF
(THE OBJECT OF A POSSESSION
(WITH HAVER LUDWIG)
(WITH SITUATION (A YESTERDAY)))))

Now we tell an object that it is the éction of a possession-transfer where the actor is
Ludwig, the object is the blue-book and the situation is the situation yesterday. We do
not tell who the owner of the book is. Because the system knows that Ludwig owns the

co-referential. It does this on the assumption that an object at a given situation has only

-one owner, i.e. the frame for POSSESSION has the following aspect-specifications
(POSSESSION
(WITH SELF)
(WITH HAVER)
(WITH OBJECT)
(WITH SITUATION)
GASPECT-SPECIFICATIONS:
(CRITERIAL:
(OBJECT SITUATION)))).

So, if you know the object and the situation then you have uniquely identified the
instantiation.

Once it is realized that the old-owner and the actor of the possession-transfer are the
same, identity-links have to be established between the two object-experts which were

>> (tell (an OBJECT)
(you-are-dcscribed-as
(A POSSESSION-TRANSFER
(WITH ACTOR LUDVIG)
(WITH NEW-OWNER MARY)
(WITH OBJECT (A BLUE-BOOK))
(WITH BEGIN-SITUATION (A YESTERDAY)))))

Note that we do not talk about the old-owner at all.
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The following instantiations are created in response to this message.
N
(POSSESSION-TRANSFER (WITH SELF POSSESSION-TRANSFER-I)
(WITH ACTOR LUDWIG-1)
(WITH OLD-OWNER OLD-OWNER-1)
(WITH NEW-OWNER MARY-1)
(WITH OBJECT 0BJECT-1)
(WITH BEGIN-SITUATION BEGIN-SITUATION-I)
(WITH END-SITUATION END-SITUATION-I))

An instantiation is made with the old-owner an anonymous object taken care of by
OLD-OWNER-1. The actor of the transfer is called LUDWIG-1. So the old-owner and the
actor are conceived as different objects at this time.

xR

(LUDWIG (WITH SELF LUDWIG-1))
X%

( YESTERDAY (WITH SELF BEGIN-SITUATION-I))
Upward movement !
xx
(ACTION (WITH SELF POSSESSION-TRANSFER-I))
(WITH ACTOR LUDWIG-1)) .
(WITH BEGIN-SITUATION BEGIN-SITUATION-I)
(WITH END-SITUATION END-SITUATION-1)) .
One constraint on POSSESSION-TRANSFER says that the old-owner must possess the
object (here the blue-book, i.e. OBJECT-1) in the begin-situation (here
BEGIN-SITUATION-1). The following instantiation is created in response to this constraint
xR
(POSSESSION (WITH SELF POSSESSION-1)
(WITH HAVER OLD-OWNER-1)
(WITH OBJECT OBJECT-1)
(WITH SITUATION BEGIN-SITUATION-I))
R

(MARY (WITH SELF MARY-1))

xR

(BLUE-BOOK (WITH SELF OBJECT-1))
xx

(TIME-SEQUENCE (WITH SELF TIME-SEQUENCE-1)
(WITH FIRST-SITUATION BEGIN-SITUATION-1)
(WITH SECOND-SITUATION END-SITUATION-1))

(POSSESSION (WITH SELF POSSESSION-2)
(WITH HAVER MARY-1)
(WITH OBJECT OBJECT-1)
(WITH SITUATION END-SITUATION-1))

The instantiation of the blue-book frame yields the next constraint saying that Ludwig
(here LUDWIG-1) is the owner of the blue-book (OBJECT-1) in the begin-situation
(BEGIN-SITUATION-1).
xR
(POSSESSION (WITH SELF POSSESSION-3)

(WITH HAVER LUDWIG-1))

(WITH OBJECT OBJECT-1)

(WITH SITUATION BEGIN-SITUATION-I))
But we had already an instantiation of this frame and the haver in that instantiation was
LD-OWNER-1 ! Because of the criteriality of the object and situation aspect, i.e. if the
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respective fillers of the object and situation aspects are identical the haver must also be
identical, it becomes known that LUDWIG-1 and OLD-OWNER-1 are identical;

xR

ESTABLISHED IDENTITY oF LUDWIG-1 AND OLD-OWNER-1

Downward movement can now start:
X
(GIVE (WITH SELF POSSESSION-TRANSFER-]))
(WITH OBJECT OBJECT-I)
(WITH OLD-OWNER LUDNIG-I))
(WITH NEW-OWNER MARY-1)
(WITH BEGIN—SITUATION BEGIN-SITUATION-l)
(WITH END-SITUATION END-SITUATION-I))
Upward from GIVE;

X%

(POSSESSION-TRANSFER (WITH SELF POSSESSION-TRANSFER-I))
(WITH ACTOR LUDWIG-1))
(WITH OLD-OWNER LUDWIG-1))
(WITH NEW-OWNER MARY-1)
(WITH OBJECT OBJECT-1)
(WITH BEGIN-SITUATION BEGIN-SITUATION-I)
(WITH END-SITUATION END-SITUATION-1))

from the old-owner in this instantiation (LUDWIG-1 vs. OLD-OWNER-1), a merge takes
place because the matcher knows about identity of objects.

2. 4. NEGATION

We now look an example that will illustrate how negation works. We will use the frames
discussed earlier.

The example starts with telling an expert that it has a particular object at a certain time:
>> (tell (an OBJECT)
(you—are-described-as
(THE HAVER OF A POSSESSION)))

The possession frame js now instantiated and this will cause the creation of individuals
for each of the roles in this frame, in particular the haver is treated by HAVER-1, the
object by OBJECT-1 and the situation is SITUATION-1. A

xR

(POSSESSION (WITH SELF POSSESSION-1)
(WITH HAVER HAVER-1)
(WITH OBJECT OBJECT-1)
(WITH SITUATION SITUATION-1))
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Now we tell HAVER-1 that it is NOT the old-owner of a possession-transfer where the
object is OBJECT-1 and the begin-situation is SITUATION-1. Our prediction of what will
happen goes like this: A new anonymous individual is created and assigned to a particular
expert. This new individual is specified as not being HAVER-1. The new expert then
starts developing the consequences of being the old-owner in a possession-transfer
situation. One of these consequences is that he is known to be the haver of the object
in the begin-situation of the transfer. But we know that HAVER-1 .is the owner. And
because according to the definition an object can only have one owner at a given
situation, HAVER-1 must be identical with this -anonymous individual... So the system
should arrive at a contradiction.

Here is what actually happens:
>> (tell HAVER-1
(you-are-described-as
(NOT (THE OLD-OWNER OF A POSSESSION-TRANSFER
(WITH OBJECT OBJECT-1)
(WITH BEGIN-SITUATION SITUATION-1)))))

"X

(POSSESSION-TRANSFER (WITH SELF POSSESSTON-TRANSFER-1)
(WITH ACTOR ACTOR-1)
‘ (WITH OLD-OWNER OLD-OWNER-1)
(WITH NEW-OWNER NEW-OWNER-1)
(WITH OBJECT OBJECT-1)
(WITH BEGIN-SITUATION SITUATION-1)
(WITH END-SITUATION END-SITUATION-1))

- Observe that the old-owner is a new expert called OLD-OWNER-1, instead of HAVER-1.
Constraints are now Propagated, in particular the constraint that there is a POSSESSION
situation involving the old-owner, the begin-situation and the object. Based on this
constraint the system figures out that OLD-OWNER-1 and HAVER-1 are identical
(because criteriality of object and situation in POSSESSION-TRANSFER):

xR :
ESTABLISHED IDENTITY OF OLD-OWNER-1 AND HAVER-1

But now, just as we expected, there is a contradiction:

== CONTRADICTION IN HAVER-1 BETWEEN
(IS OLD-OWNER-1)
(IS (NOT OLD-OWNER-1))

3. DEVICES

The final example of this chapter deals with a completely different domain: algorithmic

common sense reasoning. It illustrates more complicated applications of the mechanisms
we have studied so far.

Algorithmic reasoning deals with mechanisms in the real world from the viewpoint of how
they work. Reasoning about Programs or electronic circuits are certain types of
algorithmic reasoning. We look here at a more down-to-earth example: the notorious
reverse-trap-flush-toilet. First we perform a conceptual analysis of the problem.
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There is a number of different perspectives from which one can start looking at a
mechanism like a pump or a flush-toilet.

ANATOMY: What are the components?

What is the physical arrangement of the components?
MECHANISM: How does it work? v :
What will happen to it if you do this or that?
USE: When to use it?
How to use it?

3. 1. ANATOMY

A flush-toilet has the following components: a tank, a pipe, a bowl-assembly and a
release: '

(REVERSE-TRAP-FLUSH-TOILET
(WITH SELF)
(WITH TANK)
(WITH PIPE)
(WITH BOWL-ASSEMBLY)
(WITH RELEASE))

The object aspect allows us to talk about the object as a whole. There is a physical
arrangement between these parts the specification of which is left as an exercise to the
reader. What is more interesting is a description of the mechanics of the device.

3. 2. MECHANISM

It turns out that a toilet can be described as a decomposable system, so we will describe
the mechanics of each of the parts and this will give us the operation of the whole.

The tank is a container filled with some liquid. But it is a tank with an interesting
property: it fills itself when it is empty. How this filling happens will not concern us. (The
fact that we can ignore details - or stated more precisely describe things at a certain
level of detail without worrying about the rest is very important. This example is a good
ilustration how to go about doing this.)

The pipe is a device that connects two containers related by a release. If this release is
released, the liquid of the first container flows into the second one.

The bowl-assembly is a container with a drain. When water is present in the container, it

flows down the drain carrying whatever object that was located in the container to the
drain.

So we introduce frames for each of these parts:
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(SELF-FILLING-CONTAINER
(WITH SELF)
(WITH KIND-OF -CONTENT))

- (CONTAINER-WITH-DRAIN
(WITH SELF)

(WITH CONTAINER-PART)
(WITH DRAIN))

(CONNECTION-WITH-RELEASE
(WITH SELF)
(WITH RELEASE)
(WITH SOURCE-CONTAINER)
(WITH TARGET-CONTAINER))
and describe the whole in terms of the parts:

(REVERSE-TRAP-FLUSH-TOILET
(WITH SELF)
(WITH TANK
(A SELF-FILLING-CONTAINER

(WITH KIND-OF-CONTENT WATER)))
" (WITH BOWL-ASSEMBLY

(THE CONTAINER-PART OF A CONTAINER-WITH-DRAIN))
(WITH PIPE

(THE CONNECTOR OF A CONNECTION-WITH-RELEASE
(WITH RELEASE (= THE-RELEASE))
(WITH SOURCE-CONTAINER (= THE-TANK))

(WITH TARGET-CONTAINER (= THE-BOWL-ASSEMBLY))))
(WITH RELEASE)).

In other words, a flush-toilet is described as an object with four parts:

A tank which is described as a self-filling-container with kind-of-content the kind of
water. :
A bowl-assembly which is described as the container-part of a container-with-drain.

A pipe which is described as the connector of a connection-with-release with the
release co-referential with the release of the toilet, the source-container co-referential

with the tank and the target-container co-referential with the bowl-assembly.
A release which is the release of the pipe.

If we can specify the mechanics of the three devices used in the description then we
have also specified the mechanics of the flush-toilet itself.

First we look at the self-filling-container, i.e. a kind of container that fills itself up when
it is empty. To talk about this we need the notion of an empty-container;
(EMPTY-CONTAINER

(WITH SELF)

(WITH SITUATION)).
Also we need the notion of a liquid. Liquids are a very special class of objects and we
will not discuss the complications for dealing with them here. For our present purposes
we let a liquid be a concept with the following frame:
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(LIQUID
(WITH SELF)
(WITH CONTAINER)
(WITH KIND)
(WITH SITUATION)).

So that we can talk about a certain amount of water as a certain object located in a
certain container in a certain situation. Note that WATER can now be introduced as a

kind of liquid:
(WATER
(WITH SELF

(A LIQUID))).
We will consider water to be an individual-concept.

Here is then the frame for the self-filling-container
(SELF-FILLING-CONTAINER
(WITH SELF (= THE-CONTAINER)
(WHEN THE-CONTAINER IS
((AN EMPTY-CONTAINER
(WITH SITUATION (= A-SITUATION)))
(THE CONTAINER OF A LIQUID
(WITH SITUATION .
(THE SUCCESSOR OF A TIME-SEQUENCE
(WITH PREDECESSOR
(= A-SITUATION))))
(WITH KIND (= THE-KIND))))))
(WITH KIND-OF-CONTENT (= THE-KIND))).

