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Abstract

The problem of using image contours to infer the shapes and orientations of suriaces is treated
as a problem of statistical estimation. ‘The basis for solving this problem lies in an understanding of
the gcometry of contour formation, coupled with simple statistical models of the contour generating
process. This approach is first applied to the special case of surfaces known to be plarar. The distor-
tion of contour shape imposed by projection is treated as a signal to be estimated, and variations of
ron-projective origin are treated as noise. The resulting method is then extended to the estimation
of curved surfaces, and applicd successfully to natural images. Next, the geometric tr2atment is fur-
ther extended by relating contour curvature to surface curvature, using cast shadows as a model for
contour gencration. This geometric relation, combined with a statistical model, provides a measure
of goodness-of-fit between a surface and an image contour. The goodnes-of-fit measure is applied to
the problem of establishing registration between an image and a surface model. Finally, the statistical
estimation strategy is experimentally compared to human perception of orientation: human observers’
Jjudgements of tilt correspond closely to the estimates produced by the planar strategy.
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CHAPTER 1

INTRODUCTION

1.1 The problem

The human perceiver is able to derive enormous amounts of information from the contours in an
image, as evidenced by our ability to interpret line drawings. As part of this capaci.y, we are able
to use the shapes of image contours to infer the shapes and dispositions in space of the surfaces they
lic on. To the extent the inferences we draw are accurate, our strategies for drawing them must have
some basis in the character of the visual world, just as the cfficacy of stercopsis as a source of depth
information has a basis in the geometry of projection and triangulation. The aim of the research
reported in this thesis is (1) to discover constraints on the the visual world that allow surface shape to
be reliably inferred from image contours; (2) to derive methods of inference from those constraints;
and (3) to apply those methods to natural images. The inference of surface shape will be treated
as a problem of statistical estimation, combining constraints from projective geometry with simple
statistical models of the processes by which contours are formed.

The interpretation of contours falls into three sub-problems:

Locating contours. Ifcontours are to be used to infer anything, they must be found. The human
percciver has little difficulty deciding what is and is not a contour, yet the automatic detection of edges
has proved extremely difficult (see, e.g., Falk, 1972; Zucker, Hummel, & Rosenfeld, 1977). Perhaps
this difficulty should not be surprising: the contours we see in natural images usually correspond to
definite physical events, such as shadows or discontinuities of depth. Our ability to dctect these events
may say more about thelr significance for image interpretation than about their ease of detcction.
Why should we expect évents that have simple descriptions in terms of the structure of the scene to
have simple descr1pt10ns in terms of changing image intensity as well? If the physical significance of
contours is taken as their primary feature, then at least we know what is being detected, even if we
don’t know how.

Labeling contours. If contours correspond to such diverse physical events as shadows, and dis-
continuitics of depth or orientation, then an cssential component of their interpretation must be to
decide which contours denote which events, because each kind of contour imparts a different mean-



ing. The work of Clowes (1971) Huffman (1971). and Waltz (1975) have shown that strong structural
constraints can be applied to distinguish one kind of contour from another. Horn (1977a) has related
characteristic intensity profiles to physical contour types.

Interpreting contours. FEven after contours have been found and labeled, not much is known
ahout the physical structure of the scene. It is clear that contours play a role in the human perceiver’s
ability to decide where things arc and what they re shaped like, apart frcm the application of specific
“aigher level™ knowledge to objects of known shape. This ability must have some basis in real
propertics of the world, yet that basis is not known.

This proposal addresses the third problem, with emphasis on contours of reflectance and illumina-
tion, that is, surface markings and cast shadows. The problem, restated, is: given the contours in an
image, infer the shapes and orientations of the surfaces in the scene.

1.2 Approach: image understanding as the application of knowledge

1.2.1 The perceiver and the world

The most interesting property of the human visual capacity is that it works: we rely on vision, more
than any other sense, to inform us of our immediate surroundings; and the information it gives us is,
with respect to our needs, remarkably complete and accurate. The magnitude of this accomplishment,
because it is so familiar, often escapes us: but it is truly remarkable how well the small amount of light
that our eyes capture informs us of the objects from which it has been reflected. The connection be-
tween the light we receive and the world we perceive is not obvious, as evidenced by the slow progress
of attempts to mimic the human capacity: yet we are living proof that that connection exists—our
visual capacity embodies it.

The accuracy of vision implies a special relation between our visual capacity and the world in
which it functions: to the extent vision draws true conclusions about the world, its means of doing so
must rest on true premises about the world. Biological vision provides an existence proof that such
premises, and means of drawing conclusions from them, exist. But to know that they exist is not to
know what they are or how they’re used. To obtain such knowledge is an empirical task, and a difficult
one.

To understand why avisual system works is to understand the relation betwceen that system and
its world. And part of u‘ndcrstanding that relation is understanding the world in its relevant aspects.
If we knew the workings of a visual system in full detail, we would know what that system did, and
how. In a sense, we would know what conclusions the system drew from the evidence given it. But to
understand why this particular “what” and “how” lead to true conclusions about the world we would
also have to know something of the world — namely, the valid premises about the world from which
those conclusions follow. It follows that understanding the behavior or construction of a visual system
is not sufficient for understanding the system’s ability to draw valid conclusions, to the extent it does,



about its world.

Conversely, the truth or falschood of premises about the world. and the ability or inability of those
premises to support arguments from evidence of a particular kind to conclusions of a particular kind,
do not turn on those premiscs being embodied in any particular visual system: the truth or falschood
of premiscs about the world must be evaluated against the world, not against systems that might use
those premises. Thus, understanding the b-:havior or construction of any particular visual system is
not necessary to the discovery of valid premises, or to the evaluation of methods that follow from
them. Of course, to understand the basis in the world for some particular system’s effectiveness, it is
necessary to understand both the system and its world.

The notion that perception has a basis in real propertics of the world is an old one, evident for
erample in the “natural geometry™ of Descartes (1637). More recently, this view is reflected in
1.1, Gibson’s ecological optics (1966). But Giibson insisted that the solutions to perceptual problems
reside not in knowledge brought to bear on the image, but in the image itself. In consecquence, the
assumptions about the world on which his «olutions rested were never explicitly stated nor critically
examined.

The construction of artificial vision systems which emulate the human capacity, or aspects of i,
entails solving the same problems that were solved in evolution, since biological and artificial systems
must operate on the same world. Hence the study of the world from the standpoint of solving
perceptual problems is relevant to both domains. This focus is most evident in the work of Horn
(in Winston, 1975), Land & McCann (1971), Marr (1976, 1979), Ullman (1979), and Barrow &
Tenenbaum (1978). In particular, the work of Marr and of Ullman explicitly treats both the biological
and artificial domains.

1.2.2 Understanding image formation: two uncertainties

Of the sorts of knowledge that might pertain to the interpretation of images, one kind stands out
by virtue of its accessibility and its obvious relevance to the problem: knowledge of the process of
image formation itself. This knowledge, expressed in the equations that describe the transmission,
reflection, and projection of light, is sufficient to synthesize an image from a model of a scene (see,
e.g., Newman & Sproul, 1979), but is notoriously insufficient to recover a scene given its image. While
these equations determine one unique image for each scene, they allow an infinity of scencs for each
image. That is, the mapping they specify from scenes to images is many-to-one.!

The ambiguity in the mapping from images to sccnes specificd by the imaging cquations reduces
to two fundamental unggertainties. The first of these is photometric: the amount of light reaching a
point in the image, having been reflected from a surface, depends on the light-reflecting properties
of the surface, on its orientation in space with respect to the viewer, and on the light incident upon
it (Horn, 1975). These three components may combine in an infinity of ways to produce any given
image intensity, so given the intensity alone, the cquations can’t be solved. The sccond uncertainty is
ISince we tend to think of the laws of image formation as the “real, hard facts,” and other constraints as somehow
softer or less real, the ambiguity in the imaging equations are often regarded simply as the ambiguity of images. This is

not strictly true: if the imaging equations were unknown, images would bc even more ambiguous. If more were known,
they might be less so. The ambiguity resides not in the image itself, but in what we know about the image.



geometric: in the process of projection, a line may project to a point; and knowing the position in the
image of a point’s projection only constrains that point to lic on a linc in space.

It is these two uncertainties that make the recovery of surfaces’ photometric and geometric
properties so difficult: the imaging equations are known. and obviously relevant, but they arc not
sufficient. Something more is required, and finding that clusive “something more™ is the heart of the
problem.

1.2.3 Background

Using the photometric relation. Understanding the imaging process, while insufficient, is
essential to interpreting images. A notable example of the value of this understanding is Horn’s
(1975) treatment of the inference of surface shape from shading information. In a constrained situa-
tion. where the direction of illumination, ard the surface’s light-reflecting properties .irc known, the
photometric ambiguity can be overcome, and the shape of a smooth surface recovered. by integrating
from a curve along which surface orientation is known.

The structure of Horn’s solution is particularly instructive: its basis lies in the dependence of image
intensity on surface orientation, as described by the photometric equation. This lawful dependence is
not by itself sufficient to recover surface orientation from the image, because illumination and surface
reflectance, which are also unknown, appear in the equation as well. To solve for surface oricntation,
additional constraints must be brought to bear, and these constraints must meet two conditions: they
must be sufficiently powerful to determine a unique solution, and they must be true. The first condi-
tion is purely formal, but the second is empirical: if the assumptions from which a solution logically
follows are wrong, one can hardly expect the solution to be right. It is not difficult to find assumptions
that meet the formal condition, nor to find assumptions that meet the empirical condition; the hard
part is mecting both simultaneously. '

The constraints on which Horn's solution is based—known illumination and reflectivity, surface
smoothness, a curve of known orientation—are not always met, but the solution is useful, first,
because the constraints are met in various situations of practical interest, and second, because the
solution is a starting point from which less stringent sufficient conditions can be sought (Ikeuchi &
Horn, 1979).

Horn’s use of the photometric equation provides the model on which the present work is based:
that equation relates quantities that can be measured in the image—intensity, in this case—to quan-
tities that are to be recofered—surface orientation—and quantities that may not be of direct interest,
such as the direction of #lumination. To solve the problem, these relations must be “untangled” using
valid constraints, and the quantities of intcrest isolated.

constraints that are valid in their context must be brought to bear, that permit this relation to be
“decomposed,” and the quantities of interest isolated.

Using the geometric relation. Gceometric propertics of the image, like photometric ones,
depend lawfully on propertics of the scene: the distance between two points in space is related to the



distance between their images by the projective transformation, and all metric propertics? arc likewise
related. One may further distinguish foreshortening, the cffect on projected distance of inclination
from the image plane; and perspective, the effect on projected distance of distance from thc image
plane. The latter is absent in orthographic, or parallel, projection. As in the photometric case, the
projective relation alone is not sufficient to recover the metric propertics of the scene from the metric
jroperties of the image.

Of the many possible formulations of the projective relation, the most useful for the description
of surfaces relate surface orientation with respect to the viewer. metric properties on the surface,
«nd the corresponding metric properties in the image. The first application of such a formulation
1o the recovery of surface orientation from images was by J. J. Gibson (19504, 1950b, 1966), who
j roposed that the texture gradient—the rate of change with respect to position in the image of the
..istance between adjacent texture elements—specifies the slant, or orientation, of the textured surface,
by virtue of the diminution of projected size with increasing distance. This theme has since been
pursued extensively (Purdy, 1960; Bajesy, 1972; Haber & Hershenson, 1973; Rosinski. 1974; Bajcsy &
I icberman, 1976; Kender, 1978; Stevens, 1978).

While Gibson recognized the importance of geometric constraints for understanding surface per-
ception, his argument is seriously flawed by the failure to make explicit assumptions on which his
conclusions critically rest. It is readily shown that the projective relation alone is severely lacking as a
justification for Gibson's claim that the texture gradient specifies the actual slant of the surface,? yet
no other justification was offered to support that claim:

Having located a texture clement at a point in the image, the corresponding surface point is con-
strained by projection to lic on the line that contains the image point and the optical focal point;
and projection imposes no other constraint. One can imagine the line to be a straight wire in space,
extending from the image, and the surface point to be a bead on that wire, in which case the projective
constraint allows the bead to slide freely along the wire. By extension, a collection of texture elements
may be imagined as a bundle of wires, each with a freely sliding bead. And as long as cach bead
remains on its respective wire, the projective constraint is guaranteed to be met. If all of the beads are
presumed to lic on some surface, then it is clear that the projective constraint, by itself, tells us nothing
about the surface’s shape or orientation: for any surface we construct, as long as it intersects each wire,
it is always possible to arrange the beads so they all lie on the surface.

In fact, the relation drawn by Gibson between the texture gradient and surface slant only holds if
the textured surface is planar (Stevens, 1978), and the texture clements on the surface have exactly
equal spacing. That is, the variation of texture observed in the image depends on the variation of the
texture on the surface, and the curvature of the surface, as well as on slant. Yet Gibson has assumed
that the first two contrifutions are absent, and that the observed variation derives entirely from slant.
Subscquent work has largely accepted this premise. While it is obvious that this assumption will
scldom hold exactly in the natural world, I am not at this point arguing for or against its validity. The
point is that, since the assumptions were not made explicit, their validity, even as useful idealizations,

2Distance and properties that depend on distance, such as orientation and curvature.

3This must be distinguished from the claim that the slant specified by the texture gradient corresponds to the slant
perceived by human observers.



was never even addressed. Since image understanding is an empirical endeavor, the value of any
mecthod turns on the validity of the assumptions it entails.

A quite different use of the geometric relation between image and scene is Ullman’s (1979) treat-
ment of the recovery of structure from motion: given the orthographic projections of a set of moving
points, Ullman addressed the problem of determining whether the motions are consistent with an
interpretation of the points as rigidly connected, and, if so, recovering their three-dimensional motion
and spatial relations uniquely. Ullman found that three views of four non-coplanar points are in
gencral sufficient to recover a unique rigid interpretation, if one exists, or clse to determine that the
points arc not in rigid motion.

Of perhaps more interest than the purcly geometric finding itself is the power it assumes, when
linked to a very simple assumption about visual scenes, by Ullman’s “rigidity hypothesis: " if a motion
m the image can be given a unigue interpretation as a rigid motion in space, that interpretation is cor-
sect. With rewording it becomes apparent :hat the basis for this assumption is ultimately a statistical
claim about the world: rigid connection is sufficiently common that the existence of a unique rigid
interpretation is far more likely to arise from actual rigid motion, than from the accidental alignment
of independent motions. In other words, it is possible that the projection of a chance alignment will
be indistinguishable from the projection cf a rigid motion, within one’s tolerance of measurement,
but it is extremely unlikely. One could in principle reformulate the rigidity hypothesis in terms of
the error distribution of the image measurcments, and the likelihood of rigid connection, to specify
a most likely rigid interpretation, and cvaluate its likelihood. However, the rigidity hypothesis is so
strong that those likelihoods are divided into near certainties and near impossibilitics, so an explicit
statistical treatment is superfluous. Although the statistical character of the rigidity hypothesis is per-
haps obscured by its strength, we sce in this instance a hint of the potential power of a coupling of
geometric constraints with simple statistical assumptions.

1.2.4 Image interpretation as a statistical problem

The importance of understanding image formation is well established. A great gap separates the
firm but limited and insufficient foundation provided by image formation from the astonishing level
of performance attained by the human perceiver. But how should this gap be reduced? To solve
substantial image understanding problems in simple and general ways, i.e. without recourse to very
specific “higher level” knowledge, constraints must be discovered that are powerful enough to deter-
mine solutions, and valid enough, over a broad range of situations, to determine the right solutions.
Yet the variability and ﬁfcgularity of the world seems to preclude the existence of formally sufficient
constraints that are valid in the lawful, exceptionless sense of the imaging cquations. For example, an
assumption that textures arc uniformly spaced before projection may quite often approximate reality
reasonably well, but it will never be strictly true, and will often err seriously. Any categorical assump-
tion of this kind, although it might in the long run provide a rcasonable idcalization, may in any given
instance be very, very wrong. In short, the basic uncertainties intrinsic to the imaging equations may
be attenuated by additional constraints, but they cannot be climinated. Whatever assumptions one
adopts, one’s interpretations will sometimes be wrong.
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If uncertainty cannot be avoided, then it ought at least to be recognized, and understood as nearly
as possible. If one’s assumptions can’t always be true, then the best one can hope to do is to somehow
distinguish the cases in which they hold from those in which they fail, and at least avoid acting on
false assumptions. Ullman’s rigidity hypothesis clearly illustrates this point: if one assumes that an
observed set of points are rigidly connected one can under appropriate conditions recover their struc-
ture and motion in three dimensions. The rigidity assumption is sometiries valid, som2times not. But
assuming rigidity incorrectly almost always leads to an identifiable cont.adiction, and the absence of
contradiction almost surcly means the rigidity assumption is valid. When contradiction is detected, the
rigidity assumption is rejected as inconsistent, and nothing is inferred about the structure and motion
of the points, but otherwise the recovered structure and motion are almost certain to be correct. Thus,
the strategy almost always yields either a correct result or no result at all. While a categorical rigidity
assumption would hardly be valid, the sa:ac assumption becomes extremely powerful when made
conditional on the outcome of applying it. By conditioning an assumption on its coscquences, the
assumption’s uncertainty can be made internal to the interpretation strategy.

Recall that the rigidity hypothesis, by which the uncertainty of a rigidity assumption was incor-
porated into the structure-from-motion strategy, may be cast in statistical terms. TFis ought not to
be surprising, because statistics is exactly that branch of mathematics whose purpose in application is
to deal with uncertainty intelligently, and to minimize its damaging effects Statistical methods offer
the best tools that have been devised for this purpose. If uncertainty is intrinsic to image interpreta-
tion, then it stands to reason that the application of statistical methods to image interpretation bears
investigation. Yet, surprisingly, with the exception of an early and isolated cffort by Brunswik (1948),
the recovery of the physical structure of scenes from images has never been attempted by statistical
means.

The application of statistical assumptions figures prominently in the work to be rcported in this
thesis. While the resulting methods do not climinate the fundamental uncertainty of image interpreta-
tion, they offer the important advantage of yiclding not only interpretations, but also measures of
the confidence to be attached to those interpretations. Although the interpretations are not always
accurate, it is therefore usually possible to distinguish the accurate from the inaccurate ones. The
methods to be presented demonstrate the value of this approach.

