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Abstract

This report describes a system which maintains canonical expressions for
designators under a set of equalities. Substitution is used to maintain all
knowledge in terms of these canonical expressions. A partial order on
designators, termed the better-name relation, is used in the choice of canonical
expressions. It is shown that with an appropriate better-name relation an
iimportant engineering reasoning technique, propagation of constraints, can be
implemented as a special case of this substitution process. Special purpose
algebraic simplification procedures are embedded such that they interact
effectively with the equality system. An electrical circuit analysis system is
developed which relies upon constraint propagation and algebraic simplification as
primary reasoning techniques. The reasoning is guided by a better-name relation
in which referentially transparent terms are preferred to referentially opaque
ones. Multiple description of subcircuits are shown to interact strongly with the
reasoning mechanisms.

A conceptual distinction is made between propositional deduction and
the instantiation of quantified knowledge. A special purpose system is used for
the simplified domain of propositional deduction which incorporates many useful
features. This system, termed a truth maintenance system or TMS, keeps track
of justifications for deductions which are used to generate explanations of
deduced beliefs. The TMS also handles the retraction of assumptions when
contradictions arise. When assumptions are retracted all deductions which
depended on them are retracted in an efficient incremental manner. Assumptions
that certain algebraic quantities are non-zero play an important role in reasoning
about algebraic constraints.
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Overview 1 Overview

Overview

In almost all reasoning systems, some method of handling the equality of
objects must be devised. The problems associated with equality, or multiple
expressions which have the same referent, are usually treated as an orthogonal
issue to other problem solving or reasoning techniques. The approach taken here
is that multiple descriptions for objects and the issues surrounding equality are of
central importance in problem solving itself. A uniform algorithm for handling
equality is developed here which assigns canonical names to equivalence classes of
expressions. Specific reasoning techniques, such as propagation of constraints, are
built up using this algorithm as a primary deductive mechanism. Propagation of
constraints is then used as the major reasoning mechanism in an electronic
analysis system. Figure 1 shows an overall breakdown of the reasoning system.
The remainder of this section describes the various systems and the way they
depend on one another.

Algebraic Manipulation

and
/ Simplification

¢

Domain Specific
Knouledge <>| The Equality System

(Electronics)
] .
‘§§§& Truth Maintenance

System

Figure 1. The Major Subsystems.

Underlying all the systems described here is a truth maintenance system
(TMS) which handles all propositional deduction [Doyle 79] [McAllester 78). The
TMS keeps track of justifications for all deduced truth values. These
justifications are used to generate explanations for any deduced truth value for a
proposition. Such explanations give the user a better understanding of the
deductions being performed and therefore more confidence in the results. The
justifications are also used to incrementally update the truth value of all
propositions when assumptions are added or retracted. When contradictions
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occur the assumptions underlying them can be pinpointed and the negation of
one of these assumptions can be deduced in a process termed dependency
directed backtracking [Stallman & Sussman 77]. All of these functions,
explanation -eneration, incremental modification, and dependency directed
backtracking are performed by special purpose algorithms in the TMS.

All of the TMS functions described above were incorporated into the
original version of a TMS formulated by Jon Doyle [Doyle 78]. In addition to
these functions the TMS is here viewed as an important deductive component of
the overall system. A distinction is made between propositional deduction and
the instantiation of quantified knowledge. Quantified knowledge is taken to be
any knowledge which can be usefully applied to a large number of specific
individuals (knowledge concerning the existence of certain types of individuals is
not dealt with). The instantiation of quantified knowledge is the act of
generating specific knowledge about an individual corresponding to that
quantified knowledge. Often instantiation can be made simply in the hope that
the resulting propositional knowledge will be useful in propositional deduction.
Since the propositional reasoning mechanisms in the TMS are rather
straightforward the major control issue is the control of the instantiation of
quantified knowledge.

A restriction on the current version of the systems is that it is not
possible to add quantified knowledge dynamically during reasoning and have it
retrospectively instantiated with all the appropriate items. None of the
applications described here require such an ability, but there is no theoretical
reason that this limitation could not be overcome within a very similar
framework to the one discussed here.

The equality system described in chapter one deals with propositions
asserting equalities between "designators". My use of the word "designator" is
equivalent to the use of the word "term" in standard systems of formal logic.
The word "designator” is used here for no better reason than that it seems to
focus ones attention on the distinction between a designator and its referent, and
therefore seems more natural in a system centered around equality and the use of
multiple designators. Each designator is maintained as an independent entity
even though an equality may state that it has the same referent as some other
designator. The equalities in the system determine equivalence classes of
designators. These classes are incrementally maintained as equalities are added
and removed from the system. The equality system maintains a canonical name
for each equivalence class which is one of the designators in that class. At any
point the user of the system can ask for the canonical name of some designators
equivalence class via a "what-is" function. A substitution process is also
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controlled by the equality system which essentially insures that all knowledge is
represented in terms of canonical names.

The equality system can be viewed as an algorithm for controlling the
instantiation of a specific body of quantified knowledge. The quantified
knowledge involved is the transitivity of equality and the validity of the
substitution of equals for equals. The equality system instantiates this knowledge
by creating new equalities and telling the TMS that the new equalities are
implied by other equalities already in the system. Of course the mechanism for
controlling this instantiation process is largely determined by the set of equalities
believed by the system. An important observation about this particular control
of instantiation js that it is object oriented. Thus, while the system is based on
an assertional data base, it simulates the behavior of systems built on object
oriented data structures.

A major reasoning technique employed by electrical engineers is
propagation of constraints [Steele & Sussman 78]. It is shown in chapter one that
this process can be implemented as a special case of the algorithms for handling
equality. The basic step in constraint propagation is a shift in the canonical
name of a class induced by a substitution of terms into some designator in that
class. The shift in canonical name can then induce further substitutions thus
propagating values around a constraint network.

There are several mechanisms which have been developed to allow the
procedural embedding of knowledge. The most straightforward example of this is
the use of arithmetic operators. For example consider the designator (+ 1 2).
The arithmetic operator + can be applied to 1 and 2 to give a new numerical
designator, 3, which has the same referent as the sum. Thus equalities can be
generated by instantiating knowledge about the functions used in designators and
this knowledge can be contained in procedures attached to these functions.
Algebraic simplification is done essentially the same way. A few other
mechanisms for the procedural embedding and special purpose controlled
instantiation within the equality system are discussed in chapter two.

Chapter three introduces electronic analysis. Knowledge about simple
electronic circuits is naturally embedded in TMS predicates and propagation of
constraints provides the primary reasoning mechanism. Canonical names are
chosen using a "better-name" relation on designators and several important points
are made about the structure of the better-name relation necessary to produce a

wre snawc PIGBEL [SZSORIRGRECCE Tl SUEFaRifite ElA0E heRERHRYES Sroliate o =ranti~l
transparent designators must be better names than referentially opaque ones.
Another important observation is that arbitrary quantities (ones that stand for an
unspecified and arbitrary value such as a ground potential or an input voltage)
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should be better names than referentially opaque designators which are not
arbitrary (arbitrary values are not used in this system to derive quantified
knowledge).

A mechanism for using multiple descriptions of parts of electronic
circuits, termed "slices", has been proposed by Gerald Sussman [Sussman 77].
This mechanism has been implemented in the equality system via the creation of
equivalences between the terminals of equivalent circuits. The introduction of
such equivalences fits naturally into the equality framework. A restructuring of
constraints which corresponds to redrawing circuit topologies is also shown to be
important for propagation of constraints and the effectiveness of slices. These
techniques are discussed in chapter three.

Chapter four gives some of the algorithmic details which were glossed
over in the previous chapters. A description of some related previous work is
also presented.

Everything described here has been fully implemented and is currently

(July 79) running on both the PDP-10 and the LISP machines at the MIT Al
Lab.
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Chapter |

The TMS, Canonical Naming, and Constraints

Using the TMS

The truth maintenance system or TMS, is a special purpose system for
handling propositional deduction [Doyle 79} [McAllester 78]. The TMS used here
should be thought of as a system for enforcing a set of logical relations on a set
of propositions. Each proposition is represented in the TMS by a TMS node.
Each such node can be in one of three possible truth states, true, false, or
unknown. The logical relations in the TMS should be thought of as constraints
on the truth values associated with the nodes in that relation. Each relation
(constraint) is represented internally as a disjunction of terms such as (or (not P)
(not Q) R). The details of the TMS algorithms are discussed further in chapter
four.

When a deduction is made within the TMS a justification for that
. deduction is recorded. The resulting justifications are used to generate
explanations for any deduced assertion when such explanations are requested by
the user. These explanations give the user insight into the way a deduction was
made and therefore greater confidence in the results. The justifications are far
more important than this however. They allow the TMS to incrementally modify
the set of deduced truth values when assumptions are retracted. When
contradictions occur in the system the assumptions underlying that contradiction
can be pinpointed via the justifications, and the negations of one these
assumptions can be deduced to remove the contradiction. This controlled
backing out from a contradiction has been termed dependency directed
backtracking [Stallman & Sussman 77).

With the introduction of a special purpose propositional deduction
system (the TMS) a sharp distinction is being made between propositional
deduction and the instantiation of quantified knowledge. Quantified knowledge is
taken to be any knowledge which can be usefully applied to a large number of
specific individuals (knowledge concerning the existence of certain types of
individuals is not dealt with). The instantiation of quantified knowledge is the
act of generating specific knowledge about an individual corresponding to that
quantified knowledge. In the present system all such specific knowledge is
represented as either a logical relation among TMS nodes or as the assignment of
a truth value to such a node. For example consider the quantified knowledge
represented by the sentence: Vx(mammal(x) -> warm-blooded(x)). This could be
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instantiated with "Fred" to give the propositional relation: mammal(Fred) ->
warm-blooded(Fred). Now if the TMS believes that the proposition
mammal(Fred) is true (the node corresponding to this assertion has a truth value
of "true"), it will deduce that warm-blooded(Fred) is also true. However if the
TMS does not believe that Fred is a mammal, i.e. either it believes that Fred is
not a mammal or it has not committed itself one way or the other, then it will
simply remember the implication and use it whenever it can. The control of
instantiation is the major control issue in the reasoning system.

The simplest embodiment of quantified knowledge is in "TMS
predicates”. These predicates are lisp functions which return a TMS node
representing a proposition. For example a mammal predicate can be defined as a
function of one variable which returns the node representing the proposition that
the argument passed is a mammal. Quantified knowledge is embodied in such
predicates in that instantiations are done as side effects the first time a predicate
is applied to some set of arguments. Thus the example of quantified knowledge
above which states that all mammals are warm blooded could be attached to the
mammal predicate and instantiated with every object to which the mammal
predicate is applied. Notice that this is not "antecedent deduction" in the
classical sense as no actual deduction need be involved at all. I will call this type
of instantiation “reference instantiation” since the quantified knowledge is
instantiated at the point reference is made to a certain entity (such as a
proposition representing the application of the mammal predicate). A special
form has been defined for the creation of TMS predicates and some examples of
TMS predicate definitions are given below:

(defpred vertebrate (x))
(defpred flus {(x))

(defpred bird (x)
(vertebrate x)
(flys x))

The body of a defpred must be a list of forms which return TMS nodes
when evaluated. The TMS nodes thus created will be implied by the truth of the
node returned by an application of the predicate being defined. Thus (bird
"John) returns a TMS node which implies (vertebrate *John) and (flys *John).

There are various TMS predicates which are supplied as primitives. The
predor and predand predicates take any number of TMS nodes and return a node
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which has been appropriately constrained in the TMS. The -> predicate takes
two nodes and returns a TMS node which implies an implication relation between
them. Prednot returns a node which is constrained to be equivalent to the
negation of the node it is passed. Finally presumably returns a node representing
the assertion that the node it was passed should be assumed to be true. This
interpretation is implemented by using the -> predicate to create an assertion of
the form: (-> (presumably P) P). The node representing this implication is made
true as an assumption which can be retracted if contradictions arise. To see how

these primitive predicates can be used consider the following definition of a
mammal predicate:

{defpred hairy (x})
{defpred female (x))
(defpred bears-live-young {(x))

(defpred mammal (x)
(ver tebrate x)
(presumably (hairy x})
(presumably (-> (female x)
(bears-1ive-young x))})

There is a TMS primitive for setting the truth value of TMS nodes
which can be used to declare that some object is a mammal as follows:

{set-truth (mammal ’Joe) ’true 'premise)

or equivalently

(assert (mammal ’ joe))

There is also a truth function which gives the current truth value
associated with a TMS node. Thus (truth (mammal *Joe)) would evaluate to true
after the above assertion had been made. In other circumstances it might
evaluate to false, or unknown. There is also a why primitive which takes a TMS
node and gives an explanation for its truth value in terms of other truth values of
TMS nodes which imply that value.

The use of TMS predicates as a knowledge representation mechanism
results in comprehensible modular constructs which interface cleanly to a truth
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maintenance system.

Canonical Naming

The central theme of this document is equality. A TMS predicate has
been defined, == which takes two designators and returns a TMS node
representing the fact that the two designators have the same referent. As was
mentioned earlier my use of the word "designator" is equivalent to the use of the
word "term" in systems of formal logic. The word "designator" is used here for
no better reason than that it focuses on the distinction between a term and its
referent. The == predicate interprets lisp s-expressions as designators and
designators will be uniformly represented by lisp s-expressions throughout.

One basic problem with the existence of more than one designator for an
individual object is that knowledge about that individual is often only given in
terms of a single designator. For example consider the situation defined by the
following assertions:

(assert (== ’(residence the-US-president)
' the-uhi te-house})

(assert (== 'Jimmy-Carter °the-US-president))

Now suppose we ask for the truth of an equality between (residence
Jimmy-Carter) and the-white-house. We would like the system to see that since
Jimmy Carter is the U.S. president, his residence is the white house. There must
be some way of merging the knowledge about a single object or individual which
is given in terms of the various designators for that object or individual. This
merging of knowledge can be accomplished via a canonical name for each
individual. Any knowledge about an object can be stated in terms of its
canonical name by substituting canonical names into expressions. This allows
knowledge to interact with other knowledge which is similarly stated in terms of
the canonical name.

The canonical name strategy for handling equality has been used in
many previous problem solvers. The primary innovation here is the use of this
mechanism as a primary reasoning strategy as will be discussed in the next few
sections. In the present system only knowledge in the form of equalities fully
benefits from canonical naming since substitutions are only performed on
designators and not on TMS assertions. The details of the substitution process
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will be given in a later section; the maintenance of canonical names being
concentrated on here.

The == predicate creates auxiliary data structures which are used in
maintaining canonical names for objects. A set of equalities defines an
equivalence relation on designators. Since all of the designators in an equivalence
class have the same referent, one of those designators can be chosen as the
canonical name for that referent. Only equalities whose TMS nodes are true are
used in this process and the canonical names are incrementally maintained when
the truth values associated with equalities change. There is a "what-is" function
which takes a designator and returns the canonical name for that designator to
the user. This function is surprisingly useful, as will be seen in the next few
sections.

Algebraic Unknowns

Designators, and the concepts involved in equality are related to the
concepts involved in the use of algebraic unknowns. Notice that algebraic
unknowns can be separated from bound variables and arbitrary individuals which
can be involved in instantiation processes. The ways in which algebraic
unknowns take on values is entirely independent of such instantiation processes.
Consider a system of n independent linear equations in m unknowns. If there are
more unknowns than there are equations, then there are several degrees of
freedom left in the system. However, it is possible to "eliminate" n of the
unknowns by expressing each of them as a linear combination of the others. The
"value" of each of these eliminated unknowns could then be set to the
corresponding linear combination of the remaining unknowns.

It is possible to separate the issue of unknown elimination from algebraic
manipulation. Algebraic manipulation is the deduction of new equalities from
given equalities. For example, from the equality y = (+ (x a x) b) it is possible
to deduce (x a x) = (- y b). Neither of these equations need have anything to
do with the elimination of unknowns; they are simply assertions of equality. I
will attempt here to relate the notion of an algebraic unknown, the act of giving
unknowns values, and the use of equality, via a general notion of canonical
naming.

Under the view of unknowns presented here, they are a type of
designator. I am not immediately concerned with which designators qualify as
unknowns but will deal only with the general notion of a designator. In light of
the above discussion of canonical names the act of giving an unknown a value
can be viewed as the act of choosing a designator, other than that unknown, as
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the canonical name for the unknown’s class. For example if y and (+ (x a x) b)
are in the same class, ie. y = (+ (x a x) b), and for some reason (+ (x a x) b)
is chosen as a better designator than y to represent the referent of the class, then
y can be said to have the value (+ (x a x) b).

The next few sections will develop propagation of constraints as an
algorithm for solving systems of equations. It is shown that this algorithm can be
viewed as a process of shifting canonical names.

Constraint Propagation as Computation via Naming.

Lately there has been much interest in, and development of, constraint
propagation as an efficient algorithm for reasoning about sets of mutually
constrained quantities [Steele & Sussman 78]. This algorithm is also interesting in
that it seems to simulate one of the ways human engineers reason. In general a
constraint propagation system has a set of "cells" which can take on values, and a
set of "constraints" which constrain those values. In constraint propagation
whenever a deduction can be made from the previously determined values and a
single constraint this deduction is made. Each such deduction assigns a new
value to a cell. In what will be termed "simple" constraint propagation these are
the only deductions which are made. Constraint propagation terminates when
there are no deductions which can be made from the cell values and a single
constraint. It is easy to see that such a deduction process can take no longer
than linear time in the number of constraints.

A method of implementing constraint propagation is presented here
which is based entirely on the algorithms for handling equality discussed above.
The "cells" of traditional constraint propagation are implemented as equivalence
classes of designators which take on "values" in the form of canonical names for
those classes. Each constraint is implemented as a set of equalities, and the
primary deductive mechanism employed is substitution controlled by a method of
choosing the canonical names of equivalence classes. The constraint propagation
techniques developed here are relied upon heavily in an electrical circuit analysis
system described in a later chapter.

Constraints are created via constraint predicates. The basic constraint
predicates are +constrained and *constrained, which are defined as follows:
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{(defpred +constrained (sum al a2)
(== sum ‘(+ ,al ,a2))
(== al ‘(- ,sum ,a2))
== a2 ‘(- ,sum ,al)))

(defpred xconstrained (prod ml m2)
(== prod ‘(x ,ml ,m2))
(-> (prednot (== m2 8))
{==ml *(// ,prod ,m2)))
(-> (prednot (== ml 8))
(== m2 *(// ,prod ,ml)))
(presumably (prednot (== ml 8)))
{(presumably (prednot (== m2 8))))

The backquote macro is used to simplify the creation of designator s-
expressions. The backquote macro is a form of quote in which items in the
interior of the backquoted structure preceded by a comma are replaced by their
value. Thus ‘(+ ,x ,y) is equivalent to (list "+ x y).

Note the use of the "presumably” predicate. If a *constrained is in
force (its TMS node is true) then the node representing (== m1 0) will default to
false. However if this leads to a contradiction (ml is discovered to be 0), then
the support for ml not being O given via the default construct can be
automatically retracted by the TMS.

