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ABSTRACT

This report describes the implementation of a theory of edge
detection, proposed by Marr and Hildreth (1979). According to this theory,
the image is first processed independently through a set of different size
filters, whose shape is the Laplacian of a Gaussian, VZG(x.y). Zero-
crossings in the output of these filters mark the positions of intensity
changes at different resolutions. Information about these zero-crossings is
then used for deriving a full symbolic description of changes in intensity in
the image, called the raw primal sketch. The theory is closely tied with
early processing in the human visual system.

In this report, we first examine the critical properties of the
initial filters used in the edge detection process, both from a theoretical
and practical standpoint. The implementation is then used as a test bed for
exploring aspects of the human visual system; in particular, acuity and
hyperacuity. Finally, we present some preliminary results concerning the
relationship between zero-crossings detected at different resolutions, and
some observations relevant to the process by which the human visual system

integrates descriptions of intensity changes obtained at different

resolutions.
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Introduction

Our study of early vision is a study of the first computations which
are performed by a vision system in the analysis of an image. Ultimately, we
are interested in understanding the way in which the human system begins to
process visual information, but whether we are analyzing a biological vision
system, or a machine vision system, we can view the system as an information
processor, performing computations on an incoming array of intensity values,
and there is a common set of problems each system is trying to solve (Marr
1976a, 1978). Our objective in studying early vision is to uncover those

computations which must be common to any general vision processor, and

. consider possible algorithms for describing how these computations might take

place. We can then turn to the particular question of how the human system
performs these computations.

This report describes the implementation of a particular theory of
early visual processing (Marr & Hildreth 1979), which grew from a set of ideas
proposed by Marr (1976b). The theory argues that the first goal in analyzing
an image is to describe, locally, the significant intensity changes. A change
in intensity will, in general, be the result of a physical change in some
property of a surface, such as reflectance, a change in illumination, or a
discontinuity in the depth or orientation of a surface, such as that which
occurs along the boundary between two objects separated in depth. In later
visual processing, it will be necessary to make the nature of these physical
changes explicit, but we begin by describing properties of the intensity
changes to which they give rise. The properties which can be computed for a
given intensity change are (1) two-dimensional orientation in the image, (2)
contrast, the amount by which intensity has changed, (3) width, the distance
across which the intensity is changing, and (3) length, defined locally to be

the distance, along the orientation of the intensity change, over which other
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properties remain roughly uniform. This first description of the image is
called the raw primal sketch (Marr 1976b).

Since the primal sketch was first proposed, there has been extensive
progress toward understanding the computations involved in this and other
aspects of early vision, such as stereopsis and the analysis of motion (Marr &
Poggio 1979, Grimson & Marr 1979, Ullman 1979, Marr & Ullman 1979).
Stereopsis refers to the computation of depth information by the comparison of
the relative positions of elements in two images of a scene, taken from
slightly different viewing angles. The first step in this process is to
compute a correspondence between elements in the two images. Marr and Ullman
(1979) divide the tasks involved in the early analysis of motion into two
classes: separation tasks, which require the instantaneous measurement of the
position and velocity of elements in the image, such as the detection of
sudden motion; and integration tasks, which require the integration of this
information over time, such as in the recovery of structure and three-
dimensional motion from an orthographic projection (Ullman 1979). A range of
possible image representations could potentially form the input stage to the
above tasks: from the initial intensity values, to a description of changes
in intensity, to a high-level description of objects in the scene. Julesz'
random dot stereograms (Julesz 1971) and Ullman's many motion demonstrations,
such as the broken wheel (Ullman 1979, p. 22), illustrate that these tasks
need not be high-level operations. An additional demonstration by Ullman
(1979, p. 17), together with the requirement of Marr and Poggio (1979) that
the basic elements for stereo matching represent unique physical locations,
and Marr and Ullman's (1979) suggestion that the early detection of motion be
combined with the analysis of contours, argue against the use of grey levels
in these computations. Thus a primitive description of the location of

changes in intensity remains the likely candidate for the input to these
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secondary processes. The stereo matching computation, and detection of
direction of motion are low-level operations, requiring only a description of
the position and sign of intensity changes, at a set of different image
resolutions. The recovery of structure from motion begins also with the
computation of a correspondence between elements, now between images changing
in time, but its input differs from the input to stereopsis and the detection
of motion in at least two ways: the basic elements may also be primitive
groupings of similar intensity changes, and the explicit properties of
contrast, orientation, and size of elements are used in computing the
correspondence. Understanding these requirements of stereo and motion
. analysis has helped to formalize what information should be made explicit in
the raw primal sketch, and how the information should be represented. They
now offer strong support of its basic goal of describing changes in intensity.

Precise quantitative studies of the operators used in early human
vision (Wilson & Giese 1977, Wilson & Bergen 1979, Schiller et al. 1976a,
1976b) suggested a number of critical issues for the design of the operators
used in the computation of the primal sketch. In developing this theory of
early processing, we sought not only to model the visual processing of the
human system, but to understand why these computations evolved as they did.

As the theory developed, its implementation played a Kkey role. The
implementation could provide strong evidence in support of some aspects of the
theory, while at the same time, could uncover other areas where the theory was
incomplete, imprecise, or unsatisfactory. The theory also makes basic
assumptions about the nature of intensity functions arising from the natural
world; in an implementation, we can test the validity of these assumptions.
Finally, once the skeleton of the theory is implemented, it can serve as an
experimental medium for testing the performance of the theory against the

human system which we ultimately seek to understand. The medium for the
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implementation is a computer system; the initial input is a two-dimensional
array of intensity values, obtained by digitizing the photograph of a physical
scene. The computations which the theory proposes for detecting and
describing intensity changes will then be performed on this array of
intensities. The focus of this report will be this role which the
implementation has played in the development of the primal sketch theory.

An overview of the theory is presented in greater detail in Section I.
The theory divides naturally into two parts; the implementation of the first
stage is discussed in Section II. As suggested earlier in the introduction,
this first stage can be closely tied with low-level operations performed by
the human visual system. Section III reviews this relationship, with
particular emphasis on quantitative aspects of the human operators. The main
emphasis of this work will be on this first stage of the theory. Section IV
discusses some aspects of the implementation of the second stage of the
theory. In this area, I feel there still remain many open questions. 1In
Section IV.1, I present some preliminary results; Section IV.2 discusses some
perceptual experiments relevant to the way in which the human system performs
this stage; and finally, in Section IV.3, I stress a necessary tool for
addressing some of the open questions: examination of the subsequent
processes, such as the grouping of primitive edge elements, lightness related
computations, and motion correspondence, which will utilize the primal sketch
at some stage in its development. Similar approaches to the early analysis of
images, which have influenced the development of the primal sketch, or drawn
from these ideas, will be discussed in Section V. Throughout this report, I
will touch on the relationship between the present theory, and studies of the
human visual system, but I would like to stress that the theory can be
supported by computational arguments, which apply to any general vision

processor, of which the human system is a particular example.
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I. The Raw Primal Sketch

This section provides an overview of the theory proposed in Marr &
Hildreth (1979). The theory is presented as a theory of edge detection, but
in the introduction, our goal for early processing was described as the
construction of a description of intensity changes. We make a distinction
between these two terms; a change in intensity is the phenomenon that we will
detect and describe in an image; edges are the physical changes that give
rise to these intensity changes. We will see in this section that we can
detect intensity changes at different image resolutions, and that in general,
there may not exist a one-to-one correspondence between intensity changes
_detected at a particular scale, and edges in the physical scene. However,
there is an assumption we can make about physical changes which will allow us
to determine when these intensity changes do, in fact, reflect edges in the
physical world. For this reason, we present the primal sketch theory as a
theory of edge detection.

Given that our goal is to detect intensity changes in the image, we
seek an operation to apply to the image which will allow us to extract these
changes in a simple way. A number of considerations contributed to the design
of this operator. First, changes in intensity will occur in the image at a
range of different scales. If we look at individual picture elements
(pixels), we find intensity changing from pixel to pixel. Often, there will
be uniform changes over some distance. Most edges in the real world are sharp
edges; the intensity function will be composed of a few steep changes over a
small number of pixels. Other edges, such as shading edges, are very fuzzy;
their corresponding intensity function will increase slowly in smaller steps
over a large number of pixels. These different types of intensity change are
not distinct in the image; it is common, for example, to find a slow

intensity change, due to a shading effect, superimposed on a sharp, high
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contrast change due to an abrupt change in the reflactance of the surface. We
would like to separate changes taking place at different scales, so that we
make explicit local changes, taking place over short distances, as well as
gross changes in the image. That is, we first look at the intensity function
at a resolution near the initial image resolution, and detect intensity
changes occuring at this scale. We then smooth the intensity function over
different size areas, detecting intensity changes that occur at larger and
larger scales. This scheme has the implication that a formal definition of an
intensity change incorporates the scale at which the change occurs. It now
poses the question of what function is used in the smoothing process.

Two considerations come into play in the design of an appropriate
smoothing filter. First, changes in the physical world are generally
localized in space, so we desire that our initial operators also be spatially
localized. Second, one of our goals for this operator is to restrict the
scale at which intensity changes take place in the output of the operator;
for example, to detect gross changes in intensity, we would like the frequency
spectrum of the smoothed output to be localized about the low frequencies.
This requirement of localization in frequency will, in general, conflict with
the need for localization in space, but the two requirements can be optimally
satisfied by the Gaussian distribution (Leipnik 1960); that is, the Gaussian
minimizes the product of bandwidth in space and frequency. We have therefor
chosen the Gaussian as our initial smoothing filter, thus beginning our
detection stage by smoothing the image with a set of different size Gaussian
functions. In Figure la, we have the image of a plant against a chain-link
fence, viewed at two different resolutions. A single intensity profile
appears in Figure 1lb, with its counterparts from the smoothed images below it.
At a small scale, we view many sharp changes, whereas at the lower resolution,

only gross changes remain. We are now left with the problem of detecting
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la. Image smoothed with a Gaussian filter. The first stage in the primal sketch
computation can be thought of as decomposing the original image into a set of
images, each smoothed with a different size Gaussian filter, and detecting the
intensity changes separately in each. The original image appears in (1); (2)
shows the image filtered with a Gaussian having ¢ = 8 picture elements, and in
(3), ¢ = 4. The image is 320 by 320 picture elements.
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1b. Intensity profiles extracted from the original image, and filtered images of
Figure la. (1) illustrates the image profile; (2) and (3) are extracted from
the smoothed images with ¢ = 8 and o = 4, respectively. :
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these changes.

If an intensity change occurs along a particular orientation in the
image, there will be a peak in the first directional derivative of intensity
measured across the change, or a zero-crossing in the second directional
derivative. Thus at a particular scale, intensity changes can be located by
finding zero-crossings in the output of a second directional derivative
operator. A number of practical considerations, which will be illuminated in
the discussion of the implementation, suggested that the initial operators not
be directional operators. The only non-directional linear second derivative
operator is the Laplacian operator. It was then shown (Appendix A, Marr &
Hildreth 1979) that provided two simple conditions on the intensity function
in the neighborhcod of an edge are satisfied, the zero-crossings of the second
directional derivative taken perpendicular to an edge will coincide with the
zero-crossings of the Laplacian along that edge. Therefore, theoretically, we
could detect intensity changes occuring at all orientations using the single
non-oriented Laplacian operator.

The two operations, the Gaussian and Laplacian, can be combined into a
single operator, so that one can now detect intensity changes occuring at a
particular scale by locating the zero-crossings in the output of“VZG(x,y),
the Laplacian of a Gaussian distribution. The operator, together with its
Fourier transform, is illustrated in Figure 2. Examples of the application of
this operator appear in Figure 3. The convolution outputs for the original
images of Figure 3a are shown in Figure 3b. Zero is represented by a medium
grey, so that very positive values in the convolution are white, and negative
values black. The zero-crossing contours appear in Figure 3d. The pictures
are 320 x 320 picture elements. The §ize of the operator is defined by w, the
diameter of its positive central region, which in this case is 9 pixels.

There are two additional properties which can be computed for the
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2. The initial filters. (a) illustrates DZG, the one-dimensional second

derivative of a Gaussian, and (b) shows its two-dimensional counterpart, v%G.
(c) and (d) illustrate the one and two-dimensional Fourier transforms.
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3. Examples of zero-crossing detection using v%G. Column (a) shows three
images, and column (b) shows the convolutions with the V<G operator of Figure 2

(w = 8), with zero being represented by a medium grey. In column (c), positive
values of the convolution are shown in white, and negative values, black. In

column {d), only the zero-crossing contours appear.
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zero-crossings at a particular scale: slope and local orientation. The slope
of a zero-crossing is the rate at which the convolution output changes as it
crosses zero. Slope is related to the contrast and width of the intensity
change, so will be necessary for later computation of these properties. In
Figure 4, the magnitude of the slope of the zero-crossings is displayed as
intensity; sharp, high contrast edges yield darker zero-crossing contours.
Orientation is a two-dimensional property which can only be defined for a line
of zero-crossings. Thus a zero-crossing segment was formally defined to be a
linear, connected line of zero-crossings whose orientation is roughly uniform.
The theory proposes that one mechanism for representing local orientation is
to divide the zero-crossing contours into a set of short 2zero-crossing
segments, each with an associated orientation, average slope, and length.
Some zero-crossing contours will be small, closed contours which can not
effectively be described by a set of zero-crossing segments. These contours
are described as blobs, and a position, orientation, size, and average slope
is computed for the entire structure. It is also proposed that we make
explicit closely spaced, parallel zero-crossing segments (bars), and places

where the contours reflect the termination of an edge or line. These

additional elements will be discussed further in Sections 1l and 111, The

final description we obtain from a single channel is a set of zero-crossing
contours, with symbolic descriptions of orientation, slope, and size attached
to segments of the contours, or in the case of blobs, to the entire contour.
An example of this first stage appears in Figure 5.

Figure 6 illustrates the zero-crossing contours from the output of
several size operators applied to an image. We are now faced with the problem

of integrating these descriptions which we obtained independently from the

different size operators. The stereo matching computation, and the detection

of motion take place early in visual processing, operating directly from the
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4., Zero-crossings in the output of the V3G operator applied to an image, with
the slope of the zero-crossing displayed as intensity; that is, a zero-crossing
across which the convolution output changes more sharply will be displayed with a
darker 1line. Slope provides a rough measure of contrast, so that one expects
very high contrast edges, such as those running along the border between the
buildings and the sky, to yield darker zero-crossing contours.,
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5. Symbolic illustration of the single channel description. (a) shows all of the

zero-crossings from the convolution of the image in Figure 4 with the V%G
operator, with w = 9 picture elements. (b) illustrates symbolically, the
orientation attached to segments of the zero-crossing contours shown in (a).
This diagram illustrates only the spatial information associated with these
descriptors; below is an example of a full description of a segment of the
contour:

(segment (position 104 23)
(orientation 65)
(slope -34)
(length 18))

This additional information which we make explicit along the zero-crossing
contours will be used in the later processing of the channel descriptions.
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6. Zero-crossings from different size operators. The image in (a) has been

convolved with VZ2G having w = 6, 12, and 24 pixels. These filters span
approximately the range of filters that operate in the human fovea. (b), (c),
and (d) show the zero-crossings obtained from these convolutions. In the full
channel descriptions, also associated with these zero-crossings will be their
slope and local orientation.
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[ ™ outputs of the single channels (ﬁarr & Poggio 1979, Marr & Ullman 1979). That
i/ is, these processes combine channel outputs in a particular way to compute

- disparity information along the zero-crossing contours, or the vdirection of
| motion of these contours. The primal sketch theory proposes that the
i individual channel descriptions are also combined into a single description of
; intensity changes, in which the important properties of contrast and width are
made explicit. From this single description, grouping and early texture
analysis takes place, prior to other processes, such as motion correspondence.v
Unfortunately, the integration of these descriptions into a single raw primal

sketch is not a simple matter. Some intensity changes will be detected over a

range of adjacent scales, while others may be detected only at a single scale.