1.3 Outline

The primary geometric basis for the methods to be presented is the foreshortening relation—the
dependence of metric pyoperties in the image on surface orientation. In consequence, orthographic
projection will be used shroughout, although some perspective effects will be treated briefly. The
distortion of metric properties by projection will be treated, quite literally, as a signal, and the metric
properties themselves, as noise. Since that distortion depends on surface orientation, it in a sense
encodes surface oricntation. To estimate the parameters of the distortion is to estimate the orientation
of the surface.

The entities to be examined in the image are contours, curves in the image that correspond at
lcast roughly to significant physical events on the surface. Attention will be limited to contours cor-
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responding to surface markings and cast shadows. The local metric propertics of curves are naturally
described by the tangent, and the direction of the tangents along the image contours will be the
primary measure on the image. To usc the observed tangents to estimate surface orientation requires a
statistical model of the process by which the contour generator! was placed on the surface.

7.3.1 Estimating the orientation of planar surfaces

The estimation problem is first considered subject to the artificial restriction that the surface is
known to be planar. While not realistic, this limited case provides the groundwork from which more
genceral methods will be developed.

First, the relation between surface orientation, tangent direction on the surface, and tangent direc-
tion in the image. is expressed geometrically. This expression relates the image quantitices that can be
mncasured to the scene quantities that are to be recovered.

Second, the contour generating process is given a simple statistical characterizatior.: surface orien-
tation and tangent direction on the surface are isotropic and independent. That is, all surface orienta-
t'ons, and all tangent directions on the surface, arc assumed cqually likely.

Together, the geometric and statistical models specify a probability density function for surface
oricntation, given a set of image measurements. This function is derived. The surface orientation
value at which this function assumes a maximum is the maximum likelihood estimate for surface
oricntation, given the model. And the integral of the function over a range of surface orientations is
the probability that the actual orientation lics in that range.

The estimator is first applied to geographic contours: projections of coastlines drawn from a
digitized world map. This choice of data circumvents the problem of contour detection, and allows
the actual orientation to be preciscly controlled. The overall accord between estimated and actual
orientation is excellent, and, equally important, the confidence measures generated by the cstimator
cffectively distinguish the accurate estimates from the inaccurate ones.

The same technique is then applied to natural images, using zero-crossing contours in the convolu-
tion of the image with a V2@ function, as described in Marr & Poggio (1978) and Marr & Hildreth
(1979). While the veridical orientations were not independently measured, the maximum likelihood
estimates are in close accord with the perceived orientations.

Methods are then considered for avoiding failures of the estimation strategy that arise from failures
of the premises on which it is based, as distinct from sampling errors. In particular, the dependence
of the image measures poses a potential problem. This problem can be overcome in part by judicious
sampling of the image data, but must in part resort for its solution to independent measures of
orientation, as may come from perspective effects, or from photometric information.

1.3.2 Extension to curved surfaces

The planar method is then extended to the estimation of curved surfaces. First it is shown that the

4the curve on the surface, of which the contour is a projection
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estimator can be applied globally, but only if strong prior restrictions arc placed on the surface. In the
general case, when such restrictions arc not available, local estimation is more appropriate.

To apply the methods developed in the planar case to curved surfaces without additional assump-
tions, it would be nccessary to obtain at each point in the image a measure of the distribution of
tangent directions. But such a local measure is never available, because the density of the contour
data is limited. On the other hand, a distribution can be taken at cach point of the data in a surround-
ing region, as small as possible. but large enough to provide a rcasonable sample. This spatially
extended distribution may be represented as a three dimensional convolution of the image data with a
summation function.

To understand how such a distribution should be applied to estimate surface disposition, the mean-
ing of surface oricntation is considered in *ome detail. It is argued that surface oricntation is not a
uaique property of the surface, but must be regarded as a function of scale. 'The scale at which orien-
tation is described corresponds to the spatial extent over which it is mecasured. Thus, by measuring
¢rientation over a large extent, the surface is described at a coarse scale. We may thus expect the
scale at which the surface is cstimated to uepend on the spatial extent over which the distribution
is computed. Since that extent must be s fficiently large compared to the density of the data, the
density effectively limits the spatial resolution of the estimate. It is shown that this strategy closely
parallels Horn's (1975) method for inferring shape from shading. The local estimator for orientation is
a geometric analogue to the photometric reflectivity function.

The strategy was implemented, and applied to natural images. Contours were extracted as in the
planar case, and the spatially extended distribution approximated by a series of two-dimensional con-
volutions with a “pillbox”” mask. The estimated surfaces were in close accord with those perceived by
the human observer. The effect on the estimate of varying the mask size was investigated.

1.3.3 Using surface curvature

The above method estimates curved surfaces, but never treats surface curvature explicitly. But, just
as the tangent direction of a contour encodes surface orientation, the curvature of a contour encodes
surface curvature. This encoding is investigated for cast-shadow contours. The shape of the image
contour is shown to depend on the shape of the shadowed surface, the shape of the shadowing object,
and their geometric relation to the light source and the viewer. An expression is obtained relating the
tangent and curvature of the image contour to the orientation and curvature of the shadowed surface.
This relation also depends on the illuminant and the shadowing object.

This geometric relatign may be applied to surface estimation by extension of the statistical logic
applied to the previous eascs: the distortion imposed by surface curvature and orientation is regarded
as a signal whose parameters must be estimated from the image data. The problem is simplified
because the curvature and orientation of the surface can be safely assumed to be independent of the
propertics of the light source and the shadowing object.

A limited cstimation problem is addressed: using only the shapes of shadow contours, establish
registration between an image and a surface model, when nothing is known of the object casting the
shadow. Images were synthesized by casting irregular shadows on a digital terrain model (DTM). It is
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shown that registration can be established. using the geometric relation and a simple cross-correlation
technique, to within a few DTM pixels, even with sparse image data.

1.3.4 Relation to human perception

A psychophysical experiment is reported, whose aim is to examine the relation tbetween human
obscrvers’ judgments of the orientations of curves perceived as planar, and the estimates obtained
from the estimation strategy outlined above.

A scries of “random™ curves were gencrated using a function with randomly chosen parameters.
Although such curves have no “real” orientation outside the picture plane, they often appear slanted
in space. Observer's judgments of orientation were obtained by matching to a simp'c probe shape.
‘The judgments of tilt (direction of steepest descent from the viewer) were highly consistent across
observers, while the slant judginents (rate of descent) were much more variable.

Oricntation estimates for the same shapes were computed using the planar estimator, and these
estimates proved to be in close accord with those of the human observers, although the shapes had no
“real” orientation.

While no conclusion is drawn about the mechanism by which human observers judge orientation
from contours, or about the measures they take on the image, this result provides evidence that the
human strategy, and the one developed on geometric and statistical grounds, are at the least close
computational relatives.

14



CHAPTER 2

ESTIMATING THE ORIENTATION OF PLANAR SURFACES

2.1 Introduction

This chapter addresses a relatively simple problem: given a collection of image contours, which
a.c known to be projections of curves on a planar surface, estimate the orientation of the surface
in space. Becausc it is relatively simple, this problem provides an appropriate introduction to the
statistical approach. Moreover, the methods developed to solve the problem are uscful: even though
the restriction to planar surfaces is artificial, a more general solution will be presented later as a direct
extension of the planar case. Following is a summary of the chapter:

Geometric model. Although projective geometry alone does not solve the problem, it is essential
to understand the geometric relation between the quantities measured in the image, and the scene
properties we wish to recover. As a first step, a geometric expression is obtained that relates the
tangent angle along the image contours to the tangent along the corresponding curve in the scene, and
the orientation of the surface on which that curve lies. Because the image tangent depends in part
on surface orientation, this expression can be used to infer surface orientation, in conjunction with
additional constraints.

Statistical model. Next, a statistical model of the scene parameters will be introduced. As a
simple idealization, surface orientation and tangent direction in the scene will be assumed isotropic
and independent. In practice, we might want to bias this joint distribution to reflect anisotropies im-
poscd by gravity. In any event, while the results depend quantitatively on the form of the distribution,
the method can be applied to any chosen distribution.

As a further simpliﬁcaftim, the tangent measures taken on the image will be assumed independent.
That is, we view the measured tangents as the projected orientations of a collection of needles thrown
randomly on the surface. This last assumption is not realistic, and leads to unacceptable consequences
in some situations. Problems arising from this assumption will be treated later in the chapter.

Estimation. Together, the geometric and statistical models determine a maximum likelihood es-

timator for surface orientation, because the geometric model allows the statistical assumptions about
the scene to be carried into the image. A density function for the image tangent angle, given surface
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orientation, will be derived. This last density function in turn determines a density function for
surface orientation, given the tangents measured in the image. This function provides a maximum
likelihood estimate for surface orientation, with confidence intervals.

Implementation. The theoretical analysis will next be moved into application. Since we know
exactly what we want to compute, the implementation of the estimator is straightforward. The more
substantial problem is the extraction of contours on which to apply the strategy. This complication
was avoided in an initial test, by applying tk.c strategy to geographic contours: coastlines of lakes and
islands drawn from a digitized world-map. Then, the strategy was applied to natural images using
zero-crossing contours in the convolution of the image with a V2G function (Marr & Hildreth, 1979).
"The performance of the strategy on these domains is evaluated, and shown to lead to uscful estimates
0 “surface orientation. Furthermore, the coafidence information generated by the statistic ceffectively
d stinguishes reliable from unreliable estimates.

Analysis of failures. Finally, conditions under which the statistical model might fail are con-
sidered. The most serious problems arise irom failures of the assumption that the image data are
independent. Some of these failures can be avoided by appropriate sampling of the data; others
cannot be detected except by reference to independent estimates of surface orientation.

2.2 Geometric model

The tangent to a curve at a given point is defined as the first derivative of position on the curve
with respect to arc length. The tangent is a unit vector, and may be visualized as an arrow that just
grazes the curve at the specified point. The problem, as defined, is to estimate the orientation of a
surface, given the tangent along an image contour which is the projection of a curve on that surface.
The task of a geometric model is to express the functional relationship between the quantities to be
estimated and the quantities that are measured. In this section, the tangent direction at a point on
an orthographically projected curve will be expressed as a function of the orientation of the plane in
which the corresponding space curve lies, and of the tangent direction in that plane.

2.2.1 Notation and terminology

Vector quantities will be denoted in boldface (e.g. X, Y), and angles by lower case Greek letters
(e.g. a,8.) The components of vectors will be given in brackets (e.g. X = [1,0,0].) Projected quan-
tities will be denoted by the same symbol as their unprojected counterparts, with a “#” superscript,
e.g. the projection of a vector X is denoted by X*.

The objects with which we will deal are: an image plane, I; a surface, S, in space, which we assume
to be planar; a curve, C(s) on S, which, following Marr (), we call a contour generaltor; a curve in the
image, C*(s), which is the orthographic projection of C(s) onto I.

The orientation of S with respect to | may be denoted by two angles o and 7 (for slant and tilt
respectively,) with o the angle between | and S, and 7 the angle between the projection of S’s normal
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onto I, and the z-axis in 1. That is, o says how much S is slanted, while 7 says which way (Sce fig. 1).
The direction of a contour generator C(s)’s tangent at a point s will be denoted by B(s), where 3 is
the angle between the tangent, and a fixed coordinate axis in S.

2.2.2 The projected tangent angle

If the orientation of the surface. S, with respect to the image normal, | is given by (o, 7), then |
may be taken into S by a rotation by (o, 7). Therefore, the projection of a curve in S onto | may
be obtained by placing the curve in I, rotating it by (o, 7), and projecting it back ontc 1. The rotated
coordinate axes of I, (z, y), can be taken as the axes for S, and the tangent angle 8 measured with
respect to the rotated z-axis. Then the tangent to C(s) in those coordinates is [cos 3, si1. ).

It will be convenient for the moment to let I's z-axis coincide with the tilt direction, so that T = 0.
[n that case, the equations for rotation by (o, ) of a point (z, y, 0) into (z, v/, Z') reduce to

7 = zcoso
Y=y
Z = zsino

and the orthographic projection of (z/,1/,2) onto I is just (/, ¥’). So the tangent vector t =
[cos B, sin B] becomes, after rotation and projection

t* = [cos B cos o, sin ]

(which is not in general a unit vector.) The projected tangent angle 8* is the angle between this vector
and the z-axis, whose tangent is given by

tang
tanf* = ——
p CO80
so that
B* = tan—! tan g
coso

To reintroduce 7, suppose we now pick arbitrary coordinate axes for I, and define a* the angle be-
tween the x-axis in the image, and the projected tangent. Since 3* is the angle between the projected
tangent and the tilt direction, we have

ﬂt — at —7

and

a* = tan—! (M) 4r -1y

Coso

where a* is the projected tangent angle, 8 is the angle between the unprojected tangent and the tilt
dircction’s projection onto S, and (o, 7) is the orientation of the curve in space. This expression
rclates a*, which can be measured in the image, to (o, 7), which we wish to recover, which is what we
sought.
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Figure 1. Representing surface orientation by slant (o) and tilt (7): Slant is the angle between a normal
to the surface and a normal to the image plane. Tilt is the angle between the surface normal’s projection
in the image plane, and a fixed coordinate axis in that plane.
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2.3 Statistical model: isotropy and independence

We now have a geometric relation between the measured tangents along an image contour, and
their counterparts in space, in terms of the orientation (o, 7) of the plane of the contour generator.
But the measurable quantity a* depends on three unknown parameters (B, 0, 7). 50 we can't solve for
(0, 7). As expected, the geometry alone docs not admit a solution for surface orientation given only
measurements of the tangents along image contours.

The problem, then, is to find a method for estimating the two parameters of surface orientation,
(o, 7), given only a set of measurements of a* along the contours in an image.

2.3.1 Signal and noise

Although the projective relation alone is not sufficient to recover surface orientation from the
image, the problem would be straightforward if the shape of an observed contour prior to projection
were known. For example, if an ellipse in the image were known to be the projection of a circle, the
orientation of the circle would be uniquely determined! by the shape of its projection, and could be
easily computed. That is, the distortion imposed by projection on a known curve is usually sufficient to
recover the curve’s orientation. The shape of the image contour may be conceptually divided into the
unprojected shape, and a projective distortion imposed on that shape. If one component is known, the
other can usually be recovered.

Even if the shapes of the contour generators contributing to a particular image are unknown, sur-
face orientation may be estimated if the shapes of contour generators in general are given a statistical
characterization, because the projective distortion, which depends on surface orientation, has a regular
and systematic effect on the image. The irregularity of natural contour generators may be pitted
against the regularity of the projective distortion, by treating the distortion imposed on the contour
generators as a signal whose parameters must be estimated, and the shapes of the contour generators
themselves as noise from which that signal must be isolated.

In the last section, a geometric expression was derived relating the tangent direction on a contour
to the tangent direction on the contour generator, and the orientation of the surface. In terms of
that expression, (o, 7) is the signal to be estimated, 8 is the noise to be discarded, and a* is the
combination of signal and noise that can be measured.

A number of measures of a*, taken across the image, define a distribution of observed tangent
directions, which might for example be represented as a histogram. For any hypothesized surface
orientation, the geometric relation translates each value of @* into a corresponding value of 3, and so
translates the observed distribution of a* into a corresponding distribution of 3; a possible distribu-
tion of § may be obtained for each value of (o, 7). If something were known about the expected
distribution of g, then the distribution could be chosen, from the set of possible ones, that most
closely resembled the expected distribution. To the extent the expected distribution was a good
description of the shapes of contour generators, the value of (o, 7) that was used to obtain the “best
fit” to that expected distribution would be a good estimate for the orientation of the surface.

!Except, of course, for the inevitable reflective ambiguity of orthographic projection
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In this section, a simple statistical characterization of the distribution of 3 will be coupled with the
geometric model. to obtain a maximum likelihood estimator for surface orientation, given the image
contours. The mathcmatical basis for this estimator lics in basic statistical thcory, which allows us to
derive the density function for a function of random variables, when the density functions for those
random variables are known. To make quantitative estimates, we must assume some form for the joint
distribution of (8,0, 7). What form this distribution ought to have is an empirical jucstion, but a
plausible idealization is the assumption that tangent dircction and surface orientation arc independent
and isotropic.

2.3.2 A joint density function for (8,0,7)

If B8, o, and 7 are trcated as random variables, and a joint probability density function G.p.d.f)
is assumed for those variables, then (o, 7) may be cstimated statistically. To the extent the assumed
j.p.d.f. accurately describes the world, that estimate will be valid in some statistical sense.

A j.p.d.f. is intended to give us the relative likelihood, for cach set of values of the variables, that
that particular st of values will be observed together. Consider the meaning of this j.p.d.f. in concrete
terms: suppose we walked around the world, looking around as we usually do. We might measure
the oricntation of every surface our eyes fell on. Whenever the surface had curves on it of the sort
that project into contours on the retinal image, we might also measure the tangent direction of the
curves on the surface. Fach time we did this, we could record a triple of numbers, (8, 0, 7) for tangent
direction, slant, and tilt, respectively. On the basis of a large number of records of this kind, we could
develop an empirical picture of the joint distribution of these variables in the environment.

To literally gather these “statistics of the universe” is possible, and has actually been done in other
contexts (Brunswik, 1948; Switkes et al,, 1978), but I believe this is not the most cost-cffective way
to proceed. I will argue that plausible idealizations for these distributions can be inferred, and their
validity subjected to indirect test by evaluating the consequences of adopting them.”

We might expect, in practice, to find anisotropies in the distribution of surface orientations, arising
ultimately from the effects of gravity, and of our characteristic orientation with respect to gravity. That
is, the ground tends to center on the horizontal, and we tend to stand above it. Suppose we ignore
this effect for now, leaving open the possibility of reintroducing it as a bias in the distribution. In that
case, what properties might the distribution be expected display, if we lived in free fall? Given these
limitations, the following propositions provide a simple idealization of the distribution:

i. Over the long run, s.g,rfaces are as likely to appear at any one orientation in space as at any other.

ii. Over the long run, gangents to contour gencrators are as likely to appear at any one oricntation in
the surface they lie on as at any other, regardless of the orientation of the surface.