In other words, when the container is known to be an empty container in a certain
situation, it can be deduced that the container will again contain a liquid of the kind it
usually has at the situation immediately following the first situation

Note the frame for time-sequence which looks like this:
( TIME-SEQUENCE
(WITH SELF)
(WITH PREDECESSOR)
(WITH SUCCESSOR)).
Time sequence is defined in such a way that situation which follow each other are
identical, i.e. predecessor as well as successor are criterial.

Now the container with drain. This is somewhat more complicated. We know that as soon
as some sort of liquid comes into the container part, it will flow down the drain. So we
can describe the drain as the container of a liquid that was the moment before in the
container-part. ‘
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(CONTAINER-WITH-DRAIN
(WITH SELF)
(WITH CONTAINER-PART)
(WITH DRAIN
(WHEN THE-CONTAINER-PART IS
((THE CONTAINER OF A LIQUID
(WHICH IS (= THE-LIQUID))
(WITH SITUATION (= THE-FIRST-SITUATION))
(WITH KIND (= THE-KIND)))
(THE CONTAINER OF A LIQUID
(WHICH IS (= THE-LIQUID))
(WITH KIND (= THE-KIND))
(WITH SITUATION
(SUCCESSOR TIME-SEQUENCE
(WITH PREDECESSOR
(= THE-FIRST-SITUATION)))))))))

But this is not enough. It is necessary to specify that when there is an object in the
container-part, this object also ends up in the drain. To talk about this we need first a

way to specify that an object is located at a place. We need two kinds of location
specifiers: Being located on a certain surface:
(LOCATED-ON

(WITH SELF)

(WITH SUPPORT)

(WITH OBJECT)

(WITH SITUATION))

and being located in a certain container:
(LOCATED-IN

(WITH SELF)

(WITH CONTAINER)

(WITH OBJECT)

(WITH SITUATION)).

Now we add another conditional description, looking out for objects which might be

located on the container-part of the bowl-assembly. When such an object is there it will
also end up in the drain.

(CONTAINER—VITH-DRAIN
(WITH CONTAINER-PART)
(WITH DRAIN
(WHEN THE-CONTAINER-PART IS
((THE CONTAINER OF A LIQUID
(WHICH IS (= THE-LIQUID))
(WITH SITUATION (= THE-FIRST-SITUATION))
(WITH KIND (= THE-KIND)))
(THE CONTAINER OF A LIQUID
(WHICH IS (= THE-KIND))
(WITH OBJECT (= THE-LIQUID))
(WITH SITUATION
(AND
(THE SUCCESSOR OF A TIME-SEQUENCE
. (WITH PREDECESSOR (= THE-FIRST-SITUATION)))
+3 looking out for the object
(WHEN THE-FIRST-SITUATION IS
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((THE SITUATION OF A LOCATED-ON
~ (WITH OBJECT (= THE-OBJECT))
(WITH SUPPORT (= THE-CONTAINER-PART)))
(THE SITUATION OF A LOCATED-IN
(WITH OBJECT (= THE-OBJECT))
(WITH CONTAINER (= THE-DRAIN))))))))))))

In other words, the situation that js inlr‘oduced as the situation where the drain contains
the liquid is further constrained as a situation where the object is also in the drain when

complicated the co-referential links have become.

The final device is a connection-with-release. Such a device starts working when the

release is put into action Here is the RELEASE-ACTION frame structure:
(RELEASE-ACTION .
(WITH SELF)
(WITH RELEASE)
(WITH BEGIN-SITUATION '
(THE PREDECESSOR OF A TIME-SEQUENCE

(WITH SUCCESSOR (= THE-END-SITUATION))))
(WITH END-SITUATION)).

What happens now is that when the release of a connection-with-release is the release
of a release-action, the liquid that was in the source-container will flow to the
target-container and the source-container will become empty:

(CONNECTION-VITH—RELEASE
(WITH SELF)
(WITH RELEASE)
(WITH CONNECTOR)
(WITH SOURCE-CONTAINER)
(WITH TARGET-CONTAINER
(WHEN THE-RELEASE IS
((THE RELEASE OF A RELEASE-ACTION
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))
(WITH END-SITUATION (= THE-END-SITUATION)))
(WHEN THE-SOURCE-CONTAINER IS
((THE CONTAINER OF A LIQUID
(WHICH IS (= THE-LIQUID))
(WITH SITUATION (= THE-BEGIN-SITUATION))
(WITH KIND (= THE-KIND)))
(THE-TARGET-CONTAINER IS
(THE CONTAINER OF A LIQUID
(WHICH IS (= THE-LIQUID))
(WITH KIND (= THE-KIND))
(WITH SITUATION
(THE SITUATION OF AN EMPTY-CONTAINER
(WHICH 1S
(= THE-SOURCE-CONTAINER))))))))))))

We are now ready to look at some examples. What we will do is cause the construction
of a model and experiment with it.

Page - 98



MECHANISM

The following message creates an object that is a reverse-trap-flush-toilet (note the
use of a partial description).

>> (tell (an OBJECT) '
(you-are-described-as (A REVERSE-TRAP-FLUSH-TOILET)))

The first thing what happens is that object-experts are created for the device and each
- of the parts: '

xR

(REVERSE-TRAP-FLUSH-TOILET (WITH SELF REVERSE-TRAP-FLUSH-TOILET-l)
(WITH TANK TANK-1)
(WITH BOWL-ASSEMBLY BOWL-ASSEMBLY-1)
(WITH PIPE PIPE-1)
(WITH RELEASE RELEASE-1))

Also the parts are being instantiated:

xR

(SELF-FILLING-CONTAINER (WITH SELF TANK-1)

(WITH KIND-OF-CONTENT WATER-1))

xR

(CONTAINER-WITH-DRAIN (WITH SELF CONTAINER-WITH-DRAIN-1)
(WITH CONTAINER-PART BOWL-ASSEMBLY-1)

(WITH DRAIN DRAIN-1))
xR

(CONNECTION-WITH-RELEASE (WITH RELEASE RELEASE-1)

(WITH CONNECTOR PIPE-1)

(WITH SOURCE-CONTAINER TANK-1)

(WITH TARGET-CONTAINER BOWL-ASSEMBLY-1))
xx

(WATER (WITH SELF WATER-1))

The following message puts water in the tank:
>> (tell TANK-1
(you-are-described-as
(THE CONTAINER OF A LIQUID (WITH KIND WATER))))

which leads to the following instantiations:
xR
(LIQUID (WITH SELF LIQUID-1)

(WITH CONTAINER -TANK-1)

(WITH SITUATION SITUATION-1)
(WITH KIND WATER-1)

The following message causes an anonymou§ object to be put in the bowl:

>> (TELL BOWL-ASSEMBLY-1 (you-are-described-as (THE SUPPORT OF A LOCATED-ON)))
which leads to
xR
(LOCATED-ON (WITH SELF LOCATED-ON-I)
(WITH SUPPORT BOWL—ASSEMBLY-I)
(WITH OBJECT OBJECT-1)
(WITH SITUATION SITUATION-Z)).

So there is now an object in the container-part of the bowl-assembly at situation
SITUATION-2, and there is water in the tank at the situation covered by SITUATION-1
The following message puts the device in motion by performing a release-action:
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>> (ten RELEASE-]
' (you-are-described-as
(THE RELEASE oF A RELEASE-ACTION
(WITH BEGIN-SITUATION SITUATION-1)

(WITH END-SITUATION SITUATION-Z))))
xx

(RELEASE-ACTION (WITH SELF RELEASE-ACTiON-l)
(WITH RELEASE RELEASE-1)
(WITH BEGIN-SITUATION SITUATION-1)

(WITH END-SITUATION SITUATION-2))
X%

( TIME-SEQUENCE (WITH SELF TIHE-SEQUENCE-])
(WITH SUCCESSOR SITUATION-2)
(WITH PREDECESSOR SITUATION-1))

Liquid gets into the bowl—assembly in situation-2;
b 2

(LIQUID (WITH SELF LIQUID-1)
(WITH CONTAINER BOWL—ASSEMBLY-I)
(WITH SITUATION SITUATION-2)
(WITH KIND WATER-1))

The tank gets empty:
xR

(EMPTY-CONTAINER (WITH SELF TANK-1)
(WITH SITUATION SITUATION-2))

Liquid gets into the drain in the next situation (SITUATION-3);
xRN

(LIQUID (WITH CONTAINER DRAIN-1)
(WLTH 0BJECT LIQUID-1)
(WITH SITUATION SITUATION-3)
(WITH KIND WATER-1))

The tank is being filled up again in SITUATION-4: |

xR

(LIQUID (WITH SELF LIQUID-2)
(WITH CONTAINER TANK-1)
(WITH SITUATION SITUATION-4)
(WITH KIND WATER-1))
xR
(TIME-SEQUENCE (WITH SELF TIME-SEQUENCE-2)
(WITH SUCCESSOR SITUATION-3)
(WITH PREDECESSOR SITUATION-2))

Two successor situations exist for SITUATION-2 and they are merged:
xR

ESTABLISHED IDENTITY OF SITUATION-4 AND SITUATION-3
xR

( TIME-SEQUENCE (WITH SUCCESSOR SITUATION-4)
(WITH PREDECESSOR SITUATION-2))

Finally the object that was located in the bowl goes down the drain too:
xR . .
(LOCATED-IN (WITH SELF LOCATED-IN-Z)

(WITH CONTAINER DRAIN-1)

(WITH OBJECT OBJECT-1)

(WITH SITUATION SITUATION-3))

MECHANISM
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“without putting a new object into the bowl:
>> (tell RELEASE-]
(you—'are-described-as
(THE RELEASE OF A RELEASE-ACTION
(WITH BEGIN-SITUATION SITUATION-4))))

And indeed, the device starts working again:
xR

(RELEASE-ACTION (WITH SELF RELEASE-ACTION-2)
(WITH RELEASE RELEASE-1)
(WITH BEGIN-SITUATION SITUATION-4)
(WITH END-SITUATION SITUATION-5))
xx
(TIME-SEQUENCE (WITH'SELF TIME-SEQUENCE-3)
(WITH SUCCESSOR SITUATION-5)
(WITH PREDECESSOR SITUATION-4))
xR
(LIQUID (WITH SELF LIQUID-2)
(WITH CONTAINER BOWL-ASSEMBLY-1)
(WITH SITUATION SITUATION-5)
(WITH KIND WATER-1)))
XX
(EMPTY-CONTAINER (WITH SELF TANK-1)

(WITH SITUATION SITUATION-5))
%

(LIQUID (WITH SELF LIQUID-2)
(WITH CONTAINER DRAIN-1)
(WITH SITUATION SITUATION-6)
(WITH KIND WATER-1))
xR
(LIQUID (WITH SELF LIQUID-3)
. (WITH CONTAINER TANK-1)
(WITH SITUATION SITUATION-7)
(WITH KIND WATER-1))
xR
(TIME-SEQUENCE (WITH SELF TIME-SEQUENCE-4)
(WITH SUCCESSOR SITUATION-6)
(WITH PREDECESSOR SITUATION-5))

xR

ESTABLISHED IDENTITY OF SITUATION-6 AND SITUATION-7
X%

(TIME-SEQUENCE (WITH SELF TIME-SEQUENCE-5)
(WITH SUCCESSOR SITUATION-7)
(WITH PREDECESSOR SITUATION-5))

3. 3. USE
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(PLAN-TO-USE-FLUSH-TOILET
(WITH ACTOR)
(WITH ACTION
(A PLAN-TO-DISPOSE-WASTE
(WITH ACTOR (= THE-ACTOR))
(WITH WASTE (= THE-WASTE))))
(WITH WASTE))

This gives us an upward pointer into the hiefarchy of waste-disposal actions, and it is
assumed that conditional descriptions attached to PLAN-TO-DISPOSE-WASTE will delimit
other methods of waste-disposal to the one to be used with toilets.