Using the constraint predicates defined above, it is possible to construct
constraint networks within the equality system. Given an appropriate method of
deciding which designator of two given designators is "better" for use as a
canonical name, the constraint nets formed in this way can interact with the
canonical equality system to actually propagate values. To decide when one
designator is a better designator than another it is necessary to define a partial
order on designators which will be referred to here as the better-name relation.
Two designators can be unordered by the better-name relation and in that case
whichever becomes the canonical name first will remain so, thus avoiding undue
substitution.

In this discussion of constraint propagation a better-name relation is
assumed in which designators are divided into two classes, "known" and
"unknown". For atomic designators a predicate is provided to determine whether
the designator is known or unknown, and a functional expression is known iff its
operator and all of its arguments are known. Known designators are always
better than unknown designators. This convention along with substitution is
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enough to give propagation of constraints.

The two methods by which designators are generated automatically in
the equality system are substitution and evaluation. Only substitution will be
considered here; evaluation (which is the way algebraic simplification gets done)
will be discussed later. Whenever a new canonical name is assigned to a class
that canonical name is substituted into designators which contain other members
of that class. Such substitutions generate new designators from a pre-existing
ones. Whenever this is done an equality is created between the original
designator and the one resulting from the substitution. The truth of this equality
is implied by the truth of the equalities used in the substitution. A more detailed
description of the implementation of this process will be given in chapter IIL.
Now consider the following constraint net taken from [Steele & Sussman 78]:

’"x\m

o ML /

Figure 2. A Simple Constraint Network.

This constraint net can be created in the equality system by the following
assertions:

(assert (xconstrained 'pl ’ml 'm2))
(assert {(+constrained 'sl *al 'a2))
(assert (== "pl 'al))
(assert (== a2 'ml))

The initial equivalence classes are derived from the equalities and a
canonical name is chosen for each class. I will assume that all designators used
so far are classified as unknown and that, all other things being equal, smaller
designators are a better choice for a canonical name than larger, more complex

ones. The equivalence classes defined so far and their (somewhat arbitrary)
canonical names are:



Chapter | 13 Canonical Naming

m2, {// pl ml) m2
ml, (// pl m2), a2, (- sl al) ml
pl, (x ml m2), al, (- sl a2) pl
sl, (+ al a2} sl

The substitution process would add several equalities which are shown
below (each equality has been associated with the canonical name for the class
which contains its arguments).

(== ' (+ al a2} ’'(+ pl ml)) sl
{== " (- sl al) ' (- sl pl)) ml
(== " (- sl a2) (- sl ml)) pl

Since none of the generated designators are known, the original
canonical naming is stable and no propagation occurs. Now suppose however
that sl is made equal to 4 and al is made equal to 2. 4 and 2 are assumed to be
known and therefore the canonical designators of the classes corresponding to sl
and al are changed to 4 and 2 respectively. Substitution then generates the
following equalities:

(== " (+ pl ml}) '(+ 2 ml)) 4
{=="(- sl ml) *(- 4 ml}) 2
(== "(- sl pl) "(- 4 2)) ml
(== "(// pl ml) "(// 2 ml})) m2
(== "(// pl m2) " (// 2 m2)) mi

As the substitution process was described above, other substitutions
would also be made (into (+ al a2) for example). However these designators
have already been substituted into. The designator generated by the earlier
substitution is equal in all its parts to the original designator, and can be further
substituted into, making substitution into the original designator redundant. The
details of the way in which the system avoids redundant substitutions will be
given in chapter IV.

Given the above equalities a2 has been made equal to (- 4 2) since it
was originally equal to (- sl al). Since (- 4 2) is a known designator it must
become the canonical name of a’s class. This change in canonical name then
leads to the following further equalities via substitution:
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(== "(+2ml) "(+ 2 (- 4 2))) 4
(== "(- 4 ml) (-4 (-4 2))) 2
(== "(x ml m2) *(x (-~ &4 2) m2)) 2
(== "(// pl ml) *(// 2 (- 4 2))) m2

Now notice that m2 has been made equal to (// 2 (- 4 2)). Since the
new value is known it becomes the canonical name and further substitution leads
to no changes in canonical names. Let the "value" relation x=>y be defined as
meaning y is the canonical name of the equivalence class of x. The results of the
above propagation can be summarized by the following relations:

al => 2

pl => 2

sl => 4

a2 => (- 4 2)

ml => (- 4 2)

m2 => (/77 2 (-4 2))

If m2 and sl had been specified instead of al and sl, no propagation
would have occurred even though all values are completely determined. Such
situations are discussed by Steele and Sussman and are due to loops in the
constraint net. One technique which has been successfully used to handle
involves propagating symbolic values which are classified as known, just as
numeric values are propagated. This technique, called plunking, is discussed later
in its own subsection.

A general feeling for the efficiency of this algorithm can be gotten by
considering the number of substitutions performed. As mentioned above once a
new designator has been derived via substitution the designator which was
substituted into will not be substituted into again (assuming no equalities are
retracted which invalidate the original substitution). Therefore each designator
gives rise to a string of descendants generated by substitution, each descendant
generating the next. The number of such descendants for a given designator can
be no larger than the sum of the number of times the top level subdesignators
change canonical names. The number of top level subdesignators is one plus the
arity of the function involved, and is assumed quite small. The number of times
the canonical name of a class changes can also be assumed to be quite small in
practice, since it is usually due to a shift from an unknown to a known
designator. Thus the total number of substitutions is bounded by a small
constant times the number of original designators in the constraint net. The
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evaluation of designators, which has not been discussed yet, can generate
designators in ways not involving substitution. These other designators expand
the set of names which are substituted into and can make constraint propagation
somewhat more expensive.

It should be emphasized that the propagation process is really driven by
the decisions about which designators are better canonical names. In chapter III
the discussion of electronic circuit analysis will require a more elaborate better
name relation which relies on a destinction between referentially transparent and
referentially opaque designators.
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Chapter |
Procedural Embedding

The three sections of this chapter deal with various ways in which
procedures have been embedded in the equality system and the ways in which
they are used. The first section introduces the major mechanism used in
procedural embedding and shows how simple integer arithmetic can be done using
this mechanism. The next section discusses some problems surrounding equalities
which should have false truth values, such as equalities between distinct integers.
The final section deals with the problem of solving for values which are
determined by a set of constraints but can not be solved for directly via
propagation of constraints.

Evaluation Functions

Often quantified knowledge can be associated with a specific function or
operator. Knowledge about the properties of algebraic operators is an example of
this type of knowledge. To facilitate the control of the instantiation of such
knowledge a special mechanism involving "evaluation functions" has been
incorporated into the equality system. This section will first develop the general
mechanisms involved in evaluation functions and then turn to applications
involving algebraic operators.

Consider the knowledge that the mother of every animal is female. This
information is associated with the mother function since it only applies to
applications of that function. Formally such knowledge would be represented as
vx(-> (animal x) (female (mother x))) which could then be instantiated with any
term. Knowledge concerning a certain operator can be attached to that operator
in the equality system in the form of evaluation functions. Each evaluation
function for a given operator can be applied to any designator representing an
application of that operator and performs an instantiation of the quantified
knowledge it contains. The above knowledge about the mother function could be
embedded in the following evaluation function:
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(defpred animal (x))
{defpred female (x))

(defun mother-eval-1 (designator-s-expression)
(if (eq (car designator-s-expression) 'mother)
(tet ({x (cadr designator-s-expression)))
(assert (-> (animal x) (female designator-s-expression}}})))

This function must be appropriately associated with the mother operator
in the equality system for it to be useful. To simplify things a special mechanism
has been created to create such functions and associate them with operators.
Using this mechanism the above function could have been both defined and
associated with the mother operator as follows:

(eval fun mother (x)
(-> (animal x) (female ‘{(mother ,x})))

As in the case of a defpred, the body of a evalfun is a list of forms
which return TMS nodes when evaluated. The function created by a evalfun
evaluates the forms of the body in an environment in which the argument list of
the evaifun has been bound to the appropriate parts of a designator representing
an application of the involved operator. The nodes created by the forms of the
body are asserted as premises.

There can be more than one evaluation function for a given operator.
For example the knowledge that the mother of an animal is also a parent of that
animal could be represented in an evaluation function as:

(defpred parent (x y))

{eval fun mother (x)
{parent ‘{mother ,x) x))

The control of the application of evaluation functions (and therefore the
control of the instantiation of the quantified knowledge they contain) will be
discussed in detail in chapter four. For now however there is no problem in
assuming that it is simple reference instantiation, that is to say that the
quantified knowledge is instantiated (i.e. the evaluation functions are applied)
whenever reference is made to some application of the involved operator.

This mechanism can be used to achieve simplification of numerical
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expressions in the equality system. Consider the following:

(defun all-numbers (things)
{or (null things)
(and (numberp (car things))
tall-numbers (cdr things)})))

(eval fun + addends
{if (all-numbers addends)
(== *(+ ,eaddends) (apply 'plus addends))))

(eval fun - args
(if (ali-numbers addends)
{== ‘(- ,eargs) ‘(apply 'minus args))}))

etc.

Here a slightly different syntax has been used to handle a variable
number of arguments in which the argument list has been replaced by a single
atom which is bound to a list of the designators representing the arguments of
the operator. Also the form in the body of the evalfun can return nil, in which
case nothing is done (this is also true in the body of a defpred). The use of ",G"
in the interior of a backquote explodes the value of the form following (which
must be a list) up into the list in which the ",@" appears. For example ‘(a ,(list
'a ’b) ,@(list ’a ’b)) evaluates to (a (ab)ab).

Using these definitions, evaluation of the designator (- 4 2) would result
in an equality being added between it and 2. It is up to the better-name relation
to determine that 2 is a better designator for the canonical name of the
equivalence class than (- 4 2). If 2 becomes the canonical name of its class, then
it will be substituted into other designators such as (// 2 (- 4 2)). The results of
such substitutions can then be evaluated to yield further simplifications. The
definition of an evaluation function for // must be careful not to state false
equalities when two integers do not divide evenly.

It should be clear from the way the LISP plus and minus functions were
used above that arbitrary procedures can readily be embedded into the evaluation
functions. Special purpose algebraic simplification routines are embedded in the
equality system in exactly this way. Thus an evaluation functions for +, -, etc.
have been created which are useful when the arguments to the operator are
symbolic. These evaluation functions create an equality between the expression
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being evaluated and a symbolically simplified (or standardized) form of it. The
specific nature of the algebraic simplification algorithms used is discussed in
appendix two.

Disequalities

As was mentioned in the section on constraint propagation, it is possible
that a set of constraints determine values for designators, but that constraint
propagation does not result in those values being found. This situation results
when loops are present in the constraint net and is illustrated by the following
example:

{xconstrained 'y 2 'x) fy = 2x}
(+constrained 3 "x 'y} ix+y = 3}

Notice that even though the value of x and y are determined by the
constraints, no constraint propagation occurs since all of the designators for x and
y contain either x or y and are therefore classified as unknown (assuming x and y
are classified as unknown). How the equality system actually finds values which
are determined but not deduced via constraint propagation is the subject of the
next section. This section is only concerned with the possible contradictions that
can arise in these situations.

Suppose that an equality between x and 3 is added to the above
constraints. Propagation would occur and the system would deduce that y equals
(* 2 3) by substituting into (* 2 x). It would also deduce that y equals (- 3 3)
by substituting into (- 3 x). The evaluation functions attached to the operators
would then put both 0 and 6 into the equivalence class for y. Nothing in the
system so far says that this is impossible (the names being used for numbers
might be representing numbers in modular arithmetic, and indeed O does equal 6
if they refer to equivalence classes mod 3).

To rule out such interpretations of numeric designators in the equality
system a special check for numeric designators has been placed in the ==
predicate. Where the designators passed to == are distinct numbers == insures
that the node it returns to represent the equality is false. The equality system
internally creates equality nodes between every designator in an equivalence class
and the canonical name of that class. Thus if a numerical designator is the
canonical name for some class the entrance of any other numerical designator
into that class will result in a contradiction via the equality node which would be
created between the two numerical designators.
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This technique could easily be generalized to a method for ensuring the
integrity of other disequalities. Certain designators could be called "truely
canonical” designators in that a "truely canonical" designator must always be the
canonical name for its equivalence class. Thus no two "truely canonical"
designators could ever be equal since then both of them would have to be the
canonical name of the same class. Therefore whenever an equality assertion is
created between two "truely canonical" designators the system could force that
equality to be false. The above method for handling numbers would then be
implemented by simply making numeric designators "truely canonical", but the
method is certainly not restricted to numbers and could be used to ensure that,
for example, Earth is not the same planet as Mars.

Plunks

One method for finding values which are determined but not found via
constraint propogation is referred to as "plunking" and is discussed by Stallman
and Sussman [Stallman & Sussman 77]. In their system plunking involves giving a
variable a symbolic value which propagates through the network just as any
numeric value would. Certain equalities generated during this propagation can
then be passed to an equation solver which solves for the plunks in terms of
other quantities.

The algorithin discussed here is slightly different from the one used in
their constraint language due to the difference in the representation of the
constraints. In the equality system a class which contains only unknown
designators is chosen to be plunked. A new unique designator is generated to
represent a symbolic value, which will be called a plunk. This designator is then
made equal to some designator in the plunked class. For the plunking to work
properly the better name relation must treat the plunks specially. A plunk is
treated as a known designator, and it induces propagation. However designators
containing plunks are considered worse names than other known designators so
that designators with plunks are replaced by designators without them if the
opportunity arises. The better name relation as it has been described so far
divides designators into three classes and orders those classes as follows:

knoun designator uithout plunks
are better than: knoun designators with plunks
are better than: unknown designators
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Now consider the constraint net described in the previous section:

In this constraint net it is possible to plunk x by adding an equality
between x and a designator generated to represent the plunk, call it plunk-1. The
canonical name for x’s equivalence class would shift to plunk-1 which would in
turn induce substitutions. y is equal to (* 2 x) which generates (* 2 plunk-1)
under the substitution. Since this later designator is treated as known the
canonical name for y’s class becomes (* 2 plunk-1). But y is also equal to (+ x
1) which generates (+ plunk-1 1) when substituted into.

To solve for the plunks the notion of a coincidence has been adapted
from previous constraint systems to use in the equality system. A coincidence
occurs when a "known" designator enters a class whose canonical name was
already a "known" designator. In such cases the pair of known designators is
passed to a coincidence handler. The coincidence handler checks to see if they
are simply substitution variants of each other and if not it then checks to see if
either contain a plunk. If a plunk is present then the coincidence handler
attempts to use the coincidence to solve for a plunk. In the above example the
coincidence handler would be passed (* 2 plunk-1) and (+ plunk-1 1). Since the
pair of designators which are passed to the coincidence handler are equal it can
solve this equality for plunk-1 using a solver from the algebraic simplification
system. The coincidence would now add an equality between plunk-1 and 1.
Since known designators which do not contain plunks are better than known
designators containing plunks, 1 would become the canonical name for plunk-1’s
equivalence class, and 1 would be substituted for plunk-1 wherever it occurred.

In general more than one plunk may be necessary to solve a set of
constraints. In that case the designators which are passed to the coincidence
handler may contain more than one plunk. To handle such situations each plunk
is given a plunk-weight which is used by the better-name relation. A lower
weight plunk is always considered a better name than a higher weight plunk, and
the plunk-weight of a designator containing no plunks is considered to be zero.
The plunk-weight of designators containing plunks is the maximum weight of the
plunks in the designator. Now when the coincidence handler gets expressions
which contain more than one plunk it solves for the highest weight plunk in
terms of the others. Since any designator containing only the other plunks will
have a lower plunk weight, the canonical name of the solved for plunk must shift,
and therefore that plunk will be replaced wherever it occurs.
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Plunking is not performed automatically in the present equality system.
To invoke plunking a solve-for function has been defined which takes a single
designator and plunks quantities which that designator can be expressed in terms
of. The net effect is that the argument passed to solve-for is made equal to a
"known" expression which may contain plunks. If plunks are present in the
resulting expression the solve-for function can be used again on the plunks
themselves. This can be done iteratively to solve for in expression which is
indeed determined by a set of constraints. The following dialogue shows how
this procedure can be applied to the above constraint net.

(assert (xconstrained 'y 2 ’'x))
(xCONSTRAINED 'Y 2. 'X)

(Assert (+constrained 3 'x 'y))
(+CONSTRAINED 3. "X 'Y)

{uhat-is

* %)
X
(what-is 'y)
Y
(solve-for ’x)
1
(uhat~is 'y)
5 .

The next chapter applies the mechanisms which have been developed
so far to the domain of electrical circuit analysis.
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Chapter il

Application to Electronics

In this section a system for analyzing electronic circuits is presented
which has been implemented using the equality system. Only a minimum of
knowledge about electronics is necessary for the comprehension of this
section and the predicates defined here contain all the electronics knowledge
used. Since many general properties of the equality system are exhibited, it
is hoped that even readers with no background in electronics will take the
time to read this section.

A set of basic electronic predicates are defined, which can be used
to build arbitrary circuits. However, for the constraint propagation to work
properly in reasoning about circuits defined with these predicates, a better-
name relation must be used which is slightly more complex than those
discussed so far. A distinction is made between referentially transparent and
referentially opaque designators, the former being a better name than the
latter. The need for this distinction, and its use, is discussed in the context
of circuit analysis.

Basic Predicates

The predicates which are defined below are used to create some of
the constraints associated with various device types which the electrical
analysis system deals with. Predicates are also given which are used to wire
the device components together. The predicate c== has been written in lisp
as a special constraint predicate. c== takes two designators and solves the
implied equation for each internal designator in the two expressions. This
results in a set of equalities which are all implied by a node returned by c==.
Appropriate quantities are assumed not to be equal to zero as was done in
*constrained. (c== ’a '(* b ¢)) is equivalent to (*constrained ’a ’b ’c) but
less efficient.

The use of >> in designators gives a shorthand for the repeated
functional composition of monadic functions. Thus (>> voltage rl circuitl)
is treated identically to (voltage (rl circuitd)). This is often very convenient
when dealing with complex structured objects.

(defpred inv-constrained (a b)
(== a ‘(- ,b))
(== b ‘(- ,a)))
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(defpred one-port (element)
(+constrained ‘(>> potential t1 ,element)
‘(>> potential t2 ,element)
‘{voltage ,element))
{== ‘{current ,element)
‘{>> current tl ,element))
(inv-constrained ‘(>> current tl ,element) ‘(current t2 ,element))})

(defpred resistor (r)
{one-port r)
(xconstrained ‘(voltage ,r) ‘(current ,r) ‘(resistance ,r)))

(defpred voltage-source (vs)
(one-port vs)
(== ‘(voltage ,vs) ‘(strength ,vs)))

(defpred current-source {cs)
(one-port cs)
(== *(current ,cs) ‘(strength ,cs)))

There are no definitions for controiled sources given here. This is
because a controlled source can be simply represented as a one-port with an
appropriate current or voltage constraint.