What these propositions say is that there is no reason a priori to prefer any surface orientation to
any other, or any tangent dircction to any other, and that surface orientation and tangent direction are
statistically independent. ‘

The statement that all surface orientations are equally likely requires clarification: the oricntation
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of a surface can be given by the unit normal, i.e. a “ncedle” of unit length perpendicular to the
surface. The set of normals corresponding to all possible surface orientations define a unit sphere?
which contains the points of the necdles. When we say that all surface orientations arc cqually likely,
we mean the needle is as likely to land at any one point on the sphere as any other.

When surface orientation is represented by the slant and tilt angles, o and 7, the isotropy assump-
tion does not translate into the assumption that all values of o and 7 arc cqually likely. For each
value of @, the possible values of 7 define a circle on the gaussian sphere, whose radius approaches
zero as o approaches zero, and one, as o approaches 7/2. The circumference of the circle is easily
shown to vary with sino. Because the likelihood of landing on cach point on the sphere is equal, the
likelihood of landing on a curve on the sphere is proportional to the length of the curve. Since each
value of o corresponds to a circle with circumference proportional to sin o, the relative likelihood of o
is proportional to sin 0. Noting that all values of 7, the tilt, and 3, the tangent angle arc cqually likely
over the range range [0, 7], we have the dcnsity function

11 sino
d.f. = ——sino =
p.d.f.(8,0,7) ~~sino 2

(2-2)

which, it is easily shown, integrates to onc¢ over the ranges of the parameters. We now have a
statistical model for the scene parameters, and a gecometric model relating these parameters to the
image measurements. Together these measures determine a maximum likelihood estimator for surface
orientation, given measures on an image. This estimator will now be derived.

2.4 Estimating surface orientation

Given a geometric model, which expresses the projected tangent direction a* as a function of
(8,0, 7), and a statistical model which gives a j.p.d.f for (8, o, ), we derive the maximum likelihood
estimator for (o, 7) that follows from these models.

The first step is to derive the conditional? p.d.f for (@* | @, 7). From this function, we obtain the
joint conditional p.d.f for (A* | o, 7) where A* is a set of measures A* = {a*;,a*s, ..., a*,}. At this
step we introduce the assumption that the projected tangent directions, a@*;, are independently drawn
from p.d.f.(a* | o, 7). The implications of this assumption will be discussed at some length in a later
section. Then, using Bayes’ rule, the joint conditional p.d.f. for (o, 7 | A*) is obtained. A maximum
likelihood estimate for (o, 7) is the value of (o, 7) for which that function is maximized.

<

2Called the gaussian sphere "

3Since we are only concerned with visible points on opaque surfaces, we know in advance that the unit normal is
confined to the hcmisphere of visible directions, but this makes no difference for the derivation that follows.

4The conditional probability (A | B) is defined as the probability of an event A, given that event B has occurred. A
conditional p.df, f(a | B) is the p.d.f. for a random variable a given that event B has occurred. The conditional p.d.f.
for (a* | o, 7) is simply the p.d.f for a* given that o and 7 assume specified values.
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2.4.1 Density function for (a*|o,7)

From the last scction we have the density function

lsino
2

a* = tan™! (t_an_ﬂ) +T
coso

Thus @* is a function of random variables with known distributions. To obtain the p.d.f. for
(a* | o, 7) we treat @* as a function of B, with o and 7 as parameters. We use the relation

pd.f.(8,0,7) =

and the geometric relation

dz

dé(z)
where ¢(z) is a function of random variable x. From this rclation we have

p-dL(a(8) | 0,7) = p.d.L(B |0, 7)

p.d.f.(¢{z)) = p.d.f.(z)

From (2-1) it follows that
B = tan—"!(coso tan(a* — 7))

Differentiating with respect to a* gives

6 coso

da*

cos}(a* — 7) + sin*(a* — 7) cos?o

and p.d.f.(8 | o, ) is simply 1 /7. So

Coso

p.d.f.(a*|o,7)= 1
T\ cos?(a* — 7) + sin*(a* — 7) cos?o

This density function tells us, under the assumptions of isotropy and independence for (8, o, 7)
how the image tangent direction is distributed as a function of surface orientation. This distribution is
graphed at several values of o and 7 in Fig. 2.

-
<

2.4.2 Joint density function for (A* ={a},...,a}}|0,7)

Suppose we have measured the image tangent direction, a*, at a series of n positions along an
image contour. A basic relation in probability theory states that the joint density of n independent
mecasures, each with density function f(z) is

pdf (X ={z,...,20}) = fl@)f(z2)- - f(2n)
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Figure 2. Curves in the function p.d.f.(e* | o,7), plotted against a*, with 7 = 0, at several values of
a.
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If we are willing to assume that a sct of measures of tangent direction are independent, we have

p.df.(A*={a},...,a}} |0, 7)= H p.d.f(a}|o,7)

i=1,n

7 'coso

i=1.n cos2(a* — 1) + sin®(a* — 1) cos?o
’ 3 l

where the symbol [] denotes an iterative product. This expression gives the relative likelihood for
the sct of observed image tangents, at cach value of (o, 7). By Bayes’ rule, the density function for
(o, 7) given A* is

p. d. f( ) p.d.f.(A* | g, T)
ffp d.f.(o,7) p.d.f.(A* | o7)dodT

pd.f.o, 1, | A")

where integration is performed over the ranses of o and 7. Dividing by the integral simply norinalizes
the function to integrate to 1. The value of (o, 7) for which this function assumes a maximum is the
maximum likelihood estimate for surface orientation, and the integral of the function over a region
gives the probability that the surface orientation lies inside that region.
Noting that
lsino
g

p-d.fo,7) =
the relative likelihood of (o, 7 | A*) is

—2

M “sinocoso

p.d.f.(o,7) p.df.(A* |0, 7) = (2-3)

i=1,n cos?(a} — 7) + sin?(a? — 7) cos?a

We normalize this relative likelihood function to obtain the density function, by dividing by its
integral, which can be approximated by summing values of the function taken at equal intervals of o
and 7.

2.4.3 Summary of the model

The geometric/statistical model from which this estimator follows constitutes a set of claims about
the domain. The estimator is valid to the extent these claims are true of the domain. These, in
summary, are the claims that comprise the model:

1. Geometric model. Each image tangent measure, a*, is related to the scenc parameters

(8, 0, T) by the expression
tan g
= t —1
? an ( coso ) +r
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2. Planarity restriction. The surface orientation (o, 7) is constant over position.

3. Statistical model. The joint distribution of (8, o, 7) is given by

lsino
p.d.f(8,0,7) = 2

and the image measures of a* correspond to values of 3 independently drawn from this distribution
for some value of (o, 7).

4. Estimator. Derived from these assumptions is a density function for surface oricntation, given
the image data, given by '

—2

T “sino coso

)
i=1,n cos?(a} — 1) + sin’*(a? — 7) cos?a

normalized by its integral with respect to (o, 7). The value of (o, ) at which this function assumes
a maximum is the maximum likelihood estimate for surface orientation, under the assumptions of
the model; and the integral of the function over a region of (o, 7) is the probability that surface
orientation lies in that region.

2.5 Implementation

In this section, an implementation of the estimation strategy is reported and assessed. The strategy
was applied to two natural domains: geographic contours, drawn from a digitized world map, and
natural images, using zero-crossing contours in the V2G convolution, as described by Marr & Poggio
(1979), and Marr & Hildreth (1979). The zero-crossings of this convolution are peaks in the first
derivative of the band-passed image. While these zeros are regarded by Marr & Poggio as precursors
of contours, they correspond closely enough to significant events on the surface to have the desired
properties for estimation. Since the strategy is limited to estimating planar orientations, images of
approximately planar surfaces were chosen. The key questions addressed in assessing the performance
of the strategy are: how accurately does it estimate surface oricntation, and how accurately does it
estimate the error of its own estimates, i.e. the confidence regions for the estimates.

2.5.1 Computing tlr'i_e estimate

The aim of the computation is to determine the density function and maximum likclihood estimate
for surface oricntation, given a set of tangent measures. The data arc conveniently represented in
grouped form, by dividing the continuum of tangent direction, on the interval [0, ), into a set of
subintervals of cqual length, and recording the number of measures that fall into cach subinterval.
Since the data arc a collection of curves, this amounts to recording the total arc length that falls in
each oricntation band.
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LetA* = {a},.. ., a;} be the data grouped into n orientation bands, with a} the midpoint of the
tth band. That is, cach aj gives the number of data points falling in the corresponding interval. Then,
for the grouped data, the relative likelihood of (o, 7 | A*) becomes, from (2-3),

—2

Lo, 7| A*) = exp( 2 a’log T SINgcosg ) (2-4)

i=In cos}(a? — 1) + sin*(c? — 7) cos?a

And, if this function is computed at m cqually spaced values of o, and p cqually spaced values of 7,
the density function is approximated by

L(o, 1| A*)
Zi———l.mz j=1,p L(0i1 7j I A‘)

p.d.fo,7|A*) ~ (2-5)

vhere L(o, 7 | A*) is from (2-4).

The value of (o, 7) at which this function assumes a maximum approximates the maximum
li <elihood estimate for surface orientation, and the sum of the function sampled at uniform intervals
01 a region of (o, 7) approximates the probability that surface orientation lies inside the region. The
computation was facilitated further by placing the values of log p.d.f.(a} | g;, 7i) in a lookup-table.

2.5.2 Experiment I: geographic contours

Stimuli. The initial test of the strategy employed geographic contours drawn from a digitized
world map, which obviously posed no extraction problem. Beyond this advantage, these contours
provide a data-base of curves which were gencrated by physical processes, and, when taken small
enough to neglect the curvature of the earth, are planar. Morcover, by subjecting the curves to
rotation/projection transforms, stimuli arc generated whose “real” orientation in space is known
exactly. This degree of control is much more difficult to obtain using natural images.

The curves are land-water boundaries, represented in the data base as chains of points in
latitude/longitude coordinates. These were converted to cartesian coordinates, and projected onto
the earth’s tangent plane in the necighborhood of the curve, giving a frontal-plane representation.
Sufficiently small curves were selected that the curvature of the earth was negligible. The coastlines of
islands and lakes were chosen as a class of closed curves of reasonable size. Several of the curves are
shown in fig. 3.

Stimuli were generated from the frontal-plane curves by rotating them through a given (o, 7),
and orthographically prgjecting them to produce an image contour. These curves were converted to
grouped-data form as foflows: between cach pair of vertices, a* is given by tan—!(Ay/Az), and the
arc length between the vertices by \/Az2 4 Ay2. The arc length was summed into the appropriate
oricntation cell. Seven orientation cells were used, since it was found that finer divisions had little
effect on the estimate.

Coastlines of islands and lakes were selected from the data base on the basis of size: chains of
several hundred vertices each were chosen. The maximum likelihood estimate and p.d.f. were com-
puted for cach curve at 36 orientations, with oricntations uniformly spaced on the gaussian sphere.
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Figure3. Some islands drawn from the geographic data base




Results. The results for one curve at a number of oricntations arc shown in detail in fig. 4. For
cach orientation. the appearance of the curve and a contour plot of the log p.d.f. arc shown. In
general. as slant increascs. the accuracy of the estimate increases and the density function falls off
more steeply around the estimate. This is to be expected. if the projective distortion is viewed as a
signal. because o is approximateh the amplitude of the signal. so increasing o increases the signal-to-
noise ratio: that is. there is more projective distortion at larger slants.

Fig.s 5 and 6 summarize the results for seven curves: scatter plots are shown for estimated against
actual o and 7. as well as histograms of the observed crror distributions. Clearly, tor this class of
shapes. the strategy makes good estimates.

Next we consider the effectiveness of the strategy at estimating its own crror. A simple measure
of confidence in the estimate is the maximam value of the p.d.f. Since the p.d.f. wis computed at
discrete points, this value may be viewed ar the probability that (o, 7) lies in a small region of fixed
size around the maximum likclihood estimate. As shown in fig. 7, the mean error of estimation drops
sharply as this value increases. for both o and 7. Thus, the peak value of the p.d.%. can be used
to reliably distinguish good estimates from bad ones. A more thorough gauge of cot fidence can be
obtained by computing a confidence region, i.e. an iso-density contour within which the integral of
the p.d.f. assumes a specificed value.

2.5.3 Natural images

Extracting contours. The most substantial problem in applying the estimate to natural images
is that fully adequate means of locating image contours do not yet exist. A promising basis for the
location of image contours are zero-crossing contours, developed by Marr & Poggio (1979). The image
is convolved with a circular V2G mask, the laplacian of a two-dimensional gaussian, and the zero-
crossings of the convolution correspond to peaks in the first directional derivative.of intensity in the
band-passed image.

Zcro-crossing contours are proposed by Marr & Poggio to be an effective description of the in-
tensity changes in images at different spatial scales; they are regarded as precursors of perceptual
contours. To provide appropriate data for the estimation strategy, the shapes of zcro-crossing con-
tours must bear a regular relation to processes acting on the surface, and they appear to possess this
property.

Veridical orientation. A less serious problem is that, unless a scene was photographed under
carcfully controlled conditions, the orientations of surfaces are not preciscly known. The geographic
contours provided the opportunity to systcmatically compare the estimates to precisely known veridi-
cal oricntations. For the present purpose, we can trust our own perceptions of the photographs; if the
strategy and our perceptions agree, at worst they err in the same direction.

Selection of photographs. The estimation strategy under consideration is limited by the
planarity restriction. In observance of this restriction, pictures of approximately planar surfaces were
chosen. Scveral kinds of contour gencrating processes are represented, including surface markings
and cast shadows. Also of interest are surfaces which are not planar, but have an “overall orientation,”
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Figure 4. One of the geographic contours shown at varicus orientations, with the density function obtained
at that orientation. The density function is plotted by iso-density contours, with (o, 7) represented in polar
form: o is given by distance to the origin, 7 by the angle. The radial symmetry.of the plots reflects the
symmetry of orthographic projection. The sharp, symmetric peaks clearly visible at higher slants are the
maximum likelihood estimates for (o, 7).
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i.e. a substantial low-frequency component in the depth function. A potentially practical application
of the planar strategy is the estimation of this component.

Digitization. The photographs were digitized on the Optronics Photoscanner at the MIT Al lab,
an accurate, high-resolution digitizing device. The digitized images contained between three and four
hundred pixels in cach dimension. with inteasity quantized to 256 grey levels.

Convolution. The digitized images were convolved with V2G masks, as described in Marr &
Hildreth (1979). The convolutions were performed on a LLisp Machine at the MIT Al Lab, using
specialized convolution hardware. A mask with a central radius of eighteen pixels was used; the total
diameter of the mask was sixty pixels. Figure 8 shows a digitized image, its convolution with a V2G
I'inction, and the zeros of the convolution.

Extraction of tangent direction. Tangent direction was measured along the zero-crossing
contours of the convolutions by first locatit g points on the contours, then measuring the gradient of
the convolution at those points. The tangent to the contour is orthogonal to the gradient.

Grouping the data. The data were giouped by tangent dircction, in the form described above,
by sampling the contours at fixed increments of arc-length, measuring the tangent orientation, and
summing into the appropriate orientation cell. From this point on, the estimate was computed as for
the geographic contours.

Results. The photographs, together with the computed density functions for (o, 7), are shown in
Fig. 9. These should be compared with the apparent orientations of the pictured surfaces. Most
observers’ perceptions of these surfaces agree closely with the estimates.

2.6 Avoiding failures of the estimation strategy

2.6.1 Two kinds of error

[t is necessary at the outset to distinguish two kinds of error that may arise in any statistical estimate
or decision: first, those errors that the estimation strategy “knows about” and describes statistically,
¢.g. in terms of error bars around an estimate. Second, those errors that arise because the model on
which the estimation strategy is based misrepresents the domain, e.g. when a population assumed to
be normal is actually badly skewed.

The first of these, sampling errors, are not really a problem. Although it is of course desirable to
minimize sampling error, its magnitude is statistically predictable, even when large. It was shown
in the last section that, although the surface orientation estimation strategy sometimes makes large
errers, the confidence information it generates can be used to distinguish the good estimates from the
bad ones. While it would be better to avoid large errors aitogether, if they must occur, it is important
that they be recognized.
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Figure8. A digitized image, its convolution with a VG function, and the zeros of the convolution.
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Figure9. Surface orientation estimates from photographs. The estimated surface orientation is indicated by

an ellipse, representing the projected appearance a circle lying on the surface would have, if the maximum
likelihood estimate were correct.
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Failures that follow from misrepresentations of the domain will thus be the principal subject of
this section. Such failures cannot be predicted by the estimation stratcgy because they are failures of
the premises on which the strategy is based. They must cither be detocted by mcans external to the
strategy. incorporated into the strategy’s medel of the domain, or just tolerated.

We have seen that the planar estimation strategy works on a varicty of naturally gencrated contours.
The geometric/statistical model on which it is based therefore captu -¢s enough of the character of
the domain to be uscful. While this model can’t be dismissed as just wrong, we are concerned with
situations that arisc often enough in natural scenes to be a problem. and in which the assumptions
comprising the model are drastically and s,stematically violated. To the extent such situations arise,
the strategy will fail to a degree its own confidence information can't predict. What assumptions
¢omprising the model are likely to cause fai;ure?

2.6.2 Violations of the model

The estimation strategy presented in this chapter is based on a model of the domain to which it
applies.  Aside from the planarity restriction, which is a domain restriction rather than a realistic
assumption, the components of the model are a geometric expression that gives a* as a function of
f3. 0. and 7; and a statistical model that gives a joint density function for (8,0, 7). Together, these
functions specify a density function for @* | o, 7. Given a sct of measured values of a*, we used the
density function to estimate (o, 7), making the additional assumption that the measured values of a*
werc independently drawn from that density function.

Each component of this model is an assumption about the domain. If all the assumptions are
true. then the statistical conclusions that follow from them are true, and all the estimation errors are
sampling errors whose distribution can be computed. If any of these assumptions is violated, the
model may fail in a manner not predicted by the error distribution. Of interest, therefore, are the
conditions under which one or another of the assumptions is likely to fail. We will briefly consider
cach assumption in turn. Of course, planarity restriction is not expected to hold for real scenes, and
will not be discussed.

Geometric model.

Given the idealization of orthographic projection, and given that the mathematical notions of
surface orientation and tangent direction are idealizations when applicd to physical surfaces, the
geometric relation between a*, 8, o, and 7 is lawful and exceptionless. This assumption will not fail.