Next we look into the problem of specifying how the device should be used. We all

know how that goes: you put your waste into the bowl and then you start the release
mechanism: ‘ '

(PLAN-TO-USE-FLUSH-TOILET
(WITH ACTOR)
(WITH ACTION
(A COMPOSITION-OF -TWO-ACTIONS
(WITH FIRST-ACTION
(A PUT-IN '
(WITH OBJECT (= THE-WASTE))
(WITH CONTAINER (= THE-BOWL-ASSEMBLY))
(WITH BEGIN-SITUATION (= THE-BEGIN-SITUATION))
(WITH END-SITUATION (= THE-SITUATION-IN-BETWEEN))))
(WITH SITUATION-IN-BETWEEN
(= THE-SITUATION-IN-BETWEEN))
(WITH SECOND-ACTION
(A RELEASE-ACTION
(WITH RELEASE (=THE-RELEASE))
(WITH BEGIN-SITUATION (= THE-SITUATION-IN-BETWEEN))

(WITH END-SITUATION (= THE-END-SITUATION))))))
(WITH WASTE)

(WITH BEGIN-SITUATION)
(WITH END-SITUATION)
(WITH TOILET
(A REVERSE-TRAP-FLUSH-TOILET
(WITH BOWL-ASSEMBLY (= THE-BOWL-ASSEMBLY))
(WITH RELEASE (= THE-RELEASE))))
(WITH BOWL-ASSEMBLY)
(WITH RELEASE))

Here is the frame for composition of actions;
(COMPOSITION-OF-ACTIONS

(WITH SELF)

(WITH FIRST-ACTION)

(WITH SITUATION-IN-BETWEEN)

(WITH SECOND-ACTION))

and PUT-IN;
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" (PUT-IN
(WITH SELF)
(WITH ACTOR)
(WITH OBJECT)
(WITH CONTAINER .
(THE CONTAINER OF A LOCATED-IN
(WITH OBJECT (= THE-OBJECT))
(WITH SITUATION (= THE-END-SITUATION))))
(WITH BEGIN-SITUATION)
(WITH END-SITUATION)).

Suppose we now try to construct a model based on these descriptions. Then we would
notice an interesting problem. First we put a certain object in the bowl using put-in. The
object will now be in the bowl at a certain situation, say s-1 (in the frame s-1 is called
the situation-in-between). Now the actor sets the toilet in motion by performing a
release action. But there is a problem, how can the reasoner know that at the end of

In fact there is no simple answer to do this problem. We could try to attach some
information causing the whole world to get updated each time something happened but
that is clearly inadequate. This problem has a name. It is the frame-problem and we will
see in a later chapter what we can do about it. :

DISCUSSION

One principle of conceptual analysis that is used throughout is situational calculus developed by
McCarthy (1959). The rain example comes from that paper.

The notion of a demon and its use in dealing with common sense lasks, such as understanding
stories was first brought up in Charniak (1972). - The example also iMlustrates that the conditional
description is not only restricted to expressing hiefarchies. Demons, but also generators (like in

Conniver (cf. McDermott and Sussman,1973)) can be viewed as expressable with conditional
descriptions. :

Algorithmic  common sense knowledge has been studied * by Rieger (1975) and the
reverse-trap-flush-toilet is his example. The example is also discussed in Smith (1978). Common

sense knowledge in general is the main focus of work by Schank(1975), Wilks (1979), Hayes (1978),
Martin (1979),a.0.
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6. CONTROL
1. THE PRINCIPLES

1. 1. THE NECESSITY FOR CONTROL

The problem to be tackled in this chapter is the following: when a description is sent to
prototypical object it will be expanded until everything the reasoner can possibly know

about this and related objects is part of the model.

Intuitively we feel that this is not right. The reasoner should develop only that portion of

a model that is of current interest - in other words the goals should somehow determine

how expansion proceeds. This intuitive judgment is justified by the following .
observations.

‘Recall that unbounded expansion reflected in the propagation of constraints principle,
assumes that it will always be possible to modularize the domain such that a finite
structure of questions, the constraint network, results. But now we observe that there

occur in finite time and space. These are situations where there is a series of
alternative answers to g particular question but . it is unknown in advance which
alternative will work out.

In planning an action or proving a theorem in geometry for example, we may know
several ways to get there without knowing which way will be successful. Or in language
Processing, a single word may have many different possible usages and to find out what
usage applies in a particular situation can be a very complicated process. :

On the whole unbounded expansion of all possible alternatives is impossible because the
accumulation of alternatives leads rapidly to so called combinatorial explosions. For
example, if we estimate the number of usages of a word to be about 5 and if we have a
sentence of 10 words, we would have to explore 510 possibilities for that sentence. So

how can we explain that a system can cope with such an enormous mass of accumulating
alternatives?

A plausible answer to this puzzle is that such a system has the ability to represent and
es. A typical example of such a strategy is "depth-first search’ :
one alternative is developed and other alternatives are tried only if the first one failed.
These strategies are often called heuristics. Heuristics allow us to control the
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PRINCIPLE 14:
IT IS NECESSARY TO HAVE HEURISTIC KNOWLEDGE IN ORDER TO REASON
ABOUT ALTERNATIVES.

1. 2. THE NEED FOR DOMAIN-SPECIFIC HEURISTICS

Let us develop this line of thought further and ask the question whether it is sufficient
to have such a ’bag of methods’ available that are put into effect when we deal with a
problem - whatever its nature. Or whether it is necessary to have very specific
domain-dependent knowledge about how to use knowledge within that domain. Under this
second hypothesis there would be no set of golden rules that always work - instead
each piece of knowledge is encapsulated in a network of advice specifying how to use
this piece. Interestingly enough, this is again an instance of the general-special dilemma
we encountered so often in previous chapters. If we can find some way of specifying
heuristic knowledge that is domain-independent, we gain a higher degree of generality. If
we need on the other hand domain-specific heuristic knowledge, the range of a particular
advice is restricted.

It is this second line of thought which is now generally accepfed. This is not for lack of
trying to make the first hypothesis work.” Numerous attempts have been made to
construct systems based on a finite set of general purpose heuristics but results have
been disappointing , in the sense that the control over the exploration of alternatives
was insufficient. Intuitively it is clear that a strategy which works for one problem will
not necessarily work for another problem, so that the use of a particular heuristic rule
has to be tied up somehow with the nature of the problem situation and with the domain
where this problem comes from. For example if we know that a certain alternative
occurs in 99 percentage of the cases, ‘then a reasonable strategy is to assume this
alternative and only consider other alternatives when the first one fails. Which
alternative is most likely to succeed can only be stated in the context of a particular
subject-matter. That is the reason why we need domain-dependent heuristics, a principle
expressed as follows:

PRINCIPLE 15:
IT IS NECESSARY TO HAVE DOMAIN-SPECIFIC HEURISTIC KNOWLEDGE ABOUT
HOW TO ACTIVATE KNOWLEGGE ABOUT A DOMAIN

The next issue is how this heuristic knowledge should be represented.

1. 3. ON THE REPRESENTATION OF HEURISTIC KNOWLEDGE

Recall from earlier chapters that there are two modes of representation. Either we can
represent knowledge declaratively or we can use procedures. Let us investigate what
kind of a representation would be best for our present purposes. '

When heuristic knowledge is represented procedurally, there would be a way to embed
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these descriptions into procedures, for example by making a description the argument of
a procedure call. These procedures would perform the process of keeping track how
alternatives are developed. :
An example of such a procedure might be ORDERED-ALTERNATIVES, as in,
(WORD-HAND .
(WITH SELF
(ORDERED-M_TERNATIVES
(A NOUN)
(A VERB))))

which would mean that there are two alternatives for the category of the word hand.
Either it could be a noun (as in ‘A person has two hands’) or a verb (as in *he hands a
letter to her’). Because the noun is more common, it would be explored first and if this
usage fails, the reasoner has to back up and explore the next one in of a certain
parent-child-relation. The first alternative (A NOUN) would be explored first and if that
fails the reasoner has to back up and explore the next one in.the series.

Clearly these procedures could be a lot more complicated, for example take arguments in
the form of contextual information, etc: But the important idea is that actions ’behind the
scene’ would guide and control the exploration of alternatives.

On the other hand, when heuristic knowledge is represented declaratively we would first
of all need concepts (or prototypes) dealing with issues of control. These concepts
should allow us to express what possibilities have to be investigated, what should be
done when a particular path fails, etc. As a result we would get two layers in the model:
A layer that develops the details of the problem situation (that is what we had before)
AND a layer that is a model of the problem solving behavior. ‘

In contrast to the procedural solution, strategies and the way they are put to use would
become explicitly available in the model. That is why this method is also called explicit
control of reasoning.

.For example, if we would deal with the problem of finding a path from one city to
another one given a network of possible connections, the first model layer would explore
knowledge of the cities, the connections, etc, whereas the second layer would keep track
of what connections have been investigated already, what results have been obtained,
what still needs to be done, and so on, '

We will here argue for this second method of representing heuristic knowledge. The main
argument is that the declarative solution is the most economical one in terms of
additional mechanism needed to realize it and would therefore yield a stronger theory. In

to represent knowledge about the domain would be the same as the one used to
represent heuristic knowledge. As a consequence the mechanisms themselves would be
the same too.

The main argument in favour of a procedural representation of heuristic knowledge is
that this mode of representation leads to a stronger grip on the processes, i.e. that they
lead to greater control. But if we can show that the declarative solution leads to
sufficient control, this argument would become invalid.
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Hence we adopt the following hypothesis on the way heuristic knowledge should be

- represented. :

PRINCIPLE 16: .
HEURISTIC KNOWLEDGE IS REPRESENTED DECLARATIVELY AND THE
REASONER BUILDS UP A MODEL OF THE WAY IT SOLVES A PROBLEM IN
ADDITION TO A MODEL OF THE PROBLEM SITUATION ITSELF.

Al was therefore often called heuristic programming (cf. Minsky (1959), Feigenbaum and Feldman
(1963) , a.0.). This principle is now generally recognized. On the other hand it took a long time
before the second principle became accepted. Before that it was assumed that a certain set of
heuristic tools could be found and that these tools could be applied to all cases. See e.g. McCarthy’s
proposal for the advice-taker (McCarthy,1959).

All this changed around 1970 when it was realized that heuristic knowledge needs to be domain
specific. This viewpoint was first advanced within the procedural embedding of knowledge paradigm.
Major proponents of this movement are Hewill‘ (1969,1975), Winograd (1972) ,3.0.

Soon after that the movement to make more and more knowledge explicit started to take shape.
Consider e.g. the literature on planning. Early planning systems (like STRIPS, cf. Fikes and
Nillson,1971), build a plan from the ground up each time it was needed. A further development
consisted in introducing a library of methods or plans (cf. Fikes and Nilson (1972)). Planning now
becomes a process of searching for a plan that more or less fits the goals of the problem situation
and a candidate is then adjusted to the new situation. The next step consisted in introducing explicit
representations of the reasoning process itself: both of heuristic rules lo'go about reasoning and of
the intermediate steps and the goals. Early examples of this step are seen in Sacerdoﬁ(1975), Hayes
(1975), McDermott (1976) and Davis (1976). Sometimes this heuristic knowledge is phrased in terms
of special purpose representations like ATN's (cf. Miller and Goldstein,1977). There is no need for
this. The same knowledga structures used to represent and reason about the domain can as well be
used to represent and reason over heuristics. (cf. DeKleer, et.al, 1977).

2. THE FRAMEWORK
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two lists, then we can introduce a frame for show-list-equality and instantiate this frame
whenever we want to see whether: equality holds.

However the explicit invocation of method-frames becomes tedious in . practical
applications. We introduce therefore an implicit invocation mechanism. This mechanism is.
implemented by adopting the following strategy: whenever a match is attempted for a
certain description and that description is not available, see whether there is a
method-frame for the frame used in the description. Cause an instantiation of this frame.
Because this frame will eventually turn up an answer, the matching will then proceed
with whatever result that is desired. :

For example, suppose we are working in the list-structures domain and we have a
condition that checks whether two lists are equal. Then at this point a method to
show-list-equality has to be invoked.

This algorithm requires that we are able to specify the relation between a given frame,
e.g. the frame for equality, and its method-frame, e.g. the frame for show-list-equality.
In order to do that we introduce a frame for METHOD:
(METHOD
(WITH SELF)
(WITH GOAL))
which will establish this relation for the reasoner. Thus we could have the following
specification of the relation between equality and show-list-equality:
(LIST-EQUALITY
(WITH SELF)
(WITH SOURCE-LIST)
(WITH TARGET-LIST))
and
(SHOW-LIST-EQUALITY
(WITH SELF
(A METHOD
- (WITH GOAL (A LIST-EQUALITY

(WITH SOURCE (= THE-SOURCE-LIST))

' (WITH TARGET-LIST (= THE-TARGET-LIST))))))
(WITH SOURCE-LIST) : .

(WITH TARGET-LIST))

3. EXAMPLES

We will present two examples in this section to illustrate the problem solving paradigm
defined by the principles in this chapter. These examples will illustrate
+ How knowledge can be encapsulated in control descriptions so that it is only
expanded when needed.
+ How one can represent the state of the problem solver and let these
descriptions influence the reasoning process.
+ How alternatives can be represented in a way that allows the expression of
heuristic knowledge

+ How results can be expressed in a form suitable for the user
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+ How frames for methods can be constructed.

