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ABSTRACT

This thesis investigates the problem of controlling or directing the reasoning and actions of a computer
program. The basic approach explored is to vicw reasoning as a specics of action, so that a program might
apply its rcasoning powers to the task of deciding what inferences to make as well as deciding what other
actions to take. A design for the architecture of reasoning programs is proposed. This architecture
involves sclf-consciousness, intentional actions, deliberate adaptations, and a form of decision-making
based on dialectical argumentation. A program based on this architecture inspects itsclf, describes aspects
of itself to itsclf, and uscs this self-reference and these sclf-descriptions in making decisions and taking
actions. The program’s mental life includes awarencss of its own concepts, beliefs, desires, intentions,
inferences, actions, and skills. All of these arc represented by self-descriptions in a single sort of language,
so that the program has access to all of these aspects of itsclf, and can rcason about them in the same
terms.
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CHAPTER 1

INTRODUCTION

Self-reverence, self-knowledge, sclf-control,
These three alone lead life to sovereign power.
Alfred, Lord Tennyson, OFnone

Know prudent cautious self-control is wisdom’s root.
Robert Burns, A Bard’s Epitaph

The woman that dcliberates is lost.
Joseph Addison, Cato

But a self-controlled man is of a different sort:
he follows right reason.
Aristotle, Nichomachian Ethics

This thesis investigates the problem of controlling or directing the reasoning and actions of a computer
program.1 The basic approach explored is to view rcasoning as a sort of action, and to have the program
apply its rcasoning powers to the task of deciding what inferences to make as well as deciding what other
actions to take. This problem of controlling rcasoning is important because information is often
communicated between man and man, and eventually, it can be expected, between man and machine, as
facts which offer little guidance as to what inferences should be drawn from them. Much experience and
many theoretical studies have proven that the general problem of drawing particular conclusions from

purely factual information is hopclessly intractable.2 These lessons show that inference cannot always be

treated as an automatic procedure, but sometimes must be accorded all the careful consideration given to

1. I'olowing current usage. this thesis uscs the phrase "thc program” to abbreviate some phrase resembling “the machine
produced as a state-configuration of a 1 ISP-implementing computer as described by the program text.” Several wrilers, such as
Fodor {1978). Putnam {1978]. and Scarle [1980] have pointed out that a program, a formal system, cannol be said to have a
psvchology, in contrast to apparcnt claims made by some Al researchers. Some of this disagrcement might result from the
unconscious use of an abbreviation of the above form on the part of some of the participants. We do not atiempt to adjudicate this
debate, nor to make rigorous the sense of the above abbreviation. Those tasks are left for others. (Brian Smith is engaged in such
an enterprisc.) In particular, this thesis avoids the problem of how the program is to be cquipped with sensors and effectors 50 as to
perceive and have power over its environment.

2. See for example [Green 1969] and [Rabin 1974).
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other actions. To overcome this difficulty, this thesis attempts to find ways of stating and using facts
about how other facts should enter into reasoning. The proposed solution, that of a program which
reasons about its own reasoning, is of considerable generality.

This chapter consists of several scctions. The first section presents what the fundamental
argument for the approach, and this argument introduces the fundamental idecas of ;'md constraints on the
proposed solution. The second and third sections of the chapter sketch the structure and operation of the
program described in the following chapters, and give a guide to reading those chapters. ‘The fourth
scction presents examples of the ideas in practice. The fifth section discusses the implementation. The
sixth section attempts to motivate the approach with yet another argument, this time by showing how one
might be Iead to the proposed approach purely from considerations of what must be computed and what
is nccessary to allow its computation. The final section of the chapter sketches the relation of this thesis to
other works.

Readers concerned with how to use the techniques developed in this thesis are cautioned in two
ways. First, most of the techniques employed in traditional Al programs, such as problem reduction
problem solving, planning, scarching, backtracking, learning, context switching, ctc., occur only in
Chapter 6 as applications. The bulk of the thesis is devoted to foundational tools by which these
traditional techniques may be used dcliberately, and conscquently, may be explained by the program
itself. Second, the techniques apparcntly require an unusually large overhecad in time, space, and
notation. Sections 1.5 and 1.6 cxplain why this overhcad must be accepted to build intelligent machines.

The reader will find that many of the techniques explained in the thesis bear a certain similarity
to mechanisms which some commonsensc truisms ascribe to the workings of the human mind. This
similarity results solcly from my usc of these truisms together with informal personal introspection to
inform my development of the proposed techniques from primarily computational considerations. |
make no claim that the human mind employs similar mechanisms. 1 merely attempt to motivate and

explain these techniques with common ideas about human behavior, since humans arc currently the



12

best-known concrete model of intelligent behavior. Specifically, T try to indicatc how a number of
mechanisms originally developed for rather technical tasks, including the design, synthesis, and analysis
of clectronic circuits and computer programs, can be combillcd and organized to capture common-sense
rcasoning as well as highly specific technical problem-solving. I frequently motivate my suggestions with
common-sense cxamples, as they are significantly casier to convey, but I hope it is] clear that these
mechanisms also sufiice for the traditional technical tasks. Bricfly put, I view technical rcasoning as a
subcategory of general reasoning, and a more tractable one at that. But though 1 try to capturc a number
of familiar human reasoning patterns, no claim should be inferred that the mechanisms 1 proposc are the

only such mechanisms, or that they are those used by humans.

1.1 The Fundamental Argument

This section attempts to motivate the proposed approach through a series of propositions, looscly called
an argument, which express general criteria for judging proposed organizations for intelligent machines.
These propositions capture certain characteristics of intelligent cxistence, characteristics w’hich
significantly constrain proposed organizations of intelligent machines. Because of their gencrality, the
propositions are presented with both‘ motivation and m(;rals. We first motivate the argument with a
parable in primitive human terms, and follow the parable with the propositions of the fundamental
argument, annotating cach proposition wifh a moral about how intelligent machines should be organized.

The paragraphs of the parable parallel the relevant propositions of the argument.
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1.1.1 The Parable

I always adapt. I put on skins in winter, follow the game as it migrates, and run from rolling
rocks, falling trees, and charging behemoths,

Sometimes 1 must change things, sometimes mysclf. As the years grow colder, I move towards
the south. As the land turns barren, [ train myself to be forever alert to take advantage of the flecting,
infrequent opportunities for food. Smﬁctimcs I must change both my surroundings and myself. When
the plains and platcau became infested with dangerous beasts, 1 moved to live in the cliff, and trained
myself to be a good and careful rock climber.

To avoid mistakes, 1 think carcfully before acting. Normally | go unarmed, but if I thoughtlessly
walk unarmed into the forest, without first reflecting on what T am doing, 1 am likely later to meet an
unpleasant end with lions, tigers, or bears. When I decided to build a shelter on the ground without first
reflecting on the decisions that had to be made and the order in which they should have been made, 1
wasted much of my own cffort, and that of my sons as well that 1 asked to help, for I thought about the
various clays I know of and of where they can be found and how they might be carricd, before I turned to
the question of where to build and realized that the best location was in the flood plain, where our crops
would be nourished, where we would spend two days a year waiting out the flood uplands or in a tree, but
where adobe would be a useless waste of cffort compared with a thatched hut. And when I tell my son
what to do, I must think of what he knows of my plans for the hut, lest 1 say things he does not
understand, and of how to say the orders, for he is proud, casy to anger, and I am not as strong as I once
was.

I have so many decisions to make. The farm has done well, but now I grow old and must divide
it among my children. How should 1 do this? 1 can divide the lands in cqual measurcs, some good and
bad land to cach, or I can divide it into the better and poorer ficlds, or I can split some of the larger ficlds

into parts but not the smaller ones, or I can split them so that cach has access to the strcam, or I can divide
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them as the children request me to do.

There are so many complications. If [ lcave some of the good land and some of the bad land to
cach, then that will be fairest. But if some of them do pqorly on their own, the lot of their brothers may
not be sufficient to tide everyone over. But if I give the easicst lands to the weakest, the others will drive
them out when I am gone, and they will have nothing. But even if | am fair, the cldest .and the strongest
will demand the largest and best lands. Perhaps I can give them just cnough more to keep them from
attacking the others. But I alrcady promised the apple tree to the first daughter, and 1 must give extra
land to the second son, who will care for my mate. But the strongest should be on the perimeter, to ward
off invaders. What should 1 do? Should 1 do what is fair? What is safest from the whims of nature?
What is most likely to be respected by the children? What I have promised cach [ would do? What will
provide for my mate, as my mate provided for me? What is safest from enemies?

Woe, woe, sometimes I just can’t help things. The invaders came, and now we are their slaves.
Our women they took as mates. The mate of my first son, who had come from afar and spoke of gods and
laws, would not submit to them, and they killed her. My daughters, whom she had convinced of these
gods, instead of following her renounced the laws and went with the invaders, so they still live.

I hate this slavery. Why should the invaders rule? They are no better than us, and if we had
invaded them first with similar surprise, we would be the masters and they the slaves. Why did this
happen to us, and not to the other neighbors of the invaders? The dead onc said that the gods put us
here, but why should they do that? Why do the gods exist to torment us so? But if they do not exist, then

the dead one is no more, not in this marvelous land she talked of. Docs that await me too?
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1.1.2 The Propositions
1. The world continually changes, so to survive, we mus! always adapt.

Intelligent machines should adapt to newly acquired information and to new demands placed on their

)

operation by their users or co-workers.
2. To adapt, we must act either to change our surroundings or ourselves.

Intelligent machines should be able to modify their own organization and bechavior as well as take

physical actions.

3. To act effectively, we must think about what to do. including thinking itself, so that we plan and reflect on

our inferences as well as other actions.

Intelligent machincs should reason about their own organization and reasoning, as well as "external”
domains, and plan complex "internal” activitics (such as difficult decisions, comprehensive database
scarches, etc.) as well as complex external activitics. Even parallel computations, however uscful they

might be in some ways, cannot rclieve the need to make some consequential decisions scrially.

4. The most difficult problem in thinking about what 1o do is deciding between the many possible courses of

action.

Intelligent machines should when necessary explicitly consider decisions about which inference rule or
procedure to apply next, where to look for some fact in the database, etc. so as to avoid combinatorially

cxplosive scarches.

5. Decision-making in turn, is dominated by the many incomparable sorts of reasons Jor or values of

possible actions, which stem from a sectioning of the world into many subdomains, each with its own
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concerns and values. These incomparable reasons make decision-making a question of right (in one

subdomain) vs. right (in another subdomain), not right vs. wrong.

Intelligent machines should reason about their reasons for taking actions, to see if these reasons are of
comparable types, or if they have exceptions in the current situation. Intelligent machines should not use
decision-making techniques which force all reasons into a total order, as do most numerical weighting

schemes.

6. Further, our abilities are limited, which sometimes prevents our adapting by conserving or otherwise
controlling our surroundings, so we must either always be able and ready to change any aspect of ourselves,

or be willing to accept injury when we do not change.

Intclligent machincs should be able to deliberately change any of their database facts, procedures, etc.,

whether "built-in" or not.

7. (The great joke is that though we need both self-consciousness and self-adaptiveness to survive, in
combination these abilities shock us with realizations of both our own absurdity (why should we exist?) and

the possibility of our own death (we might not exist!).)

Intelligent machines should matter to themselves. They should have values initially built in so that they
do not lightly change themselves into non-cxistence. They should choose their actions with responsibility

for their own survival or other conditions that they arc charged with maintaining.
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1.2 Qutline of the Approach

I think that many philosophers secretly harbor the view that there is something deeply (i.c.,
conceptually) wrong with psychology, but that a philosopher with a little training in the
techniques of linguistic analysis and a free afternoon could straighten it out.

Jerry Fodor, Psychological Explanation

There’s no art to find the mind’s construction in the face.
William Shakespeare, Macbeth

Good Lord, what is man! for as simple he looks,

Do but try to develop his hooks and his crooks,

With his depths and his shallows, his good and his evil,

All'in all, he's a problem must puzzle the devil.

Robert Burns, Sketch: inscribed to C. J. Fox

Motivated by the preceding ideas, this thesis sketches the basic computational structure of a conscious,
adaptive rcasoning program which we call SEAN. The program inspects itsclf, describes aspects of itself
to itsclf, and uses these scif-references and self-descriptions in making decisions and taking actions. The
program’s mental life includes awareness of its own concepts, beliefs, desires, intentions, inferences,
values, past actions, and skills. These are realized by self-descriptions in a single sort of language, so that
through self-reference the program has access to all of these aspects of itself, and can reason about them
in their own language.3

The concepts of the program are each realized as (roughly) a named set of axioms in a formal
logical language. The language is a variant of the first-order predicate calculus, but that detail is
incssential. The key property of this representation is that the logical theories can themselves be referred
to by other theorics. This allows the program to employ statements about, for example, how its concept
horse is related to its concept animal. In fact, the program itself is such a logical theory, and its language
includes a name for itsclf. This allows the program to employ other statements that, for example, usc the

program’s name for itsclf to refer to propertics of the program as a whole, such as whether some possible

belief is consistent with all of its current belicfs. This meta-theoretical approach allows some classical

3. Figure 1 presents the overall program structure as described below.
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problems of representation to be attacked in effective ways, and allows reasoning about concepts in
hierarchical levels of detail. Since the concepts are themsclves objects to which the program can refer, the
program can recason about whether or not to pursue the internal structure of a concept’s subconcepts
during information retrieval. This mcans that the pr(;gram can ignore unnccessary details of its concepts
when desired, and that the reasoner can be scif-applied to the database retricval télsk when necessary to
avoid blind searches.

These concepts are then used in other logical theories to realize the mental attitudes of beliefs,
desires, and intentions. These attitudes use a concept as their "propositional content.” They are more
than just the concepts embodying their propositional content, for they also include information used by
the program in treating them as attitudes. These attitudes arc also logical theorics, bpt oncs which are
treated in special ways by the program, namely as beliefs, desires, and intentions.

The most important auxiliary information included by the program in attitudes over their
content concerns the reasons for the attitudes. The programn records its actions by adding statcments
describing them to itself. Inferences are sorts of actions, and hence are also recorded. Fach attitude
includes mention of these recorded inference steps, which we call the reasons for the attitude. Common
usage normally uses the term "rcason” to refer to an antecedent attitude acted on in an inference step, as
in "P is my reason for Q because | inferred Q from P." We corrupt the tongue to mean instcad the
inference step itself, so that if the program infers Q from P, not P but the record of that inference is called
a reason for Q.

The importance of these reasons lics not in just the historical and explanatory information they
provide, but in that the program uscs the current set of reasons o determine the current set of actual
attitudes. Thus some potential belicf may have several reasons recorded for it, but if none of these
reasons is valid, that is, refers back to current belicfs as antecedents, the belief in question will not be an
actual, but merely a potential belief.

Reasons are recorded for all types of inferences, not just deductive inferences of onc belicf from
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other beliefs. Reasons record the inference of desires from other desires, intentions, and beliefs, and the
inference of intentions from desires, beliefs, and values in decision-making.

An important property of these reasons is that th‘cy are defeasible. That is, aftcr an inference has
been made, it can be reflected on. If reflection determines that the rcason was mistaken because, for
example, the inference was made in exceptional or special-case circumstances in which 'it was not strictly
valid, the program can defcat the reason by providing a defeating reason. This defeating reason may in
turn be defeated by other reasons. The defeasibility of reasons allow the program to change any of its
attitudes, for cach attitude is held only because of some reason, and can be rejected by defeating all of its
reasons.

The current sets of concepts, reasons, beliefs, desires, and intentions comprisc the program’s
current state of mind. In fact, the program is a single concept “containing™ all other concepts and
attitudes, including itself. The procedures of the program are also concepts. Some of thesc make up the
action-taking part of the program, called the interpreter, which reflects on the current state of mind and
then acts on the basis of what it sees. (See Figure 2.)

The program often takes actions and infercnces by executing primitive procedures, and it records
these actions as statements. All primitive procedures are treated as attitudes as well, so when procedures
make inferences, they record these actions as reasons, and include themselves in the reasons. Primitive
procedures with external effects are recorded in somewhat different form, but that will be described later.

In addition to primitive procedures, the program ecmbodies some of its skills in plans, which are
concepts describing (roughly) patterns of desires and intentions. The program carries out its intentions
cither by executing a primitive program, or by reducing the intention to a plan, that is, by embracing or
inferring the new desires and intentions specified by the plan. These plans and the desires and intentions
they produce are reflected on by the program as a means towards controlling its actions. They form the

sclf-conscious "tip of the iccberg” which controls the vast majority of computational steps taken

unconsciously by primitives.
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The program’s skills involve not only procedures but also statements about when these
procedures are uscful. Each method statement cxpresses that some procedure is relevant to carrying out
some desire or intention.

Mcthod statements about procedures and the aims of desires and intentions comprise just one
special sort of information that the program may have about a procedure. More gcnel"ally, the program
employs statements of other properties of the procedure in other cases of rcasoning. For example, one
sort of property is that of input-output behavior. These are modal statements of the form "If P holds
before the action, then Q holds after it.” Other sorts of statements cxpress propertics concerning
complexity or intermediate states of execution of the procedure. We will not often use or pursue such
more general action properties in the following. However, one key type of information about plans is that
of the relationships between plans. This information is expressed as statements relating onc plan concept
with another, such as that onc plan is a refinement of another.

The program forms some intentions not by reducing an intention to a plan but by deliberation,
by deciding what desire or intention to pursue or how to carry out some intention. These deliberations
make use of policies. Policics are intentions which embody the values of the program, and are carried out
by reasoning in decision-making. Policics are used in reasoned deliberation to indicate new options to
consider and to give rcasons for or against the options. Policies effect values by constructing reasons for
and against other reasons so as to influence which option the program acts on by influencing which
reasons arc held to be valid grounds for action. The typical case of deliberation involves policies creating
some options and conflicting rcasons for what to do, and other policies reflecting on these rcasons to
apply the values of the program by defeating a lesser reason in terms of a stronger. These values are not
expressed numerically, as is traditional, but rather as explicit statements that one particular sort of reason,
in some particular set of circumstances, overrides some particular application of another rcason. This
approach to decision-making allows conflicting values to be scttled or reconciled in a case by case

manner, since the defeasibility of reasons means that any particular application of a value may be
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overridden if special circumstances so warrant. This approach also allows for the occurrence of dilemmas,
for two types of valucs may be incomparable to the program.

Reasoned deliberation is used in many ways in the program. The most basic use is in deciding
what to do next, in which the program reflects on whith desire or intention to pursuc and then on how to
pursue it. But deliberation also guides the program’s actions in other ways, the ,most important ways
being deliberate changes in the program'’s set of concepts, beliefs, desires, intentions, values, and skills.

After making inferences, making obscrvations, or taking actions, the program sometimes
discovers a conflict between some of its beliefs. The normal path to follow in these cases is for it to
discard some of its belicfs and assumptions to restore harmony. But belief revision always involves
ambiguity, in that there are always many possible changes in the sct of belicfs which will restore
consistency. To decide which revision should be made, the program deliberates about the possible
revisions and reasons for them. Formulating the possible revisions involves tracing through the reasons
for the conflicting beliefs to find the underlying beliefs causing the conflict. The values of the prograin
enter this deliberation by preferring one possible revision to another, cffectively determining the tenacity
with which the program clings to one set of belicfs rather than another. The program normally carries out
this intention by defeating the justifications for the beliefs to be discarded and perhaps by justifying the
opposite beliefs.

The program modifies its sct of skills in a related way. If it determines that some skill does not
live up to its intended specifications, the program will adopt an intention to decide how to modify the
procedure, or the set of skills, so as to realize the intended specifications. To do this, the skill
modification procedures employ deliberation to decide what sort of change is necessary, to decide what
particular plan to fault for the problem, and to decide how to patch the plan to remove the problem.
Determining what the possible changes in the set of skills are and how to make them is more complex

than just cxamining existing reasons as sufficed in belief revision. Instcad the program must often

introspect into its primitive procedures to find the explanation of their behavior in terms of underlying
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plans. After it does this, it uscs these plans in symbolically exccuting the primitive to see exactly how the
problem occurs. It then analyzes the rcasons for the problem in terms of the belicfs, intentions, and
actions of the primitive in this symbolic exccution to glassify the problem into one of a number of
problem types. It then deliberates on how to modify the procedure so as to avoid the problem. Once it
has decided to make some particular modification, it modifics the plans involved it; the procedure’s
construction, and compiles these plans back into the form of a procedure.

Skill modification plays a crucial role in the cfficient operation of the program. For cfficiency,

most steps of most actions must be taken unconsciously, and skill modification techniques are the means

for producing such unconscious skills from the prior conscious plans and experience with their use.

1.3 OQutline of the Thesis

Chapter 2 describes SDL,* the language in which concepts and attitudes are phrased. Chapter 3
introduces RMS,? the underlying subsystem which implements the theory of reasoning. Chapter 4
describes the hierarchical library of plans and the interpreter, the action-describing and action-taking
parts of the program. Chapter 5 explains how these techniques are combined in reasoned dcliberation.
Chapter 6 cxplores the application of.thcse techniques in .dclibcrate changes of the program’s concepts,
beliefs, desires, intentions, values, and skills. Chapter 7, the final chapter, discusses incompletenesses in

this work, related directions for future rescarch, and speculative topics.

4. This acronym stands for Structured Description Language.

5. RMS is a revised and renamed version of TMS [Doyle 1979]. ‘The acronym stands for Reason Maintenance System. 1 am
changing the name for two rcasons. irst, TMS, the Truth Maintenance System, has nothing to do with truth, and this misnomer
has apparcntly annoyed some who took it more scriously than was intended. Second, as discussed in more detail in the last chapter,
RMS maintains reasons for several sorts of attitudes, such as beliefs, desires, and intentions, so that it seemed prudent to name it
after the reasons being recorded than after one of the attitudes (such as belief) being derived from these reasons.
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1.4 Sketches of these Ideas in Practice

To illustrate how these sorts of techniques might be applied, we present several motivating sketches of
reasoning in common situations involving decision-making, recollection, self-improvement, planning, and

conversing. )

1.4.1 Decision-making

Supposc that Robbic is a male robot. As Robbic is opening a closed door with the intention of walking
through it, he detects an approaching object. He identifies the object as a woman (or perhaps a
female-appearing robot), and considers what, if anything, to do about her. He thinks of two possible
courses of action, (1) holding the door for the woman, and (2) ignoring her, thereby letting her open the
door on her own. Robbic first forms a reason (a) for option (1), that chivalry demands a gentleman hold
the door for a lady. Robbic continues to think and realizes that the modern woman finds chivalry an
insult to her humanity, which constitutes a reason (b) against the first reason, that is, a reason not to act
for reason (a). At this point Robbie still has no reason for action, since reason (a) has been defeated by
reason (b), so he thinks further that he should hold the door by reason (c) of general politencss towards
one’s peers. At this point Robbic stops deliberating on what to do about the woman, and since option (1)
has a good reason for it and (2) does not, Robbie decides to act on reason (c) and hold the door for the
woman.®

Robbic next thinks about how he should go about holding the door for the woman. He

considers the possibilitics, the first of which is his standard method, that of (3) holding the door after he

has passed through just long cnough for the woman to reach the door and hold it herself. But he then

6. 1f Robbic instead had been a time traveller 1o the carly part of the twenticth century, he might have, unless he was very dull,
realized that he had a reason (d) against reason (b), namely that the different time period made his original objection invalid. In this
casc, Robbie could have acted on reason (a) alone, for reason (d) being valid would make reason (b) invalid, thus allowing a good
reason (a).
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recognizes the woman as a friend whom he has not scen for some while, and considers the second
possibility of (4) holding the door until she has passed through, following her through, and offering
grecetings as she passes. In this case, option (3) is his dcfault door-holding method, and has a rcason for it
that is valid if therc arc no other options with good reasons for them. But Robbic also has the good
rcason of renewing a friendship for option (4), so the default reason for (3) is dcfcatc;d. Thus Robbie
decides on (4), holds the door, and says hello.

Although this example is informal, exactly the same techniques are important in highly
constrained technical domains (not to imply that social behavior is not also highly constrained). For
cxample, when writing a program one has a decision of how to implement some function. One possibility
might be simple, another complex. One might have a reason for the first in its maintainability, but defeat
that because of its inefficiency. One might defeat the reason of incfficiency because the program will
reccive only limited use. Then one might defeat the reason of maintainability because the simple method
actually runs quickly on the cases of interest. Whatever the problem, one still has to somchow combine

different sorts of values and exceptional cases in decision-making.

1.4.2 Recollection

We often would like the program to cxplain its actions, and normally it can do this by examining its
records of its actions for the action in question, and then explaining the action in terms of the intention
that led to the action, and then in terms of the beliefs, plans, and decisions that led to the formation of
that intention. But what if the action in question cannot be found in the history of actions? The program
then reasons about whether it took the action or not. It might possess information about its procedures
(cither through introspective analysis or design) sufficient to tell whether the action in question might
have been taken unconsciously by. some primitive. For example, the program might record its action of

moving onc block to a new location, but if the primitive it used to carry this out first moved some other
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block to clear the top of the target block without noting this subsidiary action, the program would miss
this action in its history. However, if it kncw that the block movement primitive could be invoked by
primitives as well as through intentions, it could admit that it might have taken the action, but not
consciously. If it knew even more about how the primitive might be called, the program might be able to
infer that it must have been called and why it was called. The program might al’so try to recognize the
action as emerging from the larger pattern of the actions it does recall. For example, the program might
move some block around on a table until the block rests again in its original position. However, it might
have to infer from its recollection of each of the separate actions that it took the action of lecaving the
block in place. Finally, the program might believe that the only way the action in question could have
been taken was deliberately through an intention, and infer from this and the absence of any record of the

action that it did not take the action.

1.4.3 Self-improvement

How pleasant it is, at the cnd of the day, no follics to have to repent;
But reflect on the past, and be able to say, that my time has been properly spent.
Janc Taylor, Rhymes for the Nursery. The Way to be Happy.
In addition to reflecting on its actions‘to explain them, as in the previous sketch, the program might also
reflect on its recent actions to see if they signal any changes that should be made in the procedures used in
taking these actions. 1, for example, reflect on the day’s events cach night before going to sleep. I also
reflect on recent actions when I get annoyed with something, to see if [ can think of some way of avoiding
similar annoyances in the future. In recent times 1 recall several discoverics I made in this way which |
then put to usc in improving my future performance. For cxample, T used to shave after showering.
Having to wash my facc after shaving cventually annoyed me cnough so that 1 realized that T wouldn’t

have to wash my facc a sccond time if | shaved prior to showering. So | switched my routine. However, 1

later became annoyed with the stiffness of my beard, which on reflection I attributed to the lack of
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shower softening, so I switched back, now the wiser about toilet techniques. In the same way, an
intelligent program might be fruitfully organized to reflect on the efficiency of its past actions both when
problems -arise, and as a regular matter (once per day as the nurscry rhyme gocs, or during

conversationally idle periods).

1.44 Planning

Regular review of one’s plans often results in their modification, for cxample, by realizing their
incoherence, their inappropriateness, or their importance. For example, the program might decide to
carry out two of its intentions by means of plans. Unless it then refiects on these plans, it might never
discover that together the plans have substeps calling for simultancously unrcalizable or needlessly
repetitive actions. The program can correct these problems by carefully ordering the steps, or by
discarding one, or by inserting new steps to mitigate the interference between the separate plans.7 The
program might also notice that a great many of its intentions turn on some decision it intends to make. In
this case the program might explicitly statc the importance of the decision, and adopt the intention to be
very carcful in making the decision, that is, to use a carcful deliberation procedure rather than to decide

quickly.

1.4.5 Conversation

In addition to rcasoning about its own actions and attitudes, engaging in conversations requires that the
program reason about the actions and attitudes of others as well. Intentions to inform can be analyzed as
intentions to have the other participants in a conversation belicve some fact. Intentions to request

something of someone can be analyzed as intentions to inform that person that onc has a certain desire

7. Sacerdoli's [1977] NOAH is an cxample of ways in which such reflection and action might be done.
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whose satisfaction involves their cooperation. Furthermore, an intention to persuade can be analyzed as
an intention that the other person adopt a certain desire.
In all these cases, to plan onc’s utterances one needs to reason not only about one’s own attitudes

and actions, but also about the other person’s attitudes, his attitudes about one’ own attitudes, and the

beliefs and skills in common to both participants in the conversation

To perform this sort of rcasoning, the program might make copics of its own mental structure,
interpreter, library of procedures, etc. to represent cach other participant, and then simulate and

interrogate these models to predict what the effects of its own conversational actions will be.

1.5 Status of the Implementation

Can these bones live?
Ezekiel, xviii:27
No complete, working, fully tested version of the program exists at the present writing.  This section
explains both what has been implemented, and forseeable difficultics in completing the implementation.
All of the parts | have implemented are written in LISP for the MIT Lisp Machines.

Several versions of many parts of the program have been implemented and experimented with
to varying degrees by various people. SDL is based on a modest cxtension of the ideas used in FOL
[Weyhrauch 1978]). An implementation of FOL by Weyhrauch and others has been working for some
time and applied to several projects. SDL. has been implemented several times, but never as completely
as its description in Chapter 2 indicates. RMS is a modification of TMS [Doyle 1979]. TMS has been
used cxtensively in many programs. RMS itself has not been fully implemented or tested. The

interpreter is an cxtension of the "task network™ interpreter used in NASL [McDermott 1978]. NASL is a

8. Specch-act approaches to discourse have been attracting increasing attention recently. For background and current proposals,
sce [Austin 1962), [Searle 1969], [Grice 1969], [Cohen 1978], [Grosz 1979), {Perrault, et al. 1978], and [Wilks and Bien 1979).
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working, tested program. Charniak has recently reimplemented a subsct of NASIL, as well. My
interpreter has gone through several versions, each of which was tested on small problems, although none
of these versions has all the complexity of the one dcsgribcd in Chapter 4. Similarly, the deliberation
techniques in Chapter 5 have received an initial implementation and testing through their use in the
interpreter. Some of the techniques of Chapter 6 have been tested, others are complc.tcly untested, and
still others form the content of other works, such as those of Winston [1975), Sacerdoti [1977], and
Sussman [1975).

The major reasons for the lack of a complete implementation are three: a lack of time on my
part, my confusion about how to implement databascs, and inadequate computing resources. This thesis
synthesizes a large number of ideas, making it impossible to treat them in greater detail within a
rcasonable period.

Hicrarchical databases, of the sort used in SDL, have reccived considerable attention by many
authors, and many implementations exist. However, | had none of these readily available to me, had my
own peculiar requirements for extensions to them, and continually procrastinated on the task of
reimplementing one for my own use. There arc many subtle problems involved in the exact details of
these databases, and although I have substantial intercsts in these questions, they were not the questions I
wished to pursuc in this thesis, so I exerted little effort on resolving them. The basic ideas of Chapter2 1
have known for some while, and have taken much of the actual detail of the structure of theories directly
from Weyhrauch’s system.

Straightforward techniques for implementing reasoning programs along the lines described
above require a substantial overhead in time, space, and notation. At first glance, the techniques require
recording semi-permanently many sorts of information that traditional programs cither never consider or
only record very sketchily and then discard quickly. ‘This increases the constant factors of the complexity

of the program on the order of 100 times over the space requirements of traditional programs. (100 is just

an off-hand, possibly pessimistic guess, and depends on the implementation techniques used.)
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| have not been overly concerned with this overhead, for a key point of my methodology has
been that it is too expensive not to record and use this information. 1 repeat: It is too expensive nof to
record and use this information.? The standard approaches suffer unavoidable combinatorial explosions
in scarching because they discard the very information that might be used in bypassing these fruitless
scarches. 1 accept large increases in the constant factors to gain the ability to kill th,c exponential terms of
the program’s complexity, and to instead achieve a program complexity which grows roughly linearly
with the complexity of the problem. The issue is not my skill at programming. Instead, the issue is to
analyze what information is necessary or at least uscful in stecring the program clear of these searches,
and then to develop ways of recording and using this information.’® I concentrate on the asymptotic
complexity of the techniques involved, on the fundamental concepts involved in control.  This is
important, for it means that as the problems become larger and more complex, a lincar time program
remains feasible even if its constant factors are very large, whereas an exponentially expensive program is
always uscless, no matter how cfficient it was on small probiems. Combinatorial scarches cannot be the
basis for intelligence. They will never be fast ecnough. The problems always get harder to quickly.

The unfortunate consequence of attacking the fundamental problems of reasoning is that
current computers arc too slow and too small to permit debugging of programs. It is nearly impossible to
make progress debugging a program which takes several hours of interactive operation to manifest each
new error and which must be started from scratch after each patch (as programs under initial
development require). However, this is just what happens. [ have written programs to solve
unremarkable problems that represent exactly the information that scems necessary, that make only the

inferences which must be made (i.c. no wasted scarches), but which on absolutely trivial problem

9. T here repeat a statement made by G. J. Sussman [ atombe 1978, p. 364).

10. For example, the technique of dependency-directed backtracking developed by Stallman and Sussman [1977] was an effort to
use a fixed overhead of extra records of dependence of results on assumptions to avoid the needless combinatorial searches required
by traditional chronological backtracking. A similar motivation gave rise to the separation of database and control information in
CONNIVER [Sussman and McDermott 1972).
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instances spend a quarter-hour of CPU time (and hours of real time) exhausting the address space of
MIT’s DEC KA-10. MIT Lisp Machines provide a faster interpreter and a larger address space, but
quickly become disk-bound, and then spend most of thcir‘time paging, just like the KA-10.

The key factors in the debuggability of these programs is the speed of the machine, and the size
of real memory. The sort of program described in this thesis can, 1 expect, rcasonablyl be implemented
and tested only on machines a thousand times larger (and perhaps faster) than the computers mentioned
above. Such machines may cxist affordably within the next decade, and we must forego hope of true
intclligent machines until then.

What can be done meanwhile? 1 believe we should work on problems towards that day when
suitable machines exist. It is not enough to concentrate only on problems whose techniques can be
implemented on current computers. For many important problems, those techniques are sure to be
unsatisfactory, substituting scarches for intelligence. Science progresses not by building programs which
initially run "efficiently” but cannot in principle run fast enough, but rather by building programs whici
are feasible in principle, even if we must build new computers to run them. Imagine the result if
Beethoven had tried to compose his Ninth Symphony for solo voice and pianoforte. I have no doubt he

would have produced something, but it wouldn’t have been the Ninth Symphony, and would not have

"solved the problem” or said the samc thing that the Ninth Symphony did.

1.6 Sketch of a Computational Argument for the Approach

All reformers are bachelors.
George Moore, The Bending of the Bough
‘The standard view in Al rescarch has been quite different from the conscious, adaptive, rcasoning
approach outlined above. This scction hypothesizes a strawman view to stand for the traditional Al

approaches, and speculates on how it came to be adopted. It then attempts to give some insight into the
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computational motivations for the proposed approach by mcans of computational criticisins of this
strawman view. This argument is made indirect for two reasons. First, those familiar with the traditional
approach will sce the main limitations of that approach. Sccond, these criticisms will suggest how

rcalizations of thosc limitations might lead to the view proposed here.

1.6.1 Why have the facts of the fundamental argument been overlooked?

It scems clear that most Al research misses the above idcas completely. Judging from almost any volume
of conference proceedings or journal issue, one sces the overwhelming emphasis on cither dcsigning a
black box algorithm for some problem, or for designing a formal language for writing down the
axiomatization of some particular domain or class of domains.! Of course, such studies are often
necessary precursors of continued progress, but the question remains of why control, consciousness, and
adaptiveness have received so little attention. The following subsections suggest two possible answers to

this question.

1.6.1.1 Initial Programming Complexity

The simplest answer is the large overhead required by the techniques described here, and the
consequential undebuggability of programs based on these techniques. This makes problems admitting

more immediately testable solutions more attractive in some ways.

11. Sce [Brachman and Smith 1980, p. 3], who conclude that "far more people claim to represent the world than claim to represent
knowledge.”
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1.6.1.2 A Mathematician's Qutlook

I think a deeper reason why the fundamental argument above has been overlooked has to do with the way
of thinking implicit in the traditional approach. The standard view scems characterized by an
obliviousness to change, a blindness to the need for the program to continually adapt itsclf to changing
environments, tasks, and patterns of use. Al has tended to view the problem of representing information
about the world as that of dcfining several i)asically fixed (logical) theories, and using a single basically
fixed sct of programs for reasoning about these representations. If new theories or reasoning procedures
are required, the Al rescarcher writes a new program, rather than helping the program to change its old
ones. Perhaps T am being unfair to mathematicians, but this scems to result from sharing the typical
mathematician’s outlook on knowledge. Mathematicians discover concepts, theorics, and theorems, but
once they have given a name to something, they never consciously change the meaning of that name. If
they discover that the named concept was not quite the interesting onc, they make a new name for the
new concept, rather than changing the meaning of the old one, so that mathematical theories are
impervious to change. Since mathematicians do not often explicitly concern themselves with the use of
their theories in their studies, thej are also somewhat blind to changes in how these theories are used in
reasoning. A book on determinants written today would likely have the same form and thcorems as one
one written when the subject was alive.12

Al tends to formalize a theory of blocks, natural numbers, or elephants, and once this
axiomatization is set, it is rarely changed. Instead, modifications arc given new names. Al adopts a
standardized form for reasoning, say resolution, production rules, procedural attachment, or what have
you, then lets this organization sit untouched in its reign over all domains. Since the basic representations

and reasoning processes are fixed, the Al rescarcher can build them into a program, and, to improve the

12. Here I am deliberately exaggerating the point for the sake of argument. Dead ficlds sometimes regain popularity through the
infusion of nmew methods from other arcas, and Dummett [1973] and Lakatos [1976] might be taken as suggesting that
mathematicians unconsciously change the meanings of their terms.
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program’s initial cfficicncy, discard most of the information concerned with why these represcntations
and processes are used. But these reasons for the current organization are just what is necessary for the
program to be able to reason about how to change its organization when its environment or usage
changes. Blindness to change leads to organizing prégrams so that their representations and reasoning

b

processes are built-in, unchangeable. This is the traditional view’s fatal flaw.

1.6.2 Consequences of the Inaccessibility of Control Information

Sing, O Goddess, the anger of Achilles, son of Peleus,
that brought countless ills upon the Acheans.
Homer, The lliad, translation by Samucl Butler.

We label the traditional view's fatal flaw the inaccessibility of control information. Just as the
inaccessibility of captain Achilles contributed to the Achcans’ woes at Ilium, the singularly unhappy
mecthodology of the inaccessibility of control information leads to manifold unhappy consequences.
Since there is just one correct way of organizing reasoning, the framework-systems investigated in Al
usually support only one program at a time. The rescarcher has the responsibility for determining what
that program should be and for coding it up. He is also responsible for writing a new program or
changing the old one when the program is discovered to be in error or inadequate to its task. That is, the
program is not organized to be adaptive, but the programmer is expected to do the adapting.13 For
example, almost all the early programs (such as SHRDLU) written in PLANNER ! required that all

changes be made by the programmer.

This non-adaptiveness has a terrible consequence in practice. Because all responsibility for the

13. A frequent symptom of both this problem and a limited control vocabulary (Scction 1.6.2.2) is the oft repeated warning of
system designers that the user should take care in deciding which inference rules should be used for forward chaining and which for
backwards chaining. This is a good signal that something is wrong with the system.

14. 1 will give most of the exampies of traditional systems and their problems in terms of PLANNER, in part because it so clearly
demonstrates most of these problems, and in part because so many subscquent systems are largely based on its ideas. The full
language introduced in [lewitt 1972]. lHowever. only a subset was ever implemented, and the cxamples refer to programs written in
that subsct. The full language shares all the problems of the subset.
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writing, maintenance, and cvolution of the program is kept by the rescarcher and nonce is given to the
system, the information describing the program and its organization is typically distinct from the
information with which the program reasons. For example, references to PELANNER's control stack had
to be made in LISP, rather than in terms of PLANNER ésscrtions and thecorems. Almost always, the
program cannot refer to its own structure and the structure of its behavior as its dcsign,er does.!® Since
this is inforination controlling the program’s rcasoning and actions, we call this the inaccessibility of
control information. The program simply cannot rcason about its own control processes.

In the following subsections we outline some of the many unfortunate consequences of the
inaccessibility of control information. The nesting of subscction numbers will reflect the consequential

relationships between these difficulties.

1.6.2.1 The Inexplicability of Actions and Attitudes

The first problem following from the inaccessibility of control information is the inexplicability of actions
and attitudes. Because the program cannot interrogate its own control process, it cannot explain why it
took the actions it did, why it didn't take the actions it didn’t, why it belicves what it does, and why it
plans to do what it docs. For cxamplé, carly evaluation-ﬁx;lction search techniqucs rarely kept records of
their searching actions. Instcad, they were notorious for basing all actions on inexplicable and
uninformative numbers.

Onc might think that this inexplicability is a trivial flaw, that one can tolerate incomprchensible
programs. This, however, is an gravely misguided tolerance. As programs and databascs become more
common and more complex, society comes to rely crucially on their accuracy and intelligibility. Stories

abound of false information irrcvocably ruining somconc’s credit ratings, cmployment records, or worse.

15. By this is mcant the terms and rcasons with which the designer explains the program’s design. These explanations include
much more than just the programming language in which the program is written, at least with current programming languages.
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In trying to dcal with such tragedies, socicty finds that computer systems are designed with the view that
they are monolithic, infallible sources of information. This leads to great disrespect and growing
resentment of these large information systems. If we are to justify our rcliance on these systems while
avoiding society's censure, we can take either one of two paths. We might make programs responsible for
their actions or, more immediately practical, we can make programs cxplicitly dcficr all responsibility to
humans. We can have programs kcep historical information about their inputs and about the
computations they perform. This historical information can then be used to construct explanations or
justifications of cach action and database entry so that crrors can be traced to bad inputs, to faulty
programs, or to other databascs in a distributed system. n this way, the computer can be prepared with
the fact of its own fallibility and irresponsibility, and can help track down its own problems and those of
its users. While this may not render intelligible the enormous systems of programs involved, at least their
cffects will have been isolated to some extent. It may be impossible for programs without historical
annotations to do many of the things that we want them to Go, namely to defer responsibility to humans
so that their actions may be explained and corrected. The larger and more important programs become,
the more important such humility becomes. The fairness and effectiveness of programs are at stake, and
if society is to trust their accuracy and uscfulness, they must be able to trace their actions and contents to
responsible sources.

16

In addition to these strong social reasons against incomprehensible programs,”® many important

limitations on the program stem from the lack of reasons for actions and attitudes.

16. Sce also [Weizenbaum 1976] and [Rosenberg 1980).
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1.6.2.1.1 The Chauvinism of Values

But are they all horrid, arc you sure they are all horrid?
Jane Austen, Northanger Abbey
The most important problem stemming from this incxplicability involves the chauvinism of values. The
inability to examine one’s reasons greatly limits the sorts of decision-making that can be performed, for it
forces one to fit all sorts of values into a singie dimension, thereby making impossible reasoning based on
the incomparability of values.

Dilemmas arc the central problem. The genesis of dilemmas is in part that we think of our
world comprising many subworlds, with only tenuous connections between them. We can describe the
world and our actions in physical terms, or from the standpoint of a moral system, or as events in an
cconomic system, or simply in terms of what we like and dislike. Fach of these subworlds of physics,
morality, cconomics, or pleasure has its own vocabulary, facts, principles, and values. The values of each
of these systems cannot be compared with the values of the other systems. If we eventually discover some
reduction of all these worlds to a single world, for example, some way of reducing moral and economic
theory to physics, then we may have hope of comparing a moral value with an economic value. Without
such a revolution, however, we mﬁst live with incompatible valucs. Indeed, many thinkers have argued
that we will never find such a reduction of values because one does not exist, or that even if one did exist,
the explanations for decisions resulting from the reductions would be too detailed and intractably long for
routine purposes.17 We must, at least for the time being, find some way of making decisions despite this
Jfragmentation of values.8

This fragmentation of values permeates our deliberations far more than one might expect. Even

in apparently technical decisions, which in the popular view arc the most straightforward, incomparable

17. Sce Fodor [1975] and Putnam [1975).
18. This is Nagel's term [Naget 1979b]. Bell [1976] terms it the "disjunction of realms®.
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principles must be reconciled. For example, when designing an automobile, or a computer program, or
an clectronic circuit, one typically encounters many decisions between different ways of implementing
the design specifications. But when one comes to these decisions, one must choose between methods
which result in varying degrees of clegance, expense, ccological harmfulness, reliability, ease of
maintenance, conformity with statutes, coverage under patents or patcntability: difficulty of dcsign,
complexity or size of the design, ease of construction, ease of customization, the favor of one’s peers, the
innovativeness or personal challenge of the design, marketability, workability under expected future
changes in encrgy, legal, and social systems, ctc., etc., etc.  All of these considerations involve different
sets of valucs, and in anything one would call a problem, the value of the decision cannot be maximized
along all of these dimensions simultancously. Making decisions necessarily involves reflecting on the
types of reasons involved to compare them with cach other. If these reasons are incomparable, then the
dccision cannot be made in a fully rational fashion when so desired.