The most general way to handle wiring is to write a "node" predicate
which takes any number of terminals and creates equalities stating that that the
potentials of all the terminals are the same and that the sum of the currents is O.
This predicate definition uses a slightly different syntax since it is a predicate on
an arbitrary number of arguments. The atom representing its argument list is
bound to a list of the values of the arguments in a call to the predicate. The

two other wiring predicates given are a little more natural to use than the node
predicate.

(defpred node terminals
(c== ‘(+ ,e(mapcar ’{lambda (term) ‘(current ,term)) terms)))
(let ((node-potential *‘(potential ,{car terms))))
(predand (mapcar ' (iambda (term2)
(== node-potential ‘(potentiail ,terml)))
(cdr terms)))))
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(defpred connected (t1 t2)

== ‘{potential ,tl) ‘{potential ,t2))
== ‘(current ,t1} ‘(- (current ,t2))))

(defpred exists (x})

(eval fun composite (t1 t2)
(-> (exists ‘(composite ,tl ,t2))
(predand (== ‘(potential ,tl) ‘{potential ,t2))
== ‘{potential (composite ,tl ,t2)) ‘(potential ,t1))
(c== ‘(current (composite ,tl ,t2))

‘(+ (current ,tl) (current ,t2)))))
(presumably (exists ' (composite ,tl ,t2})})

These predicates can be used to create circuits. As a trivial first

example a circuit which deals only with a single voltage source and resistor is
defined below and shown in figure 3.

(defpred ohm-test (circuit)
{voltage-source ‘(vs ,circuit))
(resistor *(r ,circuit))
(node ‘{>> tl vs ,circuit) ‘(>> t1 r ,circuit))
(node ‘{>> t2 vs ,circuit) ‘(5> t2 r ,circuit)}))

Figure 3. The "Ohm-test" Circuit.



Chapter li 26 Electronics

A particular instance of this circuit is created by asserting an application

of the above predicate to a specific circuit name. The following scenario shows a
simple use of this predicate.

{(assert (ohm-test ’cl))
{(OHM-TEST C1)

(uhy (one-port '(r C1)))
((ONE-PORT (R C1)}})} IS TRUE FROM
(1 (RESISTOR (R C1)) IS. TRUE))

(uhy (resistor '(r cl)))
({ONE-RESISTOR (R C1)) IS TRUE FROM
(1 (OHM-TEST C1) IS TRUE))

This method of circuit definition, while quite clean and semantically
satisfying has the disadvantage that the circuit topology of an instance of the
circuit definition can not be incrementally altered because the assertion that the
circuit is an ohm-test completely determines the structure of the circuit. Such
incremental alterations would be possible if the various assertions about the
circuit were taken as independent premises as was done by Stallman and Sussman
in their electronic analysis system ARS [Stallman & Sussman 77). This can be

done by using a simple lisp function to construct the circuit which might be
defined as follows:

(defun make-ohm-test (circuit)
(assert (voltage-source ‘{vs ,circuit)))
(assert (resistor ‘(r ,circuit)))
(assert (node ‘(>> tl vs ,circuit) *(>> tl1 r ,circuit)))

lassert (node ‘(>> t2 vs ,circuit) ‘(>> t2 r ,circuit)))
t)

MAKE -OHM-TEST

(make-ohm-test ’'cl)
T

(uhy (restistor ' (r c1)))
((RESISTOR (R C1)) 1S TRUE AS A PREMISE)
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Now it is possible to change the topology of this circuit by incrementally
altering the basic premises which determining that topology. For example the
following scenario shows how another resistor could be spliced into the circuit:

(assert (resistor ’(r2 cl)))
(RESISTOR R2)

(retract (node *(>> tl vs cl) '(tl r cl)))
T

(assert (node '(>> tl vs cl) '(>> tl r2 cl)))
(NODE (>> T1 VS Cl1) (>> T1 R2 Cl))

(assert (node ’(>> t2 r2 ¢l) ’(>> tl r ¢cl)))
(NODE (>> T2 R2Cl) (>> Tl R Cl))

In the discussions of electronics that follows, circuits will be defined via
the defpred mechanism but the reader should be aware that circuits which can be
incrementally modified can be constructed and that derived knowledge about
such circuits is also incrementally modified when changes are made.

The Better-Name Relation in Electronics

The primary reasoning strategy used in the electronic analysis system
described here is propagation of constraints. As propagation of constraints was
defined above it is driven by the better-name relation, that is the ordering on
designators which determines when one designator is preferred over another as
the canonical representative for an equivalence class of designators. Here an
investigation is made into the properties a better-name relation should have such
that constraint propagation is done in a useful manner.

Consider the simple circuit defined in the previous section and shown in
figure 3. A trivial problem in circuit analysis would be to make an ohm-test
circuit, call it cl, and ask for the current in the resistor. The current in the
resistor has many designators, the simplest of which is (>> current r cl).
However the designator which we would like to get as a value for the current is
the ratio of the strength of the voltage source to the resistance of the resistor.
The better name relation should be such that designators in terms of source
strengths and component parameters are better names that those in terms of
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currents and voltages.

An interesting observation is that designators involving voltages and
currents are sensitive to the context in which they occur. For example the
voltage across a certain resistor is not purely a function of that resistor but is
sensitive to the environment of the resistor. A designator whose referent is
context sensitive is termed referentially opaque, otherwise it is termed
referentially transparent. It seems that referentially transparent designators are
better names, at least in the context of electronic analysis. The equality system
presently perfoms a simple syntactic search for potential, current, Or voltage
to determine if a designator is opaque or transparent.

Numeric designators should be better names than transparent but non-
numeric ones. Thus a numeric value for a component parameter is a better-name
than a designator in terms of the parameter function applied to that component.
If plunks are present then they are considered to be transparent so that

propagation treats them properly. The classification of designators by the better
name relation is now as follows:

numerical designators

are better than: transparent designators without plunks
are better than: transparent designators with plunks
are better than: opaque designators

The better-name relation for the electronics system also takes the
designator size into account when the designators are of the same type, smaller
designators being better. Given this framework it is now possible to see how the
equality system analyzes circuits.

A Simple Analysis

The following simple dialogue represents an analysis of an instance of
the simple ohm-test circuit defined above. In all the sample dialogs presented
here things typed by the user appear in lower case while responses typed by the
system appear in upper case.

(assert (ohm-test 'cl))

T

(what-is ' (>> current r c1))

(/77 (5> STRENGTH VS Cl1) (»>> RESISTANCE R C1))
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To see how this analysis took place it is necessary to examine the
original equalities which were provided to the system. Among these equalities are
the following four:

(== " (>> potential tl r cl)
" {>> potential ti1 vs cl))
*(>> potential t2 r cl)
' (>> potential t2 vs cl))
= "(>> voltage vs cl)
*{- {(potential tl vs cl)
(potential t2 vs cl)})
(== " (>> voltage r cl)
'{- (potential t1 r cl)
(potential t2 r cl)))

—
]
[}

(

The first two equalities are created by the node predicate. A canonical
name will be chosen for the potential of each node. Since the alternatives for
these canonical names are roughly equivalent in their type and complexity, the
choice is arbitrary, but let us assume that the canonical names are given in terms
of the voltage source. So (>> potential tl vs cl) is the canonical name for (>>
potential t1 r c1) and similarly for the other potential. This choice of canonical
names results in the following equality being generated via substitution:

(== " (- (>> potential tl r cl) (>> potential t2 r cl))
"{- (>> potential tl vs cl) (>> potential tZ2 vs cl)))

This equality interacts with the last two of the first four equalities above
making the voltage of the voltage source equal to the voltage of the resistor. By
the definition of a voltage source, the voltage of the source is equal to the
strength of the source which has a referentially transparent designator. The
designator (>> strength vs cl) therefore becomes the canonical name for the
voltage of both the voltage source and the resistor. Now consider a result of

Ohm’s law which was generated as a part of the constraints in the definition of a
resistor:

(== " (5> current r cl)
"(// (voltage r cl) (resistance r cl)))
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Substitution will yield the equality:

(== *{// (voltage r cl} (resistance r cl))
*(// (strength vs cl) (resistance r ci)))

The ratio of the strength of vs to the resistance of r is a transparent
designator, and therefore becomes the canonical name for the current in the
resistor and the analysis is complete. Further discussions about circuit analysis
will be a little less formal about the actions of the equality system. Instead of
referring to the addition of a referentially transparent designator to an
equivalence class, it will simply be said that designators in that class have been
determined. Thus, instead of saying that a referentially transparent canonical
name for the current in r has been found, I will simply say that the current in r
has been determined.

Unconstrained Plunks

There are many circuits which cannot be analyzed using the definitions
given so far without resorting to plunks. In many circuits the need for plunks is
quite surprising since human engineers can easily analyze the circuit by
inspection. The last three sections in this chapter discuss ways in which the
electrical analysis system can be made more powerful. In this section the notion
of an "unconstrained plunk" is developed for use in situations in which there are
unconstrained degrees of freedom left in the quantities being reasoned about.
The next section discusses some of the ways in which multiple descriptions can be
used to aid reasoning in constraint propagation. The final section discusses the
effect of restructuring constraints in ways which correspond to "redrawing"
circuits.

As a first example of a circuit in which constraint propagation alone
fails to perform the desired analysis, consider the circuit shown in figure 4.
When an instance of this circuit is analyzed the current in each resistor is
determined by the current through the current source. The current in each
resistor determines the voltage across that resistor so it would seem that the
voltage across the current source should also be determined by the system. This
however does not happen since the voltage across the source is equal to the
difference between the potentials of its two terminals, and neither of these
potentials can be determined. Nor is the difference determined directly since
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Figure 4. The "Series-1" Circuit.

(defpred series-1 (circuit)
(current-source *‘(cs ,circuit))
(resistor ‘(rl ,circuit))
(resistor ‘(r2 ,circuit))
(series-1-topology ‘(cs ,circuit) ‘(rl ,circuit) *(r2 ycircuit)))

(defpred series-1-topology (cs rl r2)
(node ‘{tl ,cs) *‘(tl ,rl))
(node “(t2 ,rl) *“(t1 ,r2))
(node ‘(t2 ,r2) ‘(t2 ,cs)))

there is no statement that the voltage across the source is the sum of the voltages
across the resistors. If there were some way in which potentials could be
determined, instead of potentials differences, this problem could be solved.
However there is a degree of freedom left undetermined in the node potentials
and none of these potentials can be solved for.

In the framework of circuit analysis presented so far the above circuit
could be analyzed via plunking. In such a scheme some node potential could be
"plunked" by setting it equal to a plunk designator. Propagation would then take
place and each node potential would take on a canonical name in terms of the
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plunk. The voltage across the source would then be determined in terms of the
plunk, which would cancel out of the resulting expression. Previous electrical
analysis programs which relied on propagation of constraints have used plunking
in this way [Stallman & Sussman 77] [de Kleer & Sussman 78].

In the use of a plunk to analyze the above circuit the plunk cannot be
eliminated since the absolute values of the node potentials are not determined.
Plunks which can never be eliminated will be called "unconstrained plunks". The
special treatment the system gives to ordinary plunks by the better-name relation
and the coincidence handler is designed to ensure that plunks can be eliminated.
Since an unconstrained plunk cannot be eliminated, it need not be given this
special treatiment. In fact no distinction need be made whatsoever between this
type of plunk and ordinary referentially transparent designators. However, since
no attempt is made by the system to solve for unconstrained plunks, it is
important that such unconstrained plunks be mutually independent, that is to say
that no one of them is expressible in terms of the others.

Unfortunately the fact that a plunk can never be eliminated is an
observation made outside the system (the equality system is not capable of
realizing this simply from a given set of equalities). However since an
unconstrained plunk can be treated exactly as a simple transparent designator the
"plunk” can be made explicitly by the user of the equality system simply by
stating an equality between the unconstrained quantity to be plunked and a
referentially transparent designator which will act as the plunk. This gives the
user more control over the reasoning process by explicitly stating a quantity to be
plunked. The choice of which quantity is given an unconstrained plunk in a
system of mutually constrained quantities can also be important to the human
user who wishes to see results in terms of certain quantities.

In all electronic circuits there is at least one degree of freedom in the
node potentials which is not determined by the circuit. This degree of freedom
can be dealt with by defining a reference node to be given an unconstrained
plunk. For convenience the node given the unconstrained plunk will be called
the ground node. The ground is specified simply by setting its potential equal to
the designator "ground-potential" (the unconstrained plunk) which is treated as a
referentially transparent designator. To see how the specification of a ground
node interacts with the analysis of the above circuit consider the following
alternate definition of the circuit’s topology:
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{defpred series-1-topology (cs rl r2)
(node *(tl1 ,cs) *(tl ,rl))
(node ‘(t2 ,rl) *(t1 ,r2))
(== *(>> potential t2 ,r2) ’ground-potential)
(== *(>> potential t2 ,cs) 'ground-potential))

or with the use of a ground predicate:

(defpred series-1-topology (cs ri r2)
(node *‘(tl ,ecs) “(t1 ,rl))
{node ‘(t2 ,rl) *{(t1 ,r2))
(ground ‘(t2 ,r2) ‘(t2 ,cs)))

The current constraint for the ground node is redundant, and it seems
that it is not very useful in constraint propagation, so it is omitted. Now the
problem of determining the voltage across the current source in the series circuit
is solved by determining the node potentials. The determined value for this
voltage, not surprisingly, turns out to be independent of the ground potential
(this independence is gotten via the algebraic simplifier).

In more complex circuits the choice of a reference node (ground) can be
important to the reasoning process. The absence of an explicit KCL constraint
for the ground node can prevent constraint propagation in some cases, in others
the unconstrained plunk placed on the ground potential can fail to induce
propagation. Whether or not these failures in the constraint propagation occur is
largely dependent on which node is chosen for ground. Thus the choice of a
ground node can greatly effect the ease with which circuits are analyzed by the
system.

The extra degree of freedom in the node potentials is not present in the
branch voltages, which are differences between node potentials. All currents in
a circuit are functions of the branch voltages of that circuit and do not depend
on the absolute potentials of the nodes. Thus circuit analysis is ultimately
concerned only with branch voltages and not with the absolute potentials.
Therefore all of the quantities which are of interest in electrical analysis do not
depend on the unconstrained potential assigned to a reference node. Therefore
the choice of the reference node does not effect the form of expressions for
quantities of interest. However, as will be seen below there are cases in which
the choice the quantity to be plunked has a great effect on resulting expressions
for quantities of interest.

Another example of the use of unconstrained plunks is circuits with
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external terminals. In such circuits one is interested in the constraints the circuit
imposes on the currents and potentials of the external terminals. To put the
discussion in a more concrete framework consider the following circuit:

! O— ' I g
3

Figure 5. The "3-Parallel" Circuit

(defpred 3-parallel (circuit)
{one-port circuit)
(resistor ‘(rl ,circuit})
(resistor ‘{r2 ,circuit})
{resistor ‘(r3 ,circuit))
(term-eq ‘(tl ,circuit)
‘(composite (>> t1 rl ,circuit)
. (composite (>> t1 r2 ,circuit)
(>> tl r3 ,circuit))))
(term-eq *(t2 ,circuit)
‘(composite (>> t2 rl ,circuit)
(composite (5> t2 r2 ,circuit)
{(>> t2 r3 ,circuit}))))

None of the branch voltages or branch currents can be determined if the
environment of the circuit is left unspecified. However it is possible to reason
about this circuit by giving the voltage across the terminals of the circuit an

unconstrained plunk. The following dialog with the system demonstrates the use
of the unconstrained plunk:
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(assert (3-paraliel 'cl})
(3-PARALLEL C1)

(uhat-is ' (current cl))
{CURRENT C1)

{assert (== '(voltage cl) ’input-voltage))
(== (VOLTAGE C1) INPUT-VOLTAGE)

(uhat-is " (current cl})
{// (x INPUT-VOLTAGE
(+ (x (RESISTANCE (R1 C1))
{(+ (RESISTANCE (R2 Ci))
(RESISTANCE (R3 C1))))
{x (RESISTANCE (R2 C1))
(RESISTANCE (R3 C1)))))
(x (RESISTANCE (Rl C1)) (RESISTANCE (R2 C1)) (RESISTANCE (R3 Cl1))))

The constraint propagation to produce this result is straightforward.
The substitution process ensures that the voltage across the external terminals of
the circuit is in the same equivalence class as the voltage across each of the
resistors. Thus when the external voltage is plunked the voltage across each
resistor is determined and therefore the current through each resistor is
determined via Ohm’s law. The current through the external terminals is then
determined as a function of the voltage across them. Unfortunately the system is
not capable of generalizing such knowledge and applying it to situations in which
this circuit is embedded in larger circuits. However a human engineer could use
the system to analyze general instances of circuit fragments and then incorporate
the results into TMS predicates for those fragments.

Other quantities might have been plunked in the above circuit. For
example the following dialogue shows how the voltage could be solved for in
terms of the current:

{(assert (3-paraliet 'c2))
(3-PARALLEL C2)

(assert (== '(current c2) 'input-current))
(== (CURRENT C2) INPUT-CURRENT)
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(what-is *(voltage c2))
(VOLTAGE C2)

(solve-for ’'{(voltage c2})
(/7 {(x INPUT-CURRENT
(RESISTANCE (R1 Cl1))
(RESISTANCE (R2 C1))
(RESISTANCE (R3 C1)))
(+ (x (RESISTANCE (R1 C1)})
(+ (RESISTANCE (R2 C1))
(RESISTANCE (R3 C1))))
{x (RESISTANCE (R2 C1))
(RESISTANCE (R3 C1)))))

Normal plunking had to be initiated via solve-for to perform the
analysis but the desired result was obtained. The circuit can be viewed as
providing a constraint on its terminals which aliows the current to be derived
from the voltage or the voltage from the current. However in each of the above
analyses, one of these quantities was chosen as the "input" and the other was
derived as an expression in terms of it. In more complex circuits particular
terminals can be specified as input and output terminals. One is usually only
interested in expressions for the output quantities in terms of the inputs. Thus
the multidirectional view of a circuit as a constraint is replaced by a
unidirectional relationship between inputs and outputs.

Slices

This section develops the use of "slices" in circuit analysis. The term
slice. was coined by Gerald Sussman to refer to a form of multiple description
which is useful in constraint propagation [Sussman 77) [Steele & Sussman 79).
The basic technique is to state an equivalence between a part of the structure
being analyzed and a different structure which exhibits the same behavior. Such
equivalences are quite naturally stated in the equality system. The simplest use
of slices in electrical analysis is in series-parallel reduction. Consider two resistors
in series connected to a voltage source as is shown in figure 6.
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Figure 6. The "Series-2" Circuit.

(defpred series-2 (circuit)
(voltage-source ‘(vs ,circuit))
(resistor *(rl ,circuit))
(resistor ‘(r2 ,circuit))
(node ‘{>> tl vs ,circuit) *(>> tl rl ,circuit))
{(node “(>> t2 rl ,circuit) *(>> tl r2 ,circuit))
(ground ‘(5> t2 r2 ,circuit) ‘(>> t2 vs ,circuit)))

Now if it is asserted that some circuit, say c2, is a series-2, and then the
system is asked for the current of rl, the system will simply respond with (>>
current rl c2). In other words the circuit will not be analyzed. The potential of
the top node can be determined to be the ground potential plus the strength of
the source. However the potential of the node connecting r1 and r2 does not
take on a determined value since the neither resistor has a determined voltage.
There is no way to derive the resistor voltages since the currents are not known.