A key observation aided in simplifying this problem; because changes in the
| physical world are localized, the intensity changes to which they give rise
are also localized, so that if two adjacent channels detect a particular
l\' intensity change, indicated by the presence of zero-crossings, then the zero-
crossings from the two channels will tend to be spatially locﬁlized. This
f critical observation formed the basis of the spatial coincidence assumption:
"If a zero-crossing segment is present in a set of independent
v%G(x,y) channels over a contiguous range of sizes, and the
% . segment has the same position and orientation in each channel,

then the set of such zero-crossing segments may be taken to

-~

indicate the presence of an intensity change in the image due

to a single physical phenomenon (a change in reflectance,

illumination, depth or surface orientation)" (Marr & Hildreth

? 1979, p. 30) |

| Information in one channel which does not coincide with that from adjacent
channels is assumed to arise from a physical phenomenon which can only be

. measured at that one scale, so it gives rise to an independent descriptive
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element. Figure 7 illustrates this coincidence of the zero-crossing contours;
Zero-crossings from the smaller channels appear black, those from the larger
channel are light grey, and those which exactly coincide are medium grey.

This problem of integrating the channel descriptions is a difficult one,
which I will take a slightly more conservative view toward in this work. What is
essential is that we work toward an understanding of the relation between the
Zero-crossings from the separate channels, their correspondence with the physical
changes that give rise to them, and what information we could extract by
examining the individual channels. Spatiai coincidence may certainly play a key

role, in deciding the presence of a physical edge, and computing the necessary

edge properties. I would only like to suggest that it is premature to ask

whether the information concerning intensity changes exists explicitly in a

single description, and what the particular form of the representation might be,
before understanding how much information we could possibly extract from the
integration of the channels, and the necessary constraints on the representation
- imposed by grouping, texture, motion correspondence, or lightness.

To summarize this section, a theory of edge detection has been described,

which proposes that intensity changes first be detected at a range of differentv

scales, by localizing the position, slope, and orientation of zero-crossings in
the outputs of a set of V*G(x.y) operators. These independent descriptions are
then integrated in some way, in order to make additional information explicit for

subsequent processing.

P GO
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7. The spatial coincidence of zero-crossings from different size channels. The

zero-crossings obtained from the convolution of the image in Figure la with V3G
operators of size w = 9 and 18 pixels are shown superimposed, with the smaller
channel zero-crossings displayed in black, and larger channel zaro-crossings in
light grey. Points at which the zero-crossings exactly coincide are shown in
medium grey. The smaller operator detects edges with much finer detail, but for
strong physical edges, both operators detect the edge, with zero-crossing
contours which roughly coincide.




PAGE 28

II. Computing the Single Channel Description

We begin this stage with an image, which is a two-dimensional array of
intensity values. As it is implemented serially, the basic algorithm for

computing a single channel description is as follows:

1. Convolve the image with a set of two-dimensional v2G functions,
which vary in size. The size of a v operator is defined by the
diameter of its central, positive region, w. The operator can be
constructed by setting the space constant for the Gaussian, ¢ =
w/2T2:

v = (2 - rz/,z]e-rZIZO'z
r is the distance from the center of the mask.!
2. Locate the position and local slope of zero-crossings in each of
the convolution outputs, by scanning the output in the horizontal and
vertical directions.
3. Follow the contours formed locally by the zero-crossings,
constructing a description of the orientation, average slope, and

size of zero-crossing segments, and blobs.

There are four issues concerning this early stage which I would like to
discuss in more detail. The first two are the shape and size of the initial
operators. We will see that for the reliable detection of intensity changes, the
shape of the operators is highly constrained, whereas the size is less
constrained. For the development of a machine vision system, the range of
operator sizes may vary with the range and resolution of edge information
required by the particular application. Interestingly, if we do a comparitive
study of animals with developed visual systems, we see that the basic shape of

the operators in the initial processing in the retina is similar (see, for
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example, mudpuppy: Dowling & Werblin 1969, Werblin & Dowling 1969; cat: Rodieck
& Stone 1965, Cleland, Dubin & Levick 197la; monkey: Hubel & Wiesel 1968,
deMonasterio & Gouras 1975, deMonasterio 1978a), but the range of sizes, and
geometry of the eye varies to suit the survival needs of the particular animal.

The third topic of discussion in this section is the assumptions made in
the theoretical analysis of the detection of intensity changes. The assumptions
and their consequence, together with a test for their validity, will be examined.

Finally, I would like to describe, in more detail, the construction of
the symbolic description of the zero-crossing contours as a set of segments,

blobs, and bars, with properties of orientation, slope, and size.

11.1 The Initial Filters

Shape of the Filters

As the theory of the primal sketch developed, there was much
experimentation in the implementation with the shape of the initial filters; a
set of properties slowly emerged which appeared critical for these operators. In
Section 1, we have seen the theoretical development of the v operator.
However, many of the theoretical advancements were motivated by the results of
this experimentation with different types of operators. Theory and practise
finally converged on the v2G operator. As a result of our experimentation, we
can now state three critical properties for the shape of this operator which can
be strongly supported, both in theory and practise:

1. localization in space

2. localization in frequency

3. no orientation dependence
To appreciate the importance of each of these properties in practise, we can use
the general framework of locating zero-crossings in the output of a second

derivative operator, and examine the performance of this algorithm in locating
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the position of intensity changes as each of the critical properties of the
operator is violated. The first demonstration appears in Figure 8, reproduced
from Marr & Hildreth (1979). In the first filter, we have violated the property
of spatial localization, with an extended sinc function, whose frequency spectrum
approaches an ideal bandpass filter. Side lobes in the spatial filter give rise
to echoing zero-crossing contours; in Figure 8b, these multiple contours can be
seen running parallel to the contours outlining the bars of the chain-link fence.
This operator is unreliable as an edge detector, as it yields zero-crossings in
regions where there are no changes in intensity in the original image.

Frequency localization was violated with an operator which is the square-
wave approximation to the second derivative. Its affect on the zero-crossing
contours, illustrated in Figure 8d, is a smoothing. For a particular size, the
square-wave operator does not detect intensity changes with the resolution of the
v operator. For a large class of one-dimensional signals, an increase in the
bandwidth of the signal is coupled with a decrease in the number of zero-
crossings, provided the center frequency is held constant (Logan 1977). If this
result extends to the case of two-dimensional signals, it may offer a theoretical
explanation for the decreased detail in the output of this operator.
Practically, one property of edges which, with contrast, must be decoupled from
the measurement of slope across an intensity change, is edge width. A rough
analysis of the frequency spectrum of an edge, which can be obtained by measuring
the strength of an edge through filters tuned to different spatial frequencies,
constrains the computation of edge width. Using the vZG operator, contrast and
width can be computed directly for an isolated edge (see Section IV). The
reliability of possible schemes for computing these properties is a factor in the
evaluation of masks with different frequency characteristics. For some
applications of edge detection, the constraint of frequency localization may not

be as critical as spatial localization; although the Gaussian optimally
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8. Comparison of the performance of the V°G filter with that of similar filters.

Column (a) shows an image, its convolution with VZG, and the resulting zero-
crossings. Column (b) contains the same sequence, but for an extended sinc
function, whose frequency spectrum approaches the ideal bandpass filter, shown in
the top picture. In the zero-crossings, we can see echoing zero-crossing
contours along the strong edges. Columns (c) and (d) exhibit a similar

comparison, now between the V%G operator, and the square-wave approximation to
the second derivative. The square-wave operator sees relatively fewer zero-
crossings. The widths of the central excitatory regions of the filters are the

same for each pair, being 12 pixels for (a) and (b), and 18 pixels for (c) and
(d).
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satisfies these two constraints, the breakdown in behavior of the zero-crossings
is not as significant in practice, as in the case of violation of spatial
localization.

The above two examples admittedly represent extreme violation of our
localization requirements, but clearly convey the need for examining the shape of
the filters from the two perspectives of space and frequency.

The third critical property of the mask is that it not be orientation
dependent. Suppose we were to use oriented operators. Without violating our
first two criteria, we can examine the behavior of a vertically oriented mask
whose horizontal cross-section is the second derivative of a Gaussian, and whose

vertical cross-section is a Gaussian:
2 2 2,002 2,,.02
M(x,y) = eV /29, [ X/20" . (x2/g2)e % /20"

The operator is illustrated in Figure 9. (A similar operator, with an 'edge’
shaped rather than 'bar' shaped field, has been used by Macleod (1972).) Such an
operator will compute the second derivative of intensity in a particular
direction. If an edge appears in the image at an orientation #, the orientation
of the derivative operator used to measure this edge should also be 8. Provided
that the Condition of Linear Variation (discussed in Section II.2) is satisfied,
the direction of this derivative will be the direction in which the zero-
crossings have maximum slope. This suggests the following algorithm for
detecting intensity changes at all orientations, using directional derivatives:
1. Convolve the image with oriented operators at all orientations.
2. For each output, extract those intensity changes whose orientation
aligns with the orientation of the operator.
We will find that in practise, such a simple scheme is inadequate. Let W, the

central panel width for the horizontal cross-section, be 9 pixels, so that we can
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draw a direct comparison between the output of the vertical mask and the non-

oriented Laplacian we have used previously. The remaining parameter is g, the
Space constant for the vertical Gaussian. Define an aspect ratio for the mask as
4av/wx. A Gaussian function will cover about 90% of its area over a distance of
roughly 4¢, so this measure provides an approximate length-to-width ratio for
the central positive region of the mask. Figure 10 shows a comparison between
the Zero-crossings in the output of the two-dimensional non-oriented operator,
with w = 9, and two vertically-oriented masks with W, = 9 and aspect ratios 4:1
and 2:1.

The most evident problem in the output of these filters is the vertical
smearing of Zero-crossing contours, when, for example, an edge terminates in the
vertical direction. This occurs because the mask will begin to respond to an
edge as soon as the edge enters its vertical field, as shown in Figure 11. If
the output of the vertical mask is used for making assertions about vertical
Zero-crossing segments, it will incorrectly assert the presence of these
elongated contours associated with terminations.

Incorrect Zero-crossing segments, whose orientation again coincides with
the orientation of the mask, may also appear when the difference between the
orientations of the mask and edge approaches 90°, Although a particular
derivative operator will optimally detect an edge whose orientation coincides
with its own, it will detect the position of an edge for a range of orientations.
In the case of a continuous ideal step edge, the oriented mask should yield a
smooth Zero-crossing contour along the edge, unless the edge is exactly
bperpendicular to the mask. As the orientation difference between mask and edge
increases, the response of the mask decreases, as in Figure 12 (for a range of
aspect ratios). In practice, when the response of the mask is near zero, it
becomes more sensitive to ninor changes 1in intensity due to noise,

discretization, and quantization, which combine to cause the output to fluctuate
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10. Comparison between the zero-crossings in the output of the V3G operator, and
the vertical operator illustrated in Figure 9. In each case, the width of the
central positive regions are the same (w = w = 9 picture elements). The aspect

ratios for the vertical masks are 2:1 and 4:1 for (b) and (c), respectively. The .

extension of zero-crossing contours along the vertical direction is especially
apparent in this example. :

7

>
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11. An oriented operator will begin to respond to an edge as soon as the edge
enters its vertical field. (a) indicates that we wish to compute convolution
values for the slice of the image along the dotted line. In (b), we have the
convolution output along this line plotted in one dimension. The final zero-
crossing contour is partially displayed in (c). As we can see, the contour
extends beyond the termination of the edge.
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12. The magnitude of the zero-crossing slope, plotted against the difference in
orientation between a vertical mask, and an oriented edge in two dimensions. As
we increase the aspect ratio of the mask, its response becomes more narrowly

tuned.
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around zero, producing a number of very shallow zero-crossings. The vertical
extent of the mask then causes the effect of these fluctuations to be extended
along the vertical direction, yielding a zero-crossing contour containing
components along the orientation of the mask rather than the orientation of the
edge. This effect is illustrated in Figure 13. For a mask with aspect ratio 2:1,
and maximum contrast edge, this breakdown in the behavior of the zero-crossing
contours becomes evident at an orientation difference of abbut 50°; for an
aspect ratio of 4:1, this difference is about 35°.

Although these effects of oriented masks are reduced as we decrease the
aspect ratio, Figure 14 indicates that even for an aspect ratio as small as 1:3,
they are still evident. In Figure 18, the zero-crossings of this operator can be
seen superimposed on the zero-crossings of the v operator.

The use of oriented masks greatly complicates the edge detection process.
First, it is not sufficient to simply extract from their output, all zero-
crossing segments whose local orientation aligns with the operator orientation.
One must be able to recognize the above two situations, carefully designing a set
of criteria for determining the reliability of a particular zero-crossing
contour. Orientation is a property of an edge which is important to make
explicit for later processing, but we are suggesting that orientation is computed
after the convolution‘of an image with the non-oriented Laplacian operator. The
implementation of a more knowledgeable scheme for combining outputs from several
orientations (Marr 1976b), which attempted to deal with the above problems
directly, proved to be extremely difficult. Finally, convolutions are very
costly, so it is certainly more efficient to use the non-oriented operator, and
obtain a map of intensity changes at all orientatiohs in a single step.

The above experiments, together with the theoretical arguments posed in
Section 1, provide strong evidence in support of the initial V%G operators

proposed in this theory. Of the three properties shown to be critical for these
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13. In (a), we have a simple step edge, oriented 75 degrees away from the
vertical. The zero-crossings from the ocutput of this edge convolved with a
vertical mask, with aspect ratio 4:1 are illustrated in (b). The contour of
zero-crossings has a general orientation along the edge, however has a
significant component along the vertical direction. This effect is in general
due to the discretization of an edge, and quantization of the intensities.
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operators, the first two properties of localization in space and frequency, are
best satisfied by the Gaussian distribution (Leipnik 1960); and use of the

Laplacian satisfies the property of having no orientation dependence.

Size of the operators

Concerning the sizes of these operators, there are two parameters: the
overall range of sizes, and the separation between sizes. Here, there is a lower
bound on the smallest size operator one should use for the reliable detection of
edges, and a loose constraint on the maximum separation between sizes. Other
constraints will arise from the range and resolution of information required by
the particular application of the edge detection process. For example, for the
stereo matching process, the size of the largest mask constrains the largest
disparity, at a particular location, which can be fused for a given eye position,

while the size of the smallest operator determines the resolution to which

disparity information is computed (Grimson 1980). The human visual system
analyses its input at an extremely fine resolution, both in its original sampling
of visual information (roughly one receptor per 20" of visual arc for the central
fovea (Polyak 1941)), and in its smallest operator size (1'30", proposed in
(Marr, Poggio, & Hildreth 1979)). For many applications in machine vision, such
as the detection of parts on a moving conveyor, or counting cells in a cell
culture, such fine resolution is not essential.