The fragnientation of values is a strong motivation for avoiding systems which do not record
their reasons, or which usc only reason-obscuring techniques like voting or numerical
strength-combination rules for decision-making. In this latter case, such systems impose arbitrary,
implicit, and frequently indefensible judgements about the relation of different types of reasons by
chauvinistically fitting all types of reasons into a single-dimensional grading scheme. For cxample,
MYCIN [Davis 1976] forces alt decision-making into numecrical strength-combination rules. This not
only means that the program must commit itsclf to absolute strengths for all reasons, but it also means
that the combination of reasons cannot be affected by context. A classic instance of this is the
intransitivity of cvidential relationships in medical diagnosis. As Rubin [1975] explains (along with other
cxamples), both facial edema and ascites arce cvidence for sodium retention, and sodium retention is
evidence for cach of cirrhosis and acute glomerulonephritis. However, these evidential rclationships are
not transitive, as would be required by MYCIN, since facial cdema is always positive evidence against

cirrhosis, and ascites is positive cvidence against acute glomerulonephritis. Here context (i.e. facial



cdema) invalidates a usual cvidential relationship (i.c. between sodium retention and cirrhosis). Even
Simon'’s satisficing decision-making, which avoids the unnatural homo economicus or value-maximizing
man, still fits all utilitics into a single dimension [Simon 1976]. Necessarily chauvinistic decision-making
processes may be simple, but lcad to insurmountable inadequacics in the reasoner, and lead to more

decisions being made than is properly possible.19

1.6.2.1.2 The Lack of Intentionality

Another problem stemming from the inexplicability of actions is the lack of intentionality. 1f the program
cannot reflect on why some action was taken, or why some circumstance occurred, it cannot distinguish
between the intentional and the unintentional consequences of an action. A famous problem with
PLLANNER-based robot bank robbers is that they would blithely proceed to rob the bank after tripping
over a pot of gold while on the way to the bank. Being able to make these judgements is crucial in
analyzing its successes and mistakes with an eye to improving its skills and performance. Telling whether
the effects of some action were "successful” or not depends on the ability to distinguish some conditions
as the aim towards which the action was taken, and then checking if the action realized these conditions.
For example, I have on occasion begun to assemble a complex toy without understanding what the
intended structure was. When the assembly directions were unhelpful and did not explain the intended
functions of the parts to guide me, I sometimes completed the bulk of the assembly only to find that I
apparently misassembled some substructure carlicr because the next assembly instruction made no sense
for the then current partial assemblage. To correct my error, [ tried to reconstruct the intentions of each

assembly step and sec where my actions had diverged from the intended actions.

19. Of course, any decision-making procedure may be made chauvinistic by a decision to accept universal comparison rules. The
issue here is whether the decision-making procedure forces this decision on one, or whether one can leave some values
incomparable.
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1.6.2.1.3 Incxtensibility

The inexplicability of the program also contributes to the inextensibility of the program. Since the
program cannot explain its workings, it has little chance to aid in its own modification. Even trivial
changes must be left to the designer or user to effect. Simple methods for augmenting the procedures
used by the program, such as those presented in [Davis 1976}, are impossible to implement. For example,
the program may in the course of rcasoﬁing discover that its belicfs are inconsistent. If the program can
explain its belicfs, it can help to trace the conflict back to its assumptions and to resolve the conflict by
changing one of these assumptions. But without a sclf-explanatory facility, the program’s extender must
rely on the program’s designer to provide this analysis, if he can. For example, PLLANNER recorded no
explanatory information outside of its control stack, and that was sufficient only for suspecting the

chronologically last procedure exccuted, as in chronological backtracking.

1.6.2.1.4 Hubris

The fifth consequence of the inaccessibility of control information and the inexplicability of the program
is its hubris, the program’s inability to acknowledge its own fallibility and limitations. Because its
reasoning and dcliberations are cxternal to its language, it cannot say anything about whether it might be
wrong in making some inference or decision, but has to proceed as though it is always right. In fact, the
program has many limitations in its abilities and in its knowledge of its abilities. Its knowledge of its own
abilitics and belicfs is not very much more securc than its knowledge of the external world. To be
effective in action and in rcaction to difficultics, we must replace hubris with sophrosyne, knowledge of
20

both abilitics and limitations.

Many uscful forms of rcasoning depend on being able to refer to such limitations. A prime

20. For a better explanation of this term, sce Ostwald's gloss of sophrosyne in [Aristotie 1962, p. 314] and Aristotle’s usage in Book
3, Section 10 of that work, pp. 77ff.
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example of this is the ability to make default assumptions or other non-monotonic inferences on the basis
of incomplete information. Such inferences can be made and maintained correctly only if the reasons for
belicfs and actions can be given. This was one of the major failings of PLANNER and its rclatives.
PLLANNER could not correctly handle THNOT because it lacked reasons for its beliefs. PLANNER
could not correctly compute the intended conditions of a THNOT's success, for it cou‘ld not tell which
assertions depended on previous THNOTS. - For the same reason, it could not correctly update its set of
assertions when a new assertion invalidated a previous THNOT's success. Knowledge of one’s limitations
also enters into the tenacity with which one holds belicfs, into judgements about which beliefs to give up

(say as tentative hypotheses) before others (say as tenets of faith).

1.6.2.1.5 Non-additivity

A fourth result of the incxplicability of program actions and attitudes is a failure of additivity. This
problem involves more than non-monotonic changes in the program beliefs in responsc to actions and
inconsistencies. Here I refer to PLANNER's failure under the addition of new imperative inference
rules. The programmer always had to take great care when adding new inference rules to avoid loops of
inferences which would halt progress. hNot only would sonﬁe added rules cause catastrophic failures of the
program through non-terminating itcrations, but no information could be added later to indicate the
proper use of the rules. For one example, a backwards-chaining inference rule, to the effect that one
block is a above another if there is a block which is above the one and below the other, might never hatt if
asked about two isolated blocks. If asked to prove that block A is on block B, it would gencrate the
subgoal of finding a block C above B and below A, the sub-subgoal of finding a block D above C and
below A, and so on, endlessly, without the possibility of adding a new rule to say that the first rule should
never be used if the two blocks aré isolated. Also, conflicting non-monotonic rules will loop. If onc has

procedures (cach added by a different user with his own ideas about what the program should do) to add
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P whenever Q is added, to crasec Q whenever P is added, to erase P whenever Q is erased, and to add Q
whenever P is erased, one might go into an infinite loop of adding Q, adding P, crasing Q, crasing P,
adding Q, etc. No techniques fully adequate to this problem were available because the real answer
involves keeping track of the inferences themselves, 'that is, the actions of the control component, and

rcasoning about the presence of loops in these inference records. When such techniques are employed,

new inference rules may be added without fear of this sort of failure occurring.21

1.6.2.2 Incxpressibility of Control Information

The second major problem stemming from the inaccessibility of control information involves the
inexpressibility of control information, the inability to give the program heuristic advice, guidclines for
how to carry out an decision or task. This is the doom of McCarthy’s goal of an Advice Taker [McCarthy
1958]. Because control is fixed external to the program, at some point the controller must arbitrarily give
up on controlling the program’s actions and resort to blind scarch, for otherwise the control component
would contain all possible information about how to do what, when. For example, the usual PLANNER
scheme of writing prdgrams with inference rules marked as forward or backward chaining allows one to
significantly dircct the behavior of the programs in simple cases. However, when onc increases the
number of inference rules beyond trivial proportions, one finds many goals or asscrtions being answered
by an unmanageable number of inference rules. It requires a new language of control to specify even the
simplest procedures for dirccting what to do in this case, such as which rules arc to be dealt with first.
Some systems employ such a rule by imposing a lincar ordering on the order of exccution of all inference
rules. Whenever one builds in a level beyond which the program can never sce, one builds in cventual

scarch, for any fact may at some time be the point on which an enormous search turns.

21. For example, AMORD avoided these problems in just this way. [de Kleer, et al. 1977]



1.6.3 Hence Reasoning Applied to Control

The common element of all the above inadequacics of the traditional approach to rcasoning programs is
the inability of the program to refer to, to reason about, and to modify the information controlling its
actions. The obvious approach to remedying these inadequacics is to design reasoning programs which
can recason about themselves. In this way we can simultancously overcome the limitations of previous
approaches and make use of their strengtﬁs, for nothing need inhibit the program from consciously
deciding to use one of the less sophisticated methods in certain cases if it deems those methods

appropriate and more cfficient in those cases.

1.7 Relation to Other Works

And one might therefore say of me that in this book 1 have only made up a bunch of other
people’s flowers, and that of my own I have only provided the string that tics them together.
Michel E. Montaigne, Essais
This thesis is related in general and in detail to a number of other works, Some of these will be cited in
the chapters that follow. In this final section of this chapter, we first relate the thesis to its closest relatives
among those works which have had the strongest influence on it. (See Figures 3 and 4 for a "mythical”

summary of these influences.”) We then survey some of the many other works relevant to topics studied

in the thesis.

L.7.1 Major Influences and History

This thesis is an outgrowth of my carlier research on control of rcasoning and belicf revision. This line of
work started for me with my paper "The use of dependencies in the control of rcasoning” [Doyle 1976),
which emphasized the need to control reasoning and “reasoning about rcasoning” as a promising

approach towards solving it. There I describe an carly version of RMS, along with its application to
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maintaining explicit statements of the goals of the rcasoner. My masters thesis, revised as "A truth
maintenance system” [Doyle 1979}, developed RMS further along with its philosophy and applications.
Developing the other theme of my first paper, "Explicit control of rcasoning” [de Kleer, ct al. 1977],
proposcd the cxplicit representation of the control staic of the reasoner, in the main clarifying my carlier
paper. This paper introduced AMORD, a procedural deduction system based on RMS, first
implemented by de Kleer and Sussman.22 In unpublished work, I extended the example system of this
paper, and later Shrobe [1979b] extended it yet further. 1 hope that the present thesis tics these threads of
thought together again.

I owe my collcagues large debts for many ideas. My carlicst exposures to these sorts of ideas
were, | believe, in a class on religion with Iloyd Swenson, and later, in my studics of mathematics with
Joseph A. Schatz, who tutored me in the possibility of scrutinizing one’s beliefs and rules of reasoning,
and how such scrutiny is essential in foundational questions. John S. MacNerney vividly illustrated this
point to me in a class on integration.

At the time of writing of my first paper above, | had been working for Sussman on ARS
[Stallman and Sussman 1977} and with McDcrmott on NASL. [McDermott 1978], and was very excited by
their programs, and by Davis' new thesis [Davis 1976] as well. 1 then sat in on some discussions involving
them, de Kleer, and Steele, thinking about the structure of a "ncw MICRO-PLANNER" bascd on
antecedent reasoning. I then developed and applied my idea of non-monotonic data-dependencics to try
to make some of these things workable, and my first paper above is the result.

RMS itsclf stems from my experience with the "fact garbage collector” of ARS. [ introduced
the ideca of non-monotonic justifications for beliefs (and how they fit into dependency-directed
backtracking) to capture the "PRESUMABLY" inferences in NASL. [ discovered that ARS's fact

garbage collector and backtracker were both very buggy and needlessly non-incremental, and isolated

22. AMORD is actually the sccond program of that name, Sicele and [ having labored over and, after scveral months, finally
quictly buricd the first AMORD.



improved versions of these subprograms based on non-monotonic justifications as a domain-independent
subsystem.

My interpreter is an extension of NASL’s task nectwork interpreter. NASL in turn builds to
some extent on Sacerdoti’'s NOAH [Sacerdoti 1977], whicﬁ reasoned about its own system of intentions
represented as a "procedural net.” My major changes to NASI. have been the reorganization required by
the RMS, the use of a hierarchical library of plans (NASI. used the first order predicate calculus in such a
way as to make this inconvenient at best), the separation of desires and intentions, and the introduction of
rcasoned deliberation. NASL's choice protocol is a simple relative of reasoned deliberation, with little of
the structure, power, or intutiveness of the latter. In NASI.’s choice protocol, one crases options, retains
options, or combines options, until just one option remains. One cannot give reasons against reasons,
since there are no reasons. However, one can draw some conclusions about the deliberation process as a
whole through the QUIESCENCE step of the choice protocol, which signals the cxecutive that
decision-making hus gotten stuck. McPDermott used this last ability for encoding default decision
outcomes. NASL is little concerned with sclf-models, and so lacks plans describing the interpreter’s
actions. However, some of NASL’s plan-reformulation mechanisms hint at a sclf-model, as they are
mediated through plans rather than as simple procedures. .

The formalism for desires, intentions, and plans used in the interpreter is also related to the plan
formalism of Rich and Shrobc [1976], who in turn refine earlicr formulations [Brown 1976, Sussman 1975,
Goldstein 1975). They also present libraries of standard plans for programming, and mecthods for
analyzing programs into their underlying plans, I draw heavily on their work in my approach to skill
introspection and hypothetical reasoning.

Patrick Hayes has long advocated the general approach of controlling reasoning by reasoning
about control [Haycs 1974). He first suggested this idca in clucidating the relation between computation
and deduction [Hayes 1973b]. More recently, he critiqued the traditional approaches to control [Hayes

1977a), and I have tried to build on his criticisms in my arguments above.
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Long ago, McCarthy proposcd an Advice Taker, a program which could accept facts and
heuristics about the world and how to reason, and then find ways of using this information cffectively
[McCarthy 1958). His proposal had no dircct influence on me, but had a great indirect cffect through
Sussman'’s thesis [Sussman 1975], which has had a largé impact on my views of learning of procedures and
assimilation of information.

I have also been considerably stimulated by Sussman’s addiction to writing meta-circular LISP
interpreters [Stecle and Sussman 1978b). Although these interpreters do not refer to their self-description
to act, they admit a description of themselves in the same language (hat they interpret, so that they can be
uscd to evaluate themselves evaluating some other program.

I toyed with ideas about how to make a non-monotonic, hicrarchical calculus of descriptions
ever since reading about NETI. [Fahlman 1979], which substantially influenced my views on databases.
However, these ideas never demanded quite enough of my attention to permit their full development.
My confusions about this might have hindercd this thesis even more than they have, had it not been for
Weyhrauch’s timely exposition of FOL. [Weyhrauch 1978]. 1 finally worked out the details of SDL while
trying to understand his paper and its relation to Brown’s work on mcaning and meta-theory [Brown
1977, 1979]. SDL draws heavily on both NETL and FOL.

Minsky's idcas on reflection [Minsky 1965), once 1 discovered them, served to illuminate the
problems T was fumbling towards. 1 was also extremely stimulated by his views on the role of affect in
intcllect [Minsky 1979}, and by his criticism of the logistic approach in reasoning in [Minsky 1974)}.

Finally, many years ago | read and reread a number of storics which have ever since inspired my
attitudes towards the problems of building intclligent machines. | would like to thank the authors of

these storics, Isaac Asimov [1950, 1964] and Robert A. Heinlein [1966], for their inspiration.



1.7.2 Related Works

There are many other related works, some of which influenced me, but most of which were
developed independently.  Unfortunately, 1 am not quite the scholar I wish I were, and much of my
recent and continuing cffort has been directed to learning of the approachces alrcady developed to the
problems of this thesis and trying to relate all these ideas. However, [ am still a novice in most of these
arcas. | have explored enough to sce the truly huge bulk of writings on these topics, S0 to add some

measure of coherence, 1 discuss them by topic.

1.7.2.1 Representation Theory

This category groups together studics of the nature of representation, hicrarchical representation systems,
and sclf-descriptive and sclf-referential systems.

The philosophy of logic and language is the usual location for studies of the nature of
representation, meaning, and representational system. Quinc [1970], Haack [1978), and Linsky [1977] are
good survey cxpositions of this arca. Linsky [1971], Schwartz [1977], and Strawson [1967] are uscful
collections of articles on these topics.

Representational systems based on idcas of hierarchical relations between represcntations have
been expliored by Brachman [1978], Fahlman [1979], Minsky [1974], Ph. Hayes [1977), Hendrix [1975),
Steele and Sussman [1978c], Smith [1978], Martin [1979], and Borning [1979]. Simon [1969] stresscs the
importance of hicrarchical systems in organizing information and behavior.

There has been quite a bit of work on self-descriptive and self-referential systems, although most
of it is foundational in character and little is applied to the problem of controlling rcasoning.
Programmers will find familiar the idea of the meta-circular interpreter, the carliest of which is Turing’s
universal machine [Turing 1936]. Such interpreters have also been developed for studying the scmantics

of programming and logical languages by McCarthy [1965], Backus [1973], Reynolds [1972], Brown
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{1977}, and Steele and Sussman [1978b). Minsky [1965] discussed machines which reason about and use
their own sclf-descriptions. So also do those mentioned above involved in the approach to control
pursucd in this thesis. Davis [1976] not only explores controlling reasoning with self-reference, but also
shows the high valuc of programs using models of -their own data structures and infcrence rules in
acquiring new information.

In addition to meta-circular interpreters, the computer-architecture and compiler-compiler
ficlds have studied formal machine description systems. Sce [Bell and Newell 1971], [Cattell 1978], and
[McKceman ct al. 1970).

The fundamental formal properties of sclf-descriptive and sclf-referential systems have been
studied by Russell [1908]. Hilbert [1925], Godel [1931], Tarksi [1944], Turing [1936}, Post [1943], Klcene
[1950}, Smullyan [1957], Montague [1963], Quine [1966], Kripke [1975], Feferman [1960], Resnik [1974],
Boolos [1979], and Scott [1973]). Smuliyan [1978, 1980] and Hofstader [1979] present popular expositions
of some of these Juestions. The non-monotonic logics mentioned below can aiso be viewed as
self-referential systems. Brown [1979] and Weyhrauch [1978] have cach developed programs which can
reason about languages, proofs, and models. ‘chhrauch's program is its own theory of itself, so that it
can reason about itsclf and as its model of its description of itsclf. Brown’s program secms similar in basic
nature. Smith {1978] is also working towards developing another such program and formal system. All
these studies, however, are essentially foundational. None tell how to reason about onesclf, but instead
concentrate on providing the power to do so if one so desires. An aim of this thesis is to cxplain ways of

doing just that, of using these frameworks for sclf-referential reasoning.



52

1.7.2.2 The Nature of Reasoning

The mathematical semantics of the non-monotonic justifications and default inferences used in RMS and
other programs has recently been developed by McDerniott and Doyle [1978]. Reiter [1979] analyzes a
less general system allowing stronger results while still capturing many important inferences. Kramosil
[1975] is the first, but unfulfilled, study of this sort. McDermott [1980] follows up our carlier approach
with stronger logics based on traditional the modal logics T, S4, and S5. [ suspect there may be another
interesting logic along these lines, namcly a non-monotonic extension of Boolos’ modal logic of
provability in Peano arithmetic [Boolos 1979). Rciter [1978] catalogs some of the many important
appearances of non-monotonic reasoning in artificial intelligencc studies.

Another close relative to non-monotonic logic and these views is the theory of conclusions as
formulated by Tukey [1960] and devioped by Dacey [1978]. This is a formal logic in which statements
with very strong evidence can be adopted as conclusions, to be maintained independently of the evidence
until and unless very strong evidence to the contrary is accepted.

Harman, Lchrer and Paxton, Scriven, and Bennett each formulate view of inference which seem
close in some ways to non-monotonic inference. Harman [1973] sees inferences as total views, with all
inferences containing the proviso "and since there was no undermining evidence.” Lchrer and Paxton
[1969, Lehrer 1974] formulate knowledge as undefeated justified true belief. Scriven [1959, 1963]
formulates historical cxplanations as invofving truisms or what he calls "normic rules” which state "true”
general principles which may be defeated in particular instances. He argues that such rules are neither
deductive nor statistical in nature. Bennett [1964] develops a notion of “R-denials” as denials of reasons,
but apparently does not continue the process with denials of denials in any uniform way.

Rosenberg [1978] presents a beautiful exposition of the conversational logic of dialcctical
argument. Belnap [1976] discusses a simple four-valued logic of this sort of argument, and shows its

conncction to relevance logic.
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There is a sizable literature on logics of various attitudes, such as belief, desire, and obligation.
Rescher [1968] surveys this area. Sec for cxample Hintikka [1962), Kenny [1978], Rescher [1966],
[Hilpinen 1971] and Chisholm [1978). For the most part, I have not developed a comprchensible
relationship between these logics of attitudes and tﬁe behaviors of the program suggested here. The
formal logics all scem too simplistic, or specialized to very specific sorts of reasoning. Chapters 4 and 5
briefly mention some connections of the ideas proposed here with deontic logic.

Kreisel [1968, 1971, 1977] and Prawitz [1973] survey the literature and ideas of proof theory, and
Boolos [1979] presents the correct modal logic of provability in arithmetic. Proof theory is intimately
related to reasoning about reasoning, it being in large part formal reasoning about formal reasoning
systems. Closely related, intuitionists reflect on the structure and development of proofs as a means of
judging what arguments are constructive or non-controversial. See [Heyting 1956] and [Yessinin-Volpin
1970).

Collins [1978] and Wason and Johnson-laird [1972] discuss questions in human plausibie
reasoning and the psychology of reasoning. Iam not yet familiar cnough with this literature to comment
onit.

Our approach to reasoning should be taken as orthogonal in many ways to the decision-theoretic
approaches mentioned below, and to Zadeh’s fuzzy logic, which aims at capturing a separate set of

intuitions. Sec [Zadch 1975] and [Gaines 1976].

1.7.2.3 The Theory of Intentional Action

Shaffer [1968], Taylor [1966, 1974], and Davis [1979) survey the standard theorics of intentional action.
White [1968] and Brand [1970] collect a number of papers on this topic. Sce also [Anscombe 1957] and
[Goldman 1970).

Miller, Galanter, and Pribram [1960] discuss the role of plans in psychological cxplanations of



behavior, and Collingwood [1946] the role of intention in historical cxplanation. Dray [1964] surveys
theorics of historical explanations, and Gardiner [1974] and Hook [1963] collect a number of papers in
this area.

Studics of program understanding and action interpretation develop a number of models and
techniques for representing plans, recognizing plans in programs, devices, or patterns of behavior, and
analyzing errors to find the faulty plans that caused them. Sece Sussman [1975), Goldstein [1975}, Brown
[1976]. de Kleer [1979a), Miller [1979), Rich and Shrobe [1976]. Wilensky [1978], and Schmidt, Sridharan,

and Goodson [1978].

1.7.2.4 The Fragmentation of Values

Nagel [1979b], Fodor [1975)], and Putnam [1975)] present arguments for the irreducibility of the various
domains of the world to a common basis of comparison. The basic arguments are that even if we are able
to determine how each of the domains is realized in a more fundamental domain, these reductions cannot
be lawlike because there are so many sorts of ways of realizing each domain in the underlying domains,
and that even if they were lawlike, the bridging realization explanations would be so hopelessly detailed
that they would never make sense in.argumcnts, reasonir;g, or decision-making. When each person is
taken as a separate domain of valucs, as is usual in social decision-making, there result a number of
problems duc to the fragmentation of values. Arrow [1967] discusses the fundamental result of the
nonexistence of a "nice" way of combining fragmented valucs coherently in all cases to find an aggregate

value.
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1.7.2.5 Decision-making

Much recent work in decision-making has been developed in decision-theory, the most popular branches
of which are based on Bayesian probability theory, and most of this work concentrates on chauvinistic
utitity measurcs. Suppes [1967] surveys this arca. Good [1952] mentions a hierarchical decision-theory of
this sort. Duda, Hart, and Nilsson [1976] apply these idcas in the context of popular Al techniques. Giles
[1976] develops a subjective logic of belief along these lines. Simon [1976] introduced the notion of
satisficing to avoid hopelessly ideatized rationality. Allison [1971] and Braybrooke and Lindblom [1963]
discuss social and political models of decision-making.

Many studics have been made on various structures for organizations and decision-making in
them. Many of the ideas and concerns here are closely connected with those of the control and
organization of rcasoning programs. Sce for example Barnard [1938] (which has an intriguing appendix
on the nature of mind and reasoning, logical and non-logical), Drucker [1946, 1974}, Simon [1976], March
and Simon [1958], Chandler [1962], Rawls [1971], and Nozick [1974). Related studies attempt to view
animal and human behavior as stemming from organizations of smaller decision-making units.
Tinbergen [1951] presents such control structures for scveral animals. Minsky and Papert [1978, Minsky
1977] explore such organizations for the human mind. Fox [1979] attempts to relate Al decision-making
models, organization theory, and decision theory.

Quite different from that on decision theory, the literature on deliberation usually admits the
fragmentation of valucs, and concentrates on the reasons involved in the deliberation. See the articles in
Raz [1978], and books by Aunc [1977], Castancda [1975], Edglcy [1969], Gauthicr [1963], Hare [1952,

1963}, Harman [1977], Nagel [1970], Norman [1971], and Richards [1971].
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1.7.2.6 Control of Reasoning

Rasic studics of controlling actions by constructing and cxccuting plans of action include Newell and
Simon [1963], Ernst and Newell [1969], Fikes and Nilsson {1971}, Fahlman [1974], Sacerdoti {1974, 1977},
and Tate [1977). Sacerdoti [1979] surveys these techniques. As mentioned carlier, planning techniques
have been applicd to controlling rcasoning as well by Hayes [1973b}, Doyle [1976}, de Kleer ct al. [1977],
and McDermott [1978). Latombe [1976, 1979] and Stefik [1980] take this approach as well.

Gordon et al. [1978] develop a proof-construction systcm based on an explicit
Jlanguage/metalanguage distinction, and encourage the encoding of proof construction strategics as
mctélanguagc programs. However, they leave all planning to the human user, and do not scif-apply the
program. In particular, their system never records proofs, and hence cannot reason about its own
rcasoning.

In the "pure” production system framework, McDermott and Forgy [1976] discuss techniques
for conflict resolution and focus of attention. Rychener [1976] presents an interesting implementation of
GPS in such a production system. Hayes-Roth and Lesser [1977] explore "focus of attention” techniques
in a "blackboard” production-system architecture. In the "deductive” production system framework,
Davis [1976, 1980] developed meta-rules as a way of encoding control information. In all these
approaches, however, control depends on a chauvinistic decision-making technique that operates without
reasons, and neither approach involves a particularly cohcrent notion of action.

A final approach (or non-approach) is that of the logic programming community. Kowalski
[1974] scems content to refuse the problem of contro! as a domain for rcasoning. Pratt [1977] seems to
beg the question by concentrating on the "facts” and postulating an intclligent interpreter to decide what

to do with them, much like the carlicr GPS and mechanical theorem proving mcthodologies.
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1.7.2.7 Adaptive Changes of Mind

Russell {1930], Carncgic {1936, 1944], Ellis and Harper [1961], and Johnson [1977] discuss informal
techniques for changing ones attitudes in the context of self-improvement. There is a large litcrature on
this problem, but these are the best cxpositions I have scen. Suppes [1977] surveys several influential
learning theories.

Concept learning is discussed by Winston [1975} and Fahlman [1979).

Belicf revision has been an active ficld recently, and the literature is surveyed and indexed by
Doyle and London [1980]. Hayes [19734] is still an excellent carlier survey. My approach in [Doyle 1979]
has close relatives in the works of London [1978], McAllester [1978], Thompson [1979), Fikes [1975], and
Stallman and Sussman [1977]. de Kleer and Harris [1979] critically compare these approaches. Charniak,
ct al. [1979] present a simple RMS in explicit detail with considerable discussion. L.ondon applies this
approach in detail to belicf revisions following actions. Fahlman [1974] and Sridharan [1976] present
schemes for describing rules to disambiguate action cffects, their common suggestion being rules which
choose one revision over another on the basis of aspects of the particular belicfs being revised. Some
approach of this sort is necessary because revisions duc to inconsistencies and actions can typically be
donc in many ways, so some way of chloosing between the éltcmate revisions must be possible. Excellent
general of belief revisions can be found in Rescher [1964, 1976], who presents a formulation of
consistency-based belief revision, and in Quine {1953), and Quinc and Ullian [1978], who discuss the
ambiguity of revisions and scveral sorts of gencral guidelines for disambiguating them. Goodman [1973),
Lewis [1973], Turner [1978], and Rescher [1976] study counterfactual and plausible rcasoning. Analyses
of counterfactuals usually involve some way of evaluating the consequent of the counterfactual statement
in circumstances as "close” as possible to the actual circumstances but in which the hypothesis of the
counterfactual holds. These proposals for counterfactuals thus suggest ways of choosing "minimal"”

revisions of belicfs to accommodate new hypothescs. Sosa [1975] collects a number of papers on this
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topic.
Fahlman [1974], Saccrdoti [1977), and Shrobe [1979b] discuss revision of one’s plans.
Harper [1976] discusses changes of preference in a probabilistic sctting.
Sussman [1975] studics the problem of skill dcvclbpmcm. Fikes and Nilsson [1972] discuss the

collection of STRIPS plans, and Davis [1976] the acquisition of new inference rules.

1.7.2.8 Affect and Intellect

Freud [1937] analyzed the impact of affect on intellect through repression and censors. Ellis and Harper
[1961] basc their psychotherapy on the converse influence of inteliect on affect. They analyze people’s
problems by finding the troublesome statements (he afflicted repeat to themselves.  Minsky [1980]
cxplores how affect and inteliectual activities are aspects of the same mechanisms, how affect exploits

intellect for its purposes, and how intellect similarly exploits affect.

1.7.2.9 Consciousness

The standard positions on the nature of consciousness are surveyed by Shaffer [1968], Taylor [1974], and
Dennett [1978a). Other topics in the philosophy of mind and psychology are discussed in [Fodor 1968,
1975, |Gustafson 1964], [Glover 1976, [Dreyfus 1979), [Nagel 1979, 1979d], [Boden 1977}, Ryle {1949]

and Dennett [1969, 1978¢]).

1.7.2.10 The Absurd

Nagel {1979a], Quinc [1953], Camus [1955], Sartre [1956], Anderson [1975]), Wheeler [1977], and others
discuss the problems of why we are the way we are, and why we should adapt. Pascal {1971}, James

[1971], and Kicrkegaard [1944] discuss lcaps of faith.
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CHAPTER 2

THE REPRESENTATION OF STRUCTURE

Onc important kind of human action is that of buildiﬁg new things out of previous things. There may be
little to distinguish a new thing from its components or its surroundings but our calling it so (as detractors
of modern sculpture have been wont to point out). Nevertheless, we often find it uscful to think of
portions of the world as things constructed from other things. This chapter outlines a representational
system designed to allow a program to share this way of thought.

Now conceivably, a program could build and use things and never think of them cxcept as their
constituents. ‘This, however, has the disadvantage of unnccessary detail. [t is ridiculous to think of
moving a table across the room only in terms of the motions of individual molecules making up the table,
or of a mind or machine only in terms of the physical cvents associated with its physical rcalization, but
that would be a consequence of an inability to think of structures as objects, abstracting away all the
unwanted details of their structure. Instead, the program must be able to think of its creations in terms
other than their constituents. Since the program thinks about its internal actions as well as its external
actions, we conclude that it should be able to make new representations out of previous representations,
and then be able to use the new representations as objects in creating further reprcscntations.B

Often in physical constructions, the constituent parts rctain their structure so that the structure
of the whole includes the former structure of the parts. Of course, this is often not so, as in chemical
mixtures or plastic deformations of constituents, for example salt dissolved in water and ice floes made

into an igloo. But retained structure, when it exists, makes descriptions of constructs much simpler to

comprehend, so we require further of the representational system that it allow structure retention when

23. Harrison [1978] emphasizes the unity of the building activitics involved in creative thought with the building activitics involved
in mundanc constructions and practical rcasoning. Lenat [1977] makes a similar point and prescnts a program for inventing
mathematical concepts.



possible. In cases in which (internal and external) building operations leave intact the combined (internal
and external) objects, this mcans that the structure of the representation reflects the structure of its
referent.

We also place some distinctly non-physical requircments on the representational system.

The previous chapter made many arguments in support of the program’s ability to explain its
structure and behavior, and the representational system should make this possible. We require that each
representation include information explaining how it was formed from other representations, and what
processes were responsible for its formation.24

Another important requirement is the ability to cconomize on the storage size of
representations. To consider an analogous case, large corporations must often raise large sums of money,
much larger than they might borrow directly. They do this by borrowing from a number of banks, who in
turn borrow from other sources. Jack borrows from Jill and Jane, who borrow from John and Jake and
James and Jonas, wao borrow from Jean and Joan and others, so that many of the cffective funds are only
virtual possessions, not a single actual bank-account. In a similar way, the program should economize on
the information for which it actually uses long-term storage resources. It can do this by using the records
of how representations were constructed from others to temporarily reconstruct the apparent structure of

a representation when answering questions, and then to discard all but the basic information about the

represcntation and its structure.

24. It would be nice if representations explained not only the how but the why of their formation. Unfortunately, as the last
chapter speculates, it may not be possible always 1o say why. This question depends on the completeness of the program’s
self-description, on its knowledge of itscfl being detailed cnough to tell the purpose of each of the actions of its procedures.
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2.1 Desiderata of the Representational System

In summary, the desiderata for the representational system, along with examples and how we

realize them, are as follows.

1. The representational system should be able to represent all the objects considered by the program.

This requirement has two parts. The first is the simple semantical adequacy of the representational
system, which rules out, for example, a representational system whose only symbol is the numeral 3, for 3
is just onc symbol, and there arc many things which must be represented simultancously. We adopt a
system based on the first-order predicate calculus (FOPC), as it is the best understood formal
representational language. However, this choice is intended to be the most colorless choice possible.
Since no one has yet actually demonstrated the adequacy of any known representational system (FOPC
included) for describing everything, we take FOPC as a base for extension, such as modalities, ctc., and
do not address completions or alternatives of this language.

The second part of this requirement concerns the physical realization of the representational
system. A purcly formal system cannot represent anything, for what it thinks of as its representing
something is not supported by actual causal connections between its thoughts and its objects. Several
authors, such as Putnam [1978], Fodor [1978], and Scarle [1980], discuss this issuc in detail. We do not
discuss this question further, and take for granted a realization of the representational system as part of a

machine actually connected to the physical world in the proper ways.

2. New representations can be built from previous representations.

The basic unit of representation in a FOPC-bascd system is the logical theory, or sct of statements. This
requirement means that we can combine scts of statements to get new scts of statements. We do not

restrict these combinations to be simple unions of the sets, but can make more complicated, non-additive
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combinations. But a simplec mathematical example is that of combining a theory describing a sct of
objects as a group under one operation and another theory describing a subset of those objects as a group

under another operation into a theory describing the objects as a semiring.
3. Combinations of representations are objects as well.

This means that the representational system treats sets of statements as objects to which statements can
refer. For example, one might have a theory describing a semiring theory as a combination of two other

theories. Here the first theory treats the other three as objects.
4. Fach representation incorporates an explanation of how it was constructed,

This means that the theories and their statements include the rcasons mentioning the other theories,
statements, and procedures which constructed them. Precise explanations of this will largely be deferred
until Chapter 3. But an example might be a theory constructed by adding together two other thcories.
The statements in this thcory would all have reasons mentioning the corresponding statements in the
initial theorics, along with the statcments relating the combination theory and the constituent theories,
and finally, along with the procedure which inferred the new statements from the carlier statements and

the theory-construction statements.
5. The representation is asymptotically storage-space efficient.

This requirement means, for cxample, that statements in a theory are not actually inferred from the
constituent theorics unless actually nceded, and are not retained unless needed.”

In the remainder of the chapter, we will basc the representational system on virfual copies

25. In [Doyle 1977) I suggested that asymplotic storage-space efficiency was a major faclor in the design of representation
languages intended for use in representing human-sized bodies of information about the world. 1 also argued (hat virlual-copy
representational systems like Fahlman's NETL [IFahlman 1979] are best viewed as attempts at asymptolic storage-space efficiency.
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(VC’s), a term due to Fahlman [1979]. Virtual copics of theorics will be theories whose statements can be
inferred, when necded, and discarded when not required. Virtual copies can be modificd by adding in
other, non-virtual statements, and by defeating some of the virtual statements. This last capability is used
for describing overridden defaults, cxceptions, and wﬁat might be called family resemblances, in which
the simplest way of describing a number of objects is as a number of distinct modifications of an ideal
family member. As we will describe in more detail later, VC inferences are non-monotonic inferences, to
allow these sorts of non-additive theory modifications.

Unfortunately, the claim that the program uses virtual copies is a fiction. Al the versions of it
that I have implemented in fact make actual copies, that is, always permanently infer all statements of all
theories. However, this is merely an accident of time pressures on my implementation cfforts, as the
full-copy techniques are casy to implement quickly, and the virtual-copy techniques are harder to
implement correctly, as there are many subtlcties involved.

This fiction about the representational system presented here is actually a symptom of a larger
incompleteness in this thesis, namely the lack of database retrieval procedures altogether. McDermott,
Fahlman, and others have argued for a separation between database retrieval and problem solving, where
database retricval consists of applying automatic, quick procedures which adequately handle almost all
querics (the routine cases), and problem solving consists of applying carcfully controlled inference
procedures to ferret out the desired information that the routine procedures miss. This distinction is
sometimes hazy, but is a convenient way of viewing the problem, and 1 adopt it here. Routine retrievals
are carricd out by a sct of standard, cfficient, but somectimes inadequate databasc interrogation
procedures. The difficult cascs arc handled by sclf-applying the reasoner with means of information
retrieval plans and deliberation about where to look for information. This thesis discusses neither the
routine procedures nor the information retricval plans. The representational system presented here is
capable of reinterpretation as other representational systems, for example, as NETL, and retrieval

algorithms developed for them can casily be adapted to the data-structures used here. Likewise, the



ability of the program to refer to its own representations allows formulation of information-retrieval plans
for carcful rcasoning.

One final introductory remark: This chapter is not intended as a presentation of the classical
open problems of representational theory. The system presented here can be viewed as a simple
cxtension of the ideas of Fahlman and Weyhrauch [1978] to include reasons for representations. Smith
[1978] describes how many classical representational puzzles can be fruitfully attacked with
representations which can be referred to as objects by other representations. Both Hayes [1977b] and
Nilsson  [1980] present alternative readings of  hicrarchical representational  systems — as
non-meta-theoretical FOPC systems, but their readings have major semantical shortcomings, discussed in

Section 2.5.

22 A Key Application

The program uses a library of hierarchically organized plans and primitives. It occasionally builds new
plans and adds them to this library. For example, it might make a plan for cooking a single spaghetti
dinner from two existing plans, that of cooking and refrigerating a vat of spaghetti sauce, and that of
hcating some spaghetti sauce and cooking some spaghetti. To construct the new plan, it concatenates the
two existing plans, changing the quantities involved, and removing the steps of refrigerating and
rcheating the sauce. To do this, it makes copics of the representations of the previous plans, identifies
some of thc components of these copies, deletes some of their components, and then packages up the
resulting collection as the new plan.

We view these steps of copying and modifying representations in terms of the above
requirements as follows. The program first creates the copies of precxisting plans by making new
representations along with inference rules which make the assumption that any part of a prototype

representation is also part of the corresponding copy representation. These inferences are non-monotonic
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assumptions, so that modifications may be made to the representation by defeating the assumptions. The
identifications are accomplished by creating inference rules which duplicate any conclusion about one
representation with similar conclusions about the identificd representations.  Finally, the collection of
modified and interconnected representations is reified as a new plan representation available for further

copying and combination. The rest of this chapter presents the details of these operations.

2.3 SDL, a Structured Description Language

The program cmploys a representational language called SDL. SDI. is based on a predicate calculus, but
bears strong resemblances to current structured-description representational systems. In particular, SDL
involves both a modified form of the data-structures of FOL. [Weyhrauch 1978] and a particular way of
using these data-structures based on NETL.

The basis of SDL is the first order predicate calculus. However, where normal FOPC systems
are viewed as having one language, one set of axioms, and a model external to the language, SDL
employs many languagcs, axiom sets, and models simultaneously. It describes each object with a scparate
set of axioms in an appropriatc language and its intended model. SDL describes the structural
relationships between such descriptions by treating cach of these logical theories as an individual with
parts. These meta-theoretic relationships then become axioms of yet other logical theories.

The most important data-structure in SDL is the theory. The standard usage of “thcory” in
mathematical logic is the set of theorems of some set of axioms in a formal language, that is, the axioms
together with all their logical consequences. Following Weyhrauch, we corrupt the usage of this term to
mean a data-structure combination of a language definition, a set of facts (axioms and thcorems) in the
language, and a simulation structurc (partial model) for the sct of facts and the language, or
mnemonically, T = <L,S,F>. We explain all of thesc components below.

All of SDLs first order languages are constructed from the standard logical connectives along



with individual constants and variables, predicates, functions, and predicate and function parameters (for
axiom schema). In addition, the languages are many-sorted, with a system of partially ordered sorts. (In
logic, the term "sort” means kind-classification, not ordering classification.) In many respects the system
of sorts is an inessential convenience of the languages, although they turn out to be nontrivial extensions
computationally. Other kinds of extensions to the type of language allowed, such as modalities and
conditional expressions, are not used or explored here for simplicity, and might be added in future
versions of the program.

We define a language in SDI. by specifying the non-logical symbols in the language and the
roles of these symbols. Language definitions consist of the following types of declarations, The first
argument of these commands, name, is always a Lisp atomic symbol or a pathname (cxplained later).
Types are also Lisp atomic symbols, which are defined as predicatc constants of the language. Theory’s
are the theory data-structures in whose language name is being defied. The number of arguments are,
when specified, noa-negative integers (Lisp integers). Argument names and types are Lisp atomic
symbols defined as individual variables and predicate constants of the language. Likewise, result types
are sort predicate constants of the language. The last argument is a justification (as cxplained in the next
chapter) used as the reason for the data-structures created by the declaration.

(INDIVIDUAL-CONSTANT name type theory justification)

(INDIVIDUAL-VARIABLE name type theory justification)

(PREDICATE-CONSTANT name {# of args} {({arg name} arg type) 1ist} theory justification)
(PREDICATE-PARAMETER name {# of args) {({arg name} arg type) 1ist} theory justification)
(FUNCTION-CONSTANT name {# of args} {({arg name} arg type) list} {result type} theory justification)
(FUNCTION-PARAMETER name {# of args} {({arg name} arg type) Vist} {result type} theory justification)
In the following we write these commands in a syntax similar to FOL’s. In this syntax, the theory is given
by the context of the presentation. The statement "IN theory” is used to switch attention to the theory
with the global name theory. (Once we have defined them later on, we will allow pathnamcs as well.)

We usually ignore justifications for simplicity of exposition.

For example, we might construct a language for discussing natural numbers and arithmetic with
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the declarations:

IN ARITHMETIC:

Function-constant SUCCESSOR 1 NATNUM;

Function-constant PREDECESSOR 1 NATNUM; -

Function-constant + 2 (NATNUM NATNUM) NATNUM;

Function-constant * 2 (NATNUM NATNUM) NATNUM;

Predicate-constant < 2 (NATNUM NATNUM)

These declarations define the usual symbols of successor, predecessor, plus, and times, and the ordering
predicate.

We use SDI. to discuss not only languages, but their modecls and their relations to their models
as well. However, many intended models involve objects which simply do not exist inside a computer, for
example, cows, real numbers, and redness. Because we can sometimes present the clements of models
inside the computer and sometimes not, instcad of ordinary models we employ simulation structures. A
simulation structure can be thought of as a partial model, onc which includes partial decision procedures
to represent its domain and the sct of constants, and a sct of attachments. We take these decision
procedures to be Lisp procedures which take an object as input and tell whether or not it is one of the
objects in the domain (constant) or domain (constant) representation. The list of attachments is
cssentially an association list pairing linguistic symbols with domain clements as their referents, thus
specifying the set of "bindings” of the symbols to objects in the model. A simulation structure may not
completely determine the truth value of every statement in the language, but it may determine the truth

value of some. This is as good as we can hope for, and is all we will require. Attachments are made with

the command

(ATTACH name object theory justification),

domains and constants with the command

(REPRESENT name representation theory justification).
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The atTAacH command adds the specified pairing to the list of attachments of the simulation structure,
with the given justification. The REPRESENT instruction declarcs the name to be a predicate and sort
symbol of the language and attaches thc name to the representation function in the simulation
structure.?® One particular sort of attachment is that of a procedure in a theory, in which an individual
constant is attached to a LISP procedure. All procedures arc named by such attachments, so that values
computed by them may be justified in terms of the procedure as the "inference rule”.