This circuit can be solved however with the use of slices. An slice is an
alternate description of some portion of a structured object. In circuit analysis
slices are installed by giving designators for terminal currents and potentials in
terms of equivalent circuits. In this case rl and r2 are equivalent to a single

resistor with a resistance equal to the sum of their resistances. Figure 7 shows
this circuit with the slice imposed.
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Figure 7. A Slice on the "Series-2" Circuit.

This equivalence is stated by defining a resistor with the appropriate
resistance and then stating equalities between its terminal potentials and currents,

and terminal potentials and currents in the circuit. This can be done in the
equality system as follows:

(defpred term-eq (t1 t2)

== ‘{potential ,tl) ‘(potential ,t2))
== ‘(current ,tl} ‘(current ,t2)))

{assert (series-2 ’cl))

{assert {(c== '(resistance series-r)
"{+ (>> resistance rl cl) (>> resistance r2 cl))))

(assert (term-eq "(>> tl rl cl) ’(tl series-r}))
(assert (term-eq " (>> t2 r2 cl) ' (t2 series-r)))

With such constraints installed the current in the equivalent resistor is
determined from the strength of the voltage source and the resistance of that
resistor. This current then determines the current in rl and r2, which determines

the voltages across them and therefore the potential of the central node.

The following predicate and operator definitions give a convenient means
of creating series and parallel slices.

(defpred one-port-eq (tl t2 one-port)
(term-eq t1 *(tl ,one-port))
(term-eq t2 ‘(t2 ,one-port)))
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(evalfun series-eq (rl r2)
(-> (predand (resistor rl) (resistor r2})
(predand (resistor ‘(series-resistor ol ,r2))
{c== ‘(resistance (series-resistor ,rl,r2))
‘{+ (resistance ,rl) (resistance ,r2))))))

{eval fun parallel-eq (r1 r2)
(-> (predand (resistor rl} (resistor r2))
(predand (resistor ‘(parallel-resistor .1 ,r2))
le== ‘{// 1 (resistance (parallel-resistor wrl,r2)))
‘l+ (// 1 (resistance ,rl))
(/7 1 (resistance ,r2)))))))

Of course more complex circuits can be defined, and the machinery has

now been developed to do series-parallel reduction. Consider the ladder network
of resistors shown in figure 8.

Figure 8. The "Ladder" Circuit.



Chapter lil

(defpred

(defpred

(defpred

(one-

40

tadder (c)
(voltage-source ‘(vs ,c))
{resistor ‘(rl ,c))
(resistor ‘(r2 ,c))}
(resistor *(r3 ,c)}
{resistor ‘{r4 ,c))

(ladder~topology ‘{vs ,c) ‘{rl ,c) *“(r2 ,c)

ladder-topology (vs rl r2 r3 r4)

(node *‘(tl1 ,vs) ‘(t1 ,rl))

{node ‘(t2 ,rl) *(tl ,r2) ‘€t1 ,r3})
(node “(t2 ,r3) *‘(tl ,r4))

(ground *(t2 ,r4) *(t2 ,r2) *(t2 ,vs))
(ladder-topology2 rl r2 r3 r4))

fadder-topology2 (rl r2 r3 ré4)

port-eq ‘(tl ,r3) ‘{(t2 ,r4) ‘(series-eq ,r3 ,r4})

Electronics

‘(r3 ,c) ‘(r&d ,c)))

{one-port-eq ‘(composite (tl ,r2) (tl (series-eq ,r3 ,r4))})
‘(composite (t2 ,r2) (12 (series-eq ,r3 ,ré4)))

(one-

‘(parallel-eq ,r2 (series-eq ,r3 ,r4)))

port-eq °‘(tl ,rl}

‘(t2 (parallel-eq ,r2 (series-eq ,r3 ,r4)})

‘(series-eq ,rl (parallel-eq ,r2 (series-eq ,r3 ,ré4))}))

Here is a dialog with the system about this circuit:

(assert (ladder 'c2))

T
{uhat-is

' (>> current r4 c2))

(// (x (>> STRENGTH VS C2) .

(RESISTANCE (PARALLEL-EQ (R2 C2) (SERIES-EQ (R3 C2)

(% (RESISTANCE (SERIES-EQ (R1 C2)

(RESISTANCE (SERIES-EQ (R3 C2) (R4 C2)))))

(PARALLEL-EQ (RZ C2)

(R4 C2)))))

(SERIES-EQ (R3 C2) (R4 C2)))))

This value was derived by straightforward propagation. The potential
difference across the equivalent resistor for the entire circuit is determined by the
voltage source. The current through that resistor is then determined by Ohm’s
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law. This determines the current through rl and through the equivalent
resistance for the remainder of the ladder. The current through this equivalent
resistor determines the potential across it via Ohm’s law, which in turn determine
the potential across the pair of resistors r3 and rd. The current through this pair
of resistors is determined via the use of their equivalent resistance and Ohm’s
law. This finally determines the current in r4.

The value given for the current in r4 is in terms of the equivalent
resistances used in the slices. It is not immediately clear whether the better-name
relation should consider this a better or worse representation than an algebraic
expression in terms of the resistances of the actual resistors in the circuit. It can
be argued that the use of the equivalent resistances prevents the algebraic
simplification of expressions. However in the above case the expression
containing the equivalent resistances is actually shorter (by 6 symbols) than the
result of simplifying an algebraic expression in the original resistances, which is
shown below:

(/7 (x {+ (>> RESISTANCE R3 C2) (>> RESISTANCE R4 C2))
(>> STRENGTH VS C2))
(+ (x (>> RESISTANCE R1 C2)
(+ (>> RESISTANCE R2 C2)
(+ (>> RESISTANCE R3 C2)
(>> RESISTANCE R4 C2))))
(x {>> RESISTANCE R2 C2)
(+ (>> RESISTANCE R3 C2)
(>> RESISTANCE R4 C2)))))

Not enough experience has yet been had with the electronics system to
tell whether the use of the equivalences in the results of analysis is always a good
thing. The present system uses them.
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"Redrawing” Circuits

The equivalences used to solve the above ladder circuit do not always
result in a complete circuit analysis. There are cases in which series parallel
reduction should clearly be possible, but that the slices given so far are not
adequate. Consider the circuit shown in figure 9.
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Figure 9. Two Sets of Parallel Resistors in Series.

A parallel series reduction of this circuit can be attempted by placing
parallel slices on the two pairs of parallel resistors in the circuit. Since the
strength of the current source is a transparent designator, propagation begins
from that point. The sum of the currents into the upper terminals of r1 and r2
is determined via the current constraint at the top node. This determines the
current in the parallel equivalent of those resistors, which determines the sum of
the currents in the lower terminals of rl and r2. Now it would seem that the
sum of the current in the upper terminals of r3 and r4 should be determined.
However if the node predicate has been used in the standard way to create the
current constraint for the center node, then the constraint net does not constrain
the sumn of the currents in r3 and r4 in a manner which allows this determination

to be used. The current constraint for the node connecting rl, r2, r3 and r4
might look like:
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(== " {>> current t2 rl1)
"= (+ (> current t2 r2) (>> current tl r3) (>> current tl r4))))

= " {>> current t2 r2)
(- (+ > current t2 rl) (5> current t1 r3) (>> current tl ré))))

(== " {>> current tl r3)
"= (+ > current t2 rl1) (>> current t2 r2) (>> current tl r4))))

(== ' (>> current tl r4)
"{- (+ (5> current t2 r1) (>> current t2 r2) (>> current tl r3))))

-
]

This constraint cannot give a better name to the sum of the currents in
the upper terminals of r3 and r4 simply because none of the equalities
representing the constraint deal with that sum. This prevents the current in the
equivalent resistance of r3 and rd from being determined. There is no other way
for constraints to propagate around the circuit. Even though the voltage across
rl and r2 can be determined, and therefore the two branch currents, the
potential difference across the current source has not been determined, so that
the potential across the bottom resistors remains unknown. Also, since no
current constraint is created at the ground node, the sum of the currents in r3
and r4 are not directly constrained. (If such a current constraint were present an
example of the failure of parallel slices would only be slightly more complex.) A
solution to this dilemma is suggested by the alternate drawing of the circuit
shown in figure 10.

The parallel slices are somehow more strongly suggested in this drawing.
This is due to the explicit terminals which can then be made equivalent to the
terminals of the resistors in the slices. As a result of this, the current constraints
implicit in the diagram more directly constrain the current in the equivalent
resistance. It is possible to "redraw" a circuit by restructuring the current
constraints to take into account terminals of slices. This can be done directly
using the predicates and operators defined so far. For example a parallel-series
reduction of the above circuit can be accomplished if the following is used to
construct the central node:

(connected ' (composite (t2 rl1) °(¢2 r2)) ’(composite (t1 r3) (tl r4)))

The present method of creating slices relies heavily on the user of the
system. It would be far more satisfactory to have the system recognize the
appropriate equivalences on its own. This has not been accomplished to date and
might represent a fruitful area for further research.
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Figure 10. An Alternative Drawing.

The major point brought out in the discussion of electronics presented in
this chapter is that an effective reasoning system can be derived from algorithms
designed to handle the problems surrounding equality and multiple descriptions.
The majority of the reasoning strategies used in these algorithms can be justified
in terms of general principles without reference to electronics.
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Chapter IV
Algorithmic Details and Relation to Other Work

The Truth Maintenance System

A truth maintenance system or TMS is used in the equality system to
record and enforce logical relations among propositions. The basic functions
performed by the TMS were first introduced by Richard Stallman and Gerald
Sussman in an electrical analysis system which made assumptions about transistor
states [Stallman & Sussman 77]. A separate module, called a truth maintenance
system, or TMS, was later designed by Jon Doyle [Doyle 78]. Doyle’s TMS keeps
track of propositional justifications and uses them to incrementally update beliefs
and track down assumptions underlying contradictions. The propositional
reasoner described here is a further refinement of these ideas and is very similar
to a truth maintenance system developed by the author and described in a
separate publication [McAllester 78]. The basic principles of that TMS are
briefly stated here and some comments about its relation to other are given.

Each assertion or belief in the system is given a TMS node which can
take on one of three truth values, true, false, or unknown. Logical relations
among beliefs are recorded in disjunctive clauses which should be viewed as
simple constraints on the truth values associated with nodes. For example the
representation of an implication between a tms node nl, and a second tms node
n2 would be (or (nl . false) (n2 . true)). If the assertions represented by nl
and n2 were mutually contradictory (could not both be true at the same time),
this would be represented in the TMS by the clause (or (nl . false) (n2 .
false)). In general a clause is a list of terms, each of which is an association of a
TMS node with either "true" or "false”. A clause states a constraint on the truth
values of the TMS nodes which says that one of the nodes in the clause must
have the associated truth value.

A clause can locally determine the truth value of a node. Whenever all
the nodes in a clause except one have the opposite truth value from the one
associated with it in the clause, the clause has only one chance left to be
satisfied. When this occurs, and the truth value of the node which might still
satisfy the clause is "unknown", the truth value of that node is set to the value
associated with it in the clause. A pointer is constructed from the node whose
truth value was deduced to the clause which deduced it. This pointer gives the
well founded support for the truth value of the node and is used in generating
explanations and during dependency directed backtracking.

The user of the TMS can add TMS clauses at will, but once in the
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system they cannot be removed. This poses absolutely no problem since
removable clauses can always be simulated by creating a TMS node to represent
the truth of the clause. This is done by the -> predicate which creates a TMS
node to represent an implication and adds the clause stating that the implication
along with the implication’s antecedents implies the conclusion. The TMS node
representing the implication is then returned to the user who can set its truth
value as he pleases, effectively adding and removing the implication represented
by that node.

When the user sets the truth of a node to "true" or "false", as can be
done with assert or set-truth, this truth value is taken by the system to be a
premise. As premises are added the TMS enforces the constraints represented by
its clauses and deduces other truth values. The user can also retract premises via
a remove-truth function which makes a node unknown. When this is done the
support for other truth values can become invalid. Whenever the supporting
clause for the truth value of a node can no longer be used to deduce the value of
that node the supported truth value is removed. Thus the removal of a truth
value can propagate to generate the removal of a large number of other truth
values. After this propagation has occurred each of the nodes whose truth value
was removed must be checked for alternate supports for truth values. By doing
this only after the removal phase is completed the system avoids the possibility of
looping support structures.

Because constraints can be added at any time, and because loops can
exist in the constraint set, it is possible for contradictions to arise. A
contradiction is nothing more than a clause in which all the nodes have the
opposite truth value from the one associated with it in the clause. When this
happens the support pointers of the nodes in the clause can be used to track
down the set of premises which underlie the truth values of those nodes. One of
these premises can then be retracted to remove the contradiction.

Whenever a truth value for a node is an underlying support for the
truth value of a node in a contradiction, i.e. whenever a truth value leads to a
contradiction, it is valid to deduce the opposite truth value for that node. There
may be loops in the constraints in the TMS which prevent this from happening
naturally. For this reason a backtracking facility is provided which will take a
contradiction and an underlying premise and use clause resolution to generate
new clauses which bypass the loops preventing the deduction of the negation of
the premise. Since small clauses are useful in more situations, the backtracker
does not compute a "conditional proof" constraint involving all the premises
underlying a contradiction as is done in other systems [Doyle 78]. It instead does
a minimum amount of clause resolution which adds clauses just large enough to
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break the constraint loops.

Demons can be attached to the TMS nodes which are invoked when the
node changes truth value. There are three types of demons which can be
attached to a node, true-noticers, false-noticers, and unknown-noticers, which are
activated when the node takes on the suggested value. True-noticer demons are
attached to equality nodes in the equality system which activate certain canonical
naming functions when the equality becomes true. Nodes can be given unknown-
noticer demons which set the node to a default truth value (as a premise) when
the node would otherwise be unknown. These noticers are run only at times
when the TMS is otherwise stable, making interactions between TMS functions
and noticer actions comprehensible.

Assumptions are simply specially marked premises. This marking serves
no other purpose than to act as a guide when choosing a premise to retract
during backtracking. There is no significant distinction in this system
hetween an assumption and a simple premise. Non-monotonic dependency
structures have been used in other systems to make assumptions by justifying a
belief in terms of a lack of knowledge to the contrary [Doyle 78]. Such
dependency structures were found to be totally unnecessary in the current system
and in the author’s opinion they lead to considerable algorithmic complexity and
conceptual obscurity. With a slight modification to the TMS as described here it
can also be shown that there is no expressive power gained from non-monotonic
dependencies.

The Canonical Naming Algorithm

The basic mechanism which must be implemented is the determination
of a canonical name for an equivalence class under the equalities provided to the
system. The equalities can be though of as arcs between nodes representing the
designators in a graph. Finding a canonical name involves finding a designator
which is at least as good as any other designator in the class under the better-
name relation. A marking algorithm is used to scan the designators in a class.
The marker placed on a class of designators is maintained on each designator in
that class and a pointer is maintained from the marker to the canonical name of
that class. This makes access to the canonical name of any designator’s
equivalence class very efficient.

A major design goal is the ability to add and remove equalities at will,
and maintain proper canonical names. This algorithm must therefore be extended
to handle the maintenance of the canical names when the set underlying
equalities changes. The freedom to add and remove equalities means that
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equivalence classes can merge and split as the equalities change. 1 will first
consider the case of adding equalities. When a new equality is added (its TMS
node takes the value "true"), it can merge two previously distinct equivalence
classes. Thus each new equality added must be checked to see if a marker can
be propagated across it. If the two designators which become linked have
distinct markers on them, then one of the markers, call it ml, is chosen to
propagate across the equivalence class. The other marker, call it m2, can be
removed from all designators on which it appears since ml must propagate across
the entire class previously marked by m2. As a marker propagates across new
members of its equivalence class the canonical name pointer must be
appropriately kept up to date.

Now consider the problems involved in retracting equalities. Each
marker starts from a single designator and propagates to other names via
equalities. The class marked by the marker is defined to be the class containing
the marker of origin. This class can change as equalities are added and removed.
In light of this definition, the presence of a marker on a designator can be
considered valid only if the designator is in the same class as the designator from
which the marker originated. Thus the marking of a designator with a marker is
associated with a TMS node representing the equality between the marked
designator and the origin of the marker.

As a marker is propagated across an equality from designatorl to
designator2 a logical relation is added to the TMS which states that the equality
between designatorl ‘and the marker origin, along with the equality between
designator] and designator2, imply the equality between designator2 and the
marker origin. The truth of the equality between designator2 and the origin is
always checked when the marker is used to find a canonical name for
designator2. If any equality is later removed, then the equalities which depend
upon it are removed (their TMS nodes take on a truth value of "unknown") and
marking associated with these equalities can be recognized as invalid.

Because equalities can be retracted at any time, it is possible that the
canonical name pointed to by a marker could be removed from the class marked
by the marker. Since the primary purpose of the markers on designators is to
point to the canonical name for that designator, this would render the marker
useless. For this reason a marker is only considered valid while the canonical
name it points to is in its equivalence class. A canonical name function has been
written which takes any designator, first ensures that that designator is validly
marked by a valid marker and then returns the canonical name pointed to by

that marker. In this way the canonical names are correctly maintained under the
retraction of equalities.
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Substitution

The means of controlling the substitution process have not been
discussed so far. An image function is defined on designators such that the
image of a designator is the result of replacing all the top level subdesignators by
their canonical names. The image of a name is equal to the name as long the
equalities between the parts hold. The invariant which the equality system
attempts to maintain is that the images of all designators are explicitly
represented in that designators class. This allows the image of the designator to
be a candidate for the canonical name of that class. Since canonical names are
continuously chang...g, the image of a designator changes also. Thus a designator
must be monitored in some way to ensure that its image is always in its class.

Before discussing the details of the way in which this process is
controlled, first consider some general properties of the image function. An
internally-equal relation can be defined on designators which is stricter than the
standard equality relation used throughout this document. Two designators are
internally-equal if they have the same number of top level subdesignators and
each pair of corresponding top level subdesignators are equal. All internally-equal
designators have the same image. For example (+ 1 2) is internally equal to (+
(- 2 1) (+ 1 1)) but not internally-equal to 3 or (+ 2 1), assuming the
appropriate numerical equalities have been added. Both (+ 1 2) and (+ (- 2 1)
(+ 1 1)) have the same image, which should be (+ 1 2). An equivalence class
can be divided into a set of internally-equal subclasses. Only one element from
each of these subclasses need be monitored with respect to substitution since all
the elements in a given class have the same image.