A primary factor governing the smallest size operator used in the edge
detection process is the noise level of the imaging system. Noise will generally
be restricted to very high spatial frequencies, so by restricting the smallest
size operator, we are placing a limit on the highest spatial frequencies allowed

1o pass through the channels. Figure 15 demonstrates the need for this lower

1imit; Figure 15a shows a simple two-dimensional step change in intensity, to

which three levels of Gaussian noise have been added. A similar demonstration,
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15. The relationship between mask size, and its sensitivity to noise. In row (a)
are three step changes in intensity, to which different levels of Gaussian noise
have been added. The images were then convolved with V%G operators with w = 1,
4, and 8 pixels. The zero-crossings of these outputs are displayed in rows (b),
(c), and (d), respectively. The smallest operator is very sensitive to even
small amounts of noise, whereas the larger operator is fairly robust, in that it
detects the underlying step change in the presence of large amounts of noise.
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used in the evaluation of other edge detection schemes, can be found in Pratt
(1978, p. 498). The signal-to-noise ratio is defined by the following
expression:
SNR = c/e ?

where ¢ is the edge contrast, and o is the standard deviation for the added
noise. The three edges in Figure l5a have a signal-to-noise ratio of 100, 10,
and 1, respectively. In Figures 15b, ¢, and d are the zero-crossings in the
output of the three edges convolved with v operators with w = 1, 4, and 8
pixels. The zero-crossings with maximum slope in each case are displayed at
maximum intensity; the slope values are not correlated between outputs. For a

signal-to-noise ratio of 100, all sizes are capable of detecting the primary

edge, and respond more strongly to this edge than those du¢ to the added neiss.

However, the smallest mask breaks down very fast, and for a signal-to-noise ratio
of 1, it is unable to detect the primary edge behind the noise. The largest mask
here corresponds to the smallest size presently used in our implementation; in
this example, it is capable of reponding more strongly to the underlying edge,
even in the presence of large amounts of noise.

Figure 16 provides a second demonstration, now in one dimension. In
Figure 16a is a series of bars, to which a high level of Gaussian noise has been
added. This example is intended to emphasize that in evaluating the output of
various size channels, we are interested in the position and slope of the zero-
crossings, and how well they reflect the significant changes in our input
profile. In Figure 16b, the outputs of the one-dimensional D%G operator, with W,
= 6 pixels, convolved with the ideal bar profile and noisy profile are
superimposed. Although there is deviation in the overall noise output, the
position and slope of the zero-crossings are well preserved.2 As we decrease the

mask size, the error in localizing the edges of the bars does not change

significantly, but the error in measuring slope increases, and additional zero-
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16. The relationship between mask size, and its sensitivity to noise. (a) and
(b) illustrate the ideal profile for a set of bars, and the bar profile with a
large amount of Gaussian noise added. As (c) illustrates, a large mask (in this
case, w = 6 pixels) will still detect the edges of the bars with zero-crossings,
although the non-zero portion of the convolution output may contain significant
error. The two outputs are shown here superimposed. For a smaller mask, this is
not the case. In (d) and (e), we have the response of a mask, with w = 2, to the
ideal and noisy profiles, respectively. Many more zero-crossings are seen,
reflecting the mask's sensitivity to edges created by noise.
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crossings, reflecting the noisy edges, are introduced.® The slopes associated
with these noisy zero-crossings are comparable to those associated with
significant edges, so that a simple thresholding technique can not distinguish
between the two.

Secondary factors in limiting the size of the smallest operator are the
combined effects of diffraction, discretization of the signal, and quantization
of the intensities. For a particular combination of line spread, sampling
interval, and quantization levels, there will be some scale at which two
adjacent, discrete changes of the same contrast sign, are most likely to reflect
the discretization of a single physical intensity change, or the spatial extent
of a single physical mark on a surface. In both cases, the two changes together
are likely to function as a unit under motion, or lie on the same depth plane for
stereopsis, so computationally, it would be more efficient to describe them as a
single primitive change. The finest resolution at which discrete changes are
made explicit will be controlled by the size of the smallest mask.

I have not defined a precise quantitative lower bound on size, because it
varies with many factors of the imaging system. However, in many applications of
edge detection, which I will discuss further in Section 6, particularly in the
uses of the Laplacian (see, for example, Rosenfeld & Kak 1976, Pratt 1978), the
operators have been extremely small, with a central diameter of one or two

pixels. i
These tiny operators suffer from too much sensitivity to noise and

y ) [ s A

and have been gené?élly Uﬁggfig ;

For our own imaging system, we have found that a

quantization,
v2G operator of size

of edges.

h a total support of roughly 900 pixels) adequately suppresses

w = 6 pixels (wit

these noise factors. A final demonstration of the robustness of the larger v2G

operators 1is given in Figure 17. The original image, with its zero-crossings from

the output of an operator with w = 8 pixels, is shown in Figure 17a. In Figure

n noise has been added to the image, and the

17b, a 1large amount of Gaussia
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17. Demonstration of the robustness of a large V26 operator. We have the

original image in (a), with the zero-crossings from the output of a VG operator
with w = 8 pixels. A large amount of Gaussian noise is added to the image in
(b), and the image is quantized to 16 and 8 grey levels in (c) and (d). In each
case, the zero-crossings from the same operator are displayed. Just as our own
perception of the sculpture is robust, through these transformations, so are the
resulting zero-crossing contours.



PAGE 51

v

1)

t




PAGE 52

a7



PAGE 53

resulting zero-crossings displayed. Finally, in Figures 17¢ and d, the image is
quantized to 16 and 8 intensity levels (the image was originally 256 intensity
levels). The zero-crossings are fairly robust; their behavior does not break
down with these changes in the image, just as our own perception of the images
does not break down.

Oour only constraint on the separation of sizes is that the sum of the
Fourier spectra of the set of channels together be relatively flat, falling off
only at the high and low frequency ends. The separation between sizes used here
is one octave; chosen to provide sufficient sensitivity to all frequencies
within the spectrum spanned by the set of operators, while minimizing the overlap
of responses from adjacent channels. It is based on an analysis of peak
frequency response and bandwidth of the difference of two Gaussian functions,

which can be used to approximate V% (Appendix B, Marr & Hildreth 1979).

II1.2 The Initial Assumptions

There are two conditions on the intensity function in the neighborhood of
an intensity change which must be satisfied if we are to detect intensity changes
by locating the zero-crossings in the output of a Laplacian operator. The first
is the Condition of Lineuar Variation which states that the intensity function
near and parallel to the line of zero-crossings should locally be linear. If
this condition is satisfied, then for an edge whose orientation is 8, the
directional derivative which yields a zero-crossing with maximum slope will also
have orientation &. The second condition requires that the intensity function be
linear along, but not necessarily near, the line of zero-crossings. If this
condition is satisfied, then the zero-crossings of the directional derivative
measured perpendicular to the intensity change will coincide with the zero-
crossings of the Laplacian operator. If the two conditions are satisfied, then

an intensity change at any orientation in the image will give rise to a line of
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zero-crossings in the Laplacian output, along the orientation of the change. In
the development of the theory, it has been assumed that these conditions are
generally satisfied in natural images.

One method for checking the validity of these assumptions is a direct
statistical test of the conditions for a large number of intensity samples.
Suppose we have an edge in a natural image, whose orientation is #. To show that
the Condition of Linear Variation holds, it would be necessary to show that
within a narrow neighborhood of the zero-crossing segment in V236 to which it
gives rise, 3(G*I)/38 is roughly constant everywhere. For the second condition
to be true, this derivative must be constant only along the line corresponding to
the position of the zero-crossing segment. A difficulty we have with such a
statistical test is that at the resolution we are sampling these images, visual
features are closely packed; in the smoothing process, interaction between
nearby edges can yield strong variation in the convolution output between zero-
crossings, which will negatively influence these statistics.

A second approach to testing these assumptions might be to test their
consequence (Ullman, personal communication); that is, if an intensity change
whose orientation is 8, satisfies the two conditions, then the zero-crossings of
the directional derivative along the change will exactly coincide with the zero-
crossings of the Laplacian. A possible test of the assumptions might then be to
compute both a directional derivative and the Laplacian for an image, and compare
the positions of the zero-crossings from the two outputs to see how closely they
coincide for intensity changes whose orientation aligns with that of the operator
orientation. Figure 18 illustrates this test. Superimposed are the zero-
crossings in the outputs of the vertical operator described in Section II.1 (with
aspect ratio 1:3), displayed in light grey, and the zero-crossings in the output
of the V%G operator, displayed in medium grey. Zero-crossings which exactly

coincide are displayed in black. Qualitatively, intensity changes whose
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18. Comparison of zero-crossings in the output of the Laplacian operator with
those of a directional derivative. Zero-crossings resulting from convolution
with a vertical operator with aspect ratio 1:3 are displayed in light grey;
those of the Laplacian in medium grey, and zero-crossings from the two outputs
which exactly coincide are shown in black. Pieces of the zero-crossing contours

in the Laplacian output whose orientation is within about 45° of the vertical
correspond well with those of the directional derivative.
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orientation is within about 45° of the vertical give rise to zero-crossings 1in

the output of the two operators which correspond well.

11.3 The Final Channel Description

The remaining analysis in a single channel marks the beginning of the
computation of a symbolic description of the low-level features in the image. We
describe blobs formed by small contours; extended contours by a set of zero-
crossing segments, each with an associated orientation, length, and average
slope; and combine closely-spaced, parallel zero-crossing segments into
descriptions of bars. Two motivations for making explicit elements such as blobs
and bars is that first, their size is such that the elements most likely arise
from a surface mark, so for the purposes of later processing, it can be treated
as a primitive unit, which will be seen roughly the same by both eyes, and move
as a unit, as the object moves. Second, due to the proximity of the intensity
changes which give rise to bars and blobs at one scale, the zero-crossings from a
larger channel are likely not to coincide with the zero-crossings of a smaller
channel. Making explicit this proximity of intensity changes in one channel is
useful for determining the reliability of zero-crossings from a larger channel.

To maintain the continuity and accuracy of position information provided
by the initial zero-crossing contours, each channel description contains a binary
map indicating the positions of zero-crossings. Attached to this map are the

symbolic descriptors computed for pieces of the contour.

I1.3.1 Zero-Crossing Segments

A zero-crossing segment is a line of zero-crossings whose local
orientation is roughly uniform. Presently, we require that the length of these
segments be at least w, sc that we are measuring orientation over a significant

distance. The maximum length has been chosen to be roughly 3w. This value is
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motivated by studies of the human system (Nakayama & Roberts 1972), and is not a
critical factor. In the implementation, the segment description is constructed
as follows. The beginning of a zero-crossing contour which has not yet been
described is located. Following the contour, a line of approximately w points is
formed. The fit of the points to a line through their center of gravity is
tested; if the fit is below a particular threshold, we continue to extend the
line of points as long as its local orientation remains roughly uniform, up to a
length 3w. If the fit is above this threshold, the initial segment is shifted
around the contour, and the process continued. When a segment has been
completed, a descriptor is placed at the middle of the set of points, with the
following attributes:

1. type of descriptor: EDGE

2. average SLOPE of points along the contour.

3. LENGTH of the segment.

4. ORIENTATION, defined, from the horizontal, to be the

orientation of the line which is a least squares fit to the set of

points.
Figure 19b illustrates symbolically with oriented lines, the position and

orientation of segments along the zero-crossing contours.

11.3.2 The Blob Description

To simplify the process of locating blob-like structures, any small
closed contour whose total spatial extent fits within a square of size 3w x 3w is
considered to be a blob. This particular size is again motivated by studies of
the human system, and does not appear to be critical. A descriptor, with the
following attributes, 1is placed at the point defining the center of gravity for
points on the contour:

1. type of descriptor: BLOB
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19. Single channel description. In (a) are the original zero-crossings for the
plant image of Figure la. (b), (c), and (d) illustrate, symbolically, the
descriptors attached to parts of the zero-crossing contours of (a).(b)
illustrates the zero-crossing segments, in a manner similar to Figure 5. (c)
shows the blobs; their rough spatial dimensions and orientation are represented
in the dimensions and orientation of the rectangles. Finally, two oriented
segments, which are roughly parallel form a bar. The bars in this case are shown
symbolically in (d). Again, we are only conveying the spatial properties of the
primitives here; also attached to the primitives would be the average slope of
the convolution output across the primitive.
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2. average SLOPE of points along the contour, with its sign
specified by the sign of the convolution output inside the closed
contour.

3. ORIENTATION, which is always specified from the horizontal
axis, and defined to be the orientation of the line through the
center of gravity of the contour points which best fits these points
(using a least squares fit).

4. LENGTH of the blob; a rough measure of the extent of the
blob along its major axis.

5. WIDTH; a rough measure of the extent of the blob along
its minor axis.

In Figure 19c, the blobs detected for the plant image of Figure 3a are

represented symbolically with oriented rectangles.

I1.3.3 Bars
A bar consists of two roughly parallel zero-crossing segments, separated
by a distance about w, which extend over similar lengths. Bars are easily
detected in a serial scheme by searching in a direction perpendicular to a
particular segment for a second segment with similar orientation (presently, the
difference in orientation is allowed to be as much as 5°). The associated
descriptor, placed at the center of the two segments, maintains the following
attributes:
1. type of descriptor: BAR
2. SLOPE of both segments, with the sign of the bar defined
by the sign of the convolution output between the two segments.
3. average ORIENTATION of the two segments, again measured
from the horizontal.

4. LENGTH of the bar.
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5. WIDTH of the bar (separation between the two segments).

Examples of bars in the plant image appear in Figure 19d.

This computer implementation of the description of zero-crossing
segments, blobs, and bars uses a serial, contour following scheme. A local,
parallel scheme for detecting and describing these elements (Marr & Hildreth
1979), more attractive from a biological standpoint, is discussed further in the
next section. The implementation of a parallel scheme is likely to raise issues
of representation, and communication between local operators, which do not arise
in this serial scheme.

There is also evidence that early in this detection stage, the human
visual system makes explicit the termination of edges (see Section III), but the
computational definition of terminations is still an open problem, which I will

not be dealing with here.
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III. Performance of the First Stage by the Human Visual System

Studies in neurophysiology and psychophysics offer much support for this
first stage of early processing. Cell recordings in the retina of cat and monkey
(Kuffler 1953, Rodieck & Stone 1965, Enroth-Cugell & Robson 1966, Cleland, Dubin
& Levick 1971a, deMonasterio 1978a, 1978b) have uncovered two classes of retinal
ganglion cells, whose axons form the optic nerve fibers, along which visual
information is carried to the lateral geniculate nucleus, before reaching visual
cortex. These two cell types, termed X and Y cells, both have receptive fields
with an antagonistic center-surround organization, whose shape is a difference of
two Gaussian functions (DOG).4 The DOG is an approximation to the v23G function
proposed here (see Appendix B, Marr & Hildreth 1979). X cells are distinguished
by their smaller size, linearity, sustained response to changes in their visual
input, and selectivity for color. In contrast, Y cells are larger, nonlinear,
have a transient response pattern, and no wavelength specificity. These studies
have also indicated that at each location on the retina, there is only one size
for each cell class, although the size increases with eccentricity. Marr and
Ullman (1979) have proposed that the primary function of the transient cells is
to compute the time derivative of their input: d/dt(V% * I). They provide an
excellent demonstration of the close correspondence between the measured output
of the retinal ganglion X and Y cells to the predicted responses of the proposed
operators (Marr & Ullman 1979, p. 32, 37).

At layer 4c of visual cortex, which receives input fibers from the LGN,
there is a greater scatter of receptive field sizes. The scatter seems to
reflect a range of sizes of about 4:1 (Hubel & Wiesel 1974b, Figure 4). This
scatter is believed to arise at the LGN {(Cleland, Dubin, & Levick 1971b), where
other properties are preserved. Computationally, it requires the output of only
a few DOGS to yield a DOG which is twice the size (Marr & Ullman 1979).

Simultaneous recordings from the retina and LGN (Cleland, Dubin, & Levick 1971b)
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indicate that only a few ganglion cell inputs are necessary to account for the
output of most LGN cells studied.