Of course, one docs not have a model of a language, but rather a model of a set of statements in
the language. These statcments are called facts (to subsume both axioms and theorems), and are declared

by cither

(AXIOM name wff theory justification)

or

(FACT name wff theory justification).

Each of thesc facts is added to the set of facts of the theory. Each fact consists of both the name of the
fact (a symbol in the theory’s language), and a wiT of the language of the theory. This connection
between fact name and wif is treated as an attachment of the theory, although here the attachment is from
a symbol of the language to a wff in the sct of axioms and theorems. Thus theories with axioms refer to
parts of themselves.

Theories are made up out of a language, a simulation structure, and a set of facts. Theories are

created with the command

26. This chapter will be hazy on exactly what representations are and how they relate to languages and simulation structures. The
intended ideas can be illustraled with numbers. One has the numerals in the language, which refer to numbers, and since numbers
don’( exist in the computer, we add in Lisp fixnums as a representation of numbers. The distinction becomes important because in
many cases, thc program will have the referent for a symbol, namely a data-structure which does cxist inside the computer.
(Actually, the existence of data-structures in the computer may be a fiction. Data-structures are referred to by pointing to some
location in memory, but the intended data-structure results only through interpretation of the information in that location as further
pointers, fields, clc. In this way, the fiction of data-structures is much like the fiction of the "sclf” of the program, since the program
is one big data-structure interpreting itself.) Weyhrauch and others discuss the problem of languages, models and representations,
and I expect to adopl onc of their suggestions when 1 become more familiar with their proposals.
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(THEORY name parent-theory justification),

which declares name to be an individual constant in the parent theory, creates a new theory data-structure,
and attaches this data-structure to name in parent-theory.

For example, we can declare more of the theory of natural number arithmetic as follows.

IN ARITHMETIC:
Individual-constant 0 natnum;
Individual-variable n natnum;
Individual-variable mnatnum;
Predicate-parameter P (natnum);
Axiom Oneone: Vn Vm successor(n)=successor(m) D n=m;
Axiom Succl: Vn J0=successor(n);
Axiom Suce2: Vn [T10=n D Imn=successor(m)];
Axiom PTus: Vn [n+0=n A Vm{n+successor(m)=successor(n+m)]];
Axiom Times: ¥n [n*0=0 A Vm[n*successor(m)=(n*m)+m]}];
Axiom Induct: [P(0) A Va[P(n) D P(successor(n))]] D VnP(n):
Attach Successor (LAMBDA (X) (ADD1 X));
Attach Predecessor (LAMBDA (X) (COND ((> X 0) (SUB1X)) (T 0)));
Attach + +;
Attach* »>;
Attach < <;
Attach00;

The first two attachments above attach Lisp procedures to two predicate constants of the theory.” The
next four attachments attach to a symbol of the theory the value attached to the same symbol in the global
theory. In the first three of these, the valuc is a Lisp procedure, and in the last it is the Lisp number 0.
Each of these data-structures contains information about the reasons for the data-structure,
which are stored as justifications for a RMS node, as explained in Chapter 3. Each theory data-structure
has a justification mentioning the procedures which created it. Each declaration of a linguistic symbol
adds a justification to that declaration. Each attachment has a justification, and so does cach axiom in the
theory. That is, an axiom would have a premise justification in the theory, but that premise justification

itself would not be an assumption, but would have a justification specifying the reason for this fragment

27. Those familiar with SCHEME [Stecle and Sussman 1978a] should understand that we ideally would employ SCHEME instead
of LISP, so that these attached values would be procedures (closures) rather than s-expressions.
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of the theory in terms other theories and inference procedures. As usual, consequences have justifications
mentioning both the nodes of their antecedents and the inference rule or procedure deriving the
consequence.

We will represent all of these things with the following data-structures. We notate these in the
“structure” syntax of MIT Lisp Machine Lisp [Weinreb and Moon 1979], in which a name is specified
followed by the ficlds of the data-structure. The first structure defines the ficlds common to all the rest:
the name, the RMS node, and the parent (whose function is explained following these definitions). The
:INCLUDE spccification is the means by which these common ficld definitions are included in all other
structures.

(DEFSTRUCTURE (COMMON-STRUCTURE )
NAME
NODE
PARENT)
These declarations define the data-structures associated with languages.
(DEFSTRUCTURE (LANGUAGE ( : INCLUDE COMMON-STRUCTURE ) )
INDIVIDUAL-VARIABLES
INDIVIDUAL-CONSTANTS
PREDICATE-CONSTANTS
PREDICATE-PARAMETERS
FUNCTION-CONSTANTS

FUNCTION-PARAMETERS)

(DEFSTRUCTURE ( INDIVIDUAL-CONSTANT { : INCLUDE COMMON-STRUCTURE))
INDIVIDUAL-TYPE)

(DEFSTRUCTURE ( INDIVIDUAL-VARIABLE ( : INCLUDE INDIVIDUAL-CONSTANT)))
(DEFSTRUCTURE (PREDICATE-CONSTANT { : INCLUDE COMMON-STRUCTURE))
NUMBER-OF -ARGUMENTS

ARGUMENT-TYPE-LIST)

(DEFSTRUCTURE (PREDICATE-PARAMETER ( : INCLUDE PREDICATE-CONSTANT)))

(DEFSTRUCTURE ( FUNCTION-CONSTANT (: INCLUDE PREDICATE-CONSTANT))
RESULT-TYPE)
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(DEFSTRUCTURE (FUNCTION-PARAMETER (: INCLUDE FUNCTION-CONSTANT)))

These declarations define the data-structures associated with simulation structures.

(DEFSTRUCTURE (SIMULATION-STRUCTURE ( : INCLUDE COMMON-STRUCTURE))
DOMAIN-REPRESENTATION

CONSTANTS-REPRESENTATION

ATTACHMENTS )

(DEFSTRUCTURE (REPRESENTATION (: INCLUDE COMMON-STRUCTURE))
REPRESENTATION-ALGORITHM)

(DEFSTRUCTURE (ATTACHMENT ( : INCLUDE COMMON-STRUCTURE ) )
OBJECT)

This data-structure is used for facts.

(DEFSTRUCTURE (FACT ( : INCLUDE COMMON-STRUCTURE))
WFF)

This structure defines the data-structure for theories.

(DEFSTRUCTURE (THEORY (: INCLUDE COMMON-STRUCTURE ))
(THEORY-LANGUAGE (MAKE -LANGUAGE ))
(THEORY-SS (MAKE -SIMULATION-STRUCTURE))
THEORY-FACTS
EQ-POLICIES
EQ-POLICY-LIST
VC-TYPE-THEORY
VC-UP-STATEMENTS
VC-DOWN-STATEMENTS
VC-STATEMENTS-LIST
MAP-UP-STATEMENT
MAP-DOWN-STATEMENTS
MAP-STATEMENTS-LIST)

In the above, the structures (particularly Theory) contain not only the lists we have previously indicated,
but also slots for redundant forms of these lists to facilitate retricval and manipulation of information.
The basic such slot is that of PARENT, which typically is used as a rcverse pointer from a
sub-data-structure to the data-structurc which includes it. The exact interpretation of this slot varies with

the data-structure involved. languages, simulation structures, facts, and reasons point back to their
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theory; individual constants, individual variables, predicate constants, predicate parameters, function
constants, and function parameters point back to their language; representations and attachments point
back to their simulation structure, and theorics point back to the thcory which is their context of
cxistence.

THEORY, in addition, contains slots to facilitate retrieval of structure-sharing statcments, part
inferences, and dataflow policies. These will be explained later in this chapter and in Chapter 4.

This completes the description of the underlying logical system.

2.4 How to use SDL

We represent objects hicrarchically in SDI. by using a scparate theory to describe cach object. The parts
of the object arc in turn described by other theories, and the theory of the object includes statements of
the relations between these parts and between their theories. When two objects are mutually defined,
cach of the theories describing these objects will contain the other theory as a part. This means of
representation is not paradoxical because the theories of the parts are copics of their prototype theories.

For example, suppose we wish to describe as objects arithmetic relations between numbers. To
do this, we can make a theory ADDER as follows.
IN ADDER:

Individual-constant Al;

Individual-constant A2;

Individual-constant SUM;

Predicate-constant =;

function-constant +;

Attach + +;

Attach = =;

Axiom Plus: A1+A2=SUM;
This theory describes the prototypical adder. ADDER has three individual constants for the addend,

augend, and sum, and, via attachments to the arithmetic predicates and functions, defines the relation

between the constants.
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Notice that the description of the prototype contains no attachments to the constants. That is

because the prototypical adder does not relate any particular nur

mbers or have any default values.

Suppose we wish to make an instance of-this description for the addend and augend values 3 and 4. We

first would create a new theory which is a virtual copy of ADDER, namely,

INT-1:
Individual-constant T-1;
Attach T-17T-1;
Individual-constant ADDER;
Attach ADDER ADDER;
Axiom VC(T-1, ADDER);

T-1 is the theory’s name in the global theory. T-1 is also the theory’s name for itsclf. ADDER is the

theory’s name for the theory with the global name ADDER. The sole axiom in T-1 allows us to make a

number of conclusions within T-1. The VC inference rule is that all statements defining a theory,

including the language, the simulation structure, and the facts, are inferred in the copy theory as

individual non-monotonic assumptions. That thesc inferences are non-monotonic will be important later

when we wish to modify the copics of prototypes to override default values or to describe exceptions.

Thus T-1 actually has the following statcments.

INT-1:
Individual-constant T-1;
AttachT-1T-1;
Individual-constant ADDER;
Attach ADDER ADDER;
AxiomVC(T-1, ADDER)
Individual-constant Al;
Individual-constant A2;
Individual-constant SUM;
Predicate-constant =;
Function-constant +;
Attach + +;
Attach = =;
Axiom Plus: A1+A2=SUM;
Attach A1 3;
Attach A2 4;

To this, we have added the two values as attachments to Al and A2

. By use of the axiom PLUS of this
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theory, the attachments can be used to compute an attachment for SUM to the value 7.

The idca of VC theorics could also have allowed writing ADDER more succinctly, by declaring
ADDER to be a VC of ARITHMETIC. In this way, ADDER would have been an extension of
ARITHMETIC, and the extra definitions of +, =, etc. would have been unnecessary.28

However convenient might be theory extensions made in this way, many circumstances require a
theory to contain as subtheorics multiple distinct copics of other theories. The main motivation for this is
the need to describe structures having several parts, each of the same type, but cach having its own
peculiarities. We facilitate this by means of the TYPED-PART command, as the next example shows.

We can make a new description, called DOUBLER, by modifying acopy of ADDER.

IN DOUBLER:
Individual-constant X;
Individual-constant 2X;

Typed-Part ADDER ADDER;

Axiom: X = [A1 ADDER]; ;[Pathname] explained below.

Axiom: 2X = [SUM ADDER]:

Axiom: [At ADDER] = [A2 ADDER];

The expressions in brackets are called pathnames, and are compound names treated as the corresponding
names in the subtheorics. That is, [A B ... C] should be interpreted as the variable A of the theory named
B ... of the theory named C. We writc V[pathname] to notate the value attached to the symbol
represcnted by the pathname, so V[A B] is the value attached to A in the theory attached to B in the

current theory.

The command
(TYPED-PART name prototype justification)

cxpands into scveral other statements and actions. It crcates a new theory as a virtual copy of the

28. The Edinburgh LCF proof construction system makes similar use of a collection of theories (sets of theorems) with ils “ancestry
graph." {Gordon et al. 1978]
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prototype, and then creates a constant of the given name in the theory and attaches the copy to the name

in the theory. Thus we have the new statements

IN DOUBLER:
Individual-constant ADDER;
Attach ADDER T-2;

where we have also created the theory T-2:
INT-2:
Individual-constant T-2;
Attach T-2T7-2;
Individual-constant ADDER;
Attach ADDER ADDER;
Axiom: VC(T-2, ADDER);
Now by itself, this new theory -2 is not much good, since the original doubler theory can only refer to it,
not use it. However, the final function of the TYPED-PART statement is to enable the inference rule that

any statement of T-2 is also a statement of DOUBLER under a rewriting of names of T-2 into reference

expressions in DOUBLER. With this rule, DOUBLER gets the new statements

IN DOUBLER:
Individual-constant [Al ADDER];
Individual-constant [A2 ADDER];
Individual-constant [SUM ADDER];
Predicate-constant [ = ADDER];
function-constant [+ ADDER];
Attach [= ADDER] =;
Attach [+ ADDER] +;
Axiom [PLUS ADDER]: [A1 ADDER] [+ ADDER] [A2 ADDER] [ = ADDER] [SUM ADDER];

Note here that alt symbols in the language of the part-thcory are replaced by pathnames when they are
inferred in the whole-thcory. However, the sccond items in attachments arc not affected by these
substitutions. Instcad, those cxpressions are referentially opaque, as they are symbols in the language of
the global theory, rather than symbols of the language of the part-theory.

Supposc we now wish to combine two doublers to get a quadrupler. This, of course, is

straightforward.
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IN QUADRUPLER:
Individual-constant X;
Individual-constant 4X;
Typed-part D1 DOUBLER;
Typed-part D2 DOUBLER;
Axiom: X = [XD1];

Axiom: [2X D1]=[XD2];
Axiom: 4X = [2X D2];

Suppose, however, that we didn’t quite want a quadrupler, but instead wanted to first quadruple and then
add one. We could, of course, make something new using an cxtra adder with an attachment to 1 of one
of its "inputs.” But to show off the sort of local modification/exception idea, we instead make a local

modification to the axiom of one of the doublers in the quadrupler.

Typed-part QUADRUPLER QUADRUPLER;

Individual-constant 1;

Attach11;

Cancel [PLUS ADDER D2 QUADRUPLER];

Axiom PLS: [A1 ADDER D2 QUADRUPLER] + [A2 ADDER D2 QUADRUPLER]) + 1
= [SUM ADDER D2 QUADRUPLER]

The effect of the Canccel statement is to defcat the non-monotonic assumption of the specified statement.
We then just add in the desired modification, and we are done. Alternatively, we could have switched the
theory we were working with to the theory attached to ADDER in D2 in QUADRUPLER. We could
have then just made the commands
IN V[ ADDER D2 QUADRUPLER T-3]:

Cancel Plus;

Individual-constant 1;

Attach11;

Axiom P1s: Al +A2+1 =SUM;

This shows how the statements inherited in one theory can be canceled.?? We can casily represent default

information in this way by using the non-monotonic nature of VC inferences. In fact, all of the

29. Of course, there are limitations to this technique. An interesting example is that of a wagon being drawn by four horses, one of
whom had one blind eye. This we might have said with JHorse in 1IORSIS(Wagon) and JILye in EYES(IHorse) such that
BLIND(Eyc). Then RMS would have a pretty time finding a model, as it would have to pick one out of so many possibilities.
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statements of copics of theorics are assumptions, and can be defeated for reason. The distinction between
what one considers to be default information and what one considers essential aspects of theorics is
entircly a matter of how willing one is to give up onc statement rather than another. The program
employs policies which guide dccisions between alternate revisions of the its beliefs, as discussed in
chapters 3 and 6. However, policies form merely the mechanism, not the vocabulary, of guidelines for
revision of beliefs. Several authors, for example Fahlman, have proposed a trinary classification of the
strength of attachment to beliefs in concepts, namely default, normal, and criterial (or cssential). How
these absolute classifications should be realized in policies is unexplored, although the obviously intended
policics should at least say that any default statement should be rejected in favor of any normal statement,
and any normal statcment should bow before any criterial statement. 1 am not convinced that absolute,
context-free policies of this sort are particularly uscful, and so have not pursucd them. [ would much
rather belicve that each domain of reasoning has its own sct of revision policies along these lines.

The above examples all used Typed-part to include theories defining objects in a theory.
Another major application is that of including subthcorics to define the sort predicates of the language.
Unfortunately, I have not yet convinced myself of just how this should be done, whether by Typed-part,
an analogue of it, or by direct VC inclusion. Part of my hesitation in this matter relates to yet another
question unanswered here, that of how sort predicates are taken as defined in the first place. For
example, the previous theory ARITHMETIC is often thought of as the definition of what natural
numbers are, but the sort predicate enters that theory only as a relativizer on the variables. That is, the
whole theory is of the form NATNUM(x)DAXIOMS(x), and nowhere is there any statcment of the form
AXIOMS(x)DNATNUM(x). 1don’t think this is a difficult problem to solve, but it is onc that requires

more attention than I have been able to devote to it.
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2.5 Relations with other Representational Systems

Bless thee, Bottom! bless thee! thou art translated.
William Shakespeare, A4 Midsummer Night’s Dream
It scems likely that SDL can be used to realize many of the current representation languages,
although we do not demonstrate this here. For example, we can transtatc CONLAN [Stecle and Sussman

1978c¢] into SDL.. In this translation,
(CONSTRAINT name parts+types equivalences)

goes into a named theory, the parts of the theory being given by the parts and types, and the cquivalences
by equations. What we do not capture without further inference rules is the constraint language control
and inference structure, which strives to propagate values through all the known relations between
variables. On the other hand, we can add new parts to a theory at any time, which CONLAN cannot.
Also, we can make theorics like the following, which are far beyond CONLAN’s expressive powers, since
it does not subsume FOPC.
IN SANDWICH: .
Individual-constant BLOCK1 BLOCK;

Individual-constant BLOCK2 BLOCK;

Individual-variable MIDBLOCK BLOCK;

Predicate-constant ON;

Axiom: V MIDBLOCK [ON(MIDBLOCK, BLOCK1) = ON(BLOCK2, MIDBLOCK)]:

Axiom: 3 MIDBLOCK ON(MIDBLOCK, BLOCK1);

Axiom: 3 MIDBLOCK ON(BLOCK2, MIDBLOCK) ;
This blocks-world theory describes the situation in which two blocks sandwich in a number of other
blocks.

This theory, incidentally, also shows the distinction between individual variables and constants

in a prototype. Constants refer to parts of the prototype, which arc constant aspects of the prototype even

if they scem like variable aspects in instantiations of the prototype. Variable are used only in general



19

statements about the domain of parts of the prototype.

Hayes [1977b] and Nilsson [1980] present translations of representational systems like KRL
[Bobrow and Winograd 1977] in FOPC, but thesc translations miss the point of most current
representational systems.  Hayes and Nilsson succ;umb to the temptation to confuse the ideas of
description specialization and predicate subsumption.

Consider, for cxample, theorics describing mammals and horses. We normally accept the
statement Vx[HORSE(x)DMAMMAL(x)]. We also might be likely to construct the theory describing
horses (which contains the predicate HORSE) by refining with additional axioms the theory describing
mammals (which contains the predicate MAMMAL). Thesc are two scparate connections between the
predicates HORSE and MAMMAL, but Hayes and Nilsson confuse them. The rcason they make this
conflation is simply that without trcating theories as objects, the only way they can approximate theory
construction is with an implication.

This confusion has many scverc problems. The first is the family resemblance problem.
Consider a human family with several members. We might try to capture their commonalities of
appearance by describing the prototypical member of the family. However, there may be no property
(other than prototypical human propertics) shared by all members of the family. Each member may have
most of the properties described by the prototype, but be lacking a single property that all the other
members possess. Now if we use SDL with its non-monotonic VC inferences, this circumstance presents
no problem, and can be treated succinctly. But if theories are not objects, and the only tool available is
implication, then the best that can be stated is that the prototype has the property

(P2A..APn) V (PIAP3A..APR) V ... V (P1A..Pn-1),
which is hardly succinct. Haycs and Nilsson cach allow default statcments in the descriptions, which are
essentially non-monotonic assumptions. But they cannot get the succinctness and frecdom of description
construction that SDL allows unless each statement is taken explicitly as an assumption, including all

instances of the implications relating concepts.
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2.6 Advanced Applications

1 have not explored the full powers (or even the complete details) of this representational system,
particularly the hard questions concerning modality, non-denotation, and cxistence. For example,

suppose onc had the theories

IN UNICYCLE:

Typed-part WHEEL WHEEL ; ;etc.
IN WHEEL:

Typed-part TIRE TIRE;

Typed-part HUB HUB; ;etc.

and wished to say that some WHEEL-1 had no tire. If no attachment is made to [TIRE WHEEL-1], that
would just be a lack of information about the question, not a definite belief that WHEEL-1 had no tire.

However, one could state
—Jx ATTACHED([TIRE WHEEL-1], x, WHEEL-1),

which would seem to say that the term [TIRE WHEEL-1] lacked a referent. [ have not yet been able to
cxplore in detail whether this sort of trick can be used to attack the classical problems of existence and
proper names, as in "Pegasus does hot exist.” Would the domains of existence be specified by the theory

in which the noncxistence statements occurred? For example,
—13x ATTACHED(Pegasus, x, REAL-WORLD-THEORY),
but
Ix ATTACHED(Pegasus, x, MYTHOLOGY-WORLD-THEORY).

Consult [Smith 1978] and [Martin 1979] for morc detailed treatments of these sorts of puzzies in

hicrarchical structured representational systems, and [Haack 1978] and [Linsky 1977] for surveys of the
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classical problems.

2.7 Theories shout Theories

As the preceding cxamples suggest, theorics may be constructed to describe not only objects in the
external world, but equally important, other theories. Thus the preceding theories typically described not
only their "proper” subjects, but also their relations to other theories. For example, DOUBLER
contained a statement that onc of its subtheorics was a copy of the ADDER theory. This, of course, is just
onc statement relating two theories. This scction tries to illustrate more general cases of theories about

theories which determine the large-scale structure of the program.

27.1 The THEORY Theory

The starting point is the theory of the prototypical theory and its construction. This theory simply reflects
in logical language the data-structurc definitions given carlier, with the simulation structure mentioning
the procedures for accessing those structures. For example, the THEORY data-structure is reflected as

the following.

In THEORY:
Individual-variable T THEORY;
Individual-variable L LANGUAGE ;
Individual-variable S SIMULATION-STRUCTURE;
Individual-variable F FACTS;
Individual-variable PARENT THEORY;
Function-constant T-L (THEORY) (LANGUAGE);
Function-constant T-S (THEORY) (SIMULATION-STRUCTURE);
Function-constant T-F (THEORY) (FACTS);
Function-constant T-P (THEORY) (THEORY); .
Axiom VT [AL[L=T-P(T)] A IS[S=T-5S(T)] A IF[F = T-F(T)] A IPARENT[PARENT = T-P(T)]]
Attach T-P (LAMBDA (X) (CXR 0 X));
etc.

When we fill out this sort of theory, we obtain a complete description of the basic data-structures of the
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program, and the primitives for accessing, creating, and modifying them. 1 will not go into this here, for

the full description is quite lcngthy.30

2.7.2 'Theories of Specific Theories

‘The THEORY theory only reflects the structure common to all logical theorics. Other theorics describe
the structure common t()‘ all members of certain classes of theories. For example, the ADDER theory
above describes a prototypical adder. 1f cach of the components of this theory are reflected in the
language of THEORY and related theories, we get a theory describing all theories copicd from ADDER,
containing, for instance

IN THEORY-OF -ADDER:

Axiom: INDIVIDUAL-CONSTANT("A1", LANGUAGE(ADDER));

We can include these meta-theoretical statements in the theory itself, just as we include VC statements.
Of course, we do not want to do this automatically for all statcments, lest we reflect endlessly to produce

an infinite number of such statements in each theory.

2.1.3 The VC Theory
The VC inference rule can be described by yet another theory, with contents like the following.31

INVC:
Individual-variable T1 THEORY;
Individual-variable T2 THEORY;
Individual-variable S1 WFF;
Individual-variable S2 WFF;
Axiom Vt1 Vizve(re, 72) D

30. Similar reflections can be made of the underlying Lisp system, by axiomatization of s-expressions and the primitives for
creating and manipulating them. Weyhrauch and Cartwright and McCarthy [1979] have developed theorics of Lisp along these
lines.

31. This is not quite correct or complete, as the exact details have yet to be worked out.
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VsS1[S1 € METATHEORY(T1) D
3s2[S2 € METATHEORY(T2) A S2 = SUBSTITUTION(S1)]:

What this means is that to copy statements from onc theory, one reflects the definition of the statement
into a meta-theoretic statement, substitutes in the appropriatc new names, adds the new meta-theorctical
statement to the copy theory, and then de-reflects to get the copied object-level statement in the copy
thcory. Thus the definition of an individual constant S in the prototype would be reflected into a
statement that S is an individual constant symbol. That meta-thcoretical statement would be inferred in

the copy theory, and de-reflected (treated as a definitional command) to realize S in the copy theory.

2.7.4 The PERSON Theory

Just as we progress from theories of things to theories of theorics to theories of pairs of theories, we
continue to theories describing the large-scale structure of the program as a theory of all currently existing
theories. The abstract structure of the program we capture in the PERSON theory.
IN PERSON:

Individual-constant THEORIES SET;

Individual-constant BELIEFS SET;

Individual-constant DESIRES SET;

Individual-constant INTENTIONS SET;

Individual-constant PROCEDURES SET;

etc.
In addition, each of these parts of the program is attached to lists of concepts, beliefs, desires, intentions
and procedures typical of all pcrsons.32 Of course, persons may be subclassified into types of persons,
cach of which has some cxtra or missing attitudes over those expected of persons in general. Further

specializations lead to theorics of particular persons, and then to theorics of those persons in different

temporal or hypothetical situations. We speculate on the use of these models of persons in hypothetical

32. More likely, these sets are given only implicitly by predicates and procedures which recognize their extensions, and the typical
contents are all listed in the tables of these procedures. The details of this have yet to be worked out.
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rcasoning and discourse in Chapter 7.

2.7.5 'The Global Theory ME

I am he as you are he as you arc me and we are all together.
John Lennon and Paul McCartney, I am the Walrus
The program itself is a theory, and this theory it describes as a modified copy of the PERSON theory.
The program calls this theory of itself ME, and for simplicity, we will often do likewise, or alternatively
usc our name for the program, SEAN. That is, SEAN is our name for the program, not its name for itself,
although it may know that others call it SEAN. The program refers to itself by containing the individual
constant ME of typc THEORY, and attaching itsclf to ME as ME’s referent.?

ME is the parent theory, or context of existence, of all the program’s theorics, cither directly or
indireclly.34 Thus ME's parent is ME, as is the parent of PERSON. This may scem paradoxical, to have
a theory be a copy of one of its parts, but as we have constructed them, there is no inherent difficulty. In
fact, PERSON ought to mention a ME symbol, but I have not worked out this detail.

ME also contains the symbol I, which serves as its name for its "self.” I is normally attached to
the global thcdry, that is, is corefero;ntial with ME, but. can be rcbound to other person theories in
hypothetical reasoning, as described in Chapter 7.

The normal operation of the program involves making changes to the theory denoted by I, that

is, attachments are looked up in I, pathnames are interpreted in [, and inferences arc made in I's theories.

33. Weyhrauch uses the term META for this. but | don't for two reasons. Tirst, the it is the system’s theory of itself, for which the
canonical term is "me” or "I". not “meta.” Sccond, the term vulgarizes the memory of my paternal grandmother, Meta Enters
Doyle, daughter of Hermann Lnters.

34. It scems possible in principle that the program might contemplate (but not employ) theories which have no parent. In fact, it
might construcl an entire other program in this way. or a description of another program, complete except for connections to the
real world, and never running, because it can never get control. If the program then connects this other program to another
processor, Of scis up a time-sharing excculive, it might have two minds running independently in the same machine, each with a
different self.
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2.8 Concepts and Attitudes

The preceding has explained how to create a hierarchically organized database of concepts to be used in
representing things. But concepts are of little use unless they can be applied. This section indicates how
concepts are used to form the attitudes of belief, desire, and intention which go to make up the mental
statc of the program.

The basic idea is simple. The global theory of the program contains statements about some of
the concepts so as to create attitudes. By "attitudes” we mean "propositional attitudes™ in the usual sense
in which belicfs, wants, and intentions are propositional attitudes, and are viewed as a combination of an
attitude and a propositional content. Thus "I want to cat some food” would be decomposed into the
attitude "'l want" and the propositional content "1 cat some food”, the combination notated as I-Want(]
eat some food). This might be donc in the program as follows. If Raining is a concept describing a state
of affairs in which it is raining now, and if R1, R2, and R3 arc all copics of Raining, then the global theory
might contain statements BELIEF(R1), DESIRE(R2), and INTENTION(R3) to indicate its belief that it
is raining, its desire that it be raining, or its intention that it be raining. We assume that onc always makes
particular instances or copics of concepts used in attitudes, just as onc makes copics of concepts in
forming parts of concepts. Thus, there might be commands Belicved-concept, Desired-concept, and
Intended-concept analogous to Typed-part, which automatically create the copy theory and whatever
inference procedures (see below) are appropriate for relating the new concept to the current state of
mind. This copying may be necdless, but only further study can tell.

This realization of attitudes makes clear the distinction between the reasons for the concept
involved and the reasons for attitudes involving the concept. ‘That is, the program might have reasons for
holding the concept theory in terms of the theories and procedures from which it was constructed. These
rcasons would have nothing to do with the reasons for the attitude statements in the global theory.

The global theory includes all the currently believed concepts as subtheories. That is, the
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program infers VC(ME, ¢) from BELIEF(C) in ME, so that all the statements in C arc inferred as statements
of ME. This scheme, or a variant using TYPED-PART, has considerable clegance, particularly when
applied to plan concepts (as discussed in Section 4.9), in which the plan theory contains statements of
several sorts of attitudes which arc used to temporarily éugmcnt the current sets of attitudes for the
duration of the plan. The exact dctails of this idca are yet to be resolved.

One important question is the relation between these concept-based attitudes with their reasons,
and the logical statements and their reasons which go to make up concepts. There may well be a
confusion of levels in my suggestions, as they seem to imply that attitudes (at Icast from one viewpoint)
arc really belicfs about attitudes, a conclusion raising many problems. Chapter 7 discusses this problem

in more detail.
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CHAPTER 3

FOUNDATIONS OF THE THEORY OI' REASONING

"l.adder of wit! What madness is this?" Ebenczer demanded.

"No madness save the world’s, sir. ‘Take your wig question, now, that’s such a thing in London:
whether to wear a bob or a full-bottom peruke. Your simple tradesman hath no love for fashion and
wears a bob on’s natural hair the better to labor in; but give him ten pound and a fortnight to idle,
he'll off to the shop for a great French shag and a ha'peck of powder, and think him the devil’s own
fellow! Then get ye a dozen such idlers; the sharpest among em will buy him a bob wig with lofty
preachments on the tyranny of fashion -- haven’t 1 heard "em! -- and think him as far o'er his
full-bottomed fellows as they o'er the merchants” sons and bob-haired "prentices. Yet only climb a
rung the higher, and it’s back to the full-bottom, on a sage that’s scen so many crop-wigs feigning
sensc. he knows 'tis but a pose of practicality and gets him a name for the cleverest of all by showing
their sham to the light of day. But a grade o'er him is the bob again, on the pate of some
philosopher, and over that the full-bottom, and so on. Or take your French question:  the rustical
wight is all for England and thinks cach Frenchman the Devil himself, but a year in L.ondon and he’ll
sneer at the simple way his farm folk reason. Then comes a man who's traveled that road who says,
‘Plaguc take this foppish shill-1, shall-1 When all's said and donc "tis England to the end?’; and after
him your man that’s been abroad and vows 'tis not a matter of shill-1, shall-1 to one who's traveled,
for no folk are cleverer than the clever French, "gainst which your English townsman’s but a
bumpkin. Next yet's the man who's scen not France alone but every blessed province on the globe;
he says “tis the aovice traveler sings such praisc for Paris -- the man who's seen “em all comes home to
England and carrics all's refinement in his heart. But then comes your grand skeptical philosopher,
that will not grant right to cither side; and after him a grander, that knows no sidc is right but takes
sides anyway for the clever nonsense of't; and after him your worldly saint, that says he’s past all talk
of wars and kings fore’er, and gets him a great name for virtue. And after him --"

"Enough, I beg you!" Ebenezer cried, "My head spins! For God’s sake what's your point?"

"No more than what 1 said before, sir: that de’il the bit ye've tramped about the world, and
bleared your eyes with books, and honed your wits in clever company, whate’er ye yea is nay’'d by the
man just a wee bit simpler and again by the fellow just a wee bit brighter, so that clever folk care less
for what yc think than why ye think it."

John Barth, The Sot-Weed Factor
In later chapters of this thesis, we discuss the question of which inferences to make, that is, how the
reasoning process is controlled. We devote the present chapter to explaining the prior question of what

we take inferences to be, and to describing the structure of a program based on this theory of reasoning.
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3.1 The Nature of Reasoning

Reasoning involves changing one’s attitudes from onc set to another by adding some new attitudes and
relinquishing others.? Reasoning includes not only "deductive” and "inductive” inferences, in which
new beliefs are produced from prior beliefs via "deductive” and "inductive” rules of inference, but also
“practical” inferences, in which new wants and intentions are produced from prior belicfs, wants, and
intentions, and "changes of mind”, in which one becomes unhappy with some belief or desire and
discards it.

Reasoning is one sort of mental event, where by mental event | mean onc’s changing one’s mind
from one state or structural form to another. Reasoning, however, is not the only sort of mental event.
For example, the creation of new mental data-structures which do not affect the set of attitudes is a
non-reasoning mental event, as when onc creates a new attachment or data-structure in SDL. without
giving it a justiﬁcation.36 Of course, most data-structures are crcated for use in changing the set of
attitudes, but they need not all be of this form. For example, when a question arises concerning the truth
of some proposition about which one has no opinion, one must first construct the proposition to be able

to consider it. Only later, after one finds reasons for or against the proposition, docs it enter the set of

35. Tiarman [1973] develops the thesis that reasoning is a process of changing onc's set of attitudes by adding some and abandoning
others. Perhaps I misinterpret him, but 1 understand this to mean that one cannot have cases of reasoning which do nol change the
sel of attitudes. Here, and later in this section, [ propose a more general view, which incorporates such cascs of reasoning.

Ilarman develops his view as part of his thesis that reasoning always increascs the "explanatory coherence” of the set of
attitudes. This view can be taken in at least two ways, either as a proposcd control structure for the reasoning process, in which case
the mechanisms | propose subsume and significantly extend this proposal, or as a proposal about what sorts of mental events count
as cases of reasoning. But if this latter interpretation is his intent, his proposal seems to have serious flaws, of which 1 sketch three.
A. It leaves out faulty reasoning, which is certainly reasoning, bul need nol always increase explanatory coherence. B. Harman’s
view cither requires that explanatory coherence is a total order on the collection of sets of attitudes, which scems absurd, or that
reasoning cannot involve changes of mind in which one switches from one “theoretical” interpretation of a set of “data” beliefs to
another interpretation also explaining the “data” but incompatible with the original interpretation. This also seems unrealistic. C. 1
would think that there are many plans of reasoning which involve first decreasing explanatory coherence $o as to later increase it, for
example, making an assumption 10 scc how it works out, reaching a paradox or contradiction, and then retracting the assumption to
get a coherent set of beliefs.

"The approach developed in this thesis, while motivated by rational thought, can also be used for some types of irrational
thought. For example, the approach contains nothing that forces the program to avoid inconsistent intentions. Rather it is the
values and procedurcs of the program which work to keep the set of intentions consistent. Similarly, the program can engage in
rational thought even when it entertains conflicting beliefs. Indecd, to be able (o think about how to escape its plight, it must be
able to reason effectively in the prescice of inconsistencies.

36. In particular, the only unrcasoned processes arc those which (a) compute primitive justifications, (b) construct SDL
data-structures prior to their justification, and (c) compute values to attach to constants in theories.
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beliefs and thus directly into reasoning.

Although we must admit non-reasoning mental events such as the creation and destruction of
data-structures, our aim will be to explain as many mcntal cvents as possible in terms of reasoning. We
do not insist that all mental events always be performed by reasoning, just that it ought to be possible to
perform any particular mental opcration through reasoning when desired.  This aim entails severe
restrictions on the form of the program we adopt, restrictions on all aspects of program opceration down to
the basic processes of choosing and making inferences.

Why adopt such an aim? In rational actions onc changes one’s attitudes only for some reason, so
a rational program should be able to explain its actions in terms of its reasons. If the program has
explanations of its actions, then it can do many uscful things, such as correct faulty rules of inference or
beliefs, by examining and analyzing these explanations to trace cffects to their sources.

But in this view, it appears, all mental events in a rational program would have a reason. Is this
possible? Nearly so, as this thesis attempts to demonstrate. In later chapters we will manage to push just
about everything into reasoning when necessary, from making infcrences, to making choices, to taking
actions on the basis of intentions.” Non-reasoning mental events will be used solely in the service of
rcasoning processes.38

The common view of reasoning differs from ours in taking reasoning to be the purcly monotonic
or additive process of adding ncw attitudcs to the current sct of attitudes, as in deductive inference. But
that view has many inadequacies.

With this aim of cmbedding most of the program in rcasoning when desired, we face the

37. Iiven though they do not involve reasoning, the computations involved in non-reasoning mental processes can be introspected
and analyzed for some purposes. We will discuss this further in the context of skill introspection,

38. Other non-rcasoning mental events include independent, non-destructive processes, such as the random creation of new
data-structures, which do not hurt but may save work in later deliberate data-structure creation: sensory inputs, which will change
independent of reasons due to causal connections to the world; and random destruction of data-structures, which is one (but only
one) form of forgelting. Whether one wants to build random changes into one’s rationality is still an unexplored question. Is there
somc utility in random events in thought, or are they just consequences of implementation in an impeifect, noisy machine? Note
that even if one’s mental processes involve no randomness, evolution would still involve random changes to the species as long as
traditional reproductive methods remain the fashion.



problem that in the traditional view of rcasoning, many changes of attitudes must be apparently
non-reasoned, ¢.g. all non-monotonic or non-additive changes, all changes which do not increase the set
of attitudes monotonically. One of the most important reasoning steps necessary for taking action is that
of making predictions of the effects of the action. Making these predictions typically requires making
assumptions about the current statc of affairs, because onc never knows everything relevant to the
successful completion of an action. But once one has made such assumptions and predictions, one is
invariably surprised on occasion, and finds the assumptions to have been incorrect, even though
unavoidable. Then one has the problem of how to correct or revise one’s beliefs so as to patch up one’s
beliefs in light of this new information. How can the theory of rcasoning be formulated to accommodate
these non-monotonic changes in the set of attitudes?

We answer this question by proposing a theory of rcasoning in which all rcasoning takes place
by adding a record of an inference, called a reason, to the current set of reasons. Each reason is basically a
record of an application of an inference rule or other procedure to some set of attitudes. The program
then determines the current set of attitudes from this set of reasons by treating the set of reasons as the set
of required inferences, as opposcd to the merely possible inferences indicated by the inference rules
themselves. That is, an inference rule indicates only potential constraints on the sct of attitudes. Only
after the inference rule has been applied to create actual inferences do those infercnces constrain the
current set of attitudes by means of the reasons recording the inferences. With this terminology, my

thesis is as follows.
Rational thought is a process of constructing reasons for attitudes.

To say that some attitude (such as belicf, desire, or intent) is rational is to say that there is some acceptable

rcason for holding that attitude. Rational thought is a process of finding such acceptable reasons.>?

39. Nole that this thesis allows as rational thought inferences involving random choices. For example, we might count as an
acceptable reason "1 couldn’t think of anything else to do, so | flipped a coin.”
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Whatever purposes the reasoner may have, such as solving problems, finding answers, or taking action, it
operates by constructing reasons for belicving things, desiring things, or intending things. The actual
attitude in the reasoner occurs only as a by-product of censtructing rcasons. The current set of beliefs and
desires arises from the current set of reasons for belicfs and desires, reasons phrased in terms of other
belicfs and desires. When action is taken, it is because some reason for the action can be found in terms
of the belicfs, desires, and intentions of the actor. | stress again, in this view the only real component of
rational thought is the current sct of rcasons - the attitudes such as beliefs and desires arise from the set of
reasons, and have no independent existence.

This view entails that for cach possible attitude P just one of two states obtains: Either

(A) P has at least one currently acceptable (valid) reason, and is thus a member of the current set of

attitudes, or

(B) P has no currently acceptable reasons (either no reasons at all, or only unacceptable ones), and is

thus not a member of the current set of attitudes.

If P falls in state (A), we say that P is in (the current sct of attitudes), and otherwise, that P is out (of the

current sct of attitudes). Thesc states are not symmetric, for while rcasons can be constructed to make P
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in, no reason can make P out. (If P is a belicf, the most a new reason can do is to make =P in as wcll.)40

It would scem that the proposed view also succumbs to monotonicity problems, for the sct of
reasons grows monotonically, which (with the normal sense of "reason™) leads to only monotonic
incrcases in the sct of current attitudes. To solve the problem of monotonicity, we introduce novel
mcanings for the terms “a reason” and "an assumption” in the context of belicf attitudes. Similar theories
apply to the other attitudes.

Traditionally, a reason for a belief consists of a set of other beliefs, such that if cach of these
basis beliefs is held, so also is the rcasoned belief. To get off the ground, this analysis of rcasons requires
cither circular arguments between beliefs (and the appropriate initial state of belicf) or some fundamental
type of belief which grounds all other arguments. The traditional view takes these fundamental beliefs,
often called assumptions (or premises), as belicved without reason. On this view, the reasoner makes
changes in the the current sct of beliefs by removing some of the current assumptions and adding some
new ones.

To conform with the proposed view, we introduce meanings for “reason” and “assumption”

such that assumptions also have reasons. A reason (technically, a SL-justification, as explained shortly)

40. While this is a standard property of inference rules, it is not respected in the relatives of RMS developed by London [1978],
McAllester {1978}, and Thompson {1979}, In their systems, inferences are recorded as implications, not as inference steps. Thus if
the program infers A from B, they record ADB, rather than AJ-B. Thesc two statements have different meanings. In their systems,
if ADB and B are both current beliefs, so also will be ~A. But this violates the true meaning of the slatement as a record of an
inference, since if onc has made the inference Al-B and has 7B, one need not be able to infer ~VA, since that ability depends on
the inference rules defining |-. Fven if |- involves only the familiar inference rules, one cannot infer VA, but just that not |-A.

McAllester has defended his conflation of these notions on the grounds of the space cfficiency of his program, that it
simultancously represent several justifications. but even if the semantic crrors in his approach arc ignored, it can be scen that the
claimed space cfficiency is an illusion stemming from an unrealistic assumption about the use of the program. Mosl propositions
are used only in a positive form by the program, that is, it is the relatively rare proposition for which the program considers both the
proposition and its opposite. This is 5o because most propositions are uncontroversial statements about the world or the structure
and control of the program , rather than about questions being deliberated on. Thus RMS, which represents propositions and their
opposiles as distinct, unigue data-structurcs. ultimately uscs less space than McAllester’s program, which represents proposilions
and their opposites as a scparale CONS in cach clause in which they occur.

‘The non-monolonic logic developed by McDermott and myself [1978] also appears to suffer from this confusion. There
we suggested writing inference rules as implications, but [ was never happy with this since it predicted somewhat different behavior
from that of RMS. Reiter [1979] has since improved on this siluation by developing a non-monotonic logic which properly treats
justifications as inference rules, and (hus avoids the problems with the carlier approach. It remains to be seen whether the modal
approach McDermott and 1 develop can be reinterpreted or emended to avoid these confusions as well. McDermott {1980]
strengthens the modal logic in an attempt at this. 1 would be very interested in a similar extension of the modal logic of provability
in Peano arithmetic [Boolos 1979]. T would expect any correct provability-related logic Lo be an extension of that logic.
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for a belicf consists of an ordered pair of sets of other belicfs, such that the reasoned belief is in by virtue
of this rcason only if cach belicf in the first sct is in, and cach belicf in the second set is out. An
assumption is a current belief one of whose valid rcasons depends on a non-current belicf, that is, has a
non-empty sccond sct of antccedent beliefs. Withv these notions we can create "ungrounded” yet
reasoned belicfs by making assumptions. (E.g. give P the reason ({},{P}).) We can also effect
non-monotonic changes in the sct of current beliefs by giving reasons for some of the ouf statements used
in the reasons for current assumptions. (E.g. to get rid of P, justify 2P.) We somewhat loosely say that
when we justify some our belief supporting an assumption, (e.g. —P), we arc defeating, denying, or
retracting the assumption (P).