All designators have their image computed at least once. A TMS node
is constructed to represent the assertion that the image is internally-canonical, i.e.
all its top level subdesignators are the canonical names of their equivalence
classes. Each canonical name has a TMS node associated with it representing the
assertion that it is the canonical name for its equivalence class, and the truth of
this node is maintained by the equality system. These nodes can be used to
construct a support for the truth of the node representing the assertion that an
image is internally canonical. A demon is placed on this internally canonical
node which recomputes the image of that designator when the node becomes
unknown, thus monitoring that designator in a way that ensures its image will be
recomputed when needed. This single monitoring is all that is needed to monitor
the entire subclass of designators which are internally-equal to this designator.
Thus when an image is computed only the image is monitored for future need to
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recompute an itnage.

Because equalities can be retracted, it is possible that internally-equal
subclasses get split up. When this happens the single designator which was being
1. nitored is no longer sufficient to monitor all the designators which were in
that subclass. To make sure that all designators are properly monitored, an
internally-equal node is associated with every designator which is being monitored
via its internal equality to another designator. This internally-equal node
represents the assertion that the designator is internal equal to some other
designator which is monitored. When an image is computed from a designator,
and is not equal to that designator, a node representing the internal-equality
between the two designators is created and associated with the designator whose
image was computed. If this internally-equal node ever becomes unknown, then
the image of that designator is recomputed. Thus it is possible to ensure that the
image of every designator is always in that designators equivalence class and has
a chance at becoming the canonical name of that class.

The present equality system runs unreasonibly slow, on the order of a
minute per constraint in constraint propogation analysis of electronic circuits.
The primary bottleneck in the process turns out to be inefficient hashing of
designator expressions. Improving the hashing methods should yeild about an
order of magnitude improvement in computation time, but the resulting six
seconds per constraint is still too slow to yeild a practicle system for serious
problems. This is a first pass implementation and it is hoped that future
refinements can still further significantly reduce the computation times involved.

Relation to Other Mechanisms for Handling Equality

This section discusses several classes of work related to the equality
system described in this document. The first relates the work discussed here to
previous work which used canonical expressions to represent equivalence classes.
The second discusses an approach taken to equality in the resolution theorem
proving tradition. A third approach to equality incorporates it into pattern
matching (or unification) procedures. Finally, special attention is paid to an
algorithin developed by Knuth and Bendix to decide equivalences in certain
universal algebras.

Canonical forms have been used to represent classes of equivalent
expressions in many previous systems. Ira Goldstein used canonical forms for
geometric objects in a geometry theorem prover [Goldstein 73]. More recently
Howard Shrobe used canonical representatives of equivalence classes in a more
general purpose reasoning framework [Shrobe 79]. In Shrobe’s system substitution
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was performed in such a way that all reasoning took place in terms of the
canonical expressions. There are certainly many other systems which employ
similar methods that the author is unaware of, and forgiveness must be asked
from those who are not referenced. The originality claimed here is not the
concept of using canonical representatives of equivalence classes but a particular
application of this mechanism to reasoning. In the systems mentioned above the
existence of equivalent expressions is dealt with as a problem to be overcome in
the reasoning process. Canonical expressions are used to unify the knowledge
about an individual expressed in terms of different designators for that expression.
If equality is only viewed from this perspective then one tends to minimize the
role of multiple designators for the same referent in the reasoning process. In the
applications of equality discussed here, aspects of the canonical naming
mechanism which are ignored by these other systems, such as substitution into
non-canonical expressions, and the detailed structure of a better-name relation,
take on a great significance in the reasoning process. Here equality is viewed as
playing a central role in reasoning, rather than as a necessary evil.

A method for handling equality, called paramodulation, has been
developed in the context of resolution theorem proving [Robinson 65] [Chang &
Lee 73]. This technique is a clause resolution rule which incorporates
substitution of equals for equals. This allows deduction of anything deducible in
a system of first order predicate calculus with equality. The paramodulation rule
itself however provides no guidance as to when substitutions should be done and
systems using little or no heuristic guidance become lost in combinatorial
explosions. Several methods have been developed which cut down on the number
of allowed applications of paramodulation, such has hyperparamodulation and
linear paramodulation. However such restrictions on paramodulation do not give
the detailed guidance of substitution provided by canonical naming schemes.

Another approach taken to equality involves incorporating equality
axioms into pattern matching (or unification) [Fay 78]. A discussion of this is
best done by an example. Suppose that op is an associative operator (i.e. (op (op
x y) z} = (op x (op y 2z)}). The match of (op (op a b) c) with (op x y),
where x and y are variables and a, b, and ¢ are constants, would yield two
substitutions: {(x . (op a b)) , (y . cljand {ix . a) , (4. (op b ch}
Thus the equality variants of the two expressions being unified are taken into
account in generating the variable bindings. As in the case of paramodulation,
such a scheme can be incorporated into a system that can make all valid
deductions from a given set of axioms in first order predicate calculus. However,
for this approach to be feasible, the equality axioms must be determined at the
time the matching is done. This requirement makes this approach inappropriate
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to the type of reasoning about equality presented in this document where the set
of useful equalities is continually expanding.

The most notable of the algorithms for handling equality is one
developed by Donald Knuth and Peter Bendix [Knuth & Bendix 69]. They give
an algorithm for deciding whether two words (designators) are equivalent under
equivalence relations defined by simple sets of algebraic axioms. A partial order
on words, analogous to the better-name relation used here, is used to reduce a
given word to a canonical form. Given two words it is possible to tell if they are
equivalent by seeing if their canonical forms are the same. Knuth and Bendix
represent the algebraic axioms as a set of reductions which take the form of
rewrite rules and represent equalities. They also give a decision procedure for
determining if a given set of reductions is complete, i.e. results in a complete
decision algorithm for tests of equality under those axioms. Perhaps the most
interesting aspect of their work is a method given for extending a reduction set
to a complete set by adding derived reductions.

When comparing the algorithms developed by Knuth and Bendix to the
equality system described here, a strong similarity emerges. Each equality in the
equality system acts as a reduction in the sense that it can result in one
designator being replaced by another inside a larger designator when substitution
occurs. Reductions which contain variables can not be encoded as equalities in
the equality system. However arbitrary reductions can be placed in the
evaluation functions. Since the general equality system allowed for an arbitrary
better name relation, the relations used by Knuth and Bendix could be easily
incorporated. Therefore any partial order on designators and any complete
reduction set used by a Knuth and Bendix type algorithm can be used in the
equality system. Furthermore since each derived equality acts as a new
reduction, any reduction set which can be extended to a complete set by the
Knuth and Bendix aigorithm will, in much the same way, automatically form a
complete set in the equality system.

I do not mean to claim a rediscovery of the results on completeness
found by Knuth and Bendix which involve the developement of a specific better-
name relation and its interaction with specific sets of equality axioms. I am not
particularly concerned with completeness however, and approached the problems
presented by equality from a completely different perspective. They were
concerned with deciding equality under a small set of algebraic axioms which
remain fixed over time. I am concerned with the use of equality as a means of
knowledge representation and as a mechanism for handling multiple descriptions.
Thus I am concerned with a very large rapidly expanding set of equalities (or
reductions) which can be manipulated as the reasoning process progresses.
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An important fundamental distinction between the system described here
and all previous work on equality (at least to the author’s knowledge) is that this
system views equality and multiple descriptions as a central part of the reasoning
svstem. Thus it makes sense to ask the system for the value of an expression
even though the expression itself is a designator for that value. In traditional
theorem proving systems such a request could not even be properly stated, an
expression for the desired quantity is trivially found and the system has no way
of teliing that this does not completely solve the problem at hand.
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Appendix One -
A Basic TMS and Equality System User’s Manual

The basic utility functions of the TMS and the equality system are
divided into three sections. First are the TMS utilities which are used in the
code for the equality system. These primitives allow the direct creation of TMS
clauses and the manipulation of the truth values associated with TMS nodes.
However they are not intended to be used at the interactive user level. The next
set of functions are TMS utilities which are intended to be used interactively by
a system user, including the basic TMS predicates. The final section presents the
basic equality system utilities.

Internal TMS Utilities

DEPENDENCY-NODE

(dependency-node <assertion>)

This function takes an "assertion" in the form of an s-expression
and returns a TMS node which has been associated with that assertion.
The assertions are kept in a hash table which is searched each time
dependency-node is called. Thus repeated calls with the same assertion
yield the same node.

SET-TRUTH

{set-truth <node> <value> <setter>)

This function takes a node, a value which is either the atom true
- or the atom false, and an atom used to record the source of the set value.
The node takes on the truth value and the TMS automatically propagates
the results of that value. Noticer functions, which are meant to notice
changes in truth values, are called automatically when the propagation has
stabilized. A noticer function can induce further changes in truth values
and the process continues until no noticers are left to run.
The most common value for the setter argument is the atom
"premise”. However, if the setter argument is the atom "default", then the
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set truth value is marked as an assumption and is treated specially during
backtracking.

If the node already has a truth value, the node is still given the
new value with the new justification. This can lead to contradictions if
the opposite value had been previously deduced. Such contradictions are
treated the same as any other contradictions in the system.

REMOVE-TRUTH

{remove-truth <node>)

This function is used to retract premises. The truth value of
<node> will be retracted and the appropriate propagation of truth value
removal and invocation of noticer functions is done.

T-NOT
(t-not <term>)

A term is either a node or an association of a node with either
the atom true or the atom false. It is often convenient to be able to
bundle an node with a truth value in using primitive TMS functions. The
t-not primitive returns an association of a node with the opposite value
from the one associated with it in the argument to t-not. A single node is
always treated as if it were associated with "true".

IMPLIES

{implies <terms> <term>)

This function takes a list of antecedent terms and a consequent
termn and installs the constraint on node truth values corresponding to this
implication. Once the constraint has been added it cannot be removed.
For this reason the primitive implies should only be used to state
tautologies, or relations which are true by definition. -
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CONTRADICTORY

(contradictory <terms>)

This primitive is essentially the same as implies. It takes a list of
terms and installs the constraint that at least one of the nodes in those
terms must have the opposite value from the one associated with it in the
term. Again this should be used only to state tautologies.

TRUE—NOTICER, FALSE-NOTICER, UNKNOWN-NOTICER

(true-noticer <node> <form>)

These functions attach noticers to nodes. The noticer is a form
to be evaluated when the node takes on the appropriate truth value.

DEFAULT

(default <node> <value>)

If node has an unknown truth value then this sets the value to
the one given with a setter of "default", which marks the value as an
assumption to be treated specially by the backtracker. It also places an
unknown noticer on the node which will set the node to the default value
whenever it would otherwise be unknown.

IMPLIES-UNI

{implies-uni <terms> <terms)

This is just like implies except that the constraint generated will
not automatically deduce the negation of any antecedent term. If the
constraint is violated however, it is treated as a contradiction and can then
be used to deduce the negation of any antecedent term. This was
implemented primarily. to capture the full expressive. power found in other
systems which use non-monotonic dependency structures. The actual
utility of this feature is an open question.
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User Level TMS Utilities

These utilities are intended to be used at the interactive user level. To
achieve sufficient generality they take "propositions" as arguments. A
"proposition" is either a term (a TMS node or a TMS node associated with a
truth value) or an s-expression representing an assertion which is coerced to a
node via dependency-node as described in the previous section.

ASSERT

{assert <prop>)

This function takes a proposition and calls set-truth on the
corresponding node. The atom premise is always used as the setter. Thus
(assert <node>) is identical to (set-truth <node> 'true 'premise}. And
(assert 'p) is identical to (set-truth (dependency-node °'p} °true
‘premise). '

RETRACT

(retract <prop>)

If the node associated with <prop> has a truth value which is
given as a premise then this function removes that truth value values (and
all values which critically depended on that value). If the proposition has
a deduced truth value or a default truth value then this function is
effectively a no-op.

ASSUME

'(assume <prop>)

This sets the truth value of the node associated with the
proposition to a truth value and marks that node as an assumption which
can be recognized by the backtracker. It does this via a call to default as
described above. ’
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UNLESS

{(unless <propl> <prop2>)

This gives prop2 a true default value and installs a unidirectional
implication such that if propl becomes true prop2 will be deduced to be
false. However since this implication is. unidirectional the assumption that
propl s true will not result in a deduction that propl is false. This
primitive depends on the impiies-uni facility described above and is of
questionable utility.

PREDNOT

{prednot <prop>)

WHY

If the proposition is a TMS node or an assertion s-expression this
returns a dotted pair of the TMS node and "false”. Thus (prednot
<node>) is equivalent to (cons <node> 'false). And (assert (prednot
<node>) ) is equivalent to (set-truth <node> 'false ‘premise). If the
argument to prednot is already an association of a node and a value then a
pair of the node and the opposite value is returned.

(uhy <query>)

A query is either a proposition or a numerical reference to nodes
mentioned in previous explanations generated via why. Applications of this
function can be divided into three cases. First, if the node referenced in
the query has an unknown truth value then a simple statement to that
effect is printed. Second, if the node has a truth value which was given as
a premise then the truth value is stated and the user is told that it is a
premise and gives him the value of the setter argument used when the
premise was made. Finally, if the node has a deduced truth value then the
associated truth value is stated along with a numbered list of supporting
terms. The number associated with each term can be used to reference
that term in the next use of the why function.
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The number O can be used to "pop" back to the previous
justification and allow numerical references to terms in that justification.
Therefore it is very easy to walk across the support tree for any assertion
via numerical references to the supporting terms.

->
(-> <propl> <prop2>)

If the propositions are simple nodes or assertions the above
expression returns a TMS node which has the following TMS constraint
imposed: '

{or ({(-> <nodel> <node2>) . falsel
{<nodel> . false)
{<node2> . truel)

If the propositions are simple nodes or assertions an appropriate constraint
is installed for the associated truth values.

PREDOR
(predor <propl> <prop2> <prop3> ...)
If the arguments are simple nodes or assertions the above form

returns a node with the below TMS' constraints imposed. Otherwise
analogous constraints are imposed for the associated truth values.
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{or {(predor <nodel> <node2> ...) . false)
(<nodel> . true)

{(<nodeZ> . true)

ve)
{or (<nodel> . falsel ((predor <nodel> <node2> ...) . true))

(or {(<nodeZ> . false) ((predor <nodel> <nodeZ> ...) . true})

PREDAND

(predand <propl> <prop2> <prop3> ...)
This is analogous to predor.

PRESUMABLY
(presumably <prop>)

This predicate performs the following side effect involving the
node returned:

(assume (-> '(presumably <prop>) <prop>))

DEFPRED

The defpred construct is a means of defining TMS predicates. A
defpred can have the same syntax as a LISP defun. The node returned by
a predicate defined with defpred represents the assertion that the predicate
is true of the objects to which it was applied. The body of a defpred is a
list of forms which evaluate to either a TMS node or nil. During an
application of the defined predicate, if a form in the body evaluates to a
TMS node then that node will be implied by the node returned as the
value of the predicate application. If the form returns nil it has no effect
on the node returned from the predicate application. Some examples are
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given below:

{defpred vertebrate (x))
(defpred flys (x))

{defpred bird (x)
{vertebrate x)
{(flys x))

(defpred hairy (x))
{(defpred female (x})
(defpred bears-live-young (x))

{(defpred mammal (x)
(vertebrate x)
{presumably (hairy x})
{presumably (-> (female x)
(bears-tive-young x)}))

(defpred duck-bitl (x)
{(mammal x)
(prednot (bears-1ive-young x}))

The following is a dialogue with the system using the above predicates.

(assert (mammal ' joe))
{(MAMMAL JOE)
(assert (female '
(FEMALE JOE)

joel)

(uhy (vears-live-young ' joe))
((BEARS-LIVE-YOUNG JOE) IS TRUE FROM)
{1 (FEMALE JOE) 1S TRUE) ‘

(2 €-> (FEMALE JOE) (BEARS-LIVE-YOUNG JOE)) IS TRUE)
T.
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{uhy 2) :
{{-> (FEMALE JOE) (BEARS-LIVE-YOUNG JOE}) IS TRUE FROM)
(1 (PRESUMABLY (-> (FEMALE JOE) (BEARS-LIVE-YOUNG JOE))}) IS TRUE)
(2 (-> (PRESUMABLY (-> (FEMALE JOE) (BEARS-LIVE-YOUNG JOE)))
(-> (FEMALE JOE) (BEARS-LIVE-YOUNG JOE)))
IS TRUE)

(uhy 2)
{{PRESUMABLY (-> (FEMALE JOE)} (BEARS-LIVE-YOUNG JOE))) IS TRUE FROM)
(1 {(MAMMAL JOE) IS TRUE)
(2 (-> (MAMMAL JOE)
(PRESUMABLY (-> (FEMALE JOE) (BEARS-LIVE-YOUNG JOE))) 1))

{uhy 1)
({(MAMMAL JOE) 1S TRUE AS A PREMISE SET BY PREMISE)

(assert (duck-bill *joe))
(BUCK-BILL JOE)

{uhy (bears-1ive-young ' joe))

{{BEARS-LIVE-YOUNG JOE) IS FALSE FROM)

{1 (DUCK-BILL JOE) IS TRUE)

(2 (->- (DUCK-BILL JOE). (NOT (BEARS-LIVE-YOUNG JOE))) IS TRUE)
T

The repeated application of a predicate to the same arguments
returns the same node, but the body of the defpred is only evaluated on
the first call. Thus predicate applications can be used in such places as the
antecedents of implications, or simply in getting hold of a TMS node to
use in a query, without of generating multiple copies of TMS constraints.

There is an alternate syntax for defpred in which the bound
variable list is replaced by an atom which is bound to a list of the values
of the arguments in a application of the defined predicate. The following
use of this syntax is from electrical circuit analysis:



(defpred node terminals
‘ (ce= B *{+ , (mapcar *{iom
(let (lnade-potentist *

p Aterw) “touerent ,termd] terms)))
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Naming System Utilities

i
1l

(== <designator]> <designator2>)

This is a predicate which returns a TMS node representing the
equality of two designators. The node returned has a true-noticer attached
to it that wakes up certain naming routines when the equality node
becomes true.

WHAT-IS
(what-is <designator>)

This returns the canonical name of <designator>’s equivalence
class. '

SOLVE-FOR
(solve-for <designator>)

This function "solves for" a particular quantity. This is done by
plunking quantities it can be expressed in terms of. The value found for
the designator in question may contain plunks. If this happens the solve-
for function can be applied to these plunks which initiates further
plunking. If the constraints in the system do not determine the designator
whose value is sought then its canonical name will be left in terms of
plunks.