At the cortex, there is again a distinction of cell types, originally
classified by Hubel & Wiesel (1962) as simple, complex, and hypercomplex. The
class of primary interest here are the simple cells, which were described as
linear, with 'bar' or 'edge' shaped receptive fields, clear orientation
specificity,® smaller in size, and with distinct subregions of their receptive
fields responding to light increment and light decrement. The size of their
receptive fields increases with eccentricity. Subsequent studies (Schiller et
al. 1976a) have further divided simple cells according to their selectivity for
the direction of motion. They were also shown not to be strictly linear devices,
as their orientation tuning did not change significantly with an increase in the
strength of flanking subfields (Schiller et al. 1976b).

Marr & Hildreth (1979) first proposed that the function of simple cells
is to detect segments of zero-crossings in the v2G output which forms the input
to these cells. The model was elaborated by Marr and Ullman (1979) to include a
mechanism for directional selectivity. It was also proposed that the function of
'bar' shaped simple cells is the detection of closely spaced zero-crossing
segments. It is interesting that these 'bar' and ‘edge' shaped cells first found
by Hubel and Wiesel offered strong motivation for the first primitive operators
proposed by Marr in the early primal sketch theory (Marr 1976b). Computational
experiments later showed that if we apply these operators directly to the image,
attempting to model the dimensions of the simple cells (the aspect ratio is
roughly 4:1), the description we obtain for the changes in intensity are very
unreliable. So it was found, computationally, to be necessary to separate the
two tasks of initial filtering with a non-oriented operator, and detection of
oriented intensity changes by an oriented operator, as the human system divides

these two tasks. In the serial implementation described in the previous section,
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the local detection of zero-crossings, and assignment of orientation to segments
of the zero-crossing contour were separated. The simple cell operator combines
these two tasks, and can be applied in parallel over the v4G output.

It has long been known, through psychophysical experimentation, that
there exist separate, orientation sensitive channels through which visual
information is processed, each tuned to different ranges of spatial frequency
(for example, Campbell & Robson 1968, Blakemore & Campbell 1969, Sachs, Nachmias,
& Robson 1971, Tolhurst 1973, Cowan 1977). There still remains considerable
controversy concerning the number and frequency bandwidth of these channels.
Wilson and Giese (1977) and Wilson and Bergen (1979) have recently completed
quantitative studies which suggest that there exist four, fairly broadly tuned
channels. In their studies they tested the contrast sensitivity of their
subjects to particular vertical patterns, modulated with time functions intended
to selectively stimulate the sustained and transient mechanisms. Two channels,
one sustained and one transient, were measured directly by these experiments,
while the other two were implied by general data concerning the overall
modulation transfer function of the human system. The shape of the response of
these channels can be realized by oriented operators whose horizontal cross-
section is the difference of two Gaussian functions; for the smaller, sustained
channels, the ratio of excitatory to inhibitory space constants is 1:1.75, and
half-power bandwidth is roughly 1-3 octaves; for the larger, transient channels,
this ratio is 1:3.0, and the bandwidth may be slightly larger. The four channel
sizes are separated by about one octave, and increase linearly with eccentricity.
The sizes at the fovea range from 3' of arc to 21' of arc. The above experiments
used vertical patterns as stimuli; if the results represent processing through
an initial circular center-surround operator before processing by oriented
operators, the experiments must be interpreted as measuring the one-dimensional

projection of these two-dimensional circular operators. The two-dimensional
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- counterpart of a DG operator with central width W, is a V% operator with
central diameter w =‘TZMX. The measured sizes of the Wilson and Bergen channels
then imply initial operators with diameters in the central fovea ranging from
3.12 = 4.38' to 2172 = 29.69'.

Psychophysical experimentation has also revealed a remarkable ability of
the human visual system to resolve fine detail. The basic visual acuity
'experiments test our ability to resolve two fine dots or bars, with small
separation between. Under the best viewing conditions, two dots, at maximum
contrast and with diameter 1' of arc, can be resolved with 75% confidence at a
separation of slightly more than a minute; two 1' wide bars can be resolved with
75% confidence at a separation of 1' (Westheimer 1977). It is interesting to ask
whether such fine acuity can be explained with a smallest channel size of 3.1°'
proposed by Wilson & Bergen‘(1979). If our limit of resolution of the two dots
or two bars were determined by the smallest separation which yielded distinct
zero-crossings between the two elements, a smaller channel is required to account
for the experimental threshold (Marr, Poggio, & Hildreth 1979). Figure 20
illustrates the zero-crossings from a 3.1' and 1.5' channel, given the two point
and two bar éonfigurations. Also illustratedAare the intensity profiles for a
cross-section of the bars example. Acuity experiments generally use a paradigm
of forced chéice. which means that the subject is presented with some set of
configurations, one at a time, and is asked to respond in one of two ways, such
as “one" or "two". One can argue that other available information, such as peaks
in the convolution output, or a difference in the position of the outer zero-
crossings, might be used in making these binary decisions. Other available
information does not, however, appear to predict the experimental threshold as
well as the use of distinct zero-crossings, and a smaller channel.® Because of
the availability of other information, we can not consider these experiments as

proof of the existence of a smaller channel.
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It has been shown (Marr, Poggio, & Hildreth 1979) that a smallest channel
size of 1.5' may also be reconciled with the basic optics of the eye, which
places a theoretical limit on resolution, and known physiological data concerning
midget ganglion cells in the retina, believed to be driven by a single cone.

There is a second type of visual acuity, labeled hyperacuity, which
refers to an ability to make accurate judgements requiring the localization -of
some visual feature to a resolution of a few seconds of arc, roughly 1/5 the size
of the finest foveal cones (Westheimer & McKee 1975, 1976, 1977, Westheimer 1976,
1977, Beck & Schwartz 1978, Burr 1979). The LGN input to visual cortex
represents an even coarser sampling than the initial cones, providing samples
roughly every 1' of arc in the central fovea (D. Marr, personal communication).
Vernier acuity and stereo acuity fall into this hyperacuity range. Barlow (1979)
suggested that a necessary component of this fine localization is the
reconstruction of the smallest channel, at a higher resolution, after initial
processing by the retina and LGN. The neurophysiology is particularly well-
suited for this task; in layer 4c of visual cortex, where input fibers from the
LGN are recieved, there is a myriad of granule cells which outnumber the input
fibers 30-100 to one (see Barlow 1979). Barlow suggests that an interpolation
takes place between the input samples, with the output of the granule cells
representing the interpolated values. If this interpolation took place, the
positions of the zero-crossings could be localized to a precision of a few
seconds of arc (Crick, Marr & Poggio 1980, Marr, Poggio, & Hildreth 1979). This
poses the question of how this interpolation might take place; that is, what
interpolation function is best suited for computing the positions of the zero-
crossings at this precision, with the least error. An important constraint on
this interpolation scheme is that it be biologically feasible.

Statistical experiments, run on a wide range of intensity profiles, show

that the interpolation can be performed simply and locally, with a range of
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possible interpolation functions, yielding small error in positioning the zero-
crossings. The precise experiments were as follows. Several one-dimensional
intensity profiles were first convolved with a one-dimensional D?G function with
W, (wx = 20) corresponding to the 1.5' channel proposed. In two different
experiments, the interval between samples of the intensity function (and DG
output) roughly corresponded to 5" and 20", respectively (20" is the approximate
spacing between foveal cones). The DG outputs were then sampled at intervals
corresponding to 20*, 40", and 60", and reconstructed at a 5" resolution. In the
experiment where initial D26 output samples were computed every 5", the
reconstructed signals were compared against this original convolution output. In
the second case (convolution samples originally every 20"), the reconstructions
were compared against interpolation with an extended sinc function, whose
frequency spectrum approaches the ideal lowpass filter required by the sampling
theorem. Other interpolation functions were first, truncated sinc functions with

n=2, 4, and 6:

(sin (wx/int))/(mx/int) Ix] < 2n

0 otherwise

int is the spacing between input samples. The output was also convolved with a
Gaussian function with space constant ¢ = int/2, and a triangular function of
width 2*iat (linear interpolation). As our main concern is the positioning of
the zero-crossings, expected values for the deviation, in pixel units, of their
position from the ideal positioning were computed; statistics for the second
experiment appear in Table 1.7 For the first experiment, the statistics were
slightly better. Most striking about these figures is the fact that the
deviations are quite small. Qualitatively, it was observed that for a relatively

strong edge, positioning of the zero-crossings by all interpolation functions
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Table I

Case 1: no sampling of the convolution output

truncated sinc, n = 2 . 0.037 5.45 -
linear 0.001 - 0.96
gaussian 0.005 - 1.92

Case 2: convolution sampled every 40 seconds

truncated sinc, n = 2 0.523 6.19 1.03
truncated sinc, n = 4 0.410 3.09 1.03
truncated sinc, n = 6 0.47§ 3.09 1.03
linear 0.659 - 2.06
gaussian 0.889 - 5.15

Case 3: convolution sampled cvery 00 seconds

truncated sinc, n = 2 0.855 2.50 8.75
truncated sinc, n = 4 0.798 6.25 3.75
truncated sinc, n = 6 0.729 6.25 3.75
linear 0.841 - 10.01
gaussian 0.961 1.25 11.25

Conmparison of the reconstruction of %G outputs using different interpolation
functions. The first column provides the mean displacement of the zero-
crossings, in pixel units (which corresponded roughly to 5" spacing between
samples), between the given interpolation function, and the extended sinc
(used as the comparison interpolation). In the second and third columns are
the percentage of additional zero-crossings in the interpolated output, and
missing zero-crossings, respectively.
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exactly coincided with the ideal position, at these precisions. Deviation from
the ideal position generally occured in regions of high-frequency, low contrast
change. The stimuli typically used in hyperacuity experiments would not
distinguish between the possible interpolation functions. Some examples of the
reconstructed signals appear in Figure 21.

For the more interesting case of reconstructing the outputs after
sampling every 40" and 60" (closer to the sampling of LGN inputs in the human
system), the truncated sincs provide the least error, with the error not
decreasing significantly as we increase n. One factor in considering the
biological feasibility of these interpolation functions is the size of the
support required for their computation; linear and Gaussian interpolation are
more local operations, requiring only two input samples in the one-dimensional
case, while the truncated sinc (with n = 2), requires four. For simple intensity
distributions, such as an ideal step, the sinc functions would yield shallow
secondary zero-crossings to the side of the primary zero-crossing marking the
position of the edge. In terms of a biological implementation, whether or not
this poses a real problem would depend on whether interpolation takes place
before or after (or simultaneously with) the detection of zero-crossings by the
more coarsely spaced simple cells. On the other hand, with slightly larger
error, one could use Gaussian or linear interpolation, which would not introduce
these secondary zero-crossings.

To summarize this discussion, in order to account for the experimentally
determined visual acuity and hyperacuity of the human visual system, the
combination of a smaller, 1.5' channel operating in the central fovea, and
interpolation of the V2% samples had been proposed. With the smaller channel,
acuity is determined by the ability to discriminate visual input by the presence
of distinct zero-crossings in the VG output. Concerning interpolation, it has

been shown that very simple, local functions are adequate to account for the
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21. Reconstructed convolution outputs. An ideal reconstruction of a convolution
output, at 5 times the original resolution of the output, is shown in (a). In
(b), (c), and (d), the output was reconstructed (without sampling) by a truncated
sinc with n = 2, linear interpolation, and a Gaussian, respectively. The results
are shown superimposed on the ideal reconstruction. We can see that the error in
positioning the zero-crossings is small. In (e), (f), (g), and (h), the output
was sampled every other point, and then reconstructed using truncated sincs with
n = 4 and 2, linear interpolation, and a Gaussian, respectively. Again, the
outputs are shown superimposed on the ideal reconstruction of (a). The error in
positioning the zero-crossings does not increase significantly.
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hyperacuity of the ‘human visual systenm.

There is also evidence from psychophysics that the human system makes
explicit termination points, and that these primitives may at least be used in
stereopsis (Frisby & Julesz 1976) and motion correspondence (Ullman 1979).
Evidence so far only shows the endpoints of linaes to be early primitives. Forf
the special case of lines‘,- even a simple, logical operator, designed in a similar
mannér as the simple ceil_ operator, but whose op;:imal stimulus is a blob-like
structure, would be able to detect their endpoints. However, further
: inVestigation: is needed in' this area, to determine whether terminations should be
extended to a widervclas.s vof elements, and how they may be detected in the.
gen;ral case;

In conclusion, there are niany parallels between this first stage of the
primal sketch theory, and proces:sing in the human system. Historically, the
finding of cortical simple cells which behaved.roughly as bar or edge-shaped
differential operators provided motivation for the original primal sketch theory.
Later, the distinction between the initial differential operation performed b)i{
the retina, and the role of simple cells, provided support for dividﬁing thesg
tasks in the computation. The known shape of the response of retinal ganglion
cells, and the shape of the channels found by Wilson and Giese (1977).' and Wilson
and Bergen (1979) motivated a careful study of the necessary constraints on
~shape, leading to th‘e requirements of localization in space and frequency. Given
the general framework of the channels, the implementation then became a Atesting
ground for phenomena such as acuity, leading to the suggestion of a smaller
channel in the humanrvisual system, and the proposal of simple interpolation
schemes for the fine positioning of zero-crossing contours. It is this close

interaction between the computational model, and the human processor which makes

this area of research so exciting.
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IV. Combining the Channels

In Section I, I described the second stage of the primal sketch
computation: the integration of individual channel descriptions into a single
raw primal sketch of the image. In Section IV.1, I will first discuss some of
the known relationships that exist between zero-crossings in adjacent channels.

The spatial coincidence assumption captures their spatial relationship; here, we

also look at the slopes of coincident zero-crossings, and relate them to the
properties of width and contrast of the original intensity change. These
properties can be recovered easily for simple, relatively isolated intensity
changes; this work is not able to offer a solution to the recovery of these
properties in the general case of intensity changes for which there is complex
spatial interaction between nearby intensity changes, or changes operating at
different scales. In this case, I will only suggest additional sources of
information which might contribute toward this recovery. The results of this
first section are relevant to the integration of information between channels,
regardless of whether we explicitly represent this information in a single
description of intensity changes. In Section IV.2, I will examine some
perceptual experiments relating to this question of combining the channels.
Grouping, lightness computations, and motion correspondence will each impose
requirements on the description of intensity changes which forms their input. In
Section IV.3, it is suggested that understanding these requirements may be

necessary for taking the work on channel integration further.

IV.1 Relationships Between the Channel Outputs

We can begin to study the relationship between zero-crossings from
different channels by first examining the case of one-dimensional signals. Here,
our input will be the zero-crossings and slopes from the output of D3G(x)*I(x),

where D?G is now the one-dimensional operator of Figure 2a. We can assume for
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now that the finest resolution with which we can resolve individual changes in
the intensity profile is the resolution provided by the smallest channel; we can
not distinguish two nearby intensity changes which are not represented by
distinct zero-crossings in the smallest channel. If we let the convolution
output of the smallest channel be Ol(x), then the output of the larger channels

is just the result of Gaussian filtering Ol(x) (by the derivative rule for

convolutions). We are interested in understanding the inverse of this operation;
that is, given local zero-crossing information from a set of channels, each of
which is the result of additional smoothing of a single intensity profile, what
can we say about the changes occuring in the original profile?