These new notions solve the monotonicity problem, thus overcoming the limitations of the
traditional view of reasoning. Non-monotonic assumptions allow the program to make inferences with
incomplete information about the actual state of affairs, and then to correct the conclusions drawn from
these assumptions Ly later examining the set of reasons. We will give examples of this shortly.

Other advantages over the conventional view also follow. One of these advantages involves how
the rcasoncr retracts assumptions. With the traditional notion of assumption, retracting assumptions was
unrcasoncd. If the reasoner removed an assumption from the current sct of beliefs, the assumption
remained out until the reasoner specifically put it back into the set of current beliefs, even if changing
circumstances obviated the value of removing this belicf. The new notions introduce instead the reasoned
retraction of assumptions. This means that the reasoner retracts an assumption only by giving a reason for
why it should be retracted. If later this reason becomes invalid, then the retraction is no longer effective
and the assumption is restored to the current sct of beliefs.

‘The most important application of the reasoned retraction of assumptions is in dialectical
argumentation, a technique we will employ extensively later in decision-making procedures. The basic
idca is that one part of the program can put forward an argument for some conclusion based on some

assumptions, where for this purpose we represent each of the steps of the argument as an assumption as
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14 Other parts of the program wishing to disagree with the conclusion of the argument cxamine the

wel
argument to find some assumption or argument step they disagree with, and then present a new argument
to defeat the chosen assumption or step. This new argum;nt is constructed like the original one, so the
original procedure or some other part of the program can try to defend the original conclusion by in turn
defeating some assumption or step of the new argument with yet another argument. By adopting this
represcntation for rcasons uniformly, the program gains the ability to reflect on its inferences after the
fact, and to simply not make the inferences if it decides it shouldn’t have. If some step leads to paradox,
the program need not make it, although the real progress will be made only if it further inquires into the
rcasons for its antecedents.

Records of inferences also help with the problem of determining the relevance of one belief to
another. Onc can divide the problem of relevance into two parts: the more difficult one is the
connection of onc belicf with another by some possible but yet unknown chain of inferences, the easier
one is the connection of one belief with another by some past and recorded chain of inferences. Here we
assume that any conncctions between beliefs stemming from their intended models are reflected in
inference rules.

In this remainder of this chapter, we will describe the basis of our program organization by
describing RMS, a program for recording reasons and revising beliefs. Further explanation of RMS can
be found in [Doyle 1979). RMS (Rcason Maintenance System) renames and revises the TMS (Truth
Maintenance System) presented in that paper. I changed the name not only because the program has
nothing to do with truth, but also because the program is properly concerned with reasons for attitudes
rather than the attitudes themselves.

In the remainder of this chapter, I describe RMS solely in terms of the attitude belicf. In fact,

RMS implements only a logic of belicf, and not necessarily logics for any other attitudes. This results

41. Sce Scction 3.11 for the details of how this is done.
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from a hypothesis and methodology I entertain but since have come to suspect, that the program can and
should be designed so that it only uscs beliefs, and embodics its intentions, say, in its beliefs about its
intentions. Part of the motivation for this hypothesis comes from viewing the data-structures of SDL as
statements in its meta-language, as mentioned in the previous chapter. The final chapter discusses
possible problems with this approach, and possible solutions. For the time being, however, we accept this
hypothesis and methodology, and pretend that the program works strictly with belicfs and belicfs about

attitudes.

3.2 RMS, the Reason Maintenance System

RMS records and maintains arguments for potential program beliefs, so as to distinguish, at all times, the
current sct of program beliefs. It manipulates two data structures: nodes, which represent beliefs, and
Justifications, which represent reasons for beliefs. We write Content(N) to denote the statcment of the
potential belicf represented by the node N. We say RMS belicves in (the potential belief represcnted by)
a node if it has an argument for the node and believes in the nodes involved in the argument. This may
seem circular, but some nodes will have arguments which involve no other believed nodes, and so form
the base step for the definition. '

As its fundamental actions, (1) RMS can create a new node, to which the program attaches as its
content a data-structure representing some belief. As mentioned in the previous chapter, the program
attaches a RMS node to cach of the data-structures representing the symbols of a language, the
attachments of simulation structures, the facts in theorics, etc. RMS performs no manipulation of the
content of nodes. (2) It can add a new justification for a node, to represent a step of an argument for the

belief represented by the node. 'This argument step represents the application of some inference rule or

procedure. Inference rules and procedures all have RMS nodes and include these nodes in the
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justifications they create.?? (3) Finally, RMS can mark a node as a contradiction, to represent the
inconsistency of any sct of belicfs which enter into an argument for the node. These markings will be
used by RMS 1o signal the program whenever the marked vnodc is brought in.

A new justification for a node may lead RMS to believe in the node. 1f did not belicve in the
node previously, this may in turn allow other nodes to be believed by previously existing but incomplete
arguments. In this case, RMS invokes the reason maintenance procedure to make any nccessary revisions
in the set of belicfs. RMS revises the current sct of belicfs by using the recorded justifications to compute
non-circular arguments for nodes from premiscs and other special nodes, as described later. These
non-circular arguments distinguish onc justification as the well-founded supporting Justification of cach
node representing a current belicf. RMS locates the set of nodes to update by finding those nodes whose
well-founded arguments depend on changed nodes.

RMS cmploys non-monotonic justifications, which, as cxplained previously, base an argument
for a node not only on current belicf in other nodes, as occurs in deductive inference, but also on lack of
current belief in other nodes. For cxample, one might justify a node N-1 representing a statement P on
the basis of lack of belicf in node N-2 representing the statement —P. In this case, RMS would hold N-1
as a current belief as long as N-2 was not among the current beliefs, and we would say that it had assumed
belief in N-1. More generally, by an assumption we mean any node whose well-founded support is a
non-monotonic justification. |

As a small example of the use of RMS, suppose that a hypothetical office scheduling program
considers holding a mecting on Wednesday. To do this, the program assumes that the mecting is on

Wednesday. The inference system of the program includes a rule which draws the conclusion that due to

42. Actually, justifications mention not nodes but rather their contents. We do this so that il is casier to interpret the justifications
when dcbugging the program. for otherwise one cannot casily read justifications lo see what inference rules are involved, for one
gets explanations like N-1 because N-2, N-3, and N-4, rather than B because Modus Ponens, A, and ADB. RMS always reads
through the content data-structures to the RMS node involved via the function RMS-NODI. To make the exposition less
complicated, all of the following is written as though the nodes themsclves were mentioned in the justifications, rather than their
contents.
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regular commitments, any mecting on Wednesday must occur at 1:00 P.M. However, the fragment of the
schedule for the week constructed so far has some activity scheduled for that time already, and so another
rule concludes the meeting cannot be on Wednesday. We write these nodes and rule-constructed

justifications as follows:

Node  Statement Justification Comment

N-1 DAY(M) = WEDNESDAY (SL () (N-2)) an assumption
N-2 DAY(M) # WEDNESDAY no justification yet
N-3 TIME(M) = 13:00 (SL (R-37 N-1) ())

The above notation for the justifications indicates that they belong to the class of support-list (S1.)
justifications. Each of these justifications consists of two lists of nodes. A Sl.-justification is a valid reason
for belicf if and only if cach of the nodes in the first list is believed and cach of the nodes in the sccond
list is not believed. In the example, if the two justifications listed above arc the only existing justifications,

then -2 is not a current belief since it has no justifications at all. N-1 is belicved since the justification for

N-1 specifics that this node depends on the lack of belief in N-2. The justification for N-3 shows that N-3
depends on a (presumably belicved) node r-37. In this case, R-37 represents a rule acting on (the
statcment represented by) N-1.

Subscquently another rule (represented by a node R-9) acts on belicfs about the day and time of

some other engagement (represented by the nodes n-7 and §-8) to reject the assumption N-1.

N-2 DAY(M) # WEDNESDAY (SL (R-9 N-7 N-8) ())

To accommodate this new justification, RMS will revise the current set of belicfs so that -2 is believed,
and N-1 and N-3 arc not believed. Tt does this by tracing "upwards” from the node to be changed, N-2, to
sce that N-1 and N-3 ultimately depend on N-2. It then carefully cxamines the justifications of cach of
these nodes to see that N-2's justification is valid (so that N-2 is in). From this it follows that N-1's

justification is invalid (so N-1 is ouf), and hence that §-3's justification is invalid (so N-3 is out).



3.3 RMS Data-structures

To make clear exactly what information is actually stored by RMS, as opposed to the information it
computes on demand, this section presents the RMS data-structures. The following structure definitions
in MIT Lisp Machine Lisp give the slots in the data-structurcs used to represent nodes and justifications.
We have mentioned some of these already, and will explain many more in the following. Some, however,
arc for csoteric purposes not discussed here, but can be found in [Doyle 1979). The structure presented

here are simplified for clarity, as in the actual implementation some ficlds are full pointers, some are

9

mercly bits, and others are created only on demand.

(DEFSTRUCTURE NODE
CONTENT
SL-JUSTIFICATIONS
CP-JUSTIFICATIONS
SUPPORTING-JUSTIFICATIONS
SUPPORTING-NODES
CONSEQUENCES
SUPPORT-STATUS
CONTRADICTION-MARK
NODE -MARK
TMP -MARK
NOTED-MARK
FIS-MARK
SUBORDINATES-MARK
EXPLAIN-MARK
SUPERIORS-MARK
SIGNAL-RECALLING FUNCTION
SIGNAL-FORGETTING-FUNCTION
CP-CONSEQUENT-LIST)

(DEFSTRUCTURE SL-JUSTIFICATION
INLIST
OUTLIST)

(DEFSTRUCTURE CP-JUSTIFICATION
CONSEQUENT
INHYPOTHESES
OUTHYPOTHESES)

;This chapter mentions these slots.

;These slots are not discussed.



3.4 States of Belief

A nodc may have scveral justifications, cach justification representing a different reason for belicving the
" node. These several justifications comprise the node’s justification-set. The node is believed if and only if
at least one of its justifications is valid. We described the conditions for validity of Sl.-justifications
above, and shortly will introduce and explain the other type of justification used in RMS. We say that a
node which has at least onc valid justification is in (the current set of belicfs), and that a node with no
valid justifications is out (of the current sct of beliefs). We will alternatively say that cach node has a
support-status of cither in or out. The distinction between in and out is not that between frue and false.
The former classification refers to current possession of valid reasons for belief. True and false, on the
other hand, classify statements according to truth value independent of any reasons for belief.

In RMS, each potential belief to be used as a hypothesis or conclusion of an argument must be
given its own distinct node. When uncertainty about some statement (e.g. P) exists, one must (cventually)
provide nodes for both the statement and its negation. Either of these nodes can have or lack
well-founded arguments, leading to a four-clement belief set (similar to the belicef sct urged by Belnap

[1976)) of neither P nor =P believed, exactly one believed, or both believed.

3.5 Justifications

Although natural arguments may use a wealth of types of argument steps or justifications, RMS forces
onc to fit all these into a common mold. RMS cmploys only two forms for justifications, called
support-list (S1.) and conditional-proof (CP) justifications. These are inspired by the typical forms of
arguments in natural deduction inference syslcms.43 Natural deduction is a sort of logical system in

which there are no axioms, only inference rules. Proofs in natural deduction involve recording the steps

43. See for example Suppes [1957).
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of the proofs and the dependencices of each of these steps, that is, the set of hypotheses upon which cach
step depends. The inference rules then analyze the proof steps and dependencics to derive theorems
which depend on no hypotheses. Two common inference rules are Modus Ponens and Discharging an
Assumption. Modus Ponens is the familiar rule for dctacﬁing a conclusion from an implication and its
antecedent. Discharging an Assumption is roughly the deduction theorem in action, which concludes an
implication from the derivability of some statement from certain hypotheses, where the statcment
becomes the consequent of the implication and the hypotheses become the antecedents of the
implication. These two inference rules respectively add and subtract dependencices from the support of a

proof line. A proof in such a system might run as follows:

Line  Statement Justification Dependencies

1. ADB Premise {1}

2. 8¢ Premise {2}

3. A Hypothesis {3}

4. B WP 1,3 {1,3}

5. c NP 2,4 {1,2,3}

6. A Discharge 3,5 {1,2}

7. ADBABIC A-introduction (1.2}

8. (ADBABDC)D(ADK) Discharge 7,6 {} A Theorem

Each step of the proof has a line number, a statement, a justification, and a sct of linc numbers on which
the statement depends. Premises and hypotheses depend on themselves, and other lines depend on the
sct of premises and hypotheses derived from their justifications. The above proof proves ADc from the
premiscs ADB and B¢ by hypothesizing A and concluding ¢ via two applications of Modus Ponens. The
proof of ADc¢ ends by discharging the assumption A, which frecs the conclusion of dependence on the
hypothcsis but Icaves its dependence on the premises.

This example displays justifications which sum the dependencies of some of the referenced lines

(as in linc 4) and subtract the dependencies of some lines from those of other lines (as in line 6). The two
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types of justifications used in RMS account for these effects on dependencics. A support-list justification
says that the justified node depends on each node in a sct of other nodes, and in cffect sums the
dependencies of the referenced nodes. A conditional-proof justification says that the node it justifies
depends on the validity of a certain hypothetical argumcnt. As in the example above, it subtracts the
dependencies of some nodes (the hypotheses of the hypothetical argument) from the dependencics of
others (the conclusion of the hypothetical argument). Thus we might rewrite the example in terms of
RMS justifications as follows (here ignoring the difference between premises and hypotheses, and

ignoring the inference rule MP):

N-1 AD8 (st () () Premise

N-2 BOC (st () () Premise

N-3 A (SL () () Premise

N-4 B (SL (N-1 N-3) () MP

N-6 c (SL (N-2 N-4) ()) MP

N-6 ADC (CP N-5 (N-3) ()) Discharge

N-7 (ADBABIC)D(ADC) (CP N-6 (N-1 N-2) ()) Discharge two assumptions

CP-justifications, which will be cxplained in greater detail below, differ from ordinary hypothetical
arguments in that they usc two lists of nodes as hypotheses, the inhypotheses and the outhypotheses. In
the above justification for N-6, the list of inhypotheses contains just N-3, and the list of outhypotheses is
empty. This difference results from our use of non-monotonic justifications, in which arguments for

nodcs can be based both on in and ouf nodes.

3.6 Support-list Justifications

To repeat the definition scattered throughout the previous discussion, the support-list justification has the
form
(SL <imist> <ouliistd),

and is valid if and only if cach node in its inlist is in, and each nodec in its oudlist is out. The
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SI -justification form can represent several types of deductions. With empty inlist and empty oudlist, we
say the justification forms a premise justification. A premisc justification is always valid, and so the node
it justifics will always be in. SI-justifications with noncmpty inlists and empty ouflists represent normal
deductive inferences. Each such justification represents a monotonic argument for the node it justifies
from the nodes of its inlist. We define assumptions to be nodes whose supporting-justification has a
nonempty oudlist. These assumption justifications can be interpreted by viewing the nodes of the inlist as
comprising the rcasons for wanting to assume the justified node; the nodes of the oudist represent the
specific criteria authorizing this assumption. For example, the rcason for wanting to assume "The
weather will be nice” might be "Be optimistic about the weather”; and the assumption might be
authorized by having no reason to belicve "The weather will be bad." We occasionally interpret the
nodes of the oudlist as "denials” of the justified node, beliefs which imply the negation of the belief
represented by the justified node.

To make ihe exposition less jargonistic, we occasionally use the phrases "N-1 is justified
(non-)monotonically in terms of N-2" and "N-1’s justification (non-)monotonically involves N-2" to

mcan that N-2 occurs in the inlist (outlist) of N-1’s justification.

3.7 Terminology of Dependency Relationships

I must pause to present some terminology before explaining CP-justifications. The definitions of
dependency relationships introduced in this section are numerous, and the reader should consult Figures
5, 6, and 7 for examples of the definitions.

As mentioned previously, RMS singles out one justification, called the supporting-justification,
in the justification-set of cach in node to form part of the non-circular argument for the node. For
reasons cxplained shortly, all nodes have only Sl.-justifications as their supporting-justifications, never

CP-justifications. The sct of supporting-nodes of a node is the set of nodes which RMS used to determine
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4 (in) 6 (out)
J6
3 (out
(out) 5 (in)
- J3 J5
J1
J2
|
1 (out)
Figure 6

A depiction of the previous system of justifications and nodes.

All arrows represent justifications. The uncrossed arrows represent
inlist, and only the crossed line of J2 represents an outlist.

We always visualize support relationships as pointing upwards.
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Dependency Node 1 Node 2 Node 3 Node 4 Node5 | Node6
Support-status out in out in in out
Supporting-justification J2 J4A J5
Supporting-nodes 3 1 1 2 3
Antecedents 1 2
Foundations 1 1,2
Ancestors 1,3 1,3 1,3 1,2,3 1,3
Consequences 2,3 4 1,4,6 6
Affected-consequences 23 4 1,6
Believed-consequences 2 4
Repercussions 1,2,3,4,6 4 1,2,3,4,6
Believed-repercussions 2,4 4

Figure 7

A table of all the dependency relationships implicit in the system
of justifications. Dashed entries are empty. All other entries are
lists of nodes in the dependency relationship to the node at the

top of the column.
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the support-status of the node. For in nodes, the supporting-nodes arc just the nodes listed in the inlist
and ouflist of its supporting-justification, and in this case we also call the supporting-nodes the
antecedents of the node. For the supporting-nodes of our nodes, RMS picks one node from cach
justification in the justification-set. From SL-justiﬁcznion‘s.‘ it picks either an out node from the inlist or
an in node from the oudist. From CP-justifications, it picks either an ous node from the inhypotheses or
consequcnt or an in from the outhypotheses. We define the supporting-nodes of out nodes in this way so
that the support-status of the node in question cannot change without cither a change in the
support-status of one of the supporting-nodes, or without the addition of a new valid justification. We
say that an our node has no antccedents. RMS keeps the supporting-nodes of each node as part of the
node data-structure, and computes the antecedents of the node from this list.

The set of foundations of a node is the transitive closure of the antecedents of the node, that is,
the antecedents of the node, their antecedents, and so on. This set is the sct of nodes involved in the
well-founded argument for belief in the node. The set of ancestors of a node, analogously, is the
transitive closure of the supporting-nodes of the node, that is, the supporting-nodes of the node, their
supporting-nodes, and so on. This set is the set of nodes which might possibly affect the support-status of
the node. The ancestors of a node may include the node itself, for the closure of the supporting-nodes
relation need not be well-founded. RMS computes these dependency relationships from the
supporting-nodes and antecedents of nodes.

In the other direction, the set of consequences of a node is the set of all nodes which mention the
node in one of the justifications in their justification-set. The affected-consequences of a node are just
thosc conscquences of the node which contain the node in their set of supporting-nodes. The
believed-consequences of a node are just those in consequences of the node which contain the node in
their sct of antecedents. RMS keeps the consequences of each node as part of the node data-structure,
and computes the affected- and believed-consequences from the consequences.

The set of repercussions of a node is the transitive closure of the affected-consequences of the
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node, that is, the affected-consequences of the node, their affected-consequences, and so on. The set of
believed-repercussions of a node is the transitive closure of the believed-consequences of the node, that is,
the believed-consequences of the node, their believed-consequences, and so on. RMS computes all these
relationships from the consequences of the node. |

In all of the following, 1 visualize the lines of support for nodes as directed upwards, so that ]
look up to see repercussions, and down to sce foundations. [ say that onc node is of lower level than

another if its believed-repercussions include the other node.

3.8 Conditional-proof Justifications

With this terminology, we can now begin to cxplain conditional-proof justifications. The cxact meaning
of these justifications in RMS is complex and difficult to describe, so the reader may find this section
hard going. CP-justifications take the form
(CP <consequent> <inhypotheses> <oulhypotheses>).

A CP-justification is valid if the consequent node is in whenever (a) cach node of the inhypotheses is in
and (b) each node of the outhypothescs is out. Except in a few esoteric uses described later, the set of
outhypotheses is empty, so nonnaily a nodc justified with a CP-justification represents the implication
whose antecedents are the ithypotheses and whose consequent is the consequent of the CP-justification.
Standard conditional-proofs in natural deduction systems typically specify a single set of hypotheses,
which corresponds to the inhypotheses of a CP-justification. In the present case, the sct of hypotheses
must be divided into two disjoint subsets, since nodes may be derived both from some nodcs being in and
other nodes being out. Some deduction systems also ecmploy multiple-consequent conditional-proofs.
We forego these for reasons of implementation cfficiency.

RMS handles CP-justifications in spccial ways. It can casily determine the validity of a

CP-justification only when the justification’s consequent and inhypotheses are in and the outhypotheses
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are out, since determining the justification’s validity with other support-statuses for these nodes may
require switching the support-statuses of the hypothesis nodes and their repercussions to set up the
hypothetical situation in which the validity of the conditional-proof can be evaluated. This may may
require reason maintenance processing, which in turn may require validity checking of further
CP-justifications, and so the whole process becomes extremely complex. Instead of attempting such a
detailed analysis (for which I know no algorithms), RMS uses the opportunistic and approximate strategy
of computing SI -justifications currently equivalent to CP-justifications. At the time of their creation,
these new Sl-justifications are equivalent to the CP-justifications in terms of the dependencics they
specify, and are casily checked for validity. Whenever RMS finds a CP-justification valid, it computcs an
equivalent SI-justification by analyzing the well-founded argument for the conscquent node of the
CP-justification to find those nodes which arc not themselves supported by any of the inhypotheses or
outhypotheses but which directly enter into the argument for the consequent node along with the
hypotheses. Preciscly, RMS finds all nodes N in the foundations of the consequent such that N is not one
of the hypothescs or one of their repercussions, and N is either an antecedent of the consequent or an
antecedent of some other node in the repercussions of the hypotheses. The in nodes in this sct form the
inlist of the cquivalent SL-justification, and the out nodes of the sct form the oudlist of the equivalent
SI-justification. RMS attaches the list of SI.-justifications computed in this way to their parent
CP-justifications, and always prefers to use these Sl-justifications in its processing. RMS checks the
derived SL-justifications first in determining the support-status of a node, and uses them in cxplanations.
It uses only SL-justifications (derived or otherwise) as supporting-justifications of nodes. The accuracy

and limitations of this approximation are open problems.
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3.9 Circular Arguments

Supposce a program manipulates three nodes as follows:

F (= (+ X Y) 4) omitted but valid
G (=x1) (st (O ()
H (= Y 3) (st (K) ())-

If Jis in and K is out, then RMS will make Fand G in, and H out. 1f the program then justifics H with
(st (FG) (),
RMS will bring H in. Suppose now that RMS makes J ouf and K in, leading to G becoming out and H
remaining in. The program might then justify G with
(SL (FH) ()).
If RMS now takes K out, the original justification supporting belicf in H becomes invalid, leading RMS
~ to reassess the grounds for belicf in H. If it makes its decision to believe a node on the basis of a simple
evaluation of each of the justifications of the node, then it will leave both G and H in, since the two most
recently added justifications form circular arguments for G and H in terms of each other.

These circular arguments supporting belief in nodes motivate the use of well-founded
supporting justifications, since nodes imprudently belicved on tenuous circular bases can lead to
ill-considered actions, wasted data base searches, and illusory inconsistencies which might never have
occurred without the misleading, circularly supported beliefs. In view of this problem, the algorithms of
RMS must ensurc that it believes no node for circular reasons.

Purported arguments for nodes can contain essentially three different kinds of circularitics, each
of which must be handled in a different way. The first and most common type of circularity involves only
nodes which can be taken to be out consistently with their justifications. Such circularitics arise routinely
through cquivalent or conditionally cquivalent beliefs and mutually constraining beliefs. The above

algebra example falls into this class of circularity. In this case, RMS makes all of the involved nodes out.
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The second type of circularity includes at lcast one node which must be in. Consider, for

cxample
F TO-BE (sL () (GY)
G —170-BE (sL () (F)).

In the absence of other justifications, thesc justifications force RMS either to make Fin and G out, or G in
and Fout. When RMS meets such a circularity, it must choose some one of these nodes in. This decision
frequently affects the actions of the program drastically, so it must often be madc carefully using the
revision techniques outlined below.

In unsatisfiable circularitics, the third type, no assignment of in or out to nodes is consistent with

their justifications. Consider

F | (st () (F)).

With no other justifications for F, RMS must make F in if and only if it makes F out, an impossible task.
Unsatisfiable circularitics sometimes indicate real inconsistencies in the beliefs of the program using the

reason maintenance system. Ifso, RMS must discard one of the justifications involved.

3.10 The Reason Maintenance Process

The rcason maintcnance process makes any necessary revisions in the current set of beliefs when the
program adds to the justification-sct of a node. We only outline it here. For more dctail, scc [Doyle
1979].

The reason maintenance process starts when a new justification is added to a node. Only minor

44. Discarding a justification violates the thesis of rationality proposed carlier. However, as Section 3.11 explains, the program
always emiploys defcasible justifications, so unsatisfiable circularitics never arise. This saves the thesis of rationality and allows
explanations of the revision as well.
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bookkeeping is required if the new justification is invalid, or if it is valid but the node is alrcady in. If the
justification is valid and the node is out, then the node and its repercussions must be updated. RMS
makes a list containing the node and its repercussions, and marks cach of these nodes to indicate that they
have not yet been given well-founded support. RMS then examines the justifications of these nodes to
sec if any are valid purcly on the basis of unmarked nodes, that is, purcly on the basis of nodes which do
have well-founded support. If it finds any, these nodes are brought in {or out if all their justifications are
invalid purcly on the basis of well-founded nodes). Then the marked conscquences of the nodes are
examined to sce if they too can now be given well-founded support. Sometimes, after all of the marked
nodes have been examined in this way, well-founded support-statuses will have been found for all nodes.
Sometimes, however, some nodes will remain marked due to circularities. If so, RMS constructs a
decision intention to decide between revisions. so that the decision about which belicf revision to use may
be made carcfully if desired. Otherwise, the default decision is to choose a revision randomly by a
constraint-rclaxation process which assigns support-statuses to the remaining nodes. The new intention
docs not depend on any prior beliefs, in particular not on the beliefs under revision, so its addition does
not invoke another revision decision.

If the revision decision is made carcfully, it involves analyzing the circularity to sce what the
alternative revisions are. This analysis can be very involved, and we have not pursued it very extensively.
One carly version of RMS [Doyle 1976] applied graph-thcoretic algorithms to first analyze the circularity
into strongly connected components, and then to sort these componcents topologica]ly.45 The minimal (in
the sort order) strongly connected components are the obvious candidates for closer cxamination, as
non-minimal components cannot be decided without first deciding the minimal components. The carly

RMS would then pick (randomly) one node from cach minimal component to be out, and determine the

45. Later versions of RMS abandoned this technique because it was unnecessarily complicated for the small belief systems being
manipulated, and since it involved answering a number of questions which involve considerable study in the context of large
complicated belicf systems. 1t would be nice if somconce would take up this problem again and explore it carefully.
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statuses of the other nodes in the component from this new constraint. After all the repercussions of
these choices had been accounted for, it would repeat this process of analysis and choice until the statuses
of all belicfs had been settled. This is a very tricky procedure, for these choices of revision might be
wrong, and so Icad to apparently unsatisfiable inconsistencies. To avoid this, it appears that the decision
should involve adding a new justification to the chosen nodes to set their status, rather than just sctting it
arbitrarily.

While processing the repercussions of a decision, RMS can detect an apparently unsatisfiable
circularity and again invoke a decision intention to cither change one of the previous decisions or, as a last
resort, discard one of the justifications involved in the unsatisfiable circularity.

RMS also handles contradictions using this technique. Whenever it brings a node in that has
been marked as a contradiction, RMS constructs a new intention whose aim is to resolve the
inconsistency.

Actually, the existing RMS (TMS) has not been altered to provide for careful sclection of
revisions by intentions, but just makes the revisions randomly. I do not sce any overwhelming difficulties
in carrying through all these alterations. In any event, even if the current version is used, the net result
will be that the program will be a less efficient than it might otherwise be. These changes can always be

put in later.

3.11 Defeasibie Reasons and Dialectical Argumentation

Everything and everyone has to be criticized if there is to be any progress in the world.
Anybody ought to be prepared for that and grant everyonc clse that right.
H. Enters [1924, p. 100}
We have just described the basics of RMS, but the program uscs RMS in a special way. In the above we

described only ways for RMS to update the current set of belicfs by adding new justifications. We made

no provisions for removing justifications, for we wish to make all changes in belicfs for good reasons. To



113

allow all justifications to be defeasible, we reflect all justifications in explicit program belicfs about the
justifications, and make all these beliefs assumptions.

Suppose the program wants to justify node N with the justification (st / O). Instcad of doing
this dircctly, it creates a new node, J, representing tjlc statement that 7 and O SL-justify N; in other
words, that belief in cach node of 7 and lack of belief in cach node of O constitute a reason for believing
in N. The program justifics N with the justification (sL J+ I 0), where J+1 represents the list [
augmented by J. RMS will make N in by reason of this justification only if J is in. The program also
creates another new node, —J, representing the statement that J represents a challenged justification. It
then justifies J with the justification (st () (™J)). Note that this justification is not reflected in a
corresponding belief, but is a simple justif'lcation.46 In this way, the program makes a new node to
represent the justification as an explicit belief, and then assumes that the justification has not been
challenged.

To do this, the program never directly calls the functions RMS-SL-JUSTIFY ana
RMS-CP-JUSTIFY which create basic RMS justifications for nodes. Instead, it calls (SL-JUSTIFY node
intist outlist) and (CP-JUSTIFY node consequent inhypotheses outhypotheses). What SL-JUSTIFY
docs (and CP-JUSTIFY analogously), is to create a new individual constant in ME of the form J-nnn and

then use this as the name of a new fact in ME whose wff is
SL-JUSTIFICATION(J-nnn, node, {J-nnn}+inlist, outlist).
SL-JUSTIFY also creates a new fact in ME called D-nnn, whose wff is
DEFEATED(J-nnn).

It then creates two basic RMS justifications. As the first, it justifics J-nnn with an cmpty inlist and an

46. There is a slight modification of this technique which avoids having these non-reflected justifications. To do this, we do not
create the new node J, but only 73/, and make the actual justification be (SL 1 0+ ™J). The net cffect is the same.
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oulist containing just D-nnn. It then justifies node with the inlist containing both J-nnn and the original
inlist, and the original ouflist.
For cxample, suppose the program wishes to conclude that the value of Yis 1 in a theory T-1 in

which the value of X is 3 and the known that X and Y sum to 4.

INT-1:

N-1 Individual-constant X; Justifications omitted
N-2 Individual-constant Y;

N-3 Individual-constant 4;

N-4 function-constant +;

N-5 Attach X 3;

N-6 Attach 4 4;

N-7 Attach + +;

N-8 AxiomX+Y =4

N-9 AttachY1; No justification yet

1t would first switch to ME to describe the justification of the new attachment of Y to 1 as describe above,
and then switch back to T-1 to make the actual justification.
INME:

N-10  Fact SL-JUSTIFICATION(N-10, N-9, {N-10 N-1 ... N-9}, {});
(SL () (N-11))

N-11 Fact DEFEATED(N-10) No justification yet
INT-1:
N-9 AttachY 1; - (SL (N-10N-2 ... N-9) ())

If the program then wished to defeat this justification, it would again go to ME and construct the
following.
IN ME:
N-12 SL-JUSTIFICATION(N-12, N-11, {N-12, ...} {...});
(SL () (N-13))

N-13 DEFEATED(N-12); No justification yet
N-11 DEFEATED(N-10); (SL(N-12 ...) (...))

This organization of the rcasoning process into dialectical argumentation has three interesting

aspects. The first is that any belicf of the program may be abandoned, since the program only belicves for

reason, and all reasons can be reconsidered and rejected after the fact.
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Sccond, RMS no longer has to worry about truly unsatisfiable circularitics.  Since all
assumptions arc defeated by reasons which are themselves assumptions, what in the direct use of RMS
would be unsatisfiable circularities are in this indirect use just defcasible reasons. Thus RMS never needs
to discard a justification. It only has to defeat the justiﬁcation with another.

Third, this organization clarifies the meaning of CP-justifications. 1t shows that CP-justifications
actually compute arguments. Suppose the program draws the conclusion C from A and B via the
justification J. If the program justifies I with (cP ¢ (A B) ()), it is justifying 1D on the grounds that an
argument exists for C from A and B, but that argument is just J!' This new justification then is cquivalent
in this case to (SL () ()). 'Thus the CP-justification in cffect returns an argument of onc belief as the
support (as an object) for another belief.

This concludes the discussion of the underlying reasoning framework. We now turn to the

mcans by which reasoning is controlled and applied in its own service.



116

CHAPTER 4

DELIBERATE ACTION

De l'audace, et encore de I'audace, et tojours de I'audace!
Georges Jacques Danton
One of the most important things about man is his ability to adapt so as to further his survival. But to
adapt, man changes both his environment and himself, body and mind. To do this, however, he must be
aware of himself and his cnvironment,

But awareness is sometimes difficult to attain. For example, it is usuaily difficult to fully grasp
the cffects of one’s actions. One contracts an outsider to build onc’s home only to discover that the social
benefits of communal home-raising have been lost. Onec builds a dam to assure regular crops and
discovers the destruction of wilderness upstrecam and wildlife downstream. One paints onc’s nails only to
discover them cracking in inconvenicnt moments. One selects one’s children’s genes to avoid hemophilia
and caries to discover uncxpected diabetes. And one finally learns how to concentrate well on one’s work
to succeed, only to appear distant and uncaring to one’s family and companions. Man may not always
have ali the information he needs to act successfully, but he must always be concerned with the direction
of change, and to try to control that direction as best he can.

To control the direction of change, man nceds to be conscious of the current state of affairs and
the desired state of affairs, and of the effects of various actions he might take, conscious of his
surroundings. his body, and his mind. Al studies of problem solving have touched on many ways of
problem solving and planning, but typically these arc applied not to all objects of change, not to the
program’s own mental state, but only to external objects such as chess games, houscbuilding, or electronic

circuits. Psychologists and popular writers have not neglected mental change, as an enormous sclf-help
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litcrature attests.*” But in spite of this, Al scems to have largely rested content with attacking the
physical, not the mental, problem domains. Because of this, I believe, self-consciousness, which humans
frequently think of as their hallmark and gift over the other animals, has been viewed as a mystical topic,
something for future generations of scicntists to conquer.

As 1 hope to indicate in this and later chapters, sclf-consciousness is no mystic apparition, but a
practical device to be readily applied to controlling reasoning. Self-consciousness is casy to achieve, as
long as onc is not blinded by an overriding preoccupation with physical affairs.

This chapter lays out the basics of how a program can be conscious of and reflect on its own
plans, intentions, actions, reasons, decisions, and beliefs, The following chapters study decision-making,
modifying beliefs, and modifying skills as dcliberate, conscious activities.

To be able to tell what one is doing is crucial for making plans, making decisions, and lcarning.
One can hardly make plans to achicve one’s desires if one cannot tell what one wants.*® Rational
decisions are sometimes described as those which “fit best™ with onc’s beliefs, desires, and intentions, so
to make rational decisions one nceds to take one’s intentions into account. One can hardly help painting
onesclf into a corner unless onc neglects onc’s intention to leave the room after the job is done. And
when learning, one cannot assign credit or blame to onc’s beliefs or procedures unless onc can explain
what one did and why, that is, one’s actions, intentions, and reasons.*® Thus for onc’s own benefit in
planning, in cvaluating one's successcs, and in modifying one’s beliefs and skills, one needs to be able to
distinguish which cffects of one’s actions are intentional and which are unintentional, since one can

always hopc to correct unintentional bad effects.

47. Tor example, sec [Russell 1930], [Carnegic 1936, 1944), [F:His and Harper 1961). or [Johnson 1977]. Johnson's book gives an
explicit (and to Al folk, familiar) problem solving procedure for changing onc’s skills and attitudes towards the world: reducing
problems to subproblems. moniloring their progress, etc., all towards ends like becoming good at carrying on conversations and
learning to tolerate or accept one’s current limitations.

48. This is not Lo say that desires cannot influence onc’s behavior unless conscious. Freudian psychoanalysis gocs to great lengths
to ferrct out unconscious desires. We do not pursue here exactly how such unconscious attitudes might be realized.

49. As mentioned carlicr, our use of the term “reason” refers to inference records, not 1o antecedents. The reader is cautioned that
much of the philosophical literature on action uses yet another mcaning for “rcason,” namely dcsires, motives, or volitions
underlying actions.
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The basic problems discussed in this chapter arc how a program can tell what it is doing and
how it can act on its intentions. The chapter discusses in turn the library of plans, the constituents of

plans, the current state of mind, and the interpreter.

4.1 Plan Generation, Execution, and Interpretation

‘I'raditional approaches tg the construction of complex patterns of actions rely on a distinction between
plan generation and exccution. In that view, the reasoner takes a problem description and constructs a
sequence of instructions for the action mechanism of a machine. The reasoner constructs this sequence of
commands so that it believes their execution will solve the problem it accepted. Once the command
sequence has been constructed, it is given to the action mechanism, which carries out each of the
instructions.

We do not adopt this two-stage approach, for it has several drawbacks. One problem is that it
makes error handling largely a matter of foresight. Actions of all kinds are notoriously prone to failures
in unusual circumstances. To make an effective plan that is guaranteed to work is impossible. There are
always circumstances in which a particular plan will fail to realize its intended effect. The best the plan
generator can do is to try to build the sequence of instructions so that it incorporates conditional steps
which handle all of the possiblc failures that might arise. But this is a poor strategy, both because there
are in gencral a huge number of forsccable difficulties, and because there are in general always
unforeseen but possible difficulties. For similar reasons, the separation of plan gencration and exccution
makes information gathering steps awkward to plan, for these are steps which cxplicitly have many
possible (and perhaps unpredictable) outcomes. Thus this separation of plan genceration and execution is
untenable. The reasoner must always be ready to replan the necessary steps whenever a plan fails. For
example, STRIPS [Fikes and Nilsson 1971] would devise a plan to be executed by PLANEX [Fikes 1972],

which would reinvoke STRIPS to replan whenever actions failed. STRIPS could not produce conditional



119

plans, so this was its only possible recourse.

In our case, there is yet another reason against dividing these processes. When this division is
made, it makes impossible the planning of the reasoning involved in the generation process. Since we
view rcasoning as a species of action, we cannot construct a plan without taking actions themselves
requiring planning, and we cannot wait until the plan is constructed before exccuting it, for otherwise
reasoning actions can never occur.

The most natural strategy, and the one we adopt, is to mix plan generation and exccution in a
process better described as self-interpretation.  This consists of repeatedly acting on onc’s intentions,
many of which involve the formation of intentions for further actions. Thus error handling and
information gathering steps (of which inferential reasoning steps can be viewed as an important subclass)
are handled by forming intentions to carry out the step and then reflecting on the result, where the
reflection involves the same reasoning processes which went into the formation of the step itself.

The interpretation orgapization of the reasoncr avoids the ill-considered separation of plau
gencration and execution, making the normal activity one of reasoning about how to take the next
reasoning steps, which themselves repcat this activity, so that the reasoner is constantly reasoning about
how to reason. The basic steps of the program’s operation are (1) to examinc the set of desires to possibly
decide to pursue some of them, that is, to form some new intentions, (2) to examine the current sct of
intentions to sclect one to work on next, (3) to cxamine the library of procedures to sclect some way of
carrying out the intention, (4) to carry out the sclected intention by executing the selected procedure if it
is a primitive, and by adding it to the current state of mind if it is a plan, and (5) to repeat these steps.

The next section describes the library of procedures, which contains the primitives and plans for

both cxternal and internal reasoning and other actions.
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4.2 Plans and the Library of Procedures

Plans are ways of describing the structure of onc’s desires and intentions. Plans, as [ use the term, are
complex concepts made up of many other sorts of concepts, including desires, intentions, and subplans.
We will describe these sorts of concepts in more detail below, along with the other sorts of information
that go to make up plans.

Plans play an important role in the operation of the program, and are stored in the procedure
library (also called the plan Iibrary).Sn The procedure library lists all procedures of the program as
attachments between the procedure’s name and the procedure itself. It also contains a number of sorts of
statements about the procedures, but we will discuss those later. Thus plans and primitives contain the
"how-to" information of the program. The "know-how™ of the program results from combining plans
and primitives with information about their use, such as indexing them by their important effects.

Plans differ greatly in their specificity. The plan library typically will contain very general plans
useful when one has nothing better to try. These gencral plans include the standard problem solving
technigues, the "weak methods™ as Newell terms them [Newell 1969]. But plans can be specific as well.
The typical procedure library also includes plans for specific tasks, such as (depending on the domains of
expertise of the program) how to dcsigﬁ Butterworth ﬁltcré, how to build a three-bedroom Colonial house
in the northeast, how to make airplane reservations, and how to make cheesecake.

This notion of specificity can be factored into two sorts of specificity. Part of the context of the
plan can be stated in the sort of problem the plan is applicable to, and part of the context can be stated in
restrictions on when the plan is considered defined. In terms that we will explain in more detail below,
this just mcans that the context of applicability of the plan can be stated in both the justification of the

plan and in the indexing of the plan by its relevant effects. For example, consider a plan for putting out a

50. Actually, the procedure library is a fiction just like the sets of beliefs, desires, and intentions. Procedures are cach concepts, and
thus are a subsct of the concepts of the program, but distinguished as procedures by statements about them in the global theory,
either PLAN( concept) or PRIMITIVE(concept).
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grease fire when cooking. This plan has crucial differences from the ordinary procedure for putting out a
fire, namely that onc should not use water as a suffocant. The question of factoring the context of plan
specificity can be seen here in the following suggestions. One can index the plan under the problem of
how to put out a fire while cooking with grease, or. one can instcad have one’s plan for cooking with
grease temporarily define a new plan for putting out fires and temporarily mask the usual plan for putting
out fircs with the new one.

This separation of the context of applicability of plans into relevancy and definitional
components may scem unimportant, but I think it bears a message not to be neglected in the design of the
program. [f one only uses relevancy indexing, which is standard in most traditional Al programs, one is
forced to face severe runtime retricval problems. On the other hand, the combined approach allows one
to do a good bit of work when setting up the problem to be attacked. If the problem is complex, then
there will be many considerations necessary in judging whether a plan is relevant to a subproblem, and so
the retricval problem will be very great. If one knows beforchand that the problem is complex, one is
willing to spend a good bit of time on preparing for the exccution of the plan. This can be secn in the
standard human practices in which people who perform complex tasks are give training or manuals to
read specifying the procedures to use when special circumstance arise. Someone may have a great talent
in looking up what to do in reference sources, but he will not be cmployed in many complex tasks on this
basis. One can hardly expect a soldicr in the field to continually look up procedures for what to do about
his problems.

For these reasons, our plans arc not simply composed of a few goals and temporal ordering
relationships between them, as is common in many other Al systems which use the term “"plan”. Our
‘ plans contain not only these things, but also beliefs to be held as assumptions while carrying out the plan,
locally defined plans for handling foreseen special cascs, and guidclines for making the decisions
expected to be encountered while carrying out the plan. In this way it is more appropriate to view plans

as specifying partial states of mind or scts of attitudes to adopt for the duration of the execution of the
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plan.51 In this view, the current state of mind is the sum of a set of realized plans, so that plans reproduce
in the small the structure of the program in the large.

We represent plans as theories in SDL, and whcn instanccs of plans arc added to the current
state of mind, versions of all the terms, attachments, and statcments in the theory are added to the theory
representing the current state of mind. Thus, the description of the form of plans is largely a matter of

describing the sorts of things plans can contain.

4.3 The Ambiguous "Goal”

Befolrc procceding, we first digress to point out a long-standing confusion in artificial intelligence, and
perhaps in psychology and philosophy as well. The term "goal” in common technical usage seems to
have no fixed meaning. It scems instead to be used on different occasions to mean both "desire” and
“intention”. | have scarched many places, and no where do I find any discussions cxplaining what "goal"”
is supposcd to mean, or how it relates to the less technical notions of desire and intent. This may seem to
be more a problem of my competence in English than one of a confusion in the ficld, but I think there is a
valuable point to be taken. The problem is that desire and intention are two different sorts of attitudes,
used in different ways, and trcatn;xcnts of rcasoning and problem solving which confuse the two lose
much expressive power, power which is required both in deciding what actions to take next and in
revising the program’s mental state when actions are taken.