Joint density function for (B,0,7). This density function is intrinsically a statcment about
the domain in the long run, across the variations from one scene to the next, so it is not meaningful
to look for exceptions to it in particular scencs. Of course, the simple density function following from
the assumption of isotropy may be wrong in the long run. But were we to change that function, for
example, to reflect the systematic effects of gravity, the estimation strategy would remain substantially
the same, although the estimates it produced would change quantitatively. That is, if it turned out
the density function had to be changed, the corresponding change to the estimation strategy would be
straightforward, so this is not serious problem.
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In fact. if error feedback were available to the estimation strategy, it would be quite possible for it
to "learn™ this distribution, or tune it by an error-reduction criterion.

independence of image measures. This assumption amounts to treating the measured tan-
gent directions as the projected orientations of a number of needles randomly and independently
dropped on the surface. While this assumption greatly simplifies the computation of the estimate, it
is not realistic unless the measurements really do correspond to independently thrown needles. The
assumption can fail in at least two ways, cach of which may have serious conscquences.

First, the orientation along contours usually varics continuously, so two very nearby points are
liable to have ncarly the same orientation. In other words, the orientations at nearby points are
correlated, and therefore dependent. Since the data were taken by sampling at fixed intervals of arc
length, the consequence of this dependence is the artificial inflation of the sample size. if the sampling
interval is chosen too small. This inflation does not, in general, substantially change the estimate
obtained, but it does inflate the confidence of the estimate. This may not be so scrious if the estimate
happens to be accurate, but has drastic conscquences if the estimation is performed on a small cnough
arc of contour that all the data are highly correlated. In that case, we may think we ha /e a great many
data points, when we really have only a few. And an estimate that probably has almost no meaning
may be taken for a very reliable one.

A second source of dependence among the image measures is more global. Dependence may be
imposed by the operation of a process that systematically influences the orientations of contour gener-
ators across the surface. An example of such a process is shadow casting: the geometry of the process
that casts a shadow onto a surface is almosi identical to the geometry of the shadow’s projection into
the image. That is, the contour generator, by the time it is formed, has already undergone a projective
transformation. Needless to say, the estimation strategy may be badly fooled by cast-shadow contours,
unless they can be distinguished from other kinds. Some surface-marking processes may also impose
systematic projection-like distortions on contours. :

carly, the assumption that the image measures are independent is the weak link in the chain.
Next some means of avoiding the failures that come from this assumption will be considered.

2.6.3 Continuity of contours

Cn a smooth curve, the tangent directions at nearby points are highly correlated. But, unless the
curve was generated in some regular way, the orientations at more widely scparated points are likely
to be uncorrelated. To Iegitimize the assumption that the measured tangent dircctions are independ-
ent, a large enough sampling interval must be chosen that the dependence among successive measures
is small enough to be neglected. On the other hand. if the sampling interval is too large, data are lost.
How can we decide which sampling interval is best? Clearly, this decision must depend on the shapes
of the contours.

Analogous problems in signal detection. The problem ofdcpcndénce among ncarby data
points is one that ariscs in signal processing applications, as when a signal must be detected in noise.
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Since, for most kinds of noise. nearby values of the noisc are correlated, signal detection strategies
face much the same dependence problem that has arisen here. If the propertics of the noisc are well
cnough understood, this dependence may be explicitly taken into account in the detection procedure,
or cffectively eliminated by judicious sampling of the incoming signal.

The degree to which values of a function at some fixed separation are correlated is usually ex-
rressed by the autocorrelation function, which is just the convolution of the function with itself, or
by its normalized cquivalent, the aut. ovariance function. When that function is known a priori,
the simplest procedure is to choose a large enough sampling interval that the dependence between
saccessive data points is negligible. Considering the enormous variations in scale of the contours with
which we might be concerned, this procedure is not applicable to the current problem.

An alternative is to use a sample cstimate of the autocovariance function to choose a sampling
interval. When nothing is known of the autocovariance a priori, this is probably the test that can be
cone to combat dependence; but it is an expensive computation, and probably much more claborate
than necessary. Rather than vastly complicate the estimation procedure, it would be desirable to find a
rough, simple guide to the appropriate sampling interval. All such a measure really has to do is avoid
the disastrous consequences of oversampling that arise when the contours are very smooth, hopefully
without discarding much more data than necessary, and without introducing a new class of failures.
And it need only work for the sort of cases that are likely to arise in natural images. There arc many
ways such a crude measure might be formulated, but a few simple constraints can be placed on the
measure:

First, two sets of contours, identical except for size, ought to lead to the same cstimate, and the
same confidence in the estimate. In other words, when the data are transformed by uniform scaling,
the sampling interval should transform in the same way.

Second, a sampling interval small enough that adjacent measures are highly correlated, is small
enough that orientation undergoces little change from one measure to the next. So, in general, the
more rapidly the direction of a curve changes along its length, the the smaller the sampling interval
should be. That is, samples should be taken less often along a contour that is nearly a straight line,
than along one that twists and turns rapidly. This may not be so if the curve twists rapidly but
regularly, i.e. is periodic, but such curves are not liable to appear in natural images.

If we incorporate these constraints into a sampling strategy, we are not likely to be fooled into
excessively closc sampling of very smooth curves. A very simple way to do this is to measure the total
change in orientation along the contour normalized by total arc length; which is a measure of the
average change in orientation per unit arc length.® This can be expressed by

-
¢

. b
= / x| ds
l Ja

5In fact, if we were measuiing anything but tangent direction, we might do quite well to sample by fixed steps of change
in tangent direction. That is, each time the total change in tangent direction exceeds some fixed amount, take another
data point. This, of course, is nonsensical as a way to sample tangent direction, but if an estimate could be based
on some other measure on the curve, this extremely simple sampling strategy might substantially avoid the dependence
problem. Such a measure is the curvature of the contour. An estimator based on contour curvature has also been applied
successfully to planar curves.
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where [ is the length of the curve, a and b the endpoints, & is the curvature, and s is a natural
parameter. In practice, we would just sum the (unsigned) angles between points at fixed steps of arc
length to approximate the integral.

Recall that the estimator was implemented using data grouped into orientation bands, effectively
giving the a histogram of the total arc length in each band. All that need be done is to scale this
histogram to reflect the degree of dependence.

2.6.4 Systematic effects on tangent direction

If the local effects of continuity can be reduced by judicious sampling of the data, a more difficult
form of dependence is manifested in the scrt of global systematic distortion of tangent direction on
the surface cpitomized by cast shadows. This kind of dependence cannot be overcome by proper
sampling, because it is liable to apply everywhere in the image. Rather, two options are available: find
ways to decide when such a process has operated, and, where possible, allow for it in the estimation
strategy: or always lcave open the possibility of such failure, but suspend final judgment until the
estimate can be compared with independent ones, such as those derived from shading information.

Detecting and modeling distorting processes. The first option entails somehow detecting
the offending process. If that can be done, and the process is understood, its properties can be
incorporated into the domain model and the consequent cstimation strategy. This is option surely
leads to the best estimates, but is also the most difficult to realize. It might be possible to recognize,
say, cast shadows by the intensity profiles across their edges. Then, the appropriate geometric model
would be a model of shadow casting.® But how could we recognize some surface-marking process
that systematically stretched or otherwise deformed the contour generators? And even if we could,
how could we hope to model such processes sufficiently well to allow for the distortion? With the
possible cxception of cast shadows, which are common enough and regular enough in their geometry
to perhaps warrant special treatment, detecting, no less modeling, all of the processes that might
systematically alter the distribution of tangents on a surface seems to be a hopeless task.

Using independent estimates of the surface. Fortunately, a number of properties of the
image potentially inform us of surface shape and orientation in the image; otherwise image interpreta-
tion would probably be impossible. It is important to remember that a method for estimating surfaces
from image contours is intended ultimately to act in concert with methods based on other sources.
Each method may, under some realistic conditions, fail badly. But, to the extent the causes of the
various methods’ failures are independent, failures can be detected in the discrepancies among the
estimates. For example, ‘evcn if the contours in a given image mislead, shading information and such
are most unlikcly to mlslead in just the same way.

In many cases, the strategy of combining independent estimates simply means that the significance
attached to any one estimate must be qualified, leaving open the possibility that some confounding
SIn fact, for planar surfaces and orthographic projection, no estimate can be made using cast shadow contours, if the
direction of illumination is unknown: the contour has undergone two projections, and there is no way to differentiate

them in the image geometry. If the direction of illumination is known, then the first projection can be allowed for, and
an estimate can be made. The geometry of cast shadows will be considered in detail in Chapter 4.
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process has operated. For the planar estimation strategy, this means we take our estimate for (o, 7)
to be the best estimate of the projection-like component in the image data, but we leave open the
possibility that the projection-like component is not due to projection, deferring a final decision until
we have corroborating evidence.

Using perspective effects. 'The planar estimation strategy uscs foreshortening distortion, and
assumes orthographic projection. However, real images arc usually subject to perspective distortions
(i.c. change of projected size with distance to the viewer) as well. [t may be possible to take
perspective-based and foreshortening-based estimates, derived from the same image data, as inde-
pendent in terms of confounding projection-like cffects: while real foreshortening and perspective
distortions are rigidly linked on smooth svrfaces, it is very unlikcly that projection-like distortions
of the surface markings themsclves will be linked in this way. Thus, a high corre’ation between
perspective-based and foreshortening-based estimates provides strong cvidence that tl.e estimates are
valid. This possibility will be explored more fully in the next chapter.

Extracting contours at different spatial scales. Therc is another interecting possibility
for obtaining several approximately independent estimates of the surface from contcur information
alone. This possibility is suggested by Marr’s observation (1979) that several independent processes
may often be responsible for the markings on a surface, and that these processes often operate
at different spatial scales. This obscrvation in part motivated Marr & Poggio’s () advocacy of the
V2G convolution, and its zero-crossing contours, as primitive descriptions of the intensity changes in
images. The zero-crossing contours are approximately zeros of the second derivative of intensity in
a band-passed image, with the band pass depending on the size of the V2G mask. Hence, contours
obtained with masks of different size encode propertics of the image at different spatial scales; and the
contours often depend on distinct, independent physical processes.

It is easy to find examples of independent processes acting at different spatial scales. For example,
a lawn with overhanging trces may be marked by cast shadows at a large scale, leaves at a smaller
scale, and still smaller grass blades. The shadows may be systematically stretched by low sun eleva-
tion, and the grass texture in the image may be strongly oriented, but it is most unlikely that such
projection-like effects will err in the same way. The zero-crossings of V2G convolutions at different
scales do tend to isolate such processes, and separate estimates can be obtained from each convolu-
tion. However, contours at different scales don’t necessarily derive from independent processes, and
there is no clear way to establish independence. How valuable the additional information at different
scales will be depends on the frequency with which each scale captures independent processes. This
empirical question has r1:0£~yet been addressed.

4

In sum, any strategy that estimates surfaces — from contours, shading, texture, or whatever —
is liable from time to time to encounter scenes that, for onc reason or another, are systcmatically
misleading. This is precisely why it is important to have as many independent means of estimation as
possible, because independent cstimates are most unlikely to fail in the same way at the same time.
The integration of independent estimates into a final decision about the scene is a substantial and
general problem in image interpretation that has not yet been solved.



2.7 Summary

A method for estimating the orientation of planar surfaces from contours was derived from a model
cf the relevant imaging geometry, and some simple statistical assumptions about visual scenes. The
geometric model related surface orientation, and the tangent direction of a contour generator on the
surface, to the projected direction of the tangent in the image. The statistical model postulated that
surface orientation and tangent direction in the scene are isotropic anc independent. Together, the
g2ometric and statistical assumptions determine a maximum likelihood estimator for surface orienta-
ton, given a set of independent tangent measures in the image. ‘This estimator was derived and
implemented.

The estimation strategy was tested on geographic contours, whose orientations could be controlled
¢ :actly, and on natural images, using zcro crossing contours in the V2G convolution. 1he strategy was
saown to give reliable estimates, as well as estimates of reliability.

Next were considered circumstances under which the modcl, and hence the estimator, might fail.
[ was argued that the assumption that the image measures arc independent is unrealistic, and can
lcad to serious failures, due to the continuity of contours, and to the existence of “projection-like”
processes that impose a systematic distortion on the contour generators. The problem of continuity
can be reduced by carcful sampling, but failures due to systematic “projection-like™ effects cannot
be avoided unless those processes can be detected directly in the image, or indirectly by reference to
independent estimates of surface orientation.

2
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CHAPTER 3

EXTENSION TO CURVED SURFACES

3.1 Introduction

This chapter treats the estimation of curved surfaces, by extension of the planar technique. First it
is shown that the relative likelihood statistic developed in the last chapter readily ext:nds to curved
surfaces, in the sense that the statistic can be evaluated given a set of image data, and an arbitrary
hypothesized surface: each data point in the image may be judged against the surface orientation
assigned to that point by the hypothesized surface, and a combined likclihood computed across the
image. This global approach may be used to find a maximum likelihood surface, but only in very
restricted situations. For example, if it were known in advance that one of a small set of surfaces were
present, and a prior probability for cach or those surfaces were also known, a probability could be
computed for each surface, and a maximum likelihood surface selected. More generally, if the surface
were known in advance to belong to a restricted family of a few parameters—for example, a surface
with known shape but unknown position, size, or orientation—a maximum likelihood surface could
be chosen from that family. But in the general case, such strong constraints are not available, and the
unknown surface may really be any surface at all. Because the contour data are discrete, and their
density limited, it is always possible to construct an infinity of “perfect fit” surfaces, just as any finite
set of data can be perfectly fit to an infinity of polynomials of sufficiently high degree. Because these
“solutions” have absolutely no meaning as estimates, the global surface-fitting approach cannot apply
to the general case.

The remainder of the chapter presents an alternative strategy, more suited to the general case, that
estimates surface orientation at each point using only the data in a local neighborhood surrounding
the point. Because this procedure tends to average out variations in surface orientation occurring at
a smaller scale than the r'egion size, the result is a “coarse” estimate of the surface. Because choosing
a larger region around each point climinates surface features over a larger spatial extent, the spatial
resolution of the estimate is determined by the size of the region, just as the resolution of a surface
obtained by shading information is limited by the resolution of the image. As well as reducing resolu-
tion, a larger region incorporates more data, and hence reduces the variance of the estimate; so this
local strategy trades off resolution and accuracy. Since the region must be large enough, compared
to the density of the data, to incorporate a reasonable data sample, the density of the data effectively
limits the resolution with which the surface can be described.
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To implement the neighborhood estimation strategy, a spatially extended distribution is first com-
puted from the image data, to obtain at cach point the distribution of tangent directions observed in a
surrounding region. Surface orientation at cach point is then estimated using the planar estimator of
the last chapter. In effect, a region surrounding cach point is thus treated as a plane. But rather than
assuming that surface orientation is constant within a region, variations in oricntation at a small scale
a“c treated as noise, and the estimated surface is smoothed accordingly. Estimates were computed on
natural images by this procedure, and are shown to provide good “coarse™ estimates of surface shape
aad orientation.

2.2 Extension of goodness-of-fit measures to curved surfaces

The planar estimation strategy provided a basis for assigning relative likelihoods to surface orienta-
tions, given the image data. The success of that strategy depended on the surface being known in
advance to be planar. The sct of planar surfaces is one particular family of surfaces; however, it will
b2 shown in this section that the same estimation strategy applies identically to any scveral-parameter
femily of smooth surfaces.

A visible surface may be represented as a function S(z, y), where S is a surface orientation vector,
[0, 7], and (z, y) is the position in the image to which the surface point projects. In these terms, the set
of planar surfaces is the set of surfaces for which S(z, y) is a constant function of (z, y).

Each image measure of tangent direction at a point on a contour consists of a triple (a*, z, y),
where a* is the measured tangent angle, and (z, y) is the position in the image at which the measure-
ment was made. The geometric/statistical model on which the planar estimator was based specifies
a density function p.d.f.(@* | g, 7). If (o, 7) is given as a function S(z, y), this may be rewritten as
p.d.f.(a* | z,y, S(z,y)). Of course, for the set of planar surfaces, (o, ) does not depend on (z, y),
so there is no reason to write the function this way, or to remember the position associated with a
tangent measure, if S is known to be planar.

Suppose, though, that we were given a set of curved surfaces, {Sy, ..., S} each with a known
prior probability p(S;), and were given the task of evaluating the probability p(S; | A*), where A* is a
set of measures of tangent direction and position in the image.

Let H; be the hypothesis that S; is present. Then under H;, the surface orientation at a point

(2, y5) is given by S;(z;, y;), and the density function for a* at that point given H; is
p.df.(a" | H;, z;,y;) = p.d.f.(a* | Si{z}, y;))

Now given a collectiofi of image measures A* = {(a}, z1, 1), .. -, (@}, Tm, Ym)} the likelihood of

A:t II{l lS &
H p.d.f.(a; | f[i, z;, y,-)
j=lm
and the probability of H; | A* is
p(A* | Hy) - Hj:l,m p.d‘f.(a; | H;, 25, 9;)

= ppA 1) P ) ey a0 | H 20 )

p(H;)
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This expression differs from the planar estimator in the nature of the hypothesis: instead of
hypothesizing one or another surface orientation, which does not depend on position, we hypothesize
onc or another surface. Each hypothesis maps surface orientations onto positions, and the density
function against which we judge cach image mcasurc is determined by the orientation of the
hypothesized surface at the position of the measure. If the set of candidate surfaces is a family of a
few parameters, instead of a discrete sct, a Censity function corresponding to the probability function
above is defined.

Thus, the problem of estimating the orientation of a planar surface using the tangent measure is
just a special case of the estimation of a curved surface restricted to a family of several parameters:
given the geometric/statistical model, an estimator for any such family is defined.

Some realistic problems entail the selection of a surface from such a family, for example the
p ‘oblem of establishing registration of an intage with a surface model. This problem will be addressed
in the next chapter, in the context of developing more powerful geometric models. But in the general
case, this sort of global surface-fitting approach is not appropriate, because in the general case the
surface cannot be restricted a priori to a knuwn family of a few parameters—it might be any surface.
Because the density of the image data is finite, a set of data has a finite number of degrees of freedom;
and unless the sct of hypotheses is far more restricted, meaningful cstimation cannot be performed:
just as a set of points can always be collocated by a polynomial of sufficiently high degree, an infinity
of “perfect fit” surfaces can always be constructed by fixing the surface at the data points to optimize
the statistic, and completing the surface arbitrarily. Clearly such surfaces have no meaning as es-
timates. The remainder of the chapter is devoted to the development of a local strategy more suited to
the general case.