The first example js relatively straightforward. It comes from the domain of musical
reasoning. The .example does illustrate the indirect invocation of method-frames. The
second example is well-known in the literature as a typical search problem: finding the
connection between two cities given a network of connections. This example
concentrates on explicit control of reasoning.

3. 1. THE PASSING-CHORD PROBLEM

Let us look at the following musical problem which comes from tonal harmony. It consists
in finding a chord (the so called passing-chord) between two other chords given a set of

constraints for going from one to the other. In the present example, the constraint will be
as follows:

(i) The interval between the root of the first chord and the root of the
passing-chord is either a fourth, a fifth, a halfstep up or a halfstep down.

(i) The interval between the passing-chord and the second chord is also either
a fourth, a fifth, a halfstep up or a halfstep down.

For example, suppose the root of the first chord is C and the root of the second chord is
D, then C-sharp is a root for a possible passing chord because there is a half-step
interval between C and C-sharp and another half-step between C-sharp and D. But G is
also a possible solution because there is a fifth-interval between C and G: A fifth means
(at least in the context of this example) three whole-steps and a half-step which is the
case because we have ' ,

C -whole-step-> D -whole-step-> E -whole-step-> F-sharp -half-step-> G.

The second constraint holds for G as well because there is another fifth interval
between G and D: '

G -whole-step-> A -whole-step-> B -whole-step-> C-sharp -half-step-> D,

Let us first introduce frames for the concepts fourth, fifth, halfstep and whole-step.
These concepts each have slots for the root (the start-tone of the interval) and the
end-tone. A certain root as only half-step, whole-step, fifth or fourth and a given
end-tone is the end-tone is only one half-step, whole-step, fourth or fifth, So root and
end-tone are both criterial in each frame.
(HALF-STEP

(WITH SELF)

(WITH ROOT)

(WITH END-TONE))
(WHOLE-STEP

(WITH SELF)

(WITH ROOT)

(WITH END-TONE))
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(FOURTH
(WITH SELF)
(WITH ROOT)
(WITH END-TONE))

(FIFTH
(WITH SELF)
(WITH ROOT)
(WITH END-TONE))

(c
(WITH SELF
(ROOT HALF-STEP :
(WITH END-TONE C-SHARP))))

(C-SHARP
(WITH SELF
(ROOT HALF-STEP
(WITH END-TONE D))))

(8
(WITH SELF
(ROOT HALF-STEP
(WITH END-TONE ¢))))

Each tone is an individuating-concept with respect to other tones. In other words each
tone has the following aspect-specifications:

(ASPECT-SPECIFICATIONS:
(INDIVDUATING: (WITH-RESPECT-TO TONES SELF)))

. Observe that when we would create a frame for any tone in the ring, which will happen
as soon as a tone is mentioned in a description, frames for all tones will be created. This
is justified because tones will be relevant to almost all the music problems one might be
interested in. Because the tone-aspect of each tone is an individuating aspect, these
tones will be created only once for every possible application.

Because whole-step relations are equally important, we incorporate the whole-step
relations also in each model. These whole-step relations can be deduced from half-step
relations as follows:
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(HALF-STEP
(WITH SELF)
(WITH END-TONE)
(WITH ROOT
(IF THE-END-TONE IS
( (THE ROOT OF A HALF-STEP
(WITH END-TONE (= ANOTHER-END-TONE)))
7+ then the root is
( THE ROOT OF A WHOLE-STEP
(WITH END-TONE (= ANOTHER-END-TONE)))))))

Note that the whole-step relations will also form a ring structure because the half-step
relations do. '

So far there is not much difference with the way we would have done things in earlier
chapters. But now we start to get more careful, Instead of generating all fourths and
fifths all the time, we will only construct them when needed. In order to accomplish this
we introduce method frames which try to establish a certain relation in the model. These

Let us start with a frame to find the fourth. A fourth requires 2 whole-steps and a
half-step: '
(FIND-FOURTH
(WITH SELF)
(WITH ROOT (= THE-ROOT)
(IF THE-ROOT IS
((THE ROOT OF A WHOLE-STEP
(WITH END-TONE (= THE-FIRST-END-TONE)))
(IF THE-FIRST-END-TONE IS
((THE ROOT OF A WHOLE-STEP
(WITH END-TONE (= THE-SECOND-END-TONE)))
(IF THE-SECOND-END-TONE IS
- ((THE ROOT OF A HALF-STEP
(WITH END-TONE
(= THE-FOURTH)))
(THE ROOT OF A FOURTH ,
(WITH END-TONE (= THE-FOURTH)))))))))))

So the reasoner will first ook out whether the root of the tone from which we try to
find a fourth interval, is the root of a.whole-step. If that is so the reasoner will try to
find another whole-step starting from the end-tone of this first whole-step. Once this is
found it tries to find a half-step from the end-tone of the second whole-step. The
end-tone of this half-step is the end-tone of the fourth from the initial root.

There are two ways in which this frame could be instantiated. Either directly, for
example by describing a particular tone as the root of a find-fourth frame, or indirectly.

In order to get the second type of invocation, we have to describe the find-fourth frame
as a method to find the fourth of a given root;
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(FIND-FOURTH
(WITH SELF
(A METHOD
(WITH GOAL (A FOURTH

(WITH ROOT (= THE-RO0T))))))
(WITH RoOT

(IF THE-ROOT IS
((THE ROOT OF A WHOLE-STEP
(WITH END-TONE (= THE-FIRST-END-TONE)))
(IF THE-FIRST-END-TONE IS
‘ ((THE ROOT OF A WHOLE-STEP
(WITH END-TONE (= THE-SECOND~END-TONE)))
(IF THE-SECOND-END-TONE IS
((THE ROOT OF A HALF-STEP
(WITH END-TONE °
(= THE-FOURTH)))
(THE ROOT OF A FOURTH
(WITH END-TONE (= THE-FOURTH)))))))))))

A fifth requires 3 whole steps and one 1/2 step. We will use the frame to compute a
fourth first as ’sub-routine’ ' _
(FIND-FIFTH
(WITH SELF
(A METHOD
(WITH GOAL (A FIFTH

(WITH ROOT (= THE-R00T))))))
(WITH ROOT :

(IF THE-ROOT IS
( (THE ROOT OF A FOURTH
(WITH END-TONE (= THE-FOURTH)))

15 _Nhow one whole step further
(IF THE-FOURTH IS

((THE ROOT OF A WHOLE-STEP

(WITH END-TONE (= THE-FIFTH)))
(THE ROOT OF A FIFTH
(WITH END-TONE (= THE-FIFTH)))))))))

and a certain end-tone. The frame for find-fifth then picks up this fourth relationship and
tries to find a further whole-step.

Now we start with frames for the passing-chord problem itself. The result should be a
description referring to the following frame:
(POSSIBLE-PASSING-CHORD

(WITH SELF)

(WITH START-TONE)

(WITH PASSING-CHORD)

(WITH END-TONE))

To find such a description we use two frames: one that finds a possible passing chord
and one that finds the first step for a passing chord, a concept with the following frame
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(POSSIBLE-STEP
(WITH SELF)
(WITH START)
(WITH END))

The method for finding a passing chord goes as follows: Try to find a possible step. If you

have found one perform the second test. If this second test succeeds you have a valid
result.

In other words we perform’ basically a breadth-first parallel search. All steps are
generated for going from the start-tone to a péssible passing chord by the find-step
frame and the find-passing-chord frame filters the solutions that.come out in order to
find the ones that satisfy the second constraint. outcome of the find-step frame can be

c
I
I I I I
HALF-STEP UP HALF-STEP-DOWN  FOURTH FIFTH
|

| : | I
C-SHARP B F G

The leaves of this tree are then investivgated by the FIND-PASSING-CHORD frame.

Here is the method frame to find the first step. Then there is a conditional that will
trigger on any interval that satisfies one of the following constraints: a fourth, a fifth, a
half-step up or half-step down. If any of these intervals is found, the start-tone is

described as the start of a possible step with as end the other element in the interval
relation:

(FIND-STEP
(WITH SELF
(A METHOD :
(WITH GOAL (A POSSIBLE-STEP (WITH START (= THE-START-TONE))))))
(WITH START-TONE
(IF THE-START-TONE IS
((OR (THE ROOT OF A FOURTH
. (WITH END-TONE (= THE-TONE)))
(THE ROOT OF A FIFTH
(WITH END-TONE (= THE-TONE)))
(THE ROOT OF A HALF-STEP
(WITH END-TONE (= THE-TONE)))
(THE END-TONE OF A HALF-STEP
(WITH ROOT (= THE-TONE))))
(THE START OF A POSSIBLE-STEP
(WITH END (= THE-TONE)))))))

Note how the same concept is used for half-step up and half-step down.

Finally here is the method frame for the passing-chord itself:
(FIND-PASSING-CHORD
(WITH SELF
(A METHOD
(WITH GOAL
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(A PASSING-CHORD
(WITH START-TONE (= THE-START-TONE))

(WITH END-TONE (= THE-END-TONE))))))
(WITH START-TONE) .

(WITH END-TONE
(IF THE-START-TONE IS
((THE START OF A POSSIBLE-STEP
(WITH END (= THE-TONE-IN-BETWEEN)))
(IF THE-TONE-IN-BETWEEN IS
((OR (THE ROOT OF A FOURTH ) .
“(WITH END-TONE (= THE-END-TONE)))
(THE ROOT OF A FIFTH
(WITH END-TONE (= THE-END-TONE)))
(THE ROOT OF A HALF-STEP
(WITH END-TONE (= THE-END-TONE)))
(THE END-TONE OF A HALF-STEP
(WITH ROOT (= THE-END-TONE))))
(THE END-TONE OF A POSSIBLE-PASSING-CHORD
(WITH PASSING-CHORD (=vTHE-TONE-IN-BETWEEN))
(WITH START-TONE (= THE-START-TONE)))))))))

These frames should demonstrate clearly that it js possible to introduce tight control
over what exactly will be expanded in a given model. Rather than generate all possible
fourths or all possible fifths, only those will be generated that are relevant to the
problem we are dealing with.

In the next chapter we will have a conversation with the reasoner where these farmes
are being used.

Readers familiar with programming must have noticed that method frames do not really
differ from procedural specifications of tasks. Indeed a LISP program could be written
that behaves in exactly the same way as the search example discussed here. What we
seem to have here is a sort of synthesis of declarative and procedural ways of
specifying processes. But whereas another synthesis (in particular the ACTOR-theory)
was made by viewing everything as a procedure, we view everything as a description.
The examples discussed here should make it clear that this does not go at the expense
of control. Based on this new synthesis we suddenly see how there are declarative
analogues for well known procedural notions, compare

PROCEDURE - FRAME

ARGUMENTS - ASPECTS

EVALUATION - INSTANTIATION

PROCEDURE CALL - ATTACHMENT

VARIABLE - OBJECT

VALUE - DESCRIPTION

ASSIGNMENT - PREDICATION

BINDING - ESTABLISHING CO-REFERENTIAL LINKS
etc. :
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4. EXPLICIT CONTROL OF REASONING

Now comes a second example, concentrating on the principle that control concepts should
be introduced and that deduction should be controlled by constructing a model of the
problem solving process at the same time as a model of the problem situation. We will
do this in the context of an example which has been used in the literature to illustrate
the use of heuristic knowledge: Find a path through a network of points given a certain

initial point and a final- destination. This problem will be phrased in terms of air-line
connections.

Warning! This example is quite extensive. An impatient reader may skip it because no
new material is introduced that would be necessary for further chapters.

4. 1. THE PROBLEM

Assume there are 6 cities: London, Amsterdam, Brussels, Paris and Berlin which are
connected by certain air-line connections in the following way:

You can go from London to Amsterdam or Brussels, from Amsterdam only to London, from
Brussels to Amsterdam or Paris, from Paris to Berlin'and from Berlin to Brussels.

: AMSTEADAM
LoNDoN '

BAVSICLS

Bentin)

AGA S

Although this network looks simple, there is plenty of opportunity to get in trouble with
an unbounded expansion. For example one can go in circles such as between London and
Amsterdam and back. It is of course possible to construct a fairly straightforward
solution for this problem, that would however refute the purpose of this example.
Instead we will introduce as much control concepts as possible.

4. 2. ENCAPSULATING KNOWLEDGE

The first measure of control we will introduce is this: a certain piece of knowledge will

be encapsulated in a broader description in such a way that the item in question only
becomes active when it is needed.