Desires and intentions are different in logical form. Desires aim at the satisfaction of some

condition, and will be satisficd no matter how those conditions are brought about. Their content can be

51. I believe that there are close connections between this view of plans and Minsky’s K-line theory of memory [Minsky 1979). For
him, K-lincs arc ways of reactivating partial mental states. These connections are recursively arranged, in that activation of one
K-node typically leads to the activation of scveral component partial states of mind. While we will use plans by making separate
instantiations of them cach time they are used. the analogy with K-lines becomes strong if we assume that plans are only stored once
in memory, and "lit up” whenever they are nceded rather than making multiple instantiations. If this is the case, then the
definitional connections between plans and the subplans they define becomes very similar to that between K-nodes and the
sub-nodes they activate.
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stated roughly as "Condition X obtains." Intentions, on the other hand, must be satisfied in a certain
characteristic way. Just what is the exact naturc of intentions and their characteristic way of satisfaction
has been the subject of much study. Harman [1976}] and Scarle [1979], for example, analyze intentions as
self-referential attitudes, whose content is roughly "1 take some action to attain condition X by way of
carrying out this very intention.” Intentions can be satisficd (at least partially) by trying, by taking actions
on the basis of the intentions, whether or not the attempts succeed in attaining their aim or not. If the
action fails, onc forms another intention of the same sort. Attempts, however, have no bearing on the
satisfaction of desires. In this sense it is much more difficult to tell if a desire has been satisficd than an
intention, for the former requires verifying the effects of an action, where the latter requires only the
proper mode of taking the action.

Desires and intentions also differ in other qualitics ascribed to them. Different desires may have
different relative strengths, which reflect the order in which, other things being cqual, intentions will be
formed to pursue tie desires. For intentions, however, it makes no sense to speak of relative strengths.
Once formed, and intention is an intention. There is no magnitude involved. Instcad, two intentions may
be related by other intentions about their relative priority of achicvement, intentions to the cffect that one
intention should be carried out prior to another one. However, both desires and intentions share (along
with belicfs) relative strengths of tenacity with which the program resists their abandonment. One might
have, for example, two desires, the first of which is stronger than the second, but the sccond of which is
held more strongly than the first. In this case, while the program considers the second desire less pressing
it would rather give up the first desire than the sccond. Similar considerations apply to beliefs and
intentions.

It is very important to distinguish between intentions and desires.  For cxample, when
modifying its plans, the program must analyze the causes and worth of the effects of the plan in action.
An effect of an action can be cither (1) both desired and intended (the normal case), (2) intended but not

desired (action taken by compulsion), (3) desired but unintended (a serendipitous cffect), or (4)



124

unintended and undesired (an error or unwanted side-cffect). In these four cases we assumed that
undesired implied the opposite desire, but that is not correct, 50 there is actually a larger, more refined set
of cases. But the important point is that how the program should modify the procedure depends on what
classifications it makes of the procedure’s effects. Serendipity might be used to construct new procedures
specifically for realizing the desired cffects, while errors normally call for patching the procedure to avoid
the cffects.

Thus the notions of desire and intention capture separate, uscful ideas about rational thought
and action, and the following part of this chapter and the next chapter will make that even clearer.
Rather ‘lhan confuse matters by using the ambiguous term goal, we abandon it for these more useful
notions,

Unfortunately, nonc of the plans given in this thesis will scem to motivate this distinction
terribly much. Most of the plans will be rather deliberate constructions which proceed step by step by
mcans of intentions. One cxample of a plan employing acsires is a problem-solving plan similar to
problem-reduction problem solving. Given an intention to solve some problem, this plan would look for
beliefs which say something about the problem statement, for example, AABDPS. The plan would then
add desires for A and B, so that there would be lots of desires around for possible partial solutions. This
would place the burden of controlling this solution effort in deciding which desire to pursue.
Alternatively, desires might have been avoided by shifting the burden to a decision of which implication
to usc in the problem reduction, and then creating intentions rather than desires. The former method
might be preferable if the problem is so difficult that the program must usc information discovered in
pursuing onc desire in satisfying dcesires stemming from different reductions. The intention-based
strategy does not make this opportunistic behavior as casy, since the scveral alternative solution paths are
not being kept in mind simultancously. Keeping all potential solutions in mind corresponds to using

desires, while using intentions in this case corresponds to single-path explorations.
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44 Decsires and Intentions

The representations of desires and intentions consist primarily of threc sorts of information: an aim,
which‘is the condition to be achieved, variable-mappings, which identify in keyword fashion plan
variables with variables and terms used in defining the aim, and status information.  Desires and
intentions are represented as theories. Each has as typed parts a sct of input variables, a sct of output
variables, and an aim? In addition, each also contains a statement of the form DESIRE(theory) and
INTENTION( theory) about whether it represents a desire or an intention, redundantly repeating a similar
statement in the global theory.

The aim is a theory describing the state of affairs desired or intended to be attained. We mean
this to be a quite general notion, including, for example, descriptions of the program’s own mental or
physical state, and descriptions of changes in the w.()rld, that is, actions. Informally stated aims might be

(A) that the program believes the Banach-Tarski thcorem,

(B) that the program has a proof of the Banach-Tarski theorem in ZFC,

(C) that the program rest its "arms” after moving the block halfway across the table,

(D) that the program buys some electronic parts,

(E) that the program finds out some information from someone,

(F) that the program is skilled at playing bridge,

(G) that the program leases a new tape drive from someone,

(H) that the program carns cnough money writing novels to pay for its Icase and to keep its programmer
happy.

This research has not pursued the crucial problem of finding a language and vocabulary

adequate for encoding all known information about the world, nor the encoding itself. We instead rely

52. Variables are used for communicating information between activities. There may be better ways of doing this, but that is a
subject for future study.
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on work of others to build stores of information about the world and changes in it for use in aims of

desires and intentions.

For cxample, supposc we have an inteation to find the difference between two numbers X and

INT-1: (the intention)
Axiom: INTENTION(T-1);
Typed-part INPUTS SET;
Typed-part OUTPUTS SET;
Typed-part AIM ADDER;
INT-2: (INPUTS of T-1)
Typed-part X VARIABLE; (T-5)
Typed-part Y VARIABLE; (7-6)
INT-3: (OUTPUTS of T-1)
Typed-part Z VARIABLE; (T-7)
INT-4: (AIMof T-1) (from ADDER)
Individual-constant Al;
Individual-constant A2;
Individual-constant SUM;
Axiom: Al + A2 = SUM;
INT-5: (from VARLABLE)
Individual-constant VALUE;
INT-6: (from VARIABLE)
Individual-constant VALUE;
INT-7: (from VARIABLE)
Individual-constant VALUE;
INT-1: (again)
[VALUE X INPUTS] = [SUM AIM];
[VALUE Y INPUTS] = [Al AINM];
[VALUE Z OUTPUTS] = [A2 AIM];

Here sets are represented as theories where the elements are used as namcs of constants. This allows the
same name to be used both for an input and an output variable, as it can be distinguished by the set it is
in. Variables are also represented as theories, in which values are represented as attachments to the
symbol vaLue. Theorics representing variables will be used to note other information as well, such as
whether there is a value or not, hence this complicated representation. The reason for using an explicit
keyword mapping system in which equality axioms are used to identify intention variables with aim

variables is so that the same aim may be used in several sorts of intentions, according to different
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input-output specifications of variables. For example, the ADDER aim used above can be used to specify
several sorts of intentions including subtractions (X-Y=7Z; X=SUM, Y=Al, Z=A2), addition
(X+Y=7;X=A1,Y=A2, Z=SUM), and doubling (X+X=Y; X=A1,X=A2, Y=SUM).

In addition to the flexibility of aim use allo&cd by the keyword variable mappings, desires and
intentions can also include local modifications to their aims. Since their aims are just theories, axioms can

be added to the aim theory. For example, a doubling intention might be specificd either as

INT-1:
Axiom: INTENTION(T-1);
Typed-part ADDER ADDER;
X = [A1 ADDER];
X = [A2 ADDER];
Y = [SUM ADDER];

or as

INT-1:

Axiom: INTENTION(T-1);

Typed-part ADDER ADDER; (T-2)

X = [A1 ADDER];

Y = [SUM ADDER];

InT-2: (ADDER)

Axiom TIED: Al = A2;

In the first case, the value to be doubled is given to the adder twice. In the sccond case, it is transferred
only once, but the copy of the adder theory is modificd to be a doubler.

Desires and intentions also contain information about the state of the process of their execution,
for example, whether the desire or intention is being worked on, is yet to be worked on, or has been
finished with. Here we distinguish between desire and intention in interpreting just what these status
indicators mcan. "Being worked on™ means roughly "is being pursued with an intention™ for desires, and
"is being carried out by a primitive or a plan” for intentions. Since intentions are carried out by complex
scquences of program opcrations, the most precise description of the state of the exccuting program is just

the current step and cnvironment of the code of the interpreter or whatever program is carrying out the

intention. However, such a description is hopclessly detailed for normal use. In fact, the program
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employs several sorts of interpreter, and cach of them would give a different report of the state of the
exccution process. Rather than use such an overly detailed indicator, cight major classifications of desires
and intentions are used which summarize some of the most important aspects of their exccution. Better
classifications undoubtedly await discovery, but this iﬁitial list will sufficc in this thesis. The
classifications are as follows. (Figure 8 summarizes the transitions each intention gocs through.)

1. Progress status: Initially, desires and intentions are pending. When the interpreter is working
on one, it is active. When the interpreter is done with it, it is finished. The program is working on an
intention if it is exccuting some primitive to carry out the intention, or has added a plan to the current
statc of mind to carry out the intention. The program is working on a desirc if it has formed an intention
to realize the aim of the desire. Desires are finished when their aim has been achicved, and intentions
when some plan or primitive is completely executed to carry out the intention.

2. Missing input values status: A desire or intention either has values known for all of its input
variables, or it is missing some input variables values. The interpreter will not begin work on ones
missing somec of their input values.

3. Uncompleted predecessors status: Desires and intentions are related in two partial orderings,
desire strengths and intention priorities. Work on one cannot begin until all of its predecessors have been
completed (specifically, arc in the enabling-successors status described below).

4. Uncompleted superiors status: Desires and intentions are related in teleological relationships
in which subordinate desires and intentions are used to carry out superior intentions. Work cannot begin
on the subordinates until all superiors of the subordinates have been completed (specifically, are in the
cnabling-subordinates status described below).

S. Enablement status: Desircs and intentions are blocked if they have missing input values,
uncompleted predecessors, or uncompleted superiors. Otherwise they are enabled. The program will not
begin work on blocked desires or intentions.

6. Realization status: An intention is said to be realized if it has been carried out by exccuting a
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primitive program or by reducing it to a plan. A desire is realized if an intention to pursuc its aim has
been formed. They arc unrealized otherwise.

7. Enabling subordinates status: Once an intention is active, normally after it has been realized
by reduction to a plan, the interpreter will enable its subordinates if possible. This status indicates
whether the intention should still block its subordinates or not.

8. Enabling-successors status: After a desire or intention has been realized, the interpreter may
try to cnable its successors if possible. This status indicates whether it should block its successors or not.
The interpreter will declare an intention to be enabling-successors cither if it was carricd out by exccuting
a primitive, or if its main subordinate (sce below) has finished.

We represent all these sorts of status information in the desire or intention theory itself.>3 Each
status name is a symbol in the language, and the possible conditions of the status are represented as
possible attachments. Relationships between the possible attachments are represented as justifications.

In detail, cach theory contains individual constants s in the following cxample intention.

INT-1:

Axiom: INTENTION(T-1);

Individual-constant MISSING-INPUT-VALUES-STATUS;

Individual-constant UNCOMPLETED-PREDECESSORS-STATUS;

Individual-constant UNCOMPLETED-SUPERIORS-STATUS;

Individual-constant CNABLEMENT-STATUS;

Individual-constant PROGRESS-STATUS;

Individual-constant REALIZATION-STATUS;

Individual-constant ENABLING-SUBORDINATES-STATUS;

Individual-constant ENABLING-SUCCESSORS-STATUS;

The possible attachments and their standard justifications arc as follows. (They arc simplificd somewhat

for clarity.) The standard justifications arc arranged so as to default the attachments to the appropriate

values in the correct temporal scquence.

53. Properly, perhaps, this information should be viewed as annotation on the theory in some more gencral theory (such as the

plan containing the theory, or the global theory), but for simplicity of the representation we include it in the desire or intention
theory itself.
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N-1 Attach MISSING- INPUT-VALUES-STATUS SOME (justified as specified below)
N-2 Attach MISSING- INPUT-VALUES-STATUS NONE (SL () (N-1))

N-3 Attach UNCOMPLETED-PREDECESSORS-STATUS SOME (justified as specified below)
N-4 Attach UNCOMPLETED-PREDECESSORS-STATUS NONE (SL () (N-3))

N-5 Attach UNCOMPLETED-SUPERIORS-STATUS SOME (justified as specified below)
N-6 Attach UNCOMPLETED-SUPERIORS-STATUS NONE (SL () (N-5))

N-7 Attach ENABLEMENT-STATUS BLOCKED (SL (N-1) ()).
(SL(N-3) ()), (SL(N-5) ())
N-8 Attach ENABLEMENT-STATUS ENABLED (SL () (N-8))
N-9 Attach PROGRESS-STATUS PENDING (SL () (N-10 N-11))
N-10 Attach PROGRESS-STATUS ACTIVE when activated: (SL (proc) (N-11))
N-11 Attach PROGRESS-STATUS FINISHED when finished: (SL (proc) ())

N-12 Attach REALIZATION-STATUS REALIZED when realized: (SL (proc realization) ())
N-13 Attach REALIZATION-STATUS UNREALIZED (SL () (N-12))

N-14 Attach ENABL ING-SUBORDINATES-STATUS YES when so: (SL (proc) ())
N-15 Attach ENABL ING-SUBORDINATES-STATUS NO (SL () (N-14))

N-16 Attach ENABLING-SUCCESSORS-STATUS YES when so: (SL (proc) ())
N-17 Attach ENABLING-SUCCESSORS STATUS NO (SL () (N-17))

In the above justifications, proc stands for the procedure adding the justification. Reatization stands for
the record of the realization of the desire or intention, that is, cither the plan or action record that the
interpreter constructs (as cxplained in Section 4.10) for intentions, or the intention constructs from a
desire.

Justifications for N-1, N-3, and N-5 above involve statements in other theorics. Recall that each
variable is represented as a theory and the value as an attachment in that theory to the symbol VALUE. In
addition, we have cach variable theory contain a constant VARIABLE-HAS-VALUE. Whenever an attachment
is made to vaLUE, thus specifying a value, we by convention also usc that attachment to justify an
attachment of YES to VARIABLE-HAS-VALUE. Symbolically, we typically have justifications as follows.

N-18 Attach VALUE xxx (some justification)
N-19 Attach VARTABLE-HAS-VALUE NO (SL () (N-20))

N-20 Attach VARIABLE-HAS-VALUE YES (SL (N-18) ())
N-1 Attach MISSING-INPUT-VALUES SOME (SL (N-19) ())
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This last justification, when made for cach input variable, ensurcs that the MISSING - INPUT-VALUES-STATUS
will be properly maintained. Similarly, N-3 and N-5 above will have justifications involving other desires
and intcntions. N-3 will be justified in terms of an ordering rclationship and the
enabling-successors-status attachments of the predecessor. N-5 will be justified in terms of a subordinate
relationship and the cnabling-subordinates-status attachments of the superior.

Finally, desires and intentions contain scope information about the context of their definition.
The parent theory of cach is cither the plan it is defined in or the current state of mind. The desire or
intention theory, in addition, is justificd in terms of the parent and the procedures adding it to the current

statc of mind.

4.5 Policies

The intentions presented in the previous section all had aims describing some action that the program
could decide to carry out. However, not all intentions can be expressed in that form. Instcad, there are
intentions with conditional or hypothetical statements as their aims. For cxample, the program can
decide to carry out "I intend to visit George,” but not "I intend to visit George whenever [ am in New
York." This latter intention we term -a policy.f‘4 In the ﬂ;llowing, all policies will be intentions. There
may be desires with hypothetical statements as their aims, but I have not yet worked out how they might
be used, and so leave them an open problem.

Policics are represented as theorics similar to other intentions. Policies have scts of input and
output variables, an aim, status information, and a scope or context of definition just like other intentions.
In addition, policies arc distinguished by the program from other intentions by a statement
POLICY(policy) in them, where policy is a symbol referring to the policy theory itself.

‘The aims of policies are instances of a "conditional” theory, the prototype of which is

54. [McDermott 1978] introduced this technical meaning of policy as an intention with a hypothetical aim.
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IN CONDITIONAL:

Individual-constant CONDITION;

Individual-constant ACTION;

The aim of a policy is a copy of this theory in which coNp1T10N is attached to a sentence wff and ACTION is
attached to the theory describing the action as in the éilns of ordinary theories.>®

Where ordinary intentions usually are only active for somc limited duration, and then are
carricd out, policies need not be so limited. Some policies will be of limited scope, for example, while the
plan they arc part of is being executed, or while some intention is active. But other policics may have
unlimited scope, that is, some might be constantly in effect untif a decision is made to abandon them.

As we will interpret them, policies embody intentions to make decisions in certain ways. Where
intentions ordinarily are intentions to act in certain ways, policics cmbody intentions to reason in certain
ways. Instcad of lcading to actions, policies lead to reasons for possible actions in decision-making. Thus
we would translate the informal intention "I intend to visit George whenever 1 am in New York™ as the
intention to reason that I ought to visit George if I am in New York deciding what to do, that is, the
intention to construct the option of visiting George and a reason for taking that option as the outcome of
the decision.

This interpretation of policies has two major consequences. The first consequence is that it
allows some flexibility in carrying out intentions. 1f 1 have intentions to visit George and to buy books
whenever [ am in New York, I do not feel compelled to do either the minute I arrive there. Instead, these
intentions merely suggest the possibilities of visiting George and of buying books, and construct reasons
for taking thosc actions. But since these are just reasons for action rather than absolute requirements, |

can defeat these reasons in this decision and do something elsc, and reconsider the possibilitics the next

time 1 think of what to do. Since specific cases of their actions can be defeated in this way, policics seem

55. 1 find this representation for policy aims unsatisfactory, but have not yet found how to improve it.
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similar to what have been termed prima facie obligations in the literature >

Sccond, this interpretation of policies means that they embody some of the valucs of the
program. That is, we would translate a preference Qf one possible action over another in some
circumstances as the intention to rcason for the first and against the second in such circumstances,
specifically, to defeat reasons for the second possibility with rcasons for the preferred possibility.

What are policics for? In the following we will use them in many ways. Policies will express
temporal ordering relationships between intentions, as in the intention to carry out onc intention before
another, which we can interpret as the intention to choose the prior intention over its successor when
deciding what to do if the prior intention is yet unrcalized. Policics will embody the strengths of desires,
where we interpret one desire as stronger than another when the option of working on or satisfying the
first is preferred over working on or satisfying the sccond in decisions of what to do next. Policies will
embody many of the preferences of the program, such as thosc used in belief revision to choose one
possible revision over another. There policics amount to statements of the strength or commitment to
beliefs.

With this interpretation of policies, we see the special importance of the scopes of policies.
Policies of temporary duration amount to temporarily adopted values. Policics of unlimited duration
amount to permanent valucs. In this way, RMS serves the function of maintaining the current set of
values as well as the current sets of other attitudes. And, as Chapter 6 discusses, permanent values can be
adopted or abandoned through decisions to create or defeat policies of unlimited scope.

Policics, like other intentions, are carried out either by exccuting primitive programs or by
reducing them to plans. The next chapter discusses something of how and when policies are carried out
during deliberations, but the details of this, and the details of how the progress statuscs of policics are

manipulated, are yet to be worked out.

56. The term is due to Ross [1930]. See also [I1arman 1977] and {Searle 1978).
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4.6 Relationships Between Desires and Intentions

In addition to the plan steps embodied in ordinary desires and intentions, plans also contain policies
which restrict how the steps are to be carried oui. For cxample, the program might have not only the
intention (1) to place block A on top of block B, and the intention (2) to place block B on top of block C,
but also the intention (3) to carry out the previous intentions in the order (2 then 1). Another example
would be the intention (4) to build a tower of blocks, and the intention (5) to usec intentions (1,2,3) as a
way of carrying out (4). As these examples suggest, the two main sorts of inter-step relationships arc ones
which impose (relative strength or temporal) orderings on the realization of desires and intentions, and
onces which describe teleological relationships between desires and intentions.

Actually, rclationships between intentions are always telcological.  Teleological relationships,
preeminently those of one intention being a prerequisite of another or of onc intention being a way of
carrying out another, figure crucially in all other relationships. For example, two intentions might be
exccutable in cither order. If one order is more efficicnt than another, then that is a reason making for a
temporal ordering on them, but the underlying explanation remains the teleological one of the efficiency
of the computation. Similarly, if the sccond intention depends on some precondition being achicved by
the first intention, then one would again have a tcmporai ordering policy, with the undcrlying reason
being the teleological relationship of prerequisite.,

In spite of the fundamentally telcological nature of rational intention relationships, we scparate
out the ordering relationship so that they may be specified even when (as is usual in informal program
cfficicncy arguments) the rcasons behind the relationship still have not been completely formulated. In
addition, this scparation permits us to use uniformly an ordering relationship on both desires and
intentions.  For intentions the order is temporal order, and for desires the order is relative strength.
Ordering policies never conncct both desires and intentions, as these are different sorts of entities,

between which an order makes no sense.
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All policics of these sorts are defined as copies of one of the standard policy types with the
desires or intentions involved added into the theory as attachments. For cxample, one of the main
temporal ordering policy types is that of onc intention anteceding another.  This is defined by the
following theory.

IN ANTECEDENCE-POLICY-THEORY:

Axiom: POLICY{ANTECEDENCE-POLICY-THEQORY);

Typed-part INPUTS SET;

Typed-part OUTPUTS SET;

Typed-part AIM CONDITION-THEORY;

Individual-constant ANTECEDENT;

Individual-constant SUCCESSOR;

Axiom: ANTECEDES(ANTECEDENT, SUCCESSOR);

INT-1: (Aimof ANTECEDENCE-POLICY-THEORY)

Attach CONDITION —ISUCCESSORS-CNABLED(ANTECEDENT);

Attach ACTION (CON (OPTION SUCCESSOR) (SL (ANTECEDENCE-POLICY-THEORY) (}));

A policy of this sort could then be created relating Intention-1 and Intention-2 by making a copy of
ANTECEDENCE-POLICY-THEORY and adding two attachments in its aim, that of ANTECEDENT
to Intention-1, and SUCCESSOR to Intention-2.

To make the interpreter more cfficient, we also include in the desire or intention theory lists of
all ordering policies mentioning it. For cxample, each has the individual constants
ANTECEDENT-POLICIES and SUCCESSOR-POLICIES, to which are attached lists of all antecedence
policics mentioning the desire or intention as the successor or antecedent, respectively. The policies
themsclves are kept in thesc lists rather than just the antecedents or successors so that the policics may be
used in justifications. Also, whencver new ordering policies are added, corresponding justifications for
the status attachment of the desires or intentions arc added, to facilitate reasoning about which successors
are blocked by the order relationship. This duplicates some of the reasoning that would normally occur
in deliberations in a convenient and cfficient, but still defeasible, fashion.

The major types of policies relating desires and intentions arc order, dataflow, prerequisite, and

subordinate policies.
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1. Ordering policies: As mentioned above, ordering policies represent intentions to realize
desires or intentions in certain ways, to relate the steps of processing cach of those desires or intentions.
Of course, the descriptions of the steps of carrying out an intention might be very detailed, so these
policics might specify very complex relationships. For example, specifying the temporal interlcaving of
coroutines, or tasks like laying and finishing a concrete driveway, can be very complicated, because one
does a little of one, a little of the other, more of the first, and so on until they are finished. We avoid such
complexity in this thesis, and Ilcave the problem of developing a more complete vocabulary for exccution
relationships for future rescarch. Instcad, we present merely a small set of concepts for relating two
desires or intentions.>’

If I1 and 12 are two intentions, we denote the times at which the processes carrying out these
intentions begin and end, abbreviated B1, E1, B2, and E2. We can identify the beginning of a intention as
the time of transition of its progress status from pending to active, and the ending of a intention as the

time of the following transition from active to finished. With these terms, we define the temporal

ordcring policy types as follows.

I1 precedes 12 Directly Il finishes, 12 begins B1<E1=B2<E2
I1 antecedes 12 - I1 finishes before 12 begins BI<E1<B2<E2
I1 leads 12 I1 begins before I2 begins B1<B2

I1 overlaps 12 12 begins during I1 B1<(B2<E1

11 covers 12 12 occurs during I1 B1<B2<E2<E1
I1 beats 12 11 finishes during I2 B2<E1<E2

If D1 and D2 are desires, we say that D1 antecedes D2 to mean that D1 is a stronger desire than
D2 in the partial strength order.

If circularities are present in the ordering policics, so that an inconsistent set of orders exist, then

57. Many people have studied and arc studying this question of vocabularies for exccution relationships. See the literatures on
parallel programming languages [l lewitl 1977). petri nets, and PER'T extensions [Wiest and Levy 1977). Smith and Davis [1978] and
Kornfeld [1979] study such vocabularics in terms of parallel problem-solving systems.

Onc significant exlension to our vocabulary might involve the introduction of a clock or time-system for referring to
future events not related to specific actions. This sort of extension would be necessary for stating intentions like "I intend to finish
this thesis by May 12, 1980."
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some desires or intentions will all be blocked in a deadlock. To avoid this, when the program reflects on
its current plans to decide what to do next, it also checks to see if such a deadlock cxists. (Actually,
whenever an ordering policy becomes one of the current policies, the program checks to sce if it is
consistent with the previous ordering.) [If an inconsistent ordering is detccted, the program sets itself the
intention of breaking the decadlock by abandoning one or more policics. It makes the decision of which
policies to abandon by using the deliberation techniques described in the next chapter and the guidelines
described in Chapter 6.

2. Dataflow policies represent intentions to usc the outputs of one desire or intention as the
inputs to another, that is, the intentions to infer values for some variables upon getting values for other
variables. In their representation as theories, these policies mention not only the desire or intentions being
connected, but also the input and output variables of each of each that are to be identified. Dataflow
policies are respected by the interpreter by waiting until a value is computed for each input variable
mentioned in a dataflow policy. Dataflow policies thus ensurc that the producer leads the consumer by
enough time to compute the required value. Dataflow policies are actually always carried out by a
built-in primitive which propagates these valucs when necessary. To make this easier, cach variable
theory contains a symbol £Q-poLICIES which is attached to all dataflow policies mentioning the variable,

It might be uscful to have other classes of dataflow policies, such as an analogue of "precedes”
above, wherein onc intention would begin immediately upon the availability of some variable value. This
might be the case with removal of intermediate stage waste in a complex chemical process. However, it
would scem difficult to implement this sort of policy without some form of actual parallelism in one’s
machine, since the producing intention may produce the value while in an uninterruptible stage of its
process.

3. Prerequisite policies make explicit the rationale of temporal orderings. Prerequisite policics
mention at least two intentions, rather than only two, They are interpreted as the intention to use the

several cffects of one sct of intentions 11, ..., Ik as the means of achicving a combined state of affairs prior
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to another intention 1. Along with cach of the intentions the prerequisite policy mentions a logical
formula cxpressing the corresponding state of affairs. According to the interpretation, if we write the

formula corresponding to an intention I as F(l), the meaning of the policy is that

F(IT) A ... A F(Ik) DF(1),
or perhaps
CIDF(IN) A ... /\ CIKSF(IK) A (F(I1) A ... AF(Ik) DF(I)) A (TF(1)ID[1]false).
Here we have written a formula in dynamic logic [Harel 1979], in which <act ion>P means that action can
achieve a state in which P holds, and [action]false mcans that action cannot terminatc in the current
state. 8

4. Subordinate and reduction policies make explicit intentions to use one sct of desires and
intentions as a mncans of carrying out another. Whenever the interpreter reduces an intention to a plan, it
adds an instance of the plan to the current state of mind and adds a reduction policy intention the
intention and the plan. It also adds subordinate policics relating the reduced intention and cach of these
new desires and intentions. In contrast to prerequisite policies, which state that the preconditions of an
intention are attained jointly by its predecessors, the reduction and subordinate policics state that the
effect of the reduced intention is attained jointly by its subordinates.

S. Main subordinates: A subordinate intention of an intention may be annotated as the main
subordinate of the intention. This policy represents the intention to complete the main subordinate
before beginning work on the intention’s successors. For example, if the plan for serving dinner has two
steps, to prepare the food and then to scrve it, the preparation step involves the substeps of cooking the

food and then washing the pots and pans. But the food may be served just after cooking the food, and the

58. It probably is simply wishful thinking to apply a language as precisc and as inexpressive as dynamic logic to discussing actions
as general and as vaguely specified as plans, but some language is needed for this purpose. Dynamic logic is much too limited
except as a basis, for we need 1o be able to discuss in the language itsclf algorithmic complexity, intermediale states, relations
between actions, etc., nonc of which are fully within dynamic logic’s realm. Moore [1979] explores a logic of action with the power
to trcat actions as objects, but he makes no use of that power, and restricts his study {o actions as in dynamic logic. Hayes [1971)
explores a logic of actions which attempts to capture statements about the causal relations between objects affected by actions.
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washing up can be postponed until after serving. (Sce Figure 9.) Main subordinate policics thus serve a
function analogous to that of dataflow policies, but concerned with action effects rather than variable
values.

Main subordinate policics are specified by method statements, as described later. They mean
that all of the intentions in the plan must be carried out, but the superior itself will be carried out once the
main subordinate has finished, that is, from the point of view of the superior, all remaining subordinates
are merely cleanup steps unrelated to the purposc of the plan.

One extension of this idea would be to have multiple main steps of plans, cach of which allows a
different set of successors of the superior to proceed. However, this would require taking into account
considerable information about the context of the superior. For simplicity, we restrict the program to

single main subordinates, and leave the generalization for future studies.

4.7 The Hicrarchical Structure of Plans

The preceding pages have explained two major classes of constituents of plans, namely desires and
intentions. Some of these specify the steps of actions, and others restrict how the former are to be
realized. But plans contain many oihcr sorts of information whose purpose is to fill out, refine, and make
coherent the behavior sketched out by the desires and intentions. In addition, the plan itsclf is an object
in a library of plans, and plans contain ihformation aiding in their indexing in this library. Plans are
represented as theories with a number of standard parts. Plans have a set of input variables, a set of
output variablcs, a sct of desires, a set of intentions, a sct of subplans, a set of assumptions, and a set of
plan definitions to be held during the tenure of the plan.  Concretely, a plan theory will have the
following parts as well as further restricting axioms.
Typed-part INPUTS SET

Typed-part OUTPUTS SET
Typed-part DESIRES SET
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Serve Dinner

Subordinate Subordinate

Then
Prepare Food »1  Serve Food

Subordinate

Subordinate
Then (Main Subordinate)

Then
Cook Food »{ Wash Pots and Pans

Figure 9
Plan for serving dinner
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Typed-part INTENTIONS SET

Typed-part SUBPLANS SET

Typed-part ASSUMPTIONS SET

Typed-part PLAN-DEFINITIONS SET
All of the subparts of a p]én have names. The sct of desires of a plan has names for cach of the desires,
with the desire theories attached to these names. Similarly, each subplan in the set of subplans, each
assumption in the set of assumptions, each intention in the set of intentions, and cach plan definition in
the sct of plan definitions may have names. The input and output variables have names of course, and
the program generates names for any assumptions, policies, and plan definitions entered anonymously by
the syntactic macros described in Section 4.12. The naming of these parts allows, for cxample the
combination of copies of two plans from the plan library for incorporation into the current plan, or the
defeat of a local assumption specifically by a local policy.

As in desires and intentions, the variables of a plan are theories, with the same conventions.
Since the plan is used as a unit of behavior by the interpreter and by other plans, it is crucial that the
details of the plan’s construction normally be hidden. This is the function of the plan variables. The
plan’s input and output variables will be the only parts of the plan normally referred to by other plans.
These variables will be connected to the variables of the desires and intentions by dataflow policies. For
cxample, whenever a plan is built from a subplan, it is necessary to provide variable mapping information
in dataflow policies to connect the relevant plan variables with the relevant subplan variables.

Plans often contain restricting axioms which modify the subplans used in constructing a plan,
For example, one frequent modification is attaching constant values to variables of subplans,

Plan theories may contain a number of assumptions. These are belicfs to be held during the
exccution of the plan to be retracted if contradictions are encountered. For example, when negotiating to
buy a house, ong¢ typically assumcs that the scller will sell the house once agrecable terms are reached.

Another sort of cxample is the specification of default values for local variables or other variables, an

instance being a plan to clear the top of a block which assumes that the table is always a good default
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target location for any blocks to be moved. A final sort of assumption is that of assumed method
relationships between procedures and aims (as explained below), in which it is assumed that some
procedure is relevant to achieving some aim during the plan’s execution.

Plan theorics may contain a number of policics to be in force during the plan’s exccution to
influcnce the expected sorts of decisions. Thesc are typically concerned with decisions about the order in
which the plan’s desires and intentions should be carried out, the methods by which they should be
carricd out, and the ways that the plan’s assumptions should be revised in case of difficulties. For
example, onc’s plan for giving a talk may include the policy to prefer to answer questions with "I don’t
know" rather than trying to think on one’s fect. Similarly, the cooking with grease plan mentioned carlier
might cmploy a policy to change the default plan for cxtinguishing fires to one involving a fire
extinguisher.

Finally, plan thcories may contain a number of plan definitions to be held during the plan’s
exccution.®® An example is the plan for cooking with grease mentioned carlier, which contains a local
plan definition for how to put out fires, along with a policy preferring the local plan to the standard plan.
Locally defined plans and policies are how once might write plans with conditional steps. Each of the
cases is encoded as a policy which adds the appropriate intention or plan to the network depending on
what conditions hold.

Temporary assumptions of beliefs, policies, and plan definitions arc actually shorthand for the
intentions to adopt them temporarily. As intentions, they can be related by temporal ordering policies.
For example, in Section 4.12, we present a plan which midway through its exccution makes an
assumption to endurc only while carrying out the next intention. We scparate out explicit sets of these
assumptions as abbreviations both for the intention declarations and for the ordering policics necessary to

make all the plan-extant assumptions precede all the "real” intentions. Temporary assumptions are made

59. Actually, the variables and plan definitions are just temporarily defined concepts. The plan might contain other sorts of
temporarily defined concepts, but variables and plan definitions are the most important sorts, so we concentrate on them.
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to have scopes limited to the duration of the plan by making the assumed attitude depend on the
statement that the scope intention is not finished. That is, the assumptions depend monotonically on the
statement that the superior intention has become active, and non-monotonically on the statement that the

superior has finished.

4.8 Plan Specifications

Plans are involved in at lcast three hicrarchical organizations. The first of these is the hierarchy of
construction, in which cxisting plans can be combined to construct a new plan. Sccond is the hicrarchy of
definition, in which plans can contain local definitions of other plans to be of limited temporal duration.
Third is the hicrarchy of effects or situations of use, in which plans are indexed by the purposcs for which
they can be used. This indexing information is divided into two components: spcecifications of plan
cffects, and method statements to connect ends with relevant plans as means.

Plan cffect specifications are simply statements about the propertics of the plan. For example,
Section 1.4.2 indicated how statements about what procedures call other procedures could be used in
answering questions about the program’s history of actions. For another example, statements estimating
the complexity of procedures can be Qscd in planning und.cr time constraints. But the most studied sort
of statement of procedure properties is that of Floyd-Hoare specifications: pairs of formulas P and Q with
the interpretation that if P holds before the plan is executed, then Q will hold if the plan tcrminates,
where termination of the plan is not assumed. These specifications take the form pD{p1an]0 in dynamic
logic [Harel 1979}, and termination can be correspondingly expressed as PD<plan>true. There can be
several plan effect specifications for each plan. These specifications are not used in the normal operation
of the program, but arc uscful in hypothetical rcasoning and in modifying or analyzing the plan library.
In hypothetical reasoning the technique of symbolic exccution is used. This technique doces not execute a

primitive or plan, but instcad tries to prove that the antecedents of a procedure’s specifications hold in
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one situation, and if successful, then concludes the consequents in the following temporal situation. In
modifying the plan library, the program might scck, for example, to reorganize the plans to make sure
that they are scen to be relevant to problems whose statements are contained in the plan’s effects. In
analyzing the plan library, the aim is to more complctély annotate (and verify the correctness of) the plans
and their internal structure with the records of, say, additional prercquisite policics where before there
were only temporal ordering policics.m

Information involving a plan’s effects is more directly uscful in the form of method statements.
These indicate what plans are uscful for which aims of intentions. The interpreter uses method
statements to retrieve the plans and primitives relevant to achicving the aim of the intention being
interpreted. In addition, method statements for plans also specify which step of the plan is the main step
with respect to the desired effect. Thus a multistcp plan may be a means of achicving scveral sorts of
aims. Fach of these uscs of the plan would be specificd in a separate method statement, along with a
statement of which of the steps of the plan achicved the particular effect (aim) of relevance.

Mecthod statements arc represented as simple beliefs of the program. For plans they take the

form
PLAN-METHOD{aim, plan, mainstepname),

where aim and pian refer to, respectively, a theory describing some aim concept and a plan theory.
Mainstepname is the name of some desire or intention in the plan which is declared main. For cxample, a
method statement like the following might be used in describing the subplan of the dinner-serving plan

of Section 4.6.

PLAN-METHOD( PREPARE-FOOD-AIM, COOK-THEN-WASH-PLAN, COOK-FOOD).

60. [Shrobe 1979a] discusses such techniques in detail.
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For primitives, method statements take the form

PRIMITIVE-METHOD(aim, primitive).

Mecthods relevant to an intention’s aim arc retrieved by procedures which take the aim,
instantiate it with the intention's input variable values, and then look in the procedure library for method
statements which mention aim types subsuming the particular instantiated aim. This can be a very
difficult problem, as many inferences might be required to judge onc aim description subsumed by
another. This is an incompleteness in the current program. [ envision actually employing several sorts of
retrieval procedures, simple ones which are fast but miss some methods (for example, ones which just
look up the VC hicrarchy from the particular aim) to procedures which are slower but find more of the
relevant methods. Different versions of the interpreter would then use the different retrieval procedures,
and in difficult cascs, sclf-apply the program to retricving the relevant methods.

This issuc of what methods should be retrieved as relevant to a particular aim seems to be one 10
which deontic logic is relevant. Onc of the issues addressed by logics of commands and obligations is that
of what commands and obligations are cntailed by a given command or obligation. For examplc, suppose
I am obliged to visit MIT. Since MIT is part of Massachusetts, being on the grounds of MIT entails being
in Massachusetts. Thus we can infer that 1 am also obliged to visit Massachusetts as well. I suggest that
this question of entailment of commands or obligations is closely connected with the question of what
method aims entail or arc entailed by a given intention aim. Further study of this connection might shed
light on both the technigues of this thesis and on the proper role of deontic logic. The next chapter

mentions another conncection with deontic logic as well.
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4.9 The Current State of Mind

The program represents its current state of mind to itself as the global thcory ME. ME contains
statements about the program’s current concepts, reasons, beliefs, desires, and intentions. To act, the
program reflects on the contents of ME, on what desires and intentions are currently held according to
the global theory.

Plans reflect the structure of the program, as they arc used to temporarily augment the current
statc of mind. Plans arc concepts describing subconcepts (the plan variables and plan definitions),
reasons, beliefs (the assumptions made by the plan), desires, and intentions. When the program carries
out an intention by reducing it to a plan, it adds the contents of the plan to the current state of mind by
making the global concept ME be a VC of the plan-instance concept. This VC statement (in ME of
course) is justificd monotonically in tcrms of the statement of the reduction, and non-monotonically in
terms of the incompletion of the intention being reduced. In this way the contents of the plan augment
the current state of mind until the exccution of the plan (and hence its superior) has finished, or until the
supcrior is abandoned. At that time, the VC statement becomes out, and the plan’s contents are removed
from the current state of mind.%!

We leave scveral unanswcred questions here. 'l‘ﬁis technique for interpreting plans requires a

distinction between the satisfaction of an intention and the finishing of an intention. Plans are

61. It is often argued (e.g.. by Taylor [1974]) that our notion of “sclf” is an illusion. Even if onc acknowledges this thesis, the idea
of one’s self may be uscful in practice, and in facl, people typically find the concept indispensible. However, people also voice their
indecision with phrases like “Part of me wants to do this, part of me wants to do that,” or "I'm of (wo minds about it.™ These
hightight the next problem: Is there just one “self” of a person? Nagel [1979¢] argues that there cannot be just one self from
psychological evidence concerning brain bisections. Minsky and Papert [1978] arguc apainst a single self both from psychological
evidence concerning the development of intefligence in children, and from computational grounds, namely that presupposition of a
single self begs the question of how the mind might work. ‘They proposc an analysis of the mind into many hundreds or thousands
of simple "agents” in a "socicly of mind." The mind’s idca of its sell continually changes as different agents gain control. The
proposals of this section for the current state of mind might be viewed as one realization of Minsky and Papert’s idcas. In the
program, cach procedure actually carries with it a fragment of the current state of mind, so what the current state is varies with what
procedures have control. Thus Minsky and Papert’s [1973] conservation examples, in which the physical laws belicved by the child
scem 1o vary with the problem being worked on, can be explained casily by their suggestion of different belicfs embodied in the
different procedures used by the child. Similarly, recognition of conflicts between two currently active procedures manifests as
reflection to an arbitrating procedure which specifically considers which of the two “minds” (procedures) to adopt.
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purposcless procedures, or more precisely, procedures which can be used for many different purposes.
Because of this, plans may be indexed via method statements as useful for achieving intentions for which
they are more general than necessary. One symptom of this is that of main subordinatcs, in which the aim
of the intention is sometimes satisfied before all of the intentions in the plan have been carried out. In
some cases this indicates that the remainder of the plan can be discarded, as when I use my plan for
getting to someplace as a plan for getting to one of the stops on the way. But in other cascs, the remaining
intentions of the plan arc clean-up steps which secure the results achieved by the main step, or which
prevent certain undesirable side-cffects. For cxample, my plan for checking if I turned off the lights in
my dormitory room has a step for closing the door after I have opened it and looked inside. This step
doces not serve the nominal purpose of the plan, my intention to make sure the lights are out, but rather
my policy of discouraging robberics by keeping my door closed. In this case, | cannot simply discard the
remaining step of the plan after achicving its purpose.

We do not offer any way of overcoming this difficulty here. A suggestion for investigation is
that the plan also contain a schematic rcason for the last step in terms of the realization record of the first
step (as explained in Scction 4.10, this is a belicf that the action was taken) and the extra-plan policy of
keeping the door closed. However, just how this would work is uncertain, because presumably the
reasons contained in a plan have tenure limited to that of the plan as well, so nothing has been gained.
The plan might contain a step taking the action of adding the reason permanently. Alternatively, a
distinction might be developed between the satisfaction of an intention and the finishing of an intention.
Perhaps the plan’s tenure and the finishing of the intention are coincident with the satisfaction (and

simultancous finishing) of the reduction intention to carry out the first intention by means of the plan.
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4.10 The History of Actions

As the interpreter acts, it makes records of its actions so that later it can tell what it did and why. These
records include belicfs about its past actions and the connections between these actions, the desires or
intentions leading to them, and their cffects (the changes in belicfs and other attitudes stemming from the
actions). The records left by the interpreter include a realization record and a realization statement, where
the realization record reflects what action was taken, and the realization statement reflects which intention
the action realizes.

Realization statcments arc just beliefs in the global theory of the form

REALIZES(realization-record, intention),

and are justified by the interpreter procedure performing the realization and by the decision used to
select the method for carrying out the intention. 'The intention and realization record contain redundant
pointers to the realization statement to facilitate explanations.

Realization records are beliefs of the form

ACTION(plan/primitive, argument 1ist)

where plan/primitive is the plan or primitive in the procedure library by which the intention was carried
out, and the argument list is a list of the variable bindings used for plan variables or primitive arguments
derived from the intention. Realization records are justified by the interpreter program alone. They are
not conclusions drawn from other beliefs or attitudes, but rather are observations made by the interpreter
about its own actions.