We can begin a systematic analysis of the zero-crossings with the case of
a single, isolated edge in the image. Here the relationship between the zero-
crossings in different channels is simple; there will exist a single zero-
crossing at the location marking the middle of the edge in each channel output,
whose slope is related to the contrast and width of the edge, and size of the

operator, by the following equation:

2,02
s, = ce @ /8

¢ and d are the edge contrast and width, and g, is the space constant for the

Gaussian used in forming the DG operator. Thus given zero-crossings from two

channels, we have two equations which we can solve for ¢ and d:

2,4 2
s, = ce9 /89,

2 2
s. = ce-47/80,

If we choose these channels to be separated in size by one octave, as in the case

of adjacent channels used in the primal sketch computation, then ¢, = 2¢

2 We are

1°
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dealing here with discrete, quantized signals, which pose an additional
constraint on this solution. If d is very large in comparison with o, there
will be a neighborhood in which the convolution output will fluctuate around
zero, yielding multiple zero-crossings, rather than a single zero-crossing at the
location corresponding to the midpoint of the original edge. For this situation,
illustrated in Figure 22, the above equation no longer holds. In order to solve
for contrast and width using zero-crossings from adjacent channels, we must be
careful to choose those channels for which w, the size of the filter, is close to
d. For this we can use the selection criterion (Marr 1976b, Marr & Hildreth
1979). Using the above equation, we can relate the ratio of slopes of zero-
crossings from adjacent channels to d:

2
= e

2 2 2 2
e'd /8(261) /ce'd /871

s,/s, = ¢ a“/160
For a particular edge width d, the ratio between slopes decreases with mask size
(as in Marr 1976b, p. 487). If w = d, then szls1 = 1.28. Ideally, we would like
to choose adjacent channels which yield a slope ratio nearest this number. The
requirement that w = d is conservative, however, and in practice we can use
somewhat smaller channels for computing contrast and width.

The two-dimensional extension to the computation of contrast and width is

straightforward; in this case, the slope will also be a function of the two-

dimensional extent of the mask, here labeled x:8

As before, we can then compute ¢ and d explicitly from the measured slopes from

two different size channels, as long as their size satisfies the selection

criterion.
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Using the above scheme for computing contrast and width from the slopes
of zero-crossings, we can propose a simple algorithm for combining two channel
descriptions, which rests heavily on the spatial coincidence assumption described
in Section I. The algorithm compares the position and orientation of the zero-
crossing segments contained in corresponding neighborhoods of the two arrays
representing two adjacent channels. If similar segments are found in the two
neighborhoods, the descriptions are integrated into a single edge description,
which now includes the calculated contrast and width, and together with the piece
of zero-crossing contour described, this description is written into the array
containing the final raw primal sketch. If a segment is found in only one
channel, it may be written into the raw primal sketch independently.

The above algorithm is adequate for simple scenes consisting of
relatively isolated,9 simple intensity changes, but unfortunately, many edges in
the real world will not be sufficiently isolated for this scheme to provide an
accurate computation of the edge properties. As operator size increases, and the
image is smoothed over larger areas, distinct intensity changes will be smoothed
together, while smaller changes may disappear entirely. There is a corresponding
change in the position and slope of the zero-crossings, and the above scheme for
computing contrast and width is quite sensitive to these changes.1° We are faced
with a situation where the position and slope of local zero-crossings no longer
have a simple dependence on the properties of a single, local edge, but also
depend on the properties of nearby edges. We would like our computation of edge
properties to remain a local operation. One remaining question is then whether
we can compute, using local operations, a good approximation for the properties
of a particular edge, in the case where the response of the D26 operator to
nearby edges interacts with the response to the local edge.

Suppose that we have zero-crossings in two adjacent channels, whose

positions are separated by some small amount «:
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The spatial coincidence assumption allows us to conclude that there exists a
physical edge somewhere in this vicinity; however, the three pieces of
information given here (51' S, «) are not sufficient to unambiguously determine
the contrast and width of this physical edge. There is a family of possible
local edges (each with a different position, contrast, and width), which combined
with nearby edges, could have given rise to this local information. To resolve
the properties of the local edge, we need additional information. There are at
least three potential sources of information which might help in the solution of
this problem:

1. Properties of other zero-crossings within a neighborhood of these;

the BAR operator described in Marr (1976b) and Marr & Hildreth (1979)

is a possible mechanism for detecting closely spaced zero-crossings.

2. Information from other channels.

3. Assumptions about the local nature of intensity profiles, which

are generally valid for natural scenes. An example of such an

assumption might concern the rate at which intensity can change

locally.
The extent to which each of these sources of information might be used, and how
they are used remains an open question. A difficulty we have in advancing this
work is an insufficient understanding of what is required by lightness-related
computations. One might expect that for grouping, or motion correspondence, é

measurement of contrast need not be very accurate. In the case of lightness



PAGE 81

computations, however, are these measurements of contrast and width the
appropriate quantities to make explicit at this stage, and how accurately must
these properties be computed?

I would like to note that if we are to describe intensity changes
occuring at a range of scales in a single representation, the design of this
representation is now an issue. Marr and Nishihara (1977) presented a number of
general criteria for judging a shape representation, of which three may be
relevant here: (1) accessibility (computability) and (2) stability and
sensitivity, and (3) organization of primitives within the representation. The
meaning of accessibility in this case is clear. The second criterion, applied
here, means that we would like the representation to be sensitive to small
changes in intensity, but minor fluctuations in intensity, due to noise, or small
illumination changes (such as would occur in time) should not significantly
disrupt our description. For the organization of our primitives, we have at
least two possible approaches; at one extreme is no organization; that is, all
intensity changes in the description have the same status. The changes might be

represented somewhat like this:

Y

|

intensity profile representation

Each individual channel provides a description of intensity changes at a
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~particular scale, in a representation much like this; as a series of adjacent,
non-overlapping changes. (For example, in Figure lb, we showed the smoothed
intensity profiles seen through different channels. There would occur a zero-
crossing in the output of the second derivative of this profile at each of its
inflection points. One could then think of the profile as a series of adjacent,
non-overlapping intensity changes, whose location may be marked by the location
of an inflection point in intensity.) This is also the simplest representation
into which one could place the description obtained by integrating the channels
using the local scheme discussed previously, which relies primarily on spatial
coincidence. That is, our ultimate description most closely resembles the
structure of the description obtained from the smallest channel, but with
contrast and slope of the intensity changes made explicit, using the slopes of
coincident zero-crossing contours from larger channels. It is yet unclear, using
a representation such as this, how one would include the description of an
intensity change which was only detected at one of the larger scales (such as an
explicit shading edge). A second approach for the design of this intermediate
representation is a hierarchical structure; at some level, we describe overall
changes that take place; each overall change summarizes a group of smaller
changes which take place at another scale. For the above intensity profile, the
hierarchical organization would place a description of the overall rise in
intensity at one level, and descriptions of the smaller changes superimposed on
this change, at another level. The separate channels already provide one such
intermediate hierarchical organization of intensity changes. In Section IV.3,
there is an cxample of an image of a leaf, in which larger channel zero-crossing
contours explicitly follow shading lines caused by the nature of the
illumination. It is suggested there that for some processes, it might be more
useful to maintain the distinction of channels.

To summarize, if we want to characterize an intensity change by the
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properties of contrast and width, we require zero-crossing information from more
than one channel. Careful examination of the simpler case of one-dimensional
signals contributed toward an understanding of the details involved in computing
the needed edge properties. In the idealized situation of a single, isolated
edge, this computation is simple, and we could develop an algorithm for combining
channel descriptions, based on spatial coincidence, and our simple scheme for
recovering contrast and width. Such an algorithm is adequate for simple images,
and might be useful in certain visual processing tasks, but in natural images,
local zero-crossings will generally not depend simply on the properties of a
single edge, so other sources of information must be used to recover these
properties. In the following sections, some perceptual experiments, and the role

of subsequent processing in carrying this work further are discussed.

IV.2 Some Perceptual Experiments

We have a precise model of the shape and size of the individual channels,
and propose that it is the zero-crossings in the output of these channels that
carry essential information to subsequent processes. With this model, we can
explore some human perceptual experiments by computing the descriptions we
believe to be obtained by the individual channels, and observing the way in which
they relate to our eventual perception. If this perception were the consequence
of low-level interactions between channels, understanding the way in which they
must interact in order to yield this perception might be useful. If we then have
some understanding of how the channels interact in the human visual system, it
might contribute toward an understanding of why they should interact in this way.
Experimenting with this approach must, however, be taken with extreme care, as it
will not necessarily be the low-level interactions between channels which account
for this eventual perception. Two experiments which I explore here are Harmon

and Julesz' (1973) quantized Lincoln figure, and our perception of a checkerboard
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pattern.
In their 1973 paper, Harmon and Julesz present a quantized portrait of

Abraham Lincoln, reproduced here in Figure 23a. The interesting property of this

picture is that from the block portrait, we are unable to recognize Lincoln:
however, if we squint our eyes, or stand a far distance from the image, we do
recognize the face. Depicted in Figures 23b, ¢, and d are the zero-crossings in
the output of three different size V% channels. If we let the size of a single
block be denoted by b, then the three mask sizes are b/2, b, and 2*b in Figures
23b, c, and d, respectively. They correspond roughly to what is seen by the
human channels viewing the picture from a distance of 6 feet (inm this case, the
blocks would subtend about 6 of arc). It is clear from observing these outputs
that the smaller channels provide information which emphasizes the quantization
of the image, which closely resembles what we perceive at shorter viewing
distances. However, for viewing distances greater than about 3 feet, larger
channels provide zero-crossing information from which we could recognize Lincoln.
The implication of this demonstration is that we have available to us,
information from the larger channels which is not utilized in our final
description of this image. We can not conclude where, or how, this apparent
selection of the smaller channels takes place, because we are looking at the
behavior of the entire visual system, in which a number of processes are acting
together, either in Sequence, or in parallel. (For example, it might be the case
that in producing a description such as the raw primal sketch, which is concerned
primarily with static, monocular analysis of changes in intensity, the smaller,
sustained channels play a more significant role. The larger, transient channels
may be more important for stereopsis and early motion analysis.) The system, as
a whole, may be too complex to draw very detailed conclusions from this type of
experiment, but I feel we can safely say that at some stage in processing the

image, channel information is integrated, and once this stage is reached, we no
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23. The quantized portrait of Abraham Lincoln, from Harmon & Julesz (1973).

Block size in this experiment was 24 pixels.

(b),

(c),

and (d) show

the zero-

crossings in the output of the block portrait convolved with V%G filters with w

= 12, 24, and 48 pixels, respectively.
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longer have access to the output of the individual channels. That is, the
integration of the channels is an aspect of our nonattentive vision, and is most
likely to preceed recognition.

The second experiment is simply a more objective example of the
phenomenon illustrated by the Lincoln example. When we view a checkerboard from
a close distance, such as in Figure 24a, we see the configuration of squares. As
we.increase our viewing distance, the diagonals of alternating contrast become
more apparent. This can be seen in Figure 24b. Again, examining the output of
the different size channels offers one explanation for this effect. In Figures
24c, d, and e, we have the output of V%G filters applied to a checkerboard
pattern, with w = b/2, b, and 2*b (b is again the block size). The convolution
outputs are shown in the first column; in the second column are the contours of
zero-crossings, with the slope of the zero-crossings displayed as intensity. I
chose here to display positive and negative contrast by light and dark intensity
values. The particular convention for defining the direction of positive and
negative contrast is arbitrary. Column 3 indicates all zero-crossing contours,
displayed at constant intensity levels, and finally, the last column provides
cross-sections of the convolution outputs across the zero-crossing contours.
What we can observe here is that for all channel sizes, zero-crossings occur
along the outline of the squares, but as we increase the channel size, that part
of the zero-crossing contour with strongest slope becomes focused more narrowly
around the midpoint of the edges dividing two squares. For very large channels,
the slopes of the zero-crossing contours are extremely weak around the edge
intersections.

If we assume that oriented intensity changes are detected by simple cells
operating at roughly the same scale as their VG inputs, then for smaller
channels, the horizontal and vertical zero-crossing detectors would respond very

strongly, producing a description of the pattern of squares, illustrated
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24. Analysis of the checkerboard pattern through different size operators. (a)
and (b) show the checkerboard at two different resolutions. In (a) we clearly
see the pattern of squares, whereas in (b), the diagonals dominate our
perception. Block size for the experiment was 24 pixels. In (c), (d), and (e)
we have the analysis of zero-crossings from filters of size w = 12, 24, and 48
pixels, respectively. In the first column are the convolution outputs. The
second column shows the zero-crossings, with slope displayed as intensity (light
and dark intensities represent positive and negative contrast; the particular
convention used to define the direction of these contrasts is arbitrary). In the
third column, we have all the zero-crossings displayed at uniform intensity, and
finally, the fourth column provides a cross-section of the convolution output
near the zero-crossing contours. (f) and (g) indicate symbolically, the

description obtained by channels much larger, and much smaller, than the block
size.
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e ubvlically im Figurs 24f. Howewer, if wo increase channel size with respect to
block size, it is the detectors oriented along the orientation of the diagonals
which would respond more strongly, even though the zero-crossing contours
themselves still form a grid. The resulting description is shown symbolically in
Figure 24g, for one diagonal direction. The fact that the difference in
perception of the checkerboard pattern is related to what may be seen by
different size channels, is, by itself, not so interesting. What is more
interesting is the distance at which our perception changes from the pattern of
squares, to the diagonals. This distance corresponds roughly to where the
individual squares subtend about 3' of arc. This implies that there exist
distances from which we may view the checkerboard, and see only the pattern of
squares, while we have larger channels supplying information from which the
pattern of diagonals would be stronger. It is analogous to the Lincoln picture,
in which we have information from the larger channels which appears not to form a

component of our eventual perception.

IV.3 From the Raw Primal Sketch

There are at least three classes of computations which will utilize
either the raw primal sketch, or full primal sketch: elementary grouping
operations, such as those described in Marr (1976b, 1980); 1light related
computations, such as those dealing with reflectances, effects of illumination,
and detection of light sources; and early motion analysis, in particular, motion
correspondence (Ullman 1979). Further research in these areas could have

important consequences for the integration of the channel descriptions.

There are two, seemingly different, types of grouping operations which
may take place in early vision. The first is the summary of primitive primal
sketch elements (segments, blobs, bars, and terminations) which are similar to

one another along some dimension, such as orientation, contrast, or size. Two
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examples appear in Figure Z5. In Figure Zsa, we may group Zero-ciuddiily deylciud
with similar orientations into columns; in Figure 25b, the similar property is
contrast, which separates the textured faces of the bricks from their outline.
The second type of grouping depends more on the spatial arrangement of the
primitives, than properties of the primitives themselves, and is illustrated in
Figure 25c. Here, the primitives are uniform: dots of the same size and
contrast. However, there exists strong association between particular dots,
which results in the formation of subjective contours. A strong motivation for
the first type of grouping is that the summary of the local properties of
orientation, contrast, and size over small areas, can be used for obtaining
information about surface geometry, either local surface orientation or relative
depth, or discontinuities in these properties (Stevens 1979, Marr 1980). The
usefulness of the second type of grouping process appears more general; it may
reflect a general ability to aggregate elements along contours (such as in the
linear aggregation described in Marr (1976b)), where these contours may be the
result of any of a number of physical phenomena, such as an incomplete structural
boundary, illumination boundary, or boundary defining a discontinuity in surface
orientation on a textured surface. The final description, containing both the
primitive elements and their groupings has been called the full primal sketch.
Two remarks should be made concerning these early grouping operations.
First, these operations may be quite rough. For example, concerning the use of
the orientation of zero-crossing segments in recovering information about surface
geometry, Marr {1980) has shown that the orientation of elements on a surface are

not very sensitive to changes in the underlying surface orientation; that is, a

significant change in surface orientation may only yield a small change in the
orientation of an element on the surface. Riley (1977) provides evidence that
the use of local orientation measures in texture discrimination are extrenely

coarse. In Figure 26a is the image of a piece of animal fur, in which it appears
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25. Examples of elementary grouping. In (a), we have the image of a piece of
tweed, and resultant zero-crossings. Using the property of orientation of the
zero-crossing segments, we could group similar segments into columns. In (b),
where we present the zero-crossings resulting from the image of a brick wall, the
property of contrast allows us to summarize the fine texture on the face of the
bricks, or the outline of the bricks. 1In (¢) is an array of similar items:
uniform dots of the same size and contast. The spatial arrangement of the dots

yields subjective contours.
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that the local orientation of the individual hairs provides information about the
underlying surface. In Figure 26b are the zero-crossings in the output of the
convolution of this image with a V2G operator of size w = 6 pixels (the entire
picture was 400 x 600 pixels). Average orientation of the zero-crossings changes
slowly and smoothly as we move across the image, but locally, the zero-crossings
are very rough. This will be true for any natural image of a fine texture such
as this, so that any process utilizing this information for recovering surface
geometry can not be too sensitive to local orientation measures. It should be
noted here that the zero-crossings that we compute from the v2G output do not
necessarily give an accurate reflection of the analysis that takes place at the
level of the simple cells in the human system. In the previous section, we saw
in the example of the checkerboard, that although the zero-érossings
theoretically remain on the grid as we increase the channel size, zero-crossing
detectors, behaving in the manner of the simple cell model, would yield a
stronger response if their optimal orientation were along the diagonals. When we
draw parallels between the computations we are performing on images, and
processing in the human visual system, some of the low-level differences
(differences at the mechanism level described in Marr (1976a)) in the performance
of these computations may be significant.