This can be realized by introducing a conditional description each time a certain fact is
potentially useful (but not always). The conditions of this conditional description are
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control descriptions. When one of them holds, the pending resuiting-description will be
released. One can think about this in the following way: Rather than always be available,
each fact needs to be asked for before it becomes consultable.

Here is an example illustrating this method. It is not necessary to bring all possible
connections from one city to another in the model as soon as we create an object for a
city. In fact this would cause the creation of the whole network as soon as we formulate
even a simple request. Instead connections should be encapsulated in a control
conditional and only be released when needed.

First we introduce some frames. A frame for a city, like LONDON, will look like this:
(LONDON
(WITH SELF)
(ASPECT-SPECIFICATIONS:
( INDIVIDUATING: SELF)))
so that we can talk about the object which is the city of london as
LONDON

and that we can attach descriptions (e.g. the possible connections) to the SELF-slot in
the LONDON frame. Note that LONDON is an individual concept, so that there will be only
one expert in the model which can be described as the city of London.

Also we need some frames for representing connections. Let us therefore introduce a
frame for the notion of POSSIBLE-CONNECTION:
(POSSIBLE-CONNECTION
(WITH SELF)
(WITH POINT-OF -DEPARTURE)
(WITH DESTINATION)),
so that we can describe the city of london as follows:
(LONDON
(WITH SELF

(THE POINT-OF -DEPARTURE OF A POSSIBLE-CONNECTION
(WITH DESTINATION AMSTERDAM))))

In other words, London is described as the point-of-departure of a possible-connection
with Amsterdam the destination. '

In order to obtain greater control, we can make the release of this piece of information
subject to a particular state of the problem solver, i.e. the problem solver must be
interested in the connections before London will be described in terms of this
description. This can be done by embedding the description attached to the self-slot of
LONDON into a structure containing advice on when it should be used. In order to do this
we first introduce the concept of ‘ATTENTION’. When an object is under attention by the
problem solver we will describe it as the focus of attention

(ATTENTION

(WITH SELF)
(WITH FOCUS))

Now we can say
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( LONDON
(WITH SELF (= THE-CITY)
(IF THE-CITY IS
((THE FOCUS OF AN ATTENTION)
(THE POINT-OF-DEPARTURE OF A POSSIBLE-CONNECTION
(WITH DESTINATION AMSTERDAM))))))

When a certain expert now wants to know what the possible-connections are going from
the city of London, it will have to describe LONDON as the focus of attention. As soon as
that happens the attached descriptions will be released.

4. 3. CONCEPTS DESCRIBING THE STATE OF THE PROBLEM SOLVER

The second tool for controlling the exploration of alternatives consists in the introduction
of concepts describing the state of the problem solver. Typically for a search through a
network such a state can be viewed as .3 tree structure. The following structure gives
Us a possible search path for going from London to Paris:

LONDON
|
|
| : |
AMSTERDAM BRUSSELS .
| [
LONDON R I
AMSTERDAM PARIS

From London one can go to Amsterdam or Brussels. Suppose we take a flight to
Amsterdam. The only possible connection from there is back to London. This brings us to
the point of departure and we conclude that this is therefore a bad route. The other
possibility is to go to Brussels. There are two possible connections from that city. Let
us explore the first one. This brings us to Amsterdam. But we have been there already
and we know that this did not lead to our final destination, hence we back up and take
the other possibility which brings us to Paris which is where we have to be.

This method of search is known as deplh-first search: the first alternative in the list is
explored and if that fails the next alternative in the list is tried. There are many other
methods possible and they can all be represented. But let us pursue this particular
method for the sake of the example.

In order to do this we need two things: frames expanding ‘the tree if needed and frames
recording what route is taken and what cities have been visited so that we know what
to do if a back-up occurs and can prevent that a particular city is visited twice. Here are
some frames that will enable us to do so.

The following frame introduces the ability to describe a city as having been visited on a
previous route:
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(PREVIOUS-VISIT
(WITH SELF)
(WITH CITY)
(WITH ROUTE))

A route corresponds to a particular portion of the investigation. Routes are related in the
sense that a certain route can be the sub-route of another one.
(ROUTE

(WITH SELF)

(WITH SUB-ROUTE)

(WITH SUPER-ROUTE))

For example the route for going from London to Brussels will have two sub-routes: one
for going from Brussels to. Amsterdam and one for going from Brussels to Paris.

We now observe the following relationships: when a certain route is the sub-route of
another one, then any sub-routes of this route are also sub-routes of the other one. In
other words relationships between routes are transitive:
(ROUTE
(WITH SELF)
(WITH SUB-ROUTE
"(IF THE-SUPER-ROUTE IS
((THE SUB-ROUTE OF A ROUTE
(WITH SUPER-ROUTE (= ANOTHER-ROUTE)))
( THE SUB-ROUTE OF A ROUTE
» (WITH SUPER-ROUTE (=-ANOTHER-ROUTE))))))
(WITH SUPER-ROUTE))

Also being a city on a previous visit carries through via the sub-route relationships, in
the sense that when a city was visited on a certain route and this route is the
super-route of another one, then the city was also visited on this other route:

(PREVIOUS-VISIT
(WITH SELF)
(WITH CITY
(IF THE-ROUTE IS
((THE SUPER-ROUTE OF A ROUTE
(WITH SUB-ROUTE (= THE-SUB-ROUTE)))
(THE CITY OF A PREVIOUS-VISIT
" (WITH ROUTE (= THE-SUB-ROUTE))))))
(WITH ROUTE))

Descriptions formed on the basis of these frames will allow us to express information

such as when the city has been visited already on this particular route, continue with the
next possibility rather than pursueing this route further.

4. 4. REPRESENTING ALTERNATIVES

Alternatives are expressed explicitly, for example as a list of possibilities, and control
concepts are introduced protecting a certain alternative from becoming active when it is
not necessary.

Here is an example of this method. Let us represent a list of possible-connections by
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way of a frame like the following one;
(POSSIBLE-CONNECTIONS

(WITH SELF)

(WITH POINT-OF -DEPARTURE)

(WITH FIRST-POSSIBILITY)

(WITH OTHER-POSSIBILITIES))

The list of ’other-possibilities’ could be emptly, in which case we make reference to a
frame for the EMPTY-LIST:
(EMPTY-LIST

(WITH SELF))

Now we can describe the information that one can go from London to Amsterdam or
Brussels as follows:

(LONDON
(WITH SELF (= THE-CITY)
(IF THE-CITY IS
((THE FOCUS OF AN ATTENTION)
(THE POINT-OF-DEPARTURE OF A POSSIBLE~CONNECTIONS
(WITH FIRST-POSSIBILITY
(A POSSIBLE-CONNECTION
(WITH DESTINATION AMSTERDAM)
(WITH POINT-OF -DEPARTURE (= THE-CITY))))
(WITH OTHER-POSSIBILITIES (= THE-OTHER-POSSIBILITIES)
(IF THE-OTHER-POSSIBILITIES IS
((THE FOCUS OF AN ATTENTION)
(THE-CITY IS
(THE POINT-OF-DEPARTURE OF A POSSIBLE-CONNECTIONS
(WITH FIRST-POSSIBILITY
(A POSSIBLE-CONNECTION
(WITH DESTINATION PARIS)
(WITH POINT-OF-DEPARTURE (= THE-CITY))))
(WITH OTHER-POSSIBILITIES (AN EMPTY-LIST))))))))))))
The reader might want ‘to construct at this point frames for the other cities in the
network. :

4. 5. COLLECTING THE RESULT

When the development of a model is not goal-directed, it is unclear what the resuit
should be. However when we have a particular goal in mind one can introduce frames

that will look out for this goal and express the information in a way one wants it to have.
Let us give some examples here. ' '

Suppose we want the final result to be expressed by frames specifying whether there is
a connection between two cities, and if s0 what exactly this connection is. Let us say
that a specific connection is expressed as follows

(RECOMMENDED-CONNECTION
(WITH SELF)
(WITH POINT-OF-DEPARTURE)
(WITH DESTINATION))

whereas a possible-route between two points is expressed like this
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(POSSIBLE-ROUTE
(WITH SELF)
(WITH CONNECTION)
(WITH POINT-OF-DEPARTURE)
(WITH DESTINATION))

If we now know that there is a possible path from a certain point-of-departure to a

certain final-destination for a given possible-connection, we can express the information
in the way we want it as follows: ‘
(POSSIBLE-PATH
(WITH SELF)
(WITH POSSIBLE-CONNECTION
(AND
( THE CONNECTION OF A POSSIBLE-ROUTE
(WITH POINT-OF-DEPARTURE (= THE-POINT-OF -DEPARTURE))
(WITH FINAL-DESTINATION (= THE-FINAL-DESTINATION)))
(A RECOMMENDED-CONNECTION
(WITH POINT-OF -DEPARTURE (= THE-POINT-OF -DEPARTURE))
(WITH DESTINATION (= THE-FINAL-DESTINATION)))))
(WITH POINT-OF -DEPARTURE )"
(WITH FINAL-DESTINATION))

In other words the possible connection is described as the connection of a possible route
and a recommended connection.

Here is a more complicated ‘wrap up’ of results which would be useful if we have

already developed a partial path and we want to cons a new connection in front of the
path:

(RECOMMENDED-PATH
' (WITH SELF)
(WITH POSSIBLE-CONNECTION
(AND o
(THE FIRST-CONNECTION OF A COMBINATION-OF-CONNECTIONS
(WITH SECOND-CONNECTION
(= THE-OTHER-CONNECTIONS)))
(THE CONNECTION OF A RECOMMENDED-CONNECTION
(WITH POINT-OF-DEPARTURE (= THE-POINT-OF -DEPARTURE))
(WITH DESTINATION (= THE-DESTINATION)))
(THE CONNECTION OF A POSSIBLE-ROUTE
(WITH POINT-OF-DEPARTURE (= THE-POINT-OF -DEPARTURE ) )
(WITH FINAL-DESTINATION (= THE-FINAL-DESTINATION)))))
(WITH POINT-OF-DEPARTURE)
(WITH FINAL-DESTINATION)
(WITH DESTINATION)
(WITH OTHER-CONNECTIONS))

What this frame does is add a connection (the-possible-connection) to an existing list of
connections (called the-rest-of-the-connections).
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4. 6. METHOD FRAMES

The next tool realizing the explicit control of reasoning paradigm consists in introducing
method frames, i.e. frames which direct the problem solving process in certain ways
depending on descriptions of what has been achieved, what still needs to be done, etc.
Here are some examples of such frames.

First we introduce a frame for the investigation of the next possibility of a list of
possibilities with aspects for the possibilities, the final-destination and the
point-of-departure. This frame contains the following method: when there are no
possibilities left, describe the point-of-departure as the point-of-departure of a
bad-connection for that particular final-destination. Otherwise describe the other
possibilities as being under consideration:_
(INVESTIGATION-OF-NEXT-POSSIBILITY ]
(WITH SELF)
(WITH FINAL-DESTINATION)
(WITH POINT-OF-DEPARTURE)
(WITH OTHER-POSSIBILITIES
(IF-NOW THE'OTHER-POSSIBILITIES IS
( (AN EMPTY-LIST)
(THE-POINT-OF-DEPARTURE IS
( THE POINT-OF-DEPARTURE OF A BAD-CONNECTION

(WITH FINAL-DESTINATION (= THE-FINAL-DESTINATION)))))
(ELSE

( THE-OTHER-POSSIBILITIES IS
(THE FOCUS OF AN ATTENTION))))))
where the frame for a ’bad connection’ has the following skeleton:

(BAD-CONNECTION
(WITH SELF)
(WITH POINT-OF -DEPARTURE)
(WITH FINAL-DESTINATION))

Here is another example. Suppose we have arrived at a certain city which is not equal to
the final destination, nor a city previously visited.” Let us call such a city a
possible-destination. Now we would like to investigate whether you can go from this
city to the final-destination. A method for doing that might go as follows: unless it is
known that this possible-destination does not lead to the final-destination, i.e. that it is
the point-of-departure of a bad-connection, describe the path that was being followed
as the path of a journey where this possible-destination is the point-of-departure, the
route is a sub-route of the route followed until now and the final destination is the
original final-destination ;
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(FURTHER—INVESTIGATION
(WITH SELF
(WITH POINT-OF-DEPARTURE)
(WITH FINAL-DESTINATION)
(WITH ROUTE)
(WITH PATH)
(HITH_POSSIBLE-DESTINATION
(IF-NOW THE-POSSIBLE-DESTINATION IS
((THE POINT-OF -DEPARTURE OF A BAD-CONNECTION
(WITH FINAL-DESTINATION (= THE-FINAL-DESTINATION)))
i+ Just a dummy description
(= THE-POSSIBLE-DESTINATION))
(ELSE
(THE-PATH IS
(THE PATH OF A JOURNEY
(WITH POINT-OF -DEPARTURE (= THE-POSSIBLE-DESTINATION)
(THE CITY OF A PREVIOUS-VISIT
(WITH ROUTE (= THE-SUB-ROUTE))))
(WITH FINAL-DESTINATION (= THE-FINAL~DESTINATION))
(WITH ROUTE (= THE-SUB-ROUTE)
(THE SUB-ROUTE OF A ROUTE
(WITH SUPER-ROUTE (= THE-ROUTE))))))))))
where the frame for a journey has the following skeleton: '
( JOURNEY
(WITH SELF)
(WITH POINT-OF-DEPARTURE)
(WITH FINAL-DESTINATION)
(WITH ROUTE)
(WITH PATH))

Note how the point-of-departure of the new journey to be investigated in the
FURTHER-INVESTIGATION frame is described as the city of a previous visit on the new

route, called the-sub-route, which is described as a sub-route of the route we were on
when this frame was instantiated.

preceeded by ;.