3.3 Estimating orientation locally

3.3.1 Why a local strategy is appropriate

The geometric/statistical model that was used to estimate the orientation of planar surfaces relates
surface orientation at a point in the scene to the probability distribution for tangent direction at
the corresponding point in the image; and only at the corresponding point. This relation, by itself,
provides no link between a surface and its image, except at pairs of points that correspond projec-
tively. Itis in this sense a strictly local relation. In consequence, the gecometric/statistical model, by
itself, provides no justifipation for using data at a point in the image to infer surface orientation at any
but the corresponding psint on the surface.

Such justification could only come from additional knowledge or assumptions, that must somehow
constrain the relation among disparate points on the surface. For example, a planarity restriction as-
serts that surface oricntation is the same at every point, allowing the image data to be pooled without
regard to their locations. Similarly, a prior restriction to a limited family of surfaces asserts that one of
a specified set of global relations obtains among the points on the surface. Such restrictions make the
task of estimation comparatively casy, but they simply’ aren’t valid except in very unusual situations:



in the general case, the unknown surface may be any surface at all.

Natural surfaces are sufficiently varied and irregular that categorical assumptions about their shapes
ought not to be made casually: it is hard to imagine any global restrictions that could describe natural
surfaces well enough to be valid, and yet be powerful enough to be useful. And without such restric-
tions, an estimation strategy based on the methods already developed must be local, in the sense that
the surface orientation obtained at one point is not influenced by image data at distant points.

3.3.2 The distribution at a point

Strictly. if no prior assumptions are made about the surface, then the estimated oricntation at a
point on the surface must derive entirely tom measures on the corresponding imaze point. This
requirement in turn determines the nature of the point measure that would have to be obtained to
allow meaningful, strictly local. estimation to be performed: the geometric/statistical model gives a
p.d.f. for image tangent direction as a funct'on of surface orientation. The logic by which this relation
can be used to infer surface orientation, given measures of image tangent dircction, was explained
in the last chapter: in essence, an observed distribution of tangent directions is compared to the
theoretical distribution over the range of surface orientations, and the surface orientation for which
the theoretical and observed distributions have the best fit is the maximum likelihood estimate. To
apply this strategy using just a point in the image therefore requires that a distribution of tangent
directions be available at that point.

3.3.3 An apparent dilemma

But in that case. meaningful estimation is clearly impossible, because contour data are available
only at some points in the image: usually, no contour will coincide exactly with an arbitrary image
point, hardly ever more than one. So an arbitrary image point will usually yield no measure of
tangent direction; or one measure at most. And one such measure—no less none at all—is obviously
insufficient to infer surface orientation. Thus arises a secming dilemma: without making some as-
sumptions about the surface, the estimate of surface orientation must be strictly local, yet a strictly
local estimate cannot be made due to the limitations of the image data. In other words, non-local
estimation appears to require some strong assumptions about surfaces, which are not justified, while
local estimation requires some measure of the distribution of tangent directions at a point, which is
not available.

3.3.4 The distribu‘{ion around a point

If a strictly local measure of the distribution of image tangent directions is unavailable, and a non-
local strategy requircs apparently untenable assumptions about surfaces, then some compromise be-
tween strictly local and global strategies is indicated: if nothing can be inferred from an isolated image
point, then a natural alternative is to examine a region around the point—as small as possible, but
large enough compared to the density of the image contours to provide a reasonable data sample—
and base the cstimate on the surrounding data. Repeating this procedure across the image, in the
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manncr of a convolution, would yield an estimate of the surface.

This strategy, which is the one I will adopt, may be divided into two stages: first, computing
the spatially extended distribution around cach image point, and second, using the distribution to
estimate surface orientation. While the first stage is strictly an operation on the image data, the second
relates the image to the scene, and hence embeds an empirical claim about the relation between the
cistribution around a point in the image, and the orientation of the cort >sponding surface point. The
first stage will now be characterized.

3.3.5 Computing the spatially extended distribution

The image data take the form of values of tangent direction, a*, at various positions z, y in the
inage. That is, cach measure is a triple (z, y, a*). The distribution required at each point (z,v)
is a function, f(a*). giving the frequency with which cach value of a* has been observed in some
region surrounding (z, y). Because this function must be given at every point, it may be denoted by
J(z,y,a%).

In its simplest form, this function might give, for cach value of z, y. and a*, the number of data
points that lic within a circle of radius r in the image around (z, y) in the image, and whose tangent
direction is separated by some amount & or less from a*. Since cach data point maps into a point
in the three-dimensional space (e, z, y). the function so defined gives at each point in that space
the number of data points falling inside a volume surrounding that point. That volume is a circular
cylinder of radius r and length &, whose axis is normal to the (z,y) plane. The midpoint of the
axis is (z,y, @*) (sec Fig. 1). In these terms, the function f(z, y,a*) may be represented as a three
dimensional convolution;

Let each image measure be represented as a function u(a*, z, y), that assumes a unit value at the
position of the measure, and is zero cverywhere else. That is, for a given measure (af, z;, y;), we

define a function ( )= ( )
P _JL,  if(a* z,y) = (af, i, w);
ula’z,y) = {0, otherwise,

in which case a set of image measures can be represented as the sum

A= Z ui(a*, z, y).
i

Suppose that f(z, y, a*) is to incorporate the data points that lie within a radius  of (z,y) in the
image, and whose tangent direction is separated from a* by a or less. Together, r and a define the
volume within which thé data points are to be counted. A function that assumes unit value inside that
volume, and zero outsidé, is defined by

€(z,y,0") = {

where As is the distance between (z,y) and (z;, y;), and Aa* is the distance between a* and a;.
Then the desired frequency function is defined by :

1, if As < rand Ae* < §;
0, otherwise.

f(z,y,0") = £(z,y,@*) * A*(z, y, %),
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Figure 1. The image data map into points in the space (z,y,a*). The data whose distance in the image
to a point (z,y) is r or less, and whose tangent direction is within 6§ of some value of a* lie within a
cylinder in this space, with radius r and length §. The axis, whose midpoint is (z,y,a*), is normal to the
(z,y) plane. The spatially extended distribution f(z,y,a*) may be defined by counting the data points in
such a cylinder around each point in the three-dimensional space.
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where * denotes convolution. The value of the convolution at cach point (z, y,a*) is the number
of mecasurements whose distance in the image is 7 or less from (z, y), and whose tangent direction
is separated by a or less from a*. This function is not in general continuous, but, if desired, a con-
tinuous function may be obtained by replacing € with a weighted mask, whose value is a continuously
decreasing function of As and Aa*.

3.3.6 Using the spatially extended distribution

The outcome of the computation outlined above is a representation of the image duta that gives at
cach image point the distribution of tangent directions over a surrounding circular region. It remains
to use that representation to estimate surface orientation at each point. The required estimator must
take the distribution f(z, y,a*) into a func:ion S(z, y). where S is an estimated surface oricntation
vector. If the spatially extended distributicn is regarded as the best available approximation to the
unobservable distribution-at-a-point, then the natural candidate for this estimator, although not the
only candidate, is the one developed in the last chapter; and it will be shown later that this estimator is
in fact effective for a variety of natural images.

But, before proceeding to the strategy's implementation, it is necessary to arrive at a better under-
standing of the goal of the estimation strategy, and of the assumptions it entails: since the data in
a region in the image derive from a corresponding region on the surface, a point estimate for orienta-
tion derived from those data, by whatever method, must depend in part on the behavior of the surface
in that region; i.e., variations in surface orientation within the region will be reflected in the data,
hence in the estimate. This means that the spatially extended distribution cannot be guaranteed to
closcly approximate the point distribution unless something is known about the shape of the surface
in advance. For example, on a rough surface, the relation between the orientation at the center of a
region, and that of the surround, may be unpredictable. Thus it seems that assumptions about the
surface, albeit relatively local assumptions, are still required to relate a point to its neighborhood, if
the goal of the strategy is to estimate orientation at a point.

Intuitively, one would expect variations of the surface within the radius 7 to tend to average out,
and the estimate to reflect more nearly an average orientation in the region, than the exact orientation
of the region’s center. In that case, as the value of r increases, and the estimate at each point depends
on a larger surrounding region, the estimate will reflect an average or overall orientation on a larger
scale, and the estimated surface will lose detail, much as detail is lost when resolution is diminished by
distance. And in that case, the estimation of this overall orientation, and not the orientation at a point,
might best be taken explicitly as the goal of the strategy.

In the next section I will argue that the goal of the strategy can’f be the estimation of orientation
at a point, because thefe is no such thing as orientation at a point. Rather, the oricntation of a
physical surface is always an overall orientation over some area on the surface. The size of that area
determines the scale at which the surface is described, but the orientation at a coarse scale is in no
scnse an approximation to the orientations at finer scales, and is no less accurate or correct than a finer
oricntation, except perhaps as determined by one’s needs. On this view, physical surfaces don’t have
unique orientations at each point, but continua of orientations depending on scale. While this notion
is at odds with the usual differential definition of surface orientation, that definition cannot be applied
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coherently to physical surfaces. It is thus perfectly natural that the distribution be used to cstimate
orientation at a scale corresponding to its spatial extent.

3.4 Orientation and scale

This section will examine the notion of surface orientation as it applys to physical surfaces. The
usual definition of orientation is differential, and by that definition, the orientation of a differentiable
function is unique at cach peint, while that of a nondifferentiable function is undefined. We will
scc that this definition isn't quite right for physical surfaces: although we usually measure surface
orientation in the same way that we approximate numcrically the derivative of a function, we will
find that the measure cannot be taken as an approximation to any unique “true” value. This view
15 supported by Mandclbrot's (1977) argument that many natural curves and surfaccs behave like a
class of nondifferentiable functions called fractals. Rather, to preserve our intuitive notion of surface
orientation, we must regard orientation as a function of scale. That is, unlike a differcutiable function,
whose oricntation is unique at each point, a physical surface has a continuum of orientations, each at
its own scale, and nonc intrinsically more “correct” than another, except as dictated by one’s needs.
The orientation at a coarse scale is in no sense an approximation to those at finer scales; rather it
is a property that only ariscs when orientation is mecasured over a sufficiently large spatial cxtent.
The alternative to accepting a scale-dependent continuum of orientations, if we take the differential
definition literally, is that physical surfaces have no oricntation at all.!

The significance for the surface estimation problem of orientation’s dependence on scale lies in the
relation between the scale of a measured orientation, and the spatial extent over which it is measured:
because the density of the image contour data is limited, an area of the image—which may have to be
quite large—must be examinced to characterize the “local” distribution of tangent directions. Unless
a great deal is known in advance about the shape of the surface, it is hopeless to use this spatially
extended distribution to recover surface orientation at a much finer scale than the size of the observed
arca—for example, there might be a small bump at the center of that area, whose orientation bears
little relation to that of the surrounding surface. But corresponding to the observed image area is an
arca on the surface, that, however large, has an orientation of its own, apart from the orientations at
smaller scales. The recovery of this overall orientation, discarding features at a smaller scale, is a far
more plausible goal for the cstimation strategy. In that case, the scale—or resolution—at which the
surface is cstimated ought to be determined by the spatial extent of the “local” distribution, which is
in turn sct by the density of the image data.

-«

3.4.1 Surface orie;"ltation and differentiability

It is clear in common sense terms that the surfaces around us have orientations, that may be dis-

! Although local properties like orientation depend critically on scale, an interesting class of curves and surfaces show a
more global scale invariance called self-similarity: the general shape of a coastline, or of the ocean’s surface, appears the
same over a wide range of scale. That is, a coastline comprises the same kind of bays and peninsulas at widely different
scales, even though the particular bays and peninsulas differ. For curves and surfaces of this kind, the orientation
assigned at a particular point depends on scale, but a common staristical description might apply over a wide range of
scales.

49



covered by sight or manipulation, and that may be taken to be real and meaningful properties of those
surfaces. If some definition of surface orientation denies that this is so, then the definition is surcly
wrong, at least for physical surfaces; rather than discard the useful notion of surface orientation, we
oughtin that case to discard the definition.

The usual definition of surface orientation comes from differential geometry. In differential
geometry, a curve or surface is a function, a mathematical object. The orientation of a curve is defined
in geometry by its tangent. that is, the first derivative with respect to arc length. The orientation of a
surface may be defined by a unit normal to the tangent plane, and the tangent planc is also defined
by the first derivative of the surface with reupect to position. Thus, differentiation lics at the heart of
the usual definition of orientation: wherever a curve or surface may be differentiated, its orientation is
uaiquely defined; elsewhere, it is undefined Thus. a curve or surface that is nondifferentiable has no
orientation.

Physical surfaces are are routincly described by differentiable functions. While any mathematical
description of the physical world entails sc me idealization, such descriptions of surfaces are often
uscful and perfectly reasonable. In particulur, the orientations defined by those descriptions usually
correspond closely to the intuitive perceptual orientations of the surfaces being described. Thus, it
might seem that defining the orientation of physical surfaces differentially poses no difficulty, so long
as it is understood that the definition applics to differentiable descriptions of those surfaces.

However, Mandelbrot (1977) has arguced that natural curves and surfaces in important respects be-
have more like nondifferentiable than differentiable functions, in particular with respect to arc length
and surface area: to compute numerically the length of a curve, the curve may be approximated
by a polygon consisting of straight lines of fixed length. For differentiable curves, the limit of this
approximation as the length of the lines goes to zero is the exact length. When this approximation is
computed, say, for a circle, using successively smaller steps to approximate the curve, the approximate
length quickly levels off toward the exact length. But applying the same procedure to a natural
curve, such as a coastline or river, gives a surprisingly different result, as shown by empirical data
of Richardson (1961): as these curves are approximated in successively smaller steps, over a wide
range, the “approximate” arc length increases continually, with no sign of leveling of, and apparently
without bound, according to a function

L(n) = M'—P,

where L is the measured length, 7 is the length of the approximating line, and A and D are constants.2
Intuitively, as n decreases, the approximation incorporates ever smaller bays and peninsulas that add
to the measured lengthg Since, for all practical purposes, this incorporation of ever smaller features
continues without limit,®Mandelbrot reaches the startling conclusion that coastlines are infinitely long!

To account for this curious behavior, which is shown to typify many natural phenomena,
Mandelbrot proposes that coastlines, rivers, and terrain, be represented by a class of nondifferentiable
functions called fractals. Many of the very interesting properties of these functions, and of the
phenomena they describe, need not concern us here, Of particular importance is the picture they

2Since the empirical values of D fall between 1 and 2, the exponent is ncgative, and L increases without bound as n
approaches zero.
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give of natural curves and surfaces, as “bottomless pits™ of structure at ever finer scales; cach bay or
peninsula, examined more closely, proves always to consist of a similar string of bays or peninsulas at
a smaller scale. Practically any natural curve or surface displays this property when examined over a
widce enough range of scales.

This view considerably complicates our common sense notion of measure: in a very real sense,
coastlines and the like may be regarded as infinitely long. Yet we are accustomed .o regard their
lengths as definite finite values. For example. the lengths of international borders are often listed in
atlases as if they were unique properties of those curves. In fact, Mandelbrot reports that the common
border of Spain and Portugal is given radically different “official™ values by those two countries; and
he suggests that the difference reflects in part a different choice of 7. If we accept Mandelbrot’s
argument, then such lengths reflect the arbitrary choice of the “yardstick™ —the value of p—that was
used to compute them. Crucially, such lengtas have no meaning unless the associated value of n—the
paramcter of scale—is given; and therefore the closest we can come to preserving our common sense
notion of measure is to allow that length and arca are not fixed, unique propertics of natural objects,
but functions of a parameter of scale.

While Mandclbrot's argument is developed in terms of length and area, a correspor:ding argument
applies to the tangent of a curve, and the orientation of a surface: the “yardstick™ approximation
applics cqually to a curve’s tangent as to its length. For differentiable curves, the direction of a line
between two nearby points—the “yardstick” — approaches the true tangent direction as the length of
the line decreases, rapidly stabilizing around that dircction. But, on a natural curve like a coastline,
the direction of the yardstick does not converge on a limiting valuc; rather, it flops around without ap-
parent limit as it encounters smaller and smaller features of the curve. Once again, a measured tangent
direction has no meaning, unless the length of the yardstick—the parameter of scale—is given. And
tangent direction must be regarded not as a fixed, unique attribute of the curve, but as a function of
scale; the samie argument applies to surfaces when the measure is taken in two dimensions.

Thus, although the operation of measuring orientation on a physical surface resembles the opera-
tion of approximating a derivative numecrically, the differential definition of orientation does not
apply, because there is no limit—the “approximation™ is all there is. Decreasing the scale of measure-
ment does not give a more accurate value, as it would for a differentiable function, just a different
value, at a smaller scale. No scale of description is categorically “best” or most accurate, except
as dictated by the use to which the description will be put. Thus, an astronomer, a geologist, and
a mountain climber each have a different idea of the “best” scale at which to describe the earth’s
surface.

To reconcile Mandelbrot’s argument for the nondifferentiablity of natural surfaces with the uscful-
ness of differentiable fuffictions for describing them, we cite the observation of Perrin (1906), quoted
by Mandelbrot: ‘

“It must be borne in mind that, although closer obscrvation of any object generally leads to the
discovery of a highly irregular structure, we often can with advantage approximate its properties by
continuous functions. Although wood may be indefinitely porous, it is useful to speak of a beam that
has been sawed and planed as having a finite arca. In other words, at certain scales and for certain
methods of investigation, many phcnomena may be represented by regular' continuous functions,
somewhat in the same way that a sheet of tinfoil may be wrapped round a sponge without following
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accurately the latter’s complicated contour.”

Thus, the description of a physical surface by a differentiable function resembles the description of
a curve by a particular polygonal approximation. In cach case, the description is appropriate only at a
certain scale: and a continuum of differentiable descriptions is defined as a function of scale.