The second remark is that although grouping operations summarize a set of
primitive elements, they may not necessarily replace those primitive elements in
the final description. Ullman (1979) stresses that in the case of motion
correspondence, we make use of group tokens in gddition to the primitive elements
they group together; that group tokens do not replace their constituents in the
correspondence process. Riley (1980) has recently run some psychophysical
experiments using groups of tokens in temporal sequence; in these experiments, a
correspondence between the most primitive clements would result in a different

perception of motion than correspondence between the group tokens; results
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indicate that the correspondence is formed between the group tokens.

In an attempt to understand better the nature of the final product of
these grouping operations, Marr (1980), laid out 6 physical assumptions, on which
the design of the representation for the full primal sketch may be based. The
emphasis in these assumptions is on the relationship between the description of
intensity changes, and the geometry of the surfaces from which they were
generated, which we ultimately seek to characterize. I would like to repeat five

of those assumptions here:

1. Existence of the Surface: the visible world can be regarded as

being composed of smooth surfaces that have reflectance functions
whose spatial structure may be elaborate.

2. Hierarchical Organization: the spatial organization of a

surface's reflectance function is often generated by a number of
different processes operating at different scales.

3. Similarity: the items, generated on a given surface by a
reflectance-generating process acting at a given scale, tend to be
more similar to one another in their size, local contrast, color, and
spatial organization, than to other items on that surface.

4. Spatial Continuity of Spatial Markings: tokens often form smooth

contours on a surface.

5. Continuity of Discontinuities: the loci of discontinuities in

depth or in surface orientation are smooth almost everywhere.

An extensive discussion of these assumptions is given in Marr (1980); here, I
would only like to provide a brief discussion indicating their relevance to the
present work. Assumptions 4 and 5 form the key motivation for the grouping of

elements along contours. In the imaging process, we may lose the continuity of
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underlying physical phenomena, such as boundaries of discontinuity in surface
orientation. By a loss of continuity, we mean that such a contour is not given
explicitly by a continuous zero-crossing contour at some scale (see Riley (1980)
for discussion on this point). Assumption 5 would justify the grouping of the
points marking the discontinuity into some representation of a smooth, continuous
contour.

The notion of scale used in assumptions 1 and 2 refers to different
levels of spatial organization, and not necesarily to what we may see through
different size differential operators. On one hand, we require a sensitivity to
intensity changes occuring at a range of scales (different parts of the frequency
spectrum), because the features we wish to group together may reflect intensity
changes taking place in these different parts of the spectrum (for example, the
summarization of the brick texture certainly requires sensitivity to high
frequencies), but the organization itself is not explicitly given by the larger
channels. In the brick wall example, the levels of organization we may want to
make explicit are (1) the fine texture of the individual bricks, (2) the outline
of the bricks, and (3) the organization of the bricks into rows and colunns.
Through the smallest operator, we can see the texture of the bricks, but we also
see the outline of the bricks, and organization of the bricks into rows and
columns. Through larger filters, we would see the outline of the bricks, and
their organization into rows, but on the faces of the bricks, the contours would
represent a smoothing of the fine texture. Assumption 3 implies that if we have
a reflectance-generating process acting at a given scale, such as the texture on
the bricks, then the items generated by this texture will tend to be more similar
to one another (along some dimension) than to elements generated by processes
acting at a different scale, such as the organization of the bricks into rows.
In practice, this will be true both at the level of the individual scales, and in

an integrated description.
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These assumptions provide insight into what we want to compute for the
full primal sketch, and the nature of the final representation. Two problems not
addressed here are how this description is computed, and what is the form of the
intermediate representation (raw primal sketch) from which these spatial
organizations are conmputed. It is yet unclear what role (if any) the
descriptions provided by the individual channels may have in the grouping
process. In our brick wall example, the summary of the texture of the bricks
(possibly based on similar contrast) could take place either from a single
channel description, or a description obtained by combining the channels. In the
case of the inner texture of the bricks, the corresponding output from the larger
channels is not very meaningful for its summarization. A vchicken and egg"
problem arises here: the ability to summarize what takes place at one scale may
be useful for determining how to deal with information present at another scale,
suggesting that grouping operations might be useful for integrating the channels.
A different view is that very local operations are sufficient for this
integration, which precedes the grouping operations.

The significance of the above discussion for the present work is this:
the theory presented by Marr and Hildreth (1979) proposes that the description of
intensity changes at different scales is combined into a single representation of
all intensity changes, called the raw primal sketch. It was found that the
computation required for this integration is non-trivial. The difficulties
encountered lead one to question again what we want to compute at this stage, and
what should be the form of the representation. These questions are partially
answered for the full primal sketch, but until we understand the grouping
processes better, I feel that answers to these questions for the raw primal
sketch can only be speculative.

Two other processes which may have bearing on the primal sketch are

motion correspondence and lightness related computations. Motion correspondence
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appears to utilize the grouping of elements (see Ullman 1979, p. 64), but work in
this area has not addressed the role of scale in the correspondence computation;
that is, whether correspondence is computed between single, hierarchical

representations of intensity changes which also summarize the basic elements into

groups reflecting some of the spatial structure of the image, or whether the
computation might utilize descriptions which more closely resemble the channel
outputs, with additional grouping operations performed on the separate channels.
Again, I do not feel there is a clear answer to this question.

Another class of computations, whose time course we know little about,
are the lightness related computations. In the case of these processes, the
larger channels often make explicit information that could be valuable for them.
Shading information, for example, is often conveyed by the low frequency
channels. To illustrate this, the leaf image of Figure 3 is shown again here in
Figure 27, with the zero-crossings from a larger channel. The zero-crossings
from the smaller channel capture the bumpy texture, and through their slopes,
indirectly carry information concerning overall changes in intensity due to the
illumination on the leaf. In the larger channel, these changes in shading across
the leaf are made explicit; they outline contours along which a change in
surface orientation with respect to the direction of illumination, results in a
significant change in intensity. Changes in intensity will result from changes
in reflectance, illumination, depth, or surface orientation; the nature of a
particular change might be conveyed somewhat by the relationship between
information carried by the separate channels. If this were the case, it might be
useful to retain a division of channel information for lightness related
computations. These processes will therefor also be relevent for answering the
questions of what is made explicit in the raw primal sketch, and how the
information is represented.

In conclusion of this section, there have been significant advancements
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27. Zero=-crossings in the outputs of two V%G operators applied to the image of a
leaf. The smaller operator primarily detects the bumpy texture on the surface of
the leaf, whereas zero-crossing contours from the larger operator tend to outline
the highlights on the leaf surface due to illumination.
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over the past few years toward undorstanding some of whe prcoeomoe .- ekmre emam e
the primal sketch, at some stage in its development. This work, in turn, allowed
significant advancement in the primal sketch theory. In particular, for the very
low-level operations involved in stereopsis and directional selectivity, we can
provide a set of channel descriptions which appear to contain all of the
necessary information for their successful computation, in an efficient
representation. There still, however, remains a gap between what we can provide
now, and what is required by other computations, such as motion correspondence,

and those pertaining to lightness. Further work in these other areas may be

necessary to bridge this gap.
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V. Other Approaches to Edge Detection

Other work in computer vision and image analysis has shaped the
development of the primal sketch. Use of differential operators, in particular
the Laplacian; a range of operator sizes, with selection criteria for deciding
on the size operator whose response best reflects properties of an edge; and
band-limited Gaussian filtering have received considerable attention, but few
approaches have been able to integrate these ideas into a single coherent theory.
As a result, the success of most edge detection schemes has been limited to
fairly narrow application domains. In this section we present an overview of
some of the other approaches which share ideas common to the theory proposed
here.

Perhaps the greatest difficulty with differential operators proposed in
the literature is that they utilize an extremely small support, generally
covering an area of 10 to 20 picture elements (see, for example, reviews in
Rosenfeld & Kak 1976, Davis 1975, and Pratt 1978). This contrasts drastically
with the smallest operator used here, whose support covers roughly 900 pixels.
It was shown in Section II that this large support is necessary, in order to
reduce the operators' sensitivity to noise and quantization. A good
demonstration of the sensitivity of these small differential operators to noise
is given in Pratt (1978 p. 500). Larger differential operators are proposed in
the literature (Davis 1975, Rosenfeld 1970, 1971, 1972, Kelly 1971), but as size
increases, the constraints of localization in space and frequency, together with
the property that it not be orientation dependent, become more critical.

The simplest such differential operators are the horizontal and vertical

first-difference operators:

£,(i,3)
£,(1,3)

f(x,y) is the intensity function. Peaks are localized in the output of such an

f(i,j) - f(i-1,3)

£(1,3) - £(i,j-1)
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operator, and a threshold function is then applied to remove edges due to noise
and quantization (see,for example, Rosenfeld and Kak 1976, Pratt 1978). Choice
of an appropriate threshold has been a critical issue for this type of operator.

Roberts (1965), recognizing that the sensitivity of a gradient operator
to noise could be reduced by making the operator symmetric in x and y, proposed
the following gradient operator:

G(1,3) = [{F(1,5) - £(irl, #1012 « {£(i+1,§) - £(1,3+1))?]/?2
which has a more commonly used approximation:

G(i,J) = max (If(i,j) - f(i+l,j+1)], If(i+1,]) - 3(i,3+1)])
Generalization of this type of operator to utilize larger neighborhood sizes has
been suggested, and early in this effort, Rosenfeld (1971, 1972) proposed a
straightforward extension of the first differences scheme to use a range of mask
sizes, which will be described later in this section.

Herskovitz and Binford (1970) used an initial second derivative
operation:

D(i,3) = -2f(i,]j) + f(i+d,j) + f(i-d,])
computed for a neighborhood about the point (i,j). Curiously, the subsequent
operations performed on the output essentially isolated the zero-crossings of the
initial second derivative operation. They first compute the function:
Foreplisd) = Z,sign{D(i+k,j)} - Z sign{D(i-k,J)}

where sign(i,j) = 1 if 1 > 0, -1 if i < 0, and 0 if i = 0. The output of this
function yielded extrema both at the location of the original edge, and on the
two sides of the edges, where the convolution output returns to zero. The next
step in their algorithm removed the side 'satellites', leaving them with extrema
whose position roughly corresponded to the position of the zero-crossings of the
original second derivative output. A primary concern for their operator was that
it not be sensitive to the particluar noise and distortion of their optical

system, so parameters for each operator were carefully chosen to minimize these
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effects.

The Sobel operator (Pratt 1978, p. 487) is a simple gradient operator,
again covering a neighborhood of only 3 x 3 pixels. Let X and Y be the output of
the following operators applied to the intensity array about a point:

vertical derivative:

-1 0 1
-2 0 2
-1 0 1

horizontal derivative:

1 2 1
0 ¢ o
-1 -2 -1

The final operator is then: G(i,j) = (X% + Yz)uz. Kirsch (1971) and Persoon
(1976) propose extensions to the above scheme which measure the local derivatives
in eight orientations, and choose the maximum derivative. Persoon utilizes a
modified derivative operator, defined over a 5x5 patch, where neighborhoods on
either side of a point are first fit to an ideal linear function, then the
average intensities of the two regions, together with their deviation from the
ideal model, are used in computing the derivative for each orientation. Again,
these edge detection operators examine only limited neighborhood sizes.

The Laplacian has been used in a similar manner as the above operators
(Rosenfeld 1976, Pratt 1978, Weschler and Fu 1978, Shanmugen, Dickey & Green
1979). In most applications, rather than isolating the 2zero-crossings in the
output of the operator, the magnitude of the output is taken, followed by a
thresholding operation. As a result, shallow edges appear as dark patches in the
output, and are not very localized; sharp edges, which give rise to a steep
slope in the convolution across zero, are lost. It is no wonder that researchers

have been discouraged by exploring this operator further. Weschler and Fu (1978)
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propose a modification to the Laplacian operation in which they scale the output,
and add the gradient, but the resulting operator is still not satisfactory as a
general edge detector:
G(1,3) = (D, + D)% + 3xL(1,])

where Dx and Dy are the derivatives in x and y, and L(i,Jj) is the Laplacian.
Kelly (1971 p. 400) stated that the Laplacian, amoung other operators, was
unsuccessful as an edge detector because of its tendency to amplify noise. Noise
sensitivity is a function of the size and shape of the operator, and not a direct
consequence of using the Laplacian per se.

An exception to these uses of the Laplacian can be found in the early
work of Horn (1968) on edge detection. Horn utilized a local Laplacian operator,
and recognized that the useful elements in the output of such an operator are the
zero-crossings. Horn also emphasized the advantages of using Gaussians in the
formation of an edge detection operator.

Most applications of the above edge detection schemes use small mask
sizes, followed by subsequent thresholding and thinning operations, and resort to
the addition of higher-level knowledge about the particular domain to locate
desired edges (Roberts 1965, Kelly 1971, Shirai 1973, Persoon 1976, Weschler and
Fu 1977, Abele and Wahl 1977). Kelly describes part of a vision system for
recognizing human faces. His approach, termed “"planning®, is to first obtain a
coarse ‘'plan' for the edges in the image by sampling the image at a very low
resolution, and obtaining an edge description for the sampled image using a
modified Roberts operator, and finally, use the position of the edges in the plan
to locate edges in the original image. In this paper, Kelly was concerned
primarily with obtaining the outline of the head, for which he could easily use
particular top-down knowledge about the shape of the human head in rejecting many
candidate edges, such as the fact that the outline will be a smoothly varying

concave contour, roughly horizontal along the top, etc. Weschler & Fu, and
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Persoon examine the problem of extracting the outline of ribs in chest X-rays.
In this domain, they can take advantage of the expected orientation, contrast,
and spatial arrangement of ribs to guide the low-level edge detection and contour
building processes. Once two strong rib contqurs (one on each side) are located,
the positions of the remaining contours are fairly well defined.

Binford & Horn (Horn 1973) and Shirai {(1973) developed guided operators
for locating the edges of polyhedra in the Blocks World. Shirai's scheme is to
first find the most obvious edges in the scene, the contour lines which represent
boundaries between objects and background. A set of heuristics then define the
possible ways in which boundary lines (between two bodies) and internal lines
(between two faces of the same object) can be extended from the present edge
description. These heuristics restrict the locations at which the local operator
is used to detect the presence of a possible edge, and allow the dynamic
adjustment of the threshold used for detecting these edges. This reduces the
chance of the operator in locating false edges. The Binford-Horn linefinder
combines local edge detection and line-following techniques for locating edges.
The initial edge-marking is performed by a non-linear, parallel operation across
the image which detects local edge-points by correlating the local intensity
function with the common step, roof, and peak profiles, and accumulates lists of
edge-points which are connected. The lines are then segmented into lists of
points likely to represent single edges, and finally, vertices and joint types
are made explicit for subsequent scene analysis. This line-finder was designed
to successfully locate edges in the particular world of convex polyhedra, with
matte surfaces, and hence could take advantage of higher-level heuristics for
integrating edge fragments into a full line-drawing, which are particular to
these images.