( JOURNEY
(WITH SELF)
(WITH POINT-OF -DEPARTURE (THE FOCUS OF AN ATTENTION))
(WITH FINAL-DESTINATION)
(WITH ROUTE)
(WITH PATH .
(WHEN THE-POINT-OF-DEPARTURE IS
+; we collect the possibilities .
((THE POINT-OF -DEPARTURE OF A POSSIBLE-CONNECTIONS
(WITH FIRST-POSSIBILITY (= THE-FIRST-POSSIBILITY)) .
(WITH OTHER-POSSIBILITIES (= THE—OTHER-POSSIBILITIES)))
(WHEN THE-FIRST-POSSIBILITY 1S :
»» wWe pick up the first possibility
((THE CONNECTION OF A POSSIBLE-CONNECTION
(WITH DESTINATION (= THE—POSSIBLE-DESTINATION)))
(IF-NOW THE-POSSIBLE—DESTINATION IS
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((THE CITY OF A PREVIOUS-VISIT
(WITH ROUTE (= THE-ROUTE)))
i+ when the destination of this first possibility
i+ occurs already on the path we know we are on a bad path
i3 and therefore try out other possibilities
(THE-POINT-OF -DEPARTURE IS
(THE POINT-OF -DEPARTURE OF AN INVESTIGATION-OF -NEXT-POSSIBILITY
(WITH OTHER-POSSIBILITIES (= THE-OTHER-POSSIBILITIES))
(WITH FINAL-DESTINATION (= THE-FINAL-DESTINATION)))))
(ELSE o
;3 otherwise we continue the investigation
(WHEN THE-POSSIBLE-DESTINATION IS
((= THE-FINAL-DESTINATION)
i+ first case the destination of the possible-connection
i+ is equal to the final destination
»: we have found a possible route
(THE-FIRST-POSSIBILITY IS
(THE POSSIBLE-CONNECTION OF A POSSIBLE-PATH
(WITH POINT-OF -DEPARTURE (= THE-POINT-OF -DEPARTURE))
(WITH FINAL-DESTINATION (= THE-FINAL-DESTINATION)))))
{(NOT (= THE-FINAL-DESTINATION))
+: second case the destination is NOT equal to the final one
3 we therefore investigate whether there is a path from this
i+ possible-destination to the final one. '
(THE-POSSIBLE-DESTINATION IS
(THE POSSIBLE-DESTINATION OF A FURTHER-INVESTIGATION
(WITH FINAL-DESTINATION (= THE-FINAL-DESTINATION))
(WITH POINT-OF-DEPARTURE (= THE-POINT-OF -DEPARTURE))
(WITH PATH (= THE-PATH))
(WITH ROUTE (= THE-ROUTE)))))
((THE POINT-OF-DEPARTURE OF A POSSIBLE-ROUTE
(WITH FINAL-DESTINATION (= THE-FINAL-DESTINATION))
(WITH CONNECTION (= THIS-CONNECTION)))
i third case there is a possible journey from
; this possible destination to the final one
; in this case we are on the right track
; and add the step from the point-of-departure
i to the possible-destination to the path as
;s a whole
THE-FIRST-POSSIBILITY IS
(THE POSSIBLE-CONNECTION OF A RECOMMENDED-PATH
(WITH POINT-OF-DEPARTURE (= THE-POINT-OF -DEPARTURE))
(WITH DESTINATION (= THE-POSSIBLE-DESTINATION))
(WITH FINAL-DESTINATION (= THE-FINAL-DESTINATION))
(WITH OTHER-CONNECTIONS (= THIS-CONNECTION)))))
i+ If we know that there is no way
i+ to get from this possible-destination to
;3 the final one
((THE POINT-OF-DEPARTURE OF A BAD-CONNECTION
(WITH FINAL-DESTINATION (= THE-FINAL-DESTINATION)))
(THE-OTHER-POSSIBILITIES IS
iy we try out other possibilities
(THE OTHER-POSSIBILITIES OF AN INVESTIGATION-OF-NEXT-POSSIBILIT'
(WITH FINAL-DESTINATION (:’THE-FINAL-DESTINATION))
(WITH POINT-OF -DEPARTURE
(= THE-POINT—OF-DEPARTURE))))))))))))))

.
’
.
’
.
’
-
’
’
14
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Let us now look at a particular example of reasoning based on these frames. The reader
is advised to construct for himself a diagram of what happens here. First a description is

sent to an object-expert saying that it is the path of a journey for going from London to
Patris.

>> (TELL (AN OBJECT)
(you-are-described-as
(THE PATH OF A JOURNEY
(WITH POINT-OF-DEPARTURE LONDON)
(WITH FINAL-DESTINATION PARIS))))

The journey frame is instantiated. LONDON-1 is now reasoning about London and PARIS-1
over Paris. - :
XN

(JOURNEY (WITH SELF JOURNEY-1) .
: (WITH POINT-OF-DEPARTURE LONDON-1)
(WITH FINAL-DESTINATION PARIS-1)
(WITH ROUTE ROUTE-1) ‘ )

(WITH PATH PATH-1))
xx

(LONDON (WITH SELF LONDON-1))

London is described as the focus of an attention:
XK
(ATTENTION

(WITH SELF ATTENTION-1)

(WITH Focus LONDON-1))
xx

(PARIS (WITH SELF PARIS-1))

The connections become active:
b 8 ¢
(POSSIBLE-CONNECTIONS (WITH SELF POSSIBLE-CONNECTIONS-I)
(WITH POINT-OF -DEPARTURE LONDON-1)
(WITH FIRST-POSSIBILITY FIRST-POSSIBILITY-I) :
(WITH OTHER-POSSIBILITIES OTHER-POSSIBILITIES-I))
The first possibility is investigated:
xR )
(POSSIBLE-CONNECTION (WITH DESTINATION FIRST-POSSIBILITY-I)
(WITH POINT-OF -DEPARTURE LONDON-1)
(WITH DESTINATION AMSTERDAM-1))

It brings us to Amsterdam for which AMSTERDAM-1 is now responsible

xX
(AMSTERDAM (WITH SELF AMSTERDAM-1))

The following part of the search tree has been investigated:

LONDON

I
AMSTERDAM

But Amsterdam is not Paris, i.e. PARIS-1 is not equal to AMSTERDAM-1, hence it is
investigated whether you can go from Amsterdam to Paris
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(FURTHER-INVESTIGATION (WITH SELF FURTHER-INVESTIGATION-1)
(WITH POINT-OF-DEPARTURE LONDON-1) -
(WITH FINAL-DESTINATION PARIS-1)
(WITH ROUTE ROUTE-1)
(WITH PATH PATH-1) .
(WITH POSSIBLE-DESTINATION AMSTERDAM-1))

This is done by a ’recursive instantiation® of the JOURNEY frame with Amsterdam the
new point of departure:
L ¥
( JOURNEY (WITH SELF JOURNEY-2)
(WITH POINT-OF-DEPARTURE AMSTERDAM-1)
(WITH FINAL-DESTINATION PARIS-1)
(WITH ROUTE ROUTE-2)
(WITH PATH PATH-1))

The reasoner makes records of what places have been visited:
xR ’

(PREVIOUS-VISIT (WITH CITY AMSTERDAM-1) (WITH ROUTE ROUTE-2))
Amsterdam is now the focus of an attention: '
x X
{ATTENTION (WITH SELF ATTENTION-2)
(WITH Focus AMSTERDAM-1))

More records of the route being followed
xR
(ROUTE (WITH SELF ROUTE-3)

(WITH SUB-ROUTE ROUTE-2)

(WITH SUPER-ROUTE ROUTE-1))
xR

(PREVIOUS-VISITA(UITH SELF PREVIOUS-VISIT-I)
(WITH CITY LONDON-1)
(WITH ROUTE ROUTE-2))
Here are the connections out of Amsterdam
xR
(POSSIBLE-CONNECTIONS (WITH SELF POSSIBLE-CONNECTIONS-Z)
(WITH POINT-OF -DEPARTURE AMSTERDAM-1)
(WITH FIRST-POSSIBILITY FIRST-POSSIBILITY-Z)
(WITH OTHER-POSSIBILITIES OTHER-POSSIBILITIES-Z))
The first connection is investigated
. $ ¢
(POSSIBLE-CONNECTION (WITH SELF FIRST-POSSIBILITY-Z)
(WITH POINT—OF—DEPARTURE,AMSTERDAN-l)
(WITH DESTINATION LONDON-1))

(EMPTY-LIST (WITH SELF OTHER-POSSIBILITIES-2))

The first connection brings the reasoner back to London (LONDON-1) so that the
following portion of the tree has now come into view:
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LONDON

I
AMSTERDAM

|
LONDON

This is of course not the way to 8o, so the next possibility is investigated, i.e.
OTHER-POSSIBILITIES-2 :
b ¥
(INVESTIGATION—OF-NEXT-POSSIBILITY :
(WITH SELF INVESTIGATION-OF-NEXT-POSSIBILITY-l)
(WITH OTHER-POSSIBILITIES OTHER—POSSIBILITIES-Z)
(WITH FINAL-DESTINATION PARIS-1)
(WITH POINT-OF-OEPARTURE ANSTERDAH-I))

But this is the empty-list so that it is 3 bad way to go from Amsterdam in order to
arrive at Paris:
xx
(BAD-CONNECTION (WITH SELF BAD-CONNECTION-I)
(WITH POINT-OF-DEPARTURE AMSTERDAM-1)
(WITH FINAL-DESTINATION PARIS-1))

The reasoner backtracks to the next possibility with London the point-of- departure:
x

(WITH FINAL-DESTINATION PARIS-1)
(WITH POINT-OF -DEPARTURE LONDON-1))

This is done by describing the other-possibilities as being under consideration;
xR .