3.4.2 Scale of description and area

The polygonal, or “yardstick™ approximation, is just one way to introduce scale into the measure-
ment of arca or orientation: Mandelbrot gives four. But all of these measures behave in much the
same way, sharing in particular the common feature that, the coarser the scale of description, the
l.rger the arca on the surface contributing to the measure “at a point.” The analoguc for surfaces of
a polygonal approximation to tangent dircciion is a simple finite difference measure, tcking the plane
defined by three ncarby points as the tangent plane. Other reasonable measures are the least-squares
p'anc on a patch of the surface, and the derivatives of low-pass filtered or otherwise spatially averaged
fi nctions. In cach case, the scale of description is determined by the spatial extent over which the
n.casure is computed—the greater the extent, the coarser the scale. In this sense, surfacc orientation
i a property not of the nominal point to which the orientation is assigned, but of an arca surrounding
the point, whose extent depends on scale.

While the measures listed above apply to collections of points on the surface, the data derivable
from image contours are projected tangent directions. And the measure by which surface orientation
is obtained must of course reflect the nature of the available data. But we may still expect to find the
scale of description related to the spatial extent of the measurement: the spatially extended distribu-
tion of tangent directions reflects at cach point the properties of an area on the surface. Since to any
such area, however large, corresponds an orientation at a particular scale, it stands to reason that the
spatially extended distribution is better suited to estimate the orientation at that scale than at others.

Next, these ideas will be applied to the related problem of inferring shape from shading infor-
mation (Horn, 1975, 1977). It will be shown that the central features of the proposed strategy—
computing a spatially extended measure on the image, and using that measure to obtain surface orien-
tation at a corresponding scale—have already been applied successfully to the shape-from-shading
problem: image intensity at a “point” is spatially extended by the imaging system itself, and the
orientation at a “point” to be recovered is really an extended property, distinguished from surface
“microstructure.” The role of the estimator in the shape-from-contour strategy is precisely analogous
to that of the reflectivity function in shape-from-shading.

3.4.3 An analogy lo shape-from-shading

The basis for inferring surface shape from shading rests in the dependence of image intensity on
surface orientation. The relation between them is expressed by the reflectivity function, which gives
the intensity of light at a point in the image as a function of the oricntation of the surface at the
corresponding point, and the illumination incident on that point. But all imaging systems have finite
resolution, so the image intensity at a “point” is really an integral over a small arca around the point,
and depends on the light incident on and reflected from a corresponding area on the surface. The size
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of this arca depends on the imaging resolution, and the distance from the surface to the viewer. Soin
this regard, shape-from-contour and shape-from-shading arc identical: cach begins with a measure on
an arca of the image, that derives from a corresponding arca on the surface.

The reflectivity functions of surfaces have been modeled in terms of surface “microstructure,” i.e.
structure at a scale too small to resolve. For example, () modcled a small patch on a surface as a
collection of facets whose orientations are distributed with radial symmctry around an overall orienta-
tion.? The gross reflecting propertics of the surface were derived from the reflecting properties of the
facets, and from the distribution of their orientations over the patch. The “real” oricntation, i.e. the
one cntering into the reflectivity function, s the overall orientation, not the orientation of a single
facet. As such, it is a property that arises at a scale much larger than the size of an individual facet.
I:' these terms, the relation between image iatensity at a “point” and surface orientation at a “point,”
as expressed in the reflectivity function, is really a relation between intensity taken over an arca, and
surface orientation taken over a corresponding area.

In this sort of treatment, the partitioning of the surface into gross shape and microstructure is
determined by the limit of resolution, not ny any intrinsic properties of the surface. When resolu-
tion changes, ¢.g. from a change in viewer-to-surface distance, features of the surface that cross
the threshold of resolvability migrate between gross shape and microstructure; features that at high
resolution contribute to a description of the surface’s shape contribute at lower resolution to its
reflectivity function.? Thus, both the “overall” oricntation that describe the surface’s shape, and the
reflectivity function that relates its shape to the image, depend on the spatial extent over which image
intensity is measured. Increasing that extent by reducing the resolution of the image causes smaller
features of the surface to descend into microstructure, and the surface is recovered at a coarser scale.

The analogy to the shape-from-contour problem is direct: shape-from-shading begins with a
measure of intensity on an area of the image, while shape-from-contour begins with a measure of
the distribution of tangents on an area. The former measures the amount of light incident on the
area, while the latter measures aspects of its spatial distribution. While in shape-from-shading the
spatial extent of the measure is determined by the resolution of the image, in shape from contour it is
determined by the density of the contour data. Thus characterizing the distribution “at a point” using
data from a surrounding region is closely analogous to reducing the resolution of the image.

At the heart of the solution to the shape-from-shading problem is the reflectivity function, which
we have seen relates spatially extended image intensity to surface orientation at a corresponding scale.
Smaller features of the surface are relegated to microstructure, and are not considered part of the sur-
face’s “real” shape. The reflectivity function thus plays the exactly same role in shape-from-shading
that the estimator must Play in shape-from-contour. Only the nature of the image measure, and the
constraints on its spatia¥extent are different. In fact, the estimator might be viewed as a “geometric
reflectivity function.”

3The assumption of radial symmetry might be taken as an implicit definition of the overall orientation as the mean
oricntation of the facets.

1This observation is due to David Marr (1978)
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3.4.4 Choosing an estimator

Scveral Iessons can be gained from this analogy. Most generally, surface orientation can be inferred
using spatially extended measures on the image. at a scale determined by the spatial extent; i.c. shape-
from-shading works. Of more specific value is the relation between the reflectivity function and the
statistical estimator for shape-from-contours: reflectivity functions may in principle assume diverse
and arbitrary forms, and the shape-from-shading problem cannot be solved unless the reflectivity
function has been characterized reasonably well. And, as seen in the various analytic treatments of
the subject (refs.), reflectivity functions may be modeled in cxtremely complicated ways, down to the
level of physical optics. But happily, the potential complexity and diversity of reflectivity functions is
simply not a problem in practice: Horn's treatment of the recovery of shape from shading, by far the
m.ost complete and successful, barely drew eon the elaborate analytic treatments. Instead it turns out
that a few simple functions comprise a gooa ¢nough approximation to nature to solve the problem.
After all, the goal of the enterprise is not to understand the reflecting properties of <urfaces in the
greatest possible detail, but to recover their shapes with reasonable precision.

Similar problems arise in principle in the shape-from-contour problem: the “gecometric reflectivity
function™ that is needed to solve the problem must express statistically the relation between the
distribution of tangents in the image and the orientation of the surface. Just as the photometric
reflectivity function may depend in complicated ways on surface microstructure, so may its gecometric
counterpart. Each function might in principle assume nearly any form. We might be led to modeling
the microstructures of surfaces and their markings in excruciating detail, and deriving from such
models a maximum likelihood estimator for an average or other overall orientation, but the lesson
from shape-from-shading is that this simply shouldn’t be necessary.

Ultimately, the choice of an estimator, or collection of alternative estimators, is an empirical issue:
the measured distributions of tangent directions in images, and the way those distributions transform
with changing surface orientation, are subject to empirical investigation. It may turn out that different
estimators are required to recover surfaces whose fine structures differ radically. For example, the
image measures that derive from a boulder field in direct sunlight with low elevation would reflect
a complicated mixture of occluding contours, terminators, and cast shadows, as well as surface mark-
ings. The relation between such measures and the overall orientation of the boulder field might be
quite different than that for a smoother surface with markings in low relief. It may well be necessary
to draw some crude distinctions of this kind, just as the reflectivity functions of glossy and matte

surfaces must be distinguished.
-«
¢

The implementation fo be reported in the next scction adopts as an estimator the one applied to
planar surfaces in the last chapter. Since this estimator was developed on the assumption that the
measured tangents correspond to surface points with the same orientation, it is better suited to mark-
ings in low relicf on comparatively smooth surfaces, than to surfaces that are decply textured at the
scale of the contours, like a boulder field. While it will be shown to yield good estimates for a variety
of natural surfaces, it should to be regarded as a provisional choice, subject to empirical elaboration or
improvement.
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3.5 Implementation and results

The implementation parallels in many respects that of the planar method presented in the last
chapter. Tangent data were obtained from the image by the method already described, taking the
gradient along zero-crossing contours in the V2G convolution (Marr & Hildreth, 1979). The prin-
cipal difference lies in the need to preserve position information. The spatially extended distribu-
tion was computed by approximating the three-dimensional convolution of (3.1) by a series of two-
¢imensional convolutions. The outcome, at cach image point, is a histogram of the observed tangent
engles in a circular region surrounding the point, identical in form to the grouped representation
employed in the planar case. The surface is then estimated by repeating the planar estimation proce-
dure at each point. A map of relative depth can in principle be obtained by integration, but this
procedure has the undesirable property of error propagation, and so compromises the local character
cfthe strategy.

An important aspect of the computation is the choice of r, the radius of the summation mask.
Ivather than attempt to set that parameter automatically, the computation was repeated for each image
at several values, and the results are compared.

Fstimation was performed on several natural images, and the results are compared to the perceived
shapes and oricntations of the surfaces. The strategy is shown to be capable of producing good
“coarse” descriptions of natural surfaces.

3.5.1 Image digitization and Contour extraction

Tangent data were obtained by the methods described in the last chapter: photographs were
digitized on an Optronics photoscanner. The digitized images were then convolved with a V2@ func-
tion, and the zero-crossing contours of the convolution extracted, by the method of Marr & Hildreth
(1979). These contours are peaks in the first derivative of intensity in the band-passed image. Tangent
direction was sampled along the zero-crossing contours of the convolution by taking the normal to the
gradient vector at intervals on the curves. For each measure, the tangent angle, and the position in the
image at which the measure was taken, were recorded as a triple (a*, z, y).

3.5.2 Computing the spatially extended distribution

Since computing a three dimensional convolution was not feasible, the function of (3.1) was ap-
proximated by a series of two-dimensional convolutions: the a* dimension was broken into seven
equal intervals betweeng0 and =, so that each measured tangent direction fell in one interval. For
cach interval was constfucted a two-dimensional array, whose coordinates corresponded to position
in the image—oricntation planes. Thus, cach data point maps to the plane determined by its tangent
direction, and a position in the plane corresponding to its position in the image. For each data point,
the corresponding cell, initially zero, was incremented by one.

Note that summation on an area of one plane then gives the number of data points in the cor-
responding area of the image, whose tangent dircction lics on the interval specified by the plane. In
conscquence, the convolution of a plane with a circular, unit-value mask of radius r—a pillbox—gives
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at cach point the number of data points inside a cylinder of radius r and length 7/7, which is a value
of the convolution in (3.1). Convolving cach plane with such a mask gives f(z, y, @*) across the image,
at the scven values of a* corresponding to the midpoints of the intervals (Fig. 2) Also note that a
column—the values from cach plane at soine position (z, y) gives a histogram of the frequency of
a’ in a surrounding image region of radius 7, and this histogram has the same form as the grouped
representation of the planar data (Fig. 3).

3.5.3 Computing the estimate

The estimator to be used was given in (2.3):

p.d.f.(o,7|A*) =p.df(o,7)p.df.(A*]0o,7)

—2

T “sino coso

?
i=1,n cos}(a; — 7) + sin*(a} — 7) cos?o

normalized by its integral with respect to (o, 7), and for data of the grouped form obtained from a
column,

—2

pd.f.o, 7| A*) ~ exp( 2 a;log T “sino coso ),
i=ln cos?(a; — ) + sin’(a} — 7)coso

(where a; is the number of measures in the #th tangent direction plane), also normalized by its

approximate integral,
Z Z p.d.f.(o;, 7 | A*).
J

i

To estimate the surface orientation, (o, 7), at a point (z, y), the value of (o, 7) for which this
function is maximized is found. The surface is estimated by repeating this procedure across the image.

3.5.4 Computing a map of relative depth

Distance to the viewer may in principle be obtained up to an additive constant by integrating the
gradient space representation of surface orientation, if the surface is continuous. However, this proce-
dure has the undesirable cffect of propagating local errors in the surface orientation estimate. This
propagation can be atteauated by integrating from different starting points, and averaging the results,
cffectively smoothing the estimate. It is not clear that this step is nccessary or dcsirable, because it
compromises the local character of the method.

3.5.5 Results

Figures 4 and 4a illustrate the entire estimation process, starting with a digitized image, computing
the V2@ convolution, extracting the zero-crossing contours, convolving the tangent dircction planes,
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Figure 2. Orientation planes: the tangent direction dimension is divided into each interval. For each
interval, a duplicate image is constructed. Thus, each data point maps into the plane determined by its
tangent direction, and the cell in that plane corresponding to its image position. For each data point, the
corresponding cell is incremented by one.
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Figure 3. Summation of a plane over a circular area gives the sumber of dats points that lic within a
cylindrical volume in the space {3, y,a*). The cylinder has mdius » and longth =/7. Each such summatioa
is a value of the convolution f{z,y,a*).
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and estimating the surface. The surface is represented by a collection of cllipses. as if the surface were
covered by circles of constant size and uniform density. Perspective is added to the picture using a
depth map obtained by integration. In this photograph, the contours derive primarily from the pattern
of shadows cast through overhanging trees. The estimated surface corresponds closely to the shape
perceived in the original photograph.

Figure § uses the same image to illustrate the effect of varying 7. the radius of the summation mask.
At one extreme. a single overall orientation is assigned to the entire surface. At the other, the amount
of data contributing to cach local estimate becomes so small that orientation varies erratically with
positien. bearing little relation to the actual shape of the surface. Over a wide intermediate range, the
estimate portrays the surface reasonably well.

IFigures 6 through 9 show several additional images, and the cstimates obtained from them. Figure
7 shows a good estimate obtained from a more complicated picture. Figures 8 and 9 demonstrate two
failures of the strategy: the first, a Viking picturc of the Martian surface, fails because the contours
crise from a high-relief texture of rocks. Such textures transforin differently with projection than those
in low relief. and so must be modeled differently. Figure 9 shows a systematically clongated texture
of human hair. It should be noted that such textures, scen without disambiguating context, appear
incorrectly as waving surfaces to the human observer as well.?

3.5.6 Using perspective information

The method just presented uses an observed distribution of tangent directions to estimate the fore-
shortening distortion, and hence surface orientation. The method fails when distortions of the surface
markings themselves mimic projective distortion, as when the markings are systcmatically elongated.

While the estimates were computed assuming orthographic projection, the images actually include
perspective distortions, that is, dependence of image metric properties on distance. While these dis-
tortions are generally much smaller than the foreshortening distortions on which the estimates were
based, they offer a simple check of the estimates’ reliability: actual foreshortening and perspective
distortions on smooth surfaces are rigidly linked by projective geometry. On the other hand, sys-
tematic distortions of the surface markings that mimic forcshortening are most unlikely to co-occur
with distortions that mimic perspective in just the same way: ecffects that elongate surface markings
don’t usually cause density to vary most rapidly orthogonal to the axis of elongation, and vice versa. In
other words, real perspective and foreshortening are geometrically linked, while distortions of similar
appearance, but not of projective origin, are likely to be independent.

It may thus be possibte to distinguish projective from non-projective effects by comparing apparent
foreshortening with apparent perspective: if the relation between them is roughly consistent with
the relation predicted by projective geometry, then the observed effects are probably due to real
projective distortion, and the interpretation based on that assumption is probably accurate. If not, the
interpretation may well be wrong.8

SA striking example is the formation known as landscape agate.

8That some consistency test of this kind plays a role in human perception is suggested by Stevens' (1979) observation
that it is difficult to induce the impression of slant unless perspective and foreshortening cues are consistent.
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Figure4. Computing the estimate: (a) a digitized photograph, (b) convolution of the image with a V3G
function, (c) zeros of the convolution. The circle in (a) denotes the size of the summation mask used to
compute the spatially extended distribution, i.e. the size of the area contributing to the estimate at each

point.
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Figure 4a. Computing the estimate: (a) tangent direction planes, (b) pillbox convolutions of planes, (c)
a column through the convolved planes at one image point, and (e) the estimated surface. Orientation is
represented by ellipses, as if the surface had been covered with circles, and then projected. A perspective
effect is added using a depth map obtained by integration. Note that the overall orientation coincides with
that perceived in the original image, as does the increase in slant moving from foreground to background.
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Figure 5. The effect of », the summation mask radius, on the estimated surface. (a) the limiting case of
a mask covering the entire image, obtaining a single overall orientation, (b) and (c) intermediate sizes that

portray the surface reasonably well. (d) and (e) show the deterioration of the estimate when the averaging

radius is to small compared to the density of the data.
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Figure 6. An additional image, and estimated surface, similar to that pictured in Fig. S.
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Figure 7. A more complicated image, and the estimated surface. Note that the estimate correctly distin-
guishes the highly slanted foreground from the more nearly frontal background. The upward pitch of
the right foreground is also detected. Since the strategy doesn't know about discontinuities in depth, it is
confused by the trees in the right background. Such marked local distortions might be used as evidence
of a surface discontinuity.



Figure8. A Viking picture of the Martian surface. The high-relief texture of rocks does not transform
with projection in the same way as those in low relief. The strategy therefore systematically underestimates
the slant of the surface. High-relief surfaces must be modeled differently.
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Figure 9. A hair texture, whose systematic elongation deceives the estimation strategy. But such surfaces,
viewed without disambiguating context, deceive the human observer in much the same way.
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A marked change in size with distance is evident in the images treated above, particularly those of
figures 5 and 6. In those images, the change in size is consistent with the estimated surfaces. On the
other hand, the foreshortening-like elongation of figure 9 is not accompanied by a consistent gradient
of size. If the change in size could be measared in natural images, perspective could add substantial
information to the estimate. A promising approach for this measurement is the change in spatial
spectral content with position (Bajcsy, 197(€). Since the present method cntails convolution of the
image with band-limiting masks of several sizes, the change in spectral content might be assessed by
comparing the power convolutions with masxs of diffcrent size.
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CHAPTER 4

USING SURFACE CURVATURE

4.1 Introduction

Anyonc who has flown on a sunny day has probably noticed the plane’s shadow on the ground
below. As it moves, especially over rugged ground, the shadow bends, twists, and wrinkles in con-
formity to the terrain. The phenomenon is particularly vivid with moving shadows, but it tells us
comething about any shadow: the shape of the shadow changes with the shape of the ground, and
hence depends on the shape of the ground. In the sense I've used the term, the shape of the shadow
thus encodes the shape of the ground. In this chapter, the geometry of the encoding process will
be untangled, and it will be shown that the information implicit in the curvature of a cast-shadow
contour can in fact be used to draw inferences about the surface onto which the shadow is cast.