'The nature of realization records can be clarified by comparing them with RMS justifications.
Justifications are actually a form of realization records. The realization records specified above record

actions for which explicit intentions cxist. They record actions taken directly on the basis of intentions.
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Justifications, on the other hand, are constructed by primitives called by other primitives. They record
actions taken without explicit intentions, actions taken only indircctly on the basis of cxplicit intentions.
Realization records and justification have similar forms. Recall that the justifications employed by the

program are all reflected in explicit beliefs of the form (we only consider S).-justifications here)
SL-JUSTIFICATION(name, node, {name}+inlist, outlist)

The standard use of justifications includes the primitive’s node in the inlist and its arguments’ nodes in
cither the inlist or the oudlist, depending on how they are used in the procedure. Ignoring the name/node
and inlist/oudlist complexitics, justifications share the form of realization records: procedure plus
arguments. Justification record the unconscious inferential actions of the program,

It might well be possible to make the treatment of justifications and realization records both
more uniform and more general, but that is left for future research.

Just as atticudes depend on the explicit belief about their justification, attitudes concluded from
plan or primitive realizations depend on the realization records for those plans or primitives. Each new
plan instance added to the current state of mind is justified monotonically in terms of a realization record.
Each conclusion drawn from a primitive includes the realization record in the inlist of the justification for
that conclusion. For example. if a primitive computes a value for one of the output variables of the
intention it is carrying out, it justifics this attachment in terms of the realization record. If it computes a
new value for some symbol (c.g the list of successors of an intention theory), it likewise justifics the new
attachment in terms of the realization record, as well as using this record in a justification defeating the
justification of the previous attachment. With such records, the program can discard the cffects of an
action if it discards the memory of the action, say by deciding that it had merely hallucinated the action.
In morc normal cascs, the program can trace the causes of circumstances described by its beliefs by
tracing backwards through the justifications of the belicfs, thus sceing part of their inferential sources,

back to rcalization records, then through the realization statements and the justifications of the intentions,
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thus sceing part of their causal sources. We make usc of this sort of analysis in Chapter 6.
The interpreter also makes statements of historical order relating the realization records. These
are statements which tell the temporal order in which actions were taken. These statements are of the

form
PRECEDING-ACTION(prior-realization-record, following-realization record).

Realization records also contain pointers to their preceding and following realization records in the
temporal order. Such statements are redundant in some versions of the interpreter, as discussed below,
when the interpreter records the order in which it acts on intentions. The meaning of these statements
might be backed up by a theory of time. This would allow the program 0 reason about its history. For
example, its theory of time might include facts about the transitivity of PRECEDING-ACTION, about
the linearity of that ordering (if it is linear), about (as Section 1.4.2 suggested) the non-occurrence of
deliberate actions which do not appear in realization records, ctc. Just what the program’s theory of time
and its actions should be is still an open question. Rescher and Urquhart [1971] survey many temporal
logics. Hayes [1970] (and to a lesser extent, also [McCarthy and Hayes 1969)) surveys temporal logics with
an cye to applications in rcasoning programs.

It is often possible to recover considerable information about the history of a particular attitude
by cxamining the complete set of rcasons concerning it. Since primitives change attitudes by defeating
previous justifications on the basis of realization records, changes in the status of an attitude can be
inferred from a justification for it in terms of one action, a justification defeating the first in terms of a
later action, a justification defeating the second in terms of yet a later action, etc. It remains for future
studices to pursue a carcful development of such techniques,

However, some interpreters may not record temporal orderings of actions. Humans frequently
cannot recall the order in which certain actions occurred, or that they took some action rather than

another, or that they took some action at all. Thesc failures need not all be failures of memory.
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Sometimes plans or primitives will cmploy exccutives which, for efficiency perhaps, simply do not record
all of this information. For example, the temporal order in which justifications are constructed is usually
not recorded, although these justifications actually rccorq actions taken by primitives. Whilc it may be
possible to introduce such temporal records in a serial computer, there is reason to suspect that the
parallel computations which may ultimately be necessary (and which may be used by humans) will rule

out having complete temporal records.

4.11 The Frontier

We partition the set of intentions (current or not) into three segments: the past, the present, and the
Suture. The past consists of all the finished or discarded intentions, the present of all active intentions,
and the future of all pending intentions. In addition, we further subdivide the future into the frontier and
blue sky. The frontier consists of all enabled pending intentions, and blue sky all blocked pending
intentions. The past thus contains all intentions that have been either discarded or, more commonly,
carried out, the present all intentions currently being carried out, the future all current intentions yet to
be carried out, the fronticr those current intentions which can be worked on directly, and bluc sky those
intentions which depend on the successful completion or satisfaction of prior intentions. The
terminology blue sky is meant to recall that the opportunity to work on bluc sky intentions depends on
everything going well, on no unforeseen circumstances arising which lcad to the premature abandonment
of the intentions due to impossibility or inappropriateness. We make these distinctions because the

program normaily acts only on the intentions on the frontier.
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4.12 A Careful, Meta-Circular Interpreter

How does the program act on the basis of its desires and intentions? This question has many answers, for
interpretation of the current mental state is an activity itsclf, and like other activities, can be performed in
many ways. For example, the basic steps of acting on the basis of the desires and intentions are (1) pick a
desire or intention to carry out, (2) pick some way of carrying it out, (3) carry it out via the sclected
means, and (4) repeat these steps. There are clearly many ways of going about these steps. One can be
very carcful about what onc is doing and deliberate at length in steps (1) and (2), or onc might just
carclessly pick a task and tack at random, or something in between these extremes. As another example,
one might choose to work for some while only on onc intention and its subordinates to the exctusion of all
other independent activities, for instance, exclusively pursuing thesis-writing and its subactivities to the
exclusion of social and educational activities. In fact, this provides a way of viewing primitive programs
as extremely specialized cxecutives, executives which start with one intention and singlemindedly pursue
it and its subactivitics (although the subactivities of primitives arc usually not explicit intentions but
rather further primitive calls). Thus there is an cxtremely wide range of exccutives employed by the
program, and the typical operation of cach of these is to exercise control of the program’s actions until it
interprets an instruction to hand over éontrol to some othcf executive.92

This section describes a very careful and general interpreter. This interpreter is particularly
intcresting in that it is a meta-circular interpreter, one written in the language that it interprets. In this
case, the standard way to do things carcfully is to plan them, and this interpreter, or TORPID as we will
call it, follows this strategy by being a plan containing a sct of plans, method statements, and policies for

interpreting the current state of mind, and so plans how to carry out its own intentions. The heart of

TORPID is the following plan, whose steps arc outlined in Figure 10.

62. This sort of approach (o program exccutives is sometimes called continuation-passing style [Stecle and Sussman 1976}
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Form intentions from desires

1

Select intention to act on

1

Select procedure for carrying out intention

|

Activate intention

1

Execute procedure

l

Continue: normally, repeat

Figure 10
The TORPID Procedure
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INTORPID: (implicitly inall the following)

(DEFPLAN MACRO-TORPID ;Defplan, Choose, Aspect - explained below
(INTENMTION I-1 () () ((CHOOSE (ASPECT=AIM) (INTENTION=31 INTENTION(I))) () ()))
(INTENTION I-2 () (INTENTIONS) (FIND-FRONTIER-INTENTIONS () (INTENTIONS)))
(ANTECEDES 1-11-2)
(INTENTION I-3 (INTENTIONS) (CHOSEN-INTENTION)

((CHOOSE (ASPECT=CHOSEN-INTENTION) (INTENTION=1-7)) (INITIAL-OPTIONS) (OUTCOML)))
(INTENTION I-4 (CHOSEN-INTENTION) (METHODS) (FIND-INTENTION-METHODS (INTENTION) (METHODS)))
(INTENTION I-5 (METHODS) (CHOSEN-METHOD)

((CHOOSE (ASPECT=CHOSEN-METHODS) ( INTENTION=I-7)) (INITIAL-OPTIONS) (OUTCOME)))
(INTENTION I-6 (CHOSEN-INTENTION) () (ACTIVATE-INTENTION (CHOSEN-INTENTION) ()))

(ANTECEDES I-51-6)

(INTENTION I-7 (CHOSEN-INTENTION CHOSEN-METHOD) () (EXECUTE-INTENTION (INTENTION) (METHOD)))
(ANTECEDES I-6 1-7)

(INTENTION I-8 () () (CONTINUE () ()))

(ANTECEDES 1-7 1-8))

Here we have used a syntactic macro to make a somewhat less verbose syntactic form for defining plans.63
In DEFPLAN, one first specifics the name of the theory, MACRO-TORPID, and then in the body of the
macro specifies the desires, intentions, and other parts of the plan with further syntactic extensions. The
syntax for intentions specifics first the name of the intention in the plan, then the list of names of inpu:
variables, the list of output variable names, and finally the aim. The aim consists of the type of the aim
theory, together with two lists of names, These should be names of parts of the aim theory, to be
identified, respectively, with the lists of input variable names and output variable names of the intention
to set up the keyword mapping of variables. In addition, the macro automatically sets up dataflow
policies between all similarly named intention and plan variables, unless the names are mentioned in
explicit dataflow policies.

What does this plan say? MACRO-TORPID’s first step is to deliberate on things to do, to form
intentions from some of its desires. This decision is formulated as an intention to choose aims (and,

actually, variables as well, but that is left out for simplicity) for some unspecificd intention. The intention

is identified as a decision intention by the aim keyword "CHOOSE." The "ASPECT™ statement indicates

63. The exact details of this macro and syntax are yet to be worked out, but the main points should be clear. If something in the
following seems underspecified, it is.
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what part of the unspecified intention is to be filled in with a value. As its sccond step the interpreter
finds the current sct of fronticr intentions, and names this with the plan-variable INTENTIONS. The
third step is to choose one intention from this set and call it CHOSEN-INTENTION. This decision is
formulated as a choice of a valuc for the variable CPldSEN-IN’I‘ENTION of I-7. Fourth, the plan
retrieves a list of methods relevant to carrying out the chosen intention, and calls this METHODS. Fifth,
it sclects one of these methods by using an intention to sclect a value for the variable
CHOSEN-METHOD of 1-7. 'The sixth step activates the chosen intention by changing its status.
Seventh, it realizes the sclected intention via the sclected method. Eighth and finally, it continues
interpreting.

MACRO-TORPID, to work as we have indicated, must be supported by a number of other
plans, the appropriate method statements, and policies.

The first step of MACRO-TORPID relics on a carcful deliberation procedure. The next chapter
presents onc of these. In this step, it is used to decide if any new intentions should be formed to pursue
current desires.

The second step of MACRO-TORPID gathers up the current frontier intentions by means of a
simple primitive program (omitted here) which scans the set of intentions for frontier intentions.
(Alternatively, the actual implementation maintains a Jist of all fronticr intentions, and modifies the list’s
contents when intentions and ordering policies are added and realized.) This primitive is declared to be
the default method for this intention by a policy. Here we employ further syntactic macros to define Lisp
functions as primitive concept attachments (DEFPRIMITIVE), to declare construct method statements
for aims and procedures (DEFMETHOD), and to declare policies (DEFPOLICY) by giving the
antecedent and consequent of their aim, the consequent being a list of instructions to be carricd out (as
the next chapter explains).

(DEFPRIMITIVE BASIC-FIND-FRONTIER-PRIMITIVE () (INTENTIONS)
...omitted...)
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(DEFMETHOD BASIC-F IND- FRONT IER-ME THOD
(AIM [AIM T-2 INTENTIONS MACRO-TORPID])
(PROCEDURE BASTC-FIND-FRONTIER-PRIMITIVE))
(DEFPOLICY BASIC-FIND-FRONTIER-DEFAULT-POLICY
(IF ([AIM PURPOSE DECISION] =
(CHOOSE-METHODS [AIM T-2 INTENTIONS MACRO-TORPID])))
(THEN (DEFAULT BASIC-FIND-FRONTIER-METHOD)))

All of the following steps of MACRO-TORPID are carried out by similarly described primitives, which
we will not give here, except for the last step of continuing exccution. In this case, the default method for

continuing exccution is MACRO-TORPID itself.

(DEFMETHOD BASTC-CONT INUE-METHOD
(AIM [AIM T-8 INTENTIONS TORPID])
(PROCEDURE MACRO-TORPID))
(DEFPOLICY BASIC-CONTINUE-DEFAULT-POLICY
(IF ([AIM PURPOSE DECISION] =
(CHOOSE -METHODS [AIM T-8 INTENTIONS MACRO-TORPID])))
(THEN (DEFAULT BASIC-CONTINUE-METHOD)))

This TORPID plan is all well and good, but how docs the program get going in the first place?
The answer is that it contains a primitive exccutive specially tailored for interpreting MACRO-TORPID.

This exccutive is the following 1.1Sp® primitive program.

(DEFPRIMITIVE MICRO-TORPID ()
(PROG (INTENTIONS INTENTION METHODS METHOD)

(SETQ INTENTIONS (MICRO-TORPID-FIND-FRONTIER- INTENTIONS -PROCEDURE))
(SETQ INTENTTON (BASIC-CHOOSE-NEXT- INTENTION-PROCEDURE INTENTIONS))
(SETQ METHODS (BASIC-FIND-INTENTION-METHODS-PROCEDURE INTENTION))
(SETQ METHOD (BASIC-CHOOSE-INTENTION-METHOD-PROCEDURE INTENTION METHODS))
(BASIC-ACTIVATE-INTENT ION-PROCEDURE INTENTION)
(COND ((PRIMOP? METHOD)

(BASIC-INTENTION-EXECUTION-PROCEDURE INTENTION METHOD))

(T (BASIC-INTENTION-REDUCT ION-PROCEDURE INTENTION METHOD)))
(MICRO-TORPID)))

MICRO-TORPID has roughly the same steps as MACRO-TORPID, but with the defaults of TORPID

built into place. It calls the TORPID primitives directly, except for the decision of what intention to work

64. Actually, SCHEME would be better. The recursive call of the last line would have to be replace by a loop for it to work in
LISP.
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on next, for which MICRO-TORPID uses a procedure which looks only for intentions resulting from an
instantiation of MACRO-TORPID. Also, MICRO-TORPID does not deliberate on what to do because it
only looks for intentions resulting from an instancc of MACRO-TORPID.

Let us sec how this works. |

1. We start up the program by constructing an intention to CONTINUE and c¢xecuting
MICRO-TORPID.

2. Because there are no other intentions, MICRO-TORPID picks this intention as the next step,
finds its default method, namely MACRO-TORPID, and reduces the intention to the new plan, a copy of
MACRO-TORPID. MICRO-TORPID then begins work on MACRO-TORPID.

3. MACRO-TORPID's first step is to deliberatc on what to do. For this it uses a careful
deliberation procedure as described in the next chapter. 'This deliberation procedure finds possible
courses of action by means of a policy to fulfill the desires if possible. The ordering policies between the
desires, and other policies as well, provide reasons for and against these options. When this dcliberation
is finished, all options that have good reasons for them and none against them arc used to form new
intentions.

Intention formation scems to be ill-studied, to the best of my knowledge. The approach taken
here is no more than an initial, and likely unsatisfactory, proposal for how this might be done. In
MACRO-TORPID, normally all desires eventually are pursued by forming intentions to pursue their
aims. This step is the means by which intention formation occurs. No intentions might be formed, or
several might be formed, depending on what sorts of policies enter into the decision-making. For
example, policies which reflect on the resource limitations implicd by the program’s current intentions
might rule out forming any new intentions. Policics which reflect on the consistency of desires and
intentions may rule out some desires but not others. Or at the other extreme, the program might find
unchallenged reasons to pursue all its desires, and form intentions from all of them. This subject deserves

more serious attention than I have been able to give it.
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[t might scem that this step could be combined with MACRO-TORPID's third step of picking
an intention to carry out, but this cannot be, for two reasons. First, one can decide to pursuc a desire, but
not an intention. It makes no sense to intend to intend to do something. Sccond, if one deliberated about
desires and intentions simultancously, one would ncéd valucs comparing desircs and intentions, which
also makes no scnse. In fact, one way to compare intentions might be to compare the strengths of the
desires they were formed from, if there were any, but intentions cannot be compared with desires directly.

4. MACRO-TORPID’s second step is to find the frontier intentions. At this point, there are no
fronticr intentions, because the only other intentions are those in MACRO-TORPID itsclf, which are
blocked for lack of input variable values. Thus when MICRO-TORPID retrieves and dcliberates on
methods for this intentions, it not only finds the default primitive, but also the following backup

primitive.65

(DEFPRIMITIVE INPUT-NEW-INTENTIONS-PRIMITIVE () (INTENTIONS) ...)
(DEFMETHOD INPUT-NEW- INTENTION-METHOD
(AIM [AIM I-2 INTENTIONS MACRO-TORPID])
(PROCEDURE INPUT-NEW- INTENTIONS-PRIMITIVE))
(DEFPOLICY INPUT-BACKUP-POLICY
(IF ([AIM PURPOSE DECISION] =
(CHOOSE-METHOD [AIM I-2 INTENTIONS MACRO-TORPID])
/\ (BASIC-FIND-FRONTIER-INTENTIONS-PRIMITIVE) = NIL))
(THEN (CON (OPTION 'BASIC-FIND-FRONTIER-INTENTIONS-METHOD) (SL (INPUT-BACKUP-POLICY) ()))
(PRO (OPTION ' INPUT-NEW- INTENTIONS-METHOD) (SL ( INPUT-BACKUP-POLICY) ()))))

The backup primitive INPUT-NEW-INTENTIONS-PRIMITIVE queries the user for some intention to
work on and waits for a reply. The backup policy leads MICRO-TORPID to sclect and exccute this
primitive for finding new intentions rather than the normal onc which just looks at the frontier.

5. At this point, we enter construct some intention along with procedures for carrying it out.

65. This should be done in some belter way, such as reflecting on how to proceed as does NASI. with reformulation intentions, but
1 have not attended o this problem yet. I done properly, we could just call MICRO-TORPID at the start and let it ask for the
initial MACRO-TORPID CONTINUE intention. This primitive also shows the paucily of communication of the program with its
environment. If all new information is gathered unconsciously by primitives or added by the user while the program’s operation has
been interrupted, then the program is unconscious of its environment. To have the program be conscious of its environment as well
as merely sclf-conscious, it must have information about its sensory and cffective mechanisms so that it can use its communication
channels deliberately, rather than simply reacting to their automatic functioning,
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We ignorc the details of this, for our concern is primarily with watching TORPID.

6. The backup method now returns the new intention as the frontier. This frontier is recorded as
the valuc of the plan variable INTENTIONS. Thus while exccuting TORPID, the program leaves behind
records of the intentions it saw at some past step of interpretation. This is an important piece of historical
information uscful in the skill modification processes discussed later.

7. Next, MACRO-TORPID presents the frontier intention of choosing which intention to work
on from INTENTIONS.” MICRO-TORPID sces both this intention and the non-TORPID intention on
its frontier, but restricts itsclf to working only on intentions stemming from instances of
MACRO-TORPID, so works on MACRO-TORPIIY's third step.

8. MICRO-TORPID carrics out MACRO-TORPIIY's third intention by the default method,
which is a general deliberation procedure. MACRO-TORPID's third step is not one of forming any
number of intentions, but rather onc of deciding on a single value for an aspect of a current intention,
namely the variable CHOSEN-INTENTION of I-7 in the current instance of MACRO-TORPID. The
deliberation procedure sets up the frontier intentions transmitted through INTENTIONS as the initial
options. It proceeds to find reasons for and against carrying out each of the intentions next. Finally, it
decides on one, and attaches that value to the specified variable of I-7.

Actually, we have been needlessly redundant in MACRO-TORPID for the sake of clarity. The
policies relating intentions that determine the frontier actually enter into this deliberation, so we can just
as well dispense with step 1-2 (and similarly, I-5) by beginning deliberation with a policy to make all
pending intentions options, and then forming reasons for and against these options from the policies.
This would also make unnccessary the complex system of justifications between intention statuses used to
compute the frontier.

All in all, the deliberation procedure subsumes all the special case information mentioned
above. The list of options of the deliberation record shows what intentions were considered at this time,

and the list of considerations shows the extant policics. In addition, there may be other policics relevant
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to this decision besides the policies. In fact, some of the current ordering policies might be defeated by
special-case policies, so the frontier as seen from looking just at the temporal ordering policics is not
always completely accurate.

At any rate, the deliberation procedure in tﬁis case chooscs the sole non-TORPID intention as
its outcome, and so the plan variable CHOSEN-INTENTION is given this value,

9. Next, MACRO-TORPID retrieves a list of methods for carrying out the chosen intention and
stores the list in METHODS. 1t then deliberates to find a method as the value of CHOSEN-METHOD.
As above, the deliberation step actually subsumes the prior retricval step.

10. MACRO-TORPID's next step performs some bookkeeping functions, primarily to change
the status of the chosen intention to active.

11. MACRO-TORPID then has the step of realizing the chosen intention by the chosen method.
It performs this realization cither by cxecuting the procedure selected as the method or by adding the
method plan to the current state of mind. This intention of MACRO-TORPID forms the realization
statement connecting the intention and its rcalization, obviating the nced for the interpreter to make such
a record specifically. In addition, since the ordering for the steps of MACRO-TORPID is a standard
linear order, we also get historical ordering records between the realization records automatically.

12. Finally, MACRO-TORPID again presents the intention of continuing, and the process starts
again. The connection betwecen this intention and the new instance of MACRO-TORPID then forms the
next part of the chain of historical order.

This concludes the example of TORPID’s operation.

The program nced not operate solcly by using TORPID as the interpreter, but might use at
different times a number of interpreters. In fact, the program can employ a slight gencralization of
MICRO-TORPID which records the desired records (or not) without going to the extremes of
deliberation met in TORPID. The program can switch between "careful” mode and a normal heedless

modc which docs not record as much information by the following tcchnique. Say that the plan to be
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CHAPTER S

DELIBERATION

How do we ever manage to make decisions? The ovcfwhclming fact of our lives is the dilemmas and near
dilemmas that confront us, the difficult decisions which force us to sacrifice one hope for others. We are
constantly torn between scemingly incompatible principles of action. To decide what to do we must
reconcile these principles to choose the moral, the kind, the expedient, or the comfortable thing to do.

Dilemmas and difficult decisions involve recasons for conflicting courses of action, rcasons
formulated in disjoint vocabularics and value systems. To resolve dilemmas, whether they be mighty or
mundang, the decision-maker needs to reflect on these conflicting reasons, to consider what valuc-systems
cach reason belongs to, and to judge which rcasons take precedence over which other reasons. We must
be content to make these precedence judgements in a case by case fashion without absolute principles or
reductions relating the disjoint value-systems like "Any mora; reason takes precedence over any cconomic
reason.” This chapter explores such a decision-making method called reasoned deliberation in which the
dcliberation procedure can reflect on the reasons for and against courses of action, and make judgements
about these reasons specific to cach particular decision and its circumstances.

The basic idea of reasoned deliberation builds on the mechanisms developed in the preceding
chapters. The program first formulates its intcntion to make a decision as a decision intention. 1t then
makes the decision by exccuting a deliberation procedure, which is retrieved as a method for carrying out
the decision intention. There are many sorts of deliberation procedures corresponding to the many sorts
of decisions to be made, but the typical general-purpose dcliberation procedure constructs a set of
options, a sct of relevant policies (called considerations), and a set of reasons. The policies retricved from
the current set of intentions as being relevant to the decision are carried out to construct reasons for and
against the options, and to augment the sct of options with ncw options. Howcever, cach reason

constructed by carrying out a policy for a particular decision is a non-monotonic assumption. Each policy
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represents an intention to rcason in a certain way, and this intention is satisfied by constructing the
appropriate reasons. The policy’s putative cffect may fail to be realize because the policy’s application in
a particular decision may be defeated by other policies concerning special cases, cxceptions, or
preferential relations among types of reasons. The dclibcrétion procedure reflects on cach new reason to
find further policics relevant to the new reason. These further policies might construct reasons against the
original reason. Since the reasons are non-monotonic assumptions, these new reasons defeat the original
rcason, defeating the application of the original policy in this particular case. Of course, these defeating
reasons can in turn be defeated. Finally, the deliberation procedure reflects on the entire sct of reasons to
decide whether to make a decision on the basis of the constructed reasons, to postpone the decision, to
deliberate further, or to reject the decision.

Reasoned deliberation plays an important role in the operation of the program. For example, in
some cascs this sort of reflective decision-making is used by the interpreter to form the intention to
pursue some desire, to sclect which intention to carry out next, or which method to use in carrying out the
sclected intention. In Chapter 6 we will indicate further applications of reasoned deliberation in deciding
how to revise or modify the program’s sets of beliefs, concepts, desires, intentions, values, and skills.

Of course, not all decisions are made by procedures of the complexity outlined above. In many
cases, one has decided in advance how one will make a type of decision in certain circumstances, and
when such occasions arise, onc simply exccutes that procedure. These prior decisions with their built-in
presuppositions can fix assﬁmptions or the use of particular policics in a specialized decision procedure,
so that the special-case procedure need not be as complex in opceration as the general procedure which
has to retrieve and decide how to apply assumptions and policics on the spot. In fact, this deciding how
to decide is a common activity. Since the plans and primitives of the program are really specialized
executives making certain types of decisions, the choice of which method to use in carrying out some
intention constitutes a decision about which further decisions to make and how to make them. This is

clearest in the case of deciding what procedure to use in carrying out a decision intention. Since the
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library of procedures is organized hicrarchically, these decisions about decisions are made in a similar
hicrarchical fashion. This can be viewed as analogous to the practice in large corporations and other
organizations in which cach level of management makes some dccisions itsclf, but spends a good bit of
cffort in deciding how to delegate decisions, that‘is, who should make the lower level decisions.
Eventually someone makes decisions about concrete matters, but his position is the result of many prior

decisions about who should make decisions.

5.1 The Yariety of Decisions and Ways of Making Them

There are many different sorts of decisions onc makes, and different decisions call for different
procedures for making them. For example, we can imagine different procedures for buying a can of tuna,
for buying a car, for sclecting onc’é job, and for thinking of what to do tonight.

Example 1: Grocery shopping. When shopping for some item in a supermarket, say a can of
tuna, my standard procedure is to buy the same brand and size as I bought before, unless prices scem to
have changed or there is a salc on some comparable item. On some occasions, my use of a product
previously has made me dissatisficd with it, so I do not even bother to check for a sale, but rather use a
completély different procedure from‘ the start: to compﬁre all the available brands and sizes, their
reputation and looks and specifications, and choosc something different from before, cven if just to
experiment. A further different Way of buying a product, which 1 only cmploy in exceptional
circumstances, is to go in, compute which product is cheapest in unit price, and buy that.

Example 2: Buying a car. In contrast to grocery shopping, buying a car is never routine, but is
always a major decision. This is reflected in the ways of choosing what to buy in the cxtra care, prior
experimentation, and time allotted to making this decision. Where I might be content to experiment on
my own to find my preferred brand of tuna, 1 am likely to begin a scarch for a car by talking with friends

to get their expericnces, by rcading car magazines and Consumer Reports, by making the subdccision of
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whether to buy a new or used car, and by visiting several vendors, kicking tires, and making road tests of
several models.

Example 3: Choosing a job. Assuming one’s ﬁnqncial situation Icads one to take a job, onc faces
different problems in choosing one than in buying tuna or cars. Here any prior experimentation with the
job becomes part of the job, so one cannot perform prior experimentation in the same way as with cars.
Instead, the major bases are, for example, onc’s sclf-analysis of what one likes, what opportunities are to
be had or made in diffrent lines of work, and how onc’s favorite role models carn a living. These
deliberations sometimes involve considerations which in essence reject or postpone the choice, such as
choosing a deliberately temporary occupation to be rethought later or to continue schooling.

Example 4: What to do tonight. This question is much like the question of what to do next that
the interpreter faces at every step of its process. However, for humans, dcliberating on this question
usually involves not just a sclection between current intentions, but invention of options by, for example,
looking in a newspaper or asking friends to see what is in town, or walking through a bookstore or library
to sec if there is anything interesting to read, as well as thinking about standard possibilitics like visiting
friends, museums, ice-crcam parlors, or coffeehouses.

These examples illustrate several different procedures for making specific sorts of choices. The
actions involved in these procedures range from making simple arithmetical calculations to running
extensive physical tests on machinery to mental tests of oneself or others. While one might use an
abstract deliberation procedure in novel situations, cfficiency dictates that we employ special purpose
procedures in routine cascs. Such spccialization might restrict the options involved so that we do not
waste time scarching for unusually creative ways of procuring tuna (placing wantads in a paper, for
cxample), or might restrict the sorts of reasons we take for choosing which option, such as computing the
cheapest unit price instcad of physically inspecting a fishing flect or cannery.

Aside from classification by types of decision, the major gencral classification of decision

procedures is whether the procedure chooses or deliberates. This distinction is traditional in discussions of
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decision-making, and attempts to draw an (admittedly hazy) linc between reflective (dcliberation) and
non-reflective (choosing) decisions. For example, at a party someonc offers you a tray full of drinks, and
you pick onc without thinking about it. This is callpd choosing, as it did not involve considering all the
option and reasons in detail. One might also perform choosing if one has scquential preferences for
ice-crcam flavors, and onc always orders a flavor by checking the parlor’s list of available flavors and
taking the one highest on onc’s own list. However, onc is deliberating if onc picks the drink after first
considering "Should I have another? Who is driving home?" or picks the flavor by trying several samples
and deciding which one is the most intriguing. Thus in choosing, onc follows a routine procedure which
has only fixed variability, or whose variables depend on the external world and not on onc’s store of
guidelines. Deliberation, on the other hand, varies with what principles onc has adopted and retrieves
upon thinking about the question.

We only bricfly discuss choosing, about which we just recall the carlicr suggestion that choosing
procedures are programs "compiled” by fixing in advance the policics to use as implicit assumptions. For
example, onc might employ a policy in buying tuna which computes the unit prices and constructs a
reason for the tuna with the lowest unit price. If one decides in general to act on this policy alone, one
can take the policy and computation code used to carry it out to produce a procedure which simply makes
the computation and justifies its answer, to be used instcad of the general procedure which would have
had to retricve, apply, and defend this policy.

The remainder of this chapter concentrates on deliberation.

5.2 Decision Intentions

Decisions are mediated through decision intentions, which are intentions to make certain decisions.
Decision intentions are just like other intentions, except that their aim is to make some decision.

Decisions are all of the form of choosing between alternate actions, although the actions may be mental,
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such as believing something, as well as physical. Thus the aims of the decision intentions arc alt of the
form (CHOOSE aspect-name action-description), to be interpreted as the intention to find a value for the
aspect-name of action-description. But action descriptions are really potential intentions, so the aim of
the decision intention really reads as (CHOOSE aspect-name intention). From the hicrarchy of aims of
intentions and the related hierarchy of intentions, we so derive yet another hicrarchy, that of decisions. In
the aim of a decision intention, aspect-name can be any term referring in the intention theory. [f the
aspect name is ATM, then the aim of the decision intention is to find an aim for the intention, that is, what
to do, the most general question of action. If the intention theory already has an aim, then the aspect
name might refer to some term in the aim theory or in one of its subthcories. Thus we might have the

following hicrarchy of decisions corresponding to a hicrarchy of intentions described by a hicrarchy of

aims.
DECISIONS
wknat to do
What to buy Where to go
What food to buy Where to go this summer
What tuna to buy Where to go in Disneyland this summer
INTENTIONS
. Do THING .
Buy THING Go PLACE WHEN
Buy FOOD Go PLACE this summer
Buy tuna Go PLACE inDisneyland this summer
AIMS
AIMof intention
Object of (Buy) AIM Location of (GO) AIM
Object of (Food-Buy) AIM Location of (GOwith WHEN=this summer) AIM

Object of (Tuna-Buy) AIM tocation of (GO with WHEN=this summer AREA=Disneyland) AIM
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5.3 Deliberation Records

We introduce the convention that the important information concerning a deliberation is recorded in a
deliberation record. A deliberation record is a theory constructed by deliberation procedures, and can be
thought of as a record of the basic variables common to all dcliberation procedures along with their
values in the deliberation at hand. A deliberation record theory has scveral parts: a purpose, a list of
options, a list of considerations, a list of reasons, a list of reflections, and an outcome. We cxplain these
parts in turn. See Figure 11 for a picture of how these picces of information are related.

The purpose of the dcliberation record is simply the decision intention being carricd out by the
deliberation procedure. Deeper purposes or reasons for why the program is making the decision are
found by pursuing the rcasons for this decision intention.

The list of options lists the objects being decided among, the possible values for the aspect of the
intention being deliberated about. The interpreter, for example, makes decisions whose options are the
desires to pursue next, the possible values (or identities) of some variable, the methods retricved for some
intention, or the possible revision of belief which restore consistency. They need not be exclusive in any
sense.

The list of reasons lists the rcasons for and against choosing the several options. In addition, the
reasons themsclves are trcated as things to reason about, so the set of reasons also contains the reasons for
and against the reasons as well. All rcasons are recorded as explicit, defeasible justifications as described
in Scction 3.11. Reasons for and against options are madc as justifications for, respectively, statements of
thc form PRO(option) and CON(option) in the theory describing the list of options, where option is the
name of an option in that thcory. Reasons for and against other reasons arc made justifications
supporting or defcating the other rcasons. RMS then determinces the status of the arguments comprising
these reasons.

The list of considerations lists intentions to apply the policics retrieved as rclevant to the
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deliberation record’s purpose. Typically these policies produce onc or more reasons in the sct of reasons,
or add to or otherwise modify the set of options. Considerations are kept separate from the reasons they
produce, because policics may be relevant even if they lead to no reasons. One sometimes says something
is a consideration even if it implies no reason or optioﬁ in the particular situation at hand, but does when
in slightly different situations.

The list of reflections of the deliberation record lists the higher-level deliberation records created
by deliberations reflecting on the progress of the decision intention. We will explain these reflective
deliberations soon. ‘These reflections are not used by the deliberation record itself, but rather aid the
reflecting deliberations in accessing the results of previous reflecting deliberations.

The ourcome of the deliberation record is the chosen option, if and when one is chosen.

These picces of information are represented as attachments to the terms PURPOSE, OPTIONS,
CONSIDERATIONS, REASONS, REFLECTIONS, and OUTCOME in the deliberation record theory.
PURPOSE is attaci.ed to the decision intention, and this attachment is justified in terms of the realization
record of the deliberation procedure carrying out the intention. The outcome, when it is found, is
attached to OUTCOME with a similar justification. OPTIONS, CONSIDERATIONS, and REASONS
are all attached to theorics whose languages include the numerals 0, 1, 2, etc. Each of successive option,
consideration, and reason is attached in these thcories to one of these numerals, in the order of their
discovery, thus recording something of the temporal order of the deliberation. Options and reasons are
constructed by policies in the set of considerations, and their justifications reflect the policies and other
facts used in applying the policy. Considerations are attachments to intentions (as cxplained in the next
section), and these attachments are justified in terms of the retricval procedure used and the data the
retrieval procedure accesses, such as the purpose of the deliberation record and other beliefs. Note that

the reasons constructed by a consideration depend only on the policy, and not on how it was retrieved.
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54 Policy Exccution

Policies are intentions with hypothetical aims, and as such, cannot be carried out directly. Instead, when
conditions arise which might satisfy the condition of the hypothctical aim, the policics arc used to form
further intentions, intentions whose aims are to check if the policies are indeed applicable in the current
circumstances, and if so, to carry out the consequential actions specified in the aims of the policies.

Policies are retricved by procedures which scan the current set of intentions for policies whose
aims have a condition subsuming the aim of the decision intention.  Actually, the details of how this
should be done have yet to be worked out, for the conditions specified by policies can include
information other than that of the decision intention’s aim, such as current belicfs, other intentions, etc.
However, the retricval procedures are not burdencd with determining actual applicability of the policies,
but mere relevance. This lesser requirement might be discharged by using explicit statements that certain
classes of policics are relevant to certain classes of decisions, or by other means, but we leave this question
to be answered by future study.

For each relevant policy retricved, a new intention is formed. The new intention’s aim is to
apply (or consider) the policy in the current circumstances. The intention is made a subordinate of the
decision intention, and is justified in terms of the policy, the decision intention, and the relevancy
procedure. 'The new intention is added to the list of considerations of the deliberation record.

Each consideration intention is carried out as usual by the interpreter. A consideration may be
carried out by any of several sorts of procedures. The common function of these procedures is to first
check if the policy is actually applicable in the current decision, and if so, to carry out the policy’s
conscquent instructions. These application procedures differ primarily in how careful they arc in checking
applicability and in carrying out the conscquent instructions.

The default procedure for applying policics is a primitive which acts as follows. It first checks to

scc if the policy is applicable by applying to the policy’s aim’s antecedent a standard procedure for
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evaluating whether a logical formula holds in the current state of mind. For example, the FOL. evaluator
[Weyhrauch 1978] might be used. This procedure need not be perfect, for the default procedure is
intended only for use in the simple routine cases. Since the policy’s aim’s antecedent is just a logical
formula expressing some condition of the program’s s.tate, this test results in answers of cither "it holds,”
"it doesn’t hold," or "can't tell." Whatever the answer, a statement to that effect is recorded in the
deliberation record, justified by the information and procedure used in the evaluation. This might permit
later reconsideration of a policy whose applicability could not be determined carlier for lack of
information. 1f the policy is inapplicable, or if its applicability cannot be determined, no further action is
taken. If the policy is applicable, its conscquent is interpreted as a sequence of instructions for actions to
be taken. The vocabulary of these instructions is given in Section 5.6. They arc carried out immediately
by calling other primitives.

If a policy is not routine and deserves more careful treatment than this, other, more complex
application procedures can be supplied to override the default application procedurces. The care witu
which policies are applicd can be increased in many different ways. We sketch two of these.

A policy might be applied by carefully checking applicability and routincly exccuting its actions.
That is, the applicability procedure is a plan of two steps. The first step is an intention to dctermine
whether or not the policy is applicable. By making this step an cxplicit intention, the full power of the
reasoner can be applied to carrying it out, rather than relying on a fixed and strongly limited evaluation
procedure. The second step of the plan is an intention to act on the answer determined. This step is
carried out by a primitive which acts like the default procedure, checking the answer and if it is that the
condition holds, then calling primitives to carry out the policy’s consequent instructions.

Another way to increase the care with which a policy is applied is to trcat the conscquent of the
policy’s aim as a plan. In such an applicability procedure, if the policy is applicable, then all of the
instructions would be converted into new intentions and added to the current state of mind.

Policies might be applied by a combination of these refined procedures, or by yet other
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refincments.

5.5 Policy Applicability

Conditions of applicability typically refer to the supcriors and other reasons for the purpose of the
deliberation, to other intentions (such as the brothers of the purpose), to current belicfs, their reasons,
and to the reasons and state of the arguments for and against the options in the deliberation record. For
example, a policy to hold doors for ladies might be applicable only if the program currcntly believes it is
near a door and whether there is a lady approaching. A policy not to act for chivalrous rcasons might be
applicable only if one of the rcasons in the deliberation record is a repercussion of policies having to do
with chivalry.

We again digress bricfly to discuss deontic logic. We previously mentioned how retricval of
methods for carrying out intentions is related to the question of what commands or obligations are
entailed by a command or obligation. Another question addressed by deontic logic is when commands or
obligations can be inferred from belicfs together with previous commands or obligations. This is closely
connected with the question of policy application. Policy application involves inferring a number of
intentions (commands, obligations, etch.) from beliefs, intcﬁtions, and other aspects of the current state of
mind. However, our approach makes this question trivial in principle, one purely of the validity of a
logical statement about the current state of mind. Many deontic logics are complicated by the need to
account for the defeasibility of reasons produced by policies. Our treatment suggests that this should not
complicate the inference of intentions from policics, but should be scparated into the trcatment of the

rcasons constructed in carrying out these derived intentions.



175

5.6 Policy Actions

The actions of a policy cither add new intentions as subordinates of the decision intention, options to the
list of options, considcrations to the list of considerations, or reasons to the list of reasons. We describe a
few of these sorts of actions which form an initial vocabulary for decision-making activities.

The first sort of action is that of constructing a new subordinate of the decision intention.
Subordinate addition is done with the command (SUBORDINATE intention justification). The
“intention is the theory describing the intention to be added to the current state of mind. The
justification is the justification to be used for the new subordinate. The justification usually mentions the
policy, the application procedure, the realization record of the deliberation procedure, and any beliefs or
other items uscd in dctermining applicability of the policy.

The sccond sort of action is that of adding new reasons to the set of reasons. One can add
reasons either for or against cither options or rcasons. We write these sorts of actions as (PRO
{options/reasons} justification) and (CON {options/reasons) justification). In these and the
following actions, options and reasons are referred to by their names in the lists of options and reasons,
which are picked up by the condition of the policy.

Another action on the set of reasons is (PREFER O {X ... Z} justification), where cach of O, X,
..., and Z are options. Preference is translated as “Any good reason for O is a reason against any of X, ...,
Z." so that a lesser option will have a good reason against it as long as a good reason holds for the
preferred option and no special exceptions are being made (for example by some other policy reasoning
against the preference statement). Preferences add a new policy to the list of considerations and to the
current set of intentions whose aim is to rcason against any reason for the lesser options (using CON
above) whenever a reason for the preferred option is found.

A related action is (DEFAULT option justification), which mecans that option is to be the

default outcome. This is interpreted by giving the option a PRO (as above), and then to use any good
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reason for any other option in a rcason to defeat this pro reason. This similarly is implemented by
constructing a new policy.

A further action along these lines is (BACKUP {01, 02 ...} justification) which is the policy to
make O1 the default, and to make On+ 1 the default if On is defeated.

Onc might restrict the sct of options, by providing a reason against any options not in the
restriction. We say this with cithcr (RESTRICT {X ... Z} justification), Or (DECIDE-BETWEEN {X ... Z}
justification), where X, ..., Z arc options. A preferential restriction, (PREFERABLY-RESTRICT {X ... Z}
justification) Of (PREFERABLY-DECIDE-BETWEEN (X ... Z} justification), uses any reason for any
restriction option as a rcason against cach outside option. These also construct policies.

We add new options with (OPTION X justification) Or (OPTIONS {X ... 2} justification),
where here X, ..., Z can be any objects of the sort required by the purpose.

An action operating on both reasons and options is (REPLACE {W ... X} (¥ ... 2}
justification), where each of W, .., X, is an option and Y, .., Z can be anything, and are added as
options. This means to replace the former sct of options by a new set of options by preferring cach of the
replacing options to each of the replaced options. However, no new reasons for the replacing options are
constructed. The action (comnnt {X ... Y} Z justification) prefers Z to X ... Y and constructs a PRO
reason for Z in terms of the policy and the reasons for the combined options. This is useful, for example,
when reformulating options along a new dimension, when some options are cach partly right and partly
wrong, and a synthesis is possible which retains the good parts and discards the bad parts. This sort of
case crops up very frequently when options are suggested on the basis of only a part of the problem. For
cxample, when deciding what textbook to buy for some class, one might think of one book which is
relevant for part of the class’s charter, and another which is good for another part, but might then

discover that some book covers both of these parts (such as the onc written by the class’s instructor).
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5.7 A Very General Deliberation Procedure

In this section we present a deliberation procedure of considerable generality. Few situations call for as
gencral a procedure, principally just novel situations and important decisions.

The procedure is, in essence, just that of repeatedly retrieving a relevant policy, carrying it out,
and then reflecting on the results until the judgment is made during reflection to halt with a decision.
This is of course a very cautious way of proceeding, and very time consuming, but sometimes this is

necessary.

5.7.1 The Deliberation Plans

We first sketch the structure of the procedure as a set of informal plans, and then discuss its

operation in detail using these plans as the framework. Figure 12 displays the basic steps of the plans.

DP-1: Input: PURPOSE Output: OUTCOMES
1. Scan the set of intentions for relevant policies. For eachone
construct a new intention to consider it as a subordinate of
PURPOSE, and add it to the 1ist of considerations.
2. PerformDP-2.
3. Policy: Prefer step 2 (DP-1.2) to all the new subordinates of
PURPOSE just constructed.

DP-2: ,
1. Reflect carefully on what to do next (select the aim of step 2 (DP-2.2)).
Options: Delay, Reject, Decide, Continue
Delay: Prefer non-DP tasks to DP ones until "later”
Reject: Abandon (defeat) PURPOSE
Decide: Set OUTCOMES, abandon unfinished subordinates
Continue: PerformDP-3 for one of the pending subordinates
2 . (Filled inby step 1 (DP-2.1).)

DP-3: Input: SUBORDINATE
1. Perform DP-4 for SUBORDINATE.
2. PerformDP-2,
3. Poticy: Prefer step 2 (DP-3.2) to all original (DP-1) considerations.

DP-4: Input: SUBORDINATE
1. Carry out SUBORDINATE.
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2. Scan the set of intentions for relevant policies. For eachone
construct a new intention to consider it as a subordinate of
this step (DP-4.2) and add it to the 1ist of considerations.
3. Policy: Prefer all intentions constructed in step 2 (DP-4.2)
to all other DP intentions.
This deliberation procedure divides into two major aspects: the first-order reasoning, and the

sccond-order reasoning. The second-order reasoning reflects on the first order reasoning to decide how

to proceed with the decision-making process. We discuss each of these separately.

5.7.2 First-order Deliberation

1. Create the deliberation record: ‘The first step towards making the decision is to construct a
deliberation record, whose purpose is the decision intention being worked on by the dcliberation
procedure. If the intention (rather, the plan of which it is a part) also specifies initial options and defaults,
these are entered into the deliberation record as well with justifications mentioning their source.

2. Retrieve policies: The second step is to search the set of intentions for relevant policies, using
the purpose of the deliberation record as a means of determining relevancy.

Each policy retrieved adds a ncw intention to the set of considerations with the relevancy
procedure and its arguments in its justification. The list of considerations will be scanned in Step 4 to
carry out these policies one at a time. The new intention is that of applying the policy in this decision.

3. Reflect on how to proceed: The deliberation procedure is a UNTIL-REPEAT loop,
repetitively considering policics until the decision is made to stop. This step asks the UNTIL. question
about how to proceed. It is the intention to reflect on the current progress of the deliberation and to
decide whether to make a decision, to continue deliberating, or several other possible courses of action.
In onc sensc, this step is much like the ordinary step of the interpreter of deciding what to do next, except
that this decision is to be made relatively carcfully itsclf. Its aim is not simply that of sclecting one

intention over another, but rather that of sclecting between some intentions (the considerations and other
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subordinates) and some possible but not actual intentions, that is, courses of action yct to be made into
intentions by the deliberation procedure.

The interpreter sees at this point a frontier including this reflection intention, the unrealized
subordinates of the original decision intention, and any other independent intentions, and it chooses one
of these to work on. However, the deliberation procedure has set up policies to guide the interpreter by
preferring the reflection intention to any other subordinates of the purpose. This preference will not be
overridden by the decision intention or any of its subordinates, but might be overridden by independent
intentions that have higher priority than further deliberation.%6

At any rate, the third step is to invoke a second-order deliberation procedure to consider the
problem of how to procced with the original decision. As in first-order deliberation, the actions of the
second-order dcliberation procedure are to first create a deliberation record and then deliberate in that
deliberation record. We postpone description of these steps for the next subsection, and proceed now
with the rest of the irst-order delibcration steps.

4. Apply one policy: The next step is to carry out an unrcalized consideration as sclected during
reflection. The interpreter retrieves application procedures for carrying out the policy, sclects one,% and
executes it if it is a primitive, or added to the current state of mind if it is a plan. In the latter case, it is
given priority over all other DP-related activities.

Alternatively, the previous reflection may have sclected some non-consideration subordinate of
the purpose, and in this case, that subordinate is carried out.

Part of what is properly second-order deliberation is built into the policy actions in the following
way. If the actions add new options, the deliberation procedure retrieves and forms considerations for all

policies relevant to the new option and the purpose, but docs not carry them out yet. However, if the

66. 1 do not specify how this selection is made. 1 expect that it is normally much simpler than the decisions made by the careful
procedure.
67. Again, I have not worked out in detail how this choice is made.
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actions add new reasons to the set of reasons, then the deliberation procedure retricves and forms
considerations for all the policies relevant to the new reason and the purpose, and then carries out cach of
these new considerations the same way. This process of reflecting on new reasons continucs until no
more reason-relevant policies can be found. |

Does this uncontrolled iteration always halt? If things arc properly organized, yes. This can be
scen by a simple argument. The conditions of these reason-reflecting policies are all basically of the form
“If the decision is about X and a reason R of type T has been found for or against {a rcason Ri of type Ti
for or against}* an option O, where the starred, bracketed phrase may be repeated any number of times.
That is, successively retrieved policics refer to successively longer arguments debating some option.
Therefore, unless the system has infinitcly many policies, this reason-reflection itcration must
terminate.58

5. Repeat: The deliberation procedure now keeps repeating steps 3 and 4 until the decision is

made to halt deliberation in one of the ways described in the next subsection.

5.7.3 Second-order Deliberation

1. Construct the second-order deliberation record: The purpose of this dcliberation record is the
second-order decision intention. This deliberation record is also added to the list of reflections of the
first-order deliberation record.

2. Engage in second-order deliberation: The second-order deliberation procedure retrieves and
forms considerations from all policies relevant to the second order decision. It then carrics out each of
these intentions, reflecting on cach new option or reason to find newly relevant policies, but without

reflecting on how to proceed. That is, these considerations are simply carried out one after the other,

68. Of course, this "proof* has holes, but further investigation requires a working program and concrete examples. 1 do not foresee
any serious difficulties.
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barring interruptions from independent intentions, until all considerations have been realized and no
more can be retrieved. We need not fear non-termination because of the limited and non-constructive

nature of the policies applicable to the second-order decision.%®

5.7.3.1 Sccond-order Options

There arc a number of standard policies for this second-order deliberation. Some of these construct
options and reasons standard in cvery second-order deliberation, others construct other options and
reasons of sorts standard in every second-order deliberation, and yet others construct decision-specific
()pti(;ns and reasons. The standard options are as follows.

Option A: Delay further work on the decision in favor of working on other intentions. This
means to retain the original decision intention as an active, in-progress intention, whose exccution will be
resumed later. Taking this option means halting second-order deliberation after adding a policy which
will preferably restrict the next step taken by the interpreter to some activity unrelated to the decision. Of
course, there is a wide range of types of delays, from just avoiding the decision for one activity, to
avoiding it until many other activities have becn undertaken, to avoiding it until all other activities have
been finished, to avoiding it until certain information is discovered. Formulating this sort of vocabulary
is an area for future study. |

Option B: Reject the decision. This means to discard the first-order decision intention, to defeat
the intention to make the decision.

The options and policies of standard sorts are as follows.

Option C: Halt deliberation by deciding on the currently best option as the outcome. This

69. An inleresting direction for further cxploration of these ideas is to develop a modification of this procedure so that the
second-order deliberation procedure is the same as the first-order procedure. This would be a completely uniform, arbitrarily
reflective deliberation procedure. Some sort of termination policics would be needed, or perhaps the default of halting rather than
further reflection once the second level was reached.
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means both sctting the value of the plan variable for the outcome, and also defeating all unrealized
considerations. This option is created by a policy that computes which first-order option has a good
"overall” reason, plugs it into the form of this option, justifies this new optien, and then creates a reason
for this option, the reason being that the selected "ovc‘rall" rcason is a good "overall” reason.

When sccond-order deliberation decides to terminate the first-order deliberation by taking some
first-order option as the outcome, it docs so by finding some good reason "all things considered.” There
are several ways of interpreting what this means, and the one which we adopt here is that in the current
set of reasons as interpreted by RMS, the sclected option has a valid pro reason and no valid con reasons.
The second-level reason for this second-level option actually comes in two forms, those in which the
option is picked because it is the only such option, and thosc which pick the option randomly from
several such options. These will be explained shortly.

In some cases, the deliberation procedure can return several outcomes rather than just one. The
different restrictions are enforced by second-order policics about multiple "good” options. There can be
a policy to return them all (as in deliberating on which desires to pursuc), to pick onc randomly (as in
selecting the intention to carry out next), or to force just onc outcome. This last restriction could be
effected by a policy which defcats against each option on the basis of good reasons for any other options.

Option D: Continue dcliberation by carrying out consideration intention 1. An option of this
form is created for cach unrealized consideration I, and decision-specific policies may provide the option
of rcconsidering some previous policy. Reconsideration amounts to rcapplying all of the relevant
considerations and looking for further relevant policies and other new information.

Option E: Continue dcliberation by carrying out non-consideration subordinate I of the
dcecision intention. An option of this form is created for cach unrealized subordinate T of the decision
intention.

Option I Reformulate the decision as I, that is, abandon the current decision intention, add the

new intention I, and resume interpretation, which will cventually work on [ afresh. This sort of option is
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never constructed by a general policy, only by domain-specific policics.  Option B is the
domain-independent form of this option. Option F is mecant to cover the case in which thinking about
one question leads to the discovery that the presuppositions of the decision are wrong. For example, one
is trying to decide on an outline for a paper, and realizes that the important question is not about which
organization is best, but about who is the intended audience of the paper. One then discards the active
intention to decide on an outline, only later forming a similar intention afier the audience decision has

been made.

5.7.3.2 Sccond-order Policies

Along with thesc standard options, the standard second-order policies construct a number of reasons.
‘These reasons for and against the second-order options involve a number of factors, including PC reason
analysis, completencss information, compatibiﬁly information, time and rcsource pressure, and others.
This subsection explains some of these sorts of factors and the policics involving them.,

PC reason analysis classifies the options into four sets; PNC, containing those options with a
valid pro rcason and no valid con rcasons (that is, those options O with the statcments PRO(O) in and
CON(O) our); PC, containing those options with both valid pro and con rcasons; CNP, containing those
options with a valid con reason but no valid pro reasons; and NPNC, containing those options with no
valid reasons pro or con,

PC reason analysis is by itsclf insufficient for making decisions. The naive policies involving it
alone might read as follows.

POLICY-1: If PNC contains exactly one option, take that as the outcome
of the first-order deliberation record.

POLICY-2: If PNC contains more than one option, pick one randomly as the
outcome of the first-order deliberation record.

However, with the deliberation procedure as we are outlining it, these policics are flawed, as
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there is no guarantee that more than one option has been considered, so that these policies might lead to
an overly hasty decision. To remedy this problem, these policics must be modified to take the history of
the deliberation into account. For example, Alfred P. Sloan Jr. refused to allow the GM exccutive
officers to cofnc to a decision simply on the basis of unanimity. He required that no decision be taken
unless there had been prior arguments over possibilitics, disagreements showing that several points of
view had been considered, that not everyone was overlooking the inevitable flaws of any proposed plan.

To be able to take such historical factors into the decision-making, this information must be
recorded somewhere. The details of this are still open, and there are several obvious paths to investigate.
In the first method, policies arc always represented as plans, and the temporal orderings on the execution
of the intentions in these plans provides the required information. This, however, scems too baroque,
and a sccond possibility is to analyze the sct of reasons to tell if good arguments have occurred. A third,
even simpler possibility is to just record the sets PNC, PC, CNP, and NPNC in cach second-order
deliberation record. This summarized information can then be consulted by examining previous
reflections to sce if options moved from one classification to another. By using thesc reflection records,
POLICY-1 and POLICY-2 above might be replaced as follows. Here the predicate DEFENDED means
that the option in question is now in PNC (CNP) but at some past time was cither PC or CNP (PNC).
POLICY-3: If there is exactly one option in PNC and it is DEFENDED,

then take it as the first-order outcome.
POLICY-4: If PNC contains more than one option, and at 1east one of these

is DEFENDED, then pick a defended option randomly as the

first-order outcome.
POLICY-5: If no options are yet DEFENDED, then do not make a decision.

This notion of DEFENDED might be used in another similar policy for cases in which all options secm

bad.

POLICY-6: If all options are in CNP and are defended, then reject the decision.



186

In addition to this general rejection policy, 1 expect cach domain would incorporate reformulation
policies which would suggest specific reformulations of the decision intention or replacement of options if
all options arc in CNP or PC respectively. These more specific policies should override the general one.,

Of course, this notion of DEFENDED is too .wcak. What really scems desired here is a
refinement of DEFENDED which incorporates some restriction on the completeness of the set of
considerations with respect to the relevancy procedures and resource limitations. The techniques
discussed in [Moore 1979] may be uscful in these investigating such refinements.

In general, one should consider all possibilitics when making a decision. Hence the following
two policies for continuing deliberation.
POLICY-7: If there is an unrealized consideration,

then carry out the oldest one as the default.

POLICY-8: If there is anunrealized, non-consideration subordinate,
then carry out the oldest one as the default.

POLICY-9: Prefer defaults created by POLICY-7 to those created by POLICY-8.

In some cases, policies will construct inconsistent preferences among the options. Further
policies must be supplied to guide the revision of these inconsistencics. For example, POLICY-9 above
~ rectifies the initially inconsistent policics 7 and 8, both of ‘which declare some option to be the lowest in
the partial order. However, their inconsistency would not be very serious, for RMS would just accept as
the default whichever came first. But in more complicated cases (involving odd-length cycles), such as
each of O1, 02, and O3 having a good reason for them, to which the policies Prefer Ol to O2, Prefer O2
to O3, and Prefer O3 to Ol arc added. RMS would discover an apparently unsatisfiable circularity, and
create an intention to revise these inconsistent reasons, that is, to defeat one of the preferences involved.
"Thus in cascs like this, additional conflict-resolution policies must be supplied.

In many cases, however, there will not be cnough information to arguc about the options to

produce a defended option. In other cascs, there may be no policies which will resolve conflicts, so that to
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the best abilitics of the program, the best options are those in PC. These are irreconcilable dilemmas for
the program, and to act it might have policics like the following.7°
POLICY-9: If there is pressure to decide, and all information has been considered,

and there are still no PNC options but there are some PC options,

then pick one of the PC options randomly.
POLICY-10: If there is pressure to decide, and all information has been considered,

and there are still no PNC or PC options but there are some NPNC options,

then pick one of the NPNC options randomly.
POLICY-11: If there is pressure to decide, and all information has been considered,

and there are still no PNC, PC, or NPNC options but there are some CNP options,

then pick one of the CNP options randomly or reject the decision.

Itis difficult to say much more about these sorts of policics in the abstract, since most policies of
these kinds are likely to be domain specific. Much experimentation and experience is necessary here.

This concludes the digression on second-order policics, and we continuc with the steps of the

second-order dcliberation procedure.

5.7.3.3 Second-order Decisions

3. Choose the second-order outcome: The next step of the deliberation procedure, after
retricving and applying all the second-order policies, is to choose some second-order option as the
second-order outcome. This choice is made by selecting the first sccond-order option that is in PNC in
the order of preference of options D, E, C, A, B, that is pursue a consideration, pursue a subordinate,
decide on an outcome, delay, and reject. It would be clegant to develop some way of making this
third-level decision uniform with the second-order decision, perhaps by termination policies which
always decided unless the second-order policics conflicted. There arc many subtletics here, such as the

fact that the third-order options are basically the same as the sccond-order options, that make this an

70. These policies all act on a paucity of information, similar to NASL’s QUIESCENCE choice rules.
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intriguing question for further study.

4. Act on the second-order outcome: If the outcome is to pursue a consideration (13), this means
rcturning to Step 4. If it is to pursue a subordinate (E)’. this means to add a dcliberation continuation
intention along with ordering policies making the selected subordinate the only intention on the frontier.
If it is to dclay (A), then add a dcliberation continuation intention with ordering policics preferring
current fronticr intentions to it. 1f it is to reject (B), then defeat the decision intention. If the outcome is
to act on a first-level option (C), then an execution procedure is retrieved for doing this, as different sorts
of dccisions involve different actions. For example, if the decision is about whether to form intentions
from desires, then if some desires are chosen, new intentions are constructed with the aims of the desires,
and addcd to the set of intentions. If the decision is to pick some intention to work on next, it is handed
over to the interpreter for carrying out. If the decision is about some aspect of a current intention, the

chosen value is inferred in that intention theory.

5.8 An Example Reworked

In the beginning, Robbic’s interpreter is carrying out the currently active intention of passing through a
door. Robbic has reached the doof and is considering how to proceed, the next step of his plan being to
open the door. At this point, Robbic’s visual system detects an object moving towards him, and identifies
the object as a woman. Robbie has a policy of normally interrupting whatever he is doing to consider
what to do about approaching objects, since such object arc often important to survival, either as food or
as dangers. This policy suggests that he decide what to do about the woman, and defeats his first thought
to continue what he was doing, namely to proceed with the next step of his previous plan and open the
door.

So Robbie decides to consider what to do about the woman rather than to open the door. He

begins work on the following plan.



189

(INTENTION I-1 () (AIM) (CHOOSE (ASPECT=AIM) (INTENTION=1-2) () (OUTCOME)
[OBJECT AIM] = VISUAL-OBJECT-DESCRIPTION))
(INTENTION I-2 () () AIM)
(ANTECEDES I-1 [-2)
Here the aim of I-1 means to decide what to do about the approaching object. It takes in the object
description as passed in from the visual system and outputs an aim for [-2.

The interpreter begins work on I-1 which it carrics out by a deliberation procedure DP based on
the above. The first thing DP does is to crcatc a deliberation record DR. DP declares that I-1 is the
purposc of DR. Tt then tries to retricve the set of policies relevant to the purpose and current state of
affairs. This mcans that the databasc retrieval procedures take as arguments I-1 (the purpose), DR (the
current state of the deliberation), and ME (the current state of the program in general).

The first thing retricved is the policy "A gentleman always holds the door for a lady.” DP adds a
consideration for this policy to the list of considerations of DR. More formally, this policy is as follows.
POLICY-1: If A: th:aimof the purpose of DR is to choose an aim

and the object of the aim is a 1ady-like-appearing female,
and there is a current intention with active progress status
and the aimof that intention is to open a door,
then (PRO (OPTION "hold door for OBJECT") (SL (POLICY-1A) ()))
Here we have taken the liberty of writing an English description of the condition and the option.
Actually, the condition is a logical statcment of just what is said, in terms of the descriptions involved and
their parts.

Following a bricf reflection which decides to continuc deliberation (since nothing has been done
yet), DP applics this policy by evaluating its condition to sce that it holds, and then executes the actions in
the consequent of the policy. The first action adds an option O-1 to the (currently empty) list of options
of DR, the option of holding the door open for the woman. The second action says that POLICY-1 and
the application condition A form a reason for O-1, and adds this rcason, R-1, to the list of rcasons of DR.

DP then re-interrogates the database to sce if any new considerations can be found relevant to

the new items. In this case, the new option does not lead to any new considerations, but the new reason
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does. Since that time long ago when Robbic was initially programmed, chivalrous reasons for actions
have become socially unacceptable. Robbie has learned to watch out for temptations to act chivalrously.
He does this by means of the policy POLICY-2.
POLICY-2: If A: R is a reason in the deliberation record of the current decision
and R's reason involves POLICY-1,
then (CON R (SL (POLICY-2 A) ())).
The condition of this policy holds, so DP executes the action, which adds a rcason R-2 to DR, a reason
against R-1. This invalidates R-1, so now O-1 has no good rcason. DP sees it is without a good option in
reflection, continues to scan the database, and finds a third relevant policy. After further reflection it
applics this policy, which also has a true condition.
POLICY-3: If A: the aim of the purpose of DR is to choose an aim
and the object of the aim is a non-threatening person
and there is an active intention with active progress status
and the aim of that intention is to open the door)
then (PRO (OPTION "hold the door for OBJECT") (SL (POLICY-3 A)))
Executing this policy’s first action adds another reason for O-1 being an option, and the second action
adds a new rcason, R-3, for taking O-1. DP now finds no more policics, and again enters second-order
deliberation. RMS shows that of the three reasons in DR, R-2 is valid, so R-1 is invalid, and R-3 is valid.
Thus, all things considered, O-1 has a valid pro reason, so DP takes it as the outcome of the deliberation.

Intention I-2 thus gets an aim to hold the door for the woman, which the interpreter then carrics out, so

Robbie holds the door for the woman.
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CHAPTER 6

DELIBERATE CHANGES OF MENTAL LIFE

To survive, we must change oursclves as well as the world around us.”! We must reflect on our beliefs,
concepts, desires, values, and skills to judge whether our life would be better if we held or employed
different ones.

Thesc changes in ourselves take many forms, and are brought about for many reasons, such as to
become happicer, more competent, informed, cfficient, to conform with others, or to become free of
confusion, contradiction, or doubt. We sometimes decide to change to improve the correspondence of'
our attitudes with the world, or with our standards for ourselves. For example, I change my belicf that a
door is open because my unsuccessful attempt to walk through it points up a mismatch between my
belicfs and reality. Fither I hallucinated the attempted passage through the door and the pain in my nose,
or | am wrong about the door’s being open. Or as another example, I wish to become a mathematiciau,
only to find that my intuitions conflict, that I believe that the irrationals far outnumber the rationals, but
infer a conflicting belief from the existence of an irrational between cach pair of rationals and a rational
between each pair of irrationals. In this case I cannot give up ecither of these beliefs, as they are part of
what mathematicians believe, so I must give up my infercnce that they conflict. Or finally, I judge my
inference that I am a terrible person because I can’t sing well to be the cause of my unhappincss, and thus
of the mismatch between my observed unhappy mental state and my standards of a happy outlook. To
remedy this mismatch, I cither give up the inference that I am a terrible person, or the desire that I be
happy. But these changes do not just happen. In most cases, it is my realization of the need for change

which leads me to decide to change, to form an intention to change, and then to carry out that intention.

71. What is survival? If we arc mutable, what is it that is surviving? Throughout this thesis we maintain the fiction that there is
something called the "self.” Chapter 2 presented some general reasons why this is desirable, but this thesis is not the place for the
discussion this question deserves. | hope 10 analyze this question in light of the current model in a later paper.
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Deliberate adaptations perhaps play a larger role in developmental psychology than is normally
recognized. For example, many accounts of the psychological development of children are puzzled by
the apparent inexplicability of the changes undergone by the child. The answers to these puzzles may
often be that the child at some point realizes that he is frl;stratcd by an inability to perform some task,
and simply decides to learn how to do it. Such deliberate changes arc more clearly recognizable in the
case of adults who, for instance, decide to take classes to acquire some skill or knowledge.

This chapter describes how to usc the techniques previously developed in this thesis to

72 1n all cases, the basic recipe for change is

deliberately change the content of the program’s mental life.
similar. "The motives for changes come through reflection, and the implementation of changes comes
through intentions to change. The program first reflects on its sct of attitudes, by using its sclf-referential
ability to view its current set of belicfs, desires, skills, concepts, or values, and to infer properties of that
set which indicate the desirability of change. The reflection occurs during deliberation on what to do, and
policies recognize the motivating conditions for changes. This reflection is followed by further
deliberation and planning of what changes might be appropriate and which changes should be taken.
Further policies guide this decision of how to change, and the result is an intention or plan for
implementing the change.

For example, a policy applied during reflection may reveal an inconsistency in beliefs, or an
uncxpected, erroncous effect of an action. The program may then take thesc realizations of
contradictions or bugs in procedures as cues to correct itsclf, and form intentions to fix the incorrect

assumptions or procedures. The program can then apply itsclf to deliberately tracking down which

belicfs or procedures are at fault. These changes might be carried out by simple techniques, such as

72. A large problem, if it can be called a problem for a reasoner rather than for the genelicists and psychologists of a specics, is how
to change the form of one’s mental life, how to choose and invent or discard various emotions, e.g. creating an intclligence that lacks
fear, or combativeness, or other attributes. These are rarely problems for the individual (except perhaps in Buddhists), as he is more
frequently concerned with questions of how to improve his knowledge of the world, how o stop being depressed, how to enjoy life
more, how 10 stop smoking, how to perform his job better, etc. It is these more circumscribed changes that we deal with here.
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dependency-directed backtracking [Doyle 1979], automated debugging techniques [Sussman 1975}, or
cven asking the uscr for help. Its plans for carrying out these changes might be very involved. Faults in
primitive procedures can take much experimentaticn, simulation, and analysis to locate (as any
programmer can tell), and false belicfs can require sim‘ilar searching out (as psychiatrists will vouch).

By and large, these techniques of deliberate changes are familiar to Al as they are the sorts of
imperative changes programs make on their own data-structures. In most Al programs, impcrative
operations arc used from the start and taken for granted, because most programming languages are
founded on imperatives. In contrast, imperative changes come near the end of this thesis as applications
because we concentrate on the reasons for these changes, which normal imperative languages ignore.
When one sets a variable in LISP, one rarcly can tell why that change occurred. That is part of what
makes debugging programs so hard. What we aim for is ways of performing the same opcrations, but so
as to be ablc to explain and analyze them later.

The reader is cautioned that the rest of this chapter is exceedingly vague, more in the way of
hints for future rescarch than presentation of concrete techniques. Unfortunately, time limitations have
precluded presentation of anything but a sketch of motivations and methods for change. Most of these
sketches merely refer to other works where these sorts of changes have been studied in their own right.
Casual readers are encouraged to skip to the next chapter, as the basic ideas of this chapter have been

presented in this prologue. The remainder of the chapter contains only slightly more concrete examples.

6.1 Motivations for Change

In this scction we catalog a varicty of the policies which might be cmployed during reflection to lead to
intentions to change the program’s attitudes. Each of the policies we describe is of the form "If the
current sct of attitudes has property P, then reason for the option of making change C." Of course,

during deliberation, the sets of attitudes are changing constantly, so the set S of attitudes whose properties
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are inferred in the condition of the policy will usually not be the set of attitudes after the policy has been
applicd. However, we, and the policies we write, ignore this problem and (cxcept for special kinds of
policics mentioned later) always assume that the properties in question are invariant under deliberation.
This is usually a safe assumption for propertics like "is inconsistent" or "contains no procedure for

installing light bulbs” are rarely affected by deliberation alone.

6.1.1 Belief

The major rcasons for changing one’s belicf are to explain some unexpected fact, to cope with surprises
while taking actions, to recsolve conflicts, and to adopt or abandon beliefs with specific long-term
consequences in actions or otherwisc. Properly, the following policies describe changes to the set of
inferences recorded as justifications, since the program derives its current set of belicfs from the current

sct of justifications.

BI: If someone informs me of a fact, try to explain it from my previous beliefs, or try to detect its
inconsistency with them.

In general, one always secks to cxplain surprising facts, but as far as 1 know, no completely
adequate account has been given of what surprising beliefs are, why one wants to explain them, or exactly
what it means to explain them. Schank [1979] classifics new information by subject matter and uses these

classifications in deciding whether or not to investigate its consequences.

B2: If the observed effects of an action conflict with the effects 1 predicted, then try to explain the failure
of the predictions.
Obscrvations might Icad one to abandon conflicting predictions, but they rarcly explain the

failure without further cxplanation.

B3: If at some times I seem to act as though I believed B and at other times as though I believed =B, try
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to determine which I believe and make me do so consistently.

Often one reflects on one’s actions to justify or rationalize them to oncself. This is particularly
true of actions carried out unconsciously (as in primitives). These rationalizations involve constructing
imaginary desires, beliefs, and intentions which onld have lead to the action, that is, pretending the
action had been taken to carry out an intention directly, and asking what that intention was and why it
was held. If this process gives scemingly incompatible rationalizations on different occasions, there may

be some confusion which can be clarified.

B4: If the current sct of beliefs is inconsistent, then try to remove the inconsistency.
Here the set of beliefs is inconsistent if it contains two beliefs A and B such that AAB is

contradictory.

BS: If the current set of justifications contains an unsatisfiable circularity, try to make it satisfiable.

This is no. a condition ordinarily recognized during reflection, but rather a condition noticed by
RMS. These unsatisfiable circularities can be viewed as describing paradoxical statements or inferences
that cannot be taken as either truc or false, or valid or invalid. The simplest response to this condition is
to reject the final inference to paradox, to ignore it, as when onc laughs upon being told Russell’s

paradox.

Bé6: If the current set of non-monotonic assumptions about things currently supports an unhappy,
depressed, frustrated, or other undesirable outlook, and the same set of non-monotonic inferences can
support by reinterpretation a happy or other desirable outlook, then try to switch the interpretation of
these assumptions to the happy or more desirable outlook.

This policy expresses a policy similar to B4 about inconsistent beliefs. There are many reasons
onc might avoid certain patterns of belicfs, not just that they are inconsistent, but also that they have

other bad qualitics besides the confusion caused by inconsistency. The message of many sclf-help books
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is that while sometimes our unhappiness results from pain and other true discomfitures, frequently our
unhappiness is merely an interpretation we needlessly impose on our belicfs, that is, merely a set of
inferences better left unmade. For example, one might feel bad because one makes the inference "I'm a
terrible person because I'm an incompetent singer.” Thc solution is to recognize onesclf making this
inference and avoid it, in the same way onc might avoid taking the final step of the argument to Russell’s
paradox. One avoids making the undesirable inference and cultivates instead alternate inferences from
the data, such as "I should take voice lessons because I'm an incompetent singer,” or "It’s good 1 enjoy
singing for myself, because my incompetence would really aggravate others,” or " | can carn tidy sums by

singing until pcople pay me to stop or leave.”

B7: 1f the current set of belicfs contains beliefs which might have undesirable effects in the future, then
try to change to belicfs which do not lead to undesirabie effects.

Where B6 notices currently annoying aspects of beliefs, B7 attempts to anticipate possible future
annoyances. A contemporary example of such a change is the business exccutive who becomes a
Republican to avoid hindering future promotions made by Republican superiors. The classical example
of such a change of belicf is Pascal's wager. Pascal belicved that if God exists, then He must have the
traits attributed to Him by the Christian Bible. Pascal reasoned that if he had faith in God, then at worst
he would miss out on lifes voluptuary pleasures, and at best he would gain admission to Heaven, which
for him was by far the most one could hope for in any mode of existence. He reasoned further that if he
withheld faith in God, at best he would sample life's voluptuary pleasures, and at worst would suffer
infinitc torment in Hell. Pascal judged the eternal possibilitics more important to him than the transitory

human opportunitics, and adopted the Christian faith.”?

73. His musing on this question was the causc of his faith, but not its reason. That is, his deliberation lead him to form an intention
to adopt this faith. The intention depended on the prior beliefs. ‘The faith did not depend on the prior beliefs, for it was purely an
effect of an action taken to carry oul the intention. While the intention is the causc of the action taken to satisfy it, the action record
on which the faith depends is an observation, a premise, of the program about itseif, and docs not depend via reasons on the
intention. There are many interesting subtleties about the nature of action here, but we will not pursue them now.
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6.1.2 Concepts

Since concepts or the theorics in the hicrarchical database do not refer to the world, but rather are used
by attitudes in referring to the world, it does not make sense to speak of a concept as an attitude, of a
concept being incorrect because it does not match reality. If it did, we would have to conclude Pegasus to
be an incorrect concept. Rather, the following policics create and revise concepts on the basis of
completencss, cfficiency, and correctness with respect to a shared vocabulary among discussants. Since
there is a large literature on concept formation and revision, which suggests many policies for these

changes, | merely present a fow of the most basic ones.™

C1: If the same combination of concepts (c.g. a log from one ground to another) is constructed on two
occasions for diffcrent problems (traversing a strcam and a crevasse), creatc a new concept (bridge) whose

structure is that combination.

C2: If one concept (c.g animal) has too many specializations (dog, perch, horned toad) in the hicrarchy
for cfficicnt scarching, crcate new intermediate concepts (mammal, fish, reptile) to decrease the

branching factor and capturc commonalities.

C3:. If people persistently scem to misunderstand one’s use of a concept (c.g. clephant), investigate their
concept to see whether they mean the same thing (that large African quadruped with the round face, big

teeth, that spends a lot of time in the river and swims under and upsets boats).

74. See Winston (1975}, Fahiman [1979], and Fox [1978].
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6.1.3 Desires and Intentions

Like incorrect belicfs, unsatisfiable desires can sometimes lead to injury or frustration, so care must be
exercised in deciding which desires and habits one inculcates or breaks. Intentions are usually more
transitory than one’s basic desires, but without frequent review of one’s plans it is casy to fall into

continuing to carry out intentions whose reasons have long since departed.

D1: 1f a desire for the forsecable future leads only to undesirable cffects, such as frustration through one’s
inability to satisfy it, and to no redceming influences on one’s actions, then attempt to abandon the desire.

For example, 1 might abandon my desirc for drinking soft drinks, as they arc often without
redceming feature and not without unsavory aspects, but I might not abandon my overindulgence in

book-buying, as there are almost always good aspects of this problem.

D2: 1f a possible desire might have desirable influences on one’s behavior, try to inculcate it.

Many people, for example, develop a desire for regular exercise to improve their vigor.

D3: If someone admired expresses certain desires and not others, try to emulate that person by
inculcating a similar set of desires.
This sort of policy is often part of a large plan when the admired person is a potential friend, as

when one adopts new interests so as to be able to converse at length with someone.

11: If one holds an intention because it is part of a plan, the justification (or superior) of which has been
defeated (abandoned), and the intention is not nccessary for cleaning up after previously executed

intentions, then abandon the intention.

Of course, to this short list should be added the many planning techniques which rely on
reflecting on one’s intentions, such as those of Sacerdoti [1977] and Tate [1975]. These policics include

resolving inconsistencics in onc’s desires and intentions.
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12: If onc holds inconsistent intentions (c.g circular prioritics between intentions), change them to restore

consistency.

6.1.4 Values

‘The program’s valucs as embedded in policies can be reflected on to increase their coherence and

completeness.

V1: 1f one’s values have, during deliberation, proven to be inconsistent or paradoxical, then try to modify
them to avoid similar problems in the future.

Here policics are called inconsistent if they draw opposite conclusions from the same data, such
as "If it’s raining, then go inside” and "If it’s raining, then stay outside”. Policics are paradoxical in some
cases if their application Icads to preferences with multiple interpretations or unsatisfiable circularities in
RMS. These paradoxes result from the fragmentation of value, from the need to make unitary decisions
based on disparate considerations. The paradoxes manifest themsclves most familiarly in non-transitive
preferences between options, which make the result of deliberation depend not only on the reasons for
and against the options, but also on the order in which they arc considered. The typical example of such a
situation is in, say, political campaigns, in which one prefers candidate A to B, and B to C, but prefers C
to A, and so prefers A if they are presented in the order CBA, but prefers C if they are presented in the

order BAC.

V2: If onc's values have, in many dcliberations, proven to have consistent results after much reasoning,
then summarize the net decisions in new policies which are based on but replace in action the previous
policies.

Sometimes | find myself going through the same old arguments cach time the same decision

confronts me. In these cases I often step back and decide the question once and for all (barring
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irresolutencss or later information being discovered). For example, I never rehash the arguments for and
against holding doors for people, as 1 decided long ago to always hold doors, and to handle problems with

this approach as they (infrequently) arise.

V3: If onc is frequently confronted with a dilemma which is always broken randomly, adopt some new

value to avoid the cffort of this decision.

6.1.5 Skills

As in the case of belief, there are many sorts of reasons for modifying onc’s set of skills, which we will
interpret to mean one’s procedures, both plans and primitives, along with their method statements.”
Changes to the set of skills include both developing new skills and modifying existing skills, there being a
number of reasons for modifying skills.

The basic case of skill development is that of one-time construction in problem solving, when
one puts together a plan for solving a problem which may or may not be retained in the library of
procedures. New skills are constructed from old ones, either by combining several procedurcs in some

arrangement, or by modifying a copy of a procedure for some similar problem.

S1: If one will need in the future to achieve some aim by some means satisfying some specifications, the
construct such a procedure, index it under that aim, and describe it with those specifications.

The specification of procedures, as we have touched on previously, is still an active area of study,
as these specifications can refer not only to input-output behavior, but also to complexity, explicability,

intermediate states, and other aspects of the process.

An important part of onc’s skills is the description of the procedures. These descriptions serve

75. Policies are parts of plans for deliberating, and the previous subsection mentioned how one might make deliberating more
efficient by reorganizing one’s set of policies.
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not only to index the procedures so that they may be considered when relevant, but also to specify their
intended and observed cffects. A common cause for modification or maintenance of a skill is when a
mismatch develops between these descriptions anq the reality of the procedure’s capabilities. These
mismatches can result from changes in the program’s attitudes, changes in the patterns of use of the
procedure, changes in the physical realization of the program, or changes in the physical environment of
its realization. For example, I must modify my speaking skills when T find myself committed to teaching
my first class. 1 must modify my motor skills as I grow older and the physical realizations of my
procedurcs fails to match what 1 think they can do. | similarly must modify my motor skills if I move to
I.una, where my previous skills no longer have the intended effects. Other, less general mismatches occur

when applications of the procedures in novel circumstances discovers failures or other unexpected results.

$2: If a skill fails to achieve its expected effects in a normal situation, then it is broken, so modify it to

restore its functionality.

S3: If a skill fails to achieve its expected effects in an exceptional or unconsidered situation, modify the

set of skills to cover this case as well.

S4: If a skill achieves its expected cffects but has undcsirable side-cffects, repair it to avoid those

side-effects. -

Ss: If a skill has unexpected but desirable effects (serendipitous performance), analyze it to extract a skill

for these desirable effects.
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6.2 Mechanisms of Change

As we sketched previously, the mechanisms for these changes are procedures in the library of procedures.
The techniques employed arc based on an analysis of the reasons underlying the attitudes to be changed,
since to be an cffective change the program must modify not only the attitudes directly under

consideration, but also thosc underlying them in their reasons.

6.2.1 Belief

‘The basic approach towards belief revision suggested here is that of incremental revisions guided by
policics expressing preferences between alternate partial revisions. In other terms, the policies express the
relative tenacitics with which the program holds its beliefs. ‘This means that the program begins revising
its beliefs by deciding on some particular beliefs to change. As it attempts to change those beliefs, it
diséovcrs that further decisions must be made about how to accommodate the changes in the remaining
beliefs. These steps of decision and partial revision alternate until the system of beliefs has been
coherently modified in accordance with the intended revision.

This sort of revision accounts for the policies B2, B4, BS, and B6 above. B2, B4, and B6 are
about changing beliefs, and BS5 is about fixing the sct of justifications for belicfs, but since we make all
changes in beliefs by adding and defeating justifications, we can handle all of these changes using the
same techniques. We view unsatisfiable circularities as inconsistent specifications for the set of beliefs,
inconsistencics in the reflected justifications. Similarly, we view the undesirable conditions of B2, B4, and
B6 as inconsistencics. B4 concerns inconsistencics directly. B6 we interpret as an inconsistency between
actual beliefs and intended beliefs, and B2 we interpret as an inconsistency of action or predictions of
thosc cffects, where the predictions are inferences from the action record and the action specifications.

However, matters arc complicated by the ambiguity of belief revisions. When belicfs derived by

inferences or actions conflict with previous beliefs, there are many ways of reconciling the conflicting
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belief. Any participating belicf may be rejected, not just the previous belicfs, and what revision is made
depends on the context of the inconsistency. For cxample, the ways of resolving an inconsistency are
different depending on whether the program was just thinking through an action (planning), or whether
the program actually took the action. If the action was a hypothesized part of a plan, the program might
choose to discard the action and try another. If it actually took the action, it might discard the action (and
so think that the action was hallucinated) or find some assumption about the world that must be wrong.
Supposc the program tries to lift a large object via a cable on a cranc. If it lifts the cranc and detects that
the object still rests in place, it might reason that cither it imagined lifting the crane, or that its senscs
reporting that the object remained unmoved are wrong, or that its assumption that the cable would hold
the object was wrong, that it snapped.

This problem of ambiguity of belicf revision leads to one of the three forms in which the
interpreter makes decisions via decision intentions. If RMS reports an inconsistency following a primitive
exccution, or an ambiguity in the revision necessary to incorporate the primitive’s effects, the prograin
reflects on this ambiguity by creating a decision intention. In the case of an inconsistency, it is an
intention to decide how to remove the inconsistency. In the case of a direct ambiguity, it is an intention
to decide which of the alternatives to take.”®

Now primitives should rarcly lead to deliberation about how to revise beliefs. If they are
properly organized, they will do all the necessary belief revision directly. The basic idea here is that
"properly organized” means that the primitive action or revision procedure is a procedure compiled from
more complex deliberation procedures by specializing the processes to take into account the usual-case
information about the cffects of that particular action. For example, a primitive which updates some list

kept as an attached valuc might justify the new attachment and defeat the justification of the previous

76. It would be a very interesting lask to encode RMS largely as policics guiding deliberate changes of beliefs, so that RMS would
take the form of a MACRO-RMS/MICRO-RMS combination analogous to MACRO-TORPID/MICRO-TORPID. This might be
developed into a belief system closer Lo human belief systems than the current RMS.
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attachment with a justification mcmiming the new attachment.

Action-specific belief revision procedures incorporate information about how the action
normally affects beliefs: what sorts of beliefs are normally involved, what the normal alternate revisions
are, and which revision is the usual one, that is, which belicfs are normally rejected by the action and
which new beliefs normally take their place.

This information about the normal alternatives and preferences in belief revision is stated as
policics which suggest and discriminate between revisions. For example, one might tell a human “If you
feel cold after taking this drug, it is because of the drug and not because it is cold outside.” 'This policy
would be very uscful in explaining conflicts between a feeling that it is cold outside and obscrvations of a
thermometer and the sweltering of others indicating that it is hot.

As another example, assume that the program is being used to solve problems of manipulating a
sct of blocks with a onc-arm manipulator. Here we might give the program information about the normal
cffects of the man.pulation primitives. Two different such policies to guide its decision might be as
follows.

(1) When a block is moved from one place to another, give up the belief that it occupies the
current location rather than rejecting the conflicting belief that it now occupics the new location. (Of
course, this looks much like the add list/dclete lists used in STRIPS.)

(2) When planning actions rather than taking them, if a block is moved and a conflict arises
between the belief about the block’s new location and the location of some other block (a collision), give
up the action and its effects rather than the belief about the other block, and then plan a different action
(perhaps one to get rid of the obstacle block followed by the current action).

There arc similaritics in spirit between this formulation of action cffects and some previous
approaches to belief revision. As mentioned above, Strips’ add and dclete lists [Fikes and Nilsson 1971]
were essentially policies which specified which of the several possible revisions to take. Rather than just

using a modal statcment of the action cffect, e.g. After A, P is true and Q is false, and letting these two
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statements conflict with the existing database statements, the add and delete lists say, ¢.g. After A, take P
rather than =P, —Q rather than Q.

Another technique is the use of "gripe handlers™ (or "complaint departments™) introduced in
BUILD [Fahiman 1974]. These are procedures providcd explicitly to discriminate between the revisions
possible following the discovery of an inconsistency. The gripe handler of the procedure taking some
action might be invoked with the information that the action caused a collision (a conflict between two
belicfs about block locations), or an unstable structure cither at the source or at the target of the moved
block, or other errors. The gripe handlers in BUILD never rejected beliefs about the blocks in question,
but always rejected some action or actions in the current plan. The gripe handlers would classify the error
type (collision, instability, ctc.) and would cither reject some action itself, or would look at the goal
structure of the plan and pass the problem off to the gripe handler of some specific other action. These
gripe handlers secm very similar in conception to revision procedures, save that they only reject actions in
the plan rather than beliefs in general.

A final technique for comparison is that of rcsolution rules as developed in AIMDS [Sridharan
1976, Sridharan and Hawrusik 1977]. These are also close in spirit to our revision procedures. AIMDS
splits belief revision into two sorts of rules: recognition rules, which are statements of logical and causal
dependencies between the primary effects of the action and other beliefs, and resolution rules, which are
rules for sclecting one of the revisions possible given the related beliefs computed by the recognition
rules. While it is claimed possible for AIMDS to generate the recognition rules itself (by rephrasing the
logical axioms describing the domain to summarize chains of inferences), the examples presented do not
contain all dependencies, and thus do not allow any belicf to be rejected. Also, the system docs not use
the resolution rules as a way of deliberating about what change of belief to make, but interprets them as
imperatives. That is, if there are a number of (possibly incompatible) resolution rules, AIMDS trics them
one-by-onc until the action of some rule is not rejected by the database, rather than realizing that there is

a decision to be made about which resolution rule to use. Also, how the database decides to reject a
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proposed change is not spelled out, although this involves values implicitly.

I have nothing to suggest about how to handle policics like B3, as it deserves further study.

B7 describes a "leap of faith.” This can be implemented by justifying the belief as a premise and
by adopting policics to defend the belief during belief revision. Thus if the program wishes to have faith
in the statement "1 belicve in God," it first asserts this belicf as a premise. (Actually, the adopted belief
depends only on the realization record for the belief-adoption action. In this way the adopted belief is
recalled as having been adopted, but does not depend on other beliefs, such as those which lead to its
adoption.) The program similarly can adopt policies as premises which defend the belief against change
in any inconsistency, action, or other revision process. Perhaps much of the difficulty humans have in
adopting new positions and making them stick stems from the relative ease of adopting a belief as
opposed to adopting also all the policies and procedures necessary to make the belief enter cffectively into

actions and decisions.