(ATTENTION (WITH SELF ATTENTION-3)
(WITH Focus OTHER-POSSIBILITIES-I))
The connections are therefore propagated into the model:
XX
(POSSIBLE-CONNECTIONS (WITH SELF POSSIBLE-CONNECTION-3)
(WITH POINT-OF -DEPARTURE LONDON-1)
(WITH FIRST-POSSIBILITY FIRST-POSSIBILITY-3)
(WITH OTHER-POSSIBILITIES OTHER-POSSIBILITIES~3))
And the first one brings us to Brussels :
XN
(POSSIBLE-CONNECTION (WITH SELF FIRST-POSSIBILITY-3)
(WITH POINT-OF -DEPARTURE LONDON-1)
(WITH DESTINATION BRUSSELS-1))

x %
(BRUSSELS (WITH SELF BRUSSELS-1))
Here is the tree as developed so far »
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LONDON-
|
I
I I
AMSTERDAM BRUSSELS

J
LONDON

But Brussels is not Paris either, i.e. BRUSSELS-1 is not equal to PARIS-1. Hence it is

investigated whether you can go from Brussels to Paris:
xR

(FURTHER-INVESTIGATION‘(WITH SELF'FURTHER-INVESTIGATION-Z)
(WITH POINT-OF-DEPARTURE LONDON-I)
(WITH FINAL-DESTINATION PARIS-I)
(WITH ROUTE ROUTE-1)
(WITH PATH PATH-1)
(WITH POSSIBLElﬂESTINATION‘BRUSSELS-I))
This causes another ’recursive instantiation’ of the JOURNEY frame:
L. 84 .
( JOURNEY (WITH SELF JOURNEY-3)
(WITH POINT-OF-DEPARTURE BRUSSELS-I)
(WITH FINAL-DESTINATION PARIS-1)
(WITH ROUTE ROUTE-4)
(WITH PATH PATH-1))
xR
(PREVIOUS-VISIT.(NITH SELF'PREVIOUS-VISIT-Z)
(WITH CITY BRUSSELS-I)

(WITH ROUTE ROUTE-4))
xx

(ATTENTION (WITH SELF ATTENTION-4)

(WITH Focus BRUSSELS-1))
xx

(ROUTE (WITH SELF ROUTE-5).
(WITH SUB-ROUTE ROUTE-4)
(WITH SUPER-ROUTE ROUTE-1))
xR
(PREVIOUS-VISIT (WITH SELF PREVIOUS-VISIT-3)
(WITH cITY LONDON-1)
(WITH ROUTE ROUTE-4))
Possibilities of connections departing from Brussels are now investigated:
b &
(POSSIBLE-CONNECTIONS (WITH SELF POSSIBLE-CONNECTIONS-d)
(WITH POINT-OF -DEPARTURE BRUSSELS-1)
(WITH FIRST-POSSIBILITY FIRST~POSSIBILITY-4)

(WITH OTHER-POSSIBILITIES OTHER-POSSIBILITIES-4))
xR

(POSSIBLE-CONNECTION (WETH SELF FIRST-POSSIBILITY-4)
(WITH POINT-OF-DEPARTURE BRUSSELS-1)
(WITH DESTINATION AMSTERDAM-1))

The first possibity brings us to Amsterdam (AMSTERDAM-1).
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LONDON
| ! I
AMSTERDAM BRUSSELS

| : —_— ]

LONDON |
AMS TERDAM

Amsterdam is not equal to London, so it is further investigated whether you can go from

Amsterdam to Paris:
XX

(FURTHER-INVESTIGATION (WITH POINT-OF -DEPARTURE BRUSSELS-1)
(WITH FINAL-DESTINATION PARIS-1)
(WITH ROUTE ROUTE-4)
(WITH PATH PATH-1)
_ (WITH POSSIBLE-DESTINATION AMSTERDAM-1))
But the reasoner has figured out earlier on that it was bad to take a connection by way
of Amsterdam for going from London to Paris. Hence the next possibility out of Brussels
is investigated:
xR
(INVESTIGATION-OF-NEXT-POSSIBILITY (WITH INVESTIGATION—OF-NEXT-POSSIBILITY-3)
(WITH OTHER-POSSIBILITIES OTHER-POSSIBILITIES-4)

(WITH FINAL-DESTINATION PARIS-1)

(WITH POINT-OF-DEPARTURE BRUSSELS-1))
xR

(ATTENTION (WITH SELF ATTENTION-5)
(WITH Focus OTHER-POSSIBILITIES-4))
X%
(POSSIBLE-CONNECTIONS (WITH SELF POSSIBLE-CONNECTIONS-5)
(WITH POINT-OF-DEPARTURE BRUSSELS-1)
(WITH FIRST-POSSIBILITY FIRST-POSSIBILITY-5)

(WITH OTHER-POSSIBILITIES OTHER-POSSIBILITIES-5))
% :

(POSSIBLE-CONNECTION (WITH CONNECTION FIRST-POSSIBILITY-5) -
(WITH POINT-OF-DEPARTURE BRUSSELS-1)

(WITH DESTINATION PARIS-1))
®xx

(EMPTY-LIST (WITH SELF OTHER-FOSSIBILITIES-S)f

This possibility has Paris (PARIS-1) as final-destination. We end up with the following
search tree: ‘

LONDON

|
I

| I

AMSTERDAM BRUSSELS
J : |
LONDON | |

AMSTERDAM PARIS

That is where we have to be so a path is constructed that goes from Brussels
(BRUSSELS-1) to Paris (PARIS-1).
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(POSSIBLE-PATH (WITH SELF POSSIBLE-PATH-1)

(WITH POSSIBLE-CONN
(WITH POINT-OF-DEPA
(WITH FINAL-DESTINA

xRN

(POSSIBLE-ROUTE (WITH SELF POSSIB
(WITH CONNECTION
(WITH POINT-OF-DEP
(WITH FINAL-DESTIN

xR

(RECOHMENDED-CONNECTION

XX

(RECONMENDED-PATH (WITH
(WITH
(WITH
(WITH
(WITH
(WITH

ECTION FIRST-POSSIBILITY-5)
RTURE BRUSSELS-1)
TION PARIS-1))

LE-ROUTE-1)
FIRST-POSSIBILITY-S)
ARTURE BRUSSELS-1)
ATION PARIS-1))

(WITH SELF FIRST-POSSIBILITY-5)
(WITH POINT-OF -DEPARTURE BRUSSELS-1)
(WITH DESTINATION PARIS-1))

SELF RECOMMENDED-PATH-1)
POSSIBLE-CONNECTION FIRST-POSSIBILITY-3)
POINT-OF -DEPARTURE LONDON-1)
FINAL-DESTINATION PARIS-1)

DESTINATION BRUSSELS-1)
OTHER-CONNECTIONS FIRST-POSSIBILITY-S))

This path is then comple
PARIS (PARIS-1).

R
(COMBINATION-OF-CONNECTIONS (WITH SELF COMBINATI

(WITH FIRST-CONNECTI
(WITH SECOND-CONNECT

ted by introducing -a connection from London (LONDON-1) to

ON-OF-CONNECTIONS-I)
ON FIRST-POSSIBILITY-3)

ION FIRST-POSSIBILITY-S))
X

(RECOMMENDED-CONNECTION (WITH SELF FIRST-p
(WITH POINT-OF-DEP
(WITH DESTINATION

OSSIBILITY-3)
ARTURE LONDON-1)
BRUSSELS-1))

XX

(POSSIBLE-ROUTE (WITH SELF POSSIBLE-ROUTE-2)
(WITH CONNECTION FIRST-POSSIBILITY-3)
(WITH POINT-OF-DEPARTURE LONDON-1)
(WITH FINAL-DESTINATION PARIS-1))

The job is done !

Another interesting observations is that it is

problem solving READTH-FIRST,

principle.
DISCUSSION

The music example was suggested by David Levitt. Levitt and the author are currently working on
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an expert for tonal harmony which would accept high level descriptions of music and construct

musical scores. We attempt to simulate esthetic reasoning which was also studied by Kahn (1979)
for the domain of animation,

The idea to view a declarative language as a programming language has been proposed by Kowalski
(1974),
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7. COMMUNICATION

This chapter does not extend the reasoning model as such, instead we look at the issue
of communication, Communication is a particular way of interacting with a model built up
by the reasoner in order to see what results have been obtained or in order to cause
certain problem solving behavior. Although this sort of interaction is not a topic of this
work as such, we think it is necessary to give at least some idea of what is possible. We

This chapter contains two parts. In the first part we present a communication language.
Then we give some examples of a discussion with the reasoner. This discussion will
make use of the frames from the music-domain introduced in the previous chapter.

1. THE COMMUNICATION LANGUAGE

The communication language consists of a number of constructs for primitive speech acts:
introducing, naming, predication, requesting and justifying.

PREDICATION

The most common speech act is' the predication of a certain description to a particular

object. The result of predication is that the object is described in terms of the
description. Predication is represented as follows:

" (description-of-object) IS (description-of-predicate)

as in : .

>> John is (the father of a family)

First an attempt will be made to find the referent of <description-of-object> if that.
referent is found the <description-of-predicate> will be predicated, which means
according to the reasoning model developed in earlier chapters that a message is sent to -
the expert reasoning about the referent saying that it is described by this description. If
no referent can be found, the <description-of-object> is sent to an anonymous
object-expert which will start working out the details. This object-expert will also
receive the <description-of-predicate> as one of its descriptions.

We make use of the methods discussed in the chapter on reasoning to find the referent
of a description. In particular, we first try to recover the instantiation underlying the

description. The referent of the description is the filler of the view (as long as this view
is projective).

REQUESTING

All reasoning would be useless if we cannot extract the results. There are two types of
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queries: informative and non-informative. Informative requests (also known as
WH-questions) probe for a description of a particular object. Non-informative requests

(also known as yes-no questions) probe whether a Pparticular predication is true for a
certain object. '

The syntax for non-informative questions is
IS <description-of-object> Cquestioned-predication)?

Where <description-of-object> introduces a particular ~ object and  the
<questioned-predication> is a certain description that must hold for the object. Response
to this action can be of two forms:

YES,

<description-of-ob,ject) IS <questioned-predication)
or

I DON'T KNOW

which means that no description of the given form is known to be true for the object
referred to by <description—of~object>. When instead there is a match with a negative
description, the reasoner will respond with

NO, '
<description-of—object) IS (NOT <questioned-predication))

Here is an example:

>> Is John (the father of a family)?

YES

JOHﬁ IS (THE FATHER OF A FAMILY
(WITH MOTHER MARY))

The same method is used as before to find the referent of the <description-of-object>.
If that referent is found an attempt is performed to match the <questioned-predication>
with a description in the expert .of the referent. |f no’ referent could be found, a new
expert with the <description—of—ob’ject> as initial specification will be created and all
- consequents deduced. When that s done an attempt to match will be performed.

The mechanism for matching is identical to the one used for matching a condition in a
conditional description, as discussed in the chapter on reasoning. So the
questioned-predication will be decomposed if necessary.

The answer to the question contains all descriptions which match with the request. If the
request contains a partial description, it is completed by adding fillers for which an
individual—concept is known. When there is more than one description that matches,
indices are assigned to each description for ease of further reference.

The syntax for informative requests is
WHO IS (description-of—object)?
or '
WHAT IS <description-of~object>7
depending whether the referent is a living thing or not. The reasoner will respond with a
description of the <description-of-object>,
For example,
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>> WHO IS (THE FATHER OF A FAMILY (WITH MOTHER MARY))?’
JOHN IS (THE FATHER OF A FAMILY (WITH MOTHER MARY))

Again an attempt is made to find the referent of <description-of-object> and a new
object-expert will be created if necessary. The problem is how the reasoner should talk
back, i.e. how should a certain individual be introduced to the user. Here we take the
following method. We look whether the individual is described with an individual-concept
like JOHN, MARY, etc. If that is so an individual description will be made based on this
concept. Otherwise we use (for the time being at least) the actual name of the expert.

JUSTIFYING

A reasoner that is unable to justify its reasons for believing a certain fact is dumb and
dangerous. Because the reasoner keeps track of the dependencies between the facts.
We can make use of these dependency structures to make the reasoner justify its
deductions.

The following construct is used to ask for justifications:

(WHY <argument))
where the argument is optional.
When no argument is given, the first description of the previous list of printed
descriptions is assumed. When an argument is given, it is the index of the list of
descriptions printed out before.

Execution of the WHY-act will cause the reasoner to print out the descriptions which
were antecedents of the description referred to by the <argument>. The same
conventions are used as those for a question. In other words, there will be a list of
antecedents and indices are assigned so that one can refer to them later on.

COMMUNICATING FRAMES

At all times it is possible to introduce definitions for new concepts in terms of a frame
for that concept.

Also it might be useful to look at the definition of a certain frame. This can be done by
the following construct:

(GIVE-FRAME {frame-name))

where <frame-name> is the name of a frame.

Execution of this action will cause the definition of the frame, as it was supplied by the
user to be printed.
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2. AN EXAMPLE

The best way to understand how this communication language operates is by studying an
example. The following is an extract of a communication with the current implementation
of the reasoner via an interpreter of this communication language. The communication is
about music.

We start by asking whether C is the root of a half-step. The answer will be affirmative
and the reasoner responds by enumerating the descriptions that confirm this answer:

>> Is C (the root of a half-step)?

YES,

C IS (THE ROOT OF A HALF-STEP (WITH END-TONE C-SHARP))

Note that the description has been completed by introducing the slot-filler of the
end-tone. Note also that the request made use of a partial description. If there is more
than one description matching this partial description they are all displayed.

The reasoner had to do a lot of things in order to answer this question. The object
corresponding to the individual-concept C did not yet exist in the model. So it was
created. This means also that all other tones in the tone structure are entered into the
model and all half-step and whole-step relations. Once this was achieved the question
could be asked.

Because of the multi-directionality of the descriptions, we can ask a similar question
about C-SHARP; :

>> Is C-Sharp (the end-tone of a half-step)?

YES,

C-SHARP IS (THE END-TONE OF A HALF-STEP (WITH ROOT C))

The reasoner did not have to do any work at all for this question, because all relevant
objects and facts existed already in the model.