EVALFUN

Evalfun is used to define evaluation functions for operators which
are used in designators. This evaluation function can be applied to any
designator which has the appropriate top level operator. Evalfun has the
exact same syntax as defpred. The only difference between an application
of a predicate defined via defpred and an application of an evaluation
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function defined by evalfun, is that terms returned by forms in the body
of an evaluation fuaction are made true as prewsises instead of being
implied by some other node. The foliowing s an example of the use of
evalfun for doing the addition of m with n evaluation function for
a two piace addition operator:

(eval fun + args
Gt (appm and (napcar ' numberp argsn
(s= ‘(+ ,eargs) (apply plus argsl}))
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Appendix Two
The Equality System Code

This appendix contains the LISP code for the basic equality system.
There are functions and macros used, but not, defined here, which are not
standard lisp primitives. Some of these are adopted from the LISP MACHINE
project at the MIT AI lab. Others are parts of the authors personal. utility
package. It is hoped that the reader can infer the actions taken by these
functions and macros from their context and pnuemonic names. However if the
reader feels that some ambiguity exists a description of these functions and
macros is supplied in appendix five.
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892 (declare (special tnoticers? zremoved-listi% %contradictionst virace ctrace nirace

883 ztrus-nodes wdesignatorsk sthink-queue¥ kname-gueues
884 think-trace

0885 . *better-pred2 #coincidences))
806

887  (deftype (designator)

:1:1) desig-hash-val -

089 expansion T

8ie eq-iinks

811 marker

0812 eq-oriqin-node

813 transtation

814 sub-memo-node

815 memoizations

816 stimulate-list

017 uniqueness

a138 opagueness

819 Weight

829 plunk-ueight)

821

822, (defmacro primitive® (name)

823 ‘{atom fevpansion ,name)))

824

825 (defmacro number® (name)

026 “* (numberp (evpansion ,name)))

827

828 (defstruct (marker)

829 origin

838 canonical

831 : canonical-node

832 active-node)

833

834 (defun names-init (better-pred coincidence)
835 (tms-init)

836 (hash-array 'idesignatorss 2047)
837 (name-type ’designator)

238 (name-type 'marker)

839 (setq think-trace nil)

840 (setq +think-queuer nil)

841 (setq 2nama-_queuex nif)

842 (setq thetter-pred: better-pred)
843 (setq rcoincidences coincidence)
844 {setq 2true-node: (dependency-node ’true-by-definition))
845 (set-truth sztrue-nodes 'true ’definition))

846
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002 (defun designator (evp)

003 (designator? (>>evpand exp)))

804

ee5 (defun designatorl (exp)

066 (if (designator”® exp)

007 exp

008 (lets ((designator-exp (if (atom exp) exp (mapcar 'designator2 exp)))
289 tas (table-asscr designator-exp ’sdesignatorss)))
819 (if (cdF as)

a1l ledr as)

012 (let {{n-designator (make-designator)))

813 (rplacd as n-designator)

014 (sett (expansion n-designator) designator-exp)
81s (setf (translation n-designator)

816 Gt (atom exp)

917 evp

218 {mapcar ' (lambda (des) (transiation des))
819 designator-exp)))

020 (name-inspect n-designator)

821 . n-designator)))))

0822

823 (defun name-inspect (name)

824 ) (it (not (primitive? name))

82% (let ((op (evpansion (car (expansion name)))))

826 (it (atom op)

827 {mapc ' (tambda (oper)

828 laddf *(,oper ’ name) (stimuiate-list name)))
829 {operator-dets op))))))

830 .

831 (defun >>evpand (arp)

832 (cond ((or (atom exp) (designator? exp))

833 erp)

834 ((eq (car exp) ’>>)

835 (>>expand-2 (cdr exp)))

836 {t (cons (>>expand (car esp))

837 {>>erpand (cdr exp))))))

838

839 (defun >>expand-2 (exp)

040 (cond ((nult (cdr exp))

B4l {>>expand (car exp)))

042 (t (list (>>ewpand (car axp))

843 (>>expand-2 (cdr exp))))))

844
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002
083
284
285
886
097
008
089
010
eit
812
813
814
815
816
817
818
819
0820
021
822
823
824
825
026
027
828
829
838
a3t
832
833
034
835
036
837
838

(detun marked” (des)
(let ((ml (marker des)))
(and m}
(true” factive-node ml))
(true® (aq-origin-node des))
(tet ((can (canonical ml)))
(and (eq ml (marker can))
~-(true” (eq-origin-node can)}}))))
(detmacro insure-marked (das)
‘it (not (marked?  des)) (initiate-marker ,des)))

(defun class-name (das)
{insure-marked des)
(canonical (marker des))

(defun uhat-is (evp)
(let ((des (designator exp)))
(insure-marked des)
(think)
(translation (class-name des))))

(defun insure-all-marked (desigs)
(do ((rest desiys (cdr rest)))
({cond ({null rest) t)
(tnot (marked? {(car desigs)))
Ginitiate-marker (car desigs))
(insure-al|-marked desigs)
)

(defun image (des)
(cond ((primitive? des) des)
- {t Cinsure-ail-marked (expansion das))
(let ((exp (expansion des)))
(let (tim-exp (mapcar 'class-name exp)))
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(it tequal im-exp exp) des (designator im-exp)))))))
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006
807
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099
810
8l
812
813
014
815
816
817
018
019
820
821
822
823
824
825
0826
027
028
029
838
831
832
833
834
835
836
837
0838
939
040
041
0842
843
844
945
046
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(defun canonical? (des)
(insure-marked des)
(lete ((ml (marker des))
(nodel (eg-origin-node des))
(node? tactive-node ml))
(node3 (canonical-node ml)))
(it (and (true? nodel)
—-{true® node?)
teq des (canonical mi)))
(list nodel node2 node3))))

(defun intern-canonical? (des)
(if (primitive® des)
(list xtrue-node:)
(do ((desiqs ferpansion des) (cdr desigs))
(nodes nil)) :
({rull desigs) nodes)
(et ((nodes? (canonical? (car desigs))))
(it nodes?
(setq nodes (nconc nodes nodes?))
(return nil))))))

(defun equal? (desl des?2)
(cond ((eq desl des2) (list strue-nodes))
(t Cinsure-all-marked (list desl des?))
(it (eq (marker desl) (marker des2))
(tist (ag-origin-node desl) (eqg-origin-node des2))))))

(defun intern-equal? (desl des2)
(if (eq desl des2)
#true-nodes
tlet ((expl texpansion des}))
tevp2 (expansion des2)))
(it (and (not (atom expl))
(not (atom exp2))
(= (ncdrs expl) (ncdrs exp2)))
(do ((desigsl expl (cdr desigsl))
(desigs2 exp2 (cdr desigs2))
(nodes nil))
((null desigsl) nodes)
(let ({nodes2 (equal? (car desigsl) (car desigs2))))
(it nodes?
(setg nodes (nconc nodes nodes?))
(return ni1))))))))

Page 4
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082 (defun == (evp] evpl) )

883 © (equaliity (designator expl) (designator exp2)))
084
805 (defun equality (namel namel)
006 (it {aq namsl name?)
(:1: )4 strun-nodae:
008 (lat (tag-node fequality-node namal name?)))
809 -=lcond ((not (evaluated® eq-node))
818 - (evaluated! eq-node)
a1t {add$ (cons name? eq-node) (eq-links namel))
812 {addt (cons namel eq-node) (eq-links name2))
813 (true-noticer eq-node ‘(link-check ' namel ' name2 ' eq-node))
814 (let ({eg-nodes (equa!® namel name2)))
815 (if eq-nodes
gl6 (implies eq-nodes eq-node)))))
817 eq-nors)))
218
919 (defun equality-node (desl des2)
020 (dependency-node (it (eq 'less (scomp (translation desl) (transiation des2))}
021 : ‘(== ,(translation desl) , (transiation des2))
822 ‘(== ,(transiation des2) , (transiation desl)))))
823
824 (defun Vink-check (desl des? eq-node)
82 (if (marked® des])
826 (it (marked® des?)
827 (1# (eq (marker desl) (marker des2))
828 (implies (list (eq-origin-node desl)
29 feq-origin-node des?)) .
830 eq-node)
831 Git (rue® eq-node)
832 tif (funcall shetter-preds
833 (canonical (marker desl))
834 (canonical (marker des2)))-
83s (mark des? (marker desl) {eg-origin-node desl) eq-node)
836 (mark desl (marker des2) (eq-origin-node des?) eq-node))))
837 . Gif {true” eg-node)
838 (mark des? (marker desl) (eq-origin-node desl) eq-node)))
839 (if (and (marked? desl) (true? eg-nods))
840 (mark dasl (marker des2) (eq-origin-node des2) eq-node))))

841
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8082 (defun initiate-marker (des)

883 . (let ((ml (make_-marker)))

804 (setf (origin ml) des)

0805 (setf (canonica! ml) des)

806 (let ((node] (dependency-node ‘{canonical ,ml ,(transiation des))))
007 (node2 (dependency-node ‘{active ,m1))))

888 {zet{ (canonical-node ml) nodel)

869 TZ_(set-truth nodel ‘true ’inttiator)

210 Tsetf (active-node mi) nodel)

11 (sat-truth node? 'true 'initiator)

812 (mark-2 des ml 2true-nodes)

a13 ml)))

3]

815  (defun mark (dez ml eqg-origin-nodel eq-node)

816 (let ((eq-origin-node? (equality-node des (origin ml}))))
817 (implies (list eq-origin-nodel eq-node)

818 eg-origin-node2)

819 (let ({can (canonical m1}))

228 (it (funcall tbetter-preds des can)

821 (make-canonical ml des))

822 faddf ‘'t scoincidence: ’,can ’,des) sthink-qusues))
823 (mark -2 des ml eq-origin-node2)))

024

82 (defun make-canonicatl (ml des)

826 (let ((tnoticers: nil)

827 (:removad-lists nit) :

828 (node {(dependency-node ‘(canonical ,ml ,(transiation des)))))
829 (remove-2 (canonical-node mi))

230 (setf (canonical ml) des)

831 {setf (canonical-node ml) node)

832 (set-2 node 'true 'premise 'marker)

833 (removed-check)

034 (run-noticers)}))

835

936 (defun mark-2 (des ml noda)

937 (tet ((m2 (marker des)))

038 ) (it (and m2 (not (eq ml m2)) (true? (active-node m2)))
839 (remove-truth (active-node m2))))

8480 (setf (marker des) ml)

041 (set! (eq-origin-node des) node)

842 (stimulate des)

943 (mapc ' (1ambda (1ink) (link-check des (car !ink) (cdr link)))
044 (eq-1inks des)))

845
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(declare (special m-lisn)

(detun equiv-class wm
that ((done-list nit))
leqiiv-classl dis)))

(datun squiveclidssl (des)
(cond ((pat (memn des dene-1ist))
(s0tq dene-list (cons dos done-listh)
(cons des
(npem ! Ctowieds Nmﬂ GF tew? hﬁ‘ [T T
llﬂ har H*”H
tag=links dus))11)}

(defun vieu-all (exp}
(nmapcar ’transiation (egmiveclass m ap))

(dotun view-cliass (up)
(imapcar * (iankda (desl) m mwmmim (Wﬂmﬁd}ﬂ
toquiv-class (dnuuhr mpliny
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- (defun substitite (des)

UHet ((desl (image des)))
(let (leq-nodes (intern-egual? des des2))
{can-nodes (intern-canchical? des2)))
it dor (null ey-nodes) (null con-nedes))
(brosx (subptitution nmnm
(if think-trace )
dprint *limage ,(iransiation do3) y (tronsistion des2))))
(cond tinot (en des des2)) ’
(implies eq-nodes (equatity des des2})
Uiet ({mem-node (dependency-neds 'ummo
(m&ﬂn dos)
Ltransiotion 90420 ))))
(unknown-neticer men-node ‘hlm%ﬂ. ! JOn¥)
(implies ag-nedes men-neds)
(set{ (sub-memo-node des) men-neded})) .
(aulo-sub des? con-npdes))))

(defun_auto-sub (des can-nodes)
(lat ((mem-node? (dependency-node °(intern-canenical ,mmmm dos)))))
lunkneun-poticer mem-node? ‘(stimuiate ' des))
(implies can-nodes mem<nede?)
(sett (sub-memo-node dos) mem-nede2)))
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802 (defun stimulate (des)

083 (it (or {null rname-queues)

804 (not (funcall zbetter-preds (car zname-queues) des)))
ees (add! des iname-queuer)

886 (insert des zname-queuez)))

887 .

208 (deftail insert (daes queue)

0809 (it (or Lnull (cdr queue))

810 (n3t (tuncall thetter-preds (cadr queue) des)))
a1l (addf des (cdr queue))

812 (insert des (cdr queue))))

813

014 (deftai! think ()

81S (cond (#think-quenes

816 (tet ((closure (car tthink-queuex)))

817 {setg 2think-queues (cdr =think-queues))
818 (1t think-trace (/fprint (list-translation closure)))
819 , (eval closure)

828 (think)})

821 (+name-queue>

822 (fet ((des (car tname-queuex)))

823 setq :name-queues (cdr *name-queuet))

824 (it (and (not (primitive? des))

825 (not (true? (sub-memo-node des))))
826 (sybstitute des))

827 (it (eq des (class-name des))

028 (think2 des)) :

829 (think)))))

838

831 (deftai! think2 (des)

832 (et ((closure (car (stimilate-list des))))

933 (cond {closure

834 {delf closure (stimulate-list des))

835 (it think-trace (/#print (list-translation closure)))
836 (eval closure)

837 (think2 des)))))

2838

833 (defun print-val (axp)

849 (let ((des (designator exp)))

841 (insure-marked des)

842 (think)

043 (/#print ‘((ths value of)

044 : , (translation des)

845 is

046 . ,(translation (ctass-name des)))}))

0847
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882 (defun fund-coincidence (desl des?)

883 nil)
0884
285 (defun fund-better (des] des?)
806 (eq ’less (fund-comp des] des2)))
807
- 908 {defun fund-comp (des] des2)
889 (comp (superior-class 'unique? desl des2)
810 ‘less
811 {comp (superior-class ’'opaque? des] des2)
812 ‘greater
013 {num-comp (virt-weight desl) (virt-weight des2))
814 ‘less)
815 ‘qreater))
816
817
818
219 (defun unique” (des) .
820 (tet ((unp (uniqueness des)))
821 - (or (eq unp 'true)
822 (and (not (eq unp ’false))
823 (cond ({numberp (expansion des))
824 {setf (uniqueness des) ’true)
25 t)
826 ({primitive? des)
827 (sett (uniqueness des) ’false)
828 nil)
029 ({at1-unique? (evpansion des))
830 (satf (uniqueness des) ’true)
831 )
832 (t (setf (uniqueness des) ’false)
833 nit N
834
a3s (defun alt-unique? (desigs)
836 (or (null desigs)
237 (and (unique? (car desigs))
038 {ali-unique? (cdr desigs)))))
833
840 (defun unique! (evp)
841 (let ((des (designator exp)))
842 (if (uniqueness des)
843 (break (unique! applied to an uniqueness determined object))
044 (setf (uniqueness des) ’true))))

045 .
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802 (defmac opaque? (des) ¢

003 (tet ((opq (opanueness des)))

804 {or (eq opq ’true)

05 (and (not (eq opq 'false))

0886 (cond ((primitive? des)

887 (setf (opagueness des) 'false)
0088 -nil)

089 . -~ {(some-opaque? (expansion des))
o1e - f{set{ (opaqueness des) ’trus)
811 t)

912 (t (sett (opagqueness des) ’false)
213 nil))1ry)

814

ais (defun some-opaque™ tdasigs)

816 (and desigs

817 (or (opaque? (car desigs))

818 {some-opaque? (cdr desigs)))))

819

828  (defun opaque'! (ewp)

821 (let ((des (designator axp)))

822 it (opaqueness des)

923 (break (opaque! applied to an opaqueness determined object))
824 (setf topaqueness des) 'true))))

82

826

827

828

0829

830  (defmac virt-ueight (des)

831 (let ({ugt (ueight des)))

832 Git ugt

833 ugt

834 (cond ((primitive? des)

835 (sett (weight das) 1)

836 D

837 (t (tet ((ugt (sum-weight (expansion des))))
838 (sett (ueight des) wgt)

839 ugt) 1))

840

041 (deftail sum-uweight (def)

042 (it (null dat)

843 [:]

844 (+ (virt-ueight (car def))

045 (sum-uaight (cdr def)))))

846
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Appendix Three
The Algebraic Simplifier

Algebraic simplification is done in the equality system in the same way
as numerical computation. Evaluation functions are placed on algebraic operators
which generate equalitics between algebraic expressions and simplified forms of
those expressions. Simplified versions of algebraic expressions are generated with
a simplification function which operates on algebraic expressions and is
completely separate from the equality system and the TMS. This section
discusses the algorithms employed by that simplifier.

There are some well known algorithms for handling the simplification of
ratios of polynomials [Knuth 69]. These algorithms were implemented in a
symbolic mathematical package developed at MIT [MACSYMA 77), and from
there incorporated into a recent electrical circuit analysis system (SYN) developed
by Johan de Kleer and Gerald Sussman [de Kleer & Sussman 78]. In the SYN
system all expressions are converted to a canonical form which is a ratio of two
polynomials. The variables are given global priorities and the polynomials in a
canonical representation are polynomials in the highest priority variable occurring
in them. The coefficients of such polynomials are canonical polynomials in the
other variables. Synthetic division and greatest common divisor algorithms are
used to remove common factors from the numerator and denominator of a ratio
of two polynomials. This canonical form is truly canonical in that any two forms
of a rational function will simplify to the same canonical expression. In this way
simplification can be guaranteed to the extent that any expression can be placed
in canonical form.

A major problem with the symbolic algebra routines used in SYN is that
computation of the gredtest common divisor (gcd) of two polynomials in many
variables is a very expensive operation. It was found in fact that this was the
major limitation on the complexity of the circuits which could be analyzed in
SYN. While recent developments in polynomial ged techniques may improve this
situation [Zippel 79), the simplification routines used in the equality system
represent an attempt to avoid heavy reliance on ged algorithms.

Instead of reducing all expressions to a .canonical polynomial formn the
algebraic simplifier used in the equality system is capable of maintaining factored
forms of expressions. This allows factors to be removed from the numerator and
denominator of a ratio by a simple search for common factors. It is not practical
to factor all polynomials since this is much harder than computing geds, but once
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an expression appears in factored form that factorization is not lost. This has the
disadvantage that expressions are not placed in a truly canonical form, ie. two
expressions which are really the same might be simplified differently if one was
more factored than the other.

In the equality system simplifier expressions are placed in pscudo-
canonical form which is actually very similar to the canonical form used in SYN.
Each expression in this pseudo-canonical form is a ratio of two products of
polynomials. The variables have global priorities and polynomials are always
polynomials in the highest priority variables appearing in them. The coefficients
of these polynomials are again products of polynomials in lower priority variables
and factors appearing in all the coefficients are factored out of the polynomials.
Factors which are common to both the numerator and denominator of an
expression are removed from a ratio, but no attempt to find hidden common
factors via a ged algorithm has been incorporated.

It would be very simple to add the ability to factor simple quadratics. It
would also be possible to incorporate a ged algorithm to guarantee complete
removal of common factors from the coefficients and cancellations of all factors
common to the numerator and denominator of a ratio. The polynomials to
which the gcd would be applied would be considerably simpler in the system
developed here than in a system which does not maintain factored forms.

The simplification system uses an architecture developed by Gerald
Sussman in which the basic simplification mechanism is a set of "symbolic
operators” which compute the pseudo-canonical form for the sum, difference,
product or ratio of expressions already in canonical form. A procedure for
simplifying arbitrary expressions can be built which uses the symbolic operators to
recursively simplifying subexpressions and then applies the symbolic operator
corresponding to the top level operation. Products and ratios of expressions in
pseudo-canonical form are very easy to handle since all that must be done is the
merging of factors and the cancellation of factors common to the resulting
nuinerator and denominator. Subtraction is trivially reduced to multiplication
and addition, which is the most involved symbolic operation.