4.1.1 Untangling surface curvature

The last chapter dealt with the estimation of curved surfaces, but only by the local estimation of
surface orientation; surface curvature was never trcated explicitly. The purpose of this chapter is to
show that, just as the orientation of image contours provides information about the orientation of a
surface, so the curvature of image contours provides information about the curvature of a surface. And
by understanding the transformation, or “encoding” process, the information latent in image contours
can be more fully used.

At the heart of the strategy based on tangent direction was the isolation of a projective component
in the image measures. The same approach will be followed in the estimation of surface curvature: the
measurable curvature of the image contour must be geometrically decomposed in terms of the scene
propertics it depends of, among which is surface curvature. Then that component must be isolated
statistically.

Cast shadows provide the ideal contour type on which to perform this decomposition. Although
the details of shadow geometry arc rather complicated, the process by which shadow contours appear
in the image is gcometrically regular, and has a clear decomposition into causally independent com-
ponents. Surface curvature naturally arises as one of those components. The corresponding decom-
position for surface markings is more difficult, because, unlike shadows, their generation is less readily
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described in uniform geometric terms.

4.1.2 An application to image registration

This chapter focuses on the geometry of cast-shadow contours, leading to a measure of ““goodness-
Jf-fit” between a hypothesized surface and the image data, using the curvature of the shadow
contours. The uscfulness of this measure will then be demonstrated by application to the restricted
problem of establishing registration between an image and a surface model: registration will be estab-
‘ished given only the shapes of shadow-contours, cast by objects of unknown shape, but assuming the
direction of illumination to be known. The registration problem arises when an image shows a known
surface, but the exact point of view from which the image was taken is not known. To map features of
the image onto the corresponding locations of the surface, the image and the surface model must be
orought into spatial register.

The registration problem has been treated successfully by Horn & Bachman (1977) in the domain
of LANDSAT images and digital terrain models, by cross-correlating a synthetic image with the
satellite image. While effective, this method is limited because the correlation is performed in the
image domain. Thus anything appearing in the image to be registered, but not in the synthetic image
(such as shadows cast by objects external to the terrain model) enters into the corrclation as noise.
The method to be presented in this chapter is also based on cross-correlation, but in a more abstract
domain that compares expected with observed contour curvature, putting to good use features that
would have to be dismissed as noise in the image domain. This method is not offered as a solution
to practical registration problems, but as a demonstration that the shapes of shadow contours are
meaningful, once they are understood.

4.2 Geometric model

A cast shadow arises when an opaque object is interposed between a light source and a reflecting
surface. A cast-shadow contour is just the edge of the shadow’s projection into the image. The purpose
of this section is to express the gcometric relation between the curvature of a cast-shadow contour,
and its determinants in the scene, notably the curvature and orientation of the surface onto which
the shadow is cast. Although the details of this gcometry are somewhat complicated, the process
it describes is easy to grasp intuitively. Before proceeding to the formal devclopment, an intuitive
account will be given.

-
¢

4.2.1 Intuitive gedmetry of cast-shadow contours

We can begin by tracing a typical ray of light from its origin at the light source, to its eventual
destination along a cast-shadow contour in the image. The light from a distant source, like the sun,
can be idealized as a parallel bundle of rays, coming from the dircction that the viewer points to when
he points to the source. We call the common dircction of these rays the direction of illumination.

When a light ray hits a diffusely reflecting surface, it will be reflected in all directions. If the point
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of contact is within the viewer's linc of sight, and unobstructed, some of that light will eventually
reach the image.

If a solid, opaque object is interposed between the source and the reflecting surface, all of the
rays that intersect that object will be stopped—reflected or absorbed, but the rays that don’t intersect
will reach the reflecting surface, and after reflection, the viewer. In that case, the interposed object
(shadowing object) casts a shadow on the .cflecting surface (shadowed surface.) The region on the
shadowed surface whose light rays have been blocked by the shadowing object will be inside the the
shadow, the rest will be outside (fig. 1).

To land on the edge of the shadow, a ray from the source has to just miss being blocked by the
shadowing object—if we moved it over a little in one dircction, it would be blocked; in the other
airection, it would pass the object. That is. the rays that just graze the surface of the shadowing object
will land on the shadowed surface just along the edge of the shadow. The projection into the image of
tire ray’s point of contact with the shadowed surface will then be a point on the shadow contour.

So to trace a ray from the source to a poi1 t on the shadow contour in the image, we first draw a line,
parallel to the direction of illumination, starting at the source, and just grazing the shadowing object.
We continue that linc until it hits the shadc wed surface, to locate a point on the edge of the shadow.
‘Then, to project that point into the image, we draw another line from the shadowed surface, through
the optical focal point, until it hits the imaging surface. That point of contact is a point on the shadow
contour in the image (fig. 2). :

To construct the entire cast-shadow contour, we would have to repeat this procedure for all of the
rays that graze the shadowing object. But this construction can be easily visualized by considering that
the set of all the grazing rays together define a surface in space. All of these rays are straight lines,
and they all pass through the (point) source, so that surface is a cone of general cross-section (fig. 3).!
This surface will be called the shadow cone, and can be envisioned as dividing space into two regions:
anything lying inside the cone will be in shadow, anything outside, in light. This is just like the cone of
light from a movie projector, except it is a cone of dark. The shape of the shadow cone’s cross-section
depends on the shape of the shadowing object, and its position relative to the source. The direction of
the cone’s axis is the direction of illumination.

Recall that the grazing rays define the edge of the shadow, where they contact the shadowed sur-
face. Since all the grazing rays also lie on the shadow cone, the edge of the shadow is actually the
curve of intersection of the shadow cone and the shadowed surface. And the image contour is just the
projection of that curve of intersection.

As a final step, the intersection of the shadow cone with the shadowed surface, and the projection
into the image, must be®xpressed in terms of local gecometry. The curve of intersection between two
surfaces can be specified'in terms of the curvatures and orientations of the two intersecting surfaces—
and this is how the curvature and orientation of the shadowed surface finally enter the picture.
Another function takes the curve thus specified into the image, specifying the curvature and tangent
dircction of the contour—the quantities we can measure in the image. We wind up with a function
rclating the image curvature to the curvature and oricntation of the shadowed surface, the curvature
of the shadow cone, and the direction of illumination. Next this function will be derived.

Un fact, since we’ll deal with a source at infinity, all the rays are parallel, and the “cone” is really a cylinder.
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Figure 1. From the source to the shadowed surface. The light from a distant source may be visualized as
a parallel bundle of rays. A cast shadow is demarked by the rays that intersect an opaque object, before
they reach the shadowed surface.
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Figure 2. From the source to the image: a ray from the source that just grazes the shadowing object,
contacts the shadowed surfaces, then projects to the image, giving a point on the shadow contour.
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Figure 3. The shadow cone: a surface in space, defined by all the rays from the source that just graze
the shadowing object. Anything inside this cone will be in shadow, anything outide, in light. The edge of
the cast shadow is the curve along which the shadow cone intersects the shadowed surface; and the image
contour is the projection into the image of that curve of intersection.
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4.2.2 Notation and terminology

Unit vectors. We will assume that illumination is by a distant point source, and that projection
into the image is orthographic. The direction of illumination will be given by a unit vector, L parallel
to that direction. The image tangent angle. as before, will be denoted by a*. The orientation of the
shadowed surface will be given by its unit normal. N,. In addition, two vectors which can be derived
from L, N,, and a* will be introduced for convenience: t, the tangent to the contour generator, and
N, the normal to the shadow cone at the point of intersection with the shadowed surface. Their
derivations will be given later on. The relation among these vectors is illustrated in Fig. 4.

Curvature. The curvature of a surface ciffers from the curvature of a curve in that surface curva-
ture varics with direction on the surface. The curvature of a surface in a particular direction is given
by the normal curvature: cutting the surface with a plane defines a curve of intersection. If the cutting
planc contains the surface normal at a given point, then the curvature of the curve of intersection
through that point is the normal curvature of the surface in the dircction of the curve (tig. 5). A useful
relation (which is sometimes used to define normal curvature) is

Kn =k N, (4.1)

where &, is the normal curvature at a point p, k is the curvature vector at p of a curve on the surface,
and N; is the surface normal. Thus a simple relation holds among the normal curvature of the surface,
the angle between the planc of a curve on the surface and the surface normal, and the curvature of the
curve.

At any point on any smooth surface, the normal curvature assumes a minimum and a maximum
in two orthogonal directions. The directions are called principal curvatures, and the directions, prin-
cipal directions. The normal curvature in any direction is determined by the principal curvatures and
directions. The normal curvature in a direction t is given by the following relation (Euler’s theorem):

Kn = K1 cos2a + kysin’a (4.2)

where k| and &, are the principal curvatures, and a is the angle between t and the principal direction
corresponding to k.

We will denote the normal curvature to the shadowed surface in the direction of t by &,,, and the
normal curvature on the shadow cone in the same direction by . The principal curvatures of the
shadow cone fall in diredtions parallel to and orthogonal to the cone’s axis, L. The first of these is zero,
and the sccond will be dénoted by «.

In these terms, the quantities that should appear in the final expression are a* and «*, the image
tangent and image curvature; L and Ny, the light direction and the normal to the shadowed surface;
Kn, the normal curvature to the surface along the contour gencrator; and k., the curvature of the
shadow cone’s cross-section. Intermediate quantities, derivable from these, are t, the tangent to the

2The curvature vector is the sccond derivative of the curve with respect to arc length. Its magnitude is simply called
the curvature.
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Figure4. Unit vectors: L is the illumination vector, t is the tangent to the cast-shadow edge, N, is the
surface normal, and N, is the normal to the shadow cone.
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Figure 5. When a surface is cut by a plane containing the surface normal, the normal curvature is the
curvature of the curve of intersection.
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contour generator; N, the normal to the shadow cone; and .. the normal curvature to the shadow
cone in the direction of t. These intermediate quantitics will be used for convenience in the deriva-
tion, then removed by substitution. Also appearing along the way will be k, the curvature vector of
the contour generator.

4.2.3 Derivation

Recall that the contour generator is the intersection of the shadow cone with the shadowed surface,
with tangent given by t. Then the contour generator lies on both the shadow cone and! the shadowed
surface. Therefore, from eq. x, its curvature vector k must satisfy

Kn = K- Ny

k! = k- N,
(recalling that &, is the normal curvature of the shadow cone in the direction of the cor:tour generator,
while &, is the principal curvature of the shadow cone in the direction normal to L.) Since t must be

orthogonal to k,
0=tk

and we have three equations for k. Solving them gives

KN X 1) —&(Ng X 1)
o [NsNt]

(4.3)

where [N;N.t] is the triple product (N, X N) - t.

Next we substitute &, for 7, using equation (4.2), and the fact that the principal curvature of the
shadow cone in the direction of L is zero. The relation then becomes

k! = K.sin’a
where a is the angle between L and t. Hence
Kl = K|L X t|?
and substituting in (4.3) gives

T k = K’n(Nc X t) —K’CIL X t|2(N" X t)
P [NSNCt]

Next we remove N, noting that it is a unit vector orthogonal to both L and t, so that

(Lxt)
L Xt

N, =

then
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k—('c" IL X t| el X NG ))Ns L)X

=(—n”t><(L>< t)—nfletl )

N, ((t- )L — (L- )t

ol = k(L - )t 4 kL X tP(Ns X t
- N, L

(4.4)

This expression gives the curvature vector of the shadow edge. It remains to obtain the projected
curvature in the image. To simplify this derivation, we will take the “*” symbol «s a projection
operator, when applied to a vector quantity. For orthographic projection onto a plane, the * operation
iray be defined by

*

X"=X—(X-V)V,

where X is any vector, and V is a unit normal to the image plane. It follows from this definition that
dx* _ (dxyY
du \du)’

(eX)* = ¢(X*),

and

where ¢ is a constant.

Next, we derive the projected curvature k*, for an arbitrary curve in space, given the tangent and
curvature vectors on the curve. Given a curve X(s), where s is a natural parameter,3 the curvature of
X is defined by
_|d%X

2|

The projection of X(s) is X*(s). Since s is not in general a natural parameter for X*, we must
introduce a new parameter, s*, which is a natural parameter for X*, noting that

e ﬁ = _1_
. ds* ||’

In terms of s*, the projected curvature, k*, is given by

d gx_‘ d {dX* ds ds
ds*\ ds* ds\ ds ds* )\ ds*

3A natural parameter of a curve is by definition proportional to arc length on the curve.

d?x*

ds*?
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_ljdfv
o [t*] | ds\ |t*|
l * * *dlt*l
=l—t;|§ [t k* —t 2 |
Noting that
dlt*l . t* - k*
ds |t
we find that
1 (t* - k*)t
* = * k# . S A
“ = Tep|t ]

1 * * * * %
= (PP = k)

. 1
BRI

It X (k* X t*)| (4.5)

Equation (4.5) gives the projected curvature of an arbitrary curve, in terms of the curvature and
tangent vectors. Combining this result with (4.4) we have
o Kn(L* — (T L)) +&|L X t]3(N, X 1)*
N, L

and

K* X 1 = Kn(L® X t*) + k|l X t3(Ng X t)* X t*
o N, L '

Therefore
. [t* X (k* X t*)|
K= 7
|te|*

et XL X 1) L X P X (N X 1) X 1)
— It.|4Na * L
which gives the curvature of the image contour in the desired terms.

(4.6)

An expansion of this expression substituting slant/tilt or gradient space representations for the unit
vectors is unwieldy, but the function may be computed given either of those representations by first
computing the corresponding unit vectors, then substituting into (4.6). For example, given gradient
representations (p, q) for‘_rﬁg and (ps, g,) for L, we have

c N—_P0—]]
VP71
[ps; ds, _1]

- 47
VETETD tl
__ [cosa®,sina’, pcosa* 4 gsina’]

V1 + (pcosa* + gsin a*)?
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and corresponding expressions are readily obtained given slant/tilt representations.

4.2.4 What it means

Having gone through this somewhat involved derivation, we review the meaning of the resulting
expressions, and our rcason for wanting to derive them. For a particular contour gencrating process,
namely cast shadows, the expressions tell us how the measures we can take on the image contour got
there, in terms of the various scenc parameters that determine them. The curvature of the contour
depends on the image tangent direction, a*, which we can measure; the orientation and curvature of
the shadowed surface, Ny and k,,, which we would like to recover; the direction of illumination and
the curvature of the shadow cone, which arc not of direct interest.

In effect, the relation tells us that the curvature of the image contour has three components: one
from the curvature of the shadowed surface, one from its orientation, and one from the properties
of the shadow cone. Two of these compon2nts are interesting from the standpoint of describing the
shadowed surface. In the next section we couple this geometric model with a statistica! one, to deter-
minc a very simple “goodness of fit” statistic, i.e. a measure of an interpretation’s abilit/ to explain the
image data.

4.3 Statistical model

In this section, a simple means of evaluating “goodness of fit” between a surface and the cast-
shadow contour in an image is developed. Although it is only approximately valid, the method is
computationally simple. and avoids making assumptions about the distribution of curvature; it will be
shown to be sufficient for the registration problem.

4.3.1 Independence

The shadow-contour generating process includes the illuminant and shadowing surface (which
together comprise the shadow cone,) the shadowed surface, and the viewer. The shape of the shadow
contour depends on these entities and the geometric relations among them. In a realistic situation,
the illuminant might be the sun, the shadowing object the branch of a tree, and the shadowed sur-
face a rock on the ground. Unless the branch and the rock have been selected and positioned by
a psychologist with the intention of generating unusual shadows, we can be quite confident that the
shape and orientation of thc branch bear no systematic causal relation to the shape and orientation
of the rock, and neithemis related to the direction of illumination or our direction of view. That is,
knowing about any one of thesec components is of absolutely no value in predicting the properties of
the others. And so, by definition, they are statistically independent.

This clementary obscrvation is the most important one we can make, if we want to use the
geomctry of shadow generation to draw inferences about surfaces. In fact, it can in some instances,
be used directly to decide that an interpretation is unreasonable: if you were shown a picture con-
taining a straight-line edge, and were asked to believe that this was the projection of a shadow-edge
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cast on a jagged surface, you would probably be skeptical. Your skepticism would have no basis in
the gcometry of shadow gencration, because the geometric possibility exists that a jagged shadowed
surface and a jagged shadowing surface assumed perfect complementary configurations to produce a
siraight shadow edge. Rather, the hypothesized jagged surface doesn’t fit the evidence of a straight
shadow edge because we know that such perfect complementarity is unlikely to occur by accident,
and we know that the processes that align the components of the shadow gencrating process are
accidental. Roughly speaking, the jagged-surface hypothesis would force us to the conclusion that a
perfect negative corrclation exists in a sample drawn from populations we know to be uncorrelated.
While such an cvent is possible, it is hardly likely. So, knowing something of the gcometry of the
shadow generating process, an clementary observation about the statistical relation among some of the
components of that process provides a basis for rejecting some hypotheses as implausible.

4.3.2 Evaluating likelihood

Given a prior density function for ., the curvature of the shadow cone, a likclihood measure
can be derived by exactly the same reasoning that led to the planar estimator. That is, given the
surface orientation and normal curvature, and the direction of illumination, a density function can be
computed for the image measures, £* and a*. But we could not specify this function without assuming
a specific distribution for k.. Moreover, the function would have to include the derivative dx./dk*
obtained from the geometric model, and this is a most unwieldy expression.

For the comparatively simple registration problem, an approximate measure of likelihood can be
obtained by correlation techniques. We can think of the unknown surface as a function that trans-
forms shadow cones into image contours, in accordance with the geometric model. Given the image
contours, and a set of candidate surfaces to choose from, the problem is to decide which of the set of
transformations, corresponding to the sct of surfaces, has operated on the unknown shadow cone to
generate the given image contours.