Rosenfeld (1970, 1971, 1972) has proposed various schemes for utilizing a

range of operator sizes. In his basic algorithm, one first computes, for each
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point in the image, the average grey levels for a range of neighborhood sizes,
typically from 2 to 32 pixels. For each size, a local difference is computed
between adjacent neighborhoods, in four different orientations, and the
orientation of maximum gradient chosen. At each point, a best size is then
selected, which corresponds to the largest size for which the next larger
neighborhood size does not yield a significantly larger response. (This is
similar to the selection criterion described in Marr (1976b) for computing the
width of an edge.) In his original proposal (1970), Rosenfeld suggested taking a
product of the output of the different size difference operations at each point.
It is simple to construct situations in which the product would not be the
desirable measure; possibly this is the reason for proposing a second scheme.
The final step in the algorithm is to extract maxima and minima from the output.
Although the algorithm uses a range of sizes, it still maintains in the final
output, edges which were detected by the smallest operator, so as a result, the
final output still contains too many minor intensity changes.

It has also long been recognized that a desirable property for an edge
operator is that it suppress very high spatial frequencies, containing noise and
quantization effects, as well as very low frequencies, which do not capture the
sharp edges which the operator is to detect. Some discussion of the design of an
optimal filter appears in Duda & Hart (1973). Shanmugam, Dickey, and Green
(1979), also approaching edge detection by optimizing frequency domain filters,
propose an operator which vields maximum energy in the vicinity of an edge,
within some specified resolution interval. The operator they propose is, in one
dimension, the D%G function, however, rather than localizing the zero-crossings
in the output, they appecar to take the magnitude, and threshold. A split
Gaussian spatial filter, whose motivation was to design an operator which gave
less weight to data values far from the location of an edge, was proposed by

Argyle (1971). The operator is an oriented edge mask, with Gaussian weighting
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3
%

; 28. The edge operator proposed by Macleod. The operator has Gaussian weighting
functions both perpendicular to and along the orientation of the mask.
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functions, but with a discontinuity along its central axis.

Perhaps the most successful edge detection operator has been proposed by
Macleod (1972); the operator, illustrated in Figure 28, is an oriented edge mask
with Gaussian weighting functions both perpendicular to and along the orientation
of the mask. Macleod also observed that edges exist at different scales in the
image, so that their detection requires masks of different size. Macleod's
overall scheme combines the results of masks at several orientations, apparently
with some success.

A very different approach to the design of an edge detection operator is
to fit a particular id:ﬁlized intensity function to the actual intensity
function, and compute parameters of the‘edge from its ideal model (for example,
Heuckel 1971, O'Gormah 1976,=Brpoks'1978). An example which‘incofporates some of
the principles sugée;téd ihrthe présent theory is the Hueckel operator. His
basic approaCh isvto compute thé parameters‘of an ideal step edge which best fits
the intensity function locally. ‘The following description of the edge is given:

b if éx +sy<p

F(xtYocpsopbbj:d)”

F(X,y,¢,5,p,5,d) = b +d if cx + sy > p
Assume we havé a set of bésis functions Hi(x,y). Then we can déscribe the
response of each of these functions to the local intensity function as follows:
' a; = ZH.(x,)I(x,y)
The response of the ideal step edge would be:
f,(c,s,p,d,b) = T H.(x,¥)F(x,y,c,s,p,d,b)
Minimizing the fit of the ideal edge to the intensity function is then equivalent
to minimizing:
z,[a, - f.(c,s,p,d,b)1?
The particular basis operators were designed with the following criteria in mind:
(1) reduction of error in converting from the continuous to discrete

formalization.
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(2) decreased weight toward the periphery (to reduce the influence of
nearby edges).
(3) attenuation of very high spatial frequencies; the H1's can be
described as spatial frequency filters, with frequency sensitivity
increasing with i. By utilizing a finite set of these operators,
Hueckel reduced the sensitivity of the overall operation to high
frequency noise.
(4) minimization of computation tine.
Hueckel solves this minimization problem; the particular basis operators to
which it gave rise are described in Heuckel (1971). The Heuckel operator shares
some of the basic principles on which our operators were based.

In summary, although particular segments of the present theory for edge
detection have been given prior attention, the combination of these ideas into a
single algorithm is essential for general edge detection. The use of zero-
crossings in a second derivative Laplacian operator, a range of sizes,
localization of the operator both in space and frequency, and constraint on the
smallest size operator are all essential components of the theory. Most
important, the present theory demonstrates that early processing of intensity
information can successfully use simple, local operations; specific knowledge

concerning the scene being viewed is not necessary.
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VI. Summar

The intent of this work was to illustrate the importance of an
implementation in refining the details of a computational theory, keeping in mind
two goals which have motivated the primal sketch theory: the first was to
contribute toward a more rigorous understanding of the general requirements of
the edge detection stage in early visual processing; the second was to
understand the underlying computations necessary to explain the early processing
of information in the human visual system. In the case of the computation of the
single channel descriptions, experimentation with different shape and size
operators lead to the constraints of localization in space and frequency, no
orientation dependence, and a lower bound on the smallest operator. Questions
concerning the size of this smallest operator lead to a study of human acuity and
hyperacuity, and the proposal of a 1.5' channel, and simple schemes for the
interpolation of the output of this channel in order to localize zero-crossings
in the hyperacuity range.

Concerning the integration of information from the separate channels, the
computation of contrast and width, and role of the selection criterion was made
more precise, for the case of simple, relatively isolated intensity changes. It
was suggested that in more complex situations, this computation becomes non-
trivial, and other sources of information which may contribute toward this
recovery were suggested. The integration of the channels must be sensitive to
the requirements of those further computations which will use the raw primal
sketch. Examining the processes of grouping, motion correspondence, and
lightness computations only briefly, opened up many questions concerning the
representation of the raw primal sketch, and the grouping operations which lead
to the full primal sketch. I feel that we do not yet have adequate answers for
these questions.

In conclusion of this report, there are a few further points which I
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would like to stress. First, the raw primal sketch is a modest goal for initial
processing of an image. The implementation so far indicates that such a
description is computable. Also, there is reason to believe that the single
channel descriptions form a complete representation of the image. This
conjecture first grew out of a result of Logan (1977), that a one-dimensional
signal which is bandpass with width less than one octave, and has no free 2zeros,
is completely reconstructible from its =zero-crossings, up to a multiplicative
constant. The relevance of this result to two-dimensional band-limited signals
is discussed in Marr, Poggio, and Ullman (1978). Recently, progress has been
made on the problem of reconstructing the two-dimensional output of the
convolution of an image with V%G from its zero-crossings (Nishihara 1979). The
implication of this result is that in the transformation of the original image to
the single channel descriptions of the zero-crossing contours, no information is
lost.

There are two additional implications of the primal sketch, which will be
supported by the successful implementation of this and other stages in early
visual processing. First, the primal sketch illustrates that the first, edge
detection stage can be a low-level process, which does not require input from
higher-level processes .for the guidance of its operation. From the primal
sketch, stereopsis, and early motion analysis alone, we can build a useful and
sophisticated description of the visual scene. Second, it is the lowest level of
description from which stereopsis and motion analysis may operate; these
secondary processes no longer have access to the initial intensity values from
which the primal sketch was derived.!! These implications are critical, in light

of other work in the area of early vision.
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FOOTNOTES

1. The original Gaussian was defined as:
) -r2/20?
G{x,y) = o

where r? = x% + yz; This gives:
27042
-r¢/2e
Ve = 8%G/ax% + 8%G/oy? = [2 - ri/o?le

The constant factor is arbitrary, and not at all critical for the performance of
the operator.

2. The more critical measure here is the positioning of the zero-crossings. The
average deviation in position of the zero-crossings between the ideal and noisy
convolution outputs was 0.15 pixels in this case.

3. In this case, the average deviation in position of the zero-crossings marking
the bar edges (between the ideal and noisy outputs) was again roughly 0.15
pixels, but the total number of zero-crossings has tripled.

4. The psychophysically measured response function (Wilson & Bergen 1979) is:

) -rZIZcre2 ) -rz/Zcri2
G(x,y) = llae e - 1/61 e

The ratio of space constants g,:0, was calculated to be roughly 1:1.75 for the
smaller, sustained channels, and 1:3.0 for the larger, transient channels.

5. Hubel and Wiesel (1974a) observed that during tangential penetration of
striate cortex in monkey, changes in the orientation to which the simple cells
were most sensitive, seem to occur in small, relatively constant steps of about
10°. Schiller et. al. (1976b) studied quantitatively, the degree of
orientation specificity for several classes of S-type cells (cells behaving
roughly as Hubel and Wiesel's simple cells), and found a wide range of
specificity, although the cells with one or two subfields appeared to be more
finely tuned.

6. Acuity experiments generally use a forced-choice paradigm; one could therefor
argue that there are a number of potential sources of information on which the
discrimination is based. Using the basic configurations in Westheimer's bar
experiment (Westheimer 1977), the thresholds which would be predicted by the use
of other information were computed. In this experiment, the subject was shown a
set of configurations consisting of two bars, each 3 units long and 1 unit wide,
separated by a space which was also 3 units long, and 1 unit wide:

The size of the unit varied around 1', in 6" intervals, and the configuration was
displayed either horizontally or vertically. The subjects' task was to decide
whether the bars were horizontal or vertical. The threshold was defined as the
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separation which yielded 75% correct responses. In what follows, I describe
three potential sources of information for the discrimination, the criterion used
in each case to define the threshold, and the threshold predicted, as a function
of w, the size of the channel. Thresholds were computed for a one-dimensional
profile, using the D% operator.

1. zero-crossings- The threshold is defined to be the separation between
bars which would yield distinct zero-crossings in the convolution output,
between the positions of the bars, and separated by at least 30":

30"
For small values of w, the threshold separation is an approximately linear
function of w:
thresh = 0.875w - 0.375
A smallest channel of 3' would predict a threshold of 2.25', whereas the
1.5' channel would predict a separation of 0.94', which is roughly
equivalent to the experimentally observed threshold.

2. peak detection- This threshold is defined to be the separaton between
bars which would yield two distinct peaks in the convolution output, with a
1% dip in the magnitude of the output between the peaks. This was
generally coupled with a separation between peaks of at least 1':

1%

A

Again, for small values of w, the threshold separation is roughly linear:
thresh = 0.75w - 0.75

The 3' channel would predict a threshold of 1.5', the 1' channel would
predict 0.125°'.

3. outer zero-crossings- In the particular experimental setup here, there
would be a small shift in the outer zero-crossings between the horizontal
and vertical presentations, which would be in the hyperacuity range, even
for the larger, 3' channel: One could argue, therefor, that this
information is used in making the discriminations, and that the
discrimination could then be made with a smallest channel as large as 3'.
However, it is possible to set up a single bar profile, and a profile with
two bars, which would yield D%G outputs (with a 3' channel) that differ by
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very little (rms error is roughly 0.04). There would be no information
from distinct peaks or inner zero-crossings in this case, so if the outer
zero-crossings were the only information used to make the discriminations
in Westheimer's experiment, then the two configurations should not be
discriminable. Under rough experimental conditions, the two patterns are
clearly discriminable; it would be interesting to know whether this
remains to be the case under more careful experimental conditions.

7. There are a number of parameters on which these statistics depend: the
particular size and shape characteristics of the initial filter; the high
frequency content of the signal (such as from noise); the sampling interval
before recconstruction; and the resolution at which the signal is reconstructed.
For exanple, using an initial filter whose central positive width corresponds to
3' of arc (vs. 1.5'), all reconstruction functions yield roughly zero error for
sampling intervals of 20" and 40"; for a 60" interval, average shift is under
0.2 pixels. It was generally the case that much of the error in positioning the
zero-crossings occurred within areas of low contrast, high frequency change.

8. Two assumptions were made in this computation. First, it assumes the extent
of the mask to be large enough that its total area is roughly zero. Second, I
assume the slope to be measured perpendicular to the orientation of the edge.

9. In one dimension, the total extent of the mask is roughly 4w:

.~ AW —
This extent yields approximately zero area. In this case, an edge e, which is
separated from a given edge e, by more than 2w will not have any influence on the
zero-crossing at e:

- >2wW —»

(e e ————

o nas e ----

o becncn crsmccmnes
@ (—-mmmmemeee T

-

An edde within a distance 2w can influence the zero-crossing's position and
slope. The change in slope will vary linearly with the difference in contrast
between the two edges, and fluctuates around zero as the difference in position
of the two edges moves from 2w to zero.
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10. We have the relations:

2 2 2,00 2 2 2
s,/s, = ce-4°/8(20 )"y -d7/80 % _ d7/160

2 2
s, = ce ¢ /89,

Suppose, for example, we have two step changes in intensity, separated by some
distance x, and we obtain zero-crossings from D%G filters with W, = 2x and w, =
x. Here, d = 0, so ideally sZ/s1 = 1 for each edge. However, due to a

separation between the edges of x = W, < Wy, the larger channel will not measure

the slope accurately. The error will be a function of the difference in contrast
between the two edges. The shift in the zero-crossings is very small in this
case. If we find a scheme for determining that the larger channel zero-crossing
is not reliable (possibly based on the shift of the zero-crossing), and use the
smaller channel slope, we need to estimate one of the edge parameters, most
likely width, and then compute contrast using our estimated width.
Unfortunately, the above fornula is very sensitive to the estimation of width.
If we used both slopes anyway, assuming they reflect an ideal situation, and use
the above equations, our contrast could be in error by as much as a factor of
two. This example was intended to emphasize the fact that local zero-crossing
information may not be sufficient for a good estimation of the edge properties.

11. It is possible that in lightness related computations, other operations take
place in parallel with the detection of edges, such as application of the A1/l
operator proposed by Ullman (1976) for the detection of light sources.



PAGE 118

REFERENCES

Abele, L. & Wahl, F. (1977) A Digital Procedure for Boundary Detection and
Elimination of Background in Cytologic Images. in Medinfo '77 (Proceedings of
the Second World Conference on Medical Informatics) (Shires, D. & Wolf, H., Eds.)
Toronto.

Argyle, E. (1971) Techniques for Edge Detection. Proceedings of the IEEE 69,2,
285-287.

Barlow, H. B. (1979) Reconstructing the Visual Image in Space and Time. Nature
279, 189-190.

Beck, J. & Schwartz, T. (1978) Vernier Acuity With Test Dot Objects. Vision Res.
19, 313-319.

Blakemore, C. & Campbell, F. W. (1969) On the Existence of Neurones in the Human
Visual System Selectively Sensitive to the Orientation and Size of Retinal
Images. J. Physiol. 203, 237-260.

Brooks, M. J. (1978) Rationalizing Edge Detectors. Computer Graphics and Image
Processing 8, 277-285.

Burr, D. C. (1979) Acuity for Apparent Vernier Offset. Vision Res. 19, 835-837.

Campbell, F. W. & Green, D. G. (1965) Optical and Retinal Factors Affecting
Visual Resolution. J. Physiol. 181, 576-593.

Campbell, F. W. & Gubisch, R. W. (1966) Optical Quality of the Human Eye. J.
Physiol. 186, 558-578.

Campbell, F. W. & Robson, J. G. (1968) Applications of Fourier Analysis to the
Visibility of Gratings. J. Physiol. (lond.) 197, 551-556.