Addition is done in two phases. First the expression is converted, in a
straightforward way, to a ratio of a sum of two products and a product. The
second step is the addition of the two products in the numerator. The first step
in the addition of products is to remove common factors. Next, the highest
priority variable of the two products is found, and each product is expanded into
a polynomial in this variable. The coefficients of these polynomials are then
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recursively added term by term. Finally factors which are common to all the
coefficients of the resulting polynomial are removed a1d the result of the original
addition is a product of polynomials.

If any product or polynomial can be simplified to zero this algorithm is
guaranteed to do that simplification. This can be shown by observing that if any
of the factors of a product simplify to zero then the product will also, and that
all the factors are polynomials in some variable. A polynomial in a given variable
will simplify to zero only if all of its coefficients do, and these coefficients are
either numeric or are simpler products of polynomials which, by an induction
hypothesis, simplify to zero if such a simplification is possible.

In the equality system each subexpression of an expression is a designator
in its own right and can have properties attached to it. This can result in
substantial space savings since all references to a particular expression point to
the same data structure. This also makes it easy to memoize the simplification
process which can result in significant time savings when an expression appears
inside several different larger expressions or several times within the same
expression.

Another important point about the algebraic simplification system is that
subexpressions which do not have top level algebraic operators are treated as
variables. This allows the algebraic system to manipulate arbitrary functional
expressions, .which it has no knowledge of. For example there is no problem in
dealing with (sin x) or (In (** x y)). These sub-expressions can be dealt with
independently in the equality system, which is capable of substituting
simplifications of them into algebraic expressions.

The code for the algebraic simplification routines follow.
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(defun operator (exp)
(if (not (aigebraic? exp))
nil
(car evp)))

(defun operands f(exp) .
(it (not takgebraic? exp))
nil—_
(cdr Bvp)))

(defun make-prod (scale sumlist)
(cons '+ (cons 'scale sumlist)))

(defun numer-prod (evp)
(cond ((numberp avp) (make-prod evp nil)}
((not (algebraic? evp)) (make-prod | (list exp)))
(t (let ((op (operator exp)))
" lcond (leq op '// ) (numer-prod {cadr exp)))
((eq op '%) exp)
(t (make-prod | (fist exp))N)))))

(defun denom-prod (exp)
(cond ((not lalgebraic? exp)) (make-prod 1 nii))
(t (et ((op (operator exp)))
(cond ((eq op '// ) (numer-prod (caddr exp)))
(t (make-prod 1 nil)}))))))

(defun pnf_zero? (evp)
(= 8 (car (operands {(numer-prod exp)))))

(defun algebraic® (exp)
(and (not (atom exp))
(not (numberp exp))
(memgq (car exp) '(s ~ % // N)))

(defun numerical? (e«p)
(or (numberp exp)
(let ((op (operator exp))}
(cond ((eq '+ op) (null (cdr (operands exp))))
{(eq 'rat (operator exp)) t)
(leq '// (operator exp))
(and (numerical? (numer-prod exp))
(numerical? (denom-prod exp)}})))))

(de!un variable® (exp)
. (not (or (algebraic? exp)
(numerical® exp))))

(defun sign (prod)
(let ((n (cadr prod)))
(make-prod (// n (abs n)) nil)))

(declare (special svar-comps))
(setq #var-comp: ’scomp)

(detun make-best-var (var old-var-comp)
*(lambda (varl var2)
(comp (superior-class ’(lambda (var3) (eq vard ', var))
var] var2)
'less
(,0ld-var-comp varl var2)
'greater)))

(defun poly-comp fpolyl poiy2)
fcomp (funcall zvar-comps (poly-var polyl) (poly-var poly2))
‘qreater
(scomp polyl poly2)
‘less))

Page |
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(defun * % _+ (prodl prod?2) ' .
(et ((factorsl (operands prodl))
(factors2 (operands prod2)))
(make-prod (v (car fectorsl) (car factors?))
(comb-factors (cdr factorsl) (cdr factors2)))))

(defun comb-factors (factorst factors?)
(cond ((put! factorsl) factors?)
(tnuTl factors?) tactorsl)
(4 (comp (poly-comp (car factorsl) (car factors?))
{cons (car factors2)
(comb-factors factorsl (cdr factors?)))
(cons (car factorsl)
(cons (car factors?)
(comb-factors (cdr factorsl) (cdr factors2))))
(cons (car factorsl)
(comb-factors (cdr factorsl) factors2))))))

(defun gcd_:_+ (prodt prod2)
(it (= B8 (cadr prodl))
(make-prod { ni )
(make-prod (gcd (cadr prod]l) (cadr prod2))
{prod-intersection (cddr prodl) f{cddr prod2)))))

(defun prod-intersaction (factors! factors2)
(cond ((nul) factorsl) nil)

((nuil factors2) nil)

(4 (comp (poly-comp {car factorsl) (car factors2))
(prod-intersection factors) (cdr factors2))
(cons (car factorsl)

(prod-intersection (cdr factorsi) (cdr factors2)))

(prod-intersection (cdr factorsl) factors2)))))

3 this division algorithm assumes that prodl is an explicit multiple of prod2.

(defun //_x_2 (prodl prod2)
{make-prod (// (cadr prodl) (cadr prod2))
(factor-detetion (cddr prodl) (cddr prod2))))

(defun factor-deletion (factors! factors?
(cond ((null factorsl) nit) '

({rull tactors2) factorst)

(t (comp (poly-comp (car factorsl) (car tactors2))
(factor-deletion factors! {(cdr factors?))
(factor-deletion (cdr factorsl) {(cdr factors2))
(cons (car factors])

(factor-deletion (cdr factorsl) factors2))))))
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812
813
814
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021
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(de fun

(detun

(defun

(de fun

(defun

(de fun

(de fun
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terms (poiy)
Gif (variabie” poly)
(ist (make-prod | (1ist poiy)))
(operands poly)))

poty-var (poly)
(cond ({nult poly) nil)
({uariable? poly) poiy)
((numerical® poly) nil)
(t (et ((first fcadr (operands (car (operands poly)))i})
{cond ((variable? first) first)
(t (break non-polynomial-sum)})))))

poly-mult (termsl termsl var)
(cond ((null var) (break "null-var-in-poly-muit)})
((nutl termsl) nil)
(t tiet ((irst (car termsi)))
(poly-add (mapcar '(lambda (prod) (2_s_z first prod))
terms2)
(poly-mutt (cdr termsl) terms2 var)
varl)))))

poly-add (terms] terms2 var)
(tet ((result (poly-add2 termsl terms2 var)))
(cond ({pnt_zero” (car result))
(cdr result))
(t result)))

poly-addl {termsl terms2 var)
{cond ((nul) var) (break ‘null-var-in-poly-add))
((nul! termsl) terms2)
(Inutl terms2) termsl)
(t (let ((order} (order? (cdr (operands {car termsl))) var))
(order? (order2 (cdr (operands (car terms2))) var)))
(cond ((= orderl order?)
{cons (prodsum (numer—prod (car termsl))
{numer-prod (car terms2)))
(poly-add (cdr termsl) (cdr terms2) var)))
((> order]l order?)
(cons (car termsl) (poly-add (cdr termsl) terms2 var)))

Page 3

{t (cons (car terms2) (poly-add termsl (cdr terms2) var))))))))

order (poty) .
(erder? (cdr (operands (car (operands polyl)})) (poly-var poly)))

order? (factors var)
(if (eq (car ‘factors) var) (l+ (order? (cdr factors) var)) 8))
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(defun coeficients (poly)
(cond ((variable? pely) (iist tnu-md F)
(makg-prod | nit)))
{énumberp pely) tlist {nake-prod poty aitl))
(% (coet? (reverse (operands peiy))
- {poliy-var poly)
- Mo

(datun coel2 (terms var init-order)
(it (nubl terms)
nil
tiet (lol (order2 (cdr (operands (car terms))) vawld))
(it (« ol initeorder)
(iot ({p-terns (aparanis (cor termsiM))
(cons (make~prod kvm

feons @ (coel? terns var 1 tmhmﬁ‘ﬂ”)

 (dotun coetd (urn var)

(if (eq fcor terms) var)
(coel3 (edr torms) var)
lor-f:))

MONDX 3 18/21/79 _Pege 4
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) (defun

(detun

(defun
(defun

(defun

(de fun

(defun

-_pnf_1 (exp)
(let ((n (numer-prod exp)))
(tist *//
(make-pred (& -1 {cade n)) (cddr nH
(dowod oxp))))
-_ont (args)

(it (cdr-args)
(s _pni” Chist (car args)
t-_pnf_{ (cadr argsl))))
(-_pM 1 (car args))))

177 texp) )
(list *// (denom-pred exp) (numer-prod exp)))

//_pni targs)
(e_pnt (list (car args) (1// (cadr args)))))

s _pni (args)
(cond (te (longth args) 1) (cor srqm))
(t (simprod (car args) (o _pnt (cdr args))))))

simprod (evpl ewp2)
(et ((top-prod (+_s_s (numer-prod expl)
' . (numer-prod exp2)))
(bottom-prod (x_s_s (denom-prod expl) -
(denow-pred exp2))))
(et ((common-prod (gcd_s_s top-prod umo-;ntm
(tist *//
(//_s_+ top-prod cmﬁ)
(//_s_s bottom-proé commen-prad))}))

»_pnt (args)

(cond ((x (length args) 1) (cor args))
{(t (simpsum (cor arqsl (e pnt (cdr args I
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98l
002
803
884
095
096
087
808
089
018
811
812
813
814
015
016
817
818
919
828
821
822
823
024
825
026
027
028
029
038
831
932
933
834
835
036
037
038
039
848
941
042
843
844
045
046
847

<848
849
050
851
052
053
054
055
856
057
058
059
0680
061
062

864
865

866

067

(detun

(de fun

(de fun

(detun

(de fun

(defun

(de fun

(defun
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simpsum (evpl expl)
(let ((topl (+_¢ ¢ (numer-prod expl) (denom-prod exp2)))
(top2 (:_t_x (numer-prod erp2) (denom-prod expl)))}
(ist ((top-prod (prodzum topl top2))
(hottom-prod {(+_:_* (denom-prod expl) (denom-prod exp2))))
(let ({common-prod f{gcd_t_s top-prod bottom-prod)})
- (if (not (pnt_zaro? top-prod))
- (list *//
e (//_%_% top-prod common-prod)
(//_%_% bottom-prod common-prod))
Gif (pnf_zero? bottom-prod)
(break indeterminate-value)
(tist '// top-prod 1))

prodsum (prodl prod?)
(let ((com-faci (com-factor (list prodl prod2)))?
(tet ({rest-prod (con-sum (//_2_% prodl com-fact)
(//_+_* prod2 com-tact))))
(if (= (car (operands rest-prod)) 8)
{maxe-prod 8 nil)
(:_¢_# com-fact rest-prod)))})

con-sum {(terml term?2)
(it (and (numerical? terml) (numerical? term2))
(make-prod (+ (car (operands terml)) (car (operands term2))) nit)
(let ((varl (poly-var (cadr {operands term]))))
{var2 (poiy-var (cadr (operands term2)))))
(cond ((eq varl var2)
(factor (poly-add (expand termi) (expand term2} varl)))
(lor (nultl var2) (and varl (eq ’less
(funcal! =var-comps varl var2))))
(factor (poly-add (expand terml) (list term2) varl)))
(t (factor (poly-add (expand term2) (list terml) var2))}))))

evpand (prod)
(let ((opers (operands prod)))
(if (hutl (cdr opers))
(tist prod)
tevpand? (car opers) (cdr opers)))))

aexpand? (scatle factors)
(cond ((null factors) (list (make-prod scale njl)))
((eq (poly-var (car factors)) (poly-var (cadr factors)))
(poty-mult (terms (car factors))
(expand? scale (cdr factors))
(poly-var (car factors))))
(t (let ((rest (make-prod scale (cdr factors))))
(mapcar ' (lamhda (prod) (%_%_% prod rest))
(terms (car factors)))))))

factor (terms)
(cond ((null terms) (make-prod @ nit))
(null (cdr terms)) (car terms))
(t (let ({common (: s x (sign (car terms)) (com-factor terms))))
(#_+_% common
(make-prod 1 (list (cons '+ (mapcar ’(lambda (prod)
(//_%_% prod common))
terms))))IN))

com-factor (sumlist)
{com-factor2 (car sumlist) (cdr sumlist)))

com-factor?2 (factor sumlist)
(cond ((null sumlist) factor)
(t (com-factor2 (gcd_z_s tactor (car sumiist)) (cdr sumlist)))))
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082 s;solve returns a dotted pair, .

803 sthe car of the pair is a list of sums whoes product must not be zero.

804 3the cdr of the pair- 1s a list of roots of the equaition, they are not in canonical

[:3:11 ; form however and must be simplified before being passed as arguments to symop functions.
886

887 (defun solve (evp var)

ees , (tets (Livar-comp: (make-hest-var var tvar-comp#))

8989 (e=pl (simplification exp)))

ele (if Tor (pnf_zero? (numer-prod exp2))

211 (pni_zero? (denom-prod exp2)})

012 nil

813 (let (((non-zaro . rools)

814 (solve2 (cdr (operands (numer-prod exp2))} var)))

815 (cons (append (mapcar 'alg-trans (cdr (operands (denom-prod exp2))))
816 non-zero)

817 roots)))))

818

819 (detun solve? (factors var)

82 (it factors .

821 (tet (({non-zero ., roots) (solve2 (cdr factors) var))

922 (sum f(car factors)))

023 (it feq var (poly-var sum))

824 (tets ({coels (coeficients sum)))

825 : (cons (append (mapcar 'alg-trans (cdr (operands (car (last coefs)))))
826 non-zero)

827 (cons (it (cddr coets)

828 ‘(a-root-of ,e(mapcar 'alg-trans coefs))

829 ‘ (alg-trans (//_pnt (ist (-_pni_L (car coefs))
838 (cadr coefs)))))

831 roots)))

832 . {cons (cons (alg-trans sum) non-zero)

933 roots)))))

834



801
802
883
004
885
806
087
008
803
210
811
812
813
814
815
816
817

818

819
820
021
822
823
024
825
0826
827
828
829
838
831
0832
833
834
035
836
037
838
839
848
LY
842
843
044
845
846
847
848
849
8586
051
852
853
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(defun variables {evp)
(merge (variahles-2 evp) nii))

(defun variables-2 (exp)
(cond ((algebraic? evp)
(mapcan 'variables-2 (operands exp)))
((numarical? exp) nil)
(t_(list exp))))
(defun simplification (evp)
(if (not (algebraic? exp))
evp
(let (largs (mapcar ’simplification (operands exp)))
(op (operator exp)))
(cond ({eq op "+) (+_pnt args))
{teq op *-) (-_pnt args))
(teq op "#) (& _pnt args))
(leq op "// ) (//_pnt args) )

;the next function makes evpressions more readible by removin§ factors of | etc.

(defun alg-trans (evp)
(cond ((not (algyebraic? exp))
evp)
(t (et ((op (operator exp))
(opers (mapcar ‘alg-trans (operands exp))))
(cond (feq op '// )
{cond ((equal (cadr opers) l) (car opers))
({equal (cadr opers) -1)
(cond ((numberp (car opers))
(x -1 (car opers)))
(tnot (algebraic? (car opers)))
‘{x -1 , (car opers)))
({eq (operator (car opers)) ’u)
‘{« ,(x -1 (cadar opers)) ,(caddar opers)))
(t *(x -1 ,(car opers)))))
(t {cons ’// opers))))
({eq op '+) (cons ’+ opers))
({eq op '%)
(cond (lequal (car opers) 8) 8)
((equal (car opers) [}
. (cond ((null (cdr opers)}
1
((nutl (cddr opers))
(cadr opers))
. (t (cons 'z (cdr opers)))))
((rutl {(cdr opers))
(car opers))
(t (cons "= opers)))))))))

(defun simpt (exp)
(aig-trans (simplification exp)))

Page 8
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8082 (declare (special #zero% plunk-weight-count))

803

884  (defun algsys-init O

L) {names-init "algsys-better 'algsys-coin)
806 (mapec ‘uniquet ‘(s - // #))

807 (setq tzero* (designator 8))

008 (name-type ‘plunk)

009 (setq plunk-ueight-count 1))

818 -

atl {putprop '+ ‘+_pnt ‘symop}

812 {putprop '- ‘- _pnt ’symop)

813 {putprop ‘% "¢ _pnt ’symop)

814 {putprop '// *//_pnt *symop)

815 (addf 'create-simptification (operator-defs '+))
216 taddf ’create-simplification foperator-defs ’'-))
217 (addf ‘create-zimplification (operator-defs ’2))}
818 (addf ’create-simplification (operator-defs '// ))

819

0208 (defun create-zimplification (des)

821 (let ((simp (des-simptification des)))

022 (let ((desl (designator2 (alg-trans simp))))

823 (associate 'simplification simp (memoizations des))

0824 (set-truth (equality des des2) ’true 'algebra))))

825

026 (defun des-simplitication (des)

027 (let ((exp (evpansion des)))

828 {cond ((atom exp) evp)

829 ({not (memg (expansion (car exp)) *(+ - // £)))

838 {(fist-transtation des))

831 (t (let ((simp (assq ’'simplification (memoizations des))))
832 (it simp

833 (cdr simp)

034 (et ({result (funcall (get (expansion (car exp)} 'symop)
83% (mapcar 'des-simplification (cdr exp)))))
836 (addf (cons 'simplification result)

837 (memoizations des))

238 result)))))))

839

0848 (defun c== (x y)

041 (lets ((z-ewp (alg-trans (des-simplification (designator ‘(- ,x Y
842 (c-node (equality (designator2 z-exp) zzero2)))

843 (mapc ' {1amhda (var) (solve-constraint z-exp var c-node))
044 (varjables z-evp))

84S c-node))

846 ‘ ’

847 (defun solve-constraint (exp var c-node)

848 (et ((t-var (designator2 var))

849 ((non-zero . roots) (solve exp var)))

650 (it (and (car roots) (null (cdr roots)))

851 (if (nul) non-zero)

0852 (implies (list c-node)

853 (equality t-var (designator2 (car roots))))
854 (tetsr ((non-z (it (cdr non-zero)

[: 1) (designator? ‘(& ,enon-zero))

856 (designator2 (car non-zero))))

857 (eq-node (equality non-z tzerox)))

058 (default eq-node ’'faise)

258 (implies (list (t-not eq-noda) c-node)

068 (equality t-var (designator2 (car roots)))))))))

061
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8082
203
004
085
806
087
:£:}.)
889
010
011
812
813
814
815
816
617
218

820
821
822
023
824
825
926
827
028
829
030
831
832
833
034
035
836
037
838
039
8408
841
842
843
844
845
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(defun algsys-hetter (desl des?2)
(aq ’less (aigsys-comp desl des2)))

(detun algsys-comp (desl des2)
(comp (superior-ctass 'unique’ desl des2)
'fess
(comp (zuperior-class 'opaque? desl des2)
‘greater
- fcomp (num-comp (virt-plunk-ueight desl})
(virt-ptunk-weight des2))

‘greater
{num-comp (virt-weight desl) (virt-ueight des2))
‘less)

‘tess

‘greater))

(defun virt-plunk-ueight (des)
(let ((bpuw (plunk-ueight des)))
(i f bpuw
bpu
(cond ((primitive? des)
(set! (plunk-weight des) 8)
)
(t (let ((bpu (biggest-plunk-weight (expansion des))))
(satt (plunk-weight des) bpw)
bpu) 1))

(defun biggest-plunk-ueight (desigs)
Gt (hult (cdr desigs))
{virt-plunk-weight (car desigs))
(let ((bpul (biggest-plunk-ueight (cdr desigs)))
(bpu? (virt-plunk-ueight (car desigs))))
(it (not (and bpul bpu2)) (break (null plunk weight)))
Gif (> bpul bpu2) bpul bpu2))))

{defun pltunk' (evp)
(print ‘(plunking ,exp))
(let ((desl (designator exp))
(des2 (designator (intern (gename 'plunk)})}))
(setf (plunk-ueight des2) plunk-weight-count)
(increment plunk-weight-count)
(set-truth (equality desl des2) 'true ’definition)))

Page 2
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802  (defun algsys-coin (desl des2)

0883 (i§f (eq des]l des2) (break (eq dess in algsys-coin)))

804 (if tand (eq desl (image desl))

005 {eg des2 (image des2}))

086 (let ((t-desl (transiation desl))

887 (t-des2 (translation des2)))

888 (cond ({and (numberp t-desl) (numberp t-des2))

889 : -- (set-truth (equality desl des2) 'faise 'algebra))
818 - ({and (numerical? t-desl)

a1l (numerical? t-des?))