Now a question about whole-steps.

>> Is C (the root of a whole-step)?
YES,
C IS (THE ROOT OF A WHOLE-STEP (WITH END-TONE D))

Next a request that should result in a negative response:

>> IS C D?
NO,
C IS (NOT D)

We now try to solve an instance of the passing chord problem. Let us consider the one
where the start-tone is C and the end-tone is D. We ask the following question and get
two answers back: :
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>> WHAT IS (the passing-chord of a possible-passing-chord
(with start-tone C)
(with end-tone D))?
(THE PASSING-CHORD OF A POSSIBLE-PASSING-CHORD
‘ (WITH START-TONE C)
(WITH END-TONE D))

IS
1. : G
2. : C-SHARP

In other words, G and C-SHARP are tones for a possible chord for going frorri.C to D. We
now illustrate the justification capacity, -

First we ask for a justification of the first description:
>> (WHY) . ‘
(THE PASSING-CHORD OF A POSSIBLE-PASSING-CHORD
(WITH START-TONE C)
(WITH END-TONE 0))
IS G
BECAUSE

1. G IS (THE ROOT OF A FIFTH (WITH END-TONE D))
2. C IS :

(IF G IS
((THE ROOT OF A FIFTH
(WITH END-TONE D)) :
(THE END-TONE OF A POSSIBLE-PASSING-CHORD.
(WITH PASSING-CHORD G)
(WITH START-TONE €))))

In other words G is a possible-passing-chord because it is the root of a fifth with
end-tone D and because if there is this relation then the passing-chord relation holds.
Let us now pursue the question why the fifth-relationship itself is justified.

>> (WHY)

G IS (THE ROOT OF A EIFTH (WITH END-TONE 0))
BECAUSE

1. : C IS (THE ROOT OF A WHOLE-STEP (WITH END-TONE D))
2. : G IS (IF C IS

((THE ROOT OF A WHOLE-STEP (WITH END-TONE (= THE-FIFTH)))
(THE ROOT OF A FIFTH (WITH END-TONE (= THE-FIFTH)))))
So the presence of the fifth depends on two facts: C must be the root of a whole-step
where D is the end-tone and there is a conditional description that says if this
whole-step relation is there, then G can be described as the root of a fifth. We now"
investigate where this conditional description comes from:
>> (WHY 2)
G IS (IF € IS
((THE ROOT OF A WHOLE-STEP (WITH END-TONE (= THE-FIFTH)))

(THE ROOT .OF A FIFTH (WITH END-TONE (= THE-FIFTH)))))
BECAUSE

1. : G IS (THE ROOT OF A FOURTH (WITH END-TONE C))
2. : G IS (IF G IS

((THE ROOT OF A FOURTH

(WITH END-TONE (= THE-FOURTH)))
(IF THE-FOURTH IS

*((THE ROOT OF A WHOLE-STEP (WITH END-TONE (= THE-FIFTH)))
(THE ROOT OF A FIFTH (WITH END-TONE (= THE-FIFTH)))))))

So the presence of the conditional depends on two facts: G must be the root of a fourth
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whose end-tone is C and there is a conditional that says when you have a fourth, you
get another conditional that will try to deduce another whole-step from this fourth. Let
us investigate the justification for this fourth. We should see the following: the search
for a half-step depending on the successful discovery of a whole-step. The search for

this whole-step depending on the successful discovery of another whole-step. The
search for this whole-step was caused by the find-fourth frame. :

>> (WHY)

G IS (THE ROOT OF A FOURTH (WITH END-TONE C))
BECAUSE

1. : B IS (THE ROOT OF A HALF-STEP (WITH END-TONE C))
2. : 6 IS

(IF B IS
((THE ROOT OF A HALF-STEP (WITH END-TONE (= THE-FOURTH)))
. (THE ROOT OF A FOURTH (WITH END-TONE (= THE-FOURTH)))))

This was the half-step. :
>> (WHY 2)
G IS

(IF B IS

((THE ROOT OF A HALF-STEP (WITH END-TONE (= THE-FOURTH)))

(THE ROOT OF A FOURTH (WITH END-TONE (= THE-FOURTH)))))

BECAUSE
1. : A IS (THE ROOT OF A WHOLE-STEP (WITH END-TONE B))
2. : G IS

(IF A IS

( (THE ROOT OF A WHOLE-STEP (WITH END-TONE (= THE-SECOND-END-TONE)))
(IF THE-SECOND-END-TONE IS
((THE ROOT OF HALF-STEP (WITH END-TONE (= THE-FOURTH))
(THE ROOT OF A FOURTH (WITH END-TONE (= THE-FOURTH))))))))
This was the whole-step
>> (WHY 2)
G IS
(IF A IS
((THE ROOT OF A WHOLE-STEP (WITH END-TONE (= THE-SECOND-END-TONE)))
(IF THE-SECOND-END-TONE IS
((THE ROOT OF HALF-STEP (WITH END-TONE (= THE-FOURTH))

(THE ROOT OF A FOURTH (WITH END-TONE (= THE-FOURTH))))))))
BECAUSE

1. : G IS (THE ROOT OF A WHOLE-STEP (WITH END-TONE A))
2. : G IS (IF G IS
( (THE ROOT OF A WHOLE-STEP
(WITH END-TONE (= THE-FIRST-END-TONE)))
(IF THE-FIRST-END-TONE IS
((THE ROOT OF A WHOLE-STEP
(WITH END-TONE (= THE-SECOND-END-TONE)))
(IF THE-SECOND-END-TONE IS
(( THE ROOT OF A HALF-STEP
(WITH END-TONE (= THE-FOURTH)))
( THE ROOT OF A FOURTH
(WITH END-TONE (= THE-FOURTH)))))))))
This was the other whole-step :
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>> (WHY 2)
G IS (IF G IS
((THE ROOT OF A WHOLE-STEP
(WITH END-TONE (= THE-FIRST-END-TONE)))
(IF THE-FIRST-END-TONE IS -
((THE ROOT OF A WHOLE-STEP
(WITH END-TONE (= THE-SECOND-END-TONE)))
(IF THE-SECOND-END-TONE IS ’
((THE ROOT OF A HALF-STEP
(WITH END-TONE (= THE-FOURTH)))
(THE ROOT OF A FOURTH

(WITH END-TONE (= THE-FOURTH)))))))))
BECAUSE

G IS (THE ROOT OF A FIND-FOURTH)
All this is justified by the fact that we are looking for a fourth.

The ultimate justification is the search for a passing-chord. So if we continue to ask for
justifications the reasoner would eventually respond with:

BECAUSE '
YOU ASKED ME

We could ask many more questions and deduce other possible-passing-chord
relationships. But these communications should give some idea about possible interactions
with a reasoner. Qther examples have of course been given in the introductory chapter.

DISCUSSION

There is an extensive literature on question-answering systems (see e.g. Lehnert,1978) and on
flexible interaction with knowledge-based expert-systems (see e.g. Davis, 1977).

Although the expressions used in the description language look somewhat like natural language the
jump to natural language proper is still very large. In fact we believe that an adequate
commnunication module has to be a reasoner itsel. In Steels(1978) we make some specific
proposals to go about doing this. In that paper we propose to view a grammar as a body of
concepts and their definitions that is consulted by a reasoner to perform linguistic tasks like parsing
and production. We are currently working on such a ‘frame-based’ conceptual grammar.
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8. SUMMARY AND CONCLUSIONS

We have tried to explain how the human mind solves problems by reducing this question
to a more general one: how is it possible for a physical system, i.e. a system constrained
in time and space, to solve problems. :

The results obtained from working on this more general problem are threefold: First of
all we have been able to formulate a set of principles that every physical reasoning
system must embody and we have given a rational justification for each of these
principles. This rational justification is in the form of a functional argument that indicates

that the principle is necessary if one wants to explain how a physical system is able to
reason. '

Second we have constructed a detailed model of a reasoning system which consists of a
framework of concepts, .systems and behaviors that specify in detail but still on a
sufficiently abstract, i.e. implementation independent level, what a reasoning system might
look like. One of the major parts of this framework is a description language that can be
used to represent knowledge in a form suitable for explaining how reasoning works.

Finally we have constructed a concrete system that is based on the theoretical
framework developed here and that has the capacity to perform certain types of
reasoning. The details of this concrete system were not discussed at all because that
would double the size of this document and is only of interest and understandable to the

specialist anyway. Instead we extracted 3 large set of examples from actual interactions
with this system.

There are numerous topics that need to be investigated further. Here are some of them.
(i) REFINEMENTS OF THE REASONER

There are a number of obvious inadequacies that need to be taken care of. For
example, it is well known that natural reasoning makes use of so-called default
specifications, which are predications which are usually but not always true.(Minsky,
1974) We have designed and implemented a particular sort of truth maintenance system
(similar to the one proposed in Doyle,1977) that is able to perform non-monotic
reasoning as required to deal with defaults.

It is also well known that in order to reason adequately over changing worlds or belief
structures it is necessary to have some sort of context-mechanism that partitions the
model in several related sub-models. (See the discussion of the frame-problem in
McCarthy and Hayes(1968) and specific context-mechanisms in Rulifson, et.al (1973),
McDermott and Sussman (1 974), or Fikes and Hendrix (1978)). We have been working on
such a mechanism in the context of the present reasoner. Reports on our version of
truth-maintenance and context handling will appear soon.

There are many other small points.that need further investigation. For example it might
be of interest to specify the cardinality of non-projective aspects. We should add some
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pfimitive frames for doing arithmetic,etc.
(i) CONCEPTUAL ANALYSIS.

Another thing that needs to be done is a large scale investigation into problems of
conceptualization, eventually leading to a set of principles of conceptual analysis.
Fortunately there has already been a lot of work in this area both by philosophers (see
e.g. Reichenbach (1947), Carnap (1965) , and many others) and Al-researchers (see e.g.
Martin (1978), Schank (1 975), Hayes (1978), Wilks (1978),etc.).

Conceptual analysis is here interpreted in a broad sense. The study of problem solving
concepts is also part of conceptual analysis.

(i) OTHER TYPES OF REASONING.

Another thing that needs to be done is study other types of reasoning and see whether
new representational tools and special mechanisms are needed. Some promising areas
are

(i) Reasoning about knowledge currently under investigation by a number of
researchers, such as McCarthy (1978), Moore (1979), a.o.

(ii) Reasoning by analogy, a domain which is also one of the areas which has had a lot of
attention recently, see e.g. Moore and Newell (1973), Brown (1976), Winston (1978),
a.0. Although the mechanisms of explicit control of reasoning might be a good first base
to start investigating reasoning by analogy, it might be necessary to have special mapping
mechanisms that project one frame onto another one.

(iii) Higher order reasoning. In Steels(1978) we made already concrete proposals in
terms of a VIEWED-AS operator (which is essentially a restricted form of the Moore and

(iv) Plausible reasoning. It should be further investigated whether probability or
possibility estimates should be added to the predication of an assertion. Proposals for
this can be found in Polya(1959). ‘

etc. :

(iii) MEMORY.

It is possible to gain enormously in efficiency by storing and re-invoking (partial) models °
in addition to the frames on which they are based. For example, in the music domain, we
could store a model that contains basic objects and relations such as the tone structure
with half-step and whole-step relations. Each time something needs to be done in the
music world, this model could act as a first basis and initial instantiations would not have
to be made each time anew. This raises the problem of how to invoke these partial
models. Some recent work by Minsky (1979) on the so-called K-line theory contains
ideas on how to proceed developing this area.

(iv) LEARNING.

Then there is the learning problem. We would like to study abstraction processes that
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would allow transfer of knowledge from a model to a frame. We expect such a study to
go along the lines of the accomodation mechanisms sketched in Piaget(1975). But learning
implies also that one develops ctitics who can reject g new piece of information when it
is not plausible, that domain-knowledge is revised during reasoning (which implies
non-monotonicity), etc.

(V) COMMUNICATION.

Also we need to study more elaborate communication mechanisms so. that it is possible to
transmit the results obtained by the exploration of a model of a problem situation -and
that the exploration itself can be guided by conversation with another intelligence. The
fact that we propose to use the reasoning system itself as a foundation for mechanizing
linguistic processing is an interesting idea in itself that should lead to more robust and
more complex natural language systems than the ones presently in operation. ‘

(VD) IMPLEMENTATION

Finally we will be working on new implementations of the reasoner. The present version
is written in Maclisp and has been implemented on the MIT-Al Lab PDP-1 0. A
Lisp-machine implementation was completed in the summer of 1979.
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