Cleland, B. G., Dubin, M. W. & Levick, W. R. (1971la) Sustained and Transient
Neurones in the Cat's Retina and Lateral Geniculate Nucleus. J. Physiol.
(Lond.) 217, 473-496.

Cleland, B. G., Dubin, M. W. & Levick, W. R. (1971b) Simultaneous Recording of
Input and Output of Lateral Geniculate Neurones. WMNature, New Biology 231, 191-
192.

Cowan, J. D. (1977) Some Remarks on Channel Bandwidths for Visual Contrast
Detection. WMNeurosciences Res. Prog. Bull. 15, 492-517.

Crick, F. H. C., Marr, D. & Poggio, T. (1980) An Information Processing Approach
to Understanding the Visual Cortex. To appear in the N.R.P. Symposium The
Cerebral Cortex (Schmidt, F. 0. & Worden, F.G., Eds.).

Davis, L. (1975) A Survey of Edge Detection Techniques. Computer Graphics and
Image Processing 4, 248-270.

deMonasterio, F. M. (1978a) Properties of Concentrically Organized X and Y
Ganglion Cells of Macaque Retina. J. Neurophysiol. 41, 1394-1417.



PAGE 119

deMonasterio, F. M. (1978b) Center and Surround Mechanisms of Opponent-Color X
and Y Ganglion Cells of Retina of Macaques. J. Neurophysiol. 41, 1418-1434.

deMonasterio, F. M. & Gouras, P. (1975) Functional Properties of Ganglion Cells
of the Rhesus Monkey Retina. J. Physiol. 251, 167-195.

Dowling, J. E. & Werblin, F. S. (1969) Organization of the Retina of the
Mudpuppy, Necturus Maculosus: I. Synaptic Structure. J. Neurophysiol. 32, 315-
338.

Duda, R. O. & Hart, P. E. (1973) Pattern Recognition and Scene Analysis. John
Wiley, N.Y.

Enroth-Cugell, C. & Robson, J. G. (1966) The Contrast Sensitivity of Retinal
Ganglion Cells of the Cat. J. Physiol. (Lond.) 187, §17-552.

Frisby, J. P. & Julesz, B. (1976) The Effect of Length Differences Between
Corresponding Lines on Stereopsis From Single and Multi-line Stimuli. Vision
Res. 16, 83-87.

Griffith, A. K. (1973) Edge Detection in Simple Scenes Using A Priori
Information. IEEE Transactions on Computers, vol C-22, 371-181.

Grimson, W. E. L. (1980) Aspects of a Computational Theory of Stereo Vision.
(MIT Ph. D. Thesis in preparation).

Grimson, W. E. L. & Marr, D. (1979) A Computer Implementation of a Theory of
Human Stereo Vision. In: Proceedings of ARPA Imuge Understanding Workshop, SRI,
pp. 41-45.

Hayes, K. C. & Rosenfeld, A. (1972) Efficient Edge Detectors and Applications.
U. Maryland TR-207 November.

Herskovitz, A. & Binford, T. 0. (1970) On Boundary Detection. HMIT AI Lab MNemo
183.

Horn, B. K. P. (1968) The Application of Fourier Transform Methods to Image
Processing, MIT M.S. Thesis.

Horn, B. K. P. (1973) The Binford-Horn Line-Finder. HMIT AI Lab Memo 285.

Hubel, D. H. & Wiesel, T. N. (1961) Integrative Action in the Cat's Lateral
Geniculate Body. J. Physiol. (lLond.) 155, 385-398.

Hubel, D. H. & Wiesel, T. N. (1962) Receptive Fields, Binocular Interaction and
Functional Architecture in the Cat's Visual Cortex. J. Physiol. (lond.) 160,
106-154.

Hubel, D. H. & Wiesel, T. N. (1968) Receptive Fields and Functional Architecture
of Monkey Striate Cortex. J. Physiol. (Llond.) 195, 215-243.

Hubel, D. H. & Wiesel, T. N. (1974a) Sequence Regularity and Geometry of
Orientation Columns in Monkey Striate Cortex. J. Comp. Neurol. 168, 267-293.

Hubel, D. H. & Wiesel, T. N. (1974b) Uniformity of Monkey Striate Cortex: a
Parallel Relationship Between Field Size, Scatter, and Magnification Factor. J.



PAGE 120

Comp. WNeurol. 158, 295-306.

Hueckel, M. H. (1971) An Operator Vhich Locates Edges in Digital Pictures, J. ACN
18, 113-125.

Julesz, B. (1971) Foundations of Cyclopian Perception. The University of Chicago
Press. Chicago.

Kelly, M. D. (1971) Edge Detection in Pictures By Computer Using Planning. in
Machine Intelligence VI, Edinburgh U. Press, 397-409.

Kirsh, R. (1971) Computer Determination of the Constituent Structure of
Biological Images. Computers and Biomedicul Reseurch, 4, 3, 315-328.

Kuffler, S. W. (1953) Discharge Patterns and Functional Organization of the
Mammalian Retina. J. Veurophysiol. 16, 37-68.

Leipnik, R. (1960) The Extended Entropy Uncertainty Principle. Inform. and
Control 3, 18-25.

Logan, B. F. (1977) Information in the Zero-crossings of Bandpass Signals. Bell
System Technical Journal 56, 487-510. '

Maffei, L. & Fiorentini, A. (1972) Retinogeniculate Convergence and Analysis of
Contrast. J. Veurophysiol. 35, 65-72.

Macleod, I. D. G. (1972) Comments on ‘'Techniques for Edge Detection'.
Proceedings of the IEEE 60,3, 344.

Marr, D. (1976a) Artificial Intelligence-- A Personal View. MIT AI Lab Memo 355.

Marr, D (1976b) Early Processing of Visual Information. Phil. Trans. R. Soc.
B. 275, 483-524.

Marr, D. (1978) Representing Visual Information. AAAS 143rd Annual Meeting,
Symposium on Some Mathematical Questions in Biology, February 1977. Published in
Lectures in the Life Sciences 10, 101-180. Also available as MIT AI Lab Memo 415.
Marr, D. (1980) VISIOV. W. H. Freeman Co. San Francisco.

Marr, D. & Hildreth, E. C. (1979) Theory of Edge Detection. HMIT AI Lab Hemo 518.

Marr, D. & Nishihara, H. K. (1977) Representation and Recognition of the Spatial
Organization of Three Dimensional Shapes. #IT AI Lab Memo 416.

Marr, D & Poggio, T. (1979) A Computational Theory of Human Stereo Vision. Proc.
R. Soc. Lond B. 204, 301-328.

Marr, D., Poggio, T., & Hildreth, E. (1979) The Smallest Channel in Early Human
Vision. (in press).

Marr, D., Poggio, T. & Ullman, S. (1979) Bandpass Channels, Zero-crossings, and
Early Visual Information Processing. J. Opt. Soc. Am., (in press).

Marr, D. & Ullman, S. (1979) Directional Selectivity and its Use in Early Visual
Processing. HMIT AI Lab Memo 524.



PAGE 121

Nakayama, K. & Roberts, D. J. (1972) Line-length Detectors in the Human Visual
System: Evidence From Selective Adaption. Vision Res. 12, 1709-1713.

Nishihara, H. K. (1979) Reconstruction of Bandwidth Limited Surfaces From
Gradients at Zero-crossings. (in preparation)

Persoon, E. (1976) A New Edge Detection Algorithm and Its Applications. Computer
Graphics and Image Processing, 5, 425-446.

Poggio, G. F. & Fischer, B. (1978) Binocular Interaction and Depth Sensitivity of
Striate and Prestriate Neurons of the Behaving Rhesus Monkey. J. Neurophysiol.
40, 1392-1405.

Polyak, S. L. (1941) The Retina. University of Chicago Press, Chicago.
Pratt, W. (1978) Digital Image Processing. John Wiley & Sons, N.Y.

Riley, M. (1977) Descrimination of Bur Textures With Differing Orientation and
Length Distributions. MIT B.S. Thesis.

Riley, M. (1980) Representing the Image (MIT M.S. Thesis in preparation).

Roberts, L. G. (1965) Machine Perception of Three Dimensional Solids. in Optical
and Electro-Optical Information Processing (J. Tippett, D. Berkowitz, L. Clapp,
C. Koester, A. Vanderbergh, Eds.), MIT Press, 159-197.

Rodieck, R. W. & Stone, J. (19585) Analysis of Receptive Fields of Cat Retinal
Ganglion Cells. J. Veurophysiol. 28, 833-849.

Rosenfeld, A. & Kak, A. (1976) Digital Picture Processing, Academic Press, New
York.

Rosenfeld, A. & Thurston, M. (1971) Edge and Curve Detection for Visual Scene
Analysis. IEEE Transactions on Computers, vol C-20, 562-569.

Rosenfeld, A. & Thurston, M. & Lee, Y. (1971) Edge and Curve Detection: Further
Experiments. IEEE Transactions on Computers, vol C-21, 677-715.

Sachs, M. B., Nachmias, J. & Robson, J. G. (1971) Spatial-frequency Channels in
Human Vision. J. Opt. Soc. Am. 61, 1176-1186.

Schiller, P. H., Finlay, B. L. & Volman, S. F. (1976a) Quantitative Studies of
Single-cell Properties in Monkey Striate Cortex. 1. Spatiotemporal Organization
of Receptive Fields. J. NVeurophysiol. 39, 1288-1319.

Schiller, P. H., Finlay, B. L. & Volman, S. F. (1976b) Quantitative Studies of
Single-cell Properties in Monkey Striate Cortex. II. Orientation Specificity
and Ocular Dominance. J. Neurophysiol. 39, 1320-1333.

Shanmugen, K. S., Dickey, F. M. & Green, J. A. (1979) On Optimal Frequency Domain
Filter for Edge Detection in Digital Pictures. JEEE Trans. on Pattern Analysis
and flachine Intelligence PANI-1, 37-49.

Shirai, Y. A. (1975) A Context Sensitive Line-finder for Recognition of
Polyhedra. Artificial Intelligence 4, 95-113.



PAGE 122

Snyder, A. W. & Miller, M. H. (1977) Photoreceptor Diameter and Spacing for
Highest Resolving Power. J. Opt. Soc. Am. 76. 696-698.

Stevens, K. (1979) Surface Perception From Local Analysis of Texture and Contour.
AIT PhD Thestis.

Tolhurst, D. J. (1973) Separate Channels for the Analysis of the Shape and the
Movement of a Moving Visual Stimulus. J. Physiol. Lond. 231, 385-402.

Ullman, S. (1976) On Visual Detection of Light Sources. Biol. Cybernetics
21,205-212.

Ullman, S. (1979) The Interpretation of Visual Motion. MIT Press, Cambridge, MNa.

Werblin, F. S. & Dowling, J. E. (1969) Organization of the Retina of the Mud-
puppy, Necturus Maculosus: II. Intra-cellular Recording. J. Neurophysiol. 32,
339-355.

Weschler, H & Fu, K. S. (1977) Automatic Analysis of Chest Radiographs. in
Medinfo '77 (Proceedings of the Second Werld Conference on Medical Informatics)
(Shires, D. & Wolf, H., Eds.) Toronto.

Weschler, H & Fu, K. S. (1978) Image Processing Algorithms Applied to Rib
Boundary Detection in Chest Radiographs. Computer Graphics and Image Processing,
7, 375-390.

Westheimer, G. (1976) Diffraction Theory and Visual Hyperacuity. Am. J.
Optometry and Physiol. Optics 63, 362-364.

Westheimer, G. (1977) Spatial Frequency and Light-spread Descriptions of Visual
Acuity and Hyperacuity. J. Opt. Soc. Am. 67, 207-212.

Westheimer, G. & McKee, S. (1975) Visual Acuity in the Presence of Retinal Image
Motion. J. Opt. Soc. Am. 65, 847-850.

Westheimer, G. & McKee, S. (1976) Spatial Configurations for Visual Hyperacuity.
Vision Res. 17, 941-947.

Westheimer, G. & McKee, S. (1977) Integration Regions for Visual Hyperacuity.
Vision Res. 17, 89-93.

Wilson, H. R. & Bergen, J. R. (1979) A Four Mechanism Model for Threshold Spatial
Vision. Vision Res. 19, 19-32.

Wilson, H. R. & Giese, S. C. {(1977) Threshold Visibility of Frequency Grating
Patterns. Uision Res. 17, 1177-1190.



CS-TR Scanninqg Project )
Document Control Form Date : & /A9 /9 ¢

Report# NJ-TR =579

Each of the following should be identified by a checkmark:
Originating Department:

JZ(ArtiﬁciaI intellegence Laboratory (Al)
[0 Laboratory for Computer Science (LCS)

Document Type:

K Technical Report (TR) O Technical Memo (TM)
O other:

Document Information  Number of pages: /22(/39-, 14655 )

© Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided JX Double-sided
Print type:
[0 Typewnriter K OffsetPress [ ] Laser Print
[J inkdetPrinter [] Unknown ] other:

Check each if included with document:

M\ DOD Form )i Funding Agent Form N Cover Page

{J spine [0 Printers Notes Photo negatives

Page Data:

Blank Pagesiy page rumbeq:

Photographs/Tonal Material ey page nmsed: l/ l’-l I oIO J—‘/ 39~ 53 35 33 45, 51 'S)‘)%)%JWJS’
loo 109 S

Other (nots descriptonipege numbeq!
Description : Page Number:

LMAGE mRP! (I /Lﬂw./#z?o [TLE PAG‘E - [ Aol
L/_,u (25 )Sc.«NmenL Cox)é“R Fovd e ACEM
poo, JRGTS (3).

Scanning Agent Slgnoff
Date Received: % & A7/3(  Date Scanned: _J /6 /7€ Date Returned: 5 [ 2 /76

Scanning Agent Signature: %MM 7/\/ . Q'OL

Rev 9/94 DS/LCS Document Control Form cstrform.ved




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
1. REPORT NUMBER 7 GOVT ACCESSION NO,| 3. RECIPIENT'S CATALOG NUMBER
AI-TR-579
4. TITLE (and Subtitle) s. TYPE OF REPORT & PERIOD COVERED
Implementation of a Theory of Edge Detection Technical Report

§. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) (3 CONTRACT OR GRANT NUMBER(®)

Ellen C. Hildreth NOOOL4~75-C-0643

9. PERFORMING ORGANIZATION NAME ANDO ADDRESS 10. :ROGRAM ERI.EMENT. PROEJEESST. T ASK
Artificial Intelligence Laboratory REA & WORK UNIT NOM
545 Technology Square
Cambridge, Massachusetts 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanc§d Research Projects Agency April 1980
1400 Wilson Blvd 73, NUMBER OF PAGES
Arlington, Virginia 22209 124

‘41 MONITORING AGENCY NAMF & ADDRESS(if ditferent from Controlling Oftice) 15. SECURITY CLASS. (of thie report,
Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, Virginia 22217 Sa. gg;:éagiu{:cnmn/oowncmomo

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the ebatract entered in Block 20, 1f ditfereat from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Edge Detection Zero-Crossings
Computer Vision Primal Sketch

Image Analysis Human Vision
Image Understanding :

20. ABSTRACT (Continuo on reverse eide I necessary and identify by block number)

This report describes the implementation of a theory of edge detection,
proposed by Marr and Hildreth (1979). According to this theory, the image

is first processed independently through a set of different size filters,
whose shape is the Laplacian of a Gaussian, G(x,y). Zero-crossings in
the output of these filters mark the positions of intensity changes at
different resolutions. Information about these zero-crossings is then used
for deriving a full symbolic description of changes in intensity in the image;
called the raw primal sketch.

DD , 53", 1473  EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED
S/N 0102-014- 6601 !

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the ML.LT. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94