812 (let ((dift (des-simplification (designator2 ‘(- ,desl ,des2)))))
813 Git (not (pnf_zero? diff))

814 (set-truth (equality desl des2) 'faise ’algebra))))
815 ({or (> (virt-plunk-ueight desl) 8)

816 (> (virt-plunk-ueight desz2) 9))

817 (handle-plunk (designator2

918 . {alg-trans

819 (des-simpiification

220 (designator2 ‘(- ,des}i ,des2)))})
821 fequality desl des2)))))))

822

923 (defun handie-plunk (des c-node)

024 (let ((plunk (base-plunk das (virt-plunk-usight des))))

0825 (if plunk (solve-constraint (translation des)

826 (translation plunk)

827 c-node))))

[ 4

829 (defun base-plunk (des ueight)

g3e (if (primitive? das)

831 (if (= weight (virt-plunk-usight des))

0832 des)

833 (base-plunk? (erpansion des) weight)))

834

835  (defun base-piunk? (desigs weight)

836 (it desigs

837 (let ((hp (base-plunk (car desigs) weight)))

238 (it bp bp (base-plunk2 (cdr desigs) weight)))))

839

849

841

842

043 (detun solve-{or (evp)

844 (think)

845 (let ((des (designator evp)))

048 (tet ((can (ctass-name des)))

847 (it (and (not (opaque? can)) (= (virt-plunk-weight can) 8))
848 (transiation can)

849 et ((desigs (equiv-class des)))

8se ’ - (do ((rest desigs (cdr rest)))

851 {({nult rest) (it does not seem possible to do so)})
852 (it (and (opaque? (car rest))

853 - lalgebraic? (transtation (car rest))))
854 (progn (mapc 'plunk! (opaque-vars (car rest)))
855 (think)

856 (return (translation (ctass-name des)))))))))))
857

858 (defun opaque-vars (des)

859 (fmapcar ' (iamhda (var)

060 (let ((des (designator2 var)))

861 (if (opaque? des) des)))

862 (variables (iranslation des))))
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Appendix Five
Utility Procedures

Basic utility functions and macros are described here which are used by
the code in appendix two. The LISP definition of most of these utilities is given
here. However only a brief english description of some of the basic utilities.
Most of the basic concepts behind the utilities described here were developed by
various people other than the author and many of them are documented in the
LISP MACHINE MANUAL [Wienreb & Moon 78].

If

(if a b c) is equivalent to: (cond (a b) (t c)). (if a b) is equivalent
to: (cond (a'b)). :

Backquote

The backquote feature provides a form of quote which replaces items
preceded by a comma with their value. The following are some examples of the
use of backquote:

‘{foo a ,(+ 1 2)) evaluates to: (foo a 3)
‘tfoo., (list "a "b) (list "a "b)) evaluates to: (foo (a b) (list "a "b})

Items in the interior of backquoted expressions which are preceded by .e
have there values exploded into the top level list structure. An example of the
use of this feature .is as follows:

‘f{foo .ellist "a 'p) ,{list 'a ’b) (iist 'a 'b))
evaluates to:
(foo a b (ab) (list *a 'b))

Defmacro
This form is used to define macros. A macro definition has a similar

syntax to a function definition. When a form whose car is a macro is evaluated
the macro definition is used to generate a new form whose value is the value
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returned for the original form. The arguments to the macro are bound to the
forms in the argument positions rather than their values as is done for functions.
An example of a macro definition is given below:

{defmacro first-part (x)
‘{caar ,x})

Using this definition (first-part a) macro expands to: (caar a) and so
(fist-part a) has the same value as: (caar a). A macro is often used instead
of a trivial function definition because it is expanded within the compiler and
results in more efficient compiled code.

It is sometimes convenient to allow the bound variable list of a macro to
be an arbitrary list structure rather than a simple list. In this case atoms in the
bound variable list (or bound variable pattern, since it need not be a simple list)
are bound fo corresponding parts of the expression using the macro. For example
the new MACLISP form of do could have been defined as a macro along the
following lines:

(defmacro do (variable-bindings (end-test . end-body) . do-body)
) '

R The bound variable list may also be.a single atom, in which case that
“atom is bound to the entire list of "arguments" to the macro.

Defmac ‘

defmac is identical to defun with the exception that a macro is created
which the compiler can use to open code the function during the compilation of
other functions. This is used purely for reasons of efficiency. The open coding
is useful in getting the compiler (and other optimization macros such as deftail)
to perform optimizations which would not otherwise be done. No function
defined via defmac can be recursive however since this would lead to infinite
expansion during open coding.

Let

The 1et feature allows structured lambda binding. An example follows:
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(let ({3 1}
(b 2))
(+ a b))

is equivalent to:
((lambda {a b} (+ ab)) 1 2)

The 1et macro allows the the bindee of a binding pair to be an
arbitrary list structure whose parts are bound to the correspondmg parts of the
value being bound. This is convenient for dealing with functions which
conceptually return more than one value.

Setf

The setf macro gives a general method for side effecting data
structures. The following equivalences give some examples of its use:

(setf a h) is equivalent to: (setq a b)

{setf (get a b) c) {putprop a c b)

(setf (car a) b) . (rplaca a b)

(setf (cdr al b) o {rplacd a b)

{setf (cond (a b) (c d)) e) (cond (a (setf b e)) (c
Defsidmac

defsidmac is just like defmacro except that it is used to define macros
which side effect their last argument and treats that argument position specially.

Specifically it dcfines a macro which will embed the side effect in conditionals as
does setfaddf.

{defsidmac addf (x list)

‘{setf ,list (cons ,x Jist)))

(addf x b) is equivalent to: . l(setf b {(cons a b))

(setf d e)))
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" but
(addf x (if a b c)) is equivalent to: (if a (addf x b) (addf x c))
While it may seem obscure to write code which side effects conditional
expressions, the ability to do so can be important when macros expand to
conditionals. In such situations it is sometimes convenient to be able to side
effect applications of these macros.
Defstruct
The defstruct feature is used to define a type of structured object. A
defstruct definition creates a set of macros. One of these macros is used to
create objects of the defined type. The others are used to access the parts of
that object. Consider the following example:
(defstruct {ship) x-pos y-pos (mass 286))
This defines four macros: make-ship, x-pos, y-pos, and mass. The
make-ship macro creates a ship with its mass set to a default value of 200. The

following dialogue illustrates a use of these macros:

(SETQ HERO (MAKE-SHIP))
nil nil 200

(MASS HERO)
200

(SETF (X-POS HERO) 18)
18

(X-POS HERD)
19

Deftype

deftype is just like defstruct except that it defines another macro
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which determines if any given object is of the defined type. In the above
example for defstruct if deftype had been used instead then a ship? fnacro
would have been created which could determine if any given object was created
via make-ship.

Deftail

This feature allows automatic tail recursion optimization. The way this
is invoked is to use deftail instead of defun in a function definition. This
feature actually docs more than simple tail recursion optimization in that simple
accumulations (functions which generate sums, products, or lists recursively) are
also converted to iterative forins. The reader need not pay any attention to this
feature and may assume that all functions defined via deftaii are actually
defined via defun in the standard fashion.

Defarb

defarb is identical to defun except that it allows the bound variable list
to be an arbitrary list expression. The atoms in this expression are bound to the
corresponding parts of the list of values to which the defined is applied. The
most common use of defarb is to have the bound variable pattern be a single
atom in which case that atom is bound to the list of arguments to the function.
A function so defined can take an arbitrary number of arguments.

The code for other utility functions and macros follows



(dotun namcopy (atom)
(maknan (explode atom)))

(defun name-type (sywbot) ‘
{(putprep sysho! § ’gen-ceunt))

(dafun gename (type)_ )
(let ((count U+ (get tm mc”n
(putprop typs count *

(m Capporut (m "" toxpiode count)))))

(detmacro fistp C(item)
‘(not (atow ,itemd))

{detmacro logxor (x y)
‘(boole € ,x ,y))

(deftail werge {listl 1istd)
(cond ((null tigtl) ligt2)
(imoubpr (car listl) 1istd)
(morgh (cér List]) iige2))
(¢ (morge fedr tist])
: (cons isar tigtl) tist}}))))

_(dottail integers-betusen (nl n2)

(it (= nl n2)
(list n2) =
(cons nl (integers-betusen (i+ al) a2))))
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(detmacro setf (form value)
(let ((form (macroexpand form)))
(cond ((symbolp form) ‘(setq ,form ,value))
((numberp form) (break (attempt to set a number)))
((ea (car form) ’cxr)
‘{rplacx , (cadr form) ,(caddr form) ,vatue))
((eq (car form) ’car}
“_ *(rplaca , (cadr form) ,vaiue))
((eq (car form) ’cdr)
‘(rplacd , (cadr form) ,value))
((eq (car form) ’get)
‘(putprop , (cadr form) ,value , (caddr form)))
((eq (car form) ’cond)
(cond-setf form value))
(t {break (unknown operator in sstf))))))

3 (setf (cond (a b) (c d)))
3 expand to:
3 (cond (a (setf b e)) (c (setf d e)))

(defun cond-setf (form result)
(cond-imbed ‘(iambda (form) ‘'(setf ,form ,’,result))
form))

(defun cond-imbed (side-effect cond-form)
‘(cond ,@(mapcar ’(iambda (clause)
(if (or (cddr clause) (nulil (cdr clause)))
(break (illegal cond clause for cond side effect))
‘(, (car clause)
, (funcall side-effect (cadr ctause)))))
(cdr cond-form))))

;defsidmac defines cond-imbedding side effect macros !ike setf

(defmacro defsidmac (effect vars . body)
(let ({rvars (reverse vars)))
(let ((ref (car rvars))
(params (nreverse (cdr rvars))))
*{defmacro ,etfect ,vars
(tet ((ret2 (macroexpand ,ref)))
(Gif (and (not (atom ref2))
(eq (car ref2) ’cond))
(cond-imbed ‘(lambda (ref) *(,’,’ effect
@, {list ,eparams)
,ref))
raf2)
(progn ,ebody)))))))

(defsidmac increment (x)
‘(setf ,x (1+ ,x)))

(defsidmac addf (val list-ref)
‘(setf ,list-ref (cons ,val ,list-ref)))

(defsidmac delf (val list-ref)
‘(sett ,list-ref (delete ,val ,list-ref)))

(defsidmac associate (x y assoc-ref)
(et ((argl (namcopy 'x))
(arg2 (namcopy ’y))
(alist (namcopy ’alist))
(as (namcopy ’as)))
‘{let ((argl ,x)
(,arg2 ,y)
(,alist ,assoc-ref))
(let ((,as (assoc ,argl ,alist)))
(it ,as
(rptacd ,as ,arq2)
(setf ,assoc-ref (cons {(cons ,argl ,arq2) ,alist)))))))
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(defmacro hash-array (array-name dim)
‘(array , (cadr array-name) t ,dim))

(defun hash Citem range)
(remainder (abs (ranhash item)) range))

(deftail ranhash (item)
(cond ((null item) 9)
((symbolp item) (symbo!-hash item))
((numberp item) (fix item))
((designator? item) (desig-hash item))
((node? item) (node-hash item))
(C(listp item)
(logxor (ranhash (car item))
(ranhash (cdr item))))
(rt 9

(de tfun node-hash (node)
(let ((val (node-hash-val node)))
(cond (val val)
(t (setq val (random))
(setf (node-hash-val node) val)
val))))

(defun desig-hash (desig)
(let ((val (desig-hash-val desig)))
(cond (val val)
(t (setq val (random))
(setf (desig-hash-val desig) val)
val))))

(defun symboi-hash (symb)
(let ((val (get symb ’ranhash)))
(cond (val val)
(t (setq val (random))
(putprop symb val! 'ranhash)
vai))))

(defun table-asscr C(item table)
(and (eq (typep table) ’symbo!) (setq table (get table 'array)))
(letz ((index (hash item (cadr (arraydims table))))
(bucket (arraycall t table index))
(result (assoc item bucket)))
(cond (result result)
(t
(setq result (cons item nil))
(store (arraycall t table index) (cons result bucket))
result))))
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(declare (special wquery-stacks))

(defun push-query (query)
(4-push query query-stacks)
(view-query (u-top squery-stackx)))

(de fun pop-query ()__
(m-pop =query-stacks)
(view-query (w-top xquery-stacks)))

(defun view-query (query)
(cons (car query)
{mapcar ’(lambda (n ass) (cons n (car ass)))
(integers-between | (length (cdr query)))
(cdr query))))

(defun ansuer (n)
(edr (nth (1- n) (cdr (u-top #query-stack#)))))

(defun make-urap-stack (depth)
(let ((iast (cons nil (cons nil nii))))
(et ((first (mus2 last depth)))
(setf (car (cdr first)) last)
(setf (cdr (cdr fast)) first)
first)))

(defun mus2 (last depth)
(if (= depth 1)
last
(tet ((second (mus2 last (1- depth)))
(first (cons nil (cons nil nil))))

(setf (cdr (cdr first)) second)
(setf (car (cdr second)) first)
first)))

(defsidmac w-push (item ustack)
‘(let ((ustack? (cadr ,wstack)))
(setf (car ustack2) ,item)
(setf ,ustack wstack2)))

(detsidmac w-pop (ustack)
‘(sett ,ustack (cddr ,wstack)))

(detmacro W-top (ustack)
‘(car ,ustack))

APPNDX S ©1/28/88
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{progn (setq wquery-stack: (make-wrap-stack 38)) 1) ;progn prevents intinite printing
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the follouwing macro is usefull in dealing with partial orders in which three conditional

3
3 branches exist depending on the relation of the two items.

(defmacro comp (comparison greater-case unrel-case less-case)
(let ((comp-var (namcopy ’comp-var)))
‘(let ((,comp-var ,comparison))
(cond Tleq ,comp-var ’greater) ,greater-case)
({eq ,comp-var ’less) ,less-case)
(t ,unrel-case)))))

(defmac num-comp (nl n2)
(cond ((> nl n2) ’greater)
((« nl n2) ’less)
(t *equat)))

(defmac alpha-comp (al a2)
(cond ((alphalessp al a2) 'less)
(lequal al a2) ’unreiated)
(t ’greater)))

(defun scomp (expl exp2)
(comp (num-comp (ncdrs expl) (ncdrs exp2))
'greater
(lexical-comp expl expl)
"tess))

(deftail ncdrs (exp)
CGit (atom exp) 8 (l+ (ncdrs (cdr exp)))))

(defun lexical-comp (expl exp2) ;they must have the same ncdrs
(cond ((or (numberp expl) (numberp exp2))
(cond ((not (numberp exp2)) ’less)
((not (numberp expl)) ’greater)
(t (num-comp expl exp2))))
((atom expl) ;if one is then they both are
(alpha-comp expl exp2))
(t (comp (scomp (car expl) (car exp2))
'greater
(lexical-comp (cdr expl) (cdr exp2))
‘less))))

(defmacro superior-class (pred x y)
‘it (funcalim ,pred ,x)

Git (funcalim ,pred ,y)
'unrelated
‘greater)

Gif (funcalim ,pred ,y)
’less
‘unrelated)))



Symbo! Table for: DAM; APPNDX 5

ADOF ........... DEFSIDMAC 082 BS3
ALPHA-CONP ..... DEFMAC .. 865 018
NSHER ......... EXPR ,... 084 818
1ISSOCIATE ...... DEFSIDMAC 082 059
COMP .. .o.viun.s DEFHACRO 8057006
COND-IMBED ..... EXPR .... 982 026
COND-SETF ...... EXPR .... 002 022
DEFSIONAC ...... DEFHACRO 082 836
DELF ... ..t DEFSIDOMAC 802 056
DESIG-HRASH ..... EXPR .... 0803 826
EFFECT ......... DEFMACRO 002 040
GENAME ......... EXPR .... 0601 008
HASH ........... EXPR .... 803 805

HASH-ARRAY ..... DEFMACRO
INCREMENT ...... DEFSIDNAC
INTEGERS-BETHNEEN DEFTRIL
LEXICAL-COMP ... EXPR ....
LISTP «.evnneen. DEFMACRO
LOGXOR ....... .. DEFMACRO
MAKE-HRAP-STACK EXPR ....
MERGE ..... +see. DEFTAIL
MHS2 ...... veses EXPR ..
NAMCOPY ........ EXPR ...
NAME-TYPE ...... EXPR ....
NCORS .........s DEFTAIL
NODE-HRSH ...... EXPR ....

803
802
88l
885
001
eat
804
13

. 8084
. 881

80l
805
003

802
858
826
832
813
816
821
819
028
802
805
829
019
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NUM-COMP ....... DEFMAC ..
POP-QUERY ...... EXPR ....
PUSH-QUERY ..... EXPR ....
RANHASH ........ DEFTAIL
SCOMP ,......... EXPR ....
SETF ........... DEFMACRO
SUPERIOR-CLASS  DEFMACRO
SYMBOL-HRSH .... EXPR ....
TABLE-ASSCR .... EXPR ....
VIEW-QUERY ..... EXPR ....
W-POP .......... DEFSIONAC
W-PUSH ......... DEFSIOHAC
W-TOP .......... DEFMACRO

005
084
884
003
08s
002
085
803
ee3
084
004
084
0804

8i3
008
804
868
023
882
844
833
0948
812
842
837
845
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