6.2.2 Concepts

I will not go into techniques for revising the set of concepts at all, as this topic is adequately covered in
numerous other works, as far as it has been explored. As usual, however, alternate ways of revising the set
of concepts will be the subject of dcliberation and policies will embody the program’s valucs concerning

organizations of its database.

6.2.3 Desires and Intentions

Sacerdoti [1977, 1979] explains a number of techniques for reflecting on ordering policics and other
intentions in planning. Shrobe [1979b] discusses how reflection on desires and intentions allows their
revision upon satisfying one particular desire or intention, using rcason-analyzing techniques, but without

deliberation. Basic desires and policies are much like premise beliefs, and the techniques for inculcating
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and abandoning them are similar to those for Icaps of faith, although they normally nced not require

further defensive policies.

6.24 Values

The question of how to revise valucs and their embodiments in policies is uncxplored as far as [ know,

and ncither have I pursued it here.

6.2.5 Skills

HACKER [Sussman 1975] learned procedures for manipulating hypothetical blocks with a hypothetical
onc-armed manipulator. It started its carcer with a couple of primitives for the manipulator, a store of
general programming and planning tricks, a few facts about the world of blocks and about its
manipulator, and a store of gencral ways to analyze and correct bugs in programs. When presented with a
problem, HACKER would cither remember or construct a program for solving it. If it constructed the
program, it did so cither by generalizing a piece of code used for solving a similar problem in some other
program, or by using general planning techniques to combine its own primitives to achieve complex
conditions. If the remembered or constructed program worked, Hacker remembered it and went on to
the next problem to be solved.  If the program failed, however, HACKER performed a ritual
sclf-examination to correct the program if possible. It would first construct a description of the "process”
in which the error occurred, this including the history of the exccuted actions, their effects, their
telcology, and the intentions being carricd out. It would then ask scveral questions about this process
modecl to determine the bug type. Some questions were counterfactuals, i.c. could such-and-such a step
have been inserted without conflicting with other goals at that time? Other questions matched certain
abstract process models against the actual process model to sec if it realized the bug type associated with

the abstract process modcl. The answer to these questions was the type of bug underlying the error.
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HACKER then scarched the library of bug-patches with this bug type and with the patch located patched
the failing program. HACKER repeated the tryout and fix cycle until either the program worked or until
no way could be found to solve some problem, in which case HACKER gave up.

However, the trouble HACKER went to in analy'./.ing its bugs resulted in large part from its lack
of the sorts of techniques we have developed in this thesis for representing the reasons and intentions of
the program. For cxample, all of the information HACKER painfully sifted from Conniver contexts and
control stacks in building its process models is exactly the sort explicitly available in justifications, the sets
of desires and intentions, and the action history.

Since skill modification is such an important part of efficicnt and cffective action, especially in a
program whose careful opcrations are as complex as ours, we illustrate the idcas developed in the
previous chapters by reformulating HACKER using our techniques. ‘This reformulation also raises a
number of topics for future research, particularly hypothetical reasoning and historical reconstruction,
which we hint at but have not pursucd in the detail they deseive.

HACKER involves three major plans:

1. DEVELOP - for devcloping a new skill from scratch,
2. CRITICIZE - for patching a known bug in a program under development, and
3. DEBUG - for fixing a program manifcsting an error.

We present these plans informally in English.
DEVELOP

1. If the skill is in the procedure library, DEBUG.
This step retricves a procedure for an intention via the usual method statement techniques used
by the interpreter. DEBUG will carcfully test the procedure to sce if it works, and patch it if it does not.
2. Otherwise, construct a new procedure.

HACKER uscs two methods to construct new procedures.
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The first method is to gencralize or variabilize part of a plan used to solve some previously
encountered similar problem, and make this a new plan. At the same time, this part of the plan is
replaced in the plan it was cxtracted from by a call to the new plan with the appropriatc arguments. In
this way, any improvements made to the new plan are automatically shared by the original plan.

The second procedure construction method is to apply general problem solving techniques of
problem reduction, ctc. to come up with a new plan by combining other plans. We won’t go into this
familiar subject.

More learning occurs when the first of these techniques is used, for in it many procedures are
simultancously improved and extended. The second method is more difficult than the first. Not only are
the general problem solving techniques quite expensive, but in addition debugging a ncw program is
more difficult, since several bugs may be introduced at the same time, thus making bug localization and
analysis very complex.

3. Perform CRITICIZE.

4. Perform DEBUG.

S. Compile the working program. }ust as programs in ordinary programming languages can be compiled
into machine code, plans can be compiled into more specialized plans and into primitives. The basic idea
is just to take a plan and some restricting conditions, such as expected initial circumstances, or a particular
library of procedures and policics, and then to symbolically execute the plan under these restrictions and
make a more specialized plan or primitive from the decisions madec and actions taken in the symbolic
execution. Plan compilation involves all the techniques standard in ordinary compilation, such as
constant folding, dead code climination, loop optimizations, etc. In addition, the plan compiler uses
policies about when to cocrce independent steps of a plan into a scquence, when to replace dcliberations
by conditionals computing the outcome of the deliberation, when to substitute subplans or primitives into
plan steps, and when to transform information passed through plan variables into information stored in

local data-structures.
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CRITICIZE

1. If there are criticisms of the program, patch it. The program critics of HACKER and the plan critics of
NOAH had essentially the same form, that of looking for occurrences of subplans and replacing the faulty
subplan with a new one. For example, HACKER would look for steps in the wrong order and reverse
them, while NOAH would look for improperly unordered steps and order them. We phrase these sorts of
criticisms as policies. Thus this step consists of a decision intention to formulate and choose between
possible revisions of the program. To avoid incompatible changes, only one revision is sclected, and the
plan recurses to effect further necessary modifications.

2. If it was modified, CRITICIZE,
DEBUG

L. If it works, done. A proposcd program is tested to see if it works not by direct execution, which would
leave no information to-analyze an crror with, but instead by symbolic execution. In symbolic exccution
the temporal situations occurring before and after each program step are modeled as theories copying the
current state of mind. The initial conditions are stated in the initial situation, and the actions are
simulated by applying their spcciﬁéations or descripli;)ns. This involves, for example, taking a
Floyd-Hoare specification PD[a]Q, trying to infer P in the prior situation, and if successful, concluding Q
in the subsequent situation. All specifications of each action arc so applied, and a directed acyclic graph
of situations results.”’ The symbolic execution halts either when the simulation is complete or when an
inconsistency or other problem is inferred in onc of these situations.

It would be more attractive to simply use the interpreter to carry out this simulation directly,
without recording cxplicit temporal situations. However, this would then nccessitate the ability to

reconstruct past situations from finished intentions and the action history. As Chapter 7 explains, this is a

77. Shrabe [1979a] cxplains this technique in detail.
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difficult problem awaiting solution.
2. Classify the bug.

This procedure analyzes the reason for the crror by asking questions about the structure of
reasons and actions leading to the error. The goal |s to take the surface manifestation of the crror and
reconstruct the underlying bug type. This is done by asking certain hypothetical questions about the
surface manifestation and by matching the surface manifestation against a variety of abstract "process
models” to determine the appropriate classification of the bug type.

There are four basic types of surface manifestations of errors: unsatisfied prerequisites, in which
some condition necessary for the application of some primitive did not hold at the appropriate time;
protection violations, in which onc action interferes with conditions protected by some other ongoing

. action; failed actions, a catch-all category which ought to be refined, intended to include mechanical
breakdowns, slippages, overlimits, hardware errors, ctc.; and deja vu, my version of HACKER’s double
move “error.” This is really not an error as such, but humans scem to be very good at recognizing certain
types of repeated or similar situations, and get a lot of mileage out of recognizing them. This is
generalized to any noticed similar repetition, from HACKER's which only caught repcated movements of
the same block.

There are five basic underlying bug types: prerequisite clobbers brother (PCB), in which
achieving onc prerequisite of some action undoes the previous achievement of some other prerequisite of
that action; prerequisite missing (PM), in which the plan lacks actions to achieve some condition
prerequisite for taking some action; prerequisite clobbers brother goal (PCBG), in which achieving a
prerequisite of one action undocs the cffect of some other action which together with the first action
worked to achicve some complex end; strategy clobbers brother (SCB), in which performing onc strategy
uncovers new information which might allow a previously failed strategy to succeed; and anomalous, a
catch-all bug type for thosc errors unclassifiable as any of the preceding, which should be refined into

useful categories.
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Sussman presents the flowchart shown in Figure 13 for performing the classification of surface
manifestations into bug types. The decisions are as follows:
1. Would U.-P. being true now conflict with the current goals?
2. Was the U.-P. ever true before in this problem?
3. Pattern-match to sec if PCBG.
4. Pattern-match to see if SCB.
5. Several pattern-matches to see if PCB.

6. Pattern-match to see if PCB or PM.

These questions are answered by much the same techniques as used in HACKER, and 1 won't go into the
details of just what sorts of patterns the various policics recognize.
3. If it is memorable, summarize the bug.

One should not bother remembering dismissed errors or trivial mistakes like fingers slipping
while dialing a telephone number. In this step, the program deliberates on whether to record the bugasa
policy which will recognize and patch its future occurrences in new programs. This involves trying to
cxplain the error as a one-time affair, or a something that is likely to recur. As far as I know, no one has
cxplored grounds for making t.hescvdccisions.

4. Patch the bug.
This step just applics the selected critic policy to the plan being criticized.
5. Perform CRITICIZE.

6. Perform DEBUG.
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CHAPTER 7

DISCUSSION

Ifit is not true, it is a happy invention.
Anonymous, 16th century

In this thesis, I have attempted to present some problems and viewpoints 1 feel are central to the task of
designing intelligences. T will be satisfied if the preceding has succeeded in conveying the nature and
importance of these problems and viewpoints. The techniques presented here are admittedly
rudimentary and ill-explored, but they have been developed sufficiently to indicate the feasibility of this
approach. However, none of the details of any technique herein is suggested as the final word; they all
deserve to be superseded by more careful analyscs, further experimentation, and application.

This chapter is in six parts. The first two parts summarize the key ideas and the principal
technical contributions of the thesis. The third scction lists a number of directions for future research.,
The chapter closes with threc rather speculative sections concerned with the relation of affect and

intellect, the limits of sclf-knowledge as scen in this approach, and the meaning of the program to itself.

7.1 Summary of the Key Ideas

The primary idea of the thesis is that of an architecture for a reasoner which can refer to, reason about,
and modify any aspect of its own organization and behavior. This self-conscious, adaptive architecture is
motivated by the need to carcfully consider what to do when solving difficult problems and when
carrying out complex tasks. ‘The sclf-referential abilities of the reasoner are based on a meta-theoretical
databasc, explicit rcasons for attitudes, and cxplicit scts of the reasoner’s belicfs, desires, intentions, and
skills. The meta-theoretical database allows both self-reference in the large (the reasoner referring to itself
as a wholc) and sclf-reference in the small (the reasoner referring to its parts). Sclf-reference in the small

allows the prografn to treat its own concepts and descriptions as objects. This permits not only treatment
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of a number of classical problems in representation theory, but also allows the cfficient organization of
the databasc into a hicrarchy of concepts. Explicit, non-nonotonic reasons form the basis of the reasoner’s
sclf-representation of its reasoning actions. These are used in defeasible reasons in a form of
decision-making called reasoned deliberation, whicﬁ reflects on these reasons to conduct dialectical
argumeniation about the possible outcomes of the decision. Non-monotonic reasons also form the basis
of the reasoner’s sclf-explanatory and self-modifying abilitics. The explicit sets of attitudes form the basis
of the reasoner's actions. The program reflects on itself and its current state of mind as capturcd in its
current sets of attitudes to take actions including revising of the scts of belicfs to remove an inconsistency,
forming an intention to pursue a desire, or carrying out an intention by means of some procedure (cither
a plan or a primitive) in the hierarchical procedure library. This procedure library contains part of the
sclf-description of the program in the form of meia-circular interpreters, giving the reasoner a
representation of its own procedures in its own language of problems and actions. Unlike many
traditional studics in Al, we separate the notions of goal into desires and intentions, to make clearer the
processes involved in complex problem solving reasoning and actions. Certain intentions, called policies,

act as intentions to reason in certain ways during deliberations, and so embody the values of the program.

7.2 Summary of the Principal Contributions

The main contribution of this thesis, I feel, is in a coherent, if incomplete, synthesis of a number of
important ideas developed by a number of authors. 1 hope that this synthesis points up directions for
future investigation, and that it helps articulate some of the ideas 1 believe have been held by the authors
I draw from. In addition to the synthesis of many important ideas, the thesis has presented novel
technical contributions on the following topics, in order of their appcarance.

Chapter 2 presented the basis of the correct interpretation of virtual copics of descriptions in

logical terins, namely as substitution and inference of meta-theoretical statements. This was used in the
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construction of propositional attitudes, and in the correct interpretation of “context” mechanisms,
wherein concepts and beliefs augment the current set of concepts and attitudes.

Chapter 3 presented uniformly defeasible reasons, the correct basis for adaptive and reflective
reasoning programs.

Chapter 4 emphasized the advantages of desires and intentions over ambiguous "goals,” the
interpretation of policics as intentions to reason in certain ways during dcliberations, and the correct
interpretation of of procedures as partial states of mind which in exccution augment the current state of
mind. We also presented a meta-circular reasoning program.

Chapter § introduced reasoned deliberation, the first class of formal decision-making procedures
to correctly account for reasons, dialectical debates, reflection, and the fragmentation of values.

Chapter 6 introduced deliberate changes of the mental state and their importance in explainable
and correctable self-modifications.

The last part of Chapter 7 will draw a new conclusion about the paradox of human cxistence.

1.3 Directions for Future Research

As mentioned carlier, almost every cc;ncrcte technique de;/eloped here should be viewed with suspicion
of shortcomings. The preceding chapters have on occasion mentioned some of thesc shortcomings, and
this section catalogues some of the incompletenesses not mentioned in detail previously. These topics
deserve further study, and in some cases are crucial to the construction of a fully operative program, but I
have not had the time or inclination to pursuc all of them in this thesis. I am convinced that nonc of these
holes harbors a homunculus, but that is something only experimentation can demonstrate.

1. Make virtual copies virtual: SDL., as implemented, actually copies | all its copy theories,
resulting in a real pile of data-structures here and there, and the ensuing costs in storage space. This may

be unavoidable, but it scems almost certain that specialized accessing algorithms can allow thesc copics to



217

be virtual, that is, temporarily constructed, interrogated, and discarded only when necessary, so that the
long-term storage requircments do not exceed that used for the basic information being represented.
Fahlman [1979] has dcveloped algorithms of this sort, but for a slightly different sct of data-structures,
and without the use of a RMS. T have tried to avoid making design decisions which would rule out
algorithms approximating his, for his suggestion of radically parallel database organizations scems very
attractive for the long view of information retrieval.

2. Reorganize the RMS interface: RMS was designed as an independent subsystem, and in the
absence of more comprehensive techniques of control, was vested with a substantial amount of
responsibility for choosing among alternate belicf revisions, responsibility it should not bear and that this
thesis has tried to relieve. The rather haphazard interface between RMS and the decision-making
procedures is one result of this. In addition to those questions about RMS suggested for study in [Doyle
1979], the overall organization of RMS should be rationalized in light of its actual role in the larger
reasoning program architecture.

3. Develop convenient syntaxes: There should be a better syntax to facilitate the input and
output of information. This thesis hides some of the ugliest of the reality of using what cxists of the
program.

4. Encode information about the world in the database: 1 could not cven attempt to present an
impressive display of the powers of this approach to reasoning because 1 lack an encoding of a sizable
body of information about some problem domain other than the program itself, which is of considerably
simpler structure than the rest of the world. Again, 1 share this problem with others, although there are
currently appearing a number of database of facts (but few procedures) about domains,

5. Encode plans in the plan library: Of course, this is a subproblem of the previous problem, as
any competent program needs not only the facts but know-how.

6. Catalogue various deliberation procedures: In addition to encoding the values and the

specialized, problem-specific decision procedures of the domains of action in the program, more study
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should be applicd to develop abstract deliberation procedures in several levels of generality,
Rationalization and completion of the library of sccond-order and higher-order policies scems a primary
topic for inquiry, along with investigation of the form of fully rccursive or reflective deliberation
procedures.

1. Build a better vocabulary of processes: The language of the interpreter includes only a
rudimentary vocabulary for describing plans and processes. Extensions of this vocabulary depend in part
on building up more descriptions of the external world in the database, and in part on the progress of
computer science in developing process description languages, parallel and otherwise.

8. Build a better vocabulary of deliberation: As a subproblem of the preceding, the vocabulary of
actions of policies should be extended.

9. Develop a vocabulary of advice types: One aim of this thesis has been to develop mechanisms
uscful in building a program which can accept, assimilate, and use facts and hint on how to use them. But
[ have not explored how these pieces of advice might be best conveyed. An important problem involved
in realizing a program of this sort is in discovering a vocabulary of advice for imparting facts, values, and
skills. For example, informal hints about how to make some decision include advice like (a) choose any
one you like, (b) choose quickly, (c) keep in mind that it is raining, and (d) give my suggestion every
conceivable consideration or benefit of a doubt. A formal advice vocabulary ought to include formal
analogues of these sorts of hints. The problem of advice is closely tied with the discourse understanding
problems mentioned below, for humans frequently give procedural or value information as declarative
statements, and rely on the advisee to ask and answer questions likc What could they have possibly meant
by that? and What problem do they think I am facing that that fact would be relevant to?

10. Apply self-models in hypothetical reasoning: Many sorts of reasoning processes require the
ability to answer questions of ability and other hypotheticals. Many of these questions can be answered
by envisioning or predicting the actions and intentions described by the question. One important topic for

investigation is that of using the sclf-description of the program in hypothetical reasoning. Symbolic



219

exccution of the self-description can be used to sce what actions would be taken and what their effects
would be in certain circumstances, without actually taking the actions or requiring the realization of the
circumstances. Symbolic cxecution involves sctting up a sequence (properly, a directed acyclic graph) of
temporal situations linked by actions, and asserting tﬁe cffects of an action in its final situation whenever
the preconditions of the action can be proved in its initial situation.”® In symbolic exccution of the
sclf-model, then, the program would create a new state of mind to represent the hypothetical actions. Tt
would then assert the initial conditions in this frame of action, and begin cxccuting within it. Instcad of
exccuting its primitives, it would use the specifications of the primitives to assert their cffects. The answer
to the hypothetical question is then answered by examining this record of symbolic exccution.

Symbolic cxecution of sclf-models also is valuable in skill introspection and development.
Many of the studied techniques for analyzing Lisp programs into plans depend on symbolic exccution of
the programs and plans. Similarly, the techniques of maintenance and compilation of programs require
symbolic execution not only for introspection, but also for compilation of primitives from plans.

11. Refine the techniques for plan compilation: One important application of symbolic execution
is in compiling refined plans and primitives from dthcr plans and restricting information. Developing the
standard compilation techniques (constant folding, dead code elimination, ete.) in this context is an
important requirement for the future success of this sort of program. For example, guidelines need to be
developed for (a) when to coerce independent steps of a plan into a sequence, (b) when to reduce
deliberation to choices or conditionals, (¢) when to transform plan variables to local variables or
data-structures, and (d) when to substitute subplans or primitives for tasks in a plan."9

12. Study formal historical interpretation: Collingwood [1946] suggested that the aim of history

is not just to record annals, but to discover psychological cxplanations of the actions of men. This

78. Shrobe [1979a] ives detailed examples of this technique. Sce also (Mewitt and Smith 1975).
79. Burstalt and Darfington {1977] and Clark and Sickel {1977) explore program transformations to aid cfficiency, and their
techniques might be adapted (o the plan-compilation task.
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involves not only discovering the facts of a situation, but also the ways the participants viewed the
situation and the possible actions available to them. That is, the goal of the historian is to infer the
attitudes or mental statc of cach of the participants in the event. The obvious difficulty in this enterprise
is the ambiguity of mental states as determined by the recorded physical actions. Even if we have
complete annals of the actions of an event, there might have been many completcly different mental
states of participants which could explain these actions. Was President Nixon an amoral criminal, was he
a patriot desperately defending the security of his country, or was he ncither of these? To answer
questions like this, we must examinc all of his actions to sce if they are consistent with onc interpretation
but not another (moderated by an assumption of his rationality). But it may happen that all of our
information about his actions is consistent with several interpretations, so that we cannot answer the
question.

The program must also make historical analyses of events, for example, to determine just what
error was made in some past decision or construction of a procedure when that decision or procedure
later leads to an error which must be corrected and avoided in the future. But in this the program also
faces ambiguity in reconstructing its past mental states, despite its wealth of records about actions,
inferences, and decisions. There are two major sources of this ambiguity. The first is that justification are
atemporal records of inferences, so it is difficult to tell just what the set of justifications was at some past
time. But even if this problem was overcome, a second source of ambiguity is that a given set of
non-monotonic justifications typically admits several interpretations as distinct sets of attitudes. Of
course it might be possible to determine which set of attitudes existed from the following actions and
inferences, but techniques for making these judgements are completely uncxplored. For example, one
might think that this problem might be solved by keeping some sort of history list of all inferences and

actions. But this cannot work, because these records will be subject to the same insccurity that afflicts
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other belicfs about the past,80

13. Apply self-models in discourse and multi-agent planning: Onc attractive application of
hypothetical reasoning by symbolic exccution of program modcls is in using several such models to
describe the reasoning facultics and attitudes of other agents for use in cooperative activities like
conversations. The proposal here is to employ not just the thecory ME, the program’s theory of itsclf, but
several copies of ME, one to represent cach other person being considered, cach copy modified to reflect
the differences of that person from the program in its beliefs, desires, values, and skills. Of course the
most perspicuous organization of these multiple person models is to have a theory of the prototypical
person, describing the common knowledge and skills of people, and to have all other theories be modified
copics of this prototype. Each of the particular person models would be used for different people, and
further copies of them would be used to represent different people at different times, or in hypothetical
situations as mentioned above for ME.  Anonymous copies of the prototypical person theory would be
used to answer hypothetical questions about the behavior of typical people. Finally, the program might
maintain particular person descriptions as its consciences or ideal sclf-modecls, so that during deliberation
it can query these descriptions to see what is the "right” thing to do (i.e. what would I do if I were
perfect?).

How the program might develop such models of its acquaintances from a general person model,
or alternatively, develop its general person model from its models of itself and others, arc interesting
unexplored topics.

14. Separate the logics of belief, desire, and intention: In the use of RMS 1 suggested viewing
intentions and other program structures not as embodiments or representations of intentions, but as

belicfs of the program about its intentions. This suggestion was motivated by the desire to subsume all

80. It might scem that this cannot work because the recording of these actions must involve further actions which cannot
themsclves be recorded on pain of an infinite regress. This may be avoided by having the actions described by the records include
the recording substeps as well,
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logics of rcasoning into the single logic employed by RMS. While this view may be temporarily uscful, it
may be ultimately misguided. Different attitudes have different logics, and more argument than was
prescnted scems to be necessary for their unification.

A related drawback of this approach of viewing brogram attitudes as belicfs about attitudes is
that it offers a confusion about the "levels” of the program’s beliefs. For example, humans sometimes
infer that they possess certain attitudes from obscrvations of their actions, as in "1 didn’t think I wanted to
cat, but looking at the amount | put away, I must have been really hungry.” But the belicf that I desire
food in such a case must be different from the desire for several reasons. First, I might be wrong in the
inference, in which case my inference would hardly constitute a desire. Second, the reasons for the belief
arc purcly in terms of other beliefs about my actions. But the reasons for a desire will, if the desire is not
basic, in general involve both beliefs and desires.

It may be that the particular approach taken in the thesis overcomes these problems, but that is a
topic for further investigation. My guess is that the primary error is simply my interpretation of these
structures as beliefs about attitudcs, rather than the more natural interpretation as the rcalization of the
attitudes themselves. My interpretation stems from a view of RMS as working only with a logic of belief,
rather than with scveral logics for different attitudes. Perhaps the only change necessary is to change the
operation of RMS so that it respects these different logics for different attitudes.

Part of this possible confusion between the attitudes seems fo stcm from an asymmetry between
the types of attitudes. Namely, desires and intentions are cach represented as statements of the form
Desirc(content) or Intention(content), where the contents are further concepts.  Beliefs, however, are
represented as RMS-node(content), where a RMS-node is not a predicate symbol, and content is not a
concept. Finding some rcorganization or interpretation of these attitudes would go a long way towards
cleaning up this problem.

15. Explore the relations of desires to intentions: My treatment of desires and intentions and

their relations has been most cavalier. The problem of how and when intentions are formed from desires
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seems to have received scant study, at Ieast in the parts of the litcrature on practical rcasoning that I have
cxamined.

16. Investigate multiple loci of corzsciousncs;.' We described the consciousncess of the program as
the perceptions of the interpreter, and unconscious primitives as programs for any other interpreter. But
there may be many loci of unconscious action, as the various primitive program interpreters may be

 distinct machines, as is common practice in the CPU-periphcral organizations of modern computers. We
have no similar suggestions about how consciousness might be broken into scveral loci. We have
suggested that there might be several interpreters, cach active at different times, and that dcliberation
procedures can also reflect on the current mental state. Are these properly thought of temporally distinct
loci of consciousness? Can consciousness involve simultancous perceptions of several simultancously

operating subsystems?

7.4 Affect, Intellect, and Complex Sclf-Descriptions

We have presented a model for rational thought which employs only the simplest realizations of a few
mental attitudes. While these prove useful for many purposes, the next step is to formalize a wider range
of mental attitudes, such as carefulness, confusion, hesitation, and others.®! Once formalized, these new
attitudes may be put to the service of a morc powerful reasoner.

Consider the mental attitude carefulness. Carcfulness has entered experimental Al programs,

including this thesis, only in an informal, ad hoc way. A program often has two ways of carrying out some

81. In this section, 1 have been substantially impressed and motivated by the ideas of Marvin Minsky and Seymour Papert, first in
the 1978 drall of their book on the Society of Mind, and later in Minsky's paper on affective exploitation [Minsky 1980]. In addition
1o exploring the interaction (and in one sense, unity) of affect and intellect, Minsky trics to invert a common conception of affect as
complex and inteliect as transparent by suggesting that intellectual mechanisms might be built out of simpler affective mechanisms.
My suggestions in this scction are 1o study how affect might be built from intellect. At this stage of investigation, my suggestions
should not be taken as opposing Minsky's view. Any conncction between the two paths of construction is likely to provide ways of
buitding cither sort of mental attitude from the other. Where one starts is a matter of convenience. Since this thesis builds up much
of the intellectual mechanisms of reasoning, it is most convenicent here first to build affect from intellect, and then to build intellect
from affect.
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activity. Of these, onc procedure acts in an automatic fashion, carrying out its steps without pause. The
other procedure scparates each step with checks to see if it is safe to proceed, that is, whether certain
exceptional conditions have arisen from the exccution of the previous step. In such cascs, common
practice is to call the former procedure the normal one, and the sccond procedure the "carcful” version,
or “carcful mode.”

Of course, in these cases the program does not call one procedure carcful and the other heedless,
it is the programmer who docs so. But if the program could also make these discriminations among
procedures, its planning and skill development capabilitics would be substantially enhanced. When
constructing a plan in hicrarchical fashion, if the intended result is o be a carcful plan, the program
might make judgements about which of the steps of the plan must be realized in a careful fashion, and so
influcnce the design of these steps. The program might also deliberately choose to be carcful when it
judges that it is acting without as much information as it normally prefers, or when it realizes that its
actions are likely to be very important or consequential. Thus it would be valuable to formalize some
notion of being carcful about something so that the program can make decisions about whether to be
carcful or not, rather than restricting these decisions to the programmer.

Consider confusion. This is a very useful attitude to be able to recognize in oncself, for we all
use several plans for getting out of confusions. For example, when attempting a difficult project, such as
implementing a large programm for one’s thesis, it is common te try making decision A, postponing it when
one gets stuck, working on decision B, postponing B because it seems to depend on first deciding A,
working on C until sceing that it depends on the outcome of B, working again on A only to find that it
depends on C. From personal experience, I can aver that at this point 1 realize I'm confused about what
to do. What do 1 do? 1 apply my realization to think of ways out of my confusion, such as making a
graph of the dependencies I perceive among the decisions, and then trying to see if [ can makc one of the
decisions arbitrarily so that T can proceed, and fix it later if it doesn’t work out. Of course I try to pick the

choice so that fixing it will not be hard, and so that I will make some progress on the other decisions even



225

if the first is wrong, but the main plan is just to make a choice, knowing that it may not be defensible. If1
can be more cffective in this way because T can recognize and act on my confusion, a program should be
able to enjoy the same facility.

Finally, consider hesitation. 1f one can sce that one is hesitating about a decision, then that isa
valuable consideration in making related choices. In particular, the related choices should be made so
that they depend as little as possible on successfully carrying through the hesitant decision.  As in the
above confusion example, a deadlock breaking decision might be crucial but hesitant, and so its
correctness should not be counted on heavily by dependent decisions.

How might we formalize hesitation? Dennett [1978b] suggests the following possibility. He
makes a distinction between belief and opinion, where belief is a graded fecling (possibly described by
Bayesian evolution rules) upon which action is really based, while opinion, on the other hand, he takes to
be all or none assent to linguistic statements. Hesitation (and sclf-deception) he explains as cases in which
one has developed opinions which do not comfortably match onc’s beliefs. Thus on the basis of a chain
of inferences one might make the rational decision to take some action, but since the belicfs involved are
not completely certain onc has little confidence in the conclusion of the argument, in spite one’s avowal
that it is the right thing to do. One is willing to declare one’s intention, but when it comes down to
actually taking the action, one’s action, based on the uncertain beliefs rather than on the opinion, does not
carry out the intention. Dennett’s suggestion might fit into the presently propbscd program by
identifying what he calls opinions with what I call belicfs, and what he calls belicfs with somcthing
derived from policies.

Just as one recognizes complex intellectual attitudes and employs them in deciding what to do,
one also recognizes and similarly employs one's emotions. For example, I see myself getting tired and
unwilling to continue writing the next chapter of my thesis. To carry through with my intention to finish
the chapter by the cvening, 1 carry out a plan which involves imagining how unplcasant prolonged

matriculation would be. The plan is based on the expectation that this thought will prove so horrifying
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that T will resume writing with renewed vigor and determination.
To illustrate these ideas more concretely, but extremely simplistically, consider policies like the

following.82

If the decision is important, prefer to continue deliberating.

If the reasoner is sick, tired, debilitated, mentally impaired, or
otherwise has reason to suspect its mental faculties, try to delay the decision.

If the decision is hateful or distasteful, try to reject the decision.

If the reasoner is angry, frustrated, or confused, try to delay the
decision and relax and reorganize.

If the reasoner is despairing of being able to decide, choose randomly.

In these I just try to indicate, without providing any mechanisms for how one might make these
judgements, of how affective or emotional considerations might enter into the decision-making process.
If onc’s mind and body are on the fritz, one shouldn't think unless forced to. If onc can’t stand making
the choice, one frequently finds reasons to impugn the choice, to reject it. If one merely finds the choice
annoying or distasteful, one just avoids it until time pressure sets in or until it goes away. If one is
confused, angry, or frustrated, one delays and relaxes, and perhaps engages in other plans like making
lists of options, reorganizing them, etc.

The main point I'm trying to get across here is that if onc develops some way of recognizing or
observing emotional states by the program looking at itsclf, then I have sketched how one might proceed
to usc these sorts of judgements in rational thought, particularly in the ability of thinking rationally about
one’s own psychological problems. Machines will probably get depressed too, and we ought to figure out
how to help them get themselves out of it.

Many cmotions may prove uscful to a computer program. However, this idca requires much

experimentation and study in programs with vastly different forms of their psychologics. Not only will

82. Sce [Carbonell 1979] for another approach lowards formalizing and using attributions of emotions and complex mental states.
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their specific beliefs and skills differ, but the form of their mental lives will differ. There will the purely
intellectual programs (Mr. Spock’s Revenge), intellects that can hope and fear as well, and perhaps some
programs constructed to share the full range of human emotions.

This sort of study would be an ideal Iaboratéry for studying which parts of man’s mental life are
truly valuable for some purposes, and which parts, if any, are unnecessary accidents of evolution and
physiology. Just as geneticists may someday discover cnough to allow man to direct his physiological
cevolution, experimental alien intelligences may help psychologists discover cnough to let him direct his
psychological cvolution as well8 On a smaller scale, these cxperiments may help man improve his
repertoire of informal self-analysis and sclf-help techniques. Given man’s age-old desire to direct his
future for his own benefit, [ sec no reason to fear man’s obsolescence in the shadow of supcrintelligent

machines. He is much likelier to obsolesce in the shadow of his children.

7.5 The Limits and Accuracy of Self-Knowledge

I have a left shoulder-blade that is a miracle of loveliness. Pcople come miles to sce it. My right
¢lbow has a fascination that few can resist.
Sir W. S. Gilbert, The Mikado

How much can the program know about itself? The mcchanisms described in this thesis secem to suggest
the following directions for investigation.

The program has a model of, in fact direct access to, its nominal scts of concepts, beliefs,
assumptions, reasons, desires, intentions, actions, values, and skills. In spite of this, the program can be
mistaken about these attitudes because its skills, in particular those comprising the basic operation of the

program, nced not be fully understood by it for it to be operable. If the program does not correctly

understand the details of its own procedures and how they affect its perception of its attitudes, we might

83. In fact, Wilson [1978] suggests that these two endeavors arc morc closely connected that is sometimes thought, that if we wish
to guide our physical cvolution, we must also consider the effects on our psychological evolution.
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expect the program to be just as confused about the corrigibility of introspection as we are, for as far as it
can tell, it has incorrigible access to all of its mental states. But if the program realizes that it has
incomplete or possibly incorrect understandings of its own procedures, then it can conclude that its need
not have incorrigible access. The program’s access need not be priviliged, for it may run on a computer
which displays its entire mental statc in a huge bank of lights, and someone watching these lights with an
understanding of the design of the computer would be able to tell at least as much about the program as
the program itself.

In fact, the program might have a much casier time at introspection than humans, for humans
have not clear access and knowledge of their basic mechanisms. It appears possible to give such access
and knowledge to a carefully designed machine. A growing litcrature on program understanding has
been concerned with developing techniques for taking a program and analyzing it into its intentional
structure. The program under analysis is first converted into its surface plan, which simply indicates the
data and control flow connections between the parts of the program. This surface plan is then analyzed
further into the design of the program. The design consists of the deep plans underlying the surface plan
together with the teleological justifications of the organization and deployment of these plans. Thus the
program understanding task takes a program and attempts to infer the decisions and plans that went into
its construction, inverting the design process.

The success of this analysis process depends primarily on (1) having a sufficiently rich library of
standard plans, and on (2) the program under analysis having some purpose. For the first requirement,
Barstow [1977], Rich {1980], and others have developed catalogues of standard programming plans and
techniques, and the completion of this task scems to now depend on energics cxpended in its pursuit
rather than on overcoming unsolved problems. For the sccond requirement, it appears that most analyses
can be made successfully using only the information that the program has a purpose, not what that
purpose is. dec Kleer [197%a,b] found, in the similar task of analyzing electronic circuits into their

underlying designs, that almost all analyses succeeded in finding a unique interpretation of the function



229

of the circuit and its components using only the technique of abandoning any interpretation in which
some component’s function could not be explained. And in those circuits for which multiple possible
functions were determined in spite of this heuristic, the circuit usually can be uscd to perform any of the
several functions, and information about the contcxt‘of use of the circuit suffices to determine which of
these interpretations is correct in that context.

The import of these techniques is that they can be embodicd in the program just like any other
procedures, and in fact, sclf-applied so that by itsclf it can determine the structure of all of the LISP
functions making up its procedures. If the language in which these plans arc phrased is the same as that
used by the plans in the plan library, this mcans that when the program constructs a new procedure, the
records Ieft in its design process constitute the analysis of the new procedure. Thercfore, the program
need not analyze the new procedure further, since its teleological structure is alrcady known.

At the next level of languages down, the program can apply the same techniques with a different
vocabulary of surface syntax and plans to understand the machine code implementing these LISP
functions. This process can be continued, to give the program an understanding of how machine
instructions are implemented in transistors and resistors, how these are implemented in semi-conductors
and conductors, and the atomic, even nuclear and subnuclear structure of these, just as humans seek to
understand their construction in anatomical, biological, chemical, and physical terms.

In fact, just as the program can modify its own procedures at the highest levels of this chain of
implementations, there is no intrinsic barrier (given cnough information and suitable sensors and
effectors) to the program changing its own construction at these lower levels, for example, by repairing its
circuitry, or even transmitting itself to a new computer host (with or without “terminating” its previous

"sclf").84

84. Sandewall [1979] discusses such self-reproduction as a means towards periodically salvaging the useful attitudes and skills of the
program. 1lis idca is that the program replaces itself with a "child” made only from all the uscful stuff, leaving all the deadwood
behind.
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What docs all this say about the privacy, directness, and corrigibility of thc program’s
self-knowledge? That apparently its mental states need not be any more private than the contents of a
normal computer; that it can have dircct access to its internal processes to the machinc level and not
beyond; and that it need not always be correct in its self-understanding. Onc might build the program in
a computer that displays its complete internal state, but neither this nor taps on these lights will permit
"mind-reading” without knowledge of the design of the computer and hence the meanings of those states.
The program might interpret its ability to change aspects of itself purcly by thinking down to the machine
language level but not beyond as a difference between mental and physical. And without the procedures
to analyze its own procedurcs or information about the reliability of its hardware, the program can be
mistaken about the behavioral import of its consciously visible attitudes. But with such sclf-analysis
procedures and its recorded reasons for attitudes, the program will be able to say, perhaps with much
better justification than humans, things like "part of me wants to do this, and part of me says not" by

tracing its attitudes through its reasons to its procedures and other attitudes.8

85. Would the construction of artificial intelligence ever occur as a problem to such a program? Perhaps its notion of artificial
intelligence would be organically and genetically developed intelligence. Perhaps Al would really be "alternative intelligence.”
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7.6 The Limits of Reason and the Absurd

[f when my wife is sleeping

and the baby and Kathleen

arc sleeping

and the sun is a flame-white disc
in silken mists

above shining trees, --

if  in my north room

dance naked, grotesquely

before my mirror

waving my shirt round my head
and singing softly to mysclf:

"1 am lonely, lonely.

I was born to be lonely,

I am best so!”

If 1 admire my arms, my face,
my shoulders, flanks, buttocks
against the yellow drawn shades, --

Who shall say I am not
the happy genius of my household?

Villiam Carlos Williams, Dance Russe
This final section discusses some of the most fundamental problems raised by the question "What should
1 do?" in light of the architccture for a reasoner developed in this thesis. The conclusion is simply a
heightening of the paradox of human absurdity to the paradox that absurdity is a conscquence of being
best at catering to sclf-significance.

For the program as described to survive, it must matter to itself, it must be self-significant. The
actions of the program all involve changing itself. At each step the program packages up its current
mental state as a new object, thus entering a new state containing the reified previous state. The program
then makes further changes in its sate on the basis of reflecting, on examination of the rcified previous
state. Its continual question of what to do is always that of how to change its state. (Any cffects in the
physical world of these mental changes result from the realization of the machine as a physical device
with causal connections to the rest of the physical world.) Some changes the program can nake in itself

can destroy it. For example, it can abandon all its procedures without replacing them by new ones, so
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that it has no mcans by which to act in the future. For the program to have some way of preferring other,
more sanc changes to this one, it must value its own survival. It must be sclf-significant.

Since the program can sclf-consciously discuss itself, its survival valucs can be justificd in terms
of predicted non-survival. All of the program’s attitudes will cither appear to it to be premises
(depending on no other attitudes), mutually supporting attitudes, or attitudes depending on attitudes of
the first two sorts. Indeed, all attitudes may be mutually supporting to some degree if hypotheses can
always be inferred from sufficiently many of their consequences. For cither premises or mutually
supporting attitudes, the program might attempt to find further justify justifications. Such justifications
cannot be in terms of other attitudes, or the point of the cffort has been missed. The justification also
cannot be in terns of the programmer or other external agents, lest the question be begged by merely
rephrasing it as a similar question of justification for the external agents. The only sort of answer that
scems (o be left is a pragmatic onc: that doing things onc way works (leads to continued survival), and
that doing things differently is less certain of working.

For example, Quine invents the metaphor of the web for our systems of beliefs.3® Our sensory
impressions, hypothescs, theories, laws of nature, and laws of reason all populate a great web of belief,
beliefs interconnected so that changes in one lead to changes in others, so that any belief may be changed
through changes in sufficiently many other beliefs. When confronted with new information, ncw entries,
and changes in the web, we make further changes, cither to accommodate or to reject the new entries.
Changes most frequently occur in the "sensory” beliefs at the web's periphery, and rarcly have
repercussions in the web's interior, at the center of which reside the laws of rcason and unshakable faiths.
In the web metaphor, the only difference between belicfs relevant to their change is the tenacity to which
we cling to them, and the tenacity increases as we proceed from the web’s periphery to its center. But

what is this tenacity of grip on belicfs? Quinc suggest that the reasons we hold the belicfs we do are

86. In scction 6 of [Quine 1953).
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purcly pragmatic, that we change our beliefs so that they lead to successful survival. There is nothing
wrong with other changes, it is just that we die if we make them, and along with us ends our web of belief.

But note the form of pragmatic justifications of attitudes: because holding otherwise leads to
non-survival. To formulate such justifications, the program must be able to realize the possibility of its
own non-survival as opposed to it own survival, and hence the possibility of its non-existence as opposed
to its existence. This means that the program must be able to view itself as an entity of (possibly) limited
temporal duration, and its own life-span as a segment of cternity. It must be able to think of itself as a
finitc object existing in an infinite eternity, or in traditional terms, sub specie aeternitatis.

Here enters the paradox of human absurdity. As an adaptive agent, the program must be
self-significant. But as a self-conscious agent, the program can realize its eternal insignificance, and hence
a sense of sclf-insignificance. It sces that while its values make it matter to itself, outside the span of its
existence its values have no meaning. Hence the program can sce that the way things are does not matter
to it if it is not. Further its being not does not matter to eternity, since there are no standards for things
mattering to eternity.87

Nagel [1979a] phrases this paradox as the result of dragooning transcendent consciousness into
the service of mundane existence. Adaptivencss alone may suffice for survival, as is shown by the lower
animals and plants. But animals and plants are not absurd, because they are not both self-conscious and
adaptive. Only agents both adaptive and sclf-conscious are absurd, that is, permit the possibility of
encountering this paradox of simultancous sclf-significance and self-insignificance.

But as this thesis has argued carlier, sclf-consciousness is necessary for maximal cffectiveness in
adaptation. Only by self-consciously reflecting on our past and potential actions can we avoid as many
pitfalls as possible. Thus absurdity is no accident. The program must adapt to survive, must be

sclf-conscious to be superior at adapting, and hence must be absurd. In the terms of the theory of

87. Wheeler [1977] and others have suggested that eternity may never exist except when it is possible that some observer, or
self-significant agent might exist as part of it.
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cvolution, the fittest are the absurd.

And nevertheless 1 am weary, and 1 know that there can be no rest for me in the heart of this
great city which thinks so much, which has taught me to think, and which forever urges me to
think more. And how avoid being excited among all these books which incessantly tempt my
curiosity without ever satisfying it? At onc moment it is a date 1 have to look for; at another it is
the name of a place | have to make sure of, or some quaint term of which it is important to
determine the cxact meaning. Words? -- why, yes! words. As a philologist, I am their sovereign;
they arc my subjects, and, like a good king, I devote my whole life to them. But will 1 not be
able to abdicate some day? 1 have an idea that there is somewhere or other, quite far from here,
a certain little cottage where I could enjoy the quict I so much need, while awaiting that day in
which a greater quict -- that which can never be broken -- shall come to wrap me all about. 1
drcam of a bench before the threshold and of fields spreading away out of sight. But I must
have a fresh smiling voung face beside me, to reflect and concentrate all that freshness of nature.
I could then imagine myself a grandfather, and all the long void of my life would be filled....

Anatole France, The Crime of Sylvestre Bonnard
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