A “map” of the transformation performed by a given surface can be generated by running a fixed
value of k. through that surface, at all tangent directions and positions, using the geometric model to
compute the resulting curvatures in the image. Since the starting values of k. were all the same, all the
variations in the computed «* entirely reflect the distortion imposed by the curvature and orientation
of the surface. Roughly, this map tells us how we would expect curvature in the image to vary with
position and tangent direction, if the surface that generated it were present. This is only roughly so,
because the geometric relation between k. and k* is non-linear. But, if we are willing to ignore the
non-linearity, we can evgluate the goodness-of-fit by simply correlating the observed values of £* with
the values drawn from the map at the same position and tangent direction. A high positive correlation
indicates that the observed curvature is systcmatically varying with the curvature predicted for the
hypothesized surface. And to choose a most likely surface from a given family, we simply choose the
onc that gives the highest correlation with the data.

While this mcthod ignores the substantial nonlincarities in the gcometric model, I will argue that
it is appropriate for the registration problem because it is far simpler than an exact cstimator, and
because it works.
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4.4 Registration with a surface model: a demonstration

A problem of practical interest is the registration of an image with a surface model, when the
viewpoint of the image with respect to the model is known only approximately. Horn and Bachman
(1977) have treated the registration problem by using the surface model to synthesize an image, then
cstablishing registration between the synthesized and real images by maximizing the cross-correlation
of the synthetic image with the real one. The principle advantage of this technique over matching with
a real reference image is that changes in direction of illumination can be taken into account. They
applied the technique to the registration of LANDSAT photos with digital terrain models.

Since the correlation is performed in the image domain, a limitation of the synthetic image ap-
proach is that anything which appears in the image, but not in the terrain model, enters into the
correlation as noise. In this section, it will b2 shown that registration can be established using nothing
Lut such “noise:™ suppose that the image to be registered includes shadows cast by unknown objects
outside the ficld of view.” The variations in image intensity introduced by the shadow cannot be
predicted from the surface model, hence would not appear in a synthesized image. Therefore the
shadows would only hinder a cross-correlation in the image domain, entering into the correlation as
pure noise. If we extracted the edges of the shadowed regions, and threw the rest of the image away,
we would be left with nothing bur noise, in the image domain. But our geometric and statistical under-
standing of the shadow generating process gives the shapes of the shadow edges enough meaning that
registration can be established using those edges and nothing else.

4.4.1 Method

In a simple instance of the registration problem, the direction of illumination is known in advance,
and the unknown component in the viewpoint of the image is expressed by translation in a plane.
That is, we know, for example, that we are looking straight down at the surface, but we don’t know
exactly where we are. The viewpoint of the image with respect to the surface model is known to lie in
a specified region, and, for simplicity, all viewpoints within the region can be assumed equally likely a
priori. This is the same problem to which Horn and Bachman applied synthetic image techniques.

In other words, we are free to slide the surface model with respect to the image by some specified
amount in any direction, and we have to find the position of the surface model which corresponds
to the actual position of the surface in the image. Each position (Az, Ay) relative to some reference
point may be viewed as a hypothesis Haz ay, and we have a two-parameter family of candidate
hypotheses, each equally likely, and constrained to a specified region of the (z, y) plane.

The surface model iga function 2(z, y) which gives the elevation of the modeled surface with
respect to the image plafe, at regular intervals of z and y. A hypothesis Haz a, asserts that the actual
surface is given by z(z + Az, y 4 Ay). and the problem is to find a density function for Haz ay
given the image data. The data are a set of measures of (k*, @*) taken along the image contours.

*This supposition is clcarly unrealistic if the image to be registered is a LANDSAT photo, but might be realistic for
other domains in which the registration problem arises. For example, model-based recognition in industrial assembly
applications can be hindered by unpredictable cast shadows. In any event, the point of treating the problem is not

to arrive at instant applications to practical problems, but to focus on the information on surface shape implicit in a
shadow contour.
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For cach image measure, cach hypothesis specifies corresponding values for N, and &,,, measured
by finite difference from the surface model. Given these values. and for any image position (z, y),
and image tangent direction, a*, the “cxpected” image curvature £* is determined. for a fixed value
of ke, by (4.6). Rather than using (4.6) dircctly, the “expected” curvature was compuced numerically
by projecting a circle of radius 1/« onto the DTM in the direction of L, and projecting again into the
image. The image curvature obtained for a given (z, y, @*) is the expected curvature,

Since the contours are comparatively sparse, it is more ecfficient to compute these values “on
line,” only where they're needed. rather than in a pre-computed lookup table. Given a hypothesis
H(Az, Ay). and a sct of image measures of the form (k*, a*, z, y). the “expected’ curvature 2,
is computed for cach (a*, z,y). and the lincar correlation cocfficient is computed for the pairs of
(k*, &%4;). The value of this cocfficient is taicen as the approximate relative likelihood f H(Az, Ay).
By computing the coefficient at increment. in the allowable region of the (z,y) pline, the best-fit
value for (Az, Ay) is obtained. Since we aie translating the map of k?,,, and correlating those values

with the observed «*, this is a cross-correlation.

4.4.2 Stimuli

The surface models used were digital terrain models (DTM’s) like those used by Horn and
Bachman. The shadow contours were synthesized by projecting random shapes onto the DTM, then
onto an image plane. The shapes represent the sillouhettes of shadowing objects; their projections
onto the DTM, the edges of cast shadows; and the projections into the image, cast shadow contours.
The use of synthesized stimuli was necessary on practical grounds, but is not a drawback because
the modeled surfaces are natural surfaces, and because the shapes of the “shadowing objects” were
unknown to the estimation strategy. A synthetic shaded images of a DTM, with a synthetic shadow, is
shown in Fig. 6.

4.4.3 Results

Figure 7 shows side by side several “shadowing object” sillouhettes, and the image contours that
were generated by projecting them onto the DTM, and again onto the image. The difference between
cach sillouhette and the corresponding contour represents the distortion imposed by the shape of the
DTM, and by projection. Recall that registration is established not by comparing the contour to the
sillouhette, which is unavailable to the registration algorithm, but to the DTM. While the distortion is
in some cascs not very great, it suffices to establish registration accurately.

The registration algofithm computes the cross-correlation, as a function of (Az, Ay), of observed
contour curvature with predicted curvature. The peak value of the correlation gives the estimated
offsct of the image with respect to the DTM. Figure 8 shows contour plots of the cross-correlations
obtained from the contours shown in the previous figure. In cach case, the estimated offset differs
from the correct value by less than five DTM pixels. Note that the exact peak of the cross-correlation
is in each case surrounded by an elongated “ridge.” These in fact coincide with ridges in the terrain
model. Where a shadow bends across a ridge, sliding the shadow along the ridge maintains the
goodness of fit much more than sliding it across the ridge.
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Figure 6. A picture synthesized from a DTM, including a “fake” shadow. The edge of such a shadow
is the input to the registration algorithm.
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Figure 8. Contour plots of the cross-correlations. The correct offset is positioned at the center of the plot,
so the line joining the center to the peak value of the cross-correlation shows the error of the estimated

offset. The coordinates are given in DTM pixels.
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4.5 Conclusions

It was shown that a detailed understanding of the local geometry by which cast-shadow contours
are formed permits the curvature of a shadow contour to be decomposed into independent com-
ponents, among which are surface curvature and orientation; and, in the restricted registration
problem, that these components can be isolated statistically. The generality and usefulness of these
results might be extended in two directions: first, by extension to less restricted problems, and second,
by extension to more general contour types such as surface markings. In this section, the flavor of
these extensions will be given.

4.5.1 Treating the general estimation problem

In extending the planar estimator to the estimation of curved surfaces, results from a restricted
situation with strong prior constraints were extended to a less constrained, more general problem
domain. This was done by applying the planar estimator locally, to a small region around cach point,
a1d cstimating the overall orientation in the region. The effect was to discard changes in orientation
t.at occurred on a scale that was small compared to the region size, obtaining a reliable estimate at the
expensc of resolution.

It is natural to try the same approach toward extending the curvature-based method, that is, ex-
amining a region around a point to characterize the surface at that point. But that local description,
since it now includes the curvature of the surface, would have to become much more complicated. In
fact, the description of a surface at a point, up to the second derivative, has five degrees of freedom:
two for the orientation of the tangent plane, one for the orientation of the principal directions, and
two for the principal curvatures. To construct a local strategy closcly analogous to the extension of
the planar method, we would nced a way of evaluating the joint likelihoods of these parameters, given
the data in a small region. This might be done by taking the point description of the surface as a
second-order approximation to a patch around the point, and varying that description to optimize a
goodness-of-fit measure on the surrounding data. The goodness-of-fit measure already applied to the
registration problem might be adequate for this purpose.

A related, but more structured approach is the representation of the surface by a surface-patch
function, that is, a patch-wise approximation representing each patch by a simple function, with
constraints on continuity where the patches join. Such representations have been used extensively in
computer graphics applications (see, e.g., Newman & Sproul, 1979 ). Since the whole surface is then
specified by a vector of the parameters governing the patches, a best-fit surface can be found by hill
climbing. «

¢
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4.5.2 Extension to more general contour types

Cast shadows were sclected for initial investigation because they are generated by a process that
is geometrically uniform, and falls naturally into clcarly independent components. That is, we can
say very exactly that the curvature of the contour has a component from the curvature of the shadow
cone, and a component from the curvature of the shadowed surface, and that the combination is the
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curve along which those two surfaces intersect. We can also confidently assert that the shadow cone
and the shadowed surface are almost always independent.

Intuitively, surface markings, such as ground cover or pigmentation, bend and twist with the sur-
face they lic on, in much the same way cast shadows do. But the processes by which such markings are
formed are varied and irregular; there is no exact geometric decomposition that can describe them,
The only firm geometric constraint on the relation between surfaces and the markings on them is that
the marking can never be /ess curved than the surface.

To use the curvature of contours arising from surface markings, a way must be found to partition
them into a component from the curvature of the surface, and a component from the process that
marked the surface. This decomposition must be realistic enough that the components it specifies
a-c liable to be at least roughly independent. Otherwise, there is no hope of statistically isolating the
components of interest.

Onc decomposition, though idealized, may be a good enough approximation to be of use: the
cecomposition of the curvature of the marking into a geodesic component and a normal component.
Intuitively, a geodesic is the path you follow when you try to move in a straight linc on a curved
surface, for example driving a tractor on hilly terrain without turning the wheel. The geodesic curva-
ture, again intuitively, is the deviation from that path. That is, if you turn the tractor’s steering wheel
a fixed amount, and keep it there, the path you follow will have constant geodesic curvature. The
actual curvature of the tractor’s path in space is nothing more than the vector sum of the geodesic
curvature and the normal curvature of the surface. If you periodically decide to turn your tractor’s
steering wheel, and your decisions have nothing to do with the surface curvature, then the geodesic
and normal curvatures along your trajectory will be independent.

The reason this decomposition seems reasonable is that many processes that mark surfaces, par-
ticularly processes of growth and propagation, act in very much this way. For example, a lichen grows
at roughly a uniform rate on the surface, without regard to the curvature of the surface. So the result is
usually a “circle” that bends with the surface. The same is roughly true of the growth of rust spots on
your car, or ink spots on absorbent cloth, weeds on a lawn, or mould on a piece of bread. ‘

Such a decomposition is also a good approximation for cast shadows, when the angle between the
surface normal and the illumination vector is not too large. In fact, when the light is orthogonal to the
surface, the curvature of the shadow cone becomes exactly the geodesic curvature of the shadow edge.
Since the curvature of a curve on a surface is a vector sum of the normal and geodesic curvatures, this
decomposition has the further advantage of simplicity.

The point of describing the geometry of contour formation, or any aspect of image formation, is
to achieve a good enough model of the generating process to untangle the image. The important
question about this, or any other, decomposition is how well it will work when applied to images of
natural scenes. And that empirical question is not yet answered.
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APPENDIX A

HUMAN PERCEPTION OF SURFACE ORIENTATION: A COMPARISON

A.1 Introduction

This appendix reports an experimental comparison of the perceived orientations in space of un-
familiar curves, with the orientations assigned to the same curves by the planar estimation method of
Chapter 2. That method was derived from consideration of the perceptual problem, without reference
to its solution, if any, in biological vision, and cast in terms of assumptions about the world. The
aim of the comparison is to evaluate those same assumptions as an abstract description of human
performance.

The planar method is a solution to the problem of inferring orientation from contour shape. The
human perceiver, to the extent he uses contour shape to infer surface orientation, has solved the same
problem, but not necessarily by the same method: it is possible by experiment with natural images to
show that a model of the world, like the geometric/statistical model of Chapter 2, is sufficient to solve
the planar oricntation problem, but never to show that the set of assumptions comprising that or any
other model is necessary for a solution; because those assumptions are empirical assertions about the
world, it is always possible that some other, undiscovered properties of the world would also suffice
to solve the problem. In short, no claim of uniqueness can be attached to the theories that have been
presented, or to any theories of their kind. And therefore, evidence that the methods work is not
evidence that they are used by the human perceiver, or by any other system.

This point is clarified by a simple example: binocular disparity, accommodation, and vergence are
all well known to be potential “depth cues” in the sense that each can be used to measure distance to
the viewer. But that each of these measures could in principle be used to infer depth does not imply
that any or all of them greused by the human perceiver. Whether the human visual system uses one,
all, or none of these possible methods to infer depth can only be decided by observing that system.

The planar method is cffective, and derives from very simple assumptions about the world. The
method performs a mapping from image contours to surface orientations, and that mapping is con-
ciscly specified by the assumptions on which the method is based. The human percciver, in using con-
tours to judge oricntation, performs the same kind of mapping. To the extent the two mappings are
isomorphic, the assumptions that underlic the planar method also describe the mapping performed by
the human perceiver. Such isomorphism says nothing about the mechanism by which the mapping is
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performed (Marr, 1977), but if found, it succinctly describes the perceptual strategy’s behavior, and
accounts for its accuracy in terms of properties of the visual world.

All generally accurate methods for inferring orientation, even if they differ fundamentally, must
by definition give substantially similar results overall: a method is only accurate to the extent that its
results tend toward the correct result. Since there is in each case only one correct result, all methods,
to be accurate, must share this tendency. That is, if ecach surface has a correct orientation, then there
Is a unique correct mapping from contours to orientations, and any method is accurate only to the
extent it approximates that mapping. Two perfectly accurate methods are both isomorphic to the
correct mapping, hence to cach other. Rathr, the divergence of fundamentally different but generally
accurate methods appears only in their failures. In other words, different strategies generally lead to
cifferent illusions. For this reason, errors of the planar method will be compared to errors of the
l.uman strategy.

Human observers readily perceive simple drawn shapes as slanted in space, even though the surface
they’re drawn on lies in the frontal plane (f.g. 1). A familiar example, the appearance of an ellipse as
a tilted circle, might be explained on the basis of the circle’s greater familiarity, but unfamiliar shapes
also appear slanted in seemingly systematic ways. While such shapes often appear bent in space, as
well as slanted, a substantial subset may be perceived as planar.

If the curves actually lie in the frontal plane, and if they have not in their construction undergone
projective distortions, then they have no “real” orientations outside that plane, and any deviation
from the frontal plane in assigned orientation is an crror. Such curves are therefore suitable for the
comparison.

A.2 Method

A.2.1 Stimuli

The stimuli were nineteen “random” shapes, i.e. shapes defined by a function with pseudorandom
parameters. That function was an iterative product of polar sech functions, with pseudorandom trans-
lation, uniform scaling, and rotation at each iteration. This procedure ensures simple (i.e. non-self-
intersecting) closed curves. The curves were then smoothed by replacing each point with the average
of its near neighbors, to avoid discontinuities of orientation. Examples of the curves are shown in fig.
2. In all, twenty curves were used as experimental stimuli.

-
¢
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A.2.2 Orientation judgments

Observers’ orientation judgments were measured by matching the orientations of the experimental
shapes to that of a probe shape, consisting of the projection of three mutually orthogonal lines. The
perceived orientations of these configurations have been shown by Stevens (1979) to be consistent
with the orthogonal interpretation. The cxperimental and probe shapes were shown concurrently on
a CRT screen, with the orientation of the probe controlled in real time by joystick operated by the
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Figure 1. Unfamiliar curves oRea appear slanted in space
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subject. The probe gave the compelling appearance of a ..gure rotating rigidly in space. (see Fig.
3). Subjects were instructed to adjust the probe until the two crossed lines appeared to lic flat on the
surface defined by the experimental shape, with the third line normal to that surface, and oricntation
was recorded when a match was achieved.

Twenty shapes were shown to ten subjects, in cach of eight picture-plane orientaticns (i.e. rightside
up. sideways, upside down, etc.—not slanted in depth), for a total of 1600 trials. The order of
presentation was randomized with respect to shape and picture plane oricntation.

A.2.3 Results

Maximum likclihood estimates of orient: tion were first computed for cach experimental shape, by
the method described in Chapter 2.

The judgments of tilt () were highly consistent across subjects, for each shape, but the judgments
of slant were much more variable. In view of the high variance of slant judgments, only 7 was
compared to the predictions.! Figure 4 shows a representative sample of the experimental shapes,
cach with polar histograms of the tilt data and the tilt vectors obtained by the estimation strategy.
Also shown are standard deviations of the data from the predicted values. The data and predictions
are clearly in close accord. Figure 5 shows a histogram of the tilt data combined across stimuli, and
centercd on the predicted values.

A.3 Discussion

These data show that the statistical strategy of Chapter 2 accurately predicts human observers’ tilt
judgments for a class of unfamiliar shapes whose “real” orientations all lie in the frontal plane. Thus
the gcometric/statistical model underlying that strategy may be taken as a succinct description of the
assignment of orientations to thesc shapes by human observers. Perhaps more important, the model
explains why the strategy reflected in that pattern of judgments is an effective one for interpreting
natural images, because the model is cast in terms of assumptions about the visual world.

ISince orientation was measured by a matching procedure, the variance of slant judgments might be due to variability
in the perceived orientation of the probe, or to variability in the orientation matching itself; as well as variability in the
perceived slants of the experimental stimuli. Subsequent work (Pentland, 1980) suggests that far lower variance in slant
judgments can be achieved using an ellipse-shaped probe.
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Shapes Data Predictions

Figure 4. Several of the experimental shapes, with polar histograms of the tilt data, and tilt vectors
predicted by the estimation strategy.
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Figure 5. Combined histogram of tilt data. The data from each shape were centered on the predicted
values before summing across shapes, so distance from the histogram’s center corresponds to deviation from
the predicted value